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Abstract

Incorporation of contextual inference in the optimality analysis of operational problems is

a canonical characteristic of data-informed decision making that requires interdisciplinary

research. In an attempt to achieve individualization in operations management, we design

rigorous and yet practical mechanisms that boost efficiency, restrain uncertainty and el-

evate real-time decision making through integration of ideas from machine learning and

operations research literature.

In our first study, we investigate the decision of whether to admit a patient to a critical

care unit which is a crucial operational problem that has significant influence on both

hospital performance and patient outcomes. Hospitals currently lack a methodology to

selectively admit patients to these units in a way that patients individual health metrics

can be incorporated while considering the hospitals operational constraints. We model

the problem as a complex loss queueing network with a stochastic model of how long

risk-stratified patients spend time in particular units and how they transition between

units. A data-driven optimization methodology then approximates an optimal admission

control policy for the network of units. While enforcing low levels of patient blocking,

we optimize a monotonic dual-threshold admission policy. Our methodology captures

utilization and accessibility in a network model of care pathways while supporting the

personalized allocation of scarce care resources to the neediest patients. The interesting

benefits of admission thresholds that vary by day of week are also examined.

In the second study, we analyze the efficiency of surgical unit operations in the era of

big data. The accuracy of surgical case duration predictions is a crucial element in hospi-

tal operational performance. We propose a comprehensive methodology that incorporates

both structured and unstructured data to generate individualized predictions regarding the

overall distribution of surgery durations. Consequently, we investigate methods to incorpo-

rate such individualized predictions into operational decision-making. We introduce novel

prescriptive models to address optimization under uncertainty in the fundamental surgery

xi



appointment scheduling problem by utilizing the multi-dimensional data features available

prior to the surgery. Electronic medical records systems provide detailed patient features

that enable the prediction of individualized case time distributions; however, existing ap-

proaches in this context usually employ only limited, aggregate information, and do not

take advantages of these detailed features. We show how the quantile regression forest,

can be integrated into three common optimization formulations that capture the stochas-

ticity in addressing this problem, including stochastic optimization, robust optimization

and distributionally robust optimization.

In the last part of this dissertation, we provide the first study on online learning problems

under stochastic constraints that are “soft”, i.e., need to be satisfied with high likelihood.

Under a Bayesian framework, we propose and analyze a scheme that provides statisti-

cal feasibility guarantees throughout the learning horizon, by using posterior Monte Carlo

samples to form sampled constraints that generalize the scenario generation approach com-

monly used in chance-constrained programming. We demonstrate how our scheme can be

integrated into Thompson sampling and illustrate it with an application in online adver-

tisement.

xii



Chapter 1.

Introduction

As we evolve through and beyond the information age, we transition from industrial mass

production and generic service delivery mechanisms to individualized and knowledge-based

operational systems. It is now a common practice for different services and industries to

be more appreciative of data as they deploy personalized strategies and, therefore, almost

every stage of any operation is a host to plenitude of data collected in various formats

and magnitude. This trend has consequently motivated researchers to adapt and improve

various machine learning and statistical inference methods to leverage big data. Thus, the

literature is ripe with multitude of studies in predictive modeling focusing on retrieving

certain trends in data to provide a better picture of the underlying system.

However, predictive models per se are not fit for operational decision making and opti-

mality analysis simply because they are designed for a different purpose. Hence, to close

this gap, a new line of research has emerged in the modern literature of analytics known

as “Prescriptive Modeling” [20]. These techniques have equipped the decision makers with

powerful machinery to take on routine operational problems in a more nuanced fashion

such that the optimal operational decisions are made by absorbing the entirety or a faith-

ful approximation of the available data [113]. In this dissertation we aim to design new

1



frameworks to build on prescriptive modeling and data-driven decision making literature.

The availability of Electronic Health Records (EHR) [4, 101] has positioned many of

healthcare operations in the favorable realm of data-intensive problems. Similarly, with the

expansion of world wide web, social networks, online cookies, etc. every interaction of an

individual with the online world is traceable in high-dimensional data-sets and, therefore,

accessible for optimizing digital marketing campaigns. Hence, for our operational cases, we

focus on general problems faced by decision makers in healthcare and digital marketing.

This dissertation is presented in a multiple manuscript format. We provide three distinct

frameworks to facilitate the integration of machine learning and optimization. In Chapter 2,

we start by considering a separated estimation and optimization model to optimally allocate

needier patients to a higher level of care based on their mortality risk and a comprehensive

consideration of hospital operations. In Chapter 3, we discuss a new framework that

enables the decision maker to directly incorporate data in performing optimization under

uncertainty. For this chapter, we focus on the classic appointment scheduling problem.

Finally, in Chapter 4, we transition to sequential optimization problems where the decision

maker has to learn and decide as data becomes available sequentially. We focus on designing

optimal strategies for digital marketing campaigns under probabilistic budget constraints.

In Chapter 2, considering the steep financial burden imposed by critical care units and

the importance of patient outcomes, we investigate methodologies to improve admission

decisions in the higher level of care units/wards. We generate a novel perspective to

optimize a personalized risk-based admission policy. To do so, we leverage a recently

developed estimate of mortality risk metric as a surrogate measure of each patient’s true bed

placement requirements. We integrate this metric with the hospital’s bed capacity using

a network model of patient flow through units/wards and a data-informed methodology.

This study introduces a complex model of patient placement into a network of Intensive

2



Care Units (ICU) or Intermediate Care Units (IMC) and approximately optimizes the ICU

and IMC patient admission policy to get the neediest patients into the ICU and IMC

units using stochastic arrivals and patient flow processes. The results in Chapter 2 have

appeared as individual research paper [98].

In the first part of Chapter 3, we study the surgical case duration problem. We offer a

novel individualized perspective to address case duration prediction problem by leveraging

the entire patient-hospital data available prior to the surgery. From the structured data

we include patient related data, hospital and staff related data, operational data and tem-

poral data. In addition to the structured data, to boost individualization, we also explore

multiple text notes from surgeons and radiologists. Finally, we introduce generalizable

predictive models and validate our results via extensive experiments on rich data sets of

Memorial Sloan Kettering Cancer Center (MSKCC).

In the second part of Chapter 3, we investigate methods to incorporate individualized

data-driven predictions into medical decision-making. As an application context, we inves-

tigate the surgery appointment scheduling problem, because the prediction of surgical case

durations is a difficult and important challenge exhibiting high variability and uncertainty,

particularly from the perspective of the individual patient. The existing approaches in this

context usually employ only limited, aggregate information, and do not take advantages

of the detailed available data. We show how the quantile regression forest (QRF) method,

which provides an individualized predicted distribution, can be integrated into three com-

mon stochastic optimization approaches in addressing this problem, including stochastic

optimization, robust optimization and distributionally robust optimization. We also nu-

merically compare the benefits of our approaches relative to traditional models using a

data from our Memorial Sloan Kettering Cancer Center.

Finally in Chapter 4, we provide the first study on online learning problems under

3



stochastic constraints that are “soft”, i.e., need to be satisfied with high probability. These

constraints are imposed on all or some stages of the time horizon so that the stage deci-

sion probabilistically satisfies a safety condition that is realized after the decision is made.

The distributions that govern these conditions are learned through the collected observa-

tions. Under a Bayesian framework, we study a scheme that provides statistical feasibility

guarantees through the time horizon, by using posterior Monte Carlo samples to form

sampled constraints that leverage the scenario generation approach in chance-constrained

programming. We demonstrate how our scheme can be integrated into Thompson sampling

and illustrate it with an application in online advertisement using real data from Adobe

Systems, Inc.

In the last Chapter of this dissertation we discuss the findings and provide concluding

remarks. In addition, we provide future paths and potential research opportunities based

on the outcomes of each chapter. Table 1.1 summarizes the main contributions in each

chapter.

4



Table 1.1: Overview of the dissertation topics and their main contributions.

Topic Main Contributions
Chapter 2:
Data-driven Optimization
Methodology for Admission
Control in Critical Care
Units

(1) Introducing a complex model of patient placement
into a network of ICU and IMC units
(2) Proposing a data-driven Mixed Integer Programming
(MIP) optimization methodology in equilibrium that
generates optimal key system metrics
(3) Defining an individualized framework to selectively
promote the highest risk patients to a higher level of
care unit or demote patients of low risk to a lower level
of care using the notion of mortality risk

Chapter 3:
Optimization Under
Uncertainty: Surgery
Scheduling and The
Promise of
Individualization

(1) Proposing a state of the art predictive model for
surgery duration estimation using the entirety of
patient-hospital data
(2) Defining an individualized stochastic optimization
framework and showing the statistical consistency of this
method
(3) Introducing individualized robust optimization
model, and showing the consistency and robustness
guarantee of this technique
(4) Proposing an individualized distributionally robust
model for the surgery scheduling problem, and proving
the statistical consistency of this approach

Chapter 4:
Sequential Learning Under
Probabilistic Constraints:
Feasibility of Digital
Marketing Campaigns

(1) Designing sequential methodologies that maintain
probabilistic feasibility requirements with rigorous
statistical guarantees
(2) Providing the first study on a class of problems that
not just include the rewards but also stochastic
constraints that need to be satisfied with high
probability
(3) Illustrating the integration of our scheme into a
variant of Thompson sampling
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Chapter 2.

Data-driven Optimization Methodology

for Admission Control in Critical Care

Units

2.1. Introduction

Healthcare costs in the US are extremely high, with $759.1 billion annually in hospital

costs alone [136]. Among critical care units/wards, Intensive Care Units (ICUs) are partic-

ularly expensive, with over $55 billion in estimated annual costs as of 2005 [63]. Although

less expensive than ICUs, Intermediate Care units (IMCs) are also more costly than gen-

eral/regular medical units. IMCs provide a level of care between intensive care and general

units, and their inclusion in hospitals’ network flow has shown benefits for both patients

and system utilization [6]. These units have less equipment and a higher ratio of patients

to nurses; therefore, IMCs are less costly to operate than ICUs. Considering the steep fi-

nancial burden imposed by critical care units and the importance of patient outcomes, it is
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essential to investigate methodologies to improve admission decisions in the higher level of

care units/wards such as ICUs and IMCs. This research generates a powerful method and

a novel perspective to optimize a personalized risk-based admission policy. We leverage

a recently developed estimate of mortality risk metric as a surrogate measure of each pa-

tient’s true bed placement requirements. We integrate this metric with the hospital’s bed

capacity using a network model of patient flow through units/wards and a data-informed

methodology.

One important component of this problem is the management of a hospital units’ bed

capacity in the face of congestion. Hospital census (the number of patients in the hospital

at a given time) and unit/ward level census are both variable, with a weekly pattern of

variation (see [68] as one example in addition to others cited therein). Under-utilization of

capacity reduces potential hospital revenue, whereas over-utilization leads to patient block-

ing, decreased quality of care, and job dissatisfaction among nurses [2, 68]. By blocking,

we mean either that a patient is diverted to another hospital because the desired hospital

is not accepting patients due to limited resources, or that a patient is placed in a different

unit because the desired unit is full. Both types of blocking are undesirable. Placing a

patient in a suboptimal unit may compromise quality of care and can lead to worse patient

outcomes (i.e., increased length of stay, mortality rate, and readmission rate [40]).

The number of ICU beds in the U.S. is growing, but this growth is slower than the growth

of demand for ICUs [64]. Some predict a shortage of ICU beds [139]. As the population

in the U.S. continues to age rapidly, more stress will be placed on our healthcare systems

because older patients require more frequent and more intensive healthcare services [126,

139]. Compounding this effect, hospitals across the country are reducing the number

of available beds. This is especially troubling when we consider that the effects of ICU

congestion are felt throughout the hospital, as patients are frequently competing for ICU

7



beds [78, 95]. This paper sheds light on how to efficiently allocate limited ICU and IMC

resources.

ICU care is beneficial to patients [13, 122] and may decrease patient mortality rates

during the first 24 hours of care, especially for those patients with high risk [122, 123].

ICU care is especially beneficial for critically ill patients; it has been shown to markedly

improve outcomes for these critically ill patients [130]. Conversely, ICU care may not be

beneficial for patients who are sufficiently well [130, 149].

Hence, some studies in the ICU admission literature include severity measures in the

decision making processes [71, 121]. Such information may not be accessible until the

patient is placed in the ICU, which limits its potential benefits. However, Cowen et al.

have developed a mortality risk metric (MRM) [45] that is available prior to bed assignment.

The MRM system has been operational in our partner hospital for a few years and we use

this measure as one ICU admission criterion in our model, given the potential benefits

of ICU care may be easier to demonstrate in patients with an elevated risk of dying [42].

Moreover, the MRM metric is not only associated with the risk of death, but also correlates

significantly with the risk of other adverse health events [45]. The concept that drives

implementation in our partner hospital is that MRM is an effective summary measure for

a patient’s comorbidities and her overall health state that complements the severity of the

patient’s chief diagnosis and acuity level for nursing care [44]. So, we are using MRM as

a surrogate for a patient’s need for an ICU/IMC bed to determine an optimal admission

policy. But our method is general and could incorporate other metrics such as the Rothman

index [112].

This paper introduces a more complex model of patient placement into a network of

ICU and IMC units. Many patients are placed in the higher level of care units for reasons

of nursing acuity, that is, the increased nursing hours per patient required relative to the
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average patient, because of the complexities of the treatments administered and daily care

needs. Because of the broader range of treatments available in ICU and IMC units, such

patients require specific treatments available only in ICU or possibly in IMC unit. We call

patients who are either high acuity, or simply require a treatment only found in an ICU or

IMC, “mandatory” patients (and we differentiate ICU mandatory from IMC mandatory to

designate the unit that they need) [93]. In contrast to mandatory placements in ICUs and

IMCs, we consider a third placement criterion, risk of dying, that may qualify a patient

for a higher level of care. We call patients who are not mandatory, i.e., who do not require

treatment specific to an ICU or IMC unit, “discretionary”. This distinction allows us to

investigate the opportunities to admit critical discretionary patients to ICUs or IMCs. This

is expected to result in improved health outcomes and reduced mortality. In essence, we

study the trade-off between blocking future mandatory patients and admitting high risk

discretionary patients.

Let us consider some of the issues that motivate optimizing the admission control to

ICUs and IMCs. Currently, patients are regularly placed in the ICU who could receive

equally beneficial care in a non-ICU unit. For instance, most low risk patients never use

specific ICU services when in the ICU (low risk patients are here defined as those with

mortality risk < 0.06%) [109, 149]. This seems to be present in the data from our partner

hospital. During an eighteen-month period the number of ICU admissions for low risk

patients were 20% higher than high risk patients while a considerable number of high

risk patients were still admitted to the non-ICU units. Some hospitals use Intermediate

Care Units in addition to ICUs to provide an intermediate level of care. Although less

than for ICUs, there is significant competition for IMC beds, which are much scarcer than

regular/general beds. Given the limited resources available in the critical care units, this

motivates the necessity of a methodological framework to admit patients to higher levels
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of care in a selective manner.

There is a need in the medical community for a good predictive model identifying which

patients would and would not benefit from ICU or IMC care. Lacking good information,

doctors ration (i.e., deny an ICU bed to some patients to manage capacity) less accurately

than they would given perfect information. The current practice of assigning ICU beds

is often ’subconscious rationing’ rather than a data driven policy [63]. Doctors make

resource allocation decisions based on clinical judgment at the moment, which may or

may not be cost effective or beneficial in the long run [126]. Additionally, some studies

suggest that doctors are overconfident in their ability to judge ICU need [126]. Given this

state of practice, an approach to ICU admissions that uses scientific tools and methods

seems beneficial. It is worth noting that although our partner hospital has a “triage”

coordinator overseeing admission to bed units, the hospital has still pursued the use of a

personalized mortality risk metric as a key component of its admission decision process.

With the advent of electronic medical records (EMRs), new possibilities are emerging for

data driven, analytical models that use past data to inform future behavior.

The main thesis of our study is that we can approximately optimize the ICU and IMC

patient admission policy to get the neediest patients into the ICU and IMC units. This is

expected to improve patient outcomes by reducing patient complications and mortality as

well as reducing unplanned transfers to the ICU. Reducing transfers is important because

of the longer length of stays and higher mortality rate observed in transferred patients [57].

Unplanned transfers from a non-ICU bed to the ICU are especially harmful because in this

case the patient needs immediate transfer or her condition is likely to deteriorate rapidly,

and an appropriate bed cannot always be found sufficiently quickly [116]. In addition,

considering stochastic arrivals of specific patient types and their historical paths in the

hospital, we will be able to adjust the admission decision such that it delivers patient
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probabilistic needs while tracking units’ utilization to support hospital profitability.

Unlike the prior literature, we consider an integrated model of several ICUs and several

IMCs, and we aggregate all the other “regular” bed units of the hospital in a unit we call

General Medical Beds (GMB). This allows us to focus on the flow details of the higher

level of care units while accounting for total bed capacity of the hospital and the fact that

patients in the GMB units may at any time during their stay require elevation of care to

an IMC or ICU bed.

Built upon approximations of the stochastic arrival and flow processes, this paper con-

tributes a data-driven Mixed Integer Programming (MIP) optimization methodology in

equilibrium that can generate optimal key system metrics. Different policies can be ap-

plied to enforce desired managerial perspectives. We will consider two admission strategies.

The first strategy requires the model to generate constant admission thresholds for every

day of the week, while the second strategy allows daily variation across the days of the

week. We show that the latter will not only increase the number of admitted patients to

critical units, but it will also reduce the blocking rates in the long run. We validate our

results via extensive numerical simulations on synthetic and real data sets.

2.2. Literature Review

Green showed that as many as 90% of hospitals lack capacity to accommodate high risk

patients arriving into their ICUs [62]. To address this issue, there has been a rise in ICU

management literature in recent years. These studies can be classified into two broad

categories: 1) ICU capacity management and 2) ICU admission control. Chalfin et al.

found that in case of full capacity, new ICU admission requests will be delayed and patients

with critical conditions may be boarded in the emergency department [37]. This can

endanger the patient’s life as delays in ICU admission can significantly raise the mortality
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rate [22, 37].

On the admission side, many researchers employed queueing theory and Markov decision

process theory to study the admission control and elective admission policies for critical

care units [120, 145]. These studies focus on a single patient type and/or a single resource,

and disregard hospital network effect. Kim et. al. examined the ICU admission problem

via econometrics [79]. They showed the importance of ICU admission policies and derive a

threshold policy for admitting patients to the ICU. While Kim et al. studied a single unit,

this paper models multiple patient classes and a network of units in the problem of ICU

admission policies.In this paper we clarify that many patients require one or more specific

treatments that are available only in an ICU of a specific type or in some cases a set of

IMC units. Kim et al. assume that patients can go to any ICU, regardless of diagnosis,

so they only consider one combined ICU. Our collaboration with hospital staff, indicated

that, in our partner hospital, patients are rarely placed off-service (i.e., in the wrong type

of ICU), and if they are, it is only for a few hours until a bed opens up in the desired ICU.

In this paper, our optimization based model will examine the ICU and IMC admission

problem when considering multiple ICUs and IMCs, where different units treat different

types of patients.

Mathews and Long also study the ICU admission problem [93]. Their contribution

builds on the work of KC and Terwiesch [78] by considering the impact of census on

patient non-service wait time in the ICU, namely how long patients wait to be transferred

after they are done with treatment, as a function of census. Although they consider the

emergency department (ED) versus non-ED distinction, acute and non-acute conditions

for each patient may not be easily interpretable and measurable in practice. We model the

class of mandatory ICU or IMC placed patients who cannot obtain a required treatment

in a GMB type bed. This has a large impact on the accuracy of the results of the models.
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For instance, mandatory patients comprise almost 20% of the overall body of patients in

our partner hospital.

Step Down Units (SDUs) are considered to be reliable alternatives for ICUs, and there

has been a surge in studying the influence of these units on patient outcome [39] and

hospital performance [6]. Mathews and Long consider both an ICU and an IMC for a

single type platform. In contrast, we will examine the ICU admission problem with multiple

ICUs and IMCs. This is important for two main reasons. First, a patient’s diagnosis often

uniquely determines which ICU or IMC the patient should go to. It can be a patient safety

issue if a patient is placed in the wrong ICU or IMC. Second, there are complex network

flows between the various ICUs and IMCs, which affect overall system performance. We

should clarify that IMCs are very similar to Progressive Care Units (PCUs) or Step Down

Units. IMCs are nearly identical in character to SDUs, and the main difference between

IMCs and PCUs is that PCUs have more flexible staffing, allowing a patient’s nursing ratio

to shift as her care needs change. Whereas a patient would be transferred out of an IMC

when her care needs lessen, in a similar situation she would remain in a PCU, just with

a lower nurse:patient ratio. This distinction is not essential to this paper, and though we

will talk about IMCs for the remainder of the paper, one can apply our results to PCUs

or SDUs as staffing decisions are not our focus.

Recently, Helm, Van Oyen, and coauthors developed methodologies for optimal elec-

tive hospital admissions [67, 68]. Of these, [68] is by far the closest to this study. We

extend these methods to the critical care environment by introducing a novel individual-

ized/personalized framework. The primary focus of elective admission models exploits the

ability of elective patients to be delayed until a later day that would improve the patient

flow. This can be understood as a change in the weekly scheduling of surgeries to achieve

a weekly block-scheduling pattern that facilitates patient flow. Our paper takes patients
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as they arrive and selectively promotes the highest risk patients to a higher level of care

unit or demotes patients of low risk to a lower level of care. This purpose requires a new

definition of patient types, the approach to the modeling of patient flow pathways and the

complex math programming formulation. We also develop an exact approach for comput-

ing the standard deviation of the census in our model. Interestingly, this paper develops a

methodology to compute an optimal dual-threshold admission policy for IMCs and ICUs.

2.3. System Design and Modeling Assumptions

We generate optimal admission policies through a binary matrix, [θkudi], whose elements,

θkudi, are the risk threshold decision variables of our MIP model indicating whether we

admit a patient of class k with risk level i to unit u on day d. Once the binary matrix is

constructed, we can then create a daily dual-threshold admission policy. Individual ICU

and IMC admission policies will be easily accessible by tracking decision variables in the

matrix. We check the monotonic admission-risk patterns and define the threshold for ICUs,

IMCs and general beds as a global rule. To establish such well-defined thresholds, however,

we need to discretize the mortality risk metric into several bins such that we have roughly

equally frequent observations in each risk interval. For instance, if we consider r different

risk levels, then the admission rule to unit u for patients of class k on day d is fully defined

by the array [θkud1, θ
k
ud2, ..., θ

k
ud(r−1), θ

k
udr].

To further differentiate mandatory patients, we will call the group of patients who re-

quire treatment that is only available in the ICU, ICU-mandatory. These ICU-mandatory

patients should receive priority for ICU admission whenever there is a conflict with a dis-

cretionary patient. Similarly, the IMC-mandatory patients should receive priority for IMC

admission. Although we usually treat them separately and attach a desired unit for each

patient, when convenient we will sometimes lump ICU-mandatory and IMC-mandatory
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patients as a single group of mandatory patients.

In our optimal admission policy for critical care units, we consider an infinite horizon

and cyclo-stationary model with a seven-day week as the period. Thus, in equilibrium, the

same policy is applied every week, but it may vary by day of week to accommodate day of

week effects. This model matches the weekly schedule of clinics, operating rooms, etc.

We work on a dataset that spans two years, with more than 200, 000 data points rep-

resenting over 70, 000 distinct patients at our partner hospital. The dataset contains the

information regarding patients’ mortality risk, specialty, arrival and discharge, and the

units they visited during their stay by date and time. The hospital network consists of

three different ICUs as well as five distinct IMCs.

For the sake of intuition, before developing the more realistic model, we employ a simple

queueing model with a single patient class to provide insight into how the admission to

ICU’s based on a mortality risk threshold reveals the average sum of MRM’s as a function

of the threshold and the number of beds. This simple single-class M/M/s/s model with

rejection when an arrival finds the ICU full with s patients assumes Poisson arrivals and

exponentially distributed length of stay (LOS) in the ICU. We will revisit these assumptions

in Section 2.3.1.

Our scoring metric is the time-average sum of MRMs over patients in an ICU bed. We

will discuss this objective function in more detail below and extend it to consider IMC beds

also in the network model. The idea is that the patient mortality outcomes are propor-

tional to the mortality risk, which justifies maximizing the average mortality in these beds

that best care for the sickest patients within the bed capacity. The relationship between

mortality risk and poor health outcomes is not known precisely; however, the mortality risk

is associated with the risk of unplanned transfers, cardiopulmonary arrests, intra-hospital

complications and 30 day readmissions [45]. Therefore, we believe this objective is appro-
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Figure 2.1: Left: Score as a function of the MRM threshold used, when the ICU has
25 beds. The arrow indicates the optimal threshold. Right: Score as a function of
MRM threshold, for 5 (bottom curve), 10, 15, 20, 25, 30, 35, 40, and 46 (top curve)
beds in the ICU.

priate within the current limits of knowledge. Figure 2.1 indicates that for a given demand

model, as the ICU capacity increases the optimal MRM threshold decreases. It also shows

that as we reduce the MRM threshold below the optimal level, the average score declines,

which means that initial admission of lower risk patients impeded the entrance of more

critical patients. Similarly, raising the MRM threshold above the optimal level diminishes

the overall score of the system, which reflects the underutilization of ICUs.

