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ABSTRACT

Many natural and engineering systems may switch abruptly from one stable state

to another due to a small perturbation to the system’s state or a small change in

the underlining conditions. In ecosystems, for example, extinctions of species or de-

sertification can occur rapidly. Therefore, critical transitions can be dangerous to a

number of systems, and it could be very beneficial if monitoring or early warning

methods were available while the system is still in the healthy regime. The approach

of critical transitions in many natural and engineering systems is accompanied by

a phenomenon called critical slowing down. Theoretical and experimental studies

have suggested that responses to small perturbations become increasingly slow when

these systems are near critical transitions. Statistics such as variance, autocorrela-

tion calculated from time series data have been proposed as early warning signals to

anticipate the system’s approach to a transition point.

The problem of anticipating critical transitions becomes more complicated when

other factors come into play. Factors such as nonlinearity, periodicity and heterogene-

ity can alter the behavior of the system, and thus affect the applicability of generic

early warning signals. This thesis examines the effect of these factors on the critical

transition of a system, and develops new data-driven approaches accordingly. To

deal with and exploit the existence of nonlinearity in the system, recoveries from

large instead of small perturbations are used to calculate the recovery rates of the

system versus amplitudes. Under the circumstances of periodicity, recovery rates are

calculated discretely via the Poincaré section. Using experimental and computational

data, we show that a combination of using recoveries from large perturbations and

xvii



calculating recovery rates using the Poincaré section can be highly effective in terms

of anticipating critical transitions for systems with parametric resonance. Moreover,

this thesis develops new early warning signals for spatially extended systems based

on the eigenvalues of the covariance matrix. We mathematically show that the dom-

inance of the largest eigenvalue of the covariance matrix can be used as an early

warning signal by establishing the relationship between the eigenvalues of the covari-

ance matrix and the eigenvalues of the force matrix. This new set of early warning

signals are especially useful when the system has strong spatial heterogeneity. Lastly,

this thesis investigates the influence of the choice of hyper-parameters, such as mov-

ing window size, sample rate, detrending methods, on the robustness of several early

warning signals. General rules regarding data preparation and hypothesis testing are

proposed.
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CHAPTER I

Introduction

1.1 Motivation

Many natural and engineering systems may switch abruptly from one stable state

to another [5, 6, 7, 8] due to a small perturbation to the system’s state or a small

change in the underlining conditions. In ecosystems, for example, extinctions of

species or desertifications can occur rapidly [9]. Other such examples include systemic

market crashes [10], spontaneous medical failures [11, 12], ship capsizings [13] and so

on. It is notably hard to predict critical transition because the state of the system

may show little change prior to the transition due to small changes in conditions.

Such critical transitions are in contrast to changes that are a result of large external

shocks.

In theory, critical transitions are often studied in terms of bifurcations of dy-

namical systems [14, 15]. Bifurcation theory provides a useful way to consider the

dynamics of the system near critical transitions. Research on critical transitions have

shown the clear relationship between some rapid regime shifts from one branch to

another and saddle-node bifurcation [16]. It is also suggested that some piecewise

continuous transitions are associated with a transcritical bifurcation or a pitchfork

bifurcation [17, 18]. Studying critical transitions from the point of view of bifurca-

tion theory provides us with a key insight: a system will lose resilience close to the
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bifurcation in the sense that it takes much longer for the system to recover from per-

turbations. This phenomenon is referred to as critical slowing down [19]. The critical

slowing down phenomenon can be understood through linear stability analysis. The

recovery rate of a system from small perturbations are characterized by the eigenval-

ues of the linearized system [20]. The system is stable when all the eigenvalues have

negative real parts. This condition is violated when a bifurcation occurs. As a system

approaches a bifurcation point, the real part of the dominant eigenvalue becomes in-

creasingly close to 0, resulting in an increasingly slower recovery from perturbations.

A number of indicators based on critical slowing down have been proposed to forecast

critical transitions [5, 21, 7, 8, 22, 23]. Here we list a few of them that received most

attention:

1. Recovery rate from perturbations becomes smaller.

2. Variance of the system’s response to continuous stochastic excitations increases.

3. Autocorrelation of the system’s response to continuous stochastic excitations

increases.

These generic early warning signals have been proven useful in a broad range

of empirical studies [16]. Nonetheless, major challenges remain in the robustness of

early warning signals in face of real world complications. First, generic early warning

signals typically rely on using a system’s response to small random perturbations to

infer its linear stability. However, most natural and engineering systems are nonlin-

ear. Previous studies have shown that certain early warning signals only work with

a limited type of nonlinearity, while others can be misleading when some parameters

also have stochastic components [24]. Second, many systems are influenced by peri-

odic fluctuations [1]. Some critical transitions can be triggered by a synchronization

between a natural mode of the system and the periodic forcing or parameter vari-

ation [25, 8, 26, 27, 28, 20]. These types of critical transitions are especially hard
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to forecast, because different time scales are involved in the dynamics, and critical

slowing down is hard to detect. Third, real systems usually are spatially hetero-

geneous [29, 30]. Generic temporal early warning signals have been shown to have

limitations for systems showing spatial patterns [31] due to oversimplification. Some

spatial indicators - spatial variance, spatial skewness, spatial spectral density - are

shown to be valid counterparts to temporal indicators [18, 22, 32]. These spatial indi-

cators, however, only look at one snapshot at one time, thus limiting the information

they can gather from the system. It is hard to find the (dynamical) pattern that is

associated with the critical transition using only a single snapshot.

This thesis aims at developing new early warning signals and algorithms that

can bridge these gaps. The first part of this thesis is dedicated to forecast both the

bifurcation point and the bifurcation diagram of critical transitions caused by para-

metric resonance. Parametric resonance is a phenomenon that can occur when one

or more parameters vary periodically in time at a frequency related to the resonance

frequencies of the system. Such resonances are observed in a wide range of engineer-

ing and natural systems [59, 72, 73] where large amplitude parametric resonance can

be triggered by a relatively small-amplitude oscillation in parameters. Two different

methods were developed using recoveries in the pre-bifurcation regime. The applica-

bility of these methods to both simulation and experimental data are investigated. In

the second part of this thesis, a set of new early warning signals, namely the largest

eigenvalue of the covariance matrix and the percentage it accounts for of the total

variation, are proposed for high dimensional, heterogeneous systems.
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1.2 Background

1.2.1 Generic early warning signals

A growing amount of literature has reported the observation that some systems

undergo a critical transition from one stable state to another [9, 30, 33]. This type of

transition is often the result of some gradually changing conditions, such as climate,

ground water reduction, harvesting of certain species, and so on [34, 35]. An example

of the bifurcation diagram of a system subject to critical transition can be found in

Fig. 1.1. As the underlining conditions change, small variations in the mean state

variables of the system are observed. However, the system can jump dramatically

from one branch to another after passing some tipping points.

Figure 1.1: Critical transition can be caused by changes in the underling conditions.

Close to the threshold of such critical transitions, some systems lose resilience

in the sense that it takes much longer for the system to recover from perturbations.

Consequently, several indicators based on fluctuations around equilibrium values have

been proposed as early warning signals for critical transitions [5, 21, 17, 36, 37, 38,

39, 8]. These methods are based on the presumption that as a system approaches
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the threshold, one would expect to observe the increase of certain statistics such as

variance, skewness and autocorrelation due to the critical slowing down phenomenon.

It has been shown in models that this is because the real part of the dominant eigen-

value that characterizes the recovery rate around the equilibrium state becomes closer

to zero as the system approaches the critical transition [19, 40, 41]. An example of

variance and autocorrelation rising as early warning signals for a harvested population

driven slowly across a bifurcation can be found in Fig. 1.2.

Figure 1.2: Early warning signals for a critical transition using data generated by a
model of a harvested population77 driven slowly across a bifurcation. This figure is
obtained from [1].

Apart from these temporal early warning signals, recent studies suggest that spa-

tial patterns can also provide useful information [42, 22, 32, 23]. In particular, Dakos

et al. [22] point out that an increase in spatial correlation can serve as an early

warning signal for spatially extended systems with alternative steady states. This is

because, as the system approaches the critical transition, the system becomes slow in

recovering from perturbations, which might lead to stronger fluctuations of state vari-
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ables around the equilibrium state under random environmental perturbations [43].

In such cases, the fluctuations of state variables around the spatial mean will also in-

crease. Also, diffusive effects (exchanges between neighboring patches) become more

dominant close to the critical transition, which means that spatial correlations, es-

pecially correlations between neighboring units will increase [31]. Therefore, spatial

early warning signals, such as the spatial variance, spatial skewness and spatial corre-

lation have been introduced to serve as indicators for critical transitions of spatially

extended systems.

1.2.2 Bifurcation diagram forecasting methods

Generic early warning signals, however, can only be used as qualitative early warn-

ing signals because of their difficulty in quantitatively detecting the distance to critical

transitions [44]. The model-less method available to anticipate the distance to a crit-

ical transition and the state of the system after such transition was proposed in [45]

where tipping points in the dynamics of electro-mechanical systems were studied. In

that method, recoveries of the system from large perturbations are used to calculate

the rate of change of amplitude of the dynamics so as to predict not only the bifur-

cation point, but also the stable and unstable branches of the bifurcation diagram.

This method was extended in [46, 36] to forecast bifurcations of multi-dimensional

aeroelastic systems. The benefit of using recoveries from large perturbations is that

nonlinearity of the system better manifest itself at large amplitudes. Therefore, by

examining the recovery rates at large amplitudes, we can not only obtain information

about the linear stability of the equilibrium, but also the type of critical transition

(rapid or piecewise continuous) that the system might go through.

Procedures of the bifurcation diagram forecasting method is as follows:

1. A perturbation is applied to the system, and the recovery data from this per-

turbation is recorded as shown in Fig. 1.3 (1).
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Figure 1.3: Procedures of forecasting bifurcation diagrams using recoveries from large
perturbations.

2. Recovery rate is calculated from the recovery data and plotted against its cor-

responding amplitude as shown in Fig. 1.3 (2).

3. Repeat step 1 and 2 at several different parameter values prior to the bifurcation

point.

4. For a particular amplitude value, calculate the recovery rate using data collected

at the parameter values from step 3. Extrapolate the recovery rate versus

parameter value curve until it crosses the x axis and record the parameter value

at the crossing as shown in Fig. 1.3 (3).

5. Repeat step 4 at several amplitude values and construct the predicted bifurca-

tion diagram as shown in Fig. 1.3 (4).
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1.2.3 Inertial manifold

For high dimensional systems, it is sometimes unrealistic to monitor all the states

to anticipate a potential critical transition. Moreover, some states might provide

irrelevant or even wrong warning signals due to the dynamical structure of the sys-

tem [47]. Therefore, the robustness and effectiveness of early warning algorithms

for high dimensional systems rely on the ability to identify and monitor states that

are strongly correlated with the critical transition. To that aim, we utilize inertial

manifold theory [14].
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Figure 1.4: The slow manifold is low dimensional with dynamics slowest in time.
When the system is perturbed, dynamics in the fast manifold will die out quickly.
Recoveries from different perturbations converge to the low dimensional slow mani-
fold.

When a bifurcation occurs, the equilibrium is non-hyperbolic, and the associated

linearized system can be divided into a stable subspace and a center subspace [14]. For

co-dimension one bifurcation, there exists a one or two dimensional invariant manifold

tangent to the center subspace at the equilibrium. This manifold is defined as the cen-

ter manifold. For a high dimensional system, there is a certain parameter-dependent

one or two dimensional manifold in which the system exhibits a bifurcation, and this
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manifold is referred to as the inertial manifold. The inertial manifold coincides with

the center manifold when the system is at the bifurcation point. Dynamics in the

stable manifold can be neglected because of their faster decay rate compared to the

dynamics in the slow manifold. An example of the slow manifold is shown in Fig. 1.4.

When a perturbation is applied to the system, the dynamics in the fast manifold

quickly die out. All recoveries from different random perturbations converge to the

low dimensional slow manifold. Therefore, we can identify the important state by ex-

amining the inertial manifold. The more aligned a state is with the inertial manifold,

the more information it contains about the critical transition.

1.3 Dissertation Contributions and Outline

This thesis aims at developing new early warning signals and algorithms that can

bridge the gaps between the current early warning signal theories and the challenges

posed by nonlinearity, periodicity and spatial heterogeneity. In Chapter 2 and Chap-

ter 3 we proposed two method to forecast the bifurcation diagram of systems with

parametric resonance. In Chapter 4 we studied an epidemiology system that is sub-

ject to parametric resonance. We turn our focus to high dimensional, heterogeneous

systems in Chapter 5, and proposed a set of new early warning signals, namely the

largest eigenvalue of the covariance matrix and the percentage it accounts for of the

total variation. Chapter 6 provides a summary of contributions, and suggestions for

future work. In addition, Appendix A provides accompanying derivations for the work

presented in Chapter 5. Appendix B examines the robustness of the trend statistic

Kendalls τ used in most early warning signals.

The main contributions are summarized as follows:

1. We developed a new forecasting method that uses the transient recovery of

parametrically excited systems from large perturbations to predict the bifur-
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cation diagram. Recoveries are studied in a Poincaré section to address the

challenge posed by periodic variation of the parameter. Details of this method

are included in Chapter 2, where we also demonstrated the method using both

simulation and experimental data. Chapter 2 is adapted from a published pa-

per [8].

2. We developed a new forecasting method for a high dimensional parametrically

excited systems that uses the recoveries of a single variable in the slow manifold

to forecast the bifurcation diagram of that variable. Details of this method

are included in Chapter 3, where we also demonstrated the method using both

simulation and experimental data. Chapter 3 is adapted from a published pa-

per [48].

3. We studied a classic SIR model with periodic forcing using the method of mul-

tiple scales. The SIR model is a compartmental model, where the population

is divided into three compartments: S for the number susceptible, I for the

number of infectious, and R for the number recovered (or immune). This study

shows that large amplitude epidemics can take place if the system is moved

into a resonance regime in the parameter plane by the change of any one of

its parameters. Details of the analysis are reported in Chapter 4, which is aslo

adapted from a published paper [25].

4. In Chapter 5, We proposed to use the largest eigenvalue of the covariance matrix

as spatial early warning signals. By establishing the relationship between the

eigenvalues of the covariance matrix and the eigenvalues of the force matrix,

we mathematically show that the dominance of the largest eigenvalue of the

covariance matrix can also be used as an early warning signal. We then demon-

strated the proposed early warning signals using simulation data collected from

three spatially correlated ecological models. This chapter is adapted from a
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manuscript submitted to a scientific journal.
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CHAPTER II

Forecasting bifurcations in parametrically excited

systems

2.1 Introduction

A system is referred to as parametrically excited when one or some of its parame-

ters vary with time. Parametric excitation can be observed in various engineered and

physical systems such as elastic cables [49], rotating machines [50], electrostatic waves

in a plasma with radiation [51], and others [52, 53, 54, 20]. Many natural systems

are also subject to variations of parameters due to environmental fluctuations and

human activities [55, 56, 57].

Many systems subject to parametric excitation exhibit critical transitions from one

state to another as the amplitude and frequency of the fluctuating parameters or the

values of other parameters change. Such critical transitions can either be caused by

a change in the topological structure of the unforced system, or by a synchronization

between a natural mode of the system and the parameter variation. While both cases

are important, the second scenario has received particular interest because a small

parametric excitation might produce a large response when the driving frequency is

close to twice the natural frequency of the system [20]. This phenomenon is referred to

as parametric resonance and has been widely observed in both engineered and natural
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systems. For example, efforts have involved applications to encourage its onset, such

as parametrically excited vibration energy harvester [58] and parametric resonance

amplification in MEMS gyroscopes [59]. Other efforts have been made to limit the

growth of parametric resonance, such as prevention of parametric rolling in ship

engineering [13] and suppressing vortex induced vibration in offshore engineering [60].

Bifurcations can be dangerous because of the large amplitude response in the post-

bifurcation regime. Thus, it could be very beneficial if monitoring or early warning

were available while the system is still in the stable regime. Traditionally, Floquet

theory is used to study the linear stability of time dependent systems [61]. In that

theory, the eigenvalues of the monodromy matrix are calculated to determine the

stability of the system. Carrying out such analysis requires accurate knowledge of

the model of the system [62]. This may not be possible for a variety of complex

systems. Thus, model-less methods are needed to predict the actual distance to the

transition and the state of the system after the transition using only data obtained

in the pre-bifurcation regime.

Recently, a number of model-less methods which use time series [16] have been

proposed to anticipate critical transitions. These model-less methods are based on

the observation that the dynamics of many systems near critical transitions have a

common property regardless of the different details of each system. Such generic

property is the phenomenon of critical slowing down, in which the system recovers

from perturbations ever more slowly as the system approaches a critical point [5, 6,

63, 15, 64]. These methods rely on indicators such as an increased autocorrelation or

variance [5, 65] obtained from measurements during the system’s recovery from small

perturbations. However, these methods can only be used as qualitative early warning

signals because of their difficulty in quantitatively detecting the distance to critical

transitions [44].

The model-less method available to anticipate the distance to a critical transition
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and the state of the system after such transition is breached was proposed in [45]

where tipping points in the dynamics of electro-mechanical systems were studied. In

that method, recoveries of the system from large perturbations are used to calculate

the rate of change of amplitude of the dynamics so as to predict not only the bifur-

cation point, but also the stable and unstable branches of the bifurcation diagram.

This method was extended in [46, 36] to forecast bifurcations of multi-dimensional

aeroelastic systems. Although methods based on the persistent response to persis-

tent stochastic excitations [15, 64, 16], and methods utilizing transient recoveries from

large perturbations [45, 46] are all using slowing down of the system response close

to critical transitions, the latter method relies on recoveries from large perturbations

instead of the persistent response to persistent stochastic excitations. Thus, the noise

is considerably smaller than the system response, and noise filtering approaches can

be use.

Despite the different utilities of the existing methods mentioned above, they were

all developed for autonomous systems, without considering the effects of time variant

inputs. To deal with time-varying parameters, researches have used Hilbert transform

or Gabor transform to estimate both the instantaneous amplitude and frequency of

the system response to large perturbations [66, 67]. Important parameters, such as

damping and stiffness coefficients are then identified. Despite all their benefits, these

identification methods rely on a relatively accurate model of the system, which limits

their applicability. Thompson and Virgin [68] proposed to use transient frequencies

to predict an incipient jump to resonance of a lightly damped nonlinear oscillator.

However, that method is not able to predict the behavior of the system after the jump.

In this work, we present another approach to predict the location of bifurcations re-

lated to parametric excitation only using recovery data in the pre-bifurcation regime.

Moreover, the behavior of the system after the bifurcation can also be anticipated us-

ing the proposed approach, which provides an understanding of the post-bifurcation
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dynamics.

Recoveries from large perturbations are exploited in the proposed method. These

perturbations can be applied or can be caused by natural events. When a system

recovers from large perturbations, the recovery rates at different amplitudes and pa-

rameter values can be used to obtain desired information about the bifurcation and

about the post-bifurcation dynamics. Different from what has been done in [45, 69],

the method proposed herein uses recoveries in a Poincaré section obtained by sampling

the trajectory once for each forcing period. Also, different techniques are proposed

for critical transitions caused by bifurcations of the unforced system, or by parametric

resonance.

Numerical simulations and experimental results are provided to demonstrate the

proposed method. In numerical simulations, a parametrically excited logistic equation

and a parametrically excited Duffing oscillator are used to demonstrate the proposed

forecasting method. These two types of systems show that the method can predict

transitions induced by either bifurcation of the unforced system, or by parametric

resonance. We further examine the robustness of the method to measurement and

process noise by collecting recovery data from an electrical circuit system which ex-

hibits parametric resonance as one of its parameters varies. We also discuss how

the method can be applied to other time variant systems other than parametrically

excited systems.

2.2 Theory

2.2.1 Method

The method proposed herein is an extension of work in [45]. In that work, co-

dimension one Hopf bifurcations of autonomous systems were studied. The rate of

change of amplitude was used as an indicator of critical slowing down. In this paper,
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parametrically excited systems with critical transitions are studied. A new technique

is introduced to deal with the explicit time input. The proposed method does not

depend on the details of the physics, but has some requirements/limitations. One

of the requirements is that the system must have a periodically varying parameter.

Another requirement is that the bifurcation has to exhibit slowing down. Indeed, the

ideas in the proposed method are relying on the fact that the dynamics in a phase

portrait is topologically equivalent to that of a system in a normal form. The benefit

is that the approach does not require a model of the system, i.e. it does not depend

on the details of the underlying physics.

The proposed method is summarized in Fig. 2.1. The method relies on observa-

tions of system recoveries from perturbations before a bifurcation takes place. Distinct

from previous work, the proposed method can predict the entire bifurcation diagram

at all phases using data collected from the pre-bifurcation region, as shown in Fig. 2.1.

Recoveries are collected at two or more parameter values before the bifurcation. The

state-space recoveries at two such parameter values are shown in boxes A1 and A2.

Note that it takes more cycles for the system in box A2 to recover to the equilib-

rium than the system in box A1, which indicates that the dynamics slow down as the

system approaches the bifurcation. The fundamental idea of this method is that the

region where the states have slowest recovery rates corresponds to the limit cycles of

the nearest bifurcation in the parameter space.

Note that a limit cycle in the state space corresponds to a set of fixed points in a

Poincaré section. Therefore, we relate the distance to a limit cycle in the parameter

space to the local recovery rate in a Poincaré section. The states with slowest recovery

rates in a Poincaré section are closest in the parameter space to a limit cycle.

In addition, a bifurcation of a parametrically excited system can be caused by two

different mechanisms. In the first case, there is a bifurcation in the corresponding

autonomous system where all the parameters are kept constant. In such cases, a
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bifurcation exists even if the parametric excitation is removed. The second case

is parametric resonance, where the bifurcation is caused a phase-lock between the

periodic variation in state variables and the periodic variation in parameter values.

Different methods are developed for these two different scenarios, and are discussed

separately below.

