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Abstract 
 

 Spinocerebellar ataxias are a heterogeneous family of autosomal dominantly-

inherited neurodegenerative disorders which affect movement and coordination. 

Patients experience the shared features of cerebellar ataxia, characterized by 

uncoordinated limb movements, unsteady gait, and difficulties with balance and posture. 

Although the underlying genetic causes of cerebellar ataxia are diverse, these diseases 

are often associated with degeneration of neurons within the cerebellum. Purkinje 

neurons, which are the sole output of the cerebellar cortex, show enhanced vulnerability 

to dysfunction and degeneration in ataxia. Therefore, therapies which target aberrant 

Purkinje neuron function have great potential for the treatment of cerebellar ataxia. 

 Spinocerebellar ataxia type 1 (SCA1) is a more common and well-studied 

inherited cerebellar ataxia and results from an expanded CAG repeat sequence in the 

ATXN1 gene. This results in cerebellar Purkinje neuron dysfunction and degeneration 

associated with the expression of polyglutamine-expanded ataxin-1 protein. In mouse 

models of SCA1, Purkinje neuron dysfunction occurs concurrently with the onset of 

motor impairment and dendritic degeneration, suggesting that abnormalities in Purkinje 

neuron spiking correlate with and are potentially causative for motor impairment in 

SCA1. Previous studies have illustrated that potassium ion channel dysfunction 

underlies aberrant Purkinje neuron spiking in SCA1 mice. However, the nature of this 

dysfunction, and how it contributes to motor impairment, is not fully understood. The 

studies in Chapter 2 explore how potassium channel dysfunction contributes to 
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alterations in Purkinje neuron membrane excitability, and identifies ion channel-

activating compounds which improve these alterations in physiology. Additionally, these 

studies illustrate how both somatic and dendritic alterations can exist due to the 

dysfunction of the same ion channels, and that somatic and dendritic pathology 

separately contribute to motor impairment in ataxia. Finally, these studies provide proof-

of-concept evidence of potassium channel-activating compounds as therapeutic targets 

for the treatment of cerebellar ataxia and argue for future clinical trials of potassium 

channel activators in human SCA patients. 

 Similar to SCA1, spinocerebellar ataxia type 7 (SCA7) results from an expanded 

CAG repeat sequence in the ATXN7 gene. This results in degeneration of neurons 

within the brainstem, retina, and cerebellum, including Purkinje neurons. Like SCA1, 

mouse models of SCA7 display Purkinje neuron dendritic degeneration which 

accompanies the onset of motor impairment. However, the contribution of Purkinje 

neuron dysfunction to disease is currently unknown. In order to identify relevant 

changes in ion-channel gene expression and function in SCA7, we performed RNA 

sequencing on whole cerebellar lysates from SCA7 mice. We identified decreased 

expression of genes associated with calcium signaling and a key calcium-activated 

potassium channel, which contribute to irregular Purkinje neuron spiking in SCA7 mice. 

However, these changes in RNA transcript expression are relatively modest. In Chapter 

3, we further explored how partial disruption of several members of this key calcium 

homeostasis module can result in irregular Purkinje neuron spiking, and illustrate that a 

disruption of both calcium sources and calcium-activated potassium channels are 

required in order to produce irregular spiking. We further demonstrate that activation or 
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re-expression of the effector calcium-activated potassium channel can compensate for 

reduced calcium availability and thereby restore repetitive spiking to SCA7 Purkinje 

neurons. Finally, in Chapter 4, we illustrate that a genetic strategy which improves RNA 

transcript expression of members of this calcium module also improves Purkinje neuron 

membrane excitability and spike regularity in SCA7 Purkinje neurons. These studies 

argue that this calcium homeostasis module is central to Purkinje neuron function, and 

that members of this module may be important targets not only in SCA7 but also in 

other cerebellar ataxias. 

 Together, these studies address the hypothesis that calcium-activated potassium 

channel dysfunction is central to Purkinje neuron electrophysiologic dysfunction and 

motor impairment in spinocerebellar ataxia, and that potassium channel-activating 

compounds are outstanding candidates for the improvement of motor function in 

spinocerebellar ataxia. The overall impact of these studies is to establish a link between 

potassium channel dysfunction and motor impairment as a general mechanism of 

spinocerebellar ataxia and to demonstrate that potassium channel activation merits 

consideration for the treatment of human ataxia. 
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Chapter 1 

Introduction 

1.1 Purkinje neuron dysfunction in spinocerebellar ataxia: a common 

feature of disease 

1.1.1 Overview of spinocerebellar ataxia 

Spinocerebellar ataxias (SCAs) are a large, heterogeneous group of movement 

disorders which affect neurons in the cerebellum and its associated pathways. SCAs 

are characterized by their autosomal-dominant inheritance pattern and shared clinical 

features of cerebellar ataxia, a set of signs representing loss of motor coordination. SCA 

patients often experience uncoordinated limb movements, abnormal gait, and difficulties 

with balance and posture, frequently resulting in wheelchair confinement. Although 

many SCAs share clinical features, genetic causes are diverse and highlight the 

potential difficulty to diagnose and appropriately treat these disorders. For instance, 

there are over 40 known genetic mutations associated with SCA that affect a wide 

variety of molecular pathways 1. The recent discovery of several new disease-causing 

SCA mutations suggests that many undiscovered disease genes still remain 2-6. There 

is a crucial need to develop new therapies for SCA, as no approved treatments currently 

exist.
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 In addition to their similar clinical features, SCAs are characterized by a similar 

pattern of neurodegeneration. Although disease-causing mutations in cerebellar ataxia 

are diverse, and disease protein expression is often widespread or ubiquitous 

throughout the central nervous system, cerebellar involvement is prominent. A subset of 

SCAs result from glutamine-encoding CAG repeat expansions (the so-called 

polyglutamine SCAs: SCA1, 2, 3, 6, 7, 17). Although polyglutamine-expanded protein 

expression is widespread, and not necessarily restricted to just the nervous system, 

degeneration is restricted to specific neurons in the cerebellum and related structures 7. 

Purkinje neurons, brainstem neurons, and neurons of the cerebellar nuclei are 

particularly vulnerable to degeneration. Among these, Purkinje neurons are most 

prominently involved in SCAs 1. The increased susceptibility of Purkinje neurons to 

degeneration in SCA suggests that these neurons may possess unique metabolic or 

physiologic properties that make them more vulnerable to a variety of insults. 

1.1.2 Unique physiology promotes enhanced cerebellar Purkinje neuron 

susceptibility in spinocerebellar ataxia 

Purkinje neurons receive and integrate signals from several distinct neuronal 

pathways. Purkinje neuron intrinsic firing is modulated by synaptic activity to modify 

downstream motor pathways, namely neurons of the deep cerebellar nuclei and 

vestibular nuclei. Under normal conditions, Purkinje neurons can sustain firing at a large 

dynamic range, up to several hundred spikes per second in vivo 8. In order to properly 

transmit motor information, Purkinje neurons must be capable of fast modulation of this 

firing to encode information. There is debate as to whether Purkinje neurons use firing-

rate coding, coding through synchronized Purkinje cell activity, or hybrid multiplexed 



3 
 

coding to transmit output signals to motor nuclei 9-11. Nevertheless, it is clear that rapid 

and precise modulation of Purkinje neuron membrane potential is necessary to encode 

coordinated motor output. 

Purkinje neuron action potentials are dependent on precise, coordinated activity 

of a large complement of ion-channels in order to maintain autonomous repetitive 

spiking. Spontaneous action potentials are driven by resurgent sodium current carried 

by the voltage-gated sodium channel Nav1.6 12. Upon reaching threshold, Nav1.6 and 

Nav1.1 channels become maximally activated, generating the upstroke of the action 

potential. The falling phase of the action potential is driven by voltage-gated potassium 

channels, mostly Kv3 family members 13. Upon membrane depolarization, voltage-gated 

calcium channels (mainly Cav2.1 and Cav3 family members) also become activated, 

allowing external calcium entry into Purkinje neurons 14, 15. These voltage-gated calcium 

channels are tightly coupled to calcium-activated potassium channels (KCa channels), so 

that the net effect of calcium entry is an outward potassium current which 

hyperpolarizes the membrane potential 16. The major KCa channels in Purkinje neurons 

are the large-conductance calcium-activated potassium (BK, KCa1.1) channel and the 

small-conductance calcium-activated potassium (SK) channel (SK2, KCa2.2), which 

generate the after-hyperpolarization (AHP) 17-19. The AHP is essential for de-activation 

of voltage-gated sodium and potassium channels, which allows for their activation 

during the subsequent action potential. The depolarization of the membrane potential 

during the interspike interval, which is necessary for autonomous spiking, is mediated 

by unique resurgent kinetics of voltage-gated sodium channels 12. Finally, an 

assortment of subthreshold-activated potassium channels are active during the 
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interspike interval 20-25, while other channels such as TRPC3 and the inositol 1,4,5-

trisphosphate receptor play important roles mediating calcium homeostasis and the 

modulation of cerebellar learning 26-29. Purkinje neurons spiking is therefore highly 

sensitive to perturbations in ion-channels, and mutations in many of these channels are 

known to promote aberrant Purkinje neuron spiking and impaired motor function. 

1.1.3 Channelopathies in spinocerebellar ataxia  

 Consistent with a role for these ion-channels in supporting Purkinje neuron 

spiking, conventional ion-channel mutations are known to result in SCA. Mutations in 

the aforementioned ion-channels which support Purkinje neuron spiking are, in many 

cases, causative for SCA (Figure 1.1; summarized in Table 1.1). Mouse models have 

provided valuable insight to the functional implications of disrupted ion-channel function 

in many of these ataxia-causing channelopathies. These models clearly demonstrate 

that electrophysiologic dysfunction contributes to motor impairment in ataxia, and 

suggest that ion-channels are important potential targets in ataxia. 

 Potassium channel mutations cause SCA in humans. Mutations in the KCNC3 

gene result in the production of the voltage-gated potassium channel, Kv3.3, with either 

no functional current or altered kinetics 30-32. In mice, knockout of Kv3.3 causes reduced 

Purkinje neuron firing frequency due to altered inactivation of other ion-channels during 

the interspike interval 33-35. Alternatively, mutations in the KCND3 gene, which encodes 

the A-type potassium channel Kv4.3, result in SCA19/22 36, 37. Although there are 

conflicting reports about the functional role of Kv4.3 in adult Purkinje neurons 38, 39, 

Purkinje neuron degeneration is present in SCA19/22 patients 36 which suggests an 

important role for Kv4.3 in Purkinje neuron function. In heterologous cells, mutations in 
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KCND3 tend to impair the stability of Kv4.3-containing protein complexes, which thereby 

reduces Kv4.3 channel expression at the cell surface and impairs current density of 

these channels 36, 37, 40, 41. Finally, a recently-discovered mutation in the KCNMA1 gene, 

which encodes the BK channel, produces ataxia with cerebellar atrophy. In 

heterologous cells, mutant BK channels show reduced macroscopic currents and act in 

a dominant-negative fashion 5, 6. While these mutations have not been introduced into 

mice, both global and Purkinje neuron-specific BK channel-null mice exhibit cerebellar 

ataxia 18, 42, which corresponds to greatly disrupted Purkinje neuron spiking 18. These 

studies illustrate the relevance of potassium channel mutations to human SCA, and 

suggest that altered Purkinje neuron spiking may be a potential basis for motor 

impairment in ataxia. 

 In addition to potassium channels, mutations in other ion-channels are known to 

result in cerebellar ataxia. Mutations in ITPR1, which encodes the inositol 1,4,5-

trisphosphate (IP3) receptor gene, result in SCA15/16 and the nonprogressive 

congenital ataxia, SCA29 28, 43-48. IP3 and diacylglycerol are produced upon 

postsynaptic metabotropic glutamate receptor (mGluR) activation, and IP3 subsequently 

binds to the IP3 receptor and promotes calcium release from internal stores 29. In mice, 

Itpr1 knockout eliminates long-term depression at Purkinje neuron synapses, while Itpr1 

heterozygous mice exhibit motor impairment on the rotarod 49, as do mGluR1 knockout 

mice 50. This suggests that synaptic dysregulation which occurs upon altered IP3 

receptor function contributes to cerebellar ataxia. In addition to IP3, mGluR signaling in 

Purkinje neurons relies upon the transient receptor potential channel type C3 (TRPC3), 

which is necessary for the induction of long-term depression 26, 27. In moonwalker mice, 
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a point mutation in Trpc3 results in motor impairment and progressive Purkinje neuron 

loss 51. Notably, Purkinje neuron firing is markedly abnormal in moonwalker mice, with 

depolarization block of Purkinje neuron spiking 52. In humans, TRPC3 mutations result 

in SCA41 3. Overall, it is possible that synaptic dysregulation and altered Purkinje 

neuron spiking may contribute to SCA. 

 Recently, a point mutation in the CACNA1G gene was identified as the causative 

mutation in SCA42 2, 4. This mutation, p.Arg1715His, is located in the voltage-sensing 

domain of the T-type calcium channel, Cav3.1. When cloned into a heterologous 

system, this mutation shifts Cav3.1 activation to more positive membrane potentials 2, 4, 

suggesting that these channels may not activate as efficiently upon depolarization. This 

could disrupt calcium entry and, consequently, activation of KCa channels. In mice, T-

type calcium channel blockade reduces Purkinje neuron spike frequency in vitro, while 

mice lacking Cav3.1 in several brain regions, including the cerebellum, show increased 

Purkinje neuron spike frequency and irregularity in vivo 53, 54. Synaptic dysfunction and 

the resulting impairment of motor learning is prominent in Cav3.1-/- mice, as these mice 

demonstrate an impaired ability to produce long-term potentiation at the parallel fiber-

Purkinje neuron synapse, impaired performance on a rotarod, and impairments in the 

vestibulo-ocular reflex 53. It is possible that reduced Cav3.1 activity may also reduce 

calcium availability for calcium-activated potassium channels, thereby impairing the 

generation of a normal spike after-hyperpolarization (AHP) and reducing spike 

regularity. However, the contribution of Cav3.1 as a calcium source for calcium-activated 

potassium channels remains controversial 16. 
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1.1.4 Ion-channel dysfunction is associated with mouse models of polyglutamine 

spinocerebellar ataxia 

 Although conventional channelopathies present a clear role for altered neuronal 

membrane excitability in ataxia, these forms of ataxia are less common and are 

estimated to be responsible for around ten percent of all cases of SCA 1. Much more 

common are the polyglutamine SCAs, which result from expanded glutamine-encoding 

CAG repeat sequences in their respective causative genes. Apart from SCA6, which 

affects the α-subunit of the Cav2.1 voltage-gated calcium channel encoded by the 

CACNA1A gene 55, the disease causing proteins in polyglutamine SCA are not directly 

associated with ion-channel function. ATXN1 (the disease-causing protein in SCA1) is 

associated with transcriptional regulation and RNA splicing 56-58, ATXN2 (SCA2) plays a 

role in RNA metabolism 59-61, ATXN3 (SCA3) is a de-ubiquitinating enzyme 62, 63, ATXN7 

(SCA7) is a member of the SAGA transcriptional complex 64, and TBP (SCA17) is an 

essential component of tata box-based transcriptional initiation 65 (reviewed in 66). 

These related functional roles suggest that transcriptional disruption may be an 

important initiating event in the polyglutamine SCAs. 

 Indeed, transcriptional disruption has been noted in mouse models of SCA. Gene 

expression analyses such as RNA sequencing and gene co-expression network 

analyses have been useful for the identification of molecular pathways which may be 

disrupted in SCA 67-69. Interestingly, several genes show common downregulation of 

their mRNA transcripts in multiple SCA mouse models. These include several members 

of neuronal excitability pathways, including key ion-channels for Purkinje neuron 

function 67-72. Recent work has demonstrated that altered ion-channel expression in 
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SCA can disrupt Purkinje neuron membrane excitability, and mouse models of 

polyglutamine SCA suggest that ion-channel modulators may represent a therapeutic 

strategy for both motor dysfunction and neurodegeneration. 

 Ion-channel dysfunction is associated with polyQ SCA in rodent models. In 

mouse models of SCA1, disrupted Purkinje neuron membrane excitability is associated 

with reduced expression and function of two potassium channels, BK and the G-protein 

coupled inwardly-rectifying potassium (GIRK1) channel 71. Functionally, Purkinje 

neurons from ATXN1[82Q] mice demonstrate a depolarized somatic membrane 

potential and a reduced fast afterhyperpolarization (AHP) early in disease, leading to a 

large proportion of non-firing cells 71, 73. Through a parallel process, loss of these and 

related channels results in a persistent increase in dendritic membrane excitability even 

in the presence of dendritic degeneration 73, 74. Similarly, in a mouse model of SCA2, 

altered potassium channel function underlies Purkinje neuron firing abnormalities. 

ATXN2[127Q] Purkinje neurons show progressive reductions in firing frequency with no 

change in spike regularity 70, 72. These changes in firing are accompanied by a 

progressive reduction in the transcripts encoding the BK channel and Kv3.3, a voltage-

gated potassium channel, both of which are important for repetitive spiking 70, 72. Like in 

SCA1, ATXN2[127Q] Purkinje neurons display an absence of repetitive spiking in 

association with this reduction in potassium channel function 70, whereas the 

ATXN2[58Q] transgenic model of SCA2 displays aberrant Purkinje neuron bursting both 

in vitro and in vivo 75, 76. In the ATXN3[84Q] transgenic mouse model of SCA3, changes 

in Purkinje neuron physiology accompany motor impairment. Purkinje neurons from 

these mice display altered spiking in association with increased inactivation of Kv1 
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potassium channels 77. Finally, a mouse model of SCA6 demonstrates that functional 

alterations in Purkinje neuron spiking accompany the polyQ mutation in Cacna1a, 

encoding the α-subunit of the Cav2.1, a voltage-gated calcium channel 78. Overall, these 

studies demonstrate that changes in ion-channel expression have functional 

consequence for Purkinje neuron spiking in models of polyQ SCA. 

1.2 Calcium-activated potassium channels are important therapeutic 

targets in spinocerebellar ataxia 

1.2.1 Calcium-activated potassium channel expression and function in cerebellar 

Purkinje neurons 

 When modeling spinocerebellar ataxia in mice, neuronal dysfunction typically 

precedes overt neuron loss, and changes in neuronal function often correlate with the 

onset of motor dysfunction 71, 72, 79. As outlined in section 1.1.2, Purkinje neurons rely on 

the precise activity of a multitude of ion channels in order to maintain spontaneous and 

regular pacemaking. Mouse studies have demonstrated that Purkinje neuron spiking is 

sensitive to perturbation in calcium buffering 80, intracellular calcium stores 81, and 

plasma membrane calcium channels 82, 83. Proper intracellular calcium concentration 

through these calcium sources regulates the activity of calcium-activated potassium 

(KCa) channels, whose functions are critical for the regularity of Purkinje neuron spiking 

82, 83. In fact, KCa channel-mutant mice display cerebellar ataxia accompanied by 

disrupted Purkinje neuron spiking 18, 42. This suggests that KCa channels may be 

particularly important targets in cerebellar ataxia. 

 Several KCa channels are expressed and have a functional role in mature 

Purkinje neurons. These include the large conductance, intermediate conductance, and 
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small conductance calcium-activated potassium channels (BK, IK, and SK, 

respectively). Studies have indicated that BK channels are scattered throughout the 

soma and proximal dendrites of Purkinje neurons, and are also associated with 

clustered microdomains located near endoplasmic reticulum (ER) 84. This proximity to 

the ER has been postulated to allow for IP3-mediated release of local calcium stores, 

which may be sufficient to activate BK channels 84. Recently, BK channels were also 

found to be localized at paranodal junctions in Purkinje neuron axons, where they 

contribute to high-fidelity firing 85. In a similar fashion, SK2 channels are also scattered 

throughout the soma and proximal dendrites of Purkinje neurons 86, 87, although the 

relationship between SK2 channel expression and ER microdomains is not yet known. 

Both BK and SK2 channels cluster with Cav2.1, the P/Q-type voltage-gated calcium 

channel, and have been postulated to be specifically activated by calcium entry through 

Cav2.1 channels 16, 86. Functionally, BK and SK2 channels are important for regulating 

the AHP, an essential feature of the action potential which allows for high-frequency 

firing in Purkinje neurons 17, 18, 71, 87. IK channels, which were once thought to be 

expressed only in the peripheral nervous system, were found to be expressed in 

cerebellar Purkinje neurons, where they couple with Cav3.2 to form functional 

microdomains 88. IK channels modulate parallel fiber input onto Purkinje neurons by 

controlling local EPSP summation, which was postulated to facilitate high-pass filtering 

in the dendrite 88. 

 In addition to regulating somatic spiking, KCa channels, along with voltage gated 

potassium channels, are known to modulate dendritic signal integration and intrinsic 

dendritic excitability. Evidence for heavy dendritic KCa modulation comes from the 
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response of Purkinje neurons to simple spike backpropagation and synaptic stimulation. 

Backpropagating acting potentials attenuate significantly in Purkinje neuron dendrites, 

as evidenced by low levels of dendritic [Ca2+] in association with backpropagating 

simple spikes 89, 90. Purkinje neurons rely on a number of potassium channels in order to 

limit backpropagation of somatic spikes into the dendrites, including BK, SK2, and Kv3.3 

91-95. Purkinje neurons demonstrate significant increases in cytosolic [Ca2+] upon parallel 

fiber input, and even more widespread dendritic cytosolic [Ca2+] upon climbing fiber 

stimulation 96. Much of this calcium release is associated with mGluR1 activation, which 

results in the release of ER-mediated calcium stores through IP3 signaling 97, along with 

Trpc3 26 and voltage-gated calcium channel 98 activation. Therefore, the spatial and 

temporal modulation of dendritic cytosolic [Ca2+] must be tightly regulated by KCa 

channels in order to properly encode synaptic information. These studies indicate that 

KCa channels are important not only for somatic spiking, but also for the local modulation 

of excitability in Purkinje neuron dendrites. 

1.2.2 Calcium channel-mutant mice display abnormal Purkinje neuron membrane 

excitability and motor impairment 

 Early studies in calcium channel-mutant mice indicated that impaired Purkinje 

neuron spiking correlates strongly with motor impairment in ataxia. These studies were 

performed in mice with mutations in Cav2.1, the P/Q-type calcium channel encoded by 

the Cacna1a gene 99-101. Normally, autonomous spiking in Purkinje neurons is very 

precise, with little variation in the duration of the interspike interval. Strikingly, Purkinje 

neurons in these mouse models show irregular spiking compared to wild-type controls, 

as evidenced by an increase in the coefficient of variation of the interspike interval 
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between action potentials 82, 102. Consistent with a role for calcium entry to regulate KCa 

channel activity, SK channel activators improve both Purkinje neuron spike regularity 

and motor performance in calcium channel-mutant mice 82, 83. Additionally, the spiking of 

neurons of the deep cerebellar nuclei, which receive input from Purkinje neurons and 

act as the output of cerebellar motor processing, is also dependent on KCa activity 103. 

This suggests that there is a direct link between ion-channel function, Purkinje neuron 

spiking, and motor output from the cerebellum, and that pharmacologic agents which 

target ion-channel dysfunction may have therapeutic potential. 

1.2.3 Calcium-activated potassium channel modulators improve motor 

performance in mouse models of polyglutamine spinocerebellar ataxia 

 As outlined in Section 1.1.4, ion-channel dysfunction is associated with rodent 

models of polyQ SCA. While these models display some differences in their 

respectively-affected ion-channel complement, some similarities do exist between these 

distinct models. For instance, KCa channel dysfunction appears to be a common source 

of Purkinje neuron dysfunction across polyQ SCA models. In the ATXN1[82Q] model of 

SCA1, increased Purkinje neuron excitability and a subsequent lack of somatic spiking 

can be explained, in part, by BK channel dysfunction. In these mice, genetic re-

expression of BK channel transcripts improves motor function on a rotarod 71. 

Additionally, non-firing Purkinje neurons from ATXN[82Q] mice display improved spiking 

and motor performance when treated with KCa activators 73. A separate study has 

demonstrated that alterations in Purkinje neuron spiking can be corrected by 

aminopyridines 104, compounds which non-selectively block voltage-gated potassium 

channels and which have been previously shown to indirectly activate KCa channels 105. 
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Together, these data suggest that KCa channels are important therapeutic targets in 

SCA1.  

 Similar to SCA1, in the ATXN2[58Q] transgenic model of SCA2, irregular 

Purkinje neuron spiking is observed both in vitro and in vivo 75, 76. When treated with 

KCa-activating compounds, Purkinje neuron firing properties are restored to ATXN2[58Q] 

mice, in addition to improved motor performance 76. Additionally, a direct interaction 

between ATXN2 and the inositol 1,4,5-trisphosphate (IP3) receptor results in abnormal 

calcium signaling in ATXN2[58Q] mice which can be improved by treatment with 

dantrolene, a ryanodine receptor inhibitor 106. Dantrolene also improves motor 

impairment in ATXN2[58Q] mice 106, suggesting that normalizing calcium signaling may 

either directly reduce calcium-mediated excitotoxicity or may improve the function of KCa 

channels to improve Purkinje neuron pacemaking. Overall, these studies indicate a 

clear role for potassium channel dysfunction which impairs Purkinje neuron spiking and 

thereby contributes to motor impairment in SCA2. 

 In the ATXN3[84Q] transgenic mouse model of SCA3, Purkinje neurons display 

altered spiking in association with increased inactivation of Kv1 potassium channels 77. 

The SK channel-activating compound SKA-31 improves spiking in ATXN3[84Q] Purkinje 

neurons and also improves motor performance, indicating that potassium channel 

dysfunction can be targeted pharmacologically in these mice 77. Similar to ATXN2[58Q] 

mice, abnormal calcium signaling has been noted in ATXN3[84Q] mice. ATXN3 directly 

interacts with the IP3 receptor to increase calcium release events 107. Inhibition of 

intracellular calcium release through dantrolene also improves motor performance and 

reduces Purkinje neuron degeneration 107, suggesting that a common disease 
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mechanism may contribute to altered calcium homeostasis across mouse models of 

SCA2 and SCA3. 

 Finally, in a mouse model of SCA6, potassium channel modulation targets 

aberrant Purkinje neuron spiking. The compound 4-aminopyridine (4-AP), a potassium 

channel blocker which also indirectly activates KCa channels 105, restores spike 

regularity to SCA684Q/84Q Purkinje neurons both in vitro and in vivo 78. Interestingly, 

chronic treatment with 4-AP improves motor function in SCA684Q/84Q mice 78. These data 

suggest that Purkinje neuron spiking abnormalities are present in a mouse model of 

SCA6, and that these alterations in spiking may be targeted by potassium channel 

modulators. 

These studies in SCA1, SCA2, SCA3, and SCA6 highlight a role for potassium 

channel dysfunction in altered Purkinje neuron physiology in ataxia. It is important to 

recognize, however, that alterations in different ion-channels can produce similar 

alterations in Purkinje neuron firing. It is therefore important to understand the specific 

ion-channel changes that underlie altered spiking in ataxia. Overall, activating calcium-

activated potassium channels appears to correct altered spiking resulting from a variety 

of different etiologies, and represents a therapeutic target that is shared across multiple 

forms of ataxia. 

1.2.4 Human clinical trials with calcium-activated potassium channel modulators 

indicate potential efficacy 

Designing effective therapies for SCA has proven difficult. Although most SCAs 

share clinical features, the underlying genetic mutations are diverse and in some cases 

remain unknown. Recent work has demonstrated the therapeutic potential of gene 
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silencing therapies for ataxia. Among the most promising of these therapies are the 

antisense oligonucleotide (ASO)-based strategies in the polyglutamine SCAs. In mouse 

models of SCA2 and SCA3 108, 109, ASOs have been shown to reduce expression of the 

respective disease-causing proteins, along with providing lasting improvements in motor 

performance in SCA2 mice 108, 109. Additionally, ASO treatment improves firing 

abnormalities in two mouse models of SCA2, suggesting that transcriptional changes 

affecting ion-channel expression may be improved upon ASO treatment 109. Although 

ASOs offer an exciting avenue of treatment for the polyglutamine SCAs, these therapies 

will likely offer limited therapeutic benefit SCAs in which disease-causing mutations are 

not autosomal dominant gain-of-function mutations, or are in cellular pathways where 

knocking down mutant protein is deleterious. In these cases, a more appropriate 

approach to therapy may be to identify shared features of disease which are observed 

across many etiologies of SCA. Emerging evidence presented in this dissertation 

suggests that electrophysiologic dysfunction may be a shared feature of many SCAs. 

Recent clinical trials with riluzole for the treatment of SCA suggest that shared 

features of neuronal dysfunction also exist in human disease 110, 111. While riluzole has 

several ion-channel targets, it is a known activator of KCa channels 112, 113. KCa channel 

activators demonstrate therapeutic potential in the treatment of SCAs 76, 77, 83, 114. A 

larger clinical trial with a pro-drug of riluzole is ongoing (ClinicalTrials.gov Identifier: 

NCT02960893). In addition, a recent study indicated that a combination of 

chlorzoxazone and baclofen, two potassium channel-activating compounds which 

respectively activate KCa channels and other potassium channel targets, are tolerated in 

human SCA patients and may also improve symptoms 73. While yet preliminary, these 



16 
 

trials suggest the promise of ion-channel modulators for the treatment of SCA. Future 

research should focus on the design of other ion-channel modulators with increased 

specificity and potency to correct symptoms that result from neuronal dysfunction. 

