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Abstract 

Modern engineering applications call for structural and material systems that exhibit advanced 

performance. To achieve this performance, researchers often look to nature for inspiration. Skeletal 

muscle is a multifunctional system with remarkable versatility and robustness, offering a great 

example on how to effectively store, convert, and release energy for force generation and shape 

change. To date, most efforts seeking to emulate muscle have focused on its bulk characteristics. 

However, it has recently been shown that many of muscle’s advantageous properties arise from the 

assembly and geometry of its microscale constituents. This dissertation will aim to develop new 

concepts for structural and material systems inspired by a fundamental understanding of the 

assembly of muscle’s constituent elements into contractile units. This is achieved by exploiting two 

key ingredients expressed by these constituents: metastability, which is the existence of multiple 

stable conformations for a prescribed global geometry, and local conformation changes to switch 

between these stable topologies. Rather than faithfully emulating or seeking to explain the complex 

chemo-mechanical processes that govern muscle contraction, the major contributions of this thesis 

arise from the exploitation of the aforementioned key features within the context of engineered 

structures and materials systems.  

First, a fundamental metastable unit is studied under harmonic excitation. Experimental, 

numerical, and analytical investigations uncover the coexistence of multiple response regimes with 

significantly different amplitudes. These distinct regimes are exploited to achieve highly adaptable 

energy dissipation characteristics that vary by up to two orders of magnitude among them, even as 
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excitation parameters are held constant. On the other hand, introducing asymmetry by varying a 

static bias parameter allows for smooth, finer variation of energy dissipation performance. Then, 

inspired by the ability of the myofibril lattice in skeletal muscle to trap strain energy that can be 

released on-demand, this thesis explores structural systems that leverage asymmetric multistability 

for energy capture and storage. The initial kinetic energy from impulsive excitation is shown to 

trigger state transitions that result in the capture of recoverable strain energy in higher-potential 

states. Reverse transitions to lower-energy states exploit this stored energy to facilitate efficient 

deployment and length change in the structure. Lastly, the effect of myofibril lattice spacing in 

skeletal muscle, and shear-like motions of adjacent filaments during contraction, serves as 

inspiration for the development of an architected modular material system that uses transverse 

confinements in conjunction with oblique, shear-like motions to give rise to sudden state transitions. 

Numerical results provide insight into the experimentally-observed behaviors, revealing that these 

energy-releasing transitions correspond to discrete changes in reaction force magnitude and 

direction Mechanical response properties can be tailored by strategic variation of transverse 

confinement and system geometry. Analytical tools using relatively simple models are developed to 

offer meaningful prediction of the above features. The overall outcomes of this thesis reveal great 

potential to develop high-performance, versatile, and adaptable structural and material systems by 

exploiting fundamental features of skeletal muscle architecture.  
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Chapter 1. Introduction and background 

1.1 Introduction 

 An increasing number of engineering applications call for structural and material systems that 

exhibit performance and adaptability beyond the capabilities of bulk constituents. Furthermore, 

there are inherent advantages to realizing this adaptability without the need for complex, active 

controls 1–3. Skeletal muscle is a multifunctional system that effectively balances these two objectives, 

providing strong inspiration for the development of advanced engineered structures and materials. 

It exhibits robustness and adaptation of macroscale properties in order to ensure energetic efficiency 

of motions, while minimizing the risk of damage or over-straining 4–7. It is also energetically versatile, 

and can effectively store, convert and release energy to facilitate rapid force generation or length 

change 8,9. These macroscale properties are strongly dependent on the coordination between skeletal 

muscle’s constituents across its length scales 10. To date, most researchers have taken inspiration 

from muscle’s macroscale structure and functionality for a variety of applications in the fields of 

robotics and prosthetics, as well as to improve our understanding of movement and locomotion. 

There are comparatively fewer efforts that take as inspiration skeletal muscle’s microscale 

architecture, despite evidence that this may be the origin for many of its attractive macroscale 

characteristics 11–13. 

 Historically, development of a comprehensive understanding of skeletal muscle’s microscale 

behaviors has been hindered by challenging experimental conditions which render it very difficult to 
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accurately observe mechanical properties at the smaller length scales. Nevertheless, experimental 

efforts over the past few decades have revealed remarkable properties that arise from skeletal 

muscle’s microscale architecture. These properties include rapid tension recovery from 

perturbations 14,15, force enhancement when skeletal muscle’s microscale sarcomere constituents are 

extended beyond their ideal lengths 16,17, and strain energy storage in micro- and nanoscale 

constituents that can be released to enable explosive motion or reduce the metabolic cost of cyclic 

movements 6,18,19. 

 This chapter of the dissertation offers background information on skeletal muscle architecture 

and functionality, including mechanical models that have been developed to reflect the behaviors of 

various constituents. It also presents an overview of past efforts to develop engineered systems 

inspired by muscle, and motivates the development of engineered structures and materials that 

invoke key features of skeletal muscle’s micro- and nanoscale architecture. 

1.2 Summary of skeletal muscle architecture 

 Like many biological systems, skeletal muscle exhibits a strong relationship between structure 

and functionality. Both its macroscopic and microscopic components and assemblies have evolved to 

enable very effective force generation and movement 4. Figure 1-1 presents skeletal muscle’s 

morphology from the whole muscle scale down to its micro- and nanoscale sarcomere and cross-

bridge constituents. Skeletal muscles primarily span joints in the skeletal system, and are attached to 

bones through connective tendon tissue. This connective tissue extends to form the epimysium, a 

layer that wraps around the muscle body.  The muscle body itself is composed of bundles of fascicles, 

each surrounded by a perimysium layer. Fascicles are in turn composed of bundles of muscle fibers 

or muscle cells enclosed by sarcolemma membranes and surrounded by endomysium tissue. The 

endomysium is highly vascularized, carrying small blood vessels to the muscle fibers. Muscle fibers 
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can vary significantly in size, and are ordinarily between 10 μm and 100 μm in diameter and 10 cm 

in length 5. The main components of muscle fibers are rod-like structures known as myofibrils, which 

are on the order of 1 ݉ߤ in diameter 4 and are sectioned into contractile units called sarcomeres. 

Myofibrils are made up of alternating thin and thick protein filaments arranged in a lattice. The thin 

Figure 1-1. Components and architecture of skeletal muscle from (a) whole muscle to the myofibril level, showing (b) the 
arrangement of actin and myosin filaments in sarcomere contractile units. Images are reused from 5 with written 

permission from the publisher. 
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filament is primarily composed of the protein actin and is about 7 nm in diameter, while the thick 

filament is primarily composed of the myosin and is roughly 15 nm in diameter 20. A single thick 

filament may contain up to hundreds of cross-bridges 5,12, while thousands of sarcomeres comprise a 

myofibril 4. 

Skeletal muscle fiber contractions are the result of a complex process. Details can be found in 

references 4,5, but a brief overview of the role of key constituents is presented here and in the 

following sections. Nerve impulses trigger local action potentials, initiating the release of Ca2+ ions 

from the sarcoplasm surrounding the myofibrils. This leads to the opening of actin binding sites on 

the thin filament. Myosin protein heads that extend from the thick filament attach to these binding 

sites when energized by ATP (adenosine triphosphate) hydrolysis, forming cross-bridges. The 

resulting ADP (adenosine diphosphate) is then released from the cross-bridge, which undergoes a 

conformational change known as the power stroke. The power stroke is characterized by a rotation 

of the myosin head, generating a force that causes the thick filament to slide against the thin filament, 

and represents skeletal muscle’s fundamental active force generating process. 

1.3 Mechanical models of microscale constituents 

 Researchers have developed a number of relatively simple models to explain and gain insight into 

muscle mechanics at various length scales. Macroscale models incorporate stiffness and damping 

elements in various configurations to capture the bulk passive responses of muscle and tendons 10,21. 

Muscle models that explicitly consider fiber orientations have been used to explain the force and 

velocity amplification observed in pennate muscles, where fibers are aligned oblique to the axis of 

overall muscle contraction 7,22,23.  At the microscale, the mechanisms that govern active force 

generation in sarcomere contractile units are the result of simultaneous chemical, mechanical, and 
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thermal processes. Nevertheless, mechanical representations have been employed to explain and 

gain insight into many features of skeletal muscle, both active and passive 13,24. 

1.3.1 Myofibrils and sarcomeres 

 A simple and common myofibril model is presented in Figure 1-2(a), and consists of a chain of 

serially-connected half-sarcomeres 25–27. A myofibril can contain as many as 104 sarcomeres 28, and 

the response of an individual sarcomere can be characterized by a superposition of an active 

contractile component and a passive component. A simplified sarcomere schematic is shown in 

Figure 1-2(b). The active contractile elements represent the actin-myosin interactions of ATP-fueled 

power strokes, while the passive components represent filament elasticity, particularly that of the 

structural protein titin 4,29,30. A characteristic sarcomere length-tension response is presented in 

Figure 1-2(c) based on a model first developed by A.V. Hill 31 that combines the active and passive 

components, The active response possesses a region with negative stiffness or negative slope known 

as the descending limb. The observed stability of myofibrils at any length despite the presence of 

these large negative stiffness regions in the sarcomeres has led to modelling and experimental efforts 

seeking to understand the origin of this behavior 26,27,32. 

 Due to the inhomogeneity of sarcomeres in a myofibril, it has been postulated that a lengthening 

muscle fiber can remain stable in its aggregate descending limb while each individual sarcomere 

jumps across its own local descending limb region in an event known as sarcomere popping 33,34. In 

shortening muscle, stronger sarcomeres may snap across the descending limb to the ascending limb 

of the active response, at the expense of weaker sarcomeres that must rely on passive tension to 

achieve the same response 32. With a large number of sarcomeres in a single myofibril, there are 

exponentially many combinations of individual sarcomere states possible for a given fiber length. 

This feature is known as metastability, and may explain the experimentally-observed hysteresis and 

history-dependence of both shortening and lengthening active muscle 25,27,35. Sarcomere tension 
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response depends not only on its length, but also on the inter-filament spacing 36. Two- and three-

dimensional models that account for variations in lattice spacing are shown to predict sarcomere 

tension responses across a range of lengths 37,38.  

 The sarcomere length-tension curve also varies with its velocity of shortening 4,10,39, and a 

sarcomere model that explicitly accounts for velocity-dependent forces is presented in Figure 1-3 26. 

Figure 1-2. (a) A myofibril represented by a chain of serially connected half-sarcomeres, each with an active contractile 
element representing the actin-myosin interactions, and a passive elasticity. (b) Schematic of an individual sarcomere in 
relaxed and contracted configurations, showing the structural protein titin, which is largely responsible for the parallel 
elasticity in (a). (c) The length-tension response of an individual half-sarcomere arises due to the combination of both 

active and passive influences. The active component exhibits a negative stiffness or slope known as the descending limb. 
This is compensated for by large passive tension as sarcomere length increases further. (a) and (c) are reused from 26 and 

(b) is reused from 25, with written permission from the publishers. 
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This model is still relatively simple, but explicitly separates the active force generation due to cross-

bridge power strokes from the series passive elasticity of the actin and myosin filaments. The active 

element and the parallel titin component both have velocity-dependent terms. Consideration of these 

influences helps explain the sensitivity of muscle fibers’ dynamic response to the initial distribution 

of sarcomere states, which had previously been attributed to the uncontrollable variability inherent 

to such a complex biological system 25,26. 

 While some myofibril models do not assume the existence of any mechanism to ensure stability 

of sarcomeres in the negative stiffness descending limb 25,27, other models suggest that the titin 

protein may have an key role to play 16,40,41. Titin, which earns its name due to its relatively giant size 

(around 1 μm), is a structural protein that connects myosin to either end of the sarcomere unit, and 

helps align the myofibril lattice as actin and myosin filaments slide against one another 5. Titin may 

itself be modeled as a chain of ~240 bistable units that unfold as sarcomeres are lengthened 42. It has 

been shown that this interpretation of titin structure provides an explanation for its role as a shock 

absorber, where the sequential and rapid unfolding of the bistable domains provides a mechanism 

to quickly release energy and avoid over-straining of muscle fibers during eccentric (lengthening) 

sarcomere contractions 16,43–45.  

Figure 1-3.  Sarcomere model divided into two parallel strands. The upper strand shows an active contractile element 
with force response ஺݂ெ and a series elastic element with force ௌ݂ா , while the lower strand is the parallel passive element 

with force ்݂ ூ   representing the contribution of the titin protein. Image reused from 26 with written permission. 
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1.3.2 Cross-bridges and the power stroke 

 The modern understanding of the process governing muscle contraction, the sliding filament 

theory 4,46, largely stems from the observations of Huxley and Niedergerke 47 and Huxley and Hanson 

48 in the 1950s. The existence of cross-bridges extending from the myosin (thick) filament was shown 

soon thereafter 49. However, the mechanisms that cause this sliding motion were not clarified until 

later, when Huxley proposed that these cross-bridges have globular heads that attach to actin at 

certain binding sites, and that this angle of attachment undergoes an active change due to ATP 

hydrolysis 50. A basic biochemical model explaining cross-bridge attachment to actin, the force-

generating power stroke, and subsequent detachment is known as the Lymn-Taylor cross-bridge 

cycle 51, and it has been further refined in recent years as experimental efforts have shed new light 

into the structures and processes involved 4.  

 While chemical kinetics must be considered for any complete model of the cross-bridge cycle, the 

behavior of a bound cross-bridge lends itself to a simpler representation of a bistable contractile 

element connected to a linear stiffness. The power stroke occurs at extremely fast time scales, and as 

such can be considered as an event with a purely mechanical, rather than chemical, response. The 

mechanical representation of the cross-bridge is also shown to reasonably predict observed 

Figure 1-4. (a) Schematic of a single cross-bridge in pre- and post-power stroke configurations. The power stroke 
generates causes the actin and myosin filaments to slide against one another, resulting in sarcomere contraction. (b) An 
example of a one-dimensional cross-bridge model, composed of one bistable element and one linear-elastic element in 
series. The two local minima of the bistable element’s potential, ܧ௖ , denote the pre- and post-power stroke states. The 
linear-elastic element represents filament elasticity. (b) is reused from 12 with written permission from the publisher. 
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behaviors such as power stroke reversal and rapid tension recovery 40,52–54. A schematic is presented 

in Figure 1-4. The two states of the bistable element represent the pre- and post-power 

configurations. The two local minima of potential energy in the bistable constituent are at different 

levels, reflecting a natural bias in the element’s energy landscape where the long, or pre-power stroke 

state is at a higher energy than the short or post-power stroke state. Early efforts such the Huxley-

Simmons work 53, treated the two configurations as discrete chemical states with infinitely narrow 

potential wells. However, a mechanical snap-spring representation of the power stroke that includes 

the influence of cross-bridge elasticity and permits continuous, finite-time configuration changes was 

seen to better reflect more recent experimental findings 35,52,54. As long as filament and cross-bridge 

stiffness is not too large, a cross-bridge can exhibit metastability – It can be in either the pre- or post-

power stroke for a given sarcomere length. Since a single sarcomere may contain hundreds or 

thousands of cross-bridges, an exponential number of aggregate metastable states are possible, and 

transitions between these metastable configurations may help explain muscle’s remarkable ability 

to dissipate energy and rapidly yet passively recover tension in response to sudden loads 54,55. 

 Just as a sarcomere’s tension response is influenced by the lattice spacing 36,37, so too are the 

forces generated during the cross-bridge power stroke. It has been shown that varying the lattice 

spacing affects the chances of cross-bridge binding 56, and spatially-explicit models that consider 

radial cross-bridge deformations in addition to axial deformations may shed light on the mechanisms 

that regulate the sarcomere tension response at various lengths 37,57. An example is presented in 

Figure 1-5, which shows a comparison between models composed of (a) a single spring, (b) two 

springs, and (c) four springs. The two- and four-spring models explicitly account for lattice spacing, 

while the four-spring model further reflects the conformation changes exhibited in the myosin head 

during the power stroke. Consideration of radial cross-bridge deformations may help explain the 

ability of the myofibril lattice to store elastic potential energy that can be subsequently actively 

exploited and released to enable rapid movements 9,19,38. 
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1.4 Engineered systems and structures inspired by muscle 

 Researchers have long looked to biology as inspiration for a wide range of engineered materials, 

structures, and systems 58–62. The development of systems based on the characteristics of skeletal 

muscle have generally targeted an emulation of its smooth and continuous force generation and 

shape change. These behaviors are especially beneficial for soft robotics, where the ability to change 

morphology according to the task and environment are crucial 63,64, and are commonly achieved 

Figure 1-5. Cross-bridge models composed of (a) one spring, (b) two springs, one of which is torsional, and (c) four 
springs, two of which are torsional. The two- and four-spring representations are capable of modeling both axial and 

radial forces. Images (a,b) and (c) are reproduced and modified from 37 and 38, respectively, under the terms of the 
Creative Commons Attribution License. 
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through a variety of means 65,66, including pneumatics and fluidics 67,68, electro-active polymers 69–71, 

and shape-memory materials 72. 

 On the other hand, the means by which the architecture of muscle’s microscale constituents can 

be leveraged for advanced engineered structures and materials have received much less focus 73,74, 

despite strong evidence from experiments and analyses that have demonstrated the crucial role of 

skeletal muscle’s microscale constituents on its macroscopic behavior 4,24,46,50. Recent efforts have 

uncovered the role of local configuration changes in the micro- and nanoscale sarcomeres and cross-

bridges on its remarkable robustness and passive tension recovery 24,52,54, as well as its ability to store 

elastic energy in these components to facilitate rapid, efficient movements 6,8,19. These findings 

provide strong motivation for the development of engineered structures and materials that exploit a 

similar arrangement of constituents.  

 The arrangement of elastic constituents in models of the skeletal muscle cross-bridge 52,54 has 

recently been explored in mechanical analogues 75,76, as presented in Figure 1-6. These mechanical 

systems emulate the metastability expressed by a single cross-bridge and its enhancement when 

considering multiple cross-bridges. This is exploited to enable dramatic adaptivity in reaction force 

and stiffness by considering different internal arrangements for a prescribed global length, and large 

hysteresis under quasi-static cyclic loading to generate large hysteresis. When large numbers of such 

modules are arranged in parallel, the adaptivity in mechanical properties increases dramatically 76.  

 Insights on the shock and energy absorption and dissipation behaviors of titin 43 have motivated 

analytical and numerical analyses of bistable chains with unique, trilinear local strain responses 45 

and simple quasi-static experiments on mechanical systems that display similar characteristics to 

titin 42.  Figure 1-7(a) presents results from experiments conducted on a single titin protein, and 
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Figure 1-7(b) presents a mechanical chain of bistable units that is used to verify the theoretical 

predictions on stiffness and state transitions in titin-like systems. The authors employ this model as 

a demonstration that the complex stress-strain response and shock-absorbing capabilities of titin as 

its numerous domains unfold can be approximated by a much simpler equivalent system.  

Figure 1-6. (a) Energy in the power-stroke element, and (b) its series arrangement with a linear elastic element to form a 
cross-bridge. A half-sarcomere model includes N cross-bridges in parallel. (c) Potential strain energy for a single 

metastable module – one bistable and linear elastic element arranged in series – as a function of overall length. (f) An 
experimental metastable module showing two configurations with the same global displacement. (g) Reaction force and 
(h) stiffness responses for the experimental prototype. (a,b) and (c-h) are reproduced from 54 and 75, respectively, with 

written permission from the publishers 
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 While the above works develop important insight into the advantages of mechanical structures 

and materials employing a few key characteristics of skeletal muscle’s microscale architecture, the 

investigations are limited to specific, quasi-static studies. However, engineered structures often 

operate in environments where dynamics play a critical role, and a comprehensive understanding of 

the dynamic response of these structures can make them more useful in a wider range of engineering 

applications. Furthermore, skeletal muscle offers a great example on how dynamic inertial loads can 

be exploited and leveraged for more efficient movements, and how mechanical responses can be 

modulated as key geometric parameters are varied. Hence, this dissertation seeks to learn from the 

architecture and functionality of the constituent units of skeletal muscle in order to develop concepts 

for mechanical structures and materials that offer similar characteristics. 

  

Figure 1-7. (a) Experimental results from the stretching of titin domains. (b) Assembly of mechanical bistable units into a 
chain with a linear spring at one end. (c) The effect of beam length on the bistable force response of a single unit. Images 

are reused from 42 with written permission from the publisher. 
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1.5 Research statement 

Skeletal muscle offers researchers great inspiration for the development of advanced 

engineered systems. While the vast majority of muscle-inspired systems focus on macroscale 

features, the origins of many of its advantageous properties arise from the architecture and 

functionality of its micro- and nanoscale constituents. Recent research efforts have developed 

detailed models of skeletal muscle’s constituents across a variety of length scales, and there are 

extensive opportunities to use these findings to advance the development of structural and material 

systems. 

This dissertation aims to introduce and comprehensively develop new concepts for structures 

exhibiting great energetic versatility and adaptivity inspired by the assembly of muscle’s cross-

bridges, sarcomeres, and myofibrils. This is broadly achieved by exploiting two key ingredients 

expressed by these constituents – metastability, and local conformation changes.  It is important to 

note that this thesis does not seek to explain muscle behavior using mechanical or structural 

analogues, or faithfully replicate the complex chemo-mechanical processes that govern muscle 

contraction. Rather, the major contributions of this thesis arise from the exploitation of the 

aforementioned key features expressed by skeletal muscle’s constituents for the development and 

investigation of novel structural and material systems. The outcomes reveal great potential for such 

systems for energy absorption and dissipation, the capture and release of strain energy for actuation 

and deployment, and adaptivity of mechanical properties by exploiting conformational change in 

conjunction with oblique, shear-like motions. 
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1.6 Summary of contributions 

The metastability expressed by a cross-bridge 35,54 and its mechanical analogues 75,76 has been 

shown to provide a means to adapt mechanical properties such as global stiffness and stress. 

However, mechanical systems based on cross-bridge architecture offer great potential for adaptivity 

in dynamic behaviors in addition to the previously explored static features. In fact, it has been shown 

that bound cross-bridges can experience oscillatory power stroke reversals that may explain 

muscle’s passive tension recovery and allow for energy dissipation 54,77. The first major contribution 

of this thesis thus extends the notion of static metastability to explore the highly adaptive dynamic 

response and energy dissipation characteristics that arise as a result of near-resonant excitations 

that activate multiple qualitatively distinct dynamic regimes. Analytical, numerical, and experimental 

study reveals that these distinct regimes offer energy dissipation behaviors that vary by multiple 

orders of magnitude. Transitions between regimes can be passively triggered by variations to 

excitation amplitude or frequency. Introducing asymmetry by biasing the module to one of its two 

local potential wells results in continuously tunable energy dissipation performance, showing 

promise for applications that call for large and adaptable energy dissipation for a variety of 

demanding needs. 

Models of cross-bridge energy landscapes commonly depict the pre-power stroke 

configuration at a higher energy level than the post-power stroke state, meaning that the power 

stroke element is energetically asymmetric 12. Asymmetric bistability and multistability is also 

reflected in the potential energy profile of the shock-absorbing protein titin 45, and may help explain 

the ability of cross-bridges to store inertial energy from inertial loads and rapidly release it for 

explosive movements or to reduce the metabolic cost of cyclic motions 8,9,38. This motivates the 

second contribution of this thesis, which develops and investigates structures composed of 

asymmetrically bistable constituents for energy trapping and recovery. Incorporating experimental 
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study, numerical simulations, and a semi-analytical approximation, the findings could encourage the 

development of novel structural systems exhibiting attractive energetic properties, such as actuators 

that effectively capture, store, and release energy, or adaptive, robust, and reusable armors and 

protective devices.  