Figure 2.1: The bifurcation diagram of a parametrically excited system with both a
stable branch (solid line) and an unstable branch (dash line) are shown. µ denotes
the bifurcation parameter. x and ẋ denote the states of the system. The method
can predict both the bifurcation point A and the post-bifurcation regime (dots) us-
ing transient recoveries from perturbations collected in the pre-bifurcation regime.
Examples of the state space transient recoveries are shown in boxes A1 and A2.
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2.2.1.1 Bifurcations in the corresponding autonomous systems

Consider a parametrically excited system which experiences a critical transition

as one of the parameters vary. When there is no resonance and the dynamics in

the corresponding autonomous system exhibit a bifurcation at a critical parameter

value µc, parametric excitation works merely as a driving force, creating a limit cycle

which has the same frequency as the excitation. In this case, the dynamics can be

characterized by a (physical, measurable) coordinate x, and a governing equation

given by

dx

dt
= xf(x, µ, t) + g(x), (2.1)

where µ is the bifurcation parameter, and where f and g are smooth near x = 0. In

this new expression, parametric excitation is caused by f(x, µ, t) which is periodic

in time. g(x) is a function that is only related to the state variables. f(x) and

g(x) together define the bifurcation of the system. Different from [45], in the current

method, the recovery rate is studied in the Poincaré section obtained by sampling the

trajectory once during each forcing period. Thus, Eq. (1) is first rewritten as

dx

dt
= xf(x, µ, θ) + g(x), (2.2)

where θ ∈ S1, and S1 = R/T is the time circle of length T [14]. Next, we define a

cross section Σ = {(x, θ)|θ = φ}, and the Poincaré map corresponding to that section

as

xn+1 = p(xn, µ, φ).

Here, we refer to φ as the forcing phase of the map. xn+1 represents the state that

xn is mapped to after one period T given a parameter value µ and a forcing phase φ.
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Figure 2.2: Examples of using the function λ versus µ at a fixed state x∗ to find
the corresponding parameter µ∗ for the chosen state x∗. (a) Parametrically excited
logistic equation. (b) Parametrically excited Duffing oscillator when the forcing phase
is the corresponding forcing phase of the state. (c) Parametrically excited Duffing
oscillator when the forcing phase is not the corresponding forcing phase of the state.

Thus, the recovery rate of state x in this map is defined as:

λ(xn, µ, φ) =
p(xn, µ, φ)

xn
, (2.3)

where λ(µ, x, φ) is not known, but it is required to be smooth with respect to µ.

Next, we denote the critical value of the bifurcation parameter as µc. The bifurcation

occurs at µ = µc, which is point A in Fig. 2.1. Then, the Taylor series of λ with

respect to µ near µc can be written as

λ(xn, µ, φ) = λ(xn, µc, φ)

+(µ− µc)
dλ(xn, µ, φ)

dµ

∣∣∣∣
µ=µc

+H.O.T. (2.4)
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Note that the linearization in Eq. (2.4) is done in the parameter space rather than

in the state space. Thus, no approximation is made in the state space, even when

xn is large. This helps to predict large amplitude limit cycles which exist after the

bifurcation.

The higher order terms (H.O.T.) in Eq. (2.4) can be neglected when µ is close to

µc. However, when the prediction is applied to recoveries with parameter values far

from µc, or for a post-bifurcation dynamics far from µc, one can use the higher order

terms in Eq. (2.4) to enhance the accuracy of the method. In the following, we focus

on cases where µ is close to µc.

Consider a fixed point x∗ and at a parameter value µ∗ on the bifurcation diagram

of the map xn+1 = p(xn, µ, φ). We obtain

λ(x∗, µ∗, φ) =
p(x∗, µ∗, φ)

x∗
= 1. (2.5)

Consider two time series of measurements (denoted by xan and xbn) of the system

response to large perturbations for two different values of µ (denoted by µa and µb).

An Example of such measurements is shown in Fig. 2.3. The recovery rate at these

two different parameter values can be expressed using Eq. (2.3) as

λ(xan, µa, φ) =
p(xan, µa, φ)

xan
,

λ(xbn, µb, φ) =
p(xbn, µb, φ)

xbn
.

Denote by λa and λb the recovery rates of the system at state x∗ with parameter

values µa and µb, namely

λa =
p(x∗, µa, φ)

x∗
,

λb =
p(x∗, µb, φ)

x∗
.
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Figure 2.3: A recovery of the parametrically excited logistic equation from a pertur-
bation. Symbols represent the samples with the same forcing phase φ = π.

Because recovery data is collected in a Poincaré section, measurements may not be

available exactly at state x∗. Thus, the values of λa and λb can be obtained through

a local interpolation using available measurements which are at states close to x∗ and

at the forcing phase value of φ.

Using Eq. (4) it follows that at a fixed value of x = x∗ λ varies linearly with µ

close to µc. A linear function of λ versus µ can be fitted using µa, µb and λa, λb at a

fixed value of x∗ as shown in Fig. 2.2 (a). Then, µ∗ can be obtained by determining

the parameter value at which Eq. (5) holds, namely λ(x∗, µc, φ) = 1.

If measurements at more than two parameter values are available, a linear or

nonlinear function of recovery rate λ versus parameter value µ can be fitted. Then,

µ∗ can be obtained by determining the parameter value at which Eq. (5) holds, namely

λ(x∗, µ∗, φ) = 1.

The method above shows how to find the parameter value µ∗ which corresponds

to a state x∗. Thus, the entire bifurcation diagram for a fixed forcing phase can be
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constructed. The value of µ∗ is affected by the value of the forcing phase φ for the

same state x∗. Therefore, it is important that the system is studied in the Poincaré

section corresponding to that value of the phase.

The method to predict the bifurcation diagram of a system with parametric exci-

tation (when bifurcation is not caused by parametric resonance) can be summarized

as the following steps:

1. Choose at least two parameter values that are close to the bifurcation and mea-

sure at least one system recovery from a large perturbation at each parameter

value.

2. Apply noise filtering techniques to available transient recoveries.

3. Choose a forcing phase φ to predict the corresponding bifurcation diagram.

For each value of the bifurcation parameter µ, compute λ for all the states x

collected at the forcing phase φ. Approximate the dependence of λ on x by

using a polynomial function (e.g., a linear function).

4. Choose a state x∗ where λ can be calculated from measurements at all parameter

values, and use the relationship between λ and µ to find the corresponding

parameter value µ∗ for which x∗ is a fixed point (i.e. λ=1).

5. In a similar manner, choose different x∗ values and repeat the procedure at steps

3 and 4 to predict the entire bifurcation diagram at the chosen forcing phase.

Finally, choose another value of the forcing phase and repeat the procedure at

steps 3 and 4 to predict the entire bifurcation diagram for all measured values

of φ.

2.2.1.2 Parametric resonance

It is more complicated to predict the bifurcation diagram when the critical transi-

tion is caused by a parametric resonance. Parametric resonance typically occurs when
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the parametric excitation is close to twice the natural frequency of one of the modes

of the system. At parametric resonance, the amplitude variation is synchronized with

the parameter variation, resulting in a sustained oscillation at a certain amplitude.

Therefore, each state on a limit cycle corresponds to a fixed forcing phase value φ∗.

Thus, to predict the parameter value µ∗ corresponding to a state x∗, we also need to

predict the corresponding forcing phase φ∗. Hence, predicting the bifurcation diagram

of a system with parametric resonance is more complicated in the sense that both

φ∗ and µ∗ have to be predicted. This contrasts the analysis in the previous section

where x∗ and φ are chosen and only µ∗ has to be predicted.

Consider a system that experiences parametric resonance as one of its parameters

varies. Parametric resonance typically occurs when the parametric excitation is close

to twice the frequency of the dynamics in one of the manifolds (e.g., the frequency of

one of the normal modes of the system). Consider that the dynamics of that mode

are characterized by coordinates (x1, x2) and by the two dimensional Poincaré map

x1,n+1 = p1(x1,n, x2,n, µ, φ),

x2,n+1 = p2(x1,n, x2,n, µ, φ),

(2.6)

where φ is a chosen forcing phase and (x1,n+1, x2,n+1) represents the state that (x1,n, x2,n)

is mapped to after two periods T at a given parameter value µ and forcing phase φ.

Two periods are used to construct the Poincaré map instead one because parametric

resonance is a 2:1 resonance, which means that the frequency of the limit cycle is half

the frequency of the excitation.

Recovery rates λ1 and λ2 are defined similar to Eq. (2.4),
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λ1(x1,n, x2,n, µ, φ) =
p1(x1,n, x2,n, µ, φ)

x1

,

λ2(x1,n, x2,n, µ, φ) =
p2(x1,n, x2,n, µ, φ)

x2

.

(2.7)

Denote by (x∗1, x
∗
2) a fixed point of the map at a parameter value µ∗ and forcing

phase φ∗. Therefore, λ1(x∗1, x
∗
2, µ

∗, phi∗) = λ2(x∗1, x
∗
2, µ

∗, φ∗) = 1. To find the values of

φ∗ and µ∗, λ1 and λ2 are calculated for several forcing phase values from 0 to 2π. For

each value of the forcing phase, λ1 and λ2 are calculated in the pre-bifurcation regime

at (x∗1, x
∗
2) using at least two parameter values µa and µb. Polynomial functions of λ1

and λ2 versus µ are fitted and extrapolated into the post-bifurcation regime as shown

in Fig. 2.2. This is a step similar to step 4 in the previous section.

In general, at a chosen phase value φ, the two recovery rates λ1 and λ2 become

equal at some value µ, but they have values which are not equal to 1 at that value of

µ as shown in Fig. 2.2 (c). This is because the chosen value of φ does not correspond

to an actual fixed point. Thus, the process is repeated at other values of the phase.

At one of the phase values, the intersection of λ1 and λ2 versus µ occurs at a common

value of 1 as shown in Fig. 2.2 (b). Thus, two quantities are obtained, namely µ∗ and

φ∗, which correspond to two constraints λ1 = 1 and λ2 = 1.

If measurements at two or more parameter values are available, linear or nonlinear

functions of λ1 and λ2 of µ can be fitted. Then, the values of µ when λ1 = λ2 can be

determined using these polynomial functions at each phase value φ. The values of µ

and φ corresponding to the fixed point are obtained when λ1 and λ2 are equal to 1.

This procedure identifies the parameter value µ∗ and forcing phase φ∗ which cor-

respond to the fixed point (x∗1, x
∗
2). The process can be repeated at other values of

the fixed point to obtain the entire bifurcation diagram, as shown in Fig. 2.10.

The method to predict the bifurcation diagram of a system with parametric res-

onance can be summarized as the following steps:
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1. Choose at least two parameter values that are close to the bifurcation and mea-

sure at least one system recovery from a large perturbation at each parameter

value.

2. Apply noise filtering techniques to available transient recoveries.

3. Choose a state (x∗1,x∗2). For each µ value, compute λ1 and λ2 using Eq. (2.7)

for (x∗1,x∗2) with several chosen forcing phase φ from 0 to 2π. For some forcing

phase values φ̃, the combination of (x∗1,x∗2) and φ̃ may not be encountered in

the time series, which means that λ1 and λ2 can not be calculated directly

from measurements. In this case, λ1 and λ2 are calculated for states close to

(x∗1, x
∗
2) with a forcing phase φ̃. Then, λ1(x∗1, x

∗
2, µ, φ̃) and λ2(x∗1, x

∗
2, µ, φ̃) can be

interpolated from these results.

4. For all the chosen forcing phases from 0 to 2π, polynomial functions of λ1 and λ2

versus µ are fitted to find out the values of µ∗ and φ∗ where λ1(x∗1, x
∗
2, µ

∗, φ∗) =

λ2(x∗1, x
∗
2, µ

∗, φ∗) = 1.

5. Choose different states (x∗1,x∗2) and repeat the procedure in steps 3 and 4 to

predict the entire bifurcation diagram.

2.2.2 Discussion of the Method

For parametrically excited systems, recovery rate λ is calculated in a Poincaré

section. The computation of λ does not require a model of the system. It only

requires measurements of the state x of the system during its transient recovery from

perturbations for at least two parameter values µ. λ values are thus calculated directly

from measurements. These λ values are used to predict the critical parameter value

µ∗. The extrapolation used in this process puts some constraints on the method. First

is that the method only works for co-dimension one bifurcations. Second, dynamics

of the system have to vary smoothly as parameter changes. Third, measurements
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have to be collected at the parameter values close to the bifurcation for the dynamics

to experience a slow down.

Due to such requirements of the system, the proposed approach bears some resem-

blance to the normal form approach from dynamical system theory. Normal forms

provide key information about the qualitative nature of the dynamics, and specifi-

cally about the presence of slowing down. The specific expression of the normal form,

however, can be distinct. The proposed method (including several past methods de-

veloped for autonomous systems) can be applied to a range of bifurcations, including

transcritical, pitchfork and Hopf bifurcations. These different bifurcations have dif-

ferent normal forms. However, the method remains the same. Thus, we describe

the method even more generically than a normal form, i.e. the system in Eq. (1).

In addition, the proposed approach focuses on two types of critical transitions with

parametric excitation. In the first type, there is a bifurcation in the corresponding

autonomous system where all the parameters are kept constant. In such cases, a

bifurcation exists even if the parametric excitation is removed. A normal form exists,

although its expression can be one of several. In the second type, there is a para-

metric resonance, where the bifurcation is caused a phase-lock between the periodic

variation in the state variables and the periodic variation in the parameter values. Of

course, the causes of these two different types of bifurcations are different, but the

proposed approach remains the same.

Since measurement noise is unavoidable, filtering techniques can be applied before

calculating λ. However, there are some errors that cannot be filtered easily (e.g. by

using a low pass filter). For some combinations of state values and forcing phase

values, the λ value can not be calculated directly using the time series. Therefore,

interpolation has to be applied, which introduced errors that cannot be easily filtered

out. However, there are two methods to reduce this error. The first method is to

gather more time series at each parameter value, which will help increase the accuracy
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Figure 2.4: Nonlinear extrapolation is used to find the bifurcation parameter µ∗ for
a state x∗. Symbols × represent λ values calculated from the recovery. The solid line
represents the fitted cubic function of λ vs. µ at state x∗.

Figure 2.5: Prediction results for the bifurcation diagram of a parametrically excited
logistic equation at a forcing phase of φ = π . 50 recoveries were collected for
9 pre-bifurcation parameter values. The exact bifurcation diagram with both the
stable (solid line) and unstable (dashed line) branches are shown. The predicted
bifurcation diagram is shown with symbols together with standard deviation error
bars for three cases: (a) no measurement noise, (b) 5% measurement noise, and (c)
10% measurement noise.
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of the interpolation. Another method is to approximate the dependence of λ values

on forcing phase values φ at the same state and parameter values using a periodic

function as shown in Fig. 2.7. More details about this are provided in the next section.

2.3 Results

We demonstrate the proposed method using both computational data and exper-

imental data to examine its application to data collected from a system’s dynamics.

A parametrically excited logistic equation is used as an example of a critical tran-

sition induced by the bifurcation of the unforced system as a parameter varies. The

logistic equation is a commonly used model in population dynamics where the growth

rate is proportional to both population size and available resources [70]. Since popu-

lation dynamics are constantly affected by seasonal forcing caused by environmental

fluctuations and human activities, a logistic equation with parametric excitation is

an important topic to study [71].

A parametrically excited Duffing Oscillator is used as an example system exist-

ing a critical transition caused by parametric resonance. The parametrically excited

Duffing oscillator is realized physically through an analog electric circuit and exper-

imental data are used for forecasting. This is a nonlinear dynamics system that has

been studied using numerical simulation and perturbation methods [20].

2.3.1 Numerical Results

2.3.1.1 Parametrically excited logistic equation

The governing equation of a parametrically excited logistic equation can be written

as

ẋ = µ(1 + εsin(ωt))x− x2, (2.8)
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where ε = 2, and Ω = 1. µ is the bifurcation parameter.

An example of a recovery from a perturbation with µ = −0.1 is shown in Fig. 2.3.

Symbols represent states with forcing phase φ = π. The measurements shown in

Fig. 2.3 are used to predict the bifurcation diagram at forcing phase φ = π.

λ values are estimated at parameter values in a range from rmin = −1 to rmax =

−0.1 by using Eq. (5). These values are used to predict the corresponding parameter

value µ∗ of a chosen state x∗ as shown in Fig. 2.4. Note that a cubic function of λ

versus µ is used for extrapolation to find out the value µ∗ of the parameter when the

value of λ equals to 1. The entire bifurcation diagram with forcing phase φ = π is

constructed by repeating this process for different states x∗.

Prediction results for the bifurcation diagram corresponding to forcing phase φ =

π are shown in Fig. 2.5. Measurement noise of 0%, 5% and 10% was added to

the observed data, and 50 noisy recoveries were collected at each value of µ. The

prediction results anticipated the transcritical bifurcation diagram well in all three

case. In general, only one recovery is needed at each parameter value, but because of

the measurement noise and the need for local interpolation, additional recoveries can

help to improve the accuracy of the forecasting results.

2.3.1.2 Parametrically excited Duffing oscillator

The governing equation of a parametrically excited Duffing oscillator can be writ-

ten as

ẍ+ x+ ε(2cẋ+ αx3 + µxcos(Ωt)) = 0, (2.9)

where ε = 0.1, c = 0.5, α = 1, and Ω = 1.9 are used to obtain numerical data. µ is

the bifurcation parameter.

Examples of state space recoveries at three different µ values (of 1.8, 2.2 and 2.6)
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Figure 2.6: Recovery from perturbations of the parametrically excited Duffing os-
cillator. (a) state-space recoveries at three three different parameter values in the
pre-bifurcation regime. Symbols show the chosen state (x∗1, x

∗
2). (b) λ1 and λ2 for

the state (x∗1, x
∗
2) (+ symbol) and forcing phase φ are interpolated from λ1 and λ2 of

states close by (dots) with the same forcing phase.

are shown in Fig. 2.6 (a).

Data with the same phase φ are extracted from recoveries, as shown in Fig. 2.6

(b). λ1 and λ2 of these data are calculated using Eq. (2.7). Thus, λ1 and λ2 of a

selected state (x, ẋ) = (x∗1, x
∗
2) can be locally interpolated from these measurements.

To increase the accuracy of the local interpolation, and especially to deal with mea-

surement noise, 50 time histories are collected at each bifurcation parameter value.

Using multiple recoveries provides more data at the given phase value, which helps

alleviate the effects of noise. Results of λ1(φ) versus the forcing phase at the same

bifurcation parameter value are shown in Fig. 2.7.
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Figure 2.7: λ1 versus the forcing phase. Solid and dashed lines represent the fitted
functions of λ1 versus forcing phase. Symbols represent the fitted data.

Whether a local interpolation is accurate depends on the amount of data with

rich information close to the chosen state (x∗1, x
∗
2). Although 50 time histories are

used for each bifurcation parameter, it is still possible that for some forcing phase,

the local interpolation is not very accurate. Thus, to increase the accuracy of local

interpolation for each chosen state (x∗1, x
∗
2), a periodic function of λ is fitted versus

forcing phase φ, as shown in Fig. 2.7. Fitted values of λ1 and λ2 are used to forecast

the corresponding parameter value µ∗ of state (x∗1, x
∗
2) on the bifurcation diagram,

and the forcing phase it corresponds to as shown in Fig. 2.8.

The approach forecasts the value of the critical parameter for the bifurcation,

together with the states of the system after this transition (i.e., the entire bifurcation

diagram). Results are shown in Figs. 2.9 and 2.10. Figure 2.9 shows prediction results

for the bifurcation diagram corresponding to a single forcing phase with different levels

of measurement noise. Although the prediction is better when the noise level is low,

the result is still excellent even when there is a 10% measurement noise.Figure 2.10
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Figure 2.8: λ1(x∗1, x
∗
2, µ, φ) and λ2(x∗1, x

∗
2, µ, φ) equal to 1 at the same parameter value

µ∗ when the forcing phase is the corresponding forcing phase φ∗ for the fixed point
(x∗1, x

∗
2).
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Figure 2.9: Prediction results for the bifurcation diagram corresponding to forcing
phase φ = π. 50 recoveries were collected at each of the three parameter values in the
pre-bifurcation regime (µ = 1.8, 2.2 and 2.6). The bifurcation diagram of both the
stable (solid line) and unstable (dashed line) branches are shown. Prediction results
are shown by symbols together with standard deviation error bars for three cases: (a)
no measurement noise, (b) 5% measurement noise, and (c) 10% measurement noise.

shows prediction results for the entire bifurcation diagram with no measurement noise.

The post-bifurcation dynamics are predicted well.

2.3.2 Experimental results

To demonstrate the applicability of the forecasting method to systems with both

measurement and process noise, a parametrically excited Duffing oscillator is realized

through a physical analog electric circuit shown schematically in Fig. 2.11 (a) and

as constructed in Fig. 2.11 (b). The governing equation of the voltage of the circuit

is that of Eq. (2.9). The value of the components in Fig. 2.11 are given in Tab. 1.

The potentiometer allows control of parameters ε, α, c, while µ and Ω can be var-

ied through a function generator responsible for the input signal. The operational

amplifiers are model TL082 and the multipliers are model AD633.

Each experiment consists of three steps. The first step is to obtain recovery data

from large perturbations in the pre-bifurcation region. The perturbation is caused

by temporarily adding a strong white noise. After the perturbation, the dynamics
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Table 2.1: Duffing circuit component values

Component Value
C1, C2 10 nF
R8, R15, R16 1 KΩ pot
R5, R7, R13 10 KΩ
R2, R9 10 KΩ
R1, R3, R4, R6, R10, R12,
R14

100 KΩ
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Figure 2.10: Prediction results for the bifurcation diagram. 50 recoveries were col-
lected at each of three parameter values in the pre-bifurcation regime (µ = 1.8, 2.2
and 2.6). Lines represent measured results with both the stable (solid) and the unsta-
ble (dashed) branches shown. Symbols represent prediction results at each parameter
value. These results are obtained by first predicting the corresponding parameter
value µ∗ of state (x∗1, x

∗
2), and then interpolating the predicted results to the selected

parameter values.
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Figure 2.11: Schematic of an analog circuit which has the dynamics of the para-
metrically excited Duffing oscillator (top). The Duffing circuit as constructed in the
laboratory (bottom).

during the recovery to equilibrium are recorded. Specifically, three states (x, ẋ, φ)

are measured. x and ẋ are represented by two voltages which can be measured

directly. The forcing phase is measured directly by recording µ cos(Ωt). Different from

numerical simulations, λ1 and λ2 cannot be obtain directly from these measurements

due to the difference between the sampling frequency and the driving frequency Ω.

Therefore, 201 forcing phases are selected, from 0 to 2π with an increment of π
100

.

State variables corresponding to these forcing phase values are interpolated from

measurements collected close to them. Then, λ1 and λ2 can be calculated using data

either interpolated or measured with all 201 forcing phase values.

The second step is to predict the bifurcation and the whole bifurcation diagram
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Figure 2.12: Prediction results for the bifurcation diagram of state x versus parameter
µ for forcing phase φ = 3

2
π. 50 recoveries were collected at each of two parameter

values in the pre-bifurcation regime (µ = 2.4 and 2.6). Solid lines represent the
measured bifurcation diagram. Prediction results are shown by symbols together
with standard deviation error bars.

using λ1 and λ2 calculated from the second step. Prediction results of the bifurcation

diagram corresponding to one forcing phase are shown in Fig.2.12. Prediction results

for the entire bifurcation diagram are shown in Fig. 2.13. To obtain this results, 50

recoveries were were collected at each of two parameter values. It is worth mentioning

that multiple recoveries were collected to enhance the accuracy of the prediction

results.

