
From Compute to Data:
Across-the-Stack System Design for Intelligent Applications

by

Yiping Kang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2018

Doctoral Committee:

Assistant Professor Lingjia Tang, Co-Chair
Assistant Professor Jason O. Mars, Co-Chair
Assistant Professor Hun-Seok Kim
Professor Trevor N. Mudge

Yiping Kang

ypkang@umich.edu

ORCID iD: 0000-0002-5964-3655

© Yiping Kang 2018

To my mother Cen Zhu and father Jie Kang.

ii

ACKNOWLEDGEMENTS

It was a challenging and fulfilling journey getting to where I am today and it would

not have been possible without all the wise and kind people that have helped me along

the way. Jason and Lingjia, you make a dream team of advisors and I can’t thank

you enough for how much I’ve learnt from you. Lingjia, your extraordinarily high

standard for quality drives me to always demand the absolutely best out of myself

and in turn I am able to be proud of my work. Jason, your unparalleled passion for

truly impactful research have pushed me to take risks to tackle the most challenging

problems. Trev, I am grateful for the opportunity to start pursuing my passion for

research as an undergraduate student and navigate my way to a dedicated researcher

under your guidance. To my dissertation committee, I am thankful for your insights

and advice in this final stage of my studies. I would be remiss if I didn’t acknowledge

my colleagues. I have forged some of my best friendships as part of TronLab and

Clarity Lab and thank you for helping me learn and grow as a scientist.

To my parents, Cen Zhu and Jie Kang, thank you for supporting me through my

entire academic career. It is your commitment and sacrifices that made it possible

for my dream to come true and I am forever grateful for that. You taught me, by

example, that gratitude reciprocates and that integrity is a person’s most valuable

trait. You are the two people in the world that I want to make the most proud of

me. To all my family and friends, from the bottom of my heart, thank you.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Motivation . 2
1.1.1 Intelligent Applications Computation 2
1.1.2 Evolving Algorithms 3
1.1.3 Data Collection . 5

1.2 Across-the-Stack System Design for Intelligent Applications . 6
1.2.1 Neurosurgeon: Collaborative Intelligence Between the

Cloud and Mobile Edge 6
1.2.2 Accelerating Deep Learning Based Natural Language

Processing Applications 7
1.2.3 Data Collection for Real-World Intelligent Application 8

1.3 Summary of Contributions 9

II. Background and Related Work 11

2.1 Intelligent Applications . 11
2.1.1 Deep Neural Networks 11
2.1.2 State-of-the-art Natural Language Processing Appli-

cations . 12
2.2 Related Work . 13

2.2.1 Computation Partitioning 13

iv

2.2.2 Datacenter Systems for Accelerating Intelligent Ap-
plications . 14

2.2.3 Data Collection and Curation 14

III. Neurosurgeon: Collaborative Intelligence Between the Cloud
and Mobile Edge . 16

3.1 Cloud-only Processing: The Status Quo 17
3.1.1 Experimental setup 17
3.1.2 Examining the Mobile Edge 18

3.2 Fine-grained Computation Partitioning 21
3.2.1 Layer Taxonomy . 21
3.2.2 Characterizing Layers in AlexNet 22
3.2.3 Layer-granularity Computation Partitioning 23
3.2.4 Generalizing to more DNNs 27

3.3 Neurosurgeon . 31
3.3.1 Performance Prediction Model 32
3.3.2 Dynamic DNN Partitioning 33
3.3.3 Partitioned Execution 35

3.4 Evaluation . 35
3.4.1 Latency Improvement 36
3.4.2 Energy Improvement 39
3.4.3 Comparing Neurosurgeon to MAUI 41
3.4.4 Network Variation 42
3.4.5 Server Load Variation 43
3.4.6 Datacenter Throughput Improvement 45

3.5 Compared to Prior Work . 46
3.6 Summary . 47

IV. Accelerating Deep Learning Based Natural Language Pro-
cessing Applications . 49

4.1 NLP Applications Algorithmic Structure 50
4.2 Characterization . 51

4.2.1 Varying and Dependent NN invocations 52
4.2.2 Few NN Kernel Computations 54
4.2.3 Cycles Spent in NNs 55
4.2.4 Limitations of Prior Work 56

4.3 Applicability of State-of-the-art 57
4.3.1 Padding to Batch 58
4.3.2 Quantifying Wasted Computation 59
4.3.3 Revisiting NN Application Taxonomy 60

4.4 Designing a High Throughput Engine for NLP 61
4.4.1 Requirements . 61
4.4.2 System Design . 62

v

4.4.3 Configuration Tuning 64
4.5 Evaluation . 66

4.5.1 Methodology . 66
4.5.2 Performance Analysis 67
4.5.3 Balancing CPU and GPU Resources 70
4.5.4 Query Throughput and Latency 74
4.5.5 Configuration Tuning Algorithm 77

4.6 Summary . 77

V. Data Collection for a Real-World Intelligent Application . . 79

5.1 Many-intent Classification . 80
5.2 Training Data Quality Metrics 81
5.3 Crowdsourcing Data Collection Methods 84

5.3.1 Scenario-driven . 84
5.3.2 Paraphrasing . 86

5.4 Evaluation . 86
5.4.1 Correlating Diversity and Coverage with Model Ac-

curacy . 87
5.4.2 Comparing Scenario and Paraphrase Based Collec-

tion and Their Variants 89
5.4.3 Sampling Prompts from the Test Set 90

5.5 Summary . 92

VI. Conclusion . 93

BIBLIOGRAPHY . 95

vi

LIST OF FIGURES

Figure

2.1 A 5-layer Deep Neural Network (DNN) classifies input image into one
of the pre-defined classes. 12

3.1 Latency breakdown for AlexNet (image classification). The cloud-
only approach is often slower than mobile execution due to the high
data transfer overhead. 19

3.2 Mobile energy breakdown for AlexNet (image classification). Mobile
device consumes more energy transferring data via LTE and 3G than
computing locally on the GPU. 20

3.3 The per layer execution time (the light-colored left bar) and size of
data (the dark-colored right bar) after each layer’s execution (input
for next layer) in AlexNet. Data size sharply increases then decreases
while computation generally increases through the network’s execution. 22

3.4 End-to-end latency and mobile energy consumption when choosing
different partition points. After the execution of every layer is con-
sidered a partition point. Each bar represents the total latency (a) or
mobile energy (b) if the DNN is partitioned after the layer marked on
the X-axis. The left-most bar represents cloud-only processing and
the right-most bar represents mobile-only processing. The partition
points for best latency and mobile energy are annotated. 24

3.5 The per layer latency on the mobile GPU (left light-color bar) and
size of data (right dark-color bar) after each layer’s execution. . . . 26

3.6 End-to-end latency when choosing different partition points. Each
bar represents the end-to-end latency if the DNN is partitioned after
each layer, where the left-most bar represents cloud-only processing
(i.e., partitioning at the beginning) while the right-most bar rep-
resents mobile-only execution (i.e., partitioning at the end). The
wireless network configuration is LTE. The partition points for best
latency are each marked by F. 29

vii

3.7 Mobile energy consumption when choosing different partition points.
Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-
only processing (i.e., partitioning at the beginning) while the right-
most bar represents mobile-only execution (i.e., partitioning at the
end). The wireless network configuration is LTE. The partition points
for best energy are each marked by F. 30

3.8 Overview of Neurosurgeon. At deployment, Neurosurgeon generates
prediction models for each layer type. During runtime, Neurosurgeon pre-
dicts each layer’s latency/energy cost based on the layer’s type and
configuration, and selects the best partition point based on various
dynamic factors. 31

3.9 Latency speedup achieved by Neurosurgeon normalized to status quo
approach (executing entire DNN in the cloud). Results for three wire-
less networks (Wi-Fi, LTE and 3G) and mobile CPU and GPU are
shown here. Neurosurgeon improves the end-to-end DNN inference
latency by 3.1× on average (geometric mean) and up to 40.7×. . . . 38

3.10 Mobile energy consumption achieved by Neurosurgeon normalized
to status quo approach (executing entire DNN in the cloud). Results
for three wireless networks (Wi-Fi, LTE and 3G) and mobile CPU
and GPU are shown here. Neurosurgeon reduces the mobile energy
consumption by 59.5% on average (geometric mean) and up to 94.7%. 40

3.11 Latency speedup achieved by Neurosurgeon vs. MAUI [35]. For
MAUI, we assume the optimal programmer annotation that achieves
minimal program state transfer. Neurosurgeon outperforms MAUI
by up to 32× and 1.9× on average. 42

3.12 The top graph shows bandwidth variance using a LTE network. The
bottom graph shows the latency of AlexNet (IMC) of the status quo
and Neurosurgeon. Neurosurgeon’s decisions are annotated on the
bottom graph. Neurosurgeon provides consistent latency by adjust-
ing its partitioned execution based on the available bandwidth. . . . 43

3.13 Neurosurgeon adjusts its partitioned execution as the result of vary-
ing datacenter load. 44

3.14 Datacenter throughput improvement achieved by Neurosurgeon over
the status quo approach. Higher throughput improvement is achieved
by Neurosurgeon for cellular networks (LTE and 3G) and as more
mobile devices are equipped with GPUs. 45

4.1 NN invocations variability . 52
4.2 NN invocations dependency . 53
4.3 Latency and FLOPS of NLP and traditional NNs on GPU 54
4.4 Cycles breakdown of each applications. NN executes on the GPU

and rest of the applications executes on the CPU 56
4.5 Occupancy and throughput gain of applying DjiNN’s batching tech-

nique . 57
4.6 Padding to Batch . 58

viii

4.7 Percentage of FLOPS wasted from padding 59
4.8 Taxonomy of NN applications . 61
4.9 System Design Overview . 62
4.10 End-to-end throughput and GPU occupancy of FGCIB with varying

batch size . 69
4.11 CPU vs. GPU work balance across different numbers of workers and

batch size . 71
4.12 GPU Utilization and Throughput prior to instance scaling 73
4.13 Throughput Improvement . 75
4.14 Mean service latency and throughput 76
5.1 An example of scenario-driven task instructions. The template sets

up a real-world situation and asks workers to provide a response as
if they are in that situation. The prompt shown here is for collecting
data for the intent ‘balance’. 85

5.2 An example of a paraphrasing task instructions. 86
5.3 Accuracy, coverage and diversity for scenario-driven jobs as the

training data size increases. This data is collected using a mixture of
generic and specific scenarios. 87

5.4 Accuracy, coverage and diversity for paraphrasing jobs as the
training data size increases. This data is collected using a combi-
nation of generic and specific paraphrase examples. 88

ix

LIST OF TABLES

Table

3.1 Mobile Platform Specifications . 18
3.2 Server Platform Specifications . 18
3.3 Benchmark Specifications . 27
3.4 Neurosurgeon’s partition point selections for best end-to-end latency.

Green block indicates Neurosurgeon makes the optimal partition
choice and white block means a suboptimal partition point is picked.
On average, Neurosurgeon achieves within 98.5% of the optimal per-
formance. 36

3.5 Neurosurgeon partition point selections for best mobile energy con-
sumption. Green block indicates Neurosurgeon makes the optimal
partition choice and white block means a suboptimal partition point
is picked. On average, Neurosurgeon achieves a mobile energy re-
duction within 98.8% of the optimal reduction. 39

3.6 Comparing Neurosurgeon to popular computation offloading/parti-
tion frameworks . 44

4.1 Application specifications . 50
5.1 Examples of generic and specific scenario description and paraphras-

ing prompts. 84
5.2 Accuracy, coverage and diversity for the six template + prompt

conditions considered, all with ~4.7K training samples. 90
5.3 Comparison of manually generating prompts and sampling from test

set, evaluated on half of the test data (kept blind in sampling). . . . 91
5.4 Accuracy, coverage and diversity of paraphrasing jobs using 1-5

prompts sampled from the test set, with constant training set size
(~4.7K). 91

x

ABSTRACT

Intelligent applications such as Apple Siri, Google Assistant and Amazon Alexa

have gained tremendous popularity in recent years. With human-like understanding

capabilities and natural language interface, this class of applications is quickly becom-

ing people’s preferred way of interacting with their mobile, wearable and smart home

devices. There have been considerable advancement in machine learning research

that aim to further enhance the understanding capability of intelligent applications,

however there exist significant roadblocks in applying state-of-the-art algorithms and

techniques to a real-world use case. First, as machine learning algorithms becomes

more sophisticated, it imposes higher computation requirements for the underlying

software and hardware system to process intelligent application request efficiently.

Second, state-of-the-art algorithms and techniques is not guaranteed to provide the

same level of prediction and classification accuracy when applied to tasks required in

real-world intelligent applications, which are often different and more complex than

what are studied in a research environment.

This dissertation addresses these roadblocks by investigating the key challenges

across multiple components in an intelligent application system. Specifically, we iden-

tify the key compute and data challenges and presents system design and techniques.

To improve the computational performance of the hardware and software system, we

challenge the status-quo approach of cloud-only intelligent application processing and

propose computation partitioning strategies that effectively leverage both the cycles

in the cloud and on the mobile device to achieve low latency, low energy consump-

xi

tion and high datacenter throughput. We characterize and taxonomize state-of-the-

art deep learning based natural language processing (NLP) applications to identify

the algorithmic design elements and computational patterns that render conventional

GPU acceleration techniques ineffective on this class of applications. Leveraging their

unique characteristics, we design and implement a novel fine-grain cross-input batch-

ing techniques for providing GPU acceleration to a number of state-of-the-art NLP

applications. For the data component, large scale and effective training data, in ad-

dition to algorithm, is necessary to achieve high prediction accuracy. We investigate

the challenge of effective large-scale training data collection via crowdsourcing. We

propose novel metrics to evaluate the quality of training data for building real-word

intelligent application systems. We leverage this methodology to study the trade-off

of multiple crowdsourcing methods and provide recommendations on best training

data crowdsourcing practices.

xii

CHAPTER I

Introduction

Intelligent applications have become increasingly knowledgeable and capable and

they are the default way for many people to interact with their personal computing

devices. These applications take natural input such as voice and images and have

human-like understanding capability to analyze these inputs and provide user with

an intelligent response. Intelligent applications leverage state-of-the-art AI algorithms

and techniques and there have been considerable advancement in this research area

to further boost the capabilities of this class of applications. However, there exists

significant roadblocks when it comes to applying these research advancement to real-

world use cases. The first roadblock is computational performance. As the machine

learning algorithms evolve to leverage more sophisticated computation, the system

needs to be optimized for efficiently processing these requests to achieve low response

latency and energy consumption. The second roadblock is accuracy. Algorithms and

techniques that are proven to achieve state-of-the-art accuracy on research tasks are

not guaranteed to provide the same level of high prediction and classification accuracy

when solving problems required for real-world use cases.

To remove these roadblocks, we need to study the three major components in

an intelligent application system, specifically, algorithm, compute and data. The

AI research community and industry have made massive stride on algorithms and

1

have converged that Deep Neural Network (DNN) is the algorithm of the future as

it has been proven to provide state-of-the-art accuracy on the most challenging tasks

required in an intelligent applications across multiple domains. There have been a

series of effort to provide acceleration for intelligent applications and DNN but the

majority of the prior work focus on accelerating one class of neural network in the

datacenter, leaving computation cycles on the mobile devices idle and it’s also unclear

how these techniques could apply to evolving neural network topology. In addition

to algorithm, large scale and high quality training data is crucial in building a highly

accurate machine learning model yet it’s still largely an open research question as to

what’s the most effective data collection and curation process.

This dissertation, from compute to data, identify the key challenges in leveraging

state-of-the-art machine learning algorithms and techniques to build intelligent appli-

cations for real-world use cases and present system design and techniques to address

these challenges.

1.1 Motivation

This section motivates the need for an across-the-stack system design for intelligent

application in the context of the key challenges exist in the compute and data aspect.

1.1.1 Intelligent Applications Computation

Processing speech and image inputs for Intelligent applications requires accurate

and highly sophisticated machine learning techniques, the most common of which are

Deep Neural Networks (DNNs). DNNs have become increasingly popular as the core

machine learning technique in these applications due to their ability to achieve high

accuracy for tasks such as speech recognition, image classification and natural lan-

guage understanding. Many companies, including Google, Microsoft, Facebook, and

Baidu, are using DNNs as the machine learning component for numerous applications

2

in their production systems [3, 8, 10].

Prior work has shown that speech or image queries for DNN-based intelligent ap-

plications require orders of magnitude more processing than text based inputs [42].

The common wisdom has been that traditional mobile devices cannot support this

large amount of computation with reasonable latency and energy consumption. Thus,

the status quo approach used by web service providers for intelligent applications has

been to host all the computation on high-end cloud servers [1,2,9,15]. Queries gener-

ated from a user’s mobile device are sent to the cloud for processing. However, with

this approach, large amounts of data (e.g., images, video and audio) are uploaded to

the server via the wireless network, resulting in high latency and energy costs. While

data transfer becomes the latency and energy bottleneck, performance and energy

efficiency of modern mobile hardware have continued to improve through powerful

mobile SoC integration [17, 40]. With this shifting paradigm, several key research

questions arise:

1. How feasible it is to execute large-scale intelligent workloads on today’s mobile

platforms?

2. At what point is the cost of transferring speech and image data over the wireless

network too high to justify cloud processing?

3. What role should the mobile edge play in providing processing support for

intelligent applications requiring heavy computation?

1.1.2 Evolving Algorithms

This proliferation of intelligent applications and deep learning algorithms has been

accompanied by a surge in the volume of literature focused on accelerating deep

learning computation, which has focused almost exclusively on deep neural networks

3

with computational patterns that are statically-defined and predictable for each in-

put [23,25,27,36,43,58,65,69].

To continue to make strides in application accuracy, state-of-the-art deep learning

approaches are evolving toward sophisticated, complex algorithms where the actions

of the algorithm and the underlying computational patterns depend heavily on the na-

ture of the input, which dynamically influences the structure and dependencies within

the computation. This fundamentally contrasts with conventional neural network de-

signs, where the neural network computation and invocations are fixed. This shift has

impacted image processing [56], but has been particularly evident in the domain of

natural language processing (NLP), where algorithms with complex tree-structures

are being leveraged to provide state-of-the-art accuracy on problems that include

language understanding, sentiment analysis, and question answering [45,79,80]. The

computation of this emerging class of intelligent applications are dynamically defined

at runtime based on the structure and content of its input query.

The dramatic difference between the algorithmic composition of conventional deep

learning techniques gives rise to a number of important research questions for ar-

chitects and system designers who seek to support widely proliferating intelligent

applications:

1. Are NLP deep learning algorithms as amenable to acceleration on GPUs as deep

learning algorithms for other intelligent application domains?

2. What are the characteristics and computational patterns of state-of-the-art deep

learning based NLP applications that make them more or less suitable for con-

ventional GPU acceleration?

3. How should system designs be changed and updated to reflect the increasing

complexity of deep learning algorithms for NLP?

4

1.1.3 Data Collection

Large, high quality corpora are crucial in the development of effective machine

learning models in many areas. The performance of the machine learning models,

especially deep learning models, depend heavily on the quantity and quality of the

training data. Developing intelligent applications such as Apple Siri, Google Assistant

and Amazon Alexa poses a significant challenge for data collection as we need to do

rapid prototyping and bootstrapping to train new intelligent application capabilities.

The use of crowdsourcing has enabled the creation of large corpora at relatively low

cost [78] and is critical in collecting the quantities of data required to train models

with high accuracy. However, designing effective methodologies for data collection

with the crowd is largely an open research question [74].

There exists a major challenge when collecting data to build a real-world intelli-

gent application. We have observed that the complexity of building dialogue system

for a real-world use case is often substantially greater than those studied in the re-

search community. Therefore, a large amount of high quality training data tailored

to the target problem is critical for creating the best user experience in a real-world

intelligent application.

Crowdsourcing offers a promising solution by massively parallelizing data collec-

tion efforts across a large pool of workers at relatively low cost. Because of the

involvement of crowd workers, collecting high-quality data efficiently requires care-

ful orchestration of crowdsourcing jobs, including their instructions and prompts. In

order to collect the large-scale tailored dataset we need via crowdsourcing, there are

several research questions we need to answer:

• How can we evaluate the effectiveness of crowdsourcing methods and the quality

of the datasets collected via these methods?