Across length scales, from whole muscle fiber orientations to sarcomere and cross-bridge 

compositions, skeletal muscle exploits multidimensionality and oblique motions to modulate or 

enhance force generation and tension response. In the macroscale, certain muscles exhibit a pennate 

orientation of muscle fibers to enable force or velocity amplification while minimizing the risk of 

damage due to over-straining of fibers 7,17,22. In the microscale, the spacing between adjacent actin 

and myosin filaments affects cross-bridge mechanics 57, which leads to variation of the length-tension 

curves of sarcomeres as muscles contract 37. The third main contribution of this dissertation is on the 

development, fabrication, and analysis of an architected material system that evokes skeletal 

muscle’s combination of oblique, shearing motions between filaments in a sarcomere, and 

conformational change during muscle contractions. The architected material demonstrates tailorable 

discrete, rapid changes in reaction force amplitude and direction. Numerical investigations reveal 

that these conformation changes coincide with sudden releases of strain energy, and a simple model 

is presented that offers useful prediction of the behavior of the more complex architected material 

system. 
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Chapter 2. Dynamics and energy dissipation in a cross-
bridge-inspired metastable mechanical analogue 

2.1 Introduction 

 Skeletal muscle is an effective manager of energy – it stores, converts, and release energy for force 

generation and length change 14, and is also capable of rapidly dissipating the energy from sudden 

excitations 11. Many modern engineering applications would greatly benefit from the availability of 

structural and material systems demonstrating similarly versatile energy management and 

dissipation. The assembly of cross-bridges into sarcomere contractile units, as depicted in Figure 2-1, 

and the integration of bistable cross-bridge constituents with a robust host structure composed of 

thin (primarily actin) filaments, thick (primarily myosin) filaments, and titin proteins may explain 

the ability of skeletal muscle to rapidly absorb energy and recover tension when subject to dynamic 

loads 35,54. Mechanical systems inspired by this assembly have demonstrated significant potential for 

the adaptivity of static properties such as stiffness and reaction force 75, strongly suggesting the 

potential for similar adaptivity in dynamic behaviors.  

 The use of bistable or negative-stiffness inclusions within positive stiffness host structures for 

large and adaptable damping has recently been of significant engineering research interest. Advances 

in multiscale modeling have facilitated an understanding of how material selection and 

microstructure influence the stability and dissipative performance of such structural and material 

systems 78,79. and adaptation in energy dissipation characteristics of composites with negative 

stiffness inclusions has been demonstrated by varying temperature 80,81. Numerical study of the 
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behavior of bistable von-Mises trusses have revealed large changes in damping as device 

configuration and excitation frequency vary 82, while experimental and theoretical investigations 

explored the damping enhancement and adaptation facilitated by a compressed spring-mass bistable 

device 83. Structures composed of chains of elements with bistable-like interactions between adjacent 

elements, such as the giant protein titin 43–45 have been shown to demonstrate enhanced shock 

absorption and dissipation capabilities by exploiting a “reversible rupture” phenomenon 45. 

Meanwhile, a one-dimensional chain of elements with bistable on-site potentials can exhibit three 

different dynamic regimes depending on oscillation amplitude 84.  

These works illustrate that negative stiffness inclusions in the form of bistable devices and 

elements can yield significant energy dissipation under certain conditions. From the viewpoint of 

system integration in both biological systems and engineered structures, negative stiffness elements 

often interface with positive stiffness elastic members. A fundamental, one-dimensional, cross-bridge 

Figure 2-1. Skeletal muscle constituents showing (a) myofibril composed of alternating actin and myosin filaments 
arranged into (b) sarcomere units. (c) cross-bridges connect adjacent actin and myosin filaments, undergoing a 

power stroke which results in local conformation changes of the myosin head. (d) A one-dimensional mechanical 
cross-bridge model presents a bistable element in series with a linear elastic spring 54. 
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model is presented in Figure 2-1(d), and consists of a bistable and linear (positive stiffness) springs 

in series 12,13, which exhibits very different properties compared to an individual bistable element 75.  

To clarify the difference, the inset of Figure 2-2(a) shows a mechanical archetype of the one-

dimensional constituent module examined in this chapter, equivalent to the simplified cross-bridge 

model in Figure 2-1(d): a bistable spring (axially-compressed rigid bars joined at a central pivot) 

connected in series with a linear spring with stiffness coefficient ܭ௅ . When the module is constrained 

by a static, global end displacement ܼ at the free end of the linear spring, the qualitative behavior of 

Figure 2-2. (a) Inset: Schematic of the mechanical module that integrates bistable and liner springs in series. 
Reaction force, ܨ, of mechanical module acted upon by a global end displacement, ܼ, for three linear spring 

stiffnesses ܭ௅. (c) For sufficiently small linear spring stiffness, the system exhibits coexisting metastable states 
evidenced by more than one reaction force for one end displacement. 
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the reaction force ܨ evaluated at the end varies significantly depending on the relative amplitude of 

the stiffnesses between the bistable and linear spring constituents. 

 For example, the black solid curve in Figure 2-2(a) shows the case for which the linear spring is 

very stiff compared to the bistable spring. Since the weakest link of springs in series governs the 

upper bound on the effective total stiffness, a macroscopic observation taken from the end 

displacement Z reveals that this module is bistable. It therefore exhibits only one potential reaction 

force as the global end displacement varies, which is illustrated by the black solid curve in Figure 

2-2(a). As the linear spring stiffness ܭ௅ is reduced, a dramatic change in mechanical properties 

occurs. At a critical reduction of the linear spring stiffness, a vertical tangency appears in the force-

displacement profile 85, such as that shown for the dash-dot curve. Thus, the continued reduction in 

the linear spring stiffness leads to two coexistent metastable states, shown by the dashed curves. In 

this chapter, a module having multiple coexisting metastable states over a given range of 

displacements is referred to as a metastable module. The coexisting states are illustrated in Figure 

2-2(b) where for one prescribed end displacement ܼ଴ there are two unique static internal 

configurations that induce unique reaction forces ܨ and ܨ′. For the mechanical system considered in 

here, the metastable range is defined as the extent of displacements across which the module exhibits 

a coexistence of metastable states. 

 Based on the above discussion, integration of negative stiffness (bistable) inclusions or devices 

into structural/material systems may commonly result in a system possessing coexisting metastable 

states, and the unit-level module of such a phenomenon serves as a suitable model to explore the 

global features 78,86. While such metastable modules have been examined for their quasi-static 

properties 79–81, much remains to be understood regarding the dynamics and energy dissipation 

characteristics of metastable modules under dynamics loads. Excitations at frequencies near the 

linearized resonant frequencies of the stable states are particularly important, since near-resonant 

excitations are substantially more influential on the activation of large amplitude snap-through 
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dynamics in individual bistable devices, 87 and damping change has greater impact around system 

resonances. 

 In the remainder of this chapter, the dynamic characteristics of a metastable module are studied 

under near-resonance excitations to identify how the various dynamic states may be leveraged to 

achieve large and adaptable energy dissipation properties at the unit module level. The study 

considers an archetypal mechanical metastable module as presented in Figure 2-2. The following 

subsections introduce the experimental platform and corresponding one degree-of-freedom (DOF) 

model of the metastable module, then present analytical, numerical, and experimental investigations 

to evaluate the effects of excitation parameters on the energy dissipation properties effected via near 

resonant excitation. 

2.2 A metastable module for dynamic analysis 

2.2.1 Experimental setup 

 The experimental system studied here is depicted in Figure 2-3, and represents the essential 

constituents required to closely examine the dynamics of an individual metastable module. A 

polycarbonate base (a) supports a suspension system consisting of a pair of parallel, thin spring steel 

beams (b) clamped at the ends. At the center of each spring steel beam suspension is a miniature ball 

bearing that serves as a mount for a rigid, rotating arm (c). The other ends of the arms are pinned 

together at a center point between the suspensions using similar bearings in the arms and a shared 

axle. The net length of the two rotating arms is greater than the distance between the suspension 

system ends and thus the sub-system is bistable. Due to the compliance provided by the suspensions, 

the rigid arms may rotate between the two stable equilibria. The configuration used throughout 

experimentation is designed such that the two stable equilibria of the bistable constituent are at ±10° 

with respect to a line normal to the suspension beams. These prior elements represent the bistable 
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spring of the metastable module. A pair of linear tension springs (d) connects the shared axle that 

joins the two rotating arms to bolts protruding from a rigid U-channel beam (e). The tension springs 

are always extended from the relaxed lengths to avoid the possibility of the spring bottoming out or 

buckling. The U-channel beam, to which the tension springs are connected, is fixed to a controlled 

electrodynamic shaker (APS ELECTRO-SEIS 400, APS Dynamics) (f). The position of the shaker 

represents the global end displacement for – and excitation to – the metastable module. The bolts 

connecting the U-channel to the springs may be moved to generate a static offset to the excitation. 

 Experiments are conducted to verify that the U-channel beam is sufficiently rigid to eliminate 

resonant dynamics of the U-channel in the frequencies of interest. The energy dissipation 

mechanisms present in the system are primarily the result of viscous damping in the deformation of 

the springs and suspension beams, as well as the unavoidable friction in the bearings. To monitor the 

Figure 2-3. Experimental metastable module and experimentation components. The configuration used throughout 
experimentation is such that the two stable equilibria of the bistable constituent are at = ±10°. 
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excited dynamics of the metastable module, the rotation of the rigid arms is measured using a Hall 

effect sensor (RFC-4801, Novotechnik) (g) attached to the pinned axle that connects one arm to a 

suspension, as shown in Figure 2-3. Additionally, the input shaker acceleration is monitored by an 

accelerometer (PCB 352 C33, PCB Piezotronics). 

2.2.2 Model formulation and governing equation 

 The experimental module shown in Figure 2-3 is modeled using the schematic of Figure 2-4 and 

the governing equation of motion is derived using energy principles. The mass taken into 

consideration here consists only of the rigid rotating arms, while the masses of the other components 

of the module relative to the arms are assumed to be negligible. The total kinetic energy of the module 

may then be derived as 

ܶ = 2 ቂଵ
ଶ

ቀܫ௣ + ܯ ௅మ

ସ
ቁቃ  ଶ (2-1)ߠ̇

Figure 2-4. Schematic of the experimental metastable module. 
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The rotation of both arms is expressed using one common angular displacement ܯ .(ݐ)ߠ is the 

mass of each rotating arm of length ܮ, and ܫ௣ is the moment of inertia of each rigid arm about an axis 

through its center of mass, perpendicular to the plane shown in Figure 2-4. The parallel axis theorem 

is applied to obtain the moment of inertia of the rigid arm about its pinned end. The potential energy 

stored in the suspension beams may be written as 

ଵܷ = 2 ଵଽଶாூ
௅ೞ

మ ቂ1 − ߠ sin(ߠ) − cos(ߠ) + ଵ
ଶ

ଶߠ cos(ߠ଴)ቃ (2-2) 

where ܧ is the Young’s modulus of the suspension beam, ܫ is the area moment of inertia about the 

neutral axis of bending, ܮ௦ is the length from clamp to clamp of each suspension, and ߠ଴ is the angular 

position of the arms that results in the absence of the connection to the linear springs. The term 

௦ܮ/ܫܧ192
ଷ is the effective, one-dimensional spring stiffness of a clamped-clamped beam with an 

applied load at the center point 88. The potential energy stored in the linear springs is 

ܷଶ = ܼ]௅ܭ + ܦ − ܮ sin(ߠ)]ଶ (2-3) 

where tension spring stiffness is ܭ௅  refers to a static offset of the periodic excitation ܼ from the ܦ ,

neutral position of the bistable device. In other words, a non-zero offset ܦ biases the system towards 

one of the two potential wells. The offset is adjusted experimentally by changing the pre-tension on 

one of the linear springs. Dissipation is approximated by a viscous damping force proportional to the 

angular velocity of the rigid, rotating arms according to the coefficient ܤ, whose value is determined 

by fitting numerical results to experimentally measured data of the free decay response. Lagrange’s 

equations are used to yield the governing equation of motion for the rigid arm rotation ߠ in 

consequence to certain end displacement motions ܼ: 

ቆ
ଶܮܯ

2
+ ௣ቇܫ2 ߠ̈ + ߠ̇ܤ + ଶܮ௅ܭ2 sin(ߠ) cos(ߠ) 

− ଷ଼ସாூ
௅ೞ

మ (ߠ)cos]ߠ − cos(ߠ଴)] − ܼ) ܮ௅ܭ2 + (ߠ) cos (ܦ = 0 (2-4) 
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 In this study, the global energy dissipation of the metastable module due to harmonic excitations 

of the end displacement, ܼ(ݐ) = ܼ଴ cos  is quantified by computing the area enclosed in the ,ݐߗ

hysteresis loops of reaction force and end displacement. The reaction force due to the deflection of 

the linear springs is defined in Eq. (2-5). In addition to the apparent spring force contribution, the 

reaction force also reflects inertial and energy dissipation phenomena due to the influences of the 

rotations ߠ of the internal moving arms.  

(ݐ)ܨ = ܼ]௅ܭ2 + ܦ − ܮ sin(ߠ)] (2-5) 

2.3 Approximate analytical solution of steady state dynamics 

2.3.1 Model transformation and equivalent governing equation 

 Eq. (2-4) may be directly integrated via numerical methods to predict the response and energy 

dissipation properties due to a particular selection of design and excitation parameters for the 

metastable module. However, to obtain more comprehensive insights on the potential dynamic 

behaviors, an approximate analytical strategy to solve the governing Eq. (2-4) is undertaken. As a 

first step towards the application of an approximate solution, the restoring forces in Eq. (2-4) are 

expanded via a Taylor series around 0 = ߠ, retaining terms up to the third order. 

ቀெ௅మ

ଶ
+ ௣ቁܫ2 ߠ̈ + ߠ̇ܤ  − ଷ଼ସாூ

௅ೞ
మ [1 − cos(ߠ଴)]ߠ + ܼ)ܮ௅ܭ] + ଶߠ[(ܦ + ቀ− ସ

ଷ
ଶܮ௅ܭ + ଵଽଶாூ

௅ೞ
మ ቁ ଷߠ − ܼ)ܮ௅ܭ2 +

ܦ − (ߠܮ = 0 (2-6) 

 By performing a coordinate transformation around a stable angular equilibrium ߠ଴ of the internal 

bistable element when disconnected from the linear spring 89, and by applying the arc length 

relationship (ݔ =  to the ݔ to relate the displacement of the center axle joining the rigid arms (ߠܮ

angular rotation of the arms ߠ, the following governing equation may be obtained 

ݔ̈݉ + ݔܾ̇ + ݇ଵݔ + ݇ଶݔଶ + ݇ଷݔଷ − ݇௅(ݖ + ݀ − (ݔ = 0 (2-7) 
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where ݉ is the lumped internal mass, and ݇ଵ, ݇ଶ, ݇ଷ are the linear, quadratic, and cubic stiffness 

coefficients, respectively. Figure 2-5 shows a schematic representation of the metastable module 

using the parameters expressed in Eq. (2-7). With the restoring forces of the module approximated 

by the power series in terms of the displacement ݔ, the governing Eq. (2-7) may be approximately 

solved using a variety of assumed solution techniques to predict the steady-state behaviors 90. 

A harmonic balance solution is employed in this chapter, and further details and derivation are 

provided in Appendix A. A fundamental assumption of the harmonic balance method is that system 

responses are periodic, which is often untrue in lightly damped nonlinear systems such as the one 

studied here 89. Under certain experimental conditions, period doubling and chaotic responses were 

sometimes observed. Such behaviors are not reflected in the analytical approach presented here. 

Stable, steady-state results of the oscillation amplitude ݎ predicted by the harmonic balance method 

are compared with the experimentally measured results of angular rotation magnitude |ߠ|. 

Additionally, for further quantitatively meaningful comparison, Eq. (2-4) is numerically integrated 

The dynamic reaction force (ݐ)ܨ from Eq. (2-5) is compared to the corresponding measured result 

using common system parameters.  

  

Figure 2-5. Schematic of the transformed model formulation of the metastable module. 



27 
 

2.4 Steady state dynamic response at near-resonant excitations 

 It is well-known that structures containing buckled members may more readily exhibit strongly 

nonlinear dynamics when excited near resonance, 87 and this feature has previously been exploited 

to achieve high and adaptable damping using an individual bistable oscillator 83. But the ways in 

which such an excitation comparably influence the dynamics of metastable modules, like the one 

studied here with bistable-linear spring integrations, remain poorly understood.  

 To investigate the frequency dependence of the near-resonant harmonic excitation, experimental 

excitation frequency sweeps are performed at fixed amplitude using very slow sweep rates of ±0.05 

Hz/s to ensure that steady-state responses are correctly identified and that all potential dynamic 

states are realized by sweeping both up and down in frequency. First, the examinations consider the 

case in which the offset parameter ܦ is set such that the mean value of the harmonic excitation 

corresponds to the central unstable equilibrium position of the internal bistable device of the 

metastable module. For the offset ܦ satisfying the condition described above, the linear spring 

stiffness ܭ௅ is selected such that the module exhibits coexistent metastable states. Experimental 

model parameters are presented in Table 2-1. Parameters used in the transformed model to gain 

initial qualitative predictions are presented in Table 2-2, while Table 2-3 shows parameters of the 

transformed model derived directly from the experimental system. 

Table 2-1. Experimental system parameters used in numerical simulations of a harmonically excited metastable module 

 (m4) ࡵ (GPa) ࡱ (cm) ࡸ (kg.m2) ࡼࡵ (g) ࡹ
12 2.74 ×10-6 5.08 180 5.46×10-15 

  (N.s.m-1) ࡮ (N.m-1) ࡸࡷ (°) ૙ࣂ (cm) ࢙ࡸ

9.82 ±10 84 1.5×10-4  
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Table 2-2. Transformed model parameters used in analytical solution. 

 (N.s.m-1) ࢈ (N.m-1) ࡸ࢑ ࢑૜(N.m-3) ࢑૛ (N.m-2) ࢑૚ (N.m-1) (kg) ࢓
1 2 -3 1 0.5 0.05 

 

 

Table 2-3. Analytical model parameters derived from experimental system. 

 (N.s.m-1) ࢈ (N.m-1) ࡸ࢑ ࢑૜(N.m-3) ࢑૛ (N.m-2) ࢑૚ (N.m-1) (kg) ࢓
2.10 ×10-5 -0.595 0 19.4 0.434 1.5×10-4 

      

 Figure 2-6 presents (a,b) experimental and (c,d) analytical results of the rigid arm rotation and 

displacement amplitudes, respectively. In the experiments, the harmonic excitation frequency varies 

Figure 2-6. (a) Experimentally measured angular rotation amplitude of the rigid arms. The three data marked points are 
provided as reference to time-series results presented in (b), and to the hysteresis loops presented in Figure 2-7.  (c) 

Analytical predictions of the displacement amplitude as the excitation frequency is varied, showing qualitative agreement 
with experiment. (d) Analytical predictions employing parameters derived from the experimental system shown in Table 

2-3, demonstrating quantitative agreement with experiment. 
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from 5 to 25 Hz with a constant excitation amplitude ܼ଴ = 300 μm. Statically stable equilibria of the 

bistable constituent of the experimental module are at angular positions ±10°. The transformed 

analytical model, Eq. (2-7), is evaluated between normalized frequencies of 0.2 Hz and 1.2 Hz, with 

excitation amplitude ݖ଴ = 0.06 m. Both the experimental and analytical results reveal two distinct 

dynamic regimes: intrawell and interwell. Time-series responses of both types of oscillations are 

presented in Figure 2-6 (b). Intrawell responses oscillate around a statically stable equilibrium. As 

described using the illustration of Figure 2-2, the system possesses two local wells of potential energy 

for some configurations of the module. Hence, it exhibits a coexistence of metastable states for a 

prescribed end displacement ܼ. For clarity, these two local wells are referred to throughout the rest 

of this chapter as well #1 and well #2. Intrawell responses observed in these potential wells are 

labeled in all figures as intrawell #1, and intrawell #2, respectively. Interwell (i.e., snap-through) 

responses are characterized by displacements which cross the unstable equilibrium of the internal 

bistable constituent.  

 Intrawell and snap-through response behaviors are exhibited by individual bistable oscillators 

91, and are observed here due to the internal bistable element within the metastable module and the 

corresponding module design and excitation parameters. For the excitation offset 0 = ܦ mm, the 

metastable module displays two statically stable equilibria. Since the excitation amplitude ܼ଴ is 

sufficiently small, two distinct intrawell-type dynamics are activated, as shown in Figure 2-6(a,b) by 

the dashed and dash-dot curves. This is a unique co-existence of dynamics not manifest in an 

individual, displacement-driven bistable device. For certain excitation frequencies, namely those 

close to 15 Hz, two different intrawell responses are observed for each of the intrawell-type 

behaviors: low and high amplitude intrawell. In particular, these two responses are realized due to 

the near-resonant excitation frequencies. The continuous snap-through oscillations, shown by a solid 

line in Figure 2-6(a), are observed at excitation frequencies between 8 Hz and 14 Hz, with much 

greater response amplitudes than either of the intrawell oscillations. Due to the differences in the 
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angular rotation amplitudes amongst each dynamic type across the near-resonant frequencies 

explored here, the kinetic energy of the dynamic regimes are distinct. Because the metastable module 

possesses internal damping mechanisms, a wide variation of energy dissipation capabilities is 

correspondingly achieved, and is shown to be governed by the harmonic excitation frequency in this 

case. 

 The excitation offset position 0 = ܦ mm is presumed to be centered on the unstable equilibrium 

of the internal bistable element. Hence, an ideal, symmetric, module should exhibit identical intrawell 

responses. Yet, the different response amplitudes, particularly for the high amplitude intrawell 

responses found at frequencies greater than 15 Hz, indicate that the experimental metastable module 

is slightly asymmetric. Note that due to the coordinate transformation performed to reduce Eq. (2-6) 

to the equivalent form presented in Eq. (2-7) and according to the transformed model parameters 

employed (Table 2), the symmetric offset position for the analytical model is ݀ = 1 m. To reflect the 

small asymmetry in the analytical model for qualitative comparison purposes, a static offset of ݀ = 

1.06 m is included in the calculation of the analytical results presented in Figure 2-6(c). The resulting 

analytical predictions shown in Figure 2-6 show good qualitative agreement with the corresponding 

measurements. They reveal distinct low and high amplitude intrawell responses in both potential 

wells, as well as the higher amplitude snap-through oscillations at low excitation frequencies. 

Derivation of the transformed model parameters from the exact formulation in Eq. (2-4) to the form 

in Eq. (2-7) yields the analytical results presented in Figure 2-6(d), demonstrating quantitative in 

addition to qualitative agreement with the experimental results.  
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2.5 Influence of excitation parameters on system response 

2.5.1 Excitation frequency influence on energy dissipation 

 The activation of numerous distinct dynamic responses from the near-resonant excitations 

suggests that the energy dissipation characteristics are also distinct. To quantify the energy 

dissipated over one excitation period, the reaction force ܨ as defined in Eq. (2-5) is plotted against 

global end displacement ܼ over one excitation period. Using ܹ = ∫ ܨ ∙ dܼ, the work ܹ done by the 

reaction force may be calculated over one period of excitation. Since the excitation and response are 

periodic, the force-displacement trajectory forms a loop. The area enclosed by this loop, resulting 

from damping-induced hysteresis, is the work done by the reaction force, and is equal to the energy 

dissipated by the module over a single excitation period 92. 

 The solid curves in Figure 2-7(a) present the hysteresis loops of a snap-through response 

obtained from the experimental time-series data using an excitation frequency of 12.5 Hz, as well as 

both intrawell responses observed at an excitation frequency of 22 Hz, all using an offset of 0 = ܦ 

mm. These excitation conditions correspond to the angular rotation amplitude data point in Figure 

2-6(a) indicated by the triangle for the snap-through response, and the multiplication and addition 

Figure 2-7. (a) Experimental and (b) simulated hysteresis loops (solid curve) of a snap-through response at 12.5 Hz 
excitation, and an intrawell response at 22 Hz excitation with 0 mm offset. Symbols in the legend of (a) correspond to the 

respective conditions from Figure 2-6(a). 
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symbols for the intrawell #1 and intrawell #2 responses, respectively. The solid curves in Figure 

2-7(b) show the corresponding simulation results obtained by numerically integrating Eq. (2-4) 

which is the governing equation of motion for the experimental system. The plots also show dashed 

curves which are the corresponding static force-displacement profiles. The static profiles are 

determined by solving Eq. (2-6) under static conditions and for a fixed global end displacement ܼ. 

Similar to the dashed curve in Figure 2-2(a), the static force-displacement characteristics for the 

metastable module studied here demonstrate a range of global end displacements for which two 

metastable states occur. The snap-through result of Figure 2-7(b) demonstrates good agreement 

with the experimental result in Figure 2-7(a), and shows large reaction force amplitudes having a 

mean value over the loop which is approximately zero. This suggests that the dynamic reaction force 

behavior is associated with snap-through, since there is no force bias typical of intrawell oscillations. 

