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ABSTRACT

Interesting and challenging methodological questions arise from the analysis of Big

Biomedical Data, where viable solutions are sought with the help of modern compu-

tational tools. In this dissertation, I look at problems in biomedical studies related

to data integration, data heterogeneity, and related statistical learning algorithms.

The overarching strategy throughout the dissertation research is rooted in the treat-

ment of individual datasets, but not individual subjects, as the elements of focus.

Thus, I generalized some of the traditional subject-level methods to be tailored for

the development of Big Data methodologies.

Following an introduction overview in the first chapter, Chapter II concerns the

development of fusion learning of model heterogeneity in data integration via a re-

gression coefficient clustering method. The statistical learning procedure is built for

the generalized linear models, and enforces an adjacent fusion penalty on ordered

parameters (Wang et al., 2016). This is an adaptation of the fused lasso (Tibshirani

et al., 2005), and an extension to the homogeneity pursuit (Ke et al., 2015) that only

considers a single data set. Using this method, we can identify regression coefficient

heterogeneity across sub-datasets and fuse homogeneous subsets to greatly simplify

the regression model, so to improve statistical power. The proposed fusion learn-

ing algorithm (published as Tang and Song (2016)) allows the integration of a large

number of sub-datasets, a clear advantage over the traditional methods with stratum-

covariate interactions or random effects. This method is useful to cluster treatment

effects, so some outlying studies may be detected. We demonstrate our method with

xii



datasets from the Panel Study of Income Dynamics and from the Early Life Exposures

in Mexico to Environmental Toxicants study. This method has also been extended

to the Cox proportional hazards model to handle time-to-event response.

Chapter III, under the assumption of homogeneous generalized linear model, fo-

cuses on the development of a divide-and-combine method for extremely large data

that may be stored on distributed file systems. Using the means of confidence dis-

tribution (Fisher , 1956; Efron, 1993), I develop a procedure to combine results from

different sub-datasets, where lasso is used to reduce model size in order to achieve

numerical stability. The algorithm fits into the MapReduce paradigm and may be

perfectly parallelized. To deal with estimation bias incurred by lasso regulariza-

tion, a de-bias step is invoked so the proposed method can enjoy a valid inference.

The method is conceptually simple, and computationally scalable and fast, with the

numerical evidence illustrated in the comparison with the benchmark maximum like-

lihood estimator based on full data, and some other competing divide-and-combine-

type methods. We apply the method to a large public dataset from the National

Highway Traffic Safety Administration on identifying the risk factors of accident in-

jury.

In Chapter IV, I generalize the fusion learning algorithm given in Chapter II

and develop a coefficient clustering method for correlated data in the context of the

generalized estimating equations. The motivation of this generalization is to assess

model heterogeneity for the pattern mixture modeling approach (Little, 1993) where

models are stratified by missing data patterns. This is one of primary strategies in

the literature to deal with the informative missing data mechanism. My method aims

to simplify the pattern mixture model by fusing some homogeneous parameters under

the generalized estimating equations (GEE, Liang and Zeger (1986)) framework.

xiii



CHAPTER I

Introduction

1.1 Motivation

Massive amounts of data are being generated and processed every second at a

speed we have never seen before. This is a collective effort of many new technologies

that decrease the cost of data generation and storage, increase the speed of data

transfer and sharing, and facilitate the use of scalable tools for data management and

analysis. As Fan et al. (2014) precisely describes, we are in the era of Big Data where

information explodes. Also as Mayer-Schönberger and Cukier (2013)’s analogy of Big

Data interestingly says, it is a revolution that will transform the way we live, work

and think, and furthermore, the way we conduct science, engineering and business.

Although Big Data seems to be mostly related to the IT industry (e.g., Google,

Facebook, etc.), it is also very common in biomedical areas. For example, as the

cost of whole genome sequencing drops dramatically over years (Stein, 2010), we are

seeing data not just of large p small n, but more and more with both large p and large

n. Additionally, data being collected from study subjects are no longer constrained

to vector forms, but also in the format of higher order arrays (i.e., tensors), such as

biomedical imaging data of the human body.

Big Data brings both opportunities and challenges to many subject areas, includ-

ing statistics, engineering and computer science, and often times requires interdis-
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ciplinary knowledge to adequately understand the problems and devise appropriate

solutions. For statisticians, valid statistical analysis for Big Data is one of the most

important concern. In this dissertation, I look at challenging problems in biomedical

studies related to data integration, data heterogeneity, missing data, and their respec-

tive algorithms. I provide fast and accurate solutions to some of the most important

problems related to big biomedical data. Yet, these solutions are general and also

applicable to big data in other areas. Additionally, I emphasize on the deliverability

of the proposed methods by providing ready-to-use software packages, and also con-

sider the compatibility with modern big data infrastructures, such as distributed data

storages (e.g., Palankar et al. (2008); Shvachko et al. (2010)) and cloud computing

architectures (e.g., Dean and Ghemawat (2008); Zaharia et al. (2010)).

1.2 Statistical Challenges in Big Data

Under the Big Data setup, new issues arise when applying conventional statistical

methods for doing data analysis. We describ in this section a list of issues that we

should take into consideration when dealing with big data. Although this is by far the

complete list of issues related to Big Data, I selected the most critical ones pertaining

to the subject of statistics and biostatistics. The proposed methods in the following

chapters are going to address the challenges listed below.

1.2.1 Heterogeneity

The large amounts of samples of Big Data are typically achieved by aggregating

data from multiple studies, and/or at different time points, and/or using different

technologies. For example, multiple clinical trial studies conducted at different hospi-

tals can be combined as larger studies (Lohmueller et al., 2003; Sullivan et al., 2000).

This poses an issue of data heterogeneity, and most of the time, due to factors that

are not observed. Data heterogeneity will likely result in experimental variations and

2



statistical biases, and requires us to develop more adaptive and robust procedures

(Fan et al., 2014). Previoius works can be found in the literature tackling this issue,

such as Shen and Huang (2010), Ke et al. (2015), and Wang et al. (2016). Chapter II

discusses the ideas and limitations of these work and proposes a new method that is

dedicated to address the challenge of data heterogeneity.

1.2.2 Dimensionality

Due to the advance in data collection technologies, it is often the case that Big

Data contains information collected that may or may not be related to study objec-

tives, resulting in high-dimensionality in the covariates. Variable selection plays an

important role in reducing the dimensionality of data and serves as a robustifier dur-

ing numerical calculation. The most popular method is through regularization, with

penalties including the lasso (Tibshirani , 1996), SCAD (Fan and Li , 2001), MCP

(Zhang , 2010), and their extensions in various forms. Owning to their good numeri-

cal properties, regularization techniques play pivotal roles in the development of this

dissertation.

1.2.3 Scalability

Big Data has motivated companies and research centers to develop compatible

storage and computational infrastructures to efficiently handle its continuingly grow-

ing size. Distributed storage systems, giant clusters of computers collectively store

huge data files, have become the state-of-the-art and give a solution to scalability.

Examples include Amazon’s Simple Cloud Storage Service(Palankar et al., 2008) and

Google’s Cloud Bigtable (Chang et al., 2008). Due to the nature that data are stored

in different processors, algorithms that only make a linear pass of data are more

preferable than those requiring iterative access of data. Based on such motivation,

Chapter III proposes a divide-and-combine algorithm to regression modeling.

3



1.2.4 Missing Data

Different data availability and missing patterns can be regarded as special types

of data heterogeneity. It is important to understand and acknowledge the differences

in association due to missingness when data are not missing at random. The benefit

of large sample sizes of Big Data allows us to more accurately study the nuance of

missingness from a perspective different than traditional data analysis. In Chapter IV,

I will extend the discussion in Chapter II to the problem of missing data under the

framework of generalized estimating equations (Liang and Zeger , 1986) and propose

a more flexible solution to longitudinal data than the classic pattern mixture models

(Little, 1993).

1.3 Summary of Objectives

With a focus on the challenges presented above, I present in this dissertation

methodologies that are aimed to achieve the following analytical objectives:

i To establish a data driven procedure to detect parameter homogeneity and het-

erogeneity under the scenario of data integration;

ii To devise a scalable divide-and-combine algorithm for the statistical inference of

generalized linear models, under the modern distributed storage architecture;

iii To establish a heterogeneity detection procedure for longitudinal data with miss-

ingness across different types of missing patterns.

The three objectives are addressed in the proposed methods in Chapter II, Chap-

ter III, and Chapter IV, respectively. More details on the background, literature,

inspiration and methodology development, can be found in the introduction sections

of each of the chapters.
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CHAPTER II

Fused Lasso Approach in Regression Coefficients

Clustering – Learning Parameter Heterogeneity in

Data Integration

2.1 Introduction

Combining data sets collected from multiple studies is undertaken routinely in

practice to achieve a larger sample size and higher statistical power. Such information

integration is commonly seen in biomedical research, for example, the study of genetics

or rare diseases where data repositories are available. The motivation of this chapter

arises from the consideration of data heterogeneity during data integration. Although

data integration has different meanings, in here, we consider the concatenation of data

sets of similar studies over different subjects, where the number of integrated data

sets can be very large.

Inter-study heterogeneity can result from the differences in study environment,

population, design and protocols (Leek and Storey , 2007; Sutton and Higgins , 2008;

Liu et al., 2015). Data heterogeneity is likely attributed to population parameter

heterogeneity, where the association of interest can differ across different study pop-

ulations from which data sets are collected. Examples include multi-center clinical

trials when participant data from different sites are combined (Shekelle et al., 2003)
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and genetics studies when genomic data from multiple similar studies are combined

(Lohmueller et al., 2003; Sullivan et al., 2000). Discrepancies in treatment effect or

trait-gene association may arise due to the differences in facilities, practices and pa-

tient characteristics across studies, albeit the adjustment of confounding (Leek and

Storey , 2007). The parameter heterogeneity introduced in data integration compro-

mises the power of the larger sample size and may even lead to biased results and

misleading scientific conclusions. Thus, counterintuitively, the model obtained from

the combined studies may not serve as a proper prediction model for each individual

study in the case of heterogeneous study populations.

Traditional treatments of parameter heterogeneity are not optimal. Meta-analysis

methods such as combining summary statistics (Glass , 1976), estimating functions

(Hansen, 1982; Qin and Lawless , 1994) or p-values functions (Xie et al., 2012) are

built upon the assumption of complete parameter homogeneity, as shown in the left

panel of Figure 2.1. This assumption is hardly valid in practice. When individ-

ual participant data from multiple data sets are available, a retreat to the classical

meta-analysis methods is necessary, because in this case assessing the assumption

of inter-study homogeneity becomes possible. The two most common approaches

to handling parameter heterogeneity include (i) specifying study-specific effects by

including interaction terms between study indicator and covariates (e.g., Lin et al.

(1998)), and (ii) utilizing random covariate effects by allowing variations across stud-

ies as random variables (e.g., DerSimonian and Kacker (2007)). Both approaches

essentially assume fully heterogeneous covariate effects, namely, each study having

its own set of regression coefficients, as shown in the right panel of Figure 2.1.

When study-specific effects are of interest, the interaction-based formulation may

lead to over-parameterization, which impairs statistical power. The most straightfor-

ward way to reduce the number of parameters is to identify clusters of homogeneous

parameters through exhaustive tests for the differences between every pair of study-

6



Figure 2.1: Homogeneous assumption (left) versus heterogeneous assumption (right).

specific coefficients. However, when the number of data sets is large, the use of hy-

pothesis testing to determine parameter clusters becomes untrackable in addition to

the multiple-testing problem. One may draw different or even conflicting conclusions

due to different orders of hypotheses performed.

In reality, covariate effects from multiple studies are likely to form groups, a

scenario falling in between the complete heterogeneity and the complete homogeneity.

This leads to the following two essential yet related analytic tasks: (i) to assess

the inter-study heterogeneity, so to determine an appropriate form of parsimonious

parameterization in model specification; and (ii) to identify and merge groups of

homogeneous parameters for better statistical power for parameter estimation and

inference based on a more parsimonious model. Along the idea of lasso shrinkage

estimator (Tibshirani , 1996), fused lasso methods (Tibshirani et al., 2005; Friedman

et al., 2007; Yang et al., 2012) have been introduced to achieve covariate grouping,

where covariate adjacencies are naturally defined by a metric of time, location or

network structure. In our problem of data integration, there does not exist a natural

metric to define the ordering of regression coefficients from different studies. Shen

and Huang (2010) proposed the grouping pursuit via penalization of all pairwise

coefficient differences in a single study, where covariate orderings are not considered.
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To reduce the computational burden in the all-pairs based regularization, Wang et al.

(2016) and Ke et al. (2015) used the initial coefficient estimates to establish certain

ordering and then to define parameter adjacencies. However, most of these studies

have been entirely focusing on a single cohort of subjects from a single study. For

example, Shin et al. (2016) proposed to fuse regression coefficients of different loss

functions obtained from a single study, such as coefficients from different quantile

regression models. Limited publication of fusion learning and grouping pursuit has

been available in the literature, except Wang et al. (2016), to assess the differences

and similarities among regression coefficients across multiple studies in the scenario

of data integration.

In this chapter, we propose an agglomerative clustering method for regression

coefficients in the context of data integration, named as the Fused Lasso Approach

in Regression Coefficients Clustering (FLARCC). FLARCC is proposed to identify

heterogeneity patterns of regression coefficients across studies (or data sets) and to

provide estimates of all regression coefficients simultaneously. It is interesting to

draw a connection between our method and Pan et al. (2013) where they consider

a classic clustering problem of individual responses by pairwise coefficient fusion via

penalized regression. Their method aims at clustering subjects, while our method

focuses on clustering regression coefficients across multiple data sets, and these two

methods coincide only in a special case where each study is composed of only one

subject. FLARCC achieves clustering of study-specific effects by penalizing the `1-

norm differences of adjacent coefficients, with adjacency defined by the estimated

ranks. Our method extends the bCARDS method in Ke et al. (2015) from one study to

multiple studies as well as from the linear model to the generalized linear models, and

focuses on simultaneous clustering of regression coefficients of individual covariates

from multiple studies in data integration. An R package metafuse (current version

2.0-1) is created as part of our methodology development to perform the proposed
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integrated data analysis which can be downloaded from the Comprehensive R Archive

Network (webpage link https://cran.r-project.org/web/packages/metafuse).

In the proposed method, tuning parameter is used to determine the clustering

pattern of coefficients across data sets. Specifically, let λ be the tuning parameter

of regularization. If λ = 0 (i.e., no penalty), FLARCC becomes a method under

the setting of complete heterogeneity, so that study-specific regression coefficients for

each covariate are assumed different across data sets. If λ is large enough that all

differences of regression coefficients are shrunk to zero, FLARCC reduces to a homo-

geneous model in that a common regression coefficient for each covariate is assumed

for all studies. In light of the hierarchical clustering scheme, these two extreme cases

above correspond to the start and end of an agglomerative clustering, respectively;

however, the reality is believed to reside in between. Analogous to dendrograms in

the hierarchical clustering, we propose a new tree-type graphic display, named as

fusogram, which presents tree-based coefficient clusters according to solution paths

obtained from FLARCC. The selection of optimal λ pertains to pruning of clustering

trees, which can be based on certain model selection criterion. We use the extended

Bayesian information criterion (EBIC) proposed by Chen and Chen (2008) as our

model selection criterion and show that EBIC exhibits better performance than BIC

when the number of studies (or data sets) is large. In addition, we propose a scaling

strategy to “harmonize” solution paths by covariate-wise adaptive weights to allow

flexible tuning, which further improves the clustering performance.

The rest of this chapter is organized as follows. Section 2.2 describes FLARCC in

detail under the generalized linear models (GLM) framework. Section 2.3 presents the

theoretical properties of the proposed method. Section 2.4 discusses the interpretation

and selection of the tuning parameter. In Section 2.5, we use simulation studies to

evaluate the performance of our method. Real data analysis examples are given in

Section 2.6 with interpretation of coefficient estimates and illustration of fusograms.
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Discussion and concluding remarks are in Section 2.7.

2.2 Method of Parameter Fusion

In this section, we present the method and algorithm of FLARCC.

2.2.1 Notations and Method

We start by introducing necessary notations. Throughout this chapter, i, j and

k are used to index subject, covariate and study, respectively. For instance, X
(i)
j,k

denotes the measurement of the jth covariate from the ith individual from study k,

and Y
(i)
k is the measurement of a response variable from the ith individual from study

k. The total number of studies is denoted as K and the number of covariates involved

is p. The sample size for study k is nk, k = 1, . . . , K, and the combined sample size

is N =
∑K

k=1 nk. The collection of all coefficients (covariates-wise) is denoted as

β = (βT
1,·,βT2,·, . . . ,βTp,·)T with βj,· = (βj,1, . . . , βj,K)T for j = 1, . . . , p. An indicator

vector c = (c1, . . . , cp)
T is used to flag heterogeneous covariates, namely if the jth

covariate is treated as heterogeneous (i.e., all different coefficients across K studies)

then cj = 1 and as homogeneous (a common coefficient across K studies) otherwise.

Thus cj = 0 for some j ∈ {1, . . . , p} implies that coefficient vector βj,· reduces to a

common scalar parameter βj for all K studies.

For illustration, let us consider a simple scenario of c = (1, 1, 0, . . . , 0)T , in which

the first two covariates are set as heterogeneous and the remaining p−2 covariates are

set as homogeneous. The resulting coefficient vector is β = (βT
1,·,βT2,·, β3, . . . , βp)T .

Then the corresponding design matrix X can be written as

X =


X1,1 X2,1 X3,1 . . . Xp,1

. . . . . .
...

. . .
...

X1,K X2,K X3,K . . . Xp,K


N×(2K+p−2)
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where Xj,k = (X
(1)
j,k , . . . , X

(n)
j,k )T , j = 1, . . . , p, k = 1, . . . , K. The specification of c is

can be dependent on the study interest. For example, in a multi-center clinical trial

where we believe that the differences between the services provided across centers are

non-negligible, but the study participants are similar, we can specify the clinic-related

variables (e.g., treatment and cost) to be heterogeneous and the patient-related vari-

ables (e.g., age and gender) to be homogeneous. In addition, the specification of c

can be dependent on preliminary marginal analysis of the homogeneousness of each

variable, such as tests for random effects. When the homogeneousness of a covariate

is unclear, we suggest specifying it as heterogeneous rather than homogeneous.

Under the assumption that both within-study and between-study samples are in-

dependent, for any c = (c1, . . . , cp)
T with cj ∈ {0, 1}, j = 1, . . . , p, the initial estimate

of β, which gives the starting level of clustering (i.e., λ = 0), can be consistently

estimated by the maximum likelihood estimator

β̂ = argmax
β∈R(K×p)

1

K

K∑
k=1

1

nk
logLk(β), (2.1)

where Lk(β) =
∏nk

i=1 L
(i)
k (β), k = 1, . . . , K are the study-specific likelihoods from

the given GLMs. For the purpose of parameter grouping and fusion, we propose

the regularized maximum likelihood estimation for β by minimizing the following

objective function:

min
β∈R(K×p)

(
− 1

K

K∑
k=1

1

nk
logLk(β) + P (β)

)
, (2.2)

where P (β) is a penalty function of certain form. Here we adopt weighting 1
nk

to

balance the contribution from each study so to avoid the dominance of large studies.

Other types of weighting schemes may be considered to serve for different purposes,

such as the inverse of estimated variances of initial estimates, which helps to achieve
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better estimation precision.

To achieve parameter fusion, Shen and Huang (2010) proposed the grouping pur-

suit algorithm, which specifies the sum of `1-norm differences of all study-specific co-

efficient pairs among individual heterogeneous coefficient vectors βj,·, where cj = 1,

as the penalty:

Pλ(β) = λ

p∑
j=1

cj

K−1∑
k=1

K∑
k′>k

|βj,k − βj,k′ |,

with λ ≥ 0. In this penalty, there are
(
K
2

)
terms of pairwise differences for each

heterogeneous covariate and the total number of terms increases by an order of O(K2),

given p fixed. This penalty contains many redundant constraints and imposes great

computational challenges as pointed out in Shen and Huang (2010) and Ke et al.

(2015).

Following arguments in Wang et al. (2016) and Ke et al. (2015), we develop the

method of FLARCC by a simplified penalty function that uses the information on

the ordering of coefficients. For the jth covariate, let Uj = (Uj,1, . . . , Uj,K)T be the

ranking with no ties of βj,· = (βj,1, . . . , βj,K)T , from the smallest to the largest.

Specifically, Uj,k =
∑K

k′=1 1{βj,k′ ≤ βj,k} if there are no ties in βj,·; otherwise, the

ties in Uj are resolved by the first-occurrence-wins rule according to k to ensure

rank uniqueness. Then, the fusion penalty in FLARCC with parameter orderings Uj,

j = 1, . . . , p, takes the form:

Pλ(β) = λ

p∑
j=1

cjνj

K−1∑
k=1

K∑
k′>k

µj,k,k′1{|Uj,k − Uj,k′ | = 1}|βj,k − βj,k′|, (2.3)

where the constraints occur effectively only on adjacent ordered pairs. Clearly, the

penalty in (2.3) only involves K − 1 terms for each case of cj = 1, which is of an

order O(K), given p fixed. The νj’s and µj,k,k′ ’s in (2.3) are weights. Following Zou

(2006), we choose adaptive weights µ̂j,k,k′ = 1/|β̂j,k − β̂j,k′|r, r > 0, so that parame-

ters with smaller difference will be penalized more than those with larger differences.
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Similarly, for a group of parameters βj,· = (βj,1, . . . , βj,K)T , νj is an adaptive weight

to characterize the degree of heterogeneousness of βj,·. Specifically, in this chapter

we let ν̂j = 1/|β̂j,(K) − β̂j,(1)|s, the inverse of the range of the estimates, with s ≥ 0;

when a covariate is homogeneous, the differences of study-specific coefficients will be

penalized more than those that are heterogeneous. In this way, we can “harmonize”

solution paths so to greatly improve the performance by a single tuning parameter.

We compare s = 0 and s = 1 in the simulation experiments and show in Section 2.5

that the introduction of such group-wise weights νj, j = 1, . . . , p, gives rise to im-

provement on the performance of identifying homogeneous covariates when K and p

are large.

