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ABSTRACT

Interest in network science has been increasingly shared among various research

communities due to its broad range of applications. Many real world systems can be

abstracted as networks, a group of nodes connected by pairwise edges, and examples

include friendship networks, metabolic networks, and world wide web among others.

Two of the main research areas in network science that have received a lot of focus are

community detection and information diffusion. As for community detection, many

well developed algorithms are available for such purposes in static networks, for exam-

ple, spectral partitioning and modularity function based optimization algorithms. As

real world data becomes richer, community detection in temporal networks becomes

more and more desirable and algorithms such as tensor decomposition and generalized

modularity function optimization are developed. One scenario not well investigated

is when the core community structure persists over long periods of time with possi-

ble noisy perturbations and changes only over periods of small time intervals. The

contribution of this thesis in this area is to propose a new algorithm based on low

rank component recovery of adjacency matrices so as to identify the phase transition

time points and improve the accuracy of core community structure recovery. As for

information diffusion, traditionally it was studied using either threshold models or

independent interaction models as an epidemic process. But information diffusion

mechanism is different from epidemic process such as disease transmission because of

the reluctance to tell stale news and to address this issue other models such as DK

model was proposed taking into consideration of the reluctance of spreaders to diffuse

xiii



the information as time goes by. However, this does not capture some cases such as

the losing interest of information receivers as in viral marketing. The contribution of

this thesis in this area is we proposed two new models coined susceptible-informed-

immunized (SIM) model and exponentially time decaying susceptible-informed (SIT)

model to successfully capture the intrinsic time value of information from both the

spreader and receiver points of view. Rigorous analysis of the dynamics of the two

models were performed based mainly on mean field theory. The third contribution of

this thesis is on the information diffusion optimization. Controlling information dif-

fusion has been widely studied because of its important applications in areas such as

social census, disease control and marketing. Traditionally the problem is formulated

as identifying the set of k seed nodes, informed initially, so as to maximize the diffu-

sion size. Heuristic algorithms have been developed to find approximate solutions for

this NP-hard problem, and measures such as k-shell, node degree and centrality have

been used to facilitate the searching for optimal solutions. The contribution of this

thesis in this field is to design a more realistic objective function and apply binary

particle swarm optimization algorithm for this combinatorial optimization problem.

Instead of fixating the seed nodes size and maximize the diffusion size, we maximize

the profit defined as the revenue, which is simply the diffusion size, minus the cost

of setting those seed nodes, which is designed as a function of degrees of the seed

nodes or a measure that is similar to the centrality of nodes. Because of the power-

ful algorithm, we were able to study complex scenarios such as information diffusion

optimization on multilayer networks.

xiv



CHAPTER I

Introduction

Network (graph) theory dates back to 1736 when Euler formulated the Konigs-

berg’s bridge problem as a graph theoretic one. To do so, he developed basic defi-

nitions and concepts of network theory, including the notions of a vertex set V , the

corresponding edge set E ⊆ V × V together with the first tools for their analysis.

Since then, research on networks has experienced an explosive growth, especially in

the last 10-15 years both from a theoretical standpoint and also in terms of applica-

tion areas, including technical work in mathematics and physics, and applications in

the social, health and information sciences. Examples include protein-protein inter-

action networks, metabolic networks and food webs in biology, friendship networks

(Facebook, Twitter) in the social sciences, communication networks and the World

Wide Web in computer science and various networks in many other fields such as

politics, economics and finance [23, 51, 68, 7, 41]. Further, a number of social dynam-

ics mechanisms such as disease transmission, rumor spreading, information diffusion,

new product advertisement, and political propaganda among others can be mapped

to corresponding stochastic processes on networks [21, 11, 33, 105]. In the following

sections, we review some background fundamentals of network theory that the work

on subsequent chapters makes extensive use of.
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1.1 Network Basics

1.1.1 Mathematical formulations

A very popular way to represent networks is by its adjacency matrix A, where

Aij =


1, if node i and node j are connected

0, otherwise

(1.1)

This representation applies to undirected binary networks, for which the adja-

cency matrix is symmetric. However in general, networks can have both directed and

weighted connections, in which case we can set the element Aij as the weight of the

connection from node j to i. If the network is sparse (few connections among its

nodes), using the adjacency matrix as the representation method is very expensive

in terms of storage and memory in calculations; therefore, two alternative ways have

been proposed, the adjacency list and the edge list representations, respectively. In

the former representation, we store for each node its neighbors in list form, while

for the edge list representation, we store only the edge information (which nodes are

connected).

Further, in many applications the actual network can be partitioned to many

network structures, thus giving rise to a multilayer network structure [11]. The family

of multilayer networks can be formally defined as a pair (G,C), where G is a family of

single layered networks G = {Gα, α ∈ {1, · · · ,M}} with Gα = (Vα, Eα) representing

the layer α, and assuming there are M layers in total. On the other hand,

C = {Eαβ ⊆ Vα × Vβ;α, β ∈ {1, · · · ,M}, α 6= β} (1.2)

is the set of cross layer connections. If we look at the multilayer networks from the

2



viewpoint of single layer, then the projection network (VM ,EM)is

VM =
⋃M

α=1
Vα

EM =
(⋃M

α=1
Eα

)⋃(⋃M

α,β=1,α 6=β
Eαβ

)
(1.3)

A multiplex network is a special type of a multilayer one and admits its mathematical

representation from the multilayer network, but with Vα = Vβ, α, β ∈ {1, · · · ,M}, α 6=

β and Eα,β = {(v, v); v ∈ V } [118, 11]. In other words, the set of nodes are exactly the

same across different layers and the cross layer connections exist only between each

node and its counterparts from different layers. If we look at a multiplex network, we

might even think of it as an ordinary single network with multi-edges between nodes,

with each edge representing a channel from a certain layer.

A temporal network, or time series networks, can also be represented as a mul-

tilayer network with G = {Gt, t ∈ {1, · · · , T}} and Gt represents the slice of net-

work at time t. The cross layer connections become Eαβ = ∅ if β 6= α + 1 and

Et,t+1 = {(v, v), v ∈ Vt
⋂
Vt+1}. This formulation is fairly general, since both the

nodes and edges across different layers over time are allowed to evolve.

1.1.2 Random networks generation models

There has been a lot of work on defining simple network generation models, whose

behavior mimics those observed in the real world. Some of the most popular random

network generation models include the Erdos-Renyi (ER) model, the Gilbert model,

the onfiguration model, and various preferential attachment models, of which the

Barabasi-Albert (BA) model is one of the most extensively studied and frequently

used [45, 37, 8]. On the other hand, if we are interested in generating synthetic

networks with an embedded community structure, the stochastic block model is the

most popular one. The latter was generalized to capture the heterogeneity of the

3



degree distribution observed in real life networks [59].

In the ER model, we fix the number of nodes N and the total number of connec-

tions M and assume that all networks with these two parameter values are realized

with the same probability. In practice, we place the M edges between nodes randomly

and each pair gets the edge with the same probability. In the Gilbert model, each

pair of nodes are connected with a fixed probability p, and the degree distribution

of nodes follow a Binomial distribution. When we have N → ∞, p → 0 and Np

converges to a constant as 2M
N

, the degree distribution of both the ER and Gilbert

models follows a Poisson distribution with mean degree 〈K〉 = 2M
N

for the ER model

and 〈K〉 = Np for the Gilbert model.

The configuration model is similar to the ER model, in the sense that it is

also a statistical ensemble. On the other hand, the configuration model is much more

flexible than the ER model, since it assumes that we are given a sequence of degrees

(number of conenctions) for the nodes instead of treating each node equivalently. In

practice, we can start from a given degree distribution, say, a power law (Pareto

distribution) one given by P (k) ∼ k−γ, then:(1) Generate a list of degrees for the list

of nodes and each degree will be attached a stub (half edge); (2) Randomly choose

pair of stubs, with each pair being chosen with the same probability, and connect

them into edges.

In the preferential attachment model, scale free networks with degree fol-

lowing power law distributions can be generated from a linear preference function

[34, 67, 8]. To be specific, in practice, we start with m0 nodes with a certain con-

figuration, and then at each subsequent time step, we add one node and connect to

m ≤ m0 of the existing nodes with each existing node i been connected with probabil-

ity as a linear function of its degree: p(Ki) ∝ C+Ki. Then, the degree distribution of

the network obtained when N →∞ is approximately P (K) ∼ K−γ with γ = 3 + C
m

,

and in particular when C = 0 we have γ = 3, which is exactly the BA model.
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Naturally, random networks generated by the ER, the Gilbert and the configu-

ration model are all uncorrelated in terms of the degree distribution of neighbors.

Interestingly, the BA model is frequently treated as almost uncorrelated, due to the

anomalously weak degree correlation between first neighbors, defined as the direct

neighbors of a node. Under this condition, the joint distribution of the degrees of

two neighbors can be factored into the product of the distribution of degree for each

neighbor separately.

1.1.3 Giant component and percolation process

The giant component (GC) in a network is defined as the subnetwork of size

NG ∼ O(N) that scales up with the size of the network N as N →∞, in which each

node can reach another nodes through edges belonging to the component; further,

there can be only one GC. To see this, suppose we have two GCs of size N1 and

N2 respectively, and for illustrative purposes suppose we operate under the Gilbert

model. Then, the probability of a node i from GC1 not connecting to any node in

GC2 is (1−p)N2 and therefore, the probability of no connection between the two GCs

would be
∏N1

i=1(1−p)N2 = (1−p)N1N2
N→0
= 0. Further, the size of the GC in a random

network can be obtained in the following way.

Following an arbitrary edge, the probability of reaching an edge of degree k is

kNk∑N−1
k=1 kNk

=
NP (k)k∑N−1
k=1 P (k)kN

=
P (k)k

〈k〉
(1.4)

where P (k) represents the degree distribution of the network. Therefore, the distri-

bution of excess degree, defined as the number of edges of the node other than the

one that led to it, is q(k) = P (k + 1)(k + 1)/〈k〉. In addition, the average excess
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degree would be

∑N−2

k=0
q(k)k =

∑N−2

k=0

P (k + 1)(k + 1)k

〈k〉
=
〈k2〉 − 〈k〉
〈k〉

(1.5)

which is also known as the mean branching coefficient. The average number of first

neighbors is 〈k〉, the average number of second nearest neighbors is thus 〈k〉 〈k
2〉−〈k〉
〈k〉 =

〈k2〉−〈k〉 and similarly, the average number of lth nearest neighbors is 〈k〉
( 〈k2〉−〈k〉

〈k〉

)l−1

[99]. From this we can see that in order to have a GC in the network, we need

〈k2〉−〈k〉
〈k〉 > 1

Suppose u is the probability of not reaching a first neighbor belonging to the GC

following an arbitrary edge, then this should be equal to the probability that this

first neighbor is not connected to any of its first neighbor belonging to the GC. In

other words, this is the probability that none of the second neighbors belong to the

GC following this arbitrary edge, and therefore, we have

u =
∑∞

k=0
q(k)uk (1.6)

On the other hand, suppose the average size of the GC is S = Ns, then s is given by,

s = 1−
∑∞

k=0
P (k)uk (1.7)

In the case that the degree follows Poisson distribution,

P (k) =
λke−λ

k!
⇒ q(k) =

λk+1e−λ

(k + 1)!

k + 1

λ
=
λke−λ

k!
= P (k) (1.8)
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So,

u =
∞∑
k=0

q(k)uk =
∞∑
k=0

p(k)uk
N→∞

=
N−1∑
k=0

(
N − 1

k

)
pk(1− p)N−1−kuk

= (1− p+ pu)N−1 (1.9)

Hence, in the case of the Gilbert model, the probability for a node i not connecting

to the GC via node j is either they are not connected or they are connected, but the

neighbor j itself does not belong to the GC. We can apply this idea and make the

connection to the percolation process. In the case of bond percolation, each edge in

the network will be removed with the same probability 1− T ; then, we can find the

GCp on this remainder network after bond percolation in the following way. Suppose

the probability of not reaching the GCp via an arbitrary edge on the original network

before percolation is u, then either this edge is removed with probability 1 − T , or

the edge remains intact but none of the second neighbors following the edge are in

GCp. Then,

u = 1− T + T
∞∑
k=0

q(k)uk (1.10)

and similarly, the average size of the GC is S = Ns, with s given by

s = 1−
∞∑
k=0

P (k)uk (1.11)

On the other hand, in the case of site percolation, when we remove the nodes uniformly

from the network with probability 1− T , the proportion of GC size in the network is

s = T
[
1−

∞∑
k=0

P (k)uk
]

(1.12)

with the function for u unchanged. In fact, there is a condition for the existence of a
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GC in the remaining network after it went through the percolation process. Specif-

ically, following the same argument above regarding the mean branching coefficient,

if we define the reproduction number R0 as the expected number of second neighbors

on the remaining network following an arbitrary edge, then [95] shows that

R0 = T
∞∑
k=0

kqk = T
∞∑
k=0

k
(k + 1)pk+1

〈k〉
= T
〈k2〉 − 〈k〉
〈k〉

. (1.13)

Hence, to have a GC, we need to ensure R0 > 0 ⇒ T > TC = 〈k〉
〈k2〉−〈k〉 . For a more

rigorous and detailed treatment of this topic, we refer the readers to [100].

1.2 Information diffusion process on networks

The topic of information diffusion on networks has attracted attention from a

wide range of research communities due to the wide range of applications in diverse

fields. A lot of social spreading phenomena can be treated as an information diffusion

process, such as rumor spreading, news services, technological innovation adoption,

new product promotion via viral marketing and political propaganda among others

[21, 61, 88, 49, 71]. Mathematical frameworks formulated to tackle this problem

include two main directions: threshold models and independent interaction models

[31, 21]. One representative threshold model is the linear threshold one that can be

simply described as follows [92]. At time t = 0, a proportion ρ0 of nodes are set

in the infected (informed) state, or in other words, selected as seed nodes; then, at

each subsequent time step, all nodes on the whole network update according to the

following rule,

si(t+ 1) =


1, if

∑
j∈N(i) sj(t) > θki

0, otherwise

(1.14)
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where si(t) ∈ {0, 1}, with 1 standing for informed (infected) and 0 otherwise, θ is the

threshold parameter, ki is the degree of node i and N(i) is the set of first neighbors of

node i. This evolution is deterministic and there is only one direction for the nodes

to evolve: from not active to active, and the system reaches equilibrium once the

number of active nodes stops changing.

On the other hand, due to its similarity with epidemic processes such as disease

transmission, the information diffusion process has been widely treated as an epi-

demic process and a lot of independent interaction models describing the dynamics

are employed. For example, the susceptible-infected-recovered (SIR) model and the

susceptible-infected-susceptible (SIS) model are popular ones, whose origins come

from disease transmission in an epidemiological setting [21, 33, 105]. In a standard

SIR model, nodes in the network are split into three exclusive, but exhaustive groups:

susceptible (S), infected (I), and recovered (R). After some seed nodes are activated

at time t = 0, each susceptible neighbor of nodes in the I state will get infected

with a constant rate β and each of the nodes in the I state will get removed with

constant rate γ. As the name implies, the evolution process is stochastic, instead of

deterministic as in the threshold model, and successive trials of infection (diffusion)

between nodes are independent with each other with the same probability. Similarly,

different trials on nodes in the I state for the removal process are also independent

with each other. The system will reach an equilibrium when all the nodes in the I

state disappear. For the SIS model, instead of getting removed, those nodes in the

I state will be reverted back to the S state with a rate γ and the system reaches

equilibrium when at each time step the number of nodes converted to the S state is

the same as the number of nodes converted to the I state.

Interestingly, the SIR model can be mapped to a bond percolation process, with

the GC representing the size of diffusion, since the probability of transmission between
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a node in the S state and a node in the I state is

T =

∫ ∞
0

e−βtβe−γtdt =
β

β + γ
(1.15)

which is a constant and can be mapped to be 1 minus the probability of bond removal

in the bond percolation process if we start the diffusion process from a single node in

the GC. Similarly, the condition for having an epidemic is

β

β + γ
>

〈k〉
〈k2〉 − 〈k〉

and the disease will reach size NE that scales up with NE ∼ O(N) as N →∞ before

dying out.

On the other hand, generally speaking, the information diffusion process can be

approximated using results from mean field theory [92, 105]. For example, in the

SIR model, when we ignore the degree distribution of the network and assume a

homogeneous degree across the network we get that

ṡ(t) = −β〈k〉ρ(t)s(t)

ρ̇(t) = β〈k〉ρ(t)s(t)− γρ(t)

ṙ(t) = γρ(t) (1.16)

where s(t) is the proportion of nodes in the susceptible state, ρ(t) is the proportion

in the infected state and r(t) is the proportion removed, β is the infection rate, γ is

the removal rate, and 〈k〉 is the average degree of nodes in the network. However, it

is rather unrealistic to assume a homogeneous degree, especially in real life networks

where a power law distribution is very often observed. To address this issues, a
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heterogeneous version of the mean field theory can be used,

ṡk(t) = −βksk(t)Θk(t)

ρ̇k(t) = βksk(t)Θk(t)− γρk(t)

ṙk(t) = γρk(t) (1.17)

where Θk(t) = 1
〈k〉
∑

k′(k
′ − 1)P (k′)ρk′(t) is the probability of reaching an infected

node following an arbitrary edge originated from a susceptible node with degree k.

It has been noted long ago that an information diffusion process is quite different

from an epidemic process due to the reluctance to tell stale news. To address this issue,

many other models were proposed. For example, in 1965 Daley and Kendall proposed

to modify the removal dynamics to ṙ(t) = γρ(t)(ρ(t)+r(t)) to take into consideration

the case where the news spreaders encounter people who are already aware of the

information and become reluctant to spread it further. However this model only

considers the spreader’s point of view, which is quite limited especially in terms of

application in marketing when it is not the spreaders (e.g. advertisement broadcasting

platforms or the company itself), but rather the receivers who get bored with a news

item as time goes by. Besides, accompanying the reluctance to tell stale news is also

the reluctance to talk about topics of stale news from the point of view of susceptible

nodes. Our contribution in this thesis to this area is to propose two different models,

coined susceptible-informed-immunized (SIM) model and exponentially time decaying

susceptible-informed (SIT) model to capture these missing elements from existing

models. We employ mainly mean field theory approaches to rigorously study the

evolution dynamics of these two models and also explain why percolation theory is

not applicable, but rather new techniques need to be introduced for their analysis.
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1.3 Information diffusion optimization

Information diffusion control has attracted a lot of attention in the scientific re-

search community, due to a wide range of applications [122, 21]. For example, we

might want to minimize the disease transmission by disseminating information about

the disease, or we might be interested in minimizing the diffusion size of a specific

piece of information or rumor or idea, as in the case of social census and political

unrest. On the other hand, we might be interested in maximizing the diffusion size

as in marketing, news services, and political propaganda. A lot of research efforts

have been devoted on these topics. For example, for the first objective, a multilayer

network framework representing the disease diffusion and information diffusion lay-

ers are proposed, and disease control can be obtained by considering the interaction

between the two layers [129]. As for the second objective, in threshold models a lot

of algorithmic approaches have been developed to approximately solve the computa-

tionally NP hard problem in which a set of seed nodes of size k would produce the

maximal diffusion size [61]. On the other hand, for independent interaction models,

a lot of measures such as k-shell, degree and betweenness centrality among others are

used to identify the single (or alternatively a set of size k) seed node(s) in order to

maximize the diffusion size [65].

However, in many applications the key consideration is not the diffusion size per

se, but rather a profit function (revenue minus cost) associated with it. For example

in marketing, one might be willing to invest more if the generated revenue is more

promising compared to the other way around. Besides, different people or platforms

will charge differently depending on some measure of the node, for example, its degree

and centrality, and therefore it is not realistic to assume simply a budget of k seed

nodes.

The contribution of this thesis is to address this issue and develop a more realistic

model in terms of the objective function associated with this problem. The revenue

12



can be simply defined as the total diffusion size, while we provide two versions for

the cost. The first is a function of the degree of the seed nodes and another is

a function of a value that takes into consideration the topology of the network, a

measure similar to centrality. The objective function we want to maximize is profit

defined as revenue minus cost. To achieve the optimization objective, we employ

a binary particle swarm optimization algorithm, which is a powerful combinatorial

optimization algorithm developed by Kennedy and Eberhart in 1997 [63].

1.4 Community detection

Communities in networks can be intuitively defined as clusters of nodes that are

densely connected internally and sparsely connected externally [42, 46]. One way to

quantify the community structure is by a quality function named modularity [98],

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(gi, gj) (1.18)

where A is the adjacency matrix, gi stands for the community to which node i belongs,

ki =
∑

j Aij, 2m =
∑

ij Aij, and δ(gi, gj) is 1 if gi = gj and 0 otherwise. A higher

value of Q indicates that the network is better partitioned.

