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ABSTRACT

Large complex network data have become common in many scientific domains, and

require new statistical tools for discovering the underlying structures and features

of interest. This thesis presents new methodology for network data analysis, with a

focus on problems arising in the field of brain connectomics. Our overall goal is to

learn parsimonious and interpretable network features, with computationally efficient

and theoretically justified methods.

The first project in the thesis focuses on the problem of prediction with network

covariates. This setting is motivated by neuroimaging applications, in which each

subject has an associated brain network constructed from fMRI data, and the goal is to

derive interpretable prediction rules for a phenotype of interest or a clinical outcome.

Existing approaches to this problem typically either reduce the data to a small set of

global network summaries, losing a lot of local information, or treat network edges

as a “bag of features” and use standard statistical tools without accounting for the

network nature of the data. We develop a method that uses all edge weights, while

still effectively incorporating network structure by using a penalty that encourages

sparsity in both the number of edges and the number of nodes used. We develop

efficient optimization algorithms for implementing this method and show it achieves

state-of-the-art accuracy on a dataset of schizophrenic patients and healthy controls

while using a smaller and more readily interpretable set of features than methods

which ignore network structure. We also establish theoretical performance guarantees.

Communities in networks are observed in many different domains, and in brain

xii



networks they typically correspond to different regions of the brain responsible for

different functions. In connectomic analyses, there are standard parcellations of the

brain into such regions, typically obtained by applying clustering methods to brain

connectomes of healthy subjects. However, there is now increasing evidence that these

communities are dynamic, and when the goal is predicting a phenotype or distinguish-

ing between different conditions, these static communities from an unrelated set of

healthy subjects may not be the most useful for prediction. We present a method

for supervised community detection, that is, a method that finds a partition of the

network into communities that is most useful for predicting a particular response. We

use a block-structured regularization and compute the solution with a combination

of a spectral method and an ADMM optimization algorithm. The method performs

well on both simulated and real brain networks, providing support for the idea of

task-dependent brain regions.

The last part of the thesis focuses on the problem of community detection in

the general network setting. Unlike in neuroimaging, statistical network analysis is

typically applied to a single network, motivated by datasets from the social sciences.

While community detection has been well studied, in practice nodes in a network

often belong to more than one community, leading to the much harder problem of

overlapping community detection. We propose a new approach for overlapping com-

munity detection based on sparse principal component analysis, and develop efficient

algorithms that are able to accurately recover community memberships, provided

each node does not belong to too many communities at once. The method has a very

low computational cost relative to other methods available for this problem. We show

asymptotic consistency of recovering community memberships by the new method,

and good empirical performance on both simulated and real-world networks.

xiii



CHAPTER 1

Introduction

Network data analysis has received increasing interest in the recent years, as networks
have become a popular data structure in many different fields such as social sciences,
engineering, biology, chemistry and neuroscience. Networks are commonly used to
represent data derived from complex systems, in which the nodes of the network
correspond to the units of the system, and the edges encode interactions between
these units. A network can represent relationships or interactions between agents in
a social environment, physical connections in circuits and computer networks, protein-
protein interactions in gene regulatory networks, bonds between atoms in chemical
compounds, or the connectivity between different areas in the brain, to name some
examples.

Technological advancements facilitate the collection of information, resulting in
high-dimensional and complex datasets. New statistical methodologies that are able
to provide parsimonious representations of underlying structures in the data can help
to understand the scientific problem of interest. To deal with large amounts of in-
formation, computational efficient solutions are required. This thesis focuses on de-
veloping new methods for the analysis of network data in different problems, with
special emphasis in applications to neuroimaging. Specific projects in this thesis are
described below.

Prediction with network-valued covariates

Statistical analysis of samples of networks has received growing recent attention,
particularly motivated by applications in neuroscience. Imaging techniques have made
possible to study the brain at the population level, in order to characterize the activity
and connectivity of the brain under different conditions, such as mental illneses, age-
related changes or other subject-specific responses of interest. The structure of the
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Figure 1.1: Supervised classification of brain networks.

brain is commonly represented with brain networks constructed from imaging data,
in order to represent the connectivity between a predefined set of regions in the brain
(Bullmore and Sporns, 2009).

Two generic approaches are usually performed when analyzing samples of net-
works. One approach consists in reducing networks to a set of global summaries, but
this approach loses the ability to capture local information. In the second approach,
multivariate data analysis tools are applied to vectorized adjacency matrices while
ignoring the network structure of the data, but this can harm statistical power and in-
terpretation. The first two chapters of the thesis aim to bridge the gap between these
two approaches, by introducing new methods able to exploit the local information of
the edges and the network structure of the data at the same time.

Network classification is the problem of predicting a response from a network-
valued covariate (see Figure 1.1). This problem has applications in neuroscience, since
brain networks are successful diagnostic biomarkers for certain mental illnesses such
as schizophrenia. To understand the brain, the interest is not only to correctly classify
a patient, but also to identify which abnormal connections might be predictive. In
Chapter 2, we propose a classifier for network data. The network structure of the data
is incorporated via convex regularizations that promote sparsity not only in the edges,
which are the variables of interest in the problem, but also in the nodes. Node sparsity
is obtained with a group lasso penalty, but the groups overlap, requiring a careful
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Figure 1.2: Adjacency matrix of a Facebook friendship network with the nodes per-
muted at random (left) and ordered according to their communities (right).

treatment in optimization and in theoretical analysis. We show that our penalty is
able to correctly recover the predictive subnetwork for classification. Our method
outperforms benchmarks in classification accuracy and simplifies the interpretation
of the results by offering parsimonious solutions.

Supervised community detection in multiple net-
works

Community detection is the problem of clustering the nodes of a network into “co-
herent” groups. Many real-world networks from different fields show community
structure, making community detection a problem of interest in network analysis.

In the analysis of large scale networks, communities provide a convenient way
to simplify the structure of the data by partitioning the nodes of the network into
a small number of groups that facilitate the analysis and interpretation, and allow
to discover underlying structures of interest. Figure 1.2 shows the adjacency matrix
of a Facebook ego-network, in which the nodes represent all the friends of a certain
user, and the edges denote whether or not two individuals have a Facebook friendship
relation. On the left side, the nodes are arranged in no particular order, and making
sense of the data is extremely hard. After the nodes are ordered according to their
community assignments (right side), some structure is revealed. The nodes are divided
into coherent clusters, and edges appear in homogeneous blocks.

In brain networks, nodes organize into groups that co-activate during brain activ-
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ity. The analysis and interpretation of brain studies is usually done at the community
level, as it simplifies the interpretation by reducing the nodes to a number of larger
units that have known brain functionality. Thus, being able to correctly identify
meaningful clusters of nodes is a critical task in this setting.

A practical question when fitting communities to observed data is how to select
the best model and evaluate the quality of the solution, as the task is usually unsuper-
vised. In the context of prediction with network-valued data, however, communities
can be used to improve classification by regularizing the solutions using this structure.
Conversely, having “supervision” in the form of a response can guide the choice of the
community assignments. In Chapter 3, we propose a block-structured regularization
for problems with network-valued predictors. This regularization vastly reduces the
number of coefficients to estimate and achieves the goal of assigning nodes to commu-
nities in a supervised way. Finding communities is in general a computationally hard
problem, but we derive some efficient methods to obtain an approximate solution to
the problem. The methods are evaluated in simulations and in real brain networks
obtained from fMRI data, showing interpretable and accurate solutions.

Sparse overlapping community detection in a net-
work

The problem of community detection has been extensively studied in the analysis of
a single network. The stochastic block model (SBM) (Holland et al., 1983) provides
a way to characterize community structure from a statistical perspective. This model
is often too simplistic to apply to real-life networks, but several extensions have been
proposed. Here, we focus in overlapping communities (Airoldi et al., 2009; Zhang
et al., 2014), in which nodes are allowed to belong to more than one community at
the same time.

Figure 1.3 shows a plot of the nodes and edges of the same Facebook ego network
from Figure 1.2. If communities overlap, each node can be represented with a vector
indicating the degree of association to each of the communities in the network. In the
figure, a pie plot on each node represents the memberships, with the colors indicating
the different community assignments. As always, parsimonious solutions have the
advantage of interpretability, and thus solutions in which a node belongs to relatively
few communities are preferable. In the extreme case, each node belongs to only one
community as in the classic community detection problem.

4



Figure 1.3: Overlapping communities of a Facebook ego network. Pie plots of each
node indicate the degree of association to each community.
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In Chapter 4, we develop efficient methods for fitting sparse overlapping commu-
nities. Our methodology is based on the observation that in statistical models for
community detection, the expected adjacency matrix of the network can be charac-
terized with a sparse eigenbasis. We propose a method based on sparse principal
component analysis that is able to fit overlapping community memberships. The
sparsity of the solution can be controlled with a tuning parameter. We show that
the method is able to recover the correct sparsity pattern that corresponds to the
community memberships for some statistical models. Many existing methods for
community detection operate by performing a clustering procedure to the rows of the
adjacency matrix leading eigenvectors. In contrast, by fitting an appropriate eigenba-
sis we directly estimate the memberships from the network, which allow us to obtain
better statistical accuracy and computational efficiency. Our implementation easily
handles networks with millions of nodes, and shows accurate results in simulated and
real-world networks.

6



CHAPTER 2

Network classification with applications to
brain connectomics

2.1 Introduction

Network data analysis has received a lot of attention in recent literature, especially
unsupervised analysis of a single network which is thought of as generated from an ex-
changeable random graph model, for example Bickel and Chen (2009); Le et al. (2015);
Zhang et al. (2016a); Gao et al. (2015) and many others. This setting is applicable to
a number of real life scenarios, such as social networks, but there are situations where
the network nodes are labeled and therefore not exchangeable, and/or more than one
network is available for analysis, which have received relatively less attention. Here
we focus on the setting motivated by brain connectomics studies, where a sample of
networks is available from multiple populations of interest (for example, mentally ill
patients and healthy controls). In this setting, each unit in the population (e.g., a
patient) is represented by their own network, and the nodes (brain regions of inter-
est) are labeled and shared across all networks, through a registration process that
maps all individual brains onto a common atlas. There are many classical statistical
inference questions one can ask in this setting, for example, how to compare different
populations (Tang et al., 2017b,a). The question we foocus on in this paper is a
classification problem: given a training sample of networks with labeled nodes drawn
from multiple classes, the goal is to learn the rules for predicting the class of a given
network, and just as importantly, interpret these rules.

Network methods are a popular tool in the neuroscience literature (Bullmore and
Sporns, 2009; Bullmore and Bassett, 2011). A brain network represents connectivity
between different locations of an individual’s brain. How connectivity is defined varies
with the type of imaging technology used and the conditions under which data were
collected. In this paper, we focus on functional connectivity, which is a measure of
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Figure 2.1: Regions of interest (ROIs) defined by Power et al. (2011), colored by brain
systems, and the total number of nodes in each system.

statistical association between each pair of locations in the brain, construbted from
functional magnetic resonance imaging (fMRI) data, although the methods we develop
are applicable to any sample of weighted networks with labeled nodes. In fMRI
studies, BOLD (blood oxygen-level dependent) signal, a known correlate of underlying
neural activity, is measured at a sequence of time points at many spatial locations in
the brain, known as voxels, resulting in a 4-dimensional data array, with three spatial
dimensions and a time index. Brain networks constructed from fMRI data have been
successfully used for various tasks, such as differentiating between certain illnesses, or
between types of external stimuli (Bullmore and Sporns, 2009), and contain enough
information to identify individual subjects (Finn et al., 2015). Extensive statistical
literature has focused on the analysis of raw fMRI data (Lindquist et al., 2008; Zhou
et al., 2013; Zhang et al., 2016b), usually aiming to characterize brain activation
patterns obtained from task-based fMRI experiments. In this paper, we focus on
resting-state fMRI data, where no particular task is performed and subjects are free
to think about anything they want. Thus registesring the time dimension across
different subjects is not possible. The connectivity network approach, which averages
over the time dimension in computing a measure of dependence between different
voxels, is thus a natural choice, and has been widely used with multiple types of
neuroimaging data.

Two different datasets are analyzed in this paper, both of resting state fMRI
studies on schizophrenic patients and healthy controls. One dataset, COBRE (about
70 each of scizophrenics and controls), is publicly available; another, which we will
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refer to as UMich data (about 40 each of scizophenics and controls), was collected
internally in the last author’s lab. Having two datasets on the same disease allows
us to cross-check models trained on one of them for classification on the other, which
The raw data arrays undergo pre-processing and registration steps, discussed in detail
in Section 2.6, along with additional details on data collection. To construct a brain
network from fMRI measurements, a set of nodes is chosen, typically corresponding
to regions of interests (ROIs) from some predefined parcellation. In our analysis we
use the parcellation of (Power et al., 2011), which consists of 264 ROIs divided into 14
functional brain systems (see Figure 2.1). A connectivity measure is then computed
for every pair of nodes, resulting in an adjacency matrix of size 264 × 264. Many
choices of connectivity measures are available (Smith et al., 2013); perhaps the most
commonly used one is the Pearson correlation coefficient between locations, computed
by averaging over the time dimension. It has been argued that partial correlations
are a better measure of connectivity (Varoquaux and Craddock, 2013; Narayan et al.,
2015), but the choice depends on the final goal of analysis. In this paper we follow
the vast majority of the connectomics literature and measure connectivity on each
individual by using marginal correlations between the corresponding time series (see
Figure 2.2). The correlations are then further rank-transformed and standardized;
see Section 2.6 for details. These transformations are intended to deal with subject-
to-subject variability and the global signal regression issue (Gotts et al., 2013). We
observed that on our datasets, classification based on standardized ranks of marginal
correlations outperformed classification based on other connectivity measures, such
as marginal or partial correlations.

The problem of graph classification has been studied previously in other contexts,
with a substantial literature motivated by the problem of classification of chemical
compounds (Srinivasan et al., 1996; Helma et al., 2001), where graphs represent the
compound’s molecular structure. This setting is very different, with small networks of
about 20 nodes on average, binary or categorical edges recorded with no noise, and dif-
ferent nodes corresponding to different networks, (Ketkar et al., 2009). Classification
methods for chemical compounds is usually based on finding certain discriminative
patterns in the graphs, like subgraphs or paths (Inokuchi et al., 2000; Gonzalez et al.,
2000), and using them as features for training a standard classification method (Desh-
pande et al., 2005; Kudo et al., 2004; Fei and Huan, 2010). Computationally, finding
these patterns is only possible on small binary networks.

Another type of methods is based on graph kernels (Gärtner et al., 2003; Vish-
wanathan et al., 2010), which define a similarity measure between two networks.
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Figure 2.2: Adjacency matrix of a brain network from one of the subjects, showing
the value of the Fisher z-transformed correlations between the nodes, with the 264
nodes grouped into 14 brain systems.

These kernels combined with support vector machines (SVMs) have been successfully
used on small networks (Kashima et al., 2003; Borgwardt et al., 2005), but the curse of
dimensionality makes local kernel methods unsuitable for large scale networks (Ben-
gio and Monperrus, 2005). On our datasets, graph kernel methods did not perform
better than random guessing.

In the context of classifying large-scale brain networks, two main approaches have
been followed. One approach is to reduce the network to its global summary mea-
sures such as the average degree, clustering coefficient, or average path length (Bull-
more and Sporns, 2009), and use those measures as features for training a classifica-
tion method. Previous studies have reported significant differences on some of these
network measures for groups of patients with certain brain diseases compared with
healthy controls (Supekar et al., 2008; Liu et al., 2008), suggesting their usefulness
as diagnostic biomarkers. However, global summary statistics collapse all local net-
work information, which can harm the accuracy of classification and does not allow
to identify local differences. In our data analysis, a method based on the network
measures suggested in Prasad et al. (2015) performed poorly for classification (see
Section 2.6).

An alternative approach to classification of large networks is to treat edge weights
as a “bag of features”, vectorizing the unique elements of the adjacency matrix and
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ignoring the network nature of the data. This approach can leverage many existing
classification methods for vectors, and provides an interpretation at the edge level
if variable selection is applied (Richiardi et al., 2011; Craddock et al., 2009; Zhang
et al., 2012). Spatial correlation between edges connecting neighboring nodes can be
incorporated (Watanabe et al., 2014; Scott et al., 2015), although the effectiveness of
this regularization will depend on the parcellation used to define nodes (Power et al.,
2011). Alternatively, an individual test can be used for each edge to find significant
differences between two populations, with a multiple testing correction and without
constructing a classifier at all (Narayan et al., 2015). While these methods can deliver
good predictions, their interpretability is limited to individual edge selection, which
is less scientifically interesting than identifying differentiating nodes or regions, and
they cannot account for network structure.

Taking the network structure into account can have benefits for both testing and
classification settings. Some methods perform inference over groups of edges based
on the community assignments of the nodes to which they are incident. For example,
Sripada et al. (2014a,b) introduced Network Contingency Analysis which begins with
massive univariate testing at each edge, and then counts the number of superthresh-
old connections in each cell, a group of edges that connect nodes in two functional
systems. Nonparametric methods are then used to conduct inference on the count
statistic for each cell, with multiple comparison correction for inference at the cell
level. Power can be improved by applying a network-based multiple testing depen-
dence correction (Zalesky et al., 2010). For classification, better interpretability and
potentially accuracy can be obtained if we focus on understanding which brain regions
or interactions between them are responsible for the differences. In somewhat related
work, Vogelstein et al. (2013) proposed to look for a minimal set of nodes which best
explains the difference, though that requires solving a combinatorial problem. Hy-
pothesis testing on a type of graph average has also been proposed (Ginestet et al.,
2017). Bayesian nonparametrics approaches for modeling populations of networks
allow to test for local edge differences between the groups (Durante et al., 2017), but
are computationally feasbile only for small networks.

Our goal in this paper is to develop a high-dimensional network classifier that
uses all the individual edge weights but also respects the network structure of the
data and produces more interpretable results. To achieve this goal, we use structured
sparsity penalties to incorporate the network information by penalizing both the
number of edges and the number of nodes selected. Although our main application
here is classification of brain connectivity networks, our methods are applicable to
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any weighted graphs with labeled nodes, and to general prediction problems, not just
classification.

The rest of this paper is organized as follows. In Section 2.2, we introduce our
classifier and the structured penalties. In Section 2.3 we show how to efficiently solve
the resulting convex optimization problem by a proximal algorithm, each step of
which is a further optimization problem which we solve by the alternating direction
method of multipliers (ADMM). The performance of our method is evaluated and
compared with other methods using simulations in Section 2.5. In Section 2.6, we
analyze two brain connectivity datasets, each containing schizophrenic patients and
healthy controls, and show that our regularization framework leads to state-of-the-
art accuracy while providing interpretable results, some of which are consistent with
previous findings and some are new. We conclude with a brief discussion in Section
2.7.

2.2 A framework for node selection in graph clas-
sification

2.2.1 A penalized graph classification approach

We start from setting up notation. All graphs we consider are defined on the same
set of N labeled nodes. A graph can be represented with its adjacency matrix A ∈
RN×N . We focus on graphs that are undirected (Aij = Aji) and contain no self-loops
(Aii = 0). These assumptions are not required for the derivations below, but they
match the neuroimaging setting and simplify notation. Our goal is predicting a class
label Y from the graph adjacency matrix A; in this paper we focus on the binary
classification problem where Y takes values {−1, 1}, although extensions from binary
to multi-class classification or real-valued responses are straightforward. Throughout
this paper, we use ‖ · ‖p to denote the entry-wise `p norm,i.e., for a matrix A ∈ Rm×n,
‖A‖p =

(∑m
i=1

∑n
j=1 |Aij|p

)1/p
.

A standard general approach is to construct a linear classifier, which predicts the
response Y from a linear combination of the elements of A, 〈A,B〉 = Tr

(
BTA

)
,

where we arrange the coefficients in a matrix B ∈ RN×N to emphasize the network
nature of the predictors. We focus on linear classifiers here because variable selection
is at least as important as prediction itself in the neuroimaging application, and
setting coefficients to 0 is a natural way to achieve this. The coefficients are typically
estimated from training data by minimizing an objective consisting of a loss function
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plus a penalty. The penalty can be used to regularize the problem to make the
estimator well-defined in high-dimensional problems, to select important predictors,
and to impose structure, and many such penalties have been proposed, starting from
the lasso (Tibshirani, 1996). Our focus is on designing a classifier in this framework
that respects and utilizes the network nature of the predictors. In brain networks in
particular, neuroscientists believe that edges are organized in subnetworks, also called
brain systems (Power et al., 2011), that carry out specific functions, and certain
subnetworks are important for prediction (Bullmore and Sporns, 2009), although
different studies tend to implicate different regions (Fornito et al., 2012). Thus we
aim to find subnetworks with good discriminative power, and hence select both the
most informative nodes and edges. Although the methods we develop here can be
used on small networks too, our main focus here is on the more challenging case of
large brain networks (hundreds of nodes).

Let {(A(1), Y1), . . . , (A(n), Yn)} be the training sample of undirected adjacency ma-
trices with their class labels, and let Y = (Y1, . . . , Yn). A generic linear classifier
described above is computed by finding the coefficients B defined by

B̂ = arg min
B∈B

{`(B) + Ω(B)} , (2.1)

where B =
{
B ∈ RN×N : B = BT , diag(B) = 0

}
, Ω is a penalty, and

`(B) = 1
n

n∑
k=1

˜̀(Yk, A(k);B)

is a loss function evaluated on the training data. Our methodology can accommodate
different choices of loss functions that can extend beyond classification problems (e.g.,
least squares or generalized linear models). The optimization algorithm presented in
Section 2.3 can work with any convex and continuously differentiable loss function,
and further assumptions are required for consistency (see Section 2.4). In this paper,
for the purpose of classification we use the logistic loss function in the simulations
and data analysis, which is defined as

˜̀(Y,A;B, b) = log (1 + exp(−Y 〈A,B〉+ b)) .