A sparse version of FLARCC can also be achieved by including the traditional lasso

penalty in (2.3) for covariate selection. In order to minimize the interference between

fusion and sparsity penalties, we only encourage sparsity for the coefficient closest

to zero in each βj,· = (βj,1, . . . , βj,K)T , for j = 1, . . . , p. Similar to the definition of

Uj, let Vj = (Vj,1, . . . , Vj,K)T be the ranking with no ties, from the smallest to the

largest, of the absolute values of βj,·, i.e., (|βj,1|, . . . , |βj,K |)T . First we calculate Vj by

Vj,k =
∑K

k′=1 1{|βj,k′ | ≤ |βj,k|}, then we resolve the ties in Vj by the first-occurrence-

wins rule according to k. Thus we can extend (2.3) to achieve variable selection by

the following penalty function:

Pλ,α(β) = λ

p∑
j=1

cjνj

K−1∑
k=1

K∑
k′>k

µj,k,k′1{|Uj,k − Uj,k′| = 1}|βj,k − βj,k′ |

+αλ

p∑
j=1

K∑
k=1

µj,k1{Vj,k = 1}|βj,k|,

(2.4)

where α ≥ 0 is another tuning parameter that controls the relative ratio between

fusion and sparsity penalties, and µ̂j,k = 1/|β̂j,k|r. The sparsity penalty, although only

enforced on the smallest coefficient in absolute value of βj,·, is capable of shrinking

a group of coefficients to zero when combined with the fusion penalty.
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In practice, the weights (νj, µj,k,k′ and µj,k) and the parameter orderings (Uj and

Vj) are unknown, for j = 1, . . . , p. We replace them with their estimates based on

root-n consistent estimates β̂ = (β̂T
1,·, . . . , β̂Tp,·)T , such as those from (2.1). In the

simulation experiments and the real data application of this chapter, we set r = 1 in

µ̂j,k,k′ and µ̂j,k.

2.2.2 Algorithm

Optimization problem (2.2) with P (β) = Pλ,α(β) given in (2.4) can be carried out

by a lasso regression through suitable reparameterization. Let the ordered coefficients

of βj,· in an ascending order based on ranking Uj be (βj,(1), . . . , βj,(K))
T , j = 1, . . . , p.

For the jth covariate, consider a set of transformed parameters θj,· = (θj,1, . . . , θj,K)T

defined by

θj,1 = βj,k, for k s.t. Vj,k = 1;

θj,k = βj,(k) − βj,(k−1), for k = 2, . . . , K.

Then the Pλ,α(β) in (2.4) can be rewritten as

Pλ,α(θ) = λ

p∑
j=1

K∑
k=1

ωj,k|θj,k|, (2.5)

where

ω̂j,k =


α 1

|θ̂j,1|r
, if k = 1

cj
1

|
∑K
k′=2 θ̂j,k′ |s

1

|θ̂j,k|r
, if k = 2, . . . , K,

(2.6)

for j = 1, . . . , p. Since no ties are allowed in the parameter ordering of FLARCC, one-

to-one transformation exists between β = (βT
1,·, . . . ,βTp,·)T and θ = (θT

1,·, . . . ,θTp,·)T
by suitable sorting matrix S and reparameterization matrix R; that is, θ = RSβ

and β = (RS)−1θ with both S and R being full-rank square matrices. Thus, a

solution to the fused lasso problem can be obtained equivalently by solving a routine
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lasso problem with respect to coefficient vector θ and a transformed design matrix

X(RS)−1. As aforementioned, the estimated parameter ordering is used to construct

S. It is obvious that the constraint in (2.5) is convex, thus FLARCC does not suffer

from multiple local minimal issue. The optimization is done using R package glmnet

(version 2.0-2) (Friedman et al., 2010), which accommodates GLMs with Gaussian,

binomial and Poisson distributions.

2.3 Large-sample Properties

First we present the oracle property of our method when the parameter ordering

is known, then we prove that the same large-sample properties are preserved when

consistently estimated parameter ordering is used. Here we assume K is fixed. The-

orems will be stated under the setting of all coefficients being heterogeneous, i.e.,

c = (1, . . . , 1)T . The large-sample theories for other specification of c can be estab-

lished as a special case.

Denote the true parameter values as β∗ and θ∗. Let the collection of true pa-

rameter orderings of all covariates and their absolute values be W = {Uj,Vj}pj=1,

and the estimated orderings based on the root-n consistent estimator β̂ from (2.1) as

Ŵ = {Ûj, V̂j}pj=1. Denote the FLARCC estimator of θ∗ as θ̂W when W is known,

and θ̂Ŵ when the estimated parameter ordering Ŵ is used. Let A =
⋃p
j=1{Aj} be

the index set of nonzero values in θ∗, where Aj = {(j, k) : θ∗j,k 6= 0}, and Ac be

the complement of A. Thus, θ∗ can be partitioned into two subsets, the true-zero

set θ∗Ac and the nonzero set θ∗A. Similarly, let ÂW and ÂŴ be the index sets of

nonzero elements in θ̂W and θ̂Ŵ , respectively. Let n = min
1≤k≤K

nk, N =
∑K

k=1 nk, and

λN = Nλ.

Theorem II.1. Suppose that λN satisfies λN/
√
N → 0 and λNN

(r−1)/2 →∞. Then

under some mild regularity conditions (see Appendix A), the FLARCC estimator θ̂W
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based on the true parameter ordering W satisfies

(i) (Selection Consistency) limn P (ÂW = A) = 1;

(ii) (Asymptotic Normality)
√
N(θ̂WA − θ∗A)

d→ N (0, I−111 ) as n → ∞, where I11 is

the submatrix of Fisher information matrix I corresponding to set A.

Theorem II.1 states that when the coefficient orderings W of β is known, under

mild regularity conditions, the FLARCC estimator θ̂W enjoys selection consistency

and asymptotic normality. The proof of Theorem II.1 follows Zou (2006) and is given

in Appendix A. Now we present Theorem II.3, which states that the same properties

of Theorem II.1 hold for θ̂Ŵ , the FLARCC estimator of θ∗ based on the estimated

parameter ordering Ŵ . In effect, Theorem II.3 is a consequence of the following

lemma.

Lemma II.2. If β̂ is a root-n consistent estimator of β, then limn P (Ûj = Uj) = 1

and limn P (V̂j = Vj) = 1 for j = 1, . . . , p.

The proof of Lemma II.2 is given in Appendix A. Lemma II.2 implies that the

parameter ordering can be consistently estimated. Using Lemma II.2, we are able

to extend the properties of θ̂W in Theorem II.1 to the proposed FLARCC estimator

θ̂Ŵ .

Theorem II.3. Suppose that λN/
√
N → 0 and λNN

(r−1)/2 →∞. Let the estimated

parameter ordering Ŵ be the ranks from a root-n initial consistent estimator β̂.

Under the same regularity conditions of Theorem II.1, the FLARCC estimator θ̂Ŵ

satisfies

(i) (Selection Consistency) limn P (ÂŴ = A) = 1;

(ii) (Asymptotic Normality)
√
N(θ̂ŴA − θ∗A)

d→ N (0, I−111 ) as n → ∞, where I11 is

the submatrix of Fisher information matrix I corresponding to set A.
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The proof of Theorem II.3 is given in Appendix A. The asymptotic normality for

β̂ can also be derived by a simple linear transformation.

2.4 Tuning Parameter

In this section, we provide interpretation of the tuning parameter λ and discuss

the selection criteria used for selecting λ.

2.4.1 Interpretation of νj’s

Intuitively speaking, the study-specific coefficients of a homogeneous covariate

tend to be fused at a small λ value, say λ1, but the fusion of a heterogeneous co-

variate requires another λ value, λ2, assuming λ2 > λ1. The region to draw correct

clustering conclusion is [λ1, λ2], that is, any λ within this region will produce the cor-

rect clustering result. However, when the number of covariates p is large, the region

that λ can take value from to ensure the correct clustering of all p coefficient vec-

tors simultaneously becomes narrower and may even be empty. For example, when

λ2 < λ1 in the above case, no single λ is able to correctly cluster both sets of parame-

ters. The introduction of νj’s in (2.4) creates larger separation between homogeneous

and heterogeneous groups, so that the range for λ to identify the correct clustering

pattern for all covariates is better established than the case with s = 0, namely no

use of weighting νj’s. When the number of covariates p is large, νj plays a more

important role in harmonizing solution paths across covariates, and the performance

will be greatly improved by simultaneous tuning via a single λ.

2.4.2 Model Selection

In the current literature, the tuning parameter λ may be selected by multiple

model selection criteria, such as Bayesian information criterion (BIC) (Schwarz , 1978)

and generalized cross-validation (GCV) (Golub et al., 1979). In this chapter, we
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consider the widely used BIC and its modification, extended BIC, i.e., EBIC (Chen

and Chen, 2008; Gao and Song , 2010), which has showed the benefit of achieving

sparse solutions.

Following the derivation of BIC for weighted likelihoods in Lumley and Scott

(2015), the conventional BIC for FLARCC is defined as follows:

BICλ = −2
K∑
k=1

n̄

nk
logLk(β̂(λ)) + df(β̂(λ)) log(N), (2.7)

where n̄ = N/K is the average sample size per study, Lk(β) is the study-specific

likelihood, β̂(λ) is the estimation of β at tuning parameter value λ, and df(β̂(λ)) =∑p
j=1 df(β̂j,·(λ)) is the total number of distinct parameters in β̂(λ). The study-

specific log-likelihoods for three most common models are listed below:

Normal: logLk(β̂(λ)) ∝ −nk
2

log

{
nk∑
i=1

(
Y

(i)
k −X

(i)T
k β̂(λ)

)2
/nk

}
;

Logistic: logLk(β̂(λ)) ∝
nk∑
i=1

{
Y

(i)
k X

(i)T
k β̂(λ)− log

(
1 + eX

(i)T
k β̂(λ)

)}
;

Poisson: logLk(β̂(λ)) ∝
nk∑
i=1

{
Y

(i)
k X

(i)T
k β̂(λ)− eX

(i)T
k β̂(λ)

}
.

To improve the BIC by further controlling model size and encouraging sparer

models, we adapt the EBIC for FLARCC, which takes the following form:

EBICλ = −2
K∑
k=1

n̄

nk
logLk(β̂(λ)) + df(β̂(λ)) log(N) + 2γ log

p∑
j=1

(
K

df(β̂j,·(λ))

)
,

(2.8)

where γ ∈ [0, 1] is a tuning parameter that is typically fixed at 1 as done in our

numerical experiments. Note that EBIC reduces to BIC when γ = 0. The last term in

(2.8) encourages a sparser solution in comparison to the conventional BIC. Simulation

studies in Section 2.5 provide numerical evidence to elucidate the difference between
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BIC and EBIC in terms of their performance on achieving sparsity.

In a view of hierarchical clustering, the solution path of each covariate can be

thought of as a hierarchical clustering tree. For the jth covariate, λ = 0 corre-

sponds to the bottom of the clustering tree; and λ = λFuse,j, the smallest λ value

to achieve complete parameter fusion, corresponds to the top of the clustering tree.

The completely heterogeneous model corresponds to the position on the solution

path at λ = 0 and the completely homogeneous model corresponds to the model at

λ = λFuse := max
1≤j≤p

λFuse,j.

2.5 Simulation Studies

This section presents results from two simulation experiments. The first simula-

tion compares the performance of FLARCC under different GLM regression models.

The second simulation is a more complicated scenario with large K and more non-

important covariates, where covariate selection is also of interest.

2.5.1 Simulation Experiment 1

The first simulation study aims to assess the performance of our method for differ-

ent GLM regression models. For this, we consider combining data sets from K = 10

different studies with, for simplicity, equal sample size n1 = · · · = n10 = 100. Data

are simulated from the following mean regression model:

h{E(Y
(i)
k )} = β1,kX

(i)
1,k + β2,kX

(i)
2,k + β3,kX

(i)
3,k, i = 1, . . . , 100, k = 1, . . . , 10,
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where the true coefficient vectors have the following clustering structures:

β1,· = (0, . . . , 0︸ ︷︷ ︸
10

)T ;

β2,· = (0, . . . , 0︸ ︷︷ ︸
5

, 1, . . . , 1︸ ︷︷ ︸
5

)T ;

β3,· = (−1, . . . ,−1︸ ︷︷ ︸
3

, 0, . . . , 0︸ ︷︷ ︸
4

, 1, . . . , 1︸ ︷︷ ︸
3

)T .

The true values in β2 and β3 are heterogeneous, while the true values in β1 are

homogeneous across studies. The three covariates are correlated with exchangeable

correlation of 0.3 and marginally distributed according to the standard normal distri-

butions, N (0, 1). Three types of GLM regression models are considered: linear model

for continuous normal outcomes (with errors simulated from N (0, 1)), logistic model

for binary outcomes and Poisson model for count outcomes.

To evaluate the performance of FLARCC to correctly detect patterns of all co-

variates, we assume all covariates are heterogeneous across studies with no prior

knowledge on clustering structure of any covariate. Intercept is fitted and assumed to

be homogeneous. No sparsity penalty is applied on the covariates (i.e., α = 0) in this

simulation experiment. Coefficients of all three covariates are fused simultaneously,

and the optimal tuning parameter λopt is selected by EBIC. We report sensitivity

and specificity as metrics of the performance of FLARCC to identify similar and dis-

tinct coefficient pairs. Sensitivity measures the proportion of equal coefficient pairs

that are correctly identified. Similarly, specificity measures the proportion of un-

equal coefficients pairs that are correctly identified; however, specificity is not defined

for homogeneous covariates which have no unequal coefficient pairs. In addition, we

calculate the mean squared error (MSE) for each β̂j,· across all K studies, defined

as MSEj =
∑K

k=1(β̂j,k − βj,k)2/K, j = 1, . . . , p, and compare with the MSE of each

estimate based on homogeneous model (λ = λFuse) and heterogeneous model (λ = 0).

Table 2.1 shows the results of simulation experiment 1 from 1,000 simulation repli-
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Table 2.1: Results of simulation experiment 1 for FLARCC when scaling weight pa-
rameter s = 0 and s = 1 with λ selected by EBIC, for the linear, logistic
and Poisson models. Tuning parameters are reported in log scale, i.e.,
λ̃ = log10(λ+ 1). Results are summarized from 1,000 replications.

Method
β β̂ size λ̃Fuse,j

Sensi- Speci- MSE when λ =

(λ̃opt) tivity ficity λopt λFuse 0
Linear: continuous response

s = 0
(0.154)

β1 1.067 0.111 0.974 – 0.001 0.002 0.012
β2 2.075 1.275 0.982 1.000 0.003 0.253 0.012
β3 3.081 1.368 0.982 1.000 0.004 0.603 0.012

s = 1
(0.349)

β1 1.006 0.080 0.998 – 0.001 0.002 0.012
β2 2.058 1.584 0.986 1.000 0.003 0.253 0.012
β3 3.123 1.972 0.974 1.000 0.004 0.603 0.012

Logistic: binary response

s = 0
(0.066)

β1 1.270 0.064 0.898 – 0.010 0.005 0.070
β2 2.572 0.318 0.819 0.963 0.047 0.268 0.087
β3 3.682 0.437 0.784 0.964 0.069 0.607 0.091

s = 1
(0.112)

β1 1.075 0.050 0.972 – 0.007 0.005 0.069
β2 2.478 0.414 0.837 0.952 0.052 0.268 0.088
β3 3.912 0.711 0.749 0.971 0.064 0.607 0.091

Poisson: count response

s = 0
(0.187)

β1 1.087 0.129 0.976 – 0.001 0.005 0.008
β2 2.084 1.751 0.984 1.000 0.001 0.271 0.008
β3 3.076 1.885 0.986 1.000 0.002 0.659 0.008

s = 1
(0.433)

β1 1.047 0.087 0.992 – 0.001 0.005 0.008
β2 2.088 2.060 0.984 1.000 0.002 0.271 0.008
β3 3.111 2.536 0.978 1.000 0.002 0.657 0.008

cates. The MSE of all estimated covariates based on FLARCC (λ = λopt) are consis-

tently and significantly smaller than those based on the homogeneous (λ = λFuse) and

heterogeneous (λ = 0) models, regardless of the model type. FLARCC performs very

well in the linear and Poisson regressions in terms of identifying the correct clustering,

with the sensitivity and specificity both above 95% for all covariates (specificity is not

reported for β1 since there is no unequal pair within β1,·). Sensitivity and specificity

of FLARCC drop in the logistic regression, especially as the level of heterogeneity

increases. One reason for the reduced performance of FLARCC in the logistic re-

gression is that the estimated variances of regression coefficients in the logistic model
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are larger than in the linear and Poisson models, given the same coefficient setting.

Therefore, the estimated parameter ordering for which our method is based on may

be less accurate. For the logistic regression, increasing sample sizes is one of the pos-

sible ways to improve the performance. The performance difference between scaling

weight parameter s = 0 and s = 1 in (2.4) is small in this case because of the rela-

tively small number of covariates p = 3. Additionally, since K is small in this case,

the optimal λ selected by BIC and EBIC are very close, thus we only display results

based on EBIC. As p and K become larger, FLARCC will increasingly benefit from

the additional weights νj (i.e., s = 1) and EBIC, as will be shown in Section 2.5.2. A

sensitivity analysis to investigate how the initial ordering affect the performance of

FLARCC is conducted, with results shown in Appendix B. We show that when the

initial parameter ordering is slightly distorted, our method still achieves satisfactory

performance.

2.5.2 Simulation Experiment 2

The second simulation study aims to evaluate the performance of FLARCC in

a more challenging setting. More specifically, we consider data sets from K = 100

studies, each with a sample size 100, totaling 10,000 subject-level observations. Com-

paring to the previous setting, we increase the number of covariates and reduce the

gaps between heterogeneous coefficients. For each study, we simulate data from the

following linear regression model:

E(Y
(i)
k ) =

8∑
j=1

βj,kX
(i)
j,k, i = 1, . . . , 100, k = 1, . . . , 100.
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The signals are set sparse; only the first four covariates with coefficient vectors, β1

to β4, are influential to Y with the true clustered effect patterns given as follows:

β1,· = (0, . . . , 0︸ ︷︷ ︸
50

, 0.5, . . . , 0.5︸ ︷︷ ︸
50

)T ,

β2,· = (−0.5, . . . ,−0.5︸ ︷︷ ︸
30

, 0, . . . , 0︸ ︷︷ ︸
40

, 0.5, . . . , 0.5︸ ︷︷ ︸
30

)T ,

β3,· = (−0.5, . . . ,−0.5︸ ︷︷ ︸
25

, 0, . . . , 0︸ ︷︷ ︸
25

, 0.5, . . . , 0.5︸ ︷︷ ︸
25

, 1, . . . , 1︸ ︷︷ ︸
25

)T ,

β4,· = (−1, . . . ,−1︸ ︷︷ ︸
20

,−0.5, . . . ,−0.5︸ ︷︷ ︸
20

, 0, . . . , 0︸ ︷︷ ︸
20

, 0.5, . . . , 0.5︸ ︷︷ ︸
20

, 1, . . . , 1︸ ︷︷ ︸
20

)T ,

whereas β5 to β8 are all zero, i.e., βj,· = (0, . . . , 0)T , for j = 5, 6, 7, 8. All covari-

ates are equally correlated with an exchangeable correlation of 0.3 and marginally

distributed according to N (0, 1). We set β1 to β8 as being heterogeneous from the

start and fuse all of them simultaneously. We apply the additional sparsity penalty

to all covariates by setting α = 1. The intercept is assumed to be homogeneous in

the analysis.

Since K is large, we also present results from individual covariate K-means clus-

tering. This is a two-step method where we first estimate regression coefficients within

each study, and then separately for each covariate, we perform the K-means clustering

on the estimated study-specific coefficients of each covariate. The number of clusters

is selected by the generalized cross-validation criterion
∑K

k=1(β̂k−β̂c(k))2/(K−GDF)2,

with β̂c(k) being the cluster center of β̂k and GDF is the generalized degrees of freedom

estimated according to Ye (1998), where purturbations are generated independently

from N (0, 0.01). The cluster centroids are then used as the estimates of the group-

level parameters.

Table 2.2 summarizes the simulation results for linear model where the errors

are generated independently from N (0, 1). Similar to simulation 1, FLARCC gives

the smallest MSE for heterogeneous covariates, β1 to β4, among all three models,
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Table 2.2: Result of simulation experiment 2 under the linear model. Scaling weight
parameter is set at s = 0 and s = 1. Tuning parameters are reported in
log scale, i.e., λ̃ = log10(λ+ 1). Sparsity denotes the proportion of zero in
estimation. Results are summarized from 1,000 replications.