In fact, examinations of the experimental and simulated time-series data, such as the results of Figure 

2-6(b), confirm that the dynamic responses are correctly identified as snap-through, since the 

rotating arms oscillate across the central, unstable equilibrium twice per excitation period. 

Furthermore, the snap-through hysteresis loops display a negative mean slope, indicating the 

presence of negative dynamic stiffness in this regime 92. The large displacement amplitude of the 

internal coordinate in the snap-through regime corresponds to large deflections of the linear springs. 

Due to the more significant internal deformations and the damping present in the module, a large 

dissipation of energy is achieved for relatively small excitation amplitudes of the global end 

displacement. 

 It is clearly seen that each of the intrawell responses in Figure 2-7 are confined to a single 

potential well around a static equilibrium, resulting in a smaller hysteresis loop and consequently 

much lower energy dissipation per excitation cycle than the snap-through case. The per-cycle energy 

dissipation predicted by simulation for the intrawell cases in Figure 2-7(b) is 15.2 μJ, which is lower 

than the 54.9 μJ and 61.2 μJ of energy dissipated in the experimental system. This could be due to the 
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unmodeled stick-slip friction in the bearings of the experimental metastable module, which have the 

effect of increasing damping for low amplitude oscillations. Thus, there is greater deviation in the 

values of the area enclosed in the hysteresis loops between the measurements and simulations for 

the small amplitude intrawell dynamics than for the corresponding measures for the large amplitude 

snap-through responses. 

As seen in Figure 2-6, excitation frequency is one factor that determines whether intrawell or 

snap-through responses are activated. Small changes in frequency may maintain a given response 

type although the response amplitude and phase may smoothly vary. Consider Figure 2-8 which 

shows experimental and simulated hysteresis loops of snap-through responses as the excitation 

frequency is varied from 10 Hz to 14 Hz. The area enclosed by the loops, and consequently the energy 

dissipated per excitation cycle, increases with the increase in frequency. This finding is consistent 

with results presented in Figure 2-6(a), which show snap-through response amplitudes increasing 

with frequency. As the arm rotation angle amplitude increases, the deflection of the linear springs 

likewise grows in magnitude. Consequently, the reaction force amplitude also increases according to 

Eq. (2-5). This results in the steady magnification of the hysteresis loops as the frequency increases 

from 10 to 14 Hz in Figure 2-8. Similar to the results of Figure 2-7, good overall agreement is seen 

Figure 2-8. (a) Experimental and (b) simulated hysteresis loops (solid curves) of snap-through response at 0 mm offset at 
different excitation frequencies. 
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comparing the experimental results in Figure 2-8(a) of the snap-through dynamics with the 

behaviors predicted from the direct simulations of the model governing equations as shown in Figure 

2-8(b).  

 The results suggest that energy dissipation performance is affected by excitation frequency in the 

following two ways. First, the excitation frequency influences which dynamic response regimes are 

realizable. Intrawell and snap-through responses induce particularly different hysteresis loops due 

to the much larger amplitudes of arm rotation triggered by the snap-through behaviors. Thus, large 

adaptation of energy dissipation (orders of magnitude) may be accomplished. Second, small changes 

in excitation frequency that maintain a particular response regime may have a lesser, but still 

appreciable, effect on the energy dissipated per cycle. In this way, a refined modulation of the energy 

dissipation may be induced.  

2.5.2 Excitation level influence on system response and energy dissipation 

Excitation level is shown to have a strong influence on the dynamic behavior of bistable 

oscillators 83,93, and is expected to exert similarly strong influence on the metastable module as well. 

To study the influences, several excitation amplitude sweeps are performed at fixed excitation 

Figure 2-9. (a) Experimental and (b) analytical results of the influence of excitation amplitude on the internal dynamics of 
the metastable module when excited at constant frequency. 
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frequencies. Figure 2-9(a) presents the experimental results of an excitation amplitude sweep from 

0 to 450 μm at a rate of 2.25 μm/s, with constant excitation frequency 17 = ߨ2/ߗ Hz. Figure 2-9(b) 

shows analytical model results, computed using an excitation frequency ߱/20.8 = ߨ Hz and with the 

model parameters given in Table 2. Similar to the good agreement seen in Figure 2-6, the 

comparisons in Figure 2-9 indicate that the analytical model provides a meaningful prediction of the 

qualitative behaviors observed experimentally when the excitation amplitude is varied while the 

excitation frequency remains constant. Both the experimental and analytical results show the 

presence of low amplitude intrawell oscillations only at low excitation levels, and a range for which 

low and high amplitude intrawell responses coexist. Snap-through responses are observed at high 

excitation amplitudes. The high amplitude intrawell and the snap-through regimes show fairly 

constant response amplitudes over a large range of excitation amplitudes, indicating significant 

robustness to changes in excitation level. 

Figure 2-9 indicates that the existence or coexistence of dynamic response regimes is strongly 

influenced by excitation amplitude. To demonstrate how these trends correspond to energy 

dissipation performance, Figure 2-10(a), (b), and (c) show hysteresis loops at 200 μm, 300 μm, and 

450 μm excitation amplitudes, respectively for a fixed 17 Hz excitation frequency, and offset 0 = ܦ 

mm. It is observed that as excitation amplitude is increased, the amount of energy dissipated in a 

particular response regime is slightly increased, consistent with the results presented in Figure 

2-9(a). 

 Thus, the excitation amplitude influences the energy dissipation characteristics in a comparable 

manner to excitation frequency. First, excitation amplitude affects the dynamic response regimes 

that are realizable, where each regime results in different energy dissipation. At very low excitation 

levels, only low amplitude intrawell responses are observed. As excitation level increases, the low 

amplitude intrawell responses vanish while high amplitude intrawell and snap-through responses 

are activated. Second, increased excitation amplitude increases the amount of energy dissipated per 
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excitation cycle for a fixed response regime. This is a desirable characteristic in practice, where 

greater excitation levels typically call for increased damping and energy dissipation performance. 

2.5.3 Offset influence on system response and energy dissipation 

Thus far, the studies have focused on excitations that are nominally symmetric about the unstable 

equilibrium position of the internal bistable element of the metastable module. However, once the 

excitation is applied with an offset from the symmetric condition, asymmetry may appear in the 

dynamic response, since the bistable constituent of the metastable module is under an additional 

Figure 2-10. Experimental hysteresis loops (solid curves) at D = 0 mm offset, 17 Hz excitation frequency and (a) 200 μm, 
(b) 300 μm, and (c) 450 μm excitation amplitude. Response type and area enclosed by each loop are indicated. 
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static force (ܭ௅ܦ). In engineering practice, such a load may be representative of a mass supported by 

the module under gravitational body forces. 

 The influence of introducing a static offset ܦ that modulates the symmetry of the system on the 

steady-state dynamics of the module due to are examined in Figure 2-11 and Figure 2-12. Fixed 

excitation amplitudes ܼ଴=300μm and ݖ଴=0.06m are employed in experiment and the analytical 

model, respectively. Figure 2-11(a) presents experimental results where the excitation offset ܦ is 0.7 

mm deflected from the neutral position, while Figure 2-11(b) shows qualitatively similar analytical 

results for the offset of ݀ = 1.2 m. The offset biases the metastable module towards well #1; the 

dynamics of this state are shown using dashed curves and diamonds in Figure 2-11(a) and (b), 

respectively. The asymmetry results in a greater bandwidth of frequencies for which the steady-state 

intrawell responses occur when the internal mass is confined to well #1, whereas the frequency 

range of existence for motions in well #2 is greatly diminished (dash-dot curves and squares in Figure 

2-11(a) and (b), respectively). Qualitatively, the change in offset plays a key role in tailoring the local 

linearized resonant frequencies of the intrawell behaviors, and thus governs the frequency 

bandwidths across which each set of low and high amplitude intrawell dynamics may occur. As a 

Figure 2-11. (a) Experimental and (b) analytical results showing the internal dynamics of the metastable module as 
excitation frequency is varied, while the excitation amplitude and offset remain fixed. 
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result, the energy dissipation characteristics of these regimes are strongly controlled via offset 

modulation. 

Furthermore, in comparing the experimental and analytical results from Figure 2-6 to those in 

Figure 2-11, the frequency bandwidth for which snap-through motions are observed is modulated. 

In other words, the offset has the effect of tailoring the bandwidth of frequencies for which the large 

dissipation capability of the snap-through dynamics is realized. The asymmetry introduced by the 

static offset also causes the intrawell #1 and #2 responses to exhibit notably different response 

amplitudes for the same excitation frequency. Collectively, the results show that application of an 

offset to the harmonic excitation of the metastable module leads to a versatile range of energy 

dissipation performance according to the operating frequency and amplitude of the induced 

dynamics of the internal bistable element. 

When the offset is further increased to 1.4 = ܦ mm in the experiment, as shown in Figure 2-12(a), 

well #2 is no longer statically stable, and no steady-state intrawell responses are found in well #2 at 

any frequency. Analytical results in Figure 2-12(b) with an offset of ݀ = 1.3 m demonstrate similar 

behavior. Compared to Figure 2-11, the size of frequency bandwidth for which the same type of 

intrawell responses in well #1 exist is further increased. However, the absence of stable intrawell 

Figure 2-12. (a) Experimental and (b) analytical results showing the internal dynamics of the metastable module as 
excitation frequency is varied, while the excitation amplitude and offset remain fixed. A greater offset is used than that 

employed for the results shown in Figure 2-11. 
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responses in well #2 means that fewer frequencies exhibit multiple coexistent responses regimes, 

compromising some energy dissipation adaptability. Considering the snap-through responses from 

Figure 2-6 to 2-11 to 2-12, it is apparent that change in the excitation offset from a near-symmetric 

excitation condition has the effect of modulating the bandwidth of frequencies for which the snap-

through motions occur. In particular, an increase of the offset increases the lower and upper 

frequency extents of the bandwidth although the total bandwidth is seen to remain relatively 

constant. This finding suggests a novel bandpass filter feature may be realized for the metastable 

module in terms of triggering large damping associated with the snap-through behaviors for a 

particular range of excitation frequencies. 

While the introduction of a non-zero static offset to the excitation affects the frequency ranges in 

which the different response regimes are observed, certain excitation frequencies exhibit the same 

response regime at all three offsets 0 = ܦ mm, 0.7 mm, and 1.4 mm, permitting an analysis of the 

impact of offset on energy dissipation performance. For example, Figure 2-13 presents measured 

hysteresis loops for snap-through responses when excited at 14 Hz. As the offset is increased (shown 

by the increasing lightness of the solid curves), the centers of the hysteresis loops move towards the 

statically stable well, although the amount of energy dissipated per cycle varies only slightly. This 

Figure 2-13. Experimental hysteresis loops (solid curves) for snap-through responses at 14 Hz excitation. Excitation offset 
and area enclosed by each loop are indicated. 
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indicates that the energy dissipation performance in the snap-through regime is robust to small 

changes in excitation offset. Such behavior is useful for applications in which high energy dissipation 

is desired but equivalent offset influences vary over time, such as change in applied dead loads or 

supported weights.  

As evidenced by the frequency sweep results presented in Figure 2-11 and Figure 2-12, excitation 

offset may affect which response regimes are physically realizable even when excitation frequency 

and amplitude are fixed. This, in turn, influences the energy dissipation behaviors. Experimental and 

simulation results presented in Figure 2-14 summarize this feature for an excitation frequency of 16 

Hz. At the zero offset position, only high amplitude intrawell responses are observed as denoted by 

the hysteresis loops shown in Figure 2-14(a) and (d). As the offset is increased to D = 0.7mm, 

intrawell responses in well #2 responses disappear, while low amplitude intrawell responses in well 

#1, and large, snap through responses are observed. These responses are also observed at an offset 

Figure 2-14. Hysteresis loops showing energy dissipated per cycle computed as the area enclosed by the loops, at 300 μm 
excitation amplitude and 16 Hz frequency. (a-c) Experimental and (d-f) simulated results are shown for: (a,d) 0 = ܦ mm, 

(b,e) 0.7 = ܦ mm, and (c,f) 1.4 = ܦ mm. Loops plotted over static force-displacement profile (dashed curves). 
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of D = 1.4 mm, though with slightly different response amplitudes and energy dissipation. For the 

case of D = 0.7 mm presented in Figure 2-14(b), there is a 44 times difference in energy dissipation 

from the low amplitude intrawell to the snap-through responses, while the high amplitude intrawell 

dynamics provide an intermediate level to bridge the extremes.  

This underscores the significant adaptation of energy dissipation enabled by the metastable 

module for fixed excitation parameters by switching amongst the various dynamic states, for 

example via strategic perturbations or different initial conditions. In fact, with appropriate design 

the module may exhibit five coexistent dynamic responses: low and high amplitude intrawell 

oscillations in each potential well, along with snap-through. 

 

2.6 Conclusions 

 This chapter explores the unique, adaptable dynamics and energy dissipation characteristics of a 

constituent metastable module. Its architecture and mechanics are inspired by the metastability of a 

skeletal muscle cross-bridge and the properties adaptivity enabled by such an arrangement of 

constituent elements. An archetypal metastable module also represents a fundamental unit for the 

integration of negative stiffness bistable elements within an overall structural system. An 

experimental realization is designed, fabricated, and modeled numerically and analytically. Although 

the module contains a bistable constituent, the static and dynamic properties of the metastable 

module are significantly distinct when compared to the properties of an individual bistable element. 

The prescribed amplitude and frequency of harmonic global end displacement excitations on the 

metastable module are found to affect the existence or co-existence of multiple dynamic regimes that 

display an order of magnitude of difference in energy dissipation amongst them. Tailoring the 

displacement offset presents another method to modify energy dissipation characteristics, due to 
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asymmetric static mechanical properties that govern the realization of particular dynamic energy 

dissipation regimes. These characteristics may be used to develop vibration damping devices having 

large and adaptable energy dissipation properties for applications with diverse and demanding 

performance needs. 
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Chapter 3. Strain energy capture and release in multistable 
systems inspired by cross-bridge and sarcomere assembly 

3.1 Introduction 

The mechanics of skeletal muscle exhibit several noteworthy characteristics, including the ability 

to effectively store, convert, and release energy 11,14, providing great inspiration for the development 

of advanced engineered structural/material systems with similar behaviors. Models of the power 

stroke mechanics of skeletal muscle’s cross-bridges often incorporate a bistable constituent whose 

two energy minima denote the pre- and post- power stroke configurations 12,54, as presented in Figure 

3-1. The pre-power stroke state (also referred to as the long or unfolded configuration) has higher 

potential energy than the post-power stroke state (short or folded configuration), which means that 

the energy landscape of the bistable power stroke element is asymmetric 94.  

Figure 3-1. Cross-bridges (a) are responsible for the fundamental force generating process in muscle.  While the cross-
bridge heads are bound to actin, they undergo a power stroke, generating forces which contribute to macroscopic muscle 

contractions. (b) Mechanical models of cross-bridge power stroke motions incorporate elements with asymmetrically 
bistable potential energy landscape, reflecting a bias towards the post-power stroke state. 
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Recent research suggests that a significant proportion of the inertial energy from external inertial 

loads such as a periodically moved appendage is stored as strain energy in the cross-bridge 

constituent 38. This stored energy may be later used to reduce the energetic cost of cyclic motion or 

to enable explosive movement 8,9. Certain external loads have also been shown to cause power stroke 

reversals, allowing the cross-bridge to move back and forth repeatedly along the power stroke’s 

energy landscape without unbinding the myosin head from the actin binding site 77. 

 Models of these and other mechanics at the micro- and nano-scale commonly integrate 

constituents with non-convex energy landscapes to capture empirically-observed conformational 

changes 13,26,27,42,54, and offer inspiration for the development of engineered structural/material 

systems that exhibit a similar ability to capture, store, and release energy. In fact, the exploitation of 

mechanical instabilities by incorporating bistable elements has been widely studied 95,96, 

demonstrating significant damping 83,97, energy dissipation 82,98, and shock absorption 99 as outcomes 

to the strategic exploitation. These behaviors arise primarily as a result of a snap-through 

phenomenon between stable equilibrium states of the structure’s bistable constituents. 

3.1.1 Asymmetric bistability and energy capture 

A common physical realization of a bistable element takes the form of a clamped, post-buckled 

beam as depicted in Figure 3-2. The beam exhibits two stable configurations where the 

displacements of the beam’s midpoints are ݔ = ݔ ௔ andݔ = ௕ݔ , as shown in Figure 3-2(a) and (c), 

respectively. An unstable equilibrium is observed at the neutral position for ݔ = 0, as shown in Figure 

3-2(b). If the post-buckled beam is straight in its unstressed state, the reaction force as the beam 

midpoint is vertically displaced follows a curve similar to Figure 3-3(a), with stable equilibria 

observed where the curve crosses the zero axis with positive stiffness or positive slope, and an 

unstable equilibrium where it crosses the zero axis with negative slope. The corresponding strain 

energy landscape is shown in Figure 3-3(b), where the two local potential minima at the same energy 
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level denote the two stable equilibria of this symmetrically bistable element. A beam with a natural 

curvature which is then clamped in its post-buckled state will be biased towards one of its two stable 

configurations 100, exhibiting asymmetric bistability and demonstrating reaction force and energy 

profiles represented by Figure 3-4. The two local energy minima are at different levels, and a 

transition from the low-energy configuration ݔ = ݔ ௔ to the high energy configurationݔ =  ଶ resultsݔ

in the capture of recoverable strain energy of the amount Δܷ = ଵܷ − ܷଶ. 

 There are several examples of structural/material systems that exhibit differences in elastic 

potential energy between stable equilibrium configurations under tensile 101,102 and compressive 

103,104 loading. These architected structures and materials exhibit larger strains before failure than 

the corresponding monolithic bulk material properties would permit, offering great potential for 

energy absorption and damage mitigation. While the energy trapping capabilities of such systems 

have been reported 101,103, no connection has yet been made between the asymmetries inherent to 

the strain energy landscapes of these structures, though the mechanics described in Figure 3-4 

suggest that the asymmetric bistability inherent to these architectures may be the underlying reason 

Figure 3-2. Axially compressed beam shown in three equilibrium configurations: (a) curved upward with vertical 
displacement of the beam midpoint ݔ = ௔ݔ , (b) no vertical displacement or ݔ = 0, and (c) curved downward with vertical 

displacement ݔ = ௕ݔ . Configurations (a) and (c) are stable, while (b) is unstable. 
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for such intriguing properties. In the context of skeletal muscle, asymmetrically bistable elements are 

employed to explain not only the behaviors of individual cross-bridges and sarcomeres, but also 

those of the protein titin, which behaves as a shock or impact absorber in sarcomeres and may also 

be represented mechanically as a series chain of bistable constituents 42,105. Furthermore, though 

there have been efforts to understand the impact or shock isolation behaviors of structures 

incorporating such bistable or negative-stiffness constituents 45,82,99, these investigations do not 

attempt to explain the strain energy capture that may result from the observed state transitions or 

snap-through events.  

Based on the discussions above, the objectives of the remainder of this chapter are to study the 

influence of asymmetry on the potential energy landscapes of structures composed of bistable 

constituents, to exploit transitions between stable states to demonstrate strain energy capture under 

quasi-static and dynamic loads, and to understand the influences of structural parameters on system 

dynamics and energy capture. Insights into these behaviors would enable the development of 

structural/material systems that reflect skeletal muscle’s robustness and its remarkable ability to 

store, convert, and release energy. In the following subsections, experimental prototypes of single 

bistable elements with varying asymmetry are studied for their potential energy landscapes. A 

Figure 3-3. (a) Vertical reaction force at the beam midpoint in Figure 3-2, and (b) potential strain energy as displacement 
࢞ is varied of a symmetric bistable constrained curved beam. Equal amounts of strain energy are stored at the two stable 

equilibria. 
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system identification is developed from experimentally-obtained force-displacement profiles, 

facilitating analysis and numerical investigations of the behavior of a single asymmetrically bistable 

element under dynamic loads. Energy landscapes of structures composed of multiple elements 

arranged in series are then studied, and dynamic analyses are conducted on their energy trapping 

capabilities. The influences of asymmetry, damping, excitation level, and thermal noise on energy 

trapping behaviors are analyzed and discussed. Then, an alternative parametrization of asymmetry 

is presented in order to facilitate an investigation of the release of this stored energy for actuation 

and deployment. Various quasi-static deployment pathways are considered, and this process is then 

studied with explicit consideration of system dynamics. An experimental demonstration is 

presented, followed by concluding remarks. 

Figure 3-4. (a) Vertical reaction force at the beam midpoint in Figure 3-2, and (b) potential strain energy as displacement 
 is varied of an asymmetrically bistable constrained curved beam. Different amounts of strain energy are stored at the ݔ

two stable equilibria. Transition from ݔଵ to ݔଶ requires a quantity of energy ଵܷ to be supplied to the system, and results in 
net strain energy storage of Δܷ = ଵܷ − ܷଶ. 
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3.2 Structures composed of asymmetrically bistable constituents 

3.2.1 Force and energy landscapes in a bistable module 

 To facilitate investigations into the influence of asymmetry on the mechanics and energy 

landscapes of bistable elements, modules with varying geometries are designed and fabricated with 

polyamide PA 2200 nylon using selective laser sintering (SLS). A connected, double curved-beam 

design minimizes the likelihood that the element will buckle or snap-through in its second mode 99,100. 

This helps to ensure predictable and repeatable buckling behaviors. Figure 3-5(a) presents a 

schematic of a module in its unstressed state. The beam’s curvature is defined as the ratio between 

the half-arch’s height and its length, and its T-shaped member facilitates modular assembly. Figure 

3-5(b) shows a prototype module in its post-buckled state under axial confinement of 39.5 mm in the 

lower-energy stable configuration.  

 Quasi-static tests are performed using an Instron 5950 universal testing machine to obtain force-

displacement relationships, and representative plots for three modules of different unstressed beam 

curvatures are shown in Figure 3-6. The modules with the greater unstressed curvature exhibit 

larger positive reaction forces under compression but smaller negative reaction force, meaning an 

increase in unstressed beam curvatures leads to greater asymmetry in the force-displacement 

Figure 3-5. (a) Schematic of a single module composed of a connected, double curved arch with a stiff, T-shaped member 
to facilitate modular assembly. The unstressed beam curvature is calculated as height/length, and axial compression and 

constraint of double-curved beams enables bistability. (b) Experimental prototype fabricated with a beam length of 15 
mm using selective laser sintering (SLS) of polyamide PA 2200 nylon shown in its post-buckled, axially compressed state. 

The prototype’s total initial width is 40 mm, but it is compressed and confined to a width of 39.5 mm by the rigid base. 



49 
 

profile. The most asymmetric module requires a relatively large compressive force to snap to the 

second stable configuration, while only needing a small tensile force in order to snap back to the 

initial state. 

 Experimentally-derived strain potential energy curves, shown by the solid lines in Figure 3-7, are 

generated by integrating the reaction force curves with respect to displacement during the 

compressive portion of the quasi-static load tests. As the beam curvature is increased, the difference 

between the two local minima of strain energy grows larger and the energy landscape becomes 

increasingly asymmetric. To facilitate further numerical and analytical study of these asymmetrically 

bistable modules, it is assumed that the observed reaction force ܨோ of the modules may be 

approximated by a cubic nonlinearity, namely 

ோܨ = ݇ଵݔ + ݇ଶݔଶ + ݇ଷݔଷ (3-1) 

where ݔ represents the displacement of the midpoint of the double curved beams from the unstable 

equilibrium position, and ݇ଵ, ݇ଶ, and ݇ଷ are the linear, quadratic, and cubic stiffness parameters, 

respectively. The potential strain energy ܷ due to elastic deformation may be obtained by integrating 

the restoring force with respect to ݔ. 