The third step is to obtain the actual bifurcation diagram by the classic method

of parameter sweeping. This step is performed so that the predictions obtained using

the proposed forecasting approach can be validated using the actual bifurcation dia-

gram. The limit cycle oscillations are obtained and plotted versus the corresponding

parameter value to obtain a bifurcation diagram.
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Figure 2.13: Prediction results for the entire bifurcation diagram. 50 recoveries were
collected at each of two parameter values in the pre-bifurcation regime (µ = 2.4
and 2.6). Lines represent measured bifurcation diagram with both the stable (solid)
and the unstable (dashed) branches. Symbols represent prediction results at each
parameter value. These results are obtained by first predicting the corresponding
parameter values µ∗ of certain states (x∗1, x

∗
2), and then interpolating the predicted

results to the selected parameter values.
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2.4 Discussion and Conclusions

We presented a new method that uses the transient recovery of parametrically

excited systems from large perturbations to predict the bifurcation diagram. This

forecasting method provides quantitative insights into parametrically excited systems

despite the absence of actual models of these systems. As expected, the accuracy of

forecasting increases when more data are collected closer to the critical transition.

One of the important benefits of the method is that it is applicable in advance of

the transition. The transition and the overall bifurcation diagram can be predicted

without endangering the system by passing the transition point. We demonstrated

experimentally and numerically that transitions caused by either bifurcation of the

unforced system or parametric resonance can be predicted using this method.

This method method also works for subcritical bifurcations, although all the ex-

amples we presented in the paper have supercritical bifurcations. This is because

we can still observe critical slowing down when subcritical bifurcation occurs. The

difference is that for supercritical bifurcation, the dynamics is slowest at the zero

equilibrium, while for subcritical bifurcation, the dynamics slow down the most at

the amplitude of the saddle-node fixed point. Therefore, we need to use the rela-

tionship between the recovery rate and amplitudes, i.e. λ versus r, to study both

the amplitude and the parameter of the jump point. Thus, two solutions that are

created by one bifurcation can be predicted at the same time. The method, however,

cannot predict multiple (more than two) solutions that are related to one bifurcation.

In addition, our method cannot be applied to chaotic systems because we predict

bifurcations by identifying steady state solutions through the critical slowing down

phenomenon. Therefore, we use steady state solutions (fixed points or limit cycle

oscillations) before and after the critical transition. A chaotic system does not meet

these requirements.

The proposed method will work also for other periodically forced systems subject

38



to critical transition because of its model-less nature. Specifically, when a critical

transition of a periodically forced system is caused by the bifurcation of the unforced

system, a Poincaré section can be constructed by sampling recoveries once each exci-

tation period. When the critical transition is caused by resonance, additional infor-

mation about the system is required. The relationship between the frequency of the

resonance dynamics and the excitation frequency is important for the construction of

the Poincaré section.

Large perturbations are beneficial for this method because they provide informa-

tion about the recovery rate of the system at large amplitudes, which enables the

prediction of the bifurcation parameter corresponding to large-amplitude limit cycles

or fixed points. Furthermore, operating with larger perturbations is beneficial to alle-

viate the effects of noise at lower amplitudes. Nevertheless, the proposed method can

be used with small amplitudes also to predict the bifurcation point and the bifurcation

diagram at small amplitudes when larger perturbations are not available.

Another important feature of the proposed method is its ability to predict the en-

tire bifurcation diagram by studying the system dynamics in several different Poincaré

sections. However, to gather the rich information provided by the method, more data

will be needed in the pre-bifurcation regime, especially for large amplitudes. This is

because interpolation is used to calculate λ1 and λ2 for the selected state with differ-

ent values of the forcing phase. Recovery data is especially important to forecast the

bifurcation diagram of subcritical bifurcations, because the stable region of the post

bifurcation regime usually has large amplitudes. This also limits the method’s appli-

cability because for some systems, multiple perturbations at one parameter value may

not be available, or they may be encountered only rarely. In addition, the existence

of strong process noise might also limit the applicability of the method. Currently we

are averaging over multiple recoveries to filter out the noise, but this method might

not work for strong process noise. Currently the method can work out well when the
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magnitude of the noise is one order of magnitude smaller than the damping in the

system. However, when the noise is at the same order of magnitude as the damping,

the prediction results are not very good. How to make this method more robust with

process noise will be one of the things we will investigate in the future.
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CHAPTER III

Forecasting bifurcations of multi-degree-of-freedom

nonlinear systems with parametric resonance

3.1 Introduction

Parametric resonance is a phenomenon that can occur when one or more param-

eters vary periodically in time at a frequency related to the resonance frequencies of

the system. Such resonances are observed in a wide range of engineering and natural

systems [59, 72, 73] where large amplitude parametric resonance can be triggered by

a relatively small-amplitude oscillation in parameters. There has been much interest

in predicting the behavior of systems exposed to parametric resonance, because of

the association between parametric resonance and large amplitude response, which

can be dangerous in many engineering and natural systems [25, 74, 75]. Researchers

have investigated this phenomenon in different applications to encourage or prevent

its onset [13, 76].

Researchers have been using transient response to large perturbations for non-

linear system identification [66, 67]. This approach enables measurements at large

amplitudes, where nonlinearities are more active. Periodic excitation is first applied so

that the system oscillates at a certain amplitude. Excitation is then removed and free

response data are collected. The transient data is then analyzed using Hilbert trans-
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form or Gabor transform to estimate both the instantaneous amplitude and frequency

of the system response, and thus identify both the bifurcation point and the bifur-

cation diagram of the system. Important parameters, such as damping and stiffness

coefficient are then identified. Despite all the benefits, these identification methods

rely on a relatively accurate model of the system, which limits their applicability.

To deal with the lack of an accurate model, model-less methods are proposed to

identify backbone curves [77] or bifurcation diagrams [45, 7, 37] using transient recov-

ery data. Bifurcation forecasting methods in particular, rely on the observation that

the dynamics of many systems near critical transitions have a common property that

the system recovers from perturbations ever more slowly as the system approaches

critical points [16, 63, 18, 78]. Therefore, by monitoring the recovery rate of responses

to large perturbations in the pre-bifurcation regime, these methods provide a predic-

tion of the bifurcation point and the bifurcation diagram. The advantage of such

methods is that they are model-less, which means that the bifurcation diagram can

be extracted directly from the recovery data without the need for too many details

of the system.

Bifurcation forecasting methods, however, are all focused on autonomous systems,

without considering the effects of periodic excitation. For autonomous systems, the

stability is determined by the eigenvalues of the linear part of the system at the

equilibrium [63, 19]. For example, a critical transition of saddle-node type in an

autonomous system is caused by the real part of an eigenvalue going from negative

to positive. However, this is not necessary the same for systems with time varying

input. The instability of a system with parametric resonance is not only associated

with the linear part of the system, but also affected by nonlinearity [20, 79]. For

multi-degree-of-freedom systems, the interaction between different linear modes of

the system can also affect the onset of parametric resonance, and the bifurcation

diagram [80]. A novel approach is proposed in this paper to deal with bifurcations
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induced by near resonance parametric excitation. A procedure for the estimation

of instantaneous amplitudes originated from the averaging theorem is proposed [14].

The approach transforms the non-autonomous parametrically excited system into an

autonomous system, which enables the application of the method proposed in [45].

Transient recovery of the amplitudes of the oscillations are thus monitored and used

to forecast not only the bifurcation point but also the whole bifurcation diagram. This

is important for the understanding of how the amplitude of the oscillations changes

with the parameter after the bifurcation. Quantitative knowledge of the branches of

the bifurcation diagram can allow actions before the critical transition occurs, and

can be helpful in designing systems that use/exhibit parametric resonance.

For multi-degree-of-freedom systems with parametric resonance, it is not realistic

to monitor all of the degrees-of-freedom (DOFs). Therefore, the proposed method

only collects data for one of the DOFs, and forecasts the bifurcation point and bifur-

cation diagram corresponding to that DOF. To that aim, we utilize center manifold

theory [14]. When a codimension one bifurcation occurs, one or a pair of the eigen-

values of the equilibrium are on the imaginary axis. They are often referred to as

the dominant eigenvalues. The dynamics associated with the dominant eigenvalues

remain in an invariant set referred to as the center manifold. If the system satisfies

the assumption that the manifold associated with the dominant eigenvalues varies

slowly and smoothly with the parameter, when a system is randomly perturbed, then

the dynamics in the stable manifold associated with other eigenvalues die out quicker

than the dynamics in the slow manifold. Therefore, we can forecast the bifurcation

diagram using the recoveries of a single variable in the slow manifold.

In this work, a double pendulum model is used to simulation data to demonstrate

the method. We also have built a nonlinear electrical circuit that has a similar

governing equation to that of the double pendulum. Two different types of bifurcation

are investigated. The bifurcation parameter is the amplitude of parametric excitation
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for the first type, and the detuning factor for the second type. Experimental data

from the circuit is used to further examine the method.

3.2 Theory

This section presents the method to predict bifurcations of multi-DOF systems

using time series collected in the pre-bifurcation regime. Consider a weakly nonlin-

ear N-DOF system with parametric excitation and quadratic nonlinearity [79]. The

governing equations are expressed as:

ẍ1 + ω2
1x1 = ε[−µ1ẋ1 +

N∑
m,k

α1mkxmxk + cos(Ωt)
N∑
m=1

f1mxm] := f1,

ẍ2 + ω2
1x2 = ε[−µ2ẋ2 +

N∑
m,k

α2mkxmxk + cos(Ωt)
N∑
m=1

f2mxm] := f2,

· · ·

ẍN + ω2
NxN = ε[−µN ẋN +

N∑
m,k

αNmkxmxk + cos(Ωt)
N∑
m=1

fNmxm] := fN ,

(3.1)

where ε is a small parameter; ωn is the natural frequency of mode n; µn is the damping

coefficient of mode n; αnmk are the coefficients of the quadratic terms xmxk of mode

n; fnm is the nth modal amplitude of parametric excitation and n = 1, 2, ..., N . Note

that all the nonlinear and parametric excitation terms are small compared to the

linear part of the system.

In this study, we focus on the case of a combination of a parametric resonance

in one mode (chosen as mode 1, Ω ≈ 2ω1) and an internal resonance between two

modes (chosen as models 1 and 2 Ω ≈ ω2). Hence, for n ≥ 3, we assume that

the nonlinear and parametrically excited terms in the governing equations do not

produce resonance. Because this system is weakly nonlinear, we expect its response
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to be approximately harmonic [14], expressed as

x1(t) = A1(t) cos

(
Ω

2
t

)
+B1(t) sin

(
Ω

2
t

)
+O(ε),

x2(t) = A2(t) cos(Ωt) +B2(t) sin(Ωt) +O(ε),

x3(t) = A3(t) cos(ω3t) +B3(t) sin(ω3t) +O(ε),

· · ·

xN(t) = AN(t) cos(ωN t) +BN(t) sin(ωN t) +O(ε),

(3.2)

for n = 1, 2, ..., N . For n ≥ 3, there are no secular terms on the right hand side of the

governing equations, which means there will be no resonance in those DOFs. Thus,

the amplitudes An(t) and Bn(t) will tend to 0 as tends to infinity due to damping.

Thus, after transients die out, dynamics in those DOFs will be small compared to

dynamics in the first two DOFs. In this case, the stability of the steady state solutions

of the first 2 DOFs will not be affected by modes higher than 2.

By applying the van der Pol transformation [14], we change coordinates for the

first two DOFs to obtain

A1

B1

 =

cos(Ωt
2

) − 2
Ω

sin(Ωt
2

)

sin(Ωt
2

) 2
Ω

cos(Ωt
2

)


x1

ẋ1

 , (3.3)

A2

B2

 =

cos(Ωt) − 1
Ω

sin(Ωt)

sin(Ωt) 1
Ω

cos(Ωt)


x2

ẋ2

 . (3.4)

Using this coordinate transformation, the system (1) becomes
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Ȧ1 = − 2

Ω

[(
Ω2 − 4ω2

1

4

)
x1 + εf1

]
sin

(
Ωt

2

)
,

Ḃ1 =
2

Ω

[(
Ω2 − 4ω2

1

4

)
x1 + εf1

]
cos

(
Ωt

2

)
,

Ȧ2 = − 1

Ω

[
(Ω2 − ω2

2)x2 + εf2

]
sin(Ωt),

Ḃ2 =
1

Ω

[
(Ω2 − ω2

2)x2 + εf2

]
cos(Ωt).

(3.5)

Because Ω is close to 2ω1 and ω2, let Ω2 − 4ω2
1 = ε4σ1 and Ω2 − ω2

2 = εσ2. Thus,

according to the averaging theorem, the system (5) can be approximated using an

autonomous system by averaging the dynamics over one period T = 2π
Ω

[14]. The

associated autonomous averaged system is defined as

Ȧ′1 = ε
1

T

T∫
0

− 2

Ω
(σ1x1 + f1) sin

(
Ωt

2

)
:= g1(A′1, B

′
1, A

′
2, B

′
2, ...),

Ḃ′1 = ε
1

T

T∫
0

2

Ω
(σ1x1 + f1) cos

(
Ωt

2

)
:= g2(A′1, B

′
1, A

′
2, B

′
2, ...),

Ȧ′2 = ε
1

T

T∫
0

− 1

Ω
(σ2x1 + f2) sin(Ωt) := g3(A′1, B

′
1, A

′
2, B

′
2, ...),

Ḃ′2 = ε
1

T

T∫
0

1

Ω
(σ2x1 + f2) cos(Ωt) := g4(A′1, B

′
1, A

′
2, B

′
2, ...).

(3.6)

where A′n and B′n are the average of An and Bn over one period; gi for i = 1, 2, 3, 4, ...

are autonomous functions of all the state variables A′n and B′n and all parameters.

Therefore, if we can forecast the bifurcation of the system (6), we can find an approx-

imation to the bifurcation of the system (1).

The bifurcation of the system (6) can be predicted using recovery data from per-

turbations in the pre-bifurcation regime. To obtain recovery data for the system,
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perturbations are applied to system (1). For each period from time Ti−1 = 2π(i−1)
Ω

to

time Ti = 2πi
Ω

(where i is an integer), average amplitudes of the oscillatory recovery

A′n(Ti) and B′n(Ti) can be estimated using least squares method to obtain,

A′n(Ti)

B′n(Ti)

 = (XTX)−1XTy, (3.7)

where X and y are defined as

X =



cos(Ti−1 + δt) sin(Ti−1 + δt)

cos(Ti−1 + 2δt) sin(Ti−1 + 2δt)

· · ·

cos(Ti) sin(Ti)


,

y =



xn(Ti−1 + δt)

xn(Ti−1 + 2δt)

· · ·

xn(Ti)


,

with 1
δt

being the sampling frequency. The values of A′n(Ti) and B′n(Ti) are then used

for forecasting.

Forecasting bifurcations of high dimensional autonomous systems using recovery

data in the pre-bifurcation regime has been discussed in [37]. When a bifurcation

occurs, the equilibrium is non-hyperbolic, and the associated linearized system can

be divided into a stable subspace and a center subspace [14]. For co-dimension one

bifurcation, there exists a one or two dimensional invariant manifold tangent to the

center subspace at the equilibrium. This manifold is defined as the center manifold.

For a high dimensional system, there is a certain parameter-dependent one or two
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dimensional manifold in which the system exhibits a bifurcation, and this manifold is

referred to as the slow manifold. The slow manifold coincides with the center manifold

when the system is at the bifurcation point. Dynamics in the stable manifold can be

neglected because of their faster decay rate compared to the dynamics in the slow

manifold. An example of the slow manifold is shown in Fig. 3.1. When a perturbation

is applied to the system, the dynamics in the fast manifold quickly die out. All

recoveries from different random perturbations recover to the low dimensional slow

manifold.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

A
1

-0.8

-0.6

-0.4

-0.2

0

0.2

B
1

Fast

Slow

Figure 3.1: The slow manifold is low dimensional with dynamics slowest in time.
When the system is perturbed, dynamics in the fast manifold will die out quickly.
Recoveries from different perturbations converge to the low dimensional slow mani-
fold. The diagram is generated by choosing a random initial condition for Eqns. 11,
letting the system recover to equilibrium freely, collecting the recovery data of the
first degree of freedom and applying the van der Pol transformation to obtain the
recovery of amplitudes

A1 and B1.

In [45], the method of forecasting bifurcations of one or two dimensional systems

is developed. Therefore, to predict the bifurcations of high dimensional systems, we

can first remove the transient recovery from perturbations that are not in the slow

manifold, and then apply the method developed in [45] to forecast the bifurcation. An
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important assumption for the proposed method is that the slow manifold associated

with the dominant eigenvalue does not vary drastically with the parameter.

The forecasting method for a low dimensional system is briefly discussed next.

Consider a one dimensional system

ẋ = f(x, µ), (3.8)

where x is the state variable, and µ is the bifurcation parameter.

The method is model-less, so the function f(x, µ) is not known. However, f is

required to be smooth with respect to the bifurcation parameter µ. Next, define the

recovery rate of the system at x as

λ(x, µ) =
ẋ

x
=
f(x, µ)

x
. (3.9)

Since f(x, µ) varies smoothly with µ close to µc, λ also varies smoothly with µ

close to µc. Therefore, a Taylor series of f with respect only to µ near the bifurcation

point µc can be written as

λ(x, µ) = λ(x, µc) + (µ− µc)
dλ(x, µc)

dµ
+H.O.T, (3.10)

where H.O.T. represents high order terms in µ.

Note that λ(0, µ) = limx→0
ẋ
x
, is essentially the eigenvalue of the equilibrium at

parameter value µ. Therefore, λ(0, µc) = 0 at the bifurcation point. Meanwhile, for

other points on the bifurcation diagram, denoted as (µ∗, x∗) as shown in Fig. 3.2 (c)

, λ(µ∗, x∗) is also 0 because x∗ is a fixed point at parameter value µ∗.
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Figure 3.2: Recoveries from large perturbations can be used to forecast the bifurcation
diagram. (a) Recovery rate λ(x, µ) = ẋ

x
can be calculated for different amplitudes

at different parameter values using the measured recovery data. (b) A linear or
nonlinear function of λ versus µ can be fitted using λ for the same amplitude but
different parameter values. Then, µ∗ can be obtained by determining the parameter
value at which λ(x∗, µ∗) = 0. (c) The bifurcation diagram can be constructed by
finding the corresponding parameter value µ∗ for different values of x∗. The diagram
is generated using Eqns (11) and the procedure outlined at the end of this section.

Thus, if we collect data from at least two parameters µ1 and µ2 in the pre-

bifurcation regime, and calculate λ at x∗ for µ1 and µ2, we can obtain

λ(x∗, µ1) = λ(x∗, µc) + (µ1 − µc)
dλ(x, µc)

dµ
+H.O.T.,

λ(x∗, µ2) = λ(x∗, µc) + (µ2 − µc)
dλ(x, µc)

dµ
+H.O.T.
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Neglecting H.O.T., a linear function of λ versus µ can be fitted using µ1, µ2 and

λ(x∗, µ1), λ(x∗, µ2). Then, µ∗ can be obtained by determining the parameter value at

which λ(x∗, µ∗) = 0. Note that if data is collected at more than two parameter values,

a linear or nonlinear function of recovery rate λ versus parameter µ can be fitted.

Then, µ∗ can be obtained by determining the parameter value at which λ(x∗, µ∗) = 0

as shown in Fig. 3.2 (a) and Fig. 3.2 (b). The bifurcation diagram can be constructed

by finding the corresponding parameter value µ∗ for different state variable value x∗

as shown in Fig.3.2 (c).

The whole method can be summarized as the following steps:

1. Choose at least two parameter values that are close to the bifurcation and at

each parameter value measure the response of one of the state variables xn as

the system recovers from large perturbation in the pre-bifurcation regime.

2. Apply noise filtering techniques to the recovery of xn. For each value of the

bifurcation parameter µ, calculate the average of amplitude of oscillation A′n(t)

and B′n(t) using the recovery data.

3. For each value of the bifurcation parameter µ, calculate λ for all the amplitudes

A′n(t) and B′n(t). Approximate the dependence of λ versus A′n(t) and B′n(t)

using a polynomial function.

4. Choose an amplitude value A′∗n or B′∗n where λ can be calculated from measure-

ments at all parameter values, and use the relationship between λ and µ to find

the corresponding parameter value µ∗ for which A′∗n or B′∗n is a fixed point.

5. In a similar manner, choose different A′∗n and B′∗n values and repeat procedures

at step 4 to predict the bifurcation diagram.
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3.3 Results

We demonstrate the method using both computational data and experimental

data to examine its applicability.

A double pendulum model [80, 2] is used as an example of a weakly nonlinear

multi-degree-of-freedom system with parametric resonance. The resonance can be

induced either by changing the amplitude of the parametric excitation or changing the

detuning factor σ (i.e., the difference between the driving frequency and the resonance

frequency). It is shown in the following sections how the forecasting method described

in Section 2 can be used to predict the bifurcation point and the bifurcation diagram

of the double pendulum system.

An electrical circuit is built also. The circuit mimics the behavior of the double

pendulum model. Data in the form of voltages is collected from the circuit and the

bifurcation diagram is forecasted.

3.3.1 Numerical Results

A sketch of the double pendulum system is shown in Fig. 3.3.

Let g be the gravitational acceleration, l1 the moment of inertia of a hypothetical

made of pendulum 1 and mass of pendulum 2 concentrated at P2 about the pivot P1,

l2 the moment of inertia of pendulum 2 about the pivot P2, and m1 and m2 the mass

of the whole system and the second pendulum. Then the governing equation of the

double pendulum model is shown as follows [?],

θ̈1 + ω1θ1 + ε[2µ1θ̇1 − ω2
1Fθ1 cos(Ωt) + T1(θ̇2

2
+ θ2θ̈2 − θ1θ̈2)],

θ̈2 + ω2
2θ2 + ε[2µ2θ̇2 − ω2

2Fθ2 cos(Ωt)− T2(θ̇1
2 − θ2θ̈1 + θ1θ̈1)].

(3.11)

where ω2
1 = m1ag

l1
, ω2

2 = m2cg
l2

, T1 = m2bc
l1

, T2 = m2bc
l2

, and ε is a small constant.
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Here, a is the vertical distance of the center of mass of pendulum 1 below P1, c is the

vertical distance of the center of mass of pendulum 2 below P2, and b is the horizontal

separation of P1 and P2 when the system is at static equilibrium.