Method
β β̂ size λ̃Fuse,j

Sensi- Speci- Spar- MSE when λ =

(λ̃opt) tivity ficity sity λopt λFuse 0

s = 0
BIC

(0.143)

β1 8.115 1.517 0.373 0.995 0.199 0.006 0.063 0.014
β2 10.689 1.551 0.401 0.996 0.166 0.008 0.150 0.014
β3 13.107 1.962 0.443 0.997 0.113 0.008 0.313 0.014
β4 15.178 1.984 0.461 0.997 0.091 0.009 0.500 0.014
β5 4.818 0.301 0.322 – 0.338 0.003 0.000 0.014
β6 4.860 0.305 0.322 – 0.339 0.003 0.000 0.014
β7 4.860 0.302 0.321 – 0.330 0.003 0.000 0.014
β8 4.820 0.301 0.319 – 0.336 0.003 0.000 0.014

s = 0
EBIC

(0.159)

β1 7.538 1.509 0.417 0.994 0.224 0.006 0.063 0.014
β2 9.975 1.546 0.441 0.995 0.182 0.007 0.150 0.014
β3 12.212 1.953 0.483 0.996 0.124 0.008 0.313 0.014
β4 14.096 1.978 0.503 0.997 0.101 0.008 0.500 0.014
β5 4.388 0.298 0.377 – 0.394 0.003 0.000 0.014
β6 4.413 0.303 0.379 – 0.397 0.003 0.000 0.014
β7 4.408 0.299 0.374 – 0.385 0.003 0.000 0.014
β8 4.385 0.298 0.374 – 0.392 0.003 0.000 0.014

s = 1
EBIC

(0.492)

β1 3.563 1.589 0.800 0.981 0.422 0.006 0.063 0.014
β2 6.111 1.810 0.708 0.989 0.291 0.007 0.150 0.014
β3 8.843 2.388 0.667 0.994 0.168 0.007 0.313 0.014
β4 11.358 2.521 0.635 0.995 0.128 0.008 0.500 0.014
β5 1.329 0.275 0.928 – 0.932 0.000 0.000 0.014
β6 1.321 0.280 0.933 – 0.937 0.000 0.000 0.014
β7 1.311 0.274 0.934 – 0.935 0.000 0.000 0.014
β8 1.321 0.273 0.929 – 0.936 0.000 0.000 0.014

MSE from K-means

K-means
GCV

(GDF)

β1 7.196 – 0.753 0.971 0.000 0.008
β2 11.236 – 0.671 0.983 0.000 0.009
β3 13.721 – 0.639 0.984 0.000 0.011
β4 18.308 – 0.527 0.985 0.000 0.014
β5 6.415 – 0.759 – 0.000 0.004
β6 5.271 – 0.769 – 0.000 0.004
β7 5.629 – 0.767 – 0.000 0.004
β8 5.080 – 0.794 – 0.000 0.004
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and has comparable MSE as the homogeneous model for homogeneous covariates,

β5 to β8. More interestingly, when K is large, BIC does not provide satisfactory

model selection, erring on the lack of parsimony, while EBIC encourages stronger

fusion and improves the ability to detect equal coefficient pairs in all eight covariates,

regardless of their levels of heterogeneity. In addition, EBIC improves the sparsity

detection among both the important and nonimportant covariates. It is interesting

to note that the choice between BIC and EBIC does not alter solution paths, but

only model selection. FLARCC with scaling weight parameter s = 1 has the best

clustering performance among all compared methods. The difference between the

choices of s = 0 and s = 1 is substantial in simulation 2, in contrast to the results

from simulation 1. This indicates that the covariate-specific weights for heterogeneity

{νj}pj=1 are very effective to improve the performance of the proposed fusion learning,

especially when K and p are large. Sensitivity and specificity of the two-step K-means

clustering method are higher than those of FLARCC with s = 0, but lower than those

of FLARCC with s = 1. The two-step K-means has larger MSE than FLARCC

because it does not consider the correlation between covariates. More importantly,

the K-means clustering is a model-free method, so the results obtained from this

method cannot be plugged in back to the model for prediction. As suggested from

the empirical results of both simulation experiments, EBIC tends to provide better

model selection for FLARCC than the conventional BIC.

2.6 Applications

2.6.1 Clustering of Regional Effects

In this data analysis example, we like to demonstrate the use of our method

to derive clusters of regional effects. Here we consider the Panel Study of Income

Dynamics (PSID), which is a household survey study following thousands of families
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Table 2.3: Coefficient estimates of the homogeneous model (λ = λFuse), the heteroge-
neous model (λ = 0) and the fused model using FLARCC with λ selected
by EBIC, respectively.

Region n
Intercept Age Sex Birth Wt. Income
β0 β1 β2 β3 β4

(A) Homogeneous model – combine all regions
All regions 1880 0.000 0.206 0.016 0.063 -0.096

(B) Heterogeneous model – region specific estimates
1-Northeast 239 -0.133 0.228 -0.079 -0.003 0.004
2-Midwest 493 -0.054 0.229 0.017 0.124 -0.132
3-South 805 0.128 0.158 0.095 0.068 -0.071
4-West 343 -0.155 0.236 -0.083 0.057 -0.074

(C) Fused model using FLARCC
1-Northeast 239 -0.093 0.201 -0.036 0.000 0.000
2-Midwest 493 -0.093 0.201 0.000 0.021 -0.047
3-South 805 0.075 0.201 0.000 0.021 -0.047
4-West 343 -0.093 0.201 -0.036 0.021 -0.047

across different states in the US. PSID collects information of employment, income,

health, and so on. In this data analysis, we focus on the association of household

income with body mass index (BMI) on school-aged children between age of 11 and

19, adjusted for age, gender and birth weight. Data of 1880 children were gathered

from four census regions (1-Northeast, 2-Midwest, 3-South and 4-West), as defined

by U.S. Census Bureau (2015). All variables are standardized before model fitting.

We are interested in investigating if regional heterogeneity exists and if the effects of

interest differ across regions with region-dependent patterns.

Table 2.3 shows the results of coefficient estimates obtained from three different

models: (A) homogeneous model (λ = λFuse), coefficients estimated by combining

data sets from four regions, (B) heterogeneous model (λ = 0), coefficients estimated

separately by region-specific data, and (C) FLARCC (λ = λEBIC). Model A suggests

that age and birth weight are positively associated with BMI for the subjects, but

income was negatively associated with BMI. The estimates from Model B suggest that

heterogeneous coefficient patterns exist among these associations since conclusions
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Figure 2.2: FLARCC solution paths of all covariates over the transformed tuning
parameter λ̃ = log10(λ+ 1), with s = 0. The vertical dotted line denotes
the optimal tuning parameter value λ̃EBIC .

differ between regions. Model C appears more sensible when regression coefficients are

heterogeneous across these regions. Since K and p are small in this data application,

we apply FLARCC with s = 0 on the PSID data, assuming effects of income, age,

gender and birth weight are heterogeneous across regions, and set sparsity parameter

α = 1 for variable selection.

Based on the results from FLARCC, the estimated mean of standardized BMI in

the South is 0.168 higher (or 0.97 higher in original scale of BMI) than that of the

other three regions, which share the same mean. The effects of age are consistent

across four regions. The effects of gender are classified into two clusters. The mean of

standardized BMI of females is 0.036 lower (or 0.42 lower in original scale) than that

of males in the Northeast and the West, but males and females have the same mean

BMI in the Midwest and the South. Standardized BMI increases by 0.021 for every

standard deviation increase of birth weight (or BMI increases by 0.19 for every unit

increase of birth weight) in all regions except the Northeast. Similarly, standardized

BMI decreases by 0.047 for every standard deviation increase of log income (or BMI
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Figure 2.3: Fusograms of all covariates based on FLARCC solution paths. The hor-
izontal dotted lines denote the optimal regression coefficient clustering
determined by EBIC.
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decreases by 0.27 for every unit increase of income) in all regions except the Northeast

where BMI is not affected by income. The leave-one-out mean squared prediction

errors for model A, B and C are 0.953, 0.945 and 0.950, respectively. The differences

between the prediction errors are small because of the relatively small effect sizes of the

heterogeneous covariates identified by FLARCC, i.e., sex, birth weight and income.

The most significant covariate, age, is homogeneous thus it does not differentiate

the prediction power among the three models. Solution paths and fusograms of all

covariates are shown in Figure 2.2 and Figure 2.3, respectively, for illustration. In

summary, FLARCC ensures parsimony where necessary to maximize the prediction

power of the final model; and it provides more informative interpretation and better

visualization than the other two traditional models.

2.6.2 Clustering of Cohort Effects

In the second data analysis example, we explore the heterogeneity across multiple

cohorts base on an environmental study in Mexico City named Early Life Exposures

in Mexico to ENvironmental Toxicants (ELEMENT). Since 1994, ELEMENT has

recruited pregnant women and continuously followed their children during infancy,

early childhood and adolescence. The ELEMENT study consists of three cohorts, each

with slightly different objectives and study designs. Using ELEMENT, a previously

study by Watkins et al. (2014) has found disruptive effect of prenatal exposures

to phthalate, plasticizers that are added to daily plastic products to increase their

flixibility, transparency and durability, on the timing of sexual maturation. Recently,

we profiled the metabolome of the same group of n = 242 children at their adolescence,

and investigate whether such disruptive effect exists in their metabolic profiles.

Univariate screening with false discovery rate controlled at 10% reveals that,

in the female sample, maternal trimester 3 mono (2-ethyl-5-hydroxyhexyl) phtha-

late (MEHHP) is significantly associated with dodecenedioc acid – a median chain

29



Table 2.4: Coefficient estimates of the original homogeneous model (λ = λFuse) (**
indicates p < 0.001) and the fused model using FLARCC with λ selected
by EBIC, respectively.

Cohort n
Intercept MEHHP Age BMI Pubertal Onset

β0 β1 β2 β3 β4

Original model
All females 128 -1.111 ** 0.352 ** -0.191 -0.192 ** 0.280

Heterogeneous fusion model
1-PL females 27 -0.808 0.264 0.147 -0.212 0.000
2-BI females 6 -0.808 0.000 0.147 0.000 0.000
3-SF females 95 -0.808 0.212 -0.506 -0.212 0.000

fatty acid implicated in metabolic risk in adult populations. Afterwards, we applied

FLARCC on the female samples allowing for heterogeneous effects across the three

cohorts. Results comparing the two different ways of modeling are shown in Table 2.4.

As we can see, girls from the first cohort (PL) and the third cohort (SF) exhibit up-

regulation in dodecenedioc acid due to MEHHP, whereas in the second cohort (BI)

we fail to see any significance after regularization. Such heterogeneity may be due

to the reason that PL and SF are pregnancy cohorts (mothers are admitted to the

study at the beginning of pregnancy) thus the protocols for measuring prenatal ex-

posures are better designed, but BI is a birth cohort (mothers are admitted close to

delivery) thus the measurement at the 3rd trimester might not be as well planned

and administered as PL and SF. Similar to many other papers that remove outliers to

robustify regressions (e.g., Hoaglin and Welsch (1978); Rousseeuw and Leroy (2005)),

we suggest treating BI as an “outlying cohort” and report separate results only based

on PL and SF.

2.7 Concluding Remarks

The proposed method, published as Tang and Song (2016), brings a new per-

spective to model fitting when combining multiple data sets from different sources

is of primary interest. As data volumes and data sources grow fast, more and more
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opportunities and demands emerge in practice to borrow strengths of combined data

sets. In such case, traditional methods are challenged by the complex data structures

and do not provide desirable treatments and meaningful interpretations to data het-

erogeneity, especially when the number of data sets is very large. FLARCC allows

the flexibility to explore the heterogeneity pattern of parameters among large number

of data sets by tuning the shrinkage parameter.

When K and p are small, weights {νj}pj=1 do not contribute to much difference in

terms of clustering and estimation. However, since only one tuning parameter is used

to regularize the fusion of all covariates, when both K and p are large, we suggest

letting s > 0 to allow covariate-specific weights adapting to the heterogeneousness

of coefficients from individual covariates to achieve better results. In addition, the

estimation consistency of rank estimator is a critical component needed to determine

adjacent pairs. The current consistency is established under the case of K being fixed,

and the validity of its property is unknown when K increases along the total sample

size.

FLARCC can be applied to various scientific problems, such as the detection

of outlying studies by singling out outlying coefficients; it can also be applied to

the clustering of patient trajectories by viewing the time series data of patients as

individual studies. Essentially, all study that are interested in the group-specific

effects may be analyzed from the perspective of parameter fusion using the proposed

method. The work in this chapter has been generalized to the partial likelihood

framework for the Cox proportional-hazards model (Cox , 1972); details are presented

in Appendix C.
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CHAPTER III

Method of Divide-and-Combine in Regularized

Generalized Linear Models for Big Data

3.1 Introduction

In this chapter, we consider the generalized linear model under the big data sce-

nario that a dataset is too large to be centralized, thus has to be stored by the

means of distributed computer clusters. It presents great challenges to statisticians

to analyze such massive data because the entire dataset cannot be loaded to a single

processor for computation (Fan et al., 2014). Following the development of cloud

storage and cloud computing, the method of divide-and-combine (Aho and Hopcroft ,

1974) has become the state-of-the-art in big-data science to cope with the scalability

issue. The most well-known example is MapReduce programming (Dean and Ghe-

mawat , 2008), a divide-and-combine framework that executes on top of the Hadoop

Distributed File System (Shvachko et al., 2010). Divide-and-combine is a procedure

to recursively subdivide the data into relatively independent batches, which are in

turn processed in parallel. Next, the separate results are combined together in a way

that algebra permits. Existing implementation of divide-and-combine is only avail-

able for a limited number of functions where parallelization is straightforward, such

as the computation of mean, frequency and other summary statistics. Other more
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complicated methods require special treatment in order to be adapted to the parallel

computing architecture, see for examples in Guha et al. (2009, 2012), Mackey et al.

(2011) and Madria and Hara (2015). In this chapter, we consider the statistical infer-

ence problem for generalized linear models, using divide-and-combine, for extremely

large datasets.

For a generalized linear model, the systematic component is specified by the mean

of response yi that is related to a p-dimensional vector of the covariates xi by a

known link function g(·) in the form g {E(yi)} = xTi β, subject i = 1, . . . , N . The

random component is specified by the conditional density of Y = (y1, · · · , yN)T given

X = (x1, · · · ,xN)T . The associated likelihood function is given by LN(β;Y ,X) =∏N
i=1 exp[{yiθi − b(θi)}/φ + c(yi, φ)], where the canonical parameters have the form

θi = xTi β, i = 1, · · · , N , with β being the p-element vector of regression parameters

of interest and φ being the dispersion parameter. Both the sample size N and/or the

number of covariates p may be large in practice. Due to the fact that the maximum

likelihood estimator, β̂ = arg maxβ LN(β;Y ,X), in general has no closed-form ex-

pression, existing methods often require iteratively accessing all sub-datasets repeat-

edly, resulting in high data communication cost. It is not trivial to formulate perfectly

parallel algorithms that only require a single passing of each divided dataset (Kleiner

et al., 2014; Song and Liang , 2015) in the sense that they still provide numerically

robust statistical inference as compared to using full data. By perfectly parallel, we

mean that a big problem can be broken into small problems which can be executed in

parallel and combined in the final step. In the development of the divide-and-combine

strategy in the context of statistical inference, naturally one question arises: do the

proposed estimator and the maximum likelihood estimator obtained from the entire

data warrant asymptotic equivalence, leading to comparable statistical inferences?

Combining independent samples from different studies in the form of summary

statistics has long been studied under the topic of meta-analysis (see for example
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Sutton and Higgins (2008); Stangl and Berry (2000); Hedges and Olkin (2014)). The

classical meta-analysis method uses inverse variance weighted average to combine sep-

arate point estimates from individual data batches. This is an efficient divide-and-

combine solution to generalized linear regressions for data on distributed systems,

because raw data can be processed locally and only summary information are sent

between machines. Lin and Zeng (2010) showed that such meta estimator asymp-

totically achieves the Fisher’s efficiency, in other words, it follows asymptotically the

same distribution as the Fisher’s maximum likelihood estimator directly obtained

from the whole data. The Fisher’s efficiency has been also established for a com-

bined estimator by Lin and Xi (2011) through a meta-type method of aggregative

estimating equations, under some relatively strong conditions, such as the number of

sub-datasets K is of order O(nr) where r < 1/3 and n is the sample size of a sub-

dataset. Recently, Battey et al. (2015) proposed test statistics and point estimators

in the context of the divide and conquer algorithms, where the method of hypothesis

testing is only developed for low dimensional parameters, and the combined estima-

tor is given as an arithmetic average of sub-datasets. Under the Bayesian framework,

similar procedures have also been developed focusing on the aggregation step of com-

bining posterior distributions from divided sub-datasets, for example, Minsker et al.

(2014) and Srivastava et al. (2015).

In this chapter, we adapt the confidence distribution approach (Xie and Singh,

2013) to combine sub-dataset results. The confidence distribution, originally pro-

posed by Fisher (1956) and later formally formulated by Efron (1993), has recently

attracted a surge of renewed attention in the statistical literature; see for example,

Singh et al. (2005), Xie and Singh (2013) and references therein. An advantage of the

confidence distribution approach is that it provides a unified framework for combining

distributions of estimators, so statistical inference with the combined estimator can be

established in a straightforward and mathematically rigorous fashion. Specifically re-
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lated to divide-and-combine, Xie et al. (2012) developed a robust meta-analysis-type

approach through confidence distribution, and Liu et al. (2015) proposed to combine

the confidence density function in the same way as combining likelihood functions for

inference that warrants the Fisher’s efficiency.

If is often the case that big data in practice has extremely large sample size

N and a relatively large number of covariates p, say, from hundreds to thousands.

Although the overall variable-to-sample ratio p/N is typically small, in each sub-

dataset such ratio becomes Kp/N when the full data are divided into K separate

batches. Here, we consider p fixed whereas K can go to infinity. The sample size

reduction due to the data division may cause numerical instability for the search

for the maximum likelihood estimate. In addition, to deal with the case in that

most of covariates are unimportant, which often occurs when hundreds to thousands

covariates are included in the analysis, it is often preferable to invoke regularized or

penalized methods for dimension reduction, such as lasso (Tibshirani , 1996; Zou and

Hastie, 2005), SCAD (Fan and Li , 2001) and MCP (Zhang , 2010). For regularized

estimation, constructing confidence density for penalized estimators is analytically

challenging because: (i) sparse estimators such as lasso estimators do not have a

tractable limiting distribution, and (ii) the oracle property such as the asymptotic

normal distribution for estimators of the truly non-zero covariate effects is hardly

used in practice because the truth of important or unimportant covariates is never

known in advance. In the supplementary material, we provide additional theoretical

results for p→∞.

When penalized regression is applied on each sub-dataset, variable selection pro-

cedure will choose different sets of important covariates by different tuning schemes.

Such misaligned estimation results prohibit the meta-analysis approach from combin-

ing separate results; both dimensionality and meaning of the estimates across data

batches may be very different. Chen and Xie (2014) proposed to use a majority-voting
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method to select the most frequently identified covariates by the lasso method across

the sub-datasets to be combined in the final estimation. Unfortunately, not only is

this method sensitive to the choice of inclusion criterion, but more critically it does not

provide inference for the combined estimator. To overcome this problem, we propose

a new approach along the lines of the post-selection inference developed for the penal-

ized estimator by van de Geer et al. (2014) and Zhang and Zhang (2014), which allows

us to combine lasso estimators obtained from sub-datasets. Our new contribution is

two-fold: (i) the combined estimator achieves asymptotically the Fisher’s efficiency;

that is, it is asymptotically as efficient as the maximum likelihood estimator obtained

from the direct analysis on the whole data; and (ii) the computation of searching for

the maximum likelihood estimator is scalable and parallelized to address very large

sample sizes through easy and fast parallel algorithmic implementation. The latter

presents a desirable numerical recipe to handle the case when the whole data analysis

is time consuming and CPU demanding, or even numerically prohibitive.

The remaining of this chapter is organized as follows. Section 3.2 focuses on the

asymptotics of the debiased lasso estimator. Section 3.3 presents the confidence dis-

tribution method to combine results from multiple regularized regressions. Section 3.4

provides extensive simulation results, and Section 3.5 illustrates our method by a real

data example. We conclude with a brief discussion in Section 3.6.

3.2 Regularized Regression

3.2.1 Lasso in Generalized Linear Models

This section focuses on the regularized estimation and confidence density for one

sub-dataset of sample size n. We choose lasso, the least absolute shrinkage and

selection operator (Tibshirani , 1996), as the method of penalized estimation in the

development of a divide-and-combine procedure. With little effort, the other types
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of regularized estimating methods (e.g., SCAD and MCP) may be adopted in our

proposed procedure. The lasso estimator is obtained by maximizing the following

penalized log-likelihood function with respect to the regression parameters β, subject

to a normalizing constant,

PL(β;Y ,X)
def
= 1

n
Ln(β;Y ,X)− λ‖β‖1 ∝ 1

n

∑n
i=1

{
yix

T
i β − b(xTi β)

}
/φ− λ‖β‖1,

where λ is a nonnegative tuning parameter, and ‖β‖1 =
∑p

j=1 |βj| is the `1-norm of

the regression coefficient vector β = (β1, · · · , βp)T . Let β̂λ = arg maxβ PL(β;Y ,X)

be a lasso estimator of β at a given tuning parameter λ ≥ 0. Solving for β̂λ may be

done by the coordinate descent algorithm via Donoho and Johnstone (1994)’s soft-

thresholding approach, with the tuning parameter being determined by, say, multi-

fold cross-validation (Shao and Deng , 2012), as is done by us using the R package

glmnet with λ selected by 10-fold cross-validation.

3.2.2 Confidence Density for Bias-Corrected Lasso Estimator

To combine multiple lasso estimators obtained from separate sub-datasets, we

need to overcome the issue of misalignment: the sets of selected covariates with

non-zero estimates in the model are different across sub-datasets. Our solution is

based on bias-corrected lasso estimators. The bias correction enables us not only to

obtain non-zero estimates of all regression coefficients, but also, more importantly,

to establish the distribution of regularized estimators. The latter is critical for us to

utilize the confidence distribution to combine estimators. Denote the score function

by Sn(β) = 1
n

∑n
i=1

{
yi − g−1(xTi β)

}
xi/φ. It is known that the lasso estimator, β̂λ,

should satisfy the following Karush-Kuhn-Tucker condition:

Sn(β̂λ)− λκ̂ = 0, (3.1)
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where subdifferentials κ̂ = (κ̂1, · · · , κ̂p)T satisfy maxj |κ̂j| ≤ 1, and κ̂j = sign(β̂λ,j) if

β̂λ,j 6= 0. The first-order Taylor expansion of Sn(β̂λ) in (3.1) at the true value β0 leads

to −Ṡn(β0)(β̂λ−β0) + λκ̂ ≈ Sn(β0). It follows that β̂cλ−β0 ≈ {−Ṡn(β0)}−1Sn(β0),

where β̂cλ is a bias-corrected lasso estimator (van de Geer et al., 2014) as follows,

β̂cλ
def
= β̂λ + {−Ṡn(β0)}−1λκ̂ = β̂λ + {−Ṡn(β0)}−1Sn(β̂λ). (3.2)

The second equality in (3.2) follows directly from (3.1) and the sensitivity matrix

Ṡn(β) = − 1
n

∑n
i=1 xix

T
i /
{
φġ(xTi β)

}
, which is assumed to be negative-definitive. We

show later in Theorem III.4 that under some regularity conditions, this bias-corrected

estimator β̂cλ is asymptotically normally distributed, namely

n1/2(β̂cλ − β0)
d→ N (0,Σ(β0)), as n→∞, (3.3)

where Σ(β0) = [E{−Ṡn(β0)}]−1. Based on the asymptotic normality in (3.3), fol-

lowing Xie and Singh (2013), we form the asymptotic confidence density of β0 as

ĥn(β0) ∝ exp[−n
2
(β0−β̂cλ)T {Σ(β0)}−1 (β0−β̂cλ)]. Replacing β0 in the bias-correction

term in (3.2) and the asymptotic variance Σ(β0) in (3.3) by the sparse lasso estimator

β̂λ, we obtain

β̂cλ = β̂λ + Σ̂n(β̂λ)Sn(β̂λ), (3.4)

where the estimated variance covariance matrix is Σ̂n(β̂λ) = {−Ṡn(β̂λ)}−1. Moreover,

a “data-driven” version of the asymptotic confidence density is given by

ĥn(β0) ∝ exp
[
−n

2
(β0 − β̂cλ)T{Σ̂n(β̂λ)}−1(β0 − β̂cλ)

]
, (3.5)

It is worth pointing out that this bias-corrected estimator in (3.4) is equivalent to a

one-step Newton-Raphson updated estimator of the lasso estimator. In the general-
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ized linear models framework, we have

Σ̂n(β̂λ) = { 1
nφ
XTPn(β̂λ)X}−1, (3.6)

and the resulting confidence density may be expressed as

ĥn(β0) ∝ exp[− 1
2φ

(β0 − β̂cλ)T{XTPn(β̂λ)X}(β0 − β̂cλ)], (3.7)

where Pn(β̂λ) is the diagonal weight matrix based on the variance function of a

generalized linear model. In the case where the dispersion parameter φ is unknown,

such as in the Gaussian linear regression, we use a root-n consistent estimator φ̂ =

(n−|β̂λ|0)−1
∑n

i=1 d(yi, µ̂i(β̂λ)), where |x|0 is the number of non-zero entries of vector

x, and d(·, ·) is the unit deviance function; refer to Song (2007) for details.