2.3.1. From Queueing to Optimization

The above queueing model gives good intuition about the dynamics of the system, and

it effectively communicates the concept to the hospital staff. On the other hand, the

model is limited by the over-simplification of the problem. Therefore, in order to gain a

more accurate and general framework, as well as to get richer results, we create a Mixed

Integer Programming (MIP) model that allows us to build a data driven model and to

capture network effects, including the interplay between the ICUs, IMCs, and the rest of

the hospital. For instance, if a patient is admitted to a specific ICU on a given day, there

16



is a chance (which depends on the patient’s characteristics) that she will be in a specific

IMC after a given number of days. See Figure 2.2 for an illustration of possible patients’

movements in the hospital network, which allows for multiple visits to a station (feedback),

and extends from the time of admission until discharge from the hospital. We will discuss

in the next section how this stochastic patient stay pattern is realized in our modeling

framework.

Figure 2.2: An illustration of the network of ICUs, IMCs, and the rest of the hospital.
We have aggregated the rest of the hospital into one single general medical bed unit
(GMB).

Employing an MIP model, we can find an optimal dual-threshold-type policy. The

dual-threshold policy is reasonable and probably optimal if one accepts the preferences of

the clinical leadership. They specifically desire to announce the MRM risk threshold for

ICU admission and the lower one for IMC admission. A dynamic, state-dependent policy
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should perform better; however, a costly and complex decision support system would be

required. A patient with an MRM score at or above the ICU-threshold, is approved for

ICU admission, and will then be considered for IMC admission if there is no room in the

ICU. If patient does not meet this threshold but meets the IMC-threshold, the patient is

approved for IMC admission. A patient who does not meet either of these thresholds is

sent to a non-ICU/IMC unit, which is modeled using the GMB unit to avoid unnecessary

complications in the model. Our partner hospital is already using MRM thresholds to

guide ICU and IMC admission decisions, but the thresholds were not optimized prior to

this work.

We note that an MIP framework enables us to vary the thresholds by day of week

and by unit. Another advantage of the MIP modeling is that we can introduce multiple

classes of patients, which is crucial for our problem as we are dealing with mandatory

and discretionary patients. This methodology, therefore, lets us use a threshold policy for

discretionary patients while automatically approving all mandatory patients for ICU or

IMC admission. We can also approximate the queueing dynamics.

2.3.2. Mixed Integer Program Formulation

Our goal is to compute an admission policy that will admit the neediest discretionary

patients into the ICUs and IMCs. To do this, we propose the following: mandatory

patients (i.e., those who require treatment specific to the ICU or IMC) are always approved

for admission to the relevant unit. To be specific, ICU-mandatory patients are always

approved for admission to the appropriate ICU and similarly for IMC-mandatory patients.

All other patients, who we are calling discretionary, may be approved for admission to an

ICU or IMC based on their respective MRM scores. We will apply the dual threshold-type

policy on these discretionary patients with separate thresholds for ICU admission and for
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IMC admission. The intuition here is that high risk patients would benefit most from ICU

care, but would also benefit from IMC care, and that less risky patients would benefit from

IMC care without requiring the extra level of care given by ICU admittance.

We explained briefly in the introduction why our partner hospital believes the degree

of a patient’s neediness can be approximately quantified by her MRM risk score and our

objective is to maximize the sum of risk scores over patients admitted to the ICUs and

IMCs. Based on discussions with the medical staff at our partner hospital, we found

that ICU and IMC admissions are roughly equally beneficial for discretionary patients.

Thus, we will have a zero reward for placement in the aggregate GMB unit and a reward

equal to the MRM for admitting a patient to the ICU or IMC; however, this only makes

sense in light of a constraint that the risk threshold for ICU admission is strictly higher

than that for IMC admission. If one had data to support it, one could easily introduce

a parameter to proportionally weight the reward for admitting a patient to various units.

We are interested in an optimized, capacity-based admission policy, rather than myopic

acceptance which would be suboptimal. To capture this, we multiply each discretionary

patient’s expected risk score by an indicator variable for patient admission to an ICU or

IMC unit. This can be thought of as integrating, over the course of the study horizon, the

risk score of each patient whose initial unit of admission was any of the various ICUs and

IMCs. Thus, our objective function is to maximize

∑
d∈D

∑
k∈K

∑
i∈I\{M,M′}

∑
u∈U\{GMB}

θkudiRi , (2.1)

where I is the set of risk groups (obtained by partitioning patients by MRM) and M

and M′ define the IMC and ICU mandatory patients, respectively. Also, D is the set of

days of the week (Sunday, Monday, etc.), U is the set of units/wards, and K is the set of
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patient classes. In this context, a patient’s class is determined by her treatment needs and

diagnosis; we will use this to determine to which units a patient may be admitted to. For

instance, a cardiac class patient would likely go to the cardiac ICU instead of the surgical

ICU (SICU) if she required ICU services. Our decision variable, θkudi, is a binary variable

that is equal to 1 if we allow patients of class k and risk group i to be admitted to unit

u on day d, and equal to 0 otherwise. We let Θ refer to the matrix [θkudi]. Though we do

not have an explicit threshold variable, the thresholds can be inferred from Θ. Ri is the

expected risk score for a patient in risk group i. Our objective is simple and fair, admitting

as many of the stratified high-risk groups of patients as capacity will allow and admitting

higher risk patients over lower risk ones.

To link the operational constraints of the problem to our objective function, we have

to characterize the stochastic paths of different patient classes who are admitted to ICUs,

IMCs, and the regular beds of GMB. Incorporating binary decision variables, we can define

a new version of the stochastic location process introduced by Helm et. al. [68]. In that

work the same patient population was admitted to the same unit, but the day of week

of admission could be changed to improve the patient flow. Emergency patients were

not changed, but elective patients could be delayed until a day of admission that would

improved the flow of the hospital. That paper also considered a version that increased the

hospital throughput by selectively admitting more patient of any type desired subject to

the capacity limits of the hospital.

In our setting, the patient of a given type cannot wait to be admitted. Moreover, we

intentionally selectively change the first unit of admission based on his/her personalized

risk metric. Some discretionary patients will be elevated to a higher level unit (and a

distribution on the initial unit of admission must be used to capture detailed patient type

information that is not explicitly modeled). Other discretionary patients with a low risk
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Figure 2.3: Identifying less congested periods in weekly census analysis of ICUs and
IMCs, shown in the boxes

will be demoted to a lower level of care. Including a patient’s mortality risk conveys a broad

range of information related to a patient’s medical history, lab results, and demographics

[45]. This will improve the model’s performance in replicating patient flow in the most

appropriate units of the network.

We must construct a model of how long patients will spend in any given unit and their

likelihood of moving to another unit. We view this as a stochastic location process over

time, which is indexed to the weekday of admission and the patient’s class. This can

be defined as a stochastic model that captures length of stay (in days) in each unit and

the units that patients visit during their hospital stay. Additionally, we assume that the

stochastic itineraries of different patient classes are independent throughout the hospital,

which fits with our offered load approach to the census distribution. Also, to derive the

stochastic location of patients, we build the model based on the less congested periods in

our dataset to preserve the independent itinerary assumption (Figure 2.3).

Without any constraints, it is easy to see that the optimal admission policy would
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prescribe θkudi = 1 for all k, u, d and i, meaning that everyone is approved for ICU and

IMC admission. This corresponds to the intuition that, given infinite resources, it would

be beneficial to make the entire hospital into an ICU. No hospital can afford that expense;

however, so we need to constrain the system by the available capacity while maintaining

a certain service level. Of course, one can use this approach to quantify the higher level

of care capacity needed to send all patients above a given risk level to an ICU or similar

objective.

To formally define our stochastic location process, we will employ a modified version

of the stochastic location process modeling approach developed in [68]. Let P u′

d′kui(r) be

the probability that a patient of class k and risk group i who arrived on day d′ is in unit

u, r days after admission, given that the patient was initially admitted to unit u′. This

measure is evaluated on a weekly basis for n weeks (r = d− d′ + 7n). Also, let F̄d′ki(a) be

the probability that there are more than a arrivals of class k and risk group i on day d′

and consider n as the counter of the weeks.

To compute the congestion under any policy, given Θ, we seek estimates of the mean

and variance of the census for each unit on each day. As will be described below, using

the mean and variance of a stochastic location process, we can approximate the units’

capacity and overall patient flow in the hospital. By keeping a sufficiently low probability

that the census deviations above the mean go beyond the capacity of the unit, we can

limit the blocking and thereby ensure that the new system will work within the hospital’s

unit network capacity constraints. Small amounts of blocking are not a practical problem,

because the hospital is very experienced at reacting to blocking. The following theorems

show that the mean and the variance of the units’ daily census can be calculated linearly

in Θ.
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Theorem 2.1. The mean census in unit u on day d is given by

µdu =
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

P u′

d′kui(r)F̄d′ki(a)θku′d′i.

Theorem 2.2. The variance of census in unit u on day d is given by

vdu =
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

{P u′

d′kui(r)F̄d′ki(a)

− [P u′

d′kui(r)F̄d′ki(a)]2}θku′d′i.

Theorems 2.1 and 2.2 state that the mean and variance of daily unit census can be

calculated linearly in Θ for any arrival process. Clearly, these are data-driven estimations

based on historical records for each risk stratum/group, which were available by limiting

the number of risk strata in the model without assuming a specific arrival distribution.

The proofs for these theorems are given in Appendix A.2.

We incorporate finite capacity by limiting blocking. By blocking, we mean that a patient

cannot be admitted to the preferred unit because it is full. If we do not constrain blocking,

our model would lead to a first-come-first-served policy, which would be unacceptable due

to the blocking of many of the incoming mandatory patients. To enforce a required service

level for our system, we model the right tail of the census of each unit on each day of the

week using its own normal/Gaussian distribution. Note that the mean and variance of the

census are calculated by Theorems 2.1 and 2.2, respectively. The normality of workloads

is common in healthcare workload analysis literature, and it has been shown to be a good

model in similar settings such as [72]. Admittedly, allowing for non-normal distributions

considerably complicates the model and often leads to nonlinearity of the optimization.

Because stability requires that the capacity must exceed average demand for service, the
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key is to estimate the overload in each unit by examining the right tail of the census

distribution, given a desired service level α. This is captured in the equation below:

µdu + zασdu ≤ Cdu (2.2)

where µdu is the mean census in unit u on day d given Θ, σdu is the standard deviation of

the census in unit u on day d given Θ, zα is the standard normal z-score coefficient that

corresponds to service level α, and Cdu is the capacity of unit u on day d. Cdu may vary

by day of week because some units may have different staffing levels on the various days of

the week, leading to different effective unit capacities for those days. The equation above

implies that, on day d and in unit u, patient blocking will take place with probability less

than or equal to 1− α.

Now that we have a mechanism to capture patients’ blocking probabilities in our system,

we can set the α such that the desired expected number of blockings by unit and day of

week is respected. The optimization will constrain the blocking probability (1 − α) so

that the desired expected number of blockings by unit and day of week is kept to a small

fraction of arrival volume, but this can be modified and applied for different hospitals in

accordance with their policies and requirements.

In the derivation of vdu, the variance of the census, we find that it is linear in Θ

(Appendix A.2). This would make the standard deviation non-linear in Θ, as σdu is the

square root of vdu, which in turn would make (2.2) nonlinear. To avoid this issue, we

achieve linearity by first rearranging (2.2) as

zασdu ≤ Cdu − µdu . (2.3)
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We, then, raise both sides of (2.3) to the second power to replace σdu with vdu:

z2
αvdu ≤ C2

du + µ2
du − 2Cduµdu . (2.4)

The equation above is equivalent to (2.3) only when both sides of (2.3) are non-negative.

Hence, we enforce Cdu−µdu ≥ 0 as a new set of constraints in our model. To linearize this

equation, we take advantage of the binary characteristics of our main decision variables,

θkudi. As defined in theorem 2.1, µ is constructed via a linear combination of θkudi. Therefore,

given (θkudi)
2 = θkudi, the square of mean census can be written as:

µ2
du =

∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

{P u′

d′kui(r)F̄d′ki(a)}2θku′d′i

+
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∑
i′∈I
i′ 6=i

∑
d′′∈D
d′′ 6=d′

∑
u′′∈U
u′′ 6=u′

∑
k′∈K
k′ 6=k

θku′d′iθ
k′

u′′d′′i′ (2.5)

It can be seen that (2.5) includes multiplications of two binary decision variable, which

results in nonlinearity. However, we can avoid this problem by introducing new binary

variables and a new set of constraints. In fact, we can replace each of the nonlinear terms

generated in (2.5) by one new binary variable and three new constraints. Let’s call our

new binary variables ω. Now, the linear equivalent of (2.5) can be defined by the following

equations:

µ2
du =

∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

{P u′

d′kui(r)F̄d′ki(a)}2θku′d′i

+
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∑
i′∈I
i′ 6=i

∑
d′′∈D
d′′ 6=d′

∑
u′′∈U
u′′ 6=u′

∑
k′∈K
k′ 6=k

ωkk′

u′u′′d′d′′ii′ (2.6)
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ωkk′

u′u′′d′d′′ii′ ≤ θku′d′i (2.7)

ωkk′

u′u′′d′d′′ii′ ≤ θk
′

u′′d′′i′ (2.8)

ωkk′

u′u′′d′d′′ii′ ≥ θku′d′i + θk
′

u′′d′′i′ − 1 (2.9)

Hence, we are able to overcome the nonlinearity of the workload control constraint by

using (2.6) in (2.4). It is worth mentioning that the nonlinearity issue imposed by the

standard deviation of unit census in (2.3) could be alternatively resolved by applying

numerical approximation. One can also apply Newton’s method to approximate σdu by

1
2

(
vdu

σ̂du
+ σ̂du

)
, where σ̂du is the historical standard deviation of the census in unit u on

day d. Plugging it into our initial equation (2.3) gives:

µdu +
zα
2

(
vdu

σ̂du
+ σ̂du

)
≤ Cdu (2.10)

This approximation can avoid the use of extra binary decision variables and constraints

to mitigate the complexity of the algorithm. We introduce the above exact methodology;

however, the approximate formulation of the problem can also be found in the Appendix

A.1.

In addition to the operational constraints discussed above there are other technical and

problem-specific considerations that we need to observe. As mentioned earlier, we have to

ensure that all ICU-mandatory and IMC-mandatory patients are approved for ICU and

IMC admission, respectively. We do so by requiring:

∑
u∈UICU

θkudM = 1, (2.11)

∑
u∈UIMC

θkudM′ = 1, (2.12)
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where superscript i = M denotes that a patient is ICU-mandatory, i = M ′ denotes that

a patient is IMC-mandatory, U ICU is the set of ICUs (U ICU ⊂ U), and U IMC is the set of

IMCs (U IMC ⊂ U).

We also ensure that each patient stream is initially sent to only one unit. We can

partition the patient streams in such a way that splitting patient streams between units

would give no advantage. It is worth noting that we are aggregating the main hospital (i.e.,

all GMB units) into one unit because, for our purposes, there is little value in modeling

those flows in detail. ∑
u∈U

θkudi = 1 (2.13)

Our model must also respect limitations beyond units’ capacities and the mandatory de-

cision rules. Therefore, we constrain the number of admitted patients of a certain class to

each unit on each day to be less than the maximum number allowed by the hospital:

λkdiθ
k
udi ≤ βk

udi , (2.14)

where λkdi is the mean arrival rate of patients of class k and risk group i on day d, and βk
udi

is the maximum allowed number of admissions for patients of a certain class with a certain

risk level to each unit on each day. βk
udi can be easily set to the maximum historical value

from the data. This constraint also ensures that the initial admission unit is conforming

to the patient requirements and the current hospital practice.

It is also important to note that we want to maintain threshold level consistency for all

days and in all units such that on a given day no higher risk patient goes to a lower level of

care while a lower risk patient is admitted to a higher level of care. To ensure this pattern,
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we have to include monotonicity constraints that enforce the required structure:

θkudi ≤ θkud(i+1) ∀u ∈ U ICU , (2.15)

θkudi ≤ θku′d(i+1) ∀u ∈ U IMC , u′ ∈ U ICU , (2.16)

θkudi ≤ θku′d(i+1) ∀u ∈ UGMB, u′ ∈ U IMC , (2.17)

where UGMB refers to general medical beds. Please also note that the risk groups are set

to be ordinal. Additional constraints can be added, if desired. For instance, one could

enforce a constant threshold across units and/or days of the week.

2.4. Numerical Results

In this section we validate and compare our results using almost two years of data from

our partner hospital corresponding to over 70, 000 distinct patients. We first validate the

mean census process estimations for different units on different days of the week. This

hospital has three ICUs and five IMCs, and we labeled all other units as general medical

beds. We confirm that our estimation of the unit workload nearly equals the actual unit

census throughout the hospital by day of week.

Table 2.1 compares the weekly mean census for the estimated model versus the historical

observation. The results indicate that the errors of our estimates derived from Theorems

2.1 and 2.2 are relatively negligible. The results also match closely with respect to different

days of a week on a unit-by-unit basis. Figure 2.4 illustrates that our model performs very

well in estimating both mean and standard deviation of the census for one of the ICUs in

our network (MICU).

Having a reliable census process approximation, we can perform optimization to deliver

operational measures such as admission thresholds given a desirable service level without
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Figure 2.4: Daily historical and estimated mean and standard deviation of the census
for one of the ICU units of hospital network (MICU).

depending on computationally expensive simulation models. We used the Gurobi optimiza-

tion package through a Python interface to build and solve our MIP model. We applied

our modeling methodology to patient data that spanned over 18 months to derive the op-

timal admission thresholds for different units under 97.5% service level. We consider two

scenarios: 1) constant admission thresholds for different days of the week (OPT-C) and 2)

dynamic admission thresholds varying by day of the week (OPT-D).

Since there is no historical record of hospital operational metrics under the optimal

schedule, we compare the performance of our optimal admission policy both in constant and

Table 2.1: Accuracy of the weekly estimated mean census in comparison with ob-
served data

ICUs IMCs

MICU SICU CCU 9E 6E 7E 6N 2E GMB

Estimated µ 14.82 16.69 4.11 30.28 22.63 28.04 11.15 27.49 131.43
Observed µ 14.55 16.37 4.14 29.43 23.02 27.77 11.31 26.91 129.44
% Deviation 1.82 1.91 -0.73 2.80 -1.72 0.96 -1.43 2.10 3.42
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Table 2.2: Simulation output for optimal admission policy vs. current admission
policy (weekly)

ICUs IMCs

Admissions MICU SICU CCU Total 9E 6E 7E 6N 2E Total

Current Policy 14.23 15.31 6.87 36.41 32.12 31.26 37.71 7.05 22.07 130.21
OPT-C 16.05 17.37 7.14 40.56 34.02 33.77 39.31 8.51 24.44 140.05
OPT-D 19.52 22.19 8.11 49.82 35.93 35.54 42.15 8.91 25.32 145.85

Blockage

Current Policy 1.261 1.513 0.464 3.238 1.082 1.195 1.188 0.725 0.911 5.101
OPT-C 0.702 0.717 0.304 1.723 0.831 0.922 0.926 0.519 0.628 3.826
OPT-D 0.692 0.731 0.273 1.696 0.845 0.897 0.934 0.487 0.595 3.758

dynamic settings with the hospital’s current admission rule, using a high-fidelity simulation

model. Our partner hospital currently follows an admission policy where patients with an

MRM of 0.2 and higher are prioritized to be admitted to ICUs, and patients with an MRM

higher than 0.07 are prioritized to be admitted to IMCs [45]. Although this is the guideline,

in practice, some high risk patients are placed in GMB.

For the simulation modeling we follow a similar framework as discussed in [67]. However,

we consider a more detailed unit transition probability metric for patients by conditioning

on the arrival day and the arrival admission unit using P u′

d′kui(r) matrices as described in

Section 2.3.2 and used in Theorems 2.1 and 2.2. Therefore, we can generate sample path

of patients based on their arrival day and unit and build their stochastic trajectories until

discharge. We use the historical data to estimate the transition probabilities as well as the

distribution of arrivals, F̄d′ki(a). We run the simulation for five years and report the results

based on the last four years to account for a warm-up period of one year. We repeat the

simulation 100 times and present the average results.

We validated our simulation model by considering the real-world hospital operations. We

used almost two years of historical data to calibrate the model. To do so, we implemented

the hospital’s current admission rules in our simulation model and captured the key features
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Table 2.3: Average length of stay of high risk patients for different admission policies
(in days)

OPT-D OPT-C Historical

Average Length of Stay 5.232 5.581 6.818

of the system such as the average unit’s census by day of week, standard deviation of the

unit’s census by day of week, the average number of admissions for different units by day

of week and the average length of stay per unit by patient class and mortality risk. We

were able to see that the results of our simulation model nearly matches the actual hospital

operations.

The results in Table 2.2 show that the optimal admission thresholds outperform the

historical practice patterns. Under both constant and dynamic settings, our methodology

improves the number of weekly admissions and weekly blockage for all ICU and IMC units.

The OPT-C model increased the weekly average admissions to ICUs and IMCs by 11%

and 7.5%, whereas the OPT-D model boosted that number by 37% and 12%, respectively.

Also, the number of blocked patients in overall IMC and ICU units reduced by 33% and

34.5% in OPT-C and OPT-D models, respectively.

The improvement in admission and blockage shows that our methodology successfully

assigned the patients to appropriate units upon patient arrival. The advantage of admitting

higher risk patients to the higher levels of a hospital is twofold. First, on average it is

expected to reduce the number of unplanned transfers. The reason is that in general

beds (GMB in our model), higher risk patients are more likely to get sicker and require

unplanned transfers to a higher level of care unit where they can be treated more effectively.

Second, it should on average decrease the overall length of stay. It may be that higher

level of care units, which offer a greater intensity of nurse care, are more effective at

speeding up the healing of patients; however, it is beyond our scope to rigorously test that
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Figure 2.5: Top: Constant admission threshold based on mortality risk and day of
week. Bottom: Dynamic admission threshold based on mortality risk and day of
week.

hypothesis. Table 2.3 shows the difference in the average length of stay of high risk patients

(MRM ≥ 0.06) for OPT-D, OPT-C and historical admission policies from the simulation

results. The references cited in the Introduction, [13, 122, 123, 130], also align with both

of the above relationships. In fact, incurring lower blocking rates and/ or having higher

admission levels, something our results from optimization predicted, aligns with the above

two relationships.

It is worth noting that the dynamic threshold policy enables the hospital to admit more

patients to ICUs and IMCs than do static thresholds. By allowing dynamic thresholds, a

hospital can maintain the desired service level and further increase the weekly admission

volume to the higher levels of the hospital. This happens because the constant thresholds

must be set to accommodate the busiest day of the week, whereas the dynamic thresholds

can manage the tradeoffs and patterns observed in the stay of arrivals on various days to
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Figure 2.6: Daily average admissions to ICUs, IMCs and GMB for OPT-D vs. his-
torical data. Mandatory placements are considered.

gain new performance. Please note that weekly patterns set by the surgical block schedule

cause such patients to exhibit weekly patterns of need for beds and for higher level of care

services. Surgical specialties vary in the length of patient stay and in patient need for

higher level of care beds. Therefore, employing a dynamic admission policy for different

days of the weekly plan is able to not only raise the long-run expected number of admitted

critical patients but also to better exploit operational asymmetries across the days of the

week.

To show how admission thresholds change in different models we set the daily risk

threshold for different levels of care in a conservative fashion. For instance, to assign

the admission threshold for ICUs on Saturday, we pick the highest threshold among all

the ICU units and patient classes on that day. Figure 2.5 illustrates the significance of

the improvements that result from the dynamic threshold model. OPT-D reduced the

threshold for ICU admission on every day of the week. The lower admission threshold

for both ICU and IMC indicates the higher availability of critical units for more high risk

patients in the long run without compromising the service level.
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Figure 2.7: Pareto curve for service level vs. average weekly admissions to all ICUs
and IMCs.

Figure 2.6 displays the average number of initial admissions by day of week for ICUs,

IMCs and GMBs. Note that later transfers across units are not counted, although they

are modeled. shows that OPT-D has selectively moved higher risk patients, who used to

be admitted to general medical beds, to critical care units. Note that there is less of a

difference on Tuesday, Wednesday, Thursday, and Friday. This is consistent with the fact

that the units are the most full midweek. Our methodology empowers high level hospital

strategies by providing data-driven operational prescriptions. Our approach can guide

care providers to better understand the value of personalized admission control and how

to make trade-offs.