𝑧0

a c

b

𝑃1 𝑃2

𝜃1

𝜃2

Figure 3.3: The double pendulum in [2]. Parametric excitation is applied through the
vertical translation of the pivot P1 of the dominant pendulum. P1P2, the line joining
the two pivots, is horizontal at the equilibrium position.

For this system, different types of resonances can be obtained by choosing different

relationships between the natural frequencies ω1, ω2 and the excitation frequency Ω.

In this work, we choose ω2 = 2ω1 + εσ1 and Ω = 2ω1 + εσ2 so that there exists

both a parametric resonance, and a two-to-one internal resonance. In the simulation,

parameter values are: µ1 = 0.2, µ2 = 1.2, σ1 = 0.2, ε = 0.1 and T1 = T2 = 1.

Two different types of bifurcations are studied in this section. For the first type

of bifurcation, the amplitude of parametric excitation is chosen as the bifurcation

parameter, in which case σ2 is selected as 0.2. For the second type detuning factor

σ2 is the bifurcation parameter, and F is selected as 1.2.
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3.3.1.1 Excitation amplitude as bifurcation parameter

The proposed method utilizes measurements of the response after perturbations in

the pre-bifurcation regime to forecast the bifurcation diagram. The initial conditions

of the transient response can be important for the forecasting results. When the

perturbation occurs along or close to the slow manifold, the dynamics in the stable

manifold die out quickly, in which case the system can reach the slow manifold at a

large amplitude.

In practice, the system is at steady state when a perturbation occurs. To create

a perturbation we change the bifurcation parameter value, which changes the steady

state. The bifurcation parameter is then set back to its actual pre-bifurcation value,

and the recovery is recorded. Note that the initial steady state response should be

large enough to excite the nonlinearity which is essential for predicting the whole

bifurcation diagram.

An example of a recovery is shown in Fig. 3.4. Bifurcation parameter F (pre-

bifurcation regime) is 0.72. Then it is changes to 2.4 to create a perturbation.

Finally, F is set back to 0.72. Data is recorded only when the parameter is 0.72

(pre-bifurcation). Using the recovery data of θ1 and θ2, we can calculate the average

amplitude of variation using Eq. 3.8 as shown in Figs. 3.4(c) and (d). The recovery

of θ2 is just shown here for illustration. It is not used to predict the bifurcation

diagram. The value of λ = Ȧ1

A1
is then extracted from the recovery of A1 and shown

in Fig. 3.5(c). This process is repeated for 3 different parameter values, which are

F = 0.64, F = 0.72 and F = 0.8. Values of λ corresponding to the same amplitude

but different parameter values are used to forecast both the bifurcation point and

the bifurcation diagram in the post-bifurcation regime. In Fig. 3.5(b), values of λ

obtained for A1 = 0 are used to forecast the bifurcation point.
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Figure 3.4: Recovery to the steady state response. Parameter value F is first set 0.72
(pre-bifurcation regime). Then it is changed to 2.4 to create a perturbation. Finally,
F is set back to 0.72 to obtain the recovery data collected only at F = 0.72. (a)
Recovery of θ1 to the steady state response. (b) Recovery of θ2 to the steady state
response. (c) Phase portrait of recovery of A1 and B1. (d) Phase portrait of recovery
of A2 and B2.

This process is then repeated by selecting a different amplitude value A1 and

forecasting its corresponding bifurcation parameter. The whole bifurcation diagram

of A1 versus excitation amplitude F is thus predicted and compared to the real

bifurcation diagram as shown in Fig. 3.5(e). The bifurcation diagram of B1 is also

predicted in a similar fashion and shown in Fig. 3.5. The results reveal a strong

agreement between the forecasted bifurcation diagram and the actual bifurcation

diagram.
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Figure 3.5: (a) λ versus A1 at three different parameter values in the pre-bifurcation
regime. (b) λ versus the parameter value F when A1 = 0. The bifurcation point
is predicted by fitting a function through the three points. (c) λ versus B1 at three
different parameter values in the pre-bifurcation regime. (d) λ versus the parameter
value F when B1 = 0. The bifurcation point is predicted by fitting a function through
the three points. (e) Predicted bifurcation diagram of both A1 and B1 versus the
parameter value F .

We also tested the method for systems with measurement noise. 5%, 10% and

20% relative noise were added to the observed data, and the same algorithm was used

to forecast the bifurcation diagram. Forecasting results with noisy data are shown

in Fig. 3.6. Only one noisy recovery was collected at each of the 3 parameter values

F in the pre-bifurcation regime. Fig. 3.6(c) shows a relatively small variation of the
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Figure 3.6: The exact bifurcation diagram is shown with a solid line in each plot.
Transient data were collected in the pre-bifurcation regime. The predicted post-
bifurcation regime is shown together with the standard deviation error bars. (a) 5%,
(b) 10% and (c) 20% measurement noise were added to all recoveries.

forecasting results even when 20% relative measurement noise was added to the data.

3.3.1.2 Detuning factor as the bifurcation parameter

Parametric resonance can also be reached by changing the detuning factor. In

this section, we use the same method to predict the bifurcation diagram but here we

focus on the detuning factor as bifurcation parameter. This bifurcation diagram is

essentially the amplitude frequency response curve for the system.

An example of a recovery from resonance response is shown in Fig. 3.7. Bifurcation

parameter σ2 is set to 0.5 (pre-bifurcation regime). Then σ2 is changed to 0.3 to create

a perturbation. Finally, σ2 is set to 0.3 and the recovery data is collected. Using the

recovery data of θ1 and θ2, we can calculate the average amplitude of variation using

Eq. 3.8 as shown in Fig. 3.7(c) and Fig. 3.7(d).

The value of λ = Ȧ1

A1
is then extracted from the recovery of A1 and shown in

Fig. 3.7(c). This process is repeated for 3 different parameter values, which are

σ2 = 0.46, σ2 = 0.48 and σ2 = 0.5. Values of λ corresponding to the same amplitude

value but different parameter values are used to forecast both the bifurcation point

and the bifurcation diagram in the post-bifurcation regime. In Fig. 3.7(b), values of

λ for A1 = 0 are used to forecast the bifurcation point.
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Figure 3.7: Recovery to the steady state response. Parameter value σ2 is first set 0.5
(pre-bifurcation regime). Then it is changed to 0.3 to create a perturbation. Finally,
σ2 is set back to 0.5 to obtain the recovery data collected only at σ2 = 0.5. (a)
Recovery of θ1 to the steady state response. (b) Recovery of θ2 to the steady state
response. (c) Phase portrait of recovery of A1 and B1. (d) Phase portrait of recovery
of A2 and B2.

This process is then repeated by selecting a different amplitude value A1 and

forecasting its corresponding bifurcation parameter. The whole bifurcation diagram

of A1 versus detuning factor σ2 is thus predicted and compared to the real bifurcation

diagram as shown in Fig. 3.5(e). The bifurcation diagram of B1 can be calculated in a

similar fashion and shown in Fig. 3.5. The results reveal a strong agreement between

the forecasted bifurcation diagram and the actual bifurcation diagram.

We also tested the method for systems with measurement noise. 5%, 10% and

20% relative noise were added to the observed data, and the same algorithm was

used to forecast the bifurcation diagram. Forecasting results are shown in Fig. 3.9.

Only one noisy recovery was collected at each of three parameter values σ2 in the pre-

bifurcation regime. The forecasted results have slightly larger amplitudes than the

actual bifurcation diagram, but the bifurcation point and the shape of the bifurcation

diagram is well captured in all cases.
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Figure 3.8: (a) λ versus A1 at three different parameter values in the pre-bifurcation
regime. (b) λ versus the parameter value σ2 when A1 = 0. The bifurcation point
is predicted by fitting a function through the three points. (c) λ versus B1 at three
different parameter values in the pre-bifurcation regime. (d) λ versus the parameter
value σ2 when B1 = 0. The bifurcation point is predicted by fitting a function through
the three points. (e) Predicted bifurcation diagram of both A1 and B1 versus the
parameter value σ2.
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Figure 3.9: The exact bifurcation diagram is shown with a solid line in each plot.
Transient data were collected in the pre-bifurcation regime. The predicted post-
bifurcation regime is shown together with the standard deviation error bars. (a) 5%,
(b) 10% and (c) 20% measurement noise were added to all recoveries.

3.3.2 Experimental results

To demonstrate the applicability of the forecasting method to systems with both

measurement and process noise, an electrical circuit was built that mimics the behav-

ior of the double pendulum model. The electrical circuit is shown schematically in

Fig. 3.10, and as constructed in Fig. 3.11. The value of each component is provided

in Fig. 3.11. Some potentiometers used in the circuit are not shown in Fig. 3.10 for

clarity. They allow the control of several parameters such as the damping coefficient.

The operational amplifiers are model TL082 and the multipliers are model AD633.

An example of recovery from a perturbation is shown in Fig. 3.12. The bifurcation

parameter F is first set to 1.4 (pre-bifurcation). Then, F is changed to 2.0 to create

a bifurcation. Finally, F is then set back to 1.4 in the pre-bifurcation regime and the

recovery data is collected. In the experiment, only the recovery data of θ1 is collected

to show the method can predict the bifurcation diagram of one of the degrees of

freedom without using data of other degrees of freedom. Using the recovery data of

θ1, we can calculate the average amplitude of variation using Eq. 3.8 as shown in

Fig. 3.12(b).

The value of λ = Ȧ1

A1
is then extracted from the recovery of A1 and shown in

Fig. 3.12(c). This process is repeated for 5 different parameter values, which are
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Figure 3.10: Schematic of an analog circuit realization of the double pendulum model.

F = 1.34, F = 1.36, F = 1.38, F = 1.40 and F = 1.42. Values of λ for the

same amplitude value but different parameter values are used to forecast both the

bifurcation point and the bifurcation diagram in the post-bifurcation regime. In

Fig. 3.12(b), values of λ for A1 = 0 are used to forecast the bifurcation point as

shown.

This process is then repeated by changing the amplitude value A1 and forecasting

its corresponding bifurcation parameter. The whole bifurcation diagram of A1 versus

detuning factor F is thus predicted and compared to the real bifurcation diagram as

shown in Fig. 3.13(e). The bifurcation diagram of B1 can be calculated in a similar
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Figure 3.11: The analog circuit as constructed in the laboratory.

fashion and shown in Fig. 3.13.

3.4 Discussion

The proposed method relies on observations of transient recoveries from large

perturbations in the pre-bifurcation regime to forecast the bifurcation point and the

bifurcation diagram. After removing the recoveries perpendicular to the center man-

ifold, the remaining part of the recoveries are along the slow manifold and can be

used to forecast the bifurcation diagram. Therefore, the forecasted results, especially

at large amplitudes, are more accurate if the initial condition is close to the slow

manifold.

In the paper, a large response is used as an initial condition from which the system
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Figure 3.12: Recovery to the steady state response from a perturbation caused by
parametric variation. Parameter value F is first set 1.4 (pre-bifurcation regime).
Then it is changed to 2 to create a perturbation. Finally, F is set back to 1.4 to
obtain the recovery data collected only at F = 1.4. (a) Recovery of θ1 to the steady
state response. (b) Phase portrait of recovery of A1 and B1.

will recovers to the dynamics close to the slow manifold. In fact, the large response can

be exactly on the slow manifold if the perturbation is created by a parameter variation

and the slow manifold does not change with the bifurcation parameter. A recovery

from an initial condition is shown in Fig. 3.14(a) and Fig. 3.14(b). Several different

phase portraits of recoveries of A1 and B1 from different initial conditions are shown

in Fig. 3.14(c) and phase portraits of A2 and B2 in Fig. 3.14(d). It is clear that the

system recovers to the one-dimensional manifold at quite small amplitudes, especially

for A2 and B2. This makes it difficult to forecast the bifurcation diagram, especially

at large amplitudes. Therefore, it is important that perturbed states created by
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Figure 3.13: (a) λ versus A1 at 5 different parameter values in the pre-bifurcation
regime. (b) λ versus the parameter value F when A1 = 0. The bifurcation point is
forecasted by fitting a function through the 5 points. (c) λ versus B1 at 5 different
parameter values in the pre-bifurcation regime. (d) λ versus the parameter value F
when B1 = 0. The bifurcation point is forecasted by fitting a function through the 5
points. (e) Forecasted bifurcation diagram of both A1 and B1 versus the parameter
value F .

parameter variation are used as initial conditions for optimal forecasting results.

When a resonance response is used as the initial condition, the system recovers to

the slow manifold quickly. Therefore, the prediction is accurate except at amplitudes

close to the initial condition, as shown in Figs. 3.5, 3.8 and 3.13.
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There are certain key assumptions used in the proposed forecasting method. The

first is that the bifurcation diagram varies smoothly with the bifurcation parameter.

Additionally, if the slow manifold varies drastically with the bifurcation bifurcation

parameter, the forecast does not work well either. It is also important to mention

that the method currently only works for co-dimension one bifurcations.
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Figure 3.14: Recovery from different initial conditions. (a) Recovery of θ1 from an
initial condition. (b) Recovery of θ2 from an initial condition. (c) Phase portrait
of recovery of A1 and B1 from 4 different initial conditions. (d) Phase portrait of
recovery of A2 and B2 from 4 different initial conditions.

One of the key advantages of the proposed forecasting method is that it is model-

less. This feature contrasts all existing methods. For example, common approach

used to predict the bifurcation diagram as to build a model of the system, identify its

parameters and then simulate the model to compute the bifurcation diagram. That

approach only works when an accurate model is available. However, that is not always

the case. For example, we built a model using the values of the components of the
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electrical circuit in Fig. 3.10. We then used that model to compute the bifurcation

diagram. The bifurcation diagrams of the model-based approach and the experiment

are not the same as shown in Fig. 3.15. The difference between these two diagrams is

especially large at lower amplitudes. This difference is caused by the discrepancy be-

tween the theoretical and the real output of the multiplier used in the electrical circuit.

The multiplier is more accurate at large amplitudes, and hence, the two bifurcation

diagrams (model and actual) are in better agreement farther in the post-bifurcation

regime, where amplitudes are larger. Note that this discrepancy between the exper-

iment and the equation is not in the parameters used in the equation, but in the

actual functional form of the behavior of the circuit at low amplitudes. Nonetheless,

the forecasting approach proposed predict accurately the actual bifurcation diagram.

This difference in the bifurcation diagram essentially points out one advantage

of the proposed forecasting method. For a multi-degree-of-freedom nonlinear system

with parametric resonance, the bifurcation diagram, especially the bifurcation point,

is strongly affected by the nonlinearity. When the model is not accurate enough,

as in the case of the electrical circuit, the bifurcation point predicted by the model

can be far away from the real bifurcation point. However, the proposed model-less

forecasting method can accurately capture the nonlinearity at lower amplitudes, and

predict the bifurcation point, as shown in Section 3.2.

3.5 Conclusions

The prediction of parametric resonance for multi-degree-of-freedom systems is an

important topic. In this paper, a forecasting method is proposed to forecast both the

bifurcation point and the bifurcation diagram in the post-bifurcation regime using

recoveries in the pre-bifurcation regime.

Several assumptions are needed for the method to work. First, the system has to

be a weakly nonlinear system for the averaging approximation to be valid. Second,
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Figure 3.15: Bifurcation diagrams obtained from forecasting, experiments and model-
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data should be collected at parameter values close to the bifurcation point so that

the extrapolation of λ will be accurate. Other assumptions include that the average

system has a co-dimension one bifurcation, and the slow manifold varies smoothly

with the parameter.

In the paper it is shown that if recovery can be obtained only for one of the DOFs,

the bifurcation diagram of that degree of freedom can still be predicted. It is also

discussed that initial perturbations play an important role in this method. The closer

the condition after the perturbation is to the slow manifold, the better the forecasting

results are.

Future work will include exploring the applicability method for systems with more

complex nonlinear interaction and higher-DOFs.
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CHAPTER IV

Regular biennial cycles in epidemics caused by

parametric resonance

4.1 Introduction

Seasonal environmental changes can have strong effects on the dynamics of in-

fectious diseases [81, 82, 4, 3]. Most seasonal variations are annual, and empirical

evidence shows that such annual seasonality can cause oscillations ranging from an-

nual cycles to multiyear cycles, and even chaotic dynamics [83, 3]. In the case of

measles epidemics, both regular and chaotic cycles were observed during the past

century in many cities throughout the world [84, 85, 3]. Regular biennial pattern was

observed to be the most stable one, lasting for more than a decade in some cities,

and causing major epidemics every other year. Such biennial cycles have aroused

particular interest due to its large amplitude and persistence observed in disease case

reports [86, 87, 88].

Large amplitude multiyear oscillations, which are also identified as subharmonic

resonances, are formed from the instability caused by the interaction between the

natural mode of the system and the external force [83]. The study of subharmonic

resonances in childhood infectious diseases using SIR based models has resulted in a

rich variety of interesting mathematical results that show good agreement with empir-
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ical evidences [83, 4, 27, 89]. In particular, large biennial cycles in yearly forced SIR-

based models usually appear when the external driving frequency is approximately

twice the natural frequency of the system [83]. This phenomenon is commonly known

as parametric resonance. Models from the deterministic SIR family all show qual-

itatively similar dynamical properties and parametric resonance might occur when

parameters of the system fall into certain region [90, 91, 3]. One important question

thus raised is: What determines the onset of biennial cycles?

The onset of parametric resonances in SIR based models have been studied in the

past by varying certain parameters in numerical simulations. Dietz [91] observed a

transition from an annual cycle to a biennial cycle by increasing the amplitude of

seasonality. Aron and Schwarz [90] extended this result to an SEIR model. Earn

et al. [3] varied the average contact rate that results in a transition from a biennial

cycle to a small amplitude chaotic dynamics. Kuznetsov and Piccardi [89] studied

the consequences of varying both amplitude of seasonality and transmission rate.

Despite the rich results, most of these studies are carried out by direct numerical

integration, which shows the dynamics but obscures the occurrence of parametric

resonance caused by the interaction between model nonlinearity and external forcing.

Black and McKane [92] carried out an analysis where the stochastic SIR model with

periodic forcing is formulated as a master equation and studied using Van Kampen’s

expansion [93]. They show how parametric resonance, referred to as period-doubling

bifurcation in the paper, occurs as R0 varies. However, this method is essentially

linear and the linear approximation breaks down near the bifurcation point and at

large amplitudes. Therefore, the understanding of the role of the interaction between

nonlinearity and periodic forcing in the onset of parametric resonance is incomplete.

Parametric resonances have been studied extensively for nonlinear mechanical and

electrical systems [79, 20] using perturbation methods. In this paper, the method of

multiple scales (MMS) is used to construct approximations to the solutions of SIR-
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based models. MMS is carried out by formulating an independent variable (infectious

fraction I for instance) as the sum of a fast-scale and several slow-scale variables, and

treat them as if they are independent. Then, the system is studied at all scales,

coupled one by one, so as to find an approximation solution. Using MMS, we can

observe how resonance is caused by instability of the interaction between the natural

mode of the system and the external force. Transition curves are also obtained to

separate the parameter space into a resonance regime and a non-resonance regime.

The onset of parametric resonance is caused by crossing the transition curve in the

parameter space. We will show that cycles of large amplitudes can be caused by much

lower excitations than commonly believed [91, 94, 57] when the driving frequency is

close to twice the natural frequency of the system.

Sections 2.1 and 2.2 present the MMS approach to find approximate solutions for

SIR-based models. Section 2.3 introduces the transition curves and periodic solutions

obtained from analysis in different parameter regions. Section 3 presents the effects

of varying different parameters on predicted periodic solutions. Section 4 broadens

the discussion by introducing stochasticity to the problem and exploring the effect

of noise on the onset of parametric resonance. It can be observed numerically that

stochasticity can further lower the threshold of excitation amplitude that leads to

larger amplitudes by pushing the system from one deterministic attractor onto an-

other.

4.2 Modeling and analysis

In this section, we first describe the parametrically excited SIR model, and then

show briefly how we use the MMS approach to obtain an approximate solution. More

details of the approach can be found in the Supplementary Information.
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4.2.1 SIR model

For simplicity we restrict our analysis to an SIR model, expressed as,

dS

dt
= µ− µS − βIS,

dI

dt
= βSI − γI − µI,

dR

dt
= −µR + γI,

(4.1)

where S, I and R denote susceptible, infectious and recovered fractions. Because

S + I + R = 1, only two of the variables are independent, so the system can be

reduced to the first two equations. Parameter β is the transmission rate, γ is the

recovery rate, and µ is birth and death rates.

For any transmission rate β larger than γ + µ, the SIR system in (1) has an

endemic equilibrium at (S∗, I∗), where,

S∗ =
1

R0

,

I∗ =
µ

γ + µ
(1− 1

R0

).

Here R0 = β
γ+µ

is the basic reproductive ratio, commonly defined as the average

number of secondary cases caused by an infectious individual in a totally susceptible

population [57]. R0 is one of the most important parameters in SIR-based models

because the endemic equilibrium only exists when R0 is larger than 1.

The Jacobian of the dynamics near the endemic fixed point is given by

J(S∗,I∗) =

 −µR0 −γ − µ

µ(R0 − 1) 0

 . (4.2)
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Hence the eigenvalues of the system are

λ1,2 = −µR0 ±
√
µ2R2

0 − 4µ(β − γ − µ). (4.3)

Because (µR0)2 is much smaller than 4µ(β − γ − µ), the eigenvalues λ1,2 consist

of a real and an imaginary part. Because of the negative real part, the endemic

equilibrium is stable. When the free system is perturbed away from the endemic

equilibrium, it spirals inward, oscillating at the natural frequency of the system. The

natural frequency is determined by the imaginary part of the eigenvalues,namely

ω0 =
√
−µ2R2

0 + 4µ(β − γ − µ). (4.4)
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Figure 4.1: Time series of weekly case reports of measles in three regions: (a) England
and Wales, (b) New York City, (c) Baltimore [3].

The free SIR model predicts damped oscillations when it is perturbed. However,

observation of childhood disease case reports show regular cycles instead. Measles
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case reports, in particular, show regular biennial cycles in different regions of the

world as shown in Fig. 4.1. Such periodic dynamics can be caused by a transmission

rate that varies annually, caused by environmental fluctuations and by human activity

such as school terms. For simplicity, we assume that the transmission rate β varies

sinusoidally, namely

β = β0(1 + εcos(2πt)), (4.5)

with β0 and ε being constant, and time t measured in years. Although seasonality may

have a period with a varying length, as in [95], we consider the case there the period

is 1 year because in this analysis we focus on the effects of biological parameters and

the effects of the amplitude of the seasonality (instead of the effects of the period of

the seasonality).

Parametric resonance can occur when β varies at a frequency close to twice the

natural frequency of the system. Because the frequency of the parameter variation

is fixed (one oscillation per year), parametric resonance can occur when the natural

period of the system is close to 2 years. In the case of measles, the value of β is shown

in Table 4.1. The natural period is 2.1 years, which is close to 2 years. Therefore,

large amplitude biennial cycles in measles can be caused by parametric resonance.