Many real world networks possess intrinsic community structures and detecting

them has been a widely studied topic in network science. One application is building

up a strategic recommendation system where similar products can be recommended

to groups of people of similar tastes based on their historical shopping similarities.

Another important application would be information diffusion control or epidemic

control if such processes evolve on networks of community structures since it is well

studied that the community structures of networks play an important role in such

processes [42, 92, 136, 109]. For static networks, many well developed algorithms

are available for such purposes, for example, spectral partitioning and modularity
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function based optimization algorithms [115, 83, 97, 94].

In terms of real world applications, it becomes more and more desirable to detect

community structures in temporal networks because most of the real world networks

evolve over time[89, 137, 104]. In recent decades, many methodologies have been

proposed to tackle this problem, for example, piecing together community structure

at different times, automatic detection based on minimum description principle, ten-

sor decompositions, low rank membership matrix recovery, and optimization based

on generalized modularity function [104, 120, 137, 89]. For example, in [89], the

generalized modularity function is defined as,

Q =
1

2µ

∑
ijrs

[(
Aijs − γs

kiskjs
2ms

)
δsr + Cjrsδij

]
δ(gis, gjr)

=
1

2µ

∑
ijrs

[(
Aijs − γs

kiskjs
2ms

)
δsrδ(gis, gjr) + Cjrsδijδ(gis, gjr)

]
(1.19)

where Aijs is the adjacency matrix element (edge) between nodes i and j at time

s, Cjrs is the interslice coupling of node j with itself across time from time r to s,

γs is a resolution parameter and µ is a normalization constant independent on the

community structure. Further, γs and Cjrs are two parameters that can be tuned

to control community structure consistency across time. Intuitively, the first part in

the generalized modularity function represents the total modularity value of all the

networks treated independently across the whole time range, while the second part

represents the total coupling strength of nodes that belong to the same community

across time. In other words, the first part represent the fit of communities in each

individual time slice and the second part represents the consistency of community

structures across time.

For application purposes, one scenario that is very likely to happen in real life

applications, but is not well investigated in the available literature is the following

[137, 111]. The core community structure does not change over a long period of time,
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but possible small perturbations on isolated edges occur. Hence, starting at a certain

time point t1 and over a small period of time the core community structure evolves:

communities might grow, shrink, disappear, or emerge. Then, the evolution repeats

itself over the remaining time period. The contribution of this thesis in this area

is to identify the phase transition time points where the core community structure

changes and improve the community structure detection accuracy by proposing a

new algorithm based on low rank component recovery from the available time series

networks. Applications on both synthetic networks and real world network data are

carried out.

1.5 Outline of chapters

In Chapter II, we develop a systematic methodology to recover the core commu-

nity structures of temporally evolving networks, while at the same time detecting

and identifying the time epochs where the core community structure changes signifi-

cantly. The methodology is based on low rank component extraction from adjacency

matrices of the time series networks and the efficiency of the methodology is demon-

strated through applications on various networks, such as synthetic networks gener-

ated by standard random graph models including the stochastic block model (SBM)

and its variants, networks representing the synchronization pattern of the Kuramoto

model, and real life networks capturing voting similarities between Senators based on

US Senate Roll Call data. In Chapters III and IV, we propose two different mod-

els, coined Susceptible-Informed-Immunized (SIM) model and Susceptible-Informed

model with time decay diffusion rate (SIT) for modeling the mechanisms of an in-

formation diffusion process. The SIM model captures the characteristic of slowing

down with time due to the intrinsic time value of information for general information

diffusion processes from the perspectives of both the spreaders and the “ignorant”

players indirectly by letting them go through an immunization process. While the
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SIT model achieves the same objective directly by letting the diffusion rate decay

exponentially over time. Both the SIT and SIM models are rigorously analyzed first

by employing Mean Field (MF) approximation theory and then by constructing a

Maximum Weight Tree (MWT). Specifically, in the MF approximation, the time

dependent diffusion size can be calculated by solving a set of ordinary differential

equations (ODEs), while closed form solutions at early stages can be obtained, based

on which phase transition time points and epidemic threshold can be calculated. All

these results are compared with those obtained from Monte Carlo (MC) simulation

and good agreement is achieved. On the other hand, the expected total diffusion

size can be approximated by the MWT, which assumes we start with a single seed

node, defined as the node informed at the beginning of time, and diffuse the infor-

mation on a static network. Good agreement between MWT and MC simulation

estimates can be achieved for sparse networks, which is expected since in this case

the probability of multi-channel diffusion is negligible and a tree like mechanism in

approximation is satisfactory. In Chapter V, we employed a binary version of the

particle swarm optimization (PSO) algorithm to approximately solve the NP-hard

problem of identifying the optimal set of seed nodes so as to maximize the diffusion

profit, defined as the expected total diffusion size minus the cost of selecting those

seed nodes. To investigate the impact of different cost functions on the seed nodes

allocation strategy, we carried out experiments on two sets of different cost functions:

one depends on the degree, while the other depends on the MWT value. Further,

to investigate the role played by the network topology in selecting seed nodes, we

performed experiments on the following three settings: a single layer network with

embedded community structure, a single layer scale free network with no community

structure, and a two layer network obtained by coupling the previous two networks

together. A possible application of our methodology is in marketing or advertising,

where the marketeers need to identify an appropriate set of platforms on which to
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promote the new products.
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CHAPTER II

Core community structure recovery and phase

transition detection in temporally evolving

networks

2.1 Introduction

There has been a lot of work across different scientific communities including

computer science, applied physics, statistics and the social sciences in developing

methods for the analysis of network data[66]. The impetus for these developments

has been the availability of new data in biology (e.g. protein-protein interactions,

product-substrate relationships amongst compounds, or ecological communities of

commensal, symbiotic and pathogenic microorganisms), friendship relationships in

social media platforms such as Facebook, Instagram and Twitter, transactional data

between consumers or business organizations, just to name a few [23, 7, 51, 68, 41].

Such data capture interactions between a set of entities (e.g. biomolecules, physical

persons, companies) giving rise to a network structure.

A wide range of topics can be studied on networks, including constructing repre-

sentations, effective visualization of their structure, descriptive analysis of their char-

acteristics, study of network formation models and their behavior and study of dy-

namically evolving phenomena (like epidemics or information diffusion) on networks
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[100, 66]. A topic that has recently attracted a lot of interest is that of identifying

community structure in observed networks, as well as developing network formation

models that exhibit such structure. A community on a network is heuristically defined

as a set of nodes exhibiting high degree of interconnectivity in comparison to other

nodes in the network. Its importance stems from the fact that it represents a defining

characteristic of real world networks; for example, sets of close friends give rise to such

communities in social networks, or sets of closely interacting biomolecules (functional

pathways) in biological networks. A large number of fast and efficient algorithms have

been proposed in the literature to identify such communities in networks, including

minimum cut based graph partitioning, hierarchical clustering, k-means based clus-

tering and spectral clustering (for a comprehensive review, see [42] and references

therein). Another class of algorithms is based on maximization of a quality function

known as “modularity” 1 over possible partitions of the network; given the compu-

tational complexity of this optimization problem various greedy variants, as well as

algorithms based on simulated annealing and spectral optimization [97, 96, 94, 52]

have been developed. Finally, on the network formation models front exhibiting com-

munity structure, the stochastic block model (SBM) and its variants (e.g. degree

corrected SBM) have been the objects of intensive study [59, 30, 1].

However, most of the focus to date has been on static networks, where a single

snapshot is available. In many applications, one has access to a sequence of network

snapshots evolving over time. It is then of great interest to identify communities

in such dynamically evolving networks and also investigate whether their structure

remains fixed or exhibits changes over time. There has been some recent work on this

1It is a function defined as [98]:

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(gi, gj) (2.1)

where A is the adjacency matrix, gi stands for the community to which node i belongs, ki =
∑

j Aij ,
2m =

∑
ij Aij and δ(gi, gj) = 1 if gi = gj and 0 otherwise. A higher modularity value indicates a

better partition for the network under consideration.
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subject. For example [89] developed a generalized modularity quality function that

reflects the temporal dynamics of a sequence of networks, while [137] introduced the

concept of common communities and proposed a method to detect them in a sequence

of networks by optimizing an objective function based on a node-wise membership

matrix. Further, [10] developed a robust community detection algorithm for this

problem, by optimizing a quality function (e.g. modularity) based on null statistical

models assumed to generate the network data; examples of such models include the

Newman-Girvan one and correlation/similarity ones [98, 101, 10].

However, an issue not adequately explored in the literature is the identification

of time epochs where significant changes (phase transitions) occur in the network

structure and also the community structure between them. Some previous work

includes [137] and [111], the latter using an Ising model and assuming the existence

of a single change in the network structure over time. Nevertheless, such changes

are common in many applications. A recent example comes from the change in the

connectivity patterns in networks of asset returns before, during and after the financial

crisis of 2008 (for details see [73]), while another one relates to changes in brain

connectivity before and after epileptic seizures [112]. A third example stems from

changing patterns of political polarization amongst US legislators, which is examined

later on in this study.

Our proposed modeling framework for the problem at hand assumes that given

a sequence of T network snapshots, the community structure exhibits significant

changes (phase transition) at time periods {[τ−m, τ+
m]}Mm=1, while it remains invari-

ant within time segments (τ+
m, τ

−
m+1), where τ−m and τ+

m represents the start and end

time points of the m-th phase transition epoch, respectively. Possible changes dur-

ing phase transitions include merging or division of existing communities, growth by

adding members to them or their extinction altogether, while during stable periods

the community can exhibit perturbations in its structure; either dense ones that in-
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volve a number of nodes in the community, but small in magnitude in the sense that

the strength of the links between nodes changes by a small amount, or sparse ones

that involve isolated nodes, but the strength of the corresponding links to selected

other nodes can be large in magnitude. Technically, we assume that the community

structure can be captured by a low-rank weighted adjacency matrix, while the per-

turbations correspond either to the addition of small magnitude dense components

or large magnitude sparse components.

2.2 Results

Model formulation and Optimization Strategy

Consider a sequence of T weighted adjacency matrices {A(t)}Tt=1 that encaptulate

the structure of a network comprising of n nodes and their corresponding edges. It

is a symmetric matrix and the edge magnitude Ai,j(t), i, j = 1, · · · , n capture the

strength of association between nodes i and j. In the simplest case, Aij(t) ∈ {0, 1}

indicate whether nodes i and j are connected or not.

It is assumed that A(t) can be decomposed as follows: A(t) = L(t) + S(t) +E(t),

where L(t) is a low-rank matrix, S(t) is a sparse one with most of its elements being

zero and E(t) a dense matrix with ||E(t)||F < ε for some small ε > 0 and where

|| · ||F denotes the Frobenius norm. This model captures the presence of community

structure in networks through the low-rank component, as well as possible small sparse

and/or dense perturbations as explained in the previous section. It is also compatible

with the popular network formation model that gives rise to community structure,

namely the Stochastic Block Model (SBM) [30]. Specifically, the SBM assumes an

undirected network on n nodes and that the nodes are partitioned into K blocks.

Then, edges are formed according to the following stochastic mechanism. Node i is

connected to node j with an edge, whose probability of occurring only depends on
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the blocks (communities) to which i and j belong to. It is commonly assumed that

the probabilities for edges between i and j in the same community are significantly

higher than those for nodes i and j in different communities. The SBM has been the

object of intense study in recent years [59, 30, 1]. It can be seen that this mechanism

gives rise to a low-rank structure L, corrupted with noise E, thus captured by the

posited model. In fact, the proposed model also allows for “spiky” noise in the form of

the sparse matrix S and as already mentioned can accommodate weighted adjacency

matrices as well.

In what follows, we use the time point τm to represent the m-th phase transition

time period [τ−m, τ
+
m]. For a sequence of adjacency matrices, we make the additional

assumption that the low rank structure is invariant between phase transition time

points τm, while the perturbations are allowed to vary freely. This is consistent

with the intuition that community structure can be slowly evolving over time, while

individual edges (connections) between nodes can exhibit a higher degree of variability

in their patterns. Hence, our modeling framework assumes that:

L(t) = LmI(t ∈ (τm, τm+1))+S(t)+E(t), t = 1, · · · , T, 0 = τ0 < τ1 < · · · < τm < · · · < τM = T.

Note that the problem of decomposing a matrix into low-rank and sparse/dense

components has been investigated in the literature, due to its relevance in matrix com-

pletion problems [38, 20, 22, 121, 108, 18] that emerged from recommender systems,

compressed sensing, system identification, anomaly detection and related applications

[108, 77, 39, 40, 103]. Specifically, the low rank recovery problem can be formulated

as a rank minimization problem subject to certain constraints. To make the problem

computationally tractable (convex), a nuclear norm 2 was introduced in [38]. Subse-

quent work [20, 22] examined the following variant minL,S ||L||∗ + γ||S||1, subject to

2The nuclear norm of a matrix X ∈ RM×N of rank r is defined as the summation of all the
singular values ‖X‖∗ :=

∑r
i=1 σi, where σi’s are the singular values of X and are equal to the square

roots of the eigenvalues of XXT .
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exact recovery A = L + S, while a further extension was studied in [121] where the

objective function remained the same, but the constraints allowed low-rank recovery

subject to sparse and also dense noise E; i.e. A = L+S+E with ||E||F ≤ ε, ε > 0. In

the above, || · ||1 denotes the `1 norm for the vectorized form of its matrix argument.

Further, in theoretical work, [20, 121] showed that the problem is feasible and admits

a correct solution if an incoherence condition between L, S and E is satisfied, which

intuitively requires that the matrices E and S can not exhibit low-rank structure.

In the presence of dense noise, the corresponding optimization problem can be

formulated as

min ‖L‖∗ + γ‖S‖1 + α‖E‖2
F

s.t. L+ S + E = A

with the two tuning parameters γ and α controlling the trade-off amongst the low

rank, sparse and dense noise components.

Turning our attention to the problem at hand, we can analogously formulate the

problem, while we need to incorporate an additional constraint that would force

recovery of the same low-rank (community) component between phase transition

epochs. The latter task can be accomplished by adding a total variation penalty

encouraging similarity between successive time estimates of L(t), given by

min
T∑
t=1

[
‖L(t)‖∗ + γ(t)‖S(t)‖1 + α(t)‖E(t)‖2

F

]
+

T∑
t=2

λ(t)
[
‖L(t)− L(t− 1)‖2

F

]
s.t. A(t) = L(t) + S(t) + E(t), t = 1 · · ·T (2.2)

with the tuning parameters λ(t) controlling the degree of discrepancy between consec-

utive low rank components L(t). It is worth mentioning that the squared Frobenius

norm for the total variation penalty can be replaced by other norms such as the `1 to
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achieve the same objective, and the proposed strategy below would go through with

minor modifications.

Brief Overview of Change Point Analysis Methods: The problem has been exten-

sively studied in the statistics literature for single time series data. Further, an

extensive body of theoretical results -convergence rates of various estimators, as well

as asymptotic distributions for the change point (phase transition epoch)- have been

established when a single change point is assumed (for a comprehensive review see

[55, 54]). More recently, the focus has shifted to developing fast procedures for iden-

tifying multiple change points in a single time series and also providing probabilistic

guarantees for identifying the right number of them, as well as their locations [44].

In parallel, methods for identifying a single change point in multiple time series data

emerged [5] and more recently extensions to high-dimensional settings appeared [127]

together with their extension to the case of multiple change points. However, a key

assumption has been that the time series under consideration are independent, which

implies that a simple least squares criterion can be used to identify at least a single

change point. On the other hand, the network setting considered in our study ob-

viously violates the latter condition and hence a more complex criterion needs to be

employed. Further, as previously mentioned, in the presence of network data streams

the objective is not simply to identify transition epochs, but also the nodes in the

network that gave rise to them.

Turning our attention to the problem formulation in 2.2, it can be seen that our

interest is in finding the single core common community structure for each of the M

time epochs, while at the same time detecting and identifying the phase transition

time points τj. Therefore, to achieve this objective, the tuning parameter λ(t) should

be set as large as possible between phase transition time points while at phase transi-

tion time points we would like to set λ(t) as small as possible. Naturally, the second

requirement can be achieved by directly removing the total variation penalty, which
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is equivalent to setting λ(t) = 0. While for the first requirement, since we assume a

fixed low rank component Lm for each stable community time period, we can approx-

imately recover the single low rank component for each period by simply taking the

average of the individual low rank components L(t) recovered without the total vari-

ation penalty. Assuming that the length of the time intervals |τm+1− τm| ∼ cT, c < 1

scales linearly with time, we would expect that the variations in the estimates of

L(t), t ∈ (τm, τm+1) cancel out and the average low-rank component converges to

the true one that generated the weighted network adjacency matrix. Therefore, by

considering the following relaxed version of the optimization problem above

min ‖|L(t)||∗ + γ||S(t)||1 + α||E(t)||2F

s.t. A(t) = L(t) + S(t) + E(t) (2.3)

and then averaging the low-rank component estimates between phase transition epochs.

Then, the question becomes of how to identify those τm epochs accurately. We propose

to calculate and monitor over time the thresholded rank over time windows of a certain

length. This rank is defined as the number of singular values exceeding a carefully

selected threshold, which represents the effective number of communities detected.

Finally, the core community structure Lm can be estimated by using any standard

clustering technique for networks applied to the average Lm(t)I(t ∈ (τm, τm+1)). A

recommended clustering technique for this task is spectral clustering [124, 134] and

the overall strategy is illustrated in the next sub-section.

To solve the problem in equation 3.2.1.8, we adopt an alternating splitting aug-

mented Lagrangian method (ASALM) that was proposed in [121] and is a variant

of the widely used alternating direction method of multipliers (ADMM) [125]. The

advantage of this method is that its computational complexity of each iteration of the

algorithm is dominated by one singular value decomposition (SVD), whose computa-
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tional efficiency can be further improved by employing a partial SVD decomposition

[74, 121] since only leading singular values and corresponding vectors need to be

calculated. The augmented Lagrangian function of 3.2.1.8 is given by:

L = ‖L‖∗ + γ‖S‖1 + α‖E‖2
F +

〈
Λ, A− L− S − E

〉
+
β

2
‖L+ S + E − A‖2

F (2.4)

where β > 0 is used to penalize violation of the constraint A = L+S+E and
〈〉

is the

trace inner product which is defined as
〈
X, Y

〉
:=
∑

ij XijYij. Based on ASALM, we

can minimize the Lagrangian function by splitting it into separate parts and minimize

consecutively as follows:



Ek+1 = argmin α‖E‖2
F + β

2
‖E + Lk + Sk − 1

β
Λk − A‖2

F

Sk+1 = argmin γ‖S‖1 + β
2
‖S + Lk + Ek+1 − 1

β
Λk − A‖2

F

Lk+1 = argmin ‖L‖∗ + β
2
‖L+ Sk+1 + Ek+1 − 1

β
Λk − A‖2

F

Λk+1 = Λk + β(Ak+1 − Lk+1 − Sk+1 − E)

The Lipschitz constant β controls the number of leading singular values we need

to compute at each iteration in the general soft singular value thresholding algorithm

for low rank matrix recovery/completion, and a lot of related work has been devoted

in the area to investigate the strategy of choosing an appropriate value to ensure

convergence to the correct results, including dynamically updated ones and fixed

ones[74, 17, 121]. Following [121], for our purpose we choose a fixed β = 0.15N2/||A||1,

where N is the size of the networks.

Therefore, we have the following iterative updating algorithm for iteration q
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Start with E, S, L,Λ = 0 ∈ RN×N

Update E: Eq+1 = β
2α+β

( 1
β
Λq + A− Lq − Sq)

Update S[14]: Sq+1 = Sγ/β( 1
β
Λq + A− Lq − Eq+1)

where (Sµ(T ))ij := max
{
abs(T )ij − µ, 0

}
· sign(Tij)

Update L[17]: Lq+1 = D1/β( 1
β
Λq + A− Eq+1 − Sq+1)

where Dµ(Y ) := USµ(Σ)V >, and UΣV > is the SVD of Y

Update Λ: Λq+1 = Λk + β(A− Lq+1 − Sq+1 − Eq+1)

Note that the update for the dense noise component E involves a closed form formula,

that for the sparse component a soft-thresholding step, while that for the low-rank

component a SVD. Finally, the update of the Lagrange multipliers Λ is given by

another closed form formula. The stopping condition for the algorithm is given by:

‖Lq+1−Lq‖2F+‖Sq+1−Sq‖2F
‖Lq‖2F+‖Sq‖2F+1

≤ ε.

To employ the above algorithm, the tuning parameters α and γ need to be speci-

fied. Further, once the network adjacency matrices have been decomposed, the task

becomes on how to identify the phase transition epochs and determine the number of

communities and their membership. These issues are discussed next and illustrated

on synthetic data generated according to the following mechanism.