• During the data collection process, how can we identify the point when addi-

5

tional data would have diminishing returns on the performance of the down-

stream trained models?

• Which crowdsourcing method yields the highest-quality training data for intent

classification in a real-world intelligent dialogue system?

1.2 Across-the-Stack System Design for Intelligent Applica-

tions

This sections summarizes system design and techniques optimizing the compute

and data component of an intelligent application.

1.2.1 Neurosurgeon: Collaborative Intelligence Between the Cloud and

Mobile Edge

This dissertation first presents an investigation into the current cloud-only ap-

proach of intelligent application processing to better understand the bottleneck of

end-to-end intelligent application query.

Based on our investigation using 8 DNN-based intelligent applications spanning

the domains of vision, speech, and natural language, we discover that, for some ap-

plications, due to the high data transfer overhead, locally executing on the mobile

device can be an order of magnitude faster than the cloud-only approach.

Furthermore, we find that instead of limiting the computation to be either exe-

cuted entirely in the cloud or entirely on the mobile, a fine-grained layer-level par-

titioning strategy based on a DNN’s topology and constituent layers can achieve far

superior end-to-end latency performance and mobile energy efficiency. By pushing

compute out of the cloud and onto the mobile devices, we also improve datacenter

throughput, allowing a given datacenter to support many more user queries, and

creating a win-win situation for both the mobile and cloud systems.

6

Given the observation that ideal fine-grained DNN partition points depend on

the layer compositions of the DNN, the particular mobile platform used, the wireless

network configuration and the server load, we design a lightweight dynamic sched-

uler, Neurosurgeon. Neurosurgeon is a runtime system spanning cloud and mobile

platforms that automatically identifies the ideal partition points in DNNs and or-

chestrates the distribution of computation between the mobile device and the data-

center. Neurosurgeon partitions the DNN computation and takes advantage of the

processing power of both the mobile and the cloud while reducing data transfer over-

head.

1.2.2 Accelerating Deep Learning Based Natural Language Processing

Applications

We taxonomize the behavior of the state-of-the-art deep learning based Natural

Language Processing applications, finding that there are fundamental algorithmic

patterns and computational characteristics that cause this class to map poorly to

conventional acceleration techniques. Specifically, this class of algorithms is char-

acterized by a large number of recurring computations, where 1) each is dependent

on previous such computations in a manner defined by the specifics of the problem

input (e.g., semantic structure of a sentence), and 2) each takes the form of a small

version of conventional neural network computation. Contrary to conventional wis-

dom on mapping deep learning computation to GPU accelerators, which holds that

deep learning computation can be accelerated as long as there is enough computa-

tion per byte moved, we find that two additional factors impact accelerability in this

new class of applications: the number of neural network kernel invocations and the

nature of the dependencies between invocations. In particular, because current tech-

niques [43] to provide high-throughput DNN services on GPUs rely on the assumption

that each input involves the same amount of DNN invocations (often only 1 for im-

7

age/vision workloads) and the type of DNN computation involved in each input is

statically determined with no inter-dependencies, these heretofore unseen characteris-

tics make current techniques unsuitable for accelerating dynamically-structured NLP

deep learning applications.

Building on these insights, we introduce fine-grained cross-input batching(FGCIB),

a novel batching technique that addresses the limitations on conventional batching

approaches used in prior work to accelerate conventional deep learning computations.

FGCIB works by forming fine-grain, cross-input batches of neural network compu-

tation to provide sufficient work to the GPU to achieve high GPU occupancy. Our

technique exposes a new form a cross-query parallelism, allowing the execution of

multiple queries by breaking the inherent computational dependency within a query

to aggregate work across different parts of different queries.

1.2.3 Data Collection for Real-World Intelligent Application

We study the process of collecting large scale training data via crowdsourcing and

optimize the effectiveness of the process. There is limited work on effective techniques

to evaluate a crowdsourcing method and the data collected using that method. Prior

work has focused on intrinsic analysis of the data, lacking quantitative investigation

of the data’s impact on downstream model performance [47]. In this dissertation,

we propose two novel metrics to evaluate dataset quality. Specifically, we introduce

(1) coverage, quantifying how well a training set covers the expression space of a

certain task, and (2) diversity, quantifying the heterogeneity of sentences in the

training set. We focus on one aspect of an intelligent application system, intent

classification. We verify the effectiveness of both metrics by correlating them with

the model accuracy of two well-known algorithms, SVM [34] and FastText [20,48]. We

show that while diversity gives a sense of the variation in the data, coverage closely

correlates with the model accuracy and serves as an effective metric for evaluating

8

training data quality.

We then describe in detail two crowdsourcing methods to collect intent classi-

fication data for building real-world intelligent application. The key ideas of these

two methods are (1) describing the intent as a scenario or (2) providing an example

sentence to be paraphrased. We experiment multiple variants of these methods by

varying the number and type of prompts and collect training data using each variant.

We perform metric and accuracy evaluation of these datasets and show that using

a mixture of different prompts and sampling paraphrasing examples from real user

queries yield training data with higher coverage and diversity and lead to better

performing models.

1.3 Summary of Contributions

This dissertation presents a host of system design and techniques to address chal-

lenges in building an effective intelligent application for real-world use cases. This

section summarizes the specific contributions.

• DNN computation partitioning across the cloud and mobile edge – We

provide an in-depth layer-level characterization of the compute and data size of

8 DNNs spanning across computer vision, speech and natural language process-

ing. Our investigation reveals that DNN layers have significantly different com-

pute and data size characteristics depending on their type and configurations.

Based on this observation, we show that partitioning DNN at layer granularity

offers significant performance benefits. We then design Neurosurgeon, a sys-

tem to intelligently partition DNN computation between the mobile and cloud.

We demonstrate that Neurosurgeon significantly improves end-to-end latency,

reduces mobile energy consumption, and improves datacenter throughput.

• Accelerating state-of-the-art NLP applications – We characterize the al-

9

gorithm and computational patterns of a suite of state-of-the-art deep learning

based NLP applications and identify a set of unique characteristics that are dras-

tically different from conventional deep learning applications. We demonstrate

that the current state-of-the-art technique is not suitable for these emerging

class of applications. Based on the insights we gained, we then design a novel

batching technique that forms fine-grain batches of neural network computation

across multiple queries to efficiently to sustain high GPU occupancy to accel-

erate NLP applications with complex algorithmic and computational patterns.

We use an industry-grade load generator and perform a real-system end-to-

end evaluation to demonstrate our system achieves significant throughput and

latency improvement over the existing GPU-based deep learning acceleration

system.

• Systematic data collection process – We introduce two novel metrics to

evaluate the quality of training dataset. Specifically, we introduce diversity to

capture the semantic heterogeneity in the training data and coverage to eval-

uate the effectiveness of a training dataset at representing the target task. We

validate the metrics by showing their correlation with the accuracy of the down-

stream trained models. We then describe two popular crowdsourcing methods

for collecting training data for intelligent dialogue system and variants of these

two methods. We leverage the proposed metrics to evaluate the quality of the

training data collected via these methods. We observe that using crowdsourc-

ing prompts based on real user queries and including a mixture of generic and

specific prompts yields training data with high quality.

10

CHAPTER II

Background and Related Work

This section introduces the background on the intelligent applications and machine

learning algorithms studied in this dissertation as well as related literature on system

design for intelligent applications.

2.1 Intelligent Applications

2.1.1 Deep Neural Networks

In this section, we provide an overview of Deep Neural Network (DNN) and de-

scribe how computer vision, speech, and natural language processing applications

leverage DNNs as their core machine learning algorithm.

DNNs are organized in a directed graph where each node is a processing element

(a neuron) that applies a function to its input and generates an output. Figure 2.1

depicts a 5 layer DNN for image classification where computation flows from left to

right. The edges of the graph are the connections between each neuron defining the

flow of data. Multiple neurons applying the same function to different parts of the

input define a layer. For a forward pass through a DNN, the output of a layer is the

input to the next layer. The depth of a DNN is determined by the number of layers.

Computer Vision (CV) applications use DNNs to extract features from an input

11

Inference (Classify Image)

Neurons Layer

“Tree”

Figure 2.1: A 5-layer Deep Neural Network (DNN) classifies input image into one of
the pre-defined classes.

image and classify the image into one of the pre-defined classes. Automatic Speech

Recognition (ASR) applications use DNNs to generate predictions for speech feature

vectors, which will then be post-processed to produce the most-likely text transcript.

Natural Language Processing (NLP) applications use DNNs to analyze and extract

semantic and syntactic information from word embedding vectors generated from

input text.

2.1.2 State-of-the-art Natural Language Processing Applications

Recent advances in machine learning techniques has prompted the emergence of

applications where users interact with their personal computing devices using natural

language rather than a constrained set of buttons and fields. The category of machine

learning tasks facilitating this transition, natural language processing (NLP), has

become critical to the evolution of modern user interfaces. In this work, we aim to

answer research questions as system designers building datacenter systems hosting

state-of-the-art NLP applications. We aim to study NLP applications that are 1)

representative of complete applications designed to service user queries and 2) achieve

the state-of-the-art accuracy in solving their respective tasks. Based on these criteria,

we surveyed the recent publications and select 3 applications solving two of the most

12

prominent problems among the NLP community: sentiment analysis and automatic

text summarization.

Sentiment Analysis Sentiment Analysis analyzes the emotions and attitudes in

natural language, an application that plays a pivotal role in business planning, polit-

ical campaigns, and social media analysis. [57,75]. In this work, we investigate a con-

volutaional neural network based implementation [50] (CNN) and a tree-structured

long short-term memory neural network based implementation [80] (LSTM). CNN

and LSTM achieve state-of-the-art accuracy on binary and 5-class sentiment analy-

sis, respectively.

Summarization Automatic Text Summarization extracts the crux from a body

of text, allowing users and higher-level algorithms to ignore extraneous information.

Automatic summarization is widely used in news and content delivery services, for

example by news agency and websites to automatically generate synopses, keywords

and titles of news articles [4,7]. In this work, we study the abstractive summarization

application, NAMAS [73] which is designed at Facebook to generate news title based

on the first sentence of a news article.

2.2 Related Work

2.2.1 Computation Partitioning

Previous research efforts focus on offloading computation from the mobile to cloud.

COMET [38] offloads a thread when its execution time exceeds a pre-defined thresh-

old. Odessa [70] makes computation partition decisions based on the execution time

and data requirements of part of the function. CloneCloud [28] makes the same

offloading decisions for all invocations of the same function. MAUI’s [35] makes pre-

dictions for each function invocation separately and considers the entire application

when choosing which function to offload.

13

2.2.2 Datacenter Systems for Accelerating Intelligent Applications

There has been growing interest in building large scale datacenter systems for Deep

Neural Network workloads. Various accelerators, such as GPUs, ASICs, and FPGAs,

have been proposed for datacenters to better handle DNN computation [24,42,59,66].

There has also been effort in designing compact DNNs suitable for the mobile edge.

Microsoft and Google explore small-scale DNNs for speech recognition on mobile plat-

forms [53,54]. MCDNN [41] proposes generating alternative DNN models to trade-off

accuracy for performance/energy and choosing to execute either in the cloud or on

the mobile. This work investigates intelligent collaboration between the mobile device

and cloud for executing traditionally cloud-only large-scale DNNs for reduced latency

and energy consumption without sacrificing the DNNs’ high prediction accuracy.

Recent work also investigates deep learning based applications across a spectrum

of workloads. Many focus on image based workloads involving CNN as they have

fixed topologies and large compute for which custom accelerators are desirable [21,

23,69]. Most recently Fathom [18], a benchmark suite, started looking at deep learning

based applications beyond CNN based workload and show the different computational

characteristics across different types of applications, including a set of NLP based

applications, a promising step in the direction of exploring other types of deep learning

based applications.

2.2.3 Data Collection and Curation

This study complements a line of work on understanding how to effectively collect

data with non-expert workers. The closest work is [47]’s study of a range of interface

design choices that impact the quality and diversity of crowdsourced paraphrases.

However, their work focused on intrinsic evaluation of the paraphrases only, whereas

we explore the impact on performance in a downstream task. The variations we

consider are also complementary to the aspects covered by their study, providing

14

additional guidance for future data collection efforts.

In terms of the variations we consider, the closest work is [72], who also considered

how task framing can impact behavior. Their study made a more drastic change

than ours though, attempting to shift workers’ intrinsic motivation by changing the

perspective to be about assisting a non-profit organization. While this shift did have

a significant impact on worker behavior, it is often not applicable.

More generally, starting with the work of [78] there have been several investiga-

tions of crowdsourcing design for natural language processing tasks. Factors that

have been considered include quality control mechanisms [71], payment rates and

task descriptions [39], task naming [82], and worker qualification requirements [49].

Other studies have focused on exploring variations for specific tasks, such as named

entity recognition [37]. Recent work has started to combine and summarize these

observations together into consistent guidelines [74], though the range of tasks and

design factors makes the scope of such guidelines large. This dissertation adds to this

literature, introducing new metrics and evaluation methods to guide crowdsourcing

practice.

15

CHAPTER III

Neurosurgeon: Collaborative Intelligence Between

the Cloud and Mobile Edge

The computation for today’s intelligent personal assistants such as Apple Siri,

Google Now, and Microsoft Cortana, is performed in the cloud. This cloud-only

approach requires significant amounts of data to be sent to the cloud over the wireless

network and puts significant computational pressure on the datacenter. However, as

the computational resources in mobile devices become more powerful and energy

efficient, questions arise as to whether this cloud-only processing is desirable moving

forward, and what are the implications of pushing some or all of this compute to the

mobile devices on the edge.

In this chapter, we examine the status quo approach of cloud-only processing

and investigate computation partitioning strategies that effectively leverage both the

cycles in the cloud and on the mobile device to achieve low latency, low energy con-

sumption, and high datacenter throughput for this class of intelligent applications.

Our study uses 8 intelligent applications spanning computer vision, speech, and nat-

ural language domains, all employing state-of-the-art Deep Neural Networks (DNNs)

as the core machine learning technique. We find that given the characteristics of

DNN algorithms, a fine-grained, layer-level computation partitioning strategy based

on the data and computation variations of each layer within a DNN has significant

16

latency and energy advantages over the status quo approach.

Using this insight, we design Neurosurgeon, a light-weight scheduler to automat-

ically partition DNN computation between mobile devices and datacenters at the

granularity of neural network layers. Neurosurgeon does not require per-application

profiling. It adapts to various DNN architectures, hardware platforms, wireless net-

works, and server load levels, intelligently partitioning computation for best latency

or best mobile energy. We evaluate Neurosurgeon on a state-of-the-art mobile devel-

opment platform and show that it improves end-to-end latency by 3.1× on average

and up to 40.7×, reduces mobile energy consumption by 59.5% on average and up

to 94.7%, and improves datacenter throughput by 1.5× on average and up to 6.7×.

3.1 Cloud-only Processing: The Status Quo

Currently, the status quo approach used by cloud providers for intelligent appli-

cations is to perform all DNN processing in the cloud [1, 2, 9, 15]. A large overhead

of this approach is in sending data over the wireless network. In this section, we in-

vestigate the feasibility of executing large DNNs entirely on a state-of-the-art mobile

device, and compare with the status quo.

3.1.1 Experimental setup

We use a real hardware platform, representative of today’s state-of-the-art mobile

devices, the Jetson TK1 mobile platform developed by NVIDIA [12] and used in

the Nexus 9 tablet [13]. The Jetson TK1 is equipped with one of NVIDIA’s latest

mobile SoC, Tegra K1: a quad-core ARM A15 and a Kepler mobile GPU with a

single streaming multiprocessor (Table 3.1). Our server platform is equipped with

an NVIDIA Tesla K40 GPU, one of NVIDIA’s latest offering in server class GPUs

(Table 3.2).

17

Table 3.1: Mobile Platform Specifications

Hardware Specifications
System Tegra K1 SoC
CPU 4-Plus-1 quad-core ARM Cortex A15 CPU

Memory 2 GB DDR3L 933MHz
GPU NVIDIA Kepler with 192 CUDA Cores

Table 3.2: Server Platform Specifications

Hardware Specifications
System 4U Intel Dual CPU Chassis, 8×PCIe 3.0×16 slots
CPU 2× Intel Xeon E5-2620 V2, 6C, 2.10 GHz
HDD 1TB 2.5” HDD

Memory 16× 16GB DDR3 1866MHz ECC/Server Memory
GPU NVIDIA Tesla K40 M-Class 12 GB PCIe

We use Caffe [46], an actively developed open-source deep learning library, for

the mobile and server platform. For the mobile CPU, we use OpenBLAS [83], a

NEON-vectorized matrix multiplication library and use the 4 cores available. For

both GPUs, we use cuDNN [26], an optimized NVIDIA library that accelerates key

layers in Caffe, and use Caffe’s CUDA implementations for rest of the layers.

3.1.2 Examining the Mobile Edge

We investigate the capability of the mobile platform to execute a traditionally

cloud-only DNN workload. We use AlexNet [51] as our application, a state-of-the-art

Convolutional Neural Network for image classification. Prior work has noted that

AlexNet is representative of today’s DNNs deployed in server environments [29].

In Figure 3.1, we break down the latency of an AlexNet query, a single inference

on a 152KB image. For wireless communication, we measure the bandwidth of 3G,

LTE, and Wi-Fi on several mobile devices using TestMyNet [14].

Communication Latency – Figure 3.1a shows the latency to upload the input

image via 3G, LTE, and Wi-Fi. The slowest is 3G connection taking over 870ms.

LTE and Wi-Fi connection require 180ms and 95ms to upload, respectively, showing

18

Cloud
3G

Cloud
LTE

Cloud
Wi-Fi

(a) Communication

0.0

0.2

0.4

0.6

0.8

1.0
L

at
en

cy
(s

)

Mobile
CPU

Mobile
GPU

Cloud
GPU

(b) Computation

0.0

0.2

0.4

0.6

0.8

1.0

Cloud
3G

Cloud
LTE

Cloud
Wi-Fi

Mobile
CPU

Mobile
GPU

(c) End-to-end

0.0

0.2

0.4

0.6

0.8

1.0
0.7%

3.2%
5.9%

100.0%

100.0%

Communication Computation

Figure 3.1: Latency breakdown for AlexNet (image classification). The cloud-only
approach is often slower than mobile execution due to the high data transfer overhead.

that the network type is critical for achieving low latency for the status quo approach.

Computation Latency – Figure 3.1b shows the computation latency on mobile

CPU, GPU and cloud GPU. The slowest platform is the mobile CPU taking 382ms to

process while the mobile GPU and cloud GPU take 81ms and 6ms, respectively. Note

that the mobile CPU’s time to process the image is still 2.3× faster than uploading

input via 3G.

End-to-end Latency – Figure 3.1c shows the total latency required by the status

quo and the mobile-only approach. Annotated on top of each bar is the fraction of the

end-to-end latency spent on computation. The status quo approach spends less than

6% of the time computing on the server and over 94% of the time transferring data.

The mobile GPU achieves a lower end-to-end latency than the status quo approach

using LTE and 3G, while the status quo approach using LTE and Wi-Fi performs

better than mobile CPU execution.

Energy Consumption – We measure the energy consumption of the mobile device

using a Watts Up? meter [16] and techniques described by Huang et al. [44]. Similar

to the trends shown in Figure 3.1a, Figure 3.2a shows that the communication energy

19

Cloud
3G

Cloud
LTE

Cloud
Wi-Fi

(a) Communication

0.0

0.5

1.0

1.5

2.0

2.5
E

ne
rg

y
(J

)

Mobile
CPU

Mobile
GPU

(b) Computation

0.0

0.5

1.0

1.5

2.0

2.5

Cloud
3G

Cloud
LTE

Cloud
Wi-Fi

Mobile
CPU

Mobile
GPU

(c) Total

0.0

0.5

1.0

1.5

2.0

2.5

Communication Computation

Figure 3.2: Mobile energy breakdown for AlexNet (image classification). Mobile device
consumes more energy transferring data via LTE and 3G than computing locally on
the GPU.

is heavily dependent on the type of wireless network used. In Figure 3.2b, the mobile

device’s energy consumption is higher on the CPU than the GPU (while the GPU

needs more power, the device is used for a shorter burst thus it consumes less total

energy). Figure 3.2c shows the total mobile energy consumption for the cloud-only

approach and mobile execution where the energy in the cloud-only approach is dom-

inated by communication. The mobile GPU consumes less energy than transferring

input via LTE or 3G for cloud processing, while cloud processing via Wi-Fi consumes

less energy than mobile execution.