Figure 2.7 shows the Pareto curve generated by solving the OPT-D model for service

levels ranging from 95 to 97.5 percent (for the resources and arrival distribution of our

partner hospital, higher service levels will result in infeasibility). This curve defines a

meaningful boundary between utilization and accessibility that provides actionable insight

for the hospital management system. Our optimization program delivered the operating

curve automatically, with each point taking about 30 minutes to be generated. We should

emphasize that our model can go far beyond what has been discussed in this section.
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For instance, our model will be very insightful in capacity planning for critical care units

where care providers can see how the system behavior changes by increasing or decreasing

resources in critical care units. In general, our methodology can be seen as a predictive

platform for a patient’s future needs given her initial unit of admittance. Such a platform

enables hospitals to test the robustness of their admission policies by easily generating and

testing new arrival scenarios against their current admission rules.

2.5. Conclusion and Future Work

We introduced a novel perspective to address the admission policy for a network of critical

care units. Although much work remains to be done to assess a patient’s health risk, this

paper takes advantage of one of the early measures of patient mortality risk to show how

patient risk metrics can be used to rationalize and optimize the admission of patients given

the limited capacity of higher level of care in a hospital. We developed a methodology that

generates optimal admission policies for different ICUs and IMCs in a hospital network.

Considering the formidable cost of critical care beds, our model can guide hospital admis-

sion policies towards a data-informed solution that guarantees a higher service level as well

as higher accessibility.

Our suggested approach helps hospitals improve the effectiveness of their care delivery

by ensuring that the neediest patients are admitted to the ICUs and IMCs at all times. By

using a mixed integer program, we determined different thresholds for each unit and each

day of the week. This lets us exploit the network effects inherent in the hospital and allow

the policy to incorporate the weekly census pattern cycle and the stochastic care pathways

revealed in the historical data.

It is essential to note that our proposed methodology is not limited to our partner

hospital. It can be used by any hospital with a real-time health risk metric and a suitable
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patient records database. We expect this approach to gain acceptance as hospitals deploy

methods to assess patients’ risks. Our method will diminish wait times to admit high-risk

patients to higher level of care (ICU and IMC) by selectively assigning a more appropriate

initial admission unit. Therefore, it has the potential to decrease mortalities caused by

delayed access or non-access to critical care units. By incorporating stochastic location

random fields, the method is based on an accurate prediction of patient unit/ward needs

throughout her stay in the hospital.

Although our model carefully incorporates a congestion network model of hospital unit

capacity, the capacity violation outcome can be different for hospitals with non-normal

workload distribution. However, the normality of hospital workload has been a common

observation in the literature. It is also worth mentioning that our methodology is most

successful when the majority of ICU and IMC beds are not occupied by mandatory patients

so we have more room for the optimal assignment of discretionary patients to the right

units.

For future work, one direction is to consider dynamically updated patient mortality/health

risk assessments, provided such longitudinal data are available. Dynamic risk measures can

provide significant information regarding the patient recovery process that is valuable for

improved admission decisions.
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Chapter 3.

Optimization Under Uncertainty:

Surgery Scheduling and the Promise of

Individualization

3.1. Toward Individualized Care Delivery Planning: Big

Data Analytics and Surgical Case Duration

3.1.1. Introduction

Surgeries are inherently stochastic processes, due to several medical and operational el-

ements [77]. Operating rooms (ORs), however, are considered as the greatest source of

revenue and cost for hospitals [48]. Therefore, efficient ORs are crucial in delivering hospi-

tals’ operational goals and better patient outcome [87, 94]. To achieve higher performance

in surgical rooms and to mitigate waiting and idling times for both patients and staff,

we require reliable estimation of case duration. This study offers a novel individualized
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perspective to address case duration prediction problem by leveraging the entire patient-

hospital data available prior to the surgery. We provide a clear roadmap to actually improve

the care delivery system through the power of big data analytics [125].

OR utilization is a significant factor in hospital revenue management. Under-utilization

of operating rooms costs $600 per hour and it is estimated that over-utilization is even more

expensive [104]. Such operational flaws in ORs will enhance the pressure on the overall

hospital network which imposes higher risk on patients and increases dissatisfaction among

the staff. Therefore, hospitals constantly seek new opportunities to control OR costs and

elevate the quality of surgical services by identifying significant sources of uncertainty in

estimating the duration of surgery [129].

Traditionally hospitals adopted rudimentary point estimate approaches to predict the

case duration in operating rooms. Sample mean and median are among the methods that

are employed by a majority of hospitals. Such methods, due to a high level of aggregation

and their natural simplistic assumptions, are prone to lack of fit and fail to provide reliable

predictions. Introducing a time component, some hospitals stepped a little further by in-

corporating the median of the last n similar cases by the same or similar type of surgeons

[91]. However, because of the complexity of defining similarity among different cases as well

as the exclusion of key information, these practices are highly biased. Surgeon estimate is

also another way by which hospitals try to control the variability of their OR schedules.

Although surgeons’ opinions convey valuable information which is a combination of expe-

rience and subject matter expertise, this approach also lacks a comprehensive view of all

aspects of the problem and are shown to be less accurate than statistical methods [83].

Hybrid methods consisting of both surgeon and statistical point estimates are also studied

in various hospital settings, but negligible improvement was observed [143].

To address these issues and to provide a framework that will not only generate reliable
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predictions but also deliver insightful statistical decision support, we propose a compre-

hensive data-driven methodology. This study, in terms of patient-hospital data, offers the

most inclusive and elaborate approach for case duration prediction to date. We include

various layers of patient and hospital interactions as well as numerous operational measures

to fully capture the system dynamics. To be able to define and harness the variabilities in

case duration, we focus on four main categories: 1. patient related variables, 2. hospital

and staff related variables, 3. operational variables and 4. temporal variables. Consid-

ering several key contributors, we will exploit all these categories to the full extent to

engineer powerful and informative features. We then use these features to build several

statistical models which not only yield state-of-the-art prediction accuracy but also de-

liver empowering data-informed toolbox to guide hospital’s operational decision making in

surgery sequencing and scheduling. We compare the results of these models and provide

actionable managerial insights.

Surgeries are consisted of several related activities that complement one another. In

general, surgeries are defined by one or multiple current procedural terminology (CPT)

codes. It is well-known that CPT codes convey useful information about the overall surgery

operations and are, therefore, helpful in estimating case duration [50]. However, CPT

codes have grown immensely large in size and can easily comprise a cohort of hundreds of

unique codes for each service. This issue complicates the use of CPT codes as they can

generate significantly sparse data structures [85]. In order to take advantage of information

stored in CPT codes without incurring unnecessary model complexity, we input Resource-

Based Relative Value Scale (RBRVS). RBRVS is a mechanism by which physician fees are

determined [70]. These values are intended to measure the amount of physician work for

each of the procedures. Therefore, they are finely linked to CPT codes. This study, to

the best of our knowledge, is the first work to investigate the importance of RBRVS in
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predicting case duration.

We also do not restrain our predictive power to the available structured data rather we

embrace and digest all the unstructured raw inputs that are collected prior to the surgery.

From several discussions with surgeons, anesthesiologists and staff, we realized that there

is invaluable amount of information in documented patients’ text records that can fairly

reveal the complexity of a surgery. Therefore, to better differentiate surgeries and to further

understand the influential factors in defining case length variations on an individualized

case-by-case fashion, we explore multiple text notes from surgeons and radiologists. We

introduce generalizable methods for feature extraction from large textual data that can be

easily applied on various services within a hospital. We then incorporate the output of the

text analysis in our predictive model to take full advantage of the available raw data in a

conveniently implementable framework.

With the increasing abundance and accessibility of Electronic Health Records (EHR),

this study casts light on new directions for the inevitable application of big data to health-

care [4, 101]. This paper contributes a personalized and generalizable statistical modeling

methodology that is capable of offering much more than point estimates of surgery dura-

tion. Unlike the previously studied approaches, we will investigate the uncertainty level of

our predictions and show how valid prediction intervals can be utilized to inform better

sequencing of daily surgeries. We will validate our results via extensive experiments on

rich data sets of Memorial Sloan Kettering Cancer Center (MSKCC).

3.1.2. Literature Review

During past few years, researchers have used tools from statistics and mathematics to

build predictive models for surgical case duration [52, 53, 102]. However, the scope of

these studies is very much limited to a few quantitative and categorical predictors [129].
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Eijkemans et al., for instance, included team, patient and session characteristics in their

modeling perspective and they noted that patient characteristics are essential predictors

in the model [56]. Stepaniak et al. also investigated the dependence of procedure times on

surgeon and team characteristics and reported team composition, experience and daytime

as the most often significant factors [127]. Many also investigated the effect of procedures

and anesthesia and showed the presence of such parameters in the model is statistically

significant [65, 148]. For example, Strum et al. tested goodness of fit for a normal and

log-normal distribution on surgical procedure times based on CPT codes and anesthesia

type [128].

Although common statistical methods are helpful in developing a solid foundation to

identify key variabilities, they have been outperformed by novel machine learning (ML)

tools in terms of accuracy. Recently, several researchers have embarked on employing ML

algorithms in healthcare operations [5, 88, 108]. Although recent studies shed light on

the impact of preoperative data in defining surgical uncertainties, ML techniques have not

been utilized extensively in case duration prediction area [24]. Also, those who investigated

this topic restrained the scope of their studies to only a few categories of variables [43, 46].

For instance, Li et al. only focused on CPT codes and ignored all patient, surgery team,

temporal and operational variables [85]. In a more comprehensive attempt, Kayics et al.

studied operational, temporal and behavioral factors; however, they completely disregard

patient-specific data which is a key contributor to case duration variations [76]. In this

paper we go beyond what has been offered in the literature by including all accessible data

prior to the surgery.

As the availability of unstructured data is quickly growing along with the structured

data, more researchers are moving towards text mining information retrieval algorithms in

healthcare related topics [36, 66, 74]. Despite the abundance of readily obtainable textual
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data in hospitals’ databases such as surgeon’s initial consults and pre-surgical notes as

well as radiologist’s recommendations and reports, there has been no conclusive study to

explore such resources in the realm of case duration analysis. In this study, as the first

attempt to incorporate the power of text analytics in estimating the duration of surgeries,

we show that generalizable text mining techniques can be applied to automatically extract

informative features from various textual data repositories.

It is well-known that OR management heavily depends on estimating surgery duration

[56]. Therefore, case duration prediction has also been studied extensively from the per-

spective of operating room planning and scheduling [48, 49, 92]. However, these studies

mainly focused on point estimates, moments and discrete set of scenarios for case duration

and did not provide prediction intervals which are crucial in operational decision making

process. There are very few examples in the literature focusing on the uncertainty bounds

of predictions. Dexter et al., for instance, suggested a Bayesian method to generate predic-

tion limits for surgery duration [51]. But, their approach is parametric and involves certain

assumptions on the unknown distribution of case duration. In contrast, we propose a fully

data-driven methodology to generate prediction intervals for individualized case duration

that can be further utilized as a decision support tool in an OR planning environment.

3.1.3. Data

In this study, for initial exploratory analysis, we consider the surgeries across all services

performed at MSKCC within the last six years (2010 - 2016). To describe our statistical

model, then, we focus on Gynecology (GYN) service. However, we further show that our

methodology can be easily generalized and applied on all services throughout the hospital.

MSKCC is one of the leading cancer centers in the world which is constantly improv-

ing cancer treatment process by applying state-of-the-art scientific methodologies in both
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Table 3.1: Operational data for different services in the hospital

Service Surgeries Surgeons Inpatient (%) Case Duration (SD)

BRE 21,424 15 3,397 (15.9) 118.8 (97)

CRS 7,437 7 6,560 (88.2) 239.2 (160)

GMT 8,518 11 4,914 (57.7) 157.0 (109.1)

GYN 12,281 15 5,699 (46.4) 201.4 (123.4)

HEP 6,605 7 6,190 (93.7) 226.0 (104.1)

HNS 11,529 13 6,617 (57.4) 197.9 (149.4)

NEURO 5,638 11 5,614 (99.6) 256.3 (115.4)

OPTH 1,700 3 554 (32.6) 79.9 (41.7)

ORTHO 5,213 6 4,030 (77.3) 240.4 (177.3)

PEDS 3,100 3 1,895 (61.1) 195.5 (161)

PLA 9,665 8 1,768 (18.3) 151.9 (110.4)

THO 13,456 14 9,442 (70.2) 170.9 (119.9)

URO 23,176 49 9,428 (40.7) 153.5 (129.2)

medical and operational aspects of its care delivery system. MSKCC surgical operations

take place across thirteen different services and in a total of 40 different operating rooms.

We work with a total of 129,742 distinct surgeries in all services throughout the study

horizon that include all inpatient and outpatient surgeries. These surgeries range from

one-procedure to twenty-four-procedure cases with 93% of them containing fewer than 6

procedures. Based on CPT codes, an overall of 2,346 unique procedures are observed and

1,730 distinct primary procedures (the procedure with the highest RBRVS in a case) are

reported. Table 3.9 provides a detailed summary of hospital operations across all services.

Due to the large number of unique procedures, the CPT codes do not provide a practical

set of predictors as they can considerably boost the sparsity of our dataset. Therefore, we

use RBRVS measures which are continuous numerical values that are meant to estimate

the effort required for performing a particular procedure. For each case, we consider a
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Table 3.2: Demographics of the patient data

Race, Number of Observations (%)

Service Age (SD) Female (%) White Black Asian Other

BRE 55.6 (12.6) 21244 (99.2) 16,596 (77.5) 1,953 (9.1) 1,496 (7.0) 1,379 (6.4)

CRS 59 (13.8) 3405 (45.8) 6,073 (81.7) 491 (6.6) 444 (6.0) 429 (5.8)

GMT 60 (14.9) 3,829 (45.0) 7,036 (82.6) 503 (5.9) 481 (5.6) 498 (5.8)

GYN 55.2 (13.6) 12,279 (100) 9,927 (80.8) 824 (6.7) 860 (7.0) 670 (5.5)

HEP 61.4 (13.2) 3155 (47.8) 5,545 (84.0) 314 (4.8) 398 (6.0) 348 (5.3)

HNS 55.3 (16.2) 6,065 (52.6) 9,346 (81.1) 480 (4.2) 875 (7.6) 828 (7.2)

NEURO 55.1 (17.5) 2,737 (48.5) 4,659 (82.6) 345 (6.1) 357 (6.3) 277 (4.9)

OPTH 54.6 (23.5) 827 (48.6) 1,501 (88.3) 69 (4.1) 54 (3.2) 76 (4.5)

ORTHO 46.9 (21.3) 2,783 (53.4) 4,247 (81.5) 397 (7.6) 306 (5.9) 263 (5)

PEDS 11.6 (8.3) 1,375 (44.4) 2,304 (74.3) 407 (13.1) 239 (7.7) 150 (4.8)

PLA 51.4 (11.3) 9,124 (94.4) 7,898 (81.7) 839 (8.7) 464 (4.8) 464 (4.8)

THO 63 (13.2) 6,646 (49.4) 11,409 (84.8) 670 (5.0) 732 (5.4) 645 (4.8)

URO 63.1 (13.6) 5196 (22.4) 19,544 (84.3) 1,466 (6.3) 799 (3.4) 1,367 (5.9)

combination of minimum, maximum, mean and sum of RBRVS measures as well as the

total number of procedures to best represent the information stored in CPT codes without

actually using them.

Due to the diverse nature of MSKCC outreach, the patient population encompasses

a mixed distribution of ethnic and socioeconomic groups. Table 3.10 summarizes key

demographics of patient data for various services of the hospital.

The focus of this study is estimation of the overall time a patient spends in the OR, that

is the time interval between patient’s move-in and move-out (toes-in-toes-out). Since the

set-up and clean-up times are normally considered as standardized tasks, toes-in-toes-out

constructs the most variable time window from the OR utilization perspective. MSKCC is

already using a filtering system to estimate the length of surgeries. Currently, this is done

by leveraging a feature within MSKCCs implementation of Epic’s OpTime module, which

takes the median of a set of historical cases that are matched by CPT codes, surgeon,

and location. If there is no past observations, they select from similar surgeries performed
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by other surgeons. Although the current method seems to be inclusive of several layers

of information, it clearly lacks a holistic view of system dynamics on a patient-by-patient

basis. Because the functions available in OpTime require a relatively rigid set of criteria for

matching, along with the variability inherent in surgical procedures, over 50% of surgeries

have an actual duration outside of ±30 minutes from the original estimate. To overcome

the limitations of the current approach and to deliver a personalized framework, we employ

structured and unstructured data to input every piece of information available prior to the

surgery without any aggregation.

The available structured data for this study can be classified into main groups of patient,

surgery team, equipment, operational and temporal data. On the patient side, we include

age, gender, race, BMI, treatment history and Elixhauser comorbidity measures. On the

other hand, to expand our information acquisition outreach, we incorporate data on case

RBRVS measures, equipment, surgeons, operational specifications of surgeries, etc. A

detailed list of structured data used in the final predictive model is given in Section 3.1.4.

Since most of the patient individual characteristics are recorded in unstructured format,

focusing only on structured data can considerably undermine the personalization. Un-

structured data refers to the raw records available from patient and hospital that does not

have a pre-defined data model in a relational database. There are different instances of

unstructured data in healthcare such as images, videos and texts. Due to the irregularity

and inconsistency in their structure, these types of data are usually ignored in statistical

modeling. However, after several discussions with surgeons, anesthesiologists and clini-

cians it became clear that significant amount of information is stored in text documents.

Such information conveys certain specifications, individual characteristics and particular

treatment requirements of each patient. In this study, therefore, we focus on the textual

data recorded and maintained in various notes as in initial consult, follow-up updates,
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radiologist report and generally all textual records available on patient profile prior to the

surgery.

Table 3.3: Features extracted from structured data

Category Features

Hospital The primary surgeon, experience of the primary surgeon in years,
number of publications of the primary surgeon, surgery room,
number of panels in the surgical case, the sum of all RBRVS
measures for the case, the mean of all RBRVS measures for the
case, the maximum of all RBRVS measures for the case, the min-
imum of all RBRVS measures for the case, number of procedures
for the surgical case, number of robotic procedures, the mean du-
ration of the last 5 similar cases based on the primary procedure,
the number of times the surgeon had a similar surgery in the
30 days, the number of times the surgeon had a surgery in the
30 days, the number of times the surgeon had a similar surgery
in the past, the number of times the surgeon a surgery in the
past, whether or not a particular equipment was needed for the
surgery, the number of required equipment

Patient Elixhauser comorbidity measures such as obesity, depression,
etc., Body Mass Index (BMI), weight, race, gender, age, whether
the patient is inpatient or outpatient, the number of days spent
in the hospital prior to the surgery, the number of times patient
underwent chemotherapy, the number of times patient underwent
radiation therapy, the number of times patient underwent surg-
eries

Operational The number of days between the day of surgery and the day
the surgery was scheduled, the number of cases assigned to the
surgeon on the day of surgery, the number of cases assigned to the
surgery room on the day of surgery, the number of cases scheduled
on the day of surgery, the sequence number of the surgery on the
surgeon’s schedule, the sequence number of the surgery in the
surgery room

Temporal The scheduled time of the surgery, The weekday of the surgery,
the month of the surgery, the year of the surgery
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3.1.4. Methodology

Our purpose in this research is not only to improve the accuracy of the current predictions

but also to develop insightful statistics associated with each of the estimates. We are

interested in capturing the contribution of various factors in defining the variations of

surgery duration and, therefore, we consider a multivariate approach. Considering that

the target dependent variable is continuous, we use regression techniques to estimate the

surgical case duration. In this section we describe the crucial steps in building our statistical

model from data pre-processing to construction of the predictive models.

Feature Engineering

Data preparation is an essential phase in any machine learning task. As described in Section

3.2.5, we receive data in various forms and types and Without a systematic approach to

generate informative features to avoid noisy, irrelevant or redundant data, the process

of knowledge discovery becomes very complicated and hard to generalize. Therefore, we

have to develop an automated mechanism that transforms the raw data into meaningful

predictors for our models.

The raw data table available for this study consists of different interactions of the patients

and the hospital with all required time stamps, certain test results, static information of

the staff and the hospital facilities and detailed specifications of each surgical case. In

the pre-processing phase, we used the raw data to generate a multitude of new features in

different groups. Table 3.11 provides a complete list of features derived from the structured

data.
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Feature Extraction and Dimensionality Reduction for Textual Data

After consulting the surgical staff, we realized that patients’ clinical notes may contain

certain words, medical terminologies, treatment options, etc. that indicate complexities

and uncertainties of a particular surgery. In fact, it is very common that the existence of

specific terms on the patient profile differentiate his/her case from other similar surgeries.

For instance, a surgical case in which the patient has an implanted ”surgical mesh” tends

to be more challenging and time consuming. Based on this idea and given the fact that we

are not concerned with ordering and semantics of the words, we only focus on the frequency

of terms in the textual records of patients.

Figure 3.1: Mean squared error for different λ values. From left to right: uni-grams,
uni-grams and bi-grams and uni-grams, bi-grams and tri-grams

In order to input the clinical notes to our modeling framework, for each patient we

concatenate all pre-surgery records and build one document from initial consults, follow-

up notes, etc. The final output of this process is a corpus of textual documents. We then

incorporate the bag-of-words (BOW) model to transform these documents into a structured

format. After initial data cleaning, all distinct terms of the corpus are identified and BOW

transforms each document by constructing a term frequency vector. The terms are defined
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as different contiguous sequence of words in the corpus. In our case, we focus on uni-

grams, bi-grams and tri-grams which refer to sequences of one, two and three adjacent

terms, respectively.

However, this method results in a very large feature space. We, therefore, further process

the output by removing stop words, non-alphanumeric characters, terms that are seen in

a majority of documents and terms that are so rare that no statistical evidence can be

inferred from them. We also reassign new weights to each term based on the frequency

of terms in the document and the overall corpus. This approach is called term frequency-

inverse document frequency (tf-idf) and is a standard practice to adjust for the fact that

some terms are generally more frequent.

With the pre-processing tasks described above, we end up with a few thousands of term

Figure 3.2: Wordcloud of the significant uni-grams in GYN corpus derived from the
bootstrapped Lasso model
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Figure 3.3: Explained variance of the corpus data for different number of principal
components. From left to right: uni-grams, uni-grams and bi-grams and uni-grams,
bi-grams and tri-grams

features for any of the services in our hospital. Most of these terms are still statistically

insignificant in explaining the variations of surgical case duration. Also, using such a

high dimensional data structure to complex machine learning algorithms is computation-

ally costly. Therefore, in order to automatically identify the most important terms or

combination of terms in our corpus and to shrink our feature space, we use two different

strategies.

In the first approach we implement Lasso Regression (LR) as a feature selection tool.

Lasso Regression is an interpretable statistical model that minimizes the residual sum of

squares while forcing the sum of the absolute value of the dependent variables’ coefficients

being less than a constant [131]. This algorithm tends to construct simpler models by

dropping insignificant predictors which is, given the magnitude of our feature space, a

desirable quality for our application. For each service, we regress the surgical case duration

variable on the the feature space of distinct terms of their associated corpus. The Lasso

then performs L1 shrinkage which generates sparse models by forcing the coefficients of

insignificant features to be zero [131].
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To generate a stable list of significant textual terms we run the Lasso model on 100

bootstrapped samples of our dataset. The sparsity of the final model in each bootstrap

iteration is controlled by a penalty factor that is assigned to the variable coefficients which

is tuned by applying a 10-fold cross validation. Figure 3.1, for instance, illustrates how

the mean squared error (MSE) on one bootstrap validation set changes with respect to the

penalty factor (λ) for the Lasso model on GYN corpus. To account for estimation error in

model selection, it is recommended to use the λ that generates an MSE within one standard

deviation (λ.1se) of the minimum MSE (λ.min) [60]. Accordingly, we insert tf-idf measures

of the terms with non-zero coefficients in λ.1se model that have non-zero coefficients in

more than 50% of the bootstrap replicates into our final statistical learning model. Figure

3.2 illustrates the significant terms in GYN corpus where the font size is proportional to

the number of times each term ended up in the final model on the bootstrapped samples.

Our second strategy is to apply Principal Component Analysis (PCA) to reduce the size

of our feature space while maintaining a certain level of variability in our corpus. Figure

3.3 shows how well the compressed data represents the original corpus as we add more

principal components. To ensure a meaningful dimensionality reduction, we focus on the

leading principal components that capture 70% of the textual data variations. Table 3.4

depicts different phases of dimensionality reduction (DR) for the textual features in GYN

service with bootstrapped Lasso and PCA. Using either of these methodologies, one can

programmatically output a significantly smaller feature space from unstructured medical

notes which can be further combined with previously discussed structured data. Both

mechanisms are also easily generalizable to all services across the hospital.
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Table 3.4: Textual feature extraction for GYN corpus (uni-grams, bi-grams and tri-
grams)

DR step Uni-grams Uni & bi-grams Uni, bi & tri-grams

Raw data 24265 392528 1177118

Pre-processed data 6430 30720 50505

Bootstrapped Lasso (λ.min) 347 408 383

Bootstrapped Lasso (λ.1se) 221 311 262

Principal Components 590 826 779

Statistical Learning Models

After data preparation in both structured and unstructured formats, we can move forward

with an in-depth analysis of statistical models for the surgical case duration problem. As

for the main predictive model, we chose to use two different machine learning algorithms:

1. Gradient Boosting Machine and 2. Random Forests.

Gradient Boosting Machine (GBM), enjoys from an iteratively additive structure where

in each iteration a weak learner is introduced to compensate the shortcomings of the

existing weak learners from previuos iterations [59]. This algorithm is very powerful for

regression purposes as it fits an additive model in a forward stage-wise fashion where

shallow decision trees are built in sequential order complementing one another. But, GBM

is prone to over-fitting and has several hyper-parameters that complicate the tuning process

of this algorithm.