The threshold b is an additional parameter to be estimated.
To capture structural assumptions on important predictive edges, we focus on

convex structured sparsity penalties (Bach et al., 2012) that encourage a small number
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of active nodes, by which we mean nodes attached to at least one edge with a non-zero
coefficient. One approach to finding a set of such nodes was proposed by Vogelstein
et al. (2013), who called it a signal-subgraph, and proposed finding the minimal set
of nodes (called signal vertices) which together are incident to all selected edges (but
not every node connected to a selected edge is a signal vertex). Finding this set is
a combinatorial optimization problem, and the set is not always uniquely defined.
Instead, we focus on convex formulations that allow for efficient computation and
encourage small active node sets indirectly.

Other convex penalties have been used for fMRI data as a way to enforce spatial
smoothness in the solution (Grosenick et al., 2013; Xin et al., 2014; Hu and Allen,
2015). These methods assume that voxels are equally spaced in the brain, and neigh-
boring voxels are highly correlated. In particular, Watanabe et al. (2014) proposed
penalties for brain network classification using these spatial assumptions. Here, in-
stead of enforcing a spatial regularization directly, we aim for a regularization that
can be applied to any type of network data, and in particular to brain networks with
coarse and/or uneven parcellations where enforcing spatial smoothness may not work
as well. In any case, the flexibility of convex optimization algorithms allows one to
easily incorporate additional spatially-informed penalties if needed.

2.2.2 Selecting nodes and edges through group lasso

To reflect the network structure of the predictors, we use a penalty that promotes
a sparse classifier not only in the number of edges used, but also in the number of
nodes. The group lasso penalty (Yuan and Lin, 2006) is designed to eliminate a group
of variables simultaneously. Here we penalize the number of active nodes by treating
all edges connected to one node as a group. Then eliminating this group (a row of
coefficients in the matrix B) is equivalent to de-activating a node. The group penalty
is defined as

Ωλ,ρ(B) = λ

(
N∑
i=1
‖B(i)‖2 + ρ‖B‖1

)
, (2.2)

where B(i) is the i-th row of B (or equivalently, the i-th column), ‖B‖1 = ∑
i

∑
j |Bij|

is the element-wise `1 norm of B and λ, ρ ≥ 0 are tuning parameters. Note that
the constraint B = BT makes the groups overlap, since a coefficient Bij belongs to
groups associated with the nodes i and j, and therefore, the edge between nodes i and
j would be selected only if neither node was de-activated. The second term in the
penalty ρ‖B‖1 acts as the usual lasso penalty to promote sparsity inside the group
(Friedman et al., 2010), allowing to select a subset of edges for an active node. Due
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to the overlap in the groups, this lasso penalty is necessary in order to produce sparse
solution. The constraint diag(B) = 0 in (2.1) is automatically enforced with this
formulation.

Remark 2.1. An alternative to the constraint in the problem (2.1) is to optimize over
the set

B̃ =
{
B ∈ RN×N , diag(B) = 0

}
.

Without the symmetry constraint and assuming undirected graphs, the penalty (2.2)
is equivalent to the overlapping group lasso formulation of Jacob et al. (2009). This
formulation has some advantages. Since it gives group lasso without overlaps, the
lasso penalty ρ‖B‖1 is not required to obtain sparse solutions, and more efficient
optimization algorithms exist for this case. This approach would loosely correspond
to the idea of selecting signal nodes as in Vogelstein et al. (2013), in the sense that
an edge can be selected if at least one of its nodes is selected, and the second node
could be inactive. The downside is that each edge now corresponds to two different
coefficients Bij and Bji, the problem encountered by all variable selection methods
that ignore symmetry, such as Meinshausen and Bühlmann (2006). The standard
solution for this problem, as suggested by Jacob et al. (2009), is to take the average
of the coefficients. Intuitively, one would expect that the formulation using B would
be better when the significant edges are incident to a small set of nodes, since both
nodes have to be active for an edge to be selected, while using B̃ may be better when
for some nodes most of their edges are significant, creating “significant hubs”. Since
in our application we are primarily looking for discriminative brain subnetworks, we
focus on the symmetrically constrained formulation for the rest of the paper. We also
found that in practice this second formulation results in less accurate classifiers for
the neuroimaging data discussed in Section 2.6.

Remark 2.2. The analogue to (2.2) for directed graphs would assign coefficients Bij

and Bij to the same group, resulting in the penalty

Ψλ,ρ(B) = λ

 N∑
i=1

√∑
j

(
B2
ij +B2

ji

)
+ ρ‖B‖1

 , (2.3)

where B ∈ B̃. Alternatively, we can also use the formulation of Remark 2.1, by
replicating the variables and estimating two matrices of coefficients, say B(1) and
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B(2), with the penalty

Ψ̃λ,ρ(B(1), B(2)) = λ

 N∑
i=1

√√√√∑
j

((
B

(1)
ij

)2
+
(
B

(2)
ji

)2
)

+ ρ
(
‖B(1)‖1 + ‖B(2)‖1

) ,
with B(1), B(2) ∈ B̃, and set the coefficients matrix to B =

(
B(1) +B(2)

)
/2. This

formulation will again not directly select subnetworks as discussed in Remark 2.1.

Finally, for numerical stability we add an extra ridge penalty term γ
2‖B‖

2
F =

γ
2 Tr

(
BTB

)
, with γ a small and fixed constant. There are several benefits of combining

ridge and lasso penalties (see for example Zou and Hastie (2005)). The parameter γ
can be potentially considered an additional tuning parameter, but here we only use a
small fixed constant γ in order to avoid numerically degenerate solutions. In practice,
the results are not sensitive to the exact value of γ.

Putting everything together, to fit our graph classifier, we solve the problem

(B̂, b̂) = arg min
B∈B,b∈R

{
1
n

n∑
k=1

log
(
1 + exp(−Yk〈B,A(k)〉+ b

)
+ γ

2‖B‖
2
F

+ λ

(
N∑
i=1
‖B(i)‖2 + ρ‖B‖1

)}
(2.4)

for given values of λ and ρ, which will be chosen by cross-validation.

2.3 The optimization algorithm

Our optimization algorithm to solve the problem (2.4) combines two common ap-
proaches to convex optimization: proximal algorithms and alternating direction method
of multipliers (ADMM). We use an accelerated version of the proximal algorithm
(Beck and Teboulle, 2009) to solve the main problem (2.4). In each step, we need to
calculate a proximal operator, which is a further convex optimization problem solved
with the ADMM algorithm.

The main optimization difficulty comes from the overlapping groups. Some al-
gorithms have been proposed for this case, including a subgradient descent method
(Duchi and Singer, 2009), which has a slow rate of convergence, or a proximal al-
gorithms based on smoothing the original problem (Yuan et al., 2011; Chen et al.,
2012). Although smoothing yields fast algorithms, it is not clear that the sparsity
pattern is preserved with those approximations. We follow an approach similar to
Yuan et al. (2011) and Chen et al. (2012), but solve the proximal operator for the

16



penalty (2.2) directly using the ADMM method. This can potentially give a more
accurate sparsity pattern, and the flexibility of the algorithm allows for additional
penalties if desired, such as spatial smoothing similar to Watanabe et al. (2014) (see
Remark 2.3).

The main problem (2.1) is solved with a proximal algorithm (see Parikh and Boyd
(2013)). Recall that the proximal operator for a function f is defined as proxf (v) =
arg minx{f(x) + 1

2‖x− v‖
2
2}. Starting with an initial value B(0) ∈ RN×N , a proximal

algorithm solves the optimization problem (2.1) by iteratively calculating the proximal
operator of Ω = Ωλ,ρ for a descent direction of the differentiable loss function `. We
use an accelerated version of the algorithm (Beck and Teboulle, 2009), which for each
k = 2, . . . , until convergence, performs the updates

W (k) = B(k−1) + k − 1
k + 2

(
B(k−1) −B(k−2)

)
(2.5)

B(k) = proxt(k)Ω

{
W (k) − t(k)∇`

(
W (k)

)}
= arg min

B∈B

{1
2
∥∥∥B − (W (k) − t(k)∇`(W (k))

)∥∥∥2

2
+ t(k)Ω(B)

}
, (2.6)

where ∇`(W ) ∈ RN×N is the gradient of the loss function ` at W and t(k), k = 1, 2, . . .
is a sequence of positive values. If ∇` is Lipschitz continuous, with L its Lipschitz
constant, the sequence of values `

(
B(k)

)
+Ω

(
B(k)

)
converges to the optimal value at

rate O(1/k2) if t(k) ∈ [0, 1/L). The value of t(k) can be chosen using a backtracking
search (Beck and Teboulle, 2009), which decreases this value until the condition

`
(
B(k)

)
≤ `

(
W (k)

)
+
〈
∇`

(
W (k)

)
, B(k) −W (k)

〉
+ 1

2t(k)‖B
(k) −W (k)‖2

2 (2.7)

is satisfied. This procedure ensures that step sizes {t(k)} become smaller as the
algorithm progresses, until t(k) < 1/L. In practice, L might be large, which can make
the algorithm slow to converge. It has been observed in other sparse high-dimensional
problems that search strategies for t(k) which allow for t(k) > 1/L when appropriate
can actually speed up convergence (Scheinberg et al., 2014; Hastie et al., 2015). We
use a strategy of this type, allowing t(k) to increase by a factor of α ≥ 1 if the relative
improvement in the loss function on iteration k becomes small. We observed that this
strategy significantly reduces the number of iterations until convergence. The entire
procedure is summarized in Algorithm 2.1.

The logistic loss function of (2.4) has an extra parameter b. Rather than including
it as an unpenalized coefficient for a constant covariate, we use block coordinate
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Algorithm 2.1 Proximal algorithm for fitting graph classifier
Input: Training sample {(A(1), Y1), . . . , (A(n), Yn)}; regularization parameters λ, ρ;

step size constants α ≥ 1, δ ∈ (0, 1), η > 0; tolerance εPROX > 0.
Initialize: Starting values B(0), t(0).
Iterate: for k = 1, 2, . . . until ε(k) < εPROX)

1. Compute W (k) according to (2.5).
2. Compute B(k) by solving the proximal operator (2.6).
3. If condition (2.7) does not hold, decrease step size t(k) ← δt(k) and return to

2.
4. Calculate loss improvement

ε(k) =
(
`
(
B(k−1)

)
+ Ω

(
B(k−1)

))
−
(
`
(
B(k)

)
+ Ω

(
B(k)

))
.

5. If |ε(k)−ε(k−1)|/ε(k) < η, increase step size t(k+1) = αt(k), otherwise set t(k+1) =
t(k).

Output: B̂ = B(k).

descent and solve for b separately. This is convenient because the threshold b and the
matrix of coefficients B may not be on the same scale. Thus, b can be updated by
solving b(k+1) = arg minb∈R `

(
B(k), b

)
, which is easy to compute via Netwon’s method.

The proximal algorithm requires solving the proximal operator (2.6), which has no
closed form solution for the penalty (2.2) under the symmetry constraint. Strategies
based on smoothing this penalty have been proposed (Yuan et al., 2011; Chen et al.,
2012). However, to allow for variable selection which results from non-differentiability
of the penalty, we aim to solve the proximal operator directly using ADMM (see Boyd
et al. (2011) for a review). Note that if the symmetric constraint is relaxed as in
Remark 2.1, the proximal operator has a closed form solution (see Remark 2.4).

The ADMM works by introducing additional constraints and performing coor-
dinate descent in the corresponding augmented Lagrangian function. Setting Z =
W (k)− t(k)∇`(W (k)) and t = t(k), and introducing the variables Q,R ∈ RN×N , we can
formulate (2.6) as a convex optimization problem

min
B̃,Q,R

1
2‖B̃ − Z‖

2
2 + tλ

(
N∑
i=1
‖Q(i)‖2 + ρ‖R‖1

)

subject to B̃ = Q, B̃ = R, B̃ = B̃T , diag(B̃) = 0.
(2.8)

The ADMM algorithm introduces the multipliers U, V ∈ RN×N and a penalty param-
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eter µ > 0 to perform gradient descent on the Lagrangian of (2.8), given by

Lµ(B̃, Q,R, U, V ) = 1
2
∥∥∥B̃ − Z∥∥∥2

2
+ tλ

(
N∑
i=1
‖Q(i)‖2 + ρ‖R‖1

)
+
〈
U, B̃ −Q

〉
+
〈
V, B̃ −R

〉
+µ2

(∥∥∥B̃ −Q∥∥∥2

2
+
∥∥∥B̃ −R∥∥∥2

2
+
∥∥∥B̃ −R∥∥∥2

2
+
∥∥∥B̃ − B̃T

∥∥∥2

2

)
.(2.9)

The value µ controls the gap between dual and primal feasibility. In practice, we
observed that setting µ = 0.1 gives a good balance between primal and dual feasibility,
although other self-tuning methods are available (Parikh and Boyd, 2013). This
function is optimized by coordinate descent, with each variable updated to minimize
the value of Lµ while all the other variables are fixed. This update has a closed form
shown in Algorithm 2.2. These steps are performed until the algorithm converges
within tolerance εADMM > 0. Note that ADMM will be performed in each iteration of
the algorithm to solve (2.4) and thus tolerance εADMM can be decreased as the algorithm
progresses. On the other hand, performing only one iteration of algorithm (2.2) gives
a similar algorithm to the one of Chen et al. (2012).

Remark 2.3. The ADMM makes it very easy to incorporate additional penalties. If
Ψ is an new penalty, we can rewrite (2.8) by introducing an additional parameter Q̃
so it becomes

min
B̃,Q,Q̃,R

1
2‖B̃ − Z

(k)‖2
2 + tλ

(
N∑
i=1
‖Q(i)‖2 + ρ‖R‖1

)
+ tΨ(Q̃)

subject to B̃ = Q, B̃ = Q̃, B̃ = R, B̃ = B̃T , diag(B̃) = 0.

We can obtain the Lagrangian formulation (2.9) in a similar manner, and include
new parameters in the ADMM updates, which can be performed efficiently as long
as the proximal operator of Ψ has a closed form solution. This is in fact the case
for some other penalties of interest, such as the GraphNet penalty (Grosenick et al.,
2013; Watanabe et al., 2014), which can incorporate spatial location information.

Remark 2.4. The alternative formulation for the graph penalty given in Remark 2.1
corresponds to standard sparse group lasso (Friedman et al., 2010). In particular, we
can still employ the proximal algorithms (2.5) and (2.6), but instead optimize over
the set B̃. Without the symmetric constraint on B, the overlap in the group lasso
penalty dissapears, and this vastly simplifies the problem. Using Theorem 1 of Yuan
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Algorithm 2.2 Proximal operator of the graph classifier by ADMM
Input: Z, εADMM, µ.
Initialize: B̃(0) = Z, R(0) = Z, Q(0) = Z, U (0) = 0N×N , V (0) = 0N×N .
Iterate: for l = 1, 2, . . . until convergence (ε(l)

ADMM-p < εADMM and ε
(l)
ADMM-d < εADMM)

1. Perform coordinate gradient descent on (2.9) by computing

B̃(l) = 1
1 + 2µ

(
Z + 1

2µ
(
Q(l−1) +Q(l−1)T

)
+ µR(l−1) − U (l−1) − V (l−1)

)

Q
(l)
(i) =

1− tλ

µ
∥∥∥B̃(l)

(i) + 1
µ
U

(l−1)
(i)

∥∥∥
2


+

(
B̃

(l)
(i) + 1

µ
U

(l−1)
(i)

)
, i = 1, . . . , N

R
(l)
ij =

1− tλρ

µ
∣∣∣B̃(l)

ij + 1
µ
V

(l−1)
ij

∣∣∣


+

(
B̃

(l)
ij + 1

µ
V

(l−1)
ij

)
, i, j = 1, . . . , N

U (l) = U (l−1) + µ
(
B̃(l) − 1

2
(
Q(l) +Q(l)T

))
V (l) = V (l−1) + µ

(
B̃(l) −R(l)

)
2. Update primal and dual residuals ε(l)

ADMM-p and ε
(l)
ADMM-d

ε(l)
ADMM-p = µ

(
‖Q(l) −Q(l−1)‖∞ + ‖R(l) −R(l−1)‖∞

)
,

ε
(l)
ADMM-d = µ

(
‖B̃(l) −Q(l)‖2 + ‖B̃(l) −R(l)‖2

)
.

Output: B̃ = B̃(l).
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et al. (2011), the update for B(k) has a closed form solution given by

Y (k) = B(k−1) + k − 2
k

(
B(k−1) −B(k−2)

)
(2.10)

Z
(k)
ij =

1− λρ∣∣∣Y (k)
ij − tk∇ij`(Y (k))

∥∥∥
2


+

(
Y

(k)
ij − tk∇ij`(Y (k))

)
(2.11)

B
(k)
(i) =

1− λ∥∥∥Z(k)
(i)

∥∥∥
2


+

(
Z

(k)
(i)

)
, i = 1, . . . , N. (2.12)

2.4 Theory

In this section, we show that the solution of the penalized problem (2.2) can recover
the correct subgraph corresponding to the set of non-zero coefficients, and give its
rates of convergence. The theory is a consequence of the results of Lee et al. (2015) for
establishing model selection consistency of regularized M-estimators under geometric
decomposability (see Appendix for details). We present explicit conditions for our
penalty to work well, which depend on the data as well as the tuning parameters.

Let B? ⊂ RN×N be the unknown parameter we seek to estimate, and we assume
there is a set of active nodes G ⊂ {1, . . . , N} with |G| = G, so that B?

ij = 0 if i ∈ GC

or j ∈ GC . We allow some edge weights inside the subgraph defined by G to be zero,
but we focus on whether the set G is correctly estimated by the set Ĝ of active nodes
in B̂. Denote byM⊆ RN×N the set of matrices where the only non-zero coefficients
appear in the active subgraph, that is,

M =
{
B ∈ RN×N

∣∣∣Bij = 0 for all i ∈ GC or j ∈ GC , B = BT
}

(2.13)

There are two main assumptions on the loss function ` required for consistent
model selection in high-dimensional models (Lee et al., 2015). The first assumption
is on the convexity of the loss function around B?, while the second assumption
bounds the size of the entries in the loss Hessian between the variables in the active
subgraph and the rest. Let the loss Hessian ∇2`(B?) ∈ RN×N ⊗RN×N be defined by

∇2
(i,j),(k,l)`(B) = ∂2`(B)

∂Bij∂Bkl

,
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and define the matrix H(i,j),G ∈ RG×G with (i, j) ∈ (G × G)C such that

(
H(i,j),G

)
k,l

= Tr
((
∇2

(i,j),(G,G)`(B?)
)

Λ(k,l),(·,·)
)
, 1 ≤ k, l ≤ G, , (2.14)

where Λ ∈ RG×G⊗RG×G is a tensor such that Mat(Λ) is a pseudoinverse of Mat
(
∇2

(G,G),(G,G)`(B?)
)
,

and Mat is the operation that unfolds the entries of a tensor Λ into a G2×G2 matrix.
The matrix H(i,j),G measures how well the variable corresponding to the edge (i, j)
can be represented by the variables in the active subgraph.

Assumption 2.1 (Restricted Strong Convexity). There exists a set C ⊂ RN×N with
B? ∈ C, and constants m > 0, L̃ <∞ such that

∑
i,j

∆i,jTr
((
∇2

(i,j),(·,·)`(B)
)

∆
)
≥ m‖∆‖2

2, for all B ∈ C ∩M,∆ ∈ C ∩M

‖∇2`(B)−∇2`(B?)‖2 ≤ L̃‖B −B?‖2, for all B ∈ C.

Assumption 2.2 (Irrepresentability). There exists a constant 0 < τ < 1 such that

max
i∈GC

∥∥∥∥∥∥
(

G∑
k=1
‖(H(i,j),G)k·‖2

)N
j=1

∥∥∥∥∥∥
2

= 1− τ < 0.

This version of the irrepresentability condition corresponds to the one usually
employed in group lasso penalties (Bach, 2008), but as we will see later, due to
overlaps in the groups it further requires a lower bound on ρ to work for model
selection.

The first two assumptions are stated directly as a function of the loss for a fixed
design case, but they can be substituted with bounds in probability for the case of
random designs. In order to obtain rates of convergence, we do require a distributional
assumption on the first derivative of the loss. This assumption can be substituted
with any bound on maxi ‖∇`(B?)(i)‖2 (see Lemma 3 in the Appendix).

Assumption 2.3 (Sub-Gaussian score function). Each pair in the sample (A, Y )
is independent and comes from a distribution such that the entries of the matrix
∇˜̀(Y,A;B?) are subgaussian. That is, for all t > 0 there is a constant σ2 > 0 such
that

max
i,j

P
(
‖∇ij

˜̀(Y,A;B?) ‖∞ > t
)
≤ 2 exp

(
− t

2

σ2

)
.
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With these assumptions, we establish consistency and correct model selection.
The proof is given in the Appendix A.1.

Proposition 2.1. Suppose Assumptions 2.1 and 2.3 hold.