1.3 Summary and aims of dissertation 

 Cerebellar Purkinje neuron dysfunction is a common feature of mouse models of 

SCA, even in models where mutations in ion-channel genes are not the primary cause 

of disease. Work in these animal models has highlighted a role for ion-channel 

modulation as a potential symptomatic treatment strategy in SCA. However, these 

studies largely address alterations in Purkinje neuron physiology on a case-by-case 

basis and do not explore potential common mechanisms of neuronal dysfunction across 

different etiologies of SCA. In order to address how specific ion-channel dysfunction 

contributes to neuronal dysfunction in SCA, my dissertation seeks to explore the 

underlying mechanisms of altered Purkinje neuron membrane excitability in mouse 

models of two different SCAs, spinocerebellar ataxia type 1 (SCA1) and spinocerebellar 

ataxia type 7 (SCA7). In addition to characterizing these alterations in excitability, I seek 

to determine whether calcium-activated potassium channels, identified in these studies 

as dysfunctional, may be appropriate pharmacologic targets to improve behavioral 

deficits in SCA. 

 Three major aims are addressed in this dissertation. The first aim is to determine 

the contribution of calcium-activated potassium channel dysfunction to both somatic and 

dendritic membrane excitability in a mouse model of SCA1, and to determine whether 

these compartment-specific changes in excitability contribute independently to motor 

impairment in ataxia. Additionally, this aim seeks to determine whether potassium 
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channel activating-compounds may be tolerated by human ataxia patients. The second 

aim is designed to determine whether physiologic alterations exist in a mouse model of 

SCA7, and to identify the underlying sources of Purkinje neuron dysfunction. Findings 

from the second aim lead to the third aim, which is to determine whether improving 

transcriptional dysregulation in SCA7 mice can be accomplished by sirtuin-1 

overexpression, and whether improving ion-channel transcript expression can improve 

Purkinje neuron membrane excitability in SCA7 mice. 
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Figure 1.1 Ion-channel dysfunction is associated with spinocerebellar ataxia in 
humans and rodent models. Ion-channels, which are displayed in the cell membrane, 
and other ion-channel associated proteins causing spinocerebellar ataxia in humans or 
rodent models of disease, are shown. SCAs associated with each protein are listed 
above or under each protein. Mutations which result in an SCA channelopathy are listed 
in red. Ion-channel dysfunction in mouse models of polyQ SCA are listed in blue. Dravet 
syndrome, a severe myoclonic epilepsy of infancy which can result in ataxia, is shown in 
green. Dashed arrows signify a protein-protein interaction. Solid arrows signify the 
direction of ion movement upon channel activation. Abbreviations: SCA, spinocerebellar 
ataxia; polyQ, polyglutamine; Nav, voltage-gated sodium channel; Kv, voltage-gated 
potassium channel; Cav, voltage-gated calcium channel; BK, large conductance 
calcium-activated potassium channel; TRPC3, transient receptor potential cation 
channel type 3; mGluR1, metabotropic glutamate receptor type 1; FGF14, fibroblast 
growth factor 14; ITPR1, inositol 1,4,5 trisphosphate receptor type 1; PLC, 
phospholipase C; Na+, sodium ion; K+, potassium ion; Ca2+, calcium ion. 
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Gene Associated ataxia 
or inherited 
disorder 

Encoded channel or 
protein 

Normal function 

CACNA1A SCA6 55,  
Episodic ataxia 
type 2 115 

Cav2.1 
 
Voltage-gated calcium 
channel, pore-forming 
subunit 

Inward calcium 
current (P/Q-type) 
upon depolarization 
 
Coupled to KCa 
channels to regulate 
spike frequency and 
regularity 

KCNC3 SCA13 30-32 Kv3.3 
 
Voltage-gated potassium 
channel 

Potassium entry upon 
membrane 
depolarization, 
causing 
hyperpolarization 

ITPR1 SCA15 44, 45, 
SCA16 43,  
SCA29 46-48 

Inositol 1,4,5-trisphosphate 
(IP3) receptor 

Calcium release from 
internal stores upon 
IP3 binding 

KCND3 SCA19 36,  
SCA22 37 

Kv4.3 
 
Voltage-gated potassium 
channel 

Potassium entry upon 
membrane 
depolarization, 
causing 
hyperpolarization 

SCN1A Dravet syndrome 
116 

Nav1.1 
 
Voltage-gated sodium 
channel, pore-forming 
subunit 

Sodium entry and 
membrane 
depolarization during 
the action potential 

FGF14 SCA27 117 Fibroblast growth factor 13 Interacts with Nav to 
influence excitability 

TRPC3 SCA41 3 Transient receptor potential 
cation channel type 3 

Essential for mGlur1-
mediated synaptic 
transmission, long-
term depression 

CACNA1G SCA42 2, 4 Cav3.1 
 
Voltage-gated calcium 
channel 

Inward calcium 
current (T-type) upon 
depolarization 

KCNMA1 Unnamed SCA 5, 6 KCa1.1 
 
Large conductance calcium-
activated potassium (BK) 
channel  

Outward K+ current 
upon activation 
 
Regulates spike 
frequency and 
regularity 

 
Table 1.1 Ion-channel mutations resulting in spinocerebellar ataxia. Known SCA 
channelopathies are listed. The associated gene is listed for each SCA, along with the 
known functional roles of each ion-channel or protein.
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Chapter 2 

Potassium channel activation improves Purkinje neuron physiology 

and motor impairment in a mouse model of spinocerebellar ataxia 

type 1 

2.1 Abstract 

Purkinje neuron dysfunction is associated with cerebellar ataxia. However, the 

link between specific alterations in Purkinje neuron membrane excitability and motor 

impairment is not fully understood. In a mouse model of spinocerebellar ataxia type 1 

(SCA1), reduced potassium channel function contributes to altered membrane 

excitability resulting in impaired Purkinje neuron spiking. I sought to determine the 

relationship between altered membrane excitability and motor dysfunction in SCA1 

mice. Using patch-clamp recordings in acute cerebellar slices, I found that activating 

calcium-activated and subthreshold-activated potassium channels improved Purkinje 

neuron spiking impairment in SCA1 mice. Additionally, dendritic hyperexcitability was 

improved by activating subthreshold-activated potassium channels but not calcium-

activated potassium channels. I found that improving Purkinje neuron spiking and 

dendritic hyperexcitability through a combination of chlorzoxazone and baclofen 

produced sustained improvement in motor dysfunction in SCA1 mice. Finally, 

retrospective review of SCA patient records suggests that co-treatment with 

chlorzoxazone and baclofen is tolerated and may improve symptoms. Together, these 
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data suggest that potassium channel activators may improve motor impairment in SCA 

by improving alterations in Purkinje neuron excitability. Future clinical trials with 

potassium channel activators are warranted in cerebellar ataxia. 

2.2 Introduction 

Degenerative cerebellar ataxias are a group of disorders with progressive 

changes in balance, speech, and gait, often leading to wheelchair confinement. 

There is a need for agents which improve motor dysfunction in cerebellar ataxia, 

as there is currently no approved treatment for these debilitating disorders. In 

mouse models, neuronal dysfunction precedes neuronal loss and occurs with the 

onset of motor dysfunction70-72, 77.  In human autopsy material, in addition to cell 

loss, morphologically abnormal neurons are consistently present118. This 

suggests that neuronal dysfunction may be an important feature of cerebellar 

ataxia.  Defining this neuronal dysfunction represents an outstanding target for 

treatment of motor dysfunction in cerebellar ataxia. 

Spinocerebellar ataxias (SCA) are a group of dominantly inherited 

disorders affecting the cerebellum and related pathways. The most common 

SCAs (SCA1, SCA2, SCA3, and SCA6) result from glutamine-encoding repeat 

expansions in the respective disease-causing genes1. Cerebellar Purkinje neuron 

degeneration is particularly prominent in autopsy tissue from SCA1, SCA2, and 

SCA6 patients. In addition, recent studies have demonstrated that Purkinje 

neuron function is altered at the onset of motor impairment in mouse models of 

SCA1 and SCA270-72. Coordinated activity of an assortment of ion-channels 

supports repetitive spiking in Purkinje neurons even in the absence of synaptic 



22 
 

input14, 119, 120. In mouse models of SCA1-3, a subset of Purkinje neurons exhibit a loss 

of spontaneous spiking and a depolarized membrane potential early in disease, which is 

related to reduced function of potassium channels70, 71, 77. Similarly, potassium channel 

dysfunction contributes directly to dendritic hyperexcitability in these neurons, which 

may disrupt dendritic signal integration and contributes to neurodegeneration 73, 74, 121. 

Although these studies demonstrate a clear relationship between altered Purkinje 

neuron physiology and motor impairment, the exact role for altered spiking and 

increased dendritic excitability in causing motor dysfunction is unclear. 

Ion-channels are becoming increasingly recognized as outstanding targets for 

the treatment of cerebellar ataxia. Many SCAs are caused by conventional mutations in 

ion-channel genes (KCNMA1, KCNC3, KCND3, CACNA1A, CACNA1G, ITPR1, 

SCA8A, TRPC3)1-4, 6, 31, 36, 37, 45, and alterations in ion-channel function are secondary to 

disease-causing mutations in several mouse models of spinocerebellar ataxia (SCA1, 

SCA2, SCA3, SCA6)70-72, 77, 78. In mouse models of SCA, ion-channel modulators 

correct irregular Purkinje neuron spiking and improve motor impairment76, 78. Recently, 

clinical trials for the compound riluzole have demonstrated therapeutic promise for the 

treatment of several forms of SCA110, 111. The known targets of riluzole include calcium-

activated potassium channels, some subthreshold-activated potassium channels, and 

voltage-gated sodium channels112, 113. It is important to determine which ion-channel 

targets are relevant for treating symptoms in order to identify effective drugs with 

reduced potential for off-target effects. 

In this study, I identify potassium channel modulators which improve Purkinje 

neuron spiking and dendritic hyperexcitability in SCA1 mice. These studies suggest that 
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targeting abnormalities in Purkinje neuron spiking alone may be an effective 

short-term therapeutic strategy, but that only a strategy which improves both 

spiking and dendritic hyperexcitability provides long-term benefit of motor 

dysfunction in SCA1 mice. Potassium channel modulators that are effective in 

improving motor dysfunction in the mouse model, and are also approved for 

human use, are tolerated by patients with SCA and may be effective in improving 

motor dysfunction in forms of ataxia with prominent Purkinje neuron involvement. 

2.3 Methods 

2.3.1 Mice 

All animal procedures were approved by the University of Michigan Committee on the 

Use and Care of Animals, and were conducted in accordance with the United States 

Public Health Service’s Policy on Human Care and Use of Laboratory Animals. 

Homozygous ATXN1[82Q] transgenic mice122, which overexpress human ATXN1 with 

82 CAG repeats selectively in cerebellar Purkinje neurons under the Pcp2 promotor, 

were maintained on an FVB background. Wild-type FVB mice (Jackson Labs) were 

used as controls for all experiments. All data presented from these experiments were 

from mice at either 5 weeks of age or 14 weeks of age. Sexes were balanced for all 

animal studies. For studies involving animals, an uppercase “N” denotes the number of 

mice used per group, while a lowercase “n” denotes the number of cells used per group. 

2.3.2 Patch-clamp electrophysiology 

2.3.2.1 Patch-clamp electrophysiology: solutions 

Artificial CSF (aCSF) contained the following (in mM): 125 NaCl, 3.8 KCl, 26 NaHCO3, 

1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 10 glucose. For sections made at 4oC, cutting solution 
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contained the following (in mM): 87 NaCl, 2.5 KCl, 25 NaHCO3, 1 NaH2PO4, 0.5 CaCl2, 

7 MgCl2, 75 sucrose, 10 glucose. Unless otherwise specified, pipettes were filled with 

an internal recording solution containing the following (in mM): 119 K Gluconate, 2 Na 

gluconate, 6 NaCl, 2 MgCl2, 0.9 EGTA, 10 HEPES, 14 Tris-phosphocreatine, 4 MgATP, 

0.3 tris-GTP, pH 7.3, osmolarity 290 mOsm. Proper calcium buffering is important in 

order to support proper calcium-activated potassium channel function. The EGTA 

concentration was chosen based on previous studies which indicate that 0.5-1.0 mM 

EGTA maintains Purkinje neuron  calcium-activated potassium channel function similar 

to endogenous calcium buffering 70, 71, 77, 123-127. In order to block potassium channels in 

some dendritic excitability experiments, pipettes were filled with an internal recording 

solution containing the following (in mM): 140 CsCl, 2 MgCl2, 1 CaCl2, 10 EGTA, 10 

HEPES, 4 Na2ATP, pH 7.3, osmolarity 287 mOsm. 

2.3.2.2 Patch-clamp electrophysiology: reagents 

Baclofen (Sigma Aldrich, Cat. No. B5399) was used at 10 µM for studies involving 

somatic spiking, and at 2 µM for experiments assessing dendritic excitability. 

Chlorzoxazone (Sigma Aldrich, Cat. No. C4397) was used at 50 µM for all in vitro 

experiments. SKA-31 was synthesized in-house and was used at 10 µM for all in vitro 

experiments. 1-EBIO (Tocris, Cat. No 1041) was used at 100 µM for all experiments. 

Barium chloride (Sigma Aldrich, Cat. No. 217565) was used at 50 µM or 500 µM to 

block subthreshold-activated potassium channels. Cadmium chloride (Sigma Aldrich, 

Cat. No. C3141) was used at 100 µM to block voltage-gated calcium channels. 

Tetrodotoxin (Alomone Labs, Cat. No. T-550) was used at 1µM. During some 
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assessments of dendritic excitability, U-73122 (Tocris, Cat. No. 1268) was added to the 

internal pipette solution at a concentration of 10 µM to inhibit phospholipase C. 

2.3.2.3 Acute slice preparation for electrophysiological recordings 

Mice were anesthetized by isoflurane inhalation, decapitated, and brains removed for 

slice preparation. For measurements of somatic spiking and whole-cell somatic 

physiology (Figs 1-3), slices were prepared in cutting solution at 4oC as previously 

described 70, 71, 77, 103, 128. For dendritic calcium spike experiments, slices were prepared 

in pre-warmed (33oC) aCSF. Slice preparation at 33oC for Purkinje neuron recordings 

has been performed previously 129, 130 and results in better preservation of dendritic 

morphology in our studies. Slices were prepared using a vibratome (Leica) to 300 µm 

thickness. Slices were incubated in 33oC aCSF bubbled with 5% CO2 and 95% O2 

(carbogen) for 45 minutes after sectioning. 

2.3.2.4 Patch-clamp recordings 

Patch-clamp recordings were performed as described previously 70. Cell-attached and 

whole-cell recordings were performed at 33oC in carbogen-bubbled aCSF at a flow rate 

of 2-3 ml/min 1-5 hours after slice preparation. Recordings were performed using an 

Axopatch 200B amplifier, Digidata 1440A interface, and pClamp-10 software (MDS 

analytical technologies, Sunnyvale, CA). Data were acquired at 100 kHz in the fast 

current clamp mode of the amplifier and filtered at 2 kHz. For some dendritic excitability 

experiments, data were acquired using an Axon Multiclamp 700B amplifier, with voltage 

data acquired in current-clamp mode with bridge balance compensation and filtered at 2 

kHz. Cells were rejected if the series resistance changed by more than 20% over the 

duration of the recording, or if it exceeded 15 MΩ. Voltage traces were corrected for a 
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10 mV liquid junction potential. For all recordings involving pharmacologic agents, 

baseline data was acquired for 5 minutes before introducing agents into the bath. 

Effects on spiking persisted for the duration of the experiment, in some cases more than 

30 minutes. 

2.3.2.5 Analysis of intrinsic dendritic excitability 

Analysis of intrinsic dendritic excitability was performed as described previously 91. 

Briefly, neurons were held at -80 mV in the whole-cell recording configuration in the 

presence of tetrodotoxin (1 µM) to block voltage-gated sodium channels. Purkinje 

neuron somata were then injected with depolarizing current in +50 pA increments until 

calcium spike events were noted. This amount of injected current was used as a 

correlate of dendritic excitability for all studies. 

2.3.3 Phenotype analysis 

Motor phenotype was analyzed by performance on a rotarod. This study was powered 

to detect a 25% improvement in motor performance, which was estimated to require at 

least 8 mice in each ATXN1[82Q] group. In order to eliminate sampling bias, entire 

litters of mice were randomly allocated to treatment groups used for all behavioral 

experiments. Since litter size is variable, this sometimes resulted in an unequal number 

of animals used in each experimental group, but all ATXN1[82Q] groups included at 

least 8 mice. For all experiments, mice were handled for three consecutive days starting 

at 25 days of age in order to acclimate to the experimenter and test environment. Mice 

were then trained on an accelerating rotarod (4 to 40 rpm, at a rate of 0.12 rpm/s) for 

three days followed by one training day at constant speed (24 rpm). Baseline rotarod 

performance is variable between individual cohorts of mice, so all experimental groups 
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were represented in each behavioral cohort. Despite baseline differences in 

performance between cohorts, we always observed impaired motor performance in 

ATXN1[82Q] mice compared to wild-type controls. In spite of controlling for testing time-

of-day and experimenter, inherent biological variability in motor performance exists 

within both ATXN1[82Q] and wild-type mice. For this reason, all conditions for each 

experiment were included during each run of an experiment. It is therefore misleading to 

directly compare performance of either ATXN1[82Q] or wild-type mice across different 

experimental groups. Because of this inherent variability, mice were randomized into 

groups based on their baseline performance on the final day of training, and all groups 

were balanced by sex and mean group performance in order to establish a standard 

baseline within each behavior cohort. Drug or vehicle was then administered via water 

bottles for the duration of the experiment after the final day of training. Mice were tested 

for four or five days at a constant speed (24 rpm) starting at 35 days of age for the early 

time point, and most groups were re-tested at 98 days (14 weeks) of age for the long-

term time point. Latency score was recorded as either the time taken before the animal 

fell off the bar, or if an animal made three full rotations on the rotating bar, to a 

maximum time of 300 seconds. Mice were maintained with water bottle delivery of drug 

for the duration of the behavioral experiment. After testing at the late time point, mice 

were sacrificed and brains preserved for analysis of drug concentrations. The tester 

remained blind to genotype and treatment condition during experimentation. 

Performance on the rotarod was analyzed with a two-way repeated-measures ANOVA 

by trial with Holm-Sidak multiple comparison test. 
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2.3.4 Water bottle delivery of pharmacologic agents 

Baclofen was dissolved in drinking water at 350 μM for all studies. SKA-31 was 

dissolved in drinking water at 600 μM for all studies. Since SKA-31 is not easily water-

soluble, drinking water also contained 0.05% β-(hydroxypropyl)-cyclodextrin and 40µL/L 

of 1N NaOH, and supplemented with up to 8% sucrose. Chlorzoxazone was dissolved 

in drinking water at 15 mM as described previously 131. Similar to SKA-31, drinking 

water containing chlorzoxazone also contained 0.05% β-(hydroxypropyl)-cyclodextrin 

and 40 µL/L of 1N NaOH, and supplemented with up to 8% sucrose. For vehicle 

treatment, drinking water containing 0.05% β-(hydroxypropyl)-cyclodextrin, NaOH, and 

sucrose was used. Water bottles were changed twice weekly. Mice were treated with 

water bottles beginning at 28 days of age and maintained on water bottles for the 

duration of the experiment. 

2.3.5 Mass spectrometry of brain tissue and blood plasma 

LC/MS analysis for SKA-31, chlorzoxazone and baclofen was performed with a Waters 

Acquity UPLC (Waters, NY, USA) interfaced to a TSQ Quantum Access Max mass 

spectrometer (MS) (Thermo Scientific, Waltham, MA, USA). 

2.3.5.1 SKA-31 mass spectrometry 

Commercial SPE cartridges (Hypersep C18, 100 mg, 1 mL, Thermo Scientific) were 

conditioned with acetonitrile, 2×1 mL, followed by water 2×1 mL. After loading the SPE 

cartridges with plasma samples, they were washed with 2 mL of 20% acetonitrile in 

water and eluted with 2 mL of acetonitrile. Elute fractions were evaporated to dryness, 

reconstituted with 200 μL acetonitrile and used for LC-MS analysis. For brain samples 

200 mg of tissue were homogenized thoroughly in 4.0 mL of acetonitrile using a T25 
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digital ULTRA-TURRAX® homogenizer (IKA® Works Inc., NC), centrifuged for 10 min 

at 4000 rpm, and the supernatant separated and evaporated. The residues were 

reconstituted in 200 μL acetonitrile and loaded onto the preconditioned SPE cartridges 

and then eluted as described above. Load and elute fractions were collected and 

evaporated to dryness. The residues were reconstituted with 200 μL acetonitrile and 

used for LC-MS analysis on an Acquity UPLC BEH C-18 column 1.7 μM, 2.1 X 50 mM 

(Waters) using an isocratic mobile phase (45% acetonitrile and 55% water containing 

0.1% formic acid) with a flow rate of 0.25 ml/min. Under these conditions SKA-31 had a 

retention time of 1.17 min. Mass conditions: heated electrospray ionization (HESI II) in 

positive ion mode, capillary temperature 350°C, vaporizer temperature: 325°C, spray 

voltage 4000 V, sheath gas pressure (N2) 30 units, SKA-31 was analyzed by the 

selective reaction monitoring (SRM) transition of its molecular ion peak 201.04 (M+1) 

into 115.16 m/z. 

2.3.5.2 Baclofen mass spectrometry 

Baclofen was extracted by plasma precipitation; 1.0 mL ethanol was added to 200 μL 

plasma and the resulting precipitate vortexed for 30 sec. Samples were the centrifuged 

for 5 min at 4000 rpm, the supernatant separated and evaporated to dryness under a 

constant air flow. The residues were reconstituted with 200 μL water:acetonitrile (1:1) 

and used for LC-MS analysis. For brain samples 200 mg of tissue were homogenized 

thoroughly in 4.0 mL of acetonitrile using a T25 digital ULTRA-TURRAX® homogenizer, 

centrifuged for 10 min at 4000 rpm, and the supernatant separated and evaporated. The 

residues were reconstituted with 200 μL acetonitrile and used for LC-MS analysis on an 

Acquity UPLC BEH C-8 column 1.7 μM, 2.1 X 150 mM (Waters) using an isocratic 
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mobile phase (10% acetonitrile and 90% water containing 0.1% formic acid) with a flow 

rate of 0.20 ml/min. Under these conditions baclofen had a retention time of 2.1 min. 

Mass conditions: Heated electrospray ionization (HESI II) in positive ion mode, capillary 

temperature 300°C, vaporizer temperature: 250°C, spray voltage 3000 V, sheath gas 

pressure (N2) 35 units, baclofen was analyzed by the SRM transition of its molecular ion 

peak 214.04 (M+1) into 151.03 m/z. 

2.3.5.3 Chlorzoxazone mass spectrometry 

Chlorzoxazone was extracted by plasma precipitation; 3.0 mL acetonitrile was added to 

200 µL plasma, diluted with 200 µL of water and the resulting precipitate vortexed for 30 

sec. Samples were then centrifuged for 5 min at 4000 rpm, the supernatant separated 

and evaporated to dryness. The residues were reconstituted with 200 μL 

water:acetonitrile (1:1) and used for LC-MS analysis. For brain samples 200 mg of 

tissue were homogenized thoroughly in 4.0 mL of acetonitrile using a T25 digital 

ULTRA-TURRAX® homogenizer, centrifuged for 10 min at 4000 rpm, and the 

supernatant separated and evaporated. The residues were reconstituted with 200 μL 

acetonitrile and used for LC-MS analysis on a Acquity UPLC BEH C-18 column 1.7 μM, 

2.1 X 50 mM (Waters) using mobile phase gradient varying from of 5% acetonitrile and 

95% water both containing 0.1% formic acid (0-1.5 min.) to 30% acetonitrile and 70% 

water (1.51-5.0 min.) and back to 5% acetonitrile and 95% water (5.01-6.0 min.) with a 

flow rate of 0.20 ml/min. Under these conditions chlorzoxazone had a retention time of 

2.7 min. Mass conditions: Heated electrospray ionization (HESI II) in negative ion mode, 

capillary temperature 300°C, vaporizer temperature: 250°C, spray voltage 3000 V, 
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sheath gas pressure (N2) 25 units, chlorzoxazone was analyzed by the SRM transition 

of its molecular ion peak 167.99 (M-1) into 132.07 m/z.  

2.3.6 Molecular layer thickness measurements 

Mice were anesthetized under isoflurane inhalation and brains were removed, fixed in 

1% paraformaldehyde for 1 hour, and then placed in 30% sucrose in PBS for 48 hours. 

Parasagittal sections of 14 μm were made on a CM1850 cryostat (Leica). To label 

Purkinje neurons, rabbit anti-calbindin (1:200, Cat. no. 13176, Cell Signaling) and goat 

anti-rabbit Alexa488-conjugated secondary (1:200, Ref. no. A11008, Life Technologies 

Invitrogen) or goat anti-rabbit Alexa594-conjugated secondary (1:200, Ref. no. A21125, 

Life Technologies Invitrogen) were used. Sections were imaged using an Axioskop 2 

plus microscope (Zeiss) using CellSens software (Olympus) at 10x magnification. To 

measure thickness of the molecular layer, the major fissure was identified and captured. 

Using CellSens, a 100 μm line was drawn down the opening of the fissure. Next, a 

perpendicular line was drawn from the end of the first line on the fissure and along the 

molecular layer of the closest Purkinje neuron, to the center of the soma of this neuron. 

Molecular layer thickness was defined as the distance of this perpendicular line and was 

recorded for both lobule 5 and lobule 6. For each animal, two measurements were 

averaged in order to limit variability from slicing or mounting artifacts. Sample 

preparation, imaging, and analysis were performed with the experimenter blind to 

genotype. 

2.3.7 Review of patient charts 

Patients were selected from the University of Michigan Ataxia Clinic. All patients seen 

between January 2014 and December 2016 with a diagnosis of SCA1, SCA2, SCA6, 
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SCA7, SCA8, and SCA13, where prominent Purkinje neuron involvement is noted at 

autopsy, and for whom follow up data were available as of December 2016, were 

included in this analysis. Patient SARA scores were obtained prior to beginning 

treatment with chlorzoxazone and baclofen and were measured at all subsequent follow 

up visits. While patient SARA scores were recorded as part of their clinical care, the 

primary intent of this retrospective review was to determine the tolerability of combined 

baclofen and chlorzoxazone treatment. Clinical drug information databases discourage 

combined treatment with chlorzoxazone and baclofen132. In addition, the Beers Criteria 

of the American Geriatrics Society also discourages treatment with chlorzoxazone133. 

For patients who were maintained on this combination, SARA scores were charted at all 

follow up visits and are reported until December 2016, through which IRB approval was 

granted. In order to look for signal for therapeutic benefit, we identified the minimum 

SARA score relative to the SARA score recorded prior to initiation of medications. Over 

follow up visits, some patients showed a reduction in SARA score following which they 

had worsening symptoms, while other patients continued a decline in SARA score 

across serial visits. The goal of reporting patient SARA scores is to identify whether 

there is potential benefit in order to justify future randomized controlled clinical trials. 

Approval for retrospective review of patient charts seen through the University of 

Michigan Ataxia Clinic was submitted to the Institutional Review Board (IRB) for human 

subjects. The IRB reviewed the study application and determined that it is exempt from 

ongoing IRB review, per the federal exemption category: Exemption #4 of the 45 CFR 

46.101.(b): Research involving the collection or study of existing data, documents, 

records, pathological specimens, or diagnostic specimens, if these sources are publicly 
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available or if the information is recorded by the investigator in such a manner 

that subjects cannot be identified, directly or through identifiers linked to the 

subjects. Approval was granted for review of records through December 2016.  

2.3.8 Statistical analysis 

Statistical significance for electrophysiology data was assessed by either unpaired 

Student’s t-test, paired Student’s t-test, or Fisher’s exact test with Bonferroni post-

correction for multiple comparisons. For behavioral studies, a two-way ANOVA with 

Holm-Sidak post-correction for multiple comparisons was used. Data were considered 

significant if the adjusted p<0.05. Data are expressed as mean ± standard error of the 

mean, unless otherwise specified. Data were analyzed using SigmaPlot (Systat 

Software, Inc.), GraphPad Prism (GraphPad Software, Inc.) and Excel (Microsoft Corp.). 

2.4 Results 

2.4.1 ATXN1[82Q] Purkinje neurons display both and absence of repetitive 

spiking and dendritic hyperexcitability 

Alterations in Purkinje neuron spiking have been demonstrated previously 

in the ATXN1[82Q] mouse model of SCA1 71. In order to confirm these findings, I 

performed cell-attached electrophysiological recordings in acute cerebellar slices 

from Purkinje neurons from ATXN1[82Q] and wild-type mice at 5 weeks of age 

(Fig 2.1A-B). As demonstrated previously, I observed that a significant portion of 

ATXN1[82Q] Purkinje neurons displayed an absence of repetitive spiking when 

compared to wild-type neurons, which uniformly displayed repetitive spiking (Fig 

2.1C; firing frequency 52.2 ± 5.6 Hz, coefficient of variation of spiking 0.112 ± 

0.008). In the whole-cell recording configuration, these non-firing cells showed a 
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depolarized membrane potential of -41 mV (Fig 2.1D), similar to what has been 

previously described 71. These alterations in membrane excitability are 

associated with a reduction in the amplitude of the after-hyperpolarization (AHP) of the 

action potential (Fig 2.1E-F), which is generated by calcium-activated potassium 

channels 17, 18, 71. Since loss of potassium channels is associated with increased 

dendritic excitability91, I also determined whether Purkinje neuron dendrites from 

ATXN1[82Q] mice were hyperexcitable. Purkinje neurons were held in the whole-cell 

recording configuration at  -80 mV in the presence of tetrodotoxin (TTX, 1 µM) in order 

to block voltage-gated sodium channels, and were injected with incremental steps of 

depolarizing current until dendritic calcium spikes were detected. In response to 

depolarizing current injection, ATXN1[82Q] Purkinje neurons displayed a lower 

threshold to evoke dendritic calcium spikes, a correlate of increased dendritic excitability 

(Fig 2.1G-I) 91. Input resistance was not different between wild-type and ATXN1[82Q] 

Purkinje neurons (data not shown). Therefore, Purkinje neurons from ATXN1[82Q] mice 

exhibit a phenotype of increased membrane excitability resulting in both altered spiking 

and increased dendritic excitability in association with membrane depolarization and a 

reduction in the amplitude of the AHP. 