The following sections show an MMS approach to analyze SIR model with periodic

forcing to identify the criteria for the onset of parametric resonance.

4.2.2 Method of multiple scales

The method of multiple scales (MMS) is a technique to construct approximate

solutions as corrections to the solution of the linearized system [87, 20]. This approach

accounts for the nonlinearity and periodic forcing of the system. All the nonlinear
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Disease (England Wales) Measles
Transmission rate β (1/days) 17/13
Recovery rate γ (1/days) 1/13
Birth and Death rate µ (1/years) 1/70
Natural period (years) 2.1 years

Table 4.1: Epidemiological parameters of measles in England and Wales [4]. The
natural period is calculated from the imaginary part of the eigenvalue at the fixed
point.

parts of the system are assumed to be small compared to the linear part.

To apply MMS to our SIR model, several changes of variables are carried out. The

first change of variable is applied so that the equilibrium of the transformed system

is at the origin. Coordinates X1 and X2 are defined as X1 = S−S∗ and X2 = I − I∗.

Thus, we obtain,

dX1

dt
=
−µβ0

γ + µ
X1 − (γ + µ)X2 − β0X1X2 − εβ0 cos(Ωt)(X1 + S∗)(X2 + I∗),

dX2

dt
=
µ(β0 − γ − µ)

γ + µ
X1 + β0X1X2 + εβ0 cos(Ωt)(X1 + S∗)(X2 + I∗),

(4.6)

where Ω is the driving frequency of the system.

A second change of variables is applied to analyze the cases where the nonlinear

term β0X1X2 is small compared to the linear part of the system. Coordinates Y1 and

Y2 are defined as Y1 = εX1 and Y2 = εX2. The governing equations become

dY1

dt
=
−µβ0

γ + µ
Y1 − (γ + µ)Y2 − β0 cos(Ωt)S∗I∗

−εβ0Y1Y2 − εβ0 cos(Ωt)(εY1Y2 + I∗Y1 + S∗Y2),

dY2

dt
=
µ(β0 − γ − µ)

γ + µ
Y1 + β0 cos(Ωt)S∗I∗

+εβ0Y1Y2 + εβ0 cos(Ωt)(εY1Y2 + I∗Y1 + S∗Y2),

(4.7)

A third change of variables is applied so that the linear part of the system can be

off-diagonalized. This step is necessary because MMS was originally developed in the
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context of second order single-degree-of-freedom systems.

To that aim, we first define

Ax =

 −µβ0
2(γ+µ)

−(µ+ γ)

−µ(β0−γ−µ)
γ+µ

−µβ0
2(γ+µ)

 ,

so that

Ẏ1

Ẏ2

 = Ax

Y1

Y2

 is the linear part of Eq. (7) without damping and external

forcing. Matrix Ax determines the natural frequency and mode shape of the system.

The eigenvectors of Ax are Vx =

− µβ0
2(β+µ)

ω

µ(β−γ−µ)
µ+γ

0

.

Next, we define

Au =

0 −ω2
0

1 0

 ,

which has eigenvectors as Vu =

0 ω

1 0

.

The coordinate transformation is defined as:

u1

u2

 = M

Y1

Y2

, where M =
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Vu(Vx)−1. Equation (7) thus becomes:

du1

dt
=− ω2

0u2 + (M1,2 −M1,1)β0 cos(Ωt)S∗I∗

+ ε[β0Z1 + (L1,1u1 + L1,2u2) cos(Ωt) + C1,1u1 + C1,2u2]

+ ε2β0 cos(Ωt)Z1,

(4.8)

du2

dt
=u1 + (M2,2 −M2,1)β0 cos(Ωt)S∗I∗

+ ε[β0Z2 + (L2,1u1 + L2,2u2) cos(Ωt) + C2,1u1 + C2,2u2]

+ ε2β0 cos(Ωt)Z2,

(4.9)

where ω0 is the natural frequency of the system, L = M

−I∗ −S∗
I∗ S∗

M−1, and C

= M

−c 0

0 −c

M−1. Here L is related to the linear parametric excitation terms,

and C is related to damping terms (separated from the linear part of the system).

Because this is a weakly damped system, a scalar c is defined as c = µβ0
2ε(γ+µ)

so that

damping terms only appear in the slow time scales. Z1 and Z2 are nonlinear terms

defined as

Z1 = M1u
2
1 +M2u1u2 +M3u

2
2,

Z2 = N1u
2
1 +N2u1u2 +N3u

2
2,

where parameters M1, M2, M3, N1, N2 and N3 are functions of entries of matrix M.

Details of the parameters can be found in the Supplementary Information.

The off-diagonalized system can be transformed into a second-order single-degree-

of-freedom system by taking a time derivative of Eq. (8) and substituting Eq. (9)
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into that to obtain

d2u1

dt2
=− ω2u1 + (M1,2 −M1,1)β0 cos(Ωt)S∗I∗

− ω2
0(M2,2)−M2,1)β0 cos(Ωt)S∗I∗

+ ε[β0(2M1u1u̇1 +M2u̇1u2 +M2u1u̇2 + 2M3u2u̇2)

+ (L1,1u̇1 + L1,2u̇2) cos(Ωt)− Ω(L1,1u1 + L1,2u2) sin(Ωt)

+ C1,1u̇1 + C1,2u̇2] + ω2
0ε[β0(N1u

2
1 +N2u1u2 +M3u2

2)

+ (L2,1u1 + L2,2u2) cos(Ωt) + C1,1u1 + C1,2u2]

+ ε2[β0 cos(Ωt)(2M1u1u̇1 +M2u̇1u2 +M2u1u̇2 + 2M3u2u̇2)

− Ωβ0 sin(Ωt)(M1u
2
1 +M2u1u2 +M3u

2
2)]

− ω2
0ε

2β0(N1u
2
1 +N2u1u2 +N3u

2
2) cos(Ωt).

(4.10)

Because parametric resonance occurs when the driving frequency Ω is close to

twice the natural frequency of the system, we introduce the detuning factor k to

quantify how close Ω is to twice the natural frequency

Ω = 2ω0(1 + kε).

The solution of Eq. (10) shall be represented at three different time scales, which

are distinguished in their order of magnitude by the small parameter ε. The solution

of the linear part of Eq. (10) is represented by the fast time scale T0 = Ω
2
t [20, 79, 96].

The nonlinear terms cause a deviation from the solution of the linearized system. This

deviation is expressed as a variation in the amplitude and the phase of the system

dynamics based on the slow time scales T1 = εt and T2 = ε2t.

The MMS is applied following several steps. First, the solution of Eq. (10) is
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expanded into a power series of ε as

u1 = u10(T0, T1, T2) + εu11(T0, T1, T2) + ε2u12(T0, T1, T2) +H.O.T., (4.11)

where H.O.T. indicate higher order terms (of order ε3 and higher).

Differential operators are introduced for the different time scales as

D0 =
∂

∂T0

, D1 =
∂

∂T1

, D2 =
∂

∂T2

.

Thus, we obtain three equations, one each power of ε as

order ε0

ω2
0D

2
0u10 =− ω2u10

− 2ω0(M1,2 −M1,1)β0 sin(Ωt)S∗I∗

− ω2
0(M2,2 −M2,1)β0 cos(Ωt)S∗I∗,

(4.12)

order ε

ω2
0D

2
0u11 =− ω2

0u11 − 2ω0D0D1u10 − 2ω2
0kD

2
0u10

+H(u10, D0u10, u20, D0u20, β, γ, µ, cos(Ωt), sin(Ωt)),

(4.13)

order ε2

ω2
0D

2
0u11 =− ω2

0u12 − k2ω2
0D

2
0u10

− 2ω0D0D1u11 − 2ω0kD0D1u10

−D2
1u10 − 2ω0D0D2u10

+G(u10, D0u10, u20, D0u20, u11, D0u11, u21, D0u21, β, γ, µ, cos(Ωt), sin(Ωt)).

(4.14)

Details of H and G can be found in the Supplementary Information.
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The general solution of the order ε0 equation (Eq. (12)) is of the form

u10 =A(T1, T2) cosT0 +B(T1, T2) sinT0

+ P1 cos(2T0) + P2 sin(2T0),

u20 =
1

ω0

[A(T1, T2) sinT0 −B(T1, T2) cosT0

+ 2P1 sin(2T0)− 1

2
P2 cos(2T0)],

(4.15)

where P1 and P2 are constants, while A and B are functions of T1 and T2. The values

of P1 and P2 are

P1 =
1

3
(M2,2 −M2,1)β0S

∗I∗,

P2 =
2

3ω0

(M1,2 −M1,1)β0S
∗I∗.

Substituting Eq. (15) into Eq. (13) yields

ω2
0D

2
0u11 =− ω2

0u11 + C cos(T0) +D sin(T0) +Q1 cos(2T0) +Q2 sin(2T0)

+R1 cos(3T0) +R2 sin(3T0) + S1 cos(4T0) + S2 sin(4T0) + Z.

(4.16)

All coefficients in Eq. (16) are functions of A,B,D1A and D1B, where D1A = ∂A
∂T1

and D1B = ∂B
∂T1

. For the system to be stable, all the secular terms on the right side

of Eq. (16) have to be 0. Therefore, C = D = 0.
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With C and D being 0, we can solve Eq. (16) to obtain the solution of u11 as

u11 =− 1

3ω2
0

(Q1 cos(2T0) +Q2 sin(2T0))

− 1

8ω2
0

(R1 cos(3T0) +R2 sin(3T0))

− 1

15ω2
0

(S1 cos(4T0) + S2 sin(4T0))

+
1

ω2
0

Z.

(4.17)

Next, u21 can be obtained using Eq. (8) and Eq. (9). Note that the cos(T0) and

sin(T0) parts of u11 are omitted because their coefficients are not functions of A and

B, which means they will not affect the growth of A and B.

Solutions of u10, u20, u11 and u21 are then substituted into Eq. (14), which yields

ω2
0D

2
0u12 = −ω2

0u12 + E cos(T0) + F sin(T0) +N.S.T. (4.18)

where N.S.T. stands for terms that do not include secular terms. Again, elimi-

nating secular terms, we obtain E = F = 0. Here, E and F are functions of

A,B,D1A,D1B,D2A and D2B, where D2A = ∂A
∂T2

and D2B = ∂B
∂T2

.

Enforcing that C = D = E = F = 0, we can obtain the relationship between

D1A,D1B,D2A,D2B and A,B. Thus, the governing equations for the variation of A

and B over time can be written as

dA(T1, T2)

dt
=
∂A

∂T1

dT1

dt
+
∂A

∂T2

dT2

dt
= εD1A+ ε2D2A, (4.19)

dB(T1, T2)

dt
=
∂B

∂T1

dT1

dt
+
∂B

∂T2

dT2

dt
= εD1B + ε2D2B. (4.20)

Substituting Eq. (15) and Eq. (17) back into Eq. (11), we can obtain an approx-

imation solution where A and B are governed by Eq. (19) and Eq. (20). Periodic

steady state solutions can be obtained by solving dA
dt

= 0 and dB
dt

= 0, which gives a
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relationship between the amplitudes A, B and, the detuning factor k and the season-

ality ε.

Once the approximate solutions for u1 and u2 are obtained, S and I can be

obtained by reversing the procedure of change of variables in Eqs. (6), (7) and (8).

4.2.3 Periodic solutions

The solution of the frequency response function (Eqs. (19) and (20)) yields either

one, two or three coexisting solutions. The stability of these solutions can be deter-

mined using the eigenvalues of the Jacobian of Equations (19) and (20) at equilibrium.

The trivial linear solution with oscillation frequency Ω is obtained when A = B = 0.

When the trivial solution is unstable, A and B grow, and a non-trivial stable 2:1

subharmonic motion appears. In this case the system oscillated at frequency Ω
2

that

is roughly the natural frequency of the system ω0. In childhood infectious disease

models, the driving frequency Ω is 1/year. Therefore, the trivial solution corresponds

to one year cycles, while the non-trivial solution corresponds to biennial cycles. The

stable trivial solution and the non-trivial solution can also coexist, and in that case

they are separated by another unstable solution.

Based on different characteristics of the solutions, the parameter space ε − Ω/ω0

can be divided into four regions as shown in Fig. 4.2.

When ε is below a certain threshold ε0 and the system falls into region IV, there

will be no resonance. In this case, the trivial solution is the only solution, and the

system response oscillates at frequency Ω. Time series and phase plane plots from

this region are shown in Fig. 5.9 (e) and (j).

When ε is above the threshold ε0, whether the trivial solution (A = B = 0) is

stable depends on both the amplitude of seasonality ε and the detuning factor k. The

rest of the ε−Ω/ω0 plane can be further divided into three regions (regions I, II and

III) as shown in Fig. 4.2.
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When the detuning factor is positive and above a certain threshold, the system

will fall into region III where only the trivial solution A = B = 0 exists. The system

again oscillates at frequency Ω as shown in Fig. 5.9 (d) and (i). In this case, only

small annual cycles can be observed.

For systems belonging to region II, two solutions exist. The trivial solution A =

B = 0 is unstable. Thus, the system will always exhibit resonance, oscillating at

frequency Ω
2

with nonzero values for A and B, which corresponds to biennial cycles

as shown in Fig. 5.9 (c) and (h).

Ω/ω
0

1.7 1.8 1.9 2 2.1
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Figure 4.2: Transition curves of a periodically forced SIR model. Parameters of the
SIR model are shown in Table 4.1. The parameter plane is separated into four regions
based on different behaviors of the periodic solutions. In region I, three solutions
coexist, including two stable solutions and one unstable solution. In region II, an
unstable trivial solution and a stable non-trivial solution coexist. In region III and
region IV, only a trivial solution exists.

As the detuning factor becomes smaller, system goes into region I where there are

three coexisting solutions. The trivial solution is stable in this region, coexisting with

one stable and one unstable resonance solutions. Time series and phase plane plots of

the stable and unstable solutions are shown in Fig. 5.9 (a), (f) and (b), (g). In region

I, annual cycles and biennial cycles are separated by an unstable solution. Transitions
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from one solution to another can be triggered by perturbations in the state variables

without changing the parameter. This suggests that transitions from annual cycles

to biennial cycles might be caused by suddenly introducing a large enough amount

of infectious individual to the region.

Biennial cycles can be observed in an annual forced SIR model in different param-

eter regions. Transitions from annual cycles to biennial cycles can thus be triggered

in different ways. Using the transition curve obtained from analysis, we can explore

the behavior of a periodically forced SIR model and the transitions between different

behaviors in more detail.
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Figure 4.3: Time series (left column) and phase plane (right column) plots for an SIR
model when parameters ε and Ω/ω0 fall into different regions separated by transition
curves. The corresponding region of parameters are shown on the plot. The same
set of parameters is used in the first and second rows, showing two coexisting stable
solutions. Parameter values of ε and Ω/ω0 are as follows: first and second rows,
ε = 0.05, Ω/ω0 = 1.8; third row, ε = 0.06, Ω/ω0 = 2.1; fourth row, ε = 0.02,
Ω/ω0 = 2.1; final row, ε = 0.06, Ω/ω0 = 2.3.

4.3 Parametric analysis

The stability of trivial linear solution and the existence of non-trivial solution

depends on the amplitude of seasonality ε and on the natural frequency of the system

ω0. Because natural frequency is affected by the transmission rate β, the recovery
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rate γ and the death-birth rate µ, the transition from trivial linear solution (one year

cycle) to non-trivial solution (biennial cycle) can be triggered by changes in any of

these parameters.

In previous research, it was observed that transition from annual cycles to biennial

cycles (referred to as period doubling bifurcation) could be triggered by increasing the

amplitude of seasonality ε [90]. It was pointed out also that the transition from large

amplitude biennial cycles to small amplitude oscillations can be caused by decreasing

the transmission rate β, or increasing the birth rate [3]. In this section, we show

that all transitions observed in previous studies are caused by crossing transition

curves in the ε − Ω/ω0 plane due to changes in parameters. Effects of changing the

amplitude of seasonality ε the transmission rate β and the birth rate are revisited

both analytically and numerically. Results from both analyses are compared to show

the accuracy of the approximate solution obtained from the analysis. The influence

of other parameters, such as the recovery rate γ is also studied.

4.3.1 Amplitude of seasonality ε

Increasing the amplitude of seasonality ε can bring the system from region IV to

region II when the driving frequency Ω is close to twice the natural frequency ω0 as

shown in Fig. 4.2. When system is in region IV, the trivial linear solution is stable.

Thus, the system shows annual cycles with small amplitude. When ε is larger, the

system transitions from annual cycles to biennial cycles. Fig. 4.4 shows the change in

the maximum level of infection in this process. An abrupt increase in the amplitude

of infectious population accompanies the period-doubling phenomenon. Results from

both analytical and numerical analyses are compared to show the accuracy of the

approximation solution obtained from analytical analysis.
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Figure 4.4: Maximum level of infection plotted against the amplitude of seasonal
forcing ε as the system transitions from a non-resonance region (region IV) to a
resonance region (region II) by increasing ε. The solid black line gives the stable
branch of the analytical solution; the red dashed line gives the unstable branch of
the analytical solution; the green squares show the results from numerical simulation.
Parameters are same as in Table 4.1.

It is worth pointing out that the threshold ε0 for the non-trivial solution to exist

can be lower when the driving frequency Ω is closer to twice the natural frequency ω0

of the system. The threshold is lowest when Ω is exactly 2ω0. This threshold can be

much lower than originally believed, and it shows that large biennial outbreaks are

more likely to happen when the natural frequency is closer to 1/(2 years).

4.3.2 Transmission rate β

When ε is fixed, decreasing the transmission rate β causes a simultaneous shift

of transition curve and of the natural frequency. Fig. 4.5 shows that decreasing

β with fixed γ lowers and broadens the transition curve. Thus, it becomes eas-

ier to trigger parametric resonances. ω0 decreases as β decreases because ω0 =√
−µ2R2

0 + 4µ(β − γ − µ) and −µ2R2
0 is much smaller than µ(β − γ − µ). Because

Ω is fixed as 1/ year, the decrease in β actually takes the system from left to right
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in the parameter space in Fig. 5. Therefore, the transition may not take place as

the transmission rate decreases, depending on the relative relationship between the

position of the system in the parameter space and the transition curve.
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Figure 4.5: Change of the transition curve for parametric resonance as the transmis-
sion rate β is increased. The solid black line, blue and green dashed lines give the
transition curve obtained using transmission rates of 15/13, 17/13 and 19/13, respec-
tively. Parameters other than the transmission rate are the same as in Table 4.1.

Consider a scenario where the system starts in region I, where there are three

coexisting solutions. As the transmission rate decreases, the system passes region

II and finally reaches region III. In this process the solution transitions from large

amplitude biennial cycles to annual cycles, as shown in Fig. 4.6. Analytical solutions

are compared with numerical solutions (obtained using a shooting method [97, 98,

99]). Figure 4.6 shows that the analytical solution predicts the stable branch of the

solution well. However, the unstable branch in region I has poor agreement with the

numerical solution. In fact, region I can be further divided into two regions according

to numerical simulation, because as β becomes larger than certain value, numerical

simulation can only find one unique solution instead of three coexisting solutions. The

discrepancy between analytical solutions and numerical simulations can be explained

by the failure of the MMS approximation as the amplitude or the detuning factor
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becomes large.
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Figure 4.6: Maximum level of infection plotted against the transmission rate β as the
system transitions from region I to region II and finally to region III by decreasing
β. The black solid line shows the stable branch of the analytical solution; the dashed
blue line shows the unstable branch of the analytic solution; the green circles show
the results from the numerical simulations. Parameters other than the transmission
rate are the same as in Table 4.1.

4.3.3 Birth rate

Changes in birth rate can also move the system from one section to another,

causing changes on the periodicity of epidemics [3, 100, 101, 102]. It has been noted

in [?] that for measles dynamics typically annual cycles take place when birth rate is

high.

Changes in the birth rate are dynamically equivalent to changes in the transmis-

sion rate for SIR-based models as pointed out in [1]. Therefore, consider a scenario

where the system starts in region II (similar to Section 3.2). The only stable solution

in region II is the biennial solution. As the birth rate increases, the system shifts

from region II and reaches region I. In this process the solution transitions from large

amplitude biennial cycles to annual cycles, as shown in Fig. 4.7.
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Figure 4.7: Maximum level of infection plotted against the birth rate as the system
transitions from region I to region II and finally to region III by decreasing the birth
rate. The black solid line shows the stable branch of the analytical solution; the
dashed blue line shows the unstable branch of the analytic solution; the green circles
show the results from the numerical simulations. Parameters other than the birth
rate are the same as in Table 4.1.

Despite the limited accuracy of the analytical MMS method in predicting the

unstable branch, this method still provides useful insight into biennial cycles. For the

case of measles, the change from large biennial cycles to irregular annual cycles in the

last century can be explained by the transition from one region to another induced

by changes in the birth rate and vaccination rates.

4.3.4 Recovery rate γ

The recovery rate γ determines the average infectious period, which can be esti-

mated from epidemiological data. The recovery rate typically does not change signif-

icantly over time, and it has a similar effect on the natural frequency of the system as

the transmission rate. Thus, we do not focus on the effects of changing recovery rate

over time on the transition from annual cycles to biennial cycles. However, different

diseases have different transmission rate and recovery rate, which results in a different
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thresholds ε0 for the transition. By analyzing cases with the same transmission rate

β yet different recovery rates, we understand what are the effects of recovery rate on

the threshold.

γ
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Figure 4.8: Threshold for amplitude of seasonal forcing ε plotted against recovery rate
γ. The threshold ε0 is defined as the maximum of region IV as shown in Fig. 4.2. All
four lines from top to bottom are obtained using transmission rate values of 19/13,
17/13, 15/13, and 1, respectively.

Fig. 4.8 shows that with the same transmission rate, increasing recovery rate

lowers the threshold for parametric resonance. When recovery rate γ becomes larger

than 0.14, the threshold can be as low as 0.01, which is much lower than originally

believed [57, 91, 94]. The situation is opposite with the transmission rate. For

constant recovery rate and increasing the transmission rate, there will be an increase

in the threshold. Therefore, it can be concluded that systems with larger recovery

rates and small transmission rates have smaller threshold for parametric resonance

even if they might have similar natural frequencies.