(a) Setting the penalty parameters as ρ ≥ 0 and λ = c1

√
σ2 logN

n
min(

√
N/(1 +

ρ), 1/ρ) for some constant c1 > 0, with probability at least 1− 2/N the optimal
solution of (2.4) is unique and satisfies

1
N2‖B̂ −B

?‖2
2 = OP

(
σ2 logN

n

)
. (2.15)

(b) Suppose Assumption 2.2 also holds. If n > c2G
2σ2 logN for a constant c2 > 0,

setting the penalty parameters as λ = c3

√
σ2 logN

n
min(

√
N/(1+ρ), 1/ρ) for some

constant c3 > 0, and
ρ >

1
τ
− 1√

G
, (2.16)

then
‖B̂ −B?‖2

2 = OP

(
G2 logN

n

)
, (2.17)

P
(
Ĝ ⊆ G

)
= 1− 2/N. (2.18)

The part of the penalty associated with ρ causes the solution to be sparse. Due to
the overlap in the groups, a small value of ρ will not result in zeros in the solution of
the problem (2.4). The lower bound on ρ in (2.16) ensures that the irrepresentability
condition of Lee et al. (2015) holds (see Lemma 2 in the Appendix).

The result (2.18) ensures that, with high probability, all edges estimated to have
non-zero weights are contained in the active subgraph. To ensure that all active nodes
are recovered, at least one edge corresponding to each active node needs to have a
non-zero weight. A result similar to (2.18) can be obtained to guarantee recovery
of all active nodes under a stronger assumption that the magnitude of the non-zero
entries of B? is bounded below by |B?

ij| > c4G
2λ for a constant c4.

2.5 Numerical results on simulated networks

In this section, we evaluate the performance of our method using synthetic networks.
We are interested in assessing both the ability of the method to correctly identify
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predictive edges and its classification accuracy, and comparisons to benchmarks. We
compare the different methods’ edge selection performace in simulations using area
under the curve (AUC).

Brain connectomic networks are characterized by organization of nodes into com-
munities (Bullmore and Sporns, 2009), in which nodes within the same community
tends to have stronger connections than nodes belonging to different communities. In
order to generate synthetic networks that mimic this property, we introduce commu-
nity structure using the stochastic block model (SBM) (Holland et al., 1983). Before
generating edges, we assign each node a community label, Ci, where Ci ∈ {1, . . . , K}
for each i = 1, . . . , N . The node assignments are the same for all networks in the
population. Given the community labels, network edges are generated independently
from a distribution that only depends on the community labels of the nodes associ-
ated with each edge. Since fMRI networks are real-valued networks, we generate edge
weights from a Gaussian distribution, rather than the standard Bernoulli distribu-
tion normally used with the SBM. Specifically, we draw each Aij independently from
N(µCiCj

, σ2), with µ ∈ RK×K defined by

µkl =
 0.3, if k = l,

0.1 if k 6= l,

and σ2 = 0.2. These values were chosen to approximately match the distribution of
edge weights in our datasets (see Section 2.6). We set the number of nodes N = 60,
with K = 6 communities of size 10 each. We work with undirected networks, so the
adjacency matrices are symmetric, with 1770 distinct edges.

To set up two different class distributions, we alter a set of edges selected at
random. To construct this set of edges, we first select a number of communities (in
our experiments, we use 2 and 3), and the set G of active nodes corresponds to the
nodes on those communities. Then, with probability p, each edge in G, is selected to
belong to the set of differentiating edges E , with weights sampled from N(0.2, 0.2).
Figure 2.3 shows example expected adjacency matrices for each class. We vary the
size of the set G and the value of p to study the effect of the number of active nodes
and the density of differentiating edges inside a subgraph. We then gen50 networks
independently from each class, giving the total sample size n = 100.

Since we are interested is identifying predictive edges and nodes, we use the area
under the curve (AUC) of the receiver operating characteristic (ROC) curve, for both
edge and node selection. For each method, we calculate the ROC curve by varying
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Figure 2.3: Expected adjacency matrices for each class. The second class (Y = 1) has
altered edge weights on a subset of edges within the set of active nodes G. Within
the subgraph defined by G, edge weights have been altered with probability 0.75.

the number of edges selected by changing its corresponding sparsity parameter. For
a selection method M and a sparsity parameter η let Ê(M, η) be the set of edges
selected by M, and Ĝ(M, η) the set of active nodes corresponding to Ê(M, η). We
calculate the edge false positive rate (EFPR) and edge true positive rate (ETPR) as

EFPR(M, η) =

∣∣∣Ê(M, η) ∩ EC
∣∣∣

|EC |
, ETPR(M, η) =

∣∣∣Ê(M, η) ∩ E
∣∣∣

|E|
.

The node FPR and TPR are calculated similarly.
We also evaluate the prediction accuracy of the methods. For each method, we

use 10-fold cross-validation to select the best tuning parameter using the training
data, and then compute the test error on a different dataset simulated under the
same settings. The AUC and test errors reported are averaged over 50 replications.

Methods for benchmark comparisons on simulated networks were selected based
on their good performance on real data (see Section 2.6). For our method (GC), we
vary the parameter ρ and compare results for two different values of λ, .05 (GC1)
and 10−4 (GC2). For unstructured regularized logistic regression, we use the elastic
net (Friedman et al., 2009), with a fixed α = 0.02 (ENet). The performance of elastic
net is not very sensitive to different values of α, but the number of variables that the
method is able to select with large values is limited (including the case of α = 1 that
corresponds to the Lasso). A support vector machine with `1 penalty (Zhu et al.,
2004; Becker et al., 2009) is also included (SVM) for comparison, and additionally
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Figure 2.4: Variable selection performance of different methods in terms of edge AUC
(top) and node AUC (bottom) as a function of the fraction of differentiating edges in
the subgraph induced by the active node set G. Left: |G| = 20; right: |G| = 30 active
nodes.

we evaluate the classification error of the original support vector machines (SVML2)
(Cortes and Vapnik, 1995). For both SVMs, we use linear kernels, which performed
better than nonlinear kernels. Diagonal linear discriminant analysis (DLDA) is also
considered, with variables selected via independent screening using a t-test. Finally,
we also compare with the signal-subgraph method (SS) (Vogelstein et al., 2013), the
only other method that takes into account the network structure of the predictor
variables. Note that the signal subgraph is designed for binary networks, so in order
to apply it we thresholded the edges at the population median.

Figure 2.4 shows the values of the average AUC for selecting edges (top) and
nodes (bottom). As the fraction of differentiating edges in the active node subgraph
increases, methods that take into account network structure improve their edge AUC,
since predictive nodes carry more information, while the edge AUC remains constant
for unstructured methods (ENet, DLDA and SVML1). On node selection, all methods
improve as the fraction of significant edges increases, but GC and SS have the largest
gains. A similar trend is observed in classification error shown in Figure 2.5. All
methods improve as the number of differentiating edges increases, but our method
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Figure 2.5: Classification error of different methods as a function of the fraction of
differentiating edges in the subgraph induced by the active node set G. Left: |G| = 20;
right: |G| = 30 active nodes.

has the best performance overall. Our method performed the best with the larger
value of λ(GC1) on variable selection, particularly when the set of active nodes is
smaller, but both values of λ give very good classification performance.

2.6 Application to schizophrenia data

We analyze the performance of the classifier on two different brain fMRI datasets,
each containing schizophrenic patients and controls. The first dataset comes from
the Center for Biomedical Research Excellence (COBRE). The second dataset, which
we refer to as UMich data, is from the lab of Professor Stephan F. Taylor in the
Department of Psychiatry at the University of Michigan. The code of our classi-
fier and the processed connectomics datasets can be found at https://github.com/
jesusdaniel/graphclass.

2.6.1 Subjects and imaging

The COBRE data

Raw anatomic and functional scans from 146 subjects (72 psychosis patients and 74
healthy control subjects) were downloaded from a public database (http://fcon_
1000.projects.nitrc.org/indi/retro/cobre.html). Four subjects coded as am-
bidextrous (2 patients, 2 controls) were excluded to yield 70 psychosis patients and 72
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controls for analysis. To enter the COBRE dataset, subjects had a diagnosis of either
schizophrenia or schizoaffective disorder and were without histories of neurological
disorder, mental retardation, severe head trauma with more than 5 minutes loss of
consciousness and substance abuse/dependence within the last 12 months.

In the primary sample, two schizophrenic (SCZ) subjects and one healthy control
(HC) subject had insufficient voxels in the cerebrospinal fluid (CSF) segmentation
on the CSF, and they were dropped from additional analyses. Two additional SCZ
subjects were excluded for scrub ratios (see discussion of scrubbing routine in fMRI
Data Analysis) greater than 0.6, leaving 38 SCZ subjects and 42 HC subjects for
the analysis. In the replication sample, 15 psychosis patients and two control sub-
jects were excluded for scrub ratios greater than 0.6; one patient was excluded with
incomplete data, leaving 54 SCZ and 69 HC subjects for analysis (see Table 2.1).

A full description of the imaging parameters for the COBRE dataset is available
online at the link provided above and in several related papers, see Calhoun et al.
(2011); Hanlon et al. (2011); Mayer et al. (2013); Stephen et al. (2013).

The UMich data

Subjects were selected from experiments conducted by Professor Stephan F. Taylor
at the University of Michigan between 2004 and 2011 for task-based fMRI studies,
which included resting state scans. Forty-two stable outpatients were selected with
DSM-IV schizophrenia or schizoaffective disorder (SCZ) (Association et al., 1994).
Forty-three healthy comparison (HC) subjects, without a lifetime history of Axis I
psychiatric disorders (First et al., 1995), were selected to approximate the age range,
gender distribution and family education level of the patients. Prior to initial data
collection, all subjects gave written, informed consent to participate in the protocol
approved by the University of Michigan institutional review board (IRBMED).

MRI scanning occurred on a GE 3T Signa scanner (LX [8.3] release, General
Electric Healthcare, Buckinghamshire, United Kingdom). Functional images were
acquired with a T2*-weighted, reverse spiral acquisition sequence (gradient recalled
echo, TE=30 msec, FA=90 degrees, field of view=22 cm, 40 slices, 3.0mm thick/0mm
skip, equivalent to 64 x 64 voxel grid – yielding isotropic voxels 3 mm on edge).
Because the data were acquired across different experiments, acquisition parameters
differed slightly in the aggregate sample: 240 volumes @ TR=1500 msec (11 SCZ, 10
HC), 180 volumes @ TR=2000 msec (17 SCZ, 16 HC) and 240 volumes at 2000 msec
(14 SCZ, 17 HC). Acquisitions were acquired in the resting state with eyes open and
fixated on a large ‘plus’ sign projected on a monitor.
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Dataset # nodes Status # patients Male/female Average age (s.d.)
COBRE 263 Schizophrenic 54 48/6 35.4 (13.1)

Control 70 48/22 35.1 (11.5)
UMich 264 Schizophrenic 39 29/10 40.7 (11.5)

Control 40 28/12 36.8 (12.3)

Table 2.1: Summary statistics of the two datasets.

2.6.2 Pre-processing

We first performed standard pre-processing steps. All scans were slice-time corrected
and realigned to the 10th image acquired during a scanning session (Jenkinson et al.,
2002). Subsequent processing was performed with the Statistical Parametric Map-
ping SPM8 package (Wellcome Institute of Cognitive Neurology, London). Anatomic
normalization was done with the VBM8 toolbox in SPM8, using the high resolution
structural scans obtained for both datasets. Normalizing warps were applied to the
co-registered, functional volumes, which were re-sliced and smoothed with an 8 mm
isotropic Gaussian smoothing kernel. To assess and manage movement, we calculated
the frame-wise displacement (FD) (Power et al., 2012), for all 6 parameters of rota-
tion and translation. We used a scrubbing routine to censor any frame with FD > 0.5
mm from the regression analysis described below, yielding a scrub ratio for each sub-
ject. Three-compartment segmentation of the high-resolution structural image from
the VBM8 normalization was applied to the functional time series to extract cere-
bral spinal volume (CSF) and white matter (WM) compartments, which were then
subjected to a principal component analysis to identify the top 5 components in each
(Behzadi et al., 2007), which should correspond to heart rate and respiratory effects
on global signal (Chai et al., 2012). Multiple regressions were applied to the time
series to remove the following nuisance effects: Linear trend, 6 motion parameters,
their temporal derivatives, the quadratics of these 12 parameters, 5 components from
the PCA of CSF, 5 components of PCA of WM, followed by band pass filtering from
0.01 – 0.1 Hz, and then motion scrubbing. For each 4D data set, time courses were
then extracted from 10 mm diameter spheres based on the 264 sets of coordinates
identified by Power et al. (2011). From these time series, a cross-correlation matrix
of Pearson r-values was obtained and Fisher’s R-to-Z transformation was applied for
each of the 264 nodes with every other node (for COBRE dataset, node 75 is miss-
ing). Finally, for each individual, edge weights were assigned to be ranks of these
score, with edge scores ranked separately for each subject, and then these values were
centered and standardized across the individuals. Ranks have been used previously
in brain connectomic studies to reduce the effect of potential outliers (Yan et al.,
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Figure 2.6: Cross-validated results for the two data sets. Classifcation accuracy (left),
fraction of zero edge coefficients (middle), and fraction of inactive nodes (right).

2013); we observed that while ranks does not increase the classification accuracy sig-
nificantly, they tend to produce sparser solutions with a similar accuracy to Pearson
correlations.

2.6.3 Classification results

First, we evaluate our method’s classification accuracy. We use a nested 10-fold
cross-validation to choose tuning parameters and estimate the test accuracy. The
classifier is trained for a range of values of λ and ρ, with λ ∈ {10−7, 10−6.5, . . . , 10−2}
and ρ ∈ {10−3, 10−2.5, . . . , 102}. The value of γ in (2.4) is set to 10−5; we observed
that setting γ to a small value speeds up convergence without affecting the accuracy
or sparsity of the solution. Figure 2.6 shows the average cross-validated accuracy,
sparsity (fraction of zero coefficients) and node sparsity (fraction of inactive nodes),
as a heat map over the grid of tuning parameter values. We observe that λ has little
influence on sparsity, which is primarily controlled by ρ. Moreover, as Proposition
2.1 suggests, values of ρ < 1 do not result in node selection. As expected, accuracy
generally decreases as the solution becomes sparser, which is not uncommon in high-
dimensional settings (Hastie et al., 2015). However, we can still achieve excellent
accuracy with a substantially reduced set of features. In the COBRE dataset, the
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Figure 2.7: Fitted coefficients for COBRE and UMich datasets, with tuning param-
eters selected by the ”one standard error rule”. Positive coefficients corresponds to
higher edge weights for schizophrenic patients.

best accuracy is obtained with only 1886 edges (5.4%) but almost all nodes are active
(260). On the UMich data, 29733 edges (85.6%) achieve the best performance, and
all nodes are active. Choosing parameters by cross-validation often tends to include
too many noise variables (Meinshausen, 2007), as we also observed in simulations. A
commonly used technique to report solutions that still achieve good accuracy with a
substantially reduced set of features is the so-called “one-standard-error rule” (Hastie
et al., 2015), in which one selects the most parsimonious classifier with cross-validation
accuracy at most one standard error away from the best cross-validation accuracy.
Figure 2.7 shows the solutions for each dataset obtained by this rule. Nodes are
ordered by brain systems (see Figure 2.1). The fitted solution for COBRE has 549
non-zero coefficients (1.56%) and 217 active nodes (82.5%), while the UMich solution
has 11748 non-zero entries (33.8%), and all nodes are active. Note that when many
variables are selected, the magnitude of the coefficients becomes small due to the
grouping effect of the penalty (Zou and Hastie, 2005).

We also compared our method to benchmarks (Table 2.2), using the same methods
as in the previous section and training and evaluating all methods using with the same
nested 10-fold cross-validation. For SVM, we tested different kernels, including graph
aware kernels (Gärtner et al., 2003), but in most cases local kernel methods were
no better than random guessing. We additionally included random forests and a
method based on global and local network summaries previously proposed as features
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for classifying brain data (Prasad et al., 2015). For the latter, because our dataset is
much larger, we only considered global and node features proposed in Prasad et al.
(2015), which resulted in about 30,000 features per individual, and omitted edge
features. Watanabe et al. (2014) evaluated their classifiers on a different parcellation
of the COBRE data, and we do not include their methods since they are based on
the assumption of equally spaced nodes and cannot be directly applied to our data.
Their reported accuracy of 71.9% and 73.5% for the COBRE data is substantially
lower than our method, although the results are not directly comparable.

Results in Table 2.2 show that most methods performed better on the COBRE
dataset than on the UMich dataset, which can be partially explained by the different
sample sizes and possibly noise levels. Besides differences in sample size and demo-
graphic characteristics (Table 2.1), the COBRE dataset is more homogeneous as it
was collected using identical acquisition parameters, whereas the UMich dataset was
pooled across five different experiments spanning seven years.

Our method performs very well on both datasets, particularly among methods that
perform variable selection. SVMs, which use the hinge loss, perform well too, and
generally outperform methods using the logistic loss. Our penalty can be combined
with any loss, so we could also include our penalty combined with hinge loss which
might potentially improve classification accuracy, but we do not pursue this direction,
for two reasons: one, our method is close to SVM + L1 as it is (better on COBRE,
slightly worse on UMich but the difference is within noise levels), and because solu-
tions based on logistic loss are generally considered more stable and preferable for
variable selection Hastie et al. (2015). In Figure 2.8, we plot cross-validated classifi-
cation accuracy of these methods as a function of the number of variables selected.
For the COBRE data, as we have observed before, good accuracy can be achieved
with a fairly small number of edges, and the noisier UMich data requires more edges.
In all cases, our method uses fewer nodes than the others, as it is designed to do so.

Ultimately, assessing significance of the selected variables is necessary, which is in
general a difficult task in high-dimensional settings and an active area of research (see
for example Meinshausen and Bühlmann (2010); Van de Geer et al. (2014); Lockhart
et al. (2014); Lee et al. (2016)). In brain connectomics, it is particularly challenging
to identify significant variables because of small sample sizes (Button et al., 2013).
Here we employ stability selection (Meinshausen and Bühlmann, 2010) which can be
shown to control a type of false discovery rate by employing many rounds of random
data splitting and calculating the probability of each variable being selected. Some
versions of this method have been theoretically studied, and upper bounds on the
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Classification accuracy % (standard error)
Method COBRE UMich
With variable selection
Our method (GC) 92.7 (2.6) 85.9 (3.6)
Elastic net 89.5 (1.8) 82.6 (4.7)
SVM-L1 87.9 (2.2) 86.2 (4.3)
Signal-subgraph 86.1 (3.3) 82.4 (3.3)
DLDA 84.6 (3.3) 73.4 (3.9)
Lasso 80.1 (5.6) 60.9 (5.6)
No variable selection
SVM 93.5 (2.1) 89.8 (2.5)
Ridge penalty 91 (2.6) 80.9 (3.5)
Random forest 74.2 (2.6) 82.1 (3.9)
Network summaries 61.4 (3.1) 65 (7.2)

Table 2.2: Cross-validated accuracy (average and standard errors over 10 folds) for
different methods.
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Figure 2.8: Cross-validated accuracy and number of nodes selected as a function of
the number of edges used.
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COBRE
Edge Systems Coefficient

1 (208, 85) (9, -1) -0.187
2 (260, 11) (12, -1) 0.183
3 (194, 140) (8, -1) 0.136
4 (52, 186) (3, 8) - 0.1
5 (160, 239) (7, 11) -0.082
6 (120, 116) (5, 5) 0.099
7 (57, 129) (3, 5) -0.128
8 (24, 114) (1, 5) -0.148
9 (81, 179) (5, 8) -0.129

10 (193, 140) (8, -1) 0.153
11 (178, 234) (8, 10) 0.146
12 (18, 194) (1, 8) 0.116
13 (215, 207) (9, 9) -0.076
14 (90, 224) (5, 10) 0.123
15 (112, 253) (5, -1) 0.136

UMich
Edge Systems Coefficient

1 (110, 207) (5, 9) -0.013
2 (255, 113) (1, 5) 0.014
3 (33, 218) (1, 9) 0.016
4 (46, 225) (2, 10) 0.013
5 (43, 90) (2, 5) -0.013
6 (23, 225) (1, 10) 0.012
7 (66, 118) (4, 5) -0.013
8 (26, 145) (1, 7) 0.013
9 (186, 254) (8, -1) 0.012

10 (15, 134) (1, 6) 0.011
11 (76, 207) (5, 9) -0.012
12 (65, 84) (4, -1) -0.012
13 (26, 122) (1, 5) 0.012
14 (33, 145) (1, 7) 0.012
15 (36, 224) (1, 10) 0.011

Table 2.3: Edges with the top 15 largest selection probabilities from stability selec-
tion. The first column shows the pair of nodes making the edge, the second column
the brain systems the nodes belong to in the Power parcellation, and the third column
the fitted coefficient of the edge.

Test data
Training data COBRE UMich
COBRE 92.7 (2.6) 73.5 (3.4)
UMich 78.3 (3.0) 85.9 (3.6)

Table 2.4: Classification accuracy (cross-validation average and standard error) of the
classifier fitted on one dataset and evaluated on the other. The intercept (the mean)
is fitted on the test data and the accuracy is estimated using 10-fold cross-validation
on the test data.

expected number of variables with a low selection probability that are included in the
final solution (i.e., errors) have been derived under mild conditions (Meinshausen and
Bühlmann, 2010; Shah and Samworth, 2013). We implemented the version of stability
selection proposed by Shah and Samworth (2013), with values of λ and ρ obtained
by cross-validation on the COBRE data, and by the “one standard error rule” on the
UMich dataset, since stability selection is most relevant to sparse solutions. However,
one of the advantages of stability selection is that it is not sensitive to the initial
choice of tuning parameters, and changing tuning parameters only slightly alters the
ordering of variables with the largest selection probabilities.