Data Generation for Illustrative Example: We employ a statistical factor model to

generate the sequence of network adjacency matrices. For each of the M stable time

periods, a common low rank component L(t) = Lm = UmU
T
m is generated for all

t ∈ (τm, τm+1), where each column uk(m) of Um satisfies that for nodes belonging

to community k, uk(m)i
i.i.d.∼ Unif(rin, 1) and for those nodes not in community

k, uk(m)i
i.i.d.∼ Unif(0, rout). It can be seen that by selecting parameters so that

rin > rout, a node i belongs to community k if uik ≥ rin. Finally, the sparse and dense

noise components, at each time point t are generated according to:

• S(t) = S1(t) • S2(t), where S1(t)
i.i.d.∼ Bernoulli(ps), S2(t)

i.i.d.∼ Unif(−1, 1).

• E(t)
i.i.d.∼ Unif(−r,+r), r > 0.
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• A(t) = PΩ(L(t) +S(t) +E(t)), Euclidean projection onto the space Ω :=
{
X ∈

RN×N | 0 ≤ Xi,j ≤ 1, Xij = Xji

}
where X •Y = [XijYij] for X, Y ∈ RM×N denotes element wise matrix multiplication,

ps is the density of the sparse noise, and r is the upper bound for the magnitude of

the dense noise component. For our illustrative example, we set the following values

for the control parameters for the model: rout = 0.4, rin = 0.6, ps = 0.1 and r = 0.1,

and we generate T = 200 network snapshots, divided into M = 4 stable periods, with

11, 11, 7, and 12 densely connected communities respectively, and phase transition

epochs occurring at times τ = 30 − 31, 60 − 65, 130 − 135. The time dependent

community membership is depicted in panel (a) of Figure 2.1 with community -1

representing the missing nodes and the detail of the network sequence is as follows:

At t = 0, we set the network size as N = 900 and there are 11 densely connected

communities numbered from 0 to 10 of size 100, 100, 90, 90, 80, 80, 70, 70, 60, 60, 50,

respectively, with the remaining 50 nodes not belonging to any community and hence

expected to be captured by the noise component. For pure notation purposes, we call

these 50 outlying nodes, the “11th community.” At time 31, an extra 100 nodes not

exhibiting any community structure join the network and hence are assigned to the

“11th community.” From time 61-65 the 100 nodes that joined the network at time 31

leave, while community 10 joins 0, 9 joins 1, and 7 and 8 join 6. From times, 131-135,

the network structure reverts to the one being present between time periods 31-60,

with the addition that community 8 disintegrates and joins the “11th community”,

and communities 1 and 2 split into two separate communities each. This structure

persists till the the end. It can be seen that a number of intricate changes occur to

the network structure designed to showcase the power of the proposed methodology.
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2.2.0.1 Selection of tuning parameters and decomposition

There are two parameters required in the optimization problem above; following

suggestions in literature, we recommend selecting γ = 1/
√
N for general purpose[19].

For α, extensive numerical work shows that searching over the range

(0.5/
√
N +

√
8N, 10/

√
N +

√
8N) provides highly satisfactory results.

For our problem we sample 20 evenly spaced time points from the total T = 200

and plot the rank of the recovered low rank components for these time points across

different values of α. To facilitate identifying the optimal α we also include the

plot of inconsistency/difference of the L(t) across consecutive values of α, defined as

‖L(t)αi−L(t)αi+1
‖F/‖L(t)αi +1‖F with αi+1−αi = 0.015 in our case. The results are

shown in Figure 2.1(b), and in order to recover robust L(t) components, we suggest

choosing a value of α that would result in low inconsistency from the wide range of

α values that would recover consistent rank across time points. For example, in our

case, the wide range is α ∈ [0.045, 0.105] and we choose α = 0.1 to minimize the

inconsistency.

With the above optimal set of parameters, the rank of the recovered L(t) across

time is shown in Figure 2.1(c) and simply by inspecting the evolution of rank across

time, we can easily identify the two groups of phase transition time points around

t = 60 and t = 130. However, this is not a very reliable method because on the

one hand we did not capture the phase transition time points around t = 30 and

on the other hand in terms of real life applications the rank of L(t) might not be so

clean. Therefore, we develop the following strategy based on the thresholded rank of

averaged L(t) to accurately and robustly identify phase transition time points.
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Figure 2.1: (a): Left panel, design of the time dependent community structure. (b):
Middle panel, illustration of rank and inconsistency across time based on
a range of values of α. (c): Right panel, rank of L(t) recovered based on
α = 0.1

2.2.0.2 Phase transition identification

The strategy of identifying phase transition epochs {τm} is as follows. First,

split the T available time points into
√
T non-overlapping windows of equal length

√
T . Then, scan over these windows and within each window compute for a range of

values of thresholds the thresholded rank of the averaged low rank component, defined

as the number of singular values exceeding the threshold. If a window is within a

certain stable period, following the argument in the section of model formulation, we

would expect an enhanced modularity and therefore the thresholded rank would be

consistent with the number of communities in the network across a wide range of

threshold values. Therefore, if on one hand, the length of stable periods exceeds the

window size, then we would expect a consistent thresholded rank across windows. On

the other hand, if the window covers time points from two different stable periods

having different community structures, the thresholded rank will exhibit volatility

until it belongs to the new stable time period, wherein the thresholded rank starts

to exhibit a stable behavior. Thus, to find the phase transition epochs, we simply

choose an appropriate threshold value from a wide range of such values that would

result in consistent thresholded rank across windows and identify the windows where

the thresholded rank first exhibits volatility. For illustration purposes, we choose

a window of length 7 and the wide range of threshold values is approximately h ∈
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[1, 6] and we choose h = 1.6 for our purpose as is shown in (a) and (b) of Figure

2.2. The choice of the window length is supported by some theoretical work [76]

and by extensive numerical experimentation. Of course, the accuracy level of the

identification is limited by the window length ∼
√
T and to improve accuracy, around

the phase transition time points obtained from above, we can zoom in to windows of

smaller length, say ∼
√√

T , and repeat the same procedure. Naturally, the window

length can be further reduced to obtain a desired level of resolution for identifying

the phase transition epochs. The selection of a
√
T window length is dictated by the

need for scalability of the procedure, in the presence of data sets involving a very

large number of time points T .

Figure 2.2: (a): Upper left panel, thresholded rank of windows of length 7 across
time, based on different values of the threshold. (b): Upper right panel,
thresholded rank of windows of length 7. (c): Lower left panel, thresholded
rank by zooming-in using windows of length 2 around the first two phase
transition epochs. (d): Lower right panel, thresholded rank of zoom-in
windows of length 2 around the last phase transition epochs.
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To illustrate the idea of the window scanning strategy, we consider the results of

our illustrative example as shown in Figure 2.2. From the first level of windows of

length 7 we identify the phase transition positions around t = 28, 56 ∼ 63, 126. Then

we zoom in around these time points with window length 2 and identify the phase

transition time points t = 31, 61 ∼ 65, 131 ∼ 135 as shown in (c) and (d) of Figure

2.2. Here in order to scan windows over the whole time series, we cast the adjacency

matrices of all networks with smaller size to matrices of size Nmax, the maximum size

of networks in the whole time range, and set entries 0 for those missing nodes. Note

here we identified the phase transition time position t = 30 when new nodes join the

network, while if we simply look at the time dependent rank of L(t) in figure 2.1(c)

we would fail to detect this since the two regimes share the same rank but different

community structures.

2.2.0.3 Core community structure detection

The final step involves identifying the invariant core community structures be-

tween phase transition epochs based on averaged Lm(t). In our example, the average

misclassification rate is 0.24% when clustering based on each individual L(t) and 0%

based on averaged Lm(t). For comparison, if we cluster simply based on the original

time series adjacency matrices A(t) corrupted with both dense and sparse noises, the

average misclassification rate is as high as 0.89%.

2.2.1 Application to Synthetic Network Data

We employ the following three mechanisms to induce community structure in

the sequences of networks snapshots observed. (i) a factor model, (ii) a stochastic

block model (SBM) and (iii) a weighted stochastic block model (WSBM) [2, 30]. For

simplicity, networks generated by the three models share the same time patterns on

when the community structure changes. There are T = 30 network snapshots in total,
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divided in M = 3 stable time periods and all networks have size N = 1000 nodes. At

t = 0, there are 11 densely connected communities numbered from 0, · · · , 10 of size

120, 100, 100, 100, 80, 80, 70, 70, 70, 60, 60, while the remaining 90 nodes do not form

any community. At time t = 10 community 10 joins 0 and 9 joins 1 and this structure

is fixed till t = 19. At time t = 20, community 7 and 8 join together with 6 and

similarly this structure is fixed till the end.

The specifics of the network formation mechanisms are described next:

(i) Factor model: We fix rout = 0.4, rin = 0.6 for each L(t) and control the density

ps of the sparse noise and the magnitude r of the dense noise, which are generated

the same way as described in the illustrative example.

(ii) SBM: Only sparse noise is introduced in this case since the entries of the

adjacency matrices are binary. We fix the density of noise to be 0.1 and control the

density of connections pc within communities for each L(t).

• Generate Lin
i.i.d.∼ Bernoulli(pc), and Lout = 0, where Lin stands for connections

within communities and Lout for otherwise.

• Generate S
i.i.d.∼ Categorical(π), such that P (Sij = 1) = 0.05, P (Sij = −1) =

0.05 and P (Sij = 0) = 0.9.

• Project to adjacency matrices: A(t) = PΩ[L(t) + S(t)].

(iii) WSBM: Similar to the factor model, we fix L(t) by generating them in the

following way: Lin
i.i.d.∼ Unif(0.4, 1) and Lout

i.i.d.∼ Unif(0, 0.6). Then, the strength

of the sparse and dense noise is generated in the same way as before. Note if we

have an adequate number of network snapshots, the connection strength of Lm(t)→
1+0.4

2
= 0.7 for edges belonging to communities and is larger than Lm(t) → 0+0.6

2
=

0.3 for edges connecting different communities, although for any individual low-rank

component L(t) the connection strength of some edges might not be concordant with

this ranking.
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For both the factor and WSBM models, we design dense and sparse noise com-

ponents with various levels of strength controlled by r or ps as shown in Tables 2.1

and 2.2, while for the SBM model we control pc to study the performance having

different connection strength within communities, as given in Table 2.3. Applying

the proposed methodology, we first successfully identify the phase transition time

points t = 9, 19 for all the cases with optimal values for parameters γ, α given in the

respective Tables. Subsequently, we compare the performance of community detec-

tion based on individual low-rank components L(t), averaged ones Lm over the stable

periods and the original adjacency matrices A(t). For the factor model, the misclas-

sification rate based on the recovered L(t) from A(t) are consistently lower than A(t),

while for the SBM and WSBM models, this is not necessarily the case. However, for

all the scenarios examined, the misclassification rate based on the averaged Lm goes

to zero except for some extreme cases. Note that the recovery rate is defined as the

proportion of densely connected communities recovered, while the error rate is the

averaged misclassification rate across time for those recovered communities.

Table 2.1: Dense noise case for factor model and WSBM

Models r γ

α (×10−2)
Recovery

Rate
Error Rate (×10−3)

t1 t2 t3

t1 t2 t3 t1 t2 t3
A(t) L(t) L A(t) L(t) L A(t) L(t) L

Factor
.3 .03 4.5 4.5 4.5 1 1 1 48 11 0 48 6 0 37 3 0
.4 .03 3.2 2.8 2.8 1 1 1 61 24 0 41 12 0 33 6 0
.5 .02 3.9 3.5 3.5 1 1 1 103 192 3 63 78 0 42 36 0

WSBM
.5 .02 3.5 3 3 1 1 1 0 1 0 0 0 0 0 0 0
.7 .02 3 2.8 2.8 1 1 1 10 41 0 4 12 0 2 2 0
.9 .02 2.1 2.1 2.1 4/11 4/9 5/7 76 223 0 78 130 0 46 57 0
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Table 2.2: Sparse noise case for factor model and WSBM

Models ps γ

α (×10−2)
Recovery

Rate
Error Rate (×10−3)

t1 t2 t3

t1 t2 t3 t1 t2 t3
A(t) L(t) L A(t) L(t) L A(t) L(t) L

Factor
.5 .02 15 4.5 4.5 1 1 1 183 3 0 129 18 0 81 11 0
.6 .02 6 4.3 4.3 1 1 1 344 40 0 171 35 0 104 22 0
.7 .02 4.5 4 4 1 1 1 515 169 36 273 109 0 150 47 0

WSBM
.5 .02 3.5 3 3 1 1 1 1 1 0 1 1 0 0 0 0
.7 .02 3.4 3.2 3 1 1 1 19 32 0 8 10 0 2 2 0
.9 .02 2.1 2.1 2.1 4/11 4/9 5/7 68 174 0 65 102 0 76 55 0

Table 2.3: Sparse noise case for SBM

Models pc α

γ (×10−2)
Recovery

Rate
Error Rate (×10−3)

t1 t2 t3

t1 t2 t3 t1 t2 t3
A(t) L(t) L A(t) L(t) L A(t) L(t) L

SBM
.3 .3 5.5 5 4.5 1 1 1 5 9 0 3 6 0 2 3 0
.2 .2 6.1 5.7 5.3 1 1 1 51 59 0 43 57 0 14 18 0
.1 .3 20 20 20 1 1 1 556 466 7 366 459 58 281 377 10

To further demonstrate the effectiveness of the proposed methodology in both

identifying phase transition epochs and in accurately recovering core community

structures, we design the following time evolving networks of size N = 500 based on

the WSBM model. There are T = 40 network snapshots in total, with t = 1, · · · , 20

sharing the same community structure with respective sizes 200, 150, 100, and 50.

At time t = 21 community 1 of size 200 splits into 2 of size 125 and 75 respectively,

and this structure persists until T = 40. For obtaining the adjacency matrices, we

set Lout
i.i.d.∼ Unif(0, ub) and Lin

i.i.d.∼ Unif(1 − ub, 1) and control the signal strength

by varying ub. Further, we incorporate various levels of dense and sparse noise by

controlling r and ps. As is shown in Figure 2.3, when the noise level increases or

equivalently the signal strength decreases, small communities tend to be captured by

either the sparse or dense noise components, and only communities of larger size can

be recovered. However, as long as a community is detected, its members can be re-

35



covered with very high accuracy across various levels of noise. As for phase transition

epochs detection and identification, since we monitor the thresholded rank of averaged

low rank matrices, as long as the change is driven by changes in the communities re-

covered by the proposed procedure, they can be also successfully identified. Indeed,

this is the case for all the scenarios tested, except when ub ≥ 0.9; the latter case is

depicted in Figure 2.3(g) where no core community can be detected when ub ≥ 0.9

and thus the proposed phase transition detection procedure fails. This demonstrates

the overall robustness of the proposed procedure, even in the presence of fairly high

noise in the data.
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Figure 2.3: Upper row (a-c): presence of only dense noise, with ub = 0.7. Middle row
(d-f): presence of both dense noise (r = 0.5) and varying degree of density
of sparse noise with ub = 0.7. Lower row (g-i): fixed dense and sparse
noise (r = 0.5, ps = 0.5), and varying signal strength (ub). (a): Upper left
panel, number of communities detected versus magnitude of dense noise r.
(b): Upper middle panel, accuracy level of recovery for each community
during the first stable period, with C11 representing the community of size
200, C12 that with 150 nodes, C13 with 100 and C14 with 50 nodes. (c):
Upper right panel, accuracy level of recovery for each community during
the second stable period, with C21 representing the community of size
150, C22 of 125, C23 of 100, C24 of 75 and C25 of 50 nodes, respectively.
(d): Middle left panel, number of communities detected versus density of
sparse noise ps. (e): Middle middle panel, accuracy level of recovery for
each community during the first stable period. (f): Middle right panel,
accuracy level of recovery for each community during the second stable
period. (g): Lower left panel, number of communities detected versus
signal strength ub. (h): Lower middle panel, accuracy level of recovery
for each community during the first stable period. (i): Lower right panel,
accuracy level of recovery for each community during the second stable
period.

In summary, across three network formation models and a wide range of scenar-

ios examined, the proposed methodology is capable of correctly identifying phase

transition epochs, accurately estimate the number of communities, as well as their

membership.

2.2.2 Time-Evolving Synchronization Patterns in the Kuramoto Model

Next, we investigate synchronization patterns on networks over time by the dy-

namical system of Kuramoto oscillators. This model has been extensively studied in
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the literature from various angles. In this work, we construct and study the behavior

of resulting networks in the following two settings, also examined in [10, 4]: time

evloving community structures and two level hierarchical community structures. In

both settings, there are N = 256 coupled phase oscillators in total and the phase θi(t)

of the i-th oscillator evolves in time according to

dθi
dt

= ωi +
∑
j

κCijsin(θj − θi) i = 1, · · · , N (2.5)

where ωi
i.i.d.∼ Normal(0, 1) denotes the natural (initial) phase of the oscillators,

κ = 0.25 is the coupling strength, and C is the support coupling matrix, such that

oscillators i and j are coupled, if and only if Cij = 1. Mapping each oscillator to a

node of a network, then the evolution of the model resorts to a time evolving network

with the strength of connections represented by the similarities

Aij(t) =
〈
|cos

[
θi(t)− θj(t)

]
|
〉

(2.6)

where the angular brackets stands for the average over 40 different initial random

phases.

In the first experimental setting, the total number of network snapshots is T = 280,

with phase transition epochs occuring at times τ1 = 70, τ2 = 140 and τ3 = 210. To

illustrate the structure of the resulting networks, the support coupling matrices and

the corresponding adjacency matrices at times 40, 110, 180 and 250 are depicted in

(a) and (b) of Figure 2.4. Further, the structure of the support matrices where the

communities correspond to the dark-colored nodes is generated as follows: for each

node in community k of size Nk, there are exactly 14Nk/16 connections with nodes

inside the community, and 1 with nodes outside of it. In stable period 1 (i.e. for

all t ≤ τ1), there are 16 equal size communities comprising of Nk = 16 nodes each,
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indexed by 0, · · · , 15; in stable period 2 (t ∈ (τ1, τ2)) communities 1, 2 and 3 merge

with community 0, 5 and 6 with 4, 8 and 9 with 7, 11 with 10, and 13 with 12; in stable

period 3 (t ∈ (τ2, τ3)), communities 14 and 15 merge with the enlarged community

0, community10 with 4 and finally in the last stable period (t ≥ τ3) community 12

merges with 0, and 7 with 4. Time steps for synchronization for the 4 periods are

τ = 0.1, 0.08, 0.05 and 0.02 respectively.

Figure 2.4: (a): Left panel, support coupling matrices for the 4 stable periods. (b):
Right panel, adjacency matrices at times 40, 110, 180 and 250.
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Figure 2.5: (a): Upper left panel, time dependent rank of L(t) recovered. (b): Upper
right panel, thresholded rank of windows of length 2 around the first phase
transition epoch. (c): Lower left panel, thresholded rank of windows of
length 2 around the second phase transition epoch. (d): Lower right
panel, thresholded rank of windows of length 2 around the third phase
transition epoch.

Following the strategy previously outlined for the selection of tuning parameters

in the posited optimization problem, we identify the optimal α = 0.72, based on

which the rank of recovered L(t) is depicted in Figure 2.5(a). With the final zoomed-

in windows of length 2 shown in Figure 2.5(b-d) we estimate the 3 phase transition

epochs as follows: τ1 ∈ (71, 73), τ2 = 141 and τ3 = 211. Note that in the presence of

several small communities merging from stable period 1 to 2, there is some variability

in the estimate of the epoch, while the other two epochs are identified precisely.

Finally, we calculate the average of the low-rank matrices L(t) in these four stable

periods and cluster them to extract their community structure. The community

membership extracted from all 280 snapshots (by clustering the L(t) matrices) and

40



by the average ones over stable periods are shown in (a) and (b) of Figure 2.6. It can

be seen that the average ones provide a much clearer identification of the members

in each community.

To further investigate the cohesion of communities at different points in time, we

also introduce a new metric coined relative polarization for a certain community k

Pk(t) =

∑Nk(t)
i,j=1 A

(k)
ij (t)

N2
k (t)× Pout(t)

, with Pout(t) =

∑N
i,j=1Aij(t)−

∑Nk(t)
i,j=1 A

(k)
ij (t)

N2 −
∑K−1

k=0 N
2
k (t)

(2.7)

where Nk(t) is the size of community k ∈ {0, · · · , K−1} at time t and A
(k)
ij (t) denotes

the edge weight between nodes i and j in community k at time t. Intuitively speaking,

the relative polarization of community k is the ratio between the average connection

strength within community k and the average strength between all communities.

Figure 2.6: (a): Left panel, community membership based on each individual L(t).
(b): Middle panel, community membership based on averaged Lm of the
4 stable periods. (c): Right panel, relative polarization of communities
based on Lm across time.