Key Observations – 1) The data transfer latency is often higher than mobile

computation latency, especially on 3G and LTE. 2) Cloud processing has a significant

computational advantage over mobile processing, but it does not always translate to

end-to-end latency/energy advantage due to the dominating data transfer overhead.

3) Local mobile execution often leads to lower latency and energy consumption than

the cloud-only approach, while the cloud-only approach achieves better performance

if using fast Wi-Fi connection.

20

3.2 Fine-grained Computation Partitioning

Based on the findings in Section 3.1, the question arises as to whether it is advan-

tageous to partition DNN computation between the mobile device and cloud. Based

on the observation that DNN layers provide an abstraction suitable for partitioning

computation, we begin with an analysis of the data and computation characteristics

of state-of-the-art DNN architectures at the layer granularity.

3.2.1 Layer Taxonomy

Before the layer-level analysis, it is important to understand the various types of

layers present in today’s DNNs.

Fully-connected Layer (fc) – All the neurons in a fully-connected layer are ex-

haustively connected to all the neurons in the previous layer. The layer computes the

weighted sum of the inputs using a set of learned weights.

Convolution & Local Layer (conv, local) – Convolution and local layers convolve

the image with a set of learned filters to produce a set of feature maps. These layers

mainly differ in the dimensions of their input feature maps, the number and size of

their filters, and the stride with which the filters are being applied.

Pooling Layer (pool) – Pooling layers apply a pre-defined function (e.g., max or

average) over regions of input feature maps to group features together. These layers

mainly differ in the dimension of their input, size of the pooling region, and the stride

with which the pooling is applied.

Activation Layer – Activation layers apply a non-linear function to each of its

input data individually, producing the same amount of data as output. Activation

layers present in the neural networks studied in this work include sigmoid layer (sig),

rectified-linear layer (relu), and hard Tanh layer (htanh).

Other layers studied in this work include: normalization layer (norm) nor-

21

input

conv1

relu1

pool1

norm
1

conv2

relu2

pool2

norm
2

conv3

relu3

conv4

relu4

conv5

relu5

pool5

fc6

relu6

drop6

fc7

relu7

drop7

fc8

softm
ax

argm
ax

0

10

20

30

40

L
at

en
cy

(m
s) Layer latency

Size of output data

0

0.3

0.6

0.9

1.2

1.5 D
ata

size
(M

B
)

Figure 3.3: The per layer execution time (the light-colored left bar) and size of
data (the dark-colored right bar) after each layer’s execution (input for next layer)
in AlexNet. Data size sharply increases then decreases while computation generally
increases through the network’s execution.

malizes features across spatially grouped feature maps; softmax layer (softmax)

produces a probability distribution over the number of possible classes for classifi-

cation; argmax layer (argmax) chooses the class with the highest probability; and

dropout layer (dropout) randomly ignores neurons during training to avoid model

over-fitting and are passed through during prediction.

3.2.2 Characterizing Layers in AlexNet

We first investigate the data and computation characteristics of each layer in

AlexNet. These characteristics provide insights to identify a better computation

partitioning between mobile and cloud at the layer level. In the remainder of this and

subsequent sections, we use the GPU in both mobile and server platforms.

Per-layer Latency – The left bars (light-colored) in Figure 3.3 show the latency

of each layer on the mobile platform, arranged from left to right in their sequen-

tial execution order. The convolution (conv) and fully-connected layers (fc) are the

most time-consuming layers, representing over 90% of the total execution time. Con-

volution layers in the middle (conv3 and conv4) takes longer to execute than the

early convolution layers (conv1 and conv2). Larger number of filters are applied by

the convolution layers later in the DNN to progressively extract more robust and

representative features, increasing the amount of computation. On the other hand,

fully-connected layers are up to one magnitude slower than the convolution layers in

22

the network. The most time-consuming layer is the layer fc6, a fully-connected layer

deep in the DNN, taking 45% of the total execution time.

Data Size Variations – The right bars (dark-colored) in Figure 3.3 shows the size

of each layer’s output data, which is also the input to the next layer. The first three

convolution layers (conv1, conv2 and conv3) generate large amounts of output data

(shown as the largest dark bars) as they apply hundreds of filters over their input

feature maps to extract interesting features. The data size stays constant through

the activation layers (relu1 - relu5). The pooling layers sharply reduce the data

size by up to 4.7× as they summarize regions of neighboring features by taking the

maximum. The fully-connected layers deeper in the network (fc6 - fc8) gradually

reduce the data size until the softmax layer (softmax) and argmax layer (argmax) at

the end reduce the data to be one classification label.

Key Observations – 1) Depending on its type and location in the network, each

layer has a different computation and data profile. 2) The latency of convolution and

pooling layers on the mobile GPU are relatively small, while fully-connected layers

incur high latency. 3) Convolution and pooling layers are mostly at the front-end of

the network, while fully-connected layers are at the back-end. 4) With convolution

layers increasing data and then pooling layers reducing data, the front-end layers

altogether reduce the size of data gradually. Data size in the last few layers are

smaller than the original input. 5) The findings that data size is generally decreasing

at the front-end, and per-layer mobile latency is generally higher at the back-end,

indicates the unique opportunity for computation partitioning in the middle of the

DNN between the mobile and cloud.

3.2.3 Layer-granularity Computation Partitioning

The analysis in Section 3.2.2 indicates that there exist interesting points within

a neural network to partition computation. In this section, we explore partitioning

23

input
conv1
relu1
pool1
norm

1
conv2
relu2
pool2
norm

2
conv3
relu3
conv4
relu4
conv5
relu5
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Partition points (after each layer)

0.0

0.2

0.4

0.6

0.8

1.0

L
at

en
cy

(s
)

Best latency

Server processing
Data communication
Mobile processing

(a) AlexNet latency

input
conv1
relu1
pool1
norm

1
conv2
relu2
pool2
norm

2
conv3
relu3
conv4
relu4
conv5
relu5
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Partition points (after each layer)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

(J
)

Best energy

Data communication
Mobile processing

(b) AlexNet energy consumption

Figure 3.4: End-to-end latency and mobile energy consumption when choosing different
partition points. After the execution of every layer is considered a partition point. Each
bar represents the total latency (a) or mobile energy (b) if the DNN is partitioned after
the layer marked on the X-axis. The left-most bar represents cloud-only processing and
the right-most bar represents mobile-only processing. The partition points for best
latency and mobile energy are annotated.

AlexNet at each layer between the mobile and cloud. In this section, we use Wi-Fi

as the wireless network configuration.

Each bar in Figure 3.4a represents the end-to-end latency of AlexNet, partitioned

after each layer. Similarly, each bar in Figure 3.4b represents the mobile energy

consumption of Alexnet, partitioned after each layer. Partitioning computation after

a specific layer means executing the DNN on the mobile up to that layer, transferring

the output of that layer to the cloud via wireless network, and executing the remaining

layers in the cloud. The leftmost bar represents sending the original input for cloud-

24

only processing. As partition point moves from left to right, more layers are executed

on the mobile device thus there is an increasingly larger mobile processing component.

The rightmost bar is the latency of executing the entire DNN locally on the mobile

device.

Partition for Latency – If partitioning at the front-end, the data transfer dominates

the end-to-end latency, which is consistent with our observation in Section 3.2.2 that

the data size is the largest at the early stage of the DNN. Partitioning at the back-

end provides better performance since the application can minimize the data transfer

overhead, while taking advantage of the powerful server to execute the more compute-

heavy layers at the back-end. In the case of AlexNet using the mobile GPU and Wi-

Fi, partitioning between the last pooling layer (pool5) and the first fully-connected

layer (fc6) achieves the lowest latency, as marked in Figure 3.4a, improving 2.0×

over cloud-only processing.

Partition for Energy – Similar to latency, due to the high energy cost of wireless

data transfer, transferring the input for cloud-only processing is not the most energy-

efficiency approach. As marked in Figure 3.4b, partitioning in the middle of the

DNN achieves the best mobile energy consumption, 18% more energy efficient than

the cloud-only approach.

Key Observations – Partitioning at the layer granularity can provide significant

latency and energy efficiency improvements. For AlexNet using the GPU and Wi-Fi,

the best partition points are between the intermediate layers of the DNN.

25

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softmax
argmax

L
ay

er
s

05010
0

15
0

20
0

25
0

Latency(ms)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softmax
argmax

L
ay

er
s

02040608010
0

Latency(ms)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softmax
argmax

L
ay

er
s

012345 Latency(ms)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

L
ay

er
s

01020304050 Latency(ms)

input

fc1

htanh

fc3

L
ay

er
s

0.
0

0.
1

0.
2

0.
3

0.
4

Latency(ms)

input

fc1

htanh

fc3

L
ay

er
s

0.
0

0.
1

0.
2

0.
3

0.
4

Latency(ms)

input

fc1

htanh

fc3

L
ay

er
s

0.
0

0.
1

0.
2

0.
3

0.
4

Latency(ms)

02468101214

Data size (MB)

(a
)V

G
G

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Data size (MB)

(b
)F

A
C

E

012345

Data size (MB)

(c
)D

IG

012345

Data size (MB)

(d
)A

SR

0.
0

1.
1

2.
2

3.
4

4.
5

Data size (MB)

×
10
−

2

(e
)P

O
S

0.
0

1.
1

2.
2

3.
4

4.
5

Data size (MB)

×
10
−

2

(f
)N

E
R

0.
0

1.
1

2.
2

3.
4

4.
5

Data size (MB)

×
10
−

2

(g
)C

H
K

L
ay

er
la

te
nc

y
Si

ze
of

ou
tp

ut
da

ta

F
ig

u
re

3
.5

:
T

h
e

p
e
r

la
y
e
r

la
te

n
c
y

o
n

th
e

m
o
b

il
e

G
P

U
(l

e
ft

li
g
h
t-

c
o
lo

r
b

a
r)

a
n

d
si

z
e

o
f

d
a
ta

(r
ig

h
t

d
a
rk

-c
o
lo

r
b

a
r)

a
ft

e
r

e
a
ch

la
y
e
r’

s
e
x
e
c
u

ti
o
n

.

26

Table 3.3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification
IMC AlexNet [51] Image 24
VGG VGG [76] Image 46

Facial recognition FACE DeepFace [81] Image 10
Digit recognition DIG MNIST [52] Image 9

Speech recognition ASR Kaldi [67] Speech features 13
Part-of-speech tagging POS SENNA [31] Word vectors 3

Named entity recognition NER SENNA [31] Word vectors 3
Word chunking CHK SENNA [31] Word vectors 3

3.2.4 Generalizing to more DNNs

We expand our investigation to 7 more intelligent applications to study their data

and computation characteristics and their impact on computation partitioning op-

portunity. We use the DNNs provided in the Tonic suite [42], as well as VGG, a

state-of-the-art image classification DNN, and LTE as the wireless network configu-

ration. Details about the benchmarks are listed in Table 3.3. We count the number

of layers of each DNN starting from the first non-input layer to the last layer, includ-

ing argmax if present.

CV Applications – The three remaining computer vision DNNs (VGG, FACE and

DIG) have similar characteristics as AlexNet (Figure 3.3), as shown in Figures 3.5a –

3.5c. The front-end layers are convolution layers increasing data, and pooling layers

reducing data. The data size in the back-end layers are similar or smaller than the

original input data. The latency for the back-end layers are higher than most of

the front-end layers (e.g., fc6 is the most time-consuming layer in VGG), except

for DIG where convolution layers are most time-consuming. Similar to AlexNet,

these characteristics indicate partitioning opportunities in the middle of the DNN.

Figure 3.6a shows that the partition point for best latency for VGG is in the interme-

diate layers. In addition, Figures 3.6a - 3.6c show that different CV applications have

different partition points for best latency, and Figures 3.7a - 3.7c show the different

partition points for best energy for these DNNs.

ASR and NLP Applications – The remaining four DNNs in the suite (ASR, POS,

27

NER and CHK) only consist of fully-connected layers and activation layers. The layer

breakdowns are shown in Figures 3.5d - 3.5g, where, throughout the execution, layers

of the same type incur similar latency and the data size stay relatively constant except

for the very first and last layer of each DNN. These DNNs do not have data-increasing

layers (i.e., convolution layers) or data-reducing layers (i.e., pooling layers). As a re-

sult, there only exist opportunities for partitioning the computation at the extremities

of these networks. Figures 3.6d - 3.6g and Figures 3.7d - 3.7g show the different par-

tition points for best latency and energy for these DNNs, respectively. There are data

communication components in the right-most bars (mobile-only processing) for these

applications because the output of the DNN is sent to the cloud for post-processing

steps required by these applications.

Key Observations – 1) In DNNs with convolution and pooling layers (e.g. Com-

puter Vision applications), the data size increases after convolution layers and de-

creases after pooling layers, while the per-layer computation generally increases through

the execution. 2) DNNs with only fully-connected layers of similar size and activa-

tion layers see small variations in per-layer latency and data size (e.g., ASR and NLP

DNNs). 3) The best way to partition a DNN depends on its topology and constituent

layers. Computer vision DNNs sometimes have better partition points in the middle

of the DNN, while it is more beneficial to partition at the beginning or the end for

ASR and NLP DNNs. The strong variations in the best partition point suggest there

is a need for a system to partition DNN computation between the mobile and cloud

based on the neural network architecture.

28

Pa
rt

iti
on

po
in

ts
05101520 Latency(s)

(a
)V

G
G

Pa
rt

iti
on

po
in

ts
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5

Latency(s)

(b
)F

A
C

E

Pa
rt

iti
on

po
in

ts
0123456 Latency(s)

(c
)D

IG
Pa

rt
iti

on
po

in
ts

01234567 Latency(s)

(d
)A

SR
Pa

rt
iti

on
po

in
ts

0123456 Latency(s)

×
10
−

2 (e
)P

O
S

Pa
rt

iti
on

po
in

ts
0123456 Latency(s)

×
10
−

2 (f
)N

E
R

Pa
rt

iti
on

po
in

ts
0123456 Latency(s)

×
10
−

2 (g
)C

H
K

Se
rv

er
pr

oc
es

si
ng

la
te

nc
y

D
at

a
co

m
m

un
ic

at
io

n
la

te
nc

y
M

ob
ile

pr
oc

es
si

ng
la

te
nc

y

F
ig

u
re

3
.6

:
E

n
d

-t
o
-e

n
d

la
te

n
c
y

w
h

e
n

ch
o
o
si

n
g

d
iff

e
re

n
t

p
a
rt

it
io

n
p

o
in

ts
.

E
a
ch

b
a
r

re
p

re
se

n
ts

th
e

e
n

d
-t

o
-e

n
d

la
te

n
c
y

if
th

e
D

N
N

is
p

a
rt

it
io

n
e
d

a
ft

e
r

e
a
ch

la
y
e
r,

w
h
e
re

th
e

le
ft

-m
o
st

b
a
r

re
p

re
se

n
ts

c
lo

u
d

-o
n

ly
p

ro
c
e
ss

in
g

(i
.e

.,
p

a
rt

it
io

n
in

g
a
t

th
e

b
e
g
in

n
in

g
)

w
h

il
e

th
e

ri
g
h
t-

m
o
st

b
a
r

re
p

re
se

n
ts

m
o
b

il
e
-o

n
ly

e
x
e
c
u

ti
o
n

(i
.e

.,
p

a
rt

it
io

n
in

g
a
t

th
e

e
n

d
).

T
h

e
w

ir
e
le

ss
n

e
tw

o
rk

c
o
n

fi
g
u

ra
ti

o
n

is
L
T

E
.

T
h

e
p

a
rt

it
io

n
p

o
in

ts
fo

r
b

e
st

la
te

n
c
y

a
re

e
a
ch

m
a
rk

e
d

b
y
F

.

29

Pa
rt

iti
on

po
in

ts
010203040506070 Energy(J)

(a
)V

G
G

Pa
rt

iti
on

po
in

ts
02468101214 Energy(J)

(b
)F

A
C

E

Pa
rt

iti
on

po
in

ts
0510152025 Energy(J)

(c
)D

IG
Pa

rt
iti

on
po

in
ts

051015202530 Energy(J)

(d
)A

SR
Pa

rt
iti

on
po

in
ts

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Energy(J)

(e
)P

O
S

Pa
rt

iti
on

po
in

ts
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Energy(J)

(f
)N

E
R

Pa
rt

iti
on

po
in

ts
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Energy(J)

(g
)C

H
K

D
at

a
co

m
m

un
ic

at
io

n
en

er
gy

M
ob

ile
pr

oc
es

si
ng

en
er

gy

F
ig

u
re

3
.7

:
M

o
b

il
e

e
n

e
rg

y
c
o
n

su
m

p
ti

o
n

w
h

e
n

ch
o
o
si

n
g

d
iff

e
re

n
t

p
a
rt

it
io

n
p

o
in

ts
.

E
a
ch

b
a
r

re
p

re
se

n
ts

th
e

m
o
b

il
e

e
n

e
rg

y
c
o
n

-
su

m
p

ti
o
n

if
th

e
D

N
N

is
p

a
rt

it
io

n
e
d

a
ft

e
r

e
a
ch

la
y
e
r,

w
h

e
re

th
e

le
ft

-m
o
st

b
a
r

re
p

re
se

n
ts

c
lo

u
d

-o
n

ly
p

ro
c
e
ss

in
g

(i
.e

.,
p
a
rt

it
io

n
in

g
a
t

th
e

b
e
g
in

n
in

g
)

w
h

il
e

th
e

ri
g
h
t-

m
o
st

b
a
r

re
p

re
se

n
ts

m
o
b

il
e
-o

n
ly

e
x
e
c
u

ti
o
n

(i
.e

.,
p

a
rt

it
io

n
in

g
a
t

th
e

e
n

d
).

T
h

e
w

ir
e
le

ss
n

e
tw

o
rk

c
o
n

fi
g
u

ra
ti

o
n

is
L
T

E
.

T
h

e
p

a
rt

it
io

n
p

o
in

ts
fo

r
b

e
st

e
n

e
rg

y
a
re

e
a
ch

m
a
rk

e
d

b
y
F

.

30

+++++++++
+++

+++
+++

++++++++++++
+++

+++

+++++++++
++++++ +++

++++
+++

++
+++

+++
+++

CONV FC

POOL ACT
…

+++++++++
+++

+++
+++

++++++++++++
+++

+++

+++++++++
++++++ +++

++++
+++

++
+++

+++
+++

CONV FC

POOL ACT
…

1) Generate
prediction models

Deployment Phase

Target Application

1) Extract layer
configurations

Runtime Phase

4) Partitioned
Execution

2) Predict layer
performance

3) Evaluate
partition points

Prediction
Model

Prediction
Model

Prediction
Model

Prediction
Model

Prediction
Model

Figure 3.8: Overview of Neurosurgeon. At deployment, Neurosurgeon generates predic-
tion models for each layer type. During runtime, Neurosurgeon predicts each layer’s
latency/energy cost based on the layer’s type and configuration, and selects the best
partition point based on various dynamic factors.

3.3 Neurosurgeon

The best partition point for a DNN architecture depends on the DNN’s topology,

which manifests itself in the computation and data size variations of each layer. In

addition, dynamic factors such as state of the wireless network and datacenter load af-

fect the best partition point even for the same DNN architecture. For example, mobile

devices’ wireless connections often experience high variances [64], directly affecting

the data transfer latency. Datacenters typically experience diurnal load patterns [60],

leading to high variance in its DNN query service time. Due to these dynamic fac-

tors, there is a need for an automatic system to intelligently select the best point

to partition the DNN to optimize for end-to-end latency or mobile device energy

consumption. To address this need, we present the design of Neurosurgeon, an intel-

ligent DNN partitioning engine. Neurosurgeon consists of a deployment phase and a

runtime system that manages the partitioned execution of an intelligent application.