The edges with the 15 largest selection probabilities are reported in Table 2.3.
Using the results of Shah and Samworth (2013) (equation 8), we estimated that the
expected number of falsely selected variables (variables with a probability of selection
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smaller than the estimated) is bounded by 6.1 for the COBRE dataset and 9.7 for
the UMich data, which also suggests that results on the UMich data might be less
reliable. While the two datasets yield somewhat different patterns of edge selection, it
is notable that the default mode network (5) was often selected in both. This network
has been consistently implicated in schizophrenia (Whitfield-Gabrieli et al., 2009;
Öngür et al., 2010; Peeters et al., 2015), as well as other psychiatric disorders, possibly
as a general marker of psychopathology (Broyd et al., 2009; Menon, 2011). In the
COBRE dataset, edges were also selected from the fronto-parietal task control region
(8), previously linked to schizophrenia (Bunney and Bunney, 2000; Fornito et al.,
2012). These results coincide with the findings of Watanabe et al. (2014) on a different
parcellation of the same data, which is an encouraging indication of robustness to the
exact choice of node locations. Some of the variables with the highest estimated
selection probabilities appear in the uncertain system (-1), in particular in the cell
connecting it with salience system (9), which suggests that alternative parcellations
that better characterize these regions may offer a better account of the schizophrenia-
related changes. Additionally, sensory/somatomotor hand region (1) and salience
system (9) also stand out in the UMich data, and these are networks that have also
been implicated in schizophrenia (Dong et al., 2017).

While results in Table 2.3 do not fully coincide on the two datasets, there are
clear commonalities. Table 2.4 compares classification accuracy when the classifier is
trained on one dataset and tested on the other (with the exception of the intercept,
since the datasets are not centered in the same way, which is fitted on a part of the
test data, and the test error is then computed via 10-fold cross-validation). While
the accuracy is lower than when the same dataset is used for training and testing,
as one would expect, it is still reasonably good and in fact better than some of the
benchmark methods even when they train and test on the same data. We again
observe that the COBRE dataset is easier to classify.

Figure 2.9 shows the active nodes in the COBRE dataset (marked in green),
corresponding to the endpoints of the edges listed in Table 2.3. We also identified a
set of 25 nodes that are not selected in any of the sparse solutions with cross-validation
accuracy within one standard error from the best solution (marked in purple). These
consistently inactive nodes are mostly clustered in two anatomically coherent regions.
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Figure 2.9: Nodes shown in green are endpoints of edges selected by stability selection
shown in Table 2.3. Node shown in purple are nodes not selected by any of the sparse
solutions within one standard error of the most accurate solution.

2.7 Discussion

We have presented a method for classifying graphs with labeled nodes, motivated by
brain connectomics but generally applicable to any setting with such graphs. The
distinct feature of our method is that it is graph-aware, aiming to select a sparse
set of both edges and nodes, but it is general in the sense that it does not rely on
the spatial structure of the brain. The method is computationally efficient since the
regularization we use is convex.

The results we obtained on the schizophrenia data are generally in agreement with
previous studies of schizophrenia. In particular, the default mode network has been
consistently implicated in schizophrena and many other psychiatric disorders (Öngür
et al., 2010; Broyd et al., 2009). While different networks were implicated by the
two different datasets, we are still able to predict the disease status fairly accurately
by training on one dataset and testing on the other. The differences between the
two datasets may reflect real differences in samples collected at different sites and
in different experiments, as significant pathophysiological heterogeneity occurs for all
psychiatric diagnoses, or they may simply reflect type 2 errors.

Our methods work with a sample of networks with labelled nodes and associated
responses. We acknowledge that in dealing with fMRI data many additional pre-
processing steps are taken to arrive at this sample, which adds uncertainty and can
potentially affect conclusions. We aimed to reduce the impact of some of these steps by
using ranks which are more robust to global signal regression, and in practice multiple
pre-processing pipelines can be used and compared to further validate results.
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CHAPTER 3

A block structured regularization for
prediction with network-valued covariates

3.1 Introduction

While the study of networks has traditionally been driven by social sciences appli-
cations and focused on understanding the structure of single network, neuroimaging
applications have given rise to new methods for statistical analysis of multiple net-
works (Vogelstein et al., 2013; Ginestet et al., 2017; Narayan et al., 2015; Arroyo et al.,
2017; Athreya et al., 2017). In neuroimaging, brain networks are constructed from
raw imaging data, such as fMRI, to represent connectivity between a predefined set of
nodes in the brain (Bullmore and Sporns, 2009), often referred to as regions of interest
(ROIs). Collecting data from multiple subjects has made possible population level
studies of the brain under different conditions, for instance, mental illness. Typically
this is accomplished by using the network as a covariance, and predicting or testing
differences in a phenotype, either a category like disease diagnosis or a quantitative
measurement like attention levels.

Most of the previous work on this has followed one of two general approaches.
One approach reduces the networks to global features that summarize the structure
of the brain, such as average degree, centrality, etc., but these features do not capture
local structure. The other approach applies standard prediction tools to vectorized
adjacency matrices, treating all edge weights as individual features, but this fails to
account for network structure, which can reduce both accuracy and interpretability.
For a detailed discussion on this, see Section 2.1. Communities are a structure com-
monly found in networks from many domains A community is typically defined as a
group of nodes that are more connected to each other than to the rest of the network.
There are many methods available for detecting communities, including statistical
models (Newman, 2010). Network models with communities such as stochastic block
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Figure 3.1: Left: A healthy subject connectivity matrix. Right: The t-statistics of
edge-level differences between two samples of healthy and schizophrenic subjects. The
data are from the COBRE dataset.

models can also provide a good approximation to more general statistical network
models (Olhede and Wolfe, 2014; Amini and Levina, 2018).

Communities have been observed in brain networks, corresponding to functional
brain systems (Fox et al., 2005; Chen et al., 2008; Bullmore and Sporns, 2009). The
nodes in a community can be thought of as activating together during tasks and having
similar functionality in the brain. Thus, each set of edges connecting two communities
or brain systems, referred to as a cell, tends to have homogeneous connectivity levels.
For example, this pattern appears in the left panel of Figure 3.1, which shows the
fMRI brain network of a healthy subject from the COBRE data (http://fcon_1000.
projects.nitrc.org/indi/retro/cobre.html). In this example, the nodes of the
network are defined according to the Power et al. parcellation (Power et al., 2011)
which identifies 264 regions of interest (ROIs) in the brain. These nodes are divided
into 14 communities, labeled in the left panel, which mostly correspond to known
functional systems of the brain.

Analysis and interpretation of fMRI brain networks is usually done at the level of
brain systems and cells, as voxels or ROIs are too granular and result in an exces-
sively large number of edges to interpret. This approach is supported by the fact that
the organization and connectivity of those brain systems is usually associated with
subject-level phenotypes of interest, such as age, gender, or mental illness diagnosis
(Meunier et al., 2009; Sripada et al., 2014b; Kessler et al., 2016). However, there is
no universal agreement on exactly how to divide the brain into systems, and multiple
parcellations are available (see Arslan et al. (2017) and references therein). These
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parcellations are typically constructed either at the subject level by applying a com-
munity detection algorithm to a single network, or, more recently, at the sample level
by estimating a common community structure for all the networks, typically from
healthy subjects (Thirion et al., 2014). Several known parcellations have been ob-
tained and mapped to known brain systems this way. However, this process does not
take into consideration other variables associated with the subjects, or the fact that
the functional systems may rearrange themselves depending on the task or condition
(Smith et al., 2012; Fair et al., 2007; Sripada et al., 2014c)

When studying the association between the brain networks and some other subject-
level variable, the choice of parcellation is important, as the resolution of some may
not capture relevant associations. The right panel of Figure 3.1, shows the two sample
t-test statistic values for each edge, for the difference in average connectivity between
schizophrenic subjects and healthy controls from the COBRE data. Clearly, the cells
of t-statistics are not as homogeneous as the connectivity values themselves, and some
cells have both strongly positive and strongly negative groups, making it difficult to
interpret the function of the cell as a whole. In particular, the default mode network
(brain system 5) is a region that has been strongly associated with schizophrenia
(Broyd et al., 2009), but interpreting this system as a complete unit based on this
parcellation can be misleading, since it contains regions indicating both positive and
negative effects.

In this chapter, we develop a new method that learns the most relevant community
structure in the course of solving a prediction problems. We achieve this by enforcing
a block-constant constraint on edge coefficients, in order to identify a grouping of
nodes into clusters that gives the best prediction accuracy for the problem of interest,
and has cells that really do behave homogenously. The solution is obtained with a
combination of a spectral method and an efficient iterative optimization algorithm
based on ADMM. We study the performance of our method in simulations, and apply
it to schizophrenia prediction. Our method is able to obtain new sets of communities
that give a parsimonious and interpretable solution with good prediction accuracy.

The rest of this chapter is organized as follows. In Section 3.2, we formulate a block
regularization approach that enforces community structure in supervised prediction
problems. Section 3.3 presents an algorithm to solve the corresponding optimization
problem. In Section 3.4, we evaluate the performance of our methods in terms of
recovering community structure and prediction accuracy on simulated data. Section
3.5 presents results for the COBRE dataset. We conclude with a discussion and future
work in Section 3.6.
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3.2 Supervised community detection

We start by setting up notation. Since the motivation comes from brain networks
constructed from fMRI data, we focus on weighted undirected networks with no self
loops, although our approach can be easily extended to other network settings.

We observe a sample of n networks with N labeled nodes that match across all
networks A(1), . . . , A(n) and their associated response vector Y = (Y1, . . . , Yn), with
Yi ∈ R, i = 1, . . . , n. Each network here is represented by its weighted adjacency
matrix A(i) ∈ RN×N , satisfying A(i) = (A(i))T and diagA(i) = 0.

The inner product between two matrices U, V ∈ RN×N is denoted by 〈U, V 〉 =
Tr(V TU). The entry-wise `p norm of a matrix M ∈ RN1×N2 is denoted by ‖M‖p =(∑N1

i=1
∑N2
j=1 M

p
ij

)1/p
; in particular, ‖ · ‖2 = ‖ · ‖F is the Frobenius matrix norm.

We focus on linear methods for prediction, considering that one of our major goals
is interpretation; however, the linear predictor can be replaced by another function
as long as it is convex in the parameters of interest. For a given matrix A, the
corresponding response Y will be predicted using a linear combination of the entries
of A. Thus, we can define a matrix of coefficients B ∈ RN×N , an intercept b ∈ R and
a loss function ` such that

`(B) =
n∑
k=1

˜̀(Yk, 〈A(i), B〉+ b
)
, (3.1)

in which ˜̀ is a prediction loss which can be chosen according to the problem of
interest; in particular, this framework includes generalized linear models which can
be used for binary or categorical responses. The entry Bij of B is the coefficient for
the edge (i, j), and since the networks are undirected with no self loops, we require
B = BT and diag(B) = 0 for identifiability. In addition to the loss function, it is
often convenient to include a penalty Ωλ in the objective function. The penalty Ωλ,
with λ a tuning parameter that controls the amount of regularization, can be useful
to make the solution uniquely defined in situations when the number of samples is
small, or to enforce some structure in the solution. Popular choices for this penalty
include the ridge, lasso penalty or elastic net (Friedman et al., 2009).

Remark 3.1. The parameter b in (3.1) is the intercept of the linear method and is
important for accurate prediction, but since it can be removed in some situations by
centering and is easy to optimize over if it is not removed, we omit the intercept in
derivations that follow.

As discussed in the introduction, communities in brain networks we are inter-
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ested in correspond to similar functionality, and thus it is reasonable to assume that
edges within one network “cell” will have a similar effect on the response. This prop-
erty can be explicitly encoded in the matrix of coefficients B. Suppose the nodes
are partitioned into K groups C1, . . . , CK ⊂ {1, . . . , N} such that Ci ∩ Cj = ∅ and⋃K
k=1 Ck = {1, . . . , N}. We assume that the values of B depend only on the com-

munity assignments of the nodes of the corresponding edge, so we can represent B
using a K × K matrix C, such that Bij = Cuv if i ∈ Cu and j ∈ Cv. Equivalently,
define a binary membership matrix Z ∈ {0, 1}N×K such that Zik = 1 if i ∈ Ck, and 0
otherwise. Then B can be written as

B = ZCZT . (3.2)

This enforces equal coefficients for all the edges within one network cell (see Figure
3.2). This definition is analogous to the stochastic block model (SBM) (Holland et al.,
1983), with the crucial difference that here B is not a matrix of edge probabilities,
but the matrix of coefficients of a linear predictor.

Suppose for the moment that we are given a membership matrix Z. We can
enforce cell-constant coefficients by adding a constaint on B to the optimization
problem, solving

min
C

`(B) + Ω(B) (3.3)
subject to B = ZCZT , C ∈ RK×K , C = CT ,

or, using the fact
〈
A,ZCZT

〉
=
〈
ZTAZ,C

〉
, we can restate the optimization problem

in terms of C as

Ĉ = arg min
C

{
n∑
i=1

`
(
Yi, 〈ZTA(i)Z,C〉+ b

)
+ Ω(ZCZT )

}
. (3.4)

This effectively reduces the number of different coefficients from N(N − 1)/2 to only
K(K + 1)/2, which allows for much easier interpretation of network cells.

For many choices of the penalty Ωλ (for example, lasso or ridge) the optimization
problem (3.4) is a standard prediction loss plus penalty problem with only K(K+1)/2
different parameters, which is easy to solve. Note that when the number of parameters
K(K + 1)/2 is large relative to n, some penalty Ωλ is necessary in order to make the
solution well defined.

Now let us return to the case of unknown Z. Our goal is to find a partition into
communities that will give us the best prediction. Thus we need to jointly optimize
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=

Figure 3.2: Factorization of matrix of coefficients B as ZCZT , with Z a membership
matrix.

over Z and C, solving

min
Z,C

{
n∑
i=1

`
(
Yi, 〈ZTA(i)Z,C〉+ b

)
+ Ω(ZCZT )

}
(3.5)

subject to C ∈ RK×K , C = CT

Z ∈ {0, 1}N×K , Z1K = 1N .

The formulation (3.5) is aimed at the best community assignments for predicting
a response, and enforcing block structure on the coefficients has the effect of grouping
edges with similar predictive function into cells by clustering the associated nodes.
Approaches for simultaneously predicting a response and clustering predictors have
been proposed; for example, Bondell and Reich (2008) introduced a penalty that
achieves this goal via fused lasso. Our goal, however, is not just clustering predictors
(edges), it is partitioning the brain network into meaning regions, which requires
clustering nodes.

The value of K in (3.5) plays the role of a tuning parameter that controls the
amount of regularization. When K = N , there is no clustering. In practice, the
value of K is unknown and can be chosen by cross-validation, as is commonly done
with such tuning parameters. Alternatively, our method can be seen as a way of
enforcing structure in the coefficients in order to simplify the interpretation with an
approximately good solution, in the same way that unsupervised community detection
is often used as an approximation to more general network distributions. Then the
value of K can be chosen to match commonly used numbers of brain regions (typically
10-20), to obtain an interpretable solution and facilitate comparisons with existing
parcelations.

Solving the optimization problem (3.5) is no longer easy, since optimizing over the
membership matrix Z is a combinatorial problem. Next, we describe a computation-
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ally feasible strategy to obtain an approximate solution.

3.3 An optimization algorithm for block structured
regularized coefficients

Solving the problem (3.5) exactly is computationally infeasible, as the problem is
NP-hard in Z. Instead, we propose an iterative optimization algorithm based on the
alternating direction method of multipliers (ADMM) (Boyd et al., 2011). Since the
problem is not convex, having a good initial value is critical, even though in princi-
ple any membership matrix Z can be used to initialize the optimization algorithm.
Some reasonable choices include starting from one of the previously published brain
parcellations, on run an unsupervised community detection method on the networks,
but these ignore the response Y . We propose a spectral clustering algorithm that
can give an approximate solution to the problem while taking the response into ac-
count, and can be used to initialize the ADMM optimization procedure; alternative
initializations are also discussed.

3.3.1 Spectral clustering solution for the sum of squares loss

We start by introducing a spectral algorithm for solving the constrained problem (3.5)
when the loss function is the sum of squared means. We assume for simplicity that
the network matrices and the responses are centered, that is, Ā = 1

n

∑n
i=1A

(i) = 0
and Ȳ = 1

n

∑n
i=1 Yi = 0. Then we can write the loss function as

`(B) = 1
2n

n∑
i=1

(
Yi − Tr

(
A(i)B

))2
. (3.6)

Denote by Σ̂A,Y the N×N m matrix of coefficients for the simple linear regression
of each edge (u, v) and the response, defined as

(
Σ̂A,Y

)
uv

= Ĉov(Auv, Y )
V̂ar(Auv)

=
∑n
i=1 YiA

(i)∑n
i=1(A(i)

uv)2
. (3.7)

Next, we perform spectral clustering on Σ̂A,Y . That is, we first compute the K leading
eigenvectors of Σ̂A,Y , denoted by V ∈ RN×K , and then cluster the rows of V using
K-means, as summarized in Algorithm 3.1. Cluster assignments give a membership
matrix Ẑ(0), which can be used either as a regularization in problem (3.3), or as an
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initial value in Algorithm 3.2, introduced in the next section.

Algorithm 3.1 Spectral clustering solution for least squares loss
Input: Training sample {(A(1), Y1), . . . , (A(n), Yn)} centered and standardized; num-

ber of communities K.
1. Compute Σ̂A,Y as in equation (3.7).
2. Compute the eigendecomposition of Σ̂A,Y = QΛQT , with Q an orthogonal

matrix and Λ a diagonal matrix.
3. Set V = (Q·i1 · · ·Q·iK ) as the K leading eigenvectors of Σ̂A,Y , so

Λi1i1 , . . . ,ΛiK iK are largest entries of Λ in absolute value.
4. Run k-means (or other clustering method) to cluster the rows of V into K

groups. Let Ĉ1, . . . , ĈK be the indexes of those groups.
5. Form the membership matrix Ẑ so that Ẑik = 1 if i ∈ Ĉk and 0 otherwise.

Output: Ẑ(0) = Ẑ.

To justify the spectral clustering method, note that when the predictors are un-
correlated it is a well known fact that the least squares solution is given by Σ̂A,Y , so
the loss function becomes

ˇ̀(B) = 1
2
∥∥∥B − ΣA,Y

∥∥∥2

F
. (3.8)

In general, it might be unrealistic to assume that the edges are uncorrelated. How-
ever, many methods constructed based on this assumption have surprisingly good
performance in practice, even though this assumption might not hold (Bickel and
Levina, 2004). Using the loss function (3.8), we approximate the solution for the
least squares loss by solving the following optimization problem

min
Z,C

1
2

∥∥∥ZCZT − ΣA,Y
∥∥∥2

F
(3.9)

subject to Z ∈ {0, 1}N×K

Z1K = 1N .

This problem is still not convex, but its solution has been approximated with spectral
clustering as in Algorithm 3.1 (Rohe et al., 2011; Chatterjee et al., 2015), so this is
the approach we follow to obtain an approximate solution for the least squares loss
function.

Remark 3.2. We also use Algorithm 3.1 when the loss function ` belongs to the family
of generalized linear models (GLM). A popular optimization approach to fit a GLM
is by iteratively reweighted least squares (IRLS) (Daubechies et al., 2010). This
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method is based on iteratively solving a linear approximation to the loss function,
which results in a weighted least squares problem. Algorithm 3.1 can be thought as
a solution for the first step of IRLS with block constraints.

Remark 3.3. The sample covariance between the responses and the matrices ΣA,Y

provides a good estimate of B̂ when the previous assumptions hold, so it is an ap-
propriate and computationally cheap candidate for the spectral clustering algorithm.
However, it is possible to substitute ΣA,Y in the first step of Algorithm 3.1 with other
solutions. In particular, it is appealing to use a an estimator B̃ that is approximately
low rank, since this constraint is enforced in (3.5). A convex relaxations to a low-
rank constraint in B was proposed by (Zhou and Li, 2014), which use a nuclear norm
penalty to regularize the rank of the matrix. Thus, it is possible to use this estimator
instead of ΣA,Y in Algorithm 3.1. In our application, we did not observe a significant
difference in the prediction error using these two choices, so we use Σ̂A,Y for data
analysis.

3.3.2 Iterative optimization with ADMM

In this section, we propose a heuristic algorithm to approximately solve the opti-
mization problem (3.5). Given Z, the problem is easy to solve as we described in
Section 3.2, but finding the optimal Z is computationally infeasible. We propose an
optimization strategy to approximate the solution, and later in Sections 3.4 and 3.5
we evaluate its performance.

The ADMM is a method for solving convex optimization problems with linear
constraints. As we observed in Section 2.3, the ADMM is a flexible method for
incorporating different types of penalty functions. Although the method is limited to
linear constraints, some heuristics have been proposed to extend its applicability to
more general settings with non-convex constraints (Diamond et al., 2016), showing a
good numerical performance in those scenarios. We derive an iterative ADMM for
solving (3.5). As we will see, the steps of the ADMM can be approximately solved in
an efficient way.