The relative polarization of each community consistently increased during the first

stable time period, while in the following stable time periods this pattern reversed,

which indicates that the intracommunity synchronization process within each commu-

nity is dominant in early stages, while in the later stable periods the inter-community

synchronization process becomes more important.

In the second experimental setting, we investigate the synchronization process of

the Kuramoto model generated network, exhibiting hierarchical structure. Specifi-
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cally, each network comprises of 256 nodes (oscillators) evolving across T = 100 time

points. The coupling strength is κ = 0.25, time step for synchronization over the

whole time range is τ = 0.1, and the adjacency matrices are obtained based on an

average over 40 different initial random phases. In the whole range, the community

structure is fixed, and the support coupling matrices are designed as follows: there

are 16 equally sized first level communities, and 4 equally sized second level commu-

nities. For each node, there are exactly 15 connections with nodes in the first level

community, 3 in second level (outside the first level) and 1 with nodes outside both

levels. This hierarchical structure corresponds to 16 tightly coupled communities that

are also organized in 4 more loosely coupled ones. Hence, the presence of this hier-

archical structure makes the identification of phase transition epochs, as well as the

community structures a challenging problem.
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Figure 2.7: (a): Upper left panel, rank of recovered L(t) across time. (b): Upper mid-
dle panel, thresholded rank of windows of length 2 around the first possible
phase transition epoch for L(t). (c): Upper right panel, thresholded rank
of windows of size 2 over the whole time range for E(t). (d): Middle
left panel, community membership based on individual L(t). (e): Middle
middle panel, community membership based on averaged L for t ≥ 16.
(f): Middle right panel, relative polarization of communities based on L
over time. (g): Lower left panel, community membership based on indi-
vidual E(t). (h): Lower middle panel, community membership based on
averaged E for t ≥ 16. (i): Lower right panel, relative polarization of
communities based on E over time.

First, we find the optimal α = 0.35, based on which the the rank of recovered L(t)

is depicted in Figiure 2.7(a). What is interesting is that the dense noise component

E(t) actually captures the first level community structure, as can be seen from the

results base on window scanning of length 2 in Figure 2.7(c). A first sight on 2.7(b),

the thresholded rank of averaged L(t) of window length 2 might indicate a phase

transition around t = 16, but a closer look will show that there is no community

structure in the first stable period since the thresholded rank is 1. Therefore, we try
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to recover community structure based on the thresholded rank at time t ≥ 16 for

both L(t) and E(t) in the whole time range. Not surprisingly, based on (d) and (g)

of Figure 2.7 neither the first level nor the second level community structure forms

concretely until approximately time t = 20 when the community memberships based

on L(t) and E(t) start to match those based on L and E.

2.2.3 Application to U.S. Senate Roll Call Voting Data

A topic of great interest in the political science literature is that of polarization,

as well as understanding formation of coalitions (groups) over time of members of

legislative bodies. Selected prior work includes the work in [106] that analyzed roll

call data of the US Congress from 1879 to 1987 (both for the House of Representatives

and the Senate), defined a distance measure between the two political parties and

calculated its evolution over the corresponding 90-year period. More recently, [89,

87] examined roll call data from the US Senate for the period 1979 to 2012 and

used a community modularity quality function to study the issue of polarization.

Their key finding is that modularity exhibits a sharp change around early 1995, with

members of the two parties drifting apart in their voting pattern. In an attempt

to go beyond exploratory analysis, [111] developed a formal estimation framework

for the presence of a single change point (phase transition) based on probabilistic

graphical models and confirmed the main finding in [89, 87]. Other related findings

regarding the time evolving community structures of legislative bodies can be found

in [26] based on US Senate roll call data and using synchronization methods, and in

[69] that examined legislation bill co-sponsorship networks of the Peruvian Congress

and successfully captured the power shifts during the 2006-2011 period using time

dependent community detection based on multilayer modularity maximization.

Before discussing the results, we briefly present the necessary data preprocessing

steps undertaken. We examine all roll call votes of the US Senate from the 96th to the
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113th Congress, covering the period 1979-2014. The nodes of the network represent

a specific Senate seat for each state and we mapped the voting records of individual

Senators over time to the corresponding seats, ensuring continuity of the voting record

for each seat. For each Congress, the adjacency matrix is constructed element-wise as

follows: Aij = 1
Sij

∑K
k=1 c

(k)
ij , where Sij is the total number of votes that both senators

i and j participated in, K is the total number of votes that particular Congress

undertook and c
(k)
ij = 1 if they voted the same way and 0, otherwise. The reason we

consider the time-evolving roll call voting record network at the Congress time-scale

is that election times that occur every two years wherein 1/3 of the Senate members

are up for election represent the main external events that can induce changes in the

network composition, including its community structure.

Based on the strategy discussed for selection of tuning parameters, we identify

the optimal α = 0.4 (γ = 1√
N

= 0.1), based on which, we obtain the time dependent

rank of L(t) and thresholded rank of the averaged L(t) over windows of length 2, as

shown in panels (a) and (b) of Figure 2.8. Based on the above results, we conclude

that there is a phase transition that occurs in late 1992, when Congress 102 ended its

tenure and 103 started its. Further, the identified phase transition occurs a bit earlier

(end of 1992) than the one mentioned in [87, 111] (end of 1994). Note that the time

dependent rank indicates three communities before the phase transition in late 1992,

that correspond to the core Democrat Senate members, the core Republican ones,

while the third one includes Senators exhibiting a higher degree of bipartisanship. For

the stable period after 1993, the network structure coalesces to two core communities

corresponding to the two parties. On the other hand, the averaged across Congresses

community structure shows four communities before 1992, that can be categorized as

the core Democrats, core Republicans, voting Democrat (most of the time) and voting

Republican (most of the time), while the latter two coalesce to a weakly connected

community that exhibits some degree of bipartisanship after 1993.
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To obtain further insights from this analysis, we also compute for each node i

the sample standard deviation of its connections with the other nodes for all votes

undertaken during the tenure of a Congress and call it variation, which represents

the polarity of the node:

Vi(t) :=

√√√√ 1

N − 1

N∑
j=1

[
Aij(t)−

1

N

N∑
k=1

Aik(t)
]2

(2.8)

Hence, higher values of Vi indicate stronger agreement with the party vote, while lower

values indicate a more bipartisan attitude for the node, since on certain votes they

follow the party line and on other ones cross the aisle and follow with their political

opponents. Hence, the community structure across all Congresses (before and after

the phase transition point identified) are 3 communities. From panels (c) and (d) in

Figure 2.8, we can see clearly that the recovered time dependent community structure

accurately coincides with the time dependent variation structure in terms of outliers.
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Figure 2.8: (a): Upper left panel, rank of recovered L(t) across time. (b): Upper right
panel, thresholded rank of windows of size 2 around the phase transition
epoch. (c): Lower left panel, variation of each node across Congresses.
(d): Lower right panel, community membership based on individual L(t)
across Congresses.

Further, we plot in Figure 2.9 the time dependent size and relative polarization

(introduced in equation 2.7) for the community structure obtained based on individual

low-rank matrices L(t), as well as that obtained from the two averaged L for the before

1992 and after 1993 periods. For community structure based on individual L(t), it

can be seen that the size of the non-core community (the one exhibiting a bipartisan

voting record) diminishes over time, while the relative polarization of all the three

communities becomes higher. It is also worth noting that the relative polarization

of the third community significantly increased and approached that of the other two

over time. However, this result should not be over-interpreted, since the size of the

latter community shrunk over time (note the variation of the respective nodes is still

small (Figure 2.8(c)) because of the small community size). On the other hand, the

polarization of the third community recovered based on L is consistently low. For the
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first stable period, this indicates the success in capturing the core communities by the

first two identified in the low-rank component, while for the second stable period, it

is because the third community includes members from both the polarized D and R

parties in each network snapshot, which induces the same amount of inter-community

links as the intra-community ones, thus leading to low polarization. This is consistent

with the results shown in Figure 2.4, where C3 for the second stable period captures

mainly the party flipping seats as further elaborated on in the ensuing discussion.

Figure 2.9: (a): Left panel, size of the three communities based on individual L(t)
across Congress. (b): Middle panel, relative polarization of the three
communities based on individual L(t) across Congress. (c): Right panel,
relative polarization of the three communities based on the averaged Lm
for the two stable periods.

To further understand the community structure, in each stable period we manually

assign party affiliations to each node by counting the ratio of each party affiliation by

the following criteria. Denoting Republican Senators by R and Democrats by D, we

assign nodes to these labels if over 75% of the time the corresponding party affiliation

is R (D), otherwise we assign to a so-called mixed M party. The mixed party indicates

that the corresponding Senate seat flips between parties over time, while the core D/R

seats are stably held by one party over time. Table 2.4 provides a correspondence

between party affiliations (D, R, and M) and the identified communities (C1, C2,

and C3) based on averaged L for the two stable periods that cover Congress 96-102

and Congress 103-113, respectively. For each of the two stable periods, C1 captures

the core “Democratic Party” seats, C2 captures the core “Republican Party” seats,

and C3 captures the “Outliers”, in terms of voting similarities.
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Table 2.4: Misclassification Table

Party
Congress 96-102 Congress 103-113
C1 C2 C3 C1 C2 C3

D 29 0 10 33 0 1
R 0 29 10 0 29 3
M 3 0 19 4 4 26

It is expected that nodes in the M party should be clustered in the third commu-

nity (C3), which is consistent with the results in Table 2.4. Further, for both time

ranges C1 basically captures the core members of D while C2 captures those of R.

An interesting pattern that the analysis identifies is that almost all members of C3 for

Congress 103-113 come from M , i.e. party flipping, while for Congress 96-102, more

than half come from the two parties. This result agrees with what is shown in Figure

2.9(a): namely, there are fewer outliers in Congress 103-113 compared to the previous

time range. Finally, to gain further insights of where the third non-core community

is more predominant, as shown in Figure 2.10, we translate the results and findings

of our analysis by laying them out on the US map, using the following notation for

party identification purposes, which is in agreement with recent historical trends in

the composition of Congress: Strong D for C1, Weak D for D ∩ C3, Strong R for

C2, Weak R for R ∩ C3 and Party F lip for M ∩ C3. Intuitively speaking, in each

stable period, Strong D(R) represents those seats that consistently exhibit strong

alignment with the core party members in D(R) in their voting behavior throughout

the stable time period, even though some of the seats may not be stably held by the

corresponding party (e.g. M ∩ C1(C2)). Further, Weak D(R) indicates seats that

consistently display bipartisan trends in voting behavior throughout the stable period

although they are stably held by the D(R) party, and finally Party F lip represents

those seats that, averaged over the stable time period, display bipartisan attitude,

but mainly due to the fact that their holders lose the seat and are not re-elected

(hence, the party flipping label).
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Figure 2.10: Clustering results based on averaged Lm over the two stable periods.
(a): Upper panel, Congress 96-102. (b): Lower panel, Congress 103-113.

Concluding Remarks: The proposed methodology encompasses a number of

network formation models that give rise to network community structure. As il-

lustrated on a number of synthetic and real data examples, it is highly capable of

identifying phase transition epochs, estimate accurately the number of communities

and their membership. It is further computationally scalable, since obtaining the
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decomposition of the network adjacency matrices at each time point is a highly par-

allelizable step. Hence, the main computational bottleneck stems from the Singular

Value Decomposition in obtaining the low-rank components L(t).

Further, note that the model can be further generalized and does not require a

fixed low-rank component between phase transition epochs. The key requirement is

that the community membership remains fixed as demonstrated through fixed rank,

while the strength of their connections can fluctuate, as long as their average strengths

over the length of the stable interval converges quickly. Hence, the proposed method-

ology would still be able to identify the transition epochs and extract the stable com-

munity structure provided that the length of the corresponding stable time intervals

is adequate.

Finally, it would be of interest to couple the proposed strategy of identifying

transition epochs, with more formal methods in change point analysis that come with

statistical guarantees, as briefly outlined earlier on. One possibility is to extract the

top eigenvectors from the adjacency matrices and then consider them as a multivariate

time series. A possible challenge that requires careful study comes from the impact

that the sparse and dense noise components considered may have on the extracted

eigenvectors.
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CHAPTER III

A Susceptible-Informed-Immunized (SIM) model

with applications to information diffusion on

networks

3.1 Introduction

The modeling and analysis of information diffusion mechanisms on networks,

which encompasses a wide class of social spreading phenomena such as rumor and

news propagation, adoption of technological innovations, and product advertisement

by word of mouth, has attracted attention from various research communities, includ-

ing physics, computer science and the social sciences [21, 129, 28, 132, 6, 90, 50, 61],

due to its important applications in many fields, such as marketing, disease control

and economics [86, 129, 88, 65, 49, 61]. A number of modeling formalisms have been

used, appropriately modified, for the task at hand; two of the most popular ones

are threshold models and independent interaction models [21, 31]. Threshold models

that encompass the cascade, the linear threshold and popular vote models, as well as

game theoretic approaches, assume that the diffusion occurs to a new node on the

network when a certain proportion of neighbors that has already adopted the infor-

mation exceeds a prespecified threshold [61, 88, 49, 132]. Another popular mechanism

adopts the formalism of disease transmission processes and hence information diffu-
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sion is treated as an epidemic process. Popular models for infectious disease spreading

include the Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Removed

(SIR) ones [33, 105, 129, 123, 86, 65]. Both these models belong to the class of

independent interaction models that assume successive trials of infection/diffusion

between two nodes are independent with the same probability p of success. There are

a number of approaches to analyze these models and address questions such as the

percentage of nodes being infected by a certain time point, including mean field the-

ory and under certain conditions the SIR model can be mapped to bond percolation

theory whose roots come from statistical physics [9, 113, 129, 47, 12, 16, 93, 95, 58].

Next, we elaborate on the mechanics of the SIR model. In this model, nodes

in a network of size N are classified into three states: S for Susceptible, I for In-

fected/Infectious, and R for Removed/Recovered. The simplest version of the model

assumes that nodes in state I would infect any of their neighbors in state S with

probability β per unit time and will be removed or recover from state I to R with

probability γ per unit time. Hence, a homogeneous rate of disease transmission

between infectious and susceptible nodes is considered, which holds for unweighted

networks [33, 105, 93]. By defining the expected transmissibility as the total proba-

bility of a susceptible node getting infected from a infectious neighbor and allowing

the system to evolve over an infinite time horizon, then the former is given in the

discrete time case,

T =
∞∑
t=1

(1− β)t−1β(1− γ)t−1 =
β

β + γ − βγ
(3.1)

where it is assumed that the infection process precedes the removal/recovery process.

Analogously, in the continuous time case, we obtain

T =

∫ ∞
0

e−βtβe−γtdt =
β

β + γ
(3.2)
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which is a constant independent of the node from which the infection originates

and leverages results in bond percolation theory. Specifically, in percolation theory,

one is normally interested in two characteristics of the infection process: the size of

the epidemic s, defined as the expected proportion of the network nodes being in-

formed/infected at large times (as time grows to infinity), and the epidemic threshold

TC , defined as the minimum transmissibility T that can generate an epidemic; i.e.,

at very large times, the number of informed/infected nodes sN reaches the order

O(N) before dying out as the size of the network N →∞. The threshold TC can be

obtained from the perspective of the reproduction number R0 in the following way: if

we denote qk as the excess degree (total degree -1) distribution of a neighbor reached

by a randomly chosen edge, we have [95]:

R0 = T
∞∑
k=0

kqk = T
∞∑
k=0

k
(k + 1)pk+1

〈k〉
= T
〈k2〉 − 〈k〉
〈k〉

(3.3)

In order to have an epidemic, we need to ensure R0 > 1, and therefore we have the

transmissibility threshold TC = 〈k〉
〈k2〉−〈k〉 , where 〈k〉 and 〈k2〉 are the first and second

moments of k.

To find the epidemic size s, we define u as the average probability of a node being

not connected to the giant component (GC, cluster of connected nodes of size O(N)

as N →∞) via a randomly chosen edge. There are two ways for this event to ocur,

either the edge is removed or the edge is intact but the neighbor following that edge

is not connected to the GC via any of its excess edges. Denote s as the expected

proportion of nodes in the network captured by the GC, one has[95]:

u = 1− T + T

∞∑
k=0

qku
k (3.4)

s = 1−
∞∑
k=0

pku
k (3.5)
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Once we have the solution of u for Eq. 3.4 we can plug in to Eq. 3.5 and get the

expected infection size s.

However, mechanisms of information diffusion can be quite different from the

epidemic process since as pointed out in [27] the information diffusion process usually

slows down over time because of the reluctance to tell stale news from the spreaders’

point of view. Intuitively speaking, a piece of news/information from some time ago

would be very unlikely mentioned today, while a disease outburst years ago would

tend to infect a susceptible person equally easily today. Therefore, we can see that in

general information diffusion process, the information often possesses intrinsic time

value and thus it is not very appropriate to directly apply models such as SIR in

epidemic process to the diffusion process. In order to address this problem, a lot

of proposals in the literature have appeared, including the DK model proposed by

Daley and Kendall in the year 1965 and the Maki-Thompson model proposed by

Maki and Thompson in the year 1973, of which the former has gained significant

popularity and has been very well studied [27, 119, 91, 78]. In the DK model, similar

to the three states classification in SIR, the nodes are classified into three exclusive,

but exhaustive classes: ignorants, spreaders and stiflers corresponding to S, I and R

states in the SIR model and similarly we use s, i, r to represent the proportion of nodes

in the three states. Instead of being proportional to i(t), the DK model assumes that

the removal/recovery rate of i(t) is proportional to i(t)[i(t) + r(t)], which takes into

consideration the effect of “the losing value of news” when reaching a node already

aware of it (i(t) or r(t)) from the spreaders’ perspective. In this way, we are effectively

setting the recovery rate to be time dependent γ(t) ∼ γ[i(t) + r(t)].

One limitation of this model is that it does not capture the behavior of the “igno-

rant” actors/nodes. For example, in online news propagation, due to the competition

for attention from new story lines, a news cycle arises because both spreaders and

“ignorant” actors in the population tend to focus on more recent and dominant news
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stories/topics [72]. Similarly, in rumor spreading, reluctance to tell stale news is co-

existent with reluctance to listen to stale news indicating that the “ignorant” actors

are not interested in talking about topics involving old news. Another example is

in viral marketing where it is the customers who lose interest in adopting product

as time goes by instead of the the recommenders/advertisements losing interest[71].

To address this issue, we introduce an alternative mechanism coined Susceptible-

Informed-Immunized (SIM) model to capture the intrinsic time value of information

from the perspectives of both the ignorant nodes and spreaders and provide a rigorous

analysis of their behavior.

In the SIM model, we assume a constant infection/diffusion rate β, but let both

the spreaders and ignorants go through an immunization process with rate γ. In this

manner, the “losing interest” process is represented by the process of immunization

that excludes those nodes from any further diffusion and thus the standard SI process

would evolve on the residual network, defined as the network containing all nodes not

immunized up to time t and their corresponding connections. This model successfully

captures the time value property of information as follows: a certain node informed

at an early time t = τ1 exhibits better capacity of diffusing further the information to

the rest of the network compared to becoming informed at a later time t = τ2 > τ1,

because some of the susceptible neighbors (expected proportion 1 − (1 − γ)(τ2−τ1) ∼

1− e−γ(τ2−τ1)) have already being immunized.

The analysis of this model exhibits a number of technical challenges. Standard

arguments from percolation theory are no longer applicable -since the homogeneous

expected transmissibility T mechanism for each edge does not hold- and thus other

techniques are required. We employ a mean field (MF) approximation based on

collective macro effects, and also construct a Maximum Weight Tree (MWT) based

approximation that leverages individual micro dynamics to achieve our objective.

The remainder of the paper is organized as follows: in Section 3.2, we consider both
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homogeneous and heterogeneous versions of MF and compare the results of these

approximations to those obtained from Monte Carlo (MC) simulation on a number of

experimental settings. In section 3.3.1, we derive an analytical formula for the total

probability of getting informed for each node in the network depending on its path to

the “seed node”, defined as the node informed at the initial stage. Subsequently, we

construct a MWT to approximate the saturated total ratio of nodes getting informed

at large times. The agreement between the MWT approximation and MC simulation

results increases markedly, for sparser network topologies.

3.2 Mean Field Approximation

3.2.1 Homogeneous Mean Field Approximation

To facilitate the analysis for the general case, when the degree distribution is taken

into consideration, we fist consider the homogeneous mean field (HMF) approximation

where we assume all nodes are statistically equivalent with the same degree 〈k〉 [12, 9].