Figure 3.8 shows the design of Neurosurgeon, which has two stages: deployment and

runtime.

At Deployment – Neurosurgeon profiles the mobile device and the server to gener-

ate performance prediction models for the spectrum of DNN layer types (enumerated

in Section 3.2.1). Note that Neurosurgeon’s profiling is application agnostic and only

31

needs to be done once for a given set of mobile and server platforms; per-application

profiling is not needed. This set of prediction models are stored on the mobile device

and later used to predict the latency and energy cost of each layer (Section 3.3.1).

During Runtime – During the execution of an DNN-based intelligent application on

the mobile device, Neurosurgeon dynamically decides the best partition point for the

DNN. As illustrated in Figure 3.8, the steps are as follows: 1) Neurosurgeon analyzes

and extracts the DNN architecture’s layer types and configurations; 2) the system

uses the stored layer performance prediction models to estimate the latency and

energy consumption for executing each layer on the mobile and cloud; 3) with these

predictions, combined with the current wireless connection bandwidth and datacenter

load level, Neurosurgeon selects the best partition point, optimizing for best end-to-

end latency or best mobile energy consumption; 4) Neurosurgeon executes the DNN,

partitioning work between the mobile and cloud.

3.3.1 Performance Prediction Model

Neurosurgeon models the per-layer latency and the energy consumption of arbi-

trary neural network architecture. This approach allows Neurosurgeon to estimate

the latency and energy consumption of a DNN’s constituent layers without executing

the DNN.

We observe that for each layer type, there is a large latency variation across layer

configurations. Thus, to construct the prediction model for each layer type, we vary

the configurable parameters of the layer and measure the latency and power con-

sumption for each configuration. Using these profiles, we establish a regression model

for each layer type to predict the latency and power of the layer based on its con-

figuration. We describe each layer’s regression model variables later in this section.

We use GFLOPS (Giga Floating Point Operations per Second) as our performance

metric. Based on the layer type, we use either a logarithmic or linear function as

32

the regression function. The logarithmic-based regression is used to model the per-

formance plateau as the computation requirement of the layer approaches the limit

of the available hardware resources.

Convolution, local and pooling layers’ configurable parameters include the

input feature map dimension, number, size and stride of the filters. The regression

model for convolution layer is based on two variables: the number of features in the

input feature maps, and (filter size/stride)2 × (# of filters), which represents the

amount of computation applied to each pixel in the input feature maps. For local and

pooling layers, we use the size of the input and output feature maps as the regression

model variables.

In a fully-connected layer, the input data is multiplied by the learned weight

matrix to generate the output vector. We use the number of input neurons and

number of output neurons as the regression model variables. Softmax and argmax

layers are handled similarly.

Activation layers have fewer configurable parameters compared to other layers

because activation layers have a one-to-one mapping between their input data and

output. We use the number of neurons as the regression model variable. We apply

the same approach to normalization layers.

As previously mentioned, it is a one-time profiling step required for each mobile

and server hardware platform to generate a set of prediction models. The models

enable Neurosurgeon to estimate the latency and energy cost of each layer based its

configuration, which allows Neurosurgeon to support future neural network architec-

tures without additional profiling overhead.

3.3.2 Dynamic DNN Partitioning

Utilizing the layer performance prediction models, Neurosurgeon dynamically se-

lects the best DNN partition points, as described in Algorithm 1. The algorithm has

33

two-steps: analysis of the target DNN and partition point selection.

Analysis of the Target DNN – Neurosurgeon analyzes the target DNN’s con-

stituent layers, and uses the prediction models to estimate, for each layer, the latency

on mobile and cloud, and power consumption on the mobile. Specifically, at lines 11

and 12 of Algorithm 1, Neurosurgeon extracts each layer’s type and configuration

(Li) and uses the regression models to predict the latency of executing layer Li on

mobile (TMi) and cloud (TCi), while taking into consideration of current datacenter

load level (K). Line 13 estimates the power of executing layer Li on the mobile device

(PMi) and line 14 calculates the wireless data transfer latency (TUi) based on the

latest wireless network bandwidth.

Partition Point Selection – Neurosurgeon then selects the best partition point.

The candidate points are after each layer. Lines 16 and 18 evaluate the performance

when partitioning at each candidate point and select the point for either best end-

to-end latency or best mobile energy consumption. Because of the simplicity of the

regression models, this evaluation is lightweight and efficient.

Algorithm 1 Neurosurgeon DNN partitioning algorithm

1: Input:
2: N : number of layers in the DNN
3: {Li|i = 1 · · ·N}: layers in the DNN
4: {Di|i = 1 · · ·N}: data size at each layer
5: f, g(Li): regression models predicting the latency and power of executing Li

6: K: current datacenter load level
7: B: current wireless network uplink bandwidth
8: PU : wireless network uplink power consumption
9: procedure PartitionDecision

10: for each i in 1 · · ·N do
11: TMi ← fmobile(Li)
12: TCi ← fcloud(Li,K)
13: PMi ← gmobile(Li)
14: TUi ← Di/B

15: if OptTarget == latency then

16: return arg min
j=1···N

(
j∑

i=1

TMi +
N∑

k=j+1

TCk + TUj)

17: else if OptTarget == energy then

18: return arg min
j=1···N

(
j∑

i=1

TMi × PMi + TUj × PU)

34

3.3.3 Partitioned Execution

We prototype Neurosurgeon by creating modified instances of Caffe [46] to serve

as our mobile-side (NSmobile) and server-side (NSserver) infrastructures. Through

these two variations of Caffe, we implement our client-server interface using Thrift [77],

an open source flexible RPC interface for inter-process communication. To allow for

flexibility in the dynamic selection of partition points, both NSmobile and NSserver host

complete DNN models, and partition points are enforced by NSmobile and NSserver run-

time. Given a partition decision by NSmobile, execution begins on the mobile device

and cascades through the layers of the DNN leading up to that partition point. Upon

completion of that layer, NSmobile sends the output of that layer from the mobile

device to NSserver residing on the server side. NSserver then executes the remaining

DNN layers. Upon the completion of the DNN execution, the final result is sent back

to NSmobile on the mobile device from NSserver. Note that there is exactly one

partition point within the DNN for which information is sent from the mobile device

to the cloud.

3.4 Evaluation

We evaluate Neurosurgeon using 8 DNNs (Table 3.3) as our benchmarks across

Wi-Fi, LTE and 3G wireless connections with both CPU-only and GPU mobile

platforms. We demonstrate Neurosurgeon achieves significant end-to-end latency

and mobile energy improvements over the status quo cloud-only approach (Sec-

tions 3.4.1 and 3.4.2). We then compare Neurosurgeon against MAUI [35], a well-

known computation offloading framework (Section 3.4.3). We also evaluate Neurosurgeon’s

robustness to variations in wireless network connections (Section 3.4.4) and server

load (Section 3.4.5), demonstrating the need for such a dynamic runtime system. Fi-

nally, we evaluate the datacenter throughput improvement Neurosurgeon achieves

35

by pushing compute out of the cloud to the mobile device (Section 3.4.6).

3.4.1 Latency Improvement

Table 3.4: Neurosurgeon’s partition point selections for best end-to-end latency. Green
block indicates Neurosurgeon makes the optimal partition choice and white block means
a suboptimal partition point is picked. On average, Neurosurgeon achieves within 98.5%
of the optimal performance.

Mobile
Wireless
network

Benchmarks
IMC VGG FACE DIG ASR POS NER CHK

CPU
Wi-Fi input input input input input fc3
LTE input input input argmax input fc3
3G argmax input input argmax input fc3

GPU
Wi-Fi pool5 input input argmax input fc3
LTE argmax argmax input argmax input fc3
3G argmax argmax argmax argmax input fc3

Partition Point Selection – Table 3.4 summarizes the partition points selected

by Neurosurgeon optimizing for latency across the 48 configurations (i.e., 8 bench-

marks, 3 wireless network types, mobile CPU and GPU). The green cells indicate

when Neurosurgeon selects the optimal partition point and achieves the best speedup

while the white cells indicate Neurosurgeon selects a suboptimal point. Neurosurgeon se-

lects the best partition point for 44 out of the 48 configurations. The mispredictions

occur because the partition points and its associated performance are very close to one

another and thus a small difference in Neurosurgeon’s latency prediction shifts the

selection. Across all benchmarks and configurations, Neurosurgeon achieves latency

speedup within 98.5% of optimal speedup.

Latency Improvement – Figure 3.9 shows Neurosurgeon’s latency improvement

over the status quo approach, across the 8 benchmarks on Wi-Fi, LTE, and 3G. Fig-

ure 3.9a shows the latency improvement when applying Neurosurgeon to a mobile

platform equipped with a CPU, and Figure 3.9b shows that of a mobile platform with

a GPU. For CV applications, Neurosurgeon identifies the best partition points for

20 out of 24 cases and achieves significant latency speedups, especially when the mo-

36

bile GPU is available. For the NLP applications, Neurosurgeon achieves significant

latency speedups even when Wi-Fi is available. For ASR, Neurosurgeon success-

fully identifies that it is best to execute the DNN entirely on the server and, there-

fore Neurosurgeon performs similar to the status quo for that particular benchmark.

Across all benchmarks and configurations, Neurosurgeon achieves a latency speedup

of 3.1× on average and up to 40.7× over the status quo approach.

37

IM
C

V
G

G
FA

C
E

D
IG

A
SR

PO
S

N
E

R
C

H
K

(a
)N

eu
ro

su
rg

eo
n

us
in

g
th

e
m

ob
ile

C
PU

1X5X10
X

15
X

20
X

Latencyspeedup

20
.4

X

IM
C

V
G

G
FA

C
E

D
IG

A
SR

PO
S

N
E

R
C

H
K

(b
)N

eu
ro

su
rg

eo
n

us
in

g
th

e
m

ob
ile

G
PU

1X5X10
X

15
X

20
X

Latencyspeedup

40
.7

X
20

.6
X

St
at

us
qu

o
N

eu
ro

su
rg

eo
n

W
i-

Fi
N

eu
ro

su
rg

eo
n

LT
E

N
eu

ro
su

rg
eo

n
3G

N
eu

ro
su

rg
eo

n
av

g.

F
ig

u
re

3
.9

:
L

a
te

n
c
y

sp
e
e
d

u
p

a
ch

ie
v
e
d

b
y

Ne
ur

os
ur

ge
on

n
o
rm

a
li

z
e
d

to
st

a
tu

s
q
u

o
a
p

p
ro

a
ch

(e
x
e
c
u

ti
n

g
e
n
ti

re
D

N
N

in
th

e
c
lo

u
d

).
R

e
su

lt
s

fo
r

th
re

e
w

ir
e
le

ss
n

e
tw

o
rk

s
(W

i-
F

i,
L
T

E
a
n

d
3
G

)
a
n

d
m

o
b

il
e

C
P

U
a
n

d
G

P
U

a
re

sh
o
w

n
h

e
re

.
Ne

ur
os

ur
ge

on
im

p
ro

v
e
s

th
e

e
n

d
-t

o
-e

n
d

D
N

N
in

fe
re

n
c
e

la
te

n
c
y

b
y

3
.1
×

o
n

a
v
e
ra

g
e

(g
e
o
m

e
tr

ic
m

e
a
n

)
a
n

d
u

p
to

4
0
.7
×

.

38

3.4.2 Energy Improvement

Table 3.5: Neurosurgeon partition point selections for best mobile energy consumption.
Green block indicates Neurosurgeon makes the optimal partition choice and white block
means a suboptimal partition point is picked. On average, Neurosurgeon achieves a
mobile energy reduction within 98.8% of the optimal reduction.

Mobile
Wireless
network

Benchmarks
IMC VGG FACE DIG ASR POS NER CHK

CPU
Wi-Fi input input input input input fc3
LTE input input input input input fc3
3G input input input argmax input fc3

GPU
Wi-Fi input input input argmax input fc3
LTE pool5 input input argmax input fc3
3G argmax argmax input argmax input fc3

Partition Point Selection – Table 3.5 summarizes the partition points identified

by Neurosurgeon for best mobile energy. Neurosurgeon selects the best partition

point for 44 out of the 48 configurations. For the suboptimal choices, Neurosurgeon con-

sumes 24.2% less energy on average than the status quo approach.

Energy Improvement – Figure 3.10 shows the mobile energy consumption achieved

by Neurosurgeon, normalized to the status quo approach. Figure 3.10a and 3.10b

present results for CPU-only mobile platform and GPU-equipped mobile platform,

respectively. When optimizing for best energy consumption, Neurosurgeon achieves

on average a 59.5% reduction in mobile energy and up to 94.7% reduction over the

status quo. Similar to the improvement for latency, the energy reduction is also higher

for most benchmarks when the mobile platform is equipped with a GPU.

39

IM
C

V
G

G
FA

C
E

D
IG

A
SR

PO
S

N
E

R
C

H
K

(a
)N

eu
ro

su
rg

eo
n

us
in

g
th

e
m

ob
ile

C
PU

0%20
%

40
%

60
%

80
%

10
0%

Normalizedmobileenergy

IM
C

V
G

G
FA

C
E

D
IG

A
SR

PO
S

N
E

R
C

H
K

(b
)N

eu
ro

su
rg

eo
n

us
in

g
th

e
m

ob
ile

G
PU

0%20
%

40
%

60
%

80
%

10
0%

Normalizedmobileenergy

St
at

us
qu

o
N

eu
ro

su
rg

eo
n

W
i-

Fi
N

eu
ro

su
rg

eo
n

LT
E

N
eu

ro
su

rg
eo

n
3G

N
eu

ro
su

rg
eo

n
av

g.

F
ig

u
re

3
.1

0
:

M
o
b

il
e

e
n

e
rg

y
c
o
n

su
m

p
ti

o
n

a
ch

ie
v
e
d

b
y

Ne
ur

os
ur

ge
on

n
o
rm

a
li

z
e
d

to
st

a
tu

s
q
u

o
a
p

p
ro

a
ch

(e
x
e
c
u

ti
n

g
e
n
ti

re
D

N
N

in
th

e
c
lo

u
d

).
R

e
su

lt
s

fo
r

th
re

e
w

ir
e
le

ss
n

e
tw

o
rk

s
(W

i-
F

i,
L
T

E
a
n

d
3
G

)
a
n

d
m

o
b

il
e

C
P

U
a
n

d
G

P
U

a
re

sh
o
w

n
h

e
re

.
Ne

ur
os

ur
ge

on
re

d
u

c
e
s

th
e

m
o
b

il
e

e
n

e
rg

y
c
o
n

su
m

p
ti

o
n

b
y

5
9
.5

%
o
n

a
v
e
ra

g
e

(g
e
o
m

e
tr

ic
m

e
a
n

)
a
n

d
u

p
to

9
4
.7

%
.

40

3.4.3 Comparing Neurosurgeon to MAUI

In this section, we compare Neurosurgeon to MAUI [35], a general offloading

framework. Note that MAUI is control-centric, reasoning and making decisions about

regions of code (functions), whereas Neurosurgeon is data-centric, making partition

decisions based on the structure of the data topology that can differ even if the same

code region (function) is called.

Figure 3.11 presents the latency speedup achieved by Neurosurgeon normalized to

MAUI when executing the 8 DNN benchmarks, averaged across three wireless network

types. Figure 3.11a presents the result when applying MAUI and Neurosurgeon on a

CPU-only mobile platform and Figure 3.11b presents the result on a mobile platform

equipped with a GPU. In this experiment, we assume that for MAUI, programmers

have optimally annotated the minimal program states that need to be transferred.

Figure 3.11 shows that Neurosurgeon significantly outperforms MAUI on the com-

puter vision applications. For the NLP applications, both Neurosurgeon and MAUI

correctly decide that local computation on the mobile device is optimal. However,

MAUI makes incorrect offloading choices for more complicated scenarios (e.g., VGG,

FACE, DIG and ASR). This is because MAUI relies on past invocation of a certain

DNN layer type to predict the latency and data size of the future invocations of that

layer type, leading to mispredictions. This control-centric prediction mechanism is

not suitable for DNN layers because the latency and data size of layers of the same

type can be drastically different within one DNN, and Neurosurgeon’s DNN analysis

step and prediction model correctly captures this variation. For instance, in VGG,

the input data size for the first and second convolution layers are significantly dif-

ferent: 0.57MB for conv1.1, and 12.25MB for conv1.2. For the mobile CPU and

LTE, MAUI decides to offload the DNN before conv1.2 due to its misprediction,

uploading large amount of data and resulting in a 20.5× slowdown over the status

quo approach. Meanwhile, Neurosurgeon successfully identifies that for this case it is

41

IM
C

V
G

G

FA
C

E

D
IG

A
SR

PO
S

N
E

R

C
H

K

(a) using the mobile CPU

1X

3X

5X

7X
L

at
en

cy
sp

ee
du

p

IM
C

V
G

G

FA
C

E

D
IG

A
SR

PO
S

N
E

R

C
H

K

(b) using the mobile GPU

1X

3X

5X

7X

32x
MAUI Neurosurgeon

Figure 3.11: Latency speedup achieved by Neurosurgeon vs. MAUI [35]. For MAUI,
we assume the optimal programmer annotation that achieves minimal program state
transfer. Neurosurgeon outperforms MAUI by up to 32× and 1.9× on average.

best to execute the DNN entirely in the cloud, and thus achieves similar performance

as the status quo and a 20.5× speedup over MAUI.

3.4.4 Network Variation

In this section, we evaluate Neurosurgeon’s resilience to real-world measured

wireless network variations. In Figure 3.12, the top graph shows measured wire-

less bandwidth of T-Mobile LTE network over a period of time. The bottom graph

shows the end-to-end latency of the status quo approach and Neurosurgeon execut-

ing AlexNet (IMC) on the mobile CPU platform. Annotated on the bottom graph

is Neurosurgeon’s dynamic execution choice, categorized as either local, remote or

partitioned. The status quo approach is highly susceptible to network variations

and consequently the application suffers significant latency increases during the low

bandwidth phase. Conversely, Neurosurgeon successfully mitigates the effects of large

variations and provides consistent low latency by shifting partition choice to adjust

the amount of data transfer based on the available bandwidth.

42

0
1
2
3
4
5

M
bp

s

LTE bandwidth

Time
0.0

0.5

1.0

1.5

2.0

L
at

en
cy

(s
) partitioned local partitioned remote

Status quo Neurosurgeon

Figure 3.12: The top graph shows bandwidth variance using a LTE net-
work. The bottom graph shows the latency of AlexNet (IMC) of the sta-
tus quo and Neurosurgeon. Neurosurgeon’s decisions are annotated on the bottom
graph. Neurosurgeon provides consistent latency by adjusting its partitioned execution
based on the available bandwidth.

3.4.5 Server Load Variation

In this section, we evaluate how Neurosurgeon makes dynamic decision as the

server load varies. Datacenters typically experience diurnal load patterns and high

server utilization leads to increased service time for DNN queries. Neurosurgeon de-

termines the best partition point based on the current server load level obtained by

periodically pinging the server during idle period, and thus avoids long latency caused

by high user demand and the resulting high load.