4.4 Effects of stochasticity

We have observed that small changes in the periodic forcing, either amplitude or

frequency, can cause a qualitative change in the behavior of the system. Stochasticity
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can have such disproportionate effects also. To understand the role of stochasticity in

triggering parametric resonance, when periodic forcing and weak noise are present at

the same time, the SIR model is transformed into a stochastic SIR model as in [103]

dS(t) =(µ− βS(t)I(t)− µS(t))dt− σS(t)I(t)dW (t),

dI(t) =(βS(t)I(t)− (µ+ γ)I(t))dt+ σS(t)I(t)dW (t),

dR(t) =(λI(t)− µR(t))dt,

(4.21)

where σ is a positive constant, and W is a standard Wiener process over the time

interval [0 T]. The model is solved numerically using the Euler-Maruyama method,

and the results for different noise level are shown in Fig. 4.9. This model is chosen

because it enables us to study how different levels of stochasticity can cause different

types of behavior of the system. When σ = 0, no noise is added to the system, so

the system remains at the trivial solution, oscillating at frequency Ω with a relatively

low amplitude. However, as the level of noise increases, the system starts switching

between annual cycles and biennial cycles. After noise reaches a certain level, such

as σ = 0.2, the system stabilizes on biennial cycles with a much larger amplitude.
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Figure 4.9: Stochastic simulations of an SIR model with periodic forcing and white
noise. Levels of noise are 0, 0.05, 0.1 and 0.2 respectively for (a), (b), (c) and (d). All
simulations start from the same initial condition. After a certain amount of simulation
time, data are collected for 20 years to show different patterns under different levels
of noise.

When the amplitude of the periodic forcing is close to the threshold, even weak

noise can force the system out of the basin of attraction of the annual cycles. There-

fore, the presence of stochasticity can significantly increase the amplitude of the

system response by triggering the parametric resonance. In addition, the threshold of

amplitude of periodic forcing can be further reduced when the system is accompanied

by noise. This is important for understanding the effects of parametric resonance in

epidemiology.
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4.5 Conclusions

An analysis based on the method of multiple scales (MMS) is carried out to study

a classic SIR model with periodic forcing. Analytical approximate solutions were ob-

tained to show that parametric resonance can occur through the interaction between

nonlinearity and seasonal forcing. The results reveal that large amplitude epidemics

can take place if the system is moved into a resonance regime in the parameter plane

by the change of any one of its parameters. This analysis can be extended to more

complex epidemiological or biological models where more variables or other kinds of

nonlinearity are present.

An important contribution of this analysis is that it shows that small order para-

metric excitations can synchronize with the system response, and trigger an order 1

parametric resonance. When parametric resonance is triggered, the excitation drives

the growth of the biennial cycles until it is constrained by the nonlinearity.

This analysis also reveals that not only the amplitude of the parametric excitation,

but also the relationship between natural frequency and excitation frequency matters.

Therefore, all parameters can have an impact on triggering parametric resonance by

changing the natural frequency of the system and changing the threshold of seasonal-

ity. Thus, this analysis unifies past research about the effects of different parameters

on the biennial cycles of measles [3, 89, 90, 91]. It is also important to notice that

large recovery rates and smaller transmission rates can lead to lower thresholds for

parametric resonance.

Stochasticity also plays an important part in the dynamics. In particular, we

showed numerically that stochasticity can trigger parametric resonance even when

the system is in the non-resonance regime of the parameter space. This is because

the stochasticity also contains components with the same frequency as the parametric

excitation. When the intensity of stochasticity reaches a certain level, it can in fact

push the system into the resonance regime, and induce the large amplitude biennial
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cycles.

The dynamics of childhood infectious disease is affected by the interplay between

nonlinearity, periodic forcing and stochasticity. Through this analysis, the interac-

tion between nonlinearity and periodic forcing as the source of instability is can be

understood more clearly. More importantly, this work introduced perturbation meth-

ods such as the MMS to epidemiological models with periodic excitation, and shows

the considerable benefits of this approach. For example, it is much easier and more

informative to study the effects of different parameters on the behavior of the system

analytically rather than numerically. This type of methods can be applied to more

sophisticated, higher dimensional epidemiological models, such as SIR model with

multiple pathogens or pathogen strains [104], or spatial heterogeneity [105, 106]. In

those cases, an analytical expression of the transition curve and the resonance peak

as a function of the parameters can be quite useful [83].
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CHAPTER V

Eigenvalues of the covariance matrix as early

warning signals for critical transitions in ecological

systems

5.1 Introduction

A growing amount of literature has reported the observation that some ecosystems

undergo a critical transition from one stable state to another [9, 30, 33]. This type of

transition is often the result of some gradually changing conditions, such as climate,

ground water reduction, harvesting of certain species, and so on [34, 35]. Because

of the gradual change in conditions, small variations in the mean state variables of

the system are observed, which makes it hard to forecast critical transitions. Conse-

quently, several indicators based on fluctuations around equilibrium values have been

proposed as early warning signals for critical transitions.

Close to the threshold of such critical transitions, some systems lose resilience in

the sense that it takes much longer for the system to recover from perturbations. This

phenomenon is referred to as “critical slowing down” [63]. A number of indicators

based on this phenomenon have been proposed to forecast critical transitions [5,

21, 17, 36, 37, 38, 39, 8]. These methods are based on the presumption that as a

system approaches the threshold, one would expect to observe the increase of certain
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statistics such as variance, skewness and autocorrelation due to the critical slowing

down phenomenon. It has been shown in models that this is because the real part of

the dominant eigenvalue that characterizes the recovery rate around the equilibrium

state becomes closer to zero as the system approaches the critical transition [19, 40,

41].

Apart from these temporal early warning signals, recent studies suggest that spa-

tial patterns can also provide useful information [42, 22, 32, 23]. In particular, Dakos

et al. [22] point out that an increase in spatial correlation can serve as an early warn-

ing signal for systems with alternative steady states. This is because, as the system

approaches the critical transition, the system becomes slow in recovering from per-

turbations, which might lead to stronger fluctuations of state variables around the

equilibrium state under random environmental perturbations [43]. In such cases, the

fluctuations of state variables around the spatial mean will also increase. Also, dif-

fusive effects (exchanges between neighboring cells) become more dominant close to

the critical transition, which means that spatial correlations, especially correlations

between neighboring units will increase [31]. Therefore, spatial early warning signals,

such as the spatial variance, spatial skewness and spatial correlation have been in-

troduced to serve as indicators for critical transitions of spatially extended systems.

These spatial early warning signals, however, have two major drawbacks. First, they

are largely dependent on the deviation of state variables from their spatial mean.

Thus, these indicators are affected by the change of the local equilibrium of each

state variable as the system approaches a critical transition, especially for hetero-

geneous systems. Additional comments on this issue are included in the Discussion

section. Second, these methods only look at one snapshot at one time, thus limiting

the information they can gather from the system. It is hard, for instance, to find the

(dynamical) pattern that is associated with the critical transition using only a single

snapshot.
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This paper proposes a set of indicators based on the fluctuations of several (local)

state variables around their equilibrium values under stochastic excitations (random

environmental perturbations). Such fluctuations can be characterized by the covari-

ance matrix of these local variables. The proposed indicators are based on the obser-

vation that for systems with different characteristics at different locations (spatially

heterogeneous systems), the largest eigenvalue of the covariance matrix generally

increases much faster than other eigenvalues as the system approaches the critical

transition. This is because the dynamics along the direction of the eigenvectors cor-

responding to the dominant eigenvalue become slower in that process. Therefore, the

variance of the dynamics along that direction increases as is the case for temporal

early warning signals used for low dimensional systems (not spatially distributed).

Thus, we propose the largest eigenvalue of the covariance matrix and the percentage

it accounts for of the total variation as spatial early warning signals. One important

assumption has to be satisfied for the proposed early warning signals to work, that

is the critical transition is the manifestation of a co-dimension one bifurcation. This

assumptions means that the critical transition can be caused by the variation of a

single parameter.

Eigenvalues of the covariance matrix has been proposed in the past as an early

warning signal for high dimensional systems [47, 107]. It was established that the

largest eigenvalue of the covariance matrix will increase close to the critical transition.

In our paper, we take a step further to show that not only does the largest eigenvalue

of the covariance matrix increase close to the critical transition, it also becomes

dominant compared to other eigenvalues of the covariance matrix. The contributions

of this paper are three fold: (1) it examines a linear high dimensional stochastic

system modeled by a Fokker-Planck equation and shows the relationship between the

eigenvalues of the covariance matrix and the eigenvalues of the system; (2) it shows

how the eigenvalues of the covariance matrix and the percentage it accounts for of
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the total variation can be estimated and used as early warning signals for spatially

correlated ecological systems when an accurate model of the system is not available;

and (3) it compares the proposed early warning signals with past spatial early warning

signals and discusses advantages and drawbacks. It is important to note that early

warning signals based on the critical slowing down phenomenon focus on critical

transitions caused by the loss of linear stability. This also applies to the proposed

early warning signals. Researchers have proposed other early warning signals (based

on basin size and so on) to anticipate critical transitions not related to the loss of

linear stability [108, 109].

5.2 Results

5.2.1 Main concept

Many high dimensional natural and physical systems [110, 111, 112] are constantly

affected by random environmental perturbations, and can be modeled using first-order

differential equations with noise terms [93]. Consider a nonlinear dynamical system

with a vector x(t) of state variables described by first-order differential equations

ẋ = f(x) + δ(x, t). (5.1)

The force vector f(x(t)) models the deterministic evolution of the system and we

assume f(x(t)) does not depend on time t explicitly for simplicity. It is expected to

be continuous and differentiable in the vicinity of the equilibrium. The noise term,

δ(x, t) is modeled as Gaussian white noise with zero mean. The covariance matrix of

the noise term is denoted by D(x).

Suppose the dynamics of this multi-dimensional system are characterized by small

fluctuations around a steady state, and let z(t) = x(t) − µ denote a vector of such

small deviations from the steady state, where µ denotes the steady state value of the
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state variables in the absence of noise. Let p(z, t) be the probability density function

that describes the likelihood of these deviations falling within a particular range of

values. Because of the small deviation assumption, the force can be replaced by its

linear approximation

f(x) ≈ f(µ) + Fz = Fz, (5.2)

where f(µ) = 0.

Thus, the probability density function p(x, t) can be described using a linear

Fokker-Planck equation [113] as

∂p(z, t)

∂t
=

N∑
i,j=1

−Fij
∂(zjp)

∂zi
+

1

2

N∑
i,j=1

Dij
∂2p

∂zi∂zj
, (5.3)

where F is the force matrix that determines the expected trajectory of z toward

zero, and D is the diffusion matrix that describes the covariance of a Gaussian white

noise that acts on z. The initial condition of this Fokker-Planck equation is set to

be p(z, t) = δ(0) and the boundary condition is p(±∞, t) = 0. The solution of this

linear system is a multi-dimensional Gaussian density function [93]. Here, we con-

sider the simple case where D is constant. We further consider that the fluctuations

have reached a stable state around an equilibrium after the transients died out. In

such cases, the covariance matrix Σ of the solution, which describes the correlation

between different state variables, is solely dependent on the force matrix F and the

diffusion matrix D [113]. Therefore, we can use the covariance matrix Σ, which can

be estimated directly from the measurements, to infer the characteristics of the force

matrix F which is not necessarily available for a real dynamical system.

To calculate the covariance matrix Σ, we can use the decomposition of Kwon and coau-
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thors [114] which shows that Σ can be written as

Σ = −F−1(D + Q)/2, (5.4)

where Q is an antisymmetric matrix with zeros on its diagonal which satisfies

FQ + QFτ = FD−DFτ , (5.5)

where the superscript τ indicates the transpose.

Suppose F has distinct eigenvalues. Denote the eigenvalues of the covariance ma-

trix Σ as σ1, σ2, ..., σN . In the Supplementary Material, we prove that under the

assumption of a codimension one bifurcation, the largest eigenvalue of the covariance

matrix σ1 becomes much larger than the other eigenvalues if the real part of the dom-

inant eigenvalue of the force matrix becomes closer to 0 compared to the rest of the

eigenvalues. This is because the dynamics along the direction of the eigenvector corre-

sponding to the dominant eigenvalue become slower as the dominant eigenvalue of the

Jacobian matrix approaches zero. Because the other eigenvalues are not approaching

zero at the same rate as the dominant eigenvalue, the variance of the dynamics along

that direction increases at a much higher rate. Thus, the largest eigenvalue of the

covariance matrix and the percentage it accounts for of the total variation can be

used as early warning signals.

The Fokker-Planck equation has been used in a number of papers to study a

system approaching the bifurcation [115, 15]. However, it is important to note that

the solution to the linear Fokker-Planck equation (Eq. 5.3) is an approximation to the

probability density function of the original system, which is the solution to a nonlinear

Fokker-Planck equation that cannot be guaranteed to remain Gaussian as the system

becomes arbitrarily close to the bifurcation point. In addition, at the bifurcation

point, the probability density function of the original system will depend on time
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(even at long times), and the variance will grow over time. Nevertheless, we observed

that the covariance of the Gaussian distribution obtained from the linearization is

a good approximation close to the bifurcation point, as shown in the Early warning

signals section, and can be used as an indicator of the system approaching bifurcation.

For the case where the dominant eigenvalues of F are complex conjugate pairs, the

relationship between the largest eigenvalues of the covariance matrix and the real part

of the dominant eigenvalues are similar. The difference is that the subspace in which

the variance of the dynamics increases at a much higher rate is now two-dimensional.

For simplicity the example we give in the following sections only has real eigenvalues.

Further comments about systems with complex conjugate pairs are also included in

the Supplementary Material.

5.2.2 Spatial ecological model

We consider a general 2D spatial model under the assumption that the space

is discrete and the dynamics take place in an n × n square lattice which consists

of coupled cells [116, 29]. The dynamics at each location (i, j) are affected by a

reaction-type process , a diffusion process and a random excitation modeled by a

random walk process dWi,j. The reaction-type process is described by the nonlinear

deterministic function g(Xi,j, r(i, j), c). Each cell is also connected to its neighbors

through a diffusive process. The general form of this model is

dXi,j = g(Xi,j, r(i, j), c) +R(Xi+1,j +Xi−1,j +Xi,j+1 +Xi,j−1 − 4Xi,j))dt+ σdWi,j,(5.6)

where Xi,j is the state variable at cell (i, j) in a 2D space, ri,j is the heterogeneous

parameter that changes with location, c is the bifurcation parameter, R is the constant

dispersion rate, and σ is the standard deviation of the white noise dWi,j at location

(i, j). i = 1, 2, ..., n and j = 1, 2, ..., n. We use a symmetric boundary condition so
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that cells at the boundary only have exchange with its neighboring cells but not with

the boundary.

In the neighborhood of the equilibrium, the reaction-type process can be approxi-

mated by its linear approximation. Thus the probability density function of the state

variables in Eq. 5.6 can be approximated by a Fokker-Planck equation as

∂p(X̃i, t)

∂t
=

n2∑
i,j=1

−Jij
∂(X̃jp)

∂X̃i

+
1

2

n2∑
i,j=1

Dij
∂2p

∂X̃i∂X̃j

, (5.7)

where X̃ is all the state variables in Eq. 6 concatenated and detrended (i.e., X̃n(j−1)+i =

Xi,j − µi,j ), µ is the expected value of X under small random excitations, J is the

Jacobian matrix of the force function evaluated at the equilibrium, and D is the

matrix describing the covariance of the random excitation. In this study, D is set

for simplicity to be an identity matrix, which means noise terms at different cells

are independent of each other. In the supplementary material we’ve shown that the

choice of D does not affect the results as long as the stochastic perturbations from

the environment do not concentrate on one patch.

The equation for the elements of the Jacobian matrix J can be expressed as

Ji,j =



dgi(X̃i)

dX̃i
|X̃i=X̃i,0 − 4R, if i = j

R, if i− j = 1, i mod n 6= 1

R, if j − i = 1, j mod n 6= 1

R, if i− j = n

R, if j − i = n

where gi is the reaction function at cell (i mod n, bi/nc), and X̃i,0 is the steady state

value of X̃i. Clearly J is a symmetric matrix containing real numbers. Thus, the
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eigenvalues of J must be real.

To illustrate how the proposed early warning signals can be used to anticipate

critical transitions of an ecological system, we adapt three well-studied models [22,

117, 118] to the form of Eq. 5.6 by adding the dispersion and noise terms. The

first model describes the dynamics of biomass under harvesting. The second model

describes the dynamics of nutrient of a eutrophic lake, and the third model describes

the dynamics of macrophyte in a shallow lake. All three models have alternative

stable states in their original form. For example, the amount of biomass of the

harvesting model is stable at an equilibrium with high population at a low harvesting

rate. As the harvesting rate increases, the system collapses to a low population

equilibrium. Details about the three models we use can be found in Table. B.1.

The parameters values are obtained from Dakos and coauthors [22]. Heterogeneous

parameters (ri,j) are introduced by randomly setting the value of ri,j within a certain

range. n2 = 20 × 20 = 400 cells are used in this model. The values of ri,j we use in

this study are included in the Supplementary Materials.
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Figure 5.1: Variation of the eigenvalues of the spatial harvesting model; the largest
eigenvalue (a) and the largest eigenvalue divided by the second largest eigenvalue (b)
are shown versus the bifurcation parameter c.

The relationship between the dominant eigenvalue λ1 of the Jacobian matrix J
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Model and Parameter Definition and value

Harvesting model

g(Xi,j , r(i, j), c) = ri,jXi,j(1−
Xi,j

K
)− c

X2
i,j

X2
i,j+1

Xi,j Resource biomass at cell (i, j); state variable
c Maximum harvesting rate; bifurcation parameter
ri,j Maximum growth rate at cell (i, j); heterogeneous parameter
K Carrying capacity, 10
R Dispersion rate, 0.2
σ SD of white noise, 0.1
Eutrophication model

g(Xi,j , r(i, j), c) = a− ri,jXi,j + c
X8

i,j

X8
i,j+1

Xi,j Nutrient concentration at cell (i, j); state variable
c Nutrient loading rate; bifurcation parameter
ri,j Nutrient loss rate at cell (i, j); heterogeneous parameter
a Maximum recycling rate, 0.5
R Dispersion rate, 0.2
σ SD of white noise, 0.05
Vegetationturbidity model

g(Xi,j , r(i, j), c) = rvXi,j(1−Xi,j
r4i,j+E

4
i,j

r4i,j
)

Ei,j = hvc
hv+Xi,j

Xi,j Vegetation cover at cell (i, j); state variable
c Background turbidity; bifurcation parameter
ri,j Half-saturation turbidity constant at cell (i, j); heterogeneous parameter
rv Maximum vegetation growth rate, 0.5
hv Half-saturation vegetation cover constant, 0.2
R Dispersion rate, 0.2
σ SD of white noise, 0.1

Table 5.1: Model details and parameter values used in the study
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and the bifurcation parameter c of the harvesting model is shown in Fig. 5.1a as

an example. As the system moves toward the bifurcation, the dominant eigenvalue

becomes closer to zero. Meanwhile, the relationship between λ1
λ2

and the bifurcation

parameter c is shown in Fig. 5.1b. When the system is far away from the bifurcation,

λ1 is close to λ2. However, as the system moves toward the bifurcation, λ1
λ2

becomes

closer to 0. Therefore, we expect to observe an increase of the largest eigenvalue of the

covariance matrix as the system becomes closer to the bifurcation. The percentage

the largest eigenvalue of the covariance matrix accounts for of the total variation

is also expected to increase. The situation is similar for the other two models. To

demonstrate how the proposed early warning signals can be used to forecast critical

transitions, we apply the approach to the all three spatial models in the following

section.

5.2.3 Early warning signals

We estimate the eigenvalues of the covariance matrix of the harvesting model at

several different control parameter values as shown in Fig. 5.2. Each line shows all

the eigenvalues of the covariance matrix in a descending order at a specific parameter

value. The index is an integer which varies from 1 to 400, with index 1 meaning the

largest eigenvalue, index 2 meaning the second largest eigenvalue, and so on.

As the system moves toward the bifurcation, the eigenvalue spectrum increases.

Because the eigenvalues of the covariance matrix are closely related to the variance

of principal components, this discovery is consistent with the observation that the

variance increases as the system moves toward the bifurcation. In particular, the

largest eigenvalue of the covariance increases at a much larger rate than the other

eigenvalues. Consequently, the largest eigenvalue becomes much larger than other

eigenvalues when the system becomes close to the bifurcation. Therefore, we propose

two early warning signals:
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• The first warning signal is the value of the largest eigenvalue of the covariance

matrix σ1,

• The second warning signal is the percentage the largest eigenvalue accounts for

of the total variation σ1√
σ2
1+...+σ2

N

, where N is the number of states.
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Figure 5.2: Change of the spectrum of the covariance matrix as the system moves
toward the bifurcation at c = 2.47. The bifurcation point c = 2.47 is computed using
the deterministic part of the harvesting model. Each line represents all the eigenvalues
of the covariance matrix under a certain parameter value. The index is simply an
integer which varies from 1 to 400, with index 1 meaning the largest eigenvalue, index
2 meaning the second largest eigenvalue, and so on.

The relationship between the largest eigenvalue and the bifurcation parameter for

all three models is shown in Fig. 5.3b, e, h. The eigenvalues are first calculated ana-

lytically using the decomposition described in the Main Concept. We also estimated

the eigenvalues of the covariance matrix using a moving window on data obtained

from a system with a time-varying bifurcation parameter c(t) = c0 + δt. In all simu-

lations, time step δ is set to 1/16000. A total of 16000 snapshots are collected from

the simulation. The moving window has a size of 1000 snapshots. As expected, the

largest eigenvalue of the covariance matrix increases as the system moves toward the
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bifurcation point. Moreover, the largest eigenvalue of the covariance matrix becomes

dominant as the dominant eigenvalue approaches 0. Therefore, Fig. 5.3c, f, i suggest

that the percentage that the largest eigenvalue accounts for of the total variation

also increases as the system approaches the bifurcation. The percentage as an early

warning signal is particularly useful because it has a clear upper limit of 100%. That

is in contrast to the largest eigenvalue of the covariance matrix, which theoretically

can increase without bound.

It is important to note that the analytical expression of the covariance matrix is

generally not available for a real system because the forms of the force matrix and

the diffusion matrix are seldom known. However, we can estimate the covariance

matrix directly from the time series data without relying on any prior knowledge of

the system. Results from Fig. 5.3 show that the estimated eigenvalues of the covari-

ance matrix agree quite well with the analytical eigenvalues close to the bifurcation.

For parameters extremely close to the bifurcation point, the estimated eigenvalues

generally have higher values compared to the analytical eigenvalues. This is caused

by the moving window used in the estimation. The estimated eigenvalue is essentially

an average of eigenvalues in that moving window. As the system approaches the bi-

furcation, the largest eigenvalue of the covariance matrix increases quickly, and that

causes the early takeoff of the estimation compared to the analytical results. More

details about the estimation method are presented in the Methods section, where

we show that eigenvalues estimated using the shrinkage method agree well with the

analytical results when a fixed parameter is used for simulation.