3.2.3 Examples

Example III.1. Gaussian linear model. Assume yi follows a normal distribution

with mean µi = xTi β, variance φ and the canonical link function g(x) = x. The score

function takes the form Sn(β) = 1
n

∑n
i=1

{
yi − xTi β

}
xi/φ. From (3.4) and (3.7), we

obtain the confidence density function ĥn(β0) with the bias-corrected lasso estimator

as β̂cλ = β̂λ + (XTX)−1XT (Y −Xβ̂λ), and Pn(β̂λ) = In.

Example III.2. Binomial logistic model. Assume yi follows a Bernoulli distribu-

tion with probability of success πi and the logit link function g(πi) = log( πi
1−πi ) =

xTi β. Similarly, from (3.4), the bias-corrected lasso estimator is given by β̂cλ =

β̂λ + {XTPn(β̂λ)X}−1XT (Y − π̂), where π̂i = exp(Xβ̂λ)/{1 + exp(Xβ̂λ)} and

Pn(β̂λ) = diag(v̂1, . . . , v̂n) with v̂i = π̂i(1− π̂i).

Example III.3. Poisson log-linear model. Assume yi follows a Poisson distribution

with mean µi. The canonical link function is g(µi) = log(µi) = xTi β. Equation (3.4)
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gives the bias-corrected lasso estimator of the form β̂cλ = β̂λ + {XTPn(β̂λ)X}−1XT

{Y − µ̂}, where µ̂i = v̂i = exp(xTi β̂λ) and Pn(β̂λ) = diag(v̂1, . . . , v̂n).

3.2.4 Regularity Conditions

We list the regularity conditions used throughout this chapter. For convenience,

we include subscript k to denote that a quantity is obtained from the k-th sub-dataset.

In this section, we can simply omit k because we derive the asymptotic distribution

for just one sub-dataset. In fact, these conditions are general, and are used in proofs

of asympotic normality of estimators of individual sub-datasets as well as the final

combined estimator based on full data.

(C1) For k = 1, . . . , K, assume the same underlying true parameters β0,k = β0

across all sub-datasets. Let the score function satisfies E[{y1−g−1(xT1 β0)}x1/φ] = 0.

Further, in a neighborhood around the true value β0, Nδ(β0) = {β : ||β−β0||1 < δ}

for some constant δ > 0, it holds that for any β ∈ Nδ(β0), |{ġ(xTβ)}−1| > φ for

some φ > 0 and that supx |{ġ(xTβ)}−1| = O(1). For any β ∈ Nδ(β0) and x, g(xTβ)

is continuous and twice differentiable, which is satisfied by the expotential family

(Song , 2007).

(C2) Assume maxk ‖Xk‖∞ = Op(1), where ‖Xk‖∞ = maxi,j |Xk,ij|. Let Σ(M )

and Σ(M ) be the minimum and maximum singular values of a matrix M , respec-

tively. Assume b ≤ mink{Σ(n
−1/2
k Xk)} ≤ maxk{Σ(n

−1/2
k Xk)} ≤ B, where b and B

are two positive constants.

(C3) For some ψ0 > 0, and for all β satisfying ‖βSc0‖1 ≤ 3‖βS0‖1, it holds that

‖βS0‖21 ≤ (βTXT
kXkβ)s0/nψ

2
0, for k = 1, . . . , K, where s0 is the number of true

signals in β0. In addition, for k = 1, · · · , K and any p such that 0 < p < nmin with

nmin = mink nk, assume λk = O{(log p/nk)
1/2} and s0 = op(n

1/2
min/ log p).

It is noteworthy that conditions (C1) and (C2) are two common regularity con-

ditions; see for example Liu et al. (2015). Condition (C3) is the compatibility condi-
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tion required by the lasso estimator β̂λ,k, which is the same as condition (C2) given

in van de Geer et al. (2014) for the asymptotic normality. Following Theorem 3 in

Zhang and Huang (2008), applying conditions (C1) and (C2), we can show that the

(adaptive) lasso estimator β̂λ,k satisfies condition (C3).

3.2.5 Large Sample Property

Theorem III.4. Under conditions (C1)-(C3) in Section 3.2.4, the estimator β̂cλ in

(3.4) is consistent and asymptotically normally distributed, namely, n1/2(β̂cλ −β0)
d→

N (0,Σ(β0)), as n → ∞, where Σ−1(β0) = E{x1x
T
1 /φġ(xT1 β0)} is the Fisher infor-

mation matrix.

Theorem III.4 establishes the consistency and asymptotic normality of the pro-

posed estimator β̂cλ. Its proof is given in Appendix D. This theorem can be view as

an extension of the element-wise asymptotic result in van de Geer et al. (2014) to the

joint distribution of β̂cλ, but with an additional restriction that p < n. We emphasize

on the joint distribution of β̂cλ because it is necessary for the combination step using

confidence distributions, to be described in Section 3.3. To the best of our knowledge,

most existing work that allows p � n only provides element-wise inference, or pro-

vides joint distribution on a subset of q covariates, where p < n, for example van de

Geer et al. (2014) and Javanmard and Montanari (2014). From Theorem III.4, we

construct the confidence density as expressed in (3.5). Theorem III.4 can be extended

to the case when p → ∞, which is presented as Theorem S1, along with its proof,

available in the supplementary material.

Remark III.5. The procedure based on Theorem III.4 for the construction of the

confidence density remains valid when the adaptive lasso estimator (Zou, 2006) is

used to replace β̂λ in (3.4) and (3.7). An adaptive lasso estimator is obtained by β̌λ =

arg maxβ
1
n

∑n
i=1{yixTi β− b(xTi β)}/φ−λ

∑p
j=1 ŵj|βj|, where the weights {ŵj}pj=1 are

given by ŵj = (|β̂inij |)−γ, with an initial root-n consistent estimate β̂ini of β and some
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suitable constant γ > 0, which is typically set at 1.

Remark III.6. The collinearity problem is often encountered in high-dimensional data

analysis where some of the covariates are highly correlated. One solution is to con-

struct the confidence distribution in (3.7) by utilizing the Karush-Kuhn-Tucker con-

dition of the elastic net estimator (Zou and Hastie, 2005). Another quick remedy is

to apply ridge-type estimator to stabilize the matrix inverse and improve numerical

stability through adding a ridge term τIp, Ṡn(β0) + τIp, where τ > 0, to Ṡn(β0).

3.3 Combined Estimation and Inference

We now turn to the combined estimation and related inferences. We consider the

full data of size N , which is randomly partitioned into K batches, each with size

nk, and N =
∑K

k=1 nk. In reality, when we face extraordinarily large data where a

direct analysis on the whole data is numerically impossible, we apply the strategy

of divide-and-combine proposed by computer scientists. To proceed, we randomly

partition the entire dataset into K sub-datasets, {(Yk,Xk)}Kk=1, each of which has nk

observations, namely Yk is an nk × 1 vector and Xk is an nk × p matrix. Here, K is

not necessarily fixed. The choice of K in practice will be discussed in Section 3.6.

If there existed a “god-made” computer with unlimited computational capacity,

all existing methods available in various statistical software could be applied directly

to analyze the entire data regardless of the sample size and the resulting estimator.

This estimator is denoted by β̂full, which serves as the gold standard, and obtained by:

β̂full = arg maxβLN(β;Y ,X) = arg maxβ
∑K

k=1 Lnk(β;Yk,Xk), where LN(β;Y ,X)

and Lnk(β;Yk,Xk) are the log-likelihood functions of the full data (Y ,X) and the

k-th sub-dataset (Yk,Xk), respectively. There are many ways to combine results

obtained from sub-datasets, say, β̂k = arg maxβ Lnk(β;Yk,Xk), k = 1, . . . , K, in

here, we consider using the confidence distribution due to its generalizability under

unified objective functions and its ease to establish statistical inferences. For each sub-
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dataset (Yk,Xk), we first apply Theorem III.4 to construct the asymptotic confidence

density ĥnk(β0), k = 1, . . . , K. Then, in the same spirit to Liu et al. (2015), we

may combine the K confidence densities to derive a combined estimator of β0. The

combined estimator is denoted by β̂dac, where dac refers to divide and combine,

according to the following procedure:

β̂dac = arg maxβ log
∏K

k=1 ĥnk(β)

= arg maxβ
∑K

k=1
nk
2

(β − β̂cλk,k)
T{Σ̂nk(β̂λk,k)}−1(β − β̂cλk,k),

(3.8)

where β̂cλk,k and Σ̂nk(β) are estimates given in (3.4) and (3.6), respectively, with re-

spect to the k-th sub-dataset (Yk,Xk). The key advantage of the confidence distribu-

tion approach is to allow us derive an inference procedure for the combined estimator

β̂dac, as stated in Theorem III.7. The key result established in Theorem III.7 is that

the confidence density estimator β̂dac and the gold estimator β̂full are asymptotically

equally efficient.

Theorem III.7. Let nmin = mink nk and K = O(N1/2−δ) with constant δ ∈ (0, 1/2).

Under conditions (C1)-(C3) stated in Section 3.2.4, the divide-and-combine estima-

tor β̂dac obtained from (3.8) is consistent and asymptotically normally distributed,

namely, N1/2(β̂dac − β0)
d→ N (0,Σdac(β0)) as nmin → ∞. Σ−1dac(β0) = E{−Ṡn(β0)}

is the Fisher information matrix of the full data when K = 1. That is, the estimator

β̂dac is asymptotically as efficient as the gold estimator β̂full.

The proof of Theorem III.7 is given in Appendix D. It is worth noting that the

conditions for the divide-and-combine estimator β̂dac is the same as those required for

the regularized estimator in each sub-dataset, as long as the number of sub-datasets,

K, is fixed. This is because in the procedure of constructing confidence densities, when

the asymptotic normal distribution is used, conditions in the derivation of asymptotic

distributions for the combined estimator are automatically satisfied. By some simple
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algebra, the solution to the optimization problem in (3.8), i.e., the proposed divide-

and-combine estimator β̂dac, can be expressed explicitly as a form of weighted average

of β̂cλ,k, k = 1, . . . , K, as

β̂dac = {
∑K

k=1 nkΣ̂
−1
nk

(β̂λk,k)}−1{
∑K

k=1 nkΣ̂
−1
nk

(β̂λk,k)β̂
c
λk,k
} (3.9)

where Σ̂−1nk (β̂λk,k) = 1

nkφ̂k
XT

k Pnk(β̂λk,k)Xk. The practical implication of Theorem III.7

is that as long as the sample size of each sub-dataset is not small, the proposed β̂dac

will have little loss of estimation efficiency, while enjoys fast computing and better

numerical stability in the analysis of big data. It is interesting to note that in (3.9)

matrix inverse is not required for the computation of Σ̂−1nk (β̂λk,k) since its inverse

is the Fisher information matrix of the k-th sub-dataset. The only computation of

matrix inversion is for the sum of the Fisher information matrices. The variance-

covariance matrix of β̂dac can be estimated by Σ̂dac = {
∑K

k=1 nkΣ̂
−1
nk

(β̂λk,k)}−1, from

which confidence intervals can be derived.

Remark III.8. Note that when λ = 0, our proposed estimator β̂dac in (3.9) reduces

to the meta estimator β̂meta = {
∑K

k=1 nkΣ̂
−1
nk

(β̂k)}−1{
∑K

k=1 nkΣ̂
−1
nk

(β̂k)β̂k}, where β̂k

is the estimates of effect sizes, for k = 1, . . . , K. Lin and Xi (2011) found a sim-

ilar result as a special case of the aggregated estimating equation estimator under

the maximum likelihood estimation framework. However, the aggregated estimating

equation estimator requires a strong assumption of K = O(nrmin) (r < 1/3), and it

does not consider regularized estimation. Thus, it is a simpler framework to combine

estimates that are not shrunk for the purpose of variable selection. In addition, re-

gardless of different inputted estimators, the proposed estimator β̂dac and β̂meta take

the same form for the combination of estimators. However, they are derived from

different criteria with different purposes. Specifically, β̂meta aims at improving statis-

tical power via weighted average, while β̂dac is obtained by minimizing the combined
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confidence densities for the interest of statistical inference theory. The flexibility of

the confidence density approach allows to incorporate additional features in the com-

bination; for example, the homogeneity may be relaxed by imposing a mixture of

normals in (3.8), which is not the meta estimation method.

Remark III.9. The majority voting estimator proposed by Chen and Xie (2014)

to combine lasso estimates from multiple sub-datasets is given as follows: β̂mv =

A{
∑K

k=1 nkA
T Ṡnk(β̂k)A}−1{

∑K
k=1 nkA

T Ṡnk(β̂k)Aβ̂k,Â(v)}, where A is a p × |Â(v)|

subsetting matrix corresponding to a majority voting set Â(v) = {j :
∑K

k=1 I(β̂k,j 6=

0) > w}, which is a set of signals with votes higher than the prespecified threshold

value w ∈ [0, K), and β̂k,Â(v) denotes a corresponding sub-vector of β̂k. The majority

voting estimator β̂mv has been shown to have the oracle property (Zou, 2006) asymp-

totically, which however is not applicable to statistical inference in the sense given by

Fan and Li (2001) that the truly non-zero coefficients are never known beforehand.

Thus the oracle distribution cannot be used for inference on the entire coefficient

vector.

3.4 Simulation Studies

In this section, we conduct extensive simulation experiments to demonstrate the

numerical performance of the proposed method under Gaussian, logistic and Poisson

regressions. Specifically, we compare across three divide-and-combine methods, in-

cluding the meta-analysis method, the majority voting method (Chen and Xie, 2014),

and our proposed method based on results of Theorem III.7. Note that when K = 1,

under no data partitioning, meta-analysis is equivalent to generalized linear regres-

sion, the majority voting method is equivalent to lasso regression (Tibshirani , 1996),

and our method is equivalent to lasso with post-selection inference from Theorem III.4

(van de Geer et al., 2014).

All methods are compared thoroughly on the performance of variable selection,
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statistical inference and computation time. The evaluation metrics for variable se-

lection include the sensitivity and specificity of correctly identifying non-zero coef-

ficients. The evaluation metrics for statistical inference include mean squared er-

ror, absolute bias, coverage probability and asymptotic standard error of signal set

A0 = {j : β0,j 6= 0} and non-signal set Ac0 = {j : β0,j = 0}, respectively, where

β0 = (β0,1, . . . , β0,p)
> denotes the vector of true coefficients. Coverage probability

and standard error are not reported for the majority voting method since it does not

provide inference. We use results from the conventional generalized linear regression

estimator, β̂full, as our golden standard during comparisons. In order to show the

best variable selection results of the majority voting method, we carefully select ω

in β̂mv such that the sum of sensitivity and specificity is maximized. The compu-

tation time of all methods includes the time of reading data from disks to memory

and the time of numerical calculation. Under the divide-and-combine setting when

K > 1, computation time is reported as the sum of the maximum time used among

parallelized jobs and the time used to combine results. All simulation experiments

are conducted on a standard Linux cluster with 16 GB of random-access memory per

CPU.

Table 3.1 presents the simulation results from a moderate size dataset with N =

50, 000 and p = 300 so that methods without data partition can be repeated in

multiple rounds of simulations within a reasonable amount of time. Clearly, this

is a typical regression data setting with p � N . We consider Gaussian, logistic

and Poisson models, with responses generated from the mean model g−1 {E(Yi)} =∑p
j=1 βjXj, i = 1, . . . , N , and covariates {Xj}pj=1 generated from the multivariate

normal distribution with marginal mean of zero and variance of one, and with a

compound symmetric covariance structure with correlation ρ = 0.8, a simulation

setting similar to that provided by van de Geer et al. (2014). We report scenarios

when the full dataset is randomly divide into K = 25 and 100 subsets of equal sizes,
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each with sample size nk = 2, 000 and nk = 500, respectively. Results when K = 1,

including those from the golden standard, are also reported. We randomly select

s0 = 10 coefficients from β0 to be set at non-zero. The non-zero coefficients are

set at 0.3 for Gaussian models, 0.3 for logistic models, and 0.1 for Poisson models.

Labels META, VOTING and MODAC are used to denote the meta-analysis method,

the majority voting method and our method, respectively, whereas GLM, LASSO

and LASSOINF correspond to META, VOTING and MODAC, respectively, when

K = 1. The GLM column serves as the benchmark of all comparisons. Results are

averaged across 500 replications.

In the results of Gaussian linear model in Table 3.1, reassuringly, all methods per-

form as good as the golden standard method. META and MODAC exhibit identical

performances as that of GLM regardless of the choices of split K. Because under

the Gaussian model, solutions to META and MODAC are exact. In this case, divide-

and-combine methods gain significant computation time reduction without sacrificing

statistical accuracy. Among all methods, VOTING has the highest sensitivity and

specificity when ω = 12 for K = 25 and ω = 50 for K = 100. This shows the im-

provement of selection consistency when using divide-and-combine over LASSO, as

well as other methods based on inference.

However, the merit of providing exact solutions for divide-and-combine methods

under the Gaussian model does not carry forward to generalized linear models. It

is worthwhile to note that although p is much smaller than N , data partition may

result in p closer to nk for each sub-dataset of size nk. Regularization has been found

to be an appealing step in this situation to reduce the dimension of the optimization

so to achieve more stable numerical performance. The regularization is recommended

to handle the situation where the Newton-Raphson iterative algorithm is needed in

the search for the estimate, because the Hessian matrix may be poorly estimated

with p being large and close to nk. Especially, in the results of the logistic model
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Table 3.1: Simulation results, summarized from 500 replications, under the setting of
N = 50, 000 and p = 300 for Gaussian, logistic and Poisson models. Meth-
ods with different K are compared. GLM denotes the conventional gen-
eralized linear regression method; META denotes the conventional meta-
analysis method; LASSO denotes the conventional lasso method; VOTING
denotes the majority voting method; LASSOINF denotes lasso method
with inference; and MODAC denotes the proposed divide-and-combine
method.

Gaussian Model
GLM META META LASSO VOTING VOTING LASSOINF MODAC MODAC

(K = 1) (K = 25) (K = 100) (K = 1) (K = 25) (K = 100) (K = 1) (K = 25) (K = 100)
(ω = 12) (ω = 50)

Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Specificity 0.95 0.95 0.95 0.91 1.00 1.00 0.95 0.95 0.95

100× MSE of β̂A0 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01

100× MSE of β̂Ac0 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01

Absolute bias of β̂A0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Absolute bias of β̂Ac0 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01
Cov. prob. of βA0 0.95 0.95 0.95 — — — 0.95 0.95 0.95
Cov. prob. of βAc0 0.95 0.95 0.95 — — — 0.95 0.95 0.95

Asymp. st. err. of β̂A0 0.01 0.01 0.01 — — — 0.01 0.01 0.01

Asymp. st. err. of β̂Ac0 0.01 0.01 0.01 — — — 0.01 0.01 0.01
Computation time 34.85 0.62 0.20 31.50 2.16 2.08 36.61 2.28 2.14

Logistic Model
GLM META META LASSO VOTING VOTING LASSOINF MODAC MODAC

(K = 1) (K = 25) (K = 100) (K = 1) (K = 25) (K = 100) (K = 1) (K = 25) (K = 100)
(ω = 7) (ω = 20)

Sensitivity 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
Specificity 0.95 1.00 1.00 0.89 1.00 1.00 0.95 0.95 0.96

100× MSE of β̂A0 0.08 0.57 189.38 0.23 0.20 0.29 0.08 0.09 0.10

100× MSE of β̂Ac0 0.08 0.05 4.15 0.00 0.00 0.00 0.08 0.08 0.07

Absolute bias of β̂A0 0.02 0.07 1.36 0.04 0.04 0.05 0.02 0.02 0.02

Absolute bias of β̂Ac0 0.02 0.02 0.16 0.00 0.00 0.00 0.02 0.02 0.02
Cov. prob. of βA0 0.95 0.36 1.00 — — — 0.95 0.94 0.92
Cov. prob. of βAc0 0.95 1.00 1.00 — — — 0.95 0.95 0.96

Asymp. st. err. of β̂A0 0.03 0.03 1895.12 — — — 0.03 0.03 0.03

Asymp. st. err. of β̂Ac0 0.03 0.03 1893.23 — — — 0.03 0.03 0.03
Computation time 66.01 1.63 1.40 260.48 15.78 10.42 266.09 15.92 10.53

Poisson Model
GLM META META LASSO VOTING VOTING LASSOINF MODAC MODAC

(K = 1) (K = 25) (K = 100) (K = 1) (K = 25) (K = 100) (K = 1) (K = 25) (K = 100)
(ω = 7) (ω = 26)

Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Specificity 0.95 0.94 0.91 0.91 1.00 1.00 0.95 0.95 0.95

100× MSE of β̂A0 0.70 0.80 0.90 1.70 0.80 0.50 0.70 0.70 0.70

100× MSE of β̂Ac0 0.70 0.70 0.80 0.00 0.10 0.00 0.70 0.70 0.70

Absolute bias of β̂A0 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01

Absolute bias of β̂Ac0 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01
Cov. prob. of βA0 0.95 0.93 0.90 — — — 0.95 0.95 0.95
Cov. prob. of βAc0 0.95 0.94 0.91 — — — 0.95 0.95 0.95

Asymp. st. err. of β̂A0 0.01 0.01 0.01 — — — 0.01 0.01 0.01

Asymp. st. err. of β̂Ac0 0.01 0.01 0.01 — — — 0.01 0.01 0.01
Computation time 42.26 1.46 0.40 132.06 26.57 25.00 136.85 26.67 25.08
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Figure 3.1: Median computation time and interquartile range for conventional gener-
alized linear regression (open dots) and our proposed method of divide-
and-combine (solid dots) as N increases. The sample size of each sub-
dataset nk in our method is fixed at 500 by increasing K. Conventional
generalized linear regression fails when N = 106 due to memory limita-
tion.

presented in Table 3.1, META appears to be highly unstable within the numerical

computation of each sub-dataset in both cases when K = 25 and K = 100. As K

increases, the logistic regression in sub-datasets overestimates the bias and standard

error, which are then carried over to the final META estimate. Specifically, the

estimated mean of response π̂i may get very close to the boundaries of 0 or 1, and

consequently the estimated variance π̂i(1− π̂i) is close to 0, causing severe problems

to the matrix inverse. On the other hand, the proposed MODAC exhibits robust

performance similar to that of GLM. The bias of VOTING for Ac0 is higher than that

of GLM as expected due to the `1 penalty.