2.4.2 Potassium channel-activating compounds restore spiking in non-firing 

ATXN1[82Q] Purkinje neurons 

Alterations in Purkinje neuron spiking in ATXN1[82Q] mice are associated with 

reductions in expression and function of large-conductance calcium activated potassium 

(BK) channels and subthreshold-activated potassium channels at the onset of motor 

impairment 71. In order to determine whether the alterations in physiology which 
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accompany these changes in channel function can be improved 

pharmacologically, I performed a targeted screen of potassium channel-

activating compounds with known roles in membrane repolarization or increasing 

AHP amplitude. A combination of chlorzoxazone and baclofen restored tonic 

spiking to non-firing ATXN1[82Q] Purkinje neurons in acute cerebellar slices (Fig 

2.2B). Chlorzoxazone is a known activator of calcium-activated potassium (KCa) 

channels, both BK and the related small-conductance calcium activated 

potassium (SK) channel 83, 131, 134, 135. Baclofen, a GABAB agonist, potentiates a 

subthreshold-activated potassium channel current in Purkinje neurons likely 

mediated by G-protein-coupled inwardly rectifying potassium (GIRK) channels136. 

In order to confirm whether KCa channels are a target for restored spiking in 

ATXN1[82Q] Purkinje neurons, I tested other known activators of KCa channels in 

the presence of baclofen to determine their ability to restore spiking. Spiking was 

restored in ATXN1[82Q] Purkinje neurons that displayed no spontaneous spiking 

when co-perfused with SKA-31 (Fig 2C) or 1-EBIO (Fig 2D), two known KCa 

channel activators 137, 138, and baclofen (summarized in Fig 2.2E). The firing 

frequency that was restored was, however, significantly lower than what is 

normally seen in wild-type Purkinje neurons (Chlorzoxazone + baclofen, 7.25 ± 

3.21 Hz; SKA-31 + baclofen, 10.13 ± 1.86 Hz; 1-EBIO + baclofen, 2.86 ±0.54 

Hz). Effects on spiking persisted for the duration of the experiment, in some 

cases more than 30 minutes (data not shown). Chlorzoxazone, SKA-31, or 

baclofen alone were unable to consistently restore spiking in non-firing 

ATXN1[82Q] Purkinje neurons (Fig 2.2E). This suggests that KCa and 
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subthreshold activated potassium channels must be targeted simultaneously in order to 

restore spiking in non-firing ATXN1[82Q] Purkinje neurons. 

2.4.3 KCa activators and baclofen enhance the AHP and repolarize the membrane 

potential of ATXN1[82] Purkinje neurons 

In order to determine the mechanism by which potassium channel activators 

restore spiking, I examined changes in membrane potential produced by these 

pharmacological agents. In the whole-cell configuration of the patch-clamp technique, 

baclofen (10 μM) repolarized the membrane potential of depolarized ATXN1[82Q] 

Purkinje neurons from -41 mV to -52 mV (Fig 2.3A). As shown previously 71, a 

combination of TTX and cadmium, to respectively block voltage-gated sodium and 

calcium channels, restored the normal resting membrane potential of ATXN1[82Q] 

Purkinje neurons (Fig 2.3A). These results suggest that subthreshold-activated 

potassium channels contribute in part to the depolarized potential of ATXN1[82Q] 

Purkinje neurons. The SK channel-activating compound SKA-31 extended the duration 

of the AHP in ATXN1[82Q] Purkinje neurons, suggesting that KCa-activating compounds 

(shown in Fig 2.2) likely act on the AHP to support repetitive spiking (Fig 2.3C-D). The 

net effect of baclofen and chlorzoxazone was to greatly enhance repolarization during 

the interspike interval (Fig 2.3E-H). However, the duration of the AHP is extended in 

ATXN1[82Q] Purkinje neurons perfused with chlorzoxazone and baclofen, consistent 

with the reduced firing frequencies in cells whose spiking is restored (see Fig 2.2B-E). 

This indicates that increasing the amplitude of the AHP through activation of KCa 

channels, in addition to membrane repolarization through activation of subthreshold-
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activated potassium channels, is required to facilitate repetitive spiking in 

depolarized ATXN1[82Q] Purkinje neurons. 

2.4.4 Chlorzoxazone and baclofen, but not SKA-31 and baclofen, sustains 

improvement in motor dysfunction in ATXN1[82Q] mice 

Prior studies in BK channel mutant mice have demonstrated alteration in 

Purkinje neuron spiking similar to what we observe in ATXN1[82Q] mice 18. Both 

pharmacologic and genetic models of BK channel dysfunction also exhibit 

profound motor impairment referable to cerebellar dysfunction 18, 42, 139. I 

therefore sought to determine whether agents which restore spiking could 

improve motor impairment in ATXN1[82Q] mice. In order to confirm oral 

absorption of chlorzoxazone, SKA-31, and baclofen, my collaborators and I 

performed mass spectrometry analysis of whole brain and plasma samples 

following administration of these agents through drinking water. All three agents 

achieved significant brain and plasma levels (SKA-31 brain 1.83 ± 1.30 µM, SKA-

31 plasma 39.39 ± 8.05 nM; chlorzoxazone brain 4.80 ± 1.72 µM, chlorzoxazone 

plasma 4.41 ± 2.05 µM; baclofen brain 377.35 ± 58.50 nM, baclofen plasma 3.06 

± 0.51 µM) that reached concentrations previously shown to be important for 

engagement of their respective targets (Fig 2.4B-D) 131, 136, 137, although the 

achieved dose of SKA-31 is lower than the maximal concentration achieved 

through intraperitoneal injection 137. These agents were therefore administered 

through drinking water in order to explore the relationship between their ability to 

improve Purkinje neuron physiology in cerebellar slices and ameliorate motor 

dysfunction. 
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ATXN1[82Q] and age-matched wild-type control mice were administered either 

chlorzoxazone (15 mM in drinking water) and baclofen (350 µM in drinking water) or 

SKA-31 (600 µM in drinking water) and baclofen (350 µM in drinking water) at 5 weeks, 

at the onset of motor dysfunction 71, 104 and tested for both short- and long-term 

improvement in motor dysfunction. After one week of treatment, SKA-31 and baclofen 

significantly improved motor performance in ATXN1[82Q] mice when compared to 

vehicle-treated controls (Fig 2.4E). Similarly, following one week of treatment with a 

combination of chlorzoxazone and baclofen there was a significant improvement in 

motor performance in ATXN1[82Q] mice (Fig 2.4F). In control studies, neither SKA-31 

alone nor chlorzoxazone alone improved short-term motor performance in ATXN1[82Q] 

mice (Fig. 2.4G). These results suggest that at a time point corresponding to the loss of 

spiking in ATXN1[82Q] Purkinje neurons, agents which restore spiking are able to 

improve motor dysfunction. 

In prior studies, our laboratory has observed that spiking in ATXN1[82Q] Purkinje 

neurons is restored due to homeostatic remodeling associated with Purkinje neuron 

atrophy 71. In order to determine whether potassium channel activators continue to 

provide benefit at a stage of disease when there is significant Purkinje neuron atrophy, 

mice were administered these compounds through drinking water from 5 weeks of age 

until 14 weeks of age and motor performance was tested. ATXN1[82Q] mice treated 

with SKA-31 and baclofen displayed impaired motor function at 14 weeks of age (Fig 

2.4H), while ATXN1[82Q] mice treated with chlorzoxazone and baclofen showed a 

sustained improvement in motor performance (Fig 2.4I). These data suggest that 

although SKA-31 and chlorzoxazone, in combination with baclofen, have a similar role 
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in restoring spiking, chlorzoxazone but not SKA-31 engages a different target 

which allows for maintained improvement in motor dysfunction. 

2.4.5 KCa activator and baclofen co-administration does not affect dendritic 

degeneration in ATXN1[82Q] mice 

 Chlorzoxazone and baclofen co-administration results in a sustained 

improvement in motor function in ATXN1[82Q] mice, while SKA-31 and baclofen co-

administration does not result in a similar improvement upon prolonged treatment. One 

possibility for this discrepancy is that chlorzoxazone may promote neuroprotection in 

ATXN1[82Q] mice through activation of BK channels or another molecular target, while 

sole activation of SK2 channels via SKA-31 does not promote the same neuroprotective 

pathway. In order to determine whether this is the case, I performed measures of 

molecular layer thickness in ATXN1[82Q] and wild-type mice treated with a combination 

of SKA-31 and baclofen or chlorzoxazone and baclofen after prolonged water-bottle 

administration of these compounds. At 14 weeks of age, after 10 weeks of treatment 

with these compounds and when dendritic atrophy is clearly present in ATXN1[82Q] 

mice 140, SKA-31 and baclofen co-administration did not reduce dendritic degeneration 

(Figure 2.5A-B). Similarly, chlorzoxazone and baclofen co-administration did not reduce 

dendritic degeneration in ATXN1[82Q] mice, although this combination of compounds 

did significantly increase thickness of the molecular layer in wild-type animals for 

unknown reasons (Figure 2.5C-D). Overall, these studies indicate that ATXN1[82Q] 

mice treated with chlorzoxazone and baclofen did not experience sustained 

improvements in motor function because of a neuroprotective effect of these drugs, but 

rather that dendritic degeneration is still fully present in ATXN1[82Q] mice treated with 
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either chlorzoxazone and baclofen or SKA-31 and baclofen after prolonged treatment. 

This suggests another mechanism for improved motor performance independent of 

dendritic degeneration upon potassium channel activation. 

2.4.6 Chlorzoxazone and baclofen reduce dendritic hyperexcitability in 

ATXN1[82Q] mice by activating subthreshold-activated potassium channels 

 In recent work, our laboratory has demonstrated that dendritic hyperexcitability 

begins at the onset of motor dysfunction in ATXN1[82Q] Purkinje neurons and is 

persistently elevated in spite of relative normalization of spiking in atrophic ATXN1[82Q] 

Purkinje neurons 74, 121. As illustrated previously, ATXN1[82Q] Purkinje neurons 

required a significantly lower amount of injected current to elicit dendritically-generated 

calcium spikes than wild-type neurons (Fig 2.6A-B) with no change in input resistance 

(Wild-type + TTX 35.1 ± 4.4, ATXN1[82Q] + TTX 43.1 ± 1.9, p=0.154) Surprisingly, 

chlorzoxazone (Fig 2.6E and 2.6G) but not SKA-31 (Fig 2.6D) significantly increased 

the threshold of injected current necessary to elicit dendritic calcium spikes in 

ATXN1[82Q] Purkinje neurons. The combination of chlorzoxazone and baclofen 

restored dendritic excitability to near wild-type levels (Fig 2.6F), suggesting that this 

combination of compounds improves both spiking and dendritic hyperexcitability in 

ATXN1[82Q] Purkinje neurons. Chlorzoxazone, SKA-31, and baclofen did not alter input 

resistance in these recordings (ATXN1[82Q] + TTX 51.4 ± 5.3, ATXN1[82Q] + TTX + 

Chlorzoxazone 49.0 ± 5.3, p=0.705; ATXN1[82Q] + TTX 47.8 ± 6.8, ATXN1[82Q] + TTX 

+ SKA-31 50.8 ± 9.4, p=0.777; ATXN1[82Q] + TTX 46.4 ± 4.3, ATXN1[82Q] + TTX + 

Baclofen + Chlorzoxazone 48.2 ± 6.3, p=0.590). 
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 SKA-31 is a highly selective activator of SK2 and IK channels 137. The targets of 

chlorzoxazone are, however, largely unknown. I therefore sought to determine the ion-

channel targets of chlorzoxazone’s effect on dendritic excitability. Chlorzoxazone does 

not likely act through SK channels in the dendrites, since SKA-31 had no effect on 

dendritic excitability. When tested in the presence of barium (50 µM), which at this dose 

selectively blocks subthreshold-activated inwardly-rectifying potassium (Kir) channels 71, 

141-145, the effect of chlorzoxazone on reducing dendritic excitability was prevented (Fig 

2.6G) (input resistance ATXN1[82Q] + TTX + Barium 47.8 ± 6.8, ATXN1[82Q] + TTX + 

Barium + Chlorzoxazone 57.1 ± 3.8, p=0.173). This suggests that chlorzoxazone likely 

activates Kir channels in the dendrites of ATXN1[82Q] Purkinje neurons to reduce 

dendritic hyperexcitability. One possible candidate channel is Kir6.2, an ATP-sensitive 

potassium channel, which is expressed in cerebellar Purkinje neurons146. Tolbutamide, 

which blocks Kir6.2, partially occludes the effect of chlorzoxazone on dendritic 

excitability (input resistance ATXN1[82Q] + Chlorzoxazone 47.5 ± 4.7, ATXN1[82Q] + 

Chlorzoxazone + Tolbutamide 47 ± 5.6). The partial effect of tolbutamide suggests that 

Kir6.2 is a likely target for chlorzoxazone in ATXN1[82Q] Purkinje neuron dendrites, but 

that other targets may still remain.  

 I also sought to determine the molecular target of baclofen on dendritic 

excitability. Although baclofen is known to activate G-protein coupled Kir channels 

(GIRK) in Purkinje neurons, barium (500 µM) did not prevent the effect of baclofen in 

reducing the threshold to elicit dendritic calcium spikes (Fig 2.6H) (input resistance 

ATXN1[82Q] + TTX +Barium 45.9 ± 5.5, ATXN1[82Q] + TTX + Barium + Baclofen 48.9 

± 5.7, p=0.588), suggesting that baclofen does not modulate dendritic excitability 
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through these channels in ATXN[82Q] Purkinje neurons. Since baclofen may act 

downstream of metabotropic glutamate receptor (mGluR) signaling 147, I sought to 

determine whether the effect of baclofen is dependent on mGluR activation. U73122, a 

phospholipase C inhibitor, did not prevent the effect of baclofen on dendritic excitability 

(Fig 2.6H) (input resistance ATXN1[82Q] + TTX 41.4 ± 9.1, ATXN1[82Q] + TTX + 

U73122 39.1 ± 8.3, p=0.478), suggesting that the effect of baclofen does not require 

mGluR activation in this context 148. Cesium, a non-selective potassium channel 

inhibitor, prevents the effect of baclofen when included in the recording pipette, 

confirming that baclofen activates a potassium channel conductance in ATXN1[82Q] 

Purkinje neurons (Fig 2.6H) (input resistance ATXN1[82Q] + TTX + CsCl 78.3 ± 8.0, 

ATXN1[82Q] + TTX + CsCl + Baclofen 77.8 ± 8.1, p=0.931). Tetraethlyammonium 

(TEA) does not block the effect of baclofen (Fig 2.6H), excluding Kv3 and BK channels 

as a target (input resistance ATXN1[82Q] + TTX + TEA 30.9 ± 4.2, ATXN1[82Q] + TTX 

+ TEA + Baclofen 31 ± 2.9, p=0.971). Overall, these data suggest that baclofen 

activates a relatively barium-insensitive subthreshold-activated potassium channel in 

ATXN1[82Q] Purkinje neuron dendrites to reduce dendritic hyperexcitability. 

2.4.7 Chlorzoxazone and baclofen co-administration is tolerated in SCA patients 

and improves symptoms 

 Chlorzoxazone and baclofen are both FDA-approved compounds to reduce 

muscle spasticity, and chlorzoxazone has previously been demonstrated to reduce 

downbeat nystagmus in patients with cerebellar ataxia 149. In mouse models of SCA1, 

SCA2, and SCA6, ataxias which all display prominent Purkinje neuron involvement, 

potassium channel dysfunction is present 70, 71, 78. Since pyramidal signs are a feature of 
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many SCAs, and some patients with SCA6 can exhibit downbeat nystagmus, patients 

seen through the University of Michigan Ataxia Clinic with either pyramidal signs or 

downbeat nystagmus were offered a combination of baclofen and chlorzoxazone. All 

patients were interested in a trial of the medications. Since the American Geriatrics 

Society discourages combining muscle relaxants through the updated Beers criteria, it 

is important to know whether the combination of baclofen and chlorzoxazone is 

tolerated by patients with ataxia. In order to determine whether the combination of 

chlorzoxazone and baclofen is tolerated by SCA patients, we reviewed medical records 

of patients with SCA1 and other SCAs with prominent Purkinje neuron involvement who 

were seen through the Ataxia Clinic. Patients were started on one agent at a time and 

the dose was gradually increased to a target dose of 10 mg TID for baclofen and 500 

mg TID of chlorzoxazone. If patients could not tolerate 500 mg TID of chlorzoxazone, a 

lower dose of 250 mg TID was attempted. Patients for whom follow up information was 

present as of December 2016 are listed in Table 1. Of 17 patients, 4 could not tolerate 

one of either baclofen or chlorzoxazone due to side effects (Table 1). The Scale for the 

Assessment and Rating of Ataxia (SARA) is a validated clinical measure of ataxia, with 

higher scores indicating more prominent ataxia 150. SARA scores were recorded for all 

patients prior to beginning treatment and were assessed during subsequent visits. The 

average interval between visits for patients in the Ataxia Clinic is 6 months. Patients 

reported subjective improvement in symptoms over time which was corroborated by the 

reduction in SARA score for individual patients (Fig 2.7A). Patients reported 

improvement in symptoms that was delayed by weeks, after achieving maximum 

tolerated doses of medication. In order to assess the maximum benefit, initial SARA 
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scores were compared to minimum SARA scores subsequent to initiation of 

chlorzoxazone and baclofen. The SARA score subsequent to initiation of chlorzoxazone 

and baclofen was significantly lower than the score prior to initiating medication (Fig 

2.7B; SARA prior 10.31 ± 4.22 [mean ± standard deviation], SARA minimum 7.85 ± 

4.85).  Overall, these results indicate that chlorzoxazone and baclofen co-administration 

is tolerated and may improve symptoms in forms of SCA with prominent cerebellar 

Purkinje neuron involvement. 

2.5 Discussion 

 In the current study, I demonstrate that Purkinje neuron membrane excitability is 

altered in ATXN1[82Q] mice, and that the resulting changes in physiology can be 

targeted by potassium channel activators. My studies also illustrate that targeting 

somatic spiking is only effective for short-term improvements in motor function. 

Targeting both spiking and dendritic hyperexcitability is associated with sustained 

improvement in motor dysfunction. Finally, these studies illustrate that patients with 

ataxia can tolerate co-administration of baclofen and chlorzoxazone, and that this 

combination may improve motor dysfunction. 

 Growing evidence suggests that potassium channel dysfunction may be a feature 

of many cerebellar ataxias. In mouse models of SCA1, SCA2, and SCA3, alterations in 

Purkinje neuron spiking are associated with changes in potassium channel function due 

to either transcriptional downregulation (SCA1 and SCA2) 70, 71 or altered potassium 

channel kinetics (SCA3) 77. In the present study, I demonstrate that these changes in 

potassium channel function in ATXN1[82Q] mice may be targeted by potassium 

channel-activating compounds. The present study is the first to illustrate that not only do 
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potassium channel-activating compounds improve motor dysfunction in a mouse model 

of SCA1, but also show therapeutic promise in human SCA. These studies also 

illustrate that more than one potassium channel target must be engaged in order to 

sustain improvements in motor dysfunction. 

 Previous studies have focused on restoring somatic spiking as an approach to 

improve motor function in mouse models of ataxia 71, 76, 78, 104. In the present study, I 

show that improving Purkinje neuron spiking indeed improves motor performance in the 

short-term, an effect which has been previously illustrated using KCa activators in a 

mouse model of SCA2 76. The magnitude of the improvement in motor dysfunction is not 

to wild-type levels likely due to the inability of these compounds to restore normal firing 

frequency. However, restoring Purkinje neuron spiking alone is not sufficient to improve 

motor dysfunction in the long-term. My studies illustrate that in association with the 

additional reduction in dendritic hyperexcitability, longer term benefit can be sustained in 

a mouse model of SCA1. Since the targets of chlorzoxazone are unknown, it is possible 

that other mechanisms in addition to reducing dendritic excitability may play a role in 

mediating the behavioral improvement demonstrated by chlorzoxazone. While KCa 

activating-compounds effectively modulate Purkinje neuron spike frequency and 

regularity, my data suggest that additional engagement of subthreshold-activated 

potassium channels may be necessary for the sustained improvement of motor 

impairment in ataxia. The present studies demonstrate that both baclofen and 

chlorzoxazone reduce dendritic hyperexcitability in ATXN1[82Q] mice, while SKA-31 

does not. Significantly, in this study, improvement in motor dysfunction was sustained 

by chlorzoxazone and baclofen even at a time point in ATXN1[82Q] mice when there is 
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significant Purkinje neuron dendritic degeneration. Baclofen and chlorzoxazone both 

appear to activate different subthreshold-activated potassium channels to reduce 

Purkinje neuron dendritic hyperexcitability. Addressing intrinsic dendritic 

hyperexcitability is likely an important aspect of altered physiology which must be 

addressed in order to sustain benefit in the treatment of SCA, consistent with the critical 

role that intrinsic dendritic excitability plays in regulating synaptic integration 94. It is 

important to note that we and others have demonstrated that in association with 

dendritic degeneration, ATXN1[82Q] Purkinje neurons display increased subthreshold-

activated potassium channel currents 71, 151 that affect spiking. Nevertheless, agents that 

reduce dendritic excitability through targeting these or other subthreshold-activated 

potassium channels are beneficial in maintaining improvements in motor dysfunction at 

a stage of disease associated with dendritic degeneration. It is therefore important to 

consider whether sustained improvements in behavioral dysfunction are achieved in a 

neurodegenerative disorder where, depending on disease stage, therapeutic targets 

may vary. These findings also highlight the importance of considering not only the acute 

effects of pharmacological agents on motor function, but also the durable effects of 

these compounds. Long-term administration of these compounds enabled the 

identification of a role for dendritic hyperexcitability in motor impairment in ATXN1[82Q] 

mice. 

 My studies assess alterations in intrinsic Purkinje neuron excitability which are 

associated with disrupted spiking and dendritic hyperexcitability. Synaptic alterations, 

specifically in metabotropic glutamate receptor (mGluR) signaling, are associated with 

motor impairment in mouse models of SCA1147, 152. In a lentivirus model of SCA1, direct 
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cerebellar application of baclofen produces short-term improvements in motor 

performance 147. This was attributed to the ability of baclofen to potentiate mGluR1 

signaling. In contrast, in association with dendritic degeneration, prolonged and 

increased mGluR1 responses are now described in models of both SCA1 and SCA2 152, 

153. At a stage of disease associated with significant dendritic degeneration, inhibiting 

mGluR1 improves motor function in ATXN1[82Q] mice 152. In our studies, although 

baclofen’s ability to reduce dendritic hyperexcitability appears to be independent of 

mGluR signaling, the impairment of motor function upon long-term treatment with 

baclofen and SKA-31 may represent baclofen mediated activation of mGluR1 that is 

detrimental to Purkinje neuron physiology. It may therefore be important to target 

dendritic subthreshold-activated potassium channels without engaging mGluR signaling. 

Also, the combination of baclofen and chlorzoxazone in patients is dose limited due to 

sedation. Not all patients were able to tolerate the target dose of the combination. It is 

therefore important to consider developing subthreshold-activated potassium channel 

activators, which can ideally also engage KCa channels, possibly using chlorzoxazone 

as a template. 

 Centrally-acting muscle relaxants, such as baclofen and chlorzoxazone, have 

tolerability concerns in patients with neurological disorders and older adults 132, 133. It is 

therefore important to consider whether these compounds are appropriate for the 

treatment of SCA patients. In this patient population, where motor impairment is 

prominent, we found that baclofen and chlorzoxazone were tolerated in the majority of 

patients, and these patients persisted in using these drugs. This is an important finding, 

and is encouraging for design of a future clinical trial with these agents. Furthermore, 
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treatment with a combination of chlorzoxazone and baclofen is not only tolerated by 

SCA patients but may also improve symptoms. Retrospective review of patient records 

and unblinded assessments in patients are, however, susceptible to bias. Given the 

duration of follow up, and the sustained improvements in patients where the natural 

history of disease is progressive 154, 155, our findings in patients are encouraging for the 

utility of potassium channel activators in the treatment of symptoms in patients with 

SCA. It is possible that changes in Purkinje neuron membrane excitability are present in 

many etiologies of SCA, and that the ion-channel targets of chlorzoxazone and baclofen 

are relevant targets in these SCAs as well. This possibility is supported by recent 

clinical trials with the compound riluzole, whose targets include KCa channels 110, 111. 

Although riluzole shares common ion-channel targets with chlorzoxazone and baclofen, 

its effect on improving motor dysfunction is likely to be modest, as it has a relatively low 

potency for both KCa channels and subthreshold-activated potassium channels 112, 113. 