5.2.4 Locations of tipping points

Another advantage of the proposed methods is that by examining the covariance

matrix, we can obtain both the dominant eigenvalue, and its corresponding eigen-

vector (i.e., the first principal component). Examining the first principal component,
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Figure 5.3: (a), (d), and (g) Sum of the state variables as the bifurcation parameter
c changes over time. (b), (e), and (h) Largest eigenvalue σ1 of the covariance matrix
estimated using a moving window as the bifurcation parameter c changes over time.
(c), (f), and (i) Largest eigenvalue of the covariance matrix over the Euclidean norm of
a vector consisting of all the eigenvalues σ1√

σ2
1+...+σ2

n

estimated using a moving window

as the bifurcation parameter c changes over time.

we can identify cells that have the largest variance and are the most vulnerable to

the critical transition. This is because as the system becomes close to the critical

transition, the dominant eigenvector of the covariance matrix becomes close to the

dominant eigenvector of the force matrix. This can help identify the crucial areas of

the system to monitor and possibly prevent the critical transition.

To examine the relationship between the first principle component and vulnerable

regions, we calculate local eigenvalues corresponding to groups of cells. By local

eigenvalues we mean the dominant eigenvalue of the force matrix of a single cell or a

local group of cells without considering the diffusion effects of the neighboring cells.
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We define a local group with size i× i at location (j, k) as cells:



(j, k) (j, k + 1) · · · (j, k + i− 1)

(j + 1, k) (j + 1, k + 1) · · · (j + 1, k + i− 1)

...
...

. . .
...

(j + i− 1, k) (j + i− 1, k + 1) · · · (j + i− 1, k + i− 1)


, (5.8)

under the restriction that j + i− 1, k + i− 1 ≤ 20.

In Fig. 5.4, we show the dominant local eigenvalues of all the 1 × 1, 2 × 2, 3

× 3 and 4 × 4 local groups of the harvest model. Because of the diffusion effects,

the dominant eigenvalues tend to decrease as the number of cells in the local group

increases. The diffusion effect, on the other hand, does not have a significant effect

on cells that are too far away from the local group. Therefore, the eigenvalue map

stabilizes as the size of the local group reaches a certain level.
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Figure 5.4: Local eigenvalues of the harvesting model. Only the dominant eigenvalue
of the local area are plotted. For each local group, the dominant eigenvalue is plotted
at the upper left cell of the group. (a) 1 × 1, (b) 2 × 2, (c) 3 × 3 and (d) 4 × 4 cells
are used to construct the local groups.

Now we want to compare the dominant local eigenvalues of the harvesting model

with its dominant principal component. Fig. 5.5 (a) exhibits the analytic first prin-

cipal component of the covariance matrix, while Fig. 5.5 (b) shows the first principal

component estimated from simulation data. It is obvious that they share a dominant

peak in the upper right region. There are other smaller peaks in Fig. 5.5 (b) due to

estimation errors. In Fig. 5.5 (c), we show the dominant local eigenvalues of the 4 ×

4 groups. It is obvious that the area with the largest amplitudes in the first principal

component coincides with the area with the largest local eigenvalues. Thus, regions

with local eigenvalues closest to 0 are identified as regions most vulnerable to critical

transition by the first principle component.
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Figure 5.5: (a) The eigenvector corresponding to the dominant eigenvalue of the
covariance matrix (analytical), (b) The eigenvector corresponding to the dominant
eigenvalue of the covariance matrix (estimated using simulation data), (c) Dominant
eigenvalues of the force matrix of the local cell groups.

5.3 Discussion

We proposed two spatial early warning signals. These signals are based on the

eigenvalues of the covariance matrix, which indicate the variance of the principal

components. Overall, our study suggests that an increase in the largest eigenvalue of

the covariance matrix and the percentage it accounts for of the total variation can

serve to create early warning signals for the critical transition of a system with spatial

correlation.

Here, we compared the two proposed early warning signals with past early warning

signals [42] including

1. spatial variance σ2 = 1
HL

∑H
h=1

∑L
l=1(zh,l − z̄)2, where H and L are the number

of cells in the vertical and horizontal direction, and z̄ is the mean value of z

over the whole space.

2. spatial skewness γ = 1
HL

∑H
h=1

∑L
l=1

(zh,l−z̄)3

σ3 , where σ is the square root of the

spatial covariance.

3. spatial correlation function C2(r) =
HL

∑H
i=1

∑H
m=1

∑L
j=1

∑L
l=1 wi,j;m,l(zi,j−z̄)(zm,l−z̄)

W
∑L
l=1

∑H
h=1(zh,l−z̄)2

,

where wi,j;m,l is 1 if spatial units [i, j] and [m, l] are separated by a distance r,
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and is 0 otherwise, and W is the total number of ordered pairs of units separated

by the distance r.

The two proposed early warning signals are different from past ones in the sense

that it does not take the variation of expected values of the state variables into

account. Past spatial early warning signals are all affected by the expected value

of the state variables. To better explore this, we next take spatial variance as an

example. The expected value of the spatial variance can be expressed as,

E(σ̂2
spatial) = E

(
1

M

M∑
i=1

(zi − z̄)2

)

=
M − 1

M2
E

(
M∑
i=1

z2
i

)
− 1

M2

∑
i 6=j

E (zizj)

=
M − 1

M2

M∑
i=1

(
µ2
i + Σii

)
− 1

M2

∑
i 6=j

(µiµj + Σij) ,

where we used E(zizj) = Σij + µiµj. Thus we have

E(σ̂2
spatial) =

1

M2

(
(M − 1)

M∑
i=1

µ2
i −

∑
i 6=j

µiµj

)

+
1

M2

(
(M − 1)

M∑
i=1

Σii −
∑
i 6=j

Σij

)
,

where σ̂2
spatial is the empirical spatial variance, M is the number of cells in the grid,

µi is the expected value of state i, and Σ is the covariance matrix. Therefore, the

spatial variance is affected by the expected values of the state variables (first half of

the right hand side of the equation), and the covariance matrix (second half of the

equation). As the condition of the system changes gradually, the expected value of the

state variables may also vary. The changes in the indicators caused by the expected

values, however, do not necessarily provide any information about the stability of

the system, especially for heterogeneous systems. Therefore, it is hard to predict in
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general how these existing spatial early warning signals are affected by the eigenvalues

of the system.
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Figure 5.6: A comparison between the two proposed early warning signals, i.e. largest
eigenvalue of the covariance matrix and the percentage it accounts for, with three past
spatial early warning signals using simulation data obtained from system governed
by 5.9.

Next, we use an example to illustrate how the changes in mean values can affect

the performance of spatial variance as an early warning signal. Simulation data is

collected from a simple spatial model

dXi,j = (ri,jc−Xi,j +R(Xi+1,j +Xi−1,j +Xi,j+1 +Xi,j−1 − 4Xi,j))dt+ σdWi,j,(5.9)
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where r is the same as the r we used for the harvesting model, and c is the control

parameter. Other parameters are the same as in Table B.1. In this simple model,

there is no bifurcation as the control parameter c changes, therefore there is no critical

slowing down.
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Figure 5.7: The comparison between the two proposed early warning signals, i.e.
largest eigenvalue of the covariance matrix and the percentage it account for, with
three past spatial early warning signals using detrended simulation data obtained
from Model 5.9.

Spatial early warning signals are calculated using simulation data, and are shown

in Fig 5.6. As the parameter c increases, values of the state variables also increase due

to the change of their expected value. During this process, the largest eigenvalue of

the covariance matrix remains stable due to a lack of critical slowing down. Spatial
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variance, on the contrary, has a clear upward trend. To compare different spatial

early warning signals, we quantified their trend using the nonparametric Kendall’s

τ rank correlation of the control parameter c and the spatial early warning signals.

In this example, the spatial variance is strongly affected by the change of expected

values with a Kendall’s τ of over 0.74.

To better illustrate this point, all the spatial early warning signals are calculated

again using detrended simulation data as shown in Fig. 5.7. As expected, the up-

ward trend in spatial variance has disappeared after detrending the simulation data.

Therefore, it is highly recommended to detrend the data before applying such spatial

early warning signals.

Next, we apply the proposed and past early warning signals to the detrended

simulation data from the harvesting model. The results are shown in Fig. 5.8.

As the system moves towards the bifurcation, both the spatial variance and the

spatial correlation increase, while the spatial skewness does not have an obvious trend.

The proposed early warning signals, i.e. the largest eigenvalue of the covariance

matrix and the ratio σ1/
√
σ2

1 + ...+ σ2
n, have the largest Kendall’s τ , which indicates

that they have the most consistent upward trend compared to other spatial early

warning signals. Moreover, the proposed early warning signals have sharp increases

close to the bifurcation, while others increase linearly. Therefore, the sharp increase

in the proposed early warning signals can be seen as an indication that the system is

approaching the bifurcation.
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Figure 5.8: A comparison between the two proposed early warning signals, i.e. largest
eigenvalue of the covariance matrix and the percentage it account for, with three
past spatial early warning signals using detrended simulation data obtained from the
harvesting model.

In conclusion, this study explored how eigenvalues and eigenvectors of a spatial

covariance matrix related to critical transitions in spatially extended ecological sys-

tems.

Eigenvalues of the covariance matrix better capture critical slowing down due to

their direct relationship with the eigenvalues of the force matrix that characterizes

the dynamics, compared to past spatial early warning signals. We therefore propose
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to use the largest eigenvalue of the covariance matrix as a spatial early warning signal.

By establishing the relationship between the eigenvalues of the covariance matrix and

the eigenvalues of the force matrix, we mathematically show that the dominance of

the largest eigenvalue of the covariance matrix can also be used as an early warning

signal. We compared these proposed signals with existing ones. The proposed early

warning signals can potentially be applied to other high dimensional systems, such

as multispecies systems [47], complex structures [119] and so on.

This approach may be used to identify also the vulnerable regions in a spatially

correlated system. By studying the eigenvector corresponding to the dominant eigen-

value of the covariance matrix (the first principle component), we can obtain im-

portant clues regarding the region where the transition is most likely to occur. The

correlation between the vulnerable regions and the first principle component will be

stronger as the system becomes closer to the critical transition. This means that

the percentage the largest eigenvalue of the covariance matrix account for of the to-

tal variation is not only an indicator of a potential critical transition, but also an

indicator of a better opportunity for dimension reduction analyses.

5.4 Methods

5.4.1 Covariance matrix estimation

Here we show the process of covariance matrix estimation by choosing a parameter

value close to the bifurcation, simulating the model to obtain a stationary response

to the random excitation, and estimating the covariance matrix.

An example of simulation results is shown in Fig. 5.9a, where the sum of the

biomass is plotted. Three different ways are used to estimate the covariance matrix,

i.e.:

1. Unbiased empirical covariance matrix.
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Figure 5.9: (a) An example of the time series of the total amount of biomass when
the bifurcation parameter c is 2.4. (b) A snapshot of the state variable values at each
cell.

2. Shrinkage approach.

3. Analytical method.

First, the unbiased empirical covariance matrix S is used to estimate the covariance

matrix. Each entry of S is defined as

Sjk =
1

n− 1

n∑
i=1

(xij − x̄j)(xik − x̄k) (5.10)

where xij is the ith measurement collected at the jth cell, and x̄j is the average of

measurements collected at the jth cell over time, n is the number of snapshots used

for the estimation.

However, the unbiased empirical covariance matrix is not a good estimate of the

covariance matrix when the number of snapshots is small compared to the number of

variables, as pointed out in [120, 121]. This is because the sample covariance matrix

117



0 50 100 150 200 250 300 350 400

Index

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
ig

e
n

v
a

lu
e

s
 o

f 
th

e
 c

o
v
a

ri
a

n
c
e

 m
a

tr
ix

Unbiased empirical covariance matrix

Shrinkage approach

Analytical method

Figure 5.10: Estimation of eigenvalues of the covariance matrix using three different
methods: analytical covariance matrix, sample covariance matrix, shrinkage estima-
tion method. c = 2.4 is used to obtain the simulation data. 200 snapshot are used
for the covariance matrix estimation.

S might not be positive definite anymore when only a small number of snapshots

are available. In such cases, the sample covariance matrix tends to overestimate the

value of its largest eigenvalues, while underestimate the rest. A shrinkage approach

can be used to estimate the covariance matrix under such circumstances. The linear

shrinkage approach suggests to combine a high-dimensional unconstrained estimate

S and a low-dimensional constrained estimate T in a weighted average given by

S∗ = ηS + (1− η)T, (5.11)

where S∗ is the regularized estimate, 1 − η ∈ [0, 1] is the shrinkage intensity. η is

estimated by minimizing a squared error loss risk function which is a combination of

mean square error and variance as shown in [120]. The low-dimensional constrained

estimate T is chosen based on the presumed lower-dimensional structure in the data
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set. In the case of the spatial harvesting model, the assumption is that the variance

along different directions does not decrease dramatically after the first few principal

components. Examples of values of T can be found in Schafer and coauthors [120].

The covariance matrix is obtained analytically also by calculating the Jacobian

matrix J of the deterministic solution and using the decomposition method in Sec-

tion 2. The analytical covariance matrix is used as a benchmark for the estimation

results. Eigenvalues estimated by the three methods are calculated and plotted in

Fig. 5.10. R package corpcor is used for the covariance matrix estimation. In particu-

lar, cov.shrink function is used for the shrinkage estimations. Default parameters are

used. As expected, the shrinkage method out performs the sample covariance matrix

in estimating the eigenvalues.
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CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

The main results of the dissertation can be summarized as follows:

• We presented a new method that uses the transient recovery of parametrically

excited systems from large perturbations to predict the bifurcation diagram.

This forecasting method provides quantitative insights into parametrically ex-

cited systems despite the absence of actual models of these systems. As ex-

pected, the accuracy of forecasting increases when more data are collected closer

to the critical transition. One of the important benefits of the method is that

it is applicable in advance of the transition. The transition and the overall bi-

furcation diagram can be predicted without endangering the system by passing

the transition point. We demonstrated experimentally and numerically that

transitions caused by either bifurcation of the unforced system or parametric

resonance can be predicted using this method.

• We developed a new forecasting method for a high dimensional parametrically

excited systems that uses the recoveries of a single variable in the slow manifold

to forecast the bifurcation diagram of that variable. Several assumptions are

needed for the method to work. First, the system has to be a weakly nonlinear
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system for the averaging approximation to be valid. Second, data should be

collected at parameter values close to the bifurcation point so that the extrap-

olation of recovery rate λ will be accurate. Other assumptions include that the

average system has a codimension one bifurcation, and the slow manifold varies

smoothly with the parameter. It is shown that if recovery can be obtained only

for one of the DOFs, the bifurcation diagram of that degree of freedom can

still be predicted, as long as this DOF is close to the inertial manifold of the

system. It is also discussed that initial perturbations play an important role

in this method. The closer the condition after the perturbation is to the slow

manifold, the better the forecasting results are.

• An analysis based on the method of multiple scales (MMS) is carried out to

study a classic SIR model with periodic forcing. Analytical approximate solu-

tions were obtained to show that parametric resonance can occur through the

interaction between nonlinearity and seasonal forcing. The results reveal that

large amplitude epidemics can take place if the system is moved into a resonance

regime in the parameter plane by the change of any one of its parameters. This

analysis can be extended to more complex epidemiological or biological models

where more variables or other kinds of nonlinearity are present. An impor-

tant contribution of this analysis is that it shows that small order parametric

excitations can synchronize with the system response, and trigger an order 1

parametric resonance. When parametric resonance is triggered, the excitation

drives the growth of the biennial cycles until it is constrained by the nonlinearity.

• We showed how eigenvalues and eigenvectors of a spatial covariance matrix re-

lated to critical transitions in spatially extended ecological systems. Eigenvalues

of the covariance matrix better capture critical slowing down due to their direct

relationship with the eigenvalues of the force matrix that characterizes the dy-
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namics, compared to past spatial early warning signals. We therefore propose

to use the largest eigenvalue of the covariance matrix as a spatial early warning

signal. By establishing the relationship between the eigenvalues of the covari-

ance matrix and the eigenvalues of the force matrix, we mathematically show

that the dominance of the largest eigenvalue of the covariance matrix can also

be used as an early warning signal. We compared these proposed signals with

existing ones. The proposed early warning signals can potentially be applied

to other high dimensional systems, such as multispecies systems [47], complex

structures [119] and so on.

• We also show that dominant eigenvector of the covariance matrix may be used to

identify also the vulnerable regions in a spatially correlated system. By study-

ing the eigenvector corresponding to the dominant eigenvalue of the covariance

matrix (the first principle component), we can obtain important clues regarding

the region where the transition is most likely to occur. The correlation between

the vulnerable regions and the first principle component will be stronger as the

system becomes closer to the critical transition. This means that the percentage

the largest eigenvalue of the covariance matrix account for of the total variation

is not only an indicator of a potential critical transition, but also an indicator

of a better opportunity for dimension reduction analyses.

6.2 Future Work

The work presented in this dissertation can be extended in several directions.

1. Early warning signals for spatially extended system proposed in past research [22,

18, 32] and this dissertation focus on systems with homogeneous noise. However,

there are a number of examples where random excitations from the environment

are heterogeneous [122]. For example, wave induced disturbances are heteroge-
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neous on mussel beds [123]. Such spatial heterogeneous disturbances can affect

the reliability and robustness of current spatial early warning signals. One pos-

sible solution is to look at the local recoveries from perturbations instead of

global spatial patterns [41]. This solution leads to another interesting problem,

which is what region or state do we pick to monitor local resilience. It is pointed

out in [65] that the state most aligned with the dominant eigenvector would be

the best one to monitor. Therefore, identifying the best state to monitor under

spatially heterogeneous noise will be another interesting topic to study in the

future.

2. A lot of natural and engineering system have multiplicative noise where the

noise level varies with the states [24]. Current research focuses on systems with

additive noise [16, 15], or simple linear multiplicative noise [12, 124]. Some

generic early warning signals, such as variance, can be affected by multiplica-

tive noise. For example, when values of state variables decrease close to the

bifurcation, variance of the response to multiplicative noise might decrease in-

stead of increase. Therefore, it would be beneficial if the effect of multiplicative

noise on generic early warning signals can be studied.

3. Current early warning signals are mostly developed in the context of autonomous

systems. However, many critical transitions are accompanied by periodic fluc-

tuation of the environment [125, 88, 28]. Such critical transitions can either

be caused by a change in the topological structure of the unforced system, or

by a synchronization between a natural mode of the system and the parameter

variation. While both cases are important, the second scenario can be particu-

larly dangerous because a small excitation might produce a large response when

the driving frequency is close to the resonance frequency of the system. This

type of critical transition, however, has not received enough attention from the
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early warning signal community. Further research into reliable and robust early

warning signals can be beneficial.
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APPENDIX A

Eigenvalues of the covariance matrix

We begin by stating our main assumptions and notation in the next section. Following

that, our main analytic results are all stated without proof for the sake of conciseness.

Proofs are provided in the final section, with the results restated for convenience.

A.1 Assumptions and notation

Consider a system of N state variables z1, . . . , zN that have a probability density

p(z, t) that satisfies the linear Fokker-Planck equation

∂p(z, t)

∂t
=

N∑
i,j=1

−Fij
∂(zjp)

∂zi
+

1

2

N∑
i,j=1

Dij
∂2p

∂zi∂zj

with a force matrix F and a diffusion matrix D. Assume that all of the eigenvalues of F

are distinct with negative real parts and are denoted λ1, λ2, . . . , λN . These eigenvalues

are indexed from smallest to largest in terms of the value of their real part (i.e.,

|Re(λ1)| ≤ . . . ≤ |Re(λN)|). The diffusion matrix D is assumed to have all positive

eigenvalues. With these assumptions, the stationary distribution of z is Gaussian and

we denote its covariance matrix as Σ. Our results concern the relationship between

the eigenvalues of F and Σ as the system undergoes a codimension-1 bifurcation.
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In such a bifurcation, typically only one of F’s eigenvalues—or the real part of one

complex conjugate pair of F’s eigenvalues—vanishes at the critical transition.

A.2 Eigenvalues of the covariance matrix

Lemma 1. Let the columns of a matrix T contain the eigenvectors of F. Let Σ̃ be

the covariance of the state variables if the eigenvectors are used as their coordinate

basis. That is, Σ̃ = T−1ΣT−τ . Then the elements of Σ̃ satisfy

Σ̃ij = − D̃ij

λi + λj

where D̃ = T−1DT−τ .

Lemma 2. Suppose that the dominant eigenvalue of F is real and also suppose that

|D̃11/(2λ1)|ε ≥ |max(D̃)/(λ2)| with 0 < ε � 1. Then the dominant eigenvalue of Σ

is equal to |D̃11/(2λ1)|+O(ε|Σ̃11|) and all of the other eigenvalues are O(ε|Σ̃11|).

Lemma 3. Suppose that the dominant eigenvalues of F form a complex conjugate

pair. Further suppose that |D̃12/(2Re(λ1))|ε ≥ |max(D̃)/λ3|, with 0 < ε� 1. Then

the sum of the two largest eigenvalues of Σ is O(|D̃12/(2Re(λ1))|+ |D̃11/(2λ1)|) and

all of the other eigenvalues are O(ε|Σ̃12|).

Theorem 4. Suppose that the magnitude of the real part of a dominant eigenvalue

of F is small such that the assumptions of either Lemmas 2 or 3 are satisfied. Then

as this real part approaches zero, if the assumptions of Lemma 2 are satisfied, then

the largest eigenvalue of Σ becomes larger absolutely and larger relative to all of the

other eigenvalues of Σ. Alternatively, if the assumptions of Lemma 3 are satisfied,

the sum of the largest two eigenvalues of Σ becomes larger absolutely and relative to

all of the other eigenvalues of Σ.
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A.3 Proofs

Lemma 1. Let the columns of a matrix T contain the eigenvectors of F. Let Σ̃ be

the covariance of the state variables if the eigenvectors are used as their coordinate

basis. That is, Σ̃ = T−1ΣT−τ . Then the elements of Σ̃ satisfy

Σ̃ij = − D̃ij

λi + λj
(A.1)

where D̃ = T−1DT−τ .

Proof. Kwon and coauthors[114] show that the covariance matrix Σ may be written

as

Σ = −F−1(D + Q)/2, (A.2)

where Q is an antisymmetric matrix with zeroes on its diagonal which satisfies

FQ + QFτ = FD−DFτ . (A.3)

Next, let Q̃ = T−1QT−τ and Λ = T−1FT, the diagonalization of F. Equation (A.3)

repeated in terms of these matrices is

ΛQ̃ + Q̃Λ = ΛD̃− D̃Λ. (A.4)

Thus the elements of Q̃ must satisfy

(λi + λj)Q̃ij = (λi − λj)D̃ij. (A.5)

To use (A.5) to find elements of Σ̃, note that (A.2) holds in transformed coordinates

as

Σ̃ = −Λ−1(D̃ + Q̃)/2. (A.6)
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Putting (A.5) and (A.6) together yields (A.1).