In the Poisson model section of Table 3.1, similar to our observation in the Gaus-

sian and logistic models, MODAC again gives the most stable results among all

divide-and-combine methods. On the other hand, META gives deviated coverage

probability than the nominal rate of 95% as well as poorer selection accuracy than

GLM. Although VOTING still gives the best variable selection results with ω care-

fully chosen, in practice, the choice of ω remains a challenging task when true signals

are fully unknown. Additional simulation results are provided as supplementary ma-

terial to show that the variable selection outcome is sensitive to the choice of ω in

VOTING.
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(c) Poisson
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Figure 3.2: The y-axis measures the ratio of mean squared error over that of the
conventional generalized linear regression, for regression coefficients in
set A0. Median and interqualtile range of the ratio for meta-analysis
(triangles) and our proposed method of divide-and-combine (solid dots)
are shown as the ratio p/nk increases. We fix N at 50, 000 and p at 300.
Conventional meta-analysis algorithm fails to converge for logistic and
Poisson regressions when p/nk is large.
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Figure 3.3: Coverage probability of regression coefficients in set A0 for conventional
generalized linear regression (open dots), conventional meta-analysis (tri-
angles) and our proposed method of divide-and-combine (solid dots) as
the ratio of p and nk increases. The total sample size N and number of
covariates p are fixed at 50, 000 and 300, respectively, for all cases. Con-
ventional meta-analysis algorithm fails to converge for logistic regression
when p/nk ≥ 0.3.
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In summary from Table 3.1, results under different generalize linear models are

in favor of the invocation of regularization to achieve consistent and stable mean

and variance estimation in the application of data partition to handle big data. We

see that MODAC is the most stable method that produces the most comparable

results to those of the golden standard, and is unaffected by the partition size K.

In contrast, the performance of META and VOTING varies depending on K. A

noticeable advantage of MODAC is that it requires less computation time than GLM

due to the virtue of scalability. Despite the fact that META is the fastest as it does

not involve the step of tuning parameter selection, its results are clearly unstable in

both the logistic and Poisson models. Although VOTING provides better variable

selection than MODAC, its results are sensitively dependent on the choice of the

voting threshold ω, which may often be hard to determine in practice.

Under the same model settings as those in Tables 3.1, we conduct additional

simulation experiments to explore the change of some important metrics in relation

to the total sample size N , the number of division K and the sample size of sub-

datasets nk. We present the results in Figures 3.1-3.3, each based on 100 replication.

Fig. 3.1 shows a comparison of computation time between MODAC and GLM as N

increases, while holding nk in MODAC fixed at 500. We also fix p at 300. We see

that the computational burden increases sharply for GLM as N increases, whereas the

computation time for MODAC remains almost the same in all three types of models

due to its scalability. Computation time for GLM when N = 106 is not reported

because the computation exceeds the maximum memory limit allowed on the Linux

cluster. Fig. 3.2 shows the ratio of mean squared error over the benchmark value

from GLM for β̂A0 as K increases, while fixing N = 50, 000 and p = 300, comparing

between MODAC and META. We see that the mean squared error of MODAC is

stable against the change of the ratio p/nk. In contrast, the mean squared error of

META quickly deviates from the mean squared error of GLM for both logistic and
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Poisson models as p/nk increases. In Fig. 3.3, we compare the coverage probability

of βA0 between GLM, META and MODAC. The 95% confidence interval coverage

probability by MODAC remains close to the nominal level, whereas the coverage

probability of META deviates from 95% when p/nk goes toward one, especially in

the case of the logistic model.

3.5 Data Example

We illustrate a statistical inference application of our method using a publicly

available dataset from the National Highway and National Automotive Sampling

System (NASS) Crashworthiness Data System (CDS) between the years of 2009 and

2015. The NASS-CDS data contains detailed information of about 5,000 crashes

each year sampled across the US. The response variable of interest is injury severity,

which is dichotomized as 1 if a crash leads to suffer moderate or severer injury,

and 0 if minor or no injury. Awaring of the high dependency of outcomes from

the same vehicle, we only include drivers in our study. The full data consists of

N = 37, 535 samples, and 48 covariates. The dataset was randomly partitioned

and stored as K = 50 sub-datasets, each with sample size of about 750. Table 3.2

shows the estimated coefficients, standard errors and p-values of candidate risk factors

from logitc regressions based on GLM, META and MODAC. The computation time

using MODAC is 0.66 second, one half of the time required by GLM, which is 1.17

seconds. MODAC produces consistent inference about the risk factors as that of

GLM. Although META is super fast and finishes in 0.03 second, the inference results

deviate from those of GLM and MODAC. Specifically, as inferred by the golden

standard GLM method and MODAC, African American are less likely to suffer from

modeterate to servere injury given in a car accident than White, and accidents are

more likely to result in minor injuries on a Wednesday than a Sunday. On the other

hand, META is not able to capture these two effects as its estimated bias and variance

52



Table 3.2: Estimation and inference results of association study between potential
risk factors and binary injury outcome. Logistic model is fitted using
the conventional generalized linear regression method (GLM), the meta-
analysis method (META), and our proposed method (MODAC). Run time
is presented in square brackets next to the method names.

GLM (1.17s) META (0.03s) MODAC (0.62s)
Variable Estimate Std. Error p-value Estimate Std. Error p-value Estimate Std. Error p-value

AGE 0.08 0.01 0.00 0.08 0.01 0.00 0.08 0.01 0.00
OTHERPASS -0.17 0.03 0.00 -0.16 0.03 0.00 -0.17 0.03 0.00
BELOW14 -0.31 0.06 0.00 -0.27 0.06 0.00 -0.26 0.05 0.00
FEMALE -0.08 0.03 0.01 -0.08 0.03 0.02 -0.08 0.03 0.01
WEIGHT 0.10 0.01 0.00 0.09 0.01 0.00 0.10 0.01 0.00
HEIGHT -0.09 0.02 0.00 -0.08 0.02 0.00 -0.09 0.02 0.00
PARUSE -1.07 0.03 0.00 -1.00 0.03 0.00 -1.05 0.03 0.00
LANES 0.03 0.01 0.03 0.03 0.01 0.04 0.03 0.01 0.03
SPLIMIT 0.01 0.01 0.65 0.00 0.01 0.81 0.00 0.01 0.72
VEHAGE 0.01 0.01 0.43 0.01 0.01 0.40 0.01 0.01 0.40
DRINKING 0.00 0.04 0.90 0.01 0.05 0.78 0.00 0.04 0.90
DRGINV 0.03 0.04 0.51 0.03 0.05 0.49 0.03 0.04 0.54
HISPLAT 0.12 0.04 0.00 0.11 0.04 0.00 0.11 0.04 0.00
CURBWGT -0.02 0.02 0.30 -0.01 0.02 0.48 -0.02 0.02 0.34
SURCOND 0.00 0.05 0.98 0.03 0.05 0.60 0.00 0.05 0.98
PREVACC -0.11 0.03 0.00 -0.10 0.03 0.00 -0.10 0.03 0.00
FOURWHDR 0.01 0.04 0.69 0.02 0.04 0.67 0.01 0.04 0.70
OCCRACEblack -0.07 0.03 0.03 -0.06 0.03 0.07 -0.07 0.03 0.03
OCCRACEasian -0.08 0.07 0.23 -0.01 0.07 0.83 -0.08 0.07 0.23
CLIMATE21 -0.02 0.06 0.77 -0.03 0.06 0.58 -0.02 0.06 0.77
REGION2Mid Atlantic -0.16 0.04 0.00 -0.15 0.04 0.00 -0.15 0.04 0.00
REGION2Northeast -0.07 0.06 0.22 -0.04 0.06 0.52 -0.07 0.06 0.23
REGION2Northwest 0.27 0.05 0.00 0.26 0.05 0.00 0.28 0.05 0.00
REGION2South -0.29 0.05 0.00 -0.26 0.05 0.00 -0.27 0.04 0.00
REGION2Southeast -0.29 0.06 0.00 -0.25 0.06 0.00 -0.26 0.06 0.00
REGION2Southwest -0.13 0.04 0.00 -0.12 0.04 0.00 -0.12 0.04 0.00
LGTCOND2Dark 0.05 0.05 0.24 0.07 0.05 0.16 0.05 0.04 0.26
LGTCOND2DawnDusk -0.02 0.06 0.76 0.03 0.07 0.71 -0.02 0.06 0.76
LGTCOND2Dk Lighted -0.03 0.03 0.33 -0.02 0.03 0.45 -0.03 0.03 0.33
MONTH2Fall 0.01 0.04 0.83 0.00 0.04 0.93 0.00 0.03 0.88
MONTH2Spring 0.12 0.03 0.00 0.11 0.04 0.00 0.11 0.03 0.00
MONTH2Winter 0.03 0.04 0.34 0.03 0.04 0.46 0.03 0.04 0.37
VEHTYPE2Truck -0.05 0.04 0.19 -0.05 0.04 0.21 -0.05 0.04 0.18
TRAFFLOW2D No Bar 0.02 0.04 0.64 0.01 0.04 0.73 0.01 0.04 0.71
TRAFFLOW2No Divid -0.02 0.04 0.63 -0.03 0.04 0.49 -0.02 0.04 0.53
TRAFFLOW2One Way -0.19 0.06 0.00 -0.16 0.06 0.01 -0.17 0.06 0.00
DAYWEEK2Fri -0.15 0.04 0.00 -0.15 0.04 0.00 -0.15 0.04 0.00
DAYWEEK2Mon -0.21 0.05 0.00 -0.19 0.05 0.00 -0.21 0.04 0.00
DAYWEEK2Sat -0.19 0.04 0.00 -0.18 0.04 0.00 -0.18 0.04 0.00
DAYWEEK2Thu -0.17 0.04 0.00 -0.17 0.05 0.00 -0.17 0.04 0.00
DAYWEEK2Tue -0.22 0.05 0.00 -0.21 0.05 0.00 -0.21 0.04 0.00
DAYWEEK2Wed -0.09 0.04 0.03 -0.09 0.05 0.06 -0.09 0.04 0.03
YEAR2010 -0.06 0.04 0.15 -0.05 0.04 0.26 -0.05 0.04 0.18
YEAR2011 0.01 0.04 0.78 0.01 0.04 0.83 0.01 0.04 0.81
YEAR2012 0.11 0.04 0.01 0.11 0.04 0.01 0.10 0.04 0.01
YEAR2013 0.08 0.04 0.08 0.07 0.04 0.09 0.07 0.04 0.09
YEAR2014 0.04 0.05 0.32 0.06 0.05 0.22 0.04 0.04 0.34
YEAR2015 0.14 0.05 0.00 0.15 0.05 0.00 0.14 0.05 0.00
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are inflated in sub-datasets as we have seen in Table 3.1.

3.6 Discussion

In this chapter, we proposed a scalable regression method in the context of gen-

eralized linear models with reliable statistical inference through the seminal work of

confidence distribution. An earlier version of this work has been made available online

(Tang et al., 2016). Although the divide-and-combine idea has been widely adapted

in practice to solve computational challenges arising from the analysis of big data,

statistical inference has been little investigated and the conventional meta-analysis

method has been taken for granted. We found in this chapter that regularization in

the estimator is very appealing in the context of generalized linear models, especially

in the logistic regression, because clearly this regularization enables to effectively

increase the robustness of scalable regression analysis. Furthermore, the reliable sta-

tistical inference gives rise to great practical usefulness of the divide-and-combine

strategy compared to many selection-only methodologies. Our method can be readily

built-in into some of the most popular open source parallel computing libraries, such

as MapReduce (Dean and Ghemawat , 2008) and Spark (Zaharia et al., 2010). Source

code to execute the proposed divide-and-combine method on distributed Hadoop

clusters is made available as map and reduce functions, with additional instructions,

available for download at http://www.umich.edu/∼songlab/software.html#MODAC.

The work in this chapter has been extended to fit the ordinal logistic model by a sim-

ple data augmentation step for the application of ranking problems; see more details

in Appendix F.

Under the small data situation, divide-and-combine may not be needed because

it might slow down the computation. Nevertheless, it is always preferable to impose

regularization to robustify the solution, as we see that numerical results may be

unstable when n is close to p, specifically, for logistic and Poisson models. In other
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words, our method when n is small and with K = 1 and is still more robust than

the maximum likelihood estimator, but requires some additional computation. Based

on our simulation experiences, the partition size K should be chosen to ensure that

nmin is reasonably larger than p, say p/nmin ≤ 0.5. For example, if the number of

available computer nodes is c, and if each node is capable of processing N/c amount

of the samples all at once, we suggest setting K = c so that all data partitions can be

processed at once. If sample size N/c is beyond the capacity of a single node, then

we select K = mc where m is the smallest positive integer possible, such that each

node will sequentially process m data partitions, each with size N/K.
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CHAPTER IV

Homogeneity Pursuit in Pattern-Mixture Models

by Penalized Generalize Estimating Equations

4.1 Introduction

The method of generalized estimating equations (GEE) by Liang and Zeger (1986)

is widely used in many statistical problems, for example, to perform parameter es-

timation and inference in correlated data analysis (Zeger et al., 1988; Lipsitz et al.,

1997; Song , 2007). It has been one of the standard methods of choice due to its

minimal model specification of the first two moments, computational simplicity, and

estimation consistency albeit misspecification of correlations structure. This chap-

ter is motivated by a prospective cohort study in which an extension of the classic

GEE method is proposed to handle nonignorable missing data in the framework of

pattern-mixture models. We start by introducing the background of our motivating

study data.

The Intern Health Study (IHS) is an NIH funded longitudinal cohort study that

assesses stress and mood in medical interns at institutions around the US (Sen et al.,

2010). This study is motivated by the status quo that physicians are 2-3 times more

likely to die by suicide (Schernhammer and Colditz , 2004), and the level of suicidal

ideation is elevated in medical students and residents, and appears to increase with
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Figure 4.1: Response availability across the four longitudinal visits for participants
in the IHS data set.

the onset of training (Rotenstein et al., 2016). The overarching aim of IHS is to

understand the factors involved in stress and depression among interns in order to

foster a healthier, more educational environment for interns and safer care for the

patients that they treat. Each year, IHS enrolls over 3,000 new interns into the study.

Participating interns are recruited to the study before the start of their training for

a baseline assessment. Then for every three months into their medical internship,

data on mental well-being and other risk factors are collected through a mobile smart

phone application. Specifically, participants will complete an initial 20-minute survey

at baseline, and a short 5-minute follow-up survey at each of the four longitudinal

visits. In this chapter, we use data collected between the years of 2012 and 2014

from IHS on participants who have responded to at least two consecutive screenings.

This results in a pool of over 2,000 qualified subjects. Over 30% of the participants

under consideration have at least one nonrespondent visit. Figure 4.1 shows response

availability of subjects across all visits, sorted by data availability patterns. Is can be

seen that missing data are pervasive, and none of the previous studies and publications

on IHS data have systematically investigate the modeling bias caused by missing data.

Thus, in this chapter, we introduce a new statistical methodology to systematically

handle nonresponse missing data with flexible assumptions.

For longitudinal studies similar to IHS where it is often difficult to record the full

response data for everyone and missing data are pervasive, statistical analyses should
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take into consideration the missing mechanism in order to avoid model estimation

bias. Two missing data mechanisms commonly assumed in the statistical literature

are missing completely at random (MCAR) and missing at random (MAR) (Rubin,

1976; Little and Rubin, 1987), or in other words, missing data are ignorable under

the likelihood estimation and inference – the process of missing data is governed

by observed data. Beyond the likelihood methodology, as noted in Liang and Zeger

(1986), as a quasi-likelihood estimation and inference approach, GEE will yield biased

estimators if missing data are not MCAR. To overcome, in the case of MAR missing

data, inverse probability weighted GEE (Robins et al., 1995) can be used to eliminate

the systematic bias due to missingness. Nevertheless, MCAR and MAR may not be

valid, and MAR assumption is generally not testable. There is very limited progress

in the recent literature on the handling of nonignorable missing data, the case that

the missing data mechanism is dependent on missing data themselves. The primary

focus of this chapter is to develop a new method of longitudinal data analysis in the

nonignorable missing data framework of pattern-mixture models.

Little (1993, 1994) as well as Ekholm and Skinner (1998) have considered pattern-

mixture models in which incomplete data are stratified by patterns of missing values,

and as a result, distinct models are specified within each missing data pattern stra-

tum. Testing for MCAR hypothesis (Chen and Little, 1999; Qu and Song , 2002)

may be used to determine if stratification is needed. If so, stratification has been

an effective strategy to accommodate inhomogeneous missing patterns resulted from

nonignorable missingness. A technical issue pertaining to the application of pattern-

mixture modeling approach is over-stratification; that is, excessive stratification is

imposed in the analysis. One consequence of this over-stratification is to unnecessar-

ily increase the variance of estimates when missing data are indeed MCAR (Chen and

Little, 1999). To systematically deal with this difficulty, we propose a penalized GEE

method that enables us to fuse some “similar” stratum-specific parameters to reduce
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the number of strata but still achieve adequate stratification. The rationale of our

approach is that similar strata should undergo merging so that resulting individual

strata will end up with larger sample sizes.

Our approach is developed in the framework of penalized GEE. The penalized

estimating equations is first studied by Fu (2003) to address collinearity issue, with

the use of the bridge penalty. Johnson et al. (2008) extends the smoothness require-

ment by Fu (2003) to a more general discrete case with the consideration of variable

selection, and establishes the oracle properties for a family of convex and nonconvex

penalties. Later, Wang et al. (2012) considers multivariate correlated responses in

that some key asymptotic oracle properties for variable selection are shown in the

case of the number of covariates diverges. We adopt the penalized GEE with fused

lasso penalty for the purpose of fusing similar strata.

The rest of this chapter is organized as follows. Section 4.2 revisits GEE in the

setting of pattern-mixture models. Section 4.3 introduces our method of GEE with

the fused penalties. Section 4.4 discusses an efficient algorithm for implementation.

Section 4.5 presents some key asymptotic properties for the proposed estimator. We

demonstrate our method with simulation experiments in Section 4.6 and apply it to

the motivating IHS data in Section 4.7. Finally, we conclude in Section 4.8 with some

discussion on the generalization of our method.

4.2 Pattern-Mixture Approach

We begin with some notation for GEE with missing values. Consider a longitudinal

study of M designed visits for each of N individuals. If no observation missing, the

design matrix of the ith individual is denoted as XT
i = (xi1, . . . ,xiM), a p × M

matrix, where xij is a p-element covariate vector measured at visit j, j = 1, . . . ,M .

Similarly, the longitudinal response of subject i is Y T
i = (Yi1, . . . , YiM). Denote

the first two marginal moments of Yij by µij = E(Yij) and σ2
ij = var(Yij). We
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assume in this chapter that the marginal density of Yij is in the family of exponential

dispersion models (Jorgensen, 1997), where the mean µij follows a generalized linear

model, g(µij) = xTijβ, and variance σ2
ij is given by σ2

ij = φv(µij), where v(·) is

the unit variance function. In this chapter, we consider canonical link function g;

that is, ġ(µ) = v−1(µ). We also assume that outcome-covariate pairs (Yij,xij) are

simultaneously missing or observed, as is the case in the IHS study. Due to dropouts

or intermittent missing visits, we may observe R distinct missing patterns. Stratify

N subjects by the R missing patterns, each stratum has sample size nk, k = 1, . . . , R,

and N =
∑R

k=1 nk. Subjects in the kth pattern are observed at the set of visits

Lk = {j : `kj = 1, j = 1, . . . ,M} where `kj = 1 if visit j is observed and 0 otherwise.

If missing observations are MCAR, according to Liang and Zeger (1986), the GEE

estimator for βT = (β1, . . . , βp) is the solution to the set of equations based on the

observed cases,
∑N

i=1
∂µobsi (β)

∂β
(V obs

i )−1(Y obs
i −µobsi (β)) = 0. We use subscript Lk to de-

note a subvector or submatrix corresponding to the indices of observed visits. Equiva-

lently, the GEE can be written as
∑R

k=1

∑nk
i=1

∂µki,Lk (β)

∂β
V −1ki,Lk(Yki,Lk −µki,Lk(β)) = 0,

where
∂µki,Lk (β)

∂β
= XT

ki,LkAki,Lk(β), and Vki,Lk = A
1/2
ki,Lk(β)RLk(τ )A

1/2
ki,Lk(β) with

Aki(β) = diag(σ2
ki1(β), . . . , σ2

kim(β)) and R(τ ) a working correlation matrix whose

structure is prespecified with correlation parameter τ . For notation simplicity, we

suppress Lk in the remaining discussion. Then the estimating equations are expressed

as
R∑
k=1

nk∑
i=1

Ski(β) = 0 (4.1)

where

Ski(β) = XT
kiA

1/2
ki (β)R−1k (τ )A

−1/2
ki (β)(Yki − µki(β)).

Equation (4.1) is a GEE under the MCAR mechanism based on all available data.

