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ABSTRACT

This dissertation examines a long-standing problem in Natural Language Process-

ing (NLP) – keyword extraction – from a new angle. We investigate how keyword

extraction can be formulated on social media data, such as emails, product re-

views, student discussions, and student statements of purpose. We design novel

graph-based features for supervised and unsupervised keyword extraction from

emails, and use the resulting system with success to uncover patterns in a new

dataset – student statements of purpose. Furthermore, the system is used with

new features on the problem of usage expression extraction from product reviews,

where we obtain interesting insights. The system while used on student discus-

sions, uncover new and exciting patterns.

While each of the above problems is conceptually distinct, they share two key

common elements – keywords and social data. Social data can be messy, hard-

to-interpret, and not easily amenable to existing NLP resources. We show that

our system is robust enough in the face of such challenges to discover useful

and important patterns. We also show that the problem definition of keyword

extraction itself can be expanded to accommodate new and challenging research

questions and datasets.

xii



CHAPTER 1

Introduction

Keyword Extraction (KE) is an important and well-studied problem in Natural Language
Processing (NLP), with applications ranging from online advertising [2] and clustering

websites [3] to detecting named entities [4] and recommending academic papers [5]. While
Keyword Extraction has mostly been performed in the domain of academic papers (research
articles; cf. [6, 7, 8, 9, 10]), it is of interest to observe how this problem can be worked
out in other domains, e.g., social media. The reason keyword extraction has mostly been
performed in the academic domain is because academic papers usually come with keywords
already assigned by authors and/or readers. On the other hand, social media data is often
messy and hard to interpret [11]. Their metadata can be complex (cf. Chapter 6), and the
text data found on social media are often not amenable to existing NLP tools and resources.

In this dissertation, we circumvent the above problems by designing a keyword extrac-
tion system that not only outperforms the state-of-the-art in a challenging and new domain,
but also retains robust performance on other social media data very different from the one
the system was trained on. We examine the following three research questions:

1. Can effective supervised and unsupervised methods be designed for extracting
keywords from textual data, and can the core keyword extraction method be
specialized to enable the extraction of important content related to undergradu-
ate students, graduate applicants, and online consumers of products? Over time,
Keyword Extraction (KE) has spawned into two distinct and effective approaches –
unsupervised KE and supervised KE. In the unsupervised KE, a candidate list of key-
words is first extracted from documents based on heuristics, the list is then ranked
by features such as term frequency and term frequency inverse document frequency
(tf.idf), and the ranked list is finally pruned to retain keywords that are valid and
that do not contain any obvious syntactic and semantic errors. Among ranking func-
tions, graph-based methods such as PageRank and HITS have been especially popu-
lar [7, 12, 13] that work on graphs where nodes are word tokens, and edges are drawn
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between consecutive tokens (or tokens within a specified window). In supervised KE,
on the other hand, corpora are built that contain text documents, and keywords ex-
tracted by human judges on those documents. These corpora with their keywords
are then used to train machine learning models, which predict whether a candidate
phrase is a keyword on unseen data. In this dissertation, we devise several features,
including novel graph-based features (e.g., coreness [14, 15]), for the supervised and
unsupervised KE from text, and compare their performance on emails (Chapter 3).
To be noted is the fact that graph-based features broadly denote the “centrality” of a
word token in a given piece of text, thus quantifying its salience. We further show
that Keyword Extraction can be specialized for sentences, and that the method when
invested with several relevant features, can be used to identify usage expression sen-
tences in consumer product reviews (Chapter 4) – effectively building a “usage gist”
for a given product review. We also show that the method when constrained using
an online encyclopedia, can be used to uncover important scientific topics in student
statements of purpose (Chapter 5), and be used to predict the performance of stu-
dents in a large undergraduate course while retaining pertinent concepts taught and
discussed in the class (Chapter 6).

2. Can the KE methods we designed be used to enable different NLP applications?
The ultimate reliability, validity and utility of a KE system depend upon downstream
tasks – whether those tasks can leverage the extracted keywords to enable better
human-computer interaction scenarios. We showed how the designed KE methods
could be effectively used for (1) extraction of salient content from emails (Chapter 3);
(2) identification of important specialized content from product reviews (Chapter 4);
(3) extraction of important content from student applications and faculty papers for
reliable student-faculty matching (Chapter 5); and (4) extraction of relevant content
from student forum discussions for the purpose of predicting academic performance
(Chapter 6).

3. Can automatically extracted keywords be used to gain deeper insights into dif-
ferent data collections? We used the keywords produced to understand the effect
of in-domain training (Chapters 3 and 4); to understand keyphrase appropriateness
and time taken to manually classify documents (Chapter 3); to look into the temporal
flow of scientific topics (Chapter 5); to measure the research diversity, research fo-
cus, and content density of faculty members (Chapter 5); and to discern what topics
successful students in a large undergraduate class write about (Chapter 6).

This dissertation is organized as follows: Chapter 2 discusses the background and re-
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lated work on keyword extraction, followed by related work on each of the subsequent
chapters. Chapter 3 goes into the design of our keyword extraction system trained on
emails. We provide details on the data collection, inter-annotator agreement, feature en-
gineering, unsupervised and supervised KE systems, feature ranking, effects of in-domain
training and intersection gold standard, comparison with state-of-the-art, keyphrase appro-
priateness, and time taken to manually classify emails. Chapter 4 discusses the problem
of identifying usage expression sentences in consumer product reviews. This is a com-
pletely new and fairly challenging NLP task. We design our own annotated dataset for this
problem, which can be viewed as a conceptual extension of keyword extraction. Extensive
feature engineering is performed, along with in-domain and cross-domain training in a su-
pervised extraction framework. The final results outperform inter-annotator agreement. We
report the learning curve, feature importance ranking, and detailed error analysis for future
research.

Chapter 5 goes into the application of keyword extraction, where we match gradu-
ate applicants with faculty members to reduce the burden of Admissions Staff at a large
midwestern university. We show the application of keyword extraction in the form of ex-
ploratory analysis and system design. In terms of exploratory analysis, extracted keywords
are qualitatively shown to be very good indicators of faculty research trend over the years,
and of the content disparity between faculty and applicants. In terms of system design,
extracted keywords perform the best in five information retrieval scenarios consisting of
graduate applicants and faculty members, and also help us obtain rankings of faculty mem-
bers in terms of their research diversity, research focus, and content density. This system
was used by our Department Admissions Staff for two consecutive years, and anecdotal
evidence indicates that the system performed with excellence – often exceeding human
intuition and expectations.

Chapter 6 presents our final piece of work on predicting student performance from the
text data obtained from an online student question-and-answer forum of a large undergrad-
uate class consisting of 600 students. The dataset was anonymized, and grades binned
to obtain alphabetic grade buckets. We designed text-based, non-text-based, and hybrid
features to predict the performance of students. Text-based systems (vector space and em-
bedding models) outperformed the majority baseline by close to 9 percentage points, and
the hybrid text-non-text system outperformed the majority baseline by 12.50 percentage
points. Most of the keyword-based vector space and embedding representations were able
to outperform the majority baseline, the best one by 3.13 points. We also present our results
on correlation of student performance with text-based features, viz. keywords, stopwords,
and LIWC (Linguistic Inquiry and Word Count; cf. [16]) categories, for the purpose of
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uncovering important details – words and phrases correlating with high performance, low
performance, and not correlating with performance, respectively.

Chapter 7 concludes the dissertation with our contributions, limitations, and future
work.

It is of special interest to deliberate upon the value of this work with respect to recent
developments in deep learning, esp. as some of our proposed methods use embeddings (cf.
Chapters 4 and 6). Note that there are two aspects of the question: (a) are embeddings
necessary and sufficient for Keyword Extraction? and (b) are embeddings necessary and
sufficient for applications of Keyword Extraction? The answer to both these questions,
we opine, is that Keyword Extraction and embeddings are complementary techniques that
can re-inforce each other. Embeddings are powerful models that do not require manual
engineering and tuning of features. They do, however, suffer from a “black box” approach
that raises interpretability concerns. Further, it is much more difficult to examine embed-
dings and separate the “wheat from the chaff”, in the sense that it is difficult to understand
and separate the useful dimensions from the strictly non-useful ones. And this is precisely
where keywords help us tremendously. As has been shown in all the subsequent core chap-
ters of the dissertation (except Chapter 4), keywords give us a ready visual appreciation
of the problem at hand (also cf. [17]), which we will be very hard-pressed to obtain from
embeddings. Embeddings – in other words – act as possibilities; whereas keywords act as
concepts. They are inter-related and mutually reinforce each other, rather than destroying
each other’s benefits.

In fine, we would like to give a little thought to the core problem addressed in this
dissertation, and individual research directions. Note that the core problem is Keyword
Extraction, applied in novel domains. We designed the KE system with email data in mind,
and later showed the validity and reliability of the extracted keywords in three different
tasks that are unrelated to emails. While the tasks are all reasonably different, there is one
common element: social media. We showed that our KE pipeline can successfully delve
into, and deal with such messy and hard-to-interpret social media data, and still come up
with meaningful and effective keywords that show reasonable performance in downstream
prediction tasks. This dissertation, therefore, manifests a co-emergence of three different
yet inter-related elements: social media, keyword extraction, and novel downstream appli-
cations (prediction tasks).
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CHAPTER 2

Related Work

Keyword extraction usually proceeds in three steps: candidate extraction, rank-
ing/classification, and post-processing. In the candidate extraction step, potentially impor-
tant phrases are identified and extracted from the documents. In the ranking/classification
step, these candidate terms are either ranked according to some ranking function derived
from the document structure, or they are classified as to whether they represent key terms
or not. In the post-processing step, top k terms from the ranked list (or terms that are classi-
fied as keywords) are semantically normalized to yield a set of phrases so that each denotes
a single concept.

In practice, there are some good heuristics for candidate extraction. Hulth [6] noted that
base noun phrases often constitute a predominant form of keyphrase. She further leveraged
previous studies in observing that specific patterns of part-of-speech tags are beneficial
for keyword extraction. Csomai and Mihalcea [18] experimented with stopword-filtered
n-grams and named entities as potential keywords.

The second step – ranking/classification – is trickier, because it is not immediately
obvious what ranking function or phrase features to use. In a study by Hasan and Ng [9],
tfidf was shown to be a surprisingly robust candidate. While conceptually simple, it beats
other more complex ranking strategies. Other important features for keyword classification
include tfidf [8, 19, 20], first occurrence position of the phrase [6], capitalization [20],
phrase length (in words) and is-in-title [19].

Two salient groups of ranking functions deal with the phraseness and informativeness

of a candidate phrase [21]. Informativeness denotes how much information content a stand-
alone phrase carries with it, and is usually determined by the number of occurrences of
that phrase in a background corpus [21]. Phraseness, on the other hand, is a measure of
how cohesive or tightly-linked a phrase is; in other words, whether the constituent words
of a phrase come together more often than by chance. Phraseness is estimated based on
the co-occurrence frequency of words in a foreground corpus. A final ranking of phrases is
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produced by some linear combination of phraseness and informativeness scores. Tomokiyo
and Hurst [21] proposed the use of language models in estimating phraseness and informa-
tiveness, whereas Csomai and Mihalcea [18] used chi-squared test. A different formulation
is that of keyphraseness, proposed by Mihalcea and Csomai [22], where the probability of a
word or a phrase to be linked to a Wikipedia article, calculated across the entire Wikipedia,
is used as an indication of how likely that word or phrase is to be selected as a keyword.

Note that the above-mentioned phrase ranking strategies are mostly ad hoc, and they
emerged as a way to heuristically assess the purported importance or relevance of a phrase.
There is, however, a completely different class of ranking algorithms that look into this
problem from a more cognitively appealing standpoint. These algorithms look into the
structure of word co-occurrence networks, where nodes are word types and edges are word
collocations. Mihalcea and Tarau [7] introduced TextRank and observed that in these net-
works, important words can be thought of as being endorsed by other words, and this leads
to an interesting phenomenon. Words that are most important, viz. keywords, emerge as
the most central words in the resulting network, with high degree and PageRank [23]. A
stream of studies ensued after the seminal work of TextRank (see Hasan and Ng [9] for a
detailed comparison). While most looked into variants of PageRank, Litvak and Last [13]
experimented with the HITS algorithm [24], while Boudin [25] investigated other indices
like degree, betweenness and closeness.

The final important step in keyphrase extraction is post-filtering. Extracted phrases are
disambiguated and normalized for morpho-syntactic variations and lexical synonymy [18].
Adjacent words are also sometimes collapsed into phrases, for a more readable output.

Benchmark datasets for keyword extraction include ICSI – a collection of meeting tran-
scripts divided into 201 segments [26], NUS – a set of 211 academic papers [8], INSPEC
– 2,000 titles and abstracts from journal papers [6], and SEMEVAL – 184 academic pa-
pers from SEMEVAL 2010 Keyphrase Extraction Task [10]. Given the preponderance of
keyword-annotated datasets in the academic domain, most research in keyword extraction
has focused on academic papers.

Keyword Extraction continues to be a hot research topic in recent years, with many
articles published every year. Here we briefly describe a sample of recent research on
Keyword Extraction (KE), organized and synthesized along three principal dimensions:
approach, applications, and new tasks. After that, we discuss related research on the four
following chapters which form the core of this dissertation.
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2.1 Approach

Among new approaches proposed for Keyword Extraction, Wang et al. [27] presented a
graph-based keyword ranking strategy using information supplied by word embedding vec-
tors as background knowledge. A weighting scheme was used to compute informativeness
and phraseness scores of words using information supplied by word embedding vectors
and local statistics. A weighted PageRank algorithm then computed the final scores of
words. The work was evaluated on Hulth2003, DUC2001, and SemEval2010 datasets, and
evaluation results were comparable to state-of-the-art algorithms.

Bougouin et al. [28] proposed a method for performing keyword extraction and key-
word assignment (assigning keywords to a document from a controlled domain-specific
vocabulary) in an integrated and mutually reinforcing manner, using graph co-ranking.
The method, TopicCoRank, built two graphs: one with document topics and one with con-
trolled keyphrases (training keyphrases). A strategy was designed to unify the two graphs
and rank by importance topics and controlled keyphrases using a co-ranking vote. Ex-
periments were performed on three datasets covering different domains of humanities and
social sciences, and statistically significant improvements were observed compared to both
keyword extraction and keyword assignment state-of-the art methods. Results showed that
the approach benefited from both controlled keyphrases and document topics, improving
both keyword extraction and keyword assignment baselines. TopicCoRank was able to
annotate keywords in scientific domains similar to professional indexers.

Florescu and Caragea [29] proposed a novel position-biased PageRank algorithm for
keyphrase extraction. The method – PositionRank – was unsupervised and graph-based,
and incorporated information from all positions of a word’s occurrences into a biased
PageRank to extract keyphrases. The model obtained good improvements in performance
over strong baselines. Implicitly, PositionRank incorporated both the relative position and
the frequency of a word into a biased PageRank. Experiments conducted on two datasets
(KDD and WWW) showed that PositionRank achieved better results than strong baselines,
with improvements in performance as high as 26.4%.

Li et al. [30] extracted keywords as bigrams from text documents using integer lin-
ear programming (ILP) approach. They used syntactic information to filter and select bi-
grams, external resources (e.g., word embedding from additional corpus, Wikipedia, Db-
pedia, WordNet, and SentiWordNet) to extract features, and a joint learning process for
weight training using discriminative learning. Among the internal features based on the
test documents were document frequency and bigram positions. The learning model pre-
dicted bigram weights and selected summary sentences using the ILP framework at the
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same time. The system consistently outperformed prior ILP methods on different TAC
datasets, and performed competitively compared to the state-of-the-art.

2.1.1 Neural Network-based Approaches

With the recent surge of interest in deep learning and neural networks [31], it is no surprise
that Keyword Extraction has seen neural networks being applied on text documents in novel
ways.

Aquino and Lanzarini [32] presented an algorithm for keyword extraction from docu-
ments written in Spanish. The algorithm combined autoencoders (good for highly unbal-
anced classification tasks) with the discriminative power of conventional binary classifiers.
In order to improve its performance on larger and more diverse datasets, the algorithm was
used to train several models of each kind (autoencoder and conventional binary classifier)
using bagging. The use of autoencoders captured the properties of important terms, yield-
ing comparable or better results than other well-known keyword extraction algorithms.

Wang and Zhang [33] presented an automatic keyword extraction method based on a bi-
directional long short-term memory (LSTM) recurrent neural network (RNN). The results
of experiments conducted on product reviews obtained by crawling jd.com (a Chinese web-
site comprising consumer reviews) showed that the proposed approach had a high accuracy
for keyword extraction.

2.2 Applications

Keyword Extraction (KE) is an NLP problem that not only engenders new thought waves
in terms of methods, but also in terms of downstream applications that change the way we
think about text data in particular, and human mind in general.

Horita et al. [34] proposed a system for the extraction of keywords from a document
for Wikification [22]. They focused on East Asian language documents and experimented
with Japanese text. Their method consisted of two steps. In the first step, they extracted
nouns from a document using a morphological analyzer, and extracted candidate keywords
by a method called Top Consecutive Nouns Cohesion (TCNC), which connects contiguous
nouns and treats them as one compound word. In the second step, they ranked the extracted
candidate keywords using two measures for keyword importance, the Dice coefficient and
Keyphraseness. They showed that the combination of TCNC and Keyphraseness achieved
the best results. Experiments were conducted to verify the effectiveness of the proposed
method using 10 articles in Japanese Wikipedia.
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Lauscher et al. [35] proposed a combination of two techniques, called Entity Link-
ing and Labeled LDA, in order to address the interpretability issue of topic models. The
method identified in an ontology a series of descriptive labels for each document in a cor-
pus, and then generated a specific topic for each label. Having a direct relation between
topics and labels made interpretation easier; whereas, using an ontology as background
knowledge served to limit label ambiguity. Since the topics were described with a limited
number of clear-cut labels, they promoted interpretability and supported quantitative eval-
uation of the obtained results. The potential of the approach was illustrated by applying it
to three datasets, the transcription of speeches from the European Parliament fifth mandate,
the Enron Corpus and the Hillary Clinton Email Dataset. In order to estimate the quality of
the approach the authors developed an evaluation platform that allowed to have a precise
overview of the performance and the drawbacks of each step of the approach: label identi-
fication via Entity Linking, label ranking and selection, and the assignment of entity-labels
to topics.

Paramonov et al. [36] designed a thesaurus-based method for increasing text-via-
keyphrase graph connectivity during keyword extraction for e-Tourism applications. The
goal was to solve the task of automatic extraction of keyphrases from a text corpus re-
lating to a specific domain so that the texts linked by common keyphrases would form a
well-connected graph. The authors developed a new method that used a combination of
well-known keyphrase extraction algorithms (TextRank, Topical PageRank, KEA, Maui)
with a thesaurus-based procedure that improved the text-via-keyphrase graph connectivity
and simultaneously raised the quality of the extracted keyphrases in terms of precision and
recall. The effectiveness of the proposed method was demonstrated on the text corpus of
the Open Karelia tourist information system.

Chen et al. [37] developed a supervised natural language processing (NLP) system
called Finding impOrtant medical Concepts most Useful to patientS (FOCUS) that au-
tomatically identified and ranked medical terms in electronic health record (EHR) notes
based on their importance to the patients. An expert-annotated corpus was built, where
for each EHR note, two physicians independently identified medical terms important to
the patient. Using the physicians’ agreement as gold standard, FOCUS was developed and
evaluated. FOCUS first identified candidate terms from each EHR note using MetaMap
and then ranked the terms using a support vector machine-based learning-to-rank algo-
rithm. Among the features used were: distributed word representation, Unified Medical
Language System semantic type, topic features, and features derived from consumer health
vocabulary. FOCUS was compared with two baseline NLP systems with statistically sig-
nificant improvements.
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2.3 New Tasks

One of the principal strengths of the idea of Keyword Extraction is that it can be used
and re-used in modern NLP tasks that not only stretch the boundary of conventional NLP
techniques in terms of the pipelines used, but also offer unique opportunities to peep into
human behavior that would have otherwise remained unexposed.

Siddiqui et al. [38] introduced a new task called Facet Extraction. Given a collec-
tion of technical documents (patent folios, legal cases, real-estate agreements, historical
archives, and scientific literature), the goal of Facet Extraction was to automatically label
each document with a set of concepts for the key facets (e.g., application, technique, evalua-
tion metrics, and dataset). Major challenges in performing Facet Extraction were: concept
extraction, concept to facet matching, and facet disambiguation. The authors developed
FacetGist, a framework for facet extraction, that constructed a graph-based heterogeneous
network to capture information available across multiple local sentence-level features, as
well as global context features. A joint optimization problem was then formulated, and an
efficient algorithm was proposed for graph-based label propagation to estimate the facet
of each concept mention. Experimental results on technical corpora from two domains
demonstrated that Facet Extraction could lead to an improvement of over 25% in both pre-
cision and recall over competing schemes. The framework was weakly supervised, and
integrated local context signals (e.g., relation phrases, concept suffix) with global structure
signals (e.g., paper sections, and topics).

Chen et al. [39] introduced mobile app tagging – assigning a list of keywords indicating
the core functionalities, main contents, key features or concepts of a mobile app. Mobile
app tags are useful for app ecosystem stakeholders or other parties to improve app search,
browsing, categorization, and advertising. The authors proposed a novel auto mobile app
tagging framework for annotating a given mobile app automatically, based on a search-
based annotation paradigm powered by machine learning techniques. Specifically, given a
novel query app without tags, the proposed framework first explored online kernel learning
techniques to retrieve a set of top-N similar apps that were semantically most similar to the
query app from a large app repository; and then mined the text data of both the query app
and the top-N similar apps to discover the most relevant tags for annotating the query app.
To evaluate the efficacy of the proposed framework, the authors conducted experiments on
a large real-world dataset crawled from Google Play. The results were encouraging, and
demonstrated that the technique was effective and promising.

A task on keyword extraction from scientific publications was organized as part of Se-
mEval 2017 (Augenstein et al. [40]) that focused on extracting keyphrases and the relations
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between them from scientific documents, with a view to understanding which publications
described which processes, tasks and materials. The task was novel, and there were 26 sub-
missions across 3 evaluation scenarios spanning 3 subtasks (mention-level keyphrase iden-
tification, mention-level keyphrase identification classification, and mention-level semantic
relation extraction). Successful systems varied in their approaches, most using recurrent
neural networks (RNNs), often in combination with conditional random fields (CRFs) as
well as convolutional neural networks (CNNs). Identifying keyphrases was the most chal-
lenging subtask, since the dataset contained many long and infrequent keyphrases.