Random Forests (RF), on the other hand, is another widely applied ensemble method

that uses decision trees as base learners [26]. In comparison with GBM, RF employs fully

grown decision trees that are generated in parallel rather than sequentially. Additionally,

RF is much easier to tune and, due to its random behavior, is more robust to over-fitting

and superior in generalization performance.

Although ensemble methods have shown promising results for high-dimensional regres-
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sion problems and are commonly used in predictive modeling, there is little known about

the statistics of their predictions. To have a concrete operational view, however, it is crit-

ical to understand the prediction intervals and uncertainty bounds associated with final

estimates.

Quantile Regression

Given the covariates extracted from the data, ensemble algorithms make accurate approx-

imation of the conditional mean of surgical case duration. However, in addition to the

conditional mean, we are interested in learning about the full conditional distribution of

surgery length. In fact, for operational planning, it is vital to know the uncertainty bounds

around predictions. For instance, it might be possible to estimate the duration of a partic-

ular surgery to a higher accuracy than another surgery on a given day. This information

delivers a decision support tool to improve case sequencing and scheduling on a daily basis.

Quantile regression is able to provide a more comprehensive view of the response variable

(case duration) [80]. The conditional distribution function of case duration is defined as

the probability that given a feature set X = x, the duration variable D is smaller than

d ∈ R,

F (d|X = x) = P (D ≤ d|X = x). (3.1)

Then, given the feature set X = x, α-quantile Qα(x) will be constructed such that the

probability of D being less than Qα(x) is equal to α,

Qα(x) = inf{d : F (d|X = x) ≥ α}. (3.2)

Quantiles, therefore, generate more information about the fluctuations and spread of

surgery length for every individual. We can use quantile regression to construct prediction
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intervals. For example, if we do not want to over-estimate case duration with high prob-

ability, we can easily build a 95% prediction interval for any future surgical case given its

associated feature set X by

PI(x) = [Q0.025(x), Q0.975(x)]. (3.3)

In order to generate accurate and fully non-parametric prediction intervals while incor-

porating more complex learning models such as RF, we use Quantile Regression Forests

(QRF) [96]. QRF follows quite a similar algorithm as Random Forests. But, instead of

approximating the conditional mean, it uses the weighted observations of response variable

to approximate the full conditional distribution.

3.1.5. Validation and Numerical Results

To implement and test the models for surgical case duration prediction, we split the data

in GYN service into two parts. The chronologically first 80% of surgical cases comprise

the training set used to calculate and tune the required parameters for each model. The

remaining 20% of the surgical cases will be maintained in the test set which will be used to

test the performance of the developed models. We build and compare GBM and RF models

with and without textual data with different combinations of PCA and bootstrapped Lasso

on textual features. In order to train the GBM and RF models and to tune their hyper-

parameters we implement a 10-fold cross validation. Table 3.5 shows the accuracy of

the current method in comparison with our individualized models. We report the Mean

Error (ME), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean

Absolute Percentage Error (MAPE) to evaluate the performance of these models on the

test set. Based on the RMSE measures, the RF model that is trained on the bootstrapped
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Lasso textual features of uni, bi and tri-grams has the highest accuracy. The improvement

in RMSE is more than 23%. The RF Tri-grams model generates an MAE of 44.42 minutes

which indicates that our suggested model reduces the prediction error of each surgical case

duration in GYN service by almost 12 minutes on average. We should also note that the

inclusion of textual data in RF contributes to a reduction of more than 2 minutes in average

estimation error.

The impressive performance of our modeling framework in achieving greater accuracy is

partly due to mitigating extreme errors of underestimation. The current method is based on

the median duration of previous similar operations and it tends to predict shorter duration

for majority of cases, see Table 3.6. This mainly happens because the distribution of the

surgical case duration is right-skewed and, therefore, predictions that are generated by

minimizing deviations from the median are smaller than predictions that are generated by

minimizing deviations from the mean.

In order to gain a better understanding of how our individualized setting improves the

quality of predictions, we have to explore the impactful variables of the final RF tri-grams

model. RF rates the importance of variables through a permutation test on different

variables in the out-of-bag (oob) samples. The idea is that permutation on important

variables will degrade the accuracy of prediction more significantly than permutation on

non-important variables. Table 3.7 summarizes the significant features used by the random

forest algorithm in different categories. The features are ordered by their importance in

each category. One interesting observation regarding the selected textual features is that

they convey very important information that could have been lost, if we only considered

the structured data. For instance, a surgical case booked with HIPEC will likely require

an extended open procedure with extensive intra-abdominal resections followed by heated

intra-peritoneal chemotherapy and sometimes a reconstructive procedure of bowel followed
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Table 3.5: Model performance comparison for GYN service

Models ME RMSE MAE MAPE

Current Method -33.71 83.64 56.33 43.11

RF No Text 18.19 66.52 46.78 22.07

GBM No Text 12.16 65.72 45.01 22.14

RF Uni-grams 14.60 65.45 45.23 21.63

GBM Uni-grams 12.88 67.90 45.30 21.67

RF Bi-grams 15.84 66.41 45.80 21.76

GBM Bi-grams 13.33 72.56 47.73 22.75

RF Tri-grams* 13.04 64.29 44.42 21.66

GBM Tri-grams 13.38 69.82 46.27 22.09

RF Uni-PCA 14.73 67.22 46.26 22.12

GBM Uni-PCA 15.96 65.04 45.06 21.52

RF Bi-PCA 14.77 67.78 47.00 22.49

GBM Bi-PCA 14.61 66.32 46.30 22.66

RF Tri-PCA 15.23 67.38 47.15 22.52

GBM Tri-PCA 15.11 66.94 45.90 22.03

by closure. Cases who have undergone neoadjuvant chemotherapy and now brought for

surgery are usually well selected cases that have responded to chemotherapy and the burden

of disease is reduced by the chemotherapy and will likely have a more abbreviated operation

than upfornt primary debulkign surgery.

The required data for developing individualized models are accessible well ahead of

the surgery in various services across the hospital. This enables our methodology to be

easily generalizable to other services. In order to test the universal performance of our

Table 3.6: Error quantiles for the best model in GYN service

Models 10% 25% 50% 75% 90%

Current Method -117.00 -64.50 -26.00 3.00 35.00

RF Tri-grams -44.91 -5.15 17.69 42.85 72.27
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approach, we compare the accuracy of the best model in each service with the current

estimation method on the test set. To find the best model in each service we follow the

same steps as we described for GYN. Table 3.8 summarizes the performance results of the

Table 3.7: Significant features in each category (GYN Service)

Category Significant Features (ordered by importance)

Hospital The mean duration of the last 5 similar cases based on the pri-
mary procedure, number of panels in the surgical case, the sum
of all RBRVS measures for the case, the maximum of all RBRVS
measures for the case, number of robotic procedures, the number
of required equipment, the number of procedures for the surgical
case, Required equipment “ESU Force FX”, Required equipment
“ESU LIGASURE”, Required equipment “PLASMAJET”, Re-
quired equipment “XI Robot”, Required equipment “ESU TIS-
SUELI”, the number of times the surgeon had a similar surgery
in the past

Patient Whether the patient is inpatient or outpatient, Body Mass Index
(BMI), weight, age

Operational The number of cases assigned to the surgery room on the day of
surgery, the number of cases assigned to the surgeon on the day of
surgery, the sequence number of the surgery in the surgery room,
the sequence number of the surgery on the surgeon’s schedule

Temporal The scheduled time of the surgery, the year of the surgery

Textual “debulking”, “advanced-ovarian-cancer”, “pelvic-mass”,
“omental”, “omental-caking”, “ovarian-cancer”, “peritoneal-
carcinomatosis”, “supracervical”, “exenteration”, “cervical-
cancer”, “perihepatic”, “robotic”, “carcinomatosis”, “cy-
toreductive”, “retroperitoneal”, “hydronephrosis”, “hipec”,
“solid-cystic”, “radical”, “obese”, “retroperitoneal-lymph”,
“effusion”, “myomectomy”, “fibroid”, “hemipelvis”, “hyper-
lipidemia”, “neoadjuvant-chemotherapy-plan”, “unresectable”,
“carboplatin”, “metastatic-ovarian”, “spread”, “serous”
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Table 3.8: Universal performance report; H.: Hospital current method, M.: Individ-
ualized model

Services H.RMSE M.RMSE RED.(%) H.MAE M.MAE RED.(Mins)

BRE 38.20 33.01 13.59 26.23 19.76 6.47

CRS 118.15 86.41 26.86 83.13 57.12 26.01

GMT 83.18 66.41 20.16 55.95 45.10 10.85

GYN 83.64 64.29 23.13 56.33 44.42 11.91

HEP 98.30 61.69 37.24 73.00 43.97 29.03

HNS 85.39 62.42 26.90 61.7 42.11 19.59

NEURO 117.48 86.54 26.34 79.27 54.59 24.68

OPTH 35.60 28.53 19.86 26.31 21.85 4.46

ORTHO 169.34 111.63 34.08 118.80 71.05 47.75

PEDS 106.56 70.13 34.19 71.28 47.22 24.06

PLA 64.77 48.00 25.89 45.90 32.64 13.26

THO 93.46 57.85 38.10 68.62 39.39 29.23

URO 56.88 39.26 30.98 38.20 25.67 12.53

best individualized model in each of the services available at MSKCC.

In addition to its higher accuracy, our methodology is capable of generating data-driven

uncertainty bounds for each prediction. To collect quantile information of predicted values,

we implement the quantile regression version of random forest (QRF) which for every leaf

of every tree takes note of all observations and not just their average. Figure B.12 depicts

the 95% prediction interval for a sample of 100 observations from the test set. The graph

shows that fewer than 5 out of 100 actual durations fall out of the 95% prediction interval

which supports the statistical performance of QRF [96].

Our modeling framework quantifies the bounds on stochasticity of surgical case duration

in an individualized setting in which a comprehensive view of both patient and system
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Figure 3.4: Prediction interval for a sample of 100 cases in GYN service; Blue line:
predicted duration using RF model, Black dots: actual duration, Red dots: current
planned duration, Gray margin: 95% prediction interval for RF model

is considered. Reliable information on the uncertainty of predicted durations provides a

valuable data-informed toolbox for schedulers and operation managers. For instance, it is

known that sequencing daily surgeries in order of increasing variance of durations reduces

the schedule tardiness (overtime) [49]. Accordingly, using the results of our suggested

model, one can easily rank surgeries based on their prediction intervals.

It is important to note that the QRF model is able to provide comprehensive informa-

tion regarding the distribution of each individual surgery which is well beyond the mere

uncertainty bounds discussed above. In the next section of this chapter we propose ana-

lytical methodologies to incorporate such individualized distributional predictions into the

surgery scheduling problem under uncertainty.
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3.2. An Individualized Learning Methodology for the

Surgery Appointment Scheduling Problem

3.2.1. Introduction

Uncertainty is an inherent component of hospital operations. Surgery, in particular, suf-

fers from a high rate of variability due to many factors such as co-morbidities, unforeseen

complications, the patient’s unique anatomy and several other medical and operational ele-

ments [77]. Consequently, operating rooms (ORs) are often affected by significant schedule

volatility and poor utilization [48, 94, 104]. Ambivalently, ORs are well known to be both

the greatest sources of revenue and cost for hospitals [124].

To improve the management of ORs, and in particular the setting of case start times,

one of the crucial modeling components is the surgical case duration [56]. Its variability

crucially affects the quality of decisions and require proper consideration. For instance,

surgery durations that are short on average but wildly vary may harm a decision more

than durations that are long but more stable [48]. This motivates researchers to study

surgery scheduling optimization where the surgery durations are stochastic [48, 49, 92].

These studies, however, consider the duration distributions on a population-level (i.e.,

each patient is treated equally as coming from a single “generating” pool or from a number

of different categories/types), mostly because breaking down patient classes would reduce

substantially the effective data size and lead to poor fitting [48, 90].

Given the limitations of these approaches and advances in data analytics, several re-

searchers have instead studied machine learning methods to predict surgical cases using

patient-specific data [76, 88, 117]. While these methods are shown to be effective in esti-

mating the surgical case duration, they, like most machine learning methods, are designed

as point estimators, e.g., mean response. Therefore, they are unable to provide significant
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information on the distribution of the case duration. However, when it comes to surgical

scheduling, distributional variability plays a major role. As a result, these studied methods

can fall short of making the best decisions in terms of risk-return trade-offs or the ability

to respond to the awareness of uncertainty.

Our focus in this paper is to study an effective approach to utilize individualized data

for the distributional modeling of surgery duration, and to then use this distributional

information in the optimization of surgery scheduling. This allows us to account for the

uncertainty or variability at a more granular level than before, which turns into subsequent

better planning decisions. In particular, we use the quantile regression forest (QRF) pio-

neered by [96]. The QRF integrates the quantile distribution perspective with the random

forest (RF) [26], an ensemble technique that pools together individual decision trees as the

base learners. RF and ensemble techniques have shown to be effective in making stable

predictions [55], possesses variance-reducing properties [27], and is one of the most popular

off-the-shelf machine learning tools. Whereas RF aims to output a mean prediction, QRF,

with a very similar procedural design, can make prediction of the whole response distri-

bution (equivalently all the quantiles, hence its name). Compared to traditional linear

quantile regression [80], QRF can better capture nonlinear relations among the features

and result in less bias, similar to other tree-based bagged learners.

We leverage this powerful tool in surgery duration modeling, with the goal to demon-

strate its effectiveness in terms of basic theory and practice. Specifically, we focus on the

single-day/block single-OR appointment scheduling. Aligning with the common practice

in some surgery departments, e.g. cancer centers, we only consider elective surgeries where

the appointments are made a few days prior to the surgery, and hence assume knowledge of

the characteristics of the incoming patients (namely the “features” in the predictive model,

which can be considered biometric information). Given the predicted distributions of the
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surgery durations, the planning problem we consider is to determine the best starting time

of each surgery, where the first job always starts at time zero. The trade-off can be de-

scribed as follows: If the starting time of a subsequent job is too late, then it is more likely

that the prior job will finish before the subsequent job arrives, which wastes working time

and on a sample path basis and causes the final surgical case to complete at a later time.

This is important because jobs at the end of the day incur overtime cost if they complete

after the scheduled block time. On the other hand, if the job’s start time is too early,

then this job is more likely to need to wait, which has undesirable effects that can include

increased system congestion, patient dissatisfaction, and negative health outcomes.

The tradeoff above, which arises from the stochasticity of the patient’s case durations,

can be addressed by three common approaches in optimization. First is the stochastic

optimization through Sample Average Approximation (SAA) that approximates an expec-

tation objective, i.e., focuses on the average performance; e.g., [118]. Second is the robust

optimization (RO) that focuses on the worst-case performance given support information

on the case durations; e.g., [16, 18]. Third is the more recent distributionally robust opti-

mization (DRO) approach based on partially informed probability distributions; e.g., [15,

142]. We show how to incorporate the individualized predictive distribution obtained from

QRF into each of these formulations. In the RO and DRO settings in particular, we study

uncertainty sets most naturally deduced from QRF, and their tractabilities for the surgery

problem by leveraging results in [92]. We also demonstrate how the statistical consistencies

of our formulations (with respect to their own target guarantees) follow from the known

properties of QRF. We then test these formulations in the context of Memorial Sloan

Kettering Cancer Center (MSKCC), using its data. These data contain patient features

such as co-morbidity measures, Body Mass Index, demographic information and medical

history.
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It is worth mentioning that, due to the availability of Electronic Health Records [4, 101],

the notion of individualized optimization under uncertainty considered in this paper can be

incorporated in various areas of healthcare operational decision making. For instance, our

individualized stochastic optimization framework can incorporate operating capacity con-

straints of hospital resources [73] and chemotherapy infusion treatment sessions scheduling

[35] with appropriate adjustments.

We close this introduction with a brief review of related work that brings individualized

information into decision-making. The main body of work studies conventional risk mini-

mization or regularization in finding good decisions in areas such as portfolio optimization

[10], inventory management [11], online assortment problems [75], medical dosing [14] and

the like. In the RO paradigm, [61] used regression models to calibrate uncertainty sets for

asset returns in financial contexts. [134] suggested several machine learning approaches

to create uncertainty sets. In contrast to the latter, we focus on learning distributions,

instead of uncertainty set geometry, which can be incorporated into SAA and DRO and is

also more flexible in guaranteeing tractability of the uncertainty sets when using RO.

The remainder of this paper is organized as follows: section 3.2.2 introduces our set-

ting and notations in surgery scheduling. section 3.2.3 reviews QRF, the tool we will use

for individualization. section 3.2.4 then demonstrates how we integrate QRF into opti-

mization under the distributional uncertainty of the surgery duration, and presents the

corresponding consistency results, in using the three common optimization approaches in

the literature. Finally, section 3.2.5 provides an numerical example using MSKCC data to

compare our proposed methodologies to the traditional methods.
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3.2.2. The Surgery Scheduling Model

This work focuses on the single operating room scheduling problem when the sequence

of operations is known. However, the model setting is identical for problems in other

areas where the adjustment of time allowances for a sequence of jobs is used for improved

operational behavior or cost containment [115, 140]. The model captures the optimal

allocation of start times when the surgery duration is uncertain and the number of surgeries

is given. The objective is to minimize the the waiting time for the patient and surgery

team as well as the overtime for going beyond the scheduled closing time. To simplify the

modeling framework, we do not include the idling time in our problem statement. However,

it can be easily introduced to the model with a change of notation.

The model focuses on setting the start times of each surgery for a set of n elective

surgeries in a given sequence on a given day for a given operating room. We follow similar

notations as in [49]. Let T be the scheduled closing time of the day and zi define the random

duration of the ith surgery. The decision maker has to set the surgery time allowance of

the ith case, xi, such that the first starts at time zero, the second at x1, the third at x1 +x2,

and so on. Assuming that the start time for the first surgery is zero, the start time of any

subsequent surgery is scheduled at the sum of the time allowances of all previous surgeries.

We also denote by Z = (zi)i=1,...,n and X = (xi)i=1,...,n the vectors of surgery durations

and surgery time allowances. Based on these assumptions, the waiting time, wi, and the

overtime, l, can be represented as:

wi = max{0, wi−1 + zi−1 − xi−1}, i = 2, ..., n (3.4)

l = max{0, wn + zn − xn} (3.5)

We assume that the first surgery always starts on-time and, hence, w1 = 0. For delay in
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start of the following surgeries, we incur a unit holding cost for each unit of waiting time

(without loss of generality through a rescaling). Additionally, an overtime cost of φ per unit

time is incurred if we run later than time T . Given the cost function f(X,Z) =
∑n

i=2wi+φl

and the definitions above, a surgery scheduling model, assuming hypothetically that Z are

known, is constructed as:

min
x∈X

f(X,Z) (3.6)

s.t. wi+1 = max{0, wi + zi − xi} i = 1, ..., n− 1

l = max{0, wn + zn − xn}

where X = {xi ≥ 0 ∀i,
∑n

i=1 xi ≤ T} and (x1, ..., xn) are the decision variables. By a

monotonicity argument on the objective function in terms of wi’s and l, it is standard to

see that (3.6) can be reformulated as

min
x∈X
w,l

f(X,Z) (3.7)

s.t. w2 ≥ z1 − x1

wi+1 ≥ wi + zi − xi i = 2, ..., n− 1

l ≥ wn + zn − xn

wi, l ≥ 0 i = 2, ..., n

where (w2, ..., wn, l) are introduced as auxiliary decision variables. When the Z are stochas-

tic, we can replace the objective of (3.7) as either E[f(X,Z)] or {q : P (f(X,Z) ≤ q)},

where E[·] and P (·) are the expectation and probability taken with respect to Z. The

former is an expected value formulation, and the latter is a percentile optimization for-

mulation. Common approaches like SAA and RO provide approximate solutions to these
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formulations, as we shall describe in the sequel.

3.2.3. Conditional Distributions and Quantile Regression Forests

To individualize problem (3.7) under stochasticity, we need the distribution of each zi that

is tailored to the characteristic of the patient. Denoting ξ ∈ Ξ as the patient feature (e.g.,

gender, age etc.), this means we want to approximate F (z|ξ), the distribution function of

the surgery duration given ξ.

One common approach to obtain F (z|ξ) is to use linear quantile regression (LQR) in

classical statistics. This estimates the quantile of the distribution conditional on the fea-

ture, at a chosen probability level, based on a linear relation between the quantile and

the feature [80]. This can be done for different probability levels, leading to estimates of

different points of the conditional distribution function. However, for complex and high-

dimensional data, the linear assumption in LQR may not hold, and its predictive power is

strained.

We therefore consider predictive models based on decision trees, which are flexible to han-

dle nonlinearity. Decision trees are built by partitioning the data into subsets of leaf nodes

on the input feature space. Depending on the type of response variables, the partitioning

is conducted using criteria of node impurity such as Gini impurity, entropy, variance, etc.

[25, 106, 107], which quantify the value or information gain of branching at each node and

guide the subsequent steps of the algorithm, until a predefined stopping criterion is met

(e.g., maximum tree depth, minimum number of cases in a node, maximum number of

nodes in the tree, etc. [25]). Finally, the prediction at a feature value is made by using the

mean of the observations within the same leaf node.

Decision trees allow for nonlinearity and thus uncover more complex feature interde-

pendencies than LQR. Moreover, it has been shown to be robust against outliers [25].
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The drawback, however, is that they suffer from high variability (over-fitting). Hence, an

ensemble of decision trees is normally a preferred choice. In particular, Random Forests

(RF) [26] uses multiple trees on different bootstrapped samples of the data, where each of

these trees have splitting rules based only on a random subset of the features. The final

prediction of RF is made by taking the average of all the decision trees. This averaging,

named bootstrap aggregating (or bagging), is known to improve the stability and accuracy

of RF compared to single decision trees (e.g., [27, 55]).

Nevertheless, the RF is designed to predict the conditional mean response. The Quantile

Regression Forest (QRF) method expands the scope of RF to predict the whole conditional

distribution function of the response. The procedure of QRF is similar to RF, but instead

of taking the mean of responses within the same leaf as the output of a tree, it takes the

empirical distribution of the responses [86]. QRF is shown to perform well in challenging,

non-Gaussian situations [96, 135]. More detailed descriptions of RF and QRF are provided

in Appendix B.7.

We close this section by stating a consistency result of [96], which shows that QRF

recovers the true conditional distribution as the number of observations in the training

data increases under appropriate regularity conditions:

Theorem 3.1 (Consistency of QRF; [96]). Under the conditions listed in Appendix B.6,

it holds that, for every feature value ξ ∈ Ξ,

sup
z∈R
|F̂ (z|ξ)− F (z|ξ)| p→ 0 N →∞.

where N denotes the number of i.i.d. observations, F (z|ξ) is the conditional cumulative

distribution function of the response variable and
p→ denotes convergence in probability.
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3.2.4. Individualized Optimization under Uncertainty

This section presents our integration of QRF into different optimization formulations that

capture the stochasticity of the surgery duration in an individualized fashion. We first con-

sider an expected value formulation and SAA in section 3.2.4. Then we move to percentile

formulation and RO in section 3.2.4, and finally DRO in section 3.2.4.

Expected Value Optimization and Sample Average Approximation

Our first considered formulation is (3.7) but with an expected value objective function

E[f(X,Z)|ξ1, . . . , ξn] =

∫
f(X,Z)

n∏
i=1

F (dzi|ξi), (3.8)

which minimizes the average overall scheduling cost conditional on the feature ξi of each

patient, who uses a surgery duration zi. In this objective, we assume the distributions of

all patients are conditionally independent, and we approximate the distribution F (z|ξi) by

QRF, namely F̂ (z|ξi). For convenience, we denote Ê[·|ξ1, . . . , ξn] as the conditional expecta-

tion under independent F̂ (z|ξi)’s. Exact computation of the expectation Ê[f(X,Z)|ξ1, . . . , ξn]

in this setting is challenging, not to mention optimization. Thus, we use sample average

approximation (SAA) to approximate the problem. In particular, we generate a set of

scenarios under
∏n

i=1 F̂ (zi|ξi), denoted S = {s1, ..., sk}. Every scenario s ∈ S is associated

with a realization of Z(s) = (zi(s)) and with w1(s) = 0

wi(s) = max{0, wi−1(s) + zi−1(s)− xi−1}, i = 1, ..., n

l(s) = max{0, wn(s) + zn(s)− xn}.
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From (3.7) we can approximate the expected value problem via SAA as

min
x∈X
w,l

K∑
k=1

1

K

( n∑
i=2

wi(sk) + φl(sk)
)

(3.9)

s.t. wi+1(sk) ≥ wi(sk) + zi(sk)− xi i = 1, ..., n− 1, k = 1, ..., K

l(sk) ≥ wn(sk) + zn(sk)− xn k = 1, ..., K

wi(sk), l(sk) ≥ 0 i = 2, ..., n, k = 1, ..., K.