For the purpose of simplifying the statement of the main results, in the following we

restrict ourselves on the residual network, except when otherwise stated. At time t,

the expected number of susceptible nodes with degree m(≤ 〈k〉) is

Sm(t) =

(
〈k〉
m

)
αmt (1− αt)〈k〉−mS(t) (3.2.1.1)

which represents the case when exactly m out of 〈k〉 neighbors survived the immu-

nization process. Here S(t) is the total number of susceptible nodes, and αt = e−γt

is the survival probability of the immunization process. If we denote Im(t) as the
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number of informed nodes with degree m at time t, we have,

dIm(t) =Sm(t)
[
1− (1− βdt)mΘm(t)

]
− γIm(t)dt

dt→0
= Sm(t)βmΘm(t)dt− γIm(t)dt (3.2.1.2)

where Θm(t) is the probability of reaching an informed neighbor starting from an

arbitrary edge of a susceptible node of degree m at time t. The expected total

number of stubs (half edges) in the residual network is αtNαt〈k〉, where N is the

number of nodes in the original network, because the expected number of nodes in

the residual network is αtN and the expected degree of nodes is αt〈k〉. Similarly, the

expected number of stubs from seed nodes is αtI(0)αt〈k〉, where I(0) is the number

of seed nodes. The expected number of newly informed nodes is I(t)−αtI(0), where

I(t) is the total number of informed nodes in the residual network. If we examine

these newly informed nodes on the original network, then each one of them has one

edge connecting to another informed node from which it received the information.

Then on the residual network, the survival probability of a node that transmitted the

information to a newly informed node with degree m is approximately φm(t) ≈ m/〈k〉,

if we assume that the diffusion event occurs early enough such that its probability

of survival is approximately the same as that of the other neighbors. Therefore, the

expected number of stubs available for connection from the newly informed nodes of

degree m is [I(t)− αtI(0)]
(〈k〉
m

)
αmt (1− αt)〈k〉−m[m− φm(t)]. Thus,

Θm(t) =

∑〈k〉
m=1

[
I(t)− αtI(0)

](〈k〉
m

)
αmt (1− αt)〈k〉−m[m− φm(t)] + αtI(0)αt〈k〉

αtNαt〈k〉

≈
[
I(t)− αtI(0)

]
(αt〈k〉 − αt) + αtI(0)αt〈k〉
αtNαt〈k〉

=
I(t)(〈k〉 − δt)
αtN〈k〉

(3.2.1.3)

where δt = 1 − αtI(0)/I(t) is represented as a function of time instead of simply

been set as 0 or 1 as is normally done in the literatures[129, 12, 9]. This correction
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significantly improves the agreement between MF and the MC results, as shown later

on. For the total number of informed nodes, we then get

dI(t) =
∑〈k〉

m=0
dIm(t) =

∑〈k〉

m=0
Sm(t)βmΘm(t)dt−

∑〈k〉

m=0
γIm(t)dt

=
∑〈k〉

m=0

(
〈k〉
m

)
αmt (1− αt)〈k〉−mS(t)βmΘm(t)dt− γI(t)dt

= S(t)β
I(t)

N
(〈k〉 − δt)dt− γI(t)dt (3.2.1.4)

If we set ρ(t) = I(t)/N , s(t) = S(t)/N and r(t) = R(t)/N = 1 − ρ(t) − s(t), where

R(t) is the total number of nodes immunized by time t, we would have the following

ordinary differential equations (ODE) governing the evolution of the system,

ρ̇(t) = s(t)ρ(t)β(〈k〉 − δt)− γρ(t)

ṡ(t) = −s(t)ρ(t)β(〈k〉 − δt)− γs(t)

ṙ(t) = γ
[
ρ(t) + s(t)

]
= γ

[
1− r(t)

]
(3.2.1.5)

After solving for r(t) = 1− e−γt directly, we obtain,

ρ̇(t) =
[
e−γt − ρ(t)

]
ρ(t)β(〈k〉 − δt)− γρ(t) (3.2.1.6)

Note that ρ(t) represents the proportion of nodes informed and currently active in

the residual network, and to find the total proportion of nodes q(t) ever informed up

to time t, we observe that within an infinitesimal time interval [t, t+ dt], the change

of ρ(t) comprises two components. The first are the newly informed nodes, while

the other are the immunized ones. For q(t) only the first component contributes and

therefore,

dq(t) = dρ(t) + γρ(t)dt⇒ q̇(t) =
[
e−γt − ρ(t)

]
ρ(t)β(〈k〉 − δt) (3.2.1.7)
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Equations 3.2.1.6 and 3.2.1.7 can be combined and solved numerically.

To study the early stage evolution, we start with a small ρ(0), such that we

can safely ignore the terms of order O(ρ2(t)) when t → 0, and for simplifying the

calculation, we set δt = 1 as commonly done in the literature. Then,

ρ̇(t) = e−γtρ(t)β(〈k〉 − 1)− γρ(t) (3.2.1.8)

⇒ ρ(t) = ρ(0)exp
[β
γ

(〈k〉 − 1)(1− e−γt) − γt
]
≈ ρ(0)exp

{[
β(〈k〉 − 1)− γ

]
t
}

(3.2.1.9)

where we have used the approximation e−γt ≈ 1− γt. To reach an epidemic, we need

to ensure a positive exponent, and thus (β/γ)ρ >
1

〈k〉−1
. As for the phase transition

time point for ρ(t), defined as the time that the number of informed nodes active in

the residual network first starts to decrease, following Eq. 3.2.1.8 we obtain

ρ̇(τ) = 0⇒τ =
1

γ
log
[β
γ

(〈k〉 − 1)
]

(3.2.1.10)

Similarly, the phase transition time point for q(t), defined as the time that the growth

in the total number of nodes ever informed first starts to decrease, following equations

3.2.1.7 and 3.2.1.8 and ignoring O(ρ2(t)) terms,

q̈(t) = e−γt
[
ρ̇(t)− γρ(t)

]
β(〈k〉 − 1) = e−γt

[
e−γtβ(〈k〉 − 1)− 2γ

]
ρ(t)β(〈k〉 − 1)

(3.2.1.11)

Therefore, the phase transition time point for q(t) is

τq =
1

γ
log
[ β
2γ

(〈k〉 − 1)
]

(3.2.1.12)

while the corresponding epidemic threshold is (β/γ)q >
2

〈k〉−1
.

A possible application of the phase transition time point in marketing is that it
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provides of marketeers when to stop or decrease spending on advertisement since the

marginal profit (e.g. the marginal diffusion size minus the expenditures on advertising

per unit time) starts to decrease. This is consistent with results from the literature in

the field of dynamic optimal advertising control in marketing, where expenditures on

advertising are expected to be time dependent and shall be terminated after certain

conditions are met in some models[114, 56].

As stated before, for simplicity we set δt = 1 as is normally done in the literature,

which results in inaccurate estimations. To improve the approximation, we next set

δt = δ0 = 0 and following equation 3.2.1.9 we obtain ρ(t) ≈ ρ(0)exp
{[
β〈k〉 − γ

]
t
}
⇒

δt ≈ 1 − e−β〈k〉t. Then, plugging back into equation 3.2.1.6, and ignoring the order

O(ρ2(t)) terms, and solve to get

ρ̇(t) =
[
e−γt − ρ(0)e(β〈k〉−γ)t

]
ρ(t)β

[
〈k〉 − 1 + e−β〈k〉t

]
− γρ(t)⇒ ρ(t) = ρ(0)ef1(t)−f2(t)

f1(t) =
β

γ
(〈k〉 − 1)(1− e−γt) − γt+

β

γ + β〈k〉
[
1− e−(γ+β〈k〉)t]

f2(t) = ρ(0)β
[ 〈k〉 − 1

β〈k〉 − γ
[
e(β〈k〉−γ)t − 1

]
+

1− e−γt

γ

]
(3.2.1.13)

where we have assumed β/γ > 1/〈k〉. Then, the phase transition time point τ is

given by the solution of the equation,

ρ̇(t) = 0⇒
[
e−γt − ρ(0)e(β〈k〉−γ)t

]
β
[
〈k〉 − 1 + e−β〈k〉t

]
− γ = 0 (3.2.1.14)

while the epidemic threshold is calculated from t = 0:
[
1 − ρ(0)

]
β/γ ∼ (β/γ)ρ >

1/〈k〉. Similarly, τq can be obtained from the root of the equation

q̈(t) = 0⇒
[
e−γt − ρ(0)e(β〈k〉−γ)t

]
β
[
〈k〉 − 1 + e−β〈k〉t

]
− 2γ = 0 (3.2.1.15)

It follows the epidemic threshold for q(t) is (β/γ)q > 2/〈k〉. Equations 3.2.1.14

and 3.2.1.15 can be solved numerically by standard root finding algorithms such as
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Newton’s method or the bisection method. Following bond percolation theory in

the analysis of the SIR epidemic threshold, to reach an epidemic, the reproduction

number originating from a newly informed node should be greater than 1. Therefore,

to find the epidemic threshold we need to set δt = 1 and thus (β/γ)ρ >
1

〈k〉−1
and

(β/γ)q >
2

〈k〉−1
. As will be shown in the following experiments, the superiority of

incorporating δt = 1 − αtρ(0)/ρ(t) in the analysis instead of simply setting δt = 1 is

that it results in better agreements between the MF with the MC results.

Performance Evaluation of the Homogeneous MF Approximation: We compare the

MC simulation results with the theoretical ones obtained from the derived MF ap-

proximation. The networks are generated such that their size is N = 5000 and the

degree of each node follows a Poisson distribution of rate λ: k
iid∼ Pois(λ). Results in

each of the settings are averaged over 103 realizations. As is well known, the accuracy

of the MF approximation depends on the saturated infection/informed ratio [47], so

we control the parameters β, γ for each case to ensure that the saturated ratios are all

approximately q(∞) ∼ 0.5 for being able to make comparisons across experimental

settings. Figure 3.1 depicts the results for λ = 5, 10, 25 representing sparse, medium

and dense networks. In the settings considered, the agreement between the MC sim-

ulation estimates and the numerical solution to the ODEs for both ρ(t) and q(t) is

very good for denser networks, that correspond to higher average excess degrees [47].
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Figure 3.1: From left to right: (a-c), λ = 5, 10, 25. Time dependent diffusion ratio for
both ρ(t) and q(t) based on MC simulation and the numerical solution of
ODE equations for networks of different densities. ODE stands for the
numerical solution of equations 3.2.1.6 and 3.2.1.7 and MC stands for MC
simulation. ρ(0) = 2% for all cases.

Next, we investigate the early stage evolution by comparing the MC simulation

with the analytical solutions 3.2.1.9 and 3.2.1.13, as is shown in Figure 3.2. The latter,

after incorporating δt, shows a higher degree of concordance with the MC simulated

results in the whole range of network densities, while for the former the agreement

with MC simulation improves for denser networks, which is expected, since higher

〈k〉 would screen out the correction effect of the factor δt.

Figure 3.2: From left to right: (a-c), λ = 3, 5, 10. Early stage evolution of the diffu-
sion ratio with comparison between MC simulation and analytical results
for networks of different densities. Theory Improved stands for equation
3.2.1.13, and Theory for equation 3.2.1.9. For all the cases, ρ(0) = 0.2%

Finally, we investigate the phase transition time points τ under different combina-

tions of β and γ, and, as is shown in Figure 3.3, we see much better agreement with

MC after incorporating δt. For illustration purposes, we also include the diffusion

63



ratio q(∞) under the same settings.

Figure 3.3: From left to right: (a), τ for ρ(t); (b) τ for q(t); (c) Total diffusion ratio
q(∞). Phase transition time points for both ρ(t) and q(t) with random
network parameter λ = 5 and the initial ratio of seed nodes ρ(0) = 0.1%.
Also included is the diffusion ratio for different values of β/γ. Theory
improved stands for equations 3.2.1.14 and 3.2.1.15, and Theory stands
for equations 3.2.1.10 and 3.2.1.12. For visual guidance, we include a
black vertical line located at 1/〈k〉 in (a) and 2/〈k〉 in (b-c).

3.2.2 Heterogeneous Mean Field Approximation

For most applications of information diffusion, the assumption of homogeneous

degree distribution of nodes is rather restrictive. Therefore, in the following, we

take into consideration of the degree distribution and employ a heterogeneous MF

approximation. We classify nodes into groups based on degrees in the original network

and we assume that nodes within the same group would behave equivalently in the

statistical sense. First, we constrain ourselves within the group of nodes with degree

k on the original network; then, at time t the expected number of susceptible nodes

with degree m(≤ k) from this group in the residual network is,

S(k)
m (t) =

(
k

m

)
αmt (1− αt)k−mSk(t) (3.2.2.1)

where Sk(t) is the total number of susceptible nodes in the residual network coming

from the group k and αt = e−γt is the survival probability of the immunization

process. Similarly, if we denote I
(k)
m (t) as the total number of informed nodes with
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degree m and Ik(t) as the total number of informed nodes on the residual network

that comes from the group k, we get,

dI(k)
m (t) = S(k)

m (t)
[
1− (1− βdt)mΘ

(k)
m (t)

]
− γI(k)

m (t)dt

dt→0
= S(k)

m (t)βmΘ(k)
m (t)dt− γI(k)

m (t)dt (3.2.2.2)

where Θ
(k)
m (t) is the probability of reaching an informed neighbor following an arbi-

trary edge of a susceptible node with degree m on the residual network that comes

from the group k. To simplify calculations, we assume that the degrees across groups

are not correlated, which is the case for networks generated by some popular random

graph models [33]. Then, Θ
(k)
m (t) can be calculated independent of k and this con-

straint of no degree degree correlation can be easily relaxed[12, 113]. Following the

argument in homogeneous MF case, and considering the contribution from nodes of

all possible degrees we have,

Θ(t) =

∑N−1
k′=1

{∑k′

m=1

[
Ik′(t)− αtIk′(0)

](
k′

m

)
αmt (1− αt)k

′−m(m− φ(k′)
m (t)) + αtIk′(0)αtk

′
}

∑N−1
k′=1 αtNk′αtk′

≈

∑N−1
k′=1

{[
Ik′(t)− αtIk′(0)

]
(αtk

′ − αt) + αtIk′(0)αtk
′
}

∑N−1
k′=1 αtNk′αtk′

=

∑N−1
k′=1 Ik′(t)[k

′ − δk′(t)]∑N−1
k′=1 αtNk′k′

=
1

αt〈k〉
∑N−1

k′=1
[k′ − δk′(t)]ρk′(t)P (k′) (3.2.2.3)

where P (k) is the probability of a node with degree k on the original network, Nk =

NP (k), 〈k〉 =
∑N−1

k=1 P (k)k is the mean degree, ρk′(t) = Ik′(t)/Nk′ , δk′(t) = 1 −

αtρk′(0)/ρk′(t), and similar to homogeneous MF case, we assumed that approximately
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φ
(k′)
m (t) ≈ m/k′. Thus,

dIk(t) =
∑k

m=0
dI(k)

m (t) =
∑k

m=0

[
S(k)
m (t)βmΘ(k)

m (t)dt− γI(k)
m (t)dt

]
=
∑k

m=0

(
k

m

)
αmt (1− αt)k−mSk(t)βmΘ(k)

m (t)dt−
∑k

m=0
γI(k)

m (t)dt

= Sk(t)βαtkΘ(t)dt− γIk(t)dt (3.2.2.4)

In the following, we denote by sk(t) = Sk(t)/Nk, rk(t) = Rk(t)/Nk, and qk(t) =

Qk(t)/Nk, where Rk(t) is the total number of nodes immunized and Qk(t) is the total

number of nodes ever informed that come from group k in the original network up to

time t . We then obtain the following set of ODE equations,

ρ̇k(t) = sk(t)βαtkΘ(t)− γρk(t)

ṡk(t) = −sk(t)βαtkΘ(t)− γsk(t)

ṙk(t) = γ[ρk(t) + sk(t)] = γ[1− rk(t)]

q̇k(t) = ρ̇k(t) + γρk(t) = sk(t)βαtkΘ(t) (3.2.2.5)

Plugging in equation 3.2.2.3 and the solution rk(t) = 1− αt, we get,

ρ̇k(t) =
1

〈k〉
[αt − ρk(t)]βk

∑N−1

k′=1
[k′ − δk′(t)]ρk′(t)P (k′)− γρk(t) (3.2.2.6)

Similarly, equations 3.2.2.5 and 3.2.2.6 can be combined and solved numerically for

ρ(t) and q(t). To investigate the epidemic property of the system, we assume a

small ρ(0) such that it is reasonable to ignore the terms of order O(ρ2(t)) as t → 0.

Following the development in the homogeneous MF, we first set δk(t) = 1 to obtain

ρ̇k(t) =
βe−γt

〈k〉
∑N−1

k′=1
k(k′ − 1)ρk′(t)P (k′)− γρk(t) (3.2.2.7)
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Denote by ~ρ(t) =
(
ρ1(t), ρ2(t), · · · , ρN−1(t)

)T
and At =

[
βe−γt

〈k〉 i(j − 1)P (j) − γδij
]
∈

R(N−1)×(N−1), where δij = 1 if i = j and zero otherwise, then following equation

3.2.2.7, we get

~̇ρ(t) = At~ρ(t) (3.2.2.8)

If Aτ = A for τ ∈ [0, t] is a constant matrix, we have for equation 3.2.2.8 at time t a

general solution,

~ρ(t) =
∑N−1

i=1
Cie

λit~vi (3.2.2.9)

where λi and ~vi are the ith eigenvalue and the corresponding eigenvector of matrix A,

and Ci are constants determined by the initial condition of the system ~ρ(0) and the

system will reach an epidemic if at least one of the eigenvalues is positive, which can

be achieved by ensuring that the maximum eigenvalue of the matrix A is positive[113].

Since Aτ is time dependent only through the factor e−γτ , we can take advantage of

the above general solution by replacing e−γτ with a constant ξt, say ξt ≈ (1 + e−γt)/2,

to approximately capture its contribution. Denote by Aτ = βξt
〈k〉B − γI for τ ∈ [0, t],

where B =
[
i(j − 1)P (j)

]
∈ R(N−1)×(N−1) and I is an identity matrix of size N − 1.

It turns out that B has a unique eigenvalue λB = 〈k2〉 − 〈k〉 and the corresponding

eigenvector is ~vB = (1, 2, · · · , N − 1)T . This is because on the one hand, all the rows

of B are linearly dependent, indicating a unique eigenvalue for B, while on the other

hand, if plug in the above results, we can easily see B~vB = λB~vB. Correspondingly,

for A we have λA(t) = βξt
〈k〉

(
〈k2〉−〈k〉

)
−γ and ~vA = ~vB = (1, 2, · · · , N−1)T . Plugging

into equation 3.2.2.9, we get ~ρ(t) = CeλA(t)t~vA if the initial condition ρk(0) = Ck =
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ρ(0)k/〈k〉 is satisfied, as shown bellow by setting t = 0,

ρ(0)N =
∑N−1

k=1
ρk(0)Nk = C

∑N−1

k=1
kNk ⇒ C =

ρ(0)

〈k〉

Therefore, the solution for the whole system in early stages evolves according to,

ρ(t) =
∑N−1

k=1
P (k)ρk(t) ≈ ρ(0)exp

[(βξt
〈k〉
(
〈k2〉 − 〈k〉

)
− γ
)
t
]

(3.2.2.10)

It turns out we can remove the uncertainty in ξt in the following way. First, we notice

with proper initial conditions, ρk(t) ≈ ρk(0)eλA(t)t = ρ(0)k/〈k〉eλA(t)t and ρ(t) ≈

ρ(0)eλA(t)t. Then together with equation 3.2.2.7 we obtain,

ρ̇(t) =
∑N−1

k=1
ρ̇k(t)P (k)

=
∑N−1

k=1

{βe−γt
〈k〉

∑N−1

k′=1
k(k′ − 1)ρ(0)k′/〈k〉eλA(t)tP (k′)− γρk(t)

}
P (k)

=
βe−γt

〈k〉
∑N−1

k=1
P (k)k

∑N−1

k′=1
(k′ − 1)ρ(0)k′/〈k〉eλA(t)tP (k′)− γρ(t)

=
βe−γt

〈k〉
〈k〉ρ(t)

〈k2〉 − 〈k〉
〈k〉

− γρ(t) (3.2.2.11)

⇒ ρ(t) = ρ(0)exp
[β
γ

〈k2〉 − 〈k〉
〈k〉

(1− e−γt)− γt
]

(3.2.2.12)

So, as long as we treat Aτ as a constant matrix for τ ∈ [0, t] by replacing the factor

e−γτ with a constant ξt, and if we are given the initial condition ρk(0) = ρ(0)k/〈k〉,

then at the early stage, ρ(t) is approximately given by equation 3.2.2.12, independent

of how ξt is chosen. Similar to the homogeneous MF, we find for ρ(t) the phase

transition time point τρ = 1
γ
log
[
β
γ
〈k2〉−〈k〉
〈k〉

]
and epidemic threshold (β/γ)ρ >

〈k〉
〈k2〉−〈k〉 .