2.4 Related Work on Keyword Extraction from Emails

There are only three previous studies that we are aware of that considered keyword extrac-
tion from emails. Turney [41] reports a study that pioneered email keyword extraction, but
his dataset has not been released. Goodman and Carvalho [42] worked with emails, but
since their goal was to extract implicit search queries from emails, and not keywords, their
dataset is not useful to us. Dredze et al. [43] extracted summary keywords from emails
using latent concept models, and evaluated the extracted keywords in two novel tasks –
automated foldering (predicting which folder an email should go to), and recipient predic-

tion. While Dredze et al.’s study did look into (unsupervised) email keyword extraction,
they performed an extrinsic evaluation of their approach rather than intrinsically evaluating
on a gold standard dataset.

Also relevant is the work by Laclavı́k and Maynard [44], who discuss general strate-
gies for email classification, storage, and integration with other information management
systems. They further point out that email communication in a modern organization is
mostly action-oriented, and that knowledge workers of all kinds interact with their emails
on a daily basis. This stands in sharp contrast with keyword extraction in the academic
domain,1 where papers are meant for other researchers who are reasonably familiar with
the domain – and therefore use formal and scientific vocabulary. Furthermore, academic
communication via papers is single-way (author to audience), and dissemination-oriented.
Also, unlike academic papers, emails mostly discuss topics at hand, including urgent ones.
Hence, emails stand to benefit from their own keyword extraction system. In fact, Laclavı́k
and Maynard briefly hinted at email keyword extraction as a way to combat the email in-
formation overload (cf. Section V).

1On which the current state-of-the-art is based [10].

11



2.5 Related Work on Usage Expressions

Existing research could be organized into six self-consistent psycho-sociological theories,
namely psycho-analysis, social theories, stimulus-response theories, trait and factor the-
ories, self-theories, and life style theories. [45] offers a comprehensive review of the
literature on consumer behavior and psychological traits. [46] found weak relationships
between opinion leadership and innovative buying behavior, but observed that the relation-
ship strength varied by product category. [47], and [48] showed that there were correla-
tions between personality traits and the types of products used. [49] posited that products
as symbols were organized into congruent relationships with the consumer’s self-image.
More recently, [50] found that people preferred products with a product personality that
matched their self-image, and the positive effect of product-personality congruence was
independent of user-image congruence.

In natural language processing research, the closest problem to usage expressions is
perhaps that of opinion mining from product reviews and product aspects. [51] classi-
fied reviews as expressing positive or negative sentiment. They identified four problems
with review classification, including rating inconsistency, ambivalence, data sparseness,
and skewed distribution. [52] extracted product features from the reviews of a single prod-
uct, taking user opinion into account. Opinion/product features were mined if a reviewer
had commented on them. [53] presented OPINE, an unsupervised information extraction
system that mined reviews in order to build a model of important product features, their
evaluation by reviewers, and their relative quality across products. OPINE’s use of relax-

ation labeling led to strong performance on the tasks of finding opinion phrases and their
polarity. [54] presented a “holistic lexicon-based approach” for mining context-dependent

opinion words. The proposed method used an aggregating function for multiple conflicting
opinion words in a sentence. The authors further implemented a system called “Opinion
Observer” based on their method. Lastly, [55] implemented a special dependency parser
for opinion mining that used phrases (rather than words) as the primitive building blocks.
Since many product features are in fact phrases, this approach led to good results for ex-
tracting relations between product features and opinion expressions.

Yet another related task is that of mining semantic affordances [56]. In this task, “us-
age” of a product can be viewed as an action performed on an object with the help of
the product. Relationships between such actions and objects are known as “semantic af-
fordances”. As Chao et al. showed, text mining can be very effective at ascertaining af-
fordance relationships between verb and noun classes. Similar verb-noun relationships
have also been formulated in the problem of learning selectional preferences from text
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[57, 58, 59, 60, 61, 62], and more generally, in the problem of probabilistic frame induc-

tion [63, 64, 65].
Another topic of research related to our work is the problem of research idea extraction

from academic papers. [66] took the first stab at this problem by implementing a boot-
strapping algorithm on dependency tree kernels. Gupta and Manning’s method was later
refined by [67] who worked with a more crisp set of idea categories. We view this problem
as conceptually parallel to ours; however, a key difference is that usage expressions are
typically more obscure in text as compared to research ideas.

2.6 Related Work on Matching Graduate Applicants with
Faculty Members

The problem of matching graduate students with faculty members has three close analogs
in natural language processing: authorship attribution, author profiling, and author-topic
modeling.

In authorship attribution, the goal is to predict who authored a particular document.
The problem is usually cast as a classification task, where we have a large set of training
documents with known authors, and a smaller set of test documents with unknown authors.
Machine learning models are trained on the training documents, and then deployed on test
documents to predict the unknown authors. For details on authorship attribution, please see
the surveys by Juola [68], Stamatatos [69], and Koppel et al [70]. In some flavors of au-
thorship attribution, test documents are used as search queries against training documents,
and the author of the top-ranked (training) document is considered predicted label [69]. In
our study, we consider papers written by faculty members as “training documents”, and
statements of purpose written by students as “test documents”. Performance on the test set
is judged based on the ground truth faculty-applicant pairing we have. A potential limita-
tion of this approach comes from the fact that in authorship attribution, we would like to
uncover the writing style of an author, whereas in this case, we are interested in the content

match between a paper written by a faculty member, and a statement of purpose authored
by an applicant. We resolve this issue by using keywords (cf. Sections 5.3 and 5.4).

Author profiling is very similar to authorship attribution, except that the goal here is to
build a “stylistic profile” of an author instead of predicting a class label. The profile is usu-
ally a vector of words and/or phrases frequently used by the author, and may also include
grammatical constructs and parse tree fragments. An author is represented by several vec-
tors that are built on documents written by him/her. These vectors can be used to identify
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the author’s unique writing style (fingerprint) and to extract other useful properties such as
gender, age, education, and personality traits. Author profiling has been discussed in depth
in the survey by Stamatatos [69]. In our case, author profiling could serve as a fundamental
building block where papers written by faculty members are used to create their authorship
profiles, and then a statement of purpose that is most similar to a faculty member’s profile,
is assigned the corresponding faculty member. This approach, albeit sound in principle,
has the same important drawback as authorship attribution; it focuses on stylistic rather
than content information, and is therefore not very useful.

Content information of authors can be explicitly incorporated in a probabilistic setting,
where documents are modeled as a collection of topics, and topics are modeled as a col-
lection of words. Topic generation depends on authors represented as (observed) random
variables in the model [71]. An unseen document can be assigned a probability distribution
over authors and topics, thereby helping find out which authors are the most likely to have
written that document. In our case, we could use the set of papers written by faculty mem-
bers to train an author-topic model, and then the statements of purpose could be “folded in”
the model to extract their most representative author and topic probability distributions.

While all the above ideas are good, we did not find an approach that closely matches our
purpose. The only similar study we found comes from IBM India Research Lab [72]. They
designed a system called “PROSPECT” to screen candidates for recruitment. Their system
combines elements from recommender systems, information retrieval, and author profiling
to come up with a software and graphical user interface that improves candidate ranking
by 30% and provides faceted search functionality to conduct fine-grained analyses such as
highest degree of the candidate, relevant and total work experience, skills, and his/her city
of residence. Since companies like IBM receive thousands of job applications for many
job postings, it becomes crucial to augment the slow and cumbersome manual candidate-
screening process with an automated decision-making tool such as PROSPECT. Our use
case is also very similar, in that we want to screen hundreds of graduate applicants and
match them with potential advisors. In our case, faculty members serve the same purpose
as human resources staff screening job postings, and graduate applicants are similar to job
candidates. Inspired by PROSPECT, we pursued five keyword-based approaches to tackle
this problem. All approaches use information retrieval techniques, and stand to benefit
from learning to rank, given enough data [73].
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2.7 Related Work on Student Performance Prediction

Performance of students in a course, esp. a large one, depends on many factors. Existing
research on student performance prediction can be broadly categorized into two dimensions
– one that relates and predicts performance with non-textual data produced by students,
and another that does so with the textual data students authored. While our goal in this
chapter is to predict student performance from text data, in the following two subsections
we describe related studies on student performance prediction from both non-text as well
as text data. The first subsection deals with non-text studies, and the second one with
text-based prediction of performance.

2.7.1 Student Performance Prediction from Non-textual Data

Numerous research articles have focused on predicting student performance in Learning
Management Systems (LMS) and Massive Open Online Courses (MOOC). Some of them
have used historical grade information from transcripts [74, 75], student demographics
[74, 75, 76, 77], course characteristics [75, 78], instructor information [74, 75], student
scores in early performance assessments [74, 76, 79], learning activities such as course
video watching [77, 78, 80], metadata from student interaction via LMS and MOOCs [74,
77, 81], and metadata from student forums [76, 77]. We will describe these articles in more
detail.

Generally speaking, student forum analytics have recently emerged as a flourishing
area of research, and a detailed literature review has been presented by Sander [82] on
three aspects of student forum analytics: (a) reducing attrition of first year students, (b) in-
ferring the time when learning analytics produce best results, and (c) predicting academic
outcomes using learning analytics – based on Learning Management System (LMS) data.
Romero and Ventura [83] have given another literature review on the application of Edu-
cational Data Science (EDS) in MOOCs, describing and grouping the main studies by the
task or issue to be solved, along with the techniques used.

Sweeney et al. [75] developed a system to predict student grades (numeric) in the
courses they would enroll in during the upcoming semester by learning patterns from his-
torical transcript data, student demographics, course characteristics, and instructor infor-
mation. Strong connections between instructor characteristics and student performance
were found. The data came from five years of courses taught at George Mason University,
consisting of more than 30,000 students and 9,000 courses. Matrix factorization algorithms
were used to find connections between students and courses, with factorization machines
[84], random forests and personalized multi-linear regression [85] models achieving the
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lowest prediction error.
Meier et al. [79] proposed two related algorithms (classification and regression) to

predict the final grade of students in a course. The features were: student scores in early
performance assessments such as homework assignments, quizzes and midterm exams. A
confidence estimate for the prediction accuracy was derived and its utility demonstrated
on a dataset of about 700 University of California Los Angeles (UCLA) undergraduate
students in an introductory Digital Signal Processing course over seven years. For 85% of
the students, the system was able to predict with 76% accuracy whether they were going to
do well or poorly in the course after the fourth course week. Predictions were robust even
when the course was taught by different instructors. In-class exams were found to be better
predictors of the overall performance of a student compared to homework assignments.

Elbadrawy et al. [74] used personalized multi-linear regression (PLMR) from their
prior work [85], factorization machines [84], course-specific regression, and course-
specific matrix factorization (MF) approaches to predict student grades (numeric) in fu-
ture courses as well as on in-class assessments. Using only historical grade information
coupled with available additional information such as transcript data, both PLMR and MF
techniques were able to predict next-term grades with lower error rates than other methods
such as factorization machines. PLMR was further useful for predicting grades by incor-
porating features captured through student interaction with LMS and MOOC server logs.
Four datasets were used in this study with varying characteristics: George Mason Univer-
sity (GMU) transcript data, University of Minnesota (UMN) transcript data, UMN LMS
data, and Stanford University MOOC data. The task was framed as a regression problem,
and features were different for the four datasets, which were broadly based on student de-
mographics, instructor qualifications, student performance (GPA and homework grades),
and student interaction with the LMS.

Cen et al. [81] addressed three important aspects of collaborative learning [86] on
quantitative evaluation and prediction of group performance. (a) They first explored us-
ing machine learning to predict group performance based on member interactions data,
and sought to identify whether, and to what extent, group performance is driven by spe-
cific patterns of learning and interaction. Extreme learning machine [87], and classification
and regression trees [88] were used to predict group academic performance from live in-
teraction data. (b) A comparative model was designed to unscramble individual student
performances within the group. These performances were then used in a generative mix-
ture model of group grading and compared against the actual group performance to define
collaboration synergy, the improvements owed to collaborative learning. (c) The impact
of group composition was evaluated in terms of gender and skills on learning performance
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and collaboration synergy. The analysis indicated a high level of predictability of group
performance based solely on the style and mechanics of collaboration, and quantitatively
supported the claim that heterogeneous groups with a diversity of skills and genders ben-
efit more from collaborative learning than homogeneous groups. The data came from 168
students (72 student groups) in Fall 2013 using a collaborative learning environment tool.
The task was formulated as both classification and regression.

Mueen et al. [76] used machine learning to predict and analyze student academic per-
formance based on their academic record and forum participation. Student data were col-
lected from two undergraduate courses from two semesters (Programming Fundamentals
and Advanced Operating Systems courses; August 2014 to May 2015). Decision tree
(C4.5), multilayer perceptron, and Naı̈ve Bayes (NB) classifiers were used. NB outper-
formed the other two classifiers by achieving overall prediction accuracy of 86%. The col-
lected data consisted of 60 students, of which 41 passed (68.33%), and 19 failed (31.66%).
38 features were extracted for each student, consisting of student demographics, online
student forum metadata, and prior grades received. The task was formulated as pass/fail
prediction.

Xu and Yang [78] presented a grade prediction algorithm using student activity fea-
tures that predicted whether a learner would be able to pass a certification test. The method
consisted of a two-step classification process: motivation classification (MC) and grade
classification (GC). The MC divided all learners into three groups – certification-earning
(i.e., high motivation), video-watching (middling motivation), and course-sampling (low
motivation). The GC then predicted whether a certification-earning (i.e., high-motivation)
learner would or would not be able to obtain the certification. Prediction accuracy im-
proved due to the fact that the parameters of classification model could be tuned at a finer
granularity to fit more learners. The dataset came from 10 courses of the Person-Course
Dataset (AY2013; cf. [89]) that included course information (such as course ID, open date,
launch date), and learner activities such as video play activity and course forum activity.
The prediction algorithm was SVM [90], and six features were used: number of course
videos played, number of posts, number of active days, number of days between first event
and course opening date, number of days between last event and course closing date, and
number of enrolled courses.

Widyahastuti et al. [80] proposed a model to predict student performance from online
discussion forums. The data was extracted for 165 students in an English for Librarians

course from an online discussion forum (E-learning log) at Open University, Indonesia.
The authors focused on the features in online discussion forums that were most predictive
of student performance. The features explored were: course module instance list viewed,
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discussion created, discussion subscription created, discussion subscription deleted, discus-
sion viewed, module course viewed, post created, post deleted, post updated, some content
has been posted and user report viewed. The task was formulated as a simple linear re-
gression to predict the numeric grades of individual class assignments. Among all features,
discussion created, discussion subscription created, module course viewed, and some con-
tent has been posted – had a statistically significant relationship with assignments 1, 2, and
3 in terms of grade prediction. Note that while Widyahastuti et al.’s study is similar to ours,
we focus mostly on text features rather than non-text features, and use classification rather
than a regression setup.

Qiu et al. [77] used data from xuetangX,2 one of the largest MOOCs from China. In-
depth analysis conducted for student demographics and learning activity patterns in course
forums, videos and assignments showed significant behavioral heterogeneity in students’
course selection as well as learning patterns. For example, students who exerted higher
effort and asked more questions were not necessarily more likely to get certificates. Addi-
tionally, the probability that a student obtained the course certificate increased three times
when (s)he had one or more “certificate friends” (other students who finally got certifi-
cates). A unified latent dynamic factor graph (LadFG) model was developed to predict
students’ learning effectiveness in a classification framework (assignment grade predic-
tion), by incorporating demographics, forum activities, and learning behavior as features.
The proposed model significantly outperformed (+2.03-9.03% by F1-score) several alter-
native methods (SVM [90], Logistic Regression [91], and factorization machines [84]) in
predicting performance on assignments and course certificates.

2.7.2 Student Performance Prediction from Textual Data

Note that there are no studies, to the best of our knowledge, that attempt to predict student
performance in a course from their writings. The closest study we found comes from Chen
et al. [92], who focused on journal writing, an important and common practice in education.
Students’ reflection journals offer a rich source of data. The authors collected 367 journals
from 80 students in different sections of an undergraduate course to educate pre-service
teachers.3 They proposed a method based on topic modeling for the task of themes explo-

ration and reflection grade prediction. The method was evaluated on the collected sample
of journal writings. The topic modeling method was able to discover important emerging
themes and patterns in the reflection journals. Weekly topic relevance and word count were
identified as two important predictors of journal grades. Prediction models were developed

2http://www.xuetangx.com/.
3https://en.wikipedia.org/wiki/Student_teacher.
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for the grading of reflection journals, where the task was a balanced three-class classifi-
cation with term frequency and weekly content relevance as features. Naı̈ve Bayes gave
the best accuracy (65.10%). Note that while this method was based on text data, it differs
from ours because we are dealing with text data from student forums, not journals. Journals
tend to be longer, more developed, and follow the topics that the author feels interested in;
whereas forum posts tend to be shorter, and mostly on topics selected by others. Further,
our dataset is much larger (378 students as opposed to 80).

More generally, the field of Automated Essay Scoring [93] deals with automated grad-
ing of essays written by students on a given prompt.4 The essays are typically long and
involved, and receive a numeric score. By contrast, in this chapter we focus on student
forum data (as opposed to essays), the goal is to grade the students over the course of a full
semester (as opposed to a single essay), and the task is 4-class classification rather than the
prediction of a numeric grade. This is a new task, and has not been attempted previously.

4https://en.wikipedia.org/wiki/Automated_essay_scoring.
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CHAPTER 3

Keyword Extraction to facilitate information
access: Data-driven keyword extraction method,

applied to emails

Emails constitute an important genre of online communication. Many of us are often faced
with the daunting task of sifting through increasingly large amounts of emails on a daily
basis. Keywords extracted from emails can help us combat such information overload by
allowing a systematic exploration of the topics contained in emails. Existing literature on
keyword extraction has not covered the email genre, and no human-annotated gold standard
datasets are currently available. In this chapter, we introduce a new dataset for keyword
extraction from emails, and evaluate supervised and unsupervised methods for keyword
extraction from emails. The results obtained with our supervised keyword extraction sys-
tem (38.99% F-score) improve over the results obtained with the best performing systems
participating in the SEMEVAL 2010 keyword extraction task.

3.1 Introduction

With 144.8 billion emails sent every day around the world,1 emails represent an essential
mode of digital communication. The market share of emails is tremendous, and largely
untapped. Not only are traditional applications of keyword extraction important for emails,
but emails present a unique scenario in their own right. According to Wasserman, up to
28% of workers’ time is spent checking emails,2 and most work emails are not important.3

It is therefore paramount that we be able to somehow sort this enormous pile of emails into

1http://mashable.com/2012/11/27/email-stats-infographic/
2http://mashable.com/2012/08/01/email-workers-time/
3http://mashable.com/2012/06/07/most-work-emails-not-important-study/
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a workable collection so that the more important ones are dealt with immediately, whereas
others are relegated to future inspection [44].

While all existing email clients include some form of free text search to help users
identify relevant threads of conversation, keyword extraction from emails can help us spot
salient phrases from emails, thereby automatically tagging/categorizing them into appro-
priate folders (or “labels”), and in effect, giving us a faceted search functionality comple-
mentary to the vanilla text search on emails.

In this chapter, we address the task of automatic keyword4 extraction from emails, as a
way to automatically annotate email content with salient words or phrases that can help us
decide on the importance or relevance of an email or thread. The availability of keywords
could facilitate the access to email on mobile devices, and they could be used as a prepro-
cessing step for smart email applications that aim to classify or prioritize emails. Keywords
could help visualize emails in the form of “keyword clouds” with larger keywords indicat-
ing more salience [17], and the clouds can be interactive so that when a user clicks or taps
on a certain keyword, all emails pertaining to that keyword get retrieved. Different colors
indicate different “keyword topics”, so that all keywords under a certain topic get grouped
together in one area of the cloud.

Furthermore, keywords form their own social networks [2], and important meta-
information about documents can be mined by looking into networks of keywords. Key-
word networks also serve as a powerful visualization tool by themselves, so that users who
are interested in relationship (or association strength) between two keywords or keyword
cliques may benefit from looking at such visualizations.

Keyword extraction is an important problem in natural language processing, where the
goal is to identify the most important words and phrases in a document. The keywords can
either serve as a short summary of the document, giving users an overview of its contents;
or they can indicate the topics that are being discussed.

While it may be argued that keywords are often an impoverished representation of the
underlying topic space, and that there are alternative models that capture such spaces [94,
43, 95], it is important to consider that probabilistic topic models need to be trained on large
corpora, and they often suffer from scalability issues. Keyword extraction, on the other
hand, can be performed in both supervised and unsupervised fashion, and most keyword
extraction methods do not need large training corpora.

Keyword extraction has traditionally been the domain of librarians and book indexers,
but more recently the problem has seen a number of novel applications. For instance,
keywords have been used to thematically group web sites [3], where authors reverse-

4We use the term “keyword” to refer to key words or phrases.
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engineered a graph of webpages by clustering them, and using keywords to label the clus-
ters. Keywords were used as anchor phrases to link to Wikipedia articles in [22], and
as summary topics to visualize how topics change over time in online Korean news arti-
cles [96]. Keywords have been used to target advertisements on webpages [97], and as
indicators of academic paper content and user interest in a content-based paper recommen-
dation system [5].

With such a large number of applications, it is surprising that keyword extraction from
emails has not received much attention from the research community. In this chapter, we
introduce a new dataset, consisting of single and thread emails manually annotated with
keywords, and describe a number of features that can be used for unsupervised or super-
vised email keyword extraction. Through several evaluations, we show that we can achieve
results that significantly improve over several baselines, and also improve over state-of-the-
art systems participating in the SEMEVAL 2010 keyphrase extraction task [10].

Note that working with email data raises a valid concern about user privacy, and whether
we are in a position to violate such concerns. To this, we respond: since our study is based
on the publicly released Enron corpus [98], we do not expressly deal with such concerns.
It is, however, of importance to deliberate upon potential privacy breaches that may happen
as an application of the technology developed and described in this chapter. We opine
that such cases, if any, would need to be dealt with on a case-by-case basis, as no single
scheme could benefit all the parties of interest in a potential breach of privacy. This is
also a question that ties into the legality of the research we perform; we ensure the reader
that our research is always protected by Institutional Review Board (IRB) standards and
compliance, which takes privacy into account quite explicitly. Furthermore, we specifically
removed all instances of header text and footer text of emails that include personal names
– to the extent possible. We also manually anonymized – to the extent possible – all the
person names mentioned in emails.