Figure 3-6. Force-displacement profiles of individual asymmetrically bistable modules obtained from uniaxial 
compression tests at a rate of 0.05 ܕܕ

ܛ
. As natural beam curvature is increased, the force-displacement characteristic 

grows more asymmetric with respect to the zero axis. 
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ܷ = ଵ
ଶ

݇ଵݔଶ + ଵ
ଷ

݇ଶݔଷ + ଵ
ସ

݇ଷݔସ +  (2-3) ܥ

where ܥ is the integration constant. For consistency, ܷ is prescribed to be zero at the unstable 

equilibrium ݔ = 0, which corresponds to ܥ = 0. The dashed curves in Figure 3-7 depict the strain 

energies using Eq. (3-2) where the stiffness terms ݇ଵ, ݇ଶ, and ݇ଷ are obtained from a polynomial fit 

to the experimental data, and the approximations reasonably reflect the strain energy curves of the 

evaluated modules. Furthermore, the quadratic stiffness ݇ଶ demonstrates the greatest variation 

between modules of different beam curvature, while ݇ଵ and ݇ଷ are relatively similar for all three 

tested specimens, which suggests that variations in the asymmetry of the module’s strain energy 

landscapes could be modeled by tailoring ݇ଶ. This is confirmed by an examination of the strain energy 

expression in Eq. (3-2), where the quadratic stiffness ݇ଶcontributes the only odd term and hence 

dictates the level of asymmetry. The cubic nonlinear stiffness approximation enables a systematic 

analytical and numerical dynamics study of the influence of various system and excitation 

parameters on strain energy landscapes and energy trapping performance. 

Figure 3-7. Strain energy profiles of three prototypes with varying unstressed beam curvature obtained from quasi-static 
compression tests (solid lines), demonstrating greater asymmetry of the double well potential energy landscape as beam 

curvature is increased. Dashed lines illustrate strain energy calculated from Eq. (3-2), where the nonlinear stiffness 
coefficients are obtained from a least-squares regression of cubic nonlinear stiffness parameters to experimental data. 
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3.2.2 Force and energy landscape of a multi-module system 

Mechanical models of skeletal muscle often incorporate serially-connected bistable elements in 

representations of sarcomere chains that form muscle myofibrils 25,26, and the protein titin 45,105. 

Assembly of asymmetrically bistable elements into these greater structures leads to more complex 

force-displacement and strain energy landscapes, enabling large macroscopic length changes, shock 

absorption, and energy dissipation 43,45,103. This configuration may also be leveraged to demonstrate 

the capture and storage of elastic potential energy in the system’s many stable configurations. For a 

structure composed of ݊ serially connected bistable modules as depicted in Figure 3-8, and whose 

reaction forces are governed by Eq. (3-1), the total strain energy stored in the system is: 

௧ܷ௢௧ = ଵ
ଶ

݇ଵ,ଵݔଵ
ଶ + ଵ

ଷ
݇ଶ,ଵݔଵ

ଷ + ଵ
ସ

݇ଷ,ଵݔଵ
ସ + ∑ ቀଵ

ଶ
݇ଵ,௝൫ݔ௝ − ௝ିଵ൯ݔ

ଶ
+ ଵ

ଷ
൫ݔ௝ − ௝ିଵ൯ݔ

ଷ
+ ଵ

ସ
൫ݔ௝ − ௝ିଵ൯ݔ

ସቁ௡
௝ୀଶ  

 (3-3) 

where ݔ௝  is the displacement and ݇ଵ,௝ , ݇ଶ,௝ , and ݇ଷ,௝ are the linear, quadratic, and cubic stiffness 

coefficients, respectively, of the jth module.  

This arrangement of elements, in which interactions between adjacent elements are governed by 

a bistable potential 45,106, is notably distinct from systems where elements are in local, on-site, bistable 

potentials and adjacent elements are coupled by a linear or monostable stiffnesses 107,108. A structure 

Figure 3-8. Schematic of a structure composed of n modules in series with bistability modeled using a cubic nonlinear 
stiffness. 
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with bistable interactions can exhibit large length and shape change across its global energy 

landscape as individual bistable elements transition from one stable position to the other.  

To demonstrate the mechanics of systems composed of serially-configured modules, Figure 

3-9(a) Figure 3-9(b) present experimentally-obtained reaction force profiles of a structure composed 

of two and four modules, respectively, with 2% beam curvature. Positive slope or stiffness denotes 

the existence of stable configurations, and negative slopes correspond to regions of transition 

between stable states. The four-module structure demonstrates a greater number of stable 

configurations and much greater hysteresis over the compression and extension cycle. The increased 

hysteresis is due to increased free-play in the structure, as well as the  increased likelihood of 

divergence between loading and unloading paths as the number of elements in a bistable chain is 

increased 42,45. For a single bistable element, the loading and unloading paths are theoretically 

identical, since there is only one stable configuration for a prescribed displacement. In a structure 

composed of ݊ = 2 identical bistable elements with cubic nonlinearity, there may be multiple 

possible configurations for a range of global displacements, but they are at identical strain energy 

levels and thus do not demonstrate hysteresis under idealized conditions 106. Such a structure would 

exhibit smoothly varying strain energy under loading and unloading. However, for ݊ > 2 or for ݊ =

Figure 3-9. Observed reaction force of a (a) two-module structure and (b) four-module structure under uniaxial 
compression tests at a rate of 0.05 ܕܕ

ܛ
. 
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2 different modules, these coexistent configurations may be at different energy levels, and as the 

structure is globally extended or compressed, it does not follow the minimum-energy Maxwell path 

42. Instead, the large hysteresis observed in Figure 3-9(b) is due to discrete state transitions that 

result in a decrease of potential energy when the structure’s current configuration becomes unstable 

and the system snaps to a different stable configuration at a lower energy level, releasing stored 

elastic energy in the process 45,97,109. 

Since the modules considered in this chapter are nominally identical, the order in which the 

elements snap through is governed by manufacturing defects 103,104. Under compressive loading, the 

module with the lowest maximum stress in the long or extended state will undergo a transition first. 

This explains the increasing local maxima of reaction force of the four-module system under the 

compression portion of the path in Figure 3-9(b). The same phenomenon under extension explains 

the decreasing local minima of reaction force along the extension portion. If desired, the deformation 

paths can be designed to be deterministic by varying the geometric parameters of each module that 

govern the maximum of minimum reaction force before snap-through 110,111. 

Due to discrete state transitions that release elastic potential energy, direct integration of the 

experimentally-obtained force displacement profiles of structures composed of multiple elements 

does not in general yield their strain energy landscapes. To gain insight into the energy landscapes 

of two- and four-module structures, Figure 3-10 presents the strain energy as computed from Eq. (3-

3) where each module’s nonlinear stiffness coefficients are obtained from the system identification 

results shown in Figure 3-7. For the two-module case in Figure 3-10(a), random variation 

corresponding to a standard deviation of 5% from the nominal values is applied, accounting for 

manufacturing variability between the nominally identical modules and to facilitate clearer 

presentation of the ranges under which the different stable configurations may be observed. These 

configurations are denoted by different line styles and correspond to the presented figure insets.  



54 
 

The assembly of multiple modules in series gives rise to a metastability range 76, where multiple 

reaction forces and strain energies may be observed for a range of end displacements ݔଶ due to the 

coexistence of multiple stable configurations, although only one configuration may be physically 

realized at a given time. If the modules were identical, the two global configurations in which one 

module in the short state and the other is in the long state would exhibit overlapping energy levels 

106. However, the modules are slightly different, and discontinuities are observed between the cyan 

dotted and green solid curves, and between the red dash-dotted and blue dashed curves of Figure 

3-10(a). Under an external axial load, the structure will only exhibit state transitions that are either 

continuous in potential energy if the current topology represents a local energy minimum with 

respect to the internal degrees of freedom, or that result in a discrete reduction of stored strain 

energy 109,111. For the four-module case presented in Figure 3-10(b), no random variation is applied 

to the modules’ stiffness parameters and all modules are assumed to be identical. The local minima 

of potential energy, which denote the stable configurations in the absence of external forces, are at 

different quantities depending on the number of modules in the long (low-energy) and short (high-

Figure 3-10. Strain energy landscape of a (a) two-module and (b) four-module structure calculated using a cubic stiffness 
approximation to experimentally-observed reaction force of a module with 2% beam curvature. A small difference 

between the stiffness terms of the two modules is provided in (a) in order to clearly illustrate the existence of multiple 
configurations. The four-module structure demonstrates overlapping potential wells, a feature found in chains of n>2 
bistable elements 45. Due to the individual modules’ asymmetry, increasing amounts of strain energy, Δ ଵܷ to Δܷସ, are 

stored at the stable equilibria – or local energy minima – as the structure is compressed. 
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energy) configurations. Hence, a transition from the lowest energy global configuration to higher-

energy configurations will result in incremental amounts of captured and stored elastic energy Δ ଵܷto 

Δܷସ, depending on the number of long-to-short state transitions that occur. 

3.3 Dynamic response of asymmetrically multistable systems 

3.3.1 Dynamics of an asymmetrically bistable oscillator 

 The quasi-static analysis in the prior subsection demonstrates that modular assembly of 

asymmetrically bistable constituents can lead to structures exhibiting complex, multi-well energy 

landscapes and whose stable configurations exhibit different quantities of stored elastic potential 

energy. Due to the modules’ geometry, transitions from long to short configurations result in the 

capture and storage of recoverable strain energy. On the other hand, for structures under dynamic 

loads, the total system energies do not smoothly follow potential energy landscapes. Since the 

captured strain energy Δܷ depends on the initial and final configurations of the system, transient 

dynamics play an important role in the structure’s ability to capture energy in consequence to 

excitations. The experimental prototypes presented in the prior subsection, while not well-suited to 

dynamic tests due to their large damping, viscoelasticity, and low toughness, motivate 

comprehensive analytical and numerical investigations of these dynamics. Figure 3-11 presents a 

Figure 3-11. Schematic of a Duffing oscillator. ݇ଵ, ݇ଶ, and ݇ଷ are the linear, quadratic and cubic stiffness coefficients of the 
nonlinear spring. The oscillator is bistable for ݇ଵ < 0 and asymmetric for ݇ଶ ≠ 0. 
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schematic of a one degree-of-freedom system based on the experimentally-derived single-module 

mechanics shown in Figure 3-6 and Figure 3-7. The bistable nonlinear stiffness takes the cubic form 

of Eq. (3-1), while inertial influences are captured by the mass ݉, and linear viscous damping is 

assumed with coefficient ܾ. The governing equation is thus: 

ݔ̈݉ + ݔܾ̇ + ݇ଵݔ + ݇ଶݔଶ + ݇ଷݔଷ = 0 (3-4) 

Eq. (3-4) describes the dynamics of a Duffing oscillator 89, and under the specific conditions ݇ଵ <

0, ݇ଶ ≠ 0, and ݇ଷ > 0, it describes an asymmetric bistable Duffing oscillator. For the case of a single 

asymmetric Duffing oscillator starting in its lower-energy configuration, energy trapping due to an 

impulsive excitation may be quantified by comparing the difference in potential energy between its 

initial and final states with the initial kinetic energy of the impulsive excitation. Hence, if the initial 

and final configurations are identical, all of the initial kinetic energy is dissipated and no energy is 

trapped. If, however, the system settles in its higher-potential energy well, a portion of the initial 

kinetic energy is now captured and stored. 

 Predicting the system’s final configuration following impulsive excitation necessitates solving for 

its transient dynamics. Solution methods that assume the transient dynamics of Duffing-type 

oscillators can be described using trigonometric functions generally lead to degraded accuracy for 

large nonlinearities 112. Jacobian elliptic functions have been proposed as generating solutions for the 

Duffing equation, with considerable success for undamped, bistable Duffing oscillators 89,113. 

Recently, Zhang et al. 114 presented a solution method for the damped snap-through and intrawell 

vibrations of a symmetric bistable Duffing oscillator. However, this approach cannot be directly 

applied to the case of an asymmetric Duffing oscillator due to the assumed symmetric form of the 

Jacobian elliptic function ܿ݊(ݑ௖ , ݇௖), so the method is adapted and modified. First, Eq. (3-4) is 

normalized by mass and rewritten as 

ݔ̈ + ݔ̇ߟ + ݔߙ + ଶݔߚ + ଷݔߛ = 0 (3-5) 
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where ߙ = ௞భ
௠

, ߚ = ௞మ
௠

, ߛ = ௞య
௠

, and ߟ = ௕
௠

. In order to eliminate the quadratic stiffness ߚ causing the 

asymmetry, the system is approximated by two different, symmetric bistable Duffing oscillators, each 

approximating the behavior of the original system in one of the two potential wells. 

ݔ̈ + ݔ̇ߟ + ݔଵߙ + ଷݔଵߛ = 0; ݔ  ≤ 0 (3-6a) 

ݔ̈ + ݔ̇ߟ + ݔଶߙ + ଷݔଶߛ = 0; ݔ  > 0 (3-6b) 

 The stiffnesses ߙଵ, ,ଵߛ  ଶ are obtained from a least-squares regression of theߛ ଶ, andߙ

asymmetrically bistable spring reaction force in Eq. (3-5). The validity of this approach for describing 

the force-displacement and potential energy profiles of the asymmetrically bistable spring is verified 

by Figure 3-12 for ߙ = ߚ ,7.1− = −3.2, and ߛ = 2.9. The approximated stiffnesses are ߙଵ =

ଵߛ ,4.9− = 4.0 for ݔ < 0, and ߙଶ = ଶߛ ,10.4− = 2.2 for ݔ > 0. Further details on the solution approach 

for the system’s transient dynamics are presented in Appendix B. 

Figure 3-13 illustrates the procedure’s accuracy in predicting the transient intrawell vibrations 

of a damped asymmetrically bistable Duffing oscillator under two different initial conditions: (a) ݔ଴ =

2.2 mm, ̇ݔ଴ = −0.45 ୫
ୱ

 and (b) ݔ଴ = 2.2 mm, ̇ݔ଴ = −0.80 ୫
ୱ

. The stiffness terms ݇ଵ, ݇ଶ, and ݇ଷ are -7.1 

Figure 3-12. (a) Reaction force and (b) strain energy of an asymmetrically bistable Duffing oscillator. Solid lines denote 
the mechanics of the original asymmetric system described by Eq. (3-5), while the dotted and dashed lines denote the 

mechanics of the approximations of Eqs. (3-6a) and (3-6b), respectively. 
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୒
୫୫

, -3.2 ୒
୫୫మ, and 2.9 ୒

୫୫య, respectively, which reflect the stiffness parameters obtained from the 

quasi-static tests presented in Figure 3-6. Mass ݉ and damping coefficient ܾ are prescribed such that 

the linearized damping ratio and undamped natural frequency at ݔ = ߞ ଴ areݔ = 0.4 and ߱௡ =

119 ௥௔ௗ
௦

, and are selected to reflect an underdamped oscillator capable of exhibiting the desired 

strain energy capturing behaviors under dynamic loads. The oscillator is initially at rest in its lower-

energy stable configuration. Dotted lines show the trajectories as computed numerically using the 

original system description of Eq. (3-5), and dashed lines show the trajectory as computed 

numerically from the approximate systems of Eqs. (3-6a) and (3-6b) in the two potential wells. Solid 

lines present analytically-predicted trajectories until the final snap-through event.  

Under the initial conditions of the trajectories plotted in Figure 3-13(a), the system is observed 

to undergo one snap-through event and settle in its higher-energy stable configuration, trapping a 

portion of the initial kinetic energy ଴ܶ = ଵ
ଶ

଴ݔ̇݉
ଶ as recoverable strain energy. The fraction ܴ of energy 

thus captured is computed as: 

Figure 3-13. Analytically-predicted snap-through trajectories (solid), and numerically integrated trajectories using the 
asymmetric system of Eq. (3-5) and approximation of Eq. (3-6) in consequence to initial conditions (a) ݔ଴ = 2.2 mm, ̇ݔ଴ =

−0.45 ୫
ୱ

 and (b) ݔ଴ = 2.2 mm, ̇ݔ଴ = −0.80 ୫
ୱ

. In (a), the two numerically-integrated trajectories overlap almost completely. 
Thin, dotted horizontal lines denote the two stable equilibria. The analytical approach is demonstrated to accurately 

predict the final occurrence of snap-through, and hence the module’s final configuration. 
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ܴ = ୼௎

బ்
= ௎మି௎భ

బ்
 (3-7) 

where ଵܷand ܷଶ are the strain potential energy at the initial and final configurations, respectively. In 

Figure 3-13(b) two snap-through events are observed, and the system settles in its low energy initial 

configuration resulting in no energy trapped (ܴ = 0). The results of Figure 3-13 demonstrate the 

ability of the presented analytical approach to predict the snap-through trajectories and final 

configuration of a damped asymmetrically bistable oscillator under impulsive excitation, and hence 

to predict the fraction of initial kinetic energy that is captured as recoverable strain energy. 

3.3.2 Dynamics of a multi-module structure 

The assembly of multiple elements in series greatly enhances opportunities for strain energy 

capture by leveraging state transitions between configurations at different energy levels. As 

illustrated in Figure 3-10(b) for a structure composed of four serially connected modules, stable 

configurations exhibit increased stored energy as the structure is compressed and modules 

transition to the higher-energy short configurations. Assuming linear viscous damping and 

determining the reaction forces due to deflection in the cubic nonlinear springs connecting adjacent 

masses, the following equation of motion is obtained for mass ௝݉  within a series configuration of ݊ 

modules shown in Figure 3-14. 

Figure 3-14. Schematic of a structure composed of ݊ modules arranged in series. Initial velocity is prescribed to the end 
mass ݉௡ in the indicated direction during dynamic analyses of energy trapping, simulating an impulsive excitation. 
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௝݉̈ݔ௝ + ௝ܾ൫̇ݔ௝ − ௝ିଵ൯ݔ̇ + ௝ܾାଵ൫̇ݔ௞ − ௝ାଵ൯ݔ̇ +  ݇ଵ,௝൫ݔ௝ − ௝ିଵ൯ݔ + ݇ଵ,௝ାଵ൫ݔ௝ − ௝ାଵ൯ݔ + ݇ଶ,௝൫ݔ௝ − ௝ିଵ൯ݔ
ଶ

+

݇ଶ,௝ାଵ൫ݔ௝ − ௝ାଵ൯ݔ
ଶ

+ ݇ଷ,௝൫ݔ௝ − ௝ିଵ൯ݔ
ଷ

+ ݇ଷ,௝ାଵ൫ݔ௝ − ௝ାଵ൯ݔ
ଷ

= 0 (3-8) 

 The transient response is strongly influenced by the initial velocity and kinetic energy, as 

illustrated by the results presented in Figure 3-15 for a four-module structure under different input 

energy levels. The stiffnesses ݇ଵ,௝ , ݇ଶ,௝ , and ݇ଷ,௝  are -7.1 ୒
୫୫

, -3.2 ୒
୫୫మ, and 2.9 ୒

୫୫య for all modules. 

Each module has mass ௝݉  and damping coefficient ܾ selected such that the linearized natural 

frequency and damping ratio at each module’s low-energy stable state are ߱௡௜ = 119 ௥௔ௗ
௦

 and ߞ௝ =

0.4, respectively. The initial velocity of the end mass is prescribed as ݒ଴, and all other masses are 

stationary in the low energy state (long configuration). The thin, dotted horizontal lines indicate the 

five displacements ݔସ of the end mass for stable configurations of the four-module structure.  

 For an initial velocity ݒ଴ = 0.3 ୫
ୱ

, shown by the solid line, the initial energy ଴ܶ = ଵ
ଶ

݉ସݒ଴
ଶ is 

insufficient to cause any of the four modules to snap through, and the structure remains in its initial 

Figure 3-15. Displacements ݔସ of a four-module structure’s end mass due to impulsive excitations causing initial velocities 
 ଴ when all modules are initially in their low-energy long states. Thin dotted lines indicate the five possible displacementsݒ

under stable equilibrium conditions. The final configuration is strongly dependent on excitation level. 
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configuration. For a slightly greater initial velocity of 0.5 ୫
ୱ

, shown by the thick dotted line, one of the 

structure’s modules snaps through to its short configuration. Since ݇ଶ,௝ < 0 for all j, each module’s 

short configuration has higher potential energy than its long state and a portion of the initial kinetic 

energy is trapped as recoverable strain energy. An initial velocity ݒ଴ = 0.8 ୫
ୱ

, indicated by the dash-

dot line, causes all four modules to snap to the short state, maximizing trapped strain energy. 

However, if the initial velocity is increased to ݒ଴ = 1 ୫
ୱ

, the residual kinetic energy after all modules 

have collapsed to their high-energy state is sufficient to force one module to escape its local potential 

well and snap back to the lower-energy long configuration, reducing the quantity of trapped strain 

energy. 

3.4 Energy capture under impulsive excitation 

 The four initial conditions for which trajectories are plotted in Figure 3-15 result in four different 

final configurations and, due to the modules’ asymmetric bistability, four different quantities of 

captured elastic potential energy Δܷ. Energy trapping performance may be quantified using the ratio 

ܴ = ୼௎

బ்
, and by conservation of energy the total energy dissipated is (1 − ܴ) ଴ܶ. While Figure 3-15 

demonstrates that input energy strongly influences the structure’s final configuration, a systematic 

investigation is required in order to uncover the effects of varying structural parameters and 

excitation levels on energy trapping performance.  

3.4.1 Strain energy capture in a single asymmetrically bistable module 

 To illustrate these effects, Figure 3-16 presents contour plots showing the fraction of initial 

kinetic energy that is captured as recoverable strain energy in a single asymmetrically bistable 

module under a range of initial velocities ݒ଴ and different levels of asymmetry. The linear and cubic 

stiffness parameters employed in simulation and analysis are ݇ଵ = −7.1 ୒
୫୫

 and ݇ଷ = 2.9 ୒
୫୫య. 
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Recalling that the asymmetry of a cubic nonlinear spring varies with ݇ଶ, the ratio ௞మ
௞య

 is used as a 

measure of asymmetry. The module is initially at rest in its low-energy long configuration and 

prescribed a range of initial velocities ݒ଴ in the direction of the unstable equilibrium. Dissipative 

effects are modeled with a linear damping coefficient selected such that the linearized damping ratio 

at the two stable equilibria of a symmetric module (where ݇ଶ = 0) is ߞ = 0.4. Figure 3-16(a) presents 

analytically-predicted energy trapping performance using the approximation of Eq. (3-5) while 

Figure 3-16(b) shows results from direct numerical integration of Eq. (3-4). 

 No energy trapping is observed for low initial velocities since the initial energy is insufficient to 

induce snap-through. The modules’ initial and final configurations are hence identical. A clear 

boundary is apparent where the initial velocity, and consequently the initial kinetic energy, becomes 

sufficient to cause the module to snap-through and settle in the higher-energy state following 

trajectories qualitatively similar to Figure 3-13(a). Very large initial velocities result in trajectories 

resembling Figure 3-13(b), demonstrating no energy trapping due to the module snapping back to 

Figure 3-16. (a) Analytical prediction and (b) numerical simulation of fraction of initial kinetic energy ଴ܶ from an 
impulsive excitation trapped as recoverable strain energy as level of asymmetry is varied under a range of initial 
velocities. Linear and cubic stiffness terms ݇ଵ and ݇ଷ are obtained from the cubic nonlinear approximation to the 

experimentally-obtained force-displacement profile shown in Figure 3-6 of the module with 2% beam curvature. The 
quadratic stiffness ݇ଶ is varied along the vertical axis to tailor the asymmetry. Boundaries demarcating the onset of snap-

through and snap-back are clearly visible. 
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its low-energy configuration. The analytical prediction of these boundaries differs slightly from the 

numerically-obtained results, which is reasonable given that the analytical method employs an 

approximation of the original system. As asymmetry is increased, a greater initial velocity is required 

before snap-through and energy trapping are observed. The greatest fraction of trapped energy is 

observed for large asymmetry, which is consistent with the explanations of Figure 3-3 and Figure 

3-4, because greater asymmetry increases ଵܷ while decreasing ܷଶ, resulting in a larger potential 

energy difference Δܷ. However, large asymmetries also show a smaller range of velocities for which 

energy trapping is observed before the module snaps back to its low energy configuration, resulting 

in no strain energy capture.  