Similarly, for q(t) the phase transition time point is τq = 1
γ
log
[
β
2γ
〈k2〉−〈k〉
〈k〉

]
and epidemic

68



threshold is (β/γ)q >
2〈k〉

〈k2〉−〈k〉 since

q̇(t) = ρ̇(t) + γρ(t) =
β(〈k2〉 − 〈k〉)

〈k〉
e−γtρ(t)

⇒ q̈(t) =
β(〈k2〉 − 〈k〉)

〈k〉
e−γtρ(t)

[
βe−γt

〈k2〉 − 〈k〉
〈k〉

− 2γ
]

(3.2.2.13)

For comparison purposes, the phase transition time point τ ∗ρ based on equation

3.2.2.10 and assuming ξt = (1 + e−γt)/2 is given by

βξτ∗ρ
〈k〉

(
〈k2〉 − 〈k〉

)
− γ = 0⇒ τ ∗ρ =

1

γ
log
[ β

(
〈k2〉 − 〈k〉

)
2γ〈k〉 − β

(
〈k2〉 − 〈k〉

)] (3.2.2.14)

Following the homogeneous MF, to incorporate δk(t) we first set δk(t) = δk(0) =

0, then from equation 3.2.2.12 we have ρk(t) = ρk(0)e(β〈k2〉/〈k〉−γ)t ⇒ δk(t) = 1 −

αtρk(0)/ρk(t) = 1− e−β〈k2〉t/〈k〉, and plugging into equation 3.2.2.11 we get

ρ̇(t) = βe−γt
〈k2〉 − (1− e−β〈k2〉t/〈k〉)〈k〉

〈k〉
ρ(t)− γρ(t)

ρ(t) = ρ(0)exp
[β
γ

〈k2〉 − 〈k〉
〈k〉

(
1− e−γt

)
− γt+

β

γ + β〈k2〉/〈k〉
(
1− e−(γ+β〈k2〉t/〈k〉))]

(3.2.2.15)

Similarly, the epidemic threshold for both ρ and q should not change, but the phase

transition time points τ ′ρ for ρ and τ ′q for q are the solutions of the following equations,

βe−γτ
′
ρ

〈k〉

[
〈k2〉 − (1− e−β〈k2〉τ ′ρ/〈k〉)〈k〉

]
− γ = 0

βe−γτ
′
q

〈k〉

[
〈k2〉 − (1− e−β〈k2〉τ ′q/〈k〉)〈k〉

]
− 2γ = 0 (3.2.2.16)

Performance Evaluation of the Heterogeneous MF Approximation: Next, we compare

our theoretical results with those obtained from MC simulation. The networks are

generated as having scale free topologies of size N = 104, while their node degree dis-
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tribution follows a power law distribution P (k) ∼ k−λ, k ∈ {Kmin, · · · , N − 1} with

λ = 3.5. Further, we control the network heterogeneity, defined as 〈k2〉/〈k〉, by con-

trolling the minimum degree Kmin[9, 8]. In this case, 〈k〉 ≈ 5Kmin/3, 〈k2〉 ≈ 5K2
min

and therefore 〈k2〉/〈k〉 ≈ 3Kmin. Results in each of the settings are averaged over 103

realizations. First, we compare the saturated diffusion ratio from MC simulations,

with the numerical solution of equations 3.2.2.5 and 3.2.2.6 and following the hetero-

geneous MF approximation, we choose appropriate β and γ so that q(∞)→ 0.5. The

results are shown in Figure 3.4. For comparison purposes, we include the results for

both when ρk(0) = ρ(0)k/〈k〉 and ρk(0) = ρ(0). Similar to the homogeneous MF, we

observe better agreement for both cases as Kmin increases, corresponding to higher

average excess degree.

Figure 3.4: Left to right upper row: (a-c), Kmin = 5, 10, 15; Left to right lower row:
(d-f), Kmin = 5, 10, 15. Time dependent diffusion ratio for both ρ(t) and
q(t) based on MC simulation and numerical solution of ODE equations
for networks of different densities. For comparison, we include the results
for both when ρk(0) = ρ(0)k/〈k〉 in (a-c) and when ρk(0) = ρ(0) in (d-f)
with ρ(0) = 1%. ODE represents the numerical solution of equations
3.2.2.5 and 3.2.2.6

Next, we compare the analytical solutions at early stages (t → 0) for the case

ρk(0) = ρ(0)k/〈k〉 with those obtained from MC simulations as shown in Figure 3.5.
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We can see equations 3.2.2.10, 3.2.2.12 and 3.2.2.15 are very close to each other and

good agreement with MC simulation is achieved.

Figure 3.5: Left to right: (a-c), Kmin = 5, 10, 15. Early stage evolution of the diffusion
ratio and comparisons between the MC simulation and theoretical results
for networks of different densities with ρ(0) = 0.1%. Theory stands for
equation 3.2.2.10, Theory Improved I for equation 3.2.2.12 and Theory
Improved II for equation 3.2.2.15

Finally, we compare the phase transition time points, with results shown in Figure

3.6. We notice that the phase transition time points obtained based on equation

3.2.2.14 is so inaccurate such that τ ∗ρ →∞ when β/γ ≥ 0.3 while the other two agree

well with the MC results.

Figure 3.6: Left to right: (a), τ for ρ(t); (b), τ for q(t); (c), Total diffusion ratio
q(∞). Phase transition time points for both ρ(t) and q(t) based on net-
work parameter Kmin = 3 and initial ratio of seed nodes ρ(0) = 0.1%.
Also included is the total diffusion ratio ρ(∞) for different values of β/γ.
Theory stands for τ ∗ρ in equation 3.2.2.14, Theory Improved I stands for

τρ = 1
γ
log
[
β
γ
〈k2〉−〈k〉
〈k〉

]
and τq = 1

γ
log
[
β
2γ
〈k2〉−〈k〉
〈k〉

]
, and Theory Improved II

stands for equation 3.2.2.16. For visual guidance, we include black verti-
cal lines at location β/γ = 〈k〉/〈k2〉 for ρ(t) in (a) and β/γ = 2〈k〉/〈k2〉
for q(t) in (b-c).
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Remark : In the above derivation process, we made the assumption that we can

ignore all the terms of order O(ρ2(t)) at early stages. However, this may not hold for

some terms under our initial conditions, since for k → N we have ρk(t) ∼ ρ(0)k/〈k〉 ∼

O(1), which seems to make our analytical solution 3.2.2.10 invalid. Nevertheless, we

can show that this is not necessarily the case for some family of networks; a prominent

example is scale free networks, where the degree distribution follows P (k) = Ck−λ

for k ∈ {Kmin, · · · , N − 1}. For simplicity, in the following we assume that I(0) does

not scale up with N and therefore, ρ(0) ∼ O(1/N).

Firstly, if λ = 2 − ε, ε ∈ (0, 1), then C ≈ (1 − ε)K1−ε
min and 〈k〉 ∼ O(N ε). Under

this scenario, as k → N , ρk(t) ∼ ρ(0)k/〈k〉 ∼ O( 1
N
N 1

Nε ) ∼ O(N−ε) and it is safe

to ignore O(ρ2(t)) terms. On the other hand, if λ = 2 + ε, ε > 0, then C ≈ (1 +

ε)K1+ε
min and 〈k〉 ≈ 1+ε

ε
Kmin. In this case, for k ∼ O(N), ρk(t) = ρ(0)k/〈k〉 ∼

O( 1
N
N) ∼ O(1), and it is not safe to ignore all O(ρ2

k(t)) terms. The total relative

error contributed to Θ(t) in equation 3.2.2.3 from O(N) such terms is of order N [k−

δk(t)]ρ
err
k (t)P (k) ∼ O(NN 1

N2+ε ) ∼ O( 1
Nε ), and therefore the estimation for ρk(t) for

k ∼ O(1) is accurate up to order O( 1
Nε ). Therefore the total relative error contributed

to ρ(t) is ∼ NP (k)ρerrk (t) ∼ N 1
N2+ε ∼ O( 1

N1+ε ) for k ∼ O(N) plus P (k)ρerrk (t) ∼

O( 1
Nε ) for k ∼ O(1) and of order O( 1

Nε ), making equation 3.2.2.10 valid.

3.3 Maximum Weight Tree (MWT) Approximation

3.3.1 Path dependent diffusion edge probabilities

In section 3.2, we considered the SIM model from a macroscopic perspective, when

a proportion ρ(0) of randomly selected nodes were set in the I state initially. Next, we

investigate the problem from a microscopic perspective by fixing the network structure

and explicitly compute the probability of each node getting informed depending on its

actual path to the single seed node where the information diffusion originates. This
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perspective is also instructive of why percolation theory is not applicable to SIM. For

illustration purposes we include the results for both the discretized time step case

useful for comparisons with computer simulations and for the continuous time step

case. Further, it will be shown that the two cases converge to each other in the limit

for small infection rate β and immunization rate γ .

For the discretized time step case we can simply assume ∆t = 1 as in a computer

simulation setting. The evolution of the system is as follows. At time step t =

0, first every neighbor j of the seed node i gets informed with probability βij =

1 − (1 − β)Wij , where Wij is the weight of connection, and then all nodes in the

network get immunized with a probability γ. The process then repeats itself on the

residual network in the following time steps until all the nodes are either informed or

immunized. The flow of information can be represented as in figure 3.7: At t = 0, node

0 is in state I and the remaining ones are in state S, with the diffusion probability

per unit time between nodes i and j being βj for ease of presentation.

Figure 3.7: Information diffusion process starting from seed node 0.

The probability of node 1 to get informed is given by,

p
(d)
1 =

∑∞

t=0
(1− γ)2t(1− β1)tβ1 =

β1

1− (1− γ)2(1− β1)
(3.3.1)

Similarly, node 2 gets informed in two steps. First node 1 gets informed from node
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0, while at the same time none of the three nodes 0, 1 or 2 get immunized. Then,

node 2 gets informed from node 1 in the same way as node 1 got informed from node

0 and the probability is given by

p
(d)
2 =

∑∞

t1=0
(1− γ)3t1(1− β1)t1β1

∑∞

t2=0
(1− γ)2(t2+1)(1− β2)t2β2

=
β1

1− (1− γ)3(1− β1)

β2(1− γ)2

1− (1− γ)2(1− β2)
(3.3.2)

The extra one unit of time in the exponent of 1 − γ for t2 is because after node 1

gets informed, both nodes 1 and 2 need to survive one time step of the immunization

process before they start the diffusion process.

Following the same procedure, the probability for node k ≥ 2 at an arbitrary stage

to get informed is:

p
(d)
k =

∑∞

t1=0
(1− γ)(k+1)t1(1− β1)t1β1 · · ·

∑∞

tk=0
(1− γ)2(tk+1)(1− βk)tkβk

=
β1

1− (1− γ)k+1(1− β1)

k∏
i=2

βi(1− γ)k+2−i

1− (1− γ)k+2−i(1− βi)
(3.3.3)

In the above, we have assumed that the information diffusion process takes place

before the immunization process, and if the case is the other way around, we simply

need to make the system survive one step of the immunization process at the beginning

of time t = 0 while the remainder of the evolution mechanism would be exactly the

same as above; Therefore, in this case, the probability of getting informed for a node

at an arbitrary stage k is given by

p
(m)
k = (1− γ)k+1p

(d)
k =

k∏
i=1

βi(1− γi)k+2−i

1− (1− γi)k+2−i(1− βi)
(3.3.4)

Further, no special treatment for k = 1 is needed.

For the continuous time step case, in the limit dt→ 0, the probability of diffusion
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in each time step is βdt and the survival probability of the immunization process for

a time length of t is (1 − γdt)
t/dt = exp

[
t
dt
log(1 − γdt)

] dt→0
= e−γt. Therefore, the

probability for a node at an arbitrary stage to get informed is,

pk =

∫ ∞
0

e−(k+1)γt1e−β1t1β1dt1 · · ·
∫ ∞

0

e−(k+2−i)γtie−βitiβidti · · ·
∫ ∞

0

e−2γtke−βktkβkdtk

=
k∏
i=1

βi
(k + 2− i)γ + βi

(3.3.5)

We can easily see that both equations 3.3.3 and 3.3.4 converge to equation 3.3.5 in

the limit as β → 0 and γ → 0, which is expected since this is equivalent to the limit

of continuous time step dt→ 0 .

Next, we discuss how the above results can be extended to the multi-edge case.

Suppose we have multiple edges between node i and j, which occurs in the case of

coupled multilayer networks when considering them as a single layer with connections

from different layers constituting multi-edges. Then the equivalent diffusion rate is

given by

βij = 1−
∏K

k=1
(1− βk) = 1−

∏K

k=1
(1− β0)W

(k)
ij

= 1− (1− β0)
∑K
k=1W

(k)
ij (3.3.6)

where W
(k)
ij is the weight of the kth edge between node i and j.

For comparison purposes, we apply our analysis to the SIR model in continuous

time step case, and the probability of a node in arbitrary stage k to get infected is,

pk =

∫ ∞
0

e−βt1βe−γt1dt1 · · ·
∫ ∞

0

e−βtkβe−γtkdtk =
( β

β + γ

)k
(3.3.7)

We can see that pk+1/pk = β
β+γ

, which is the transmissibility of the edge connecting

nodes of distance k and k + 1 to the seed node, and is a constant, independent of
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stage k. On the contrary, for the SIM model if we assume constant infection rate β,

from equation 3.3.5, we get

pk+1

pk
=

β

(k + 2)γ + β
(3.3.8)

which decreases with k and hence does not satisfy this key assumption in percolation

theory.

3.3.2 MWT construction

In the following, we develop an alternative way of approximating the saturated

ratio of information diffusion on a static network assuming that we start from a sin-

gle seed node. The first assumption is reasonable since real world networks are not

totally random with only certain parameters fixed as when we control λ in gener-

ating homogeneous random networks with degree following a Poisson distribution,

or control λ and Kmin in generating scale free networks. On the contrary, within a

reasonably long period of time, it is reasonable to assume a fixed network topology

in many applications, inlcuding Protein networks, Twitter networks and Facebook

networks[81, 13, 3, 28]. The second assumption is also reasonable, namely that there

exists a single seed node, for example, in marketing and advertising there is usually a

highly influential node [13, 3]. We approximate the total saturated diffusion ratio by

growing a MWT starting from seed node s to all the remaining nodes in the network.

The diffusion process on the network is estimated by the tree and the weight for each

node approximates the probability that the node will ever get informed. The accuracy

of the approximation improves for sparser networks since in this case the probability

of multi-channels in the diffusion would be lower and the tree based approximation

for the diffusion process is satisfactory. To achieve the task of growing a MWT, we

slightly modify the Dijkstra’s algorithm in finding the shortest distance from seed
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node s to the remaining nodes in the network. In each step, instead of identifying

the node with the minimum distance to the seed node in the queue, we identify the

node with the maximum weight. The detailed algorithm is presented in pseudo code

Algorithm 1.

Algorithm 1 Find the Maximum Weight Tree over the network G starting from seed
node s
Input: Network G(V,E), seed node s, diffusion rate β, immunization rate γ and

formula F (B, γ) to calculate the diffusion probability/weight of any node v from
the list B of β depending on its optimal path to the seed node s so as to achieve
the highest weight.

1: for v ∈ V do
2: weight[v]← 0
3: Ancestors[v]← []
4: B[v]← []
5: end for
6: weight[s]← 1
7: Q← V
8: while Q 6= ∅ do
9: u← ArgMax(Q,weight)

10: Q← Q− u
11: for v ∈ neighbors[u] do
12: Btemp ← B[u].append(βuv)
13: if F (Btemp, γ) > weight[v] then
14: weight[v]← F (Btemp, γ)
15: Ancestors[v]← Ancestors[u].append(u)
16: B[v]← Btemp

17: end if
18: end for
19: end while
20: return weight

Numerical Illustration of the MWT algorithm: To showcase the effectiveness of the

MWT algorithm in estimating the diffusion ratio, we fix the immunization rate γ =

0.01 and carry out experiments with different diffusion rate β on synthetic scale free

networks with degree distribution following P (k) ∼ k−λ. The network topology is

controlled by changing the parameter λ. The network size N = 104 and the ratio of

MWT over MC simulation results for each setting is obtained by averaging over 9000
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realizations: namely, 30 different random network topologies, with 300 realizations

of the diffusion process for each one. For each realization, we simply set the hub

node with the highest degree as the seed node. The results are shown in Figure 3.8

and as expected for sparser networks (higher λ parameter) the agreement with the

simulation results becomes markedly better.

Figure 3.8: Ratio between diffusion ratio of MWT and MC simulations for different
β with a fixed γ = 0.01 on networks of different densities realized by
controlling the parameter λ.

78



CHAPTER IV

Exponentially time decaying Susceptible-Informed

(SIT) model for information diffusion process on

networks

4.1 Introduction

4.1.1 Epidemic models for information diffusion

A rich literature on information diffusion models has emerged, due to the time-

liness of the topic in the era of massive social media platforms and their use for

understanding news propagation, rumor spreading, product advertisement by word

of mouth and technological innovation adoption [61, 49, 71, 29, 132, 50]. A popular

class of models regards the information diffusion process akin to an epidemic and

assumes that successive trials of infection/diffusion between two nodes are indepen-

dent with the same probability p of success [33, 105, 129, 123, 86, 65]. One popular

family of theoretical approaches for general purposes in studying these models in-

clude the mean field (MF) theory [9, 113, 129, 47, 12, 16], due to its simplicity and

accuracy. The simplest one of the epidemic models is the Susceptible-Infected (SI)

model, where the nodes in the network are grouped into two compartments, i.e., the

infected (I), which are infected with the disease and can infect the nearest neighbors
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through links, and the susceptible (S), which are susceptible and can be infected by

an infected nearest neighbor. In the context of homogeneous mean field (MF) theory,

where it is assumed that all nodes are statistically equivalent with the same degree

of connectivity 〈k〉, and the population is fully mixed, if we denote by N as the total

number of nodes in the network, and by S(t) and I(t) as the total number of nodes

in the state S and I respectively at time t, and set s(t) = S(t)/N and ρ(t) = I(t)/N

, then,

ρ̇(t) = β〈k〉ρ(t)[1− ρ(t)] (4.1.1)

approximates the evolution process, were ρ̇(t) = dρ(t)/dt, and β is the infection

rate. Obviously, in this simple model, the whole population will get infected at

the end, which is not a good description of the disease transmission process in the

real life. To overcome this shortcoming, another two popular models are proposed,

namely, the susceptible-infected-susceptible (SIS) model and the susceptible-infected-

recovered (SIR) model. In SIS model, instead of staying in the I state permanently

once infected as in the SI model, the infected nodes can recover to the state S with

a rate γ, and utilizing the same notations as above, we have for homogeneous MF

approximation,

ρ̇(t) = β〈k〉ρ(t)[1− ρ(t)]− γρ(t). (4.1.2)

In this context, the disease will persist to a non-zero proportion of the population

in equilibrium under the condition that the factor β/γ is larger than the epidemic

threshold, 1/〈k〉, which can be obtained easily by setting ρ̇(t → ∞) = 0. A more

general framework that can capture the degree distribution of the network is the

heterogeneous MF approach, and if applied to the SIS model, the epidemic threshold

is 〈k〉/〈k2〉. Another popular epidemic model is the SIR model, where instead of
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recovering back to state S and become susceptible again, the nodes in state I will

recover with rate γ to an permanently removed/immunized state R, an additional

compartment. Similarly, if we denote R(t) as the number of nodes in the state R at

time t, and set r(t) = R(t)/N , the evolution of the disease in this model under the

context of homogeneous MF theory can be approximated as,

ρ̇(t) = β〈k〉ρ(t)[1− ρ(t)]− γρ(t)

ṙ(t) = γρ(t). (4.1.3)

In order to ensure that the infection size (R(t → ∞)) scales up with the network

size N, that is, a finite non-zero proportion of the population gets infected, similarly,

the factor β/γ should be greater than the epidemic threshold 1/〈k〉. In the case of

heterogeneous MF approach for a general network with arbitrary degree distribution,

the corresponding epidemic threshold is 〈k〉/(〈k2〉 − 〈k〉). For further information

about the critical behaviors, we refer to the review papers [33, 105]

To study the SIS and SIR models analytically, many other theoretical approaches

have been employed other than the above mentioned homogeneous and heterogeneous

MF approximations. For example, instead of only incorporating the degree distribu-

tion nodes in the network, the quenched mean field (QMF) approach captures the

whole topology of the network by incorporating the adjacency matrix of the net-

work directly in the ordinary differential equations (ODEs) governing the evolution

of the disease [82]. To address the “echo chamber” issue suffered by the QMF ap-

proach, while retaining its strength of capturing the network topology, the dynamic

message passing (DMP) approach was proposed by introducing the “cavity” state,

such that the nodes in this state can be infected but cannot transmit the disease

[57]. This approach is exact for tree-like network, but does not capture the dynamic

correlations between neighbors. And this issue can be addressed in in the pairwise
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approximation (PA) approach, which instead of studying the evolution of individual

nodes, the disease transmission process is studied by considering the pair nodes states

[35]. Specifically for the SIR model, due to the irreversibility of the evolution from

the state I to state R, several other approaches can be employed. For example, since

the probability of a susceptible node getting infected from an infectious neighbor is

a constant, the SIR model can be mapped to bond percolation theory in statisti-

cal physics by treating the infection probability as the transmissibility of each edge

[93, 95, 58]. Other approaches include the message passing (MP) approach and the

Edge-based compartmental (EBC) approach that take into account issues such as

degree-degree correlation and dynamical correlation between neighbors [60, 85]. For

a more thorough review on this topic, we refer to [128].