3.2 Keyword Extraction Pipeline

Our keyword extraction systems proceed in five stages:

1. Email processing

2. Candidate extraction

3. Pre-processing

4. Ranking/Classification
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5. Post-processing

As a first step, we sentence-segment each email manually, followed by tokenization
based on whitespace. We ignore email metadata such as filename, ID, date, from and to,
subject, and signature fields. This was done to ensure that our systems are only focusing
on the email text. We also remove numbers and words consisting of one or two characters.

In the candidate extraction stage, we generate candidate phrases from a document. We
experimented with four types of phrase candidates, and found noun phrases and named
entities to be the best (Section 3.3.2).

In the pre-processing stage, we clean up the phrase candidates by removing punctua-
tion, folding to lowercase, and removing numbers and leading and trailing stopwords. We
also implemented a pre-processing heuristic, which is a syntactic filter that only considers
nouns and adjectives while constructing the word co-occurrence network. This is based on
the observation that most keywords consist of nouns and adjectives (along with function
words), and therefore a part-of-speech filter at this stage can help eliminate some of the
potential noise.

In the fourth and most important stage, we extract keywords from emails using two
approaches – unsupervised, and supervised. In the unsupervised (ranking) approach, we
(a) rank words using several linguistic and centrality-based features, and then collapse the
top-ranked adjacent words to form keyphrases; (b) rank candidate phrases (noun phrases
and named entities) using several phrase features – both linguistic and centrality-based,
and then extract the top-ranked phrases as keyphrases. In the supervised (classification)
approach, we classify candidate phrases as keyphrase vs. non-keyphrase using phrase fea-
tures, and return the ones classified as keyphrase. Both approaches are evaluated on our
own dataset consisting of 319 keyword-annotated emails.

In the fifth stage, we implement a post-processing heuristic (for word ranking) that
constructs longer key phrases starting with the selected keywords, by collapsing adjacent
words from the top k ranking into phrases.5 The problem with this collapsing strategy is
that the final number of phrases cannot be predicted from the number of input keywords
k, and there is no control over the number of collapsed phrases. Other variants of this
collapsing strategy that alleviate this problem are possible, but they are found to introduce
new complications, e.g., very long keywords or several keywords that are semantically
redundant. We therefore use the basic collapsing heuristic described before.

5To better understand this heuristic, consider the following example: Assume the words “house” and
“white” have been returned as top-ranked for the (tiny) document “POTUS spoke in the White House”. In
this case, the collapsing heuristic will yield “White House” as a keyphrase.

23



3.3 Features for Keyword Extraction

We extract two broad classes of features for keyword extraction from emails: word features
and phrase features. These features are either used by themselves, in an unsupervised
fashion, or together in a supervised setting.

In the following, we describe each feature, along with a short note on its potential utility
in keyword extraction. Note that word and centrality features are extracted after removing
stopwords.

3.3.1 Word Features

Word features are used to rank word types (i.e., unique words) based on their frequency,
positional, and surface properties.

• Tf: Raw frequency of a word type in a document.6 It is an important indicator of the
word’s saliency.

• Tf.idf: Raw frequency of a word type multiplied by its idf (inverse document fre-
quency) computed on the British National Corpus [99].

• First position: Position of the first occurrence of a word in a document. Position
is measured by number of word tokens since the beginning of the document. Words
appearing towards the beginning of a document often contain introductory informa-
tion, thereby being important from the perspective of keyword extraction. Position
of a word is an important indicator of its “keyword”-ness, and has been exploited in
several previous studies [6, 29, 30].

• Last position: Position of the last occurrence of a word in a document. Position, as
before, is measured by number of word tokens since the beginning of the document.
Words appearing near the end of a document may contain summary information,
thereby becoming important.

• Normalized first position: First position feature, normalized by the number of
words in the document. This is similar to the first position feature, except that it
explicitly takes into account the length of the document so that longer documents
may be penalized more.

6By “document”, we mean an email or an email thread.
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• Normalized last position: Last position feature, normalized by the number of words
in the document. This is similar to the last position feature, except that it explic-
itly takes into account the length of the document so that longer documents may be
penalized more.

• Word length: Number of characters in a word. Longer words sometimes contain
richer information owing to word-compounding, morphology, etc.

• Is capitalized?: Whether the word is capitalized. This is a binary feature. Word
capitalization is often a strong cue for detecting named entities.

• Is in subject?: Whether the word appears in the subject line of an email/thread.
This is another binary feature. Words appearing in an email’s subject line often
contain important information, much like the words in the title line of a general
document [19].

We also implement word centrality features, which are features defined on word co-
occurrence networks [7]. For each email, a word co-occurrence network is constructed by
adding all the word types (i.e., unique words) as nodes, and by drawing an edge between the
words that occur next to each other.7 Centrality measures on such co-occurrence networks
can yield a powerful set of features for keyword extraction. In this work, we focus on the
following centrality features:

• Degree: Number of edges incident to a node. Since word types implicitly endorse
each other via collocation edges, the more edges that are incident to a word, the more
important the word becomes.

• PageRank: Stationary probability of a random walk visiting a particular word in the
word co-occurrence network. When used with teleportation, such a random walk
ends up assigning higher probabilities to more important words in the network [7].

• Coreness: Measure of how “deep” a word is in the co-occurrence network. The
“deeper” a word, the more its importance. This feature is inspired by the core-

periphery structure of small-world networks, and computed using the so-called k-

cores decomposition [14, 15].
7It is possible to draw the word co-occurrence network in a way that takes into account a window of words

rather than successive words; we, however, have noticed that such networks merely change the neighborhood
information of a particular token. In other words, it makes the network denser [100]. Such additional density
was not found to be helpful in the canonical graph-based Keyword Extraction study that we followed in this
chapter [7].
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• Neighborhood size (order one): Number of immediate neighbors to a node. It
is a version of node degree that disregards self-loops, which can arise in word co-
occurrence networks due to constructions such as “again, again and again”. The
more neighbors a node has, the higher its importance.

3.3.2 Phrase Features

In addition to features reflecting the importance of individual words, we also calculate
phrase features, which are used to rank/classify entire phrases. More precisely, these fea-
tures are used to classify (document, phrase) pairs, as explained in the next section.

Following [18], we extract four types of candidate keywords: stopword-filtered n-grams
(n = 1, 2, 3, 4), stopword-filtered base noun phrases, named entities extracted using the
Stanford Named Entity Recognizer (NER) [101], and named entities extracted using an
unsupervised heuristic (sequences of capitalized words that never appear without capital-
ization). We use the CRFTagger [102] for part-of-speech tagging, and Mark Greenwood’s
NP chunker for base noun phrase identification.8 The following features are used to rank
these candidate keywords:

• Phrase Tf: Raw frequency of a phrase in a document.

• Phrase Idf: Inverse document frequency of a phrase, computed as the average of
idf s of its constituent words. The word idf s were computed on the British National
Corpus.

• Phrase Tf.idf: Raw frequency of a phrase multiplied by its idf.

• Within-document frequency: Number of sentences a phrase appeared in (for a par-
ticular document). The more sentences a phrase appears in, the higher its importance.

• Mean length of containing sentences: Mean length of the sentences a phrase ap-
peared in (for a particular document) – in word tokens, word types, and (non-space)
characters. These three features encode the importance of the containing sentences.
Longer sentences should carry more information.

• Phrase length: Length of a phrase calculated as the number of constituent word
tokens and non-space characters. These two features encode the fact that longer
phrases usually carry more information.

8Available from http://www.dcs.shef.ac.uk/˜mark/nlp/software/gate-plugins/
chunkerv11.zip.
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• Length of the containing document: Length of the document a phrase appears in –
in word tokens, word types, and non-space characters. These three features encode
the weight of the containing document.

• Mean length of constituent words: Average length of constituent words in non-
space characters.

• First and last containing sentences: Index of the first and the last sentence a phrase
appears in (for a particular document). These two features encode positional infor-
mation of a phrase.

• Diameter: Difference between the indexes of the first and last containing sentences.

• Wikipedia keyphraseness: Ratio of the number of Wikipedia documents where
a phrase appeared as a keyword, and the number of Wikipedia documents where
the phrase appeared [22]. This ratio, when computed for phrases with reasonable
document counts, provides an estimate of their importance as well as cohesiveness.

• POS pattern probability: Probability of a part-of-speech pattern emerging as a can-
didate keyword from among all base noun phrase patterns. This feature is inspired by
a similar feature used in [103]. We included a second probability – probability of ob-
taining a candidate keyword pattern from among unique base noun phrase patterns.
These two probabilities incorporate syntax information in our model.

• Is in subject?: Whether the phrase appears in the subject line of an email/thread.
This is a binary feature.

• Overlap with subject: If the phrase appears in the subject line, then this feature is
the length of the phrase in words, divided by the length of the subject line in words;
otherwise, zero.

• Are all words capitalized?: This binary feature is a strong cue for detecting named
entities.

• Mean degree, PageRank, coreness, and neighborhood size: Mean degree, PageR-
ank, coreness, and neighborhood size (order one) of the constituent words of a phrase
in the word co-occurrence network. Note that stopwords are not included in the word
network. These four features indicate the importance of a phrase in terms of central-
ity. Higher values denote greater importance.
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Table 3.1: Keyphrase ranking obtained with three features.
Mean neighborhood size Mean coreness tfidf
afternoon 4 afternoon 6 enron 17.63
pen and pencil 3 phone 6 hector 10.62
tomatoes 2 week 6 chris 4.54
goody package 2 enron 6 tomatoes 4.12
hope 2 desk 6 goody package 3.95
york customers 2 rest 6 pen and pencil 3.48
rest 2 hector 4 golf shirt 2.52
week 2 chris 0 afternoon 2.41
golf shirt 2 golf shirt 0 desk 2.00
hector 2 new york 0 phone 1.59
desk 2 goody package 0 york customers 1.57
new york 2 tomatoes 0 new york 0.79
enron 2 pen and pencil 0 care 0.67
care 1 york customers 0 hope 0.55
phone 1 care 0 rest 0.49
chris 1 hope 0 week 0.41

• Phrase degree, PageRank, coreness, and neighborhood size: Degree, PageRank,
coreness, and neighborhood size (order one) of a phrase in the phrase co-occurrence

network. Phrase co-occurrence networks are similar to word co-occurrence networks,
except that nodes are candidate phrases instead of words, and edges are defined be-
tween candidate phrases that appear in the same sentence. Higher values indicate
greater importance.

Note that among the above features, coreness and neighborhood size are novel features
in our study, and to the best of our knowledge, they have never been used in keyword ex-
traction. Further, their behavior is different from tfidf. We illustrate an example in Table
3.1 (ECS080; corporate single email), which shows that both the ranking as well as the
value ranges are different for phrase tfidf, phrase mean coreness, and phrase mean neigh-
borhood size. For example, the word “afternoon” has a mean neighborhood size of 4 (i.e.,
it is connected to 4 other phrases) and a mean coreness of 6, but a low tfidf of 2.41 (“after-
noon” appears in several of the emails). Yet another example is the word “chris.” It has a
low mean neighborhood size of 1 and low mean coreness of 0, but the tfidf is much higher
(4.54), showing once again that these features are not redundant in their behavior.
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Table 3.2: Example of a corporate email and a personal email, along with keyword annota-
tions.

Corporate Email Personal Email

I am faxing you both the Master Hey, Does your email still work. I was wondering
Firm Purchase/Sale Agreement if you had a private email that would be appropriate
executed between Enron Gas Marketing for non business related correspondence?? Just
(merged now into ECT) and Aquila Energy curious. Still would like to find a way to keep in
Marketing Corporation (merged now into touch better, the messenger thing is ok, but its
Utilicorp.) with respect to Utilicorp. hard at times with work and all. At least with
“signing” the agreement in lieu of giving email we can say alittle more and at least have
a guaranty. Actually what Utilicorp. did some uninterrupted time to “talk”. Speaking of
in this agreement is sign as a co-obligor talking?.is there any time that is good to call? I
under the agreement (see Section 16.12 would like to hear your voice once in a while! J
of the agreement). They signed accepting
joint and several liability with respect to
the obligations. If we can get them to agree
to the same language in your master
agreement that would effectively be as good
or better than getting a guaranty. Anything
less (like just sticking their “name” on the
signature line) may not get us much or be
worthless. All this, of course, is subject to
any differences between US and UK law or
issues under UK law which I will leave in
Edmund’s capable hands. Let me know if I
can be of further service...

Keywords assigned by Annotator 1: Keywords assigned by Annotator 1:
Master Firm Purchase/Sale Agreement, email, private email, keep in touch better, hear your
Utilicorp, guaranty, obligations, agree to voice, talk, non business related correspondence,
the same language, signing, liability, messenger thing, good time to talk
worthless

Keywords assigned by Annotator 2: Keywords assigned by Annotator 2:
Master Firm Purchase/Sale Agreement, private email, non business related correspondence,
Enron Gas Marketing, Utilicorp., sign as uninterrupted time, keep in touch, ‘talk’
a co-obligor, language, US and UK law

Keywords assigned by Annotator 3: Keywords assigned by Annotator 3:
Master Firm Purchase/Sale Agreement, private email, non business related correspondence,
co-obligor, Utilicorp, Enron Gas messenger thing, uninterrupted time, voice
Marketing, Aquila Energy Marketing
Corporation, guaranty

Keywords assigned by Annotator 4: Keywords assigned by Annotator 4:
agreement, Utilicorp, guaranty, Master keep in touch better, private email, call, messenger
Firm Purchase/Sale Agreement, signed thing, hear your voice
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Table 3.3: Keyword annotation statistics.
Email Category Mean #Keyphrases Standard Deviation
Corporate Single 6.68 1.88
Corporate Thread 7.72 2.36
Personal Single 6.79 2.11
Personal Thread 7.36 2.51
All Single 6.70 1.97
All Thread 7.53 2.47
All Corporate 7.06 2.12
All Personal 6.96 2.26

Table 3.4: Inter-annotator Agreement.

“Ground Truth” Annotator
Precision Recall F-score Jaccard

(%) (%) (%) (%)
Exact match

Annotator 1 27.00 40.96 32.55 23.23
Annotator 2 24.06 55.84 33.63 23.03
Annotator 3 21.16 58.27 31.04 20.96
Annotator 4 20.45 57.95 30.23 20.41

BOW match
Annotator 1 46.37 58.25 51.63 47.17
Annotator 2 34.40 72.97 46.76 40.29
Annotator 3 33.35 74.33 46.04 40.26
Annotator 4 29.66 76.10 42.68 38.78

Relaxed match
Annotator 1 40.59 61.59 48.93 44.43
Annotator 2 34.62 80.35 48.39 42.69
Annotator 3 30.71 84.56 45.05 39.14
Annotator 4 29.87 84.64 44.15 39.99
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Table 3.5: Pairwise Inter-annotator Agreement.

Annotator-pair
Precision Recall F-score Jaccard

(%) (%) (%) (%)
Exact match

1 – 2 32.19 24.56 27.86 20.04
1 – 3 35.01 23.27 27.96 19.22
1 – 4 34.61 22.42 27.21 19.58
2 – 3 37.42 32.60 34.85 25.42
2 – 4 36.90 31.32 33.88 24.98
3 – 4 30.58 29.80 30.18 21.01

BOW match
1 – 2 53.50 37.44 44.05 38.86
1 – 3 56.54 38.07 45.50 40.17
1 – 4 56.66 33.81 42.35 39.68
2 – 3 48.28 46.45 47.34 40.53
2 – 4 51.62 44.00 47.50 43.61
3 – 4 46.90 41.56 44.07 39.43

Relaxed match
1 – 2 49.32 37.63 42.69 39.50
1 – 3 52.58 34.95 41.99 38.15
1 – 4 51.00 33.03 40.09 37.38
2 – 3 51.35 44.74 47.82 45.94
2 – 4 51.34 43.58 47.14 45.15
3 – 4 45.11 43.96 44.53 40.83
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3.4 Evaluation

3.4.1 Dataset

To our knowledge, there is no dataset available for keyword extraction from emails. To
evaluate our methods, we compiled our own dataset consisting of 212 single emails and
107 email threads (of 4-8 emails each) drawn from the Enron collection [98].9

First, each email and thread within this dataset was manually classified as either “pri-
vate” or “corporate”. The corporate emails discuss issues related to work and office,
whereas the personal emails deal with issues related to home, family, and friends. Ex-
amples of corporate and personal emails are shown in Table 3.2.

Next, all the emails and threads in the dataset are annotated for keywords by four in-
dependent human judges. The annotators were asked to assign 5-20 keywords to each
email/thread, ranked in their order of importance. We requested annotators to select key-
words that are up to five words in length. While the definition of a “keyword” can vary
depending on the annotator, we provided some guidelines and recommendations for in-
creased consistency, e.g., we recommended the selection of noun phrases, named entities,
or any other phrases that best capture the essence of a given email/thread.

Example keywords assigned by the annotators are shown in Table 3.2. Table 3.3 shows
the keyword statistics of different categories of emails. Overall, threads have more key-
words than single emails, and corporate emails have more keywords than personal emails.

We compute inter-annotator agreement by considering one annotator as the ground
truth, and the (set union of) remaining annotators as the “system”. Further, we consider
three forms of agreement:

• Exact match: when two phrases match exactly (up to lowercasing and spaces).

• BOW match: when two phrases’ bags of words (BOW) match exactly after lower-
casing (except stopwords).

• Relaxed match: when two phrases either match exactly up to lowercasing, or can
be made identical by adding a single word to the beginning or end of the shorter
phrase [17].

Micro-averaged precision, recall, F-score, and Jaccard similarity under these three set-
tings are shown in Table 3.4. Note that the best agreement under exact match is only

9An earlier version of this dataset has been described in detail in [104].
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33.63% F-score, which is not very high, thus indicating the difficulty of the keyword ex-
traction task (cf. [105]).10 However, if we consider the BOW match, the best agreement is
much higher (51.63% F-score). The same holds true for the relaxed match. This shows that
annotators – although clearly divergent in their opinion, do in fact tend to select very simi-
lar words to construct their keyphrases. Results on pairwise agreement (Table 3.5) present
the same evidence.

3.4.2 Evaluation Settings and Metrics

Our experimental results are primarily based on a combined gold standard, obtained from
the set union of the keywords assigned by the four annotators, with an average of 19.35
keywords per email. Note that we also considered the alternative of creating a gold standard
by using the set intersection of the four annotations. This results in zero keywords per
email, reflecting the diversity of opinions on the annotations for this task. Instead, we
adopt as our intersection gold standard the union of pairwise intersections between the
annotations, yielding 5.70 keywords per email (on average). This gold standard results in
an artificially small dataset that does not accurately reflect the performance of a keyword
extraction system. Nonetheless, for the sake of completeness, we also report the results
obtained on this intersection set (Section 3.5.3).

All the keyword extraction experiments are evaluated using micro-averaged precision,
recall, F-score, and Jaccard similarity. We used F-score as our primary yardstick for com-
paring different systems. The evaluations are performed at phrase-level, where we count a
candidate phrase appearing in the gold standard as an exact match (up to lowercasing and
spaces).

3.5 Results and Discussion

We perform two sets of experiments, one consisting of unsupervised methods that rely on
the individual use of the features described in Section 3.3, and a second set consisting of a
supervised framework that combines all the features using machine learning.

10Having said that, 33.63% F-score is close to what one can reasonably expect as an upper bound on
the inter-annotator agreement. For example, in the SemEval 2010 Keyphrase Extraction Task, the F-score
achieved by readers on author-assigned keyphrases was 33.6% (cf. [10], Section 4).
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3.5.1 Unsupervised Methods

For unsupervised keyword extraction, we first apply the pre-processing heuristic to select
only nouns and adjectives, then rank candidate words according to different features (one
feature at a time), followed by a selection of the top 50% of the words from the resulting
ranked list, and finally use the post-processing heuristic to collapse adjacent words into key
phrases. For the binary features (such as Is in subject? and Is the word / Are the words

capitalized?), we take all words/phrases with value 1 instead of top 50%.
Table 3.6 shows the performance values obtained for the word and phrase features, and

Table 3.7 shows the values for binary features. Note that mean neighborhood size yields
the best F-score, followed by phrase tfidf and phase tf. Among word features, word tfidf

performs the best, followed by word PageRank. The superiority of tfidf in both cases is in
line with the findings by Hasan and Ng [9]. For binary features (Table 3.6), we see that one
of them gives the highest precision among all systems (47.11%). However, their recall is
very low (2-16%), thereby yielding a relatively low F-score (esp. for Is in subject?).

3.5.2 Supervised Methods

For supervised keyword extraction, we apply the same steps as in the unsupervised meth-
ods, but perform the ranking of the candidates using a machine learning algorithm applied
in leave-one-out cross-validation fashion using all the phrase features. The supervised
system includes a few features that cannot be used for keyphrase ranking, but could be
potentially useful for the selection of keywords (e.g., document-specific features such as
document length).

The supervised framework is formulated as a binary classification task, where each
(document, candidate keyword) pair is classified as relevant or not. Using a small devel-
opment dataset of 30 emails, we tried nine different classification algorithms, including
KNN, Naive Bayes, SVM SMO, J48 decision tree, PART rule learner, OneR, Logistic Re-
gression, AdaBoost and LogicBoost. We found that Naive Bayes and KNN performed best,
and therefore used these classifiers in our experiments on the entire evaluation dataset. For
all the classification experiments, we use Weka [106]. The performance values are micro-
averaged.

The results of the leave-one-out cross-validation on the entire dataset of 319 emails
are shown in Table 3.8. Interestingly, the results are comparable to the inter-annotator
agreement rates reported in Tables 3.4 and 3.5, which is an indication of how accurate our
best systems are as compared to human performance.

For an additional analysis, we also determine and report the most discriminative fea-
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Table 3.6: Performance of unsupervised keyword extraction. Best values in different
columns are boldfaced.