3.4.2 Strain energy capture in a four-module structure 

While Figure 3-9 demonstrates that a structure with asymmetrically bistable constituents will 

exhibit different quantities of stored energy in its stable configurations, its transient response and 

final configuration in consequence to dynamics loads depends strongly on input energy. To further 

understand these influences, Figure 3-17 presents a contour plot showing the percentage of initial 

kinetic energy trapped as recoverable strain energy in a four-module structure under a range of 

initial velocities ݒ଴ and levels of asymmetry ௞మ
௞య

, obtained via numerical integration of Eq. (3-8) using 

a fourth-order Runge-Kutta solver. Linear and cubic stiffness are nominally prescribed as ݇ଵ =

−7.1 ୒
୫୫

 and ݇ଷ = 2.9 ୒
୫୫య, respectively, with a linearized damping ratio of ߞ = 0.4. A random 

variation is then applied to each module’s parameters with a standard deviation of 5% of the nominal 

value. As the initial velocity ݒ଴ is increased from 0, a clear color boundary is noted where the initial 

kinetic energy ଴ܶ = ଵ
ଶ

଴ݒ݉
ଶ is sufficiently large to cause one of the four modules to snap through to the 

higher-energy short configuration. Four such boundaries are visible, corresponding to each of the 

four layers collapsing from the long configuration to the short configuration. Consistent with the 

single module case shown in Figure 3-16, increasing the level of asymmetry results in a greater 
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minimum initial velocity being required before energy trapping is observed. In addition, highly 

asymmetric modules have a large difference Δܷ between stable configurations, enabling a greater 

portion of the initial kinetic energy to be captured as recoverable strain potential energy rather than 

lost due to dissipation. 

 The snap-back phenomenon is apparent in Figure 3-17 where a sudden drop in energy trapping 

is observed as the initial velocity is increased, and explains the absence of energy trapping at very 

large initial velocities where all modules have snapped back to the long, low energy configuration. 

Snap-back boundaries are most pronounced for highly asymmetric modules where the energy 

difference between stable configurations is large, and these highly asymmetric structures exhibit 

only a small range of initial velocities for which peak energy trapping is observed. These results 

reveal that, when designing the level of asymmetry in energy trapping structures, a balance must be 

Figure 3-17. Fraction of initial kinetic energy ଴ܶ that is trapped as recoverable elastic potential energy by the structure as 
the level of asymmetry and initial velocity of the end mass are varied. Linear and cubic stiffness parameters are obtained 

from a least-squares fit of a cubic nonlinear stiffness to the experimentally-obtained force-displacement profile of a 
module with 2% beam curvature. Damping coefficients are selected such that each module’s linearized damping ratio is ߞ 
= 0.4 at the low-energy configuration. The discrete boundaries of energy trapping performance indicate the occurrence of 
snap-through and snap-back. Greatest energy trapping performance is observed at high asymmetry levels, but this comes 

with an increased risk of snap-back. 
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considered between achieving the peak energy trapping required and minimizing the likelihood of 

snap-back. 

3.4.3 Influence of viscous damping on energy capture  

 A structure’s damping properties strongly influence energy trapping performance, since the 

conservation of energy requires that any portion of the initial kinetic energy ଴ܶ that is not captured 

as strain energy must be dissipated. Furthermore, energy capture fundamentally requires a 

dissipation mechanism to ensure a multistable system experiencing snap-through oscillations will 

eventually settle in a potential well 114.  The fraction of initial kinetic captured as recoverable strain 

energy is ܴ = Δܷ/ ଴ܶ, while the ratio of captured to dissipated energy is ܴ/(1 − ܴ). Figure 3-18(a) 

and (b) present contour plots with the same ranges of excitation level and asymmetry, and the same 

color scale as shown in Figure 3-17. However, damping coefficients selected such that the modules’ 

linearized damping ratios are now (a) ߞ = 0.6 and (b) ߞ = 0.8, respectively. Comparing the results of 

Figure 3-18 with those in Figure 3-17, it is observed that increased viscous damping reduces peak 

Figure 3-18. Fraction of initial kinetic energy ଴ܶ that is trapped as recoverable elastic potential energy by the structure, as 
the level of asymmetry and initial velocity of the end mass are varied when damping coefficients are selected such that the 
linearized damping ratios are (a) 0.6 = ߞ and (b) 0.8 = ߞ in the low-energy configurations. Compared with the results for ߞ 
= 0.4 in Figure 3-16, larger damping ratios generally degrade energy trapping performance, but result in a reduced risk of 

snap-back at higher asymmetry levels. Any initial kinetic energy that is not captured must be dissipated, so the reduced 
energy trapping performance at higher levels of damping corresponds to a greater proportion of dissipated energy. 
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energy trapping performance by dissipating a greater proportion of the initial kinetic energy. Large 

amplitude snap-through events dissipate large quantities of energy, and this characteristic is 

enhanced as damping levels are increased, reducing the likelihood of further snap-through or snap-

back events. Moreover, as damping is increased, greater initial velocities and kinetic energies are 

required to induce snap-through events. 

 Hence, large dissipation is undesirable from an energy trapping perspective since the objective 

is to capture, rather than dissipate, the initial kinetic energy as recoverable strain energy. However, 

large dissipation also reduces the likelihood of snap-back as excitation level is increased. A balance 

is again observed between maximizing the fraction of initial kinetic energy that is trapped as 

recoverable strain energy, and maintaining robustness by minimizing the risk of snap-back to 

configurations at low strain energy levels. 

3.4.4 Variation of module stiffness parameters 

Prior results consider systems in which each module’s stiffness parameters are nominally 

identical, so the critical static force required to induce snap-through is the same for all modules. To 

improve the robustness of energy capture performance, this section considers systems in which the 

linear stiffness component ݇ଵ of the nonlinear stiffness varies across modules. For bistability, the 

condition ݇ଵ < 0 must hold. Making ݇ଵ more negative results in steeper negative stiffness region 

around the unstable equilibrium, and results in larger forces required to snap from one stable state 

to the other. The results of Figure 3-19 present energy capture performance where all system 

parameters except ݇ଵ are the same as in Figure 3-17. In Figure 3-19(a), the four modules have 

ൣ݇ଵ,ଵ, ݇ଵ,ଶ, ݇ଵ,ଷ, ݇ଵ,ସ൧ = [1.15݇ଵ
∗, 1,05݇ଵ

∗, 0.95݇ଵ
∗, 0.85݇ଵ

∗], where ݇ଵ
∗ is the nominal linear stiffness 

employed in prior results. In Figure 3-19(b), ൣ݇ଵ,ଵ, ݇ଵ,ଶ, ݇ଵ,ଷ, ݇ଵ,ସ൧ = [1.30݇ଵ
∗, 1,10݇ଵ

∗, 0.90݇ଵ
∗, 0.70݇ଵ

∗]. 

The consequence is that the element at the free end of the structure where the impulse is applied is 
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more susceptible to snap-through, while the element closest to the base is more resistant to a 

transition to the high-energy state. 

 Variation of geometric parameters of multistable structure have been shown to affect the 

stiffness parameters that may increase or decrease susceptibility to snap-through, allowing for 

deterministic and predictable snap-through or buckling sequences under quasi-static loads 110,111, but 

this feature may also be exploited under dynamic loads, as considered here. Comparison of Figure 

3-19 with the results of Figure 3-17 suggests that strategic variation of the negative linear stiffness 

parameter reduces the initial velocity, and consequently the initial energy, required to activate 

energy capture. Additionally, there is more uniform separation between the four main snap-through 

boundaries as the variation is increased, as well as a greater range of initial velocities for which 

energy capture is observed, particularly at low levels of asymmetry. While the peak energy trapping 

performance is reduced when compared with Figure 3-17, deliberate variation of the negative 

stiffness parameter is shown to yield more predictable, sequential energy capture behavior. Such 

performance may be desirable for protective structures, and devices, where a predictable and 

Figure 3-19. Fraction of initial kinetic energy ଴ܶ that is trapped as recoverable elastic potential energy by the structure, as 
the level of asymmetry and initial velocity of the end mass are varied and there is (a) small and (b) large variation of the 

linear stiffness parameters ݇ଵ across modules. Comparing these results with those of Figure 3-17, it is noted that strategic 
variation of ݇ଵcan enable more predictable, sequential energy trapping with clearer separation between subsequent snap 

through boundaries. However, the peak energy trapping performance is reduced. 
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repeatable snap-through response to dissipate and capture energy can help ensure the system safety 

and integrity.   

 

3.4.5 Influence of noise on energy trapping 

 Thermal noise strongly influences the mechanics of muscle sarcomeres and cross-bridges. In fact, 

macroscopic muscle length change and force generation is due to the combination of a control signal 

broadcast by the central nervous system and stochastic behaviors at the sarcomere level 74. Local 

thermal noise acts as an additive white noise component to a nerve impulse, and collective behaviors 

arise due to the fact that a single motor neuron controls approximately a billion individual 

sarcomeres, averaging out individual responses 4. The nerve impulse influences the probability of 

sarcomere state transitions, and feedback from muscle spindles leads to the modulation of the 

control signal in order to enable fine, continuous macroscopic length change and force generation.  

 However, thermal noise can inhibit the energy storage by facilitating potential well escape 55, 

since elements may be more likely to escape shallow potential wells at high energy levels into lower-

energy configurations. To understand these influences, and to guide the development of energy 

trapping devices for applications such as actuators and energy absorbing devices used on micro and 

nano length scales, simulations are performed using the stochastic differential equation (SDE) 

Toolbox 115. A four-module structure initially at the lowest-energy stable configuration with varying 

levels of asymmetry and a range of prescribed initial velocities, is subject to thermal noise modeled 

as a zero-mean random excitation on each module with a standard deviation ߪ = 3 ୫୫
ୱమ . Since the 

susceptibility of bistable systems to snap-through is strongly influenced by the presence of random 

excitations 55,116,117, and given the modules’ parameters developed in Section 3.2, this level of noise is 

shown to be sufficient to prevent highly asymmetric modules from settling in their high energy states. 
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Figure 3-20 presents the resulting contour plot for simulations where nominal stiffness 

parameters of each module are those obtained from experimental force-displacement results of a 

module with 2% beam curvature. Compared with the results of Figure 3-17, the addition of noise is 

confirmed to greatly inhibit energy capture, with highly asymmetric structures exhibiting no energy 

trapping. Due to the relative depth of the potential wells of an asymmetrically bistable element and 

the energy required to overcome the local energy barrier, the presence of noise is more likely to cause 

transitions from the high-energy configuration to the low-energy configuration than vice-versa. As a 

result, a structure comprised of highly asymmetric modules is less likely to trap and store energy in 

high-energy states without the occurrence of noise-induced snap-back. Thus, when designing strain 

energy capture devices in applications where stochastic influences are non-negligible, the degree of 

asymmetry should be strategically selected based on the expected magnitude of the noise. 

  

Figure 3-20. Energy trapping performance of a four-module structure for different levels of asymmetry and under various 
initial velocities ࢜૙. The system’s modules are also subject to white noise excitation with ࣌ = ૜ ࢓࢓

࢙૛ . The presence of noise 
compromises energy trapping at large levels of asymmetry. 
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3.5 Strain energy release in asymmetrically multistable chains for actuation and 

deployment 

 Building on the results of the previous sections, this section of the chapter explores how 

transitions between configurations in structures exhibiting asymmetric, multi-well potential energy 

landscapes can be exploited to release stored elastic potential energy and generate macroscopic 

length change. While energy capture employs transitions from states with low potential energy to 

those with high potential energy, the release of trapped energy necessitates an activation of the 

opposite configuration change back to the lower-energy states. Here, insight is developed on the 

feasibility and efficiency of the various state transition pathways between the chains’ numerous 

stable configurations on the potential energy landscape. 

 To facilitate a discussion on the activation energy requirements for these various transition 

paths, an alternative parametrization of asymmetry is introduced. Considering the force and energy 

equations for a single asymmetrically bistable element as presented in Eqs. (3-1) and (3-2), the 

following conditions are applied for consistency: ݔ௕ = 1m;  ܷ(ݔ = (௕ݔ = −1J;  and ܷ(ݔ = 0) = 0. 

This leads to the following stiffness terms: 

݇ଵ =  ௔ (3-9a)ݔܣ

݇ଶ = 1)ܣ−  +  ௔) (3-9b)ݔ

݇ଷ =  ௔ (3-9c)ݔ

where 

ܣ = ଵଶ
ଵିଶೌݔ

 (3-9d) 

for −1 < ௔ݔ < 0. 
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A consequence of the above conditions is that ܷ(ݔ௕) < ௕ݔ Thus a transition from .(௔ݔ)ܷ  to ݔ௔ 

results in a net release of potential energy. Asymmetry in the energy landscape can be quantified by 

the relative depth of the two potential wells using the ratio ߰ = where 0 (௕ݔ)ܷ/(௔ݔ)ܷ < ߰ < 1 due 

to the prescribed direction of asymmetry. The equilibrium configuration ݔ = ௔ݔ < 0 is here referred 

to as the collapsed state, and the configuration ݔ = ௕ݔ > 0 is termed the extended state of the bistable 

element. When considering transitions from collapsed to extended configurations, ߰ is the ratio 

between the energy required to activate the state transition and the potential energy released 

following activation. Figure 3-21(a) and (b) illustrate the influence of the parameter ߰ on the 

potential energies and force-strain responses for bistable springs subject to the conditions in Eq. (3-

9). Stable states are located at local minima of potential energy. These positions correspond to 

locations where the force response crosses the zero axis with positive slope, and are marked by filled 

dots. As ߰ increases, greater activation energies and forces are necessary to trigger a transition from 

the collapsed to extended states. Notably, the behavior for ݔ > 0 is similar for the range of ߰ 

considered, despite the significant variation in behavior for ݔ < 0. Thus, the conditions in Eq. (3-9) 

along with the parameter ߰ provide suitable means to adjust the asymmetry of bistability and force 

Figure 3-21. (a) Potential energy and (b) reaction force responses for an asymmetrically bistable spring governed by a 
cubic nonlinear stiffness, for different value of the asymmetry parameter ߰.  
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and energy responses in the high-energy collapsed state, while minimally affecting the responses in 

the extended state. 

3.5.1 Force and energy landscapes of asymmetrically multistable chains 

A schematic of a multistable chain is presented in Figure 3-22, which shows a mechanical system 

of n asymmetrically bistable elements. The representation is similar to that in Figure 3-14, but clearly 

denotes the local reaction froces and displacements of relevance in this section. The masses 

represent the inertia of each element, which exerts a strong influence on the system’s dynamic 

response. Each bistable spring has the characteristic reaction force and potential energy profiles 

depicted in Figure 3-21. 

 Figure 3-23 presents the potential energy ܷ and global reaction force response ܨସ of a system 

with ݊ = 4 units, as the end displacement ݔସ is varied. Only forces and energies corresponding to 

statically stable configurations are shown. Since only ݔସ is prescribed, the internal bistable links are 

allowed to settle at statically stable equilibria and many combinations of displacements ݔଵ, ,ଶݔ  ଷ areݔ

possible for a given global end displacement ݔସ. For example, consider the behavior of a chain with 

߰ = 0.4, shown by the dash-dot curves in Figure 3-23, where for an end displacement of ݔସ = −0.2m, 

Figure 3-22. Schematic of a mechanical system composed of four masses connected by bistable springs. These bistable 
springs have cubic linear force response as presented in Eq. (3-1). 
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there are two distinct levels of potential energy and reaction force marked by stars. These two points 

correspond to different combinations of internal displacements that result in distinct global force 

and energy responses 118,119. 

3.5.2 Quasi-static deployment paths of asymmetrically multistable chains 

 Due to the existence of multiple configurations and the sequence in which individual bistable 

links are deployed, there exist many possible pathways as the system transitions quasi-statically 

from a fully collapsed state to a fully extended state. A few examples are presented in Figure 3-24 for 

a structure with ݊ = 4 elements, each with ߰ = 0.1. To facilitate analysis and discussion in terms of 

local deformations, the following local strains are introduced: 

߳௜ = ௜ݔ − ݅ ௜ିଵ forݔ ≥ 1 (3-10) 

where ݔ଴ =  .and ܷ(߳௜) are governed by the single-element responses shown in Figure 3-21 (௜߳)ܨ .0

The force response and potential energy landscape for prescribed ݔସ are indicated by thin dotted 

curves. The end-actuated path follows a branch until it becomes unstable, and then snaps to a lower-

energy configuration. This is repeated until all four bistable links are extended to their low-energy 

Figure 3-23. (a) Potential energy and (b) global end reaction force responses for a system composed of four serially-
connected bistable elements as the end displacement ݔସis varied. Four values of ߰ are considered, and only stable 

configurations are presented. The stars denote an example of a prescribed end displacement with two distinct internal 
configurations with different potential energies and force responses. 



74 
 

states. The end-actuated path is also known as a barrier-free path as it does not require any local 

energy barriers to be overcome. The system is always at a local energy minimum for a prescribed 

end strain ݔସ. The barrier-free path also maximizes hysteresis when considering a full cycle of 

deployment to the extended, low-energy state and compression back to the collapsed topology 106,109, 

 The trajectory that follows potential energy minima is known as the Maxwell path. This path 

involves internal state transitions that cross large local energy barriers for a fixed global topology 106. 

These local energy barriers are overcome in systems that are subjected to local thermal noise and 

fluctuations, but represent an impractical transition path for controlled, deterministic systems 105,120. 

However, the Maxwell path can be approximated here by enforcing conditions that result in only local 

state transitions. For example, the ݅௧௛ bistable link may be deployed by fixing ݔ௜ିଵ while ݔ௜  is varied, 

along what is here referred to as the locally-actuated path. Thus, only ߳௜  undergoes a transition from 

߳௔ to ߳௕ , while all other bistable links remain at an energy minimum with zero stress or local reaction 

force. This process is repeated for ݅ = 1 … ݊. The dash-dot curves in Figure 3-24 illustrate the local 

actuation force required and total strain energy of the system along this path as a function of global 

displacement ݔସ. Since local state transitions are employed, the path does not overlap the global force 

Figure 3-24. (a) Global potential energy and (b) local actuation force for three different quasi-static deployment paths of a 
system composed of four bistable elements with ߰ = 0.1. 
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and energy profiles of the thin dotted curve. A variant of the locally actuated path is a sequentially-

actuated path, denoted by the dashed curve in Figure 3-24. Starting from the fully collapsed 

configuration, displacements ݔ௜ = ,ଵݔ  … ,  ௡ are sequentially prescribed until the sub-systemݔ

consisting of element masses ݉ଵ, … , ݉௜  is at the extended state. The sub-system is always at a static 

equilibrium as ݔ௜  is varied, thus there may be non-zero local stresses among the elements in this 

subsystem due to the force applied to mass ݉௜ . This represents the main distinction from the locally 

actuated path, where only the ݅௧௛ bistable element experiences local stresses. 

The net work performed at the point of displacement control as the structure is extended is 

shown in Figure 3-25(a), and is obtained by direct integration of the corresponding force curves in 

Figure 3-24(a). Figure 3-25(b) presents the positive work performed during extension, considering 

only regions where the actuation force ܨ satisfies ܨ > 0, and reflecting the fact that mechanical work 

performed on an actuator is generally not recoverable. In effect, the positive actuation work is a 

measure of the cumulative activation energy required to deploy the chain to a given length. Results 

clearly indicate that extending the chain through local or sequential actuation of individual bistable 

links is more energy-efficient than the end-actuated, barrier-free path. 

Figure 3-25. (a) Net and (b) positive actuation energies for the deployment of a four-element asymmetrically multistable 
chain, indicating that sequential or local actuation is more efficient than the barrier-free path. 
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3.5.3 Dynamics of chain deployment 

 While the prior section provides insight into the different deployment pathways of a multistable 

chain, its findings are insufficient to understand the behavior when system dynamics are considered. 

Under dynamic loads, the structure will not smoothly follow the reaction force and energy profiles 

presented in Figure 3-23 and Figure 3-24, and the kinetic energy of the masses plays an important 

role. In fact, the energy released from one element as it transitions from high-to-low potential 

configuration may be sufficient to overcome the energy barrier of the subsequent link, resulting in a 

self-powered deployment sequence that propagates along the chain.  

 To better understand the conditions that can lead to this phenomenon, numerical studies are 

conducted on a four-element chain. Normalized masses ݉௜  and linear damping coefficient ߟ of each 

element are selected such that linearized natural frequencies and damping ratios in the vicinity of 

the low-energy stable state of each element are ݓ௡ = 1 and ߦ = 0.4, respectively. The selection of 

asymmetry parameter ߰ = 0.1 means that stiffness terms are identical to the quasi-static case 

considered in Figure 3-24 and Figure 3-25. The system is initially in the fully collapsed configurations, 

where all elements are in their high-potential stable state. One of the masses ݉௜  is prescribed an 

initial velocity ݒ଴, hence the initial energy of the system is ଴ܶ = 0.5(݉௜ݒ଴
ଶ). The remaining elements 

are initially at rest. Figure 3-26 presents the transient results for an initial kinetic energy of ଴ܶ =  ܬ 0.3

applied to (a) the first element, and (b) the end element. All element displacements ݔ௜  are offset for 

clarity. The thin dotted lines in Figure 3-26 denote displacements ݔସ of the end mass corresponding 

to increasing numbers of state transitions. When the initial energy is applied to the first element, 

there is no configuration change and the initial and final element displacements are the same. 

Conversely, when the same energy is applied to the last element, a sequence of state switches is 

triggered. All four elements switch to the low energy state, fully deploying the structure. Notably, the 

initial energy ଴ܶ =  is less than the total activation energy required to quasi-statically deploy the ܬ 0.3

structure as presented in Figure 3-25(b), despite the presence of dissipation in the dynamic case. 
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This implies that the impulse applied to the end element is sufficient to trigger a sequence of state 

transitions activated by the energy released from the previous transition event, and motivates 

further investigation to uncover the distinct transition pathways when considering dynamic rather 

than quasi-static deployment. 

3.5.4 Experimental demonstration 

 The test bed presented in Figure 3-27(a) facilitates experimental investigation of the behavior 

shown in Figure 3-26. The apparatus consists of four nominally identical modules fabricated using a 

3D printer. Bistable interactions between adjacent modules are achieved using a combination of 

spring steel beams to provide positive stiffness, and permanent magnets to provide negative 

stiffness. Asymmetry is generated by introducing an offset between the position of magnets and the 

mounting points of the spring steel beams. Linear electromagnetic actuators are mounted to each 

module, providing means to deliver impulsive force to an element. The entire assembly is on mounted 

Figure 3-26. Transient results of element displacements in consequence to an impulsive excitation applied to (a) the first 
element and (b) last element of a four-element chain with ߰ = 0.1, and a linearized damping ratio ߞ = 0.4 in the low-

energy state. The same initial kinetic energy is prescribed in both cases, yet the system deploys to its low-energy 
configuration only if the initial energy is prescribed to the last element. 
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rails via linear bearings. A laser vibrometer mounted to the table records the displacement and 

velocity of the end element ݉ସ, while a video camera records the experiments from above. 

 Figure 3-27(b) presents aggregate results from repeated tests where the structure is initially in 

the high-energy collapsed state and an individual element is impacted by the solenoid actuator. The 

horizontal axis shows current applied to the solenoid, which is related to the measure of initial 

energy, and the vertical axis indicates the number of elements deployed to the low-energy state in 

consequence to the impulse. Five tests are conducted for each condition. The points indicate the mean 

and error bars indicate standard deviation. A minimum current level is required before snap-through 

events are activated. More elements are deployed when applying this critical current level to the last 

element in the chain as compared to the first element, which corroborates the observations from 

Figure 3-26. 

 

 

Figure 3-27. (a) Testbed to facilitate dynamic experiment into deployment of asymmetrically multistable chains. (b) 
Aggregate results from ݊ = 5 trials at each condition, showing the number of deployed elements in consequence to 

impulsive excitation at the first (solid line) and last (dashed line) element. Applying the impulse to the last element as 
opposed to the first element is shown to result in more deployed elements for lower input energy levels 
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3.5.5 Analysis and discussion 

 The behavior illustrated in Figure 3-27 is observed for a range of asymmetries and initial 

energies. To facilitate a more comparison for impulse thresholds that result in deployment of a four-

element chain, Figure 3-28 presents contour plots obtained from numerical analyses, colored by the 

number of bistable links deployed in consequence to an impulse applied (a) at the first element, 

closest to the base of the structure and (b) at the last element in the chain. All elements are initially 

in the high-energy, collapsed state. Results are presented for a range of initial kinetic energy ଴ܶ and 

asymmetry ߰, while linear viscous damping coefficient is such that the linearized damping ratio in 

the low energy state is ߞ = 0.4. When the impulse is applied to the last element in the chain, the 

minimum energy required to trigger deployment is lower than the case for which the impulse is 

applied at the base, and this behavior is noted for all levels of asymmetry considered. Furthermore, 

full deployment, where all four links are deployed, also typically requires less energy when the 

impulse is applied to the last element in the chain. The dotted lines show the activation energy 

required to trigger a transition in a single element, and the dashed lines show the activation energy 

Figure 3-28. Number of bistable links deployed in consequence to an impulse applied (a) at the first element, closest to 
the base of the structure and (b) at the last element in the four-element chain. Asymmetry and the length of the chain are 

varied. Linearized damping ratio is  ߞ = 0.4 in the low energy state for each element. Dotted lines show the activation 
energy required to trigger a transition in a single element. Dashed lines show the activation energy required to deploy the 

entire chain under quasi-static, locally-actuated conditions. 
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required to deploy the entire chain under the quasi-static, locally-actuated conditions described in 

Section 3.6.2. There is a region of parameters in Figure 3-28(b) for which dynamic deployment of the 

four-element chain requires less energy than the quasi-static case, and the cases considered in Figure 

3-26 lie within this region. Analysis of time-series data shows that deployment of bistable links in the 

case where the initial impulse is applied closest to the base does not begin at the base element itself, 

but at the free end, after the initial impulse has propagated through the entire chain. 