Formulation (3.9) naturally combines the distributional prediction of QRF into the ex-

pected value minimization. This is in contrast to previous approaches that typically treat

all patients identically and all the zi are generated in an i.i.d. fashion.

Under standard conditions, the SAA problem (3.9) has a solution and optimal value that

converge to those of (3.8), as we formally state next.

Theorem 3.2. Let

X∗ ∈ argmin
X∈X

E[f(X,Z)|ξ1, . . . , ξn] (3.10)

and X̃∗ be an optimal solution to (3.9). Assume that z and ξ satisfies the conditions in

Appendix B.6, we have H(X̃∗)
p→ H(X∗) as K,N → ∞, where N is the observation size

in building the QRF and K is the scenario size.

Robust Optimization

Robust optimization (RO) provides an alternate paradigm to account for the uncertainty

in the surgery duration. In the RO paradigm, we replace the stochasticity with a so-called

uncertainty set or ambiguity set, which is a deterministic set that, intuitively, captures the

likely realization of the surgery duration (other interpretations are possible, e.g., [16], P.33

discussion point B).
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Formulation (3.7) has resemblance with single-server queues, for which [12] has intro-

duced an RO approach to estimate relevant quantities. Following their framework, we

introduce Γk and Γk and assert that the surgery times belong to the uncertainty set

U =

{
(z1, z2, ..., zn)

∣∣∣∣ Γk,i ≤
i−1∑
j=k

zj ≤ Γk,i , ∀k < i ≤ n

}
, (3.11)

The reason why we consider a set on
∑i−1

j=k zj, instead of other possible candidates (e.g.,

merely zk themselves), is that the objective function explicitly depends on the former,

which facilitates solution to the RO.

RO considers

min
x∈X

max
z∈U

(
n∑
i=2

wi + φl

)
(3.12)

where wi and l satisfy (3.4) and (3.5). Note that the waiting time of the ith patient can

be expressed as

wi = max{wi−1 + zi−1 − xi−1, 0} = max
1≤k<i

(
i−1∑
j=k

zj − xj, 0

)
. (3.13)

and it is also trivial to see that l = wn+1. Putting these into (3.12) gives

min
x∈X

max
z∈U

(
n∑
i=2

max
1≤k<i

(
i−1∑
j=k

zj − xj, 0

)
+ φ max

1≤k<i

(
n∑
j=k

zj − xj, 0

))
. (3.14)

We then switch the order of maximizations to achieve

min
x∈X

(
n∑
i=2

max
1≤k<i

max
z∈U

(
i−1∑
j=k

zj − xj, 0

)
+ φ max

1≤k<i
max
z∈U

(
n∑
j=k

zj − xj, 0

))
. (3.15)

The innermost maximization can be easily seen to be attained at the upper bounds imposed
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in U , so that (3.15) is equivalent to

min
x∈X

(
n∑
i=2

max
1≤k<i

(
Γk,i−1 −

i−1∑
j=k

xj, 0

)
+ φ max

1≤k<i

(
Γk,n −

n∑
j=k

xj, 0

))
. (3.16)

Now, denoting Qi = max1≤k<i

(
Γk,i−1 −

∑i−1
j=k xj, 0

)
, then (3.16) can be reformulated into

the following linear program

min
x∈X

n∑
i=2

Qi + φQn+1

s.t. Qi ≥ Γk,i−1 −
i−1∑
j=k

xj i = 1, ..., n+ 1 and 1 ≤ k < i

Qi ≥ 0 i = 2, ..., n+ 1.

(3.17)

The question remains how to calibrate Γk,i’s. Using the idea of data-driven RO (e.g.,

[19]), one can set Γk,i’s so that

P̂

(
Γk,i ≤

i−1∑
j=k

zj ≤ Γk,i , ∀k < i ≤ n

∣∣∣∣∣ξ1, . . . , ξn

)
≥ 1− δ,

where P̂ (·|ξ1, . . . , ξn) denotes the probability under
∏n

i=1 F̂ (zi|ξi). In particular, we can

find Γ such that

P̂

∣∣∣∣∣∣
∑i−1

j=k zj −
∑i−1

j=k µj√∑i−1
j=k σ

2
j

∣∣∣∣∣∣ ≤ Γ , ∀k < i ≤ n

∣∣∣∣∣ξ1, . . . , ξn

 ≥ 1− δ (3.18)

where µj and σ2
j are the mean and variance from F̂ (·|ξj). The left hand side of the

expression inside the probability in (3.18) is a centered and normalized version of
∑i−1

j=1 zj

that appears often in the central limit theorem. The choice of Γ in (3.18) then implies that
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one can choose

Γk,i =
i−1∑
j=k

µj − Γ

√√√√ i−1∑
j=k

σ2
j

and

Γk,i =
i−1∑
j=k

µj + Γ

√√√√ i−1∑
j=k

σ2
j (3.19)

Now, to find Γ that satisfies (3.18), we can use the quantile estimation approach (suggested

by, e.g., [69]). Simulate, say K, i.i.d. copies of Z, and for each Z one can calculate

max
k<i≤n

∣∣∣∣∣∣
∑i−1

j=k zj −
∑i−1

j=k µj√∑i−1
j=k σ

2
j

∣∣∣∣∣∣ (3.20)

Find the bK(1 − δ)c-th order statistic of the K copies of (3.20), call it Γ̃. This will be a

consistent estimate of Γ that satisfies (3.18).

Using the above formulations and procedure gives the following:

Theorem 3.3. Assume that z and ξ satisfies the conditions in Appendix B.6. Let H̃ be the

optimal value of formulation (3.17), with Γk,i calibrated from (3.19) with Γ approximated

by Γ̃, the bK(1− δ)c-th order statistic of (3.20) derived from the K samples of Z. Let H∗

be the optimal value for minx∈X min{q : P (f(X,Z) ≤ q|ξ1, . . . , ξn) ≥ 1− δ}. Then

lim inf
N→∞,K→∞

H̃ ≥ H∗

Note that the optimization minx∈X min{q : P (f(X,Z) ≤ q|ξ1, . . . , ξn) ≥ 1 − δ} means

minimizing the true (1 − δ)-quantile of f(X,Z). Theorem 3.3 stipulates that the RO

formulation can be viewed as a conservative approximation of this optimization.
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Distributionally Robust Optimization

We next consider distributionally robust optimization (DRO). This approach targets ex-

pected value objective function, like in the case of SAA, but under only partial information

of the distributions. More specifically, it optimizes the worst-case expected value among

all distributions that are in an uncertainty set or an ambiguity set that contains the partial

information. In our scheme, we assume the quantiles of each patient’s surgery duration

distribution at a list of given probability levels are known. These information pieces can

be drawn from the QRF, achieving individualization.

The motivation for using DRO is that its solution tends to be more robust. In our cir-

cumstance, imposing enough quantile information means we know the distribution of each

patient’s surgery duration distribution, but not assuming, e.g., any dependency structure

among the patients. The solution from DRO is thus robust against such type of hid-

den stochasticity that is not revealed by the individualization, which focuses only on the

prediction for each patient.

More concretely, for each patient i, we consider a set of probability rij, j = 1, . . . ,m,

and we denote by qij the rij-th quantile of the duration distribution given ξi, which can be

inspected from the QRF. For convenience, we set rim = 1. We consider the uncertainty set

U = {P ∈ P : P (zi ≤ qij) = rij, i = 1, . . . , n, j = 1, . . . ,m} (3.21)

where P is the set of all probability distributions supported on Rn
+. Here, rij and qij

are calibrated so that F̂ (qij|ξi) = rij, for all i, j, which indicates the information that

the marginal rij-th quantiles for patient i are known to be qij under the QRF. This, in

particular, includes the information that the largest possible value of F̂ (z|ξi) is estimated

to be qim.
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We seek to solve

min
x∈X

max
P∈U

EP
[
f(X,Z)

]
. (3.22)

We approach (3.22) using the technique in [92], which first replace f(X,Z) as the optimal

value of a linear program (LP) given by

max
y

n∑
i=1

(zi − xi)yi

s.t. yi − yi−1 ≥ −1 2 ≤ i ≤ n

yn ≤ φ

yi ≥ 0 ∀i = 1, ..., n.

(3.23)

This can be derived from the definition of wi and l in (3.4) and (3.5), and considering the

dual of the resulting LP, where y1, . . . , yn are the dual variables. Then problem (3.22) can

be rewritten as

min
x∈X

max
P∈U

EP
[

max
y∈Ω

n∑
i=1

(zi − xi)yi
]
, (3.24)

where Ω refers to the constraint set in (3.23). We now focus on the outer maximization

problem, maxP∈U EP
[

maxy∈Ω

∑n
i=1(zi − xi)yi

]
. The following lemma transforms it into a

more manageable form:

Lemma 3.1. The dual representation of maxP∈U EP
[

maxy∈Ω

∑n
i=1(zi−xi)yi

]
is equivalent

to

min
ρ

max
y∈Ω

n∑
i=1

max
j=1,...,m

{
(qij − xi)yi −

m∑
k≥j

ρik

}
+

n∑
i=1

m−1∑
j=1

rijρij +
n∑
i=1

ρim, (3.25)

where ρ11, . . . , ρnm are the dual variables corresponding to the quantile constraints.
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By Lemma 3.1, problem (3.22) can be represented by

min
x∈X ,ρ

max
y∈Ω

n∑
i=1

max
j=1,...,m

{
(qij − xi)yi −

m∑
k≥j

ρik

}
+

n∑
i=1

m−1∑
j=1

rijρij +
n∑
i=1

ρim. (3.26)

We want to transform (3.26) to a linear program. Note that maxy∈Ω

∑n
i=1 maxj=1,...,m

{
(qij−

xi)yi −
∑m

k≥j ρik

}
is a convex maximization problem over the polyhedron Ω, and it suf-

fices to consider its extreme points for an optimal solution. This allows us to follow the

method discussed in Proposition 2 of [92] to reduce to solving an LP relaxation of an

integer program using the following proposition.

Proposition 3.1. Problem (3.22) can be reformulated as the following linear program

min
x,ρ,λ

n∑
i=1

λi +
n∑
i=1

m−1∑
j=1

rijρij +
n∑
i=1

ρim

s.t. µio ≥
{
qijπio −

m∑
k≥j

ρik

}
1 ≤ i ≤ n, 1 ≤ i ≤ o ≤ n+ 1, 1 ≤ j ≤ m

min{o,n}∑
i=g

µio ≤
min{o,n}∑
i=g

xiπio + λi 1 ≤ g ≤ n, g ≤ o ≤ n+ 1

n∑
i=1

xi ≤ T

xi ≥ 0 ∀i ∈ {1, ..., n},
(3.27)

where (λ1, ..., λn) are the dual variables, πio = yi for all i ∈ [g, o] and any g ≤ o. Also,

µio = maxj=1,...,m{qijπio −
∑m

k≥j ρik} for o = 1, ..., n+ 1.

The following shows that the DRO under the quantile information drawn from the QRF

gives an asymptotic bound for the true expected value:

Theorem 3.4. Assume that z and ξ satisfies the conditions in Appendix B.6. Let H∗ be
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the optimal value of (3.22), and Ĥ be the optimal value of (3.27). Then for any ε > 0, we

have

P
(
H∗ ≤ Ĥ + ε

)
→ 1 (3.28)

as N → ∞, where U is the uncertainty set defined in (3.21) and N is the data size in

constructing the QRF.

Note that Theorem 3.4 does not require strong duality of the dual formulation in (3.25),

because it involves only an upper bound guarantee in (3.28). Moreover, unlike SAA and

RO discussed before, our DRO reformulation does not require running simulation from the

QRF.

3.2.5. Numerical Results and Discussion

We test our approach against some benchmark procedures. Our goal is to give insight into

how well our three optimization approaches can harness the individualized case duration

distributions to improve the decision quality for the surgery scheduling problem.

To implement our approach, we construct a QRF over the case duration data. We use

80% of the available data for training and the remaining 20% for testing the QRF when

integrated with SAA, DO, and DRO. A detailed description of the data is given in §3.2.5.

This QRF will provide the individualized distributions, i.e., conditional distributions given

the patients’ features, to feed into our optimization formulations as presented in §3.2.4.

To evaluate our performance, we compare with several commonly used approaches.

Firstly, we fit a log-normal distribution on all case durations in the training set (L-Norm).

It is well known that surgeons can vary significantly in surgical distribution for the same

type of surgery. For this reason, we Secondly stratified the data by the primary surgeons

and fit a log-normal distribution on all case durations in the training set (L-Norm-PS). The
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log-normal distribution was selected because it delivered the best fit compared to other

well-known distributions. For this we used the Kolmogorov-Smirnov test in R to identify

the quality of fit for several well-known distributions including Normal, Weibull, Gamma,

etc. Third, we use a linear quantile regression constructed from the training set (LQR).

For each of the optimization approaches (SAA, RO and DRO), we compare against the

performances of these distribution modeling methods as well as QRF using the patient

data in the test set.

Data

We consider the surgeries performed at Memorial Sloan Kettering Cancer Center (MSKCC)

within the last six years (2010 - 2016). MSKCC is one of the leading cancer centers in the

world which is constantly improving cancer treatment process by applying state-of-the-art

scientific methodologies in both medical and operational aspects of its care delivery system.

Its surgical operations take place across thirteen different services and in a total of forty

different operating rooms. The overall dataset contains a total of 129, 742 distinct surgeries

in all services throughout the study horizon, and it included all inpatient and outpatient

surgeries. For illustration, we present only the results for Urology (URO) service for

which we have 23, 176 observations. Table 3.9 provides summary information regarding

the number of URO surgeries, the number of unique primary surgeons, the number and

proportion of inpatient surgeries and the historical durations of surgeries in URO service.

Table 3.9: Characterization of operational data for URO service in the hospital

Service Surgeries Surgeons Inpatient (%) Case Duration (SD)

URO 23,176 49 9,428 (40.7) 153.5 (129.2)

The features collected in the historical data can be classified into the main groups of
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Table 3.10: Demographics of the patient data in URO service

Race, Number of Observations (%)

Service Age (SD) Female (%) White Black Asian Other

URO 63.1 (13.6) 5196 (22.4) 19,544 (84.3) 1,466 (6.3) 799 (3.4) 1,367 (5.9)

patient, surgery team, equipment, operational and temporal data. On the patient side, we

include age, gender, race, BMI, treatment history and comorbidity measures. For example,

Table 3.10 summarizes key demographics of patient data we use as features. Moreover,

we incorporate data on Relative Value Units (RVU), equipment, surgeons, operational

specifications of surgeries, etc. A detailed list of features used in the final predictive model

is given in table 3.11, which is also used in [99] but for a different purpose.

Test of Performance

We compare the results for the URO surgery schedules with number of surgeries varying

from three to six. Specifically, in the test set, the number of cases performed in a day

varies as follows: 754 schedules with three surgeries, 281 with four surgeries, 303 with five

surgeries and 287 with six surgeries. We assume equal penalties for waiting and overtime.

Also, we consider T to be equal to the sum of the actual surgery durations in the schedule.

We start with the SAA framework discussed in section 3.2.4. For schedule associated

with each surgery numbers, we implement SAA by drawing 5000 samples from the surgery

duration distributions that we derive from the L-Norm, L-Norm-PS, LQR and QRF for

all the surgeries in that schedule. Figure 3.5 shows the distribution of waiting , overtime

and overall costs for each of the four models, broken down by the number of surgeries

each schedule has in the test set. Our individualized approach using QRF appears to

outperform the other three models for all four types of schedules, with the outperformance

more significant for the schedules with bigger numbers of surgeries. More concretely, Table
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Table 3.11: Features used for training predictive models

Category Features

Hospital The primary surgeon, experience of the primary surgeon in years,
number of publications of the primary surgeon, surgery room,
number of panels in the surgical case, the sum of all RVU mea-
sures for the case, the mean of all RVU measures for the case,
the maximum of all RVU measures for the case, the minimum
of all RVU measures for the case, number of procedures for the
surgical case, number of robotic procedures, the mean duration
of the last 5 similar cases based on the primary procedure, the
number of times the surgeon had a similar surgery in the 30 days,
the number of times the surgeon had a surgery in the 30 days, the
number of times the surgeon had a similar surgery in the past,
the number of times the surgeon a surgery in the past, whether
or not a particular equipment was needed for the surgery, the
number of required equipment

Patient Comorbidity measures such as obesity, depression, etc., Body
Mass Index (BMI), weight, race, gender, age, whether the patient
is inpatient or outpatient, the number of days spent in the hospi-
tal prior to the surgery, the number of times patient underwent
chemotherapy, the number of times patient underwent radiation
therapy, the number of times patient underwent surgeries

Operational The number of days between the day of surgery and the day
the surgery was scheduled, the number of cases assigned to the
surgeon on the day of surgery, the number of cases assigned to the
surgery room on the day of surgery, the number of cases scheduled
on the day of surgery, the sequence number of the surgery on the
surgeon’s schedule, the sequence number of the surgery in the
surgery room

Temporal The weekday of the surgery, the month of the surgery, the year
of the surgery

3.12 shows our percentage improvements in three different performance metrics (mean,

75th and 95th percentiles) of the overall cost. Across all settings, QRF outperforms other
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Figure 3.5: The Box-plot for waiting, overtime and overall cost for the schedules with
3, 4, 5 and 6 surgeries in the test set based on the SAA method using the L-Norm,
L-Norm-PS, LQR and QRF models

methods in all surgery groups by an overall average of 60.2%, 59.6% and 41.2% in mean,

75th and 95th percentiles respectively.

Table 3.12: Percentage improvement of the overall cost under different performance
metrics between QRF model and the L-Norm, L-Norm-PS, LQR models based on
the Individualized Stochastic Optimization framework

Number of Surgeries

Metric Model 3 4 5 6

Mean L-Norm 60.8 66.8 69.1 75.6
L-Norm-PS 55.4 64.5 67.2 74.0
LQR 53.2 49.6 41.8 44.6

75th percentile L-Norm 58.5 65.1 70.9 76.7
L-Norm-PS 53.6 63.6 70.0 76.6
LQR 47.7 47.2 42.0 43.4

95th percentile L-Norm 51.6 56.7 36.0 49.3
L-Norm-PS 53.3 56.5 39.2 51.7
LQR 35.2 30.2 6.6 28.8
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Table 3.13: Percentage improvement of the overall cost under different performance
metrics between QRF model and the L-Norm, L-Norm-PS, LQR models based on
the Individualized Robust Optimization framework

Number of Surgeries

Metric Model 3 4 5 6

Mean L-Norm 55.7 52.8 59.0 68.9
L-Norm-PS 44.1 45.0 57.5 68.4
LQR 27.4 30.0 23.2 18.5

75th percentile L-Norm 58.4 50.6 58.9 68.0
L-Norm-PS 43.0 42.2 57.3 67.7
LQR 20.1 24.8 17.0 17.1

95th percentile L-Norm 49.6 51.3 46.7 55.3
L-Norm-PS 40.3 32.4 42.8 55.0
LQR 9.6 17.1 3.3 5.5

Next we consider the RO framework discussed in section 3.2.4. For each schedule, we

implement RO using uncertainty sets based on (3.11) derived from L-Norm, L-Norm-PS,

Figure 3.6: The Box-plot for waiting, overtime and overall cost for the schedules with
3, 4, 5 and 6 surgeries in the test set based on the robust optimization framework
using the L-Norm, L-Norm-PS, LQR and QRF models
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Table 3.14: Percentage improvement of the overall cost under different performance
metrics between QRF model and the L-Norm, L-Norm-PS, LQR models based on
the Individualized Distributionally Robust Optimization framework

Number of Surgeries

Metric Model 3 4 5 6

Mean L-Norm 58.8 67.2 67.0 73.6
L-Norm-PS 52.9 65.1 65.9 71.4
LQR 50.3 52.3 40.1 40.4

75th percentile L-Norm 55.4 65.7 67.3 74.0
L-Norm-PS 49.8 65.7 67.4 73.4
LQR 44.2 48.7 41.1 41.2

95th percentile L-Norm 47.1 51.2 51.6 62.7
L-Norm-PS 49.1 48.8 50.9 64.5
LQR 33.6 30.2 28.2 31.0

LQR and QRF. Figure 3.6 depicts the distributions of waiting , overtime and overall costs

for each of the four models grouped by the number of surgeries each schedule has in the

Figure 3.7: The Box-plot for waiting, overtime and overall cost for the schedules
with 3, 4, 5 and 6 surgeries in the test set based on the distributionally robust
optimization framework using the L-Norm, L-Norm-PS, LQR and QRF models
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test set. Our QRF again performs consistently better than the other three models. Table

3.13 indicates the percentage improvement of QRF over the other three methods. Here,

however, LQR is a close competitor, with on average 24.7%, 19.7% and only 8.8% less

effective than QRF in mean, 75th and 95th percentiles of the overall cost respectively.

Finally, we consider the DRO framework in section 3.2.4. We implement DRO with con-

straints dictated by percentiles {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95} of the surgery

duration distributions derived from L-Norm, L-Norm-PS, LQR and QRF. Figure 3.7 once

again shows improvement of QRF over the other three models regarding the distributions

of waiting , overtime and overall costs. In particular, Table 3.14 shows percentage improve-

ments across all settings of 58.7%, 57.8% and 45.7% in mean, 75th and 95th percentiles of

the overall cost respectively.

3.2.6. Conclusion

Surgery scheduling problems involve immense distributional uncertainty. Previous stud-

ies consider capturing the distributional information through aggregate information, and

individualization is limited to only mean response prediction. In this paper, we studied

a framework to individualize distributions of surgery durations by using QRF to gener-

ate conditional predictive distributions. We showed how to incorporate predictions from

QRF into three common approaches in optimization under uncertainty, namely SAA, RO

and DRO. We studied the reformulations and consistent statistical guarantees for each

approach. We demonstrated through MSKCC data how our individualization of surgery

duration distributions outperformed several established approaches without individualiza-

tion or with a less powerful prediction tool.
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Chapter 4.

Sequential Learning Under Probabilistic

Constraints: Feasibility of Digital

Marketing Campaigns

4.1. Introduction

Most of the literature in stochastic online learning focuses on performances measured by

optimality achievement. Common examples include the minimization of cumulative regret

in the multi-arm bandit setting (e.g., [8, 82]), best arm selection (e.g., [7]) and the closely

related ranking and selection (e.g., [23]) in the simulation literature. In many situations,

however, the uncertainty or the stochasticity appears not only in the objective function,

but also the constraints of the problem whose feasibility can be of utmost importance.

The focus of this paper is to design sequential methodologies that maintain probabilistic

feasibility requirements with rigorous statistical guarantees.

Our study is motivated from a rich set of problems where “budgets” or “resources” are
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limited for various operational or commercial reasons, and these constraints are in a sense

“soft”, i.e., the capacities placed on these constraints, while preferred to be satisfied, are

allowed to be violated with a small probability. Such consideration is common among

applications. For example, in online advertisement encountered by our co-authors while

optimizing ad spend for large advertisers, the task involves sequentially picking items (e.g.,

keywords, targets) to maximize revenues, while adhering to a specified marketing budget

for a duration. The marketer in general expects to meet the budget goals. However, if

occasionally the budget is exceeded the campaign is still acceptable as long as the rev-

enue performance is sustained. Other similar settings include clinical trials, where the

costs of competing treatments are substantial and noisy, and over-budget is undesired but

sometimes allowable. Whereas past work in stochastic sequential learning has focused on

rewards (with hard constraints if needed), this paper provides the first study on a class of

problems that not just include the rewards but also stochastic constraints that need to be

satisfied with high probability.

Our framework can be viewed as a sequential problem under so-called probabilistic or

chance constraints [105], which has been widely used in stochastic programming under

limited and uncertain resources (e.g., [84, 119]). A generic representation of a chance

constraint is

P (f(x, ξ) ∈ A) ≥ 1− α (4.1)

where x ∈ Rd is a decision variable, ξ ∈ Ξ is a random variable (or vector) under P

that controls the stochasticity, f : Rd × Ξ → Y is a known function and A ⊂ Y . For

instance, f(x, ξ) ∈ A can represent a set of inequalities so that Y = Rm for some m and

A = {y ∈ Rm : y ≤ 0}. The condition f(x, ξ) is sometimes called the safety condition.