Compounds with increased target specificity and potency are likely to be more effective 

than riluzole. A clinical trial with a combination of chlorzoxazone and baclofen should be 

considered for SCAs with prominent Purkinje neuron involvement, as this combination 

of compounds targets KCa channels with moderate potency and effectively targets 

subthreshold-activated potassium channels. While chlorzoxazone and baclofen appear 

promising, agents with added target specificity and potency could be designed with 

these targets in mind. 
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Figure 2.1 ATXN1[82Q] Purkinje neurons display both and absence of repetitive 
spiking and dendritic hyperexcitability. (A) Representative spiking of a wild-type 
Purkinje neuron in the cell-attached recording configuration. (B) Representative trace of 
a non-spiking ATXN1[82Q] Purkinje neuron in the cell-attached recording configuration. 
(C) Summary of spiking and non-spiking Purkinje neurons from wild-type and 
ATXN1[82Q] mice. (D) Representative trace of a non-firing ATXN1[82Q] Purkinje 
neuron in the whole-cell recording configuration. These neurons display a depolarized 
resting membrane potential. (E) After-hyperpolarization (AHP) amplitude in wild-type 
and ATXN1[82Q] Purkinje neurons. (F) Summary of AHP amplitudes in wild-type and 
ATXN1[82Q] Purkinje neurons. (G) Representative trace of a wild-type Purkinje neuron 
held at -80 mV in the presence of tetrodotoxin. Upon injection of positive current in +50 
pA increments, dendritic calcium spikes are noted. (H) Representative trace of dendritic 
calcium spike analysis from an ATXN1[82Q] Purkinje neuron. (I) Summary of the 
threshold of injected current required to elicit dendritic calcium spikes in wild-type and 
ATXN1[82Q] Purkinje neurons in the presence of tetrodotoxin. *p<0.05, **p<0.01, 
***p<0.001, Fisher’s exact test (C) or two-sample Student’s t-test (I). 
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Figure 2.2 Potassium channel-activating compounds restore spiking in non-firing 
ATXN1[82Q] Purkinje neurons. (A) In a cell-attached recording configuration, the 
majority of ATXN1[82Q] Purkinje neurons are non-firing at 5 weeks of age. (B) Co-
application of chlorzoxazone (CHZ, 50 µM) and baclofen (10 µM) restores repetitive 
spiking to non-firing ATXN1[82Q] Purkinje neurons (p=0.001). Inset of restored spiking 
with chlorzoxazone and baclofen is shown on an expanded time scale.  (C) SKA-31 (10 
µM) and baclofen (10 µM) co-application also restores spiking to non-firing ATXN1[82Q] 
Purkinje neurons (p=0.01), as does (D) 1-EBIO (100 µM) and baclofen (10 µM) 
(p=0.009). (E) Summary of data from figures B-D. *adjusted p<0.01 when compared to 
sham, Fisher’s exact test with Bonferroni post-correction.  
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Figure 2.3 KCa activators and baclofen enhance the AHP and repolarize the 
membrane potential of ATXN1[82Q] Purkinje neurons. (A) Baclofen (10 µM) 
hyperpolarizes the membrane potential of depolarized ATXN1[82Q] Purkinje neurons to 
from -41 mV to -52 mV. Tetrodotoxin (1 µM) and cadmium (100 µM) repolarizes the 
membrane potential to -60 mV. (B) Protocol for analysis of the time to minimal mid-AHP 
and maximal AHP amplitude. (C) Representative trace of the AHP of an ATXN1[82Q] 
Purkinje neuron before (black trace) and after (red trace) SKA-31 perfusion (10 µM). 
The time to slow AHP minimum is denoted by arrows. (D) Summary of data from panel 
C. SKA-31 extends the duration of the AHP in ATXN1[82Q] Purkinje neurons (p=0.042). 
(E) Representative trace which displays the interspike interval during spontaneous firing 
of a baseline wild-type Purkinje neuron and (F) ATXN1[8Q] Purkinje neuron in the 
presence of chlorzoxazone (50 µM) and baclofen (10 µM). (G) Single interspike 
intervals of baseline wild-type and (H) ATXN1[82Q] Purkinje neurons in the presence of 
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chlorzoxazone and baclofen. *p<0.05, **p<0.01, ***p<0.001, paired Student’s t-test. 
CHZ, chlorzoxazone. 
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Figure 2.4 Chlorzoxazone and baclofen, but not SKA-31 and baclofen, sustains 
improvement in motor dysfunction in ATXN1[82Q] mice. (A) Drug administration 
and behavioral testing paradigm. (B) Correlated brain and plasma levels of SKA-31 are 
seen after administration through drinking water (R2 = 0.1337). (C) Correlated brain and 
plasma levels of chlorzoxazone are seen after administration through drinking water (R2 
= 0.8904). (D) Correlated brain and plasma levels of baclofen are present after 
administration through drinking water (R2 = 0.8591). (E) After one week of treatment, 
SKA-31 + baclofen improves motor performance in ATXN1[82Q] mice (F(2, 113)=15.76, 
p<0.0001) (Wild-type + Vehicle vs ATXN1[82Q] + Vehicle p<0.0001; Wild-type + Vehicle 
vs ATXN1[82Q] + SKA-31 + Baclofen p<0.0001; ATXN1[82Q] + Vehicle vs ATXN1[82Q] 
+ SKA-31 + Baclofen p=0.004). (F) After one week of treatment, chlorzoxazone + 
baclofen improves motor performance in ATXN1[82Q] mice (F(3, 156)=42.23, 
p<0.0001) (Wild-type + Vehicle vs Wild-type + Chlorzoxazone + Baclofen p=0.9726; 
Wild-type + Vehicle vs ATXN1[82Q] + Vehicle p<0.0001; Wild-type + Vehicle vs 
ATXN1[82Q] + Chlorzoxazone + Baclofen p<0.0001; Wild-type + Chlorzoxazone + 
Baclofen vs ATXN1[82Q] + Vehicle p<0.0001; Wild-type + Chlorzoxazone + Baclofen vs 
ATXN1[82Q] + Chlorzoxazone + Baclofen p<0.0001; ATXN1[82Q] + Vehicle vs 
ATXN1[82Q] + Chlorzoxazone + Baclofen p=0.0036). (G) After one week of treatment, 
neither SKA-31 alone nor chlorzoxazone alone improve motor performance in 
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ATXN1[82Q] mice (F(3,156)=9.142,p<0.0001)(Wild-type + Vehicle vs ATXN1[82Q] + 
Vehicle p=0.0315; Wild-type + Vehicle vs ATXN1[82Q] + SKA-31 p=0.011; Wild-type + 
Vehicle vs ATXN1[82Q] + Chlorzoxazone p<0.0001; ATXN1[82Q] + Vehicle vs 
ATXN1[82Q] + SKA-31 p=0.3856; ATXN1[82Q] + Vehicle vs ATXN1[82Q] + 
Chlorzoxazone p=0.0617; ATXN1[82Q] + SKA-31 + ATXN1[82Q] + Chlorzoxazone 
p=0.3856). (H) After 10 weeks of treatment, mice treated with SKA-31 + baclofen show 
worsened motor performance compared to vehicle-treated controls (F(2, 109)=36.73, 
p<0.0001) (Wild-type vs ATXN1[82Q] + Vehicle p=0.0005; Wild-type vs ATXN1[82Q] + 
SKA-31 + Baclofen p<0.0001; ATXN1[82Q] + Vehicle vs ATXN1[82Q] + SKA-31 + 
Baclofen p=0.0408). (I) After 10 weeks of treatment, ATXN1[82Q] mice treated with 
chlorzoxazone + baclofen display sustained improvement in motor performance 
compared to vehicle-treated controls (F(3, 144)=29.43, p<0.0001) (Wild-type + Vehicle 
vs Wild-type + Chlorzoxazone + Baclofen p=0.0292; Wild-type + Vehicle vs 
ATXN1[82Q] + Vehicle p<0.0001; Wild-type + Vehicle vs ATXN1[82Q] + Chlorzoxazone 
+ Baclofen p=0.0097; Wild-type + Chlorzoxazone + Baclofen vs ATXN1[82Q] + Vehicle 
p<0.0001; Wild-type + Chlorzoxazone + Baclofen vs ATXN1[82Q] + Chlorzoxazone + 
Baclofen p<0.0001; ATXN1[82Q] + Vehicle vs ATXN1[82Q] + Chlorzoxazone + 
Baclofen p=0.0029). *p<0.05, **p<0.01, two-way ANOVA with Holm-Sidak post-test. 
CHZ, chlorzoxazone. 
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Figure 2.5 KCa activator and baclofen co-administration does not reduce Purkinje 
neuron degeneration in ATXN1[82Q] mice. (A) Representative images taken from 
wild-type mice treated with vehicle, ATXN1[82Q] mice treated with vehicle, and 
ATXN1[82Q] mice treated with SKA-31 and baclofen via chronic water-bottle 
administration. Mice received treatment from 5 weeks of age until 14 weeks of age, at 
which point the thickness of the molecular layer was determined for lobule 5. (B) 
Quantification of data shown in (A), which indicates a significant reduction in molecular 
layer thickness of both vehicle-treated and SKA-31 + baclofen-treated ATXN1[82Q] 
mice, but not difference between ATXN1[82Q] treatment groups. (C) Representative 
images taken from wild-type mice treated with vehicle or chlorzoxazone + baclofen, and 
ATXN1[82Q] mice treated with vehicle or chlorzoxazone + baclofen. (D) Quantification 
of data shown in (C), which indicates no difference between treated and untreated 
ATXN1[82Q] mice. *p<0.05, ***p<0.001, one-way ANOVA with Holm-Sidak test for 
multiple comparisons.  
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Figure 2.6 Chlorzoxazone and baclofen reduce dendritic hyperexcitability in 
ATXN1[82Q] mice by activating subthreshold-activated potassium channels. (A) 
Representative trace of dendritic calcium spikes from a wild-type Purkinje neuron, (B) 
ATXN1[82Q] Purkinje neuron at baseline, and (C) the same ATXN1[82Q] Purkinje 
neuron treated with chlorzoxazone (50 µM) and baclofen (2 µM). (D) SKA-31 (10 µM) 
does not reduce dendritic hyperexcitability in ATXN1[82Q] Purkinje neurons (p=0.376). 
(E) Chlorzoxazone (50 µM) reduces dendritic hyperexcitability in ATXN1[82Q] Purkinje 
neurons (p=0.025). (F) Chlorzoxazone (50 µM) and baclofen (2 µM) co-administration 
further reduces dendritic excitability in ATXN1[82Q] Purkinje neurons (p<0.001). (G) 
Barium (50 µM) occludes the effect of chlorzoxazone on dendritic excitability (p=0.778), 
while tolbutamide (500 µM) partially occludes the effect of chlorzoxazone on dendritic 
excitability (p=0.040). (H) Barium (500 µM, p=0.012), U73122 (10 µM in recording 
pipette, p=0.014), and TEA (1 mM, p=0.009) do not occlude the effect of baclofen on 
dendritic excitability, but cesium chloride (140 mM in the recording pipette) does 
occlude the effect of baclofen on dendritic excitability (p=0.356), in ATXN1[82Q] 
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Purkinje neurons. *p<0.05, **p<0.01, ***p<0.001, paired Student’s t-test. CHZ, 
chlorzoxazone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

 

Figure 2.7 Chlorzoxazone and baclofen co-administration is tolerated in SCA 
patients and improves symptoms. (A) SARA scores were obtained for each patient 
prior to beginning treatment with chlorzoxazone and baclofen, and subsequent SARA 
scores were obtained at follow-up visits. SARA scores are only displayed for patients 
who could tolerate treatment and had at least one follow-up visit. (B) SARA scores are 
displayed prior to treatment and at the time point which showed a minimum SARA score 
after beginning treatment (p=0.004). ** p<0.01, paired Student’s t-test. 
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Table 2.1 Summary of SCA patients treated with baclofen and chlorzoxazone. 
Patient demographics and dosage information are indicated. Patient genotype, CAG 
repeat size, age, sex, treatment dosage, and comments are also listed.

Genotype Repeat size Sex Age Dosage Other comments 

SCA1 52 M 29 Baclofen 40 mg BID, 
Chlorzoxazone 750 mg BID 

 

SCA1 54 M 39 Baclofen 10 mg TID, 
Chlorzoxazone 500 mg TID 

 

SCA1 Not 
documented 

F 67 Chlorzoxazone 250 mg 
once daily 

Could not tolerate; 
Chlorzoxazone made 
swallowing worse 

SCA1 52 F 36 Baclofen 10 mg TID, 
Chlorzoxazone 500 mg TID 

Could not tolerate 
due to nausea 

SCA1 52 F 29 Baclofen 20 mg BID, 
Chlorzoxazone 750 mg BID 

 

SCA1 53 M 35 Baclofen 30 mg TID, 
Chlorzoxazone 500 mg TID 

 

SCA1 43 F 62 Baclofen 10 mg TID, 
Chlorzoxazone 250 mg TID 

 

SCA1 46 F 58 Baclofen 10 mg TID, 
Chlorzoxazone 250/500 mg 

 

SCA2 38 M 50 Baclofen 20 mg TID, 
Chlorzoxazone 500 mg TID 

 

SCA2 38 M 67 Baclofen 10 mg TID, 
Chlorzoxazone 500 mg TID 

 

SCA2 43 M 24 Baclofen 20 mg TID, 
Chlorzoxazone 500 mg TID 

 

SCA6 21 M 57 Baclofen 10 mg TID, 
Chlorzoxazone 500 mg TID 

 

SCA6 22 M 65 Baclofen 10 mg BID, 
Chlorzoxazone 500 mg BID 

Substantial 
improvement in 
downbeat nystagmus 

SCA8 1268 F 79 Chlorzoxazone 500 mg BID Could not tolerate 
due to worsened 
speech 

SCA8 108 F 62 Baclofen 10 mg TID Could not tolerate; 
Baclofen caused 
weakness 

SCA8 Not 
documented 

M 51 Baclofen 10 mg TID, 
Chlorzoxazone 500 mg TID 

Improvement in 
swallowing and 
speech due to 
improvement in 
dystonia 

SCA13 n/a F 56 Baclofen 20 mg TID, 
Chlorzoxazone 500 mg TID 
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Chapter 3 

Potassium channel dysfunction and disrupted calcium homeostasis 

contributes to Purkinje neuron dysfunction in a mouse model of 

spinocerebellar ataxia type 7 

3.1 Abstract 

 Spinocerebellar ataxias are a large, heterogeneous group of neurodegenerative 

disorders that affect neurons in the cerebellum and related pathways. Although these 

diseases are similar in that overlapping cell types are frequently affected, the underlying 

basis for motor impairment related to involvement of these areas is not well understood. 

Mouse models of SCA have indicated that altered neuronal function precedes 

neurodegeneration in ataxia, and that underlying changes in ion-channel function are 

therefore important features of disease. In order to determine whether cerebellar 

Purkinje neuron dysfunction is a common feature of degenerative ataxia, I analyzed 

Purkinje neuron spiking in a mouse model of SCA7 and found that irregular spiking is 

present. With the help of collaborators, we found that these changes in spiking as 

closely associated with disrupted function of a “calcium homeostasis” module, 

consisting of several ion-channels important for Purkinje neuron function which show 

decreased transcript expression in SCA7 mouse cerebellum. In wild-type neurons, 

partial blockade of multiple members of this calcium homeostasis module is required in 

order to cause irregular spiking; conversely, irregular spiking in SCA7 Purkinje neurons 
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can be corrected by ion-channel activation or re-expression. Similar transcriptional 

changes are observed in mouse models of other SCAs. Together, these data suggest a 

functional role for this calcium homeostasis module in SCA7, and that shared features 

of disease may be present across multiple SCAs, making this calcium homeostasis 

module a promising therapeutic target. 

3.2 Introduction 

 As mentioned in previous chapters, the polyglutamine (polyQ) spinocerebellar 

ataxias (SCA) are a family of six autosomal-dominantly inherited neurodegenerative 

disorders which cause progressive deterioration of movement and balance. Although 

the underlying mutations which cause polyQ SCA are well-characterized, the specific 

mechanisms which govern neurodegeneration and motor dysfunction are not fully 

understood. One such disorder, spinocerebellar ataxia type 7 (SCA7), results from a 

pathogenic expansion of a glutamine-encoding CAG repeat sequence in the ATXN7 

gene 156. In SCA7, expression of polyglutamine-expanded ataxin-7 protein results in 

selective degeneration of neurons in the retina, brainstem, and cerebellum, including 

cerebellar Purkinje neurons 7. Like other polyQ repeat diseases, SCA7 displays genetic 

instability of the expanded ATXN7 CAG-repeat, which results in genetic anticipation and 

earlier symptomatic presentation upon germline transmission 157. Also similar to other 

polyQ SCAs, SCA7 is untreatable at the present time. 

 Although the polyQ SCAs result from mutations in distinct genes, similar 

functional characteristics of these genes suggests that shared features of dysfunction 

may underlie neuronal dysfunction and degeneration across seemingly unrelated 

ataxias. As mentioned in Section 1.1.4, several of the proteins which are causative for 
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polyQ SCAs share related function roles 66. ATXN1, the disease-causing protein in 

SCA1, is associated with transcriptional regulation and RNA splicing 56-58. This is similar 

to ATXN2 (SCA2), which is also known to play a role in RNA metabolism 59-61. ATXN7 

(SCA7) is a member of the SAGA transcriptional complex 64, 158, and TBP (SCA17) is a 

central component of tata box-based transcriptional initiation 65. In these disorders, 

transcriptional dysregulation can be reasonably considered a potential common source 

of neuronal dysfunction. Other disease-causing proteins of polyQ SCA include ATXN3 

(SCA3), which is a de-ubiquitinating enzyme 62, 63, and CACNA1A (SCA6), a subunit of 

the Cav2.1 voltage-gated calcium channel 55. Although the only polyQ SCA which 

directly affects an ion-channel is SCA6, there is an indication that neuronal excitability 

pathways may be commonly affected across multiple SCAs. This evidence stems from 

work in multiple mouse models of polyQ SCA, which indicates that several genes show 

common downregulation of their mRNA transcripts across models, including key ion-

channels for Purkinje neuron function 67-72. However, the functional relevance of these 

changes is not yet determined. 

 Early studies in calcium channel-mutant mice indicate that irregular Purkinje 

neuron spiking correlates with motor impairment 99-101, and correcting this abnormal 

spiking with KCa channel activators improves motor function 82, 83. In Purkinje neurons, 

voltage-gated calcium channels are coupled to KCa channels 16, 86, which become 

activated upon calcium influx 17. Since BK channel knockout also produces irregular 

Purkinje neuron spiking and motor impairment 18, 42, it is likely that KCa dysfunction is an 

important molecular mechanism in ataxia. In fact, KCa channel dysfunction has been 

noted in mouse models of SCA1 and SCA2, even though these diseases are not 
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caused by direct ion-channel mutations 70, 71. In addition, KCa activators improve motor 

function in a mouse model of SCA3 77, suggesting that common features of disease 

may exist across SCAs with different underlying genetic causes. However, the extent of 

electrophysiologic dysfunction, including the contribution of KCa channels or voltage-

gated calcium channels, has not been studied for SCA7. 

 In order to address whether Purkinje neuron dysfunction is a common feature of 

polyQ SCA, and which molecular pathways contribute to disease, we performed patch-

clamp recordings from SCA7 mice, along with RNA sequencing analysis of cerebellar 

tissue to identify relevant molecular targets. We hypothesized that changes in ion-

channel expression and function underlie irregular spiking in SCA7 Purkinje neurons, 

and that these ion-channel targets can be targeted to improve motor impairment in 

SCA7 mice. We found that altered transcription of genes which form a functionally-

relevant “calcium homeostasis” module contributes to irregular spiking and vestibular 

deficits in SCA7 mice, and that improving ion-channel expression or function 

subsequently improves these features of disease. We also observed that similar 

transcriptional changes exist in mouse models of other polyQ SCAs. These results 

suggest a role for this calcium homeostasis module in SCA, and suggest that the ion-

channels within this module may be particularly important targets for the design of new 

therapies in ataxia. 

3.3 Methods 

3.3.1 Mice 

All animal experimentation adhered to NIH guidelines and was approved by, and 

performed in accordance with, the University of Michigan Committee on the Use and 
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Care of Animals and the University of California, San Diego Institutional Animal Care 

and Use Committee. mPrP-floxed SCA7-92Q BAC mice 159 (referred to as fxSCA7 92Q) 

were maintained on a C57BL/6J background by mating hemizygous males to wild-type 

females, with F1 offspring containing hemizygous and wild-type littermate control 

animals, which were used for experimentation. In some electrophysiology experiments, 

wild-type C57BL/6J mice (Jackson Labs) were used. For all experiments excluding RNA 

transcriptome analysis, mice were used at 12 weeks of age, 25 weeks of age, and 40 

weeks of age. For RNA transcriptome analysis, mice were used at 12 weeks of age and 

29 weeks of age. Both male and female mice were used in all experiments to eliminate 

potential sampling bias. 

3.3.2 Phenotype analysis: Rotarod 

Rotarod analysis was performed as described in Section 2.3.3. Briefly, fxSCA7 92Q 

mice and wild-type littermate controls were handled for three consecutive days, then 

trained for three consecutive days on an accelerating rotarod (4-40 rpm at a rate of 0.12 

rpm/second) and then a fourth day at a constant speed of 24 rpm. Next, mice were 

tested on four consecutive days at a constant speed of 24 rpm. Four trials were run per 

mouse each testing day, and reported scores reflect the average of all four trials. The 

time to fail is reported as the time that the mouse either fell off of the rotating rod or 

made three full rotations, to a maximum time of 300 seconds. Mice were tested at 12 

weeks, 25 weeks, and 40 weeks of age, with equal balancing of male and female mice 

within groups. Data were acquired and analyzed with the experimenter blind to 

genotype. 

3.3.3 Patch-clamp electrophysiology 
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3.3.3.1 Patch-clamp electrophysiology: solutions 

Artificial cerebrospinal fluid (aCSF) contained the following: 125 mM NaCl, 2.5 mM KCl, 

26 mM NaHCO3, 1.25 mM NaH2PO4, 2 mM CaCl2, 10 mM HEPES, and 10 mM glucose. 

For all recordings, other than dendritic capacitance measurements, pipettes were filled 

with internal recording solution containing the following: 119 mM K-Gluconate, 2 mM 

Na-Gluconate, 6 mM NaCl, 2 mM MgCl2, 0.9 mM EGTA, 10 mM HEPES, 14 mM Tris-

phosphocreatine, 4 mM MgATP, 0.2 mM Tris-GTP, at pH 7.3 and osmolarity 290 

mOsm. For capacitance measurements, internal recording solution contained: 140 mM 

CsCl, 2 mM MgCl2, 1 mM CaCl2, 10 mM EGTA, 10 mM HEPES, 4 mM Na2ATP, at pH 

7.3 and osmolarity 287 mOsm. 

3.3.3.2 Patch-clamp electrophysiology: reagents 

For in vitro experiments, chlorzoxazone (Sigma Aldrich, Cat. No. C4397) was used at 

50 µM, 2-APB (Tocris, Cat. No. 1224) was used at 50 µM to block the IP3 receptor and 

TRPC3 160, 161, mibefradil (Sigma Aldrich, Cat. No. M5441) was used at 4 µM to block T-

type calcium channels 162, and iberiotoxin (Tocris, Cat. No. 1086) was used at 100 nM 

to partially block BK channels or 200 nM to fully block BK channels. Tetrodotoxin 

(Alomone Labs, Cat. No. T-550) was used at 1µM to block voltage-gated sodium 

channels during dendritic excitability measurements. 

3.3.3.3 Acute slice preparation for electrophysiological recordings 

Mice were anesthetized by isoflurane inhalation and decapitated. The brain was 

removed and submerged in pre-warmed (33oC) aCSF. Acute parasagittal slices were 

prepared in aCSF held at 32.5-34oC on a VT1200 vibratome (Leica) to a thickness of 

300 µm. Once slices were obtained, they were incubated in carbogen-bubbled (95% O2, 
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5% CO2) aCSF at 33oC for 45 min. Slices were then stored in carbogen-bubbled aCSF 

at room temperature until use. During recording, slices were placed in a recording 

chamber and continuously perfused with carbogen-bubbled aCSF at 33oC at a flow rate 

of 2.5 mL/min. 

3.3.3.4 Patch-clamp recordings 

Purkinje neurons were visually identified for patch-clamp recordings using a 40x water 

immersion objective and a Nikon Eclipse FN1 upright microscope with infrared 

differential interference contrast (IR-DIC) optics. Identified cells were visualized using 

NIS Elements image analysis software. Borosilicate glass patch pipettes were pulled to 

resistances of 3-4 MΩ for all recordings. Recordings were performed 1-5 hours after 

slice preparation. Data were acquired using an Axopatch 200B amplifier, Digidata 

1440A interface (MDS Analytical Technologies), and pClamp-10 software (Molecular 

Devices). All data were digitized at 100 kHz. Whole-cell recordings were rejected if the 

series resistances changed by >20% during the course of recording, or if the whole-cell 

series resistance rose above 15 MΩ. All voltages are corrected for the liquid gap 

junction potential, which was calculated to be 10 mV 71. 

3.3.3.5 Capacitance measurements 

Acute cerebellar slices were obtained as described above. Capacitance measurements 

were performed in the presence of 50 µM picrotoxin to block spontaneous GABAA 

synaptic currents, and recording pipettes were filled with a cesium chloride-based 

internal pipette solution as described above. Recordings were performed at RT. 

Capacitative transients were obtained in voltage-clamp mode using 1 second steps to -

70 mV from a holding potential of -80 mV. Recordings were excluded if the measured 



68 
 

input resistance was under 100 MΩ. Dendritic capacitance was determined using a 

method for the analysis of an equivalent circuit which represents Purkinje neurons91, 163. 

Input resistance was corrected offline and the decay of the capacitative transient was fit 

using a two-exponential decay function: 

𝐼(𝑡) = 𝐴1𝑒
−

𝑡
𝜏1 + 𝐴2𝑒

−
𝑡

𝜏2 

The constants obtained from fitting the decay function of each cell was then used to 

obtain four parameters: C1 (capacitance of the soma and main proximal dendrites), C2 

(capacitance of the distal dendritic arbor), R1 (pipette access resistance), and R2 

(composite resistance of dendritic segments separating the main proximal dendritic 

segments from the distal dendritic arbor). The equations for this analysis are as follows: 

𝐶1 =
𝜏1(𝐴1 + 𝐴2)2

𝐴1∆𝑉
 

𝐶2 =
𝐴2𝜏2

∆𝑉
 

𝑅1 =
∆𝑉

𝐴1 +  𝐴2
 

𝑅2 =
∆𝑉

𝐴2
−

∆𝑉

𝐴1 + 𝐴2
 

In our measurements, total capacitance was indicated by C1 + C2. 

3.3.3.6 Analysis of firing properties 

Electrophysiology data were analyzed offline using Clampfit 10.2 software (Molecular 

Devices). Firing frequency and coefficient of variation (CV) calculations were performed 

in the cell-attached configuration on spikes in a 150 second time interval obtained ~5 

minutes after formation of a stable seal. The CV was calculated as follows: 
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𝐶𝑉 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑝𝑖𝑘𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑀𝑒𝑎𝑛 𝐼𝑛𝑡𝑒𝑟𝑠𝑝𝑖𝑘𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

The firing frequency distribution was obtained by identifying the percentage of cells in 

each incrementing 10 spike/second bin. The CV distribution was similarly obtained by 

sorting CV values into incrementing 0.02 bins. 

3.3.3.7 Analysis of intrinsic dendritic excitability 

Threshold to elicit dendritic calcium spikes was performed at 25 weeks of age as 

described previously 164. Briefly, cells were held at -80 mV in whole-cell current clamp 

mode and injected with current in +50 pA increments in the presence of tetrodotoxin to 

block somatic sodium spikes.  The amount of injected current to elicit calcium spikes 

was recorded, and these thresholds were considered representative of intrinsic dendritic 

excitability. Input resistance for each cell was calculated by generating an input-output 

curve for injected current vs. membrane potential, with only membrane potential values 

of under -75 mV in an effort to minimize active conductances during measurements 164. 

3.3.3.8 AHP decay 

Analysis of the after-hyperpolarization (AHP) was performed by analyzing spikes in a 10 

second interval ~1 minute after break-in.  The AHP value was calculated as the 

maximum anti-peak voltage, and the mean value over the 10 second interval is reported 

as the AHP for each neuron.  To measure decay of the AHP during the inter-spike 

interval (ISI), the mean ISI duration was determined in the same 10 sec interval for each 

cell.  AHP amplitude was then measured at different fractional intervals of the ISI 

(maximal anti-peak amplitude, 0.5*ISI, 0.65*ISI, 0.85*ISI) in order to characterize AHP 

decay. 

3.3.4 Transcriptome analysis 
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Total RNA from the cerebellum of fxSCA7 92Q mice and wild-type littermates aged 12 

and 29 weeks (n=3 per group) was isolated using TRIzol (Life Technologies) and 

purified using an RNeasy kit (Qiagen).  Samples were then sent to BGI Americas for 

deep sequencing on the Illumina HiSeqTM 2000 system (50SE). Analysis of genome-

wide expression data was performed by aligning raw reads of biologically independent 

samples to the reference mouse genome (mm10) using TopHat 165. Cufflinks software 

package 166 was used to assemble individual transcripts from the mapped reads. 

Cuffdiff, a part of the Cufflinks package, was used to calculate gene expression levels 

and test for the statistical significance of differences in gene expression. Reads per 

kilobase per million mapped reads (RPKM) were calculated for each gene and used as 

an estimate of expression levels. Heatmaps and hierarchical clustering were generated 

using Genesis software 167. 

3.3.5 Real-time quantitative RT-PCR 

Real-time quantitative RT-PCR was performed as described previously 71. Briefly, mice 

were euthanized under deep isoflurane anesthesia, and cerebella were promptly 

removed and flash-frozen in liquid nitrogen. Brains were stored at -80 C until 

processing, at which point TRIzol reagent (Invitrogen) was used to extract total RNA 

from cerebellar tissue. Extracted RNA was then purified using the RNeasy mini kit 

(Qiagen) per the manufacturer’s instructions. The iScript cDNA synthesis kit (Bio-Rad) 

was then used to synthesize cDNA from 1.5 µg of purified RNA. Quantitative real-time 

PCR assays were performed using iQ SYBR Green Supermix (Bio-Rad) in a MyiQ 

Single Color Real-Time PCR Detection System (Bio-Rad). Reactions were performed 

with a 20 µL sample volume on an iCycler iQ PCR 96-well Plate (Bio-Rad) which was 
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sealed with Microseal optical sealing tape (Bio-Rad). Relative mRNA transcript levels 

were determined using the comparative Ct method for quantitation, with Actb mRNA 

serving as the reference gene. Ct values were obtained in triplicate for each sample and 

averaged for statistical comparison. The primers used for qRT-PCR studies are as 

follows: 

Gene  Forward primer Reverse primer 

Kcnma1 5'-GGGCCAAGAAAAGAAATGGT-3' 5'-GATCAGGCTGCTTGTGGATT-3' 

Cacna1g 5'-GTCGCTGGTATCTTTGG-3' 5'-TACTCCAGCATCCCAGCAAT-3' 

Itpr1 5’-GGCAGAGATGATCAGGGAAA-3' 
 

5'-AGCTCGTTCTGTTCCCCTTC-3' 
 

Trpc3 5'-GAGGTGAATGAAGGTGAACTGA-3' 5'-CGTCGCTTGGCTCTTATCTT-3' 

Actb 5'-CGGTTCCGATGCCCTGAGGCTCTT-3' 5'-CGTCACACTTCATGATGGAATTGA-3' 

 

3.3.6 Immunohistochemistry 

3.3.6.1 Sample preparation 

Mice were anesthetized under isoflurane inhalation and brains were removed, fixed in 

1% paraformaldehyde for 1 hour, and then placed in 30% sucrose in PBS for 48 hours. 

Parasagittal sections of 14 μm were made on a CM1850 cryostat (Leica). For double-

labeling experiments, Cav3.1 was labeled with mouse anti-Cav3.1 (1:150, clone 

N178A/9, Cat. No. 75-206, Neuromab) and goat anti-mouse Alexa594-conjugated 

secondary antibody (1:200, Ref. no. A11005, Life Technologies Invitrogen). To label 

Purkinje neurons, rabbit anti-calbindin (1:200, Cat. No. 13176, Cell Signaling) and goat 

anti-rabbit Alexa488-conjegated secondary (1:200, Ref. no. A11008, Life Technologies 

Invitrogen) were used. Sections were imaged using an Axioskop 2 plus microscope 
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(Zeiss) at 4x and 10x magnification. Sample preparation and imaging was performed 

with the experimenter blind to genotype. 

3.3.6.2 Fluorescence intensity measurements 

To measure relative intensity of calbindin and Cav3.1 staining, images acquired at 10x 

magnification were used. Fluorescence intensity analysis was performed using ImageJ. 

A rectangular box was placed in the molecular layer, spanning the dendritic arbors of 

Purkinje neurons. Mean pixel intensity was measured for each rectangle, and this mean 

value was used as the relative fluorescence value for each section. The box was an 

identical size in all cases, and was placed in the same location for calbindin and Cav3.1 

analysis in a single section. Two sections were imaged per animal, and the mean of 

those two fluorescence values were used as the fluorescence intensity value for that 

animal. All tissue processing and imaging was performed at the same session, and 

microscope settings were identical for all acquired images. During imaging and analysis, 

the experimenter was blind to genotype. 