The discussion has thus far been limited to a four-element chain, but the benefits of dynamic 

deployment may be further enhanced by considering chains of greater length, where conversion of 

potential to kinetic energy can trigger further state transitions along the chain. Figure 3-29 presents 

results in a manner similar to Figure 3-28, but where the chain length is varied along the vertical axis 

and the asymmetry parameter ߰ = 0.1 for all elements. As before, dotted and dashed lines show the 

quasi-static activation energy for the deployment of a single element, and the entire chain, 

respectively. Figure 3-29(a) shows results when an impulse is applied to the first element, closest to 

the fixed base, while (b) presents the case when the impulse is applied to the last element in the chain. 

Figure 3-29. Number of bistable links deployed in consequence to an impulse applied (a) at the first element, closest to 
the base of the structure and (b) at the last element in the chain. Initial kinetic energy and length of the chain are varied. 
Linearized damping ratio ߞ = 0.4 in the low energy state for each element, and asymmetry parameter ߰ = 0.1. Dotted 
lines show the activation energy required to trigger a transition in a single element. Dashed lines show the activation 

energy required to deploy the entire chain under the quasi-static, locally-actuated conditions. 
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Most of the parameter space considered in Figure 3-29(a) does not result in deployment, with the 

exception of short chains subject to an impulse with large energy. This, again, is due to the links being 

deployed after the initial impulse has propagated through the length of the entire chain. In longer 

chains, more energy is likely to be dispersed and dissipated before the last element begins to oscillate, 

and hence these oscillations are less likely to overcome the local energy barrier required for link 

deployment. 

In contrast, there is a clear minimum of energy in Figure 3-29(b) above which deployment is 

observed for all chain lengths considered. For impulses with an energy above this threshold, chains 

up to a length of approximately 20 elements are completely deployed. Since the transient dynamics 

of long multistable chains are a complex interaction of large-amplitude transition waves and smaller-

amplitude oscillations, both of which can be reflected at the fixed and free boundaries 121, the 

deployment is general not sequential. For large chain length in Figure 3-29(b), not all bistable links 

are extended, despite an impulse of sufficient energy to trigger deployment of some elements in the 

chain. Nevertheless, the findings indicate the ability to exploit stored energy to trigger dynamic 

deployment and length change of multistable chains with much less energy than needed for 

equivalent quasi-static deployment. 

 Making certain simplifying assumptions facilitates further intuition and insight into the reasons 

behind the significantly different behavior in consequence to impulses applied to the two ends of the 

chain. This is achieved by considering the transient dynamics only on the individual module at which 

the impulse is provided. Based on the assumptions summarized in Figure 3-30, the energy barrier 

for the case when the impulse is applied to the first element is augmented as: 

ଵܷ
∗ = ଵܷ − ଵ

ଶ
ቀௗమ௎భ

ௗೣ
మ ቁ

௫ೌ

௔ݔ
ଶ (3-11) 

where ଵܷ is the nominal potential energy at the high-energy well corresponding to the initial state of 

each element, while ݔ௔ is the bistable spring deflection from the neutral position at this configuration.  
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 Note that ଵܷ
∗ now includes the additional energy barrier associated with overcoming the 

linearized stiffness in this potential over the displacement ݔ௔ , reflecting the influence of the 

additional stiffness element in Figure 3-30(a). According to the derived stiffness parameters of Eq. 

(3-9) based on the asymmetry and energy barrier, the approach described earlier in this chapter and 

in Appendix B can be applied to predict the onset of energy-releasing state transitions. As an 

illustrative example, a ten-element chain is considered in Figure 3-31. Contour plots showing the 

number of elements deployed due to impulsive excitations of various magnitude at (a) the first 

element in the chain and (b) the last element in the chain. The red boundary shown denotes the onset 

of energy-releasing state transitions as predicted from the single-element approximation of Figure 

3-30, demonstrating a good quantitative prediction in both cases. 

Figure 3-30. Simplifying assumptions used to facilitate prediction of the onset of energy-releasing state transitions when 
an impulse is applied at the (a) first element in the chain and (b) last element in the chain. The key assumption made here 
is that the impulsive excitation causes the element to transition before a significant proportion of the initial kinetic energy 

has an opportunity to disperse among other elements in the chain. When an impulse if applied at the first element, the 
influence of the stiffness connected to the rest of the chain must be included when computing the energy barrier that 

must be crossed in order to initiate state transitions.  
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3.6 Conclusions 

 The energetic versatility and functionality exhibited by skeletal muscle provides great inspiration 

for the development of advanced structures and materials. Inspired by these characteristics, and by 

the mechanics of muscle micro- and nano-scale building blocks – sarcomeres and cross-bridges – this 

chapter investigates the ability of modular structures composed of asymmetrically bistable 

constituents to capture and store recoverable strain energy in higher-energy stable configurations. 

Individual one-dimensional modules are designed, fabricated, and comprehensively studied, 

providing insight into how geometric parameters influence asymmetrically bistable strain energy 

landscapes. System identification enables analytical prediction of the transient dynamics of 

asymmetrically bistable modules using Jacobi elliptic functions. Modular assembly of asymmetrically 

bistable constituents is then explored, generating complex, multiwall strain energy landscapes and 

enhancing opportunities for strain energy capture by exploiting the different energy levels of the 

structure’s stable configurations. The energy trapping behaviors of single modules and multiple-

Figure 3-31. Number of bistable links deployed in consequence to an impulse applied (a) at the first element, closest to 
the base of the structure and (b) at the last element in a ten-element chain. Initial kinetic energy and asymmetry are 

varied. The red solid denotes the onset for state-transitions as predicted by the single-element analysis approach using 
the simplifying assumptions summarized in Figure 3-32.  
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module structures under impulsive excitations is investigated, demonstrating their ability to capture 

a portion of the initial kinetic energy of the excitation as recoverable strain energy. The influences of 

asymmetry, dissipation, and noise are explored, revealing a balance between maximizing the amount 

of captured energy and minimizing the risk of the structure snapping back to its low-energy state.  

 To study the release of this stored energy to enable efficient actuation and deployment, a 

comparison of quasi-static state transition pathways of single- and multi-element structures is 

undertaken. Analysis shows that deployment through a series of localized, sequential transition 

events requires less total activation energy and is more efficient than deployment by controlling the 

global end displacement along a barrier-free path. When dynamics are considered, the activation 

energy required for deployment may be less than the quasi-static case by leveraging the energy 

released from one element to facilitate the activation of subsequent state-transitions. Numerical and 

experimental results demonstrate that the location of the initial energy input to activate is influential 

in determining the effectiveness in initiating full deployment of the asymmetrically multistable chain.  
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Chapter 4. Modular material systems inspired by skeletal 

muscle’s microscale geometry and architecture 

4.1 Introduction  

 Many of the characteristics that make skeletal muscle a great inspiration for advanced structural 

and material systems, such as robustness, versatility, and adaptability 5,14, arise from interactions 

demonstrated between constituents across its various length scales, from muscle fibers down to 

microscale sarcomeres and nanoscale cross-bridges 4,54. Across these different length scales, skeletal 

muscle’s constituents take advantage of geometries and multidimensionality for force generation or 

length change along a desired axis. Myocytes, the striated cells commonly called muscle fibers, consist 

of bundles of myofibrils that are sectioned into units called sarcomeres. The length-tension responses 

of sarcomeres, the basic force generating unit of muscle, are strongly governed by the spacing 

between its adjacent thin and thick filaments 37.  In the macroscale, a muscle’s fiber architecture and 

orientation depend on its location and function. Certain muscles in the hands, shoulders, and 

quadriceps have a pennate architecture, where fibers are oriented obliquely to the tendon and whole 

muscle motions 5,22. Pennation helps prevent over-straining during large displacements and 

enhances force generation by exploiting an effective mechanical gearing effect 7,17. The contractile 

forces observed in pennate muscles depend on the amount of overlap between actin and myosin 

filaments of the sarcomere contractile units as well as the fiber pennation angle 23,122.  
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Inspired by these aforementioned behaviors at different scales, this chapter investigates how the 

incorporation of multidimensionality and interactions between axial and transverse displacements 

influences the mechanics of structures exhibiting multistability and metastability. In contrast to the 

dynamic features studied in previous sections, this chapter will focus primarily on how modulation 

of transverse effects and system geometries can influence the mechanical response of structural and 

material systems. However, as illustrated in Chapters 2 and 3, a thorough understanding of static 

features provides valuable knowledge and intuition on the system’s dynamic response. 

 There are several examples of multistable structures that rely on fixed transverse confinements 

to enforce post-buckled configurations of their constituent elements when subject to axial loads 

96,104,123,124. However, the advantageous force and velocity amplifications observed in pennate 

muscles arise from global force and displacement actions that are not aligned with the motions of its 

constituent fibers 68.  Furthermore, metastability is an important feature in skeletal muscle 

mechanics that helps explain its rapid, passive tension recovery in response to length change and the 

coordinated force generation of sarcomeres 40,54. Therefore, this chapter aims to uncover the rich 

mechanics that can arise in structural and material systems that specifically combine multi- and 

Figure 4-1. (a) Parallel and (b) pennate configurations of three constituent elements. 
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metastability with oblique motions to activate state transitions. To illustrate this concept, Figure 

4-1(a) depicts three elements in a parallel configuration subject to a single global displacement ݖ, 

which is aligned with the axes of the elements’ individual deformations ݔ௜ . Each of these elements 

may individually exhibit bistability or metastability, and the global reaction force ܨ is the sum of the 

individual modules’ reaction forces ܨ௜  in consequence to the global displacement. For the pennate 

architecture presented in Figure 4-1(b) under prescribed transverse, horizontal confinement ݕ଴, the 

global displacement ݖ along the vertical axis is oblique to individual module deformations ݔ௜ , and the 

global reaction force F depends on the individual modules’ reaction forces ܨ௜  and orientation angle ߠ. 

4.1.1 Preliminary experimental investigation 

 Investigation of the mechanics facilitated by the oblique orientation of metastable and 

multistable constituents is undertaken using silicone rubber specimens with circular voids. Such 

architected material systems have been shown to exhibit intriguing mechanical properties, including 

Figure 4-2. Experimental setup indicating directions of horizontal transverse confinement and vertical axial compression. 
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tailorable buckling 124, negative Poisson’s ratio 125, and pattern switching 126,127. Notably, this 

architecture may exhibit metastability – the existence of multiple possible internal configurations for 

prescribed global boundary conditions 124,128. While the influence of transverse confinement on 

pattern switching has been identified 124, the mechanics that arise from their oblique global motions 

as depicted in Figure 4-1, analogous to large macroscopic shear, have not yet been explored. 

Specimens are fabricated from a two-component silicone rubber (Smooth-On Mold Star 15 SLOW 

129) mixed at a 1:1 ratio. Following mixture, the rubber is allowed to rest for 15 minutes to allow 

trapped air bubbles to escape before being poured into molds fabricated using a stereolithographic 

3D printer (Form 2, Formlabs Inc., USA). The printer employs a black photopolymer resin (GPBK02, 

Formlabs Inc., USA) a 50 ݉ߤ print resolution. The silicone rubber is cured for four hours at room 

temperature (23 °C) before being extracted from the molds, and the specimens are allowed to dry for 

at least 24 hours prior to testing. Specimens are tested as depicted in Figure 4-2. Transverse 

confinement is provided in the horizontal direction by 6.4 mm thick aluminum beams clamped to the 

upper and lower fixtures of an Instron 5950 universal testing machine. Uniaxial compression tests 

are performed, causing the specimen’s right hand side to be displaced vertically with respect to the 

left hand side. 

To gain preliminary insight, uniaxial compression tests are performed on a specimen with a 

length of 70 mm and width of 28 mm. Circular voids with a diameter of 8 mm are arranged in two 

columns such that transverse compression causes the voids to collapse together in a predictable 

manner. The center-to-center distance between adjacent voids is 10 mm. The experimental setup 

presented in Figure 4-2 shows this specimen under a transverse confinement of 25.4 mm, imparting 

a transverse compression of 2.6 mm. Force-displacement profiles obtained from uniaxial 

compression tests in this configuration are shown in Figure 4-3(a). The solid and dotted curves 

represent two different orientations of the specimen. The observed reaction force exhibits a slight 

negative slope, indicating negative stiffness, between vertical displacements of approximately -4 mm 
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and 4 mm. Two locations where the reaction force crosses the horizontal axis are marked by a 

triangle and star in Figure 4-3(a), while Figure 4-3(b) and (c) present images of the corresponding 

configurations. The specimen exhibits relatively small local deformations under these two prescribed 

global displacements. 

Under a transverse confinement of 19.1 mm, equivalent to a compression of 8.9 mm from the 

specimen’s natural width, uniaxial compression tests yield the highly non-monotonic reaction force-

displacement profile presented in Figure 4-4(a). The images in Figure 4-4 (b-d) depict the 

deformations at three distinct configurations where the measured reaction force curves cross the 

zero axis with positive slope, denoting stable configurations. Compared with the results shown in 

Figure 4-3, the local deformations for these configurations are much larger and the circular voids are 

almost entirely collapsed. In addition, there is an increased discrepancy between loading and 

unloading paths, which arises due to contact and friction between the silicone rubber sections 

surrounding the voids.  

Figure 4-3. (a) Force-displacement profile under 2.6 mm transverse compression and a vertical displacement rate of 0.1 
mm/s. The solid and dotted curves show responses from specimen orientations that are rotated by 180 degrees. (b,c) Still 

images showing deformations of the specimen at the corresponding marked points on the force-displacement profile. 
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The results of Figure 4-3 and Figure 4-4 demonstrate the significant influence of transverse 

confinement and oblique motions on the multistability of a material specimen with circular voids. If 

the material is considered as a section of a bulk architected material, the outcomes illustrate highly 

non-monotonic shear stresses. However, despite exhibiting strong multistability, there is no 

observed metastability. For a given vertical displacement, the distortion of all voids in each of the 

two columns is almost identical. Furthermore, the voids’ deformations are uniform. The deformed 

shapes of the collapsed voids at the both the top and bottom of the specimen are the same. An 

architected material with local deformations that vary throughout its domain can more fully exploit 

the advantages of combining metastability and modularity. 

  

Figure 4-4. (a) Force-displacement profile under 8.9 mm transverse compression and a vertical displacement rate of 0.1 
mm/s. The solid and dotted curves show responses from specimen orientations that are rotated by 180 degrees. (b-d) 
Images showing deformations of the specimen at the corresponding marked points on the force-displacement profile. 
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4.2 An architected material system inspired by skeletal muscle’s microscale 

geometry 

To achieve locally-targeted deformations that vary across the material domain, an architecture is 

developed that is inspired by skeletal muscle’s exploitation of geometric confinements for length and 

force response controls. Specifically, the proposed material system takes inspiration from the 

arrangement of attached cross-bridge elements in sarcomere contractile units, presented in Figure 

4-5(c-d). The geometric frustrations imposed by sarcomere length and lattice spacing geometric 

influence the mechanics of the cross-bridge power stroke 37,57,130, in which the myosin head 

undergoes a conformational change due to adenosine triphosphate (ATP) hydrolysis. These 

constraints also influence its ability to store strain energy 6. Cross-bridges are oriented obliquely to 

actin and myosin filaments, and there is a strong interaction between axial contractile motions, 

transverse or radial forces, and elastic energy storage in skeletal muscle cross-bridges 38.  The 

material architecture under consideration is presented in Figure 4-5(e-h), and is composed of unit 

modules consisting of four circular voids. These units buckle under compression and undergo 

Figure 4-5. (a) Muscle fibers are composed of bundles of rod-like myofibrils (b), which consist of actin and myosin 
proteins arranged in a lattice and sectioned into units called sarcomeres (c). Actin and myosin are connected by cross-

bridges (d), with power-stroke mechanics influenced by lattice geometry. (e) A section of proposed architected modular 
material system subject to compression (f), resulting in local buckling of constituent modules (g). Application of a shear 

load causes a state switch (h) in the void pattern. 
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discrete state-switches when subjected to shear loads. Neighboring units are separated by larger, 

rectangular voids which allow adjacent modules to express unique deformed topologies.  

The unique topologies of adjacent four-void modules within a larger section of the material 

reflect the fact that each attached cross-bridge may be in either a pre- or post-power stroke state. 

While there is coordination among cross-bridges in a sarcomere, there are a large number of possible 

combinations of cross-bridge conformations in a single sarcomere 54. Thus, myofibrils and sarcomere 

contractile units may exhibit passive multistability, the existence of numerous possible myofibril 

lengths for a given external load. Furthermore, they exhibit metastability, the existence of multiple 

possible combinations of cross-bridge conformations for a prescribed sarcomere length 13,54,75. This 

metastability has been proposed as the key ingredient that may explain the passive tension recovery 

of skeletal muscle fibers at very short time scales 54.  

The architected material proposed here indeed gives rise to both multistability and metastability. 

Multiple equilibrium topologies of the modular constituents are seen in in Figure 4-6, which shows 

undeformed and deformed topologies for specimens composed of (a) a 2x2 arrangement of modules, 

Figure 4-6. Specimens highlighting a four-void constituent module with a natural width of 30 mm. (b) two serially-
connected sets of two modules in parallel showing local buckling under compression. (b) A three-module specimen under 
transverse confinement, where each of the three modules exhibits a different deformation patterns despite being subject 

to the same confinement. 
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and (b) a 3x1 arrangement. A single four-void constituent module is highlighted for reference, and 

all modules are nominally identical. The two examples clearly demonstrate how the architected 

material design incorporating large voids to separate modules can lead to deformation patters that 

are localized to each module. Further, the 3x1 specimen clearly shows the existence of multiple 

statically stable equilibrium topologies for the same level of compression. To gain a comprehensive 

understanding of the unique mechanics afforded by the proposed material arrangement at the unit 

module level, numerical and experimental investigations are carried out on a single four-void 

constituent module. 

 

4.3 Experimental and numerical analysis methods 

 Key geometric parameters for the architected material specimens are presented in Figure 4-7(a). 

The four voids have alternating diameters ݀ଵ and ݀ଶ. All specimens have height ℎ = 15 mm, width 

ݓ = 15 mm, wall thickness ݐ = 0.88 mm, and average void diameter ௗభାௗమ
ଶ

 = 4.12 mm. The center-

to-center distance between adjacent voids is 5 mm. A transverse compression ߜ௫ as shown in Figure 

Figure 4-7. (a) Schematic of a unit module considered in this research, indicating important dimensions. (b) Transverse 
compression ࢞ࢾ applied by aluminum plates. As shown in Figure 4-2, the plate on the left side is clamped to the base of a 

tensile testing machine, while the plate on the right side is clamped to the upper fixture and load cell. 
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4-7(b) is enforced by rigid aluminum plates clamped to the upper and lower fixtures of an Instron 

5950 universal testing machine. Initial configurations are manually set by adjusting the module after 

it is placed in the test fixture. This is necessary to fully explore the range of displacements in which 

the various configurations are observed. 

 To supplement and guide experimental efforts, and provide a deeper understanding of state-

switching behaviors in the architected material, numerical simulations are conducted using the 

ABAQUS software package (Dassault Systèmes Simulia Corp., USA). The Mold Star 15 SLOW silicone 

rubber material is modelled using a Neo-Hookean approximation. Young’s modulus is obtained from 

a fit to experimental data for bulk material specimens, as shown in Figure 4-8. The uniaxial Neo-

Hookean stress-strain relationship for an incompressible material 131 is: 

ߪ = ଵܥ2 ቀ߳ + 1 − ଵ
(ఢାଵ)మቁ   (4.1) 

where ܥଵ is a material constant equal to ா
଺

 for the incompressible case, and ߪ and ߳  are the engineering 

stress and strain, respectively. The finite element model employs a nearly-incompressible Poisson’s 

Figure 4-8. Stress-strain relationship of Mold Star 15 Slow silicone rubber from tension and compression tests. Linear-
elastic and Neo-Hooke approximations are also presented. Inset: Bulk material specimens used in (left) compression and 

(right) tension tests. 
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ratio to avoid numerical stability issues that would arise from a purely incompressible material with 

infinite bulk modulus 132. The 2D domain is meshed with plane-strain six-node modified hybrid 

quadratic elements (element type CPE6MH). Under large transverse compression, material self-

contact is possible when the voids completely collapse. This behavior is incorporated in the finite 

element model by including a self-contact property, avoiding material interference.  

In order to capture state transitions, dynamic numerical analyses are conducted using the 

implicit ABAQUS/Standard solver. The left-most edge of the module is fixed in space while the right-

most edge is vertical displaced. Several combinations of transverse compression and vertical 

displacement paths are employed to reach the various configurations of a unit module. A small 

damping factor and slow displacement rates help enforce quasi-static conditions while capturing the 

locations of discrete state transitions. The force responses of interest are obtained by a summation 

of the vertical reaction forces (RF2) of the nodes on the right-hand-side boundary of the element, 

while strain energy is extracted from the ALLSE variable. 

 

4.4 Results and discussion 

4.4.1 Experimental results 

 As illustrated by the image shown in Figure 4-6(b) of a 3x1 arrangement of nominally identical 

units, each module may exhibit one of many possible configurations. Thus, to properly probe the full 

range of displacements under which each configuration is observed, cyclic loading is applied from 

the zero-displacement position in both directions, under a variety of initial conditions.  

 Figure 4-9 presents measurements of vertical reaction force, ܨ௬, for a module with ݀ ଵ = ݀ଶ = 4.12 

mm under cyclic loading up to 6 mm in both directions for a transverse compression of ఋೣ
௪

= 0.18.. 
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Loading direction is indicated by the arrows and the starting and ending points are indicated by the 

hollow and filled circles, respectively. In Figure 4-9(a), the initial, final, and intermediate deformed 

shape of the module are characterized by the voids that point downwards, resulting in a downward 

translation of the central vertical member of the module with respect to the left and right edges. In 

Figure 4-9(b), the deformations are characterized by a symmetric configuration in which the voids 

are pointed in the upward direction. There is a large region of negative stiffness or negative slope 

around the zero-displacement position. Two positive stiffness regions are noted near the upper and 

lower limits of vertical displacement considered in these experiments. 

 When the initial configuration is characterized by voids that alternate between horizontally- and 

vertically-dominant shapes, half-cycle loading and unloading tests generate the responses presented 

in Figure 4-10. Only half cycles are considered since these response curves include a transition to the 

configurations shown in Figure 4-9. Hence, completion of the full cycle would simply replicate a 

portion of the prior results. Figure 4-10 (a) and (b) present results from tests where the initial 

configuration is characterized the upper left void that is deformed such that its major axis is in the 

Figure 4-9. Force displacement results a full loading cycle when the module has an initial deformed configurations 
characterized by (a) voids pointed upwards and (b) voids pointed downwards. The final state is the same as the initial 

state in both instances. 
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vertical direction. On the other hand, Figure 4-10 (c) and (d) present results from tests where the 

initial configuration is characterized a horizontal shape of the upper left void. To probe the full extent 

of these configuration, loading cycles are initiated in both directions from the starting point. The 

segments of these tests highlighted by thick dotted and dash-dotted curves represent the portions in 

which the module retains the starting configuration. These segments are later aggregated (in Figure 

4-11 and Figure 4-13) to show more comprehensive force response results under all observed 

configurations. On the other hand, the portions of the response shown by the thin black lines 

Figure 4-10. Responses from compression and extension tests where the initial configuration is characterized the upper 
left void deformed such that it is extended (a,b) vertically and (c,d) horizontally. These responses include transitions to 

configurations presented in Figure 4-9, and the final configurations are presented in each case. The thick curves represent 
the portions of the cycles in which the starting configuration is maintained, while the thin segments denote portions of the 

cycle following a transition to a different configuration. 
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correspond to segments where the configuration duplicates one of the paths shown in Figure 4-9, 

and are thus excluded from the aggregated results. One notable feature of the responses shown in 

Figure 4-10 is the discrete state transitions from the initial configuration. These are indicated by 

vertical segments of the force response that cross the horizontal axis, resulting in sudden changes to 

reaction force magnitude and direction.  