Figure 3.13 presents the end-to-end latency of AlexNet (IMC) achieved by the

status quo approach and Neurosurgeon as the server load increases. The mobile de-

vice is equipped with a CPU and transfers data via Wi-Fi. As shown in the figure,

the status quo approach does not dynamically adapt to varying server load and thus

suffers from significant performance degradation when the server load is high. The

43

10% 20% 30% 40% 50% 60% 70% 80% 90%
Server load level

0

0.2

0.4

0.6

0.8
L

at
en

cy
(s

)

remote
partitioned

local

Status quo Neurosurgeon

Figure 3.13: Neurosurgeon adjusts its partitioned execution as the result of varying
datacenter load.

end-to-end latency of the status quo approach increases from 105ms to 753ms as the

server approaches its peak load level. On the other hand, by taking server load into

consideration, Neurosurgeon dynamically adapts the partition point. In Figure 3.13,

two vertical dashed lines represent the points where Neurosurgeon changes its selec-

tion: from complete cloud execution at low load, to partitioning the DNN between

mobile and cloud at medium load, and eventually completely onloading to mobile at

peak load. Regardless of the server load, Neurosurgeon keeps the end-to-end latency

of executing image classification below 380ms. By considering server load and its im-

pact on the server performance, Neurosurgeon consistently delivers the best latency

regardless of the variation in server load.

Table 3.6: Comparing Neurosurgeon to popular computation offloading/partition frame-
works

MAUI [35] Comet [38] Odessa [70] CloneCloud [28] Neurosurgeon
No need to transfer program state 3 3
Data-centric compute partitioning 3
Low/no runtime overhead 3 3 3 3
Requires no application-specific profiling 3 3
No programmer annotation needed 3 3 3 3
Server load sensitive 3 3

44

Wi-Fi LTE 3G

1X

2X

3X

4X

5X

6X

7X

N
or

m
al

ie
d

th
ro

ug
hp

ut
Baseline (Status quo)
Neurosurgeon (0% mobile GPU users)
Neurosurgeon (30% mobile GPU users)
Neurosurgeon (70% mobile GPU users)
Neurosurgeon (100% mobile GPU users)

Figure 3.14: Datacenter throughput improvement achieved by Neurosurgeon over the
status quo approach. Higher throughput improvement is achieved by Neurosurgeon for
cellular networks (LTE and 3G) and as more mobile devices are equipped with GPUs.

3.4.6 Datacenter Throughput Improvement

Neurosurgeon onloads part or all of the computation from the cloud to mobile

devices to improve end-to-end latency and reduce mobile energy consumption. This

new compute paradigm reduces the computation required on the datacenter, leading

to shorter query service time and higher query throughput. In this section, we eval-

uate Neurosurgeon’s effectiveness in this aspect. We use BigHouse [62] to compare

the achieved datacenter throughput between status quo and Neurosurgeon. The in-

coming DNN queries are composed evenly of the 8 DNNs in the benchmark suite.

We use the measured mean service time of DNN queries combined with Google web

search query distribution for the query inter-arrival rate.

Figure 3.14 shows the datacenter throughput improvement normalized to the base-

line status quo approach of executing the entire computation on the server. Each clus-

ter presents results for a given wireless network type. Within each cluster, the first

bar represents the status quo cloud-only approach, while the other four bars repre-

sent Neurosurgeon with different compositions of the mobile hardware. For example,

45

“30% Mobile GPU users” indicates 30% of the incoming requests are from mobile

devices equipped with a GPU while the remaining 70% are from devices equipped

only with a CPU.

When the mobile clients are connected to the server via fast Wi-Fi network,

Neurosurgeon achieves on average 1.04× throughput improvement. As the wireless

connection changes to LTE and 3G, the throughput improvement becomes more sig-

nificant: 1.43× for LTE and 2.36× for 3G. Neurosurgeon adapts its partition choice

and pushes larger portions of the DNN computation to the mobile devices as the wire-

less connection quality becomes less ideal. Therefore the average request query service

time is reduced and a higher throughput is achieved in the datacenter. We also observe

that as the percentage of mobile devices with GPU increases, Neurosurgeon increases

the computation onloading from the cloud to mobile, leading to higher datacenter

throughput improvement.

3.5 Compared to Prior Work

Previous research efforts focus on offloading computation from the mobile to cloud.

In Table 3.6, we compare Neurosurgeon with the most relevant techniques on proper-

ties including whether there is heavy data transfer overhead, data-centric or control-

centric partitioning, low run-time overhead, whether application-specific profiling is

required, and whether programmer’s annotation is needed.

In addition to these key differences, computation partition frameworks have to

make predictions as to when to offload computation and the correctness of the pre-

diction dictates the final performance improvements for the application. COMET [38]

offloads a thread when its execution time exceeds a pre-defined threshold, ignoring

any other information (amount of data to transfer, wireless network available, etc.).

Odessa [70] makes computation partition decisions only considering the execution

time and data requirements of part of the function, without taking the entire appli-

46

cation into consideration. CloneCloud [28] makes the same offloading decisions for all

invocations of the same function. MAUI’s [35] offloading decision mechanism is better

in that it makes predictions for each function invocation separately and considers the

entire application when choosing which function to offload. However, MAUI is not

applicable for the computation partition performed by Neurosurgeon for a number

of reasons: 1) MAUI requires a profiling step for each individual application, whereas

predictions are required to perform DNN partitioning. Neurosurgeon makes decisions

based on the DNN topology without any runtime profiling. 2) MAUI is control-centric,

making decisions about regions of code (functions), whereas Neurosurgeon makes

partition decisions based on the structure of the data topology that can differ even if

the same code region (function) is executed. Layers of a given type (even if mapped

to the same function) within one DNN can have significantly different compute and

data characteristics. 3) Neurosurgeon transfers only the data that is being processed

in contrast to transferring all program state. 4) MAUI requires the programmer to

annotate their programs to identify which methods are “offload-able”.

3.6 Summary

As an essential component of today’s intelligent applications, Deep Neural Net-

works have been traditionally executed in the cloud. In this chapter, we examine

the efficacy of this status quo approach of cloud-only processing and show that it is

not always optimal to transfer the input data to the server and remotely execute the

DNN. We investigate the compute and data characteristics of 8 DNN architectures

spanning computer vision, speech, and natural language processing applications and

show the trade-off of partitioning computation at different points within the neural

network. With these insights, we develop Neurosurgeon, a system that can auto-

matically partition DNN between the mobile device and cloud at the granularity of

neural network layers. Neurosurgeon adapts to various DNN architectures, hardware

47

platforms, wireless connections, and server load levels, and chooses the partition point

for best latency and best mobile energy consumption. Across 8 benchmarks, when

compared to cloud-only processing, Neurosurgeon achieves on average 3.1× and up

to 40.7× latency speedup, reduces mobile energy consumption by on average 59.5%

and up to 94.7%, and improves datacenter throughput by on average 1.5× and up to

6.7×.

48

CHAPTER IV

Accelerating Deep Learning Based Natural

Language Processing Applications

With the proliferation of deep learning approaches that provide state-of-the-art

accuracy for a number of intelligent application domains, there has been a surge of

recent work on accelerating deep learning computation. Meanwhile, the underly-

ing deep learning algorithms themselves have begun to shift, becoming increasingly

sophisticated and complex. This shift is particularly manifest in the domain of nat-

ural language processing (NLP), where there is a trend toward algorithms such as

tree-structured long short-term memory neural networks (Tree-structured LSTMs)

that have input-driven, dynamically-defined dependencies and structure, character-

istics that cause these algorithms to map poorly to recently-proposed techniques for

accelerating deep learning on GPUs.

In this chapter, we characterize, document, and taxonomize NLP applications

to identify the algorithmic design elements and computational patterns that cause

conventional GPU acceleration approaches to fail, providing a framework for guid-

ing architects and system designers faced with supporting increasingly complex deep

learning NLP applications in GPU equipped servers. Leveraging the insights gleaned

from our framework, we design and implement Fine-Grained Cross-Input Batching,

a novel fine-grain cross-input batching technique for providing GPU acceleration to

49

the dynamically-structured, input-dependent computations common to a number of

state-of-the-art NLP applications. We evaluate our technique on real GPU system

hardware on 3 difficult-to-accelerate NLP applications, improving throughput over a

highly optimized CPU implementation by 7.6×, the GPU by 2.8×, and by 2.3× over

the state-of-the-art GPU technique for deep learning.

4.1 NLP Applications Algorithmic Structure

In this section, we describe the set of natural language processing (NLP) applica-

tions investigated in this work, and their underlying algorithmic structures.

Table 4.1: Application specifications

Application Network Input Input Length Description
LSTM [80] LSTM Movie Reviews [11] 2 - 67 Words Sentiment Analysis
NAMAS [73] DNN News Articles [5] 1 - 20 Words Text Summarization
CNN [50] CNN Movie Reviews [11] 2 - 67 Words Sentiment Analysis

Previous works that characterize and accelerate [23, 25, 27, 36, 43, 58, 65, 69] deep

learning workloads focus almost entirely on applications with fixed amount of neu-

ral network computation for each query. For example, image classification and face

recognition applications feed a fixed size input image to a convolutional neural net-

work for prediction result. Due to the intrinsically complicated nature of human

natural language, the state-of-the-art NLP applications have begun to leverage more

complicated algorithmic structures and computational patterns to better capture the

semantic and syntactic structure of the natural language input. In the remainder

of this section, we briefly describe the underlying algorithms used in our suite of

applications.

TreeLSTM. Tree-structured Long-Short Term Memory Neural Network (TreeL-

STM) is designed to capture input sentence’s semantic structured in the form of a

dynamically-formed binary parse tree, where the leaf nodes of the tree representing

50

words in the sentence and internal nods of the tree represent phrases [80]. The algo-

rithm traverses through the tree and compute result for each node using the results

of all of its child nodes as input.

NNLM. Neural network language models (NNLM) are widely used in speech recog-

nition [68] and machine translation systems [84]. This approach is designed to model

the probability of a sequence of words in a language context. The summarization ap-

plication NAMAS uses NNLMs to model the probability of a certain word appears in

the output summary based on the previously-generated sequence of summary words.

CNN. As the de-facto neural network architecture used in the field of computer

visions, Convolutional Neural Networks (CNN) have also been used to solve NLP

problems [32]. For example, CNN has been applied to the problem of binary sentiment

analysis [50].

We summarize the suite of applications in Table 4.1 with the underlying algorithms,

source of training data and range of input length of each application. For all appli-

cations, we use the implementation open-sourced by the papers’ original authors.

4.2 Characterization

In this section, we characterize the 3 state-of-the-art NLP applications shown

in Table 4.1. In two of these applications, the algorithm and the underlying com-

putational patterns depend heavily on the nature of the input, which dynamically

influences the structure and dependencies within the computation. Specifically, this

dynamism is presents itself as three fundamental differences from applications that

have been characterized and accelerated by prior work: (1) the NN computation is

iterative with dependence across iterations and a variable number of iterations based

on the specific query, (2) the total time spent in NN computation is smaller for NLP

applications, and (3) NLP applications employ smaller NN kernels. Given these dif-

51

0 50 100 150 200 250 300
NN Invocations

0.0%

0.4%

0.8%

1.2%

P
M

F

(a) LSTM

0 5 10 15 20
NN Invocations

0.0%

2.0%

4.0%

6.0%

P
M

F

(b) NAMAS

1
NN

Invocations

0.0%

50.0%

100.0%

P
M

F
(c) CNN

Figure 4.1: NN invocations variability

ferences, we find that the most recent neural network acceleration techniques are not

suitable for these workloads.

4.2.1 Varying and Dependent NN invocations

Since state-of-the-art NLP applications process queries on a word-by-word basis,

with each word depending on the last, their computational pattern is intrinsically

iterative. When compared to applications that require a single DNN execution, these

iterative DNN computations result in two key differences, varying NN invocations

and dependent NN processing.

Varying NN Invocations. Multiple neural network inferences are invoked to

52

Leaf Leaf

Internal

(a) Hierarchical Dependency (b) Linear Dependency

Figure 4.2: NN invocations dependency

process each NLP query. The number of NN invocations varies significantly from

query to query. We show this in Figure 4.1, which presents the probability mass

function (PMF) of the number of NN invocations for each application. From the

figure, we find that LSTM and NAMAS exhibit high variance in the number of NN

invocations. LSTM has this behavior, since it processes sentences by traversing a

parse tree that represents the syntactic structure of the sentence, where the number

of NN invocations depends on the number of nodes in the parse tree. Similarly,

NAMAS generates output summaries on a word-by-word basis, where the number

of NN invocations equals the number of words to be generated in the summary. In

contrast, computer vision applications apply only one NN inference for each input

image.

Dependent NN Invocations. NN-based NLP applications depend on part or all

of the outputs from prior NN iterations for each query. As shown in Figure 4.2, these

dependencies take two common forms, (a) hierarchical dependency and (b) linear

dependency. We examine both of these dependencies in this work. NN invocations in

53

LS
TM

N
AM

AS
CN
N
IM
C

FA
CEAS

R
DI
G
PO
S
N
ER
CH
K

0

5

10

15

20

25

30

L
a
te
n
cy
 (
m
s)

Latency (ms)

Operations

101

102

103

104

105

106

107

108

109

1010

1011

O
p
e
ra
ti
o
n
s

Figure 4.3: Latency and FLOPS of NLP and traditional NNs on GPU

LSTM follow a hierarchical dependency due to the syntactic parse tree being used to

drive the processing of the input sentence. NAMAS has a linear dependency between

NN invocations, since the generation of each word in the summary text is produced

based on the previous one.

4.2.2 Few NN Kernel Computations

Intuitively, the iterative nature of NLP applications lends itself to smaller NN

kernels, since a NN invocation processes a single word, compared to, for example, an

entire image. We characterize this difference in Figure 4.3, which shows the number of

floating-point operations per NN invocation and the corresponding GPU latency for

a number of NN applications. These applications include the key NLP applications

studied throughout this work (left) as well as those from Tonic Suite [43] (right).

From this figure, we find that NNs used in NLP applications require significantly

fewer operations than traditional NNs. On average, NNs used in conventional NN

54

applications require 23× more operations than those in these NLP applications. In

some cases, the difference is so substantial (e.g., 5K operations in LSTM, compared to

over 1G operations in IMC or FACE) that it is unclear whether current acceleration

techniques are amenable to these NLP workloads – the benefits of improving compute

may be outweighed by communication overheads required for acceleration.

As a result of smaller compute requirements, latency of NLP NNs are smaller than

traditional NNs, as shown in Figure 4.5. On average, NLP NNs take 3.6ms to execute

on the GPU, among which LSTM NN latency is in the sub-millisecond range. On

the other hand, traditional NNs takes 10.1ms to execute on the GPU on average and

IMC,FACE and ASR cost more than 5ms.

4.2.3 Cycles Spent in NNs

Because NLP applications require several short-running NN invocations, each re-

quiring significant preprocessing computation, we expect that NLP applications tend

to spend a much larger fraction of time outside of the NN invocations. To investi-

gate this difference, we partition the NLP applications into NN computations and

non-NN computations. The fraction of time spent in each of these partitions, when

running the non-NN work on the CPU and the NN work on the GPU, is provided in

Figure 4.4.

As expected, the NLP applications spend a significant portion of the time outside

of the NN computation, contrary to traditional NN applications [43]. To explain this

difference, we provide the key sources of non-NN computation for each of the NLP

applications. In LSTM, the application parses the sentence to generate a parse tree

at the beginning of the processing and traverses the parse tree between invoking NN

inferences at each tree node. In NAMAS, a beam search is conducted after each

candidate summary words is generated to keep track of the search space. In CNN,

the word embedding for each word in the input sentence is looked up in a large table.

55

LSTM

41%

59%

NAMAS

34%

66%

CNN

27%

73%

NN Other

Figure 4.4: Cycles breakdown of each applications. NN executes on the GPU and rest
of the applications executes on the CPU

On average, the suite of NLP applications spend about 34% of the execution time

doing non GPU-amenable execution.

4.2.4 Limitations of Prior Work

Prior work has proposed a technique to accelerate deep learning applications on

GPUs. Specifically, DjiNN and Tonic [43] observes low GPU occupancy when execut-

ing NNs. To increase GPU utilization, DjiNN batches multiple NN inputs together

and executes them in parallel. The paper shows that this batching method provides

higher throughput gains for NNs with lower occupancy. To evaluate the approach

in DjiNN on accelerating NLP applications, we measure the GPU occupancy of each

NLP application, and apply DjiNN’s batching approach to the NLP applications. The

relation between throughput gain and GPU occupancy is shown in Figure 4.5.

Traditional NNs. Similar to the analysis presented in [43] , we observe that DjiNN

applications with lower occupancy tend to scale better with increasing batch size.

POS, NER and CHK have occupancy lower than 20% prior to batching and they

exhibit the highest throughput gain among the 7 DjiNN’s applications studied. On

56

0.0 0.2 0.4 0.6 0.8 1.0 1.2
GPU Occupancy

0

2x

4x

6x

8x

10x

12x

T
h
ro
u
g
h
p
u
t
G
a
in

a
t
B
a
tc
h
 S
iz
e
 =
=
 8

IMC

DIGFACE ASR

POS
NER
CHK

LSTM

NAMAS

CNN Djinn

NLP

Figure 4.5: Occupancy and throughput gain of applying DjiNN’s batching technique

the other end of the spectrum, ASR and DIG have an occupancy of 0.96 and 0.74

respectively and they benefit significantly less from batching.

NLP Applications. The red points in Figure 4.5 represents the throughput gain

and occupancy for the suite of NLP applications. These 3 NLP applications share

similar occupancy with POS, NER and CHK (between 15% and 30%). However, the

throughput gains of NLP applications are not directly correlated to the occupancy.

Specifically, LSTM and NAMAS experience limited throughput gain from DjiNN’s

batching. This shows that GPU occupancy is not sufficient to derive throughput gain

from batching and DjiNN’s batching technique is not suitable for accelerating these

NLP applications.

57

Executed
batch size

Queries

Q2Q1 Q3 Q2Q1 Q3

Padded Batches

3

(a) (b)

no-op

no-op no-op

3

2

1

Figure 4.6: Padding to Batch

4.3 Applicability of State-of-the-art

As observed in the previous section, the current state-of-the-art DNN high through-

put system proposes using GPU occupancy as the metric to evaluate throughput im-

provement for deep learning based applications. However, this metric is not sufficient

to evaluate potential benefit from batching because simply batching does not directly

translate to throughput gains. In this section, we investigate in detail the reason

behind the unexpected low throughput gain from applying the batching proposed

in prior work [43], quantify the inefficiencies of this state-of-the-art technique, and

propose a new metric to consider alongside GPU occupancy to inform the design of

the system.

58

4.3.1 Padding to Batch

The batching technique proposed in prior work makes assumption that all queries

have the same neural network topology (computation) meaning each query executes

the same neural network architecture. For the applications in DjiNN, each query has

only one invocation of a single type of NN. Conversely, the NLP applications studied

in this work have varying number of NN calls. LSTM and NAMAS queries vary in

terms of the number of NN invocations, as shown in Figure 4.1. LSTM queries require

invocations of different types of NN computation depending on the position in the

traversal of the tree (as illustrated in Figure 4.2).

In order to apply prior work’s batching technique, queries of varying length are

padded to the longest query in that batch. This is a required step in order to be

able to execute the batch at runtime. Figure 4.6 illustrates DjiNN padding where a

batch is formed and all queries are padded to the same length (in this case to 3 NN

boxes). The dependencies between the NNs (illustrated by arrows between the boxes)

forbids batching queries in both dimensions (within a query and across queries). The

result is wasted computation (gray boxes) which for this example represents 33% of

the computation that could be spent doing meaningful work.

4.3.2 Quantifying Wasted Computation

Batch padding achieves higher GPU utilization that is misleading because only

part of the work on the GPU contributes to queries making progress in their execution.

Figure 4.7 shows the amount of computation wasted as batch sizes increases. We use a

trace of randomly generated queries that have input lengths in the query length ranges

described in Table 4.1. As soon as there are enough queries to form a batch, all queries

will be padded to the longest batch. As batch size increases, the range of query lengths

within a single batch increases meaning more queries must be padded. At batch size

59

1 2 4 8 16 32
Batch Size

0%

20%

40%

60%

W
a
st
e
d
 F
L
O
P
S
 (
%
)

LSTM

NAMAS

Figure 4.7: Percentage of FLOPS wasted from padding

of 32, up to 60% of the computation is unnecessary computation, significantly wasting

computation on the GPU. This explains the low throughput gains from padding for

the NLP applications studied in this work in Figure 4.5.