Lemma 2. Suppose that the dominant eigenvalue of F is real and also suppose that

|D̃11/(2λ1)|ε ≥ |max(D̃)/(λ2)| with 0 < ε � 1. Then the dominant eigenvalue of Σ

is equal to |D̃11/(2λ1)|+O(ε|Σ̃11|) and all of the other eigenvalues are O(ε|Σ̃11|).

Proof. Let H = Σ̃Σ̃∗, where the * indicates a conjugate transpose. H is a Hermitian

matrix that can be factored as H = A diag(h2
1, h

2
2, . . . , h

2
N)A∗ with h2

i being distinct

eigenvalues of H and A being a unitary matrix whose columns consist of the eigen-

vectors of H [126]. By hypothesis, all of the elements of Σ̃ besides Σ̃11 are at least a

factor of 1/ε smaller in magnitude than Σ̃11. We denote this difference in magnitude

by noting that Σ̃ij = O(ε|Σ̃11|) for (i, j) 6= (1, 1). With this notation, we can write Σ̃

as

Σ̃ =



− D̃11

2λ1
O(ε|Σ̃11|) · · · O(ε|Σ̃11|)

O(ε|Σ̃11|) O(ε|Σ̃11|) · · · O(ε|Σ̃11|)
...

...
. . .

...

O(ε|Σ̃11|) O(ε|Σ̃11|) · · · O(ε|Σ̃11|)


(A.7)

and H as

H =



| D̃11

2λ1
|2 +O(ε2|Σ̃11|2) O(ε|Σ̃11|2) · · · O(ε|Σ̃11|2)

O(ε|Σ̃11|2) O(ε2|Σ̃11|2) · · · O(ε2|Σ̃11|2)

...
...

. . .
...

O(ε|Σ̃11|2) O(ε2|Σ̃11|2) · · · O(ε2|Σ̃11|2)


. (A.8)

It is easy to verify that one of the eigenvalues of H is equal to | D̃11

2λ1
|2 + O(ε2|Σ̃11|2)

with an eigenvector of (1 + O(ε), O(ε), . . . , O(ε))τ . The other eigenvectors must be

orthogonal to the dominant eigenvector given that H is a Hermitian matrix and A

is a unitary matrix. Hence the first element of all of the other eigenvectors must be
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O(ε). The trace of H is equal to | D̃11

2λ1
|2 +O(ε2|Σ̃11|2). Also, all of the eigenvalues of H

must be positive [126]. Hence all of the other eigenvalues of H are O(ε2|Σ̃11|2). Thus

we can write the unitary decomposition of H as

H = A diag(h2
1, h

2
2, . . . , h

2
N) A∗

=



1 +O(ε) O(ε) · · · O(ε)

O(ε) A22 · · · A2N

...
...

. . .
...

O(ε) AN2 · · · ANN


diag

∣∣∣∣∣D̃11

2λ1

∣∣∣∣∣
2

+O(ε2|Σ̃11|2), O(ε2|Σ̃11|2), . . . , O(ε2|Σ̃11|2)

×


1 +O(ε) O(ε) · · · O(ε)

O(ε) Ā22 · · · ĀN2

...
...

. . .
...

O(ε) Ā2N · · · ĀNN


.

(A.9)

The Takagi factorization [126] of Σ̃ can be expressed as

Σ̃ = AP diag(h1, h2, . . . , hN) PτAτ (A.10)

where P is diagonal matrix of phase factors that satisfies

P2 = ĀτΣ̃Ā diag(1/h1, 1/h2, . . . , 1/hN). (A.11)

Using (A.8), (A.9), and (A.11), we find that P11 will be 1+O(ε) and the other diagonal
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terms will be O(1) as well. Thus the Takagi factorization of Σ̃ is

Σ̃ =



1 +O(ε) O(ε) · · · O(ε)

O(ε) A22 · · · A2N

...
...

. . .
...

O(ε) AN2 · · · ANN


diag

(∣∣∣∣∣D̃11

2λ1

∣∣∣∣∣+O(ε|Σ̃11|), O(ε|Σ̃11|), . . . , O(ε|Σ̃11|)

)
×



1 +O(ε) O(ε) · · · O(ε)

O(ε) A22 · · · AN2

...
...

. . .
...

O(ε) A2N · · · ANN


.

(A.12)

If we plug this factorization of Σ̃ into Σ = TΣ̃Tτ , we can write

Σ =

∣∣∣∣∣D̃11

2λ1

∣∣∣∣∣T1T
τ
1 +


O(ε|Σ̃11|) · · · O(ε|Σ̃11|)

...
. . .

...

O(ε|Σ̃11|) · · · O(ε|Σ̃11|)

 . (A.13)

We scale our eigenvectors to have unit norms. Thus Tτ
1T1 = 1 and it is clear that T1+

(O(ε|Σ̃11|), . . . , O(ε|Σ̃11|))τ is an eigenvector of Σ with the corresponding eigenvalue

of |D̃11/(2λ1)|+O(ε|Σ̃11|). Because Σ is a covariance matrix all of its eigenvalues are

non-negative and they sum to the trace of (A.13), which is |D̃11/(2λ1)| + O(ε|Σ̃11|).

Hence all of the other eigenvalues must be O(ε|Σ̃11|).

Lemma 3. Suppose that the dominant eigenvalues of F form a complex conjugate

pair. Further suppose that |D̃12/(2Re(λ1))|ε ≥ |max(D̃)/λ3|, with 0 < ε� 1. Then

the sum of the two largest eigenvalues of Σ is O(|D̃12/(2Re(λ1))|+ |D̃11/(2λ1)|) and

all of the other eigenvalues are O(ε|Σ̃12|).

Proof. Our proof uses a similar approach to the case where λ1 is real. Using (A.1)
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and letting H = Σ̃Σ̃∗, we can write Σ̃ as

Σ̃ =



− D̃11

2λ1
− D̃12

2Re(λ1)
O(ε|Σ̃12|) · · · O(ε|Σ̃12|)

− D̃12

2Re(λ1)
− D̃11

2λ1
O(ε|Σ̃12|) · · · O(ε|Σ̃12|)

O(ε|Σ̃12|) O(ε|Σ̃12|) O(ε|Σ̃12|) · · · O(ε|Σ̃12|)
...

...
...

. . .
...

O(ε|Σ̃12|) O(ε|Σ̃12|) O(ε|Σ̃12|) · · · O(ε|Σ̃12|)


(A.14)

and H as


| D̃11
2λ1
|2 + | D̃12

2Re(λ1)
|2 +O(ε2|Σ̃12|2) D̃11D̃12

4λ1Re(λ1)
+ D̃11

λ1

D̃12
4Re(λ1)

+O(ε2|Σ̃12|2) O(ε|Σ̃12|2) · · · O(ε|Σ̃12|2)

D̃11D̃12
4λ1Re(λ1)

+ D̃11
λ1

D̃12
4Re(λ1)

+O(ε2|Σ̃12|2) | D̃11
2λ1
|2 + | D̃12

2Re(λ1)
|2 +O(ε2|Σ̃12|2) O(ε|Σ̃12|2) · · · O(ε|Σ̃12|2)

O(ε|Σ̃12|2) O(ε|Σ̃12|2) O(ε2|Σ̃12|2) · · · O(ε2|Σ̃12|2)

...
...

...
. . .

...

O(ε|Σ̃12|2) O(ε|Σ̃12|2) O(ε2|Σ̃12|2) · · · O(ε2|Σ̃12|2)

 .(A.15)

It is straightforward to verify that two eigenvalues for H are

h2
1 =

(
|D̃11|
2|λ1|

+
|D̃12|

2 Re(λ1)

)2

+O(ε2|Σ̃12|2), (A.16)

h2
2 =

(
|D̃11|
2|λ1|

− |D̃12|
2 Re(λ1)

)2

+O(ε2|Σ̃12|2), (A.17)

with the associated eigenvectors



D̃11D̃12

2λ1 Re(λ1)n
+O(ε)

± |D̃11|D̃12

2|λ1| Re(λ1)n
+O(ε)

O(ε)

...

O(ε)


, (A.18)

where the normalizing constant n ensures that the eigenvectors have unit norms.

Similar to what we have done before, we reason from the trace of H that all of the
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other eigenvalues hi, i > 2 must be O(ε2|Σ̃12|2). The requirement that the eigenvectors

of H are orthogonal tells us that the first two elements of the remaining eigenvectors

are O(ε).

Now let M = TAP diag(
√
h1,
√
h2, · · · ,

√
hN) where A is the unitary matrix of

eigenvectors of H and P is the diagonal matrix of phase factors from the Takagi

factorization (A.10). Note that Σ = MMτ . To obtain a simple equation for the

eigenvalues of Σ, we next decompose M into the product of an orthonormal matrix

V and an upper triangular matrix U. This can be done by applying the Gram-Shmidt

process. The resulting first column of V is simply M1/|M1| where M1 is the first

column of M. Let Ṽ2 = M2 − Mτ
1M2

Mτ
1M1

M1. The second column of V is Ṽ2/|Ṽ2|. The

upper left block of U is thus

|M1| |M1|M
τ
2M1

Mτ
1M1

0 |Ṽ2|

 (A.19)

The rest of the upper triangle of U consists entirely of O(ε0.5|Σ̃12|0.5) terms. Now,

since columns of V form an orthonormal basis, the eigenvalues of Σ = VUUτVτ are

identical to those of UUτ . Since all elements of UUτ except the upper left 2×2 block

are O(ε|Σ̃12|), we can approximate to within O(ε|Σ̃12|) two eigenvalues of Σ as those

of the upper left 2×2 block. The trace of the upper left block of UUτ turns out to

be equal to

h1+h2+(h1−h2)
Re(λ̄1D̃11)

|D̃11||λ1|
Re(T1 ·T̄2)+(h2−h1)

Im(λ̄1D̃11)

|D̃11||λ1|
Im(T1 ·T̄2)+O(ε|Σ̃12|),

(A.20)

which is O(|D̃12/(2Re(λ1))|+|D̃11/(2λ1)|) due to the h2 term (the positive square root

of (A.17)). The diagonal of the full matrix UUτ has only O(ε|Σ̃12|) terms outside of

the upper left 2×2 block. Since all of the eigenvalues of Σ must be non-negative and

sum to the trace of UUτ , all of the other eigenvalues of Σ must be O(ε|Σ̃12|).
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Theorem 4. Suppose that the magnitude of the real part of a dominant eigenvalue

of F is small such that the assumptions of either Lemmas 2 or 3 are satisfied. Then

as this real part approaches zero, if the assumptions of Lemma 2 are satisfied, then

the largest eigenvalue of Σ becomes larger absolutely and larger relative to all of the

other eigenvalues of Σ. Alternatively, if the assumptions of Lemma 3 are satisfied,

the sum of the largest two eigenvalues of Σ becomes larger absolutely and relative to

all of the other eigenvalues of Σ.

Theorem 4 follows straightforwardly from Lemmas 2 and 3.
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APPENDIX B

Practical guide of using Kendall’s tau as an

indicator for critical transitions

B.1 Introduction

Critical transitions have been observed in numerous systems [1, 16, 5, 36, 8, 47].

The gradual change in some underlining conditions can bring the system from one

stable state to an alternative state. The prediction of such critical transitions faces

significant challenges because changes in the equilibrium state of the system are gen-

erally small prior to the transitions. To overcome such challenges, researchers have

suggested the use of generic early warning signals [21, 15, 18, 63]. Such early warn-

ing indicators are based on the observation that the recovery from perturbations will

become slower as the system approaches the critical transition. This phenomenon

is referred to as “critical slowing down” [19]. It follows that certain statistics of the

system such as variance, autocorrelation will change prior to such critical transitions.

Kendall’s τ coefficient is often used to study the trend of statistics related to the

critical slowing down phenomenon [21]. It is a measure of the correlation between the

rank order of the observed values and their order in time [127]. A large Kendall’s τ
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typically means monotonic increase in the data. Because the sequence of the statistics

are estimated from the time series, the value of Kendall’s τ are affected by parameters

such as window size, sample rate and etc. In this study, we are going to examine the

effects of different parameters on the distribution of the trend statistic Kendall’s τ .

A number of parametric and non-parametric methods have been proposed to un-

derstand the significance of the Kendall’s τ value obtained from the time series [21, 44].

Parametric tests can be more powerful, but require more information about the sys-

tem. On the other hand, non-parametric trend tests, such as Mann-Kendall test,

require only that the data be independent and can tolerate outliers in the data [128].

In this study, we compared these two types of tests, and discussed their benefits and

drawbacks.

B.2 Parametric study

To use Kendall’s τ to detect critical slowing down, target statistics such as vari-

ance, autocorrelation are first calculated using a moving window. This sequence of

statistics are then used to calculate Kendall’s τ , which will be further used to make

a decision about the system.

For a sequence of independent and randomly ordered data, i.e. there is no trend

or serial correlation structure among the observations, the trend statistic Kendall’s

τ should tend to normal distribution for large n (number of observations in the se-

quence), with mean 0 and variance:

var(τ) =
2(2n+ 5)

9n(n− 1)
, (B.1)

where n is the number of observations in the sequence.

Generic early warning signals, such as the Kendall’s τ of autocorrelation, however,

are calculated using a sequence of statistics that are obtained from the time series
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Parameter Value
r 1
K 10
σ 0.01

Table B.1: Parameter values used in the simulation

using a moving window. Positive correlation among the observations will increase

the chance of obtaining a large trend statistic Kendall’s τ , even in the absence of a

trend [128]. Therefore, the choice of parameters, such as window size, sample rate,

will affect the correlation in data, and thus affect the distribution of Kendall’s τ .

Next we study how different parameters affect the distribution of Kendall’s τ of

systems either facing or not facing critical transition. Simulation data is obtained

from the harvesting model:

dx = (rx(1− x

K
)− c x2

x2 + 1
)dt+ σdW, (B.2)

where x is the amount of biomass, K is the carrying capacity, r is the maximum

growth rate, c is the maximum grazing rate, and σ is the standard deviation of the

white noise dW . Values of the parameters (except bifurcation parameter c) can be

found in Table B.1

B.2.1 Window size

The choice of window size has a large influence on the distribution of Kendall’s

τ . This is because positive serial correlation exists when two consecutive moving

windows have an overlap. This correlation is even stronger as the size of the moving

window increases.

To show this, we collected 400 time series from the harvesting model Eq. B.2 with

a fixed parameter c = −1.1, and calculated the Kendall’s τ using a different window

size for each time series. Fig. B.1 shows the relationship between the Kendall’s τ
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calculated using a smaller window size and a large window size. It is obvious that

as the difference between two window sizes increases, the curve takes on an S shape.

This means a large window size will inflate the value of the Kendall’s τ calculated

from the same time series data.

The inflation of Kendall’s τ under large window size can also be observed using

the distribution plot as shown in Fig. B.2. As window size increases, the distribution

of Kendall’s τ becomes flatter, and farther away from the normal distribution with

variance calculated using Eq. B.1.

Figure B.1: The comparison between the Kendall’s τ calculated using a smaller win-
dow size and a large window size

Figure B.2: Distribution of Kendall’s τ calculated using different window sizes.

Therefore, a same Kendall’s τ value will have a completely different meaning with

a different window size. A 90 % percentile Kendall’s τ value when window size is 5
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% of the length of the time series is only 60 % percentile when the window size is 50

% of the length. Thus, merely looking at a Kendall’s τ value is not enough to decide

the probability of critical transition. A hypothesis test is necessary and we included

discussions about that in Sec. 3.

B.2.2 Number of observations

The number of observations in the data is also important. This is because all the

statistics will have a larger estimation error when only a limited amount of observa-

tions are available. Moreover, it is harder to detrend the time series data when only

a limited amount of observations are available. Improper detrending will remove all

the important low frequency information, leaving behind only high frequency random

noise.

To understand how detrending can affect the result, one time series data is ob-

tained from the harvesting model B.2. The time series data is then down sampled

to obtained another time series data with a smaller number of observations. The

spectrum of the time series is then calculated and show in Fig. B.3. Comparing the

spectrum of time series data with or without detrending, it is obvious that detrending

basically works as a low pass filter, removing low frequency components. Because of

critical slowing down, we can see from Fig. B.3 that the spectrum closer to critical

transition has larger low frequency components. This is known as the reddening ef-

fect. After detrending, as in Fig. B.3, the spectrum closer to critical transition still

has larger low frequency components even if part of the low frequency components

are removed. The reddening effect is still visible. The situation is quite different

when only a small number of observations are available. When the low frequency

components are removed by detrending, the reddening effect is not visible anymore.

The detrending has effectively taken away the important parts of the spectrum that

is crucial to the detection of critical slowing down.
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Figure B.3: Spectrum of the time series before and after detrending when either a
large number of observations or a small number of observations are available.

This effect of the detrending can also be observed in the distribution of the

Kendall’s τ when different numbers of observations are available. We again collected

400 time series from the harvesting model, but this time with a parameter changing

with time. Each time series has 20000 observations. These 400 time series are then

down sampled to obtain time series with 20000, 200 and 100 observations. The distri-

bution of the standard deviation over time and the distribution of Kendall’s τ under

different sample rate is shown in Fig B.4. When there are at least 2000 observations,

the distribution of Kendall’s τ is skewed towards left, which is accurate because the

system is approaching the critical transition. However, when there are only 200 obser-

vations or fewer, the distribution becomes almost bell shape, which means the results

are almost random. Therefore, it is important to have enough number of observa-

tions in the data when Kendall’s τ is used as an early warning indicator, especially
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when the equilibrium of the system is changing as the system approaches the critical

transition and thus detrending is necessary.

Figure B.4: The distribution of the standard deviation over time and the distribution
of Kendall’s τ when 20000, 2000, 200 and 100 observa

B.3 Parametric and non-parametric tests

Because the trend statistic Kendall’s τ is affected by a lot of parameters, merely

looking at it won’t reveal much information about the system. A number of tests

have been proposed to understand the significance of a certain value of the Kendall’s

τ . In this section, we introduced the non-parametric modified Mann-Kendall trend

test and compared it to other parametric tests.

B.3.1 Non-parametric modified Mann-Kendall trend test

The null hypothesis for the traditional Mann-Kendall trend test is that there is

no trend or serial correlation structure among the observations. This hypothesis is

not entirely true for the series of statistic, such as standard deviation, autocorrelation

and so on, that we obtained from the time series using a moving window.

[128] pointed out that we can use a modified Mann-Kendall trend test to study

data with serial correlation structure. In the modified test, the null hypothesis is that

there is no trend in the data, but there can be autocorrelation. If the null hypothesis
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is true, the trend statistic Kendall’s τ should follow a normal distribution with mean

0, and variance as

var(τ) =
2(2n+ 5)

9n(n− 1)
(1 +

2

n(n− 1)(n− 2)

n−1∑
i=1

(n− i)(n− i− 1)(n− i− 2)ρS(i)),(B.3)

where ρS(i) is the autocorrelation of the ranks of the observation.

To better understand this, we compared the distribution of Kendall’s τ to the nor-

mal distribution with variance calculated using Eq. B.1 and the modified distribution

with variance calculated using Eq. B.3 in Fig. B.5. It is clear that the real distribution

is much flatter than the normal distribution due to the positive correlation in data.

The modified distribution, on the other hand, is much closer to the real one.

In practice, we typically only have one time series. Therefore, the real distribution

is not available. In this case, we can use the time series to calculate the modified

distribution of Kendall’s τ , and use the distribution to calculate the percentile of the

obtained Kendall’s τ value.

Figure B.5: (a) The comparison between the distribution of Kendall’s τ in data and
the Mann-Kendall test. (b) The comparison between the distribution of Kendall’s τ
in data and the modified Mann-Kendall test.
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B.3.2 Comparison with parametric tests

Parametric tests [21, 44] have been proposed to study the significance of a Kendall’s

τ value. These methods use a general model to fit the data, and generate artificial

data using the model to understand how significant the trend statistic value is.

[21] proposes to fit an ARMA model using the residual data after detrending.

This test is designed to show that this data cannot come from a linear stationary

process if a large Kendall’s τ value is obtained from it. When this test gives a p-value

as low as 0.1%, it doesn’t mean that the probability of critical transition is as high

as 99.9 %. It means that the probability that this time series data is generated using

a linear stationary model is as low as 0.1 %.

[44] proposed to fit two nonlinear models that both have a normal form for the

saddlenode bifurcation. The difference between these two models is that one of them

has a fixed bifurcation parameter, while the other one has a changing parameter.

The distributions of the test statistics are then generated from these two models and

compared to determine if these two models are statistically different and why one of

them better describes the data.

We compared the parametric test using ARMA model and the non-parametric

Mann-Kendall test. 200 time series is first generated using the harvesting model

(Eq. B.2). The distribution of Kendall’s τ calculated from all the time series data

is shown in Fig. B.6. Then we use one of the time series to fit an ARMA model,

and generated another 200 time series using the fitted ARMA model. The distri-

bution of Kendall’s τ calculated from all the ARMA time series is also shown in

Fig. B.6. Finally, we use the same time series to calculate the variance of the mod-

ified normal distribution using Eq. B.3. All three distributions are close to each

other, as we can see from Fig B.6. Therefore, both the parametric ARMA test and

the non-parametric modified Mann-Kendall can accurately approximate the distri-

bution of Kendall’s τ calculated from times series data of low-dimensional systems
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with Gaussian noise. The benefit of the non-parametric Mann-Kendall test is that

the distribution of Kendall’s τ can be estimated directly from the time series, and

thus no further simulation will be required. As a result it is much faster than the

parametric ARMA test.

Figure B.6: The distribution of Kendall’s τ calculated using the harvesting model,
the fitted ARMA model, the modified Mann-Kendall test.

B.4 Conclusions

In this study we examined how different parameters can affect the value of Kendall’s

τ obtained from the same system. Specifically,

• A large window size can inflate the value of Kendall’s τ compared to a small

window size,
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• Detrending can remove the redenning effect when only a small number of ob-

servations are available.

Therefore, it is highly advised that researchers keep the effect of these parameters in

mind when they use the Kendall’s τ of certain statistics as an early warning indicator

for critical transition.

We also compared the non-parametric Mann-Kendall test and the parametric

ARMA test. These two tests yield similar results for a low-dimensional system with

Gaussian stochastic excitation. The benefit of the non-parametric Mann-Kendall test

is that the distribution of Kendall’s τ can be estimated directly from the time series,

and thus no further simulation will be required. As a result it is much faster than

the parametric ARMA test.
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