Other than the standard SI, SIS and SIR models, a lot of efforts have been made

in the literature in proposing improvement based on the three models in capturing

various aspects of the disease transmission. For example, in [25], a modified SIS model

was proposed where the infection rate of each infected node decreases exponentially

with the number of times this node has ever been infected, with a maximum number

L of such decays. At equilibrium, this effectively results in a standard SIS model

with infection rate β0ε
−L, where β0 is the initial infection rate and ε is the decreasing

factor. A power law relationship between the s(t → ∞) and ε at equilibrium was

obtained, which agrees well with the MC simulation results both on a fully mixed

population and on d-dimensional lattices when d > 6, which effectively mimics a

densely connected network, consistent with the well known knowlege in the literature

that MF approximation improves with the density of networks. As for the SIR model,

for example, in [75], to achieve more flexibility, new processes such as rebirth, death,

pulse vaccination, and pulse treatment of nodes are included, and parameters such

as rebirth rate, death rate, infection rate, and recovery rate are allowed to be time

dependent, and the general nonlinear incidence rates are assumed for the infection
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process. On the other hand, in [48], the SIR model is modified to include both birth

and death processes and the recovery rate can be time dependent such that the time

spent on state I follows Pearson distribution or state dependent such that the survival

probability follows a power law distribution. Other examples include modifications

made specifically for the Ebola Virus Disease (EVD) diffusion in west Africa. For

example, in [107], a vaccination process was included in the standard SIR model such

that the susceptible nodes have a certain rate of getting vaccinated and an optimal

control strategy was obtained by minimizing an objective function consisting of the

number infected individuals and the cost of vaccination. While in [15], a migration

network based on the effective distances from a radiation migration model between

administrative divisions to capture the topological characteristic of the EVD diffusion,

and a Susceptible-Decreasingly Infections-Recovered (SDIR) model was proposed by

letting the infection rate decrease exponentially with time, which can represent the

public health intervention.

4.1.2 “Intrinsic time value” of information

However, on many occasions, especially on social media platforms, the process of

information diffusion is quite different than that of an epidemic. An example comes

from news propagation and/or rumor spreading, where the reluctance to tell stale

news would slow down the diffusion process over time [27]. A related example is

online news dissemination, where it is observed that in any news cycle the attention

of actors is focused mainly on more recent and dominant topics [72]. Intuitively,

a piece of information/news from further into the past tends to be mentioned less

often at present, which is not the case for the outbreak of a disease, where recently

infected actors have the same potential of infecting new ones, as those infected earlier

on. Finally, in viral marketing and hashtag adoption on Twitter, it is observed

that the marginal probability of adoption (new products, hashtags) would typically
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decrease with the number of recommendations/exposures [71, 110]. If we treat this as

a temporal event, we will notice that it coincides with the news spreading process in

that as time goes by the diffusion process slows down. Therefore, on many instances

the information often possesses intrinsic time value, which in turn renders the basic

assumption of the SIR and related epidemic models rather inapplicable.

In order to address this issue, attempts have been made in the literature. For

example, in [138], a special SIR model is studied for rumor spreading where it is

assumed that a node in state I will randomly select one of its neighbors at each

time step and transmit the information if the neighbor is in state I and lose interest

or recover if the neighbor is in state I or R. This essentially captures the “losing

interest effect” of the nodes in state I by letting the recovery process accelerates

with the sizes I(t) and R(t). Analytical solutions for the final diffusion size based

on both the homogeneous and heterogeneous MF are obtained and agree well with

with MC simulation results, and the 80% final infection size in the literature for the

homogenous MF case can be recovered as a special case of large 〈k〉, the average degree

of connectivity of the network. Besides, models such as the Daley-Kendall (DK) and

the Maki-Thompson ones were proposed [27, 119, 91, 78], the former becoming rather

popular and being extensively studied and used. In the DK model, similar to the three

states classification in SIR, the nodes are also classified into three classes: ignorants

(s(t)), spreaders (i(t)) and stiflers (r(t)) corresponding to S, I and R states in the

SIR model and following the convention in SIR we use s, i, r to represent the three

states. Further, the removal/recovery rate of i(t) in the DK model is proportional to

i(t)
[
i(t)+r(t)

]
, with the effect of the losing news value when reaching a actor already

aware of the information (i(t) or r(t)) included from the perspective of spreaders.

One limitation of the DK model is that it does not capture the role played by the

“ignorant” actors. For example, in viral marketing and hashtag adoption on Twitter,

it is the “ignorant” players who lose interest in adopting the products/hashtags.
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On the other hand, in news/rumor spreading, the reluctance to tell stale news is

co-existent with the reluctance to listen to stale news, i.e., the “ignorant” players

are not interested in talking about topics involving old news. With a closer look

at the intrinsic time value property of news/information, we can address this issue

by developing naturally an alternative mechanism coined Susceptible-Informed model

with exponentially time decaying diffusion rate, abbreviated as SIT, with T capturing

the time decaying flavor.

In the SIT model, just as in the SI model, we assume the nodes in the network

can be classified into two groups: susceptible, denoted by S, and informed/infected,

denoted by I. There are two parameters in this model, initial diffusion rate β and

diffusion decay rate γ, such that the diffusion rate at time t becomes βt = βe−γt,

which is time dependent. Within a unit time step at time t, all nodes in state I will

diffuse the information to each of their neighbors in sate S with probability βt, and

the system will reach an asymptotic state of equilibrium either when all nodes in the

network are informed or when βt becomes negligibly small. In the context of standard

homogeneous MF approach, following the treatment in equation 4.1.1 the evolution

of the information diffusion process can be approximated as

ρ̇(t) = βe−γt〈k〉ρ(t)[1− ρ(t)]. (4.1.1)

Simple as it is, this model captures the information’s characteristic of losing value

with time from both the spreaders and “ignorant” actors’ perspectives through an

exponentially decreasing diffusion rate with time. To be specific, a node informed at

an early time t = τ1 exhibits a better capacity of diffusing further the information

to the rest of the network compared to getting informed at a later time t = τ2 > τ1

because the diffusion rate has decreased by a factor of e−γ(τ2−τ1).

The analysis of the SIT model exhibits a number of technical challenges. Because
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the expected transmissibility of an edge, i.e., the total probability of diffusing the

information from a node in state I to another in state S through the edge, is dependent

on its path to the seed node (the node in state I at the beginning of time), as will be

shown in Section 4.3, the standard arguments from percolation theory are no longer

applicable, and thus other techniques are required. In this work, we employ two

theoretical approaches for the analysis. The first one is the MF approximation based

on collective macro effects, where a factor δt is carefully and accurately handled,

capturing the fact that at least one neighbor of any newly informed node v is in

the state I transmitting to v the information in the first place, and significantly

improved the accuracy of the MF approximation in terms of the agreement to the

MC simulation results. To the best of our knowledge δt has always been set to 0

or 1 in the literature and this is the first time it is accurately incorporated. This

analysis can be easily transferred to to the analysis of other epidemic models such

the SIR and SIS models. Then we propose a novel approach in estimating the final

diffusion size by constructing a Maximum Weight Tree (MWT) based approximation

that leverages individual micro dynamics. Similar to the DMP approach, this novel

approach will give an exact result for tree-like network, and are specifically designed

for sparse networks, defined as the kind of network where the average degree 〈k〉 of

the nodes in the network does not scale up with the network size N as N increases

to a large number, or, equivalently, the total number of links in the network is in the

order of the number of nodes N in the network.

The remainder of the paper is organized as follows: In Section 4.2 we analyzed the

SIT model based on MF approximation. Specifically, for homogeneous case, we obtain

a close form solution for the time dependent diffusion size in the whole time range.

For heterogeneous case, on the other hand, we obtain a set of ordinary differential

equations (ODE) based on which we can calculate time dependent diffusion size by

numerically solving those ODEs. Besides, we obtain a close form solution for the
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time dependent diffusion size at early stages of the evolution, based on which a

phase transition time point, where the expected number of newly informed nodes

in each unit time step reaches the maximum, and epidemic threshold, the critical

value that β/γ needs to be greater than to ensure a positive acceleration in the

information diffusion process at the beginning, can be derived. Two different initial

conditions in terms of the seed nodes allocation are considered, and interestingly, we

find that the phase transition time points and epidemic threshold of the two cases

are identical, indicating the robustness of the results derived for the two in terms of

initial conditions. To evaluate the performance of MF approximations, we compare

the theoretical results derived with Monte Carlo (MC) simulation estimates and very

good agreements are achieved. In Section 4.3, we first calculate explicitly the total

probability of getting informed for each node depending on its actual path to the seed

node, the single node initially in state I, then construct a MWT with the weight of

each node corresponding to the probability. Very good agreement between the results

of MWT and MC simulation can be achieved, especially for sparse networks, where

the multi-channel diffusion is limited and tree approximation for the diffusion process

is satisfactory. It should be noted that throughout the whole paper we assume γ 6= 0.

4.2 Mean Field Approximation

4.2.1 Homogeneous Mean Field Approximation

In this section we study the evolution of the system based on a homogeneous

MF approximation, assuming all nodes are statistically equivalent of the same degree

〈k〉. An application of this scenario is for networks generated by some random graph

models such as the ER model or the Gilbert models with an appropriate choice of the

model parameters [37, 45]. At time t on a network of size N , if we denote by S(t) the

total number of susceptible nodes and by I(t) the total number of informed/infected
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nodes, then

dI(t) = S(t)[1− (1− βe−γtdt)〈k〉
I(t)(〈k〉−δt)

N〈k〉 ]
dt→0
= S(t)βe−γt

I(t)

N
(〈k〉 − δt)dt, (4.2.1.1)

where δt takes into account the fact that at least one of the neighbors of each newly

informed node i is in state I, from which node i received the information. Further, if

we denote by ρ(t) = I(t)/N , s(t) = S(t)/N and considering ρ(t) + s(t) = 1, we have:

dρ(t) = [1− ρ(t)]βe−γtρ(t)(〈k〉 − δt)dt. (4.2.1.2)

By introducing this time dependent factor δt instead of directly setting δt = 1 or 0 as

is commonly done in the literatures [129, 12, 9], a much better agreement between the

theoretical results derived based on MF and that of MC simulations can be achieved,

as will be shown later. Denote by I(0) the number of seed nodes, defined as the group

of nodes informed at t = 0, then the factor δt = 1− I(0)/I(t) = 1− ρ(0)/ρ(t) can be

obtained as follows

[I(t)− I(0)](〈k〉 − 1) + I(0)〈k〉 = I(t)(〈k〉 − 1) + I(0) = I(t)
[
〈k〉 − (1− I(0)/I(t))

]
.

(4.2.1.3)

To obtain an analytical solution, we want to remove the dependence of δt on ρ(t) and

to derive an approximate formula, we first assume δt = 0 which is true when t = 0.

Then,

dρ(t)

ρ(t)[1− ρ(t)]
= βe−γt〈k〉dt⇒ log

ρ(t)

ρ(0)
− log

1− ρ(t)

1− ρ(0)
=
β〈k〉
γ

(1− e−γt)

⇒ ρ(t) =
{

1 +
1− ρ(0)

ρ(0)
exp

[
− β〈k〉

γ
(1− e−γt)

]}−1

t→0
≈
{

1 + (
1

ρ(0)
− 1)e−β〈k〉t

}−1 ≈ ρ(0)eβ〈k〉t, (4.2.1.4)
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where we have used the approximation 1 − e−γt
t→0
≈ 1 − (1 − γt) = γt. Plugging in

the above result, we get δt = 1 − ρ(0)/ρ(t) ≈ 1 − e−β〈k〉t, and plugging it back into

Equation 4.2.1.2, gives

dρ(t) = [1− ρ(t)]βe−γtρ(t)[〈k〉 − 1 + e−β〈k〉t]dt. (4.2.1.5)

The later equation can be solved directly to get

log
ρ(t)

ρ(0)
− log

1− ρ(t)

1− ρ(0)
=
β(〈k〉 − 1)

γ

[
1− e−γt

]
+

β

γ + β〈k〉
[
1− e−(γ+β〈k〉)t)]

⇒ρ(t) =
{

1 +
1− ρ(0)

ρ(0)
exp

{
− β(〈k〉 − 1)

γ

[
1− e−γt

]
− β

γ + β〈k〉
[
1− e−(γ+β〈k〉)t)]}}−1

(4.2.1.6)

and the saturated fraction of diffusion can be obtained by letting t→∞, so that

ρ(∞) =
{

1 +
1− ρ(0)

ρ(0)
exp[−β

γ
(〈k〉 − 1)− β

γ + β〈k〉
]
}−1

=
{

1 +
1− ρ(0)

ρ(0)
exp[−θ(〈k〉 − 1)− θ

1 + θ〈k〉
]
}−1

, (4.2.1.7)

where θ = β/γ. Hence the saturated fraction of diffusion ρ(∞) depends on β and γ

only through the ratio θ = β/γ.

If we simply set δt = 1 or 0 as is normally done in the literature, instead of

incorporating the information of ρ(t) into the factor δt, we would get by setting

δt = 1,

ρ(t) =
{

1 +
1− ρ(0)

ρ(0)
exp

[
− β(〈k〉 − 1)

γ
(1− e−γt)

]}−1
, (4.2.1.8)

and correspondingly, ρ(∞) =
{

1 + 1−ρ(0)
ρ(0)

exp[−θ(〈k〉 − 1)
}−1

.
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4.2.1.1 Numerical Experiments

Next, we compare the results from MC simulation with those derived based on

the homogeneous MF approximation. The network of size N = 5000 is generated by

the Gilbert model [45] while the degree of each node follows a Poisson distribution

k
iid∼ Poisson(λ), with the density of the network controlled by the parameter λ.

For each setting, the results are obtained by averaging over 103 realizations. Since

the accuracy of the MF approximation depends on the saturated fraction of infec-

tion/diffusion [47], we control the factor θ = β/γ for each case to ensure that the

saturated fraction of diffusion in all settings is approximately ρ(∞) ∼ 0.5 for making

the results comparable.

Figure 4.1: Comparison of results from the MC simulation estimates and theoretical
results derived based on the homogeneous MF approximation for time
dependent diffusion size in the whole time range. (a): Left panel, λ = 5;
(b): Middle panel, λ = 10; (c): Right panel, λ = 15. Theory improved
stands for Equation 4.2.1.6, Theory stands for Equation 4.2.1.8, and MC
stands for MC simulation. For all the cases ρ(0) = 2%

The results are depicted in Figure 4.1, and we can see that the results from the

MC simulation agree well with the theoretical results in the whole range of network

densities considered. Significant improvement over Equation 4.2.1.8 is achieved after

incorporating the information of approximated ρ(t) in the factor δt in Equation 4.2.1.6,

especially for sparser networks since for dense networks 〈k〉 is large enough to shield

the influence of changing from 〈k〉 − 1 to 〈k〉 − δt.
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4.2.2 Heterogeneous Mean Field Approximation

In terms of real life applications for information diffusion, it becomes rather re-

strictive to assume a homogeneous degree distribution for nodes since many real world

networks are characterized by degree distributions exhibiting high variance. There-

fore, in this section we investigate the heterogeneous version of the MF approximation

which takes into consideration the degree distribution of nodes in the network. Specif-

ically, nodes of the same degree can be treated equivalently and collectively, while

nodes of different degrees need to be treated separately. At time t on a network of

size N , if we denote by Sk(t) the total number of susceptible nodes and by Ik(t) the

total number of informed/infected nodes of degree k respectively, then,

dIk(t) = Sk(t)
[
1− (1− βe−γtdt)kΘk(t)

] dt→0
= Sk(t)βe

−γtkΘk(t)dt, (4.2.2.1)

where Θk(t) is the probability of reaching an informed neighbor at time t starting from

an arbitrary edge of a susceptible node of degree k. For simplifying the calculation, we

only consider the case where there is no degree correlation and therefore Θk(t) = Θ(t)

is independent of k, which is true for networks generated by some popular random

graph models and their real life counter parties [33]. This assumption can be easily

relaxed to incorporate the degree correlation structures as discussed in [12, 113].

Therefore, we have

Θ(t) =

∑N−1
k′=1(k′ − δk′(t))Ik′(t)∑N−1

k′=1 Nk′k′
=

∑N−1
k′=1(k′ − δk′(t)) Ik′ (t)Nk′

Nk′

N〈k〉

=
∑N−1

k′=1
(k′ − δk′(t))ρk′(t)P (k′)/〈k〉, (4.2.2.2)

where ρk′(t) = Ik′(t)/Nk′ , δk′(t) = 1 − Ik′(0)/Ik′(t) = 1 − ρk′(0)/ρk′(t), Nk′ is the

expected number of nodes with degree k′ in the network, and P (k′) = Nk′/N . Then,
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Equation 4.2.2.1 becomes

dρk(t) = (1− ρk(t))βe−γtkΘ(t)dt. (4.2.2.3)

Together with Equation 4.2.2.2, the above ordinary differential equation (ODE) can

be solved numerically given proper initial conditions.

In the following, we investigate the early stage evolution of the system when t→ 0

in order to study the outburst dynamics. Assume that we start with a small ρ(0), such

that we can safely ignore the terms of order O(ρ2(t)) at early stages and approximately

we set δk(t) = 1 − ρk(0)/ρk(t) ≈ 1 as is normally done in the literature. Take the

time derivative of Equation 4.2.2.2 and incorporate Equation 4.2.2.3 to obtain

Θ̇(t) =
∑N−1

k′=1
(k′ − 1)ρ̇k′(t)P (k′)/〈k〉 =

∑N−1

k′=1
(k′ − 1)βe−γtk′Θ(t)P (k′)/〈k〉

= βe−γt(〈k2〉 − 〈k〉)Θ(t)/〈k〉

⇒ Θ(t) = Θ(0) exp
[β
γ

〈k2〉 − 〈k〉
〈k〉

(1− e−γt)
]
. (4.2.2.4)

If we assume a uniform density of initial seed nodes across groups of degrees ρk(0) =

ρ(0), from Equation 4.2.2.2 we then get

Θ(0) =
∑N−1

k′=1
(k′ − δk′(0))ρ(0)P (k′)/〈k〉 = ρ(0),

where we have used the fact that δk(0) = 1 − ρk(0)/ρk(0) = 0. Plugging the result

of Equation 4.2.2.4 back into Equation 4.2.2.3 together with the initial condition

Θ(0) = ρ(0), and ignoring terms of order O(ρ2(t)) and solve, we obtain

ρk(t) = ρk(0) + βk

∫ t

0

e−γtΘ(0) exp
[β
γ

〈k2〉 − 〈k〉
〈k〉

(
1− e−γt

)]
dt

= ρ(0) + kρ(0)
〈k〉

〈k2〉 − 〈k〉

{
exp

[β
γ

〈k2〉 − 〈k〉
〈k〉

(
1− e−γt

)]
− 1
}
. (4.2.2.5)
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For two groups of degree k1 and k2 we can see that

ρk1(t)− ρk1(0)

ρk1(t)− ρk2(0)
=
ρk1(t)− ρ(0)

ρk1(t)− ρ(0)
=
k1

k2

; (4.2.2.6)

Thus, the growth in the diffusion fraction (fraction of newly informed nodes) for

each group is proportional to its degree k at early stages. This is expected since

the diffusion process is localized on groups of high degrees at early stages and then

gradually diffuse to low degree groups, as is discussed in [9]. On the other hand,∑N−1
k=1 Nkρk(t) = Nρ(t)⇒ ρ(t) =

∑N−1
k=1 P (k)ρk(t), therefore,

ρ(t) =
∑
k

P (k)ρk(t)

= ρ(0)
{

1 +
〈k〉2

〈k2〉 − 〈k〉

{
exp

[β
γ

〈k2〉 − 〈k〉
〈k〉

(
1− e−γt

)]
− 1
}}

. (4.2.2.7)

In order to find the phase transition time point, when the growth of the number of

nodes informed in the network first starts to decrease, we take the first and second

time derivatives of ρ(t),

ρ̇(t) = ρ(0)β〈k〉 exp
[
− γt+

β

γ

〈k2〉 − 〈k〉
〈k〉

(
1− e−γt

)]
ρ̈(t) = ρ(0)β〈k〉 exp

[
− γt+

β

γ

〈k2〉 − 〈k〉
〈k〉

(
1− e−γt

)][
− γ + β

〈k2〉 − 〈k〉
〈k〉

e−γt
]
.