Let Z =
{
Z ∈ {0, 1}N×K |Z1K = 1N

}
be the set of valid membership matrices

with K communities. Introducing a dual variable V ∈ RN×N and a variable W with
block structure such that

W ∈ W =
{
B ∈ RN×N

∣∣∣B = ZCZT , Z ∈ Z, C ∈ RK×K
}
,
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the augmented Lagrangian of the problem can be written as

Lρ(B, V,W ) = `(B) + Ω(B) + 〈V,B −W 〉+ ρ

2‖B −W‖
2
F , (3.10)

with ρ > 0 a parameter of the optimization algorithm. Given some initial values
B(0), V (0) and W (0), the ADMM consists of the following steps,

B(t) = arg min
B∈RN×N

Lρ(B, V (t−1),W (t−1)) (3.11)

W (t) = arg min
W∈W

Lρ(B(t), V (t−1),W ) (3.12)

V (t) = V (t−1) + ρ
(
B(t) −W (t)

)
. (3.13)

Equation (3.11) depends on the loss function ` and the penalty Ω, and can be ex-
pressed as

B(t) = arg min
B

{
`(B) + Ω(B) +

〈
V (t−1), B −W (t−1)

〉
+ ρ

2‖B −W
(t−1)‖2

F

}

= arg min
B

`(B) + Ω(B) + ρ

2

∥∥∥∥∥B −
(
W (t−1) − 1

ρ
V (t−1)

)∥∥∥∥∥
2

F

 (3.14)

If ` and Ω are convex, as it is generally the case, then (3.11) is also convex, and in
some cases it is possible to express it as a regularized regression problem with a ridge
penalty. Step (3.12) requires to solve a non-convex combinatorial problem due to the
membership matrix Z. This step can be expressed as

W (t) = arg min
W∈W

∥∥∥∥∥W −
(
B(t) + 1

ρ
V (t−1)

)∥∥∥∥∥
2

F

. (3.15)

This previous equation is equivalent to problem (3.9). We use the same strategy
to approximately solve this problem by performing spectral clustering to the matrix
B+ 1

ρ
V in order to obtain a membership matrix Z(t). Once we find Z(t), the solution

of equation (3.15) is given by

W (t) = Z(t)(Z(t)T

Z(t))−1
(
B(t) + 1

ρ
V (t−1)

)
(Z(t)T

Z(t))−1Z(t)T

. (3.16)

Finally, equation (3.13) requires to update the dual variables. We iterate this algo-
rithm until some convergence criteria is met. For example, we can use the convergence
criteria employed in Algorithm 2.2 at Section 2.3. The steps of the ADMM algorithm
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are summarized in Algorithm (3.2)

Algorithm 3.2 Iterative optimization with ADMM
Input: {(A(1), Y1), . . . , (A(n), Yn)}, K, ρ, Z(0)

Initialize: Set W (0) as the solution of problem (3.3) using Z = Z(0), and V (0) =
0N×N .

Iterate: for t = 1, 2, . . . until convergence
1. Compute B(t) according to equation (3.14).
2. Update W (t) by spectral clustering

(a) Set V be the K leading eigenvectors of B(t) + 1
ρ
V (t−1).

(b) Run K-means to cluster the rows of V into K groups, let Ĉ1, . . . , ĈK be
those groups.

(c) Set Z(t) as Z(t)
i k = 1 if i ∈ Ĉk and 0 otherwise.

(d) Update W (t) as in equation (3.16).
3. Update V (t) according to equation (3.13).

Output: B̂ = B(t) and Ẑ = Z(t)

The parameter ρ in Algorithm 3.2 controls the size of the primal and dual steps. A
larger ρ will enforce B(t) to stay close to the value of W (t−1), and since this parameter
depends on the community assignment Z(t−1) the community assignments will be less
likely to change on each iteration. In convex optimization problems, the ADMM is
guaranteed to converge to the optimal value for any ρ > 0. Here, if ρ is small, the
algorithm might not converge, while for a large enough ρ, the algorithm will not move
from the initial community assignment Z(0). In practice, we run Algorithm (3.2) for
a set of different values of ρ, and choose the solution B̂ that gives the best value in
equation (3.5).

3.4 Numerical results on simulated networks

In this section, we use simulated data to evaluate the performance of our method
on both predicting a response and recovering the community structure. We generate
networks with N = 40 nodes with the community structure of a stochastic block
model (SBM), resulting in p = 780 distinct edges, with nodes partitioned into K = 4
communities of equal size, and define the node community labels as c1, · · · , c40 ∈
{1, . . . , 4}. In our main application edges have real-valued weights, so instead of
using the Bernoulli distribution stipulated by SBM, we generate edge weights from a
Gaussian distribution. Given a subject connectivity matrix H(i) ∈ RK×K , each edge
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(u, v) of the network A(i), with u > v, is generated independently as

A(i)
uv ∼ N(H(i)

cucv
, s2), (3.17)

with s = 0.1. The connectivity matrix H(i) for subject i is generated as

H(i) =


0.3 + tUi 0.3 0.1 0.1

0.3 0.3 + tUi 0.1 0.1
0.1 0.1 0.3 + tUi 0.3
0.1 0.1 0.3 0.3 + tUi

 , (3.18)

with Ui a random variable uniformly distributed on (−0.5, 0.5) and t ∈ R a parameter
of the model. When t = 0, the networks have only two communities, and as t

increases, the four communities become more distinguishable. Given a network A(i),
the response Yi is generated from the linear model,

Yi = 〈A(i), B〉+ εi, (3.19)

with εi ∼ N(0, σ2) i.i.d. noise. The matrix of coefficients B shares the community
structure of the networks and is defined as

Buv =
 1 if cu = cv,

0 otherwise.

We fit the model on training data of size n (to be specified) by solving the op-
timization problem with the least squares loss function. No penalty is included in
the objective function since the value of K is small compared to the sample size. We
evaluate prediction performance by mean squared error (MSE) on test data. The
parameter K is chosen by 5-fold cross-validation. Since the estimated K may be
different from K = 4 used to generate the data, we measure community detection
performance by the co-clustering error, which measures the proportion of nodes not
assigned to the same community. Given two membership matrices Z and Z̃, the
co-clustering error is defined as

E(Z, Z̃) = 1
N2

N∑
i=1

N∑
j=1
|(ZZT − Z̃Z̃T )ij|.

We fit our method by the spectral clustering (Algorithm 3.1) used to provide an in-
tial value to the ADMM (Algorithm 3.2). As a benchmark for prediction, we use lasso
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Figure 3.3: Results for prediction (top) and community detection (bottom). Each
plot shows the corresponding error averaged over 50 replications as a function of one
of the parameters σ, t, and n, keeping the other two fixed.

and ridge regression (Friedman et al., 2009), which are generic regularized linear re-
gression methods. An oracle method is included as a reference, constructed by solving
(3.3) using the true communities. Unsupervised community detection methods often
combine sample networks by averaging, but these methods generally are designed for
binary edges, and will fail in our setting since EA(i) is a matrix with only two commu-
nities. Bhattacharyya and Chatterjee (2017) proposed a community detection method
for samples of networks that can work in our setting, based on performing spectral
clustering on the sum of the squared adjacency matrices Ã = ∑n

i=1(A(i)2−diag(A(i)2)).
We use this method as a benchmark for community detection.

The difficulty of the problem is controlled by multiple parameters. We vary the
noise level σ, the strength of the community structure (controlled by t), and the
sample size n. In each experiment, we vary one of these parameters while keeping
the other two constant. The constant values are set to σ = 1, t = 0.025 and n = 150.
Each scenario is repeated 50 times.
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Figure 3.3 shows the average performance of the methods as a function of model
parameters. In general, all methods perform better when the noise level is lower, the
community structure is stronger, and the sample size larger, as one would expect. Our
method outperforms both lasso and ridge, since it takes advantage of the underlying
structure. Note that the value of 〈A(i), B〉 changes with t, which explains why the
MSE of lasso and ridge may not be monotone as a function of t. ADMM usually
improves on the initial value provided by SC, and when the signal is strong enough,
both methods recover the community structure correctly, performing as well as the
oracle. Unsupervised community detection does not use the response values, and
hence its performance does not depend on σ. Community detection becomes easier as
t increases, but the unsupervised method requires a much larger t than our supervised
community detection algorithm to achieve the same performance. The sample size
has virtually no effect on unsupervised community detection, but supervised detection
improves very quickly as the sample size grows.

3.5 Supervised community detection in fMRI brain
networks

Here we apply the proposed method to classification of brain networks from healthy
and schizophrenic subjects from the COBRE dataset. Diagnosing schizophrenia from
fMRI data can be useful in clinical practice as behavioral data can be misleading in
diagnosing such disorders (Campanella, 2015), and understanding which regions of
the brain are implicated in schizophrenia is an important step towards developing
new treatments.

The COBRE dataset includes 54 schizophrenic patients and 70 controls. For a
description of the data and pre-processing steps, see Section 2.6. The Power par-
cellation (Power et al., 2011) was employed to define the regions of interest (ROIs),
resulting in a total of N = 263 nodes in the brain (see left panel of Figure 3.4).

We train our method using logistic regression loss and the lasso penalty, needed
since the sample size n = 124 only allows us to fit up to K = 15 communities without
regularization. As is commonly done with logistic regression with a large number of
predictors, we also add a small ridge penalty for numerical stability. The objective
function is given by

`(B) + Ωλ(B) = 1
n

n∑
i=1

log
(
1 + exp(−Yi(〈A(i), B〉+ b))

)
+ γ

2‖B‖
2
F + λ‖B‖1.
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The parameter λ in the lasso penalty controls sparsity of the solution and is selected
by cross-validation. The value of γ is fixed at 10−5.

The analysis and interpretation of brain connectomic studies is usually done at
the level of brain systems, since nodes or edges are too granular for interpretation. In
the Power parcellation, nodes are partitioned into 14 brain systems (see Figure 2.1)
which are related to known functional areas in the brain (Power et al., 2011). The
nodes labeled according to these communities are shown in Figure 3.5. We use these
communities as a baseline by solving the constrained problem (3.3), and compare the
performance of our supervised community detection method using the same number
of K = 14 communities.

Figure 3.4 shows the 263 nodes of the data colored according to the parcellation
by Power et al. (2011) (left panel) and the communities we found with our method
with K = 14 (right panel). In both cases, we chose λ by cross-validation, and
evaluated prediction accuracy using 10-fold nested cross-validation. The accuracy for
each method is reported in Figure 3.4. Our supervised method uses the same number
of parameters but has a noticeably higher accuracy. for easier interpretation of the
communities we found, Figure 3.6 shows a separate plot for each community. These
node clusters are mostly well concentrated in space, suggesting they may correspond
to meaningful structural or functional regions. In Figure 3.7, a Sankey diagram shows
a comparison of the new and the old community assignments. Many of the Power
communities are partitioned into smaller communities with supervised community
detection. Figure 3.8 shows the fitted coefficients ordered according to the supervised
communities. Note that the communities F, H and I are mostly composed by nodes
from the default mode network (community 5 in Power parcellation), but now we can
observe cells with positive or negative coefficients within those communities.

Using 10-fold cross-validation, the average prediction error and number of non-
zero different coefficients for a grid of values of λ and K are reported in Figure
3.9. Even when the number of communities is small, the accuracy of the supervised
method is better than the baseline communities (Figure 3.4), and as K increases, the
accuracy improves significantly. Comparing with other methods that we previously
evaluated using the same data (Table 2.2), our method shows satisfactory accuracy
with a small number of parameters that are highly interpretable, and its performance
is better than methods like lasso or DLDA, which are only able to select individual
edges.
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Power brain systems
CV accuracy: 62%

Supervised community detection
CV accuracy: 79%

Figure 3.4: Baseline communities (Power et al., 2011) and communities found by our
supervised community detection method.
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Figure 3.5: Individual communities proposed by Power et al. (2011).
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Figure 3.6: Individual communities found by the supervised community detection
method.

Figure 3.7: Sankey diagram of the node community assignment changes from the
Power parcellation (top row) and the communities found by our method (bottom
row).
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Figure 3.8: Matrix of fitted coefficients with the communities found by supervised
community detection (K = 14).
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Figure 3.9: Average cross-validation error (left panel) and average number of non-zero
different coefficients (right panel) for a grid of λ and K values.
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3.6 Discussion

Finding communities in network is a much studied problem, but frequently there is no
way to evaluate the success of the procedure – even when “ground truth” is available,
it’s often just another network covariate which may or may correspond to communities
– and no clear way to extract useful information from the structure discovered beyond
the communities themselves; this is a common problem for unsupervised tasks. In
contrast, here we use community structure as a regularization tool in a prediction
problem, allowing for clear evaluation and comparisons in terms of prediction error.
However, good prediction is only one of our goals; having a sparse and interpretable
solution is just as important from the scientific point of view. This is one reason
that we imposed an equal coefficient constraint on all the edges within a cell rather
than shrink them towards each other; another reason for this choice is a much simpler
optimization problem. Imposing a shrinkage penalty within communities and then
optimizing jointly over coefficients and communities, and tuning both K and the
shrinkage penalty parameter, is in principle a valid approach, but with the tools
currently available it would vastly increase the computation costs.

Our method performed well on neuroimaging data, providing solutions that are
easier to interpret than those which treat each edge weight as a separate predictor. We
hope to apply it in future work to a much wider range of datasets and study how much
suggested parcellations and cells’ functions differ between conditions, tasks, stages of
development, etc. This can potentially lead to a paradigm shift in neuroimaging data
analysis, where the parcellations are currently treated as fixed.

From statistical perspective, there is much more that can be done. We leave
establishing statistical guarantees for our method, such as consistency of commu-
nity detection and parameter estimation, for future work. More complex prediction
rules, rather than linear functions, can be used to obtain more flexible classifiers; the
method extends easily to methods such as polynomial regression, splines, generalized
additive models, or anything else that fits coefficients to an expanded basis. We can
further amend the loss function to not just evaluate the quality of prediction, but also
the strength of discovered community structure; this would allow a balance between
finding the most predictive communities and the strongest communities purely in the
network sense, which may or may not be the most predictive. Finally, community
structure can be used as an approximation to more general models, for example,
smooth graphons such as those in Zhang et al. (2017).

Valid statistical inference for this approach is left for future work as well. While
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there has been a lot of recent activity in high-dimensional post-selection inference
(Van de Geer et al., 2014; Lee et al., 2016; Lockhart et al., 2014), we are in a much
harder setting of grouped rather sparse coefficients, and the groups themselves are
learned from data, unlike in typical group lasso problems (Yuan and Lin, 2006). There
are currently no methods we are aware of that can handle this type of setting, but
we will investigate whether existing methods can be modified or new ones developed
in future work.
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CHAPTER 4

Overlapping community detection using
sparse principal component analysis

4.1 Introduction

Networks have become a popular representation of complex data that appear in dif-
ferent fields such as biology, physics, chemistry or the social sciences. In a network,
units of a system are represented by nodes, and the interactions between them by
edges. Thus, a network can encode the relationships between people in a social en-
vironment (Wasserman and Faust, 1994), connectivity between areas of the brain
(Bullmore and Sporns, 2009) or interactions between proteins (Schlitt and Brazma,
2007). The constant technological advancements have improved our ability to collect
and process information, leading to an explosion in the size and complexity of the
data. In particular, this has increased the availability of network data. Nowadays,
networks that scale from hundreds to millions of nodes are ubiquitous, opening sta-
tistical challenges to analyze such type of the data. Parsimonious models are required
in order to being able to interpret the solutions, as well as efficient methods that can
scale to large datasets.

Communities are a structure of interest in the analysis of networks, since in many
real-world systems nodes tend to form groups with strong connectivity between the
members (Girvan and Newman, 2002). Usually, communities are defined as clusters
of nodes that have stronger connections to each other than to the rest of the net-
work. Finding these communities allows to simplify the dimensionality of the data
by reducing the nodes to a smaller number of units which often reflect structures
that are meaningful for understanding the system of interest. In real-world networks,
communities can represent functional areas of the brain (Schwarz et al., 2008; Power
et al., 2011), political affinity in social networks (Adamic and Glance, 2005; Conover
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et al., 2011; Latouche et al., 2011), research areas in citation networks (Ji et al., 2016),
among many other examples.

The stochastic block model (SBM) (Holland et al., 1983) is a simple statistical
model for community structure in a network with by now well understood theoretical
guarantees (Bickel and Chen, 2009; Decelle et al., 2011; Mossel et al., 2015; Le et al.,
2015; Gao et al., 2015). Under the SBM, a pair of nodes is connected with a proba-
bility that only depends on the community memberships of these nodes. Due to its
simplicity, the model is not able to capture some aspects of real-world networks, but
extensions have been proposed to incorporate aspects of interest such as hubs (Ball
et al., 2011), or allow nodes to belong to more than one community (Airoldi et al.,
2009; Latouche et al., 2011; Zhang et al., 2014).

In this paper, we focus on the estimation of sparse overlapping continuous mem-
berships. Overlapping community models allow to characterize each node by a vector
of memberships to the different communities in the network. In real-world networks,
memberships are usually sparse, in the sense that most nodes belong to only one or
few groups. In fact, the sparsest scenario in which nodes belong to only one com-
munity corresponds to the classic community detection setting, and its success in
modeling and analyzing real-world networks in many different fields suggests the idea
that the sparsity assumption in the overlapping memberships is reasonable.

Detecting overlapping communities involves identifying what are these commu-
nities, and at the same time assigning each node to one or multiple communities.
Existing statistical models for overlapping community detection define the node mem-
berships either as binary, in which a node is assigned or not to a community with a
fixed degree of association (Latouche et al., 2011), or as a continuous membership that
allows each node to have a different level of association to each community (Airoldi
et al., 2009; Ball et al., 2011; Psorakis et al., 2011; Zhang et al., 2014). Binary mem-
berships are a natural way to account for sparsity in the overlapping assignments,
but the model is restrictive since community memberships cannot reflect different
strengths of belonging to a community, and fitting those memberships can be com-
putationally intensive. On the other hand, continuous assignments are not able to
explicitly account for sparsity, and the resulting estimates usually assign most of the
nodes to many or all communities. To obtain sparse memberships, a post-processing
step is required, which can harm the estimation accuracy.

Here, we present a new approach for detecting overlapping communities in a net-
work based on the estimation of an appropriate sparse basis for the principal subspace
of a network adjacency matrix A. Statistical models for community detection usually
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assume that the expected value W of the network adjacency matrix has a low rank
structure, and the principal subspace of W contains the information required to iden-
tify the communities. Existing spectral methods for community detection exploit this
fact by computing the leading eigenvectors of the adjacency matrix A or its Lapla-
cian, and then apply some clustering technique to obtain the latent memberships (see
for example Newman (2006); Rohe et al. (2011); Lyzinski et al. (2014); Zhang et al.
(2014); Jin et al. (2017)). In contrast, we directly estimate an appropriate eigenba-
sis that contains the community information via sparse principal component analysis
(Jolliffe et al., 2003; Zou et al., 2006; Ma, 2013). We present methods that can es-
timate a non-orthogonal sparse eigenbasis representing the node memberships. Our
estimators are able to recover a membership matrix with the correct sparsity pattern
in the assignments. Moreover, our methods have a low computational cost that is no
larger than computing the leading eigenvectors of a matrix.

4.2 Detecting communities by sparse subspace es-
timation

4.2.1 Community detection with overlaps

Here, we focus in the study of a single unweighted network with n nodes. A network
can be represented with a binary adjacency matrix A of size n× n. We assume that
the network is undirected with no self-loops, so A is a symmetric matrix with zeros on
the diagonal, and Aij = 1 indicates that there is a link between nodes i and j. Many
popular statistical network models use a matrix W ∈ Rn×n to encode the probability
of the edges, which are independent Bernoulli random variables.

The SBM (Holland et al., 1983) is one of the earliest and most popular sta-
tistical models for community detection. The model partitions the nodes into K

non-overlapping communities C1, . . . , CK ⊂ {1, . . . , N}, and the probability of link
between two nodes just depends on the communities of this nodes. Given a probabil-
ity matrix B ∈ [0, 1]K×K , a network is distributed according to the SBM if for every
pair of nodes i, j, i > j, the edge connecting i and j is an independent Bernoulli
random variable with probability

P (Aij = 1) = Buv,

whenever i ∈ Cu and j ∈ Cv. Alternatively, the model can be described using a
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membership matrix Z of size n×K indicating the community memberships, so Zik =
1 whenever i ∈ Ck, and zero otherwise, so the expected value W ∈ Rn×n can be
expressed as

W = EA = ZBZT .

The SBM provides a simple model that allows to characterize community struc-
ture but it is not able to capture some other properties of real networks. Multiple
extensions to the SBM have been proposed to overcome those limitations, and here we
focus in overlapping communities. In real networks, nodes can belong to more than
one community at a time, and identifying all the memberships is a problem of interest.
The overlapping continuous community assignment model (OCCAM) (Zhang et al.,
2014) is a particular extension to the SBM that encompasses many other models for
overlapping and non-overlapping community detection. Given a continuous member-
ship matrix Z ∈ Rn×K with Z ≥ 0 and ‖Zi·‖2 = 1, a connectivity matrix B ∈ RK×K ,
a vector of degree intensities θ ∈ Rn, and a parameter α > 0 that controls the average
degree, OCCAM defines the expected adjacency matrix of a network as

W = EA = αΘZBZTΘ, (4.1)

where Θ ∈ Rn×n is a diagonal matrix such that diag(Θ) = θ. In OCCAM, nodes
can belong to multiple communities at the same time. Each row of Z can have
multiple or all the entries different from zero, indicating the communities to which
the node belong. OCCAM also incorporates a vector of degree intensities θ which
allows to model hub nodes in the network as in the degree-corrected SBM (Ball et al.,
2011). The model is also related to the mixed-membership SBM (Airoldi et al., 2009;
Jin et al., 2017), which is a hierarchical Bayesian version of overlapping community
detection.

OCCAM contains many more parameters than the SBM, which are identifiable
under some restrictions on Z, Θ and B (Zhang et al., 2014). In the next Theorem, we
show that in general any low-rank model W = EA that has a valid membership matrix
as the basis of the eigenspace is identifiable up to positive scaling and permutations.
The proof is on the Appendix.

Proposition 4.1. Let W ∈ Rn×n be a symmetric matrix of rank K. Suppose that
there exists a matrix Z ∈ Rn×K that satisfies the next conditions:

• Z is nonnegative, i.e., Zik ≥ 0 for all i, k.

• For each k = 1, . . . , K there exists at least one row ik of Z such that Zikk > 0
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=

E[A] = Z B ZT

Figure 4.1: Representation of the expected value of a network adjacency matrix with
an overlapping structure. Each column of Z corresponds to a community, and the
non-zero entries on each row indicates the community that the corresponding node
belongs to.

and Zikj = 0 for j 6= k.