The given parameter α is the tolerance level that represents the allowable probabilistic

violation of the safety condition.
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In the sequential setting, x would denote a sequence of decisions. The safety condition

could include individual requirements on all or some stages. In many applications of

interest, P needs to be learned as complete distributional knowledge on ξ is not available.

Along the vein of conventional online problems that focus on optimality, at each stage we

may observe some components of ξ so that we can update our belief on P .

As our main methodological contribution, we analyze an online strategy that provides

guarantees on (4.1) with a high confidence, under a statistical framework that we shall

describe. On a high level, it means we can guarantee, with our proposed policy, that

P (P (f(x, ξ) ∈ A) ≥ 1− α) ≥ 1− β (4.2)

where the outer probability now refers to the randomness of x induced by the sequential

observations, and 1−β is a confidence level (90% for instance). Our methodology is based

on a combination of two ideas. First is a Bayesian extension of the so-called scenario

generation or constraint sampling [31, 47] approach in approximating chance-constrained

optimization problems. This approach replaces the unknown or difficult chance constraint

with a collection of sampled constraints that come from data or from numerical simulation.

Viewing such an approach in a Bayesian manner allows it to be blended naturally into

popularly used online learning algorithms such as Thompson sampling [1, 114] that also

operates via Bayesian updating. Second, by capitalizing results on scenario generation in

the static setting, we can derive the precise number of samples required at each stage of

the sequential process such that (4.2) holds throughout the horizon. As far as we know,

our formulation and analysis of chance-constraint guarantees in an online setting is new to

the literature.

After presenting our theoretical investigation on feasibility guarantees, we illustrate the

integration of our scheme into a variant of Thompson sampling in an online advertisement
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setting. We then numerically demonstrate how this chance-constrained Thompson sam-

pling performs competitively, in achieving feasibility but also maintaining good objective

values.

4.2. Related Work

The earliest work in chance constraints dated back to [41] and [100]. Exact solution

techniques for such problems are notoriously difficult due to non-convexity, and are only

available in few instances even when P is known; e.g., [81]. Several lines of approxima-

tion methodologies have been proposed. A conventional method is to use so-called safe

convex approximation that replaces the chance constraint with more conservative convex

constraints [17]. [110, 111] used policy trees and confidence interval construction to ob-

tain the so-called (α, ϑ)-solution. Scenario generation [29, 33], which we leverage on in

this work, uses sampled constraints to populate the feasible region. This approach has

several extensions, such as sampling-and-discarding [32] and multi-phase schemes [28, 34,

38], and relates to sample average approximation [89]. Other data-driven methods include

distributionally robust optimization [30, 150] and data-driven robust optimization [19].

Our work focuses on chance-constrained problem in an online fashion, under the broad

umbrella of sequential decision-making. In the later part of this paper, we demonstrate

our proposed strategy in a variant of the stochastic multi-arm bandit problem [8] used

in addressing the well-known exploration-exploitation tradeoff. In budgeted bandits, [54]

consider the presence of random costs and an overall budget, where learning and revenue

accumulation stops when the budget runs out. [144] study Thompson sampling for a

similar setting; in this work we integrate our strategy into Thompson sampling, especially

the one considered in [58] motivated from network revenue management. Other related

work include those in the framework of “bandits with knapsacks” [9, 21, 132] that have
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been applied in pricing and supply chain management ([141]) and healthcare ([138]). The

works closest to our online advertisement example are [133] and [3] that study the problem

of item bidding under a budget, but they do not consider probabilistic violation of the

constraints that we focus on.

4.3. Chance Constrained Online Learning

We consider a sequential problem with horizon T

max
x1,...,xT

h(x1, . . . , xT )

subject to P (ft(x1:t, ξ1:t) ∈ At|Ft−1) ≥ 1− α ∀t ∈ S,
(4.3)

where ξt ∈ Ξt are random variables assumed independent among the steps t, x1, . . . , xT are

the sequential decisions in which xt+1 depends on the past observations of ξ1:t = (ξ1, . . . , ξt)

and past decisions x1:t = (x1, . . . , xt), and S ⊂ {1, . . . , T} is a given set. The function ft

and the set At can depend on the time step t. For convenience, let Ft = {ξ1:t, x1:t} be

the information up to time t. In each probability P in (4.3), the function ft(x1:t, ξ1:t)

can be expressed as ft(x1:(t−1), xt, ξ1:(t−1), ξt) where x1:(t−1) and ξ1:(t−1) belong to the past

information Ft−1.

Consistent with the introduction, α is a tolerance parameter on the violation of the

safety condition. This parameter is assumed constant across t for convenience, but our

analysis can be easily adapted to the case where it varies. Note that S determines how

many chance constraints need to be maintained throughout the horizon. For example,

S = {1, . . . , T} means there is a budget requirement for each step, and S = {T} means

there is only one overall budget requirement across the whole horizon.
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4.3.1. Scenario Generation For Static Problems

We first discuss a well-studied approach to approximate a static version of (4.3). Suppose

T = 1. In this setting we can simplify notation and write the formulation as

max
x

h(x)

subject to P (f(x, ξ) ∈ A) ≥ 1− α
(4.4)

Suppose we can simulate or collect data for ξ to obtain, say, i.i.d. ξ1, . . . , ξN . We consider

replacing the constraint in (4.4) by sampled constraints, so that the optimization program

becomes

max
x

h(x)

subject to f(x, ξn) ∈ A, ∀ n = 1, . . . , N

(4.5)

We call (4.5) a sampled program, which serves as a reasonable approximation to (4.4) when

N is large. However, since ξn’s are randomly generated, the solution obtained from (4.5)

is subject to statistical noise and cannot be guaranteed feasible for (4.4). The following

celebrated result from [29, 33] gives the sample size needed to guarantee feasibility for (4.4)

with a certain confidence by solving (4.5).

Condition 1. An optimization program is said to be in class R if: 1) It is feasible and

the feasible region has a non-empty interior; 2) Its optimal solution exists and is unique.

Theorem 4.1. (Adopted from Theorem 2.4, [33]) Suppose for each ξ, f(x, ξ) ∈ A is a

convex set in x ∈ Rd, and h is concave. Suppose also that any instance of (4.5) belongs to

R. Fix real numbers α, β ∈ [0, 1]. Then for N chosen such that

d−1∑
i=0

(
N

i

)
αi(1− α)N−i ≤ β
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the optimal solution of the sampled stochastic program (4.5) is feasible for (4.4) with prob-

ability no smaller than 1− β.

It is known that this result can be improved, e.g., by using sampling-and-discarding

[32] and multi-stage or iterative schemes [28, 34, 38]. In this paper we stick with the

requirement in Theorem 4.1 to illustrate our proposed strategies; improvements can be

made accordingly by modifying the use of Theorem 4.1 to better results available in the

literature.

4.3.2. Scenario Generation Under Unknown Distribution: A Bayesian

Perspective

The scenario generation approach depicted in Theorem 4.1 requires direct observations on

ξ or the capacity to obtain Monte Carlo samples for ξ. In problems with learning, the

distribution of ξ is not fully known, and Theorem 4.1 does not apply directly. We shall

adopt a Bayesian perspective that naturally integrates to many online algorithms (e.g.,

Thompson sampling). Suppose ξ follows a parametric distribution G|µ with unknown pa-

rameter µ. After specifying a prior distribution for µ and collecting some data historically,

we have a posterior distribution for µ denoted by F . We seek to use Monte Carlo sampling

to conduct an analog of scenario generation so that a posterior credibility guarantee

Pµ(Pξ|µ(f(x, ξ) ∈ A) ≥ 1− α) ≥ 1− β (4.6)

is achieved, where Pµ denotes the posterior probability distribution on µ, and Pξ|µ denotes

the distribution of ξ given a parameter value of µ. In other words, we want the chance

constraint to hold with a posterior credibility level 1 − β. Note that this is a natural

Bayesian analog of the frequentist result in Theorem 4.1. In the setting of Theorem 4.1, P
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is not known but data are available, so that a 1− β confidence is attained. In our current

Bayesian investigation, P is not known but subject to a posterior belief summarized by

the distribution of µ, and we want this posterior credibility to be 1− β.

Directly sampling ξ using any particular value of µ does not sufficiently capture the

posterior uncertainty. To blend the latter into a scenario generation, we can use a two-

level sampling, where in the first level we generate a posterior sample for µ, and in the

second level we generate ξ conditional on µ. This sampling procedure is described in

Algorithm 1.

Algorithm 1 Posterior Constraint Sample Generator (PCSG)

1. Repeat N times:

a) Generate µn ∼ F .

b) Generate ξn ∼ G|µn.

2. Impose the constraints f(x, ξn) ∈ A, n = 1, . . . , N and solve the sampled program

max
x

h(x)

subject to f(x, ξn) ∈ A, ∀ n = 1, . . . , N
(4.7)

In PCSG we encounter two different sources of randomness. First is the statistical noise

from the uncertainty of µ, captured by the posterior credibility level 1 − β. The second

source is the Monte Carlo error, and we denote by 1− δ the confidence level induced from

this error. By choosing a suitable sample size N in terms of α, β, δ, PCSG turns out to

achieve a guarantee below.

Theorem 4.2. Suppose f(x, ξ) ∈ A is a convex set in x ∈ Rd, and h(x) is concave.

Suppose also that any instance of (4.7) belongs to R. Fix real numbers δ, α, β ∈ [0, 1] and

choose
d−1∑
i=0

(
N

i

)
(αβ)i(1− αβ)N−i ≤ δ (4.8)
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Consider a solution x obtained from the sampled program in PCSG. Then,

1. x satisfies (4.6) with a Monte Carlo confidence 1− δ, i.e.,

PMC(Pµ(Pξ|µ(f(x, ξ) ∈ A) ≥ 1− α) ≥ 1− β) ≥ 1− δ (4.9)

where the outermost PMC denotes the probability with respect to the N Monte Carlo

samples.

2. x satisfies

EMC [Pµ(Pξ|µ(f(x, ξ) ∈ A) ≥ 1− α)] ≥ (1− β)(1− δ) (4.10)

where EMC [·] denotes the expectation with respect to the N Monte Carlo samples.

Theorem 4.2 Part 1 stipulates that choosing N in (4.8) achieves chance-constraint feasi-

bility with a Bayesian credibility 1− β, under a Monte Carlo confidence 1− δ. Part 2 will

be useful in generalizing to the multi-stage setting presented next.

4.3.3. Sequential Policies

We now move our analysis to the sequential problem depicted in (4.3). We generalize

PCSG, with the posterior update occurring at every step of the horizon and the sample

size required at each step modified in order to achieve a chance constraint guarantee over

the whole horizon. Let Nt be the sample size used in step t, which depends on α and

also the confidence-level parameters βt and δt. We denote F0 as the prior distribution of

µ and Ft as the posterior distribution of µ at step t. We denote Gt|µ as the distribution

of ξt given µ. Note that µ is a parameter shared among the ξt at different steps so that

information can be learned over time. To distinguish the real data from the Monte Carlo

samples, we use ξ̃1:(t−1) to denote the actual data of ξ coming from steps 1 to t− 1.
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We have the following procedure:

Algorithm 2 Dynamic PCSG

Set F0 as the prior distribution of µ. For t = 1, . . . , T : While t ∈ S, and given Ft and the
realized x1:(t−1) and ξ̃1:(t−1):

1. Repeat Nt times:

a) Generate µn ∼ Ft.

b) Generate ξn ∼ Gt|µn.

2. Impose the constraints

ft(x1:(t−1), xt, ξ̃1:(t−1), ξ
n) ∈ At, ∀ n = 1, . . . , Nt (4.11)

at stage t.

It is understood that in the second step of Dynamic PCSG, the constraints are imposed

together with an appropriate objective function (typically the cost-to-go in formulation

(4.3)) to form a stepwise optimization with decision variable xt. The following result gives

the choice of Nt and the resulting guarantee:

Theorem 4.3. Suppose the stepwise safety conditions are all convex sets, the objective

function at every step is concave, and xt ∈ Rd. Suppose also that any instance of the

optimization resulted from imposing (4.11) belongs to R. Suppose 0 ≤ βt, δt ≤ 1 are

constants such that
d−1∑
i=0

(
Nt

i

)
(αβt)

i(1− αβt)Nt−i ≤ δt (4.12)

and ∑
t∈S

(βt + δt − βtδt) ≤ βλ (4.13)

Then the policy obtained from Dynamic PCSG is feasible for (4.3) under the updated pos-
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terior distribution with probability at least 1− λ, i.e.,

PMC(Pµ1:T (Pξt|µt(ft(xt, ξt) ∈ At|Ft−1) ≥ 1− α, ∀t ∈ S) ≥ 1− β) ≥ 1− λ (4.14)

where Pµ1:T denotes the probability with respect to µ1, . . . , µt, where each µt ∼ Ft, the

posterior distribution of µ at step t, and Pξt|µt denotes the probability with respect to ξt

given a realized parameter of µt.

Theorem 4.3 asserts that the round-specific statistical parameters, namely the posterior

credibility 1−βt and the Monte Carlo confidence level 1−δt, which determine the constraint

sample size, can be chosen to satisfy a local condition (4.12) and a global condition (4.13)

to achieve an overall statistical guarantee.

For convenience we can set βt = δt and both equal to some constant, say γt. This γt can

be set to be stage-independent or dependent. The following subsection shows two choices

of γt.

4.3.4. Two Explicit Strategies

We demonstrate two choices of {Nt} in terms of {γt}. The first choice is a simple one that

requires knowledge of the horizon length T , by setting γt to be a constant. The second

choice uses a decaying γt, consequently an increasing sample size Nt, which does not require

knowledge of T a priori. For the first strategy, we have:

Proposition 4.1. Given a time horizon T , if we let βt = δt = γ for all t ∈ S such that

γ ≤ 1−
√

1− βλ/|S|, then (4.14) holds.

The following describes our second strategy that is stage-dependent such that (4.14)

holds without knowing the horizon T or |S| a priori:
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Proposition 4.2. If we let βt = δt = γt for all t ∈ S such that γt = (1/ζ(t)ρ) ∧ η, where

ρ > 1, 0 < η < 1, and ζ(t) = ]{s ∈ S : s ≤ t} (i.e., ζ(t) is the “counter” of t in S) such

that

2η1−1/ρ +
2

ρ− 1

1

(1/η1/ρ − 1)ρ−1
− η2

η1/ρ + 1
− 1

2ρ− 1

1

(1/η1/ρ + 1)2ρ−1
≤ βλ (4.15)

then (4.14) holds regardless of |S|.

For example, if ρ is set to be 2, then (4.15) becomes 2
√
η + 2

√
η/(1−√η)− η2/(

√
η +

1)− η3/2/(3(1 +
√
η)3) ≤ βλ.

4.4. Integration Into Thompson Sampling

We illustrate the integration of our strategies with Thompson sampling, which also operates

via Bayesian updating, by an example of revenue maximization in online advertising [103].

The advertiser is interested in maximizing the expected revenue across a portfolios of

keywords or biddable ad units while ensuring that the budget constraint is not violated.

When the advertiser selects a bid value for a keyword it results in ad clicks, the volume of

which is stochastic. The distribution of clicks and the associated revenue is not initially

known to the decision-maker and needs to be learned over time. Further, the cost associated

with the choice of a bid is also unknown and hence, there is uncertainty regarding how the

budget will be affected.

To be more concrete, consider a set of K bid values {κ1, ..., κK}, for M items labeled

{π1, ..., πM}, over the campaign horizon T . Bidding value j on item i will induce an average

revenue rij and cost cij respectively. These quantities are assumed to follow some inde-

pendent Poisson distributions with initially unknown parameters (the Poisson assumptions

come from the click count nature). In each period t = 1, . . . , T , the advertiser picks a bid
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value j from every item, observes the outcome, i.e., the realizations of rij, cij, i = 1, . . . ,M .

She gains
∑M

i=1

∑K
j=1 rijxij and consumes

∑M
i=1

∑K
j=1 cijxij from the budget, where xij is

the allocation portion for bid value j of item i (i.e., the fraction of time or the probability

in a randomized scheme that is allocated to this particular bid value and item).

The advertiser’s goal is to maximize the total revenue while maintain a budget constraint

with high probability. In other words, letting rij(t) and cij(t) be the realized revenue and

cost for a bid at time t, and xij(t) be the corresponding allocation variables, she wants

to maximize E[
∑T

t=1

∑M
i=1

∑K
j=1 rij(t)xij(t)]. A typical budget constraint is a bound given

by the remaining budget averaged over the remaining horizon. Specifically, let the overall

budget be B. Denoting B(t − 1) = B −
∑t−1

u=1

∑M
i=1

∑K
j=1 cij(u)xij(u) as the remaining

budget before epoch t ∈ S, the advertiser wants to keep P (
∑t

u=1

∑M
i=1

∑K
j=1 cij(u)xij(u) ≤

B(t−1)/(T−t+1)) ≥ 1−α ∀t ∈ S. In the following, we will concentrate on this particular

budget feasibility requirement.

4.4.1. A Budgeted Algorithm

The setting of this problem resembles a recent study [58] on a network revenue management

problem. They developed a Thompson sampling algorithm to sequentially assign a price

vector to items under resource constraints, where each step involves a knapsack optimiza-

tion problem. Here we present a variant of their algorithm to suit our setting (Algorithm

3). This initial algorithm does not take into account the possibility of constraint violation;

the idea is to later illustrate how our Dynamic PCSG strategy can be integrated.

Denote by Xij(t− 1) the allocation units on bid value j for item i cumulated in the first

t− 1 rounds, and denote by W r
ij(t− 1) and W c

ij(t− 1) the total revenue and cost generated

by assigning bid value j to item i during these periods respectively. In Algorithm 3, the

advertiser samples from the joint posterior distributions of θij, the unknown Poisson rate
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of the revenue, and µij, the rate of the cost, corresponding to bid value j for item i. We

put independent Gamma prior distributions for these parameters and hence the posterior

distributions are also independent. The posterior samples of these parameters are then

used in a linear program to decide the allocation.

Algorithm 3 Budgeted Thompson Sampling for deterministically constrained problems
adopted from [58]

Given a total budget B(0) = B. For t = 1, ..., T , do the following:

1: For each bid value j and each item i, sample θij from Gamma(W r
ij(t− 1) + 1, Xij(t− 1) + 1)

and µij from Gamma(W c
ij(t− 1) + 1, Xij(t− 1) + 1).

2: Solve the following linear program:

max
x

K∑
j=1

M∑
i=1

θijxij

subject to
K∑
j=1

M∑
i=1

µijxij ≤
B(t− 1)

T − t+ 1

K∑
j=1

xij ≤ 1, ∀ i = 1, . . . ,M

xij ≥ 0, ∀ i = 1, . . . ,M, j = 1, . . . ,K

to obtain (x∗ij(t))i=1,...,M,j=1,...,K .
3: The revenue, rij(t), and the cost, cij(t), generated by assigning bid value j on item i are

revealed. We update Xij(t) = Xij(t− 1) + x∗ij(t), W
r
ij(t) =Wij(t− 1) + rij(t)x

∗
ij(t), W

c
ij(t) =

W c
ij(t− 1) + cij(t)x

∗
ij(t) and B(t) = B(t− 1)−

∑K
j=1

∑M
i=1 cij(t)x

∗
ij(t).

4: If B(t) ≤ 0, the algorithm terminates.

4.4.2. Chance Constrained Budgeted Thompson Sampling

We want to ensure P (
∑t

u=1

∑M
i=1

∑K
j=1 cij(u)xij(u) ≤ B(t− 1)/(T − t+ 1)) ≥ 1−α ∀t ∈ S

holds with posterior credibility 1 − λ. To achieve this, we integrate our Dynamic PCSG

into Step 2 of Algorithm 3 by restructuring the involved optimization program. Algorithm

4 shows Dynamic PCSG in this particular setting.

The output of this procedure is a set of constraints, which will be used in the linear

97



Algorithm 4 Dynamic PCSG for the Bidding Problem

1. Set Fij(0), i = 1, . . . ,M, j = 1, . . . , K as the prior distribution of µij. For t = 1, . . . , T :
Given B(t− 1) and Fij(t− 1), the posterior distribution of µij given Ft−1,

a) Repeat Nt times:

i. Generate µnij ∼ Fij(t − 1) for each item i = 1, . . . ,M and bid value j =
1, . . . , K.

ii. Generate ξnij ∼ Poisson(µnij) for each item i = 1, . . . ,m and bid value
j = 1, . . . , K.

b) Form the constraints

K∑
j=1

M∑
i=1

ξnijxij ≤
B(t− 1)

T − t+ 1
, ∀ n = 1, . . . , Nt

program of the budgeted Thompson sampling. Algorithm 5 shows how Dynamic PCSG

can be integrated into Algorithm 3. The following is an immediate consequence of Theorem

4.3:

Corollary 4.4. Suppose that any instance of the sampled program in (4.16) belongs to R.

Suppose 0 ≤ βt, δt ≤ 1 are chosen to satisfy

KM−1∑
i=0

(
Nt

i

)
(αβt)

i(1− αβt)Nt−i ≤ δt

and ∑
t∈S

(βt + δt − βtδt) ≤ βλ

Consider a modification of Algorithm 5 such that at any point of time, if the total budget

B is fully depicted, we refill the shortfall and add extra budget B (so that the total remaining

budget in the next step returns to the full level B). Then the sequence of decisions obtained
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Algorithm 5 Chance-constrained Thompson Sampling (CCTS)

Initialize α, βt, δt ∈ [0, 1] satisfying (4.13). Given a total budget B(0) = B. For t = 1, ..., T , do
the following:

1: For each bid value j and each item i, sample θij from Gamma(W r
ij(t− 1) + 1, Xij(t− 1) + 1)

and µij from Gamma(W c
ij(t− 1) + 1, Xij(t− 1) + 1).

2: Run Dynamic PCSG using Nt samples to get the constraints

K∑
j=1

M∑
i=1

ξnijxij ≤
B(t− 1)

T − t+ 1
, ∀ n = 1, . . . , Nt

3: Solve the following linear program:

max
x

K∑
j=1

M∑
i=1

θijxij

subject to

K∑
j=1

M∑
i=1

ξnijxij ≤
B(t− 1)

T − t+ 1
, ∀ n = 1, . . . , Nt

K∑
j=1

xij ≤ 1, ∀ i = 1, . . . ,M

xij ≥ 0, ∀ i = 1, . . . ,M, j = 1, . . . ,K

(4.16)

to obtain (x∗ij(t))i=1,...,M,j=1,...,K .
4: The revenue, rij(t), and the cost, cij(t), generated by assigning bid value j on item i are

revealed. We update Xij(t) = Xij(t− 1) + x∗ij(t), W
r
ij(t) =Wij(t− 1) + rij(t)x

∗
ij(t), W

c
ij(t) =

W c
ij(t− 1) + cij(t)x

∗
ij(t) and B(t) = B(t− 1)−

∑K
j=1

∑M
i=1 cij(t)x

∗
ij(t).

5: If B(t) ≤ 0, the algorithm terminates.

will satisfy

Pµt

(
Pct|µt

(
t∑

u=1

M∑
i=1

K∑
j=1

cij(u)xij(u) ≤ B(t− 1)

T − t+ 1

)
≥ 1− α ∀t ∈ S

)
≥ 1− β

with Monte Carlo confidence level at least 1−λ, where Pµt denotes the probability with re-

spect to all µij under the posterior distributions Fij(t−1), and Pct|µt denotes the probability

with respect to all cij given the realizations of µij’s.

We mention that the “modification of Algorithm 5” introduced in Corollary 4.4 is only
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a technicality that takes care of the unusual situation when the entire available budget

is prematurely depleted. Since we divide the remaining budget by the remaining horizon

(a common practice to set per-round budgets) to form our constraint at each step, the

scenario of total budget depletion before the last step rarely happens.

4.5. Numerical Results

We examine the empirical performance of our proposed strategy on a synthetic dataset

with two items and three bid values (M = 2, K = 3) over the time horizon T = 100. The

cost and revenue of each item-bid value pair follow Poisson distributions with parameters

taken uniformly from an interval that is calibrated from a real data set owned by Adobe

Systems, Inc. We test with five different values of the overall budget B = (a
∑M

i=1 λ̄i)× T

where a ∈ [0.5, 0.75, 1, 1.25, 1.5] and λ̄i is the average cost of item i over the K bid values.

This choice of B roughly matches the scale of the total cost over the time horizon. The per-

round budget is defined as the remainder of the overall budget divided by the remaining

number of rounds.

To test our chance-constrained Thompson sampling (CCTS) in Algorithm 5, we use

three different settings for S, i.e. S1 = {25, 50, 75}, S2 = {20, 40, 60, 80, 100} and S3 =

{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. We also enforce α = 0.1, β = λ = 0.3, and βt =

δt = γ where γ is taken as the upper bound depicted in Proposition 4.1. We conduct 500

simulation runs. For each run, we estimate the proportion of violation of the decision using

100 inner repetitions of ξt, at each step t ∈ S. Figure 4.1 depicts the box-plots showing

the distribution of the proportion of violation. For all the tested budget levels and choices

of S, CCTS was able to maintain the proportion of budget violation well below the 10%

tolerance at the relevant steps. This implies, moreover, that the overall violation (i.e., at

least one violation at a step in S) is also below 10%.
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Figure 4.1: Estimated proportion of violation at each step in S, for S = S1,S2,S3 and
five different budget levels, using 500 simulation runs under CCTS.