When the MCAR assumption is violated, GEE is invalid due to biased sampling

(Song , 2007). A popular method of choice to deal with nonignorable missingness is
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the pattern-mixture model proposed by Little (1993), in which the joint distribution

of outcomes and covariates is assumed to be dependent on the missing patterns.

Following the stratification principle in the pattern-mixture models, Chen and Little

(1999) proposes to solve the following pattern-stratified GEE:

R∑
k=1

nk∑
i=1

Ski(βk) = 0, (4.2)

where regression coefficient vector βk becomes stratum (or pattern) dependent. Equa-

tion (4.2) will be solved for βk within each stratum:
∑nk

i=1 Ski(βk) = 0, leading to

stratified estimators for respective data patterns. A Wald-type test proposed by Chen

and Little (1999) may be used to test the MCAR assumption and guide the decision

between MCAR GEE (4.1) and pattern-mixture GEE (4.2). If the MCAR holds,

there exists β∗ such that E{Sk(β∗)} = 0 for all R patterns, and such β∗ may be

regarded as the common true value across all strata. On the other hand, let β̂k and

Σ̂k be the GEE estimator of βk and estimated sandwich variance of β̂k from stratum

k. A meta estimator is given by β̂c = (
∑R

k=1 Σ−1k )−1
∑R

k=1 Σ−1k βk. Then, by Chen

and Little (1999), a test statistics for the null hypothesis H0: exist a β such that

E{Sk(β)} = 0 (k = 1, . . . , R) is

d =
R∑
k=1

(β̂k − β̂c)TΣ−1k (β̂k − β̂c), (4.3)

which is showed to follow asymptotically a χ2
v distribution with v = R(p− 1). Other

tests for MCAR are also developed in the literature (see for examples Diggle (1989);

Qu and Song (2002); Qu et al. (2011)).
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4.3 Fusion Learning with Nonignorable Missing Values

In this section we develop a fusion learning approach to merging similar missing

data patterns in longitudinal studies. This new method provides a generalization of

the existing pattern-mixture models introduced in Section 4.2 in the sense that strat-

ification may be relaxed to acquire a better GEE estimator. The proposed method

takes initial estimates from individual GEE models stratified by the missing patterns

and proceeds to fuse similar estimates across missing pattern strata.

Instead of estimating one common set of coefficients (β1, . . . , βp) as typically

done under MCAR, we begin with estimates of R distinct sets, each set for one

missing pattern. We denote the stratified parameters as βT = (βT1 , . . . ,β
T
p ) =

(β11, . . . , β1R, . . . , βp1, . . . , βpR), where βlk is the regression coefficient for covariate

l in stratum k. Different from the current approach to solving R separate GEEs

in (4.2), we propose to solve these pR parameters jointly by the following penalized

GEE:

U(β) = R−1


n−11 S1(E1β)

...

n−1R SR(ERβ)

− qλ(|Dβ|) sign(Dβ) = 0, (4.4)

where Sk(Ekβ) =
∑nk

i=1 Ski(Ekβ) is the GEE of the kth stratum, Ekβ = βk =

(β1k, . . . , βpk)
T . Here ET

k = (ek, eR+k, . . . , e(p−1)R+k) with ei the ith unit vector of

length pR. The penalty term qλ(β)T = (qλ(β11), . . . , qλ(βpR)) is a pR-dimensional

function with qλ(x) defined on x > 0 and sign(β)T = (sign(β11), . . . , sign(βpR)) is a

pR-dimensional element-wise sign function. Equation (4.4) is similar to the penalized

estimating equations studied in Fu (2003), Johnson et al. (2008) and Wang et al.

(2012). Deviating from the focus of variable selection in the previous work, here we

consider identifying homogeneous clustering structures of parameters in β, via Dβ,

where matrix D sets up contrasts between differences of elements in β to achieve

fusion. This is the same idea of fused lasso (Tibshirani et al., 2005), and the form of
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D will be specified in Section 4.4. Stratum-specific weights n−1k , k = 1, . . . , R, ensure

all missing patterns are weighted equally so that estimates from smaller strata would

not be discounted in comparison to those from larger strata. The tuning parameter

λ is some nonnegative number that determines the weight of the penalty.

In the estimating equation (4.4), function qλ is specified as subdifferentials of

certain penalty functions. Some candidates for qλ(·) include:

(i) Least absolute shrinkage and selection operator (LASSO) penalty (Tibshirani ,

1996): qλ(x) = λ, x > 0;

(ii) Smoothly clipped absolute deviation (SCAD) penalty (Fan and Li , 2001): qλ(x) =

λ{I(x ≤ λ) + (aλ−x)+
(a−1)λ I(x > λ)}, x > 0, a > 2;

(iii) Minimax concave penalty (MCP) (Zhang , 2010): qλ(x) = λ (aλ−x)+
aλ

, x > 0,

a > 1.

Although the LASSO penalty is convex with a guaranteed global optimal solution

and computational ease, the resulting regularized solution tends to overshrink large

coefficients and to produce too many subgroups (Ma and Huang , 2017). On the

other hand, both SCAD and MCP penalties are nonconvex functions in that shrinkage

tapers off for large coefficients. In this chapter, we choose the MCP type qλ(·) function

as it tends to provide more distinctive clustering in its solution paths than SCAD. This

feature can also be seen in Figure 4.2, with plots of the different penalty functions and

their respective solutions paths for fusion learning. Both SCAD and MPC penalties

taper off quickly for large β values, leading to hierarchical clustering-like solution

paths.

Since the function qλ is discontinuous at 0, an exact solution to (4.4) might not

exist. A merit of discontinuity is to create sparsity in the solution, namely, some roots

are exactly zero. In this chapter, we define the solution β̂ to (4.4) as an approximate

solution such that U(β̂) = o(an) for a sequence an → 0 (Wang et al., 2012).
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Figure 4.2: Plots of penalty functions (top) and solution paths (bottom) of fusion
learning with LASSO, SCAD and MCP, respectively.

4.4 Penalized GEE Estimation

In this section, we present an efficient algorithm to obtain a solution for β to the

penalized GEE in (4.4). We begin with specifying the form of contrast matrix D. Let

D = block-diag(D1, . . . ,Dl, . . . ,Dp) be an Rp × Rp dimension block-diagonal ma-

trix for specification of contrasts between stratum-specific coefficients for individual

covariates, βl, l = 1, . . . , p. Following Wang et al. (2016), Ke et al. (2015) and Tang

and Song (2016), we utilize the information of parameter ordering in the formulation

of matrix Dl to remove redundant penalties. For an example of four missing patterns,

R = 4, utilizing the known ordering of βl for covariate l, say, βl1 < βl4 < βl3 < βl2,
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we come up with matrix Dl of the following form:

Dl =



1 0 0 0

1 0 0 −1

0 0 1 −1

0 1 −1 0


.

The first row of Dl is the reference parameter that has the smallest amount in this

group, which may be shrunk toward zero via variable selection. Clearly, Dl is of full

rank, thus invertible.

Note that the stratum-specific weights n−1k in (4.4) may be absorbed into Sk as

subject weights, that is,

Sk(βk) =

nk∑
i=1

XT
kiA

1/2
ki (βk)R

−1
k (τ )wkiA

−1/2
ki (βk)(Yki − µki(βk)),

where wki = n̄/nkI and n̄ =
∑R

k=1 nk/R. As a result, solving (4.4) is equivalent to

solving the following

S(β)−Nqλ(|Dβ|) sign(Dβ) = 0, (4.5)

where ST (β) = (ST1 (β1), . . . ,S
T
R(βR)), with βk = Ekβ. Denote θ = Dβ. Since D

is invertible, we write the left hand side of (4.5) as a function of θ, and solve the

following equation:

UD(θ) = SD(θ)−Nqλ(|θ|) sign(θ) = 0, (4.6)

where SD(θ) = S(D−1θ) = (ST1 (E1D
−1θ), . . . ,STR(ERD

−1θ))T . Consequently, β =

D−1θ, or βl = D−1l θl, l = 1, . . . , p, one-to-one correspondence between β and θ. In

fact, UD(θ) gives a penalized GEE whose solution θ̂ may be efficiently obtained by
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an iterative algorithm (Wang et al., 2012). Subsequently, we obtain solution β̂ for

(4.5) by transformation, β̂ = D−1θ̂.

Following Wang et al. (2012), we calculate estimate θ̂ in (4.6) using a Newton-

Raphson iterative algorithm for the GEE in combination with the minorization-

maximization algorithm for nonconvex penalty (Hunter and Li , 2005). To proceed,

for a small ε > 0, we obtain the penalized GEE estimate θ̂T for θT = (θT1 , . . . ,θ
T
p ) =

(θ11, . . . , θ1R, . . . , θp1, . . . , θpR), with θl = Dlβl, l = 1, . . . , p, as the solution that

approximately satisfies

Skl(EkD
−1θ)−Nqλ(|θ̂lk|) sign(θ̂lk)

|θ̂lk|
ε+ |θ̂lk|

, l = 1, . . . , p, k = 1, . . . , R,

where Skl(·) denotes the l-th element of Sk(·). The algorithm alternately updates θ̂,

τ̂ and φ̂. The updating step for θ̂, at iteration b, is

θ̂b = θ̂b−1 + {HD(θ̂b−1) +NJ(θ̂b−1)}−1{SD(θ̂b−1)−NJ(θ̂b−1)θ̂b−1}

where HD(θ̂b−1) = diag
{
H1(E1D

−1θ̂b−1), . . . ,HR(ERD
−1θ̂b−1)

}
with

Hk(EkD
−1θ̂b−1) =

nk∑
i=1

XT
kiA

1/2
ki (EkD

−1θ̂b−1)R−1k (τ̂ b−1)wkiA
1/2
ki (EkD

−1θ̂b−1)Xki,

and

J(θ̂b−1) = diag

{
qλ(|θ̂b−111 |+)

ε+ |θ̂b−111 |
, . . . ,

qλ(|θ̂b−11R |+)

ε+ |θ̂b−11R |
, . . . ,

qλ(|θ̂b−1p1 |+)

ε+ |θ̂b−1p1 |
, . . . ,

qλ(|θ̂b−1pR |+)

ε+ |θ̂b−1pR |

}
.

Both correlation and dispersion parameters τ̂ and φ̂ can be estimated by the method

of moments as suggested in the standard GEE, e.g., Liang and Zeger (1986), once β̂b

is obtained by β̂b = D−1θ̂b. In this chapter, we choose a = 1.5 in the MCP penalty

and ε = 10−6 in the above approximation as similar to Wang et al. (2012). It is
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worth noting that the developed algorithm is applicable to penalized GEE with other

nonconvex penalties despite our choice of MCP in this chapter.

Since the true ordering of coefficients across missing patterns is unknown in prac-

tice, we propose to use the estimated ordering by the method of ranks. This method

has been studied by Wang et al. (2016) and Tang and Song (2016). Thus, the contrast

matrix D is in fact data-dependent, which we denote as Dnk . However, for simplicity,

we suppress the index notation except in Section 4.5. We select the tuning value of

λ based on the extended regularized information criterion (ERIC) (Hui et al., 2015)

of the following form

ERIC(λ) = SD(θ̂λ)
TCD(θ̂λ)

−1SD(θ̂λ) + 2v log(N/λ)

p∑
j=1

df(θ̂jλ)

where

CD(θ̂) = block-diag{S1(E1D
−1θ̂)S1(E1D

−1θ̂)T , . . . ,SR(ERD
−1θ̂)SR(ERD

−1θ̂)T},

v is some positive constant, and df(θ̂j) denotes the number of nonzero values in θ̂j.

The subscript λ in θ̂λ is used to indicate its dependence on λ. The additional tuning

parameter v provides flexibility to control the severity of penalization. According

to Hui et al. (2015), a v smaller than 0.5 is better suited to high-dimensional data,

thus we set v = 0.4 throughout this chapter. Starting from λ = 0, we fit a path of

solutions θ̂λ for a sequence of λ ≥ 0. To accelerate computation, for the next value

λ, we employ the warm-start technique and use θ̂ from the current value of λ as the

initial value of the iterative algorithm.
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4.5 Theoretical Results

In this section, we consider the asymptotic properties for the estimator of the

fusion GEE when the total number of visits M and the number of missing patterns

R are finite and fixed, which is common for longitudinal studies, and we let n =

mink nk →∞, i.e., sample size of the smallest stratum goes to infinity. Then, without

loss of generality, we let nk = n for k = 1, . . . , R.

The work by Johnson et al. (2008) has shown that the estimator for the penalized

GEE in (4.6) behaves asymptotically as if the true model is known a priori, i.e., the so

called oracle property, for a broad class of penalty functions qλ(·), including LASSO

and SCAD. We show that this property also holds for our fusion estimator with MCP.

Let βT∗ = (βT∗1, . . . ,β
T
∗p) = (β∗11, . . . , β∗1R, . . . , β∗p1, . . . , β∗pR), denote the true

values of β with some clustered structures, correspondingly, θ∗ = Dβ∗ is sparse with

some zero elements. Suppose that A = {l : θl 6= 0, l = 1, . . . , pR}. Following Johnson

et al. (2008), we have the following theoretical results:

Theorem IV.1. Under the regularity conditions listed in Appendix G, let DN be the

contrast matrix based on root-N consistent estimates such that limNDN = D, the

approximate solution θ̂ to the penalized GEE in (4.6) with MCP penalty satisfies:

(i) (Selection Consistency) limN P (θ̂l = 0 for l /∈ A) = 1;

(ii) (Asymptotic Normality)

√
N(θ̂A − θ∗A)→d N (0,ΣA)

where ΣA = {HD
A (θ∗) +QA(θ∗)}−1V D

A (θ∗){HD
A (θ∗) +QA(θ∗)}−1.

In Theorem IV.1, HD(θ∗) = block-diag{HD
1 (θ∗1), . . . ,H

D
R (θ∗R)}, V D(θ∗) =

block-diag{V D
1 (θ∗1), . . . ,V

D
R (θ∗R)}, and Q(θ∗) = diag{−q′λN (|θ∗|) sign(θ∗)}. More

specifically, for k, HD
k (θ) =

∑nk
i=1X

T
kiA

1/2
ki (EkD

−1θ)R−1k (τ )A
1/2
ki (EkD

−1θ)Xki and
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V D
k (θ) =

∑n
i=1X

T
kiA

1/2
ki (EkD

−1θ)R−1k (τ )A
−1/2
ki (EkD

−1θ) var(Yki)A
−1/2
ki (EkD

−1θ)

R−1k (τ )A
1/2
ki (EkD

−1θ)Xki. The proof of above theorem is presented in Appendix G.

Subsequently, we can obtain similar asymptotic results for the estimator β̂ for (4.5).

The theorem implies that with probability one, we are able to recover the true struc-

ture of the parameters, and that the nonzero differences of the adjacent parameters

follow asymptotically a multivariate normal distribution.

4.6 Simulation study

In this section, we perform two simulation experiments to illustrate the perfor-

mance of the proposed fusion learning method on the application of pattern-mixture

models for nonignorable missingness. The assessment of our method includes the

aspects of parameter estimation, model selection, and robustness against specifi-

cation of working correlation structure. We consider both the linear model and

the logistic model. For both cases, we simulate longitudinal data with M = 4

visits, where missing patterns are set as two or more consecutive measurements

observed. In other words, the generated samples belong to one of the following

R = 8 patterns Lk = {j : `j = 1, j = 1, . . . ,M}, k = 1, . . . , R, where `1`2`3`4 ∈

{0011, 0110, 0111, 1011, 1101, 1100, 1110, 1111}. For simplicity, we consider equal sam-

ple sizes nk = n = 100 for all the missing patterns, k = 1, . . . , R.

For the linear model with continuous outcomes, the following true model is used

to generate data:

Ykij = βk1Xkij1 + βk2Xkij2 + βk3Xkij3 + βk4Xkij4 + βk5Xkij5 + εkij

for k = 1, . . . , R, i = 1, . . . , n, and j ∈ Lk, where βTk = (βk1, . . . , βk5) is the true

model coefficient vector under pattern k and εki is the marginal errors for subject

i in pattern k derived from (εki1, εki2, εki3, εki4)
T ∼ N4(0, φR(τ)). In our simulation
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experiments, data are simulated with exchangeable correlation where the true corre-

lation parameter is τ = 0.6. The covariates XT
kij = (Xkij1, . . . , Xkij5), k = 1, . . . , R,

i = 1, . . . , n, and j ∈ Lk, are simulated independently from a standard multivariate

normal distribution. We let the true coefficients of covariates X1,X3 and X5 to be

homogeneous across missing patterns; they are, βT1 = (β11, . . . , β1R) = (0.5, . . . , 0.5),

βT3 = (β31, . . . , β3R) = (0.2, . . . , 0.2), and βT5 = (β51, . . . , β5R) = (0.0, . . . , 0.0). We

let the true coefficients of X2 and X4 to be heterogeneous, each with K distinct

groups, where δ denotes the gaps between distinct groups. We vary the value of K as

K = 1, 2, 3, 4. For example, for the case of K = 2, we randomly partition elements in

βT2 = (β21, . . . , β2R) and βT4 = (β41, . . . , β4R) into two groups, and the true values for

one group are larger than the other group by δ. One example may look like the follow-

ing vectors of coefficients: β2 has two groups with values 0.3 and 0.3+δ, while β4 has

two groups with values 0 and δ, i.e., βT2 = (0.3, 0.3+δ, 0.3, 0.3, 0.3, 0.3+δ, 0.3, 0.3+δ)

and βT4 = (0, δ, 0, 0, 0, δ, 0, δ). Likewise, we create heterogeneous groups for K = 3

and 4. Note that K = 1 corresponds to the homogeneous coefficients. To see the

performance of fusion learning, we vary δ to demonstrate the ability of our method

in detecting different levels of differences and recover the underlying group structures

generated by the simulation models.

We compare our method with a two-step pattern-mixture modeling (denoted by

PMM) approach given as follows: First, conduct a test for MCAR (or test for het-

erogeneity) by the Wald-type test statistic in Chen and Little (1999); then, fit either

a common GEE if we fail to reject MCAR, or fit a pattern-stratified GEE if the test

rejects MCAR. The metrics used to evaluate the two-step method include power of

the MCAR test, mean squared error between the estimated and the true coefficients.

To compare, for the fusion learning method, we report the number of times coeffi-

cients are not completely fused, denoted as sensitivity for heterogeneity, and mean

squared error between the estimated and the true coefficients. Additionally, we report
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the number of groups estimated by the fusion approach. Although fusion learning

method does not directly test for MCAR, the sensitivity is a comparable metric to

power in the two-step PMM approach.

Table 4.1 summarizes the results for the linear model with independent working

correlation for varying values of K and δ, each from 500 replications. The random

error εk,i is generated with correlation τ = 0.6 but R(·) = I is used. It is interest-

ing to see that the sensitivity of fusion learning is larger than the power of PMM,

indicating that fusion learning is more often to call heterogeneity. In the case when

K = 1, power of PMM corresponds to Type-1 error. We can see that even for the

PMM method, Type-I error is not well controlled at 5% when the null is true. The

MSEs of regression coefficients are almost consistently lower in the fusion learning

method than the PMM approach, which reflects the advantage of our method in fully

utilizing the underlying parameter structures to improve estimation. Especially, the

MSEs for the homogeneous covariates are much smaller in the fusion approach. As

for the detecting of grouping structures, we can see that as gap δ becomes larger,

the estimated number of groups gets closer to the true number of groups for the

fusion approach. Table 4.2 shows the results under the exact same setting as Ta-

ble 4.1, but with correctly specified exchangeable working correlation during fitting.

While we compare within each of the methods, the correct working correlation struc-

ture produces smaller MSE in estimation in both methods, indicating the benefit of

accounting for within-subject correlations. Although correctly specifying the corre-

lation structure improves parameter estimation, it does not improve the clustering

performance of fusion learning. In other words, the clustering performance is quite

insensitive to the working correlation structure.

For the logistic model with binary outcomes, the data are simulated by

logit{E(Ykij)} = βk1Xkij1 + βk2Xkij2 + βk3Xkij3 + βk4Xkij4 + βk5Xkij5
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for k = 1, . . . , R, i = 1, . . . , n, and j ∈ Lk. The covariates XT
kij = (Xkij1, . . . , Xkij5)

are simulated independently from a standard multivariate normal distribution. Simi-

lar to the linear model case, we simulate the responses with exchangeable correlation

τ = 0.6, and we consider homogeneous βT1 = (0.5, . . . , 0.5), βT3 = (0.2, . . . , 0.2) and

βT5 = (0.0, . . . , 0.0), and heterogeneous βT2 and βT4 according to number of groups K

and gap size δ. We summarize the results of the comparison metrics for the logistic

model across 500 replications in Table 4.3 for independent working correlation and

Table 4.4 for exchangeable working correlation. From both tables, we see that our

proposed method is more sensitive to detecting deviation from MCAR than Chen

and Little (1999)’s Wald-type test. In terms of MSE for β, the two methods have

comparable values when MCAR is true (K = 1), but the MSE for the two-step PMM

method gradually increases when the violation of MCAR becomes more severe. On

the other hand, our fusion approach gives stable MSE estimates for β regardless of the

level of violation from MCAR, and provides satisfactory estimation of the grouping

structures.
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4.7 Application: Intern Health Study

We apply the proposed fusion learning to analyze the suicidal ideation data from

the Intern Health Study introduced in Section 1. The data was collected from lon-

gitudinal suicidal ideation screening on over 2400 medical interns in their first year

of residency from hospitals across the US, along with the collection of various mea-

surements on psychiatric health assessment and other potential risk factors from

baseline and each of the four visits. The baseline visit occurs in April before the

onset of medical training in June, and the four scheduled visits occur every three

month throughout the first year of internship, in September, December, March and

June, respectively. The four baseline covariates of interest are age, gender, baseline

suicidal ideation (SI) and score of psychological health from Patient Health Question-

naire (PHQ) (Kroenke et al., 2001), and the other four time dependent risk factors

are PHQ score, anxiety score from General Anxiety Disorder questionnaire (GAD)

(Spitzer et al., 2006), binary indicator of whether conducted medical error in the past

three month (MEDERR) and average work hours in the past three month (HOUR).

During data preprocessing, we keep subjects who has at least attended two consec-

utive visits, resulting in R = 8 distinct missing data patterns. See Table 4.5 for a

summary of the variables. Continuous covariates are standardized before data anal-

ysis. Our goal is go identify predictors of suicidal behavior in order to implement

early intervention measures. Before we proceed with fitting GEE, we apply the test

for MCAR versus nonignorable missingness using Chen and Little (1999)’s method.