• Z is a basis of the column space of W , that is, range(A) = range(Z).

If there is any other matrix Z̃ ∈ Rn×K that satisfies the previous conditions, then
Z̃PD = Z, with P a permutation matrix and D a diagonal matrix with diag(D) > 0,
and therefore

supp(Z) = supp(Z̃P ),

with supp(Z) = {(i, j)|Zij 6= 0} the set of non-zeros of Z.

Remark 4.1. When the model for W is OCCAM, Proposition 4.1 provides similar
identifiability conditions than Theorem 2.1 of Zhang et al. (2014). Here, we do not
require explicit conditions on B or Θ, but it is implicitly required that B has full
rank. Our statement is slightly more general since we do not require that B is
positive definite.

The previous result implies that if W = EA has rank K and there is a membership
matrix Z that is a basis of the eigenspace of W , then the matrix Z is unique up to
permutations and scaling factors, but the pattern of non-zeros remains the same.
This fact allow us to characterize the community structure by looking at the non-zero
values of each column of Z (see Figure 4.1). In the rest of this paper, any matrix
Z that satisfies those conditions is referred as a membership matrix. Thus, if we
know the expectation of the adjacency matrix W , the task of overlapping community
detection can be solved by identifying any membership matrix that is an eigenbasis
of W . This perspective motivates the methods we present here.
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4.2.2 Community detection via sparse principal component
analysis

Fitting statistical models for community detection requires in principle to solve a
combinatorial problem, but a vast literature of computationally feasible algorithms
has been developed, with the majority of them focusing in the non-overlapping case.
Spectral methods are a popular approach to find Z due to its simplicity and com-
putational speed. These methods usually compute the leading eigenvectors of A (or
the Laplacian), which contain information about the communities, and then apply
a clustering procedure to the rows of the eigenvectors in order to assign the nodes
into communities (see for example Rohe et al. (2011); Lei et al. (2015); Zhang et al.
(2014); Jin et al. (2017)). When communities overlap, the result is usually a con-
tinuous membership matrix Z, and an additional thresholding step is required to
find sparse memberships. Thus, spectral algorithms require to perform different pro-
cedures in separate steps, and this can harm the accuracy of the final estimator.
Moreover, some clustering techniques or other methods for identifying the communi-
ties can be computationally expensive (Zhang et al., 2014; Jin et al., 2017). In this
paper, we propose an approach to directly estimate an appropriate eigenbasis of A
that contains the information of the overlapping memberships. As we will see, this
process can result in computationally efficient and accurate methods.

Principal component analysis (PCA) (Hotelling, 1933) is a popular dimensionality
reduction technique. There are several ways to formally define PCA, but in order to
motivate our analysis, we use the following formulation. Given a symmetric matrix
A ∈ Rn×n, PCA can be defined as the best approximation to A with a matrix M̂ of
rank K such that

M̂ = arg min
M :rank(M)=K

‖A−M‖2
F . (4.2)

The previous equation has a closed form solution. If q1, . . . , qK are the K lead-
ing eigenvectors of W , then for any matrix V ∈ Rn×K that satisfies range(V ) =
ran({q1, . . . , qK}), the solution of (4.2) is given by

M̂ = V (V TV )−1V TAV (V TV )−1V T . (4.3)

This matrix V is obviously not unique. In PCA, it is usually assumed that the
eigenvectors are the basis of interest, as their orthogonality simplifies interpretation.
In general, there is no particular reason to choose orthogonal vectors. In fact, in
overlapping community models, the membership matrix Z is a basis of W but it is
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not orthogonal. Although the principal space of A is still a good estimator for the
principal space of W , using the eigenvectors of A to estimate Z might not be the
optimal solution.

Sparse principal component analysis (SPCA) methods (Jolliffe et al., 2003; Zou
et al., 2006) incorporate sparsity constraints or regularizations that promote some
additional sparsity structure in the solution of (4.2). In high-dimensional scenarios,
enforcing sparsity in the solution of PCA can improve the estimation when the data
samples are scarce, or simplify the interpretation of the solutions. Our goal in this
paper is related to SPCA since we are interested in estimating a sparse eigenbasis of
W . Other connections between SPCA and community detection have been reported.
Amini and Levina (2018) observed a relation between a convex relaxation of the MLE
for non-overlapping community detection and a convex formulation of SPCA.

As the eigenvectors are usually the solution of interest in PCA, many SPCA
methods have been proposed to estimate the eigenvectors of a matrix under spar-
sity assumptions (see for example Amini and Wainwright (2008); Johnstone and Lu
(2009); Vu et al. (2013); Ma (2013)). Orthogonal iteration is classic method for es-
timating the eigenvectors of a matrix. Ma (2013) extended this method to estimate
sparse eigenvectors by an iterative thresholding algorithm. The author studied this
method under the spiked covariance model, showing a good statistical and compu-
tational performance. Although the iterative thresholding method is specific to the
estimation of sparse eigenvectors, this framework can be adapted to more general
settings in order to obtain a regularized basis for a matrix A. Starting from an initial
matrix Z(0) ∈ Rn×K , a general version of the algorithm of Ma (2013) consists on
iteratively performing the next steps until convergence:

• Multiplication step:
U (t) = AZ(t−1). (4.4)

• Regularization step:
V (t) = R(U (t−1)), (4.5)

where R : Rn×K → Rn×K is a regularization function.

• Numerical stability step:
Z(t) = V (t)Π(t), (4.6)

where Π(t) is a K ×K matrix that can depend on V (t).

Denote by Ẑ the value of Z(t) at convergence, and by Q̃ the n × K matrix of the
leading eigenvectors of A. Also, for a pair of full-rank matrices U, V ∈ Rn×K , define
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the distance between the subspaces range(U) and range(V ) by

L(U, V ) = ‖U(UTU)−1UT − V (V TV )−1V T‖2,

where ‖M‖ is the spectral norm of a matrix M ∈ Bn×n. The previous algorithm
provides a general framework for obtaining a regularized basis Ẑ of the principal
subspace of A that is close to range(Q̃). On each iteration, the multiplication step
(4.4) reduces the distance between the subspaces range(Q̃) and range(Z(t)). Next,
in the regularization step, some structure in the solution is enforced. If the distance
between range(U (t)) and range(V (t)) is not too large (see Proposition 4.2), the distance
between range(V (t)) and range(Q̃) will be still under control. In Ma (2013), as the
structure of interest is sparsity, a thresholding function is used as regularization.
Finally, the numerical stability step is used to ensure identifiability. For example,
the QR iteration algorithm uses a QR decomposition Q(t)R(t) = V (t) and sets Z(t) =
V (t)R(t)−1 , which is an orthogonal matrix.

The next proposition follows directly from Proposition 6.1 in Ma (2013), and
provides conditions on the regularization step that control the distance between the
subspace of Ẑ and that of Q̃,

Proposition 4.2. Let A be a n × n symmetric matrix with eigenvalues γ1 ≥ γ2 ≥
. . . ≥ γK > γK+1 ≥ . . . ≥ γn and eigenvectors q1, . . . , qn. Let Q̃ = (q1 · · · qK) be the
n×K matrix of the K leading eigenvectors. Suppose that the algorithm defined by the
equations (4.4), (4.5) and (4.6) satisfies the following conditions in all the iterations

• The initial value Z(0) satisfies

L(Z(0), Q̃) ≤ 1− 4
(

γK+1

γK + γK+1

)2

. (4.7)

• There is a real number ω with 0 < ω < 1
2

(
1−

∣∣∣γK+1
γK

∣∣∣)2
for which the regulariza-

tion step (4.5) satisfies
L(U (t), V (t)) ≤ ω2. (4.8)

• The matrix Z(t) is full rank

If L(Z(t−1), Q̃) ≤ 4ω2

(1−|γK+1/γK |)2 , then the value of Z(t) on the next iteration also satis-
fies

L(Z(t), Q̃) ≤ 4ω2(
1−

∣∣∣γK+1
γK

∣∣∣)2 (4.9)

64



Otherwise,

L(Z(t), Q̃) ≤
(

1 + |γK+1/γK |
2

)2

L(Z(t−1), Q̃). (4.10)

The previous proposition ensures that as long as the starting value is not extremely
far from the eigenspace (equation (4.7)), the regularization does not severely alter the
estimated basis U (t) at the current iteration (equation (4.8)), and Z(t) does not become
a degenerate matrix, then the algorithm will converge to a solution Ẑ that is not too
far from the eigenspace of A. Equation (4.9) provides a bound on the approximation of
the eigenspace of A by using Ẑ. This bound depends on the amount of regularization
in (4.5) which is controlled by ω. Equation (4.10) measures the decrement of the the
distance between ran(Z(t)) and the eigenspace of A on each iteration. This decrement
depends on the ratio of the eigenvalues γK and γK+1. In many situations, EA is a
matrix of rank K, so this ratio will be generally small.

We use this framework to derive methods for estimating a membership matrix in
the context of overlapping community detection.

4.2.2.1 Sparse eigenbasis estimation

The eigenvectors are usually the basis of interest in the estimation of principal sub-
spaces, so many methods estimate an orthogonal basis of the principal subspace.
However, our interest is in estimating a membership matrix that is not necessarily
orthogonal. Here, we present an algorithm that converges to an arbitrary basis of the
eigenspace. Dropping the orthogonality restriction makes the solution not identifiable
in general, but by enforcing an appropriate level of regularization, it is possible to
recover a basis with a membership matrix structure as in Theorem 4.1.

Orthogonal iteration is based on the fact that the multiplication step brings the
matrix Z(t) close to the eigenspace of A, and the QR decomposition ensures that the
solution is orthogonal and close to the eigenvectors. Iterative thresholding in SPCA
(Ma, 2013) introduces a thresholding step and after some iterations, when the value
of Z(t) is close to the eigenvectors, the role of the regularization becomes important,
as it enforces some structure in the solution. Heuristically, the thresholding step in
Ma (2013) works well because after the multiplication step, the columns of AZ(t) are
still proportional to the columns of Z(t) when Z(t) is close to the eigenvectors, and
hence applying a regularization function on them directly enforces some structure
on the estimated eigenvectors. When Z(t) is not the leading eigenvectors, this is
not necessarily the case since the values of Z(t) and AZ(t) might not be not directly
related. The next proposition provides a relation between these two matrices. The
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proof can be found on the Appendix.

Proposition 4.3. Let A be a n× n symmetric matrix with eigendecomposition A =
QΛQT and Q = [q1 · · · qn]. Suppose that z1, . . . , zK ∈ Rn are vectors that satisfy
‖zi‖2 = 1,

span{z1, . . . , zK} = span{q1, . . . , qK}, (4.11)

and Z = [z1 · · · zK ] is a K rank matrix. Define P = Z(ZTZ)−1 and Γ = P TAP a
K ×K matrix. Therefore

AZ = ZΓ(ZTZ).

The previous result suggest a way to construct an iterative thresholding algorithm
for a general basis of the principal subspace. Suppose that for some t, Z(t−1) is close to
the basis of interest. After the multiplication step T (t) = AZ(t−1), we use Proposition
4.3 to introduce a step that “returns” T (t) to a value that is close to Z(t−1) in Frobenius
norm but has the same range than T (t), by multiplying with some matrix Γ, so that
ran(T (t)) = ran(T (t)Γ), and hence T (t) is again close in Frobenius norm to the basis
of interest. Defining the matrices P (t) = Z(t−1)(Z(t−1)−1

Z(t−1)) and Γ(t) = P (t)T
AP (t),

we perform a correction step

U (t) = T (t)Γ(t)(Z(t−1)T

Z(t))−1.

Note that after this step, ran(U (t)) = ran(AZ(t)), so the information of the multiplica-
tion step is conserved, but in addition U (t) and Z(t−1) will be close to each other. After
this, we apply the a regularization step to U (t). In particular, we use a thresholding
function S and a threshold parameter λ ∈ [0, 1) such that

(S(U, λ))ik =
 Uik if Uik > λmaxj=1,...,K |Uij|,

0 otherwise.
(4.12)

The function S performs hard-thresholding with different threshold for each row. In
network models with a degree correction term, such as OCCAM, the rows of the
membership matrix Z are proportional to the node degree correction term, but this
degree is not related to the community structure. This is adjusted by using a different
threshold level on each row that is proportional to the norm of the row. The threshold
parameter λ controls the level of sparsity in the regularization step. As λ increases,
more zeros are introduced in the solutions. Finally, a normalization step is performed
for numerical stability. The algorithm also requires to specify a convergence criterion.
We stop the algorithm after the relative difference in `2 norm between Z(k) and Z(k−1)
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is small,
‖Z(k) − Z(k−1)‖2

‖Z(k)‖2
< ε.

These steps are summarized in Algorithm (4.1).

Algorithm 4.1 SPCA-eig: Sparse Eigenbasis Estimation
Input: Adjacency matrix A, eigenbasis dimension K, regularization parameter λ ∈

[0, 1), initial estimator Z(0).
for t = 1, . . . until convergence do

Update Γ(t) = (Z(t−1)T
Z(t−1))−1Z(t−1)T

AZ(t−1)(Z(t−1)T
Z(t−1))−1.

Multiplication step: T (t) = AZ(t−1).
Identification step: U (t) = T (t)Γ(t)−1(Z(t−1)T

Z(t−1))−1.
Thresholding: Y (t) = S(U (t), λ).
Normalization: Z(t)

·,j = 1
‖Y (t)

j· ‖2
Y

(t)
·,j , for j = 1, . . . , K.

end for
return Ẑλ = Z(t) the value at convergence.

4.2.2.2 Community detection in networks with homogeneous degrees

Here, we present a second algorithm for sparse membership estimation. In addition to
the sparsity in the memberships, here we also include an additional regularization step
to remove the degree heterogeneity effect, so the matrix Z(t) has rows with constant
norm ‖Z(t)

i· ‖1 = 1. In practice we observed that this simplification gives very accurate
results in terms of community detection. Note that after the multiplication step
T (t) = AZ(t−1), the columns of T (t) are proportional to the norm of the columns Z(t−1)

which is in turn proportional to the estimated community sizes. Thus, in order to
remove the effect of this parameter which is not meaningful for community detection,
we divide over the norm of the columns of Z(t−1) T (t), so that U (t)

·j = T
(t)
·j /‖Z

(t)
·j ‖1 on

each row. After this, we use the thresholding function (4.12) again in order to remove
the small entries on the estimated basis. Finally, we use another regularization step
to remove the effect of the node degree parameter, by normalizing each row. This
steps are described in detail in Algorithm 4.2

The next theorem shows that in the case of the SBM, a matrix with the correct
sparsity pattern is a fixed point of Algorithm 4.2

Theorem 4.1. Let A be a network generated from a stochastic blockmodel with K

communities of sizes C1, . . . , CK , membership matrix Z and connectivity matrix B ∈
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Algorithm 4.2 SPCA-CD: Community detection via sparse principal component
analysis.
Input: Adjacency matrix A, number of communities K, regularization parameter
λ ∈ [0, 1), initial estimator Z(0).
for t = 1, . . . until convergence do

Multiplication step: T (t) = AZ(t−1).
Column normalization: U (t)

·j = 1
‖Z(t)
·j ‖1

T
(t)
·j , for j = 1, . . . , K.

Thresholding: V (t) = S(U (t), λ).
Row normalization: Z(t)

i· = 1
‖V (t)

i· ‖1
V

(t)
i· , for i = 1, . . . , n.

end for
return Ẑλ = Z(t) the value at convergence.

[0, 1]K×K of the form

Brs =
 p, if r = s,

q, if r 6= s.

Suppose that for some λ ∈ (0, 1),

λp− q >
√

log(KN)
Cmin

, (4.13)

with Cmin = mini=1,...,K Ci, and there exists a constant C∗ > 0 such that Cmax/Cmin ≤
C∗. Then, Z is a stationary point of Algorithm 4.2 with probability at least 1−N c,
with c > 0 a constant that depends on λ.

4.2.3 Selection of threshold parameter

The methods we introduced depend on two parameters: the number of communities
K and the threshold level λ. The parameter λ controls the sparsity of the membership
matrix Ẑ. As λ increases, the membership solution Ẑλ becomes sparser. In practice,
looking to the path of solutions for different values of λ might be informative, as
controlling the overlap size can result in different community assignments. On the
other hand, it is important to select an appropriate value λ that provides a good
fit to the data. We discuss two possible techniques for choosing this parameter, the
Bayesian Information Criterion (BIC) and edge cross-validation (ECV) (Li et al.,
2016). In this work, we assume that the number of communities is known in advance,
but if this is not the case, multiple methods can be used to determine this number
(Wang and Bickel, 2015; Le and Levina, 2015; Li et al., 2016).
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4.2.3.1 Bayesian Information Criterion

The Bayesian Information Criterion (Schwarz et al., 1978) is a popular model selec-
tion method in statistics which balances the fit and parsimony of a model. Given a
candidate estimator Ẑλ, the BIC is defined as

BIC
(
Ẑλ
)

= −2L(Ẑλ) + df
(
Ẑ
)

log(S), (4.14)

where L(Z) is the value of the loglikelihood of the model at Z, df(Z) are the degrees
of freedom of Z and S denotes the sample size. In a network with independent edges,
S = n(n − 1)/2. We can derive the other conditions if we assume that the model
W = EA that generated A is OCCAM. Note that since the models we are comparing
only change on the sparsity of Z, we can use as a proxy for the degrees of freedom the
number of non-zeros in Z, that is df(Z) = ‖Ẑ‖0. We additionally need an estimator
Ŵ for the edge probabilities in the model. The membership matrix Ẑ is an estimator
of the eigenspace of W , and thus a natural estimator for W is the projection of A
onto the subspace spanned by Ẑ. To obtain such projection, we need to find a matrix
B̂ ∈ R that minimizes

B̂ = arg min
B∈RK×K

‖A− ZBZT‖2
F .

By differentiating, it is easy to show that such B̂ is given by

B̂ =
(
ẐT Ẑ

)−1
=
(
(Ẑ†λ)TAẐ

†
λ

)
,

where Z† = Z(ZTZ)−1 is the pseudoinverse of Z. Hence, the estimator for W is given
by

Ŵλ = Ẑλ
(
(Ẑ†λ)TAẐ

†
λ

)
ẐT
λ . (4.15)

The loglikelihood of A for the model given by Ẑλ can be estimated by

L(Ẑ) =
∑
i<j

(
Aij log

(
Ŵij

)
+ (1− Aij) log

(
1− Ŵij

))
.

With these definitions, we calculate the BIC of a model given by Ẑλ as

BIC
(
Ẑλ
)

= −2L(Ẑλ) + ‖Ẑλ‖0 log(n(n− 1)/2), (4.16)

and select a λ that minimizes the value of the equation given above.
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4.2.3.2 Network cross-validation

Cross-validation (CV) is another popular approach for choosing a tuning parameter.
When the data is a single network observed, CV is a challenging task, as splitting the
data into folds does not result on sets of independent observations, or destroys the
structure of the network itself.

In recent work, Li et al. (2016) developed a new cross-validation method for net-
work data based on splitting the set of node pairs N = {(i, j) : i, j ∈ {1, . . . , N}}
into L folds. For each fold l, the corresponding set of node pairs Ωl ⊂ N is retained,
and the rest are used to fit the model. As some node pairs are not observed, the
network is incomplete, but using a matrix completion algorithm the value of the node
pairs in the hold out data can be estimated, and the resulting matrix M̂l can be used
to fit the model with each candidate tuning parameter. Then, the fit of the model
can be measured in the node pairs Ω and a loss function evaluates the quality of this
fit for each tuning parameter. The process is repeated for each of the folds, and the
tuning parameter is selected based on the average loss. We use this procedure for
choosing the threshold λ of our methods. Given a subset of node pairs Ωl, we obtain
the completed matrix M̂l from A by using the procedure proposed in Li et al. (2016)
based on the rank K truncated SVD. Then, for each candidate threshold λ, we fit the
methods in order to get an eigenbasis Ẑλ(M̂l), and we obtain an estimator Ŵλ(M̂)l
of W as in equation (4.15). With that estimator, we can compute the loss function
on the hold out set as

`(A, Ŵλ(M̂l); Ωl) = 1
|Ωl|

∑
(i,j)∈Ωl

(Aij − Ŵλ(M̂l)ij). (4.17)

We choose the tuning parameter λ that minimizes the average cross-validation loss
`(λ) = 1

L

∑L
l=1 `(A, Ŵλ(M̂l); Ωl).

In simulations, we observed that neither BIC or CV outperforms the other in
choosing the correct model when the networks are generated from OCCAM, but in
general both methods tend to select values that give a reasonable solution (see Section
4.3.2). On the other hand, CV is computationally, so BIC might be more convenient
in some situations.
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4.3 Simulations on synthetic networks

In this section, we use simulations to evaluate the performance of our methods, and
compare them with other state of the art methods for overlapping community de-
tection. In all scenarios, we generate networks from OCCAM, in which the edges of
A are independent Bernoulli random variables, with expectation given in equation
(4.1). We assume that each row Zi of Z satisfies ‖Zi‖1 = 1, so each node has the
same expected degree. The difficulty of detecting overlapping communities is affected
by multiple parameters in the generating model. We investigate the performance of
the methods in different scenarios by varying the following properties.

a) Number of overlapping nodes. For a given percentage p, we select pn overlapping
nodes. The rest of the nodes are assigned to only one community and distributed
equally into all the communities. For most of the experiments we use K = 3
communities, and 1/4 of the overlapping nodes are assigned to all communities
with Zi = (1/3, 1/3, 1/3), while the rest are assigned to two communities j, k,
with Zij = Zik = 1/2, equally distributing these nodes on all pairs (j, k). When
K > 3, we only assign the overlapping nodes to two communities following the
same process.

b) Connectivity between communities. We vary the ratio of the number of edges
within and between communities by changing the non-diagonal elements of B,
by parameterizing it as

B = (1− ρ)IKK + ρ1K1TK ,

and then varying ρ ≥ 0 for a range of values. As ρ increases, the modularity of
the network decreases, making community detection harder.

c) Average degree of the network. The average degree is controlled by α. For
a given average degree d, we choose α such that the expected average degree
1TnEA1n/n = α(1TnΘZBZTΘ1n)/n is equal to d. Community detection is usu-
ally harder in sparse networks with low average degree (Le et al., 2015).

d) Node degree heterogeneity. We control the node degree by using different values
in θ = diag(Θ). In most simulations, we set θ = 1n, so all nodes have the same
degree, but in some scenarios we also introduce hub nodes by setting θi = 5
with probability 0.1.
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e) Number of communities. We vary K, the number of communities in the net-
work, and distribute the nodes equally in all the communities following the
procedure described before. A larger number of communities can make the
problem computationally more expensive.