Feature
Precision Recall F-score Jaccard

(%) (%) (%) (%)
Word features

Tf 20.33 28.96 23.89 13.57
Tf.idf 23.44 31.22 26.77 15.45
First position 14.47 16.99 15.63 8.48
Last position 19.39 24.27 21.56 12.08
Word length 17.97 23.64 20.42 11.37
Degree 20.25 28.88 23.81 13.51
PageRank 21.41 28.37 24.41 13.90
Coreness 15.13 18.15 16.50 8.99
Neighborhood size 20.79 29.60 24.42 13.91

Phrase features
Tf 25.65 33.16 28.92 16.91
Idf 25.63 33.14 28.91 16.90
Tf.idf 26.91 34.79 30.35 17.89
Wikipedia keyphraseness 22.68 29.32 25.58 14.66
Phrase length (words) 22.67 29.30 25.56 14.65
Phrase length 25.02 32.34 28.21 16.42
(non-space chars)
Overlap with subject 21.91 28.32 24.71 14.09
Mean length of constituent 25.27 32.67 28.50 16.62
words
Mean length of containing 19.76 25.55 22.28 12.54
sentences in words
Mean length of containing 19.91 25.74 22.45 12.65
sentences (unique words)
Mean length of containing 20.01 25.87 22.57 12.72
sentences (non-space chars)
First containing sentence 17.35 22.43 19.56 10.84
Last containing sentence 20.56 26.58 23.18 13.11
Diameter 24.09 31.15 27.17 15.72
Within-document frequency 24.62 31.84 27.77 16.12
Mean degree 22.05 28.50 24.86 14.20
Mean PageRank 21.73 28.10 24.51 13.96
Mean coreness 20.58 26.61 23.21 13.13
Mean neighborhood size 27.33 35.33 30.82 18.22
Phrase degree 22.94 29.66 25.87 14.86
Phrase PageRank 23.71 30.66 26.74 15.44
Phrase coreness 21.09 27.26 23.78 13.49
Phrase neighborhood size 22.72 29.37 25.62 14.69
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Table 3.7: Performance of binary features in unsupervised keyword extraction. Best values
in different columns are boldfaced.

Feature
Precision Recall F-score Jaccard

(%) (%) (%) (%)
Word features (binary)

Is capitalized? 25.69 16.97 20.44 11.38
Is in subject? 47.11 2.66 5.04 2.59

Phrase features (binary)
Are all words capitalized? 33.29 11.34 16.91 9.24
Is in subject? 30.96 2.70 4.96 2.54

Table 3.8: Performance of supervised keyword extraction. Best values in different columns
are boldfaced. Performance values are micro-averaged in leave-one-out cross-validation.

Classifier
Precision Recall F-score Jaccard

(%) (%) (%) (%)
KNN 31.94 50.03 38.99 24.22
Naive Bayes 45.40 28.87 35.30 21.43

tures (by Information Gain), as shown in Table 3.9. Note that Phrase Tf.idf and Mean
neighborhood size appear among the most discriminative features, which is not surprising
since these two features are also among the best in the unsupervised approach (Table 3.6).
Note further that Phrase Tf appears to be more discriminative than Phrase Tf.idf, and that
the index of the first containing sentence and length of the containing document are also
among most discriminative features.

3.5.3 Additional Evaluations

To further analyze the results of our supervised methods, we perform three additional eval-
uations.

Table 3.9: Most discriminative keyword extraction features by Information Gain on the
email dataset.
Feature Information Gain
Phrase Tf 0.04279
Phrase Tf.idf 0.03804
First containing sentence 0.03545
Length of containing document in word types 0.03287
Length of containing document in non-space characters 0.03284
Length of containing document in word tokens 0.03166
Mean neighborhood size 0.02775
Within-document frequency 0.02655
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Table 3.10: Results of in-domain training. Best values in different columns are boldfaced.
Performance values are micro-averaged in leave-one-out cross-validation.

Classifier
Precision Recall F-score Jaccard

(%) (%) (%) (%)
KNN 32.45 51.64 39.85 24.89
Naive Bayes 45.69 31.27 37.13 22.80

Table 3.11: Performance of supervised keyword extraction under intersection gold stan-
dard. Best values in different columns are boldfaced. Performance values are micro-
averaged in leave-one-out cross-validation.

Classifier
Precision Recall F-score Jaccard

(%) (%) (%) (%)
KNN 22.04 35.87 27.30 15.81
Naive Bayes 28.56 32.52 30.41 17.93

First, we evaluate the effect of in-domain training, where for each of the four categories
of emails in our dataset – personal single, personal thread, corporate single, and corporate
thread – we restrict the training set to other documents in the same category. Table 3.10
shows the overall results obtained in this evaluation. Although the in-domain constraint
results in a net decrease of the training set size, performance values improved because
emails are more similar within a category than across categories. The F-score improvement
with respect to the open-domain results from Table 3.8 are relatively small: 0.67 percentage
point for KNN and 1.37 percentage point for Naive Bayes. Acknowledging that the size
of the data used to train these in-domain systems is smaller than that used to train the
open-domain data, the lesson learned from this experiment is that if domain-specific data
is available, the same performance can be obtained with a fraction of the data.

Second, we evaluate our supervised methods against a gold standard dataset formed by
using the intersection of the pairwise annotations produced by the human judges. As noted
in Section 3.4, taking the intersection results in a very small dataset, which is not ideal for
measuring the performance of an automatic system. We nonetheless report these results in
Table 3.11, to show the ability of our system to identify these keywords that were agreed
upon by both annotators.

Finally, to understand the performance of our keyword extraction methods on differ-
ent types of emails (e.g., single emails versus threads; personal emails versus corporate
emails), we perform separate evaluations of our supervised methods on each of the four
different subsets of our dataset. Table 3.12 shows these comparative results. As seen in
the table, personal emails are significantly more difficult to process than corporate emails.
The highest F-scores are obtained with the KNN classifier on single emails, which may be
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Table 3.12: Performance of supervised keyword extraction on subsets of our dataset: single
emails; threads; personal emails; corporate emails.

Classifier
Precision Recall F-score Jaccard

(%) (%) (%) (%)
Single emails

KNN 36.02 53.17 42.94 27.34
Naive Bayes 51.48 24.03 32.76 19.59

Threads
KNN 26.78 45.46 33.71 20.27
Naive Bayes 40.72 35.92 38.17 23.59

Personal emails
KNN 30.64 46.48 36.93 22.65
Naive Bayes 48.19 27.05 34.65 20.96

Corporate emails
KNN 32.89 52.77 40.52 25.41
Naive Bayes 43.66 30.27 35.76 21.77

due to the fact that there is less variance in the topics covered by the emails in this data (as
opposed to threads, where there may be topic shifts).

3.5.4 Comparison with Existing Systems

To place our results in perspective, using our email dataset we evaluate five previously
introduced systems for keyword extraction. We chose two state-of-the-art unsupervised
keyword extraction systems – SingleRank and ExpandRank [12, 9], two top-performing
systems in SEMEVAL 2010 keyphrase extraction task [10] – KX FBK [107] and SZTER-
GAK [108, 109], and KEA [110] – a well-known supervised keyword extractor.11 Ta-
ble 3.13 shows the results obtained by these five systems, in comparison with our two best
unsupervised methods, and our two supervised settings. Our Naive Bayes system gives
the best precision, which is very encouraging in a subjective task like keyword extraction.
Overall, our systems are found to be better than the state-of-the-art, with our KNN system
leading to the best F-score (38.99%), which is 12.76% better than the best state-of-the-
art system (SZTERGAK) on this dataset. This improvement is significant (p < 0.00001)
using a two-sample test for equality of proportions with continuity correction. Also, our
unsupervised systems performed better than state-of-the-art systems, with best F-score of
30.82%.

11We used Kazi Saidul Hasan’s C++ implementation of SingleRank and ExpandRank, the publicly avail-
able TextPro implementation of KX FBK (http://textpro.fbk.eu/), and the gitHub (Java) imple-
mentation of SZTERGAK (https://github.com/begab/kpe). KEA source code is available from
https://code.google.com/archive/p/kea-algorithm/downloads.
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Table 3.13: Comparison with existing systems. Best values in different columns are bold-
faced. Performance values are micro-averaged. Systems marked with O are ours, U are
unsupervised, and S are supervised. KX FBK and SZTERGAK are two of the top per-
formers in SEMEVAL 2010 keyphrase extraction task.

System
Precision Recall F-score Jaccard

(%) (%) (%) (%)
Phrase Tf.idfUO 26.91 34.79 30.35 17.89
Mean neighborhood sizeUO 27.33 35.33 30.82 18.22
KNNSO 31.94 50.03 38.99 24.22
Naive BayesSO 45.40 28.87 35.30 21.43
SingleRankU 36.77 19.13 25.16 14.39
ExpandRankU 36.61 19.05 25.06 14.32
KX FBKU 24.47 25.35 24.90 14.22
SZTERGAKS 41.03 19.27 26.23 15.09
KEAS 26.52 6.91 10.96 5.80

Table 3.14: Keyphrase appropriateness in a post-hoc evaluation.
Email Category Returned Keyphrases Appropriate Keyphrases Percentage
Corporate Single 141 111 78.72
Corporate Thread 73 63 86.30
Personal Single 109 94 86.24
Personal Thread 60 51 85.00

3.5.5 Post-hoc Evaluation of Keyphrases

As a final evaluation, we set up two experiments that allow us to measure the quality of the
keywords extracted by our system in an extrinsic way.

First, we perform a post-hoc evaluation, where the keywords produced by our system
are manually annotated by a human judge for appropriateness. We set this evaluation as
follows: for a given email (single or thread), first the human judge carefully reads the email
text to make sure she is familiar with its content; next, the judge is presented with a set of
keywords, and her task is to determine which of the keywords reflect important content of
the email text.

We take a random sample of 40 single emails (20 personal, 20 corporate), and 20 thread
emails (10 personal, 10 corporate), and generate keyphrases using our best system (KNN).
The human judge then classifies these keyphrases as appropriate or not, as described above.

Table 3.15: Email classification results. Standard deviations in parentheses.
Text only Keyphrase only

Accuracy (%) 90.0 (11.83) 85.0 (10.25)
Time (Seconds) 10.07 (1.10) 6.53 (1.13)
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Table 3.14 shows the fraction of keywords found to be correct for each email type. The
results suggest that in such a post-hoc evaluation, a significantly larger fraction (78-86%)
of the keywords produced by our system are found to be acceptable by a human judge. This
is in line with previous work on keyword extraction [103], which showed that there can be
large gaps between the ad-hoc and post-hoc evaluations of keywords, as humans often have
a difficult time generating a comprehensive list of keywords for a given text, yet they do
agree with the appropriateness of a larger set of keywords when presented to them.

The second experiment consists of an application-based evaluation, where we simulate
a potential classification task that a user has to accomplish when presented with a set of
emails (e.g., the daily incoming email). Specifically, a human judge is given the task to
classify each email in a set as being either “personal” or “corporate.” We compare the
scenario where the classification is performed by only reading the extracted keywords,
versus reading the entire text, and measure both the correctness of the classification (against
our own existing gold standard annotations) as well as the time it takes to perform the task
in each scenario.12

We perform 10 rounds of simulation, where in each round we select 10 random emails
and their corresponding keyphrases. The presentation order of the email texts or email
keyphrases is randomized to remove any sequence effect. The classification accuracy of
this simulation process – averaged over the 10 rounds – is shown in Table 3.15 (standard
deviations in parentheses). Note that just by reading the keyphrases, the human judge was
able to correctly classify the emails 85% of the time, whereas reading the full text leads
to 90% – which is only 5% improvement. Note further that the time taken to classify the
emails just by reading the keyphrases is 6.53 seconds on average, whereas reading the full
text takes at least 10 seconds. This shows that keyword extraction can be very helpful in
real life by substantially reducing the time taken to triage emails, at comparable accuracy
levels.

3.6 Conclusion

Keyword extraction from emails is largely an open problem, with potentially important
benefits given the growing number of emails that we have to handle in our daily com-
munication. In this chapter, we described and evaluated methods for unsupervised and

12While we acknowledge that in a real-life setting, the name of the sender is often sufficient to classify an
email as either personal or corporate, we use this task as an approximation for a generic email classification
task. We believe this approximation is reasonable, given the fact that the human judge performing the task is
(1) not provided with the sender name; and (2) is agnostic to the personal and corporate relationships of the
actual email owner.
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supervised keyword extraction from emails. We defined two types of features – word fea-
tures and phrase features – which we then evaluated on a novel dataset consisting of emails
manually annotated with keywords. To the best of our knowledge, our work is the first
attempt to extract keywords from emails after the seminal study by Turney [41]. Our un-
supervised experiments highlighted the role played by the different features for keyword
extraction from emails. We also combined all the features using a supervised framework,
and obtained results that improved significantly over the use of individual features. The
results obtained with our best system represent a significant improvement over state-of-
the-art in general-purpose keyword extraction, which is an encouraging result given the
informal nature of emails and their difference from academic abstracts. Moreover, two
extrinsic evaluations have further demonstrated the quality of the keywords extracted with
our system.

The manually annotated email dataset introduced in this chapter is publicly available
from http://lit.eecs.umich.edu.
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CHAPTER 4

Specialized Keyword Extraction to identify
product usage in consumer reviews: Data-driven

usage extraction

In this chapter we introduce the problem of identifying usage expression sentences in a con-
sumer product review. We create a human-annotated gold standard dataset of 565 reviews
spanning five distinct product categories. Our dataset consists of more than 3, 000 anno-
tated sentences. We further introduce a classification system to label sentences according
to whether or not they describe some “usage.” The system combines lexical, syntactic, and
semantic features in a product-agnostic fashion to yield good classification performance.
We show the effectiveness of our approach using importance ranking of features, error
analysis, and cross-product classification experiments.

4.1 Introduction

Identification of usage expressions — phrases or sentence snippets describing product use
in reviews — is an important problem in mining consumer product reviews. Identifying
such usage expressions accurately allows us to view the relationship between consumers
and products more clearly (e.g., by indicating how frequently a consumer uses a product).
Further, the language and style employed in describing product use bring relevant and
unseen aspects of the products to the fore (e.g., describing usage of a product in non-
traditional and unique ways).

Usage expressions can take several forms, such as which aspects of the product are
used, why the product is used, where it is used, how it is used, when it is used, and so
forth (c.f. Section 4.2 for specific examples). The product could be used by a consumer in a
number of ways, sometimes in unique ways not intended for originally. Hence enumerating
all possible uses of a product is computationally intractable. In this chapter, therefore, we
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Table 4.1: Product categories in our dataset.
Product category Product # Reviews # Sentences Avg # Sentences per Review
Laundry product Scent booster 125 695 5.56
Cooking agent Olive oil 110 588 5.35
Cooking agent Vinegar 110 623 5.66
Medicine Aspirin 110 463 4.21
Household item Toothpaste 110 651 5.92
Total – 565 3020 5.34

focus on four specific cases of product usage: why the product is used, where it is used,
how it is used, and if there are any non-standard or non-traditional use (cf. Section 4.2).

While the relationship between product usage and consumer behavior has mostly been
discussed by marketing researchers and psychologists, the question of whether the phe-
nomenon of usage has any detectable signature in terms of the language used by consumers
has not been addressed thus far. In this chapter, we introduce the task of identifying usage
expressions from consumer product reviews. In particular, we focus on classifying review
sentences as to whether they contain a usage expression or not. We create our own human-
annotated corpus of 565 reviews on five distinct product categories containing more than
3000 sentences. We introduce a system that classifies sentences according to whether they
contain a usage expression or not with 87.2% accuracy. We also show that an appropri-
ate combination of lexical, syntactic, and semantic features performs better than individual
feature categories.

4.2 Building a Usage Expression Dataset

Product reviews often contain usage information. Specifically, in addition to opinions on
product quality, reviewers often share how, where, or why they use the product. We there-
fore build our dataset of product usage expressions starting with a collection of product
reviews.

We collect Amazon product reviews for five different product categories, as shown in
Table 4.1. The particular product lines we use are: a laundry product: specifically, Downy
Unstopables In Wash Fresh Scent Booster 13.2 Oz; two kinds of cooking agents, namely,
Olive oil: Baja Precious Extra Virgin Olive Oil from Baja California (750ml Bottle) and
Vinegar: Raw Organic Apple Cider Vinegar by Bragg (1 gallon); a Medicine: Kirkland
Signature Low Dose Aspirin, 2 bottles – 365-Count Enteric Coated Tablets each; and a
household item, namely Toothpaste: Colgate Optic White Toothpaste, 4 Ounce (Pack of
2). The reviews are split into sentences, with the total number of sentences and average
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number of sentences per review as shown in Table 4.1. In all, there are 3020 sentences in
565 reviews, with an average of 5.34 sentences per review.

With the help of three linguistics undergraduate students, each sentence in the dataset
was annotated as containing a usage expression or not. Initially, as an early trial, we asked
the annotators to indicate if a sentence contained a usage expression. This approach led to
low inter-annotator agreement, so we refined the annotation process to a two-step process
as follows.

In the first step, we instructed the annotators to read each product review carefully,
identify all usage expressions in the review (examples below), and write them in a given
textbox, one usage expression per line. Annotators were requested to write the usage ex-
pressions in their own words. This component was employed to make sure annotators
carefully read and understood the review.

The second step involved answering the following four questions on usage types:

(A) Does the sentence describe why the product was being used? (usage reason/purpose)
E.g., “I used unstopables to freshen my room.”

(B) Does the sentence describe where the product was used? E.g., “I used unstopables

with my cat litter.”

(C) Does the sentence describe how the product was used? E.g., “I use three cups of

Downy Unstopables in every wash.”

(D) Does the sentence describe any non-traditional or non-standard usage of the product?
E.g., “I always love to add some hot water to unstopables and make my own DIY air

freshener !”

If a sentence had a positive answer to one or more of these four questions, then it was
labeled as containing a usage expression.1

Additionally, several specific instructions were added to deal with potentially difficult
or complex cases, by asking annotators to (1) consider the context (one sentence before and
after the target sentence) before deciding whether to mark a sentence or not. (2) determine
if a sentence contains an opinion (“Love it”, “Hate it”, etc.) or a recommendation (“I’d

recommend this product to all aspiring gardeners”), and if so, pairing it with an explicit
usage expression in some form. (3) determine if a sentence talks about usage of another
product that is not the primary focus of the review (i.e., a secondary product), then mark the
sentence only if the primary product is being used in addition to the secondary product. (4)

1Note that in this chapter, we ignore the different ways of product usage (why, where, how, non-
traditional), but we plan to utilize the detailed annotations in future work.
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Table 4.2: An example review and its annotations.
Sample Review

I used this recently when I washed my blankets and towels, and I was definitely impressed.
Just a small amount (half a capful) was necessary to give my blankets and towels an extra
burst of freshness. The scent is a little bit floral and lasts for a few days. I put the Downy
booster directly into the washer. (Instructions say NOT to put in your dispenser) And it
does work fine with high efficiency washers. I do recommend this for times when you
may want extra freshness for your clothes or towels.

Usage annotations (agreed by all)
I used this recently when I washed my blankets and towels, and I was definitely impressed.
Just a small amount (half a capful) was necessary to give my blankets and towels an extra
burst of freshness.

Non-usage annotations (agreed by all)
The scent is a little bit floral and lasts for a few days.

Mixed usage/non-usage annotations
I put the Downy booster directly into the washer.
(Instructions say NOT to put in your dispenser)
And it does work fine with high efficiency washers.
I do recommend this for times when you may want extra freshness for your clothes or
towels.

determine if the secondary product is used instead of the primary product: “Unstopables

were not good, so I used sheets instead.”, or if only the secondary product was used: “I

used sheets, they are better.” then do not label the sentence. (5) focus only on products,
and ignore other (named) entities like persons, organizations, locations, and dates.

Table 4.2 shows an example product review, and sentences that were agreed upon by
all annotators to contain, or not, a usage expression. We also show sentences on which
there was no consensus. Note that such sentences have a fair amount of ambiguity. For
example, the sentence “I do recommend this for times when you may want extra freshness

for your clothes or towels.” does not seem to contain an explicit usage expression, but it
does indicate that the consumer used the product to obtain extra freshness for clothes or
towels. Sentences like this demonstrate the difficulty of identifying usage expressions in
product reviews.

Inter-annotator agreement values, shown in Table 4.3, indicate that the task is mod-
erately difficult. We can see that different products have different difficulty levels, with
Vinegar being the least difficult (highest A3 agreement as well as highest κ), while for
the other four products, κ was between 0.43 and 0.48. This is presumably owing to the
fact that Vinegar is a cooking agent and used in many different ways, thus providing more
opportunity to find a usage sentence (by several people) in a product review.

To construct a gold standard, we took the majority of the three votes assigned by the
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Table 4.3: Majority label statistics, and three-way inter-annotator agreement. A3 is the % of
sentences where all three annotators agreed. κ is the Fleiss’ kappa among three annotators
[1].

Product type Majority Yes Majority No Majority Not Sure All Yes All No A3 κ

Scent booster 201 494 0 80 385 66.91 0.46
Olive oil 91 493 4 40 395 73.98 0.43
Vinegar 190 430 3 139 369 81.54 0.71
Aspirin 94 366 3 47 282 71.06 0.48
Toothpaste 137 514 0 56 411 71.74 0.46
Overall 713 2297 10 362 1842 72.98 0.52

three annotators to each sentence. There were 36 sentences (1.19% of all sentences) that did
not have a majority. One of the authors manually arbitrated these sentences into “usage”
(n = 22) and “not usage” (n = 14) classes.