This test rejects the hypothesis of MCAR with significance (p < 10−9). Thus, the

test warrants the application of PMM that allows to analyze effects of the risk factors

according to heterogeneous missing patterns.
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Table 4.5: Summary statistics for suicidal ideation data. Means (and standard devia-
tions) are reported for continuous covariates and percentages are reported
for binary covariates.

Missing Pattern 0011 0110 0111 1011 1100 1101 1110 1111
Sample size 41 68 120 128 150 141 249 1570
Baseline
Age 27.9(3.5) 27.2(2.1) 27.6(3) 27.8(3.5) 27.6(3) 27.7(3) 27.3(2.3) 27.4(2.5)
Female (%) 56.1 47.1 38.3 54.7 54.0 49.6 47.0 51.3
Baseline SI (%) 4.9 4.4 4.2 4.7 3.3 3.5 3.6 2.7
Baseline PHQ score 2.6(3.1) 1.8(2.3) 2.8(3.5) 2.7(3.1) 2.5(2.8) 3.1(3.4) 2.6(3) 2.4(2.7)
Time Dependent
PHQ score 5.6(4.8) 6.1(4.3) 5.1(4.1) 6.4(4.9) 6.4(4.6) 6.4(4.7) 5.6(4.5) 5.3(4.2)
GAD score 4.1(4.4) 4.8(4) 3.9(4.2) 5(4.5) 5.2(4.5) 5.7(4.9) 4.5(4.4) 4.4(4.2)
MEDERR (%) 19.5 21.3 20.0 15.9 26.3 22.5 19.0 18.2
HOUR 64.7(17) 64.7(18.1) 66.3(17.5) 63.6(17.5) 65.5(18.6) 65.3(20) 63.8(19.2) 63.8(18.5)
SI (%) 8.5 11.0 8.1 9.6 10.3 10.9 9.2 6.8

We invoke the PMM for the binary suicidal ideation outcome E(SIk,ij) = µk,ij:

logit(µkij) = β0 + β1agei + β2sexi + β3SIi0 + β4PHQi0

β5kPHQkij + β6kGADkij + β7kMEDERRkij + β8kHOURkij,

(4.7)

k = 1, . . . , 8, where the baseline covariates are assumed to be homogeneous, and the

effects of time-dependent risk factors are set as being heterogeneous according to the 8

missing patterns. We postulate that heterogeneous risk groups may be smaller than

8, the number of missing patterns; in other words, there may exist some common

grouping patterns within effects of the risk factors, β5, . . . ,β8. To deal with potential

estimation bias due to sample size differences across missing pattern strata, as pointed

out earlier in this chapter, we use the inverse of sample sizes as sample weights in the

penalized GEE. The smallest ERIC (Hui et al., 2015) is the optimal criterion for the

tuning.

We compare the fusion learning estimates with the pattern-mixture modeling ap-

proach, which fits stratified GEE models separately, each for one of R = 8 missing

patterns. Figure 4.3 overlays the coefficient estimates from the fusion learning and

the coefficient estimates and 95% confidence intervals from the stratified GEE ap-
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proach for the four time-dependent covariates of interest, PHQ, GAD, MEDERR and

HOUR, respectively. Due to the use of sparsity penalty in the penalized GEE, some

of the coefficients are estimated exactly as zero. Comparison of these two methods

indicates that the largest contrast lies in the evidence that the fusion learning clusters

coefficients across missing patterns to form some lower dimensional grouping struc-

tures. On the other hand, the values of our estimates are strikingly consistent with

the coverage of zero for the 95% confidence intervals from stratified analysis. For ex-

ample, the 95% confidence intervals of PHQ effects do not cover zero, except for the

“0011” pattern, which are in agreement with the findings from the fusion estimates.
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Figure 4.3: Coefficient estimates from fusion learning, and coefficient estimates and
95% confidence intervals for stratified GEE across eight missing patterns
for time dependent covariates PHQ, GAD, MEDERR and HOUR, respec-
tively.
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4.8 Concluding Remarks

In this chapter, we adopt the MCP penalty for fusion learning and extend the

likelihood based fusion learning method in Chapter II to the generalized estimating

equations framework. Such extension allows us to model correlated data, and only

requires specification of the first two moments. Therefore, the method in this chapter

can be readily applied to much more general cases, such as quantile regression, survival

models, and missing data problems.

We would also like to draw comparison between the fusion learning method and

modeling with interactions, because they are similar in some sense. When the number

of missing pattern strata is small, we may often investigate the pattern-mixtures by

including interaction terms of covariates and the strata using the nonpenalized GEE.

Such model allow us to conduct hypothesis testing to determine whether the covariate

effects in any strata is different from that of the baseline strata. However, in order

to recover the underlying grouping structure, additional testing is required. When

the number of strata is large, for example, in the IHS study, pairwise testing requires

testing of 8 choose 2 differences for each of the 4 variables, which is a total of 112

tests. Such testing raises the concern of the multiple testing issue, and likely lead to

conflicting conclusions. Therefore, fusion learning is much superior and requires less

manual effort.

Here, we assume the number of missing pattern strata is fixed, which may be the

case for traditional longitudinal studies with a fixed number of design visits. However,

when the measurement is more dense, such as in tracking data or accelerometry data,

the number of missing patterns will explode, posing a challenge to the existing fusion

learning framework. In those settings, extension of the current method is needed

since stratum-specific estimates might be infeasible to obtain.
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CHAPTER V

Summary and Future Work

Motivated by the studies of large scale data sets, this dissertation has focused

on the extensions of classic regression methodologies to big data scenarios. Under

the big data setting, some conventional assumptions and beliefs are no longer satis-

fied. Traditional statistics assumes carefully collected random samples represent some

larger populations, and the main objective is to generalize conclusions within the ran-

dom samples to the populations. On the other hand for big data, we when have rich

amount of information on a large percentage of population, interest shifts toward sub-

group analysis within big data in search of commonality between subjects. This idea,

along with real data, has motivated the development of methods in Chapter II and

IV. Besides, big data often pose computationally challenging to standard machines,

and due to privacy protection, many biomedical data are not centrally stored, but

stored in parts with different level of protection protocols. Driven by this concern, we

developed the divide-and-combine method in Chapter III. The three methods in this

dissertation respectively address different statistical challenges, which includes: data

integration, dimension reduction, inference, clustering, and optimization. Each of the

methods can be further extended and improved along in their own framework and

settings as have been discussed in each of the chapters. But more importantly, it is of

great interest to borrow the strengths of each of the proposed methods, pairing with
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new methodologies developed by others, to further generalize the big data analytical

toolbox, and construct a standard framework that is applicable to a broader range of

problems pertaining to modern big data sets. Therefore, we conclude this chapter by

pointing out potential directions for future research of modeling for big data.

One promising direction is to incorporate fusion learning methodology into the

confidence distribution framework by directly combine the methods in Chapter II

and III. This allows confidence distributions from various data sets or studies to

be heterogeneous, while borrowing the strength of computational simplicity. The

confidence distribution can be traced back to Fisher’s fiducial argument (Fisher ,

1930), and was later formulated by Efron (1993). This can also be related to the least

squares approximation described in Wang and Leng (2007). Using this framework, we

can reduce the representation of likelihoods or estimating functions to their minimal

form which only describes the parameters of interests. By doing so, we reduce the

amount of data used to represent the desired knowledge. And in this way, we allow

existing methods to become more scalable.

Driven by the recent initiatives of precision medicine, another promising direction

and natural extension of current work is to study the heterogeneity within subjects,

instead of data sets as considered in this dissertation. Subject-level heterogeneity may

be of more interest in medical studies or in online advertisement, because knowing

the exact behavior of individuals by drawing similarity with comparable subjects can

help better target medical treatment or recommendation of products. To generalize

further along this line, a more ambitious goal is develop multi-resolution analysis

tools, where we can zoom-in to study the heterogeneity and homogeneity between

subjects, and we can also zoom-out to any level to study the heterogeneity and

homogeneity between any grouping of our choices, such as by city, state, country,

gender, ethnicity, disease type, etc. The technical challenges involved include the

development of more advanced algorithm to handle individual level complexity, and
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more flexible assumption so that the methods can be generalizable to real scenarios.

We may develop methodologies within the scheme of hierarchical clustering (Johnson,

1967).

Last but not least, we would like to extend the consideration of data integration

to more complicated settings than currently assumed. Especially, we may no longer

assume responses and covariates collected are the same across different data sets,

we may no longer assume the measurements have the same granularity across all

sources, we may no longer assume data are homogeneous in the sense that the means

and variances of the parameters of interest are consistent across partitions of the data,

and we may no longer assume that the methods used to analyze each data sets to be

the same. Although the above mentioned cases are very common in real life settings,

there has not been many research in the literature in this area. We would like to

address these important issues by leveraging the knowledge accumulated through the

development of this dissertation.
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APPENDIX A

Chapter II: Proofs

Proof of Theorem II.1

Proof. The proof of Theorem II.1 closely follows arguments given in Zou (2006).

Without loss of generality, we assume n1 = · · · = nK = n and N = Kn. As K is

fixed, n→∞ implies N →∞ in the same order. We assume the following regularity

conditions:

(i) The Fisher information matrix is finite and positive definite,

I(θ∗) = E
[
φ′′
(
XTθ∗

)
XXT

]
.

Here, θ∗(Kp×1) is the true parameters, X(N×Kp) is the design matrix correspond-

ing to θ and φ is the link function (i.e., φ′ = h−1) defined in the following

optimization problem

θ̂W = argmin
θ

{
− 1

K

K∑
k=1

1

nk

nk∑
i=1

(
Y

(i)
k X

(i)T
k θ(λ)− φ

(
X

(i)T
k θ(λ)

))
+ Pλ,α(θ)

}

with Pλ,α(θ) as defined in (2.4), and θ̂W is the estimator with true ordering W

given.
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(ii) There is a sufficiently large open set O that contains θ∗ such that ∀θ ∈ O,

|φ′′′(XTθ)| ≤M(XT ) <∞, and

E [M(X)|xjxkxl|] <∞

for a suitable function M and all 1 ≤ j, k, l ≤ Kp.

First we prove asymptotic normality. For ∀s ≥ 0 and r > 0, let θ = θ∗ + u/
√
N .

Define

ΓN(u) = −
K∑
k=1

n∑
i=1

(
Y

(i)
k X

(i)T
k

(
θ∗ +

u√
N

)
− φ

(
X

(i)T
k

(
θ∗ +

u√
N

)))

+λN

p∑
j=1

K∑
k=1

ω̂j,k

∣∣∣∣θ∗j,k +
uj,k√
N

∣∣∣∣
where ω̂j,k is specified in (2.6). Let û(N) = arg minu ΓN(u); then û(N) =

√
N(θ̂W −

θ∗). By Taylor expansion, we have ΓN(u)− ΓN(0) = H(N)(u), where

H(N)(u) ≡ A
(N)
1 + A

(N)
2 + A

(N)
3 + A

(N)
4 ,

with

A
(N)
1 = −

K∑
k=1

n∑
i=1

[
Y

(i)
k − φ

′(X
(i)T
k θ∗)

]X(i)T
k u√
N

,

A
(N)
2 =

K∑
k=1

n∑
i=1

1

2
φ′′(X

(i)T
k θ∗)uT

X
(i)
k X

(i)T
k√

N
u,

A
(N)
3 =

λN√
N

p∑
j=1

K∑
k=1

ω̂j,k
√
N

(∣∣∣∣θ∗j,k +
uj,k√
N

∣∣∣∣− ∣∣θ∗j,k∣∣) ,
and A

(N)
4 = N−3/2

K∑
k=1

n∑
i=1

1

6
φ′′′
(
X

(i)T
k θ̃∗

)(
X

(i)T
k u

)3
,
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where θ̃∗ is between θ∗ and θ∗ + u/
√
N . The asymptotic limits of A

(N)
1 , A

(N)
2 and

A
(N)
4 is exactly the same as those in the proof in (Zou, 2006, Theorem 4). It suf-

fice to show that A
(N)
3 has the same asymptotic limit. If θ∗j,k 6= 0, ω̂j,1 →p α|θ∗j,1|−r,

ω̂j,k →p |
∑K

k′=2 θ
∗
j,k′ |−s|θ∗j,k|−r for k = 2, . . . , K, and

√
N
(∣∣∣θ∗j,k +

uj,k√
N

∣∣∣− ∣∣θ∗j,k∣∣) →
uj,k sgn(θ∗j,k). Thus by Slutsky’s theorem, A

(N)
3 → 0. If θ∗j,k = 0, for k = 1, since

√
Nθ̂j,1 = Op(1), λN√

N
N r−2α(|

√
Nθ̂j,1|)−r → ∞; for k = 2, . . . , K, if

∑K
k′=2 θ

∗
j,k′ =

0 (i.e., homogeneous),
√
N
∑K

k′=2 θ̂j,k′ = Op(1), thus λN√
N
N

s+r
2 (|
√
N
∑K

k′=2 θ̂j,k′|)−s

(|
√
Nθ̂j,k|)−r → ∞; similarly, if

∑K
k′=2 θ

∗
j,k′ 6= 0 (i.e., heterogeneous),

∑K
k′=2 θ̂j,k′ →p∑K

k′=2 θ
∗
j,k′ ,

λN√
N
ω̂j,k → ∞ still holds. And since

√
N
(∣∣∣θ∗j,k +

uj,k√
N

∣∣∣− ∣∣θ∗j,k∣∣) → |uj,k|,
we have the following result summary:

λN√
N
ω̂j,k
√
N

(∣∣∣∣θ∗j,k +
uj,k√
N

∣∣∣∣− ∣∣θ∗j,k∣∣)→p


0 if θ∗j,k 6= 0

0 if θ∗j,k = 0 and uj,k = 0

∞ if θ∗j,k = 0 and uj,k 6= 0.

Following same arguments in (Zou, 2006, Theorem 4), we have û
(N)
A →d N (0, I−111 )

and û
(N)
Ac →d 0. The proof of the consistency part is similar and thus omitted.

Proof of Lemma II.2

Proof. The estimated ordering Ûj of β∗
j,· is only determined by the differences be-

tween distinct parameter groups within β∗
j,·. First note that for any 0 < ε < 1, if

two parameters β∗j,k and β∗j,k′ are in the same parameter group (i.e., β∗j,k = β∗j,k′), as-

signing arbitrary ordering between them will not affect the estimated ordering of the

parameters between groups, because the ordering within the same parameter group

is exchangeable. On the other hand, when two parameters β∗j,k and β∗j,k′ are from

different parameter groups, without loss of generality, let β∗j,k > β∗j,k′ , the probability
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of estimating a wrong ordering

P
(
1{β̂j,k′ ≥ β̂j,k} > ε

)
= P

(
β̂j,k′ ≥ β̂j,k

)
= P

(
β̂j,k′ − β̂j,k + β∗j,k − β∗j,k′ ≥ β∗j,k − β∗j,k′

)
≤ P

(
|β̂j,k′ − β∗j,k′|+ |β̂j,k − β∗j,k| > 0

)
= 1− P

(
β̂j,k′ = β∗j,k′

)
P
(
β̂j,k = β∗j,k

)
→ 0

as n → ∞ since β̂j,k′ and β̂j,k are independent and consistent estimators. Similarly,

the consistency of the estimated ordering V̂j of the absolute values in vector β∗
j,·

can be derived by taking the square of the absolute values and following the same

argument as for Ûj.

Proof of Theorem II.3

Proof. Here we assume the same regularity condition as in Theorem II.1. To complete

this proof, we first define the event W when the orderings of all p covariates are

correctly assigned as

W =

p⋂
j=1

(
{Ûj = Uj} ∩ {V̂j = Vj}

)
.

Let θ̂Ŵ be θ̂W whenW occurs; otherwise, denote it as θ̂Wc . Then, the estimator can

be rewritten as

θ̂Ŵ = θ̂W1{W}+ θ̂Wc1{Wc}

and therefore

√
N
(
θ̂Ŵ − θ∗

)
=
√
N
(
θ̂W − θ∗

)
1{W}+

√
N
(
θ̂Wc − θ∗

)
1{Wc}. (A.1)
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By Theorem II.1, we have
√
N
(
θ̂W − θ∗

)
= O(1) and

√
N
(
θ̂Wc − θ∗

)
= O(1) as

n→∞. By Lemma II.2, we have P (W)→ 1 and P (Wc)→ 0 as n→∞. Therefore,

by Slutsky’s Theorem, (A.1) converge to the same distribution as
√
N
(
θ̂W − θ∗

)
.

Similarly, by results from Theorem II.1 and Lemma II.2, we have selection consistency

P (ÂŴ = A) = P (ÂŴ = A|W)P (W) + P (ÂŴ = A|Wc)P (Wc)→ 1

as n→∞. This completes the proof of the Theorem II.3.
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APPENDIX B

Chapter II: Additional Simulation

Performance with Distorted Parameter Ordering

Under the same setting as simulation experiment 1 in Section 2.5.1 with α = 0

and s = 0, we conduct a sensitivity analysis to evaluate the performance of FLARCC

when parameter ordering is incorrectly specified. Specifically, we report results of

sensitivity, specificity and MSE for the linear regression model when the coefficient

ordering is determined from the initial estimate with distortion through an added

disturbance ε, β̂+ε, where β̂ from (2.1) and ε ∼ N (0, v2). As v2 increases, the percent

of order switching in initial estimates increases. Sensitivity, specificity and MSE in

relation to the percentage of wrongly ordered parameters are displayed in Figure B.1

for the two heterogeneous effects β2 and β3, and the homogeneous parameter β1

is not included in the comparison because of no effect from the distortion on its

performance. As the percentage of wrongly ordered parameters increases, as expected,

sensitivity becomes lower and MSE becomes larger. However, specificity remains

unaffected. When the distortion of ordering is mild (≤ 10%), the performance of

FLARCC appears satisfactory in this simulation setting.

88



0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percentage of wrongly ordered parameters

S
en

si
tiv

ity

β2   
β3

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percentage of wrongly ordered parameters

S
pe

ci
fic

ity

β2   
β3

0 5 10 15 20
0.

00
0

0.
00

4
0.

00
8

Percentage of wrongly ordered parameters

M
S

E

β2   
β3

Figure B.1: Clustering sensitivity and mean squared error of two heterogeneous slope
parameters β2 and β3 based on FLARCC with λ selected by EBIC, as
the percent of distorted ordering increases. Results are summarized from
100 replications.
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APPENDIX C

Chapter II: Extension to the Cox Proportional

Hazards Model

In addition to the original notations defined in Chapter II, we include notations

for the formulation of Cox model. The K datasets are denoted as {yk,i,xk,i, δk,i}nki=1

for k = 1, . . . , K, with individual’s covariates xk,i = (x1,k,i, . . . , xp,k,i)
T , observed time

yk,i , min(Tk,i, Ck,i) and event indicator δk,i , I(Tk,i ≤ Ck,i), where Tk,i and Ck,i are

the failure time and the censoring time, respectively.

We assume that Tk,i and Ck,i are conditionally independent given xk,i, and that

the censoring mechanism is noninformative. Additionally, we assume that all datasets

have a common baseline hazard λ0(t). We start from the complete heterogeneous Cox

proportional hazards model specification that takes the form:

λk(t|x) = λ0(t) exp
(
xTkβk

)
, k = 1, . . . , K. (C.1)

The partial likelihood for model (C.1) on the combined data can be written as

L(β) =
K∏
k=1

Lk(β) =
K∏
k=1

nk∏
i=1

[
exp

(
xTk,iβk

)∑K
kk=1

∑nkk
ii=1 I(ykk,ii ≥ yk,i) exp

(
xTkk,iiβkk

)]δk,i , (C.2)
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where Lk(β) is the likelihood piece corresponding to the kth dataset. We specify

the risk set (i.e., the denominator) in (C.2) based on all subjects from the combined

dataset to assess the overall risk in this data integration problem. Using the fused

lasso penalty with parameter ordering on the partial likelihood (C.2), we solve the

same optimization problem as in (2.2), where `k(β) is the log partial likelihood of the

kth dataset given by

`k(β) = logLk(β) =

nk∑
i=1

δk,i

{
xTk,iβk − log

[
K∑

kk=1

nkk∑
ii=1

I(ykk,ii ≥ yk,i) exp
(
xTkk,iiβkk

)]}
,

(C.3)

and penalty Pλ(β) is the fused lasso penalty defined by (2.4). The implementation

is similar to that of Section 2.2. R package glmnet is used for the lasso optimization

problem of the Cox proportional hazards model.
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APPENDIX D

Chapter III: Proofs

Proof of Theorem III.4

Proof. For the sake of notation consistency in the context of divide-and-combine, we

explicitly write both subscripts k and nk in all terms in the proof, and show the

consistency and asymptotic normality of the bias-corrected estimator β̂cλ,k of the k-th

dataset. Here, nk denotes the sample size of the k-th dataset.

Following the Karush-Kuhn-Tucker condition in (D.2) and condition (C3) that

λk = (log p/nk)
1/2 and p < nk, we have Snk(β̂λ,k) = op(1). Under conditions (C1)

and (C2), for any β ∈ Nδ(β0),

c1 ≤ σ
(
P

1/2
nk (β)

)
σ(n

−1/2
k Xk) ≤ σ

(
n
−1/2
k P

1/2
nk (β)Xk

)
≤ σ

(
n
−1/2
k P

1/2
nk (β)Xk

)
≤ σ

(
P

1/2
nk (β)

)
σ(n

−1/2
k Xk) ≤ C1,

where Pnk(β) = diag {vk,1, . . . , vk,nk}, vk,i is the variance function under the canonical

link functions, c1 and C1 are two positive constants, and σ(·) and σ(·) are defined

in condition (C2). Hence, −Ṡnk(β0) is positive definite and ‖Σ̂nk(β0)‖2 = Op(1),

where Σ̂nk(β0)
def
= {−Ṡnk(β0)}−1. On the other hand, by the law of large num-
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bers, Snk(β̂λ,k) → E {Snk(β)} |β=β̂λ,k→ 0. Combining this with condition (C1) that

E {Snk(β0)} = 0 and the negative definite property of Ṡnk(β0), we have β̂λ,k → β0.