3.3.6.3 Confocal microscopy 

Imaging was performed on a Nikon C2+ confocal microscope. Images were acquired at 

60x magnification with an oil-immersion lens. Single-plane images were acquired, with 

microscope settings kept constant between all samples under a specific set of 

antibodies. Samples were prepared and imaged with the experimenter blind to 

genotype. 

3.3.7 Stereotaxic cerebellar delivery of adeno-associated virus 

Previously, mSlo1 MBr5/3 (BK channel) was cloned into a pAAVmcsCMV plasmid 

under a cytomegalovirus promoter. Recombinant serotype AAV2/5 vectors encoding 
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either a BK channel or GFP transcript were generated by the University of Iowa Vector 

Core (http://www.medicine.uiowa.edu/vectorcore/). Under isoflurane anesthesia, 

fxSCA7 92Q and littermate control mice were injected bilaterally with either BK-AAV or 

GFP-AAV into both medial and lateral deep cerebellar nucleus, which results in efficient 

Purkinje neuron expression 71. Injection coordinates were as follows, as measured from 

bregma:  

 Anterior-posterior Medial-lateral Dorsal-ventral 

Medial DCN -6.4 mm ±1.3 mm -1.9 mm 

Lateral DCN -6.0 mm ±2.0 mm -2.2 mm 

 

At each injection coordinate, ~2.5 x 1012 vg/mL of virus (3.0 µL total volume) was 

delivered at a rate of 0.5 µL/minute using a 10 µL Hamilton syringe (BD Biosciences). 

Mice were injected at 24.5 weeks of age and given 14 days for the virus to fully express 

before being sacrificed for patch-clamp electrophysiology studies. 

3.3.8 Vestibular phenotype testing 

In order to assess potential alterations in postural control in fxSCA7 92Q mice, we 

performed vestibular phenotype testing as described below. 

3.3.8.1 Surgical implant of IMU 

Four fxSCA7 92Q mice and four wild-type littermate control mice were surgically 

implanted with a head post at 19.5 weeks of age. Mice were anesthetized with light 

isoflurane anesthesia and the scalp was opened to expose the skull surface. A custom 

titanium head post was glued just posterior to bregma at a precise flat angle using C&B 
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Metabond (Parkell). Once dried in place, the scalp was sutured and mice were allowed 

to recover for three days before the onset of vestibular testing. 

3.3.8.2 Vestibular testing procedure 

During testing, mice were placed individually in a clear enclosure located in a sound-

proofed booth and allowed to explore for 5 minutes (300 seconds) in darkness, in order 

to isolate vestibular function from visual input, while experimenters watched their motion 

using an infrared camera. An inertial measurement unit (IMU) was placed on the 

surgically-implanted titanium head post prior to the onset of the experiment. The IMU 

recorded linear and angular acceleration of the head at a 1 kHz sampling rate. Data 

were acquired and recorded using a CED Power 1401 data acquisition system and 

Spike2 software (Cambridge Electronic Design) 168, 169. Mice were tested 2-3 times per 

week from 20 weeks of age to 30 weeks of age. Data was digitized and filtered offline 

prior to analysis. During testing, the experimenter was blind to genotype. 

3.3.8.3 Vestibular testing: Statistical analysis 

IMU data was analyzed using MATLAB software (MathWorks). A custom script was 

written to retrieve IMU data and plot changes in linear velocity and angular acceleration 

of the pitch, yaw, and roll axes during head movement. Data was averaged for each 

genotype on all testing days, and data were plotted and fit to a linear trend line. 

3.3.9 Analysis of RNA sequencing and microarray datasets 

Published RNA sequencing and microarray datasets from ATXN1[82Q] 68, ATXN1154Q 

170, and ATXN2[127Q] mice 171, in addition to unpublished data from fxSCA7 92Q mice, 

were compared in order to identify commonly-downregulated mRNA transcripts across 

models. This comparison was performed using a custom script written in Python 
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(Python Software Foundation). Once complete, transcripts which were downregulated 

across all four models were examined based on known function, and genes related to 

neuronal excitability were displayed. 

3.3.10 Statistical analysis 

Statistical tests are described in the figure legends for all data. Statistical analysis was 

performed using Excel (Microsoft), Prism 6.0 (GraphPad), SigmaPlot (Systat Software), 

and Origin (Origin Labs). Statistical significance was defined at p<0.05.  For one-way 

and two-way analysis of variance (ANOVA), if statistical significance (p< 0.05) was 

achieved, then we performed post hoc analysis corresponding to the experiment, as 

specified, to account for multiple comparisons. All t-tests were two-tailed Student’s t-

tests, and level of significance (alpha) was always set to 0.05. 

3.4 Results 

3.4.1 Purkinje neuron dysfunction begins in the posterior cerebellum of fxSCA7 

92Q mice and progresses globally 

 In order to investigate whether Purkinje neuron dysfunction accompanies motor 

impairment in SCA7, as is the case in other mouse models of polyQ SCA 71, 72, 77, 78 

(Chapter 2), we assessed motor impairment, dendritic degeneration, and Purkinje 

neuron spiking in a mouse model of SCA7. These mice, the mPrP floxed SCA7 92Q 

BAC model (referred to hereafter as fxSCA7 92Q), has been previously shown to 

express mutant ataxin-7 protein along with motor dysfunction and neurodegeneration 

159. We wished to explore Purkinje neuron physiology in fxSCA7 92Q mice. We 

analyzed the motor phenotype of fxSCA7 92Q mice and confirmed findings from 

previous studies 159, that motor impairment is not initially present but becomes 
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pronounced by 25 and 40 weeks of age (Figure 3.1A). Changes in Purkinje neuron 

spiking correspond to initial motor impairment in other mouse models of SCA 71, 72, and 

altered Purkinje neuron membrane excitability can be associated with structural 

changes related to Purkinje neuron degeneration 74. We wished to determine whether 

these characteristics of disease are also true for fxSCA7 92Q mice. We use 

capacitance as a measure of early dendritic degeneration in Purkinje neurons, as 

capacitance is linearly proportional to membrane surface area and is highly sensitive to 

even modest reductions in cell membrane 163. We found that at 25 weeks of age, total 

Purkinje neuron capacitance is reduced in the posterior cerebellar lobules of fxSCA7 

92Q mice, but is unchanged in the anterior cerebellar lobules (Figure 3.1B). However, 

by 40 weeks of age, total Purkinje neuron capacitance is significantly reduced in both 

anterior and posterior cerebellar lobules (Figure 3.1C). This indicates that Purkinje 

neuron dysfunction and degeneration may be present initially in the posterior 

cerebellum of fxSCA7 92Q mice and later progress globally. 

3.4.2 Purkinje neuron dysfunction is present in the posterior cerebellar lobules, 

but not anterior cerebellar lobules, of fxSCA7 92Q mice 

 Next, we wished to determine whether alterations in Purkinje neuron spiking are 

present in fxSCA7 92Q cerebellum, and whether regional differences exist in Purkinje 

neuron physiology as suggested by capacitance measurements of Purkinje neuron 

surface area. We performed patch-clamp recordings from 25 week-old fxSCA7 mice 

and wild-type littermate controls to investigate Purkinje neuron firing frequency and 

regularity of spiking. We found that at 25 weeks, Purkinje neurons in the anterior 

cerebellar lobules show no differences in firing frequency or the coefficient of variation 
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(CV) of spiking, indicating that spiking is unchanged between genotypes (Figure 3.2A-

C). However, the distribution of CV values was slightly right-shifted in fxSCA7 92Q 

Purkinje neurons compared to wild-type neurons (Figure 3.2D). In the posterior 

cerebellar lobules, no changes in Purkinje neuron firing frequency were observed 

between fxSCA7 92Q mice and wild-type littermate controls at 25 weeks of age (Figure 

3.2F). However, fxSCA7 92Q Purkinje neurons show a significantly increased CV when 

compared to wild-type (Figure 3.2E and G). In addition, the distribution of CV values is 

right-shifted in fxSCA7 92Q mice (Figure 3.2H). Together, these data indicate that 

irregularities in Purkinje neuron spiking are present in the posterior cerebellar lobules 

but not the anterior cerebellar lobules at 25 weeks of age. 

 Since motor impairment becomes profound in fxSCA7 92Q mice by 40 weeks of 

age, and since Purkinje neuron capacitance is significantly reduced in both anterior and 

posterior cerebellar lobules at this time, we wished to determine whether alterations in 

Purkinje neuron spiking may progress globally by 40 weeks of age. While firing 

frequency remains unaffected (Figure 3.3 B), Purkinje neuron spiking appears to 

become more irregular in the anterior cerebellar lobules of fxSCA7 92Q by 40 weeks 

(Figure 3.3 C-D), although statistical significance was not reached (p = 0.056). In 

addition, irregular Purkinje neuron spiking persists in the posterior cerebellar lobules at 

40 weeks of age (Figure 3.3 G-H, p = 0.073) and appears similar to Purkinje neurons at 

25 weeks of age in both firing frequency and CV. No significant changes in Purkinje 

neuron firing frequency were noted in the posterior cerebellum at 40 weeks of age 

(Figure 3.3 F). This indicates that electrophysiologic dysfunction is a feature of disease 

in fxSCA7 92Q mice, and that early changes in Purkinje neuron spiking are restricted to 
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the posterior cerebellar lobules before progressing globally later in disease. Importantly, 

these data suggest that Purkinje neurons in the posterior cerebellum of fxSCA7 92Q 

mice exhibit no significant progression of electrophysiologic dysfunction between 25 and 

40 weeks of age, since firing frequency and CV appear equally disrupted at both of 

these experimental timepoints. This is in contrast to other mouse models of SCA, where 

changes in Purkinje neuron spiking are progressive 70-72. 

3.4.3 Dendritic hyperexcitability is present in Purkinje neurons from the posterior 

cerebellar lobules of fxSCA7 92Q mice 

 While alterations in somatic spiking are clearly present in Purkinje neurons of the 

posterior cerebellar lobules of fxSCA7 92Q mice, Purkinje neurons also rely upon active 

dendrites whose functions are not assessed by a gross characterization of spiking. The 

studies in Chapter 2 of this dissertation have highlighted the importance of dendritic 

pathology to electrophysiologic dysfunction and motor impairment in a mouse model of 

SCA1, and have suggested that dendritic hyperexcitability is an important feature of 

disease that must be considered when designing therapies for the treatment of SCA 73, 

74. It is therefore important to assess whether dendritic hyperexcitability is a common 

feature of SCA. We assessed the threshold to elicit dendritic calcium spikes fxSCA7 

92Q Purkinje neurons and wild-type littermate controls in the presence of tetrodotoxin to 

block somatic spiking. We found that Purkinje neurons in the posterior cerebellum of 

fxSCA7 92Q mice show a significantly decreased threshold to elicit dendritic calcium 

spikes when compared to wild-type littermate controls, with no change in input 

resistance (Figure 3.4). This indicates that at 25 weeks of age, when fxSCA7 92Q 

Purkinje neurons exhibit altered somatic spiking, dendritic hyperexcitability is also 
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present. This is reminiscent of findings in a mouse model of SCA1 73, 74(Chapter 2) and 

indicates that dendritic hyperexcitability may be an important feature of disease in 

multiple models of SCA. 

3.4.4 Genes necessary for Purkinje neuron function show reduced expression in 

fxSCA7 92Q cerebellum  

To determine the molecular basis for altered spiking and neurodegeneration in 

SCA7, we performed unbiased transcriptome analysis on cerebellar RNA isolated from 

presymptomatic (12 week-old) and visibly symptomatic (29 week-old) fxSCA7 92Q mice 

and wild-type littermate controls, since changes in motor function and Purkinje neuron 

spiking become noticeable at 25 weeks of age (see Figure 3.1). RNA sequencing 

analysis produced a list of 100 genes with significantly altered expression levels 

between fxSCA7 92Q and wild-type cerebellum in both presymptomatic and 

symptomatic fxSCA7 92Q mice (Figure 3.5A). In order to identify putative molecular 

pathways that contribute to fxSCA7 92Q Purkinje neuron dysfunction, we performed 

pathway analysis using DAVID v6.7 (https://david.ncifcrf.gov/). This analysis identified 

both phosphatidyl-inositol signaling (P=3.2E-4) and calcium signaling (P=5.0E-3) 

pathways as overrepresented in fxSCA7 92Q cerebellum, both of which were down-

regulated (Figure 3.5B). Many of the identified genes, which are key members of the 

aforementioned calcium homeostasis pathways, are causative mutations in several 

human and mouse ataxias (Figure 3.5B) 2-6, 28, 43-48, suggesting their importance for 

normal cerebellar function. Among these, several ion-channels known to be important 

for Purkinje neuron spiking show decreased expression in fxSCA7 92Q cerebellum, 

indicating that these channels may contribute to altered Purkinje neuron spiking in 
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SCA7. To validate these findings, we performed qRT-PCR analysis on RNA isolated 

from the cerebellum of fxSCA7 92Q mice, and confirmed significant reductions in 

expression of these ion-channel transcripts (Figure 3.5C). This suggests that 

perturbations in calcium homeostasis may be an important contributing factor to 

Purkinje neuron dysfunction in fxSCA7 92Q mice. 

 In order to further examine the physiological relevance of identified reductions in 

gene expression, we performed immunostaining for calbindin, a calcium-binding protein 

that regulates intracellular calcium concentrations and specifically labels Purkinje 

neurons in the cerebellum, along with Cav3.1, the voltage-dependent T-type calcium 

channel encoded by Cacna1g (Figure 3.6A). While calbindin intensity was not 

significantly altered between groups (Figure 3.6B), we observed a significant reduction 

in Cav3.1 immunoreactivity in the molecular layer of posterior cerebellar lobules of 

fxSCA7 92Q mice, suggesting reduced protein expression on the dendritic membrane of 

fxSCA7 92Q Purkinje neurons (Figure 3.6C). Confocal images indicate that some 

Purkinje neurons in the posterior cerebellar lobules of fxSCA7 92Q mice appear to be 

more affected than others (Figure 3.6D). This may be due to the expression pattern of 

the SCA7 transgene in these mice, in which only about 50% of Purkinje neurons show 

transgene expression 159. These results indicate that in addition to reductions in 

transcript expression, reductions in ion-channel protein expression may contribute to the 

functional alterations in Purkinje neuron spiking observed in fxSCA7 92Q mice. 

3.4.5 Impaired BK channel function results from decreased calcium availability 

and contributes to irregular Purkinje neuron spiking in fxSCA7 92Q mice 
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 The observed alterations in calcium homeostasis gene expression seen in Figure 

3.5, along with the alterations in Purkinje neuron spiking observed in Figures 3.2 and 

3.3, suggest that disrupted calcium homeostasis may contribute to irregular Purkinje 

neuron spiking in fxSCA7 92Q mice. Purkinje neurons rely on the precise activity of a 

multitude of ion-channels in order to maintain spontaneous and regular pacemaking. 

Purkinje neuron spiking is sensitive to perturbations in calcium buffering 17, 80, 

intracellular calcium stores 81, and plasma membrane calcium channels 82, 83, many of 

which show reduced transcript levels in fxSCA7 92Q cerebellum (Figure 3.5). 

Importantly, calcium-activated potassium (KCa) channels, such as BK, regulate the after-

hyperpolarization (AHP), an important component of the spike which allows voltage-

gated ion-channels to fully deactivate before the subsequent spike 17. Both calcium-

channel mutant mice and KCa-channel mutant mice display aberrant Purkinje neuron 

spiking 18, 42, 82, 83, suggesting that KCa channel dysfunction may also underlie altered 

spiking in fxSCA7 92Q Purkinje neurons. 

In order to determine whether alterations in calcium homeostasis gene 

expression may alter the AHP in fxSCA7 92Q Purkinje neurons, we performed whole-

cell recordings in acute cerebellar slices to investigate action potential waveform during 

spontaneous firing. Consistent with calcium-activated potassium channel dysfunction, 

the AHP decayed more rapidly in fxSCA7 92Q Purkinje neurons (Figure 3.7A-B).  The 

loss of the AHP in SCA7 mice is consistent with calcium-activated potassium channel 

dysfunction, which, in turn, reflects aberrant calcium homeostasis secondary to variable 

intracellular calcium concentration 71, 82, 83. These data provide functional validation of 
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the calcium regulatory gene expression alterations revealed by the unbiased 

transcriptome analysis (Figure 3.5). 

 Purkinje neurons from fxSCA7 92Q mice exhibit profound firing irregularity 

(Figures 3.2 and 3.3) despite rather modest reductions in ion-channel gene expression 

(Figure 3.5). We hypothesized that a synergistic reduction in the function of both 

putative calcium sources (e.g. Cav3.1, TRPC3, IP3 receptor) and the effector KCa 

channel (e.g. BK) results in irregular Purkinje neuron spiking. In order to address this 

hypothesis, we performed cell-attached patch clamp recordings in wild-type Purkinje 

neurons in the presence of pharmacologic inhibitors of these ion-channels. Current 

understanding of Purkinje neuron physiology suggests that P/Q-type calcium channels 

are the main calcium source for KCa channels 16, but other calcium sources may 

contribute to proper calcium homeostasis as well. In the presence of 100 nM iberiotoxin, 

which partially occludes BK channels (Figure 3.7C), wild-type Purkinje neuron spike 

regularity is not disrupted (Figure 3.7D). Similarly, Cav3.1 blockade (via 4 µM mibefradil 

162) or IP3 receptor/TRPC3 blockade (via 2-APB 160, 161) alone does not affect Purkinje 

neuron spike regularity (Figures 3.7D and 3.7F). However, simultaneous application of 

100 nM iberiotoxin and either mibefradil or 2-APB significantly increases spike 

irregularity in wild-type Purkinje neurons (Figures 3.7D and 3.7F) without affecting firing 

frequency (Figures 3.7E and 3.7G). This suggests that a simultaneous partial reduction 

in the function of both calcium channels and KCa channels is sufficient to cause irregular 

Purkinje neuron spiking. 

 If BK channel dysfunction is responsible for irregular spiking in fxSCA7 92Q 

Purkinje neurons, these neurons may respond to pharmacologic or genetic modifiers of 
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BK channel activity. We assessed the regularity of fxSCA7 92Q Purkinje neuron spiking 

in the presence of chlorzoxazone, a pharmacologic activator of KCa channels including 

BK 135. In irregularly-spiking fxSCA7 92Q Purkinje neurons, chlorzoxazone significantly 

improved the regularity of spiking without affecting firing frequency (Figure 3.8A-C). In 

addition, we used an adeno-associated virus (AAV) to genetically overexpress BK 

channel transcripts in fxSCA7 92Q cerebellum 71. BK-AAV restored fxSCA7 92Q 

Purkinje neuron spike regularity to wild-type levels, while a control GFP-AAV did not 

(Figure 3.8D-G). AAV expression did not affect firing frequency across experimental 

groups (Figure 3.8H). Similar to data observed previously (Figure 3.7), Purkinje neurons 

from fxSCA7 92Q mice treated with GFP-AAV show a significantly depolarized AHP 

throughout the interspike interval when compared to wild-type Purkinje neurons treated 

with GFP-AAV (Figure 3.8I). Upon genetic re-expression of BK, fxSCA7 92Q Purkinje 

neurons did not display a restoration of the decay of the AHP (Figure 3.8I). However, 

the coefficient of variation of the AHP, which was significantly increased in Purkinje 

neurons from fxSCA7 92Q mice treated with GFP-AAV, was restored to the level of 

wild-type Purkinje neurons treated with GFP-AAV in fxSCA7 92Q Purkinje neurons 

treated with BK-AAV (Figure 3.8J). This suggests that consistent calcium availability, 

rather than fully saturating concentrations of calcium to completely activate KCa 

channels, may be sufficient to normalize Purkinje neuron spike regularity in fxSCA7 92Q 

mice. Overall, the results of this series of experiments suggest that synergistic effects of 

reduced calcium homeostasis and BK channel dysfunction contribute to irregular spiking 

in fxSCA7 92Q Purkinje neurons, and that reduced calcium availability for BK channel 

function can be overcome by activation or overexpression of BK. 
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3.4.6 Purkinje neuron dysfunction in the posterior cerebellum contributes to 

specific deficits in vestibular control of posture 

 Potassium channel dysfunction contributes to irregular spiking in the posterior 

cerebellar lobules of fxSCA7 92Q mice (Figure 3.2). We sought to determine whether 

these alterations in Purkinje neuron spiking correspond to specific behavioral changes. 

Although fxSCA7 92Q mice exhibit profound motor impairment, Purkinje neuron 

dysfunction is initially present in only the posterior cerebellar lobules (Figure 3.2). Since 

the polyQ expanded SCA7 transgene is driven by the murine prion protein promoter, 

this protein is expressed throughout the central nervous system and may drive 

pathology in other brain regions in addition to cerebellar Purkinje neurons 159. It is likely 

that pronounced impairment on rotarod performance of fxSCA7 92Q mice is driven by 

both cerebellar and extracerebellar pathology. In order to more directly gauge the 

contribution of region-specific alterations in Purkinje neuron physiology in fxSCA7 92Q 

mice, we considered the functional connectivity of cerebellar output projections. Purkinje 

neurons in the posterior cerebellum project specifically to neurons in the vestibular 

nuclei, rather than the deep cerebellar nuclei which are the target of neurons in the 

anterior cerebellar lobules 172. Therefore, altered functional connectivity to the vestibular 

nucleus in fxSCA7 92Q mice may generate a specific vestibular deficit which could be 

attributed to irregular Purkinje neuron spiking. 

 In order to determine whether such a vestibular deficit exists, we performed a 

measure of vestibular head posture in fxSCA7 92Q mice and wild-type littermate 

controls. At a presymptomatic timepoint (20 weeks of age), vertical head tilt is identical 

in fxSCA7 92Q and wild-type mice, but once motor symptoms are clearly present (30 
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weeks of age) a negative vertical head tilt is present in fxSCA7 92Q mice (Figure 3.9B). 

A reduced standard deviation of vertical head posture suggests that negative vertical 

head tilt is persistent in these mice (Figure 3.9C). This persistent vertical head tilt is 

consistent with cerebellar dis-inhibition of the vestibular nuclei and could result from 

irregular Purkinje neuron spiking in the posterior cerebellar lobules. The cerebellum 

clearly contributes to head postural control in humans, as patients with bilateral 

cerebellar lesions display an impaired head stabilization reflex 173. Abnormalities in head 

postural control, including lateral drift and a persistent vertical head tilt, has been 

observed in patients with cerebellar dystonia, in which reduced cerebellar output to the 

vestibular nucleus was proposed 174. Together, clinical data and findings from these 

studies suggest that cerebellar dis-inhibition of the vestibular nuclei may result in head 

postural abnormalities in fxSCA7 92Q mice and may be a relevant feature of disease in 

human patients with cerebellar pathology, including ataxia. 

3.4.7 Calcium homeostasis module genes are similarly disrupted in mouse 

models of other SCAs, suggesting a common disease pathway 

 The data within this chapter provide evidence that reduced expression of key ion-

channel genes contributes to altered Purkinje neuron excitability and motor impairment, 

and that targeting these changes in excitability can improve both spiking ad motor 

performance. This link between neuronal excitability and motor performance has been 

illustrated previously and is notably disrupted in cerebellar ataxia 71, 73, 76, 78, 82, 83. 

Recently, a human study assessing risk factor genes for SCA illustrated that calcium 

homeostasis and IP3 receptor signaling pathways are likely to be important for the 

pathogenesis of ataxia 67, and the data presented in this chapter have corroborated 
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those results. Taking these factors into consideration, we considered an important 

question: are the sources of electrophysiologic dysfunction unique for each SCA variant, 

or do convergent mechanisms of disease exist among SCAs? 

 In order to address this question, we investigated the transcriptional profiles of 

several mouse models of polyQ SCA and compared changes in mRNA expression 

across models. In addition to the RNA sequencing analysis presented for fxSCA7 92Q 

cerebellum in Figure 3.5, we accessed publically-available RNA sequencing data from 

mouse models of SCA1 (ATXN1[82Q], from Ingram et al. 68, and ATXN1154Q, from 

Gatchel et al. 170) and SCA2 (ATXN2[127Q], from Dansithong et al. 171). When 

cerebellar RNA transcriptomes were compared, we identified 31 genes which showed 

commonly downregulated expression across all four models (Figure 3.10A). In order to 

determine whether excitability pathways may be involved in pathogenesis of polyQ 

SCA, we searched these 31 genes for ion-channel genes or genes related to neuronal 

excitability and found that only Kcnma1, Cacna1g, Itpr1, and Trpc3 transcripts showed 

significantly reduced cerebellar expression across all models (Figure 3.10B). These are 

the same genes which were identified as part of the functional calcium homeostasis 

module presented in this chapter. In addition, the potassium channel scaffold protein 

Kcnip2 and the potassium channel tetramerization protein Kctd12 also showed reduced 

expression across all four models, while Ryr1 (ryanodine receptor, an important calcium 

release protein) and several other potassium channel transcripts showed reduced 

expression in several but not all models (Figure 3.10B). This indicates that calcium 

homeostasis pathways related to KCa function and neuronal excitability may be 

preferentially vulnerable in polyQ SCA and may therefore represent a common 
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mechanism of disease which could be targeted for therapy. Overall, neuronal excitability 

appears to contribute significantly to neuronal dysfunction in SCA, in particular the 

disrupted function of KCa channels and their calcium sources. 

3.5 Discussion 

 The studies in this chapter present evidence that alterations in the cerebellar 

transcriptome are present in fxSCA7 92Q mice. As a result, neuronal excitability 

pathways related to calcium homeostasis and KCa function are consequently disrupted, 

leading to increased irregularity of Purkinje neuron spiking. This leads to functional 

alterations in both overall motor performance and specific alterations in vestibular 

control of posture. Additionally, these studies illustrate that a partial disruption of 

multiple components of a calcium homeostasis pathway is necessary in order to elicit 

irregular spiking in wild-type neurons. Importantly, improving BK channel function 

without affecting deficiencies in calcium sources, either through AAV-mediated re-

expression or activation via chlorzoxazone, normalizes Purkinje neuron spike regularity 

in fxSCA7 92Q mice. Finally, this calcium homeostasis pathway may be relevant in 

other SCAs, as multiple mouse models of polyQ SCA exhibit disruption of genes within 

this network and also exhibit altered Purkinje neuron membrane excitability. Overall, 

these studies argue for the relevance of KCa channel dysfunction as a driver of altered 

spiking and motor impairment in SCA7 and other ataxias, and for the relevance of KCa 

channel activation as a potential mechanism to improve motor impairment in SCA. 

 As noted in other mouse models of polyQ SCA 70-72, 77, 78, disrupted Purkinje 

neuron spiking is present in fxSCA7 92Q mice at the onset of motor impairment and 

early dendritic degeneration. However, one striking difference exists in fxSCA7 92Q 
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mice: Purkinje neuron dysfunction begins in the posterior cerebellar lobules at 25 weeks 

of age and progresses globally later in disease. This is in stark contrast to what is 

observed in mouse models of SCA1 and SCA2, in which Purkinje neuron dysfunction is 

notable in the anterior cerebellar lobules early in disease 70, 71. This discrepancy is not 

due to background strain, as both SCA2 and SCA7 mice are maintained on a C57/BL6 

background but exhibit separate regional tendencies to neuronal dysfunction. Recent 

studies have illustrated that Purkinje neurons in the anterior and posterior cerebellar 

lobules display noticeable differences in their physiology, and that these changes in 

spiking correspond to the expression pattern of the protein aldolase C, also known as 

zebrin. The cerebellum is organized into sagittal bands of zebrin positive and negative 

Purkinje neurons, where cells in the anterior cerebellum are mostly zebrin negative and 

cells in the posterior cerebellum are almost exclusively zebrin positive 175. Zebrin 

positive neurons have a much lower spontaneous firing rate than zebrin negative 

neurons 176  and also display differences in synaptic plasticity 177. It is possible that 

zebrin negative neurons are more strongly affected in SCA1 and SCA2, while zebrin 

positive neurons are preferentially vulnerable in SCA7. This could be due to a variety of 

factors, but one possibility is that regional control of transcription is modulated by both 

ATXN1 and ATXN7, but these proteins regulate neuronal function in a regional fashion 

that tracks with zebrin expression. This could also be due to region-specific differences 

in the expression of one or more members of the aforementioned calcium homeostasis 

module. For instance, the differences in simple spike frequency between zebrin positive 

and negative Purkinje neurons can be alleviated by blocking Trpc3 channels in zebrin 

negative neurons 176, suggesting that zebrin negative neurons may either express Trpc3 
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at a higher level or may be more dependent on its function for a higher baseline firing 

frequency. It is also known that several other proteins, such as the IP3 receptor, 

mGluR1b, and EAAT-4 are also expressed in band patterns similar to zebrin 177-180. This 

suggests the possibility of lobule-specific dependence on certain ion-channels for 

function, and therefore lobule-specific changes in the expression of these channels in 

fxSCA7 92Q mice. This is illustrated to some extent in Figure 3.6, as Cav3.1 expression 

is reduced the posterior cerebellar lobules but not anterior cerebellar lobules in fxSCA7 

92Q mice. Future studies should be conducted to explore the relative mRNA transcript 

and protein expression of Kcnma1, Cacna1g, Itpr1, Trpc3, and other channels related to 

Purkinje neuron excitability in both the anterior and posterior cerebellar lobules, in order 

to determine whether region-specific differences exist in SCA7, SCA1, and other 

ataxias. These studies would improve current understanding of how ion-channel 

dysfunction contributes to Purkinje neuron dysfunction in SCA and would argue for the 

importance of considering zebrin positive and negative neurons independently in the 

study of cerebellar disease. 