4.3 Finding Usage Expression Sentences

Once the annotated dataset was finalized, our primary goal was to build a classifier to
predict if a given sentence contains usage expressions or not. We learn the classifier over
five categories of features extracted from the sentence and neighboring context. In this
chapter, we show the performance using a logistic regression classifier, chosen based on its
performance on a small development dataset of usage-annotated sentences drawn from 20

product reviews. The following features are included:
(A) Lexical features: As n-grams are usually very helpful in document classification, we
explore their utility on the task of usage expression sentence classification. We use word
unigrams and bigrams, part-of-speech (POS) bigrams, and character trigrams. We use the
CRFTagger [102] for POS tagging.
(B) Embeddings: Embeddings encode latent semantics and could reflect usage patterns.
We train a word embedding using word2vec [111] over a large corpus of 55, 463 product
reviews. This corpus is constructed from all Amazon reviews associated with any product
that has “Unstopables”, “Olive oil”, “Vinegar”, “Aspirin”, or “Toothpaste” in its title. Once
the word embedding is trained, a sentence is represented by the weighted average of the
embeddings of all the unique words in it. It is to be noted that such averaging is fairly
common and gives good results [112, 113, 114].
(C) Syntax: We use bags of constituency and dependency production rules, obtained from
the output of the Stanford parser [115, 116]. For constituency grammar, we use terminal
and non-terminal rules separately as well as together. For the dependency grammar, we
use the (collapsed) dependency types (amod, nsubj, etc.), and the lexicalized dependencies
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(e.g., (nsubj, Kirkland, seems)) as separate features.
(D) Style: We extract thirteen shallow surface-level and style features to encode the stylis-
tic properties of a sentence, in the hope that they would be predictive of whether the sen-
tence contains a usage expression. These features are: sentence position, average word
length (in chars), sentence length (in words and characters), type-token ratio, Flesch Read-
ing Ease [117, 118], Automated Readability Index [119], Flesch-Kincaid Grade Level
[120], Coleman-Liau Index [121], Gunning Fog Index [122], SMOG Score [123], For-
mality [124], and Lexical Density [125].
(E) Semantics: Since usage is above all a semantic phenomenon, a semantic space should
be able to capture the dominant properties of the usage expression. We use the following
feature sets to capture a semantic space for a sentence. Each feature set effectively describes
a lexicon, and we turn “on” the features in the lexicon that are present in the target sentence.

1. Product categories: This feature set consists of the list of product categories ob-
tained from the Walmart API.2 We use both main categories and sub-categories.

2. Concreteness: The set of words, along with their concreteness scores, available as
part of the Free Association Norms Database [126]. There are more than 3,000 words
available as part of the database.

3. Levin classes: The set of coarse and fine-grained variations of Levin verb classes
and verb alternations, leading to four types of features [127].

4. LIWC: Like Levin classes, we included another set of features derived from the
LIWC dictionary of psychological word categories [16].

5. Semantic lexicons: Like Levin classes, we use the Roget thesaurus and WordNet
Affect [128] word categories, with a binary feature representation. If a word falls
under any of the Roget word categories, the corresponding feature is set.

6. Named Entities: We use the Stanford NER [101] to identify named entities in our
corpus, and then use these entities as bag-of-features. We use the terms, the entity
types, and the lexicalized entity types (terms + entities) as our bags. Standard tf,
tfidf, and binary representations are used. We use the seven-class typology of named
entities (Location, Person, Organization, Money, Percent, Date, Time).

7. Spatial Prepositions: Recent studies have shown prepositions to be a precious
source of semantic information [129, 130, 131]. We use a lexicon of spatial prepo-

2https://developer.walmartlabs.com/
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sitions3 as a bag-of-words feature. The rationale was to observe if spatial properties
of usage of objects (“use olive oil with celery”, “put detergent in washer”) can be
captured in terms of prepositions such as on, in, by, with, etc.

8. Semantic Distance: Finally, we added the (weighted) WordNet distance4 between
all words and the verb use, where weights are set as binary, tf, and tfidf, as before.
The rationale behind this feature is that it captures words similar to the verb use in
the sentence, and their relative importance.

4.4 Evaluation

We use the dataset introduced in Section 4.2 to evaluate the accuracy of the usage detection
classifier. 20% of the data for each product is held out as test data, and the remaining 80%
is used for training.

We start by evaluating each individual feature using a ten-fold cross-validation on the
training data. We then explore three combination methods, applied on a subset of seven fea-
ture sets, selected based on their performance and diversity: word unigrams, POS bigrams,
character trigrams, embeddings, constituency rules, product categories, and concreteness.
We combine these features through: classifier voting, where we assign the class predicted
by the majority of the classifiers; feature fusion, where we join all the individual features
into one feature vector used in the classification; and meta-learning, where we use the
output of the individual classifiers as input into another classifier (again using logistic re-
gression for the meta-learner). Table 4.4 shows the results of these evaluations. As seen in
the table, while simple features, such as word n-grams and character trigrams, lead to the
best performance among the individual features, better performance is obtained when they
are combined with other features (bottom rows of Table 4.4). Table 4.4 further shows that
keyphrases extracted using the system we designed in Chapter 3 – when used as features –
give the best recall in this task (68.80%).

The meta-learner based combination strategy resulted in the best performing classifier
during the cross-validation experiments on training data. We next evaluate this classifier
on the test data consisting of 20% reviews of all five products. Table 4.5 shows the results
obtained on the test data. For comparison, the table also shows the performance of the word
unigram classifier, as well as a majority class baseline that labels every sentence as “non-

3Obtained by combining the two lists at https://owl.english.purdue.edu/owl/
resource/594/04/ and http://www.firstschoolyears.com/literacy/sentence/
grammar/prepositions/resources/Spatial%20Prepositions%20word%20bank.pdf.

4We use the Wu-Palmer similarity [132].
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Table 4.4: Micro-averaged sentence-level results (%) under 10-fold cross-validation on the
training data. Maximum value in each column (within each section) is boldfaced.

Feature Type Prec. Rec. F-score Accu.
Word unigrams 71.56 54.94 62.16 83.88
Word bigrams 77.06 30.85 44.06 81.13
Character trigrams 70.06 57.19 62.98 83.80
POS bigrams 55.72 39.69 46.36 77.87
Embeddings 71.92 47.49 57.20 82.88
Constituency 70.49 52.17 59.96 83.22
Dependency 57.53 33.10 42.02 78.00
Style 54.17 11.27 18.65 76.33
Product categories 67.19 44.37 53.44 81.38
Concreteness 59.61 53.21 56.23 80.04
Levin classes 59.72 37.26 45.89 78.83
LIWC 57.14 38.13 45.74 78.20
Semantic lexicons 56.02 50.78 53.27 78.54
Spatial prepositions 41.67 3.47 6.40 75.57
Semantic distance 66.29 20.45 31.26 78.33
Keyphrases 45.37 68.80 54.68 72.53
Classifier voting 66.84 67.76 67.30 84.13
Feature fusion 63.92 60.49 62.15 82.25
Meta learner 73.61 59.45 65.77 85.09

Table 4.5: Micro-averaged sentence-level results (%) on the test set (20% of all products).
Maximum value in each column is boldfaced.

Feature Type Prec. Rec. F-score Accu.
Majority 0.00 0.00 0.00 76.13
Word unigrams 71.82 58.09 64.23 85.92
Meta learner 76.92 58.82 66.67 87.20

usage.” As before, the meta-learner significantly improves over the unigram classifier,5 and
also over the majority class baseline.6

We also report the performance of the meta-learner classifier on individual products in
Table 4.6. Across all the products, vinegar appears to have the highest F-score. This can be
partly explained by the high inter-annotator agreement: the same product had the highest
three-way agreement in the manual annotations, as shown in Table 4.3, likely an indication
of a less difficult dataset.

5Paired t-test, p-value=0.07
6Paired t-test, p-value < 0.0001
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Table 4.6: Micro-averaged sentence-level results (%) per product using the meta learner.
Product Prec. Rec. F-score Accu.
Scent booster 78.57 68.75 73.33 87.69
Olive oil 50.00 25.00 33.33 89.26
Vinegar 81.58 79.49 80.52 88.37
Aspirin 70.00 36.84 48.28 84.54
Toothpaste 80.00 53.33 64.00 85.00

Table 4.7: Feature importance ranking for four feature types. We show ten top-ranked
features along with their importance scores. For the meta-learner, we show the ranking
over the subset of seven feature sets used in this classifier.

Word unigrams Category words Concreteness Meta learner
and 0.023 the 0.040 smell 0.025 Character trigrams 0.309
my 0.019 my 0.036 use 0.024 Word2vec 0.236
smell 0.014 smell 0.029 day 0.023 Word unigrams 0.171
day 0.014 a 0.028 for 0.019 Constituency 0.119
use 0.014 use 0.025 clothes 0.017 Concreteness 0.077
it 0.011 day 0.023 i 0.016 Category words 0.053
clothes 0.010 this 0.020 with 0.014 POS bigrams 0.035
a 0.010 clothes 0.018 drink 0.014
bought 0.009 daily 0.015 water 0.013
drink 0.009 drink 0.013 daily 0.013

4.5 Additional Analyses

To gain further insights, we perform several additional analyses, to determine: the role
played by different features; the relation between classifier performance and amount of
training data; the role of in-domain vs. cross-domain classification; and finally the types of
errors produced by the system.

4.5.1 Feature Importance Ranking

Table 4.7 shows the top features (ranked by their Gini importance [88]) for three promi-
nent individual feature-based classifiers — viz. word unigrams, category words, and con-
creteness — and the meta-learner. Note that top-ranking words include product properties
(smell), secondary objects on which the product was used (clothes), how the product was
used (day, daily, drink, water), usage verbs (use), prepositions and conjunctions (and, for,
with), pronouns (i, it, this), and articles (a, the). For the meta learner, lexical features
(character trigrams and word unigrams) and embedding features (Word2vec) are among
the top-ranked feature classes.
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Figure 4.1: Learning curve using micro-averaged sentence-level results for the meta-learner
classifier.

4.5.2 Learning Curve

Next, we experiment with varying the size of the training data to understand the learning
curve. We gradually increased the amount of training data from 10% to 80%, in steps of
5%; and evaluated on the full test data. Figure 4.1 shows the variation of F-score achieved
by the meta-learner as the training data is increased, smoothed over three consecutive data
points. The test performance was the highest when trained on 60% of training data and
then decreased gradually, which suggests that the system might not benefit from additional
training data.

4.5.3 The Role of In-Domain Data

To understand the role played by in-domain data, we further experiment with two different
configurations of training and test sets.

In one configuration, we train on four products, and test on the remaining product
(cross-domain training). As can be seen from Table 4.8, this results in lower F-scores
than Table 4.5. This suggests that identifying usage expressions of a product is intimately
related to the identity of the product, echoing the findings by [50].

In the second configuration, we train on 80% of a product, and test on 20% of the same
product (in-domain training). The results, averaged over the five products, are shown in
Table 4.9. Note that the F-score values are much improved compared to the previous con-
figuration, and are comparable to the results shown in Table 4.5. This suggests that when
storage/memory might be a concern, we could simply use training data from within the
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Table 4.8: Cross-domain classification: Micro-averaged sentence-level results (%), where
test set is an individual product, and training set is four other products. Maximum value in
each column is boldfaced.

Feature Type Prec. Rec. F-score Accu.
Baseline 0.00 0.00 0.00 76.39
Word unigrams 69.15 35.20 46.65 80.99
Meta-learner 70.62 38.43 49.77 81.69

Table 4.9: In-domain classification: Micro-averaged sentence-level results (%), where test
set is 20% of an individual product, and training set is 80% of the same product. Maximum
value in each column is boldfaced.

Feature Type Prec. Rec. F-score Accu.
Baseline 0.00 0.00 0.00 78.24
Word unigrams 74.19 50.74 60.26 85.44
Meta-learner 76.53 55.15 64.10 86.56

domain to achieve comparable performance. This strategy also results in a faster training
time and a smaller model, similar to the findings in [133].

4.5.4 Error Analysis

Finally, we also conducted a manual inspection of two broad categories of errors – false
positives, i.e. “not usage” sentences marked as “usage” (n = 25), and false negatives,
i.e. “usage” sentences marked as “not usage” (n = 56). This analysis revealed the following
sub-categories for the false positives:

• Number expressions: Seven instances (29.17%) of errors can be attributed to nu-
meric expressions occurring within sentences (“two years”, “3am”, “third bottle”,
etc.).

• Erroneous gold labels: Six instances (25%) were actually correctly labeled as “us-
age” by the system, whereas the gold label was wrong (“I really love the smell of

fresh laundry, and the smell of Downy.”).

• Shortcomings: Six examples (25%) talk about actual or perceived shortcoming(s) of
a product. “Olive oil used for healthy properties doesn’t keep well in plastic.[sic]”

• Others: Five instances (20.83%) were not captured by the above categories: “I used

to drink a small shot each day, but haven’t for a while.”

False negatives have the following sub-categories:
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• Positive adjectives and adverbs: 21 instances (37.5%) can be attributed to positive
adjectives (“good”, “great”, “excellent”), and/or positive adverbs (“really”, “impres-
sively”, “well”). “It smells amazing and lasts forever.”

• Use-related verb in primary clause: Eleven examples (19.64%) contain a use-
related verb (“use”, “help”, “need”) in the primary clause: “I use this to eat, not

to cook with.”

• Erroneous gold labels: Nine instances (16.07%) are actually correctly labeled as
“not usage” by the system, but the gold label was wrong (“When I have to hang dry

clothes, they get this horrible egg water odor.”).

• Non-traditional usage: There are three instances (5.36%) that talk about non-
traditional or innovative usage of a product: “I have since made small sachet bags

for my closets, car and as gifts.”

• Others: Twelve instances (21.43%) were not captured by the above categories: “I

actually saw results after the first use.”

4.6 Conclusion

In this chapter, we introduced the task of identifying usage expression sentences in con-
sumer product reviews. A dataset comprising more than 3, 000 annotated sentences was
created from reviews of five products. We also trained a binary classifier to identify sen-
tences that talk about the usage of a product. Extensive feature tuning and fusion exper-
iments resulted in performance values comparable to the inter-annotator agreement. De-
tailed feature ranking, error analysis, and per-product performance numbers have been re-
ported. Directions for future research include: experiments on a larger dataset of reviews
with more diverse product types, expanding to other genres of reviews such as product
blogs, and identifying types of usage expressions (how, where, why, and non-traditional
uses). The work can also be extended to model the “personality” of a product with the
“personality” of users – perhaps measured by the average personality of all people using
the target product.

The annotated dataset is publicly available for research use from http://lit.

eecs.umich.edu/downloads.html.
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CHAPTER 5

Matching students to faculty: Keyword
Extraction to find student interests and match

them to faculty research topics

Every year, millions of students apply to universities for admission to graduate programs
(Master’s and Ph.D.). The applications are individually evaluated and forwarded to appro-
priate faculty members. Considering human subjectivity and processing latency, this is a
highly tedious and time-consuming job that has to be performed every year. In this chapter,
we propose several information retrieval models aimed at partially or fully automating the
task. Applicants are represented by their statements of purpose (SOP), and faculty mem-
bers are represented by the papers they authored. We extract keywords from papers and
SOPs using a state-of-the-art keyword extractor. A detailed exploratory analysis of key-
words yields several insights into the contents of SOPs and papers. We report results on
several information retrieval models employing keywords and bag-of-words content mod-
eling, with the former offering significantly better results. While we are able to correctly
retrieve research areas for a given statement of purpose (F-score of 57.7% at rank 2 and
61.8% at rank 3), the task of matching applicants and faculty members is more difficult,
and we are able to achieve an F-measure of 21% at rank 2 and 24% at rank 3, when making
a selection among 73 faculty members.

5.1 Introduction

Every year, millions of students worldwide apply for graduate education in the United
States. In Fall 2012 alone, US universities received 1.98 million graduate applications,
and more than 461,000 students enrolled in graduate studies for the first time between Fall
2011 and Fall 2012.1 With such a high number of students applying to US universities for

1https://www.cgsnet.org/us-graduate-schools-report-slight-growth-new-students-fall-2012
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graduate studies, and that number increasing over the years,2 the problem of processing this
voluminous amount of applicant data into a more manageable and more automated pipeline
assumes paramount importance.

Ph.D. applicants in particular pose a greater challenge because they need to be screened
for funding offers and matched with potential advisors. While some applicants do specify
the group or the professor with whom they would like to work with, many do not provide a
selection. The problem is somewhat alleviated by having a separate survey in online appli-
cation forms that allows applicants to mention which faculty members they would like to
work with, and rank those faculty members in order of preference. Still, it largely remains
the university’s and ultimately the departments’ responsibility to ensure Ph.D. applicants
are matched with appropriate faculty members. Departments typically employ a faculty
subgroup or separate staff members to read through graduate applications, forward them to
appropriate faculty members, and create online “profiles” of applicants so that they could
be matched more easily with faculty members. The problem, however, is that not all fac-
ulty members toward whom an applicant shows interest can offer financial support or have
a matching interest in the applicant.

Our goal in this project is to automate the process of matching applicants with faculty

members. In particular, we want to leverage the free text available as part of the applications
to aid us in the decision process. To showcase our approach, we use the applicant data from
the Computer Science and Engineering department at a large Midwestern university that
had over 1,100 graduate applications in Fall 2014. Manual matching of Ph.D. applicants
with appropriate faculty members was also available. We designed several information
retrieval systems that would:

1. Match applicants and research areas:

(a) given an applicant, retrieve the most likely research areas the applicant would
match;

(b) given a research area, retrieve from the pool of available applicants those most
likely to be a good match;

2. Match applicants and faculty:

(a) given an applicant, retrieve those faculty members with similar research inter-
ests;

(b) given a faculty member, retrieve the most likely applicants to possess similar
research interests;

2http://www.cgsnet.org/ckfinder/userfiles/files/R IntlApps12 I.pdf

55



(c) given an applicant, retrieve the most likely research areas the applicant would
match, and then from those, select faculty members with similar research inter-
ests.

The rest of the article is organized as follows. We outline related studies in Section 2.6,
followed by a description of our dataset in Section 5.2. Section 5.3 presents exploratory
analysis of the keywords extracted from faculty published work and applicants’ statement
of purpose, setting the stage for Section 5.4, where we describe information retrieval sys-
tems and the importance of keywords in constructing them. Section 5.5 concludes the
chapter, outlining future research directions.

5.2 Data Description

Since our problem formulation involves the ranking of faculty members against applicants

(and vice versa), we need a convenient textual representation for both. We opt to represent
applicants by their statements of purpose (SOP), and faculty members by the papers they
have (co-)authored in the prior 12 years (between 2004 and 2015). Anonymized statements
of purpose are available for all applicants in the Fall 2014 cohort at the Computer Science
and Engineering department at the university in question. Note that SOPs usually talk about
what the applicant has achieved in the past, what (s)he is doing at present, what (s)he would
like to do/be in the future, and how all these connect with the particular department and its
faculty.

Papers were collected for 73 faculty members from their Google Scholar Citations3

and DBLP4 profiles. We collected 4,534 papers authored between 2004 and 2015, and
converted their PDFs into text using UNIX pdftotext utility. Sometimes multiple faculty
members collaborate on a single paper; we counted those papers multiple times, once for
each participating faculty. Authorship statistics of the 5 most prolific authors are shown
in Table 5.1 (faculty names have been anonymized to protect privacy). Note that a few of
the most prolific authors wrote over 200 papers between 2004-2015, or almost 17 papers
a year. This data follows a power-law distribution with exponent α = 3.45 (statistically
significant with p-value = 0.999).

We also obtained a pairing of Ph.D. applicants (Fall 2014 cohort) with faculty members,
constructed manually by a small group of faculty. Note that each applicant is identified by
a numeric ID and may be matched with multiple faculty members. On the other hand, a

3http://scholar.google.com/
4http://www.informatik.uni-trier.de/ ley/db/
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Table 5.1: Number of papers (co-)written by several faculty members (anonymized) be-
tween 2004 and 2015.

Faculty Member Number of Papers
Tommy M. Rosenbalm 331
Thomas M. Burns 300
Ali H. Salgado 212
Richard G. Meza 146
Nicole L. Thompson 140

Table 5.2: Number of applicants assigned to several faculty members (anonymized).
Faculty Member Number of Applicants
Richard C. Hardy 45
George E. Ford 45
Robert S. Peters 42
Jeff L. Jurgens 41
Dennis R. Salisbury 38

Table 5.3: Research areas at the Computer Science and Engineering department at a large
Midwestern university. Highest value in each column is boldfaced. Applicants are from
Fall 2014 pool.

Research Area
Number Applicant % of

of to Faculty Applicants
Faculty Ratio in Area

Artificial Intelligence 29 7.03 67.11
Chip Design, Architecture, and Emerging Devices 22 3.41 24.67
Databases and Data Mining 6 16.00 31.58
Embedded and Mobile Systems 12 6.67 26.32
Human-Computer Interaction 8 6.63 17.43
Languages, Compilers, and Runtime Systems 13 3.54 15.13
Networking, Operating Systems, and Distributed Systems 16 4.56 24.01
Robotics in CSE 7 11.71 26.97
Secure, Trustworthy, and Reliable Systems 22 4.32 31.25
Theory of Computation 10 5.4 17.76
Warehouse-Scale and Parallel Systems 19 4.16 25.99
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Table 5.4: Keyword statistics.
Keyword Type SOPs Keyword Count Papers Keyword Count
All keywords 53,166 123,171
Multi-word keywords 44,473 98,470
All keywords after filtering 13,472 27,563
Multi-word keywords after filtering 6,022 10,170

Table 5.5: Top multi-word keywords from SOPs, ranked by tf.idf.
machine learning 1166.78
computer vision 713.66
computer science and engineering 706.06
artificial intelligence 679.31
computer architecture 651.95
data mining 562.43
electrical engineering 516.14
natural language 493.75

faculty member is represented by his/her username, and may be matched with (or express
interest in) several different applicants. There were 1107 applicants in total, of which
304 were matched with a faculty member. Different faculty members received a different
number of applications. Faculty members receiving the highest number of applications in
Fall 2014 cohort are shown in Table 5.2 (faculty names have been anonymized to protect
privacy).

The faculty conducts research in 11 different areas, as shown in Table 5.3. The areas
vary in terms of number of faculty, percentage of applicants, and applicant-to-faculty ratio.
Artificial Intelligence (AI), for example, has the highest number of faculty members and the
highest percentage of applicants. Databases and Data Mining, on the other hand, comprises
the lowest number of faculty and the second highest percentage of applicants, which leads
to the highest applicant-to-faculty ratio across all research areas. These observations could
be helpful in identifying areas where additional faculty members need to be recruited.

5.3 Exploratory Analysis of Keywords

To represent the SOPs and papers by their content rather than style, we use an automatic
system to extract keywords. We employ a state-of-the-art system previously used in the
email domain [134]. Keyword statistics are provided in Table 5.4; note that we also include
the counts for filtered keywords using Wikipedia article titles to obtain a more salient listing
of keywords.

We first want to see what students talk about most in their SOPs in terms of key-
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Table 5.6: Most important keywords from papers published in different years. Importance
was measured by tf.idf. Top keywords that are unique to each year are shown in boldface.