In most simulation scenarios, we fix n = 500, and K = 3. All simulation settings
are run 50 times, and the average result together with its 95% confidence band are
reported.

Our main goal is to find the set of non-zero elements of the membership matrix.
Many measures can be adopted to evaluate the quality of a solution. Here we use the
normalized variation of information (NVI) introduced by Lancichinetti et al. (2009),
which is specifically designed for problems with overlapping clusters. This measure
is defined as follows. Given a pair of binary random vectors X, Y of size K, the
normalized conditional entropy of X with respect to Y can be defined as

Hnorm(X|Y ) = 1
K

K∑
k=1

H(Xk|Yk)
H(Xk)

,

where H(Xk) is the entropy of Xk and H(Xk|Yk) is the conditional entropy of Xk

given Yk, defined as

H(Xk) = −P (Xk = 0) logP (Xk = 0)− P (Xk = 1) logP (Xk = 1) (4.18)

H(Xk, Yk) = −
1∑

a=0

1∑
b=0

P (Xk = a, Yk = b) logP (Xk = a, Yk = b) (4.19)

H(Xk|Yk) = H(Xk, Yk)−H(Yk),

and the normalized variation of information between X and Y is defined as

N(X|Y ) = 1−min
σ

1
2 (Hnorm(σ(X)|Y ) +Hnorm(Y |σ(X))) , (4.20)

where σ is a permutation of the indexes to account for the fact that the binary
assignments can be equivalent up to a permutation. When X and Y are independent,
the NVI is equal to 0, and equals to 1 if X = Y . Now, for a given pair of membership
matrices Z and Z̃ with binary entries, we can replace the probabilities in equations
(4.18) and (4.19) with the sample versions using the rows of Z̃ and Z.
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4.3.1 Choice of initial value

First, we evaluate the performance of our methods using different initialization values.
Here, we simulate networks with the process described above, by fixing n = 500,
K = 3, d = 50, and changing rho as well as the number of overlapping nodes. For
both methods (SPCA-eig and SPCA-CD), we fit a path of solutions using a range of
values of λ = {0.05, 0.1, . . . , 0.95}, and report the solution with the highest NVI for
each of the methods (note that here we are not performing any method for selecting
λ). The initialization strategies we compare are the following.

• An overlapping community detection solution. We use the method to fit OC-
CAM proposed in Zhang et al. (2014).

• A non-overlapping community detection solution. We use SCORE (Jin, 2015),
which is a spectral clustering method able to handle networks with heteroge-
neous degree.

• A random initialization, in which each node is randomly assigned to only one
community. We run the algorithm by using five different random initializations,
and the solution is chosen as the minimizer of the mean square error as in (4.2).

Figure 4.2 shows the performance of the initialization values in different scenarios.
In general, all methods decrease their performance as the problem becomes harder,
but when the initial solution is reasonably good (either by using an overlapping or
non-overlapping community detection solution), the methods achieve its best perfor-
mance. A random initialization also achieves good performance when the number
of overlapping nodes is small. In general, a small threshold is required to identify
the memberships of the overlapping nodes. When the threshold is small, a good
initial value is important, since the methods might converge to eigenbasis that are
not sparse. For the rest of our analysis, unless explicitly stated, we use the non-
overlapping community detection solution (SCORE) to initialize the algorithm.

4.3.2 Tuning the threshold parameter

The tuning parameter λ controls the sparsity of the solution, and hence, the purity of
the nodes. In practice, since the problem of community detection is unsupervised, it is
often useful to look at different solutions with distinct levels of sparsity, so the path of
solutions for different values of λ might be informative (see Section 4.4.1). However,
it is also important to choose a value of λ that provides a good fit and a parsimonious

73



Figure 4.2: Performance of our methods measured by NVI using different initializa-
tion strategies (OCCAM, SCORE and a random initialization). The methods are
evaluated on different scenarios, varying the connectivity between communities (x
axis) and the size of the overlap (columns).

solution. Here, we evaluate the performance of the two strategies proposed in Section
4.2.3, BIC and CV in recovering the true set of non-zero memberships when networks
are generated from OCCAM.

Figure 4.3 shows the results of the average performance measured by NVI of the
two methods for tuning the threshold parameter. We observed that in general, BIC
tends to select sparser solutions than CV. Hence, when the number of overlapping
nodes is node large, so the true membership matrix is sparse, BIC shows a superior
performance than CV, but when the overlap is large, CV usually performs better,
specially for SPCA-CD. Since there is no clear advantage between the two methods
in general, we use BIC in the following analysis, as BIC is computationally cheaper.

4.3.3 Comparison with existing methods

We compare the performance of several state of the art methods for overlapping
community detection. We use the same simulation settings as in the previous section
(n = 500 and K = 3), including sparser scenarios with d = 20, and networks with
heterogeneous degree (d = 50 and 10% of hub nodes, as described at the beginning
of the section).

We select a list of competitors based on their good performance reported in pre-
vious studies (see Zhang et al. (2014)), and include some other recent methods. We
compare the fitting procedure of OCCAM (Zhang et al., 2014), the Ball-Karrer-
Newman (BKN) model Ball et al. (2011), the overlapping stochastic blockmodel of
Latouche et al. (2011) (OSBM), Bayesian non-negative matrix factorization (BNMF)
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Figure 4.3: Performance of our methods measured by NVI for different parameter
selection strategies (BIC and CV), on different scenarios. The methods are evaluated
on different scenarios, varying the connectivity between communities (x axis) and the
size of the overlap (columns).

by Psorakis et al. (2011), and the newly developed Mixed-SCORE (Jin et al., 2017).
Some of these methods (OCCAM, BKN and Mixed-SCORE) return a continuous
membership assignment, so we follow the approach of Zhang et al. (2014) and set to
zero the values of the membership matrix Ẑ that are smaller than 1/K.

Figure 4.4 shows the average NVI of the methods as a function of ρ under dif-
ferent scenarios. Most methods show an excelent performance when ρ = 0, but as
this parameter increases, the performance of all methods deteriorate. Our methods
(SPCA-CD and SPCA-eig) generally achieve the best performance when the number
of overlapping nodes is not large, and still achieve a competitive performance with
40% of overlapping nodes. OCCAM shows very good performance in general, which
is reasonable since the networks were generated following that model. Mixed-SCORE
has a good performance with no overlapping nodes, but the performance deteriorates
fast as the overlap size increases. We should keep in mind that OCCAM and Mixed-
SCORE are designed for estimating continuous memberships, and the threshold to
obtain binary memberships might not be the optimal. When there are no overlapping
nodes, many methods achieve a good performance. Note that even though classic al-
gorithms for non-overlapping community detection can be used in this setting, the
problem is more challenging here as the interest is in correctly assigning a node to no
more than one community.
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Figure 4.4: Performance of different methods for overlapping community detection
measured by NVI. The methods are evaluated on different scenarios varying the ratio
of edges between communities (x axis), the number of overlapping nodes (columns)
and the node degree (rows).
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4.3.4 Computational performance

We examine the performance of our methods in handling large networks. Spectral
methods for overlapping and non-overlapping community detection are very popular,
partly due to its scalability to large networks. The accuracy of those methods usually
depends on the clustering algorithm, which in practice might require several restarts
to improve their performance. In contrast, our methods based on sparse principal
component analysis directly estimate the membership matrix without having to es-
timate the eigenvectors or perform a clustering step. Although our methods usually
achieve the best performance when the threshold parameter is appropriately chosen,
the algorithms provide reasonably good solutions using different values of λ.

Networks with different number of communities were simulated (K = 3, 6 and 10)
but different sized of the network. The number of nodes was increased while keeping
the average degree fixed to d = 50, with 10% overlapping nodes. Our methods
usually obtain accurate solutions when λ is not so small, so for this purpose we fix
λ = 0.6. We start SPCA-CD using a random membership matrix. SPCA-eig is
more sensitive to the initial value, so we use the solution of SPCA-CD as starting
point, but the running time of this algorithm is reported as the sum of both. We
compare the performance of our methods with OCCAM, which uses a k-medians
clustering to find the centroids of the overlapping communities. Since k-medians is
a computationally expensive method and is not able to handle very large networks,
we also report the performance of the solution obtained by replacing the clustering
step with k-means. Additionally, we report the running time of calculating the K
leading eigenvectors of the adjacency matrix, which is a starting step required by
multiple spectral algorithms. All simulations are run using Matlab R2015a. The
leading eigenvectors in OCCAM are computed using the standard Matlab function
eigs(·, K).

The performance in terms of time and accuracy of different methods is shown in
Figure 4.5. Our methods based on SPCA show a computational cost similar to cal-
culating the K leading eigenvectors of the adjacency matrix, and when the number
of communities is not large, our methods perform even faster. The original version
of OCCAM based on k-medians clustering is limited in the size of networks it can
handle, and when using k-means the computational cost is still larger than SPCA.
Our methods produce solutions with great quality in all scenarios, while OCCAM
deteriorates its performance when the number of communities increases. Note that
in general the performance of all methods can be improved by using different ran-
dom starting values, either for clustering in OCCAM or for initializing our methods,
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Figure 4.5: Performance of different methods in terms of running time (top row) and
NVI (bottom row) as a function of the size of the network (x axis) for scenarios varying
the number of communities (columns). We compare the performance of our methods
(SPCA-CD and SPCA-eig), OCCAM with two different clustering procedures (k-
means and k-medians), and the computational cost of calculating the K leading
eigenvectors (eig(K)).

but this will increase the computational cost too. On the other hand, the thresh-
old parameters used for our methods or for converting the solutions of OCCAM to
sparse memberships might not be the optimal. However, the procedures we discussed
for choosing a good threshold value are not able to scale for large networks, since
computing the likelihood involves O(n2) parameters. A method for choosing a good
threshold value in those settings is left as future work.

4.4 Evaluation on real-world networks

In this section, we evaluate the performance of our methods in some real-world net-
works. Zachary’s karate club network (Zachary, 1977) is a classic example of a small
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network with community structure, and we start with this data to illustrate the use
and performance of the methods. Next, we evaluate the ability of the methods to
recover community structure in the presence of hub nodes by fitting communities in
the political blog network (Adamic and Glance, 2005), which is a popular benchmark
to evaluate methods that can handle degree heterogeneity. Finally, we compare the
performance of the method with other state of the art overlapping community de-
tection algorithms in the ego network dataset (McAuley and Leskovec, 2012), which
contain several social networks from Facebook, Twitter and Gplus in which nodes
have been marked with a ground truth.

4.4.1 Zachary’s karate club network

Zachary (1977) recorded the real-life interactions of 34 members of a karate club from
a period of two years. During this period, the club split into two factions due to a
conflict between the leaders. Not surprisingly, the edges of the network defined by the
club members and their interactions reflect the structure of these two groups, as most
of the connections appear between members of the same faction. These data become
a popular example of community structure in a network, and we use it to illustrate
our methods. Figure 4.6 shows a plot of the nodes and edges of the network, with
the colors of the nodes corresponding to the club affiliations of the members.

We fit our methods to the karate club network. Using either BIC or CV to choose
the threshold parameter, the selected solutions correspond to memberships composed
by pure nodes only, and the estimated communities agree with the true club affiliations
of the members. This is not surprising, as there are few edges connecting members
of the two factions, but other methods for overlapping community detection assign
some nodes to both communities. We also fit OCCAM and mixed-SCORE methods
to this network. OCCAM assigns 17 nodes (50%) to both communities, and mixed-
SCORE assigns 26 (76%). Thus, our methods are able to offer simpler solutions in
this example.

As the threshold parameter λ changes, the methods select different memberships
for the nodes. Both of our methods can identify community memberships, but SPCA-
eig also provides information on the degree-correction parameter of the nodes. In
Figure 4.7, we examine the effect of the threshold parameter λ for SPCA-eig. The
plots show the path of the membership solutions for different values of λ. Each plot
corresponds to one of the communities, and each trajectory represents the member-
ship of one of the nodes as a function of λ. The colors indicate the faction of the
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Figure 4.6: Zachary’s karate club network, colored by club affiliation.

corresponding nodes, and the faction leaders are indicated with a dashed line. The
value of the y axis indicates the association of the node to the corresponding com-
munity, and it is weighted by the degree-corrected parameter. On each community,
the nodes with the larger values of y correspond to the faction leaders, which are
connected to most of the nodes in the faction. For large values of λ, all nodes are
assigned to only one community, but as λ decreases the membership matrix contains
more non-zero values. Figure 4.6 shows the memberships for two different values of
λ (λ = 0.3 and λ = 0.4). In both cases, overlapping nodes appear in the middle of
both communities. Examining the solutions for different values of λ, we can identify
some candidate nodes that might belong to both communities.

4.4.2 Political blog network

The political blog network (Adamic and Glance, 2005) represents the hyperlinks be-
tween 1490 political blogs during the time of the 2004 US presidential election. Blogs
were manually labeled as liberal and conservative. It is expected that blogs corre-
sponding to the same political view are going to have a similar connectivity pattern,
but finding this structure is challenging due to the high degree heterogeneity (Jin,
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Figure 4.7: Node membership paths to each community (left and right) as a function
of the thresholding parameter λ.
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λ = 0.3 λ = 0.4
Figure 4.8: Solutions of SPCA-eig for different values of λ in the Zachary’s karate
club network data.

2015). Here, we evaluate the performance of our method for community detection on
this network by using the labels of the blogs as ground truth.Note that, in this case,
the assumed truth does not contain overlapping nodes, so in order to compare the
community assignments, an overlapping membership Z can be converted to a binary
membership Z̃ by taking Z̃ij = 1 when j = arg maxk=1,...,K |Zik|. In order to perform
community detection, we first select the largest connected component of the network,
which contains 1222 nodes, and we treat the edges as undirected, so Aij = 1 if either
blog i has an hyperlink to blog j or viceversa.

Figure 4.11 shows the plot of the political blog network colored by the blog labels
(left side) and the colors obtained with overlapping communities using Algorithm
4.2 (Algorithm 4.1 obtains a similar solution). Using the tuning parameter selected
by BIC, the algorithm assigns only 5 nodes to the overlap of the communities, and
the binarized memberships miscluster 56 nodes in the wrong community, which is a
similar performance reported in other methods that are able to operate in networks
with heterogeneous (Jin, 2015). On the other hand, other overlapping community
methods usually assign too many nodes to the overlap. In particular, the solution of
OCCAM assigns 299 to both communities, while mixed-SCORE assigns 195.
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Figure 4.9: Nodes labeled by political
view (blue = liberal, red = conservative).

Figure 4.10: Nodes labeled by fitted com-
munities, with λ selected by BIC.

Figure 4.11: Political blog network (Adamic and Glance, 2005).

4.4.3 Evaluation of the methods on SNAP social networks

Social media platforms provide a rich source of data to study social interactions.
(McAuley and Leskovec, 2012) presented a large collection of ego-networks from Face-
book, Google Plus and Twitter. An ego-network represents the virtual friendships
or following-follower relationships between a group of people that are connected to
a central user. Those platforms allow the users to manually label or classify their
friends into groups or social circles, and this information can be used as a ground
truth to compare the performance of methods for detecting communities. In Zhang
et al. (2014), several state-of-the-art overlapping community detection methods were
compared on these data, showing a competitive performance of OCCAM. Here, we
evaluate the performance of our methods with respect to OCCAM and the recently
introduced mixed-SCORE method. We obtained a preprocessed version of the data
directly from the first author of Zhang et al. (2014), which performed standard pre-
processing steps to clean the networks (for the specific details of those steps, see
Section 6 of Zhang et al. (2014)).

Table 4.1 shows the average performance measured by NVI of the different com-
munity detection methods we considered. For our methods, we fit the solutions with
different values of λ and choose the best solution according to BIC, as we did in simu-
lations. For OCCAM and mixed-SCORE, we threshold the continuous memberships
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Dataset (sample size) SPCA-Eig SPCA-CD OCCAM M-SCORE
Facebook (6) 0.573 (0.090) 0.588 (0.088) 0.548 (0.118) 0.493 (0.137)
Google Plus (39) 0.408 (0.047) 0.427 (0.048) 0.501 (0.039) 0.475 (0.039)
Twitter (168) 0.435 (0.021) 0.477 (0.021) 0.450 (0.021) 0.391 (0.020)

Table 4.1: Average performance (and standard errors) of different methods for over-
lapping community detection in SNAP ego-networks.

Figure 4.12: Histograms of summary statistics for SNAP ego-networks. (McAuley
and Leskovec, 2012). The histograms show the number of nodes (n), Newman-Girvan
modularity, density (number of edges divided by n2), overlap size (percentage of nodes
with overlapping memberships) and degree heterogeneity (standard deviation of the
node degrees divided by n).

by 1/K. Our methods (SPCA-eig and SPCA-CD) show a slightly better performance
than the rest of the methods in the Facebook networks. SPCA-CD performs better
than other methods on the Twitter networks, but SPCA-eig does not perform better
than OCCAM. For Google Plus networks, OCCAM and mixed-SCORE have a clear
advantadge. Figure 4.12 shows a histogram of different network summaries for each
dataset. The histograms suggest that Google Plus networks might be harder for our
methods, as these networks are generally larger but have a larger number of overlap-
ping nodes. On the other hand, Facebook networks have higher modularity and lower
overlap size, so these networks should be easier to cluster. In general, the results show
the ability of all methods to recover reasonable overlapping communities, although
our methods might achieve better performance when the memberships are actually
sparse.
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4.5 Discussion

In this chapter, we presented a new approach for overlapping community detection
based on the estimation of a sparse basis of the principal space. The results of our
methods in simulated data are encouraging, as the methods show good accuracy
in estimating the overlapping memberships and are computationally very efficient,
making them scalable to large networks. In future work, we plan to extend the
analysis of the theoretical properties of our methods.
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CHAPTER 5

Future work

Big data has opened many challenges and opportunities in statistics. In particular,
this thesis explored different problems in the analysis of network data, and we focused
in developing computationally efficient methods that can uncover parsimonious un-
derlying structures of the data. Here, we discuss some open problems of interest
.

Statistical inference in prediction with network co-
variates

Part of the work in this thesis focused on developing network-aware statistical meth-
ods for prediction with network-valued covariates. Combining the local edge informa-
tion with the node or community structure can have benefits in estimation accuracy
and interpretability. An important question for future work is how to effectively
incorporate the network structure of the data in order to asses the significance of
the predictors. Statistical inference in high-dimensional settings is an active research
area, but in most cases the solutions are based on sparsity assumptions which are
only able to report the significance of one edge at a time. As we explored in Chap-
ter 3, brain network data is usually characterized by groups of correlated variables
with similar predictive power, and finding those groups can improve prediction accu-
racy. Assessing the significance of these groups or other structures of interest for the
analysis of network data is an interesting problem for future work.

Analysis of distributed network data

Distributed datasets are nowadays commonly present in different domains. Usually,
communication costs are the bottleneck when dealing with distributed data. Due to
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privacy or memory constraints, having access to all the data on a single computer is
sometimes not possible, and new statistical methodologies require new efficient solu-
tions with limited use of communication and bandwidth. In Arroyo and Hou (2016),
we studied this problem in the context of graphical model estimation when samples
are distributed across different machines. In many applications, networks are not di-
rectly observed, but inferred from a sample of observations, which is commonly done
by estimating the underlying graphical model. In brain connectomics, for instance, a
brain connectivity network is inferred based on a time series of brain activity measure-
ments. Using debiasing and thresholding steps, we proposed an efficient algorithm
that needs only one round of communication and limited bandwidth. Theoretically,
the error of our solution is comparable to the solution when non-distributed data is
available.

The analysis of distributed network data is particularly challenging. In some
situations, computers in the distributed system might not have access to information
about all the nodes in the network. For example, in sensor networks, a computer
can only access information about its neighbors. Developing efficient methods for
classic network problems, such as community detection, is a problem of interest in
the context of distributed data.

Dimensionality reduction in multiple networks anal-
ysis

Many approaches for the statistical analysis of a single network have focused in fit-
ting lower dimensional structures, such as communities (Holland et al., 1983) or latent
positions (Hoff et al., 2002; Young and Scheinerman, 2007), that can help in under-
standing the relationship between the nodes. When analyzing a sample of networks
with labeled nodes, the interest is not only in extracting the variability of the nodes,
but also the subjects’ variability, for which dimensionality reduction methods that
can effectively deal with these two aspects are required. As in prediction problems,
classic statistical tools for dimensionality reduction, such as PCA or ICA, can be
directly applied to the vectorized adjacency matrix, but this approach ignores the
network structure of the data. Incorporating these elements together is an interesting
problem that we leave as a future work.
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APPENDIX A

Network classification

A.1 Theoretical results of node group penalty

Here we prove the bounds on Frobenius norm error and probability of support se-
lection in Proposition 2.1, following the framework of Lee et al. (2015) based on
geometrical decomposability. A penalty Ω is geometrically decomposable if it can be
written as

Ω(B) = hA(B) + hI(B) + hE⊥(B)

for allB, withA, I closed convex sets, E a subspace, and hC (B) = sup {〈Y,B〉 |Y ∈ C }
the support function on C.