 Another known feature of zebrin positive and zebrin negative Purkinje neurons is 

a difference in functional connectivity. In general, zebrin positive Purkinje neurons tend 

to project to the vestibular nuclei, while zebrin negative Purkinje neurons project to the 

deep cerebellar nuclei 175. This is particularly true for the recording site which we chose 

for our studies, the cerebellar nodulus, which is comprised of lobules 9 and 10 and 

sends zebrin-positive terminals to the fastigial nucleus, which is a presynaptic projection 

of the vestibular nucleus 175. Interestingly, fxSCA7 92Q mice exhibit Purkinje neuron 

dysfunction in the posterior cerebellar lobules at 25 weeks of age, when motor 
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impairment is first apparent, while altered Purkinje neuron spiking progresses globally 

by 40 weeks of age (Figures 3.2 and 3.3) in association with profound impairment of 

motor performance on a rotarod (Figure 3.1). However, rotarod performance is not 

specific to cerebellar function and cannot assess the function of neurons in a specific 

cerebellar region. When we performed a more specific assessment of vestibular 

function, corresponding to function of Purkinje neurons in the posterior cerebellum, 

fxSCA7 92Q mice displayed a pronounced postural deficit compared to wild-type 

littermate controls. However, it is unclear whether this postural abnormality is a 

consequence of altered Purkinje neuron spiking, primary vestibular neuron dysfunction, 

or a combination of these possibilities. In order to address these possibilities, future 

studies will be performed. As illustrated in Figure 3.8, Purkinje neuron spiking can be 

normalized to wild-type levels in fxSCA7 92Q mice upon AAV-mediated overexpression 

of BK channel transcripts. Future experiments will involve the same injection procedure, 

where fxSCA7 92Q mice and wild-type mice will be injected with either BK-AAV or a 

control GFP-AAV prior to undergoing vestibular testing. If postural impairment in 

fxSCA7 92Q mice is purely cerebellar in origin, a normalization of head postural control 

should be observed upon BK-AAV injection while all other injected mice should remain 

unaffected. If this rescue is not observed, it is possible that primary vestibular 

dysfunction is present in fxSCA7 92Q mice and may drive this impairment in vertical 

head tilt. This is certainly a possibility, as brainstem nuclei including neurons in the 

vestibular nucleus show pronounced degeneration in human SCA7 patients 7, 181. 

 Another major finding from these studies is the presence of a functional “calcium 

homeostasis” module important for Purkinje neuron spiking and which is disrupted in 
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fxSCA7 92Q mice. Transcriptome analysis of whole cerebellar lysate from fxSCA7 92Q 

and wild-type mice identified a series of downregulated genes, and subsequent pathway 

analysis determined that many of these genes are related to calcium homeostasis or 

IP3 signaling. Several of these genes are ion-channels which are enriched in Purkinje 

neurons and are important for their function (i.e. Kcnma1, Cacna1g, Itrp1, Trpc3). 

Irregular Purkinje neuron spiking can be elicited in wild-type neurons by blocking a 

combination of calcium sources and BK channels, the effector potassium channel in this 

module (Figure 3.7). In addition, BK channels appear to be an essential node in this 

excitability module, as genetic replacement or pharmacologic activation of BK improves 

Purkinje neuron spiking in fxSCA7 92Q mice (Figure 3.8). This relationship between ion-

channel gene expression and spiking is outlined in Figure 3.11. However, it is possible 

that this calcium homeostasis module consists of a larger network of genes and is not 

limited to the aforementioned channel genes described. Alternatively, the core 

components of the module investigated in these studies (Figure 3.11) may be common 

to several polyQ SCAs, while these individual SCAs may have several unique 

components which contribute to dysfunction. For instance, comparisons of 

transcriptome data between mouse models of SCA1, SCA2, and SCA7 identified the 

ryanodine receptor gene Ryr1 as disrupted in SCA1 and SCA2, but not SCA7, while 

other potassium channel genes (Kcna6, Kcng4, Kcnc3) and the voltage-gated sodium 

channel gene Scn1a are commonly downregulated in both models of SCA1 (Figure 

3.10) but not SCA2 or SCA7. This suggests that while convergent mechanisms of 

disease appear likely between SCAs of unique etiologies, other important 

considerations must be made for individual underlying genetic causes when designing a 
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broad strategy to target neuronal excitability. In addition, further analysis of the 

transcriptome data may uncover important transcriptional targets which were not 

considered in the present studies. It is important to note that the convergent 

transcriptional changes seen were not limited to the 6 excitability-related genes 

presented in Figure 3.10. In total, 31 mRNA transcripts were identified as significantly 

downregulated in all four models investigated. This suggests that other pathways 

independent of neuronal excitability may be involved in neuronal dysfunction and 

degeneration in SCA7 and other polyQ SCAs. However, an initial pathway analysis of 

these 31 transcripts with DAVID 6.8 indicates enrichment of IP3 signaling and calcium 

signaling pathways, with no other pathway receiving more than 4 hits out of the 31 

possible genes. This strengthens the argument that the pathways identified in this 

chapter are likely to have a unique influence on Purkinje neuron physiology in ataxia. 

Once available, future studies could also include transcriptome data from mouse 

models of SCA3, SCA6, and SCA17 in order to fully characterize transcriptional 

alterations across all polyQ SCAs. However, these SCAs show unique pathology in 

human patients compared to SCA1, SCA2, and SCA7, including variable Purkinje 

neuron involvement and greater involvement of other nuclei throughout the CNS 7, 

suggesting that disease mechanisms unrelated to the aforementioned excitability 

pathway may be involved. 

 Overall, the studies in this chapter highlight the relevance of ion-channel 

dysfunction to altered Purkinje neuron excitability and motor impairment in a mouse 

model of SCA7. Importantly, these studies demonstrate that neuronal dysfunction is 

present in many models of SCA and convergent mechanisms of disease related to 
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neuronal excitability may be present in ataxia. These studies set a foundation for future 

work investigating transcriptional regulation in both SCA7 and other polyQ SCAs and 

suggest that neuronal excitability is likely an important consequence of transcriptional 

dysregulation in Purkinje neurons. 
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Figure 3.1 Motor impairment and Purkinje neuron degeneration begins at 25 

weeks of age in fxSCA7-92Q mice and progresses at 40 weeks of age. (A) As 

assessed by performance on a constant-speed rotarod, fxSCA7-92Q mice (red) exhibit 

no motor impairment at 12 weeks of age, but motor impairment becomes significant by 

25 weeks of age and 40 weeks of age. (B) Total Purkinje neuron capacitance is 

unchanged in the anterior cerebellar lobules at 25 weeks of age, but is significantly 

decreased in the posterior lobules of fxSCA7-92Q mice. (C) By 40 weeks of age, 

Purkinje neurons in both the anterior and posterior cerebellar lobules display a 

significant reduction in total capacitance. Black = wild-type, Red = fxSCA7-92Q.  

* p<0.05, **p<0.01, *p<0.001, Two-way repeated-measures ANOVA with Holm-Sidak 

post-comparison (A) or Student’s t-test (B and C). 
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Figure 3.2 Alterations in Purkinje neuron physiology begin in the posterior 
cerebellar lobules at 25 weeks of age. (A) Representative cell-attached recordings 
from wild-type and fxSCA7 92Q mice in the anterior cerebellar lobules. (B) Purkinje 
neuron firing frequency is unchanged between genotypes in the anterior cerebellar 
lobules. (C) The regularity of Purkinje neuron spiking, as represented by the coefficient 
of variation (CV) of the interspike interval, is unchanged between genotypes in the 
anterior cerebellar lobules. (D) Distribution of CV values indicates no major shift in the 
anterior cerebellar lobules, although a trend of higher CV values is present for fxSCA7 
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92Q mice. (E) Representative cell-attached recordings from wild-type and fxSCA7 92Q 
mice in the posterior cerebellar lobules. (F) Purkinje neuron firing frequency is 
unchanged between genotypes in the posterior cerebellar lobules. (G) The CV of 
Purkinje neuron spiking is significantly increased in the posterior cerebellar lobules of 
fxSCA7 92Q mice, indicating more irregular spiking. (H) Distribution of CV values 
indicates a shift to higher CV values in Purkinje neurons of the posterior cerebellar 
lobules of fxSCA7 92Q mice when compared to wild-type littermate controls. **p<0.01, 
Student’s t-test. 
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Figure 3.3 Alterations in Purkinje neuron spiking are present in both anterior and 
posterior cerebellar lobules at 40 weeks of age. (A) Representative cell-attached 
recordings from wild-type and fxSCA7 92Q mice in the anterior cerebellar lobules. (B) 
Purkinje neuron firing frequency is unchanged between genotypes in the anterior 
cerebellar lobules. (C) The regularity of Purkinje neuron spiking is slightly, but not 
significantly, increased in the anterior cerebellar lobules of fxSCA7 92Q mice. (D) 
Distribution of CV values indicates fewer low-CV and more high-CV Purkinje neurons in 
the anterior cerebellar lobules of fxSCA7 92Q mice. (E) Representative cell-attached 
recordings from wild-type and fxSCA7 92Q mice in the posterior cerebellar lobules. (F) 
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Purkinje neuron firing frequency is unchanged between genotypes in the posterior 
cerebellar lobules. (G) The CV of Purkinje neuron spiking is increased in the posterior 
cerebellar lobules of fxSCA7 92Q mice, indicating more irregular spiking, although 
statistical significance was not reached. (H) Distribution of CV values indicates a shift to 
higher CV values in Purkinje neurons of the posterior cerebellar lobules of fxSCA7 92Q 
mice when compared to wild-type littermate controls. Statistical significance determined 
by Student’s t-test. 
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Figure 3.4 Dendritic excitability is increased in Purkinje neurons from the 
posterior cerebellar lobules of fxSCA7-92Q mice. (A) In the presence of tetrodotoxin, 
the threshold to elicit dendritic calcium spikes upon somatically-injected current is 
significantly lower in fxSCA7-92Q mice compared to wild-type littermate controls. (B) 
Input resistance does not differ significantly between experimental groups. **p<0.01, 
Student’s t-test. 
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Figure 3.5 Transcriptome analysis indicates reduced expression of genes 

important for calcium homeostasis and IP3 receptor signaling. (A) RNA 

sequencing data from whole cerebellar lysate of wild-type and fxSCA7 92Q mice 

indicates a list of 100 genes with significantly altered expression. Upregulated genes 

are listed in red, and downregulated genes are listed in green. (B) Downregulated 

genes within the calcium homeostasis and IP3 receptor signaling modules are 

presented, with relevant pathways highlighted. Several of the genes identified in RNA 

sequencing analysis are known to cause ataxia either in human SCAs or mice, as 

indicated. (C) Quantitative PCR analysis of whole cerebellar lysate confirms that mRNA 

transcript expression for several ion-channel genes is reduced in fxSCA7 92Q mice. 

These genes are essential components of the calcium homeostasis module outlined in 

(B). *p<0.05, **p<0.01, ***p<0.001, Student’s t-test. Note: experiments for 3.5 (A-B) 

performed by Colleen Stoyas and Albert La Spada, University of California, San Diego. 
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Figure 3.6 T-type calcium channel expression is reduced in the posterior 

cerebellar lobules of fxSCA7 92Q mice. (A) When stained for calbindin, to label 

Purkinje neurons (orange), and Cav3.1 (green), protein expression appears reduced in 

cerebellar lobule 10 of fxSCA7 92Q mice when compared to wild-type littermate 

controls. Scale bar: 200 µm (B) Upon quantification, calbindin expression was not 

significantly changed but was trending downward in both lobule 4 and lobule 10 of 

fxSCA7 92Q mice. (C) Cav3.1 expression was significantly reduced in lobule 10, but not 

lobule 4, of fxSCA7 92Q mice. (D) Confocal images confirm that dendritic expression of 

calbindin and Cav3.1 is reduced in some regions of fxSCA7 92Q cerebellum but 

unchanged in other neurons. Scale bar: 60 µm. *p<0.05, Student’s t-test. 
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Figure 3.7 An impaired calcium homeostasis module, composed of KCa channels 

and calcium sources, contributes to irregular spiking in Purkinje neurons from 

the posterior cerebellar lobules of fxSCA7 92Q mice. (A) Representative trace of the 

afterhyperpolarization (AHP) in wild-type and fxSCA7 92Q Purkinje neurons at 25 

weeks of age. (B) The membrane potential is significantly depolarized throughout the 

interspike interval in fxSCA7 92Q Purkinje neurons, indicating KCa channel dysfunction. 

(C) In wild-type Purkinje neurons, 100 nM Iberiotoxin partially inhibits BK channel 

function, as indicated by a reduction in the amplitude of the fast AHP, compared to 200 

nM Iberiotoxin which is known to fully occlude BK channel currents 125. (D) 2-APB (50 

µM), which blocks IP3 receptor and TRPC3 currents 160, 161, does not increase the 

coefficient of variation of wild-type Purkinje neuron spiking. When BK channels are 

partially blocked with iberiotoxin (100 nM), 2-APB significantly increases the coefficient 

of variation. (E) Neither 2-APB nor 2-APB + iberiotoxin alters firing frequency. (F) 

Neither mibefradil alone (4 µM), which blocks Cav3.1 162, nor iberiotoxin alone (100 nM) 

alters the coefficient of variation of wild-type Purkinje neuron spiking. When combined, 

iberiotoxin (100 nM) and mibefradil (4 µM) significantly increases the coefficient of 

variation. (G) None of mibefradil alone, iberiotoxin alone, nor mibefradil + iberiotoxin 
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alters firing frequency. *p<0,05, **p<0.01, ***p<0.001, two-way repeated measures 

ANOVA with Holm-Sidak post-comparison test (B), or one-way ANOVA with Holm-Sidak 

post-comparison test (C-G). 
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Figure 3.8 KCa channel activation or re-expression normalizes spike regularity in 

fxSCA7 92Q Purkinje neurons. (A) Regularity of fxSCA7 92Q Purkinje neuron spiking 

over time. Spiking becomes more regular in the presence of chlorzoxazone (CHZ, 50 

µM) and returns to baseline upon washout (B) Summarized data from (A). (C) CHZ 

does not alter fxSCA7 92Q Purkinje neuron spike frequency. (D-F) Representative cell-

attached recordings from Purkinje neurons of wild-type treated with GFP-AAV, fxSCA7 

92Q treated with GFP-AAV, and fxSCA7 92Q treated with BK-AAV, respectively. Red 

carats denote irregular interspike intervals. (G) The coefficient of variation of the 

interspike interval, which is significantly increased in fxSCA7 92Q Purkinje neurons 
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treated with GFP-AAV, is restored to wild-type levels in fxSCA7 92Q Purkinje neurons 

treated with BK-AAV. (H) Firing frequency is not significantly altered across groups. (I) 

Absolute AHP decay is not visibly changed upon BK-AAV treatment in fxSCA7 92Q 

Purkinje neurons, although (J) the coefficient of variation of the AHP is restored upon 

BK-AAV treatment in fxSCA7 92Q Purkinje neurons. *p<0.05, **p<0.01, (B,C,G,H) one-

way ANOVA with Holm-Sidak post-comparison test, (I,J) two-way repeated-measures 

ANOVA with Holm-Sidak post-comparison test. 
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Figure 3.9 fxSCA7 92Q mice possess a specific postural deficit in association 

with altered cerebellar physiology. (A) Schematic of the inertial measurement unit 

(IMU), along with how data acquired by the IMU provide information about head 

orientation, including pitch, yaw, and roll. These movements reflect the function of the 

vestibular system, which receives input from Purkinje neurons in the posterior cerebellar 

lobules. (B) fxSCA7 92Q mice (red) begin to exhibit a vertical head tilt between 20 and 

30 weeks of age, as indicated by a reduction in the head pitch angle over time, when 

compared to wild-type littermate control animals (blue). (C) The standard deviation of 

the head pitch angle shown in (B) indicates that fxSCA7 92Q mice display less overall 

variability in head pitch angle than wild-type littermate controls, indicating that the 

increase in head pitch angle is persistent. 
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Figure 3.10 Transcriptome analysis indicates shared molecular targets between 

SCAs of different etiologies. (A) Publically-available transcriptome data from mouse 

models of SCA1 (ATXN1[82Q], 68 and ATXN1154Q, 170), SCA2 (ATXN2[127Q], 171), and 

SCA7 (fxSCA7 92Q, Figure 3.5) were used to identify commonly disrupted RNA 

transcripts in whole cerebellar lysate. In total, transcripts of 31 unique genes were 

identified as downregulated across all four models of SCA. (B) Of the 31 downregulated 

genes from (A), we identified only four ion-channel transcripts which are commonly 

downregulated across all four models of SCA, along with the potassium channel 

activating protein Kcnip2 and potassium channel tetramerization protein Kctd12. These 

ion-channel genes (Kcnma1, Trpc3, Cacna1g, Itpr1, in bold) form the calcium 

homeostasis module outlined in this chapter, indicating the potential importance of this 

module for Purkinje neuron physiology and its disruption as a pathogenic mechanism in 

SCA. Other ion-channel genes showed reduced transcript expression in three or two 

models of SCA, indicating that these genes may also be important targets. 
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Figure 3.11 Targeting altered function of a calcium homeostasis module improves 
altered Purkinje neuron spiking in fxSCA7 92Q mice. (A) In wild-type Purkinje 
neurons, BK channels largely control the regularity of spiking and rely on intracellular 
calcium and depolarization for activation. Traditionally, Cav2.1 channels have been 
thought to preferentially couple to BK channels in Purkinje neurons 16. Through the 
studies in this thesis, I postulate that other calcium sources exist for BK, including 
Cav3.1, the IP3 receptor, and TRPC3. (B) In fxSCA7 92Q mice, or upon pharmacologic 
blockade, reduced function of both calcium sources and BK channels produces irregular 
Purkinje neuron spiking. (C) In fxSCA7 92Q Purkinje neurons, activation or genetic re-
expression of BK channels is sufficient to normalize the regularity of spiking. This 
suggests that targeting the effector BK channel may be a reasonable pharmacologic 
approach to improve Purkinje neuron spiking in SCA7. Relative amount of calcium 
indicated by the size of “Ca2+” labels. Reduced expression or function of ion-channels 
indicated by dotted lines. Re-expression or activation of BK is indicated with green.
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Chapter 4 

Sirtuin-1 overexpression improves Purkinje neuron dysfunction in 

spinocerebellar ataxia type 7 

4.1 Abstract 

 Spinocerebellar ataxia type 7 (SCA7) is a fatal neurodegenerative disorder 

characterized by a progressive loss of motor function along with blindness due to retinal 

degeneration. SCA7 results from an expansion of a CAG repeat sequence in the 

ATXN7 gene beyond a pathogenic length, making it one of nine known polyglutamine 

repeat-associated disorders, all of which are associated with neuronal dysfunction and 

degeneration. In SCA7 mice, widespread transcriptional alterations accompany 

impairments in motor function, changes in cerebellar Purkinje neuron spiking, and 

dendritic degeneration. Sirtuins are a class of nutrient-sensing protein deacetylases 

involved in a number of cellular processes. Evidence from studies in yeast and 

mammals suggests that sirtuin activation promotes lifespan expansion and may offer 

neuroprotective benefits in a number of neurodegenerative disorders. In order to 

determine whether sirtuin activation may have a potential role in the treatment of SCA7, 

we genetically overexpressed Sirt1 in fxSCA7 92Q mice and assessed transcriptional 

status of cerebellar target genes, along with Purkinje neuron physiology and dendritic 

degeneration. In these studies, Sirt1 overexpression improved the cerebellar mRNA 

transcript levels of several genes important to calcium homeostasis and Purkinje neuron 
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physiology, which correspond to improvements in Purkinje neuron spiking and dendritic 

degeneration. These studies indicate a potential role for Sirt1 activation in treating 

cerebellar ataxia. 

4.2 Introduction 

 Neurodegenerative disorders are largely heterogeneous, demonstrating 

variability in age-of-onset, neuronal vulnerability, and patient symptoms. Although these 

diseases are as diverse as their underlying causative genetic mutations, several trends 

exist across a number of disorders. Many neurodegenerative disorders are age-related, 

the most striking example being Alzheimer’s disease which is thought to affect 15% of 

individuals aged 65 or older and with an incidence of almost 50% in individuals above 

the age of 85 182. Age-related neurodegenerative disorders, including but not limited to 

Alzheimer’s disease, demonstrate a number of cellular pathologies which may 

contribute to negative disease outcomes, such as neuronal inclusions, mitochondrial 

dysfunction, disruptions in protein homeostasis, and electrophysiologic abnormalities 

183-186. Age-related neurodegenerative disorders are a public health concern as the 

global aging population continues to grow on a yearly basis, with the total number of 

American citizens aged 65 or older expected to double from 46 million to 98 million by 

2060 187. As such, the search for neuroprotective therapies which increase the likelihood 

of healthy aging is of particular importance. 

Among the aforementioned neurodegenerative disorders are the polyglutamine 

(polyQ) repeat-expansion diseases, including Huntington’s disease, spinal and bulbar 

muscular atrophy (SBMA), and six forms of inherited spinocerebellar ataxia (SCA1, 2, 3, 

6, 7, & 17). In polyQ disorders, expansion of a CAG repeat sequence, which encodes 
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the amino acid glutamine, exceeds a pathologic length and results in symptoms of the 

respective disorder, depending on the affected protein 1. Although the disease-causing 

proteins are widely or ubiquitously expressed throughout the central nervous system, 

specific neuronal structures are affected in these disorders and result in distinct 

symptoms 7. The common feature of cell death links these degenerative disorders, and 

this neurodegeneration was initially thought to correspond with symptom onset and 

severity. However, mouse models of many neurodegenerative disorders have indicated 

that a period of neuronal dysfunction precedes over neuronal loss 71, 72, and that this 

neuronal dysfunction may therefore more closely relate to symptom onset and 

progression.  

Sirtuins are a family of NAD+-dependent protein deacetylases. In yeast studies, 

overexpression of the protein Sir2 was found to result in lifespan extension 188. Sirtuin-1 

(Sirt1) is the mammalian orthologue of Sir2 and has been the focus of many recent 

research efforts, along with other members of this protein family (Sirt2 – Sirt7) 189. The 

compound resveratrol, which activates Sirt1, has been reported to promote lifespan 

extension in yeast 190, flies 191, and mice placed on a high-calorie diet 192, although 

untreated wild-type mice do not experience lifespan extension upon resveratrol 

treatment 193. While the ability of sirtuins to extend lifespan in mammals remains 

controversial 194, some neurodegenerative disorders respond positively to caloric 

restriction 195-198, suggesting that NAD+ availability may slow degenerative processes. In 

addition, recent studies suggest that Sirt1 may be capable of achieving neuroprotection 

in degenerative disorders such as Huntington’s disease 199, 200 and Alzheimer’s disease 

201, and that several Sirt1 targets are members of neuroprotective pathways in the CNS 
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202. Despite evidence for longevity and neuroprotection, the mechanisms of sirtuin 

activation are not fully understood. 

 One mechanism of action of Sirt1 is to deacetylate and activate specific 

transcription factors to promote expression of specific target genes 203. In order to 

determine whether sirtuin activation may represent a potential strategy to reverse 

transcriptional alterations and improve outcomes in SCA, we genetically overexpressed 

Sirt1 in fxSCA7 92Q mice, a model of SCA7. The resulting studies indicate that Sirt1 

overexpression partially improves transcriptional alterations, abnormalities in Purkinje 

neuron spiking, and Purkinje neuron dendritic degeneration. These studies add to 

evidence that sirtuin activation may be a broad therapeutic strategy for age-related 

neurodegenerative disorders including SCA. 

4.3 Methods 

4.3.1 Mice 

The Sirt1 overexpression line was derived by mating SIRT1STOP transgenic mice 204 to 

Cre-hemizygous mice to generate Sirt1 uOE mice, which overexpress Sirtuin-1 in all 

tissues under a CAGGS promoter.  These mice were mated with the previously 

characterized mPrP-fx SCA7-92Q BAC mouse model of SCA7 159 (chapter 3) to be 

utilized in rescue studies. Sirt1 uOE and fxSCA7 92Q lines were maintained on the 

C57BL/6J background. Heterozygous Sirt1 uOE mice were bred to hemizygous fxSCA7 

92Q mice, in which the F1 mice of crosses were used for experimentation. The resulting 

genotypes are as follows: 

1. SCA7 (-), Sirt1 (-): denoted wild-type 

2. SCA7 (+), Sirt1 (-): denoted fxSCA7 92Q 
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3. SCA7 (-), Sirt1 (+): denoted Sirt1 uOE 

4. SCA7 (+), Sirt1 (+): denoted Sirt1 uOE-fxSCA7 92Q 

Efforts were made to balance the sex of animals used for all experiments. 

4.3.2 oPOSSUM analysis of transcriptome data 

Gene set enrichment analysis was performed on RNA sequencing data comparing 

whole cerebella lysate from fxSCA7 92Q mice and wild-type littermate controls at 29 

weeks of age (Section 3.3.4). In order to identify transcription factor binding sites 

(TFBSs) which are enriched in the promoter regions on downregulated genes, we used 

oPOSSUM v3.0 and applied a ‘z’ score threshold of ≥ 10. Results were analyzed by 

number of hits and strength of ‘z’ score in order to identify putative TFBSs. 

4.3.3 Western blot analysis 

Mouse cerebella were lysed in RIPA buffer (Life Technologies) and homogenized by 

trituration. We used the following antibodies for immunoblot analysis: PCG-1α (SC-

13067, Santa Cruz; 1:1000); acetyl-lysine (9441, Cell Signaling; 1:1000); and β-actin 

(ab8226, Abcam; 1:10000).  Immunoprecipitation was performed with antibody for PCG-

1α (SC-13067, Santa Cruz; 1:20), and densitometry was performed in ImageJ. 

4.3.4 Real-time quantitative RT-PCR 

Mice were euthanized under isoflurane anesthesia, and cerebella were rapidly removed 

and flash-frozen in liquid nitrogen. Tissue was stored at -80oC until processing. RNA 

was isolated from the whole cerebellum of animals using TRIzol (Life Technologies or 

Invitrogen), and treated with DNAse I in the form of TURBO-DNAse (Life Technologies) 

to remove traces of genomic DNA, or purified with the RNeasy mini-kit (Qiagen). 

Reverse transcription was performed with SuperScript Reverse Transcriptase (Life 
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Technologies) or with the iScript cDNA synthesis kit (Bio-Rad). Quantitative PCR was 

performed using TaqMan probes (Life Technologies) and TaqMan Universal PCR Mix 

(Life Technologies) on a CFX384 Touch system (Bio-Rad), or with the iQ SYBR Green 

Supermix (Bio-Rad) in a MyiQ Single Color Real-Time PCR Detection System (Bio-

Rad). Gene expression was normalized to GAPDH levels. Delta CT values were 

calculated as Ct
target – Ct

GAPDH. All experiments were performed with at least three 

technical replicates. Relative fold changes in gene expression were calculated using the 

2-ΔΔCt method 205. Data are presented as the average of the biological replicates + 

standard error of the mean (S.E.M.). 

4.3.5 Nanostring transcriptome analysis 

Cerebellar transcriptome analysis of wild-type, fxSCA7 92Q, Sirt1 uOE, and Sirt1 uOE-

fxSCA7 92Q mice was performed by Nanostring Technologies. 100 of the most highly-

downregulated transcripts were analyzed for total copy number and normalized to wild-

type expression levels. Transcripts were analyzed by one-way ANOVA, with statistical 

significance indicated for transcripts which show improved expression in Sirt1 uOE-

fxSCA7 92Q mice compared to fxSCA7 92Q mice. 

4.3.6 Patch-clamp electrophysiology 

Patch-clamp recordings were performed as described in section 3.3.3. Since no gross 

changes in Purkinje neuron physiology were observed between 25 weeks and 40 weeks 

of age (chapter 3), mice from Sirt1 uOE-fxSCA7 92Q crosses were treated as 

equivalent in these studies. In general, most mice were 29-31 weeks of age at the time 

of recording. 

4.3.6.1 Patch-clamp electrophysiology: solutions 
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Artificial cerebrospinal fluid (aCSF) contained the following: 125 mM NaCl, 2.5 mM KCl, 

26 mM NaHCO3, 1.25 mM NaH2PO4, 2 mM CaCl2, 10 mM HEPES, and 10 mM glucose. 

For all recordings, other than dendritic capacitance measurements, pipettes were filled 

with internal recording solution containing the following: 119 mM K-Gluconate, 2 mM 

Na-Gluconate, 6 mM NaCl, 2 mM MgCl2, 0.9 mM EGTA, 10 mM HEPES, 14 mM Tris-

phosphocreatine, 4 mM MgATP, 0.2 mM Tris-GTP, at pH 7.3 and osmolarity 290 

mOsm. For capacitance measurements, internal recording solution contained: 140 mM 

CsCl, 2 mM MgCl2, 1 mM CaCl2, 10 mM EGTA, 10 mM HEPES, 4 mM Na2ATP, at pH 

7.3 and osmolarity 287 mOsm. 

4.3.6.2 Acute slice preparation for patch clamp recordings 

Mice were anesthetized by isoflurane inhalation and decapitated. The brain was 

removed and submerged in pre-warmed (33oC) aCSF. Acute parasagittal slices were 

prepared in aCSF held at 32.5-34oC on a VT1200 vibratome (Leica) to a thickness of 

300 µm. Once slices were obtained, they were incubated in carbogen-bubbled (95% O2, 

5% CO2) aCSF at 33oC for 45 min. Slices were then stored in carbogen-bubbled aCSF 

at room temperature until use. During recording, slices were placed in a recording 

chamber and continuously perfused with carbogen-bubbled aCSF at 33oC at a flow rate 

of 2.5 mL/min. 