We also test the performance of CCTS against the following algorithms: 1) a hypothet-

ical algorithm that assumes the distribution of the costs and revenues are all known and

draws Monte Carlo samples from it, otherwise the same as CCTS; 2) the deterministically

constrained Thompson sampling (DCTS) in Algorithm 3; 3) the algorithm in [9] that uses

reward-to-cost ratios; and 4) [21] that uses an initial learning phase (in our experiment we

set the learning phase to 50 steps). Figure 4.2 shows the distributions of the proportion of

violations at t ∈ S2 based on 500 simulation runs, for the five described budget levels. We

see that only CCTS and the hypothetical algorithm maintains the proportion of violation

to well below 10%, whereas the other three algorithms fluctuate around 20-40%, as they

do not account for the chance constraint on the per-round budget. On the other hand,

Figure 4.3 shows the average cumulative revenue achieved through the horizon (the bar
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Figure 4.2: Estimated proportion of violation at each step in S2, with 500 simulation
runs for different algorithms

depicts one standard deviation around the average). DCTS appears the best in terms

of cumulative rewards, and [9] and [21] perform similarly. CCTS achieves less rewards

(around 15%), which can be viewed as the price of maintaining the chance constraint. The

hypothetical algorithm performs better than CCTS, not surprisingly given the full distri-

butional knowledge. This behavior persists for S1 and S3 as well as for several priors we

have tested (similar to plots Figures 4.2 and 4.3).

The above experiments all used the budget violations calculated using the true under-

lying distribution of the cost. In Table 4.1, we compare with the calculation based on the

evolving posterior distributions, in terms of the average of all the proportions of violations

for t ∈ S1,S2 and S3 at the five described budget levels. The average proportion of vio-

lation based on the posterior distribution is consistently lower than the one based on the

true distribution for all budget levels and S. This is expected since our chance constraint

is maintained under the posterior distribution (as Theorem 4.3 states). However, the pro-

portion of violations is maintained below 10% under the true distribution, thanks to the
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Figure 4.3: Average cumulative revenue over T = 100 achieved by different algorithms
under S2

relatively conservative performance of our approach in abiding with the chance constraint.

Table 4.1: Comparison of the average proportions of violations based on the true
distribution and the updated posterior distributions over 500 simulation runs

Budget S1 S2 S3

B1
True Dist. 0.018 0.019 0.018
Posterior Dist. 0.011 0.012 0.009

B2
True Dist. 0.016 0.015 0.014
Posterior Dist. 0.01 0.01 0.008

B3
True Dist. 0.014 0.013 0.013
Posterior Dist. 0.008 0.009 0.007

B4
True Dist. 0.013 0.011 0.01
Posterior Dist. 0.009 0.007 0.005

B5
True Dist. 0.008 0.008 0.007
Posterior Dist. 0.006 0.005 0.004

In addition to the number of violated budget constraints, we investigated the amount

of budget violation at t ∈ S. Figure 4.4 depicts the distributions of the total amounts
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Figure 4.4: Total Amount of budget violations occurred over S1,S2 and S3 for different
algorithms

of budget violation in S1,S2 and S3 for the five budget levels over 500 simulation runs.

Similar to the proportion of budget constraint violations, the average amounts of violation

for CCTS and DTS tend to be much lower than the other three algorithms, with at most

25% of those of the other three algorithms in the same setting. This suggests a strong

dependence between the proportion and the amount of violation which substantiates the

use of CCTS in maintaining over-spending even in the monetary scale.

4.6. Conclusion

We have studied sequential learning subject to constraints that need to be satisfied with

high probability. We investigated a methodology to obtain posterior statistical guarantees

for the feasibility of these constraints, by generalizing the constraint sampling approach

in chance-constraint programming to a two-level Monte Carlo procedure and analyzing

the sample size needed in achieving overall feasibility through the learning horizon. We
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further incorporated our scheme into Thompson sampling using an online advertisement

example. As far as we know, this work represents the first methodological investigation of

“soft” stochastic constraints in sequential learning. In subsequent work, we will investigate

the tightening of the requirements in sampled constraints, via for instance analyzing the

correlation among decisions at different stages, and will also study the scalability of this

approach to higher-dimensional problems.
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Chapter 5.

Conclusions and Future Research

In this dissertation we laid out several frameworks for integrated predictive modeling and

optimal decision making processes in the context of operations management. In the main

three chapters we studied different designs for reliable abstraction of the overall available

data into personalized operational decision making process. From separated estimation

and optimization toward individualized optimization under uncertainty and sequential de-

cision making under probabilistic constraints we were able to establish practical tools with

theoretical and empirical performance guarantees.

In the second chapter, we introduced a new perspective to address the admission policy

for a network of critical care units. We took advantage of one of the early measures of

patient mortality risk to show how patient risk metrics can be used to rationalize and

optimize the admission of patients given the limited capacity of higher level of care in

a hospital. We proposed a methodology that generates optimal admission policies for

different ICUs and IMCs in a hospital. Considering the significant cost of critical care

units, our model can guide hospital admission policies towards a data-informed solution

that guarantees a higher service level as well as higher accessibility. In fact, the numerical

results based on real data from St. Joseph Mercy Hospital of Ann Arbor proved significant
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improvement in the overall hospital’s service rate and better patient placement. Our

proposed methodology is easily generalizable and can be adapted by any hospital with

a real-time health risk metric and a suitable patient records database. We expect this

approach to gain acceptance as hospitals deploy methods to assess patients’ risks. Our

model was shown to diminish wait times to admit high-risk patients to higher level of

care by a more appropriate initial admission decision upon patient’s arrival. Hence, it

can potentially decrease mortalities caused by delayed access or non-access to critical care

units.

For future work, one direction is to consider dynamically updated patient mortality/health

risk assessments, provided such longitudinal data are available. Dynamic risk measures can

provide significant information regarding the patient recovery process that is valuable for

improved admission decisions. Such data supports the medical decision making processes

by prescribing meaningful interventions throughout the patient trajectory in different layers

of the care delivery system. Another interesting direction is to link the admission decisions

to the readmission rate of the hospital. One can design a similar methodology in which

the readmission risk of the patient is the main contributor to the admission decision. In

such a case, post-discharge interventions can also be tailored to the care delivery planning

network so that a more comprehensive system design is achievable.

In the third chapter of this dissertation, we developed comprehensive individualized sta-

tistical models to predict surgical case duration, in which we considered multiple data

sources, categories and interactions. These include information about patients, surgeons,

and operational data. Advanced predictive modeling, including Natural Language Process-

ing, was applied to gain insights from both structured and unstructured data. Utilizing a

test set for validation of our proposed models at Memorial Sloan Kettering Cancer Center,

we demonstrated superior predictive ability. The inclusion of textual data contributed to a
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significant reduction in average estimation error. Our proposed statistical models are capa-

ble of generating reliable prediction intervals, serving as a new source of information that

facilitates improved management of operating room resources, scheduling, and sequencing

of surgeries. Finally, using the developed framework to achieve improved, more accurate

prediction of case duration, we demonstrated generalizability across all surgical services at

the institution.

Motivated by the initial predictive study of the surgical case duration, in the second

part of the third chapter, we studied the fundamental appointment scheduling problem

under job duration uncertainty in a prescriptive data-informed framework. Such prob-

lems are of particular interest in healthcare applications, e.g. surgery scheduling, where

considerable amount of patient, staff and operational data is readily available prior to

the surgery. Borrowing ideas from machine learning theory, we developed individualized

modeling frameworks for the stochastic, robust and distributionally robust optimization

settings and we demonstrated the statistical consistency of our proposed methodologies

regarding the optimality guarantees. The implementation of our proposed individualized

models on real data from MSKCC has shown impressive reduction in waiting and overtime

costs compared to the traditional scheduling models.

Considering the individualization framework, there are many promising research paths

one can investigate. The boost of data, specially in service and manufacturing sectors,

has paved the way for further theoretical and empirical studies to incorporate machine

learning and statistical tools in operations management. One future perspective can be

related to a more in-depth analysis of ensemble learning algorithms. In Chapter 3, we

elaborated the power of bagging methods and their flexibility in integration with optimal

decision making. However, inferring the statistical characteristics (variance, confidence

intervals, etc.) of ensemble learning models such as random forests is a challenging task
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and their application in simulation-based modeling can be tricky. In a recent paper, we

considered simulation-based estimation where the inputs are calibrated from predictive

models generated by random forests [97]. We investigated the estimation of the output

variance contributed from the noises in the input prediction, which can be used to con-

struct output confidence intervals. In particular, we studied the integration of simulation

runs with infinitesimal jackknife estimator that can reduce the computational burden from

double layers of bootstrapping. Nevertheless, the integration of such inferential methods

and optimal decision making is yet to be investigated.

Finally in the fourth chapter, we focused on sequential learning subject to constraints

that need to be satisfied with high probability. We investigated a methodology to obtain

posterior statistical guarantees for the feasibility of these constraints, by generalizing the

constraint sampling approach in chance-constraint programming to a two-level Monte Carlo

procedure and analyzing the sample size needed in achieving overall feasibility through

the learning horizon. We further incorporated our scheme into Thompson sampling in the

context of digital marketing campaigns. To the best of our knowledge, this work represents

the first methodological investigation of “soft” stochastic constraints in sequential learning.

In subsequent work, based on our sequential learning under probabilistic constraints

platform, we aim to investigate the tightening of the requirements in sampled constraints,

via analyzing the correlation among decisions at different stages. We also plan to study

the scalability of this approach to higher-dimensional problems. The novel framework

presented in Chapter 4 provides enormous opportunity for further explorations in this area.

For instance, once can envision a new rendition of the problem by introducing a penalized

objective function that discourages over-spending in a sequential fashion. This may lead

to concrete analytical results on bounding the overall expected amount of over-spending

throughout the horizon which naturally complements our analysis on bounding the number
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of violated rounds. Additionally, the integration of ideas discussed in Chapter 3 and 4

can also lead to promising findings. Incorporating the concept of quantiles and quantile

regression, one can design risk-averse sequential decision making models by investigating

the tail of revenue/cost distribution. These models are particularly desirable for portfolio

optimization and medical decision making where the decision maker has to account for

performance uncertainty in real time.

The results presented in this dissertation are a direct outcome of close engagement with

several medical collaborators from cutting-edge healthcare organizations (i.e., University

of Michigan Health System, St. Joseph Mercy Hospital and the Memorial Sloan Kettering

Cancer Center) and our industry collaborators form Adobe Systems, Inc. These collabora-

tions enabled us to identify interesting and challenging real-world problems, obtain relevant

datasets, and ensure practical significance. The ideas and methods proposed in this disser-

tation, through comprehensive inclusion of data and elevated personalization, help reduce

the cost of operations by establishing frameworks to achieve higher accessibility and service

level, robust and efficient performance under uncertainty and reliable sequential decision

making.
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Appendix A.

Supplements to Chapter 2

A.1. Notations and MIP Models

Variables:

θkudi binary variable that is equal to 1 if we allow patients of class k and risk group i

to be admitted to unit u on day d, and equal to 0 otherwise (decision variable).

Θ refers to the matrix [θkudi].

µdu mean census in unit u on day d, given Θ.

vdu variance of the census in unit u on day d, given Θ.
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Parameters:

Cdu capacity of unit u on day d.

F̄dki(a) probability that there are more than a arrivals of class k and risk group i on

day d.

λkdi mean arrival rate of patients of class k and risk group i on day d.

βk
udi maximum allowed number of admissions for patients of a certain class with a

certain risk level to each unit on each day.

P u′

dkui(r) probability that a patient of class k and risk group i who arrived on day d is

in unit u r days after admission, given that they were initially admitted to

unit u′. By convention, P u′

dkui(r) = 0 if r < 0.

pj probability that demand falls in the jth demand interval.

Ri expected risk score for a patient in risk group i.

σ̂du observed standard deviation of the census in unit u on day d.

zα the coefficient associated with service level α.

Sets:

D, I set of days of the week and set of risk groups, respectively.

M set of ICU-mandatory patients.

M′ set of IMC-mandatory patients.

K set of patient classes. In this context, a patient’s class is determined by her

treatment needs and diagnosis. We will use patient class to determine which

units a patient may be admitted to.

U set of units / wards.

U ICU set of ICUs (U ICU ⊂ U).

U IMC set of IMCs (U IMC ⊂ U).

The mathematical models are given below.

112



MIP model

max
θ

∑
d∈D

∑
k∈K

∑
i∈I\{M,M′}

∑
u∈U\{GMB}

θkudiRi (A.1)

s.t. Cdu − µdu ≥ 0 ∀ d ∈ D, u ∈ U

(A.2)

z2
αvdu ≤ C2

du + µ2
du − 2Cduµdu ∀ d ∈ D, u ∈ U

(A.3)

µdu =
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

P u′

d′kui(d− d′ + 7n)

.F̄d′ki(a)θku′d′i ∀ d ∈ D, u ∈ U

(A.4)

µ2
du =

∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

{P u′

d′kui(d− d′ + 7n)F̄d′ki(a)}2θku′d′i

+
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∑
i′∈I
i′ 6=i

∑
d′′∈D
d′′ 6=d′

∑
u′′∈U
u′′ 6=u′

∑
k′∈K
k′ 6=k

θku′d′iθ
k′

u′′d′′i′ ∀ d ∈ D, u ∈ U

(A.5)

vdu =
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

{P u′

d′kui(d− d′ + 7n)F̄d′ki(a)

− [P u′

d′kui(d− d′ + 7n)F̄d′ki(a)]2}θku′d′i ∀ d ∈ D, u ∈ U

(A.6)
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∑
u∈U

θkudi = 1 ∀ d ∈ D, i ∈ I, k ∈ K (A.7)

∑
u∈UICU

θkudi = 1 ∀ d ∈ D, i ∈M, k ∈ K (A.8)

∑
u∈UIMC

θkudi = 1 ∀ d ∈ D, i ∈M′, k ∈ K (A.9)

ωkk′

u′u′′d′d′′ii′ ≤ θku′d′i ∀ d′, d” ∈ D, i, i′ ∈ I, u′, u” ∈ U , k, k′ ∈ K (A.10)

ωkk′

u′u′′d′d′′ii′ ≤ θk
′

u′′d′′i′ ∀ d′, d” ∈ D, i, i′ ∈ I, u′, u” ∈ U , k, k′ ∈ K (A.11)

ωkk′

u′u′′d′d′′ii′ ≥ θku′d′i + θk
′

u′′d′′i′ − 1 ∀ d′, d” ∈ D, i, i′ ∈ I, u′, u” ∈ U , k, k′ ∈ K (A.12)

λkdiθ
k
udi ≤ βk

udi ∀ d ∈ D, i ∈ I, u ∈ U , k ∈ K (A.13)

θkudi ≤ θkud(i+1) ∀ d ∈ D, i ∈ I, u ∈ U ICU (A.14)

θku′di ≤ θkud(i+1) ∀ d ∈ D, i ∈ I, u′ ∈ U IMC , u ∈ U ICU (A.15)

θku′di ≤ θkud(i+1) ∀ d ∈ D, i ∈ I, u′ ∈ UGMB, u ∈ U IMC (A.16)

µdu,vdu ≥ 0 and θkudi binary ∀ d ∈ D, i ∈ I, u ∈ U (A.17)
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MIP model with the Newton Approximation

max
θ

∑
d∈D

∑
k∈K

∑
i∈I\{M,M′}

∑
u∈U\{GMB}

θkudiRi (A.18)

s.t. µdu +
zα
2

(
vdu

σ̂du
+ σ̂du

)
≤ Cdu ∀ d ∈ D, u ∈ U (A.19)

µdu =
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

P u′

d′kui(d− d′ + 7n)

.F̄d′ki(a)θku′d′i ∀ d ∈ D, u ∈ U (A.20)

vdu =
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

{P u′

d′kui(d− d′ + 7n)F̄d′ki(a)

− [P u′

d′kui(d− d′ + 7n)F̄d′ki(a)]2}θku′d′i ∀ d ∈ D, u ∈ U (A.21)

∑
u∈U

θkudi = 1 ∀ d ∈ D, i ∈ I, k ∈ K (A.22)

∑
u∈UICU

θkudi = 1 ∀ d ∈ D, i ∈M, k ∈ K (A.23)

∑
u∈UIMC

θkudi = 1 ∀ d ∈ D, i ∈M′, k ∈ K (A.24)

λkdiθ
k
udi ≤ βk

udi ∀ d ∈ D, i ∈ I, u ∈ U , k ∈ K (A.25)

θkudi ≤ θkud(i+1) ∀ d ∈ D, u ∈ U ICU (A.26)

θku′di ≤ θkud(i+1) ∀ d ∈ D, u′ ∈ U IMC , u ∈ U ICU (A.27)

θku′di ≤ θkud(i+1) ∀ d ∈ D, u′ ∈ UGMB, u ∈ U IMC (A.28)

θkudi binary ∀ d ∈ D, i ∈ I, u ∈ U (A.29)

µdu,vdu ≥ 0 ∀ d ∈ D, u ∈ U (A.30)
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A.2. Proof of Theorems

Poof of Theorem 2.1 Let Lau
′

ski(r) be the independent and identically distributed (i.i.d.)

stochastic location function of the ath arrival of class k and risk group i on day s. The

u′ superscript denotes that this arrival was initially admitted to unit u′. Lau
′

ski(r) =

(lau
′1

ski (r), lau
′2

ski (r), . . . , lau
′N

ski (r))T , where lau
′u

ski (r) equals 1 if the patient is in unit u r days

after admission and equals 0 otherwise, with
∑N

u=1 l
au′u
ski (r) ≤ 1, where N is the number of

units. By convention, lau
′u

ski (r) = 0 if r < 0. Further, let Aiks be the stochastic number of

patients of class k and risk group i who arrive on day s. Finally, let Bdu(t) be the stochastic

census function of unit u on day d in week t, and let eu be a row vector of zeros with a 1

in the uth element such that

Bdu(t) =
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

t∑
n′=0

Ai
k,d′+7n′∑
a=1

euL
au′

d′+7n′,k,i(d− d′ + 7(t− n′))θku′d′i

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

t∑
n=0

Ai
k,d′+7(t−n)∑
a=1

euL
au′

d′+7(t−n),k,i(d− d′ + 7n)θku′d′i.

In the first equality, we establish our stochastic census function. To do this we look at

all previously admitted patients (from all units) and see if they are currently in unit u. We

add up all such patients to get the census of unit u on day d of week t. The second equality

above involves a simple change of variable, from n′ to n = t − n′. This will become very

useful when calculating µdu and vdu. The derivation of the mean census is given below.

For brevity we consider r = d− d′ + 7n.
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µdu = lim
t→∞

E [Bdu(t)] (A.31)

= lim
t→∞

E

∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

t∑
n=0

Ai
k,d′+7(t−n)∑
a=1

euL
au′

d′+7(t−n),k,i(r)θ
k
u′d′i

 (A.32)

= E

∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

Ai
k,d′+7(t−n)∑
a=1

euL
au′

d′+7(t−n),k,i(r)θ
k
u′d′i

 (A.33)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

E

A
i
k,d′+7(t−n)∑
a=1

euL
au′

d′+7(t−n),k,i(r)θ
k
u′d′i

 (A.34)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

E

[
∞∑
a=1

euL
au′

d′+7(t−n),k,i(r)1{Aik,d′+7(t−n) ≥ a}θku′d′i

]
(A.35)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=1

E
[
euL

au′

d′+7(t−n),k,i(r)1{Aik,d′+7(t−n) ≥ a}θku′d′i
]

(A.36)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

E
[
euL

au′

d′+7(t−n),k,i(r)1{Aik,d′+7(t−n) > a}θku′d′i
]

(A.37)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

P u′

d′kui(r)F̄d′ki(a)θku′d′i (A.38)

Both euL
au′

ski(r) and θkudi can only take values of 0 or 1, meaning
∑Aiks

a=1 euL
au′

ski(r)θ
k
udi ≤

Aiks <∞. We know that Aiks <∞ as there cannot be an infinite number of arrivals in one

day. Thus (A.34) holds.

For (A.35), we simply replace a finite sum with an infinite sum that is equivalent via use

of an indicator function, where 1{x} = 1 if x is true and 1{x} = 0 otherwise.

As 1{Aiks ≥ a} is binary, euL
au′

ski(r)1{Aiks ≥ a}θkudi < ∞, and (A.36) holds. For (A.37),

we change the summation over a in order to motivate the use of the tail function of the

cumulative distribution. All terms Lauski(r) and La
′u′

s′k′i′(r
′) are independent of each other
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provided that (a, s, k, i) 6= (a′, s′, k′, i′). This is true because each Lauski(r) term represents

the care pathway of an individual patient, and each patient’s care pathway is independent of

all others. Also, patient care pathways and the number of arrivals in a day are independent,

and these are both independent of whether we accept a given class of patient on a given

day. Thus, euL
au′

ski(r), 1{Aiks ≥ a}, and θkudi are mutually independent, and we can treat

the expectation of their product as the product of their expectations. Also, P u′

dkui(r) and

Fdkui(a) are identical between weeks, only depending on the day of the week d. Recall that

by convention, P u′

dkui(r) = 0 if r < 0. Thus, (A.38) holds.

Proof of Theorem 2.2 The derivation of the variance of the census is given below.

vdu = lim
t→∞

var (Bdu(t)) (A.39)

= lim
t→∞

var

∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

t∑
n=0

Ai
k,d′+7(t−n)∑
a=1

euL
au′

d′+7(t−n),k,i(r)θ
k
u′d′i

 (A.40)

= var

∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

Ai
k,d′+7(t−n)∑
a=1

euL
au′

d′+7(t−n),k,i(r)θ
k
u′d′i

 (A.41)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

var

Ai
k,d′+7(t−n)∑
a=1

euL
au′

d′+7(t−n),k,i(r)θ
k
u′d′i

 (A.42)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

var

(
∞∑
a=1

euL
au′

d′+7(t−n),k,i(r)1{Aik,d′+7(t−n) ≥ a}θku′d′i

)
(A.43)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=1

var
(
euL

au′

d′+7(t−n),k,i(r)1{Aik,d′+7(t−n) ≥ a}θku′d′i
)

(A.44)
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=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=1

{
E

[(
euL

au′

d′+7(t−n),k,i(r)1{Aik,d′+7(t−n) ≥ a}θku′d′i
)2
]

− E
[
euL

au′

d′+7(t−n),k,i(r)1{Aik,d′+7(t−n) ≥ a}θku′d′i
]2
}

(A.45)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

{
E

[(
euL

au′

d′+7(t−n),k,i(r)1{Aik,d′+7(t−n) > a}θku′d′i
)2
]

− E
[
euL

au′

d′+7(t−n),k,i(r)1{Aik,d′+7(t−n) > a}θku′d′i
]2
}

(A.46)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

{
P u′

d′kui(r)F̄d′ki(a)θku′d′i

[
P u′

d′kui(r)F̄d′ki(a)θku′d′i

]2
}

(A.47)

=
∑
i∈I

∑
d′∈D

∑
u′∈U

∑
k∈K

∞∑
n=0

∞∑
a=0

{
P u′

d′kui(r)F̄d′ki(a)
[
P u′

d′kui(r)F̄d′ki(a)
]2
}
θku′d′i (A.48)

As previously discussed, each patient’s care pathway is independent of other patient care

pathways. Also, the number of arrivals on any given day is independent of the number of

arrivals on every other day. Thus, each
∑Aiks

a=1 euL
au′

ski(r)θ
k
udi term is independent of all other

similar terms, and (A.42) holds. Similar to the derivation of µdu, we replace the finite sum

with an infinite sum and an indicator function to get (A.43). Each euL
au′

ski(r)1{Aiks ≥ a}θkudi

term is independent of all other similar terms, and (A.44) holds. To get (A.45), we simply

use the definition of variance. Similarly to the derivation of µdu, we alter the summation

over a in order to use the tail distribution, giving (A.46). As each euL
au′

ski(r)1{Aiks ≥ a}θkudi

term can only take a value of 0 or 1,

E

[(
euL

au′

ski(r)1{Aiks ≥ a}θkudi
)2
]

= E
[
euL

au′

ski(r)1{Aiks ≥ a}θkudi
]
.

Combining this with a calculation similar to that used in our derivation of µdu, we get

(A.47). We note that θkudi is binary, which implies that (θkudi)
2 = θkudi. Leveraging this

realization, we get (A.48).
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Appendix B.