4.3.3 Revisiting NN Application Taxonomy

After showing the ineffectiveness of state-of-the-art batching techniques for the

suite of NLP applications studied in this work, we propose an improved taxonomy

of NN applications to better inform system architects when making design choices.

Alongside the occupancy from Figure 4.5, we use the NN computation variance as

the metric to be considered when evaluating the effectiveness of batching for NN

applications. As we show in this section, the varying query-length translates into

different amount of NN computation within a single query.

Figure 4.8 shows the characterization of the 7 traditional NN applications and 4

NLP applications studied here. As shown in Figure 4.5,prior work’s batching tech-

nique benefits applications with 1) low GPU occupancy and 2) no variation in their

NN computation. We use the coefficient of variation of the number of NN invoca-

60

0.0 0.2 0.4 0.6 0.8 1.0
GPU Occupancy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o
e
ff
ci
e
n
t
o
f
V
a
ri
a
ti
o
n
 o
f
N
N
 C
o
m
p
u
ta
ti
o
n

IMC DIG
FACE

ASR
POSNER

CHK

LSTM

NAMAS

CNN

Djinn-amenable

Djinn

NLP

Figure 4.8: Taxonomy of NN applications

tions per query to represent the NN computation variation of the NLP application

studied in this work. This metric separates LSTM and NAMAS from the rest of the

applications, indicating that they are not amenable to DjiNN acceleration.

This in depth characterization shows severe flaws in current systems that strive

to achieve high throughput for deep learning. This suggests a new system is needed

to address the challenges exposed from this suite of NLP applications.

4.4 Designing a High Throughput Engine for NLP

In this section, we present the design of our system to address limitations of

current systems. Figure 4.9 represents the architecture of the fully built out end-to-

end system.

61

4.4.1 Requirements

NLP applications have three core characteristics that our system aims to address:

1) they have dependent DNN calls rendering intra-query batching impossible, 2)

they are input length variable handicapping current techniques used to achieve high

throughput, and 3) they have iterative and small NN computation making batching

even more critical. We design a runtime system that addresses these limitations

while providing additional benefits for applications that require traditional batching

techniques. We target the following objectives:

1. Dependency and Input Length Agnostic Batching The system must be

able to form optimal batch sizes if NN computation is available (irrespective of

any dependencies between DNN calls). The system needs to be able to form a

batch across queries regardless of their variable input length.

2. High Throughput The system must deliver and sustain high throughput

given the multiple stages of such a large system needed to build an end-to-end

system.

3. Scalable A scalable batching system must be able to scale with the amount

of resources available and service incoming requests at high load. The system

must have a flexible design to allow CPU and GPU resource tuning to optimally

allocate resources.

4.4.2 System Design

4.4.2.1 Fine-Grained Cross-Input Batching

The nature of text based applications make them difficult to batch because sen-

tences are of variable length and have structure (ordering) to be grammatically cor-

62

Dispatch Queue:
Send queries to NLP
Services Instances

Batched
DNN input

DNN output

Batching Queue
Accumulate NN

processing across
queries GPU-powered

DNN engine

NLP Service
instances

NN input

Q1 Q2 Q3

Figure 4.9: System Design Overview

rect. We introduce Fine-Grained Cross-Input Batching (FGCIB), fine-grained cross-

input batching to allow batching NN batching across multiple queries.

Our system collects NN computation across multiple queries to form a batch of

NN computation that has independent NNs within a single batch. As shown in

Figure 4.9, an NLP instance can have multiple queries in flight each requiring NN

computation along the execution of a single query. The CPU worker will execute

the CPU portion of the query until it meets NN computation (colored box in the

diagram) at which point it will place the NN computation in the Batching Queue,

save the progress of that query, and suspend its execution. The CPU worker is now

free to service new incoming queries and repeat the process. At a given batch size, the

DNN engine will pull the queries from the queue, batch the input, execute the batched

NN computation, and make a callback to the NLP service signaling the queries can

resume their execution.

Prior work proposes building a system that sends NN work over the network to

dedicated NN processing re- sources. Given the characteristics of the NN applications

and their large communication to compute ratio, this is not a feasible design. Our

system addresses this by integrating the NN batching engine directly into the appli-

cation as a black-box drop-in library that provides a common implementation across

the applications studied.

63

4.4.2.2 Application Pipelining

To study these applications in a production environment, we build out the entire

system that accepts queries over the network from a load generator, Treadmill [86]

maintained and deployed at Facebook [6]. The system is composed of 4 stages: 1) a

front-end dispatch queue that round-robins queries to the NLP instances, 2) the NLP

instances each servicing queries, 3) the batching queue for each instance accumulating

NN computation with a configurable timeout mechanism, and 4) the Batching Engine

executing the NN computation on the GPU. These are effectively pipeline stages

where the system throughput is bounded by the stage with the lowest throughput.

Our system is fully asynchronous allowing threads to suspend and resume execution

as queries progress through the system.

4.4.2.3 Flexible Resource Allocation

Given the large variance in the breakdown of NN vs non-NN computation of the

applications studied, the system needs to provide flexibility in where computational

resources can be applied. The number of threads dedicated to serving incoming

queries are referred to as CPU Workers. Within a single instance, multiple workers

can be processing queries in parallel pushing NN computation to a single unified

queue. This reduces the time it takes to form a batch of queries as there are now

multiple workers pushing compute to a single queue. The system can also be scaled

up with the number of instances of the entire system providing a tunable parameter

between instances and workers.

4.4.3 Configuration Tuning

Our system features a set of tunable parameters to ensure flexible adaption to

NLP applications, which despite having a common set of computational patterns,

exhibit differences in particular characteristics such as the size and structure of the

64

neural networks, and input sizes. The tunable parameters within the system include:

Our system allows the tuning of three parameters for each application:

1. Batch size

2. Number of CPU workers to pair with each GPU processing instance

3. Total number of service instances

The combinations of these parameters amount to hundreds of different configu-

rations for a large-scale system, making it tremendously time-consuming to exhaust

every option in the design space in order to find the configuration that will most

efficiently utilize the underlying hardware resource. Instead, the following approach

is used to determine these parameters for a specific NLP application:

1. FGCIB Batch Size Scaling We first scale the batch size of the NN in the

application and measure GPU occupancy and system throughput. Increased

batch size creates larger problem size for the GPU, increases GPU occupancy,

and improves throughput of the NN processing stage. Based on the resulting

occupancy, we limit the possible choice of batch size within the batch sizes that

provided the highest throughput gain at the highest occupancy, and eliminate

the batch sizes that are either too small to provide significant throughput gain

or too large that they provide diminishing returns.

2. Balancing CPU and GPU resources Increasing batch size allocates more

GPU resource for the NN processing stage by better utilizing the GPU re-

sources. The CPU is responsible of preprocessing each query and the compu-

tation between each NN invocation (for example traversing a tree). A balance

of the resources allocated for the two stages is required to keep the individual

throughputs comparable to minimize waiting time between the pipeline stages.

We model the throughput of the CPU stage as it’s using more CPU threads

65

and model the throughput of the GPU stage as the batch size increases. We

limits the configurations to have a combination of (Batch Size, number of CPU

workers) that achieves similar throughput for the two stages. We eliminate any

imbalanced configurations that may lead to one stage idling excessively.

3. Service Instance Scaling We now considers the scaling up the number of indi-

vidual service instances to maximally utilize the underlying hardware resources.

Scaling service instances involves allocating more CPU threads and having mul-

tiple GPU context executing on the GPU simultaneously. To further pruning

the candidate configurations, we evaluate the overall GPU utilization of a single

instance with configurations survived through the previous two filtering steps.

We then identify the configurations with the highest throughput but the lowest

GPU utilization at single instance - indicating the highest GPU resources po-

tential to be harvested by multiple GPU contexts. We now have arrived at the

best configuration. Next we scale the number of instances configured at said

best configuration up to using all available CPU threads or all available GPU

Streaming Multiprocessors.

Later in section 4.5.2 we show how to derive the best configuration for each NLP

application in our suite using the configuration filtering framework and evaluate the

performance of our system at such configuration.

4.5 Evaluation

We next evaluate FGCIB, documenting our observations and its efficacy in accel-

erating NLP applications with irregular computational structures.

66

4.5.1 Methodology

Applications. We evaluate our system across all three applications – NAMAS,

Tree-structured LSTM and CNN. NAMAS and LSTM covers a space of applications

that are difficult to accelerate using conventional approaches, while CNN represents

an application that is suitable for acceleration with conventional approaches, showing

the applicability of this system to traditional, fixed topology applications.

Platform. Our experimental setup uses a client-server architecture, where a load-

generating client running an industry-grade load generator [86] sends queries to our

server over the network. The server uses the FGCIB fabric described in section 4.4 to

process the queries, returning responses back to the client over the network. Queries

are sent following an exponentially distributed inter-arrival rate, as prior research

shows such a distribution accurately models production query arrival times [61]. The

queries are dispatched from the front-end dispatch queue to each service instance

on the FGCIB Batching server for processing. The platform used for the batching

server is a dual-socket Intel Xeon CPU E5-2630v3 running at 2.40GHz with 8-cores,

2-way HyperThreading and an NVIDIA Titan X GPU. One socket of the machine is

dedicated to running the parser that is used by the Tree-LSTM to generate the tree

before the LSTM is executed and one socket for the applications.

Baselines. We compare against three baselines - CPU, GPU and DjiNN. For all

three applications we use highly optimized libraries to process the queries. NAMAS

and the Tree-LSTM are written in Torch [30], a highly optimized deep learning library

maintained by Facebook. The CNN uses Theano [19] a graph processing library. The

DNN processing on the CPU is linked to MKL and the GPU linked to the libraries’

respective highly optimized versions.

67

4.5.2 Performance Analysis

Figure 4.10 shows the throughput performance of single service instance of CPU

baseline, GPU baseline, and our system. Figure 4.10 also shows the GPU occupancy of

our system as batch size increases. The throughput of our system generally increases

as we scale the batch size, overtaking the CPU and GPU baselines.

For NAMAS, throughput peaks at batch size of 4 and decreases beyond that where

the system already achieves more than 60% of GPU occupancy at batch size of 4.

There are two explanations for this: 1) the GPU’s occupancy is near maximum so

batching beyond 4 does not provide additional gains, and 2) the CPU is now the

bottleneck since there is a substantial CPU piece required to process each NN call.

LSTM and CNN have relatively small NN kernels that have low occupancy. Batch-

ing provides significant benefits for both of these applications and we limit the batch

size to 32 across all applications in our explorations as larger sizes are not practical.

Interestingly, the Tree-LSTM GPU has lower throughput at small batch sizes but

starts to see throughput gains beating the CPU at a batch size of 4. This is because

the overhead of launching to the GPU at small batch sizes outweighs the benefits and

that overhead is amortized at a larger batch size.

In some cases the CPU is a competitive baseline but the GPU is able to provide

higher throughput at larger batch sizes by making use of more of its resources. The

CNN has more layers (compared to the other applications) and is able to efficiently

utilize the GPU significantly, outperforming the CPU and GPU baselines at larger

batch sizes.

68

1
2

4
8

1
6

3
2

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

Throughput(RPS)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Occupancy

(a
)

L
S

T
M

1
2

4
8

012345678

Throughput(RPS)

C
P

U
G

P
U

F
G

C
IB

O
cc

u
p

a
n

cy

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Occupancy

(b
)

N
A

M
A

S

1
2

4
8

1
6

3
2

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

Throughput(RPS)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Occupancy

(c
)

C
N

N

F
ig

u
re

4
.1

0
:

E
n

d
-t

o
-e

n
d

th
ro

u
g
h

p
u

t
a
n

d
G

P
U

o
c
c
u

p
a
n

c
y

o
f

F
G

C
IB

w
it

h
v
a
ry

in
g

b
a
tc

h
si

z
e

69

4.5.3 Balancing CPU and GPU Resources

We now examine allocating CPU/GPU resources in the FGCIB system. One of

the key problems in designing a system that makes the most of both the CPU and

GPU is in balancing the resources on each side based on the amount of work required

for each hardware. If either resource has a disproportionate amount of work to do

over the other, that resource will be left idle and performance will be left on the table.

The computation of a NLP query can be broken down into NN and non-NN work. In

the FGCIB system, the non-NN portion of the computation is executed on the CPU,

with each CPU thread handle one query, and the GPU handles the NN portion by

executing batches of neural network input across multiple queries. In order to find

the optimal balance between CPU and GPU resources, we identify configuration pairs

of (number of CPU workers, batch size) that achieve similar service rate of the CPU

stage and the GPU stage.

Figure 4.11 shows for each application, the throughput of the CPU stage w.r.t.

the throughput of the GPU stage of different configuration pair. We model this by

measuring latency of the unique CPU computation and NN computation on GPU with

different batch sizes, which is a much smaller set of experiments than evaluating the

end-to-end system with all the possible configurations. The line represents the optimal

balance between CPU and GPU resources, where the CPU stage and GPU stage have

similar service rate in their respective workload. Across all 3 applications, there are

a set of candidate configurations (Batch Size, CPU Worker) that falls close to the

desired balanced configuration. We extract these as viable candidates, pruning 70%

of the configurations, to further drive our investigation into the best configuration for

each application.

70

(8
,1

)
(1

6
,1

)
(3

2
,1

)

(8
,2

)
(1

6
,2

)
(3

2
,2

)

(8
,4

)
(1

6
,4

)
(3

2
,4

)

(8
,8

)
(1

6
,8

)
(3

2
,8

)

0
1

0
0

2
0

0
3

0
0

4
0

0
G

P
U

 s
ta

g
e
 t

h
ro

u
g

h
p

u
t

0

2
0

0

4
0

0

6
0

0

8
0

0

CPU stage throughput

(a
)

L
S

T
M

(2
,1

)
(4

,1
)

(8
,1

)

(2
,2

)
(4

,2
)

(8
,2

)

(2
,4

)
(4

,4
)

(8
,4

)

(2
,8

)
(4

,8
)

(8
,8

)

0
2

4
6

8
1

0
G

P
U

 s
ta

g
e
 t

h
ro

u
g

h
p

u
t

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

CPU stage throughput(B
a
tc

h
 S

iz
e
,
#

 C
P

U
 W

o
rk

e
rs

)
B

a
la

n
ce

d
 C

o
n

fi
g

s

(b
)

N
A

M
A

S

(8
,1

)
(1

6
,1

)
(3

2
,1

)

(8
,2

)
(1

6
,2

)
(3

2
,2

)

(8
,4

)
(1

6
,4

)
(3

2
,4

)

(8
,8

)
(1

6
,8

)
(3

2
,8

)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

G
P

U
 s

ta
g

e
 t

h
ro

u
g

h
p

u
t

1
e
4

0
.0

0
.5

1
.0

1
.5

2
.0

CPU stage throughput

1
e
4

(c
)

C
N

N

F
ig

u
re

4
.1

1
:

C
P

U
v
s.

G
P

U
w

o
rk

b
a
la

n
c
e

a
c
ro

ss
d

iff
e
re

n
t

n
u

m
b

e
rs

o
f

w
o
rk

e
rs

a
n

d
b

a
tc

h
si

z
e

71

Scaling up instances – We now scale up the number of independent service in-

stances to fully utilize the GPU. Among the balanced configurations, our methodology

selects the configuration which achieves the highest throughput with the lowest GPU

utilization, to leave room for scaling up number of instances. Figure 4.12 shows the

GPU utilization (occupancy) and achieved throughput of a single instance configured

as the candidate configurations identified by the analysis above. The configuration

with the lowest ratio between GPU utilization and achieved throughput is selected.

For LSTM, this configuration is batch size of 32 with 4 workers; for NAMAS, batch

size of 4 with 1 worker, and for CNN, batch size of 16 with 4 workers. We then scale

up instances, each of which is configured with the selected configuration, until we

fully utilize the GPU or occupy all available CPU threads.

Key Insights 1) There is a sweet spot in allocating CPU and GPU resources for

systems that utilizes both hardware to process a single query. The most balanced con-

figuration should achieve similar CPU stage throughput and GPU stage throughput

to ensure most efficient resource utilization. For FGCIB, our configuration tuning

algorithm selects the best configuration pair of CPU workers and NN batch size.

2) This set of balanced configurations varies across applications, underscoring the

importance of careful per-application tuning according to the framework described

in section 4.4.3. 3) To reduce the search space, we first select the configuration for

an individual instance that has the lowest GPU utilization to throughput ratio and

then scale up the number of instances following this configuration to fully utilize the

GPU.

72

0
5

0
1

0
01

5
02

0
02

5
03

0
0

A
ve

ra
g

e
 T

h
ro

u
g

h
p

u
t

(Q
P

S
)

05

1
0

1
5

2
0

GPU Utilization (%)

(8
,

1
)

(8
,

2
) (1

6
,

2
)

(3
2

,
4

)

(a
)

L
S

T
M

0
2

4
6

8
A

ve
ra

g
e
 T

h
ro

u
g

h
p

u
t

(Q
P

S
)

05

1
0

1
5

2
0

GPU Utilization (%)
(2

,
1

) (4
,

1
)

(8
,

1
)

(B
a
tc

h
 S

iz
e
,

#
 C

P
U

 W
o
rk

e
rs

)

(b
)

N
A

M
A

S

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

A
ve

ra
g

e
 T

h
ro

u
g

h
p

u
t

(Q
P

S
)

05

1
0

1
5

2
0

GPU Utilization (%)

(8
,
2
)

(1
6
,
4
)

(3
2
,
4
)

(c
)

C
N

N

F
ig

u
re

4
.1

2
:

G
P

U
U

ti
li

z
a
ti

o
n

a
n

d
T

h
ro

u
g
h

p
u

t
p

ri
o
r

to
in

st
a
n

c
e

sc
a
li

n
g

73

4.5.4 Query Throughput and Latency

We now evaluate the throughput and latency performance of FGCIB. We compare

against a CPU baseline and to DjiNN [43], the state-of-the-art prior work in batch-

ing deep learning queries to improve throughput on GPUs. This comparison covers

FGCIB along with 2 versions of DjiNN, as described in section 5.1 – one version

that implements the DjiNN technique as described in the paper [43], and a second

technique that adds support for padding input queries to produce fixed-size queries

to enable effective batching over the baseline DjiNN system.

Throughput – We first evaluate the throughput improvement achieved by FG-

CIB compared to the baselines. For FGCIB, we configure the system follow the final

configuration derived in Section 4.5.3. For the CPU baseline and DjiNN baselines, we

scale up the number of NLP application instances on the CPU and GPU, respectively,

to the maximum number of instances.

Figure 4.13a shows the throughput achieved by FGCIB and the baselines. LSTM

and NAMAS achieve throughput gains from the technique with NAMAS achieving 5×

throughput improvement over the CPU. On average, FGCIB achieves 7.6× through-

put improvement over the CPU. Our system achieves 2.8× higher throughput than

GPU baseline (maximum number of instances sharing the GPU). When compared to

DjiNN + padding (the state-of-the-art acceleration technique), our system on aver-

age achieves 2.3× higher throughput. Specifically, FGCIB achieves on average 4.5×

higher throughput for LSTM and NAMAS while achieving slightly higher through-

put for CNN. For CNN, this is because we see incremental gains from having an

asynchronous, pipelined system. This demonstrates our system is significantly more

effective than state-of-the-art at handling deep learning applications with dynami-

cally defined computation and performs slightly better (no worse) compared to the

state-of-the-art for traditional statically-defined deep learning applications.

74

LSTM NAMAS CNN

1x

2x

3x

4x

5x

6x

7x

8x

T
h
ro
u
g
h
p
u
t

CPU

GPU

DjiNN + padding

FGCIB

(a) Throughput Improvement over GPU

LSTM NAMAS CNN
0%

20%

40%

60%

80%

100%

T
h
ro
u
g
h
p
u
t

FGCIB Oracle Selection

(b) Throughput improvement compared to oracle configuration

Figure 4.13: Throughput Improvement

Query latency – Figure 4.14 shows the mean query latency as a function of

achieved throughput at different load for each application. We compare the latency

and throughput of one FGCIB against a CPU baseline and DjiNN with padding.