2004 2005 2006 2007
test set file system file system natural language
ubiquitous computing sensor network natural language file system
power management error rate data set data race
computer science virtual machine error rate ad hoc
lower bound power management ad hoc energy consumption
2008 2009 2010 2011
file system network virtualization power consumption data race
control logic control logic file system shared memory
power consumption power consumption reward function episodic memory
energy consumption data set computer science error rate
computer science virtual machine signal processing medical device
2012 2013 2014 2015
energy consumption electrical engineering social media homomorphic encryption
energy efficiency data center anomaly detection data mining
nash equilibrium computer science power consumption anomaly detection
computer science natural language data mining data science
electrical engineering energy efficiency computational linguistics reinforcement learning

words. Table 5.5 shows that the most salient keywords in SOPs are general and trendy
terms such as “machine learning,” “artificial intelligence,” “data mining,” and “computer
vision.” Other terms are even more generic, such as “computer science and engineering,”
and “electrical engineering.”. These keywords indicate that students are indeed familiar
with the trendy terms and buzzwords in Computer Science and Engineering, and most stu-
dents want to go to those areas. In comparison, when we look at what the faculty talk about

most in their papers (cf. Table 5.6), we observe highly technical terms and domain-specific
keywords such as “nash equilibrium” and “episodic memory.” This observation leads sup-
port to the fact that students are usually not sufficiently aware of the publication records
of different faculty members (information gap), and students usually apply to “hot” areas
rather than established areas (where there are more papers), perhaps because of increased
media attention to those areas. This information gap further shows that our problem is com-
plex, as we need to match texts from students and texts from faculty containing disparate
sets of keywords.

An intriguing question at this point is to explore how the keywords change over the

years. We analyzed the publications of all faculty members by year and ranked the key-
words used by tf.idf. Table 5.6 shows that there is a distinct trend in the top-ranked key-
words, in the sense that each year seems to focus on some particular problems (perhaps
at the expense of others), and each year has some new problems that were not salient be-
fore. Year 2014, for example, introduces “social media” as a salient keyword, whereas year
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Table 5.7: Ranking of faculty members (anonymized). Top faculty members that are unique
to a particular ranking are shown in boldface.

Diversity Focus Content Density
Nicole L. Thompson Stephen M. Evans Jack J. Santoro
Francis G. Okelley Richard C. Hardy Rodolfo C. Hayes
John L. Wheatley Kevin D. Llanes Nicole L. Thompson
Tommy M. Rosenbalm George E. Ford James C. Rhinehart
Ali H. Salgado Michael M. Lewis Francis G. Okelley

2015 introduces “data science.” It is important to note that graduate applicants are often
not aware of such subtle variations and trends going on in the research community and thus
cannot prepare accordingly.

We next explore how the faculty members rank according to their diversity and focus

of research topics, as related to applicants. While diversity is usually defined as the oppo-
site of similarity in Information Retrieval [135], we measured diversity in the context of
keywords by Jaccard Similarity5 between all keywords of a faculty and keywords from all
applicants, whereas focus was measured by Jaccard Similarity between all keywords of a
faculty and keywords from applicants assigned to him/her. Table 5.7 (faculty names have
been anonymized to protect privacy) shows that these two rankings are substantially dif-
ferent. Furthermore, looking at content density (total number of keywords as a fraction of
total number of words – averaged over papers), we see that the ranking changes again. It is
important to note such subtle differences, because they help applicants make an informed
decision.

Intriguingly, we find focus to be highly positively correlated with popularity (Spear-
man’s ρ = 0.8), where the latter is measured by how many students are assigned to a faculty

(cf. Table 5.2). Diversity and popularity are only moderately correlated (Spearman’s ρ =
0.28), whereas the correlation between diversity and focus is even lower (ρ = 0.12). Very
low correlation is observed between content density and focus (ρ = 0.04). Similarly low
values are obtained for correlations between content density and popularity.

5.4 Information Retrieval Models

The objective of our study is to help academic departments match applicants with faculty

members. We cast this problem as an information retrieval-like task, where given an ap-
plicant as query, our system retrieves research areas and faculty members. The system is
also able to retrieve applicants with respect to faculty members as queries. We consider the

5https://en.wikipedia.org/wiki/Jaccard index
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following use cases:

1. match applicants and research areas

(a) consider an applicant’s statement of purpose as a query, while all publications
in a given research area form a single document, and retrieve the most similar
of these documents; retrieval is done among 11 research areas. We will call this
variation SOP as query, research areas as documents.

(b) consider all publications in a research area as a query for which we seek to
retrieve the strongest matching statement of purpose pertaining to the appli-
cants; retrieval is done among 304 applicants. We will refer to this variation as
research area as query, SOP as documents.

2. match applicants and faculty

(a) consider an applicant’s statement of purpose as a query, while all publications
pertaining to a given faculty as a single document; the retrieval is done for the
most similar documents. This variation is represented as applicant as query,

faculty members as documents; retrieval is done among 73 faculty members.

(b) consider the cumulative publications of a faculty member as query, while each
applicant is represented through his / her statement of purpose. This variation is
referred to as faculty as query, applicants as documents. Retrieval is performed
among 304 applicants.

(c) consider an applicant’s statement of purpose as a query. Retrieval of the most
relevant faculty members is performed hierarchically, first with respect to the
best matching research groups (represented through the totality of articles pub-
lished by faculty in that group), and then with respect to the best matching
faculty members from within the top groups. We will refer to this variation
as applicant as query, faculty members as documents – hierarchical; retrieval
is first performed against the 11 research areas, and then against the faculty
members in the top research areas.

While applicant publications and/or data gathered from application forms could po-
tentially be used to match applicants with faculty, we considered such an approach to be
problematic because of the difficulty in gathering data, lack of prior publications (esp. for
Master’s applicants), and penalizing applicants that mostly have industry experience.

61



5.4.1 Vector Generation

For each one of the approaches mentioned above, vectors are generated for different feature
types, filtering, and weighting options.

Feature types. Two types of vectors are derived to represent a query or a document: using
the vocabulary of single words encountered in the text (unigrams), or using the keywords
encountered in the same text (mwe6). While the first technique is straightforward, for the
second technique we extract keywords from applicant statements of purpose (SOPs) using
a state-of-the-art supervised keyword extractor [134] trained on two keyphrase extraction
corpora. The first corpus consists of a set of 211 academic papers with keyword annotations
[8], while the second corpus was released as part of the SEMEVAL 2010 Keyphrase Extrac-
tion Task [10] and also encompasses a set of 184 academic papers annotated for keywords.
The extractor uses noun phrases and named entities as candidates, as well as surface, fre-
quency, phraseness, and graph-based features; it performs shallow post-processing after
extraction to remove punctuation.

Filtering. The unigrams and the keywords mentioned above are referred to in the ensuing
experiments as all, since they do not undergo filtering. A second instance of these fea-
tures is derived, based on whether they are associated with a Wikipedia article7; this list is
referred to as filtered, and retains fewer, higher quality and more salient entries.

We should emphasize that all the vectors are constructed on keywords/unigrams ex-
tracted from SOPs rather than those appearing in the published articles. The SOP-derived
keyword list / vocabulary tends to be more generic and concise, as applicants do not yet
have an in-depth grasp of various research areas and their SOP is shorter than an article,
thus allowing the vectorial space to model applicants more closely while also being more
efficient.

Weighting options. The above feature types are weighted using three common weighting
schemes: binary, term frequency (tf ), and term frequency inverse document frequency
(tf.idf ).

Information retrieval framework. Using a query vector, document vectors are ranked
with respect to their cosine similarity computed against the query vector, and the top k

are retrieved by the system. The system predictions are evaluated against ground truth
faculty-applicant pairings that were manually derived by a small group of faculty members.
Performance was measured using standard precision, recall, and F-score at different ranks
(k).

6“mwe” stands for multi-word expressions.
7Listing of article titles retrieved from https://dumps.wikimedia.org/
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Overall, we construct 12 vector space models encompassing all the combination of
parameters detailed above. The most robust results are obtained using: keywords and
unigrams (for vocabulary), tf.idf (for feature weighting), and all and filtered (for filtering).
As such, in the subsequent discussions we will focus on these variations. The baseline is
represented through the combination unigram all tf.idf, namely using all the vocabulary
encountered in the SOPs as unigrams with tf.idf weighting.

5.4.2 Matching Applicants and Research Areas

Our first use case scenario matches applicants and research areas. This scenario allows
departmental faculty or staff to be provided with the best research areas for a given candi-
date, and then manually assign candidates to faculty in those areas, thereby simplifying the
matching process. We explore two venues:

1. Applicant as query, research areas as documents.

2. Research area as query, applicants as documents.

Figure 5.1 shows the interpolated precision-recall curve for the first approach (SOP
query, area documents), while Figure 5.2 shows the same metrics for the second approach
(area query, SOP documents) all of these derived for rank k = 5 . We note that the first
approach performs significantly better, achieving an interpolated precision level of over
80%, compared to the best performing variation falling under the second approach, which
achieves an interpolated precision level of approximately 60%. Focusing on the first ap-
proach, the best performing variation is mwe all tf.idf, but is closely followed by mwe

filtered tf.idf. Given that the former uses approximately 44 thousand dimensions, while the
latter uses only 6,022 dimensions, we can conclude that (1) modeling via multi-word key-
words is significantly better than accounting for the entire vocabulary, and (2) filtering these
keywords for saliency achieves a more compact and efficient model, without a meaningful
drop in performance.

Figures 5.3 and 5.4 show the corresponding F-score curve for the two approaches, this
time for different ranks. We notice that the best F-score of 61.8% occurs at rank 3 (21.2%
higher than the corresponding baseline), while the second best F-score of 59.9% is encoun-
tered at rank 4 (where the baseline F-score is the highest, yet the prediction still surpasses
it by 17.5%). A higher F-score is to be expected in this scenario compared to results
achievable for matching students and faculty, since here we are limiting our match to 11
research areas.8 We should stress that the optimal usability outcome for this task is repre-

8The random baseline in this scenario is 9.1%.
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Figure 5.1: Interpolated precision-recall curves (at k = 5) showing the “SOP query, area
documents” approach for matching applicants and research areas, with four variations. X-
axis shows the recall level (%), while Y-axis shows the interpolated precision level (%).
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Figure 5.2: Interpolated precision-recall curves (at k = 5) showing the “Area query, SOP
documents” approach for matching applicants and research areas, with four variations. X-
axis shows the recall level (%), while Y-axis shows the interpolated precision level (%).
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Figure 5.3: F-score curves for the “SOP query, area documents” approach for matching
applicants and research areas, with four variations. X-axis shows the Rank, while Y-axis
shows the F-score (%).
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Figure 5.4: F-score curves for the “Area query, SOP documents” approach for matching
applicants and research areas, with four variations. X-axis shows the Rank, while Y-axis
shows the F-score (%).

sented through high performance at low ranks, i.e. the system should correctly retrieve a
few matching research groups for a given SOP; as shown, the system achieves very high
performance for ranks 2 through 4. This should accurately guide the process of assigning
professors from those top retrieved groups and reduce the amount of manual work involved.

5.4.3 Matching Applicants and Faculty

The second and more desirable scenario consists of matching applicants and faculty. This
allows the entire task to be automated, and therefore provides most savings in terms of
financial and human resources for a department. We identify three venues:

1. applicant as query, faculty members as documents
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2. faculty member as query, applicants as documents

3. applicant as query, faculty members as documents – hierarchical

The first two are similar to those proposed in the previous section, but this time the
match is done directly with the faculty member, while the third consists of a hierarchical
approach, where the match is first performed in regards to the best matching research group,
and then the faculty is retrieved from within that group.

Probing further into the behavior of our system and baseline, we plotted the interpo-

lated precision-recall curve, averaged over all search queries at a rank k=5. The resulting
graphs are shown in Figures 5.5 through 5.7. We observe that similarly to the equivalent
variations in Section 5.4.2, the SOP (applicant) query-based retrieval outperforms faculty
query-based retrieval under all variations (see Figures 5.5 and 5.6). This is to be expected,
since in the first scenario the retrieval is made among 73 faculty members, while in the
second scenario, it is made among 304 applicants. Enacting a hierarchical based approach
which generates an intermediary mapping to research areas and then retrieves the strongest
matching faculty candidates from within the returned areas, achieves a similar performance
to the first approach directly mapping to faculty. (see Figure 5.7). As in the previous sub-
section, the best variation remains mwe all tf.idf, with a performance of approximately
40% interpolated precision level, 35% higher than the unigram all tf.idf baseline achiev-
ing slightly below 5% interpolated precision level. This shows that keywords rather than
vocabulary offer a lot more plasticity and bring more value for this task.

Figures 5.8 through 5.10 showcase the performance of the three approaches matching
applicants to faculty at different ranks. Here as well, the SOP query, faculty documents

represents the highest performing use case, retaining its high performance at low k values
by achieving a F-score higher than 19% for ranks 2 through 10 using the best performing
mwe all tf.idf variation, and reaching a maximum of 24.4% for rank 3. The hierarchical
system displays a similar performance, as it is able to attain an F-measure above 19%
starting at rank 2 as well, but since it is a two step system, it is too inefficient compared
to a one step system to motivate its usage. The random baseline accuracy for matching an
applicant to a faculty member is 1.4%.

Considering all the use cases, however, we can say that we are able to successfully
retrieve research areas and faculty members against SOP queries. Our system always sur-
passes the baseline by a wide margin, and using the mwe all tf.idf variation consistently
achieves the best results. This is a great boon for the faculty members and staff members,
because instead of manually sifting through hundreds of applications, they can now use our
system to screen applicants before starting the laborious manual checking process. Anec-
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Figure 5.5: Interpolated precision-recall curves (at k = 5) showing the “SOP query, faculty
documents” approach for matching applicants and faculty, with four variations. X-axis
shows the recall level (%), while Y-axis shows the interpolated precision level (%).
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Figure 5.6: Interpolated precision-recall curves (at k = 5) showing the “Faculty query,
SOP documents” approach for matching applicants and faculty, with four variations. X-
axis shows the recall level (%), while Y-axis shows the interpolated precision level (%).
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Figure 5.7: Interpolated precision-recall curves (at k = 5) showing the “SOP query, faculty
documents – hierarchical” approach for matching applicants and faculty, with four varia-
tions. X-axis shows the recall level (%), while Y-axis shows the interpolated precision level
(%).
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Figure 5.8: F-score curves showing the “SOP query, faculty documents” approach for
matching applicants and faculty, with four variations. X-axis shows the Rank, while Y-
axis shows the F-score (%).

68



5 10 15 20
0

10

20

30

40
mwe all

mwe filtered
unigram filtered

unigram all

Figure 5.9: F-score curves showing the “Faculty query, SOP documents” approach for
matching applicants and faculty, with four variations. X-axis shows the Rank, while Y-axis
shows the F-score (%).
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Figure 5.10: F-score curves showing the “SOP query, faculty documents – hierarchical”
approach for matching applicants and faculty, with four variations. X-axis shows the Rank,
while Y-axis shows the F-score (%).
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dotal evidence from faculty members in our department showed that this was indeed the
case, and they were happy with the search results produced by our system.

5.5 Conclusion

In this chapter, we introduced a new task – matching graduate applicants with faculty mem-
bers using text-based features. The problem is complex, given that there are no standard
annotated datasets, not much relevant related work, and content disparity between the tex-
tual materials authored by applicants and those authored by faculty members. We created
our own dataset comprising 4,534 papers authored by 73 different faculty members at the
Computer Science and Engineering department of a large Midwestern university. We fur-
ther considered an in-house set of 1,107 statements of purpose, and a set of 788 faculty-
applicant pairings constructed manually. Keywords were extracted from papers and SOPs,
and a detailed exploratory analysis was performed leading to insights regarding the content
depth and subtlety of documents. We obtained encouraging results using standard infor-
mation retrieval techniques using five different use cases, concluding that keywords offer
a significantly better representation (more efficient and better results) compared to bag-of-
words variations. Overall, we are able to match students to research groups with an F-score
of 62%, while for the more difficult task of matching students to faculty, we are able to
achieve a 24% F-score. Our future work includes obtaining more data (especially applicant
data), more reliable faculty-applicant annotations, and more sophisticated models that take
into account the sparsity of the task.
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CHAPTER 6

Using Keyword Extraction to Predict Student
Performance:

Data-Driven Keyword Extraction on Piazza
Forum

Prediction of student performance from their participation in academic forums has received
a lot of attention in recent years. However, the question of whether we can predict student

performance from their textual contributions in online forums, has not been thoroughly
investigated. In this chapter, we examine whether we can predict student grade in a large
undergraduate course consisting of 600 students. We further examine the intriguing role
of keyphrases, stopwords, and LIWC categories [16] in this prediction task. Note that
the conventional approach of using forum metadata to predict student performance (more
details in Section 2.7) is complicated by the fact that forum metadata can be complex, with
spatio-temporal interactions [136], whereas text data is much simpler to deal with, and is
also available in abundance.

6.1 Introduction

With an ever-increasing number of students in both undergraduate and graduate courses
all across the United States,1 the question of assessing student performance early in the
course, and giving students timely feedback assumes paramount importance. Our goal is
to automate, or at least complement the process of manual assessment of performance.
In this chapter, we aim to examine whether student performance can be predicted from
text-centered signals extracted from posts written by students.

1https://nces.ed.gov/fastfacts/display.asp?id=98.
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Table 6.1: Grades received by students in a large undergraduate course.
Letter Grade Numeric Grade (range) # Students in the Grade Bucket

A 90-100 70
B 80-89 220
C 70-79 69
D 60-69 15
F 30-59 4

Total 0-100 378

Table 6.2: Statistics of the Piazza data. Average was taken across all students in a particular
grade bucket. Numbers in parentheses are standard deviations.

Grade Bucket Avg # posts Avg # words Avg # unique words
A 23.67 (38.41) 964.73 (1299.51) 297.67 (297.72)
B 10.69 (16.92) 426.30 (669.89) 170.47 (164.66)
C 11.45 (17.10) 500.46 (729.87) 189.00 (185.86)
D 13.13 (16.12) 506.73 (589.27) 205.40 (199.06)

overall 15.14 (26.16) 622.79 (948.67) 218.27 (227.62)

We start out by reviewing the recent work on student performance prediction, using
non-textual (Section 2.7.1) and textual data (Section 2.7.2). Section 6.2 discusses our
dataset, which was constructed around the online participation of students enrolled in an
on-campus 600-strong undergraduate course at a US university. Section 6.3 describes the
task and how it was framed as a machine learning problem, starting with feature engi-
neering and experimental setup and leading to the results and our findings. Section 6.4
concludes the chapter with contributions and future research directions.

6.2 Dataset

Piazza is an online portal aimed at supporting the classroom setting by providing a central-
ized space for course materials and outside classroom discussions. It combines elements
from the traditional wikis and online forums, allowing course participants to post, view
and edit each other’s questions, answers, and notes, therefore resulting in increased levels
of student engagement.2 Piazza was established by Pooja Sankar in 2009, opened world-
wide to institutions in January 2011, and reached over 330 schools and tens of thousands
of students by Summer 2011.

On Piazza, users can publicly (and anonymously, if the head instructor allows it) ask
questions, answer questions, and post notes. Each student-authored question, answer, or
note can be collaboratively edited by all students and faculty members, while each instruc-

2https://en.wikipedia.org/wiki/Piazza_(web_service).
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Table 6.3: Statistics of the Piazza data. Average was taken across all posts made by students
in a particular grade bucket. Numbers in parentheses are standard deviations.

Grade Bucket Avg post length (in words)
A 40.75 (38.99)
B 39.89 (34.05)
C 43.71 (100.04)
D 38.58 (31.24)

overall 41.13 (58.21)

tor answer can only be collaboratively edited by other instructors. The platform further
allows private questions and private notes. Users are allowed to attach external files to
posts, use LaTeX formatting, view a post’s edit history, add follow-up questions, respond
to them (known as “feedback”), and receive email notifications when new content is added.
The interface consists of a dynamic list of posts on the left side of the screen, a central
panel for viewing and contributing to individual posts, and an upper bar for account con-
trol. Instructors have additional control, such as Piazza statistics and trends. The platform
is available on iOS and Android mobile operating systems.

The Piazza metadata is fairly complex, including timestamps, five types of posts (ques-
tion, student answer, faculty answer, feedback, followup), content privacy, question ratings,
and answer endorsements.

We designed our own dataset from the Piazza forum discussions3 of a large undergradu-
ate course consisting of 600 students in a Midwestern university. 378 students participated
in the Piazza discussions. Their grades are shown in Table 6.1. We assigned a letter grade
to each grade bucket. As can be observed from Table 6.1, grade bucket “B” is the majority
class, with 58.82% of the total number of students (ignoring grade bucket “F”).

Statistics on the first four grade buckets are shown in Table 6.2. We note that the
majority of students fall under grade bucket “B”. Note further from Table 6.2 that grade
bucket “A” has the highest number of posts on average, and also the highest number of
words and unique words, followed by grade buckets D, C, and B. When we look into Table
6.3, we see that the length of post (on average) is longest for “C” students, followed by “A”,
“B” and “D” students.

6.3 Task

We seek to predict the academic performance of undergraduate students in a large intro-
ductory course on Programming and Data Structures, part of the Computer Science un-

3https://piazza.com/.
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Table 6.4: Most frequent keywords/keyphrases extracted from Piazza data.
Keyword Frequency
autograder 80
function 74
error 67
code 64
player 60
list 56
card 53
test cases 46
project 44
problem 43

dergraduate curriculum. The task is framed as a four-class classification problem – by
making predictions for grade buckets “A”, “B”, “C” and “D”. We use a supervised learning
approach to classify the data, where each instance consists of data pertaining to a given
student enrolled in the course, represented as a feature vector; the class label for a student
is the grade bucket (s)he falls under.

Preprocessing. We extract all the posts made by students from Piazza XML dumps,4

and cleaned them by removing spurious HTML tags and markups. We employed several
core NLP text processors (included with the Stanford CoreNLP [137] library), such as
tokenization, sentence segmentation, part-of-speech tagging, constituency and dependency
parsing, named entity recognition and lemmatization.5

6.3.1 Features

Below we introduce the feature types considered for the classification task.

• Word grams: We use the raw student text (lowercased and without punctuation) to
extract word unigrams, bigrams and trigrams. In order to reward more rare tokens
and to discount frequent ones, we use term frequency inverse document frequency
(tf.idf ) [138] weighting for the entries found in the corpus, where a document is the
total textual contribution of a student in a semester. This is a numeric feature, and
has been widely used in text classification tasks [139, 140, 141].