4.3.6.3 Patch-clamp recordings 

Purkinje neurons were visually identified for patch-clamp recordings using a 40x water 

immersion objective and a Nikon Eclipse FN1 upright microscope with infrared 

differential interference contrast (IR-DIC) optics. Identified cells were visualized using 

NIS Elements image analysis software. Borosilicate glass patch pipettes were pulled to 
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resistances of 3-4 MΩ for all recordings. Recordings were performed 1-5 hours after 

slice preparation. Data were acquired using an Axopatch 200B amplifier, Digidata 

1440A interface (MDS Analytical Technologies), and pClamp-10 software (Molecular 

Devices). All data were digitized at 100 kHz. Whole-cell recordings were rejected if the 

series resistances changed by >20% during the course of recording, or if the whole-cell 

series resistance rose above 15 MΩ. All voltages are corrected for the liquid gap 

junction potential, which was calculated to be 10 mV 71. All recordings performed in Sirt1 

crosses were performed with the experimenter blind to genotype. 

4.3.6.4 Capacitance measurements 

Acute cerebellar slices were obtained as described above. Capacitance measurements 

were performed in the presence of 50 µM picrotoxin to block spontaneous GABAA 

synaptic currents, and recording pipettes were filled with a cesium chloride-based 

internal pipette solution as described above. Recordings were performed at RT. 

Capacitive transients were obtained in voltage-clamp mode using 1 second steps to -70 

mV from a holding potential of -80 mV. Recordings were excluded if the measured input 

resistance was under 100 MΩ. Dendritic capacitance was determined using a method 

for the analysis of an equivalent circuit which represents Purkinje neurons 163. Input 

resistance was corrected offline and the decay of the capacitive transient was fit using a 

two-exponential decay function: 

𝐼(𝑡) = 𝐴1𝑒
−

𝑡
𝜏1 + 𝐴2𝑒

−
𝑡

𝜏2 

The constants obtained from fitting the decay function of each cell was then used to 

obtain four parameters: C1 (capacitance of the soma and main proximal dendrites), C2 

(capacitance of the distal dendritic arbor), R1 (pipette access resistance), and R2 
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(composite resistance of dendritic segments separating the main proximal dendritic 

segments from the distal dendritic arbor). The equations for this analysis are as follows: 

𝐶1 =
𝜏1(𝐴1 + 𝐴2)2

𝐴1∆𝑉
 

𝐶2 =
𝐴2𝜏2

∆𝑉
 

𝑅1 =
∆𝑉

𝐴1 +  𝐴2
 

𝑅2 =
∆𝑉

𝐴2
−

∆𝑉

𝐴1 + 𝐴2
 

In our measurements, total capacitance was indicated by C1+ C2. 

4.3.6.5 Analysis of firing properties 

Electrophysiology data were analyzed offline using Clampfit 10.2 software (Molecular 

Devices). Firing frequency and coefficient of variation (CV) calculations were performed 

in the cell-attached configuration on spikes in a 150 second time interval obtained ~5 

minutes after formation of a stable seal. The CV was calculated as follows: 

𝐶𝑉 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑝𝑖𝑘𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑀𝑒𝑎𝑛 𝐼𝑛𝑡𝑒𝑟𝑠𝑝𝑖𝑘𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

The firing frequency distribution was obtained by identifying the percentage of cells in 

each incrementing 10 spike/second bin. The CV distribution was similarly obtained by 

sorting CV values into incrementing 0.02 bins. A moving average trend-line was added 

to the CV distribution histogram to outline the shape of the distribution.  

4.3.6.6 AHP decay 

Analysis of the after-hyperpolarization (AHP) was performed by analyzing spikes in a 10 

second interval ~1 minute after break-in.  The AHP value was calculated as the 
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maximum antipeak voltage, and the mean value over the 10 second interval is reported 

as the AHP for each neuron.  To measure decay of the AHP during the Inter Spike 

Interval (ISI), the mean ISI duration was determined in the same 10 sec interval for each 

cell.  AHP amplitude was then measured at different fractional intervals of the ISI 

(0.5*ISI, 0.65*ISI, 0.85*ISI) in order to characterize AHP decay. 

4.3.7 Data analysis 

Statistical tests are described in the figure legends for all data. Statistical analysis was 

performed using Excel (Microsoft), Prism 6.0 (GraphPad), SigmaPlot (Systat Software), 

and Origin (Origin Labs). Statistical significance was defined at p<0.05.  For one-way 

and two-way analysis of variance (ANOVA), if statistical significance (p< 0.05) was 

achieved, then we performed post hoc analysis corresponding to the experiment, as 

specified, to account for multiple comparisons. All t-tests were two-tailed Student’s t-

tests, and level of significance (alpha) was always set to 0.05. 

4.4 Results 

4.4.1 Many disrupted RNA transcripts in fxSCA7 92Q are enriched for peroxisome 

proliferator response elements and hypoxia response elements in their regulatory 

domains 

 Previously, we have illustrated that widespread transcriptional disruption is 

present in fxSCA7 92Q cerebellum (Chapter 3). Additionally, we have shown that 

altered transcript expression correlates with changes in Purkinje neuron spiking and 

neurodegeneration in fxSCA7 92Q mice (Chapter 3). In order to better characterize the 

mechanism for transcriptional dysregulation in fxSCA7 92Q mice, we performed a gene 

set enrichment analysis to identify transcription factor binding sites (TFBSs) in the 
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promotor regions of downregulated genes (Chapter 3). Using oPOSSUM v3.0 

(http://opossum.cisreg.ca/oPOSSUM3/), we applied a ‘z’ score threshold of ≥ 10 to 

investigate potential TFBSs and found that PPARG::RXRA (Peroxisome Proliferator 

Response Element [PPRE]) and HIF1::ARNT (Hypoxia Response Element[HRE]) are 

enriched in the promoter regions of downregulated target genes in fxSCA7 92Q 

cerebellum (Figure 4.1A). PPREs and HREs are positively regulated by PGC-1α and 

HIF-1α, respectively, which are both Sirt1 substrates and are become stabilized and 

activated upon Sirt1 deacetylation 206, 207. Of the calcium homeostasis genes outlined in 

Chapter 3, 11 contain putative PPREs and may potentially be responsive to Sirt1 

activity (Figure 4.1B). 

4.4.2 Sirtuin-1 is a candidate protein to modify transcriptional alterations in 

fxSCA7 92Q cerebellum 

 In order to determine whether Sirt1 activity is disrupted in fxSCA7 92Q mice, we 

determined the acetylation status of PGC-1α in the cerebellum of 30 week-old fxSCA7 

92Q mice, and observed increased acetylation in fxSCA7 92Q cerebellum compared to 

wild-type littermate controls (Figure 4.1C). This suggests that reduced PGC-1α activity 

may underlie reduced transcription of PPRE-containing target genes, and that 

increasing PGC-1α activity may improve transcriptional alterations in fxSCA7 92Q 

cerebellum. In order to address this hypothesis, we crossed fxSCA7 92Q mice with a 

mouse line in which Sirtuin-1 is overexpressed in all tissues. The resulting bigenic mice, 

referred to as Sirt1 uOE-fxSCA7 92Q, stably overexpress Sirt1 up to 36 weeks of age 

(Figure 4.1D). In order to determine whether constitutive overexpression of Sirt1 

improves transcriptional alterations in fxSCA7 92Q mice, we performed a Nanostring 
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analysis of 100 mRNA transcripts which show the highest level of downregulation in 

fxSCA7 92Q cerebellum. When compared to fxSCA7 92Q mice, Sirt1 uOE-fxSCA7 92Q 

mice show a significant increase in mRNA transcript expression of Itpr1 and Trpc3, two 

genes important for calcium homeostasis, while two other calcium-related genes, 

Cacna1g and Calb1, also showed a trend of increased transcript expression (Figure 

4.1E). Overall, these data indicate that reduced expression of PPRE-containing genes 

in fxSCA7 92Q mice can be targeted by Sirt1 overexpression, and that Sirt1 uOE-

fxSCA7 92Q mice show improvements in the cerebellar expression of genes related to 

calcium homeostasis. 

4.4.3 Sirtuin-1 overexpression improves Purkinje neuron physiology and reduces 

neurodegeneration in fxSCA7 92Q mice 

 Changes in Purkinje neuron spiking accompany transcriptional alterations in 

fxSCA7 92Q mice (Chapter 3). We have illustrated that overexpression of Sirt1 

improves transcript levels of several downregulated target genes in fxSCA7 92Q 

cerebellum, leading to the possibility of functional improvements in neuronal activity. In 

order to determine whether Sirt1 overexpression is able to influence Purkinje neuron 

spiking, we performed patch clamp recordings in Sirt1-uOE x fxSCA7 92Q mice, along 

with wild-type littermate controls, fxSCA7 92Q littermates, and Sirt1-uOE littermates. No 

changes in firing frequency were noted across genotypes (Figure 4.4B). However, the 

coefficient of variation (CV), which is significantly increased in fxSCA7 92Q Purkinje 

neurons, is rescued to wild-type levels upon Sirt1 overexpression (Figure 4.4C). This is 

also reflected in the distribution of CV values, which is right-shifted in fxSCA7 92Q 

Purkinje neurons and is partially improved in Sirt1-uOE x fxSCA7 92Q neurons, 
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especially at high CV values (Figure 4.4D). Since transcripts related to calcium 

homeostasis show increased expression in Sirt1-uOE x fxSCA7 92Q cerebellum, we 

wished to determine whether these improvements in the regularity of spiking are linked 

to normalized decay of the AHP. As shown previously (Chapter 3), fxSCA7 92Q 

Purkinje neurons demonstrate a significantly depolarized AHP throughout the interspike 

interval, indicating increased AHP decay. The decay of the AHP is rescued to wild-type 

levels upon Sirt1 overexpression (Figure 4.4E-F). Importantly, Sirt1 overexpression 

alone does not alter Purkinje neuron physiology, as all physiological parameters 

measured do not differ between Sirt1-uOE mice and wild-type littermate controls (Figure 

4.5A-E). This suggests that improved expression of calcium homeostasis gene 

transcripts corresponds to functional improvements in the Purkinje neuron AHP, thereby 

improving the regularity of spiking in fxSCA7 92Q Purkinje neurons. 

 Improvements in transcript expression are not limited to ion-channels, or genes 

related to neuronal excitability, in Sirt1-uOE x fxSCA7 92Q cerebellum. Therefore, it is 

possible that other neuronal pathways which are influenced in SCA7 may also be 

improved upon Sirt1 overexpression. As shown in Chapter 3, neurodegeneration is 

present in fxSCA7 92Q Purkinje neurons in the posterior cerebellar lobules at 25 weeks 

of age, as shown by a decrease in neuronal capacitance. This reduction in capacitance 

was partially improved in Sirt1-uOE x fxSCA7 92Q Purkinje neurons, although not to 

wild-type levels (Figure 4.4G). Overall, this indicates that targeting the Sirt1 pathway 

may offer potential functional and neuroprotective benefit in SCA7. 
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4.5 Discussion 

 As illustrated in Chapter 3, fxSCA7 92Q mice exhibit a disrupted cerebellar 

transcriptome which is associated with reduced expression of genes important for 

calcium homeostasis, dendritic degeneration, and alterations in Purkinje neuron spiking. 

Purkinje neuron spiking can be improved by activating KCa channels, but strategies to 

improve neuronal physiology are unlikely to improve underlying transcriptional 

abnormalities. In this chapter, we explore the potential efficacy of Sirt1 overexpression 

on improving underlying transcriptional alterations in SCA7, and determine whether this 

strategy can similarly improve Purkinje neuron physiology. We found that genetic 

overexpression of Sirt1 can partially rescue transcriptional alterations in several genes 

related to calcium homeostasis, and that these slight increases in expression across 

multiple genes is sufficient to improve Purkinje neuron spiking in Sirt1 uOE-fxSCA7 92Q 

mice. Finally, we illustrate that transcriptional improvements through Sirt1 

overexpression can partially rescue dendritic degeneration in fxSCA7 92Q mice, which 

indicates that targeting Sirt1 activity may be a potential strategy to improve patient 

outcomes in SCA7. 

 Although the studies in this chapter demonstrate the potential efficacy of 

improving Purkinje neuron physiology in SCA7 by increasing Sirt1 activity, these 

experiments have several caveats which should be taken into consideration. First, 

although Sirt1 overexpression does improve transcriptional alterations in fxSCA7 92Q 

mice, this rescue is modest. For instance, Itrp1 expression increases only about 10% 

upon Sirt1 overexpression, and Trpc3 and Cacna1g show similar improvements, 

although expression is still only at 70% of wild-type levels (Figure 4.1E). However, this 
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suggests an interesting possibility about how transcript levels of calcium homeostasis 

genes influence excitability in fxSCA7 92Q Purkinje neurons. It is possible that at 

baseline, calcium sources are redundant and provide calcium at saturating 

concentrations for KCa channels. Therefore, a reduction in expression of any one 

calcium source by close to 30% may not greatly alter Purkinje neuron spiking as 

calcium availability may still remain saturating under those conditions. In fact, this 

possibility is explored in Chapter 3, where partial blockade of a single calcium source is 

not sufficient to cause irregularity in Purkinje neuron spiking (Figure 3.7). The results of 

Sirt1 overexpression suggest that KCa channels may be sensitive to modest changes in 

calcium availability, and that a reduction in expression of about 25% may be tolerated 

while 30-40% reduction results in irregular spiking. Unfortunately, mRNA transcript 

expression of Kcnma1 was not assessed in this study, so dosing information about the 

interaction between calcium sources and BK channels cannot be further explored with 

the present data. Future studies will determine the ability of Sirt1 overexpression to 

influence BK channel expression in fxSCA7 92Q mice. 

 A second caveat to these studies is that additional Sirt1 targets or interactors are 

not explored in the present studies. As illustrated in Figure 4.1, Sirt1 also deacetylates 

HIF-1α. It is unclear through our studies whether Sirt1 activation can directly regulate 

HIF-1α target genes in addition to putative PGC-1α-associated target genes. 

Additionally, these studies do not directly illustrate PGC-1α acetylation status in Sirt1 

uOE-fxSCA7 92Q mice so it is possible that Sirt1 overexpression has benefits outside of 

transcriptional improvement. Sirt1 is dependent on NAD+ as a substrate for activation, 

for which it competes with poly(ADP-ribose) polymerase-1 (PARP-1) 208. If PARP-1 
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expression or activity is increased at baseline in fxSCA7 92Q mice, thereby 

outcompeting Sirt1 for NAD+, it is possible that a larger pool of Sirt1 has access to NAD+ 

in Sirt1 uOE-fxSCA7 92Q mice. This would be expected to have negative downstream 

effects on both PCG-1α and HIF-1α deacetylation, thereby decreasing transcription of 

target genes. In fact, hyperactivation of PARP-1 is observed in mutations that cause 

cerebellar ataxia in humans. Mutations in XRCC1, whose protein product is responsible 

for the assembly of complexes involved in DNA single-strand break repair, result in high 

levels of protein ADP-ribosylation (PARylation) indicating increased PARP-1 activity 209. 

This is similar to an observance in PKNP mutations, which cause increased PARP-1 

activity and result in cerebellar ataxia 210, 211. Future studies will further explore the 

status of Sirt1, along with target proteins under the control of Sirt1 activation, and 

PARP-1, along with downstream proteins involved in DNA single-strand break repair. 

 Sirtuin activation has gained interest as a potential strategy to treat 

neurodegenerative disease. Sirt1 activators, such as resveratrol, have received 

attention due to its effects on lifespan extension across species 190-192, which is in 

addition to the known positive role of sirtuin activation in several rodent models of 

neurodegenerative disease 195-201. Sirt1 activation is also achieved through caloric 

restriction, suggesting that managing energy balance could have positive effects on a 

multitude of neurodegenerative disorders 212. NAD+ supplementation has also been 

illustrated to have protective effects in various rodent models of disease (ref). These 

data suggest that overall, Sirt1 activation may be a reasonable drug target for many 

age-related disorders including SCA. Although Sirt1 overexpression improves 

transcriptional alterations and Purkinje neuron spiking in fxSCA7 92Q mice, 



125 
 

improvements in gene expression were modest. Future studies may identify more 

potent sirtuin activators which may have increased benefit on transcriptional alterations 

and disease outcomes in SCA. However, this strategy should be met with caution, as 

sirtuin target genes are abundant and therefore increase the risk of off-target effects.  
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Figure 4.1 Sirtuin-1 overexpression improves the transcription of PPRE-
containing target genes in fxSCA7 92Q mice. (A) Representative diagram of 
dysregulated calcium homeostasis genes in fxSCA7 92Q cerebellum. oPOSSUM 
analysis of putative transcription factor binding sites (TFBS) determined that hypoxia 
response elements (HRE) and peroxisome proliferator response elements (PPRE) are 
enriched in fxSCA7 92Q cerebellum. Genes which contain PPREs in their regulatory 
domains are indicated with a red star. (B) Sirtuin-1 deacetylates PGC-1α and HIF-1α in 
order to induce expression of target genes. Sirtuin-1 is dependent on NAD+ for 
activation, for which it competes with PARP1. In order to investigate Sirtuin-1 activity in 
fxSCA7 92Q cerebellum, we measured (in red) PGC-1α acetylation status. (C) PGC-1α 
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acetylation is significantly increased in fxSCA7 92Q cerebellum, suggesting reduced 
sirtuin-1 activity. (D) Quantitative PCR analysis illustrates that sirtuin-1 is stably 
overexpressed in Sirt1 uOE-fxSCA7 92Q cerebellum at 36 weeks of age. (E) 
Transcriptome analysis of excitability-related genes within the calcium homeostasis 
pathway. Expression of Itpr1 and Trpc3 show significantly increased expression in Sirt1 
uOE-fxSCA7 92Q cerebellum compared to fxSCA7 92Q cerebellum, while Cacna1g and 
Calb1 appear to have improved expression as well (did not reach statistical 
significance). *p<0.05, Student’s t-test (C), one-way ANOVA with Holm-Sidak test for 
multiple comparisons (D). Note: Experiments in 4.1 (A and C-E) performed by Colleen 
Stoyas and Albert La Spada, University of California, San Diego. 
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Figure 4.2 Sirtuin-1 overexpression improves alterations in Purkinje neuron 
physiology and dendritic degeneration in fxSCA7 92Q mice. (A) Representative 
traces of cell-attached firing from wild-type, fxSCA7 92Q, and Sirt1 uOE-fxSCA7 92Q 
Purkinje neurons. (B) Firing frequency is unchanged between genotypes. (C) The 
coefficient of variation (CV) of the interspike interval is significantly increased in fxSCA7 
92Q Purkinje neurons and is partially rescued upon Sirt1 overexpression. (D) CV 
distributions indicate a slight leftward shift for Sirt1 uOE-fxSCA7 92Q compared to 
fxSCA7 92Q Purkinje neurons. (E) Representative action potentials from all genotypes, 
with the AHP decay highlighted in the inset. (F) AHP decay is significantly increased in 
fxSC7 92Q Purkinje neurons and is rescued upon Sirt1 overexpression. (G) Purkinje 
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neuron capacitance is decreased in fxSCA7 92Q Purkinje neurons, and is partially 
rescued upon Sirt1 overexpression. *p<0.05, one-way ANOVA with Holm-Sidak test for 
multiple comparisons (B, C, G) or two-way ANOVA with Holm-Sidak test for multiple 
comparisons (F). * denotes significantly different from wild-type, # denotes significantly 
different from all other groups. 
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Figure 4.3 Sirtuin-1 overexpression does not affect Purkinje neuron physiology. 
(A) Firing frequency and (B) coefficient of variation (CV) of the interspike interval in Sirt1 
uOE and wild-type littermate control Purkinje neurons. (C) Distribution of CV values 
illustrates no significant difference between Sirt1 uOE and wild-type littermate control 
Purkinje neurons. (D) Representative action potential waveforms from Sirt1 uOE and 
wild-type littermate control Purkinje neurons, illustrating no significant difference in 
decay of the AHP. (E) AHP decay is unchanged between Sirt1 uOE and wild-type 
littermate controls Purkinje neurons. N.S., not significant, Student’s t-test (A-B) or two-
way ANOVA with Holm-Sidak test for multiple comparisons. 
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Chapter 5 

Conclusions and Future Directions 

 The results of this dissertation lead to the following main conclusions. First, KCa 

channel dysfunction underlies altered Purkinje neuron spiking in mouse models of both 

SCA1 and SCA7. Second, these alterations in KCa channel function, along with other 

dendritic potassium channels in SCA1, can be targeted by pharmacologic ion-channel 

modulators to improve Purkinje neuron spiking and motor phenotypes in both SCA1 and 

SCA7 mouse models. Third, these studies have established a role for a functional 

“calcium homeostasis” module as important for alterations in Purkinje neuron physiology 

in a mouse model of SCA7, and suggest that the dysfunction of both calcium sources 

and effector KCa channels may be important across multiple models of polyglutamine 

SCA. Fourth, studies in a mouse model of SCA7 indicate that Sirtuin-1 may be an 

upstream target of transcriptional alterations which directly affect Purkinje neuron 

physiology, and that activating the Sirtuin-1 pathway may be a potential strategy to 

normalize changes in gene expression which contribute to symptoms in SCA7. Finally, 

potassium channel activators are tolerated by human SCA patients and may improve 

symptoms, as indicated by pilot trials with the compounds baclofen and chlorzoxazone. 

Together, this dissertation argues that dysfunction of KCa channels and their calcium 

sources is a common feature of mouse models of SCA, and that potassium channel 

activators have outstanding therapeutic potential, as indicated by their effects on 
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improving Purkinje neuron spiking in mouse models and their tolerability and potential 

efficacy in human SCA patients. However, many aspects of the relationship between 

ion-channel dysfunction and motor impairment in ataxia remain poorly understood. This 

chapter will outline the implications of the studies in this dissertation, and will highlight 

potential opportunities to expand this research further. 

5.1 Understanding the relationship between Purkinje neuron 

excitability, motor impairment, and neurodegeneration in 

spinocerebellar ataxia 

 The studies in this dissertation have outlined a clear relationship between 

alterations in Purkinje neuron membrane excitability and motor impairment. Previous 

studies have provided evidence that this relationship exists, in mouse models of 

episodic ataxia 82, SCA resulting from primary channelopathies 2-6, 28, 33-35, 51, polyQ SCA 

71-73, 77, 78, 104, and direct mutations in ion-channels 18, 42 (reviewed in 213). In many 

instances, the onset of motor impairment corresponds to initial changes in Purkinje 

neuron membrane excitability, or throughout development in the case of ion-channel-

mutant mice. Strong evidence for the relationship between ion-channel dysfunction and 

motor impairment comes from in vivo studies involving ion-channel modulators, which 

can improve motor impairment in conjunction with restored Purkinje neuron membrane 

excitability 73, 76, 78, 82, 83. Together, these studies indicate that altered Purkinje neuron 

membrane excitability is sufficient to result in motor impairment. 

 A good illustration of the relationship between ion-channel dysfunction and motor 

impairment comes from studies in Kv3.3-knockout mice. Kv3.3-knockout mice serve as a 

mouse model of SCA13, since point mutations in the KCNC3 gene result in the 
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production of Kv3.3 with either no functional current or altered kinetics 30-32. In these 

mice, the lack of Kv3.3 current reduces the slope of action potential repolarization in 

cerebellar Purkinje neurons 33, 214. Since full and efficient repolarization, which is 

mediated by Kv channels and calcium-activated potassium channels, allows for 

complete de-activation of voltage-gated sodium channels in preparation of the next 

action potential, the available resurgent sodium current through Nav1.6 is reduced in 

these neurons. Purkinje neurons from Kv3.3-knockout mice therefore display reduced 

firing frequency due to the altered interaction between Kv3.3 and other ion-channels that 

are active during the interspike interval 33. Purkinje neuron-specific re-expression of 

Kv3.3 completely rescues spiking and motor function in Kv3.3-knockout mice, indicating 

that Purkinje neuron electrophysiologic dysfunction is a primary source of behavioral 

impairment in these mice 34, 35. This study clearly identifies Purkinje neuron dysfunction 

as the source of ataxia in these mice, although other studies have illustrated that 

dysfunction in other neuronal populations within the cerebellar motor circuit can also 

influence behavioral changes. 

 The genes which cause polyQ SCA are either widely or ubiquitously expressed 

throughout the central nervous system 7, which suggests that Purkinje neurons may not 

be the only source of electrophysiologic dysfunction that contributes to motor 

impairment in polyQ SCA. For example, mutations in FGF14 cause SCA27 in humans 

117, and similar mutations greatly affect cerebellar granule cell excitability in mice 215. 

This suggests that other neuronal populations may contribute to altered function of 

cerebellar processing through changes in membrane excitability. The argument for 

additional sources of dysfunction within the cerebellar motor circuit is strengthened by 
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human autopsy studies in SCA patients, which indicate that neuronal populations both 

presynaptic and postsynaptic to Purkinje neurons can undergo significant degeneration 

7. For these reasons, it is important to consider whether neurodegeneration in these 

other neuronal populations is also associated with electrophysiologic dysfunction, and 

whether these potential alterations are primary sources of motor impairment in ataxia. 

While the studies in this dissertation demonstrate a clear link between changes in 

intrinsic Purkinje neuron excitability and motor impairment in SCA, they fail to 

investigate to contribution of synaptic alterations to ataxia in these mouse models, or 

consequences on the function of postsynaptic neuronal populations in the deep 

cerebellar nuclei and vestibular nuclei. Therefore, we are left with an incomplete picture 

of both additional sources of dysfunction and whether ion-channel modulators have 

additional targets outside of Purkinje neurons, which is likely since the expression of 

relevant ion-channel targets is not restricted to Purkinje neurons. 

 In order to identify these potential contributing factors in SCA, it is first necessary 

to identify the components of the cerebellar motor circuit which may potentially 

modulate cerebellar output. Individual Purkinje neurons receive excitatory input from 

single climbing fiber (CF) projections which initiate at the inferior olive, along with 

hundreds of parallel fiber (PF) projections from granule cells via the mossy fiber 

pathway 9. Precise timing of CF and PF input to Purkinje neurons has been proposed as 

a mechanism for cerebellar learning 9, 11, with PF input alone resulting in Purkinje 

neuron long-term potentiation (LTP) and simultaneous PF-CF input resulting in Purkinje 

neuron long-term depression (LTD), both at the PF-Purkinje neuron synapse 216. Recent 

work has shown that cerebellar microarchitecture is divided into unique cerebellar 
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“modules”, which are composed of several neighboring Purkinje neurons innervated by 

climbing fiber axons from a single inferior olive neuron, and also project output to a 

single neuron in the cerebellar nucleus 9, 217. This modular architecture is thought to 

allow for precise control of specific muscle groups during movement, and suggests that 

regional dysfunction in the cerebellum may be responsible for specific symptoms such 

as abnormal limb or eye movements. Inhibitory projections onto Purkinje neurons come 

from basket cells and molecular layer interneurons, whose activation may modulate 

cerebellar learning and Purkinje neuron LTD in particular 217, 218. Purkinje neurons send 

inhibitory projections to neurons in the deep cerebellar nuclei and vestibular nuclei, 

which are motor output centers. Although Purkinje neurons are GABAergic and send 

inhibitory projections to these nuclei, Purkinje neuron input does not inhibit neuronal 

firing in cerebellar nuclei as would be expected; rather, cerebellar nuclei spiking 

becomes time-locked to the firing rate of Purkinje neurons in the input module, thereby 

causing increased inhibitory cerebellar nuclei firing with increased cerebellar input, and 

vice versa 219. This spiking relationship indicates that observed dysfunction in Purkinje 

neuron simple spiking may be a reliable measure of dysfunction in the cerebellar and 

vestibular nuclei. Therefore, dysfunction at any of these sites could potentially influence 

movement and result in cerebellar ataxia, although the relevance of these nuclei to the 

pathogenesis of SCA is not yet fully explored in many cases. I propose a series of future 

experiments in order to further dissect the individual contributions of distinct neuronal 

populations to motor impairment in ataxia mice.  

 First, I would perform in vivo recordings in awake, head-fixed SCA mice and wild-

type littermate controls. This recording technique has been used reliably in many 
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studies and can achieve low-noise single-unit recordings of Purkinje neuron activity 220. 

During these recordings, mice will be placed on a treadmill which will allow free running 

and movements will be recorded on video. This time-locked video data can be used to 

correlate specific movements with alterations in Purkinje neuron spiking. Criteria such 

as simple spike frequency and regularity, complex spike frequency and regularity, 

complex spike pause, and number of spikelets during the complex spike can then be 

recorded and analyzed. Alternatively, Purkinje neuron activity could be recorded during 

a postural or learning task which varies between SCA and wild-type mice, thereby 

providing maximal information from single-unit activity. 

 In tandem with this recording strategy, transcriptome analyses will be essential 

for formulating hypotheses about sources of neuronal dysfunction within the cerebellum. 

RNA sequencing could provide information about changes in ion-channel or receptor 

expression in whole-cerebellar lysates. The functional connectivity of the cerebellum is 

well-defined, and ion-channel distribution is known at least in part for many neuronal 

populations within the cerebellum. For instance, specific potassium channel subtypes 

are known to be expressed mostly in Purkinje neurons, while other classes may be 

specific for other neuronal populations. Narrowing potential ion-channel targets will limit 

the time and resources necessary to perform the following experiments. 

 Next, correlates of the altered spiking noted during in vivo recordings can be 

further analyzed during in vitro patch clamp recordings from acute cerebellar slices. 