For FGCIB, we use the best configuration identified from the configuration tuning

algorithm (Section 4.5.3). For DjiNN, we use the same number of threads as FG-

CIB for each application. For CPU baseline, we use the same number of threads

as FGCIB for LSTM and use all threads available (32) for NAMAS and CNN. We

allocate more than fair amount of threads to the CPU baseline of NAMAS and CNN

because CPU performance is orders of magnitude worse than FGCIB for these two

applications (Figure 4.13a) and difficult to visualize on the same graph. So for NA-

MAS and CNN, we use the generous CPU baseline configuration that occupies all

CPU cores while compared to a single instance which only use some of the available

cores. For this experiment, we employ a stochastic event-driven queueing simulation

75

0 50 100 150 200 250 300 350 400
Throughput (RPS)

0

200

400

600

800

1000

1200

1400

1600

M
e
a
n

 L
a
te

n
cy

 (
m

s)

FGCIB

DjiNN + padding

CPU

(a) LSTM

0 1 2 3 4 5 6 7 8
Throughput (RPS)

0

1000

2000

3000

4000

5000

M
e
a
n

 L
a
te

n
cy

 (
m

s)

FGCIB

DjiNN + padding

CPU (32 Threads)

(b) NAMAS

1K 2K 3K 4K 5K 6K 7K 8K
Throughput (RPS)

0

10

20

30

40

50

60

70

80

90

M
e
a
n

 L
a
te

n
cy

 (
m

s)

FGCIB

DjiNN + padding

CPU (32 Threads)

(c) CNN

Figure 4.14: Mean service latency and throughput

methodology borrowed from BigHouse [63] with service time distributions measured

on real systems.

We first compare FGCIB against the state-of-the-art NN batching system, DjiNN.

At high load level, FGCIB achieves significantly lower latency while achieving up to

3.5× higher throughput. At low load, FGCIB provides similar or lower latency. This

performance difference stem from the ineffectiveness of DjiNN’s batching method,

padding queries to the longest length and wasting computation.

We then compare against the CPU baseline. For NAMAS and CNN, FGCIB

achieves orders of magnitude lower latency compared against a CPU baseline using

all available CPU cores. For LSTM, FGCIB achieves higher throughput with a lower

latency at high load while has higher latency at low load. There are two reasons

for this. First, when the query arrival rate is low, NN request is generated a lower

rate and each NN batch takes longer to form. Secondly, LSTM features the smallest

NN computation among the benchmark applications (Figure 4.3) and has the lowest

GPU utilization (Figure 4.10a). It is inefficient to use GPU for LSTM computation

of smaller batch size due to the data communication time and GPU kernel launch

overhead. A single LSTM query is on average 40% faster to execute on CPU than

on GPU. Our system mitigates this by creating large batch of NN queries to issue to

the GPU at once to achieve higher GPU utilization and amortize the data communi-

cation/kernel launch overhead.

76

Key Insights 1) Traditional NN batching technique, which requires padding

incoming padding queries to form batches, is not applicable to accelerating NLP

applications. Padded queries waste resources and leads to long service time and

low throughput. 2) A fine-grained cross input flexible batching scheme, like the one

proposed with FGCIB, is crucial for efficiently forming large NN batches to utilize

the GPU more efficiently. 3) Using FGCIB, applications achieve higher throughput

with lower latency at higher load while achieve similar or better latency at lower load

compared to state-of-the-art system.

4.5.5 Configuration Tuning Algorithm

We now evaluate the configuration tuning algorithm, by comparing the achieved

throughput of the best configuration selected by the algorithm and an oracle selection

which represents the highest possible throughput the system would achieve using a

configuration identified after exhaustively experimenting with all possible configura-

tions. Figure 4.13b shows the achieved throughput of the algorithm-selected configu-

ration normalized to that of the oracle configuration. For all three applications, our

methodology achieve throughput above 95.7% of an oracle configuration. Note that

there is a large search space for the tunable parameters in the system and it is a

very time-consuming to exhaustively experiment with most, if not all, of the possible

configurations to derive at an oracle configuration.

4.6 Summary

Natural Language Processing (NLP) applications represent the next, relatively

unexplored set of applications that system architects need to rethink their systems

for. In this chapter, we thoroughly investigate and take a step in addressing new

challenges that emerge from system design for NLP. The fundamental difference be-

tween traditional DNN based applications is in inherent nature of the inputs to the

77

NLP applications that require analysis of the individual words as well as their se-

mantic position in the sentence. We identify three representative NLP applications

that seemingly use the same algorithmic components (DNNs) but have drastically

different computational characteristics. Through our in-depth characterization, we

show that NLP applications have 3 main characteristics: 1) iterative and linear or

tree-based dependent NN computation, 2) the computation per NN call is small, and

3) a significant fraction of the time is spent outside the NN.

These characteristics render current systems for high throughput DNN inference

systems ineffective for this emerging class of NLP applications. We propose a novel

batching technique, Fine-grained Cross-Input Batching (FGCIB) to address these

characteristics as well as support traditional DNN type workloads. FGCIB allows

batching at the level of NN computation across queries to eliminate the dependencies

introduced within a query and allow queries of different length to be batched. We

designed and implemented FGCIB and perform a real-system evaluation using an

industry deployed load-generator, we achieve on average 7.6× throughput improve-

ments over an optimized CPU baseline and 2.8× over the current state-of-the-art

GPU acceleration system.

78

CHAPTER V

Data Collection for a Real-World Intelligent

Application

Large, high quality training corpora are crucial in building effective machine learn-

ing models in many tasks required in building an intelligent application. The per-

formance of the machine learning models, especially deep learning models, depend

heavily on the quantity and quality of the training data. Developing real-world in-

telligent dialogue systems such as Apple Siri, Google Assistant and Amazon Alexa

poses a significant challenge for data collection. In order to better understands the

challenges, we experiment with building a dialogue system for a set of real-world use

cases. We observe that the complexity of building real-world dialogue system is often

substantially greater than those studied in the research community. For example,

the dialogue system requires intent classification among 47 different intents, whereas

most academic datasets for text classification only have a small number (i.e., 2–14) of

classes [85]. The few datasets that have a large number of classes, such as RCV-1 [55],

distribute intents across many distinct topics. The real-world application address the

significantly more challenging problem of handling many intents within a single do-

main, specifically personal finance and wealth management, requiring the classifier

to carefully distinguish between nuanced intent topics. Therefore, a large amount of

high-quality training data tailored to our targeted problem is critical for creating the

79

best user experience.

Crowdsourcing offers a promising solution by massively parallelizing data collec-

tion efforts across a large pool of workers at relatively low cost. Because of the

involvement of crowd workers, collecting high-quality data efficiently requires careful

orchestration of crowdsourcing jobs, including their instructions and prompts, make

effective crowdsourcing process largely an open research question.

In this chapter, we propose two novel metrics to evaluate dataset quality. Specif-

ically, we introduce (1) coverage, quantifying how well a training set covers the

expression space of a certain task, and (2) diversity, quantifying the heterogene-

ity of sentences in the training set. We verify the effectiveness of both metrics by

correlating them with the model accuracy of two well-known algorithms, SVM [34]

and FastText [20, 48]. We show that while diversity gives a sense of the variation

in the data, coverage closely correlates with the model accuracy and serves as an

effective metric for evaluating training data quality. We then leverage these metrics

to evaluate multiple variants of crowdsourcing methods. Based on the insights we

gained, we provide concrete recommendations on the best training data crowdsourc-

ing practices.

5.1 Many-intent Classification

We focus on a specific aspect of dialogue systems: intent classification. This task

takes a user utterance as input and classifies it into one of the predefined categories.

Unlike general dialogue annotation schemes such as DAMSL [33], intent classification

is generally domain-specific. Our system requires classification over 47 customer ser-

vice related intents in the domain of personal finance and wealth management. These

intents cover a large set of topics while some of the intents are very closely related and

it requires the classifier to identify the nuanced differences between utterances. For

example, user’s queries to see a list of their banking transactions can often be very

80

similar to their queries to see a summary of historical spending, e.g., “When did I

spend money at Starbucks recently?” vs. “How much money did I spend at Starbucks

recently?”.

Test Methodology Our test data contains a combination of real user queries from

a deployed system and additional cases manually constructed by developers. This

combination allows us to effectively measure performance for current users, while

also testing a broad range of ways to phrase queries. Our test set contains 3,988

sentences labelled with intents.

5.2 Training Data Quality Metrics

When we look to improve a model’s performance, there are generally two ap-

proaches that we can take: improve the model and inference algorithm and/or im-

prove the training data. There is currently no reliable way to help us identify whether

the training data or the model structure is the current bottleneck. One solution is

to train actual models using the training set and measure their accuracy with a pre-

defined test set. However, if only a single algorithm is used, over time this evaluation

may lead to a bias, as the training data is tuned to suit that specific algorithm. Using

a suite of different algorithms avoids this issue, but can be very time consuming. We

need an algorithm-independent way to evaluate the quality of training data and its

effectiveness at solving the target task. In this section, we introduce two metrics to

achieve this, diversity and coverage.

Diversity We use diversity to evaluate the heterogeneity of the training data.

The idea behind diversity is that the more diverse the training data is, the less

likely a downstream model will overfit to certain words or phrases and the better it

will generalize to the testing set.

81

We first define a pairwise sentence distance measure. For a given pair of sentences,

a and b, we calculate the reverse of the mean Jaccard Index between the sentences’

n-grams sets to represent the semantic distances between the two sentences:

D(a, b) = 1− 1

N

N∑
n=1

|n-gramsa ∩ n-gramsb|
|n-gramsa ∪ n-gramsb|

(5.1)

where N is the maximum n-gram length. We use N = 3 in our experiments.

Our pairwise score is similar to the PINC score [22], except that we use the n-grams

from the union of both sentences instead of just one sentence in the denominator

of Equation 5.1. This is because the PINC score is used in paraphrasing tasks to

measures how much a paraphrased sentence differ from the original sentence and

specifically rewards n-grams that are unique to the paraphrased sentence. Our metric

measures the semantic distance between two sentences and treat the unique n-grams

in both sentences as equal contribution to the distance.

We define the diversity of a training set as the average distance between all sen-

tence pairs that share the same intent. For a training set X, its diversity (DIV (X))

is:

DIV (X) =
1

|I|
I∑

i=1

1

|Xi|2

[
Xi∑
a

Xi∑
b

D(a, b)

]
(5.2)

where I is the set of intents and Xi is the set of sentences with intent i in the training

set X.

Coverage We now introduce coverage, a new metric designed to model how well

a training dataset covers the complete space of ways an intent can be expressed.

We use our test set as an approximate representation of the expression space for our

classification task. As described in § 5.1, our test set is constructed primarily with real

user queries collected from the log of a deployed system and annotated by engineers.

To measure coverage of a training set given a test set, we first identify, for each

82

test sentence, the most similar training sentence with the same intent, according to

the pairwise sentence distance measure D(a, b) defined in Equation 5.1. We then

derive coverage by averaging the shortest distances for all sentences in the test set.

For a given test set, we would want the training set to have as high coverage as

possible. Specifically, for a training set X and a test set Y :

CV G(X, Y) =
1

|I|
I∑

i=1

1

|Yi|

Yi∑
b

Xi
max

a
(1−D(a, b)) (5.3)

where I is the set of intents and Xi and Yi are the sets of utterances labeled with

intent i in the training (X) and test (Y) sets, respectively.

Correlating Metrics with Model Accuracy In order to evaluate the effective-

ness of diversity and coverage at representing the training data quality, we collect

training data via different methods and of varying sizes, train actual models, measure

their accuracy and investigate the correlation between the metrics and the accuracy.

We consider two well-known algorithms that have publicly available implementations:

a linear SVM and FastText, a neural network-based algorithm.

SVM Support Vector Machines [34] are a widely used and effective approach for

classification tasks. We use a linear model trained with the SVM objective as a simple

baseline approach.

FastText We also consider a recently developed neural network approach [20, 48].

This model has three steps: (1) look up vectors for each n-gram in the sentence,

(2) average the vectors, and (3) apply a linear classifier. The core advantage of this

approach is parameter sharing, as the vector look-up step places the tokens in a dense

vector space. This model consistently outperforms linear models on a range of tasks.

For all experiments we apply a consistent set of pre-processing steps designed to

83

Type Scenario Paraphrasing

Generic
You want to learn about your spending
history.

“Show me my spending history.”

Specific
You want to learn about your spending
history during a specific period of time.

“Show me my spending history in the
last month. (Use different time periods
in your answers).”

Generic You want to ask about your income. “What’s my income?”

Specific
You want to ask about your income
from a specific employer.

“How much money did I make from
Company A? (Use different employers
in your answers.)”

Table 5.1: Examples of generic and specific scenario description and paraphrasing
prompts.

reduce sparseness in the data: we lowercase the text, remove punctuation, replace

each digit with a common symbol, expand contractions, and lemmatize (using NLTK

for the last two).

5.3 Crowdsourcing Data Collection Methods

We consider two aspects of a crowdsourcing setup: the template style, and the

prompt. The template defines the structure of the task, including its instructions and

interface. Prompts are intent-specific descriptions or examples that define the scope

of each task and guide workers to supply answers related to the target intent. We

define a set of prompts for each intent and populate a template with each prompt

to create a complete crowdsourcing job. We study two types of templates: scenario-

driven (§ 5.3.1) and paraphrasing (§ 5.3.2), and two methods of generating prompts:

manual generation (§ 5.3.1 and 5.3.2) and test set sampling (§ 5.4.3). A data collection

method is the combination of a template and a prompt generation method. In this

section, we describe each method and its variants.

84

React to a Scenario

Suppose you have a device that has a Siri-like app for your bank account that acts
as a customer service agent and can handle questions about your bank account
balance.

Given the original scenario described below that is related to your bank ac-
count, supply 5 creative ways of asking the intelligent device to assist your
situation.

“You want to ask about the balance of your bank account.”

Figure 5.1: An example of scenario-driven task instructions. The template sets up
a real-world situation and asks workers to provide a response as if they are in that
situation. The prompt shown here is for collecting data for the intent ‘balance’.

5.3.1 Scenario-driven

The instructions for a scenario-driven job describe a real-world situation and ask

the worker to provide a response as if they are in the situation. Figure 5.1 shows an ex-

ample job for the intent of “asking about your bank account balance”. Table 5.1 shows

additional example prompts for generic and specific scenarios. Scenario-driven jobs

simulate real world situations and encourage workers to create natural questions and

requests resembling real user queries.

We consider two variations on the scenario-driven setup. Generic scenarios de-

scribe the situation in which the target intent applies, without specific constraints.

For example, a generic scenario for the intent ‘balance’ is “You want to know about

your account balance”. Specific scenarios refine the description by adding details.

These are intended to encourage workers to write responses with more entities and

constraints. These jobs also add specific information that the worker needs to include

in their response. For example, a specific scenario for the intent ‘balance’ is “You’d

like to know the balance of one of your accounts. (Please specify the account you want

to inquire about in your responses)”.

For each intent, we use one generic scenario and three specific scenarios. To

evaluate the different scenario types, we collected data with either generic scenarios

85

Paraphrase Sentence

Given the following sentence, supply 5 creative ways of rephrasing the same
sentence.

Assume the original question is in regards to your bank account balance.

“What is the balance of my bank account?”

Figure 5.2: An example of a paraphrasing task instructions.

only, specific scenarios only, or a combination of both. The mixed setting contains

equal contributions from all four scenarios (one generic and three specific). In our

experiments, we keep the number of training samples per intent balanced across

intents regardless of the number of total training examples.

5.3.2 Paraphrasing

Paraphrasing jobs provide an example sentence and ask workers to write several

creative paraphrases of it. Figure 5.2 shows an example of job instructions for para-

phrasing the sentence “What is the balance of my bank account?” To make sure we

can directly compare the results of paraphrasing and scenario-driven jobs, we convert

each scenario used in § 5.3.1 into a user question or command, which is provided as

the sentence to paraphrase. As a result, there are two types of paraphrasing prompts:

generic prompts and specific prompts. Table 5.1 shows example pairs of scenarios and

paraphrasing prompts. Like in the scenario-driven case, we construct training sets

with three different mixes of prompts, generic only, specific only and a combination

of both.

5.4 Evaluation

In this section, we first verify that diversity and coverage provide insight re-

garding training data quality. We compare trends in these metrics with trends in

86

1 2 3 4 5
Training Samples (K)

50

60

70

Ac
cu

ra
cy

 (%
)

Accuracy(SVM)
Accuracy(FastText)

Coverage
Diversity

0.15

0.20

0.25

0.30

0.35

0.40

C
ov

er
ag

e

0.85

0.90

0.95

1.00

D
iv

er
si

ty

Figure 5.3: Accuracy, coverage and diversity for scenario-driven jobs as the training
data size increases. This data is collected using a mixture of generic and specific
scenarios.

model accuracy as the amount of training data is increased. We then evaluate the

performance of the scenario-driven and paraphrase methods and their variants by

comparing the quality of training data collected via these methods. Finally, we ex-

plore sampling paraphrasing examples from the test set and compare against manually

generation by engineers.

5.4.1 Correlating Diversity and Coverage with Model Accuracy

Figure 5.3 and 5.4 show diversity, coverage, and accuracy of the SVM and

FastText models as we vary the number of training examples for scenario-driven and

paraphrase-based jobs, respectively. In this experiment, we use a combination of both

generic and specific scenarios and paraphrasing examples.

87

1 2 3 4 5
Training Samples (K)

50

60

70

Ac
cu

ra
cy

 (%
)

Accuracy(SVM)
Accuracy(FastText)

Coverage
Diversity

0.15

0.20

0.25

0.30

0.35

0.40

C
ov

er
ag

e

0.85

0.90

0.95

1.00

D
iv

er
si

ty

Figure 5.4: Accuracy, coverage and diversity for paraphrasing jobs as the training
data size increases. This data is collected using a combination of generic and specific
paraphrase examples.

We observe that for both scenario and paraphrase jobs, the diversity starts high

(> 0.90) with a few hundred training samples and stay stable as training data size

increases. This means that the new training examples generally have a low percentage

of n-grams overlap and a long distance (D(a, b)) with the existing examples, therefore

maintaining the overall high diversity. This indicates that the newly introduced

examples are generally creative contributions from the crowd and not repeats or

straightforward rephrase of the existing samples with the same words.

coverage starts low with a few hundred training examples and steadily increases

as the training set grows. This indicates that the new training examples contain

sentences that are semantically closer to the test set sentences than existing training

examples, increasing the training set’s scope to better cover the expression space

88

represented by the test set.

The accuracy of both SVM and FastText models follow a very similar trend to

that of coverage, gradually increasing as more training samples are collected. The

correlation between model accuracy and coverage shows that coverage is a more

effective metric than diversity in evaluating the quality of a training set without

training models.

We also observe diminishing returns in coverage as more data is collected. This

trend roughly correlates with the diminishing return in accuracy of the SVM and Fast-

Text models. The trend in coverage provides insight into improvements in training

data quality, which can inform the choice of when to stop collecting more data and

start focusing on improving algorithms. This is further demonstrated by the way Fast-

Text consistently outperforms the SVM model when their accuracy and coverage of

the training data saturate, indicating that the algorithm is the bottleneck for improv-

ing accuracy instead of the amount of training data.

Key Insights (1) diversity stays relatively constant with a high value as more

training samples are collected, indicating that new distinct training examples are

being introduced. (2) coverage continuously improves as data scales, showing that

the training data is becoming more effective at covering the expression space defined

by the test set. The trend of coverage closely correlates with the trend in model

accuracy, indicating that coverage is an effective metric at evaluating training data

quality without requiring model training.