• Keywords:
4Piazza data is available to instructors upon request, along with all metadata as well as timestamps, in

XML format.
5Stanford CoreNLP modules were run before lowercasing and removing stopwords.
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In order to gauge whether higher achieving students are more specific in their writ-
ings, we focus on the specificity of the words employed. More precisely, we extract
keywords from Piazza discussions using the state-of-the-art supervised keyword ex-
tractor developed recently [134], and trained on academic papers.6 As can be seen
from Table 6.4, the most frequent keywords are related to programming assignments.
They are all highly relevant to the Piazza data, and contain important cues on student
behavior around coding assignments (“error”, “project”, “problem”, “autograder”,
“test cases”). The feature weighting used was term frequency (tf ) [138], to boost the
value of repeated keywords; tf was normalized by the token count.

• Common words: Given the problem of data sparsity in a vectorial space model built
on word unigrams across a given student’s participation, we also explore modeling
the usage of common words. We use a list of the most frequent 5,000 English words7

computed over the 560 million word Corpus of Contemporary American English
(COCA), which is arguably the most accurate word frequency list for American En-
glish, as it is balanced for genre, focuses on contemporary English usage, and is very
large. We used tf weighting for common words, normalized by the token count.

• Stopwords: Furthermore, we explore the usage of stopwords in student writings, as
stopwords may be considered a measure of an author’s stylistic signature [142, 143].
We used tf weighting, normalized by the token count, to give preponderance to text
with a high stopword density. We experimented with two different lists, one consist-
ing of the most frequent 173 stopwords (allowing us to make a more “barebone” com-
parison across students), and a more extensive list of 423 stopwords (which should
be able to retain more context from a student’s participation).8 Our expectation is that
the smaller stopword list is too aggressive in removing student content, even though
it allows for denser representations, while the longer list may be optimal in allowing
the right amount of content to create dense representation while still retaining vocab-
ulary differences across people. Examples of words that appear in the common word
list, but not in the stopword lists (and vice versa), are shown in Table 6.5.

• Lexical features: It has been observed in Authorship Attribution literature [68, 69]

6It may be argued that Piazza and academic papers are two distinct genres; why is it sound to have the
keyword extractor trained on academic papers, and predict on Piazza data? To this question, we respond:
although the genres are different, what the supervised keyword extractor learns, is a mapping from document
to keywords, not the properties of documents themselves. This way, the keyword extraction pipeline works
seamlessly across all domains (cf. Chapter 3).

7https://www.wordfrequency.info/top5000.asp.
8https://www.ranks.nl/stopwords.
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Table 6.5: List of words that appear in the common words list, but not in the stopwords lists,
and vice versa. Note that all the common words start with “ab”; this is not a coincidence;
common words were sorted in lexical (ascending) order, and since there are many of them
as compared to stopwords, we see a profusion of words that start with “ab”.

Common Words Stopwords (short) Stopwords (long)
abandon am areas
ability aren’t asked
able can’t asking

abortion couldn’t asks
abroad didn’t backed
absence doesn’t backing
absolute doing backs

absolutely don’t became
absorb hadn’t becomes
abstract hasn’t began

that word and character n-grams can capture an author’s fingerprint. We wanted to
see if these authorial choices are indicative of students’ performance in class. Each
student was represented as a tf weighted instance of character trigrams, normalized
by the token count.

• Syntax features: Similar to word and character n-grams, POS n-grams and parse
trees (constituency and dependency) have also been used in Authorship Attribution
to link them to the identity of an author [144, 145]. We therefore also explore the
relationship between syntactic features and student performance. Specifically, we
use terminal rules (part-of-speech to token) for constituency, dependency heads (e.g.,
amod) for dependency, and POS unigrams and bigrams for parts-of-speech. Further,
we use tf weighted instance of syntax features, normalized by the total number of
times all elements of that feature type appears for a given student.

• Embeddings: Word embeddings capture in a very dense vectorial space “hidden”
or “latent” dimensions in text data, enabling words that occur in a similar context,
to become related and inhabit closer together in this space, while words that do not
share context to drift apart. Typically, the larger the size of the corpus on which the
embeddings are refined, the more accurate these representations are. Shorter training
windows allow functionally and semantically similar words to be better represented,
while longer training windows allow for a more thematic clustering of words in the
vectorial space. Embeddings can also be seen as a method of dimensionality reduc-
tion, similar to LDA [94], LSA [146], or PCA [147], and thus are extremely efficient
in algorithmic computations. Since the initial vocabulary for our dataset is 9440
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tokens, allowing for very sparse representations, embeddings allow contexts to be
represented through a very limited number of dimensions (in our case 300), and their
performance is typically significantly higher compared to word-based vectorial space
models. While using neural nets for natural language applications was not a tractable
proposition before, this changed with the breakthrough word embedding model using
a shallow neural net architecture proposed by Mikolov et al. [111], and the fury of
neural net models that came after that.

In our evaluations we experiment with two settings. First we focus on using pre-
trained word and phrase embeddings using a well-formed genre (such as newswire)
released by Google News [111]. The advantage of using such embeddings is that
they are typically very accurate, as they were refined on a very large volume of news
articles that are not publicly available. However, these embeddings are best able to
capture generic word meanings, and they may not be particularly well-suited for a
computer science jargon-laden course, where embeddings for words such as “child”
or “orphan” may be quite different compared to their generic counterparts. We there-
fore also experiment with training our own embeddings on the Piazza data, using the
skip-gram variation with hierarchical softmax and negative sampling of the word2vec
model [111] and a window size of 10, in order to enable deriving embeddings with
similar settings to those that were publicly released (i.e. 300 dimensions), and com-
pare their performance.

We represent a student’s contribution by performing vectorial summation over the
individual embeddings pertaining to component words and normalizing with respect
to the number of tokens employed by the student. This allows for the emergence of
heavy weighted and light weighted dimensions regardless of the length of a student’s
contribution. Separate models were obtained for representing a student’s writing as
unigrams, keywords, common words, and stopwords. We should note that keywords
were also modeled using the word2phrase embeddings [111], also a skip-gram neural
network architecture that extracts meaningful phrases from bigrams using discounted
mutual information, and derives phrase based embeddings that are more accurately
represented, allowing modeling beyond the sum of the parts.

• Word categories: The Roget thesaurus is a widely used English-language thesaurus,
created in 1805 by Peter Mark Roget (1779-1869), British physician, natural theolo-
gian and lexicographer.9 It was released to the public on April 29, 1852. The original
edition had 15,000 words, and subsequent editions have added many more words

9https://en.wikipedia.org/wiki/Roget%27s_Thesaurus.
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[148]. It is structured like a tree, where at the first level it is split in approximately
1,000 categories under which all of its words are nested. Once we encounter a word
in the thesaurus, we replace it by its heading category. A student instance is weighted
by the tf of the categories encountered, normalized by the token count. This method
acts as a form of supervised dimensionality reduction.

• Psycho-linguistic features: We aim to model the psycho-linguistic facets expressed
by the students in their writings using the Linguistic Inquiry and Word Count (LIWC)
[16] tool. LIWC analyzes the way people employ language through the prism of 73
categories, encompassing standard linguistic dimensions (such as pronouns, articles,
verb tense, etc.), psychological processes (such as cognition, affect, social, etc.), per-
sonal concerns (work, home, leisure, etc.) and spoken categories (assent, fillers and
non-fluencies). Ultimately we want to see if students’ psychological and personality
characteristics as inferred from text are correlated with their classroom performance.

• User-centered features.

– Formality: Text formality has been measured by the percentage difference be-
tween nouns, adjectives, articles, prepositions; and pronouns, verbs, adverbs,
interjections [124]. It has been observed that as the frequency of nouns, adjec-
tives, prepositions and articles in a given text increases, its formality increases.
On the other hand, as the frequency of pronouns, verbs, adverbs and interjec-
tions in a given text increases, its formality decreases.

– Lexical density: It is the estimated measure of content per functional (gram-
matical) and lexical units (lexemes) [125]. Lexical density is used in discourse
analysis as a descriptive parameter which varies with register and genre. Spo-
ken texts tend to have a lower lexical density than written ones.10

– Concreteness: We want to see whether success in the classroom correlates with
the usage of concrete vocabulary. To represent concreteness, we employ the set
of words, along with their concreteness scores, available as part of the Free
Association Norms Database [126]. There are more than 3,000 words available
as part of the database.

• Spatial Prepositions: Recent studies have shown prepositions to be an important
source of semantic information [129, 130, 131]. We use a lexicon of spatial preposi-

10https://en.wikipedia.org/wiki/Lexical_density.
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tions11 as a bag-of-words feature. The rationale was to observe if spatial properties of
programming constructs (“integer within given parameters”, “trees that are beneath
the tree”) could be captured in terms of prepositions such as on, in, by, with, etc.

• Metadata features: Piazza has a rich and complex metadata structure, we use seven
features from this structure: number of answers a student received on Piazza, number
of feedback texts received by the student, number of followup texts received by the
student, number of notes the student posted,12 number of private posts the student
made, number of questions the student made,13 and number of views the student’s
posts got. We used metadata features as a comparison point against text features, and
to see how much leverage in classification may be obtained from metadata alone,
without using text.

• Time Features: We have four types of time features; (1) day of the week features:
based on the 7 days, ratio of the number of posts in that day to the total number of
posts contributed by a student; (2) week features: breaking the semester into weeks,
the student’s weekly participation (ratio of posts contributed in a given week to the
total number of posts); (3) overall semester participation feature: total number of
weeks in which the student has posted something; and (4) time of day features: con-
sidering morning (5am - 11am), afternoon (11am - 5pm), evening (5pm - 9pm) and
night (9pm - 5am), the features are the ratio of posts contributed in these time slots
divided by the total number of posts made by a student.

6.3.2 Algorithms

We used three different classification algorithms from the scikit-learn library [149] with
default parameter settings:

Support Vector Machine (SVM). SVM is a widely used maximum-margin classifier that
works on the principle of kernel functions [90]. The particular kernel function is used to
separate the classification space whether in a linear way (a plane) or using a radial basis
function. We used LinearSVC – the linear basis function kernel.

Logistic Regression. Logistic Regression is another powerful classification algorithm that
has seen wide adoption across many different domains, including but not limited to text

11Obtained by combining the two lists at https://owl.english.purdue.edu/owl/
resource/594/04/ and http://www.firstschoolyears.com/literacy/sentence/
grammar/prepositions/resources/Spatial%20Prepositions%20word%20bank.pdf.

12If a note has multiple authors, each author gets a contribution.
13If a question has multiple authors, each author gets a contribution.
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classification [91]. Here, a sigmoid function is used to map the classification answers into
1 or 0 (where 1 is the correct class, and 0 is the other class).

Decision Tree. Lastly, decision trees are widely used classification algorithms that have the
advantage of simplicity, understandability, and robustness [150]. For the decision tree, a
nested decision takes place; i.e. at every node some feature-related rule directs the decision
to go on one branch or another. Ultimately the leaves in the tree represent class labels.

6.3.3 Experimental Setup

6.3.3.1 Settings

We used three classification algorithms due to their diverse learning methodologies, namely
SVM LinearSVC, Logistic Regression, and Decision Tree. These are available from the
scikit-learn library [149] and we trained them with default parameter settings. All results
presented are obtained as a result of 10-fold cross-validation.

6.3.3.2 Baseline

The unsupervised baseline, given a 4-class (balanced) prediction problem, is 25%. We
compare our results with the supervised baseline, which predicts the majority class label
for all instances in the test set, achieving an accuracy of 31.25%.

6.3.3.3 Evaluation metrics

The performance metric used in the evaluation is classification accuracy. It is defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
,

where TP = True Positive (number of instances that have been correctly classified as
belonging to the target class), TN = True Negative (number of instances that have been
correctly classified as not belonging to the target class), FP = False Positive (number
of instances that are not in the target class, but have been incorrectly classified to be so),
and FN = False Negative (number of instances that are in the target class, but have been
incorrectly classified not to be so).

We compute micro-accuracy by considering all the predicted and the real class values
for each instance in the 10 test folds.
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6.3.4 Results and Discussion

Below we explore the machine learning evaluation results over three major groupings of
features, namely text-derived, non-textual, and hybrid.

6.3.4.1 Text-derived features

Table 6.6 shows the various feature types we evaluated and the results obtained, starting
with text-derived features, non-text features, and hybrid text/non-text features. We will
discuss each section below.

As part of the text-derived features, we have explored three major groups, namely word
representations based on vector space models, word representations using embeddings,
and other text-derived features. We notice that across all three classifiers, the bigram word
model obtains the highest accuracy: in the case of LinearSVC being 4.91 accuracy points
ahead of the next best word-focused representation, for Logistic Regression, surpassing the
next best by 0.44 points, and for Decision Tree by 4.91 points. We note that despite tf.idf
weighting for unigrams, which should reduce the emphasis on words that are frequently
used by all students, there is still too much noise for a strong representation. Focusing
on keywords instead yields better results across the three classifiers, accentuating though
the problem of matrix sparsity, which ultimately leads to mediocre results. In order to
have a denser representation, we explore the modeling ability of common words, starting
with the most frequent words (the stopwords short list), to slightly less frequent words (the
stopwords long list), to the most frequent 5,000 American English words. We note that
while the shortest stopword list of only approximately 150 features is able to surpass the
performance of the unigram model encompassing 9440 features across all classifiers, its
performance is slightly below that of keyword-based classification (surpassing 2 classifier
accuracies out of 3). Expanding the stopword list to 423 features, leads to the second
strongest performance across the VSM models explored, second only to bigrams, with only
a small drop registered for decision trees (of 0.44%), yet a significant boost for LinearSVC
by 3.57% and for Logistic Regression, by 3.13%. Further expanding the classification
space to allow for 5,000 features originating from the most common words does not result
in significant gains, achieving a drop by 1.78% for LinearSVC, falling below the majority
class prediction accuracy for decision trees, and increasing merely by 0.89% for Logistic
Regression-based accuracy, while increasing 11.8 folds the dimensionality of the space.

Now we explore the ability of embeddings to model student performance. We first look
at the performance of pre-trained embeddings, followed by our own trained embeddings
derived on the Piazza data. As we see from Table 6.6, pre-trained embeddings display a
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similar performance to word unigrams, but using only 300 dimensions, compared to 9440
for word unigrams. Representing only keywords using the pre-trained embeddings achieves
a similar performance to word-based embeddings across the three classifiers. Turning our
attention to the embeddings we trained on the Piazza data, we note a boost in performance
across the LinearSVC classifier (by 1.78 points compared to pre-trained embeddings), the
Logistic Regression classifier (by 5.35 points), and the decision tree classifier (by 8.49
points). This particular combination is the strongest across all embedding variations, falling
only 0.4% accuracy points short of the best performing Logistic Regression embedding
combination, yet surpassing the next best embedding-based accuracy by 2.68 points for
LinearSVC and 1.33 points for Decision Tree. In the case of embeddings, modeling all the
words appearing in the context achieves the best results. Trying to scale the emphasis of a
given word embedding based on the document frequency of a word proportionately across
all latent dimensions produces a drop in accuracy compared to simply representing the en-
tire context through the summation of the underlying word embeddings. Keyword-based
embeddings that were trained on the Piazza data display a lower representation ability com-
pared to the generic pre-trained embeddings, probably because sufficient textual data is not
available in order to derive a robust model. Phrase-based keywords trained embeddings
(using the word2phrase model) show a marginally better performance for LinearSVC and
Logistic Regression compared to those obtained using word2vec, but for decision tree, ac-
curacy drops significantly. Between using pre-trained generic embeddings and embeddings
refined on the Piazza data to represent student contexts, we see a significant added value
from training on in-domain data, by 1.78 points for Linear SVC, by 5.35 points for Logistic
Regression, and by 8.49 points for Decision Tree.

In terms of other text-based features, each of the signals considered displays a strong
performance for one of the classifiers. Roget categories for example perform well for Lin-
earSVC and Logistic Regression, by 35.27% and 36.61%, respectively, while spatial prepo-
sitions (with only 49 features) show the strongest performance for Decision Tree across all
the textual features considered. Similarly, LIWC and user-centered features have a very
good performance for decision trees across all textual feature types, in particular when
considering that they only have 73 and 3 features, respectively. Combining all other text-

based features, we obtain a better performance than with individual feature types only for
logistic regression (by 1.78 points) compared to the top performing Roget categories; other
than that, performance is inferior to both word categories and psycho-linguistic categories.

In terms of classifier, we note that the most robust performance is obtained by the
LinerSVC model, both in terms of how often it surpasses the other two classifiers, as well as
the highest accuracies attained for individual feature types. In the case of VSM features, it
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is able to outperform or match the Logistic Regression algorithm for 8 out of 9 evaluations,
and the Decision Tree algorithm for 6 out of 9; for Syntax features, it outperforms or
matches the Logistic Regression algorithm in 4 out of 5 evaluations, but it performs better
than Decision Trees in only 2 out of 5 evaluations; for Embeddings, it outperforms Logistic
Regression in 5 out of 9 combinations, and it surpasses or matches decision trees in 9 out
of 9 combinations; for other text-based features, LinearSVC performs better than Logistic
Regression in 2 out of 5 scenarios compared to logistic regression, and 2 out of 5 scenarios
compared to decision trees. For non-text features, LinearSVC performs better in 1 out of
3 evaluations and 2 out of 3 evaluations compared to Logistic Regression and Decision
Tree, respectively. We note that decision trees consistently perform poorly on embeddings
models, achieving worse results across all trained embeddings evaluations, and they only
perform well on pre-trained word embeddings; for pre-trained keyword embeddings, the
accuracy matches the baseline majority class accuracy.

Ultimately, looking at text-based features, we note that: (a) boosting keywords / rare
words does not help much in this task; (b) unigram embeddings perform better than stop-
word embeddings whether for short or long stopword lists across all classifiers; (c) pre-
trained embeddings for keywords perform better than trained embeddings for keywords,
because rare words take more time (and more data) to derive accurate embeddigns; and (d)
pre-trained embeddings for words perform worse than trained words, because the forum
style is quite different from newswire genre, therefore generic word embeddings are more
robust on the same type of data.

6.3.4.2 Non-text features

As a comparison point, we further present the result obtained from seven Piazza Metadata
Features. In this experiment, we choose seven relatively simple metadata features (cf. Sec-
tion 6.3.1), and as shown in Table 6.6, metadata features perform poorly, as only one out
of three classifiers is able to surpass the majority class baseline of 31.25%, and by only 2.6
percentage points (using the Logistic Regression algorithm). We note that text-based fea-
tures almost always achieve a stronger performance, in particular for single feature types.
We further observe that despite the small number of features, text-derived features such as
user-centered features (three individual features: formality, lexical density and concrete-
ness) have a stronger performance across the board, for LinearSVC by 3.12 percentage
points, for Logistic Regression by 0.89 percentage points, and for Decision tree by 9.82
percentage points. This implies that text-derived features are particularly well-positioned
to predict student performance.

We also engineered a set of time-based features which exhibit the strongest performance
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across all the feature types and across the three classifiers explored. With only 30 features,
we obtain overall accuracies over 42%, with LinearSVC reaching the highest accuracy at
46%. This shows that student involvement throughout the semester and during particular
days of the week is the best predictor we looked at in terms of classroom performance.
Combining both time and metadata features does not result in a stronger performance than
time features alone. While our focus was not to exhaustively explore non-text-derived
features, these evaluations provide a window into what can be expected when considering
metadata related to posts, and how those results compare to what can be gathered from
text-derived features alone.

6.3.4.3 Hybrid features

We further explore whether by combining non-text and text-derived features into a hy-
brid space we can form a stronger representation. The best performance for hybrid fea-
tures is achieved when combining Roget and time-based features (43.75% for LinearSVC,
and 41.52% for Logistic Regression). Combining four other text features (Roget, psycho-
linguistic, user-centered, and spatial prepositions) with unigram embeddings yields the best
performance for decision tree (33.48%). It is to be noted that LinearSVC is the best per-
former among the three classifiers, followed by Logistic Regression and decision tree, re-
spectively. However, the second best performance comes from LinearSVC (33.48%) and
decision tree (32.14%) for the combination of four other text features, unigram embed-
dings, and POS unigrams. For Logistic Regression, the second best performance comes
from time features combined with other text features (40.18%). Among three classifiers,
LinearSVC best performance is 10.27 points higher than the second best, whereas for Lo-
gistic Regression and decision tree it is 1.34 points.

Compared with text features, the hybrid features (Roget and time features combined)
outperform all text features and embedding features – by 3.57 points for LinearSVC, and by
2.68 points for Logistic Regression. For decision tree, however, we observe that the best-
performing text features outperform the best-performing hybrid features by 6.25 points.

Among the hybrid feature categories, Roget combined with time-features yields the
best results (2 out of 3 classifiers), whereas four other text features combined with unigram
embeddings yields the second best results (1 best out of 3). Comparing hybrid features
with non-text features, we observe that across classifiers, time features outperformed hy-
brid features (by 2.68 points for LinearSVC; by 2.23 points for Logistic Regression; by
8.48 points for decision trees), whereas hybrid features outperformed metadata features
(by 15.62 points for LinearSVC; by 7.59 points for Logistic Regression; by 8.03 points for
decision trees). Combination of all non-text features performed better than hybrid features
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(by 2.23 points for Logistic Regression; by 6.70 points for decision trees), except for the
LinearSVC classifier.

6.3.5 Correlation of student performance with text-based features

We further focus on a qualitative assessment of which words are more closely correlated
with classroom-based student performance. As such, we explore differences in keyword
usage by students, then we look at psycho-linguistic categories derived from words, and
we conclude with stopword usage. For keywords and words, we normalized occurrence
frequencies per grade; for LIWC categories, we also normalized categories to which the
words were mapped to per grade; this ensures that the size of data available for a given
grade will not skew our observations. We compute the Pearson correlation between these
normalized frequencies and the student grade, by mapping A to 4, B to 3, C to 2, and D to 1.
Pearson correlation takes values from -1 to 1; negative values indicate inverse correlations,
while positive values indicate direct correlations. The strength of association is ranked as:
small (for values between 0.1 and 0.3), medium (for values between 0.3 and 0.5), and large
(for values above 0.5).