Supplements to Chapter 3

B.1. Proof of Theorem 3.2

Proof. By Conditions 1-5 in Appendix B.6, we invoke Theorem 3.1 so that

sup
z∈R
|F̂ (z|ξi)− F (z|ξi)|

p→ 0 as N →∞,

for each i. Consequently,

sup
z1,...,zn∈R

∣∣∣∣∣
n∏
i=1

F̂ (zi|ξi)−
n∏
i=1

F (zi|ξi)

∣∣∣∣∣ p→ 0 as N →∞ (B.1)
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since

∣∣∣∣∣
n∏
i=1

F̂ (zi|ξi)−
n∏
i=1

F (zi|ξi)

∣∣∣∣∣
≤

∣∣∣∣∣
n∏
i=1

F̂ (zi|ξi)− F (z1|ξ1)
n∏
i=2

F̂ (zi|ξi)

∣∣∣∣∣+∣∣∣∣∣F (z1|ξ1)
n∏
i=2

F̂ (zi|ξi)− F (z1|ξ1)F (z2|ξ2)
n∏
i=3

F̂ (zi|ξi)

∣∣∣∣∣+

· · ·+

∣∣∣∣∣
n−1∏
i=1

F (zi|ξi)F̂ (zn|ξn)−
n∏
i=1

F (zi|ξi)

∣∣∣∣∣
≤

n∑
i=1

|F̂ (zi|ξi)− F (zi|ξi)|
p→ 0

by Slutsky’s theorem in the last step. With the assumption that zi is bounded and X is

compact, we can verify that the max-plus system function f has bounded total variation

uniformly over X, i.e., supX∈X ‖f(x, ·)‖TV ≤ C < ∞ where ‖ · ‖TV is the total variation

norm. Then

sup
X∈X
|Ê[f(X,Z)|ξ1, . . . , ξn]− E[f(X,Z)|ξ1, . . . , ξn]|

= sup
X∈X

∣∣∣∣∣
∫
f(X,Z)d

(
n∏
i=1

F̂ (zi|ξi)−
n∏
i=1

F (zi|ξi)

)∣∣∣∣∣
≤ sup

X∈X
‖f(X, ·)‖TV sup

z1,...,zn∈R

∣∣∣∣∣
n∏
i=1

F̂ (zi|ξi)−
n∏
i=1

F (zi|ξi)

∣∣∣∣∣
≤ C sup

z1,...,zn∈R

∣∣∣∣∣
n∏
i=1

F̂ (zi|ξi)−
n∏
i=1

F (zi|ξi)

∣∣∣∣∣
p→ 0 (B.2)

as N →∞.

Next we argue that {f(X, ·) : X ∈ X} is Glivenko-Cantelli (GC). In particular, we
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express f(X,Z) as
∑n

i=1 max{0,
∑i

j=1 zj −
∑i

j=1 xj}. Note that the class of functions

{
∑i

j=1 zj −
∑i

j=1 xj : x ∈ X} with zj’s all bounded is GC, by [137] Theorem 3. Since

max{0, ·} and the addition operation are continuous, we have f(X,Z) being GC. Thus,

letting Ẽ[·|ξ1, . . . , ξn] be the objective of the SAA problem (3.9), we have

sup
X∈X
|Ẽ[f(X,Z)|ξ1, . . . , ξn]− Ê[f(X,Z)|ξ1, . . . , ξn]| a.s.→ 0 as K →∞. (B.3)

Combining (C.8) and (C.9), we have

sup
X∈X
|Ẽ[f(X,Z)|ξ1, . . . , ξn]− E[f(X,Z)|ξ1, . . . , ξn]| p→ 0 as N,K →∞.

Hence, using (3.10), we have

0 ≤ H(X̂∗)−H(X∗) ≤ (H(X̂∗)− Ĥ(X̂∗)) + (Ĥ(X̂∗)− Ĥ(X∗)) + (Ĥ(X∗)−H(X∗)).

Since H(X̂∗)− Ĥ(X̂∗) and Ĥ(X∗)−H(X∗) both
p→ 0, and Ĥ(X̂∗)− Ĥ(X∗) ≤ 0 by using

(3.9), we have

0 ≤ H(X̂∗)−H(X∗) ≤ op(1),

which implies

H(X̂∗)−H(X∗)
p→ 0.
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B.2. Proof of Theorem 3.3

Proof. For convenience, denote

U(γ) =

Z : max
k<i≤n

∣∣∣∣∣∣
∑i−1

j=k zj −
∑i−1

j=k µj√∑i−1
j=k σ

2
j

∣∣∣∣∣∣ ≤ γ


so that (3.18) is equivalent to P̂ (Z ∈ U(Γ)|ξ1, . . . , ξn) ≥ 1 − δ. Since Γ̃ is the order

statistic of K samples of maxk<i≤n

∣∣∣∣∑i−1
j=k zj−

∑i−1
j=k µj√∑i−1

j=k σ
2
j

∣∣∣∣, and P̂ (Z ∈ U(γ)|ξ1, . . . , ξn) is the

distribution function of maxk<i≤n

∣∣∣∣∑i−1
j=k zj−

∑i−1
j=k µj√∑i−1

j=k σ
2
j

∣∣∣∣, we have P̂ (Z ∈ U(Γ̃)|ξ1, . . . , ξn)
a.s.→

P̂ (Z ∈ U(Γ)|ξ1, . . . , ξn) as K →∞.

Note that (3.17) is maxZ∈U(Γ) f(X,Z), which dominates min{q : P̂ (f(X,Z) ≤ q|ξ1, . . . , ξn)

≥ 1−δ} since P̂ (f(X,Z) ≤ maxZ∈U(Γ) f(X,Z)|ξ1, . . . , ξn) ≥ P̂ (Z ∈ U(Γ)|ξ1, . . . , ξn) ≥ 1−δ

by our construction of U(Γ). Similarly, Ĥ = maxZ∈U(Γ̃) f(X,Z) dominates min{q :

P̂ (f(X,Z) ≤ q|ξ1, . . . , ξn) ≥ 1 − δ̃}, where 1 − δ̃ = P̂ (Z ∈ U(Γ̃)|ξ1, . . . , ξn), which sat-

isfies lim infK→∞(1− δ̃) ≥ 1− δ by our observation above. Hence lim infK→∞ Ĥ ≥ min{q :

P̂ (f(X,Z) ≤ q|ξ1, . . . , ξn) ≥ 1− δ}. Now, by an argument similar to (C.8) in the proof of

Theorem 4.1, we have

sup
X∈X ,q

|P̂ (f(X,Z) ≤ q|ξ1, . . . , ξn)− P (f(X,Z) ≤ q|ξ1, . . . , ξn)| p→ 0 as N →∞

This gives

lim inf
K→∞

Ĥ ≥ min{q : P (f(X,Z) ≤ q|ξ1, . . . , ξn) ≥ 1− δ}
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B.3. Proof of Lemma 3.1

Proof. The immediate dual formulation for maxF∈F EF
[

maxy∈Ω

∑n
i=1(zi − xi)yi

]
is

min
θ,ρ

θ +
n∑
i=1

m−1∑
j=1

rijρij +
n∑
i=1

ρim

s.t. θ +
n∑
i=1

m∑
j=1

I(zi ≤ qij)ρij ≥ f(X,Z) Z ∈ D,
(B.4)

where θ is the dual variable corresponding to
∫
D

dF (Z) = 1. But, by analyzing the

constraint, the model above can be simplified as follows

θ ≥ f(X,Z)−
n∑
i=1

m∑
j=1

I(zi ≤ qij)ρij Z ∈ D, (B.5)

which is equivalent to

θ ≥ max
z∈D

max
y∈Ω

{ n∑
i=1

(zi − xi)yi −
n∑
i=1

m∑
j=1

I(zi ≤ qij)ρij

}
(B.6)

= max
y∈Ω

max
z∈D

{ n∑
i=1

(zi − xi)yi −
n∑
i=1

m∑
j=1

I(zi ≤ qij)ρij

}
(B.7)

= max
y∈Ω

max
z∈D

{ n∑
i=1

(
(zi − xi)yi −

m∑
j=1

I(zi ≤ qij)ρij
)}

(B.8)

= max
y∈Ω

n∑
i=1

max
zi∈Di

{
(zi − xi)yi −

m∑
j=1

I(zi ≤ qij)ρij

}
(B.9)

= max
y∈Ω

n∑
i=1

max
j=1,...,m

max
qi(j−1)≤zi≤qij

{
(zi − xi)yi −

m∑
k≥j

ρik

}
(B.10)

= max
y∈Ω

n∑
i=1

max
j=1,...,m

{
(qij − xi)yi −

m∑
k≥j

ρik

}
, (B.11)
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where (B.7) holds by the change of the order in maximizations. (B.10) follows by defining

upper and lower quantile values for any given duration, that is true ∀z ∈ Z. Finally, for

any fixed ji, (B.11) is immediate. Therefore, we have a lower bound on θ and since there

is no other limits on θ, the minimization problem (B.4) can be stated as

min
ρ

max
y∈Ω

n∑
i=1

max
j=1,...,m

{
(qij − xi)yi −

m∑
k≥j

ρik

}
+

n∑
i=1

m−1∑
j=1

rijρij +
n∑
i=1

ρim.

B.4. Proof of Proposition 3.1

Proof. It can be shown that for extreme points in Ω, yn equals to 0 or φ > 0 and also yi

equals to either 0 or yi+1 + 1 for i ≤ n − 1 [146, 147]. Hence, by noting the structure of

the constraints in Ω, recursive application of the given relations for some o = 1, ..., n + 1

results in

yi =

{
o− i, 1 ≤ i ≤ o ≤ n;

n+ φ− i, 1 ≤ i ≤ n, o = n+ 1

. (B.12)

Given the recursive structure above, we can partition the integers 1, ..., n+ 1 into intervals

such that i ∈ [g, o] if and only if i = o (yi = πio for i ∈ [g, o]), which generates a one-to-one

mapping of Ω’s extreme points and a partition of the integers. Now, by introducing a

binary variable tgo indicating whether [g, o] is one of the partitions in [1, n+ 1],

max
y∈Ω

n∑
i=1

max
j=1,...,m

{
(qij − xi)yi −

m∑
k≥j

ρik

}
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can be reformulated as

max
t

n+1∑
g=1

n+1∑
o=g

(
o∑
i=g

max
j=1,...,m

{
(qij − xi)πio −

m∑
k≥j

ρik

})
tgo

s.t.
n+1∑
g=1

n+1∑
o=g

tgo = 1 ∀i ∈ {1, ..., n+ 1}

tgo ∈ {0, 1} 1 ≤ g ≤ o ≤ n+ 1,

(B.13)

where (qjn+1 − xn+1)π(n+1)o −
∑m

k≥jn+1
ρ(n+1)k = π(n+1)(n+1) = 0. (B.13), due to the uni-

modularity of its constraint set, has a linear programming relaxation with an equivalent

optimal objective value and binary optimal solution. Consequently, the dual of the linear

relaxation of problem (B.13) can be written as

min
λ

n∑
i=1

λi

s.t.

min{o,n}∑
i=g

λi ≥
min{o,n}∑
i=g

max
j=1,...,m

{
(qij − xi)πio −

m∑
k≥j

ρik

}
1 ≤ g ≤ n, g ≤ o ≤ n+ 1,

(B.14)

where (λ1, ..., λn) are the dual variables. Now, by incorporating (B.14) in problem (3.25),

we have

min
x,ρ,λ

n∑
i=1

λi +
n∑
i=1

m−1∑
j=1

rijρij +
n∑
i=1

ρim

s.t.

min{o,n}∑
i=g

max
j=1,...,m

{
(qij − xi)πio −

m∑
k≥j

ρik − λi
}
≤ 0 1 ≤ g ≤ n, g ≤ o ≤ n+ 1

n∑
i=1

xi ≤ T

xi ≥ 0 ∀i ∈ {1, ..., n},
(B.15)
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which, by introducing µio = maxj=1,...,m{qijπio −
∑m

k≥j ρik}, completes the transformation

of problem (3.22) to its linear program equivalent given in (3.27). Refer to Proposition 2

in [92] for a detailed discussion.

B.5. Proof of Theorem 3.4

Proof. Consider U in (3.21) and

U0 = {P : P (zi ≤ qij) = sij, i = 1, . . . , n, j = 1, . . . ,m}

where sij are now calibrated so that F (qij|ξi) = sij, i.e., sij is the true conditional distri-

bution at qij for patient i.

Since the true joint distribution
∏n

i=1 F (zi|ξi) lies in U0, we have

E[f(X,Z)] ≤ max
P∈U0

EP [f(X,Z)]

and hence

H∗ = min
X∈X

H(X) ≤ min
X∈X

max
P∈U0

EP [f(X,Z)] (B.16)

Now, under Conditions 1-5 in Appendix B.6, we invoke Theorem 3.1 to obtain rij
p→ sij

as N → ∞. Next, we look at the dual of maxP∈U0 EP [f(X,Z)] and maxP∈U EP [f(X,Z)],

which is

min
ρij ,j=1,...,m

∑
i,j

sijρij subject to
∑
i,j

I(zi ≤ qij)ρij ≥ f(X,Z) ∀Z (B.17)

and

min
ρij ,j=1,...,m

∑
i,j

rijρij subject to
∑
i,j

I(zi ≤ qij)ρij ≥ f(X,Z) ∀Z (B.18)

respectively, which are upper bounds to maxP∈U0 EP [f(X,Z)] and maxP∈U EP [f(X,Z)] by
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weak duality. Hence

min
X∈X

max
P∈U0

EP [f(X,Z)]

≤ min
X∈X ,ρij ,j=1,...,m

{∑
i,j

sijρij :
∑
i,j

I(zi ≤ qij)ρij ≥ f(X,Z) ∀Z

}

= min
X∈X ,ρij ,j=1,...,m

{∑
i,j

rijρij :
∑
i,j

I(zi ≤ qij)ρij ≥ f(X,Z) ∀Z

}
+
∑
i,j

(sij − rij)ρε̃ij + ε̃

(B.19)

where (ρε̃ij)ij is an ε̃-optimal dual solution to (B.17). Note that (B.19) is equal to

Ĥ +
∑
i,j

(sij − rij)ρε̃ij + ε̃ (B.20)

since (B.18) is equivalent to (3.27) as they both dualize maxP∈U EP [f(X,Z)] (but different

representations), Now, we claim that we can find a (ρε̃ij)ij that is bounded. Suppose, on

the contrary, that some component of (ρε̃ij)ij is infinite. Then, since sij’s and f(X,Z) are

all bounded, and sij’s are non-negative, we can decrease that component of (ρε̃ij)ij without

increasing the objective value. Thus, combining this with (B.20), and using our deduction

that rij
p→ sij as N →∞ and (B.16), we have

P (H∗ ≤ Ĥ + ε)→ 1

as N →∞, for any ε > ε̃.

B.6. QRF Consistency Conditions

Let Ξ be the predictor variable with dimensionality p and B be the space in which Ξ lives.

Then, for the reader’s convenience, the following list of assumptions is quoted from [96]:
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Condition 2. “B = [0, 1]p and Ξ is uniform on [0, 1]p.”

Alternatively, one may assume that the density of covariates is bounded from above and

below by positive constants.

Condition 3. “The proportion of observations in a node, relative to all observations, is

vanishing as the size of data increases, (n → ∞). The minimum number of observations

in a node is non-decreasing in the limit as the size of data goes to infinity.”

Condition 4. “The probability that a variable is chosen for the splitpoint is bounded from

below for every node by a positive constant. If a node is split, the split is chosen so that

each of the resulting sub-nodes contains at least a proportion γ of the observations in the

original node, for some 0 < γ ≤ 0.5.”

Condition 5. “There exists a constant L so that F (z|Ξ = ξ) is Lipschitz continuous with

parameter L, that is for all ξ, ξ′ ∈ B,

sup
y
|F (z|Ξ = ξ)− F (z|Ξ = ξ′)| ≤ L||ξ − ξ′||1.”

Condition 6. “The conditional distribution function F (z|Ξ = ξ) is, for every ξ ∈ B,

strictly monotonically increasing in z.”

B.7. Formal Description of Random Forests and Quantile

Regression Forests

We follow the notation of [26] for a given dataset of ((ξ1, z1), ..., (ξn, zn)). Consider Ξ as

the predictor variable with dimensionality p and B as the space in which Ξ lives. Let θ

be the random parameter that defines which features are selected for split-points at each
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node in a tree. Then, T (θ) denotes the corresponding tree. Every leaf l = 1, ..., L of a

tree associates with a rectangular subspace of B which is denoted by Rl and every ξ ∈ B

belongs to one and only one leaf which is denoted by l(ξ, θ).

For a new observation Ξ = ξ, T (θ) makes prediction by taking the average over the

observed response values in leaf l(ξ, θ). Define the weight vector wi(ξ, θ) such that

wi(ξ, θ) =
1{ξi∈Rl(ξ,θ)}

|{ξj ∈ Rl(ξ,θ), ∀j}|
. (B.21)

Therefore, the prediction of a single tree is given by

µ̂tree(ξ) =
n∑
i=1

wi(ξ, θ)zi. (B.22)

Then, for a Random forests growing an ensemble of K trees, the prediction is given by

the averaged result of K single trees using i.i.d. vector θt for t = 1, ..., K, such that

wi(ξ) =
1

K

K∑
t=1

wi(ξ, θt) (B.23)

and

µ̂RF (ξ) =
n∑
i=1

wi(ξ)zi. (B.24)

Similar to RF that approximates the conditional mean by a weighted average over the

observations of the response variable, one can approximate the conditional distribution of

z by the weighted average over the observations of 1{zi≤z} such that

F̂ (z|Ξ = ξ) =
n∑
i=1

wi(ξ)1{zi≤z}. (B.25)

Quantile regression forests performs a similar procedure as RF except for the very last
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step. QRF, at each node, keeps the value of all observations fallen under the node and

estimates the conditional distribution function via B.25 using the same weight estimation

method as in RF given by B.23.
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Appendix C.

Supplements to Chapter 4

C.1. Proof of Theorem 4.2

Proof. Part 1.

Note that (4.6) is equivalent to

Pµ(Pξ|µ(f(x, ξ) /∈ A) ≥ α) ≤ β (C.1)

By the Markov inequality,

Pµ(Pξ|µ(f(x, ξ) /∈ A) ≥ α) ≤
Eµ[Pξ|µ(f(x, ξ) /∈ A)]

α

So

Eµ[Pξ|µ(f(x, ξ) /∈ A)]

α
≤ β (C.2)

guarantees (C.1). Note that (C.2) is equivalent to

Eµ[Pξ|µ(f(x, ξ) ∈ A)] ≥ 1− αβ
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or

Pµ,ξ(f(x, ξ) ∈ A) ≥ 1− αβ (C.3)

where Pµ,ξ denotes the joint probability with respect to the posterior distribution of µ and

the stochasticity of ξ given µ. The Monte Carlo scheme in PCSG precisely generates sam-

ples according to Pµ,ξ. Theorem 4.1 implies that choosing N satisfying (4.8) in the sampled

program (4.7) to obtain x guarantees (C.3), and consequently (4.6), with probability at

least 1− δ. This concludes the proof of Part 1.

Part 2. We can write (4.9) as

PMC(Pµ(Pξ|µ(f(x; ξ) ∈ A) < 1− α) ≤ β) ≥ 1− δ

This implies, with probability p ≥ 1− δ, the event

Pµ(Pξ|µ(f(x; ξ) ∈ A) < 1− α) ≤ β

occurs (under PMC). And with probability 1− p, we have the obvious bound

Pµ(Pξ|µ(f(x; ξ) ∈ A) < 1− α) ≤ 1
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The last two bounds imply that

EMC [Pµ(Pξ|µ(f(x; ξ) ∈ A) < 1− α)]

≤ pβ + (1− p)

≤ (1− δ)β + δ (by optimizing over p ≥ 1− δ)

= β + δ − βδ

= 1− (1− β)(1− δ)

which gives (4.10).

C.2. Proof of Theorem 4.3

Proof. From Theorem 4.2 part 2, if we use βt, δt and Nt satisfying (4.12), we have

EMC [Pµt(Pξt|µt(f(x; ξt) ∈ At|Ft−1) < 1− α)] ≤ 1− (1− βt)(1− δt) (C.4)

We want to show (4.14), which is equivalent to

PMC(Pµ1:T (Pξt|µt(ft(xt, ξt) ∈ At|Ft−1) < 1− α, for some t ∈ S) > β) ≤ λ (C.5)
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Note that the left hand side of (C.5) is bounded from above as

PMC(Pµ1:T (Pξt|µt(ft(xt, ξt) ∈ At|Ft−1) < 1− α, for some t ∈ S) > β)

≤ PMC

(∑
t∈S

Pµ1:T (Pξt|µt(ft(xt, ξt) ∈ At|Ft−1) < 1− α) > β

)

≤ 1

β
EMC

[∑
t∈S

Pµ1:T (Pξt|µt(ft(xt, ξt) ∈ At|Ft−1) < 1− α)

]
(by the Markov inequality)

=
1

β

∑
t∈S

EMC [Pµt(Pξt|µt(ft(xt, ξt) ∈ At|Ft−1) < 1− α)]

≤ 1

β

∑
t∈S

(1− (1− βt)(1− δt)) (by using (C.4))

Hence

1

β

∑
t∈S

(1− (1− βt)(1− δt)) ≤ λ (C.6)

guarantees that (C.5) holds. Noting that (C.6) is equivalent to (4.13), we conclude our

theorem.

C.3. Proof of Proposition 4.1

Proof. Let s = |S|. Setting βt = δt = γ, we have
∑

t∈S(βt + δt − βtδt) = s(2γ − γ2). We

want s(2γ − γ2) ≤ βλ, or equivalently

γ2 − 2γ + βλ/s ≥ 0 (C.7)

Since the left hand side of (C.7) is a convex quadratic function, (C.7) holds if and only if

γ ≥ 1 +
√

1− βλ/s or γ ≤ 1−
√

1− βλ/s
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The first condition is never satisfied since γ must be ≤ 1. The second condition is valid

and gives (4.14).

C.4. Proof of Proposition 4.2

Proof. Without loss of generality, we label t as the counter in S for convenience (i.e.,

assume that t = ζ(t) by relabeling βt and δt). We want
∑∞

t=1(βt + δt− βtδt) ≤ βλ holds so

that (4.14) holds regardless of T . Note that

∞∑
t=1

(βt + δt − βtδt) = 2
∞∑
t=1

γt −
∞∑
t=1

γ2
t (C.8)

We analyze the two terms of the right hand side of (C.8). By definition γt = η if and only

if t ≤ 1/η1/ρ. Thus, for the first term, we have

2
∞∑
t=1

γt = 2

b 1

η1/ρ
c · η +

∞∑
t=b1/η1/ρc+1

1

tρ


≤ 2

(
η1−1/ρ +

∫ ∞
b1/η1/ρc

1

uρ
du

)
≤ 2

(
η1−1/ρ +

1

ρ− 1

1

(1/η1/ρ − 1)ρ−1

)
(C.9)

For the second term in (C.8), we have

∞∑
t=1

γ2
t = b 1

η1/ρ
c · η2 +

∞∑
t=b1/η1/ρc+1

1

t2ρ

≥ η2

η1/ρ + 1
+

∫ ∞
b1/η1/ρc+1

1

u2ρ
du

≥ η2

η1/ρ + 1
+

1

2ρ− 1

1

(1/η1/ρ + 1)2ρ−1
(C.10)
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Therefore, combining (C.9) and (C.10) into (C.8), we have (4.15) implies 2
∑∞

t=1 γt −∑∞
t=1 γ

2
t ≤ βλ or (4.14).

C.5. Proof of Corollary 4.4

Proof. The corollary follows immediately by noticing that the linear program (4.16) is

trivially convex, and applying Theorem 4.3.
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[27] P. Bühlmann, B. Yu, et al. “Analyzing bagging”. In: The Annals of Statistics 30.4
(2002), pp. 927–961.

139

https://books.google.com/books?id=JwQx-WOmSyQC
https://books.google.com/books?id=JwQx-WOmSyQC


[28] G. C. Calafiore. “Repetitive scenario design”. In: IEEE Transactions on Automatic
Control 62.3 (2017), pp. 1125–1137.

[29] G. C. Calafiore and M. C. Campi. “The scenario approach to robust control design”.
In: IEEE Transactions on Automatic Control 51.5 (2006), pp. 742–753.

[30] G. C. Calafiore and L. El Ghaoui. “On distributionally robust chance-constrained
linear programs”. In: Journal of Optimization Theory and Applications 130.1 (2006),
pp. 1–22.

[31] G. Calafiore and M. C. Campi. “Uncertain convex programs: randomized solutions
and confidence levels”. In: Mathematical Programming 102.1 (2005), pp. 25–46.

[32] M. C. Campi and S. Garatti. “A sampling-and-discarding approach to chance-
constrained optimization: feasibility and optimality”. In: Journal of Optimization
Theory and Applications 148.2 (2011), pp. 257–280.

[33] M. C. Campi and S. Garatti. “The exact feasibility of randomized solutions of uncer-
tain convex programs”. In: SIAM Journal on Optimization 19.3 (2008), pp. 1211–
1230.
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