5.4.2 Comparing Scenario and Paraphrase Based Collection and Their

Variants

Table 5.2 summarizes the model accuracy, coverage and diversity of both

scenario-driven and paraphrase-based jobs. We studied three variants for each job

89

Accuracy
Template Type SVM FastText CVG DIV

Generic 68.49 69.70 0.30 0.90
Scenario Specific 65.86 68.10 0.29 0.89

Both 74.77 75.48 0.32 0.91

Generic 68.60 70.50 0.30 0.88
Paraphrase Specific 67.80 67.77 0.29 0.87

Both 75.46 76.44 0.32 0.90

Table 5.2: Accuracy, coverage and diversity for the six template + prompt conditions
considered, all with ~4.7K training samples.

type, where we use different mixtures of prompt type (generic prompts only, specific

prompts only and combined prompts). All configurations are evaluated using training

data of the same size (~4.7K) and on the same test set.

For both scenario and paraphrase jobs, using a mixture of both generic and specific

prompts yields training data with higher coverage and models with higher accuracy

than using only generic or specific prompts.

Table 5.2 compares scenario and paraphrasing jobs. As described in § 5.3.2, the

paraphrasing examples were based on the scenario descriptions so we are only mea-

suring the impact of different job types. The two approaches lead to similar results

across all metrics. This shows that despite the instructions being distinctly different,

scenario-driven and paraphrasing jobs generally yield training data of similar quality.

Key Insights (1) A mixture of generic and specific scenarios and paraphrasing

examples yields the best training data given a fixed number of training examples,

in terms of both coverage of the training set and the accuracy of the downstream

models. (2) Scenario-driven and paraphrasing based crowdsourcing jobs yield similar

quality training data despite having different job instructions and templates.

5.4.3 Sampling Prompts from the Test Set

We now investigate a different way to generate the prompts used for the crowd-

sourcing jobs. In the context of scenario-driven and paraphrasing jobs, prompts are

90

Accuracy
SVM FastText CVG DIV

Manual generation 75.46 76.44 0.32 0.90
Test set sampling 83.05 84.69 0.40 0.92

Table 5.3: Comparison of manually generating prompts and sampling from test set,
evaluated on half of the test data (kept blind in sampling).

the scenario descriptions and the example sentences provided to workers to rephrase,

respectively. In § 5.3.1 and 5.3.2, engineers manually generated the prompts based

on the definition of each intent. While manual generation guarantees high quality

prompts, it requires engineering effort and could potentially be biased by the engi-

neer’s perspective. One way to reduce such effort and bias is to automatically source

prompts based on real user queries.

We divide the test set into two equal halves. For each intent, we randomly sample

5 utterances from the first half of the test set and use them as prompts to construct

paraphrasing jobs. The second half of the test set is kept entirely blind and used for

evaluation.

Manual Generation vs. Test Set Sampling Table 5.3 shows the accuracy, coverage

and diversity of a training set collected with 4 manually generated paraphrasing

examples vs. with 4 paraphrasing examples sampled from the first half of the test

set. The accuracy for both methods is evaluated on the second half of the test set

(kept blind from prompt sampling). The results show that sampling from the test

set leads to a training set that has 8% higher coverage, 2% higher diversity and

yields models with 8% higher accuracy, compared to manual generation.

Varying the Number of Prompts Table 5.4 shows the accuracy, coverage

and diversity of training data collected using a varying number (1-5) of unique

paraphrasing examples sampled from the test set. We observe that test set accuracy

91

of paraphrasing Accuracy
prompts SVM FastText CVG DIV

1 71.46 71.69 0.31 0.88
2 78.34 79.33 0.36 0.91
3 81.47 82.67 0.39 0.91
4 83.05 84.69 0.40 0.92
5 84.61 85.96 0.41 0.92

Table 5.4: Accuracy, coverage and diversity of paraphrasing jobs using 1-5 prompts
sampled from the test set, with constant training set size (~4.7K).

improves as we use more unique prompts but eventually there are diminishing returns.

Increasing the number of prompts from 1 to 2 increases the accuracy by 6.9% and

7.6% for SVM and FastText, respectively, while increasing the number of prompts

from 4 to 5 improves their accuracy by only 1.6% and 1.3%.

5.5 Summary

Training data is the key to building a successful real-world intelligent dialogue

system, and efficiently collecting large scale robust training data via crowdsourcing is

particularly challenging. In this chapter, we introduce and characterize two training

data quality evaluation metrics. We verify their effectiveness by training models of

well-known algorithms and correlating the metrics with model accuracy. We show

that an algorithm-independent coverage metric is effective at providing insights into

the training data and can guide the data collection process. We also studied and

compared a range of crowdsourcing approaches for collecting training data for a many-

intent classification task for a dialogue system. Our observations provide several key

insights that serve as recommendations for future dialogue system data collection

efforts, specifically that using a mixture of generic and specific prompts and sampling

prompts from the real user queries yields better quality training data.

92

CHAPTER VI

Conclusion

Intelligent applications are becoming increasingly more personal and knowledge-

able and widely adopted as they are integrated by default on various mobile devices.

However, there exists a series of challenges across the system stack in building an

intelligent application system. This dissertation investigates the challenges in the

compute and data components and propose system design and techniques to improve

application and system performance.

To optimize computation performance, I first identify wireless communication as

the bottleneck in the status-quo approach of cloud-only intelligent application pro-

cessing in terms of end-to-end response latency and mobile energy consumption. I

design a lightweight runtime scheduler that dynamically partitions neural network

computation between the mobile device and the cloud to achieve low latency, low

energy and high datacenter throughput, based on various factors including wireless

network speed, neural network topology and datacenter load. Secondly, I characterize

a suite of state-of-the-art deep learning based natural language processing applica-

tions and identify that they share a unique recurrent and dependent neural network

computation pattern that render the existing GPU acceleration technique ineffective

for this class of application. Leveraging this unique characteristic, I design and de-

velop a novel software system to effectively accelerates this class of applications on the

93

GPU, where neural network inputs across queries are collected and being processed

as a batch for high GPU throughput. For the data aspect of an intelligent application

system, to address the challenge of effectively collecting large-scale high-quality train-

ing data for building high-accuracy machine learning models, I design and propose

two novel metrics of evaluating training data quality. These metrics are designed to

capture the semantic heterogeneity of the training data and how effective the train-

ing data is at representing the scope of the target task. Leveraging these metrics,

I investigate multiple crowdsourcing methods and the quality of their corresponding

training data and provide insights and recommendations on the best practices for

crowdsourcing training data.

94

BIBLIOGRAPHY

95

BIBLIOGRAPHY

[1] Apple moves to third-generation Siri back-end, built on open-source Mesos plat-
form. http://9to5mac.com/2015/04/27/siri-backend-mesos/. Accessed:
2016-08.

[2] Apple’s Massive New Data Center Set To Host Nuance Tech. http://
techcrunch.com/2011/05/09/apple-nuance-data-center-deal/. Accessed:
2016-08.

[3] Baidu Supercomputer. https://gigaom.com/2015/01/14/baidu-has-built-
a-supercomputer-for-deep-learning/. Accessed: 2016-08.

[4] Clipped summarizes anything into bullet points and infographics through the
power of ai. http://clipped.me/. Accessed: 2016-11-18.

[5] Duc-2003. http://duc.nist.gov/data.html.

[6] Facebook github treadmill. https://github.com/facebook/treadmill. Ac-
cessed: 2016-10-11.

[7] Flipbord’s approach to automatic summarization. http://engineering.
flipboard.com/2014/10/summarization/. Accessed: 2016-11-18.

[8] Google Brain. https://backchannel.com/google-search-will-be-your-
next-brain-5207c26e4523#.x9n2ajota. Accessed: 2017-01.

[9] Google supercharges machine learning tasks with TPU custom chip.
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-
machine-learning-tasks-with-custom-chip.html. Accessed: 2017-01.

[10] Microsoft Deep Learning Outperforms Humans in Image Recognition.
http://www.forbes.com/sites/michaelthomsen/2015/02/19/microsofts-
deep-learning-project-outperforms-humans-in-image-recognition/.
Accessed: 2016-08.

[11] Movie review data. https://www.cs.cornell.edu/people/pabo/movie-
review-data/.

[12] NVIDIA Jetson TK1 Development Kit: Bringing GPU-accelerated computing
to Embedded Systems. Technical report. Accessed: 2017-01.

96

[13] Nvidia’s Tegra K1 at the Heart of Google’s Nexus 9. http://www.pcmag.com/
article2/0,2817,2470740,00.asp. Accessed: 2016-08.

[14] TestMyNet: Internet Speed Test. http://testmy.net/. Accessed: 2015-02.

[15] The ’Google Brain’ is a real thing but very few people have seen it. http://www.
businessinsider.com/what-is-google-brain-2016-9. Accessed: 2017-01.

[16] Watts Up? Power Meter. https://www.wattsupmeters.com/. Accessed: 2015-
05.

[17] Whitepaper: NVIDIA Tegra X1. Technical report. Accessed: 2017-01.

[18] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks. Fathom: reference
workloads for modern deep learning methods. In Workload Characterization
(IISWC), 2016 IEEE International Symposium on, pages 1–10. IEEE, 2016.

[19] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio. Theano: A cpu and gpu math
compiler in python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.

[20] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors
with subword information. Transactions of the Association for Computational
Linguistics, 5:135–146, 2017.

[21] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi. A dynamically
configurable coprocessor for convolutional neural networks. In Proceedings of
the 37th Annual International Symposium on Computer Architecture, ISCA ’10,
pages 247–257, New York, NY, USA, 2010. ACM.

[22] D. Chen and W. Dolan. Collecting highly parallel data for paraphrase evaluation.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 190–200, Portland, Oregon,
USA, June 2011. Association for Computational Linguistics.

[23] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. Diannao:
A small-footprint high-throughput accelerator for ubiquitous machine-learning.
In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’14, pages 269–284,
New York, NY, USA, 2014. ACM.

[24] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. Diannao:
A small-footprint high-throughput accelerator for ubiquitous machine-learning.
In Proceedings of the 19th international conference on Architectural support for
programming languages and operating systems, pages 269–284. ACM, 2014.

[25] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam. Dadiannao: A machine-learning supercomputer. In

97

Proceedings of the 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO-47, pages 609–622, Washington, DC, USA, 2014. IEEE
Computer Society.

[26] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer. cuDNN: Efficient Primitives for Deep Learning. CoRR,
abs/1410.0759, 2014.

[27] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Build-
ing an efficient and scalable deep learning training system. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Implementation,
OSDI’14, pages 571–582, Berkeley, CA, USA, 2014. USENIX Association.

[28] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: elastic
execution between mobile device and cloud. In Proceedings of the sixth conference
on Computer systems, pages 301–314. ACM, 2011.

[29] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and A. Ng. Deep learning
with cots hpc systems. In Proceedings of the 30th international conference on
machine learning, pages 1337–1345, 2013.

[30] R. Collobert, S. Bengio, and J. Mariéthoz. Torch: a modular machine learning
software library. Technical report, Idiap, 2002.

[31] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural language processing (almost) from scratch. The Journal of Machine
Learning Research, 2011.

[32] A. Conneau, H. Schwenk, L. Barrault, and Y. LeCun. Very deep convolutional
networks for natural language processing. CoRR, abs/1606.01781, 2016.

[33] M. G. Core and J. F. Allen. Coding dialogs with the damsl annotation scheme.
In Working Notes of the AAAI Fall Symposium on Communicative Action in
Humans and Machines, pages 28–35, Cambridge, MA, November 1997.

[34] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, Sep 1995.

[35] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl. Maui: making smartphones last longer with code offload. In
Proceedings of the 8th international conference on Mobile systems, applications,
and services, pages 49–62. ACM, 2010.

[36] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam. Shidiannao: Shifting vision processing closer to the sensor. In Pro-
ceedings of the 42Nd Annual International Symposium on Computer Architecture,
ISCA ’15, pages 92–104, New York, NY, USA, 2015. ACM.

98

[37] O. Feyisetan, E. Simperl, M. Luczak-Roesch, R. Tinati, and N. Shadbolt. An ex-
tended study of content and crowdsourcing-related performance factors in named
entity annotation. Semantic Web.

[38] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and X. Chen. Comet:
Code offload by migrating execution transparently.

[39] C. Grady and M. Lease. Crowdsourcing document relevance assessment with
mechanical turk. In Proceedings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechanical Turk, pages 172–179, Los
Angeles, June 2010. Association for Computational Linguistics.

[40] M. Halpern, Y. Zhu, and V. J. Reddi. Mobile cpu’s rise to power: Quantifying
the impact of generational mobile cpu design trends on performance, energy,
and user satisfaction. In High Performance Computer Architecture (HPCA),
2016 IEEE International Symposium on, pages 64–76. IEEE, 2016.

[41] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishna-
murthy. Mcdnn: An execution framework for deep neural networks on resource-
constrained devices. In MobiSys, 2016.

[42] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge, R. G.
Dreslinski, J. Mars, and L. Tang. Djinn and tonic: Dnn as a service and its
implications for future warehouse scale computers. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture (ISCA), ISCA ’15,
New York, NY, USA, 2015. ACM.

[43] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge, R. G.
Dreslinski, J. Mars, and L. Tang. Djinn and tonic: Dnn as a service and its
implications for future warehouse scale computers. In Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, ISCA ’15, pages
27–40, New York, NY, USA, 2015. ACM.

[44] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A close
examination of performance and power characteristics of 4g lte networks. In
Proceedings of the 10th international conference on Mobile systems, applications,
and services, pages 225–238. ACM, 2012.

[45] M. Iyyer, J. L. Boyd-Graber, L. M. B. Claudino, R. Socher, and H. Daumé III.
A neural network for factoid question answering over paragraphs. In EMNLP,
2014.

[46] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093, 2014.

99

[47] Y. Jiang, J. K. Kummerfeld, and W. S. Lasecki. Understanding task design
trade-offs in crowdsourced paraphrase collection. In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 103–109, Vancouver, Canada, July 2017. Association for Compu-
tational Linguistics.

[48] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient
text classification. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers, pages
427–431, Valencia, Spain, April 2017.

[49] G. Kazai, J. Kamps, and N. Milic-Frayling. An analysis of human factors and
label accuracy in crowdsourcing relevance judgments. Information Retrieval,
16(2):138–178, 2013.

[50] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[51] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, 2012.

[52] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 1998.

[53] X. Lei, A. Senior, A. Gruenstein, and J. Sorensen. Accurate and Compact Large
vocabulary speech recognition on mobile devices. In INTERSPEECH, pages
662–665, 2013.

[54] X. Lei, A. Senior, A. Gruenstein, and J. Sorensen. Accurate and compact large
vocabulary speech recognition on mobile devices. In INTERSPEECH, pages
662–665, 2013.

[55] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection
for text categorization research. J. Mach. Learn. Res., 5:361–397, Dec. 2004.

[56] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan. Semantic object parsing with
graph LSTM. CoRR, abs/1603.07063, 2016.

[57] B. Liu. Sentiment analysis and opinion mining. Synthesis lectures on human
language technologies, 5(1):1–167, 2012.

[58] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and
Y. Chen. Pudiannao: A polyvalent machine learning accelerator. In Proceedings
of the Twentieth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’15, pages 369–381, New York,
NY, USA, 2015. ACM.

100

[59] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and
Y. Chen. Pudiannao: A polyvalent machine learning accelerator. In Proceedings
of the Twentieth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 369–381. ACM, 2015.

[60] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis. To-
wards energy proportionality for large-scale latency-critical workloads. In ACM
SIGARCH Computer Architecture News, volume 42, pages 301–312. IEEE Press,
2014.

[61] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch.
Power management of online data-intensive services. In Computer Architecture
(ISCA), 2011 38th Annual International Symposium on, pages 319–330. IEEE,
2011.

[62] D. Meisner, J. Wu, and T. F. Wenisch. BigHouse: A Simulation Infrastructure
for Data Center Systems. ISPASS ’12: International Symposium on Perfor-
mance Analysis of Systems and Software, April 2012.

[63] D. Meisner, J. Wu, and T. F. Wenisch. Bighouse: A simulation infrastructure
for data center systems. In Performance Analysis of Systems and Software (IS-
PASS), 2012 IEEE International Symposium on, pages 35–45. IEEE, 2012.

[64] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao, and M. Welsh. Mobile
network performance from user devices: A longitudinal, multidimensional anal-
ysis. In International Conference on Passive and Active Network Measurement,
pages 12–22. Springer, 2014.

[65] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung.
Accelerating deep convolutional neural networks using specialized hardware,
February 2015.

[66] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung.
Accelerating deep convolutional neural networks using specialized hardware. Mi-
crosoft Research Whitepaper, 2(11), 2015.

[67] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-
nemann, P. Motlicek, Y. Qian, P. Schwarz, et al. The kaldi speech recognition
toolkit. In Proc. ASRU, 2011.

[68] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-
nemann, P. Motlicek, Y. Qian, P. Schwarz, et al. The kaldi speech recognition
toolkit. In IEEE 2011 workshop on automatic speech recognition and under-
standing, number EPFL-CONF-192584. IEEE Signal Processing Society, 2011.

[69] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and M. A.
Horowitz. Convolution engine: Balancing efficiency & flexibility in special-
ized computing. In Proceedings of the 40th Annual International Symposium

101

on Computer Architecture, ISCA ’13, pages 24–35, New York, NY, USA, 2013.
ACM.

[70] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan.
Odessa: enabling interactive perception applications on mobile devices. In Pro-
ceedings of the 9th international conference on Mobile systems, applications, and
services, pages 43–56. ACM, 2011.

[71] C. Rashtchian, P. Young, M. Hodosh, and J. Hockenmaier. Collecting image an-
notations using amazon’s mechanical turk. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language Data with Amazon’s Mechani-
cal Turk, pages 139–147, Los Angeles, June 2010. Association for Computational
Linguistics.

[72] J. Rogstadius, V. Kostakos, A. Kittur, B. Smus, J. Laredo, and M. Vukovic. An
assessment of intrinsic and extrinsic motivation on task performance in crowd-
sourcing markets, 2011.

[73] A. M. Rush, S. Chopra, and J. Weston. A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

[74] M. Sabou, K. Bontcheva, L. Derczynski, and A. Scharl. Corpus annotation
through crowdsourcing: Towards best practice guidelines. In Proceedings of the
Ninth International Conference on Language Resources and Evaluation (LREC-
2014). European Language Resources Association (ELRA), 2014.

[75] J. Schectman. Obama’s Campaign Used Salesforce.com To Gauge Feelings
of Core Voters. http://blogs.wsj.com/cio/2012/12/07/obamas-campaign-
used-salesforce-com-to-gauge-feelings-of-core-voters/, 2012. [Online;
accessed 2016-11-17].

[76] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[77] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable cross-language ser-
vices implementation. Facebook White Paper, 5(8), 2007.

[78] R. Snow, B. O’Connor, D. Jurafsky, and A. Ng. Cheap and fast – but is it good?
evaluating non-expert annotations for natural language tasks. In Proceedings
of the 2008 Conference on Empirical Methods in Natural Language Processing,
pages 254–263, Honolulu, Hawaii, October 2008. Association for Computational
Linguistics.

[79] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing natural scenes and
natural language with recursive neural networks. In Proceedings of the 28th
international conference on machine learning (ICML-11), pages 129–136, 2011.

102

[80] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representa-
tions from tree-structured long short-term memory networks. arXiv preprint
arXiv:1503.00075, 2015.

[81] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to
human-level performance in face verification. In Computer Vision and Pattern
Recognition (CVPR), 2014.

[82] R. Vliegendhart, M. Larson, C. Kofler, C. Eickhoff, and J. Pouwelse. Investigat-
ing factors influencing crowdsourcing tasks with high imaginative load. In Pro-
ceedings of the Workshop on Crowdsourcing for Search and Data Mining (CSDM)
at the Fourth ACM International Conference on Web Search and Data Mining,
pages 27–30, 2011.

[83] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi. Augem: automatically generate high
performance dense linear algebra kernels on x86 cpus. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, page 25. ACM, 2013.

[84] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[85] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for
text classification. In Proceedings of the 28th International Conference on Neu-
ral Information Processing Systems - Volume 1, NIPS’15, pages 649–657, Cam-
bridge, MA, USA, 2015. MIT Press.

[86] Y. Zhang, D. Meisner, J. Mars, and L. Tang. Treadmill: Attributing the source
of tail latency through precise load testing and statistical inference.

103