4.4.2 Influence of transverse confinement on material response 

Aggregated measurements of vertical reaction force, ܨ௬, for a module with ݀ଵ = ݀ଶ = 4.12 mm 

are presented in Figure 4-11(a-c) for three different levels of transverse compression ߜ௫ . The 

approach outlined in the prior section is adopted to aggregate the responses from several loading 

cycles for each compression level, to capture the full extent of the observed configurations. For 

example, the response shown in Figure 4-9 and Figure 4-10 are collected to generate the results 

shown in Figure 4-11(b).  

Overall, reaction force magnitudes are greater with the increase of ߜ௫ , which is intuitive based on 

larger local stresses associated with greater transverse compressions. Further, increased transverse 

compression results in larger hysteresis. The hysteresis is likely due to the onset of self-contact and 

friction as the voids collapse when subjected to the increased confinement, as suggested by the insets 

in Figure 4-11(a-c) and the results of Figure 4-3 and Figure 4-4. The four curves (solid, dashed, 

dotted, and dash-dotted) denote different deformed shapes, correspond to the segments of the same 

line styles shown in Figure 4-9 and Figure 4-10. The shaded regions around the zero-displacement 

positions highlight the range of displacements within which all four configurations are observed in 

experiments. This region is termed the highly metastable range, and the polygon labels in Figure 

4-11(b) correspond to the distinct metastable states shown Figure 4-11(d,e) for the case of ݕ = 0 and 

  .௫ = 2.7 mmߜ
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 The configurations are classified in two types according to the nature of the deformations. Aligned 

topologies are shown by solid and dashed curves, and denote deformations of the voids that are all 

aligned in the same direction. Polarized topologies, indicated by dotted and dash-dotted curves, are 

characterized by a rotation of the central segment, causing void deformations to alternate between 

horizontally- and vertically- dominant shapes.  

 The highly metastable ranges provide an opportunity to dramatically adapt stiffness and reaction 

force by switching between topologies while boundary conditions remain unchanged. Reaction force 

responses of the aligned configurations are characteristic of a bistable element, with a negative slope 

(i.e. negative stiffness) for a region surrounding vertical displacement 0 = ݕ, and positive slope or 

stiffness outside this region 96. On the other hand, the polarized states exhibit near-zero stiffness in 

Figure 4-11. (a-c) Experimentally-measured vertical reaction force-displacement responses for three levels of transverse 
compression ࢞ࢾ

࢝
 for a module with ݀ଵ = ݀ଶ = 4.12 ݉݉. Thin vertical dotted lines marked with arrows at the boundaries of 

the shaded strongly metastable range indicate discrete state transitions. Line styles correspond to the aligned and 
polarized topologies presented in (d) and (e). 
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the highly metastable range for ఋೣ
௪

 = 0.13 and greater stiffness as transverse compression is increased. 

The shaded metastable regions in Figure 4-11(a-c) are bounded by vertical dotted lines marked with 

arrows indicating observed polarized-to-aligned state transitions that occur passively in 

consequence to global displacements exceed the highly metastable range. These transitions 

correspond to sudden changes in reaction force magnitude and direction. The ability to switch 

between configurations within the metastable range would similarly result in a sudden change in 

reaction force magnitude, representative of the conformational change representing the power 

stroke in muscle cross-bridges. 

 Finite element analyses establish a deeper understanding of these state-switching behaviors. In 

a procedure similar to the one pursued for the experimental investigations, cyclic simulations with 

slowly varying boundary conditions are undertaken from various starting positions. The aggregated 

results of reaction force are presented in Figure 4-12(a-c) showing trends that are comparable with 

the experimental results in Figure 4-11 for the three considered levels of transverse compression ߜ௫ . 

The points highlighted in Figure 4-12(b) correspond to the aligned an polarized topologies in Figure 

4-12(d,e), which are equivalent to the experimental results presented in Figure 4-11(d,e). 

 Crucially, finite element simulations facilitate an examination of system energies, which is not 

possible directly from the experimental force response results in the presence of sudden, dissipative 

state transitions 106. The numerical results presented in Figure 4-12(f-h) reveal that strain energy 

levels increase with transverse compression, which is an expected result given that greater 

transverse compressions impart higher strains. Further, they reveal that the polarized configurations 

are at a higher energy level than the aligned topologies, and that polarized-to-aligned transitions are 

enabled by rapid releases of strain energy. The quantity of energy released in consequence to these 

transitions also increases with transverse compression. 
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 The variation in the number of available metastable configurations of the four-void unit as the 

boundary conditions are modulated shares some similarities with the recruitment of cross-bridges 

in activated muscle. For sarcomeres extended far beyond the natural length, there is reduced overlap 

between adjacent actin and myosin filaments, which reduces the likelihood of cross-bridge 

formation, 39 and hence the number of metastable configurations. The reduction in the number of 

cross-bridges available for recruitment also compromises the maximum possible active forces that 

sarcomeres can generate. Similarly, for sarcomere lengths much less than the natural elongation, thin 

Figure 4-12. Numerical results of a module with uniform void geometry subject to oblique displacements under three 
different levels of transverse compression. (a-c) Trends in reaction force responses show reasonable agreement with the 
experimental results shown in Figure 4-11(a-c). (f-h) Strain energy curves reveal the large strain energies stored in the 
polarized states within the shaded highly metastable regions. (d,e) Images showing aligned and polarized topologies as 

predicted by the finite element model, with line styles corresponding to the curves in (a-c, f-h). 



102 
 

filaments may overlap, and the radial distance between the thick filament and thin filament may 

increase 4,39. This can similarly compromise cross-bridge recruitment and force generation. 

4.4.3 Influence of void geometry on material response 

While varying transverse geometric confinements provides a means to tailor mechanical 

properties, certain behaviors may be programmed into the material itself by selection of geometric 

parameters. For instance, asymmetry can be introduced by varying void diameters ݀ଵ and ݀ଶ while 

keeping the wall thickness ݐ separating the voids at fixed ݐ = 0.88mm. An analytical approximation 

(see Section 4.5) suggests that such an approach may yield force and energy responses biased to one 

of the polarized configurations. Figure 4-13(a-c) present vertical force-displacement responses for 

units with (a) ݀ଵ = ݀ଶ, and (b,c) ݀ଵ < ݀ଶ. Corresponding numerical results for strain energy are 

shown in Figure 4-13(d-f). As the difference between diameters ݀ଵ and ݀ଶ grows, polarized states 

marked by dotted curves are observed for a larger range of vertical displacements, and are generally 

at a lower strain energy than those marked by dash-dotted curves. Thus, an asymmetry or bias is 

introduced towards polarized topologies characterized by vertically dominated deformed shapes of 

Figure 4-13. Force and energy responses of modules with non-uniform void diameters. (a-c) Experimental results 
showing vertical reaction force-displacement responses and (d-f) numerical results showing strain energies as void 

diameters ݀ଵ and ݀ଶ are varied, demonstrating a bias towards one of the polarized states as the difference between ݀ଵ and 
݀ଶ increases. Void geometry also influences the locations and extents of the highly metastable range 
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the smaller voids. This bias also influences the extent of the shaded highly metastable ranges and the 

locations of the polarized- to-aligned state transitions, which suggests an opportunity to program 

and tune the hysteresis and mechanical response of these modular constituents by means of strategic 

selection of void geometries. 

4.4.4 Programmable response 

 The results of Figure 4-13(a-c) show elements with varying ratios of diameters ௗమ
ௗభ

, resulting in 

different metastable ranges in which the polarized configurations are observed, The arrangement of 

several modules with varying void geometry provides a means to program the mechanical response 

by prescribing the order in which these transitions will occur in consequence to global shear motions.  

The results of Figure 4-14 illustrate how a section of the material composed of multiple modules with 

different void geometries can yield a programmable response under global shear. The uppermost 

element has ݀ଵ = ݀ଶ, the central module has ݀ଵ = 0.9 ݀ଶ, and the lower module has ݀ଵ = 0.8 ݀ଶ. 

Figure 4-14. Programmable response in an arrangement of modules with different void geometries. The upper modules 
has ݀ଵ = ݀ଶ, the central module has ݀ଵ = 0.9 ݀ଶ, while the lower module has ݀ଵ = 0.8 ݀ଶ. If the initial configuration is 
such that all three modules are the polarized state characterized by a vertical shape of the upper left void, prescribing 

shear motions will result in different thresholds for which sudden polarized-to-aligned transitions occur. These 
transitions are indicated by vertical jumps in reaction force. Results from three trials are presented, indicating 

repeatability. 
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Overall material dimensions are twice those of the prior section, facilitating easier manual 

adjustment of initial topologies. All three elements are initially in the polarized configuration 

characterized by a vertical shape of the upper left void. However, due to the varying bias introduced 

by the void geometry, the polarized states suddenly jump to aligned topologies at three different 

levels of shear. First, the module with greatest experiences this transition, followed by the central 

module, and then the symmetric element at the top of the material section. The regions for which the 

different combinations of configurations are observed are shaded. Results from three experiments 

are presented, indicated repeatability of the observed phenomena. 
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4.5 Analytical approximation using Euler’s elastica 

Examination of the central horizontal member of a unit module under transverse confinement, 

as shown in Figure 4-15(a), suggests that the deformation of this member may be approximated by 

large-scale deformations of an elastic beam clamped at both ends, providing some insight into the 

coexistent metastable configurations of the module. Enforcement of a nonzero clamp angle ߚ, as 

shown in Figure 4-15(b), reflects conditions of unequal void diameters in the module. To further 

develop the elastica model as a meaningful prediction of trends in the material module’s force and 

strain energy responses, elastic curve solutions are presented for the parameters and boundary 

conditions described in Figure 4-15(c). A flexible beam with length ܮ, Young’s modulus ܧ, second 

moment of inertia ܫ, is clamped at both ends at an angle ߚ with respect to the horizontal. The two 

Figure 4-15. (a) Unit module highlighting deformations of central horizontal member in polarized and aligned deformed 
topologies. (b) A nonzero clamp angle ߚ reflects the geometry of a module with unequal void diameters. (c). Schematic of 

a flexible beam with boundaries clamped at an angle ߚ. Insets show photographs of a unit module, highlighting the 
deformations of the central horizontal member and motivating their approximation by an elastic beam under large 

deformations with parameters as shown. 
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clamped ends are separated by a horizontal distance of ܮ − ௘ݕ ௫ and a vertical distance ofߜ , 

respectively. Here, the method developed by Shoup and McLarnan 133 is adopted, and further details 

are presented in Appendix D. The equations that result from this solution approach are solved using 

the built-in MATLAB function fsolve to yield solutions for the five unknowns. Since fsolve employs 

iterative solvers, suitable initial estimates must be provided. Appropriate initial guesses are 

employed to obtain elastica curves with the desired number of inflection points and concavities at 

the clamped ends 133 corresponding to the aligned and polarized topologies presented in Figure 

4-15(a). Then, the solutions are used to compute the bending strain energy in the beam 

 Nondimensionalized vertical reaction force and strain energy plots of the elastica model are 

presented in Figure 4-16(a-c) and (d-f), respectively, showing solutions with different numbers of 

inflection points. The bias observed in Figure 4-13(b,c) and (e,f) for material modules with ݀ଵ ≠ ݀ଶ 

is accounted for in the elastica model by prescribing a nonzero clamp angle ߚ at both ends, which 

predisposes the beam towards certain elastic curve solutions. The simple elastica model provides 

some insight into the force responses and strain energies of the different topologies of a unit module. 

Forces responses show a clear negative stiffness region for the two-inflection solutions that 

represent the aligned topologies. As presented in Figure 4-16 (e,f), the elastic curve solutions with 

three inflection points, which are an analogue to the polarized states of the module, are at a higher 

strain energy level than the two-inflection solutions. 
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The influence of bias is clearly noted, and the difference between the strain energies of the three-

inflection solutions grows as the clamp angle is increased. Stability of the elastica solutions is not 

considered, and the assumption of inextensibility in the elastica model and the absence of 

intersecting vertical members leads to an over-prediction of the range in which polarized (three-

inflection) states are observed. Nevertheless, key features such as the negative stiffness region in the 

aligned configurations, higher strain energy in the polarized states, and discrete changes in strain 

energy level during transitions from polarized states are reflected in the behaviors of a clamped 

elastic beam, providing perhaps a first approximation to the module response as key geometric 

parameters are varied, This is especially useful given the relative computational complexity required 

to solve the elastica model compared to the finite element model. The equations describing the elastic 

curve solutions can be solved numerically within seconds, while each cycle of the finite element 

model constructed in ABAQUS can take upwards of one hour on a PC with a Core i7 processor and 

16GB of installed RAM. Furthermore, the finite element model requires careful tuning of initial 

transverse compression and vertical displacement values for each variation of module geometry to 

Figure 4-16. Nondimensionalized (a-c) reaction force and (d-f) strain energy for the clamped elastica, with bias reflected 
by introducing a nonzero clamp angle β. Numerical results and the elastica model show that the polarized or three-

inflection states are at higher strain energy levels than the aligned or two-inflection states 
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probe all the configurations. On the other hand, solutions corresponding to different selection points 

of the elastica model are obtained by following simple, intuitive guidelines governing initial guesses 

for the segment angles at each boundary 133. These characteristics could make the elastica 

approximation a valuable design tool for the development of architected material systems composed 

of large numbers of modules with varying geometries. 

Models employing flexible beams to explain muscle’s microscale features have been previously 

explored by physiologists as a means to visualize and understand the apparent stability of 

sarcomeres in the negative stiffness ‘descending limb’ 10,39. An example is presented in Figure 4-17, 

where Allinger et al. 32  express bound cross-bridges by contact between bristles that extend from 

rigid bars representing the actin and myosin filaments. As the length is increased, the number of 

bristles available for contact decreases, which reduces the maximum possible forces ܨ that can 

Figure 4-17. Model proposed by Allinger et al 32 to explain sarcomere stability in the descending limb. Cross-bridge 
recruitment is illustrated by contact between flexible ‘bristles’ extending from both filaments.  Image reproduced from 32 

with written permission from the publisher. 
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supported by the sarcomere for this given length but ensures a local positive stiffness. While the 

connected bristles are intended to represent cross-bridges, the model does not account for the 

conformational changes in cross-bridges that result in force generation or passive tension recovery. 

Such conformational changes could be accounted for by different post-buckled configurations of the 

four-void unit module or the elastica approximation to the central horizontal member presented in 

this chapter. 

 

4.6 Conclusions 

 Inspired by the geometry and architecture of skeletal muscle constituents, and by local 

conformation changes in microscale elements that serve as the origin for macroscopic force-

generation and length change in muscle, the research presented in this chapter illustrates the 

potential to create novel, advanced architected material systems that gives rise to intriguing material 

response not revealed by previous work. Multiple metastable configurations are uncovered for 

prescribed boundary conditions, which demonstrates means to drastically adapt stiffness, reaction 

force, and stored strain energy in the material system when subjected to unchanging boundary 

conditions. Oblique, shear-like loads, representative of pennate muscle movements and the sliding 

motions between adjacent actin and myosin filaments during sarcomere length change, give rise to 

energy-releasing state transitions that cause discrete changes in reaction force magnitude and 

direction. These behaviors may be tailored by varying the level of transverse confinement, while 

biases to certain configurations arise when void diameters are non-uniform. A model of module 

deformations is developed using Euler’s elastica, allowing for insight to be obtained from a simplified 

analogue of the complex architected material behavior.  
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 Consideration of a section the proposed architected material composed of several constituents 

units in parallel would greatly enhance the properties adaptivity presented here, since their 

combined response would arise from a superposition of the individual module responses 76. By 

introducing a material architecture that leverages the coexistence of multiple locally stable 

configurations and discrete energy-releasing state transitions, this research offers the potential to 

achieve mechanical properties and functionalities previously unexplored.  
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Chapter 5.  

Summary and conclusions 

5.1 Summary of contributions 

This dissertation investigates concepts for structural and material systems inspired by the 

architecture of skeletal muscle’s constituents, and specifically by its ability to exploit metastability in 

conjunction with conformational changes or buckling to achieve novel system responses. These 

features are explored both in a static and dynamic context, revealing large adaptation in energy 

dissipation properties, the capture and storage of energy in high-potential configurations and 

subsequent release for efficient actuation and deployment, and the ability to tailor mechanical 

properties along a desired axis by tailoring transverse geometries.  

 The first major contribution of this thesis is a thorough understanding of the dynamic 

response of a fundamental, one-dimensional metastable element. Investigations uncover 

several, qualitatively distinct, dynamic regimes in response to harmonic excitation near 

resonance. These distinct regimes are exploited to achieve highly adaptable energy 

dissipation characteristics that vary by up to two orders of magnitude. While large variation 

in dynamic response and energy dissipation are observed among regimes, the introduction 

of a static offset or asymmetry results in continuously tunable energy dissipation 

performance. 
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 Second, this dissertation develops and investigates structures composed of asymmetrically 

bistable constituents for energy capture, storage, and release. Outcomes reveal the key role 

of energetic asymmetry on the ability of multistable system to capture and store the energy 

from impulsive excitations in higher-energy stable states. Investigations on the influences of 

various system parameters uncover a balance between energy storage performance – 

measured by the fraction of initial kinetic energy trapped as recoverable potential energy – 

and the risk of compromised performance due to unwanted transitions back to the low-

energy states. In multistable systems with stored elastic energy, it is shown that 

consideration of system dynamics and the conversion of potential to kinetic energy may 

facilitate deployment with a lower energy cost than what is required under quasi-static 

conditions. 

 Evoking the shear-like motions of adjacent filaments and cross-bridge conformational 

changes during muscle contraction, this thesis explores how transverse influences can be 

exploited to adapt and tune the mechanical response in a desired direction. Through 

development, fabrication, and analysis, this thesis presents an architected material system 

capable of tailorable discrete, rapid changes in reaction force amplitude and direction. 

Numerical investigations reveal that these conformation changes coincide with sudden 

releases of strain energy. 

 A few analytical or semi-analytical tools are presented in this dissertation. The first is a one-

term harmonic balance method used to approximate the steady-state harmonic response of 

the one-dimensional metastable unit in Chapter 2. This allows for a prediction of the dynamic 

responses in different intrawell and snap-through regimes. Second, a semi-analytical 

approach employs Jacobi elliptic functions to predict the onset of snap-through, and hence 

energy trapping, of asymmetrically bistable units under transient, impulsive excitations in 

Chapter 3. Lastly, noting that the central horizontal member of a unit module presented in 
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Chapter 4 exhibits different numbers of inflection points in its various configurations, this 

element is modeled as a segment of Euler’s elastica, offering prediction of the relative strain 

energies and reaction forces of these configurations. 

5.2 Broader impacts and opportunities for future research 

 This dissertation leverages key features of the microscale assembly and functionality of skeletal 

muscle’s constituents for structural and material systems with unique responses. The outcomes of 

this thesis reveal the potential to develop dampers and absorbers with large and adaptable energy 

dissipation capabilities, which could be useful in engineered systems that require variation in 

dissipative characteristics depending on operating conditions. For example, a system may ordinarily 

call for low dissipation to effectively transmit vibrational signals for structural health monitoring, but 

require greater dissipation in the face of larger excitations 98. Insights gained from investigations on 

the energy capture in asymmetrically multistable structures could foster the development of 

actuators that effectively capture, store, and release energy, as well as adaptive, robust, and reusable 

armors and protective devices.  

5.2.1 Active configuration changes and system dynamics 

 A major theme of this thesis is the static and dynamic properties adaptivity that is enabled by 

switching between different configurations or topologies. However, the system properties explored 

in this thesis are largely passive in nature. With the exception of Section 3.6, no active properties 

employing local actuation capabilities are considered or discussed. Skeletal muscle is a 

multifunctional system finely tuned for effective energy conversion and release for robust force-

generation and shape change. While the passive features such as energy absorption and tension 

recovery are critical to muscle performance, tetanized muscle is fundamentally an active system with 

the flow of chemical energy governed by an integrated feedback mechanism. Due to this constant 
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energy flow, it is sometimes undesirable to study or describe muscle behaviors in terms of static or 

fixed energy landscapes 35, despite such a description offering useful insight into certain muscle 

behaviors 54. With that in mind, there are broad opportunities to further enhance the work presented 

in this dissertation by considering a combination of active and passive features. 

 One such opportunity is the integration of the features described in this thesis within the 

framework of binary robotics 71,134,135, where actuators operate in discrete steps governed by the 

passive constraints by the underlying mechanical architecture of the actuator. The advantage of these 

actuators is that discrete positioning is possible without the need for low-end feedback control 136. 

These discrete positions generally correspond to local minima of energy with respect to the 

coordinates that describe the actuators’ motions. The results of Chapter 3 of this thesis can help 

improve the efficiency of such binary robotics systems in situations where these systems are acted 

upon by external loads, allowing the energy from these loads to be captured and stored, and later 

exploited when needed to reconfigure the system as desired.  Further, as described in the latter half 

of Chapter 3, consideration of these configuration changes as dynamic rather than quasi-static 

processes may greatly enhance opportunities to leverage stored energies for reconfiguration. 

Oftentimes, the reconfiguration of deployable and multistable systems is considered quasi-statically 

137–139. On the other hand, dynamic configuration changes may not smoothly follow the energy 

landscapes derived under these static conditions. When system dynamics are considered, it is 

insufficient to consider simply the sequence of actuator inputs to deploy bistable links. The timing 

and magnitude of these inputs must also be taken into account due to the transient dynamic 

responses that may arise. Obtaining energy-optimal or time-optimal inputs that may give rise to these 

configuration changes is not trivial. Such a problem may require the integration of optimal control 

routines that explicitly consider actuator capabilities and power requirements 140. 

 A current limitation of binary actuator systems are the fixed parameters of the discrete positions 

that can be maintained without energy input. Depending on application requirements, these desired 
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positions may be required to vary over time, but introducing additional binary mechanisms to permit 

a modulation of this geometry would introduce significant complexity. Incorporation of transverse 

geometries, as in Chapter 4 of this thesis, may offer a solution to overcome this limitation by 

providing means to tailor the location of the actuator’s stable configurations. By embedding the 

intelligence of the system within its structure and geometry, algorithms to control positioning do not 

need to rely on accurate feedback. Consideration of ways in which discrete configuration changes can 

be used to generate programmable movements and motions of soft material systems could foster the 

development of robust soft robots. In order to actively generate these configuration changes, several 

actuation methods can be explored, including pneumatic or fluidic methods 141,142 or using 

incorporating ferromagnetic elements that can cause portions of the material system to react to 

changes in magnetic fields 143. 

5.2.2 Emerging design, manufacturing, and analysis methods 

 While the first set of broad opportunities for future work incorporate an extension from passive 

to active behaviors, the second set of recommendations for future work describe possible approaches 

to enhance the manufacturability and scalability of engineered structural and materials systems 

described in this thesis. While binary robotics systems share similarities with digital electronics, the 

former are currently limited to a small number of states due to present manufacturing constraints 71. 

Concepts for large-scale systems incorporating binary actuation with muscle-like feedback control 

have been explored numerically 74, and may be extended to explicitly account for energetic 

asymmetries through methods often employed in stochastic and molecular dynamics simulations 

that consider biases or unequal energy barriers 25,144. Given the pace of innovation in additive 

manufacturing technologies, such systems may become physically realizable in the near future.  