6.3.5.1 Keywords

Table 6.7 lists 3 sets of keywords grouped around 1, highly correlated with student perfor-
mance, 0, not predictive of student performance, and -1, inversely correlated with student
performance. A direct correlation between the mentioning of outside help and student
performance is noted. For example, high performing students use vocabulary such as in-

structor, office hours, professor often, ranking in the top 20 keywords associated with per-
formance out of a total of 1,759 keywords. We also note that top performing students’
keywords are grouped around tests, i.e. the code is already written and running, and they
are focusing on testing it. We note helper function, test, null, valid, bug keywords in
the top 10 most predictive of performance; at the same time, students that receive lower
grades deal with more basic programming issues, related to data structures (struct), cod-
ing (namespace, get param, friend class), resource-based problems (memory, space), and
actually getting the code to compile (compiling).

Among the least correlated keywords to performance, we encounter extra, highest, so-

lutions, sum and private members, which show a correlation of +/- 0.01.
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Table 6.6: Classification performance (10-fold CV Accuracy (%)) for different feature cat-
egories and classifiers. Best result is boldfaced. All embeddings are lc (lowercased), 300
dimensions, with window size 10, skip-gram model, and optimization type NSHS (negative
sampling with hierarchical softmax). Boldfaced values in each column represent the best
(within each section), and italicized values represent the second-best.

Feature Note # Features LinearSVC Logistic Regression Decision Tree
Baseline

Majority class-based prediction 31.25 31.25 31.25
VSM

unigrams tf.idf 9440 33.04 33.04 29.02
bigrams tf.idf 70090 40.18 37.05 38.39
trigrams tf.idf 132625 34.38 36.61 29.91
keywords tf norm. 2625 31.70 29.02 33.48
5000 most common words tf norm. 4352 35.27 33.93 32.59
stopwords short list tf norm. 173 35.27 34.38 26.79
stopwords long list tf norm. 423 33.93 32.59 27.23
Character ngrams tf norm. 18811 37.05 36.61 29.46
Combinations
keywords + stopwords long tf norm. 3048 30.80 30.80 34.38

Syntax features
POS unigrams tf norm. 45 34.38 31.70 24.55
POS bigrams tf norm. 1405 33.04 33.04 37.05
Constituency tf norm. 18737 34.82 34.38 28.13
Dependency tf norm. 276 27.68 28.13 28.57
Combinations
POS uni + POS bi + dependency tf norm. 1726 30.80 28.57 32.14
All tf norm. 20463 31.70 28.57 36.16

Embeddings
pre-trained embeddings
word 300 33.93 32.14 33.93
keywords 300 33.04 33.93 31.25
trained embeddings
unigrams 300 40.18 38.39 35.71
stopwords long 300 37.50 38.39 33.48
stopwords short 300 36.61 38.84 34.38
common words 300 35.71 34.38 28.57
keywords (unigrams,tf) 300 32.59 31.25 27.68
keywords (phrase,tf) 300 34.38 32.59 22.32
unigrams tf.idf 300 35.71 38.39 34.38

Other Text-based Features
Word categories (Roget) tf norm. 1069 35.27 36.61 31.70
Psycho-linguistic (LIWC) tf norm. 73 33.48 33.48 36.61
User-centered features 3 31.25 34.82 35.27
Spatial prepositions tf norm. 49 32.14 32.14 39.73
Combinations
LIWC + user-centered + spatial tf norm. 125 29.02 33.93 29.91
All tf norm. 1194 33.04 38.39 27.68

Non-text Features
Metadata features 7 28.13 33.93 25.45
Time features 30 46.43 43.75 41.96
Combinations
All 37 34.82 43.75 40.18

Hybrid Features
Other text (all) + time features tf norm. 1224 32.14 40.18 25.45
Other text (all) + stopwords (short) tf norm. 1367 28.57 37.50 26.34
Other text (all) + embedd. (uni.) tf norm. 1494 32.59 37.95 33.48
Other text (all) + embedd. (uni.) tf norm. 1539 33.48 36.61 32.14+ POS unigrams
Roget + time features tf norm. 1099 43.75 41.52 30.36
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Table 6.7: Keywords and their Pearson correlation with course performance.
Keyword Correl Rank Reverse Rank

Words most correlated with student performance
helper function 1.00 1 1760
test 1.00 2 1759
null 1.00 3 1758
valid 1.00 4 1757
characters 1.00 5 1755
hard 1.00 6 1756
bug 1.00 7 1754
running 0.99 8 1753
orders 0.99 9 1751
person 0.99 10 1752
length 0.99 11 1750
member functions 0.99 12 1749
track 0.99 13 1748
instructor 0.99 14 1747
numbers 0.99 15 1746
member 0.99 16 1745
office hours 0.99 17 1744
account 0.98 18 1743
recursive 0.98 19 1742
professor 0.98 20 1741

Words that are not associated with student performance
extra 0.01 1200 561
highest 0.00 1201 560
solutions -0.01 1205 557
ugli -0.01 1206 558
add card -0.01 1203 555
sum -0.01 1202 559
private members -0.01 1204 556
Words that are inversely correlated with student performance
wrong -0.91 1741 20
xcode -0.91 1742 19
worth -0.91 1743 18
fraction -0.92 1744 17
link -0.92 1745 16
friend class -0.93 1746 15
score -0.93 1748 14
partnership -0.93 1747 13
compiling -0.94 1749 12
getparam -0.94 1750 11
memory -0.95 1751 10
files -0.96 1752 9
space -0.96 1753 8
shuffling -0.97 1754 7
deal -0.97 1755 6
wager -0.97 1756 5
struct -0.98 1757 4
namespace -0.98 1758 3
specs -1.00 1759 2
names -1.00 1760 1
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Table 6.8: LIWC categories and their Pearson correlation with course performance. (1)
Category, (2) Category Abbreviation, (3) Pearson correlation with student success, (4) Fea-
ture rank based on correlation with strong performance, (5) Feature rank based on correla-
tion with weak performance.

Category Abbreviation Correl Rank Reverse Rank
Categories most correlated with student performance

Cognitive processes - discrepancy DISCREP 0.98 1 72
Grammar - articles ARTICLE 0.98 2 71
Grammar - numbers NUMBER 0.96 3 70
Social processes - overall SOCIAL 0.95 4 69
Cognitive processes - tentative TENTAT 0.94 5 68
Social processes - family FAMILY 0.91 6 67
Relativity - motion MOTION 0.91 7 66
Personal concerns - leisure LEISURE 0.85 8 65
Grammar - common adjectives ADJ 0.8 9 64
Grammar - personal pronoun 3rd pers. sg. SHEHE 0.78 10 63
Cognitive processes - certainty CERTAIN 0.76 11 62
Grammar - auxiliary verbs AUXVERB 0.75 12 61
Time orientation - future focus FOCUSFUTURE 0.74 13 60
Cognitive processes - overall COGPROC 0.71 14 59
Perceptual processes - see SEE 0.7 15 58

Categories that are not associated with student performance
Affective processes - anxiety ANX 0.08 36 37
Informal language - assent ASSENT 0.04 37 36
Relativity - time TIME 0.02 38 35
Personal concerns - home HOME -0.03 39 34
Informal language - overall INFORMAL -0.07 40 33

Categories that are inversely correlated with student performance
Grammar - personal pronouns PPRON -0.73 58 15
Affective processes - negative emotion NEGEMO -0.76 59 14
Grammar - interrogatives INTERROG -0.78 60 13
Informal language - swear words SWEAR -0.78 61 12
Drives - power POWER -0.79 62 11
Grammar - common adverbs ADVERB -0.83 63 10
Drives - risk RISK -0.86 64 9
Affective processes - overall AFFECT -0.88 65 8
Time orientation - past focus FOCUSPAST -0.88 66 7
Grammar - common verbs VERB -0.89 67 6
Affective processes - sadness SAD -0.89 68 5
Grammar - personal pronoun 1st pers. sg. I -0.92 69 4
Drives - reward REWARD -0.99 70 3
Social processes - friends FRIEND -0.99 71 2
Drives - achievement ACHIEV -1.00 72 1
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6.3.5.2 Psycho-linguistic features

As indicated in Section 6.3.1, LIWC features indicate the psychological profile of a person
based on his/her language use. In this section, we analyze the LIWC categories of students
as revealed in terms of their Piazza discussions.

Table 6.8 focuses on the psycho-linguistic characteristics associated with student per-
formance. The sample words we cite for a given category are based on the examples from
the LIWC 2015 manual [151]; we will use the following format: LIWC category (ABBRE-

VIATION: sample words). We note that 6 out of 7 cognitive processes are highly correlated
with performance: discrepancy (DISCREP: should, would, could) exhibits a 0.98 corre-
lation, tentative (TENTAT: maybe, perhaps, guess), 0.94 correlation, certainty (CERTAIN:
always, never), 0.76 correlation, cognitive (COGPROC: cause, know, ought), 0.71 correla-
tion, and differentiation (DIFFER: hasn’t, but, else), 0.61 correlation. The only cognitive
process that exhibits a low correlation is insight (INSIGHT: think, know), at 0.17. Some
grammar-related categories are also strongly correlated with performance, among them the
usage of articles (ARTICLE: a, an, the) at 0.98, numbers (NUMBER: second, thousand)
at 0.96, common adjectives (ADJ: free, happy, long) at 0.8, third person singular personal
pronouns (SHEHE: she, her, him) at 0.78, and auxiliary verbs (AUXVERB: am, will, have)
at 0.75, while other grammar categories are inversely correlated with performance, among
them, the overall usage of personal pronouns (PPRON: I, them, her) at -0.73, interroga-
tives (INTERROG: how, when, what) at -0.78, common adverbs (ADVERB: very, really)
at -0.83, common verbs (VERB: eat, come, carry) at -0.89, and above all, the usage of
personal pronouns in the first person singular (I: I, me, mine) at -0.92. Overall social pro-
cesses (SOCIAL: signaled by words such as mate, talk, they) and family-focused social
processes (FAMILY: marked by words such as daughter, father) are very strong markers
of performance, with a Pearson correlation above 0.91, while friends-focused social pro-
cesses (FRIEND: triggered by words such as buddy, neighbor) are the least associated with
performance at -0.99 correlation. Another interesting aspect is that the time orientation of
the student’s writings are highly correlated with performance, namely top performers are
future focused (FOCUSFUTURE: may, will, soon), with a correlation of 0.74, while poor
performers are past focused (FOCUSPAST: ago, did, talked), with a correlation of 0.88.
The relativity - motion category (MOTION), encompassing words such as arrive, car, go,
is highly correlated with performance at 0.91, while the relativity - time category (TIME:
exemplified by words such as end, until, season) shows no correlation with performance,
at 0.02. Among perceptual processes, see (SEE: view, saw) is highly correlated with per-
formance, at 0.7. We note that while informal language - overall shows no correlation
with performance, netspeak (NETSPEAK: btw, lol, thx) is weakly correlated with poor per-
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formance, at 0.16, while swear words (SWEAR: fuck, damn, shit) are highly correlated
with poor performance (at 0.78). Another particularly interesting aspect we should under-
line, is that most of the personal drives (i.e. 4 out of 5, with the exception of affiliation),
namely power (POWER: superior, bully), risk (RISK: danger, doubt), reward (REWARD:
take, prize, benefit) and achieve (ACHIEV: win, success, better), are highly correlated with
the lack of performance in the classroom, at 0.79, 0.86, 0.99, and 0.99 respectively; af-
filiation (AFFILIATION: ally, friend, social) is the only drive that exhibits a strong corre-
lation with performance at 0.5. Affective processes overall (AFFECT: happy, cried) are
also strongly correlated with poor performance (at 0.88), with subordinate affective pro-
cesses such as negative emotion (NEGEMO: hurt, ugly, nasty) and sadness (SAD: crying,
grief), displaying a correlation of 0.76 and 0.89, respectively. Interestingly enough, anger
(ANGER: hate, kill, annoyed) is very weakly associated with poor performance, at 0.11.

6.3.5.3 Stopwords

Table 6.9 lists stopword usage differences and their correlation with classroom perfor-
mance. We note that the conjunctions since, if are the most correlated stopwords with
performance, exhibiting the maximum Pearson correlation of 1, while conjunctions but,

whether are in the 20th most correlated with poor grades, at 0.99 and 0.86, respectively.
Determiners such as a, the, other as well as pronouns such as he, itself are also most corre-
lated with performance, displaying correlations above 0.94; poor performance is correlated
above 0.89 with determiners this, my, ’s, and pronouns I, me, who. The stopwords that show
no correlation with performance (ranging between 0.02 and -0.02) are conjugated forms of
verbs to be, to turn and to use, as well as adverbs now and last, and the preposition in.
An interesting observation is that the comparative form of adjective high (i.e. higher) is
strongly correlated with performance, at 0.97, while the superlative form highest shows no
correlation (at 0.08).

Similar to the psycho-linguistic features, where we noted a strong correlation between
past-focused words (FOCUSPAST) and poor student performance, stopwords exhibit the
same trend: in the top 50 most correlated words with performance we have no verb conju-
gated in the past, while in the bottom 50 we have seven verbs that appear in the past form,
with correlations above 0.7, among them, to work, to go, to be, and to make. Also, similar
to the personal pronouns that were correlated with high performance / poor performance,
for stopwords we see the same trend at an individual level, namely third person pronouns
such as itself, he, other are associated with high performance (correlation higher than 0.94),
while first person pronouns usage (I, me, my) is associated with low performance (correla-
tion above 0.89).
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Table 6.9: Stopwords and their Pearson correlation with course performance.
Stopword Correl Rank Reverse Rank

Words most correlated with student performance
since 1.00 1 384
if 1.00 2 383
orders 0.99 3 382
a 0.98 4 381
way 0.98 5 380
member 0.98 6 379
the 0.98 7 378
number 0.98 8 377
higher 0.97 9 376
room 0.97 10 375
numbers 0.97 11 374
itself 0.96 12 373
possible 0.96 13 372
least 0.96 14 371
has 0.95 15 370
order 0.95 16 369
he 0.95 17 368
across 0.95 18 366
among 0.95 19 367
other 0.94 20 365

Words that are not associated with student performance
uses 0.02 223 162
now 0.01 224 161
turned -0.02 228 157
last -0.02 225 160
been -0.02 227 158
in -0.02 226 159
Words that are inversely correlated with student performance
whether -0.86 365 20
work -0.86 366 19
ends -0.86 367 18
while -0.87 368 17
let -0.88 369 16
large -0.88 370 15
me -0.89 371 14
i -0.89 372 13
know -0.89 373 12
who -0.90 374 11
get -0.90 375 10
fact -0.90 376 9
s -0.91 377 8
far -0.92 378 7
my -0.95 379 6
went -0.98 380 5
but -0.99 381 4
worked -0.99 382 3
this -0.99 383 2
anyone -1.00 384 1
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6.4 Conclusion

In this chapter, we looked into the prediction of student performance in a large undergrad-
uate course consisting of 600 students. We obtained the text data students wrote on Piazza
forum discussions, and used lexical, syntactic, semantic, embedding, and metadata features
to predict their final grade in the class. Among text features, word bigrams were found to
be the best predictor of student performance, outperforming unigrams and keywords. Em-
beddings trained on the Piazza data performed comparably well (40.18% accuracy), almost
9 percentage points better than the majority baseline (31.25%). Among non-text features, a
small number of time features performed surprisingly well (46.43%), more than 15 points
better than the majority baseline. Among hybrid features, the combination of Roget and
time features yielded the best results. We further analyzed the correlation between key-
words, stopwords, and LIWC (Linguistic Inquiry and Word Count) categories obtained
from student text, and found that there was a systematic difference between categories that
were associated with high performers, with low performers, and had no association with
performance, respectively.

Future research directions would include collecting more student data from different
courses, and other important tasks such as prediction of student anxiety and how it affects
their performance.
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CHAPTER 7

Conclusion

In Chapter 1 we introduced three questions related to Keyword Extraction (KE). In this
chapter, we will revisit each of those questions, and outline our contributions, limitations,
and potential future work.

1. Can effective supervised and unsupervised methods be designed for extract-
ing keywords from textual data, and can the core keyword extraction method
be specialized to enable the extraction of important content related to under-
graduate students, graduate applicants, and online consumers of products? We
showed in Chapter 3 that effective and efficient supervised and unsupervised KE sys-
tems can be built on email data. We further showed that the system, when trained on
academic papers, can extract meaningful and relevant keywords from student discus-
sions (Chapter 6). We further showed that Keyword Extraction can be specialized for
sentences, and that the method when invested with relevant features, can be used to
identify usage expression sentences in consumer product reviews (Chapter 4). The
method when constrained using Wikipedia,1 can also be used to uncover important
scientific topics in student statements of purpose (Chapter 5), and be used to predict
the performance of students in a large undergraduate course while retaining pertinent
concepts taught and discussed in the class (Chapter 6). The limitation of the system
is the paucity of data in each task, and the necessity of extensive manual annota-
tion. We, however, are of the opinion (based on evidence presented in Chapters 5
and 6) that the system itself can be used to generate new labeled data, essentially
self-training or bootstrapping in a new domain and/or task.

2. Can the KE methods we designed be used to enable different NLP applications?
We showed that the KE system can be effectively used for (1) extraction of salient
content from emails (Chapter 3); (2) identification of important specialized content

1https://www.wikipedia.org/.
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from product reviews (Chapter 4); (3) extraction of important content from student
applications and faculty papers for reliable student-faculty matching (Chapter 5); and
(4) extraction of relevant content from student forum discussions for the purpose of
predicting academic performance (Chapter 6). Chapter 6 further shows that there are
three different types of keywords when it comes to student performance prediction –
keywords that are associated with high performance, those that are associated with
low performance, and the ones that are not associated with performance. These ob-
servations form the basis of a potential system that is both efficient and effective, and
that can understand student performance early in the course with a view to designing
appropriate intervention strategies.

3. Can automatically extracted keywords be used to gain deeper insights into dif-
ferent data collections? We used the keywords produced to understand the effect
of in-domain training (Chapters 3 and 4); to understand keyphrase appropriateness
and time taken to manually classify documents (Chapter 3) – where time taken re-
duced drastically at a cost of slightly lower accuracy; to look into the temporal flow
of scientific topics (Chapter 5) – where we identified a clear content gap between fac-
ulty and graduate applicants; to measure the research diversity, research focus, and
content density of faculty members (Chapter 5) yielding very different rankings of
faculty; and to discern what topics successful students in a large undergraduate class
write about (Chapter 6). We note that high-performing students talk about instructor,
office hours, and professor often, and focus on testing the code that is already writ-
ten; low-performing students grapple with fundamental programming issues related
to data structures, coding, resource-based problems, and getting the code to compile.

A future research direction is student anxiety prediction from text data. While a rea-
sonable body of literature exists for the prediction of student stress [152, 153, 154, 155,
156, 157, 158, 159, 160, 161, 162, 163], anxiety has not received equal attention. Other
future research directions include forecasting student performance for each individual as-
signment, and the prediction of student performance for next-term courses. While these are
more difficult problems to tackle, we hope to be able to solve them with larger and more
nuanced datasets. For example, forecasting student performance for individual assignments
would require the assignment due date, assignment grade received by the student, and text
data authored by the student within a specific time window (assignment issue date until
submission date); whereas prediction of student performance for next-term courses would
require students who enrolled in at least two different courses in two successive semesters,
their corresponding grades, and the text data authored by those students.
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Note that the application of keywords in social media data has several possible future
research directions, including but not limited to the populations we examined in this disser-
tation (graduate applicants, undergraduate students, email authors, and online consumers
of products). Keyword Extraction (KE) can be used to identify brand information from
social tags [164], to detect events and user interests in data streams [165], for designing
product ideas [166], and for reasoning about human emotion [167].

In general, keywords express the important ideas and concepts present within a docu-
ment. It is therefore of great interest to be able to generalize Keyword Extraction to take
into account the philosophical and epistemological implications of a given text document.
In other words: we should be able to answer questions such as:

• What are the main “ideas” present in this document?

• What are the main claims the author(s) draw?

• What are the conclusions, express and implied?

• What are the methods/systems used, to reach those conclusions?

• What, if any, are the limitations of the approach?

• How can those ideas be improved to take into account new, and/or potentially chal-
lenging, domains?

Note that each of the above questions can, in theory, be expressed in terms of a Keyword
Extraction problem. There are, however, two principal roadblocks that need to be removed
for answering the above questions:

1. Diverse data. For a proper exposition of keyword extraction in terms of ideas and
facets, data from diverse genres and populations must be gathered, with keywords
annotated. This is an expensive and time-consuming effort, but definitely worth it.

2. Diverse annotations. Note that the keywords themselves are only as useful as the
annotations. It is therefore of special importance to think about each research ques-
tion separately, and design the annotation guidelines accordingly. It is important to
realize that while diverse data presents one side of the keyword extraction problem,
diverse annotation presents another.

An interesting and challenging aspect of Keyword Extraction – in previous studies (cf.
Chapter 2), in the present work (Chapters 3 to 6), and in future directions – is feature
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engineering. Extensive feature engineering and manual design are often necessary to bring
out the best performance in Keyword Extraction [10, 107, 108, 168]. A question arises:
since deep learning and neural networks have arisen in recent years that largely obviate
the need for manual feature design and engineering, and esp. when such techniques were
among the best in a recent Keyword Extraction task [40], what is the need for extensive
feature engineering? Why not use neural networks instead?

To this question we respond: manual feature design and engineering are often neces-
sary, (a) to get a “feel” for the task; we often have no clue when we are presented with
new data, and/or domains, and/or genres; feature engineering gives us a handle to deal with
the inherent uncertainty associated with any dataset. (b) Data scarcity. Most datasets in
keyword extraction, esp. in new domains, are small. They are either not large enough, not
good enough, or not annotated enough. From [17] we know that large data in Keyword
Extraction is not sufficient; we also need many annotators to get a reasonable idea of what
is happening under the hood. This greatly complicates the problem. A “kitchen sink” ap-
plication of neural networks fails to solve this problem. (c) Complementarity. Note that
the hand-designed features, and features obtained from neural networks are not necessar-
ily antagonistic. They can be complementary. An example of this is shown in Table 6.6,
where we combined the features generated using a shallow neural network (Word2Vec),
with manually designed features. Such combinations may offer better performance in new
domains, esp. when the dataset is relatively small. (d) Control and interpretability. It is
an open secret now that neural network models work almost like a “black box”, whose
features are virtually opaque to the experimenter. This results in a re-incarnation of the
interpretability issue that was so rife with topic models [35]. Manually designed features,
on the other hand, provide a degree of certainty, control, transparency, and interpretability
that will be indeed very hard to obtain otherwise.
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