Then, the consistency of β̂cλ,k follows from its definition in (D.3) and ‖Σ̂nk(β0)‖2 =

Op(1).

Next, we show the asymptotic normality of β̂cλ,k. Again, following the Karush-

Kuhn-Tucker condition in (D.2), by the first-order Taylor expansion and conditions

(C1)-(C3), we have

β̂cλ,k − β0 = Σ̂nk(β0)Snk(β0) + ‖Σ̂nk(β0)‖2Op(s0λ
2
k). (D.1)

Furthermore, using the central limit theorem and Slutsky’s theorem, the first term in

(D.1) n
1/2
k Σ̂nk(β0)Snk(β0) ∼ N (0,Σ(β0)) asymptotically as nk → ∞. On the other

hand, by the condition (C3), we can show that the second term ‖Σ̂nk(β0)‖2Op(s0λ
2
k) =

Op(s0λ
2
k) = op(n

−1/2
k ). In summary, the proof of Theorem III.4 is completed.

Proof of Theorem III.7

Proof. Denote rN(β) = 1
N

∑K
k=1 ∂ log ĥnk(β)/∂β and r(β) = lim

nmin→∞
rN(β). It is easy

to see r(β̂dac) = 0. On the other hand,

rN(β0) = − 1
N

∑K
k=1 nk

{
Σ̂nk(β̂λ,k)

}−1 {
β0 − β̂λ,k − Σ̂nk(β̂λ,k)Snk(β̂λ,k)

}
= 1

N

∑K
k=1 nk

{
Snk(β̂λ,k) + Ṡnk(β̂λ,k)(β0 − β̂λ,k)

}
= 1

N

∑K
k=1 nkSnk(β0) +Op (N−1K) ,

where the second equality holds by conditions (C1)-(C3). Then, by the law of large

numbers, r(β0) = E {SN(β0)} = 0, where the second equation follows from condition

(C1). Furthermore, we have ṙ(β0) = −Σ(β0), which is a positive definite matrix.

Combining this with r(β0) = r(β̂dac) = 0, the consistency of β̂dac follows.

Next we prove the asymptotic normality of β̂dac. By some simple algebra, we can
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obtain that

β̂dac =

[∑K
k=1 nk

{
Σ̂nk(β̂λ,k)

}−1]−1 [∑K
k=1 nk

{
Σ̂nk(β̂λ,k)

}−1
β̂cλ,k

]
=

{
1
N

∑K
k=1 nkṠnk(β0)

}−1 {
1
N

∑K
k=1 nkṠnk(β0)β̂

c
λ,k

}
+Op(N

−1K) + op(N
−1/2),

and var(β̂dac) = N−1Σdac. Combining with the condition that K = O(N1/2−δ) with

δ ∈ (0, 1/2) being a constant and the central limit theorem, the asymptotic normal

distribution in Theorem III.7 follows.

Finally, it suffices to show the gold estimator β̂full has the same asymptotic dis-

tribution as β̂dac. By the definition of β̂full in Theorem III.7, we have β̂full − β0 =

{ṠN(β0)}−1SN(β0) + op(N
−1/2). The asymptotically equivalent efficiency claimed in

Theorem III.7 follows by the central limit theorem.

An Extension of Theorem III.4 with p→∞

For any fixed q, denote

Sn(β̂λ) − λκ̂ = 0, (D.2)

β̂cλ
def
= β̂λ + {−Ṡn(β0)}−1λκ̂ = β̂λ + {−Ṡn(β0)}−1Sn(β̂λ), (D.3)

γ̂λ = Hβ̂λ + HΣ̂n(β̂λ)Sn(β̂λ), (D.4)

where H is a rank q matrix of dimension q × p with the (i, j)-th element denoted as

hij. H can increase in dimension, but in practice, H is fixed. For 1 ≤ i, k ≤ p, let σik

satisfies,
∑p

k=1 σikE[{φġ(xT1 β0)}−1x1kx1j] = δij, where δij = 1 for i = j, and δij = 0,

for i 6= j.

Theorem D.1. Under conditions (C1)-(C3) in Section 3.2.4, the estimator γ̂λ given

in (D.4) is consistent and asymptotically normally distributed, namely, n1/2(γ̂λ −

γ0)
d→ N (0,Aγ) , as n → ∞ where Aγ is a matrix of dimension q × q with the
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(i, j)-th element aij =
∑p

k1,k2=1 hik1σk1k2hk2j.

Proof. For the sake of notation consistency in the context of divide-and-combine, we

explicitly write both subscripts k and nk in all terms in the proof, and show the

consistency and asymptotic normality of the bias-corrected estimator γ̂λ,k of the k-th

dataset. Here, nk denotes the sample size of the k-th dataset.

Following the Karush-Kuhn-Tucker condition in (D.2) and condition (C3) that

λk = (log p/nk)
1/2 and p < nk, we have Snk(β̂λ,k) = op(1)1p, where 1p is a p-

dimensional vector with values all at 1. Under conditions (C1) and (C2), for any

β ∈ Nδ(β0),

c1 ≤ σ
(
P 1/2
nk

(β)
)
σ(n

−1/2
k Xk) ≤ σ

(
n
−1/2
k P 1/2

nk
(β)Xk

)
≤ σ

(
n
−1/2
k P 1/2

nk
(β)Xk

)
≤ σ

(
P 1/2
nk

(β)
)
σ(n

−1/2
k Xk) ≤ C1,

where Pnk(β) = diag {vk,1, . . . , vk,nk}, vk,i is the variance function under the canonical

link function, c1 and C1 are two positive constants, and σ(·) and σ(·) are defined

in condition (C2). Hence, −Ṡnk(β0) is positive definite and ‖Σ̂nk(β0)‖∞ = Op(1),

where Σ̂nk(β0)
def
= {−Ṡnk(β0)}−1. On the other hand, by using PL(β̂λ,k;Y ,X) ≥

PL(β0;Y ,X), we have that

λ‖β0‖1 ≥
1

n

{
Ln(β0;Y ,X)− Ln(β̂λ,k;Y ,X)

}
+ λ‖β̂λ,k‖1

= −Sn(β0)
T (β̂λ,k − β0) +

1

2nφ
(β̂λ,k − β0)

T
{
XT

k Pn(β̃k)Xk

}
(β̂λ,k − β0)

+λ‖β̂λ,k‖1,

which indicates

‖P 1/2
n (β̃k)Xk(β̂λ,k − β0)‖22/(nkφ) + 2λk‖β̂λ,k‖1 ≤ 2Sn(β0)

T (β̂λ,k − β0) + 2λ‖β0‖1.

By using Corollary 6.2 in (Bühlmann and Van De Geer , 2011) and conditions (C1)-
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(C3), it is easy to get that

‖Xk(β̂λk − β0)‖22/nk + λk‖β̂λ,k − β0‖1 ≤ Cλ2ks0 (D.5)

Next, we show the consistency and asymptotic normality of γ̂λ,k. Again, following

the Karush-Kuhn-Tucker condition in (D.2), by the first-order Taylor expansion and

conditions (C1)-(C3), we have

γ̂λ,k − γ0 = HkΣ̂nk(β0)Snk(β0) +Rnk(β̃,β0), (D.6)

where

Rnk(β̃,β0) = Hk

{
Ṡnk(β0)

}−1 {
Ṡnk(β̃)− Ṡnk(β0)

}
(β̂λ,k − β0)

= Hk

{
Ṡnk(β0)

}−1 1

nkφ
XT

k

{
Pnk(β̃)− Pnk(β0)

}
Xk(β̂λ,k − β0)

= Hk

{
Ṡnk(β0)

}−1 1

nkφ
XT

k Zk,

where Zk is a nk dimensional vector with Zki = xTi (β̂λ,k−β0)(ġ
−1(xTi β̃)−ġ−1(xTi β0)).

Note that

‖Rnk(β̃,β0;Hk)‖22

= tr

[
Hk

{
Ṡnk(β0)

}−1
1
nkφ
XT

k ZkZ
T
kXk

1
nkφ

{
Ṡnk(β0)

}−1
HT

k

]
≤ φ−2tr

(
1
nk
ZkZ

T
k

)
tr

[
Xk

{
Ṡnk(β0)

}−1
HT

kHk

{
Ṡnk(β0)

}−1
1
nk
XT

k

]
≤ c−11 φ−2

[
1
nk

∑nk
i=1

{
xTi (β̂λ,k − β0)

}2 {
ġ−1(xTi β̃)− ġ−1(xTi β0)

}2
]

×tr
[
Hknk

{
XT

k Pnk(β0)Xk

}−1
HT

k

]
≤ c−21 φ−2‖Xk(β̂λ,k − β0)‖22/nktr

[
Hknk(X

T
kXk)

−1HT
k

]
. (D.7)

Furthermore, using the central limit theorem and Slutsky’s theorem, the first term in
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(D.6) n
1/2
k HkΣ̂nk(β0)Snk(β0) ∼ N (0,Aγ) asymptotically as nk →∞. On the other

hand, combining condition (C2) with inequalities (D.5) and (D.7), it is easy to show

that the second term ‖Rnk(β̃,β0;Hk)‖22 = Op(s0λ
2
k) = op(n

−1/2
k ). In summary, the

proof of Theorem D.1 is completed.

Tuning Parameter λ Selected by Cross-Validation

Let Dtrain and Dval denote a training and validating split of data D. Denote β̂λf

the estimator based on the tunning parameter λcv obtained from cross validation, and

β̂λ the estimator based on λ satisfying condition (C3), that is, λ = O(log p/nk)
1/2,

both obtained from Dtrain. Following the definition of cross validation, we have that

0 ≤ DN(Dval; β̂(λ))−DN(Dval; β̂(λf ))

= 2φLN(β̂(λf );Dval)− 2φLN(β̂(λ);Dval)

= 2φLN(β0;Dval) + 2φSn(β0)
T (β̂(λf )− β0)

+φ(β̂(λf )− β0)
T
{
ṠN(βm1)

}
(β̂(λf )− β0)

−2φLN(β0;Dval)− 2φSn(β0)
T (β̂(λ)− β0)

−φ(β̂(λ)− β0)
T
{
ṠN(βm2)

}
(β̂(λ)− β0),

where DN(·), LN(·), SN(·) are the deviance function, log-likelihood function, and

score function based on the test data, respectively, β̂(λ) and β̂(λf ) are the corre-

sponding estimators based on the training data. βm1 is a value between β0 and

β̂(λf ), βm2 is a value between β0 and β̂(λ).

Based on the fact that Sn(β0) and β̂(λ) are evaluated using independent datasets

Dval and Dtrain, respectively, the expected values of 2φSn(β0)
T (β̂(λf ) − β0) and
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2φSn(β0)
T (β̂(λ)− β0) are both zero. Hence, we have that

2φSn(β0)
T (β̂(λ)− β0)− 2φSn(β0)

T (β̂(λf )− β0)

−φ(β̂(λf )− β0)
T
{
ṠN(βm1)

}
(β̂(λf )− β0)

= 2φSn(β0)
T

[{
−Ṡn(βm4)

}−1
−
{
−Ṡn(βm3)

}−1]
Sn(β0)

−φ(β̂(λf )− β0)
T
{
ṠN(βm1)

}
(β̂(λf )− β0)

+2φSn(β0)
T
{
−Ṡn(βm3)

}−1
λf κ̂f − 2φSn(β0)

T
{
−Ṡn(βm4)

}−1
λκ̂

≤ Cλ2s0.

where the last inequality holds by using expressions (D.5) and condition (C3). Com-

bining with conditions (C1) and (C2), it follows that ‖X
(
β̂(λf )− β0

)
‖22/nk ≤

Cλ2s0.

On the other hand, it is easy to get that ‖n−1/2k Xk(β̂k(λf )−β0)‖1 ≤ ‖Xk(β̂(λf )−

β0)‖2/
√
nk ×

√
nk. That is, ‖n−1k Xk

(
β̂k(λf )− β0

)
‖1 ≤ Cλ

√
s0. By using condition

(C2) that maxk ‖X‖∞ = O(1), it follows that, ‖β̂k(λf )− β0‖1 ≤ Cλ
√
s0. Thus,

‖Xk(β̂(λf )− β0)‖22/nk + λ‖β̂(λf )− β0‖1 ≤ Cλ2s0.

Then following similar proof of Theorem III.4, we can get that Theorem D.1 holds

for γ̂λ,k with λ being selected via the cross validation.
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APPENDIX E

Chapter III: Additional Simulation

Covariate Correlation Versus Coverage Probability

To establish some guidelines about how to select nk, we consider an additional

simulation in which the correlation between covariates varies in terms of correlation

coefficients ρ, and evaluate the performance of MODAC and META under differ-

ent choices of K. Table E.1 provides statistical inference results. The asymptotic

confidence intervals of βA0 of MODAC achieve the 95% nominal coverage in most

scenarios, except for the logistic regression with ρ being small. Clearly, better perfor-

mance of coverage occurs with bigger sub-dataset sizes. It is interesting to see that

the performance gets better when the correlation ρ goes higher. The poorer perfor-

mance of MODAC in the logistic regression with a small ρ may be due to the curse

of dimensionality. As pointed out by Hall et al. (2005), data tend to lie deterministi-

cally at the vertices of a regular simplex when the number of independent covariates

goes to infinity and sample size is fixed. In other words, a limited amount of data

would be problematic to make a valid statistical inference. On the other hand, larger

correlation ρ reduces an effective degree of freedom which makes statistical inference

a relatively easier task. Overall, the coverage probabilities of MODAC is uniformly
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Table E.1: Simulation results when N = 10, 000 and p = 300 for Gaussian, logistic
and Poisson models. Methods with different size of partition K and and
compound symetric correlation ρ are compared. A0 and Ac0 denote the
set of non-zero and zero coefficients in β0, respectively. Results are from
an average of 500 replications

MODAC MODAC MODAC MODAC META META META META
K nk Type Set ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.8 ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.8
20 500 Gaussian A0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
20 500 Binomial A0 0.75 0.85 0.91 0.95 1.00 1.00 1.00 1.00
20 500 Poisson A0 0.94 0.95 0.95 0.95 0.85 0.89 0.90 0.92
10 1000 Gaussian A0 0.95 0.94 0.94 0.95 0.95 0.95 0.94 0.95
10 1000 Binomial A0 0.87 0.89 0.92 0.95 0.01 0.01 0.15 0.07
10 1000 Poisson A0 0.95 0.95 0.95 0.95 0.89 0.92 0.92 0.94
2 5000 Gaussian A0 0.95 0.95 0.96 0.95 0.95 0.95 0.95 0.95
2 5000 Binomial A0 0.94 0.94 0.94 0.95 0.96 0.96 0.96 0.96
2 5000 Poisson A0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94

20 500 Gaussian Ac0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
20 500 Binomial Ac0 0.96 0.96 0.96 0.96 1.00 1.00 1.00 1.00
20 500 Poisson Ac0 0.95 0.95 0.95 0.95 0.90 0.91 0.91 0.92
10 1000 Gaussian Ac0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
10 1000 Binomial Ac0 0.96 0.96 0.96 0.96 1.00 1.00 0.88 0.18
10 1000 Poisson Ac0 0.95 0.95 0.95 0.95 0.92 0.93 0.93 0.94
2 5000 Gaussian Ac0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
2 5000 Binomial Ac0 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96
2 5000 Poisson Ac0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

MODAC denotes our proposed divide-and-combine method and META denotes the
meta-analysis method.

more consistent than those of META. Based on the empirical results of MODAC, in

practice, we suggest choosing a reasonably large nk in the logistic regression when

covariates have weak dependence.

Sensitivity of ω in Majority Voting

Figure E.1 presents a sensitivity analysis of variable selection performance of the

VOTING method by Chen and Xie (2014) with respect to the choice of ω under three

models, Gaussian, logistic and Poisson. We let N = 10, 000, p = 300, s0 = 10 and

we vary the number of split K and the correlation coefficient ρ from a compound

symmetric structure. The non-zero coefficients are set at 0.3 for Gaussian models, 0.3

for logistic models, and 0.1 for Poisson models. As shown, clearly the Gaussian model

is much more robust that the other two models by allowing a much wider range of

ω to achieve the highest sensitivity and specificity. However, for logistic and Poisson
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(a) Gaussian
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(b) Logistic
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(c) Poisson
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Figure E.1: Sensitivity (solid) and specificity (doted) of VOTING as voting threshold
ω varies from 0 to 100. The total sample size N = 50, 000, the number
of split K = 100, and the number of covariates p = 300.

models, only a very small range of ω around 20 is optimal to variable selection. The

performance out of such ranges drops quickly. This poses a potential issue to real

data analysis when the best range of ω is unknown.
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APPENDIX F

Chapter III: Application to the Ordinal Logistic

Model

In addition to the linear, logistic and Poisson models presented in Chapter III,

we outline the procedure for our method to be applied to fit the ordinal logistic

regression model for large scale ranking problems, such as in online advertisement.

This method application has been published in Tang et al. (2018), with more details

provided within.

We adopt the method of reduction from ordinal ranking to binary classification

given by a previous work (Li and Lin, 2007). Ordinal outcomes naturally inspire

a binary classification approach for training models. As an example, consider the

satisfaction level of a user for a product, with five possible levels. By asking the ques-

tion “is the satisfaction level for the user greater than level k”, one can get a binary

classification problem for a fixed k, since the answer would be yes or no (1 or 0). By

varying k = 1, 2, 3, 4, for each user, one can get 4 different binary classification prob-

lems. The approach then reduces to a question of how the classification models be

trained and combined to obtain an ordinal ranking model. The main advantage of re-

ducing ordinal ranking problem into binary classification problem is that it facilitates

the usage of well-tuned binary classifiers available with standard libraries.
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For a binary logistic regression, with instance x ∈ RD and label y ∈ {0, 1}, the

binary classifier f(x) to be learnt is parameterized by β ∈ RD, i.e., f(x) = xTβ. The

loss (or the negative log likelihood) function of a training dataset is

∑N
i=1

{
log
(
1 + ef(xi)

)
− yif(xi)

}
(F.1)

where N is the training sample size, and the estimated coefficient vector β̂ is the

minimizer to (F.1). A K class ordinal ranking problem is defined by an instance

x ∈ X ⊆ RD and label y ∈ Y = {1, 2, . . . , K}, where 1 ≤ 2 ≤ . . . ≤ K. The objective

is to learn a ranking rule r : X 7→ Y , which will minimize a weighted point-wise

loss function with weights defined by some cost Cy,r(x). Each instance and label pair

(xi, yi) is reduced to a binary classification pair (along with introduction of a weight)

by the following technique:

xki =(xTi , e
T
k )T ∈ RD+K−1,

yki =1[k < y],

wki =|Cyi,k − Cyi,k+1|,

(F.2)

for k = 1, . . . , K − 1, where Cy,k is the cost for assigning an outcome of k when the

actually value is y, and ek is the standard basis vector in dimension K−1. As a result,

the original sample size expands from N to (K − 1)N . Then, a logistic classifier f(·)

can be trained on the expanded training set by minimizing the new loss function

∑N
i=1

∑K−1
k=1 w

k
i

{
log
(

1 + ef(x
k
i )
)
− yki f(xki )

}
. (F.3)

This can be viewed as the loss (negative log likelihood) of a training data with sample

size Ñ = (K − 1)N , feature dimension D̃ = D+K − 1, and sample weights specified

by wki . The solution to (F.3) would lead to a classifier f(·) of the form f(·) =
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(g(·), b1, b2, . . . , bK−1), where g is defined by a parameter vector β ∈ RD ( g(x) =

xTβ 7→ R) and {b1, . . . , bK−1} are bias terms. Thus, f(·) can be represented as

a linear function with parameter θ ∈ RD̃ as θ = [β, b1, . . . , bK−1]
T , with f(xk) =

xkT θ = xTβ+ bk. The authors guaranteed (Thm.2, Li and Lin (2007)) when Cy,r(x) is

convex, the bias terms are rank monotone such that b1 ≥ b2 ≥ · · · ≥ bK−1, therefore

f(x1) ≥ f(x2) ≥ · · · ≥ f(xK−1). This justifies the ranking rule of predicting the

ordinal class of a new instance x∗ ∈ RD by

r(x∗) = 1 +
∑K−1

k=1 1[f(xk∗) > 0]. (F.4)

Here, we consider the convex absolute loss Cy,r(x) = |y − r(x)| in the reduction

to binary classification to ensure the biases to be rank monotone as described by

the authors. As a result, wki = 1 for all i, k. As a result of the reduction, we have

K−1 times the sample size as before, leading to a massive amount of data. To speed

up computation, we can now fit the logistic regression with parallelized MODAC

algorithm to obtain the coefficients and biases, and easily convert them back to the

corresponding parameters in the ordinal logistic model. This facilitates the usage of

many readily available and powerful logistic classifiers, avoiding the trouble to directly

parallelize ordinal logistic regression algorithms.
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APPENDIX G

Chapter IV: Proofs

Regularity Conditions

We impose the following conditions:

C1 There exists a nonsingular matrix A such that for any given constant M ,

sup
|D−1(θ−θ∗)|≤MN−1/2

|N−1/2S(D−1θ)−N−1/2S(D−1θ∗)−N1/2AD−1(θ−θ∗)| = op(1).

Furthermore, N−1/2S(D−1θ∗)→d N (0,V ) for V a pR× pR matrix.

C2 The penalty function qλN (·) has the following properties:

a. For nonzero fixed θ, limN1/2qλN (|θ|) = 0 and lim q′λN (|θ|) = 0.

b. For any M > 0, lim
√
N inf |θ|≤MN−1/2 qλN (|θ|)→∞.

Condition C1 is satisfied by many commonly used estimating functions. Condition

C2 is satisfied by several commonly used penalties with proper choices of the regular-

ization parameters λN . Under the MCP penalty, that is, qλN (x) = λN
(aλN−x)+

aλN
, with

a > 1, it is easy to see that if we choose λN → 0 and
√
NλN → ∞, then condition

C2 holds.
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Proof of Theorem IV.1

Proof. We provide a sketch for the proof. First, we assume D is known. Based on

previous results, selection consistency and asymptotic normality of θ̂ in (4.6) can be

derived following the similar arguments in Theorem 1 of Johnson et al. (2008) for θ̂

estimated based on D. Since limn→∞DN = D, following the proof of Theorem II.3,

it can be shown that selection consistency and asymptotic normality of θ̂ holds for θ̂

estimated based on DN . Thus the results in Theorem IV.1 follows.
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