 There are a number of ways in which structural and material systems can be designed to give rise 

to the phenomena studied in this dissertation. The experimental systems explored in this thesis are 
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developed primarily to facilitate investigations of the relevant  system properties, and are composed 

of elementary units such beams, linkages, springs, and relatively simple elastomer units. On the other 

hand, application of these features in actuators and robotics, protective devices, and deployable can 

greatly benefit from advances in 3D printing and additive manufacturing. As these technologies 

continue to improve, there will be increasing opportunities to design and fabricate complex 

geometries from a variety of materials that exhibit higher durability, lower damping, and greater 

toughness than available today 145–147. Origami-based structures and mechanisms provide another 

great opportunity for the the manufacture and analysis of systems exhibiting many properties 

described in this research. Origami structures have been shown to exhibit bistability, tailorable 

stiffness, and reconfigurability 141,148,149. The integration of the novel concepts for structural and 

material systems explored in this dissertation with emerging design and fabrication paradigms offers 

vast possibilities for advanced muscle-inspired engineered systems that strategically exploit a 

multitude of stable configurations and transitions between them for a variety of applications. 
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Appendices 

  
Harmonic balance solution to steady-state dynamics of a 
metastable module excited near resonance 

 

Consider a single-degree-of-freedom system governed by: 

ݔ̈݉ + ݔܾ̇ + ݇ଵݔ + ݇ଶݔଶ + ݇ଷݔଷ − ݇௅(ݖ + ݀ − (ݔ = 0 (A-1) 

where ݉ is the lumped internal mass, b is the damping coefficient, and ݇ଵ, ݇ଶ, ݇ଷ are the linear, 

quadratic, and cubic stiffness coefficients, respectively. ݖ is a harmonic excitation with static offset ݀ 

that is coupled to the inertia by a linear spring with stiffness ݇௅ . The solution to Eq. (A-1) is 

approximated using a fundamental Fourier series expansion: 

(ݐ)ݔ = (ݐ)݂ + (ݐ)݃ sin(߱ݐ) + ℎ(ݐ) cos(߱ݐ) (A-2) 

where the coefficients ݂, ݃, and ℎ are assumed to slowly vary in time with respect to the primary 

period of oscillation. The excitation ݖ considered here is a harmonic in frequency ߱ and amplitude 

 :଴ݖ

(ݐ)ݖ =  (A-3) (ݐ߱) ଴cosݖ
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Substituting Eqs. (A-2) and (A-3) into (A-1), assuming slowly varying harmonic coefficients such that 

(ݐ)݂̈ = (ݐ)̈݃ = ℎ̈(ݐ) = 0, and retaining only those harmonic terms proportional to the assumed 

solution expansion, the following equations are obtained via balancing the coefficients of the 

constant, sine, and cosine terms respectively. 

−ܾ݂̇ = ݇ଵ݂ + ݇ଶ݂ଶ + ௞మ
ଶ

ଶݎ + ݇ଷ ቀଷ
ଶ

ଶݎ݂ + ݂ଷቁ + ݇௅(݂ − ݀) (A-4a) 

2݉߱ℎ̇ − ܾ݃̇ = ݇ଵ݃ + 2݇ଶ݂݃ + ݇ଷ ቀଷ
ସ

ଶݎ݃ + 3݂݃ଶቁ + ݇௅݃ − ݉݃߱ଶ − ܾℎ߱ (A-4b) 

−2݉߱݃̇ − ܾℎ̇ =  ݇ଵℎ + 2݇ଶℎ݂ + ݇ଷ ቀଷ
ସ

ℎݎଶ + 3ℎ݂ଶቁ + ݇௅ℎ − ݇௅ݖ଴ − ݉ℎ߱ଶ + ܾ݃߱ (A-4c) 

The amplitude of the motion of ݔ is expressed by ݎ = [݃ଶ + ℎଶ]ଵ/ଶ. Assuming steady-state response, 

which implies that ݂̇(ݐ) = (ݐ)̇݃ = ℎ̇(ݐ) = 0, Eqs. (A-4 a,b,c) are combined to yield a system of two 

equations for ݎ and ݂, representing response amplitude and offset, respectively. 

݇ଷ݂ଷ + ݇ଶ݂ଶ + ቀ݇ଵ + ݇௅ + ଷ
ଶ

݇ଷݎଶቁ ݂ + ଵ
ଶ

݇ଶݎଶ − ݀݇௅ = 0 (A-5a) 

ଽ
ଵ଺

݇ଷݎ଺ + ଷ
ଶ

݇ଷ(−݉߱ଶ + ݇ଵ + ݇௅ + 3݇ଷ݂ଶ + 2݇ଶ݂)ݎସ  

 +[(−݉߱ଶ + ݇ଵ + ݇௅ + 3݇ଷ݂ଶ + 2݇ଶ݂)ଶ + ܾଶ߱ଶ]ݎଶ − ݇௅
ଶݖ଴

ଶ = 0 (A-5b) 

The Eqs. (A-5a,b) are nonlinearly coupled and must be solved numerically, although the solutions are 

an analytical approximation to the steady-state dynamics of the metastable module. The solutions 

must then be evaluated for stability. From Eq. (A-4b,c), the response coefficients may be expressed 

using 

݃ =  − ௕௞ಽ௭బఠ
୻మା௕మఠమ (A-6a) 

ℎ = − ௞ಽ௭బ
୻మା௕మఠమ (A-6b) 

where  
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Γ = ݇ଵ + 2݇ଶ݂ − ݉߱ଶ + ݇ଷ ቀ3݂ଶ + ଷ
ସ

ଶቁݎ + ݇௅  (A-7) 

Eq. (A-4) is then expressed in a conventional form using ܠ = [݂, ݃, ℎ]்   

ܠ̇ۿ =  (A-8) (ܠ)۾

where ۿ and ۾ are determined by consideration of Eq. (A-4). Then, linearizing the system around one 

of the fixed points ܠ∗ = [݂, ݃, ℎ]் obtained from solving Eqs. (A-5) and (A-6), the stability of the fixed 

point is found by evaluating the eigenvalues of the Jacobian matrix of the linearized system, where 

the Jacobian is ۸ = ∗ܠ൯(ܠ)۾ଵିۿ൫ܠ۲ . The fixed point solution is stable if all eigenvalues of the Jacobian 

have negative real parts. 
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Semi-analytical solution to the transient response of an 
asymmetric bistable Duffing oscillator 

 

 

This section presents a semi-analytical solution for the transient dynamics of an asymmetric bistable 

Duffing oscillator to determine the final snap-through and predict the equilibrium state to which the 

system eventually settles. The results are based upon and extend those presented by Zhang et al. 114. 

Consider a single-degree-of-freedom system governed by: 

ݔ̈ + ݔ̇ߟ + ݔߙ + ଶݔߚ + ଷݔߛ = 0 (B-1) 

with ߟ > 0, ߙ < 0, and ߛ > 0. In order to eliminate the quadratic stiffness ߚ causing the asymmetry, 

the system is approximated by two different, symmetric bistable Duffing oscillators, each 

approximating the behavior of the original system in one of the two potential wells. 

ݔ̈ + ݔ̇ߟ + ݔଵߙ + ଷݔଵߛ = 0; ݔ  ≤ 0 (B-2a) 

ݔ̈ + ݔ̇ߟ + ݔଶߙ + ଷݔଶߛ = 0; ݔ  > 0 (B-2b) 

The stiffnesses ߙଵ, ,ଵߛ  ଶ are obtained from a least-squares regression of the asymmetricallyߛ ଶ, andߙ

bistable spring reaction force in Eq. (B-1). Given initial displacement and velocity ݔ଴ and ̇ݔ଴, the initial 

energy of the system is: 

଴ܧ = ଵ
ଶ

଴ݔ̇
ଶ + ଵ

ଶ
଴ݔ௜ߙ

ଶ + ଵ
ସ

଴ݔ௜ߛ
ସ  (B-3) 
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where ݅ = 1 if ݔ ≤ 0 and ݅ = 2 otherwise. If ܧ଴ > 0, the initial oscillatory response is interwell, or 

snap-through, and is assumed to take the form: 

ݔ = ,ଵݑ)݊ܿ(ݐ)ଵܥ ݇ଵ); ݔ  ≤ 0 (B-4a) 

ݔ = ,ଶݑ)݊ܿ(ݐ)ଶܥ ݇ଶ); ݔ  > 0 (B-4b) 

௜ݑ is the time-varying snap-through vibration amplitude, and (ݐ)௜ܥ  and ݇௜  are the argument and 

modulus, respectively, of the ܿ݊ Jacobian elliptic function. To compute initial amplitude and phase, 

the undamped case (ߟ = 0) is first considered, hence the oscillation amplitude ܥ௜(ݐ) =  ௜଴ andܥ

modulus ݇௜  are constants, and the argument ݑ௜  is: 

௜ݑ = ߱௜ݐ + ߶௜଴ (B-5) 

where ߱௜  is a constant parameter and ߶௜଴ is the initial argument determined by initial conditions. 

Substituting Eq. (B-4) and its time derivatives into Eq. (B-2) yields the following: 

߱௜
ଶ =  ௜଴ (B-6a)ܥ௜ߛ

݇௜
ଶ = ఊ೔஼೔బ

మ

ଶ(ఊ஼೔బାఈ) (B-6b) 

The Jacobian elliptic functions require ݇௜  to be constrained such that 0 ≤ ݇௜ ≤ 1, which leads to the 

following condition: 

0 ≤ − ఈ೔
ఊ೔஼೔೚

మ ≤ ଵ
ଶ
 (B-7) 

Eqs. (B-2) and (B-6) are combined with the elliptic function identities ݊ݏଶ(ݑ, ݇) + ݀݊ଶ(ݑ, ݇) = 1 and 

݇ଶ݊ݏଶ(ݑ, ݇) + ݀݊ଶ(ݑ, ݇) = 1 to yield the following expressions for initial amplitude, phase, and 

system energy: 

௜௢ܥ = ൮
൬ିఈ೔ାቀ൫ఈ೔ାఊ೔௫೚

మ൯మାଶఊ೔௫̇బ
మቁ൰

భ
మ

ఊ೔
൲

భ
మ

 (B-8a) 
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,௜଴߰)݊ݏ ݇௜) ௗ௡(ట೔బ,௞೔)
௖௡(ట೔బ,௞೔) = − ௫̇బ

ఠ೔௫బ
 (B-8b) 

଴ܧ = ଵ
ସ

௜௢ܥ
ଶ ൫2ߙ௜ + ௜௢ܥ௜ߛ

ଶ ൯ (B-8c) 

Hence, ܥ௜௢
ଶ > − ଶఈ೔

ఊ೔
 must be satisfied to ensure ܧ଴ > 0, which is the condition under which snap-

through oscillations are observed for the undamped case. If damping is present in the system, system 

energy will satisfy (ݐ)ܧ ≤ ݐ ଴ for allܧ ≥  ଴, so if the above condition on initial oscillation amplitude isݐ

not met, no snap-through events are predicted and oscillations remain confined to the local potential 

well. Following the solution approach for the snap-through, transient response of a symmetric 

bistable Duffing oscillator 114, and letting ܥ௜ , ߱௜ , ௜ݑ , and ݇௜ vary with time, the following expression is 

obtained for the snap-through oscillation amplitude ܥ௜(ݐ) and argument ݑ௜(ݐ) 

(ݐ)௜ܥ = ቂቀߛ௜
ଶܥ଴

ସ + ௔
௕

௜ߙ
ଶቁ ݁ିସ௕ఎ೔௧ − ௔

௕
௜ߙ

ଶቃ
భ
ర ௜ߛ

భ
మ (B-9a) 

(ݐ)௜ݑ = ௜߰௜ܭ4  (B-9b) 

where the coefficients ܽ = −0.78592 and ܾ = 0.32051 are parameters from a polynomial fit to 

permit an approximation of ∫ ௜ܭ ଴ is the initial amplitude, andܥ ,over an oscillation period ݐ݀(ݐ)௜ܥ̇ =

௜ܭ௜(݇௜) is the complete elliptic integral of the first kind. By averaging over one period 4ܭ , the 

parameter ߰௜  is approximated by 

߰௜(ݐ) ≅ థ೔బ
ସ௄೔

+ ∫ ఠ೔
ସ௄೔

௧ݐ݀
௧బ

 (B-10) 

and the instantaneous displacement ݔ௜(ݐ) may be computed according to Eq. (B-4). Recalling that the 

system will not undergo further snap-through oscillations for ܥ௜(ݐ)ଶ ≤ − ଶఈ೔
ఊ೔

, the time at which point 

snap-through oscillations are no longer predicted is found by solving for t in (B-9a) as: 

௘௡ௗݐ = − ln ቎
ቀସାೌ

್ቁఈ೔
మ

ቆఊ೔
మ஼೔బ

ర ା
ഀ೔

మೌ
್ ቇ

቏ ௜ߟ4ܾ/   (B-11) 
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The system switches between Eqs. (B-4a) and (B-4b) each time a snap-through event occurs at 

௦௡௔௣൯ݐ൫ݔ = 0. If ݐ௘௡ௗ > ௦௡௔௣ݐ , a new initial amplitude is found based on the parameters of the new 

local potential well as 

௝଴ܥ  = ൦
൬ିఈೕାቀఈೕ

మାଶఊೕ௫̇ೞ೙ೌ೛
మ ቁ൰

భ
మ

ఊೕ
൪

భ
మ

 (B-12) 

where ̇ݔ௦௡௔௣ is the velocity at time ݐ௦௡௔௣, and ݆ = 1 for ̇ݔ௦௡௔௣ < 0 and ݆ = 2 for ̇ݔ௦௡௔௣ > 0. Setting ݐ଴ =

௘௡ௗݐ ௦௡௔௣, the procedure outlined in Eqs. (B-9 – B-12) is the repeated untilݐ <  ௦௡௔௣, which is theݐ

condition that indicates that the final snap-through event has occurred and any further oscillations 

will remain confined to the local potential well as local intrawell oscillations. 
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Approximation to module deformation using Euler’s elastica 

 

 

This section presents a solution to the elastica curves approximating the deformation of the central 

horizontal member of a single module considered in Chapter 4, and an expression for the bending 

strain energy stored in the beam. The method developed by Shoup and McLarnan 133 is adopted here.  

The differential equation describing the curvature of an Euler-Bernoulli beam at any arbitrary point 

along the beam is 133,152: 

ܫܧ ௗఏ
ௗ௦

=  (C-1) (ݏ)ܯ

where (ݏ)ܯ is moment required for static equilibrium at ((ݏ)ݔ,  Equating moments about this .((ݏ)ݕ

arbitrary point and differentiating with respect to ݏ yields: 

ܫܧ ௗఏ
ௗ௦

= ଵܯ − ௫௘ܨ ݕ  +  (C-2) ݔ ௬௘ܨ 

ܫܧ ௗమఏ
ௗ௦మ = ௫௘ܨ−

ௗ௬
ௗ௦

+ ௬௘ܨ
ௗ௫
ௗ௦

 (C-3) 

Noting that ௗ௬
ௗ௦

= sin(ߠ), and ௗ௫
ௗ௦

= cos (ߠ), the overall length of the elastica and the geometry of the 

boundary points can be expressed as: 

∫ ∗ௌݏ݀
଴ =  (C-4a) ܮ

∫ cos(ߠ) ∗ௌݏ݀
଴ = ܮ −  ௫ (C-4b)ߜ
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∫ sin(ߠ) ∗ௌݏ݀
଴ =  ௘ (C-4c)ݕ

In order to make use of these conditions, Eq. (C-3) is first rewritten and integrated with respect to ߠ. 

∫ ܫܧ ௗమఏ
ௗ௦మ ߠ݀  = ௫௘ܨ− ∫ sin(ߠ) ߠ݀ + ௬௘ܨ ∫ cos(ߠ)  (C-5)  ߠ݀

ଵ
ଶ

ܫܧ ቀௗఏ
ௗ௦

ቁ
ଶ

= ௫௘ܨ cos(ߠ) + ௬௘ܨ sin(ߠ) + ܼ (C-6) 

where Z is a constant of integration. Rearranging gives: 

ݏ݀ = ൬ ாூ
ଶ൫ிೣ ೐ ୡ୭ୱ(ఏ)ାி೤೐ ୱ୧୬(ఏ)൯ା௓

൰
భ
మ

 (C-7) ߠ݀

Eq. (C-7) can be substituted into Eq. (C-4), however the expressions cannot be integrated across 

points of inflection ቀௗఏ
ௗ௦

= 0ቁ153. This is addressed by introducing new parameters that allow 

equations (C-4a-c) to be expressed using elliptic integrals 133,154. 

ܲ cos(ߙ) = ଶிೣ ೐
ாூ

 (C-8a) 

ܲ sin(ߙ) = ଶி೤೐

ாூ
 (C-8b) 

ܥ = ଶ௓
ாூ

 (C-8c) 

which can be combined with basic trigonometric identities giving: 

ݏ݀ = ቀ ଵ
௉ ୡ୭ୱ(ఈ) ୡ୭ୱ(ఏ)ା௉ ୱ୧୬(ఈ) ୱ୧୬(ఏ)ା஼

ቁ
భ
మ   ߠ݀

ݏ݀ = ቀ ଵ
௉ ୡ୭ୱ (ఈିఏ)ା஼

ቁ
భ
మ   ߠ݀

Further, a change in the variable of integration is facilitated by the following transformations: 

2݇ଶ = ஼
௉

+ 1 (C-9a) 

1 − 2݇ଶ sinଶ ߶ = cos(ߙ −  (C-9b) (ߠ
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Differentiating and rearranging (C-9b) by using trigonometric identities yields: 

ߠ݀ = − ସ௞మ௦௜௡థ௖௢௦థ
ୱ୧୬(ఏିఈ) ݀߶ (C-10a) 

ߠ݀ = − ସ௞మ௦௜௡థ௖௢௦థ

(ଵିୡ୭ୱమ(ఏିఈ))
భ
మ

݀߶ (C-10b) 

ߠ݀ = − ସ௞మ௦௜௡థ௖௢௦థ
ଶ௞ ୱ୧୬ (థ)ඥଵି௞మ ୱ୧୬ థ 

݀߶ (C-10c) 

ߠ݀ = 2݇ cos(߶) (1 − ݇ଶ sinଶ(߶))ିభ
మ ݀߶ (C-10d) 

and: 

sin(ߠ) = sin(ߙ) (1 − 2݇ଶ sinଶ(߶)) + cos(ߙ) (2݇ sin(߶) (1 − ݇ଶ sinଶ(߶))
భ
మ (C-10e) 

cos(ߠ) = cos(ߙ) (1 − 2݇ଶ sinଶ(߶)) − sin(ߙ) (2݇ sin(߶) (1 − ݇ଶ sinଶ(߶))
భ
మ (C-10f) 

To allow integration using the new variables introduced in Eq. (C-9), the following elliptic integrals 

are employed 154: 

,߶)௘ܨ ݇) = ∫ (1 − ݇ଶ sinଶ(߶))ିభ
మ ݀߶థ

଴  (C-11a) 

,߶)௘ܧ ݇) = ∫ (1 − ݇ଶ sinଶ(߶))
భ
మ ݀߶థ

଴  (C-11b) 

,߶)௘ܨ ݇) and ܧ௘(߶, ݇) are the incomplete elliptic integrals of the first and second kind, respectively. 

These elliptic integrals are combined with Equations (C-6) and (C-10) to rewrite (C-7). 

ܮ = ቀଶ
௉

ቁ
భ
మ ൫ܨ௘(߶ଶ, ݇) − ,௘(߶ଵܨ ݇)൯ (C-12a) 

ܮ − ௫ߜ = ቀଶ
௉

ቁ
భ
మ ൣcos(ߙ) ൫−ܨ௘(߶ଶ, ݇) + ,௘(߶ଵܨ ݇) + ,௘(߶ଶܧ2 ݇) − ,௘(߶ଵܧ2 ݇)൯ +

 2݇ sin(ߙ) (cos(߶ଶ) − cos(߶ଵ))൧  (C-12b) 
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௘ݕ = ቀଶ
௉

ቁ
భ
మ ൣsin(ߙ) ൫−ܨ௘(߶ଶ, ݇) + ,௘(߶ଵܨ ݇) + ,௘(߶ଶܧ2 ݇) − ,௘(߶ଵܧ2 ݇)൯ +

 2݇ cos(ߙ) (−cos(߶ଶ) + cos(߶ଵ))൧ (C-12c) 

In Eqs. (C-12a-c), ߶ଵ and ߶ଶ are amplitudes corresponding to the left and right ends of the flexible 

beam respectively. Since ݏ)ߠ = 0) = ߚ = ݏ)ߠ =  is prescribed at the ends, ߶ଵ and ߶ଶ may be found (ܮ

by solving (C-10b at both ends): 

sin(ߚ) = sin(ߙ) (1 − 2݇ଶ sinଶ(߶ଵ)) + cos(ߙ) (2݇ sin(߶ଵ) (1 − ݇ଶ sinଶ(߶ଵ))
భ
మ (C-12d) 

sin(ߚ) = sin(ߙ) (1 − 2݇ଶ sinଶ(߶ଶ)) + cos(ߙ) (2݇ sin(߶ଶ) (1 − ݇ଶ sinଶ(߶ଶ))
భ
మ (C-12e) 

Eqs. (C-12a-e) are solved using the built-in MATLAB function fsolve to yield solutions for ߶ଵ, ߶ଶ, ݇, ܲ, 

and ߙ. Since fsolve employs iterative solvers, suitable initial estimates must be provided. Noting that 

points of inflection occur for ߶ = ߨ݊ + గ
ଶ

 for ݊ ∈ ℤ, appropriate initial guesses for ߶ଵ and ߶ଶ are 

employed to obtain elastica curves with the desired number of inflection points along the beam and 

concavities at the clamped ends 133, corresponding to the aligned and polarized topologies presented 

in Figure 4-15(a). Symmetry is exploited to solve for opposite concavities and boundary conditions. 

Following the same approach as above, appropriate changes of variable and manipulations can be 

applied to the expression for bending strain energy. This allows the energy to be computed directly 

from the solutions to (C-12a-e). First, the bending strain energy in an infinitesimal segment is 

integrated over the beam length 152: 

ܷ = ∫ ாூ
ଶ

ቀௗఏ
ௗ௦

ቁ
ଶௌ∗

଴  (C-13) ݏ݀

Using (C-6) - (C-8) to change the variable of integration, this can be rewritten as: 

ܷ = ටாூ
ଶ ∫ ට൫ܨ௫௘ cos(ߠ) + ௬௘ܨ sin(ߠ) + ܼ൯݀ߠ (C-14) 

ܷ = ாூ
ଶ ∫ ඥ(ܲ cos(ߙ − (ߠ +  (C-15) ߠ݀(ܥ
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Then, applying (C-9) and (C-10): 

ܷ = ாூ
ଶ

∫ ට ܲ൫(2݇ଶ − 1) +  (1 − 2݇ଶsinଶ(߶))൯  ݀ߠ (C-16) 

ܷ = ாூ
ଶ

∫ ටܲ ൫2݇ଶ(1 − sinଶ(߶))൯ ଶ௞ ୡ୭ୱ(థ)
ඥ(ଵି௞మ ୱ୧୬మ(థ))

 ݀߶ (C-17) 

ܷ = ∫ܫܧ2ܲ√ ௞మ൫ଵିୱ୧୬మ(థ)൯
ඥ(ଵି௞మ ୱ୧୬మ(థ))

 ݀߶ (C-18) 

ܷ = ∫ܫܧ2ܲ√ ௞మିଵ ାଵ ି௞మ ୱ୧୬మ(థ)  
ඥ(ଵି௞మ ୱ୧୬మ(థ))

 ݀߶ (C-19) 

ܷ = ቀ (݇ଶ ܫܧ2ܲ√ − 1) ∫ (1 − ݇ଶ sinଶ(߶))ିభ
మ ݀߶ +  ∫ (1 − ݇ଶ sinଶ(߶))

భ
మ ݀߶ቁ (C-20) 

This is can then be written using the elliptic integrals in (C-11) as a finite integral from ߶ଵ to ߶ଶ as: 

ܷ = (2ܲ)ܫܧ
భ
మ  ቀ (݇ଶ − 1) ൫ܨ௘(߶ଶ, ݇) − ,௘(߶ଵܨ ݇)൯ +  ൫ܧ௘(߶ଶ, ݇) − ,௘(߶ଵܧ ݇)൯ቁ (C-21) 

This can be computed directly after solving for ܲ, ݇, ߶ଵ, ߶ଶ in (C-12). 
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