The proof proceeds in the following steps. Lemma 1 shows that an equivalent form
of our penalty (2.2) is geometrically decomposable, allowing us to use the framework
of Lee et al. (2015). Lemma 3 shows the Assumption 2.2 together with a lower
bound on ρ imply that the irrepresentability assumption of Lee et al. (2015) holds.
Assumption 2.2 is directly on the entries of the loss Hessian, which simplifies the
very general form of the assumption in Lee et al. (2015). Lemma 3 gives a bound on
the entries of the loss gradient under the sub-Gaussianity assumption 2.3. Lemma
4 gives explicit bounds for the compatibility constants that appear on Theorem 1 of
Lee et al. (2015). Finally, we combine these results to prove Proposition 2.1.

Without loss of generality, to simplify notation we assume that G = {1, . . . , G},
that is, the active subgraph is in the first G rows of the matrix.

Lemma 1. The penalty (2.2) can be written as geometrically decomposable.

Proof of Lemma 1. We use an equivalent formulation of the penalty in which every
coefficient is penalized only once. Let B(1), B(2) ∈ RN×N be matrices such that the
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upper triangular part of B(2) and the diagonals of B(1) and B(2) are zero. Define

Ω̃
(
B(1), B(2)

)
=

N∑
i=1
‖B(1)

(i) ‖2 + ρ‖B(1)‖1,

E = {(B(1), B(2)) ∈ RN×2N : B(1) = B(1)T

, B
(2)
ij = B

(1)
ij , for i < j and B

(2)
ij = 0 for i ≥ j}.

Denote by R the transformation from RN×N to RN×2N that replicates entires appro-
priately,

(RB)ij =
 Bij if 1 ≤ j ≤ N

Bi(j−N) if j > N.
(A.1)

Therefore, for any B ∈ RN×N , we can uniquely define RB = (B(1), B(2)) such that
Ω(B) = Ω̃(B(1), B(2)). We then show that Ω̃ is geometrically decomposable. More-
over, for any (B(1), B(2)) ∈ E we can define R−1, so the penalties Ω and Ω̃ on E are
equivalent. Define the sets A, I ⊂ RN×2N such that

A =
{

(B(1), B(2)) : max
i∈G
‖B(1)

(i) ‖2 ≤ 1,max
i∈GC
‖B(1)

(i) ‖2 = 0,

max |B(2)
ij | ≤ ρ,B

(2)
ij = 0, (i, j) ∈ (G × G)C

}
,

I =
{

(B(1), B(2)) : max
i∈GC
‖B(1)

(i) ‖2 ≤ 1,max
i∈G
‖B(1)

(i) ‖2 = 0,

max |B(2)
ij | ≤ ρ,B

(2)
ij = 0, (i, j) ∈ G × G

}
.

If
〈
Y, (B(1), B(2))

〉
= Tr(Y (1)B(1)T ) + Tr(Y (2)B(2)T ), combining the arguments of Lee

et al. (2015) for lasso and group lasso penalties,

hA
(
B(1), B(2)

)
=

∑
i∈G
‖B(1)

(i) ‖2 + ρ
∑

(i,j)∈G×G
|B(2)

ij |,

hI
(
B(1), B(2)

)
=

∑
i∈GC

‖B(1)
(i) ‖2 + ρ

∑
(i,j)∈(G×G)C

|B(2)
ij |,

hE
(
B(1), B(2)

)
=

 0 if
(
B(1), B(2)

)
∈ E

∞ otherwise.

Hence, Ω can be written as a geometrically decomposable penalty

Ω(B) = Ω̃
(
B(1), B(2)

)
= λ

(
hA
(
B(1), B(2)

)
+ hI

(
B(1), B(2)

)
+ hE

(
B(1), B(2)

))
.

We introduce some notation in order to state the irrepresentability condition of
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Lee et al. (2015). For a set F ⊂ RN×2N and Y ∈ RN×2N , denote by γF (Y ) =
inf {λ > 0 : Y ∈ F} the gauge function on C. Thus,

γI
(
B(1), B(2)

)
= max

{
max
i∈GC
‖B(1)

(i) ‖2,
1
ρ

max
(i,j)∈(G×G)C

|B(2)
ij |
}

+ 1I
(
B(1), B(2)

)
,

where 1I(B) = 0 if B ∈ I and ∞ otherwise. Define

V (Z) = inf{γI(Y ) : Z − Y ∈ E⊥, Y ∈ RN×2N}

for Z ∈ RN×2N . Let M̃ = E ∩ span(I)⊥ be the set of matrices with correct support
in the extended space RN×2N , similarly to M in (2.13). Denote by PM and PM⊥ the
projections onto M̃ and M̃⊥. Define the function H(Z) : RN×N → RN×N as

H(Z)ij =
 Tr

(
H(i,j),G(PMZ)G,G

)
if j ∈ G,

0 otherwise.

where H(i,j),G is the matrix defined in (2.14). The Irrepresentability Assumption 3.2
of Lee et al. (2015) requires the existence of 0 < τ̃ < 1 such that

sup
Z∈A

V (PM⊥ (RH(Z)− Z)) < 1− τ̃ . (A.2)

For a support function h, denote by ∂h(M) = ⋃
Y ∈M ∂h(Y ) the set of subdifferentials

of h in M . Note that ∂hA(M) = A, since 0 ∈M and ∂hA(0) = A.

Lemma 2. If Assumption 2.2 holds and ρ > 1
τ
− 1√

G
, then there exists 0 < τ̃ < 1

such that (A.2) holds.

Proof of Lemma 2. Since V is sublinear (Lemma 3.3 of Lee et al. (2015)),

sup
Z∈A

V (PM⊥ (RH(Z)− Z)) ≤ sup
Z∈A

V (PM⊥ (RH(Z))) + sup
Z∈A

V (PM⊥Z) . (A.3)

To bound the first term, note that E⊥ = {(Z(1), Z(2))|Z(1)
ij + Z

(1)
ji + Z

(2)
ij = 0, 1 ≤ j <
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i ≤ N}.

V (Y (1), Y (2)) = inf
{
γ
(
U (1), U (2)

)
: (U (1)

ij − Y
(1)
ij ) + (U (1)

ji − Y
(1)
ji ) + (U (2)

ij − Y
(2)
ij ) = 0,

1 ≤ j < i ≤ N}

≤ inf
{
γ(U (1), U (2)) : U

(1)
(i) = Y

(1)
(i) , i ∈ G

C ;U (2)
GC ,GC = Y

(2)
GC ,GC ;

(U (1), U (2))− (Y (1), Y (2)) ∈ E⊥
}

≤ max
{

max
i∈GC
‖Y (1)

(i) ‖2,
1
ρ

∥∥∥Y (2)
GC ,GC

∥∥∥
∞

}
.

Therefore,

V (PM⊥ (RH(Z))) ≤ max
{

max
i∈GC

∥∥∥(PM⊥ (RH(Z)))(1)
(i)

∥∥∥
2
,

1
ρ

∥∥∥(PM⊥ (RH(Z)))(2)
GC ,GC

∥∥∥
∞

}
= max

i∈GC

∥∥∥H(Z)(i)

∥∥∥
2
,

which implies that

sup
Z∈A

V (PM⊥ (RH(Z))) ≤ sup
Z∈A

{
max
i∈GC

∥∥∥H(Z)(i)

∥∥∥
2

}
≤ sup

B∈RG×G,‖B(i)‖2≤1

{
max
i∈GC

∥∥∥∥(Tr
(
H(i,j),GB

))N
j=1

∥∥∥∥
2

}

≤ max
i∈GC

∥∥∥∥∥∥
(

G∑
k=1
‖(H(i,j),G)k·‖2

)N
j=1

∥∥∥∥∥∥
2

= 1− τ. (A.4)

Let Z = (Z(1), Z(2)) ∈ A. Without loss of generality, assume that Z(1)
G,G = Z

(2)
G,G = 0

(note that these entries do not change V (PM⊥Z)). Therefore, PM⊥Z = Z. Hence,

V (Z) = inf
{
γ
(
U (1), U (2)

)
:
(
U (1), U (2)

)
∈ I,

(
U (1), U (2)

)
−
(
Z(1), Z(2)

)
∈ E

}
= inf

{
γ
(
U (1), U (2)

)
: U

(1)
ij + U

(2)
ij = Z

(1)
ji , 1 ≤ j ≤ G,G < i ≤ N

}
= inf

max

max
i∈GC
‖U (1)

(i) ‖2,
1
ρ

max
1≤j≤G
G<i≤N

|U (2)
ij |

 : U
(1)
ij + U

(2)
ij = Z

(1)
ji , 1 ≤ j ≤ G,G < i ≤ N


≤ inf

max

max
i∈GC
‖U (1)

(i) ‖2,
1
ρ

max
1≤j≤G
G<i≤N

|U (2)
ij |

 : U
(1)
ij + U

(2)
ij = 1, 1 ≤ j ≤ G,G < i ≤ N


The last bound from |Z(1)

ji | ≤ 1 and no longer depends on Z. It is easy to see that

91



the minimum is attained when, for each i > G,

∥∥∥U (1)
(i)

∥∥∥
2

= 1
ρ

∣∣∣U (2)
ij

∣∣∣ , 1 ≤ j ≤ G,

and therefore
V (Z) ≤

√
G

1 + ρ
√
G
. (A.5)

Moreover, if Z∗ ∈ A is defined such that (Z∗)(1)
G+1,i = 1 for i = 1, . . . , G and 0

elsewhere, then V (Z∗) achieves this bound, which shows that ρ > 1− 1√
G

is a necessary
condition for the irrepresentability to hold, even in the case where the entries of
the Hessian that denote the information between active and inactive edges is zero.
Therefore, plugging the bounds (A.4) and (A.5) into equation (A.3), we obtain (A.2)
holds as long as 1− τ +

√
G

1+ρ
√
G
< 1, which implies that ρ > 1

τ
− 1√

G
.

The next lemma establishes a bound on the dual norm of Ω of the loss gradient
function under a sub-Gaussian assumption. Let Ω∗ denote the dual norm of Ω, so
Ω∗(B) = sup {〈Y,B〉 | Y ∈ C,Ω(Y ) ≤ 1}.

Lemma 3. Under Assumption 2.3,

P (Ω∗(∇`(B?)) > t) ≤ 2N2 min
{

exp
(
−n(1 + ρ)2t2

N(σ2)

)
, exp

(
−nρ

2t2

σ2

)}
. (A.6)

Proof of Lemma 3. By Hoeffding’s inequality for sub-Gaussian variables, for all j, k
and t > 0,

P (|∇jk` (B?)| > t) ≤ P
(∣∣∣∣∣ 1n

n∑
i=1
∇jk`i (B?)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−n t

2

σ2

)
.

Note that (1 + ρ)∑N
i=1 ‖B(i)‖2 ≤ Ω(B). Let Φ(B) = 1

1+ρ maxi=1,...N ‖B(i)‖2. Thus,

Ω∗(B) ≤ sup
Y ∈RN×N

{
Tr(Y B) : Ωρ=0(Y ) ≤ 1

1 + ρ

}
= Φ(B). (A.7)

In a similar manner, ρ‖B‖1 ≤ Ω(B). Setting Ξ(B) = 1
ρ
‖B‖∞, we have

Ω∗(B) ≤ Ξ(B). (A.8)
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Using (A.7) and setting Λ = ∇`(B?),

P (Ω∗(Λ) > t) ≤ P (Φ(Λ) > t)

= P
(

max
1≤i≤N

‖Λ(i)‖2 > (1 + ρ)t
)

≤ P
(

max
1≤i≤N

max
j 6=i
|Λij| > (1 + ρ) t√

N

)

≤ 2N(N − 1) exp
(
−n(1 + ρ)2t2

2σ2(N − 1)

)
,

the last inequality obtained by arguments similar to Lemma 4.3 of Lee et al. (2015).
In the same way, we can also bound the previous quantity using (A.8) by

P (Ω∗(Λ) > t) ≤ P (Ξ(Λ) > t)
= P

(
‖Λ(i)‖∞ > ρt

)
≤ N(N − 1) exp

(
−nρ

2t2

2σ2

)
.

Combining (A.9) and (A.9), we can obtain equation (A.6).

For a semi-norm Ψ : RN×N → R, let κΩ be the compatibility constant between Ψ
and the Frobenius norm, defined as

κΨ = sup {Ψ(B) : ‖B‖2 ≤ 1, B ∈M} ,

and let κIC be the compatibility constant between the irrepresentable term and the
dual norm Ω∗ given by

κIC = sup {V (PM⊥(RHZ − Z)) : Ω∗(Z) ≤ 1} .

Lemma 4. The following bounds on the compatibility constants hold:

κΩ =
√
G+ ρ

√
G(G− 1),

κΩ∗ ≤
1

1 + ρ
,

κIC ≤ 3− τ.

Proof of Lemma 4. Note that Ω(Y ) is maximized on {Y : ‖Y ‖2 ≤ 1} when all entries
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of Y have magnitude equal to 1√
G(G−1)

. Therefore

κΩ = G

√
G− 1

G(G− 1) + ρ
G(G− 1)√
G(G− 1)

=
√
G+ ρ

√
G(G− 1). (A.9)

Similarly, (A.7) implies

κΩ∗ ≤ sup
{

1
1 + ρ

max
i∈G
‖B(i)‖2 : ‖B‖2 ≤ 1

}
≤ 1

1 + ρ
. (A.10)

Finally,

κIC = sup {V (PM⊥(RHZ − Z)) : Ω∗(Z) ≤ 1}
≤ sup {V (PM⊥(RHZ)) : Ω∗(Z) ≤ 1}+ sup {V (PM⊥(Z)) : Ω∗(Z) ≤ 1}
≤ (1− τ) + 2 = 3− τ.

Proof of Proposition 2.1. Part (a). Since B̂ minimizes the problem (2.4),

`(B̂) + λΩ(B̂) ≤ `(B?) + λΩ(B?).

Rearranging the terms, using Assumption 2.1, by the triangle inequality and the
generalized Cauchy-Schwarz inequality,

0 ≥ `(B̂)− `(B?) + Ω(B̂)− Ω(B?)
≥

〈
∇`(B?)T , B̂ −B?

〉
+ m

2 ‖B̂ −B
?‖2

2 − Ω
(
B̂ −B?

)
≥ −Ω

(
B̂ −B?

)
Ω∗ (∇`(B?))− Ω

(
B̂ −B?

)
+ m

2 ‖B̂ −B
?‖2

2. (A.11)

Using the argument for computing κΩ in (A.9), Ω(Y ) ≤
(√

N + ρ
√
N(N − 1)

)
‖Y ‖2.

Rearranging the terms in (A.11),

‖B̂ −B?‖2 ≤
2
m

(√
N + ρ

√
N(N − 1)

) (
λ+ Ω∗

(
B̂ −B?

))
.

For any ρ, setting λ = 2
√

σ2 logN
n

min
(√

N
1+ρ ,

1
ρ

)
, by Lemma 3, with probability at least
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1− 2/N ,

‖B̂ −B?‖2 ≤
4
m

(√
N + ρ

√
N(N − 1)

)
λ

≤ 4
m

√
σ2 logN

n

(√
N + ρN

)
min

( √
N

1 + ρ
,

1
ρ

)

≤ 4
m

√
σ2 logN

n
N min

(
1 + ρ

√
N, 1 + 1

ρ
√
N

)

≤ 4
m

√
N2σ

2 logN
n

. (A.12)

Part (b). Lemma 1 gives a geometric decomposition of the penalty. Therefore, we
can directly use Theorem 3.1 of Lee et al. (2015), since Lemma 2 also ensures that
their irrepresentability condition holds. Thus,

‖B̂ −B?‖2 ≤
2
m
κΩ

(
1 + τ

4κIC

)
λ,

and Ĝ ⊆ G as long as

4κIC

τ
Ω∗ (∇`(B?)) < λ <

m2τ

2Lκ2
ΩκΩ∗κIC

(
1 + τ

4κIC

)−2
. (A.13)

Setting

λ = 8κIC

τ

√
σ2 logN

n
min

( √
N

1 + ρ
,

1
ρ

)
,

using a similar argument than (A.12), the left hand size of (A.13) holds with prob-
ability at least 1 − 2/N . The right hand side of (A.13) holds as long as the sample
size satisfies

n > C(L,m, τ, κΩ, κΩ∗ , κIC)
(√

G+G
)2
σ2 logN,

with C(L,m, τ, κΩ, κΩ∗ , κIC) > 0 a positive constant. Therefore, claims (2.17) and
(2.18) follow.
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APPENDIX B

Proofs of overlapping community
detection via sparse principal component

analysis

B.1 Proof ot Theorem 4.1

Proof. Since Z and Z̃ are basis of the column space of W , then rank(Z) = rank(Z̃) =
K, and there exists a full rank matrix V ∈ RK×K such that Z = Z̃V . We will show
that V = PD.

Let S1 = (i1, . . . , iK) be the indexes that satisfy Zijj = 1 and Zijj′ = 0 for j′ 6= j,
and j = 1, . . . , j (these indexes exist by the assumptions of the theorem). In the same
way, define S2 = (i′1, . . . , i′K) such that Z̃i′jj = 1 and Z̃ijj′ = 0 for j′ 6= j. j = 1, . . . , j.
Denote by ZS to the K × K matrix that is formed with the rows indexed by S.
Therefore ZS1 = I and Z̃S2 = I. Thus, ZS2 = V , and since V is full rank, Z̃S1 = V −1.
Thus, both V and V −1 are nonnegative matrices, which in turn implies that V is a
positive generalized permutation matrix, so V = PD for some permutation matrix P
and a diagonal D with diag(D) > 0.

B.2 Proof of Proposition 4.3

Proof. Set Q̃ = [q1 · · · qK ] and Λ̃ a diagonal matrix with the corresponding eigenvalues
of Q̃, so AQ̃ = Q̃Λ̃. Note that by equation (4.11), there exists a full-rank matrix
M ∈ RK×K such Z = Q̃M . Therefore, Γ can be expressed as

Γ = (ZTZ)−1ZTAZ(ZTZ)−1

= (MTM)−1MT Q̃T Λ̃Q̃M(MTM)−1

= M−1Λ̃(MT )−1.
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Hence,

AZ(ZTZ)−1 = A(Q̃M)(MTM)−1

= Q̃Λ̃M−1Γ−1Γ
= Q̃MΓ
= ZΓ,

which completes the proof.

B.2.1 Proof of Theorem 1

Proof. The proof consists of a one-step analysis of the algorithm 4.2. We will show
that if Z(t) = Z, then Z(t+1) = Z with high probability. Let T = T (t+1) = AZ be
value after the multiplication step. Define C ∈ RK×K as a diagonal matrix containing
the sizes of the communities on the diagonal, with Ckk = Ck = ‖Z·k‖1. Thus, U =
U (t+1) = TC−1. In order for the threshold to appropriately set to zero the correct
set of entries, a sufficient condition is that on each row i the largest element of Ui·
corresponds to the correct community. Define Ck ⊂ {1, . . . , N} as the subset of
indexes of the nodes corresponding to community k. Then,

Uik = 1
Ck
Ai·Z·k = 1

Ck

∑
j∈Ck

Aij.

Then, Uik is an averaged sum of independent and identically distributed Bernoulli
random variables. Moreover, for each k1 and k2, Uik1 and Uik2 are independent of
each other. For some λ ∈ (0, 1), let Ei(λ) = {λUiki

> Uikj
, i ∈ Cki

, ∀kj 6= ki} be the
event in which the largest index of Ui· is ki, the community of node i, and all the
other indexes in that row are smaller than λUiki

. Under the event E(λ) = ⋂N
i=1Ei(λ),

note that for V = V (t+1), we have that ‖Vi·‖∞ = Uiki
, and hence

Vik =
 Uiki

if k = ki,

0 otherwise.

Therefore, under the event E(λ), the thresholding step recovers again the correct
support, so Z(t+1) = Z. Now, we verify that under the conditions of Theorem 4.13,
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the event E(λ) has high probability. By using a union bound,

P(E(λ)) ≥ 1−
N∑
i=1

P(Ei(λ)C)

≥ 1−
N∑
i=1

∑
j 6=ki

P(Uij > λUiki
). (B.1)

Note that for j 6= ki, Uij − λUiki
is a sum of independent random variables by the

arguments stated before, with expectation

E [Uij − λUiki
] = 1

Cj

∑
j∈Cj

EAij − λ
1
Cki

∑
j∈Cki

EAij

= q − λCki
− 1

Cki

p.

Hence, by Hoeffding’s inequality, we have that for any τ ∈ R,

P (Uij − λUiki
≥ τ + E [Uij − λUiki

]) ≤ 2 exp
 −2τ 2

1
Cj

+ λ2

Cki


≤ 2 exp

(
−Cminτ

2 2
1 + λ2

)
.

Setting τ = −E [Uij − λUiki
], and using equation (4.13) we obtain that

P (Uij > λUiki
) ≤ 2 exp

(
− 2

1 + λ2 log(KN)
)

= 2
(KN)2/(1+λ2) .

Plugging in the previous bound on equation (B.1), we obtain that

P(E(λ)) ≥ 1− 2(K − 1)N
(KN)2/(1+λ2) ≥ 1− 2

(KN)2/(1+λ2)−1
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