Recordings of spontaneous simple spike firing, evoked spiking through PF or CF 

stimulation, and spontaneous inhibitory synaptic drive can be recorded from Purkinje 

neurons. In vivo electrophysiology and transcriptomic studies will provide initial 
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evidence of whether presynaptic, synaptic, or intrinsic spiking is most likely to be altered 

in Purkinje neurons during slice recordings. Once alterations are identified, treatments 

can be identified which improve these correlates of altered spiking during patch clamp 

recordings. These may include genetic or pharmacologic strategies, ideally specifically 

targeting specific ion-channel or receptor subtypes. 

 Finally, any identified treatments would be tested during in vivo recordings to 

determine whether physiological alterations and behavioral changes are improved. 

Previous studies have correlated alterations in spiking with motor impairment, and have 

demonstrated that compounds which improve Purkinje neuron physiology during patch-

clamp recordings are also effective at improving motor function during behavioral 

assays 73, 76, 78, 82, 83, 104. However, recordings of Purkinje neuron activity during these 

behavioral tasks is seldom performed, making it difficult to know whether target 

engagement in vivo is equivalent to what is presumed by patch-clamp recordings. This 

strategy will allow us to determine the actual mechanisms of potassium channel 

modulators in vivo, since we cannot know the actual targets which correspond to 

improved motor function based on slice physiology alone. 

 While this series of experiments is a large undertaking, this is the only way to 

fully determine which aspects of cerebellar dysfunction truly contribute to behavioral 

deficits in SCA mice. In addition, these studies will more fully connect the mode-of-

action of pharmacologic modulators to their appropriate targets in vivo, and will allow a 

more direct connection between specific ion-channel dysfunction and motor impairment 

in ataxia. Finally, these experiments will more fully dissect the cerebellar motor circuit at 

baseline and in SCA and will help determine whether Purkinje neuron spiking is the 
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most relevant output which must be targeted by pharmacological modulators, or 

whether other aspects of cerebellar physiology should be more heavily considered 

when designing therapies to treat neuronal dysfunction.   

5.2 Determining the relevance and regulation of a dysfunctional 

“calcium homeostasis” module in spinocerebellar ataxia 

 With Purkinje neuron excitability becoming increasingly recognized as an 

important contributing factor to the phenotypic motor changes observed in SCA, it is 

important to understand the mechanisms which contribute to these alterations in 

excitability. To this end, the studies in this dissertation have outlined a potentially 

important mechanism of neuronal dysfunction in SCA7 which may have widespread 

implications for other SCAs as well. In Chapter 3, a functional “calcium homeostasis” 

module was determined to have altered function in fxSCA7 92Q Purkinje neurons, and 

improving the function of this module through either pharmacologic or genetic strategies 

could also improve Purkinje neuron spiking. These alterations in function are tied to 

disruptions in the cerebellar transcriptome, and importantly converge on calcium 

homeostasis and IP3 receptor signaling pathways. Based on transcriptome analysis 

from mouse models of SCA of various etiologies, the essential components of this 

calcium homeostasis module (i.e. Kcnma1, Cacna1g, Itpr1, Trpc3) appear to be 

downregulated across models of SCA (Chapter 3). This suggests that changes in 

Purkinje neuron excitability may be tied to altered function of this module in several 

ataxias, and that the members of this module may therefore be a convergent 

mechanism of disease and an outstanding target for therapeutic intervention. 
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 This begs an important question: why are transcriptional profiles similarly altered 

across several mouse models of SCA, even though the underlying mutations are 

contained in unique proteins with independent known functions? One piece of evidence 

comes from the established roles of these proteins. Many of the disease-causing 

proteins for polyQ SCA are involved with transcriptional regulation, RNA homeostasis, 

or ubiquitination. For example, ATXN1 (the disease-causing protein in SCA1) has 

known roles involving both transcriptional regulation and RNA splicing 56-58, ATXN2 

(SCA2) contributes to RNA metabolism 59-61, ATXN3 (SCA3) functions as a de-

ubiquitinating enzyme 62, 63, ATXN7 (SCA7) is a core component of the SAGA 

transcriptional complex 64, and TBP (SCA17) is an essential component of tata box-

based transcriptional initiation 65 (reviewed in 66). This suggests potential overlap 

involving the regulation of transcriptional control and indicates that common co-factors 

may regulate essential genes for Purkinje neuron excitability. 

 The native roles of these disease-causing proteins in polyQ SCA, combined with 

the evidence of widespread transcriptional disruption presented in chapter 3, suggests 

that transcriptional dysfunction is a common disease mechanism in SCA. Moreover, the 

downregulated transcriptional targets appear to converge at least partially on neuronal 

excitability pathways important for Purkinje neuron function, which were predicted to be 

important risk factor genes in human ataxia 67. It is possible that there is functional 

overlap between the disease-causing proteins in polyQ SCA and these enriched 

transcriptional targets. For instance, there is a potential role for transcriptional overlap if 

the disease-causing proteins act as sensor molecules in some way, causing them to 

respond to different cellular signals. As an example, a growth factor response may 
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result in direct activation of a protein such as ATXN1, or a co-factor which interacts with 

ATXN1, resulting in transcription of a set of target genes. Meanwhile, an increase in 

excitatory synaptic activity could trigger activation of ATXN2, leading to a change in the 

expression level of the same proteins which influence excitability. Similar situations 

could exist for other ATXN proteins, or TBP (in SCA17), where responses to intrinsic 

signaling, cellular stressors, or other mechanisms may influence transcriptional 

activation or inhibition. In these cases, why would Purkinje neuron excitability pathways 

be enriched as targets for such diverse stimuli? Purkinje neurons are extremely unique 

in the central nervous system because of their large size, high tonic firing rate, and 

subsequently immense metabolic load. Since Purkinje neurons are the sole output of 

the cerebellar cortex, and their main role is to modulate activity in motor output centers 

such as the deep cerebellar nuclei and vestibular nuclei, the ability to alter intrinsic 

excitability in response to stimuli appears to be a likely mechanism for cerebellar 

learning and motor output. Ultimately, these pathways must be tied to neuronal 

excitability in some way in order to influence true changes in motor learning or behavior. 

While these interactions are hypothetical, they describe a situation in which neuronal 

excitability pathways could be common functional targets of ATXN proteins and may 

therefore be commonly disrupted across SCAs with different underlying genetic causes. 

 In order to explore whether this type of convergent transcriptional regulation is 

possible in SCAs, a series of experiments would be necessary. The most obvious link 

between excitability genes and ATXN proteins is either by direct binding to regulatory 

domains or by association with a transcriptional co-activator/co-repressor which 

influences target gene transcription. Co-immunoprecipitation (Co-IP) experiments would 
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help identify protein-protein interactions with transcriptional co-factors, chromatin 

immunoprecipitation (ChIP) would assess direct binding to promoter regions of genetic 

targets, and assessments of epigenetic modification may be informative in some 

situations. In chapter 4, we illustrate PPRE and HRE target genes show altered 

expression in fxSCA7 92Q mice (Figure 4.1). ATXN7 is a known member of the STAGA 

transcriptional complex which has both histone acetyltransferase (HAT) and protein 

deubiquitinase (DUB) activity 221. ATXN7 is positioned within the DUB module of 

STAGA and has been proposed to anchor this module to the native complex. Under 

polyQ expansion, it is possible that STAGA function shifts away from a normal ratio of 

HAT:DUB activity, either causing loss of DUB activity or a dissociated, constitutively 

active DUB module 221. In this case, histone occupancy and ubiquitination could be 

assessed in the promoter regions of excitability target genes, such as Kcnma1, in order 

to illustrate the direct mechanism of decreased expression in fxSCA7 92Q mice. An 

alternative mechanism would be direct binding of ATXN7 to the regulatory domains of 

target genes, independent of STAGA function. Such a role for ATXN7 is not currently 

known and appears less likely than a potential alteration of the native function of 

STAGA, but should be explored for a more complete picture of molecular alterations in 

SCA7. 

 In the case of SCA1, several studies have presented evidence that ATXN1 

protein directly interacts with the transcriptional repressor Capicua, and this interaction 

appears to be altered upon polyQ expansion. In SCA1 mice, polyQ expansion of ATXN1 

increases the interaction between ATXN1 and Capicua, which ultimately accelerates 

motor impairment and neurodegeneration 57, 222. Interestingly, knockout of Capicua 
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prevents neurodegeneration and motor impairment in the ATXN1154Q mouse model of 

SCA1, as does the introduction of genetic mutations which prevent ATXN1 from binding 

to Capicua 223. In this sense, the toxicity of polyQ-expanded ATXN1 appears to be 

dependent on Capicua binding. The authors of this study also illustrate that 

transcriptome changes seen in ATXN1154Q mice are almost the complete opposite of 

those seen in Capicua knockout mice, suggesting that a large number of the 

transcriptional changes observed in SCA1 are likely under direct transcriptional 

regulation by Capicua 223. In order to determine whether calcium homeostasis genes, 

especially BK, are under transcriptional regulation by Capicua, chromatin 

immunoprecipitation will be performed to determine occupancy by Capicua in both wild-

type and ATXN1[82Q] mice. Since Capicua is a transcriptional repressor and polyQ 

expansion increases the association of ATXN1 and Capicua, BK channel expression 

would be expected to decrease in ATXN1[82Q] mice since this repression should 

become stronger. In fact, BK channel downregulation is observed in ATXN1[82Q] mice, 

although the reason is not yet known 71. If confirmed, other members of the calcium 

homeostasis module could also be investigated for their regulation by Capicua in order 

to determine whether this is a master regulator of trafnscriptional control of calcium 

homeostasis genes related to Purkinje neuron excitability. 

 It is possible that transcriptional regulators other than Capicua may be involved in 

the regulation of excitability genes in SCA1 and other SCAs. One potential control 

element is the protein 14-3-3, which stabilizes the Ser-776 phosphorylation site of 

ATXN1 which controls its transport to the nucleus 224.14-3-3 binds more strongly to 

polyQ-expanded ATXN1 225 and might therefore result in overrepresentation of ATXN1 
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in the nucleus upon polyQ expansion. Interestingly, a D776 phosphomimetic mutation 

induces motor impairment and minor dendritic structural alterations in mice which 

express a sub-pathogenic polyQ repeat sequence in ATXN1 226, suggesting that 

increasing the strength of the interaction between 14-3-3 and ATXN1 may be sufficient 

to influence toxicity in SCA1. This is an alternative mechanism to Capicua but may also 

contribute to the increased presence of ATXN1 in the nucleus upon polyQ expansion. 

As in the case of SCA1 and SCA7, similar studies of transcriptional regulation by 

specific co-factors should be performed in mouse models of SCA2 and SCA3, although 

Purkinje neuron pathology is not the most prominent feature of SCA3 7. This would 

generate a broader understanding of transcriptional control in SCA and why specific 

genetic targets may be overrepresented in SCA. 

 In human SCA patients, Purkinje neuron involvement is variable and not the 

exclusive degenerative feature of disease. In many polyQ SCAs, neurons in the 

midbrain, pons, thalamus, and medulla oblongata demonstrate significant degeneration 

7. It is likely that neuronal dysfunction is not restricted to Purkinje neurons and may be 

significant in several of these additional nuclei. In particular, the olivary nuclei are 

heavily affected across SCAs 7 and play an important functional role in the cerebellar 

motor circuit. The inferior olive sends climbing fiber projections to cerebellar Purkinje 

neurons in order to elicit complex spikes. Complex spikes are an important feature of 

cerebellar learning 217 and alterations of the complex spike, such as frequency, pause 

length, and number of spikelets, may influence Purkinje neuron dysfunction in SCA. As 

mentioned in Section 5.1, future studies must focus on the function of the entire 

cerebellar motor circuit in order to fully study contributions to altered cerebellar output 
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and motor impairment. Alterations in olivary function can be assessed directly via patch-

clamp recordings, or indirectly via the observance of complex spikes during in vivo 

recordings of Purkinje neuron activity. In order to uncover the underlying mechanisms to 

potential sources of dysfunction within brainstem nuclei, similar studies to the 

aforementioned could be performed in the inferior olive and other nuclei across SCAs to 

determine whether these neurons are similarly affected to Purkinje neurons. In the 

inferior olive, neurons in the dorsal cap of Kooy are spontaneously active 227, although 

they rely on a different cohort of ion-channels in order to support repetitive spiking than 

Purkinje neurons. It is possible that transcriptional control of these channels is also 

altered in SCA, although separate transcriptional co-factors may be important in the 

brainstem outside of Capicua. Since olivary neurons are also reliant on KCa channels for 

repetitive spiking 228-232, a calcium homeostasis module may also be relevant in these 

neurons and could be investigated. I would hypothesize that an altered transcriptome 

would be observed in the brainstem of knockin models of ataxia, or where a transgene 

is driven throughout the CNS, similar to the pattern of pathology observed in human 

SCA patients. I would also hypothesize that neuronal excitability pathways which 

converge on KCa channels would contribute to altered membrane excitability in olivary 

neurons, although BK channels and the exact calcium sources highlighted in this 

dissertation may be different in this nucleus. Studies investigating this possibility will 

strengthen our understanding of neuronal dysfunction in polyQ SCA, including how 

neuronal dysfunction may be common not only across SCAs of different etiologies but 

also across multiple neuronal populations within the same genetic cause of disease. 

This finding would have profound implications for the design of new therapies, in 
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particular if similar ion-channel targets are disrupted in multiple neuronal populations, as 

a single pharmacologic agent may demonstrate efficacy by targeting dysfunction across 

these brain regions.  

5.3 Towards the design of novel potassium channel modulators to 

improve cerebellar function in spinocerebellar ataxia 

 The studies in Chapter 2 of this dissertation have identified a combination of 

FDA-approved potassium channel-activating compounds, baclofen and chlorzoxazone, 

which are tolerated in human SCA patients. While these studies are promising, several 

caveats remain. First, this combination of agents was chosen based off of studies in the 

ATXN1[82Q] mouse model of SCA1. While baclofen and chlorzoxazone were shown to 

improve Purkinje neuron spiking and reduce dendritic hyperexcitability in this model, the 

targets of baclofen and chlorzoxazone are not fully known, leading to the possibility of 

off-target effects. Second, it is unclear whether the effects of baclofen and 

chlorzoxazone in SCA patients are due to a preservation of Purkinje neuron function, or 

due to their effects as muscle relaxants 132. Third, the trial involving SCA patients was 

intended to be a tolerability study and was not blinded or placebo-controlled. Therefore, 

effects of these compounds in vivo are difficult to interpret. Finally, since clinical trials 

with other reagents, such as riluzole, also demonstrate potential efficacy 110, 111, it 

remains unclear which molecular targets are most important for the improvement of 

patient symptoms or whether alternative molecular targets are more appropriate. 

Therefore, it is crucial to fully understand the proper molecular targets in SCA1 and 

other ataxias, and then design new therapeutic agents with increased specificity and 
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potency, in order to maximize the potential benefit of a pharmacologic treatment 

strategy for SCA. 

 Baclofen has several known targets in Purkinje neurons, but the studies in this 

dissertation suggest that other targets may remain undiscovered. The effect of baclofen 

on potentiating GABAB signaling is well-characterized. Baclofen is known to activate 

GABAB receptors in Purkinje neurons to produce an outward current. Upon activation of 

the Gi/o complex, the Gβγ subunit dissociates and interacts with G-protein coupled 

inwardly-rectifying potassium (GIRK) channels, resulting in activation and potentiation of 

this current 233. In Purkinje neuron somata, GIRK1 channels have been shown to 

become activated upon baclofen administration 136. This role of baclofen is consistent 

with the observation of Figure 2.3A in this dissertation, which illustrates that baclofen 

administration results in hyperpolarization of the somatic membrane potential in 

ATXN1[82Q] mice. However, another established role for baclofen is known in Purkinje 

neurons. In mouse models of SCA1 and SCA2, prolonged metabotropic glutamate 

receptor type 1 (mGluR1) currents have been observed 147, 152, 153. In these cases, 

baclofen alone would therefore be expected to worsen motor performance by acting 

through increased mGluR1 activation 152. This suggests that baclofen treatment in vivo 

may influence postsynaptic signaling in Purkinje neurons, a possibility which was not 

investigated with the studies of this dissertation. However, baclofen does not seem to 

reduce dendritic hyperexcitability in ATXN1[82Q] mice by activating either mGluR, since 

a phospholipase-C inhibitor does not change the effect of baclofen on the threshold to 

elicit dendritic calcium spikes, nor GIRK1, since barium does not occlude the effect of 

baclofen on the threshold to elicit calcium spikes. This limits the potential target of 
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baclofen to a relatively barium-insensitive inwardly-rectifying potassium channel, 

although the exact target remains unknown. Therefore, an ideal potassium channel-

activating compound would need to activating a dendritic potassium channel current to 

reduce dendritic hyperexcitability, while also remaining neutral to mGluR signaling or 

even acting as a negative allosteric modulator of mGluR current in order to prevent 

negative effects on motor function through synaptic mechanisms. 

 Chlorzoxazone is considered a KCa channel activator, since it has been shown to 

activate BK, IK, and SK channel currents 134, 135. In mouse models of cerebellar ataxia, 

chlorzoxazone has been demonstrated to simultaneously improve aberrant Purkinje 

neuron spiking and activate KCa currents in the AHP 73, 82, 83. In Chapter 2 of this 

dissertation, I demonstrate that chlorzoxazone also reduces dendritic hyperexcitability in 

ATXN1[82Q] mice by activating a subthreshold-activated potassium channel current 

and not a KCa current (Figure 2.5). Chlorzoxazone appears to activate Kir6.2 in Purkinje 

neuron dendrites, since tolbutamide partially occluded the effect of chlorzoxazone on 

increasing the threshold to elicit dendritic calcium spikes. However, it is likely that other 

targets of chlorzoxazone remain in Purkinje neuron dendrites, since the effect of 

tolbutamide was only partial. Future studies will be required to determine whether 

activating Kir6.2 current is sufficient to reduce dendritic hyperexcitability or whether 

additional targets should be considered. 

 While KCa activation appears to be a desired quality for an agent designed to 

treat SCA, currently-approved KCa activators do possess some undesirable off-target 

effects. Riluzole is known to activate KCa channels at close to 20 μM, but inhibits sodium 

channels at 1-50 μM 112, 114. Chlorzoxazone may also possess similar off-target effects 
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including sodium channel inhibition, although other potential molecular targets are not 

clearly documented. Despite these potential negative effects, both riluzole and 

chlorzoxazone have shown some therapeutic potential in human patients 110, 111, 149. 

However, improved specificity would be a desired feature of any newly-designed 

therapeutic agent designed to target KCa activity. In addition, both riluzole and 

chlorzoxazone lack potency, thereby requiring high doses for treatment. While these 

compounds can achieve high plasma concentrations, prolonged administration risks 

liver toxicity and makes these compounds non-ideal for long-term treatment. 

 Taking these factors into account, the ideal agent for the treatment of SCA may 

possess the following qualities: (1) activate KCa channels in order to improve somatic 

spiking, (2) activate Kir6.2 channels, and potentially other subthreshold-activated 

potassium channels, in order to reduce dendritic hyperexcitability, (3) either not affect 

synaptic signaling, or potentially act as a negative allosteric modulator of mGluR 

signaling, (4) work on the appropriate ion-channel targets with intermediate potency, so 

as to make a range of dosing possible without requiring millimolar concentrations of 

drug for efficacy, and (5) stable pharmacodynamics, possibly in a pro-drug formulation, 

in order to facilitate easy dosing for patients. In order to design such a compound, a 

series of experiments must take place. 

 Since KCa-activating properties seem to be important for improving Purkinje 

neuron spiking, both in the studies throughout this dissertation and in previous literature 

73, 76-78, 82, 83, 105, using a known KCa activator as a scaffold for new reagents. Many KCa 

activators are substituted benzothiazoles or benzoxazoles, with substitutions influencing 

target specificity and potency 137. Therefore, I would propose starting with 
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chlorzoxazone, a benzozoxazole, as it is known to target both KCa channels to improve 

Purkinje neuron spiking and Kir6.2 in the dendrites in order to reduce dendritic 

hyperexcitability. Next, with the assistance of medicinal chemists, a library of substituted 

compounds can be generated, and their ability to activate Kir6.2 currents can be 

assessed in a heterologous expression system with automated patch clamp recordings. 

Any compounds that activate Kir6.2 will then be tested in acute cerebellar slices from 

ATXN1[82Q] mice in order to determine their effects on Purkinje neuron spiking and 

dendritic excitability. If a single compound is identified to successfully target both 

somatic spiking and dendritic excitability, it will be tested in vivo to confirm improvement 

of motor function in ATXN1[82Q] mice. If these attempts are unsuccessful, alternative 

molecular targets could be considered, or another known KCa activator could be used as 

a scaffold for the design of novel compounds. The ultimate goal of this drug 

development pipeline would be to design a compound specifically for the treatment of 

cerebellar ataxia, through improving target specificity and reducing the need for multiple 

agents in order to properly activate all molecular targets. 

5.4 Current status of therapeutic options in spinocerebellar ataxia, 

and a potential role for pharmacologic modulators in treating disease 

 Currently, no proven symptomatic or disease-modifying therapies exist for the 

treatment of SCA. Through decades of research, several viable treatment strategies 

have been proposed and are still being explored to varying degrees of success. These 

include RNA interference-based technologies, gene editing approaches, and 

pharmacological targeting of altered neuronal physiology. Each of these approaches 
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show promise for treating specific underlying causes of ataxia, but they also 

demonstrate potential risks and concerns which must be considered. 

 In several of the polyQ SCAs, toxic gain-of-function mutations are thought to be 

the cause of disease 66. In those cases, polyQ-expanded protein accumulates into 

insoluble aggregates, also disrupting cellular processes. Although it is unclear whether 

soluble oligomeric species are more or less toxic than these large aggregates, it is clear 

that reducing overall levels of the polyQ-expanded species or, in some cases, both 

polyQ-expanded and wild-type alleles would be beneficial for slowing or halting disease 

progression. Much of this recent work comes from studies involving RNA interference-

based therapies including antisense oligonucleotides (ASO) therapy. ASO therapy is 

based on synthetic oligonucleotides which are targeted to bind to specific mRNA 

strands via Watson-Crick hybridization. Once bound, ASOs trigger an RNAse-H 

response in which the target mRNA is degraded but the ASO remains intact within the 

cell. This allows the ASO to consistently degrade mRNA for an extended period before 

re-dosing is required 108, 234. Nusinersen, an ASO-based therapy, is now approved for 

the treatment of spinal muscular atrophy (SMA) 235-238, while clinical trials have 

advanced for the treatment of Huntington’s disease and amyotrophic lateral sclerosis 

239, 240 and proof-of-concept studies have been demonstrated in models of SCA1, SCA2, 

SCA3, and prion protein infection 108, 109, 241. Although ASO treatment appears very 

promising for neurological disease, and clinical trials may begin within several years for 

SCA, there are still risks associated with this strategy. ASOs do not cross the blood-

brain barrier and must therefore be delivered directly to the CNS via intrathecal injection 

242. In addition, although ASO-based therapies have the potential to be highly effective 
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for the treatment of ataxias caused by gain-of-function mutations, individual ASO 

treatments must be designed for each underlying cause of SCA, many of which are 

presumed loss-of-function mutations. Therefore, strategies to broadly treat symptoms 

across SCA of multiple etiologies will not be possible with the use of ASO technology. 

The safety of protein knockdown must also be considered for each individual genetic 

cause of SCA. ASO-based approaches appear appropriate for SCA3, as complete 

genetic knockdown or non-allele specific silencing of ATXN3 shows no adverse effects, 

suggesting that ATXN3 is a non-essential protein which could be safely targeted with 

full RNA knockdown approaches such as ASO-based therapies 108, 243, 244. However, this 

is likely not the case for SCA1, as other studies have determined that reduction of more 

than 20% of ATXN1 may be toxic in mice and humans 223, 245. This indicates that precise 

ASO dosing for each individual genetic variant is essential, making basic research and 

preclinical animal dosing studies fundamentally important. Another important 

consideration must be made for the cost of these treatments, as ASO-based therapies 

are tremendously expensive and must be delivered throughout the lifetime of the 

patient. Currently, Nusinersen costs $125,000 per treatment, which equates to 

$750,000 in the first year and $375,000 in each subsequent year 246. Future research 

and development efforts must focus on reducing cost in order to provide maximum 

benefit to patients. Finally, as with any new and untested treatment strategy, adverse 

effects of ASO therapy can be predicted through animal studies but cannot be fully 

known until human trials are performed. 

 In cases where point mutations may result in either loss-of-function or gain-of-

function mutations which cause ataxia, gene editing approaches may be considered. As 
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opposed to ASO therapies, or other RNA interference-based approaches, gene editing 

would directly target underlying genetic mutations within patient DNA. AAV2 and AAV9 

have both been illustrated to efficiently deliver transgenes to adult neurons 247-249, and 

similar approaches could be considered for SCA. This also applies to CRISPR/Cas9, 

zinc finger nuclease (ZFN), and transcription activator-like effector (TALEN) technology, 

of which CRISPR/Cas9 appears to be easiest and most cost-effective approach 250, 251. 

The most obvious benefit to gene editing approaches is that they attempt to genetically 

correct underlying genetic mutations, thereby requiring only one or few treatments in 

order to provide full benefit, provided that delivery is efficient and global throughout the 

CNS. Many of the concerns with AAV or CRISPR/Cas9 treatments are centered on 

efficient delivery and safety. For example, data from mouse models of SCA3 has 

indicated that RNAi, via AAV delivery methods, is ineffective at improving disease 

symptoms when solely targeted to the cerebellum 243, 252. This is likely because many 

other brain regions are affected in SCA, including brainstem and thalamic nuclei 7. 

Therefore, efforts must be made to improve global delivery methods for AAV-based 

therapies, while similar attempts to maximize delivery and efficacy will be required from 

CRISPR/Cas9 approaches. Other factors, such as cost and secondary effects of 

treatment, are not yet known as these approaches are still in their infancy for the 

treatment of SCA. 

 A final therapeutic strategy is outlined by the studies in this dissertation. As 

mentioned previously, alterations in Purkinje neuron electrophysiology are a major 

phenotypic component of mouse models of polyQ SCA. Alterations in spiking correlate 

with impaired motor function, and improving spiking also improves motor performance 
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71, 73, 82, 83. While is it assumed that mouse models are reflective of the human condition 

in disease, it cannot be known with current methods whether alterations in Purkinje 

neuron spiking contribute to motor symptoms in SCA patients. However, there is some 

evidence that ion-channel activators appropriately target and treat neuronal dysfunction 

in ataxia and other movement disorders. Chlorzoxazone, a KCa channel activator, 

improves symptoms of downbeat nystagmus in human SCA patients 149. Another KCa 

channel activator, riluzole, has shown some potential efficacy for the treatment of SCA 

of multiple genetic causes in a series of clinical trials based in Italy 110, 111. Finally, the 

studies outlined in Chapter 2 of this dissertation contain data from human SCA patients 

of multiple genetic causes and indicate that a combined treatment of chlorzoxazone and 

baclofen is tolerated by patients and may improve motor symptoms 73. A major benefit 

of pharmacologic treatment with agents such as baclofen and chlorzoxazone is that 

they are already FDA approved for other uses, are easily accessible, and are cost-

effective. Additionally, mouse models indicate that many SCAs are diseases of Purkinje 

neuron hyperexcitability, meaning that potassium channel activation could be a broad 

approach for improving symptoms in many different causes of SCA. Many cerebellar 

ataxia patients remain undiagnosed, even after genetic testing, and pharmacologic 

modulators are likely the only hope of symptomatic treatment in these cases. There are 

inherent concerns with prescribing treatments in cases with no confirmed diagnosis. 

However, these drugs can be discontinued if patients experience adverse objective or 

subjective effects, and these adverse effects would likely be transient. One obvious 

downfall of pharmacologic treatment for SCA is that it does not treat the underlying 

genetic cause of these disorders, but rather manages and potentially improves motor 
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symptoms. It is unclear whether pharmacologic approaches could also be 

neuroprotective, but this seems unlikely based on the studies from Chapter 2 of this 

dissertation. Therefore, potassium channel modulators appear to be limited in their 

therapeutic benefit when compared to genetic approaches but remain a good candidate 

for symptomatic treatment of ataxias of both known and unknown genetic causes. 

5.5 Concluding remarks 

 In this dissertation, I have presented evidence that KCa channel dysfunction 

contributes to Purkinje neuron dysfunction in multiple models of SCA, and that targeting 

these alterations in Purkinje neuron spiking is a reasonable approach for the treatment 

of motor impairment in ataxia. The studies which have contributed to this conclusion 

were performed in mouse models of SCA1 and SCA7, and in human SCA patients. I 

have demonstrated that while changes in ion-channel function are important for Purkinje 

neuron dysfunction in SCA, functional alterations are not restricted to KCa channels but 

comprise a functional module of calcium sources and effector KCa channels. These 

changes are important for somatic spiking in Purkinje neurons, but independent 

dendritic pathology appears to exist across multiple models of SCA and should be 

considered when investigating the efficacy of potential therapeutics. Finally, these 

studies have outlined several potential treatment strategies for SCA, including 

potassium channel modulation and Sirt1 activation.  

 The studies in this dissertation add to current understating of how ion-channel 

dysfunction contributes to motor impairment in ataxia and can thereby act a therapeutic 

target for the treatment of ataxia. The work of this thesis, and future research that may 
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be inspired by these studies, may help generate novel therapies to improve patient 

outcomes in spinocerebellar ataxia.
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