(4.2.2.8)

The phase transition time point τ can be calculated by simply setting ρ̈(τ) = 0 to get

−γ + β
〈k2〉 − 〈k〉
〈k〉

e−γτ = 0⇒ τ =
1

γ
log
[β
γ

〈k2〉 − 〈k〉
〈k〉

]
. (4.2.2.9)

A possible application of the phase transition time point is in marketing. It pro-

vides marketeers an approximate time to stop or decrease spending on advertisement

since it represents the time when the marginal profit, which can be defined as the
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marginal diffusion size minus the expenditures on advertising per unit time, starts to

decrease. This is consistent with results from the literature in the field of dynamic

optimal advertising control in marketing, where expenditures on advertising are ex-

pected to be time dependent and shall be terminated after certain conditions are met

as suggested by some theoretical models [114, 56].

To identify the epidemic threshold condition such that the growth of diffusion

will not decrease from the beginning when t = 0, we need to ensure τ > 0, and

thus the epidemic threshold condition is β/γ > 〈k〉
〈k2〉−〈k〉 . Comparing it with the

epidemic threshold found by employing percolation theory, where it is assumed that

the reproduction number originating from newly informed nodes needs to be greater

than 1 [93, 95], the epidemic threshold derived here by setting δt = 1 is consistent

with the former since it captures the contribution from the newly informed nodes.

Impact of seed nodes allocation: In the above, we assumed a uniform allocation of

seed nodes across groups of different degrees. One interesting variation is to assume

simply ρk(0) = ρ(0)k/〈k〉, i.e., the fraction of seed nodes in each group is proportional

to its degree k. As will be shown later, with this initial condition, we can incorporate

the time dependent information of δk(t) in deriving ρ(t) as was done in Section 4.2.1,

instead of simply setting δk(t) = 1 or 0 as is done in the previous derivation. In

the following, we will first set δk(t) = 0 at early stages and find an approximate

analytical solution for ρk(t), based on which we can find an analytical solution for

δk(t) and then obtain an approximate solution of the early stage diffusion. Plugging

ρk(0) = ρ(0)k/〈k〉 and δk(t) = 0 into Equation 4.2.2.2, we have

Θ(0) =
∑N−1

k=1
k
ρ(0)k

〈k〉
P (k)/〈k〉 =

〈k2〉
〈k〉2

ρ(0). (4.2.2.10)

Plugging the result of Equation 4.2.2.4 back into Equation 4.2.2.3 together with the

initial condition Θ(0) = 〈k2〉
〈k〉2ρ(0), and ignoring terms of order O(ρ2(t)) and solve, we
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obtain

ρk(t) = ρk(0) + βk

∫ t

0

e−γtΘ(0) exp
[β
γ

〈k2〉
〈k〉

(
1− e−γt

)]
dt

= ρk(0) +
kρ(0)

〈k〉

{
exp

[β
γ

〈k2〉
〈k〉

(
1− e−γt

)]
− 1
}
.

=
kρ(0)

〈k〉
exp

[β
γ

〈k2〉
〈k〉

(
1− e−γt

)] t→0
≈ ρk(0)eβ

〈k2〉
〈k〉 t, (4.2.2.11)

where we have again used the approximation 1 − e−γt ≈ γt and changed to δt = 0

from 1 for Equation 4.2.2.4. Thus, δk(t) = δt = 1 − ρk(0)/ρk(t) ≈ 1 − e−β
〈k2〉
〈k〉 t,

independent of k. Intuitively, this is because we assign the seed node to each group of

nodes with fraction proportional to the degree, while at the same time, the speed of

information diffusion in each group is also proportional to the degree, therefore, the

ratio ρk(0)/ρk(t) is constant and the same across different groups of nodes of different

degrees, at least in the early stage evolution. For two groups of degree k1 and k2, we

can see that in this case

ρk1(t)

ρk2(t)
≈ ρk1(0)

ρk2(0)
=
k1

k2

, (4.2.2.12)

the total fraction of diffusion in each group is also proportional to its degree k. Com-

paring this result to that in Equation 4.2.2.6, we find that after allocating seed nodes

in a way such that the fraction of seed nodes in each group is proportional to its

degree k, we essentially moved the system directly to its equilibrium state such that

the total fraction of nodes informed in each group will always be proportional to its

degree k instead of gradually converging to this ratio as in the case based on Equation

4.2.2.6.

As for ρ(t), by taking into consideration the contribution from all groups, we can
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obtain

ρ(t) =
∑N−1

k=1
ρk(t)P (k) = ρ(0) exp

[β
γ

〈k2〉
〈k〉

(
1− e−γt

)]
≈ ρ(0)eβ

〈k2〉
〈k〉 t. (4.2.2.13)

Next, we use the approximate analytical solution of δt in deriving ρ(t). Setting

δk(t) = δt, using the result of Equation 4.2.2.11 in Equation 4.2.2.3 and combining

with Equation 4.2.2.2, we get

ρ̇k(t) = (1− ρk(t))βe−γtk
∑N−1

k′=1
(k′ − δt)ρk′(t)P (k′)/〈k〉

≈ (1− ρk(t))βe−γtk
∑N−1

k′=1
(k′ − δt)ρk′(0)eβ

〈k2〉
〈k〉 tP (k′)/〈k〉

= (1− ρk(t))βe−γtk
∑N−1

k′=1
(k′ − δt)ρ(0)k′/〈k〉eβ

〈k2〉
〈k〉 tP (k′)/〈k〉

= (1− ρk(t))βe−γtρk(t)
〈k2〉 − δt〈k〉
〈k〉

. (4.2.2.14)

Taking into consideration the contribution from all groups and ignoring terms of order

O(ρ2(t)) at early stages, we have

ρ̇(t) =
∑N−1

k=1
P (k)ρ̇k(t) ≈ βe−γtρ(t)

〈k2〉 − δt〈k〉
〈k〉

. (4.2.2.15)

Finally, plugging in δt = 1− e−β
〈k2〉
〈k〉 t and solve, we obtain

ρ(t) = ρ(0) exp
{β
γ

〈k2〉 − 〈k〉
〈k〉

(
1− e−γt

)
+

β

γ + β〈k2〉/〈k〉
(
1− e−(γ+β〈k2〉/〈k〉)t)}.

(4.2.2.16)

If we have simply set δt = 1, then the above becomes

ρ(t) = ρ(0) exp
[β
γ

〈k2〉 − 〈k〉
〈k〉

(
1− e−γt

)]
. (4.2.2.17)

To find the phase transition time point τ , similarly, we take the second time derivative
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of ρ(t). To be consistent with the case when we assume uniform allocation of seed

nodes across groups, here we set δt = 1 and from Equation 4.2.2.15 we have

ρ̈(t) = β
〈k2〉 − 〈k〉
〈k〉

ρ̇(t)e−γt − β 〈k
2〉 − 〈k〉
〈k〉

γρ(t)e−γt

=
(
β
〈k2〉 − 〈k〉
〈k〉

e−γt − γ
)
β
〈k2〉 − 〈k〉
〈k〉

ρ(t)e−γt. (4.2.2.18)

Thus the phase transition time point is

τ =
1

γ
log
[β
γ

〈k2〉 − 〈k〉
〈k〉

]
, (4.2.2.19)

obtained by setting ρ̈(τ) = 0. As for the epidemic threshold, following the same line of

reason as before, we set δt = 1 and ensure τ > 0, thus, the condition is β/γ > 〈k〉
〈k2〉−〈k〉 .

We can see that after modifying the allocation of seed nodes from ρk(0) = ρ(0) to

ρk(0) = ρ(0)k/〈k〉, neither the phase transition time point nor the epidemic threshold

changes, indicating that the results obtained for the two are pretty robust in terms

of the initial conditions.

4.2.2.1 Numerical Experiments

Next, we compare the results of MC simulation with those derived based on the

heterogeneous MF approximation. The network of size N = 104 is generated as scale

free by a configuration model, while the node degree distribution follows a power

law one P (k) ∼ k−λ with λ = 3.5. We control the network heterogeneity defined as

〈k2〉/〈k〉 by setting the minimum degree Kmin [9, 8]. In this case, 〈k〉 ≈ 5Kmin/3,

〈k2〉 ≈ 5K2
min and therefore 〈k2〉/〈k〉 ≈ 3Kmin. The results in each setting are

obtained by averaging over 103 realizations.

First, we study the case of uniform seed nodes allocation across groups; namely,

ρk(0) ≈ ρ(0).
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We compare the MC simulation results to the numerical solution of the ODE equa-

tions for the time dependent diffusion fraction across the whole time range. Similarly,

to facilitate comparison across different settings, we control β/γ for each setting to

ensure that the saturated ratio is approximately ρ(∞) ∼ 0.5. The results are depicted

in Figure 4.2.

Figure 4.2: Comparison between MC simulations and numerical solutions of ODEs
for time dependent diffusion size in the whole time range. (a): Left panel,
Kmin = 5; (b): Middle panel, Kmin = 10; (c): Right panel, Kmin = 15.
ODE stands for numerical solution of Equations 4.2.2.3 and 4.2.2.2, and
MC stands for MC simulation. For all the cases, ρ(0) = 1%

A good agreement between the results of MC simulation and ODE solution is

achieved for all three settings, and the agreement improves for higher Kmin corre-

sponding to denser networks. This is expected since higher accuracy of the MF

approximation is obtained for diffusion on networks with higher average degree of

neighbors [47] which is calculated as 〈k2〉/〈k〉 ∼ Kmin.

Next, we compare the MC simulation with the analytical solution of Equation

4.2.2.7 for the diffusion process at early stages. The results are depicted in Figure

4.3.

Similarly, a very good agreement between the theoretical results and the MC

simulation is obtained for all three settings, and the agreement improves with higher

Kmin, corresponding to networks of higher density. Clearly, based on the semi-log

plots for both the results of MC simulation and the close form solution based on MF

analysis in Figure 4.4, the diffusion size increases exponentially with time at the early
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Figure 4.3: Comparison between MC simulation and theoretical results for the early
stage evolution of the system. (a): Left panel, Kmin = 5; (b): Middle
panel, Kmin = 10; (c): Right panel, Kmin = 15. Theory stands for
Equation 4.2.2.7 and MC stands for MC simulation. For all the cases,
ρ(0) = 0.1%

stage of the evolution of the information diffusion process.

Then, we compare the phase transition time point derived from Equation 4.2.2.9

and from the numerical solution of Equations 4.2.2.3 and 4.2.2.2 with that of MC sim-

ulation for different combinations of β and γ. Besides, we also include the saturated

diffusion size ρ(∞) for all the settings to investigate the epidemic threshold. The

results are depicted in Figure 4.4. Again, a good agreement for τ between the three

Figure 4.4: (a): Left panel, comparison of phase transition time points. ODE stands
for numerical solution of Equations 4.2.2.3 and 4.2.2.2, MC stands for
MC simulation and Theory stands for Equation 4.2.2.9. (b): Right panel,
total fraction of diffusion ρ(∞) for different β/γ. For visual guidance, we
also include a black vertical line located at β/γ = 〈k〉/〈k2〉 for (a) and

β/γ = 〈k〉
〈k2〉−〈k〉 for (b). Here Kmin = 3.0 and ρ(0) = 0.1%
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methods is achieved. For visual guidance, we included a black vertical line located

at β/γ = 〈k〉/〈k2〉 in Figure 4.4(a), different from the epidemic threshold, which is

located at 〈k〉/(〈k2〉− 〈k〉) in Figure 4.4(b). This is because the epidemic threshold is

derived based on the basic reproduction number from the newly informed nodes, i.e.,

the size of the newly informed nodes from the existing newly informed nodes, which

equivalently sets δt = 1. On the other hand, the condition that the phase transition

time equals 0 is equivalent to the case that the reproduction number from the seed

nodes is smaller than 1, which equivalently sets δt = 0, and thus the denominator

becomes 〈k2〉 in stead of 〈k2〉 − 〈k〉. As can be noted, when β/γ ≤ 0.1, which is

smaller than 〈k〉/〈k2〉, we should have τ = 0, representing decaying evolution from

the beginning, and this is captured by all three methods.

Next, we study the case where the seed nodes are allocated across groups such

that the fraction in each group is proportional to the degree k: ρk(0) = ρ(0)k/〈k〉.

Since the only differences after using this alternative initial condition are the early

stage diffusion, phase transition time point, and epidemic threshold, in the following,

we compare the derived expression with the results from MC simulation. The network

settings are the same as above, and the results are depicted in Figure 4.5. Similarly, for

early stage evolution, a good agreement between MC simulation and the theoretical

results is obtained, and the agreement improves as the networks become denser,

corresponding to higher Kmin. As for the phase transition time points, the results

obtained based on the two methods also agree well with each other.

In summary, the theoretical analysis shows very good agreement with experimental

results, a finding consistent across many other settings considered (not shown for space

consideration).
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Figure 4.5: Comparison between MC simulation and theoretical analysis for both
early stage diffusion size and phase transition time. (a): Upper left panel,
Kmin = 3; (b): Upper right panel: Kmin = 5; (c): Lower left panel,
Kmin = 10; (d): Lower right panel, τ for ρ(t). For (a-c), Theory stands for
Equation 4.2.2.16 and ρ(0) = 0.1%. For (d), Theory stands for Equation
4.2.2.19 and for visual guidance, we include a black vertical line located
at β/γ = 〈k〉/〈k2〉. ρ(0) = 0.1% and Kmin = 3.

4.3 Maximum Weight Tree (MWT) approximation

4.3.1 Path dependent diffusion edge probabilities

In Section 4.2, we considered the SIT model from a macroscopic perspective when

a randomly selected proportion ρ(0) of nodes was set in the I state at the beginning

of time. In this section, we investigate the problem from a microscopic perspective

by fixing the network and explicitly compute the probability of getting informed for

each node depending on its actual path to the single seed node. This analysis is also

instructive on why the percolation theory is not applicable for the SIT model. For
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keeping the presentation simple, we say a node is at stage l if it can reach the seed

node by a minimum of l hops/edges.

To simplify the calculations, we assume a constant initial diffusion rate β, inde-

pendent of edges, which decays with time βt = βe−γt, and a continuous time evo-

lution. Therefore, the survival probability of the diffusion process up to time t is∏M−1
i=0 (1 − βe−γtidt) = exp

[∑M−1
i=0 log(1 − βe−γtidt)

]
≈ exp

[∑M−1
i=0 −βe−γtidt

] dt→0
=

e−
∫ t
τ=0 βe

−γτdτ , where ti = idt and t = Mdt, where M represents the total number of

time steps when t is discretized. Thus, the probability for a node at stage 1 to get

informed is,

p1 =

∫ ∞
t=0

e−
∫ t
τ=0 βe

−γτdτβe−γtdt =

∫ ∞
t=0

e−
β
γ

(1−e−γt)βe−γtdt = e−
β
γ

∫ ∞
t=0

e
β
γ
e−γtβe−γtdt

= e−
β
γ
(
− e

β
γ
e−γt
)∣∣∣∞

0
= e−

β
γ (e

β
γ − 1). (4.3.1)

In order for a node at stage 2 to get informed, first node 1 needs to get informed from

node 0 by a certain time t1 and then node 2 gets informed from node 1 at a later

time t2 > t1. The survival probability of the first event is e−
∫ t1
τ=0 βe

−γτdτ and for the

second event is e−
∫ t2
τ=t1

βe−γτdτ . Therefore, the total probability for node in stage 2 to

get informed is,

p2 =

∫ ∞
t1=0

e−
∫ t1
τ=0 βe

−γτdτβe−γt1dt1

∫ ∞
t2=t1

e−
∫ t2
τ=t1

βe−γτdτβe−γt2dt2

= e−
β
γ

∫ ∞
t1=0

e
β
γ
e−γt1βe−γt1dt1

∫ ∞
t2=t1

e
β
γ

(
e−γt2−e−γt1

)
βe−γt2dt2

= e−
β
γ

∫ ∞
t1=0

βe−γt1dt1

[
e
β
γ
e−γt1 − 1

]
= p1 − e−

β
γ

∫ ∞
t1=0

βe−γt1dt1 = p1 − e−
β
γ
β

γ
. (4.3.2)
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Similarly,

p3 =

∫ ∞
t1=0

e−
∫ t1
τ=0 βe

−γτdτβe−γt1dt1

∫ ∞
t2=t1

e−
∫ t2
τ=t1

βe−γτdτβe−γt2dt2

∫ ∞
t3=t2

e−
∫ t3
τ=t2

βe−γτdτβe−γt3dt3

= e−
β
γ

∫ ∞
t1=0

e
β
γ
e−γt1βe−γt1dt1

∫ ∞
t2=t1

e
β
γ

(
e−γt2−e−γt1

)
βe−γt2dt2

∫ ∞
t3=t2

e
β
γ

(
e−γt3−e−γt2

)
βe−γt3dt3

= e−
β
γ

∫ ∞
t1=0

βe−γt1dt1

∫ ∞
t2=t1

βe−γt2dt2

∫ ∞
t3=t2

e
β
γ
e−γt3βe−γt3dt3

= e−
β
γ

∫ ∞
t1=0

βe−γt1dt1

∫ ∞
t2=t1

βe−γt2dt2

[
e
β
γ
e−γt2 − 1

]
= p2 − e−

β
γ

1

2

β2

γ2
. (4.3.3)

Following the same procedure, we can see that in general, for l ≥ 1,

pl+1 = pl − e−
β
γ

1

l!

βl

γl
. (4.3.4)

Pluging in p1 = 1− e−
β
γ , we get

pl+1 = 1−
∑l

i=0

(β
γ

)i
/i!e−

β
γ . (4.3.5)

As l→∞, since ex =
∑∞

i=0
xi

i!
, we have,

pl
l→∞
= 1− e

β
γ e−

β
γ = 0. (4.3.6)

SIR Model and Percolation Theory: For comparison purposes, we also study the

probability of each node getting infected depending on the path to the seed node for

the SIR model. Suppose as before, the infection rate is β and the node removal rate

is γ, both of which are constant. Then,

pl =

∫ ∞
0

e−βt1βe−γt1dt1 · · ·
∫ ∞

0

e−βtkβe−γtldtl =
( β

β + γ

)l
. (4.3.7)
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We can see here pl+1/pl = β
β+γ

, representing the transmissibility of the edge linking

nodes of stages l and l+ 1 is a constant, independent of stage l. On the contrary, for

the SIT model from Equation 4.3.4 we get

pl+1

pl
= 1− 1

pl
e−

β
γ

1

l!

βl

γl
; (4.3.8)

the factor e−
β
γ 1
l!
βl

γl
increases or decreases with l depending on the relationship between

β
γ

and l, while pl monotonically decreases with l, and thus the ratio pl+1/pl is depen-

dent on l. So the key assumption in percolation theory of constant transmissibility is

not satisfied.

4.3.2 MWT Approximation

Next, we make use of the results derived above and approximate the expected

total fraction of diffusion of the network by growing a MWT starting from a seed

node s, with the weight for each node approximates the probability that the node

will ever get informed. Higher accuracy in approximation can be achieved for sparser

networks, which is expected, since in this case the probability of multi-channel dif-

fusion from seed node to the remaining nodes in the network is lower such that the

tree approximation for the diffusion process is satisfactory. To achieve the task of

growing a MWT, since we assume a constant initial diffusion rate β independent of

edge, which is true for unweighted networks, we can directly apply the Dijkstra’s

algorithm in finding the shortest distance from seed node s to the remaining nodes

in the network. For each node, suppose its shortest distance to node s is l(≥ 1), then

the weight would be Wl = pl = 1 −
∑l−1

i=0

(
β
γ

)i
/i!e−

β
γ from Equation 4.3.5. Sum up

the weight of all nodes in the network would give us the approximated total fraction

of diffusion by MWT.

Numerical Experiments To study the effectiveness of the MWT algorithm in estimat-
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ing the expected total size of diffusion, we compare it with that of MC simulation

estimates. The network of size N = 104 is generated with node degree following a

power law distribution P (k) ∼ k−λ and we consider three settings: λ = 2.5, 3.0 and

3.5. As for the parameters for the SIT model, we fix γ = 0.01 and carry out for

each network setting experiments with different diffusion rate β. In each experiment,

the ratio of the result based on MWT approximation over that of MC simulation is

obtained by averaging over 2000 realizations: namely, 20 different random network

topologies, with 100 realizations of the diffusion process for each one. As for the seed

node selection, for each realization, we simply choose the hub node with the highest

degree. The results are depicted in Figure 4.6 and as expected much better agreement

between the MWT approximation and the MC simulation can be achieved for sparser

networks.

Figure 4.6: Ratio between the total diffusion fractions based on MWT and on MC
simulations for different diffusion rate β with a fixed decay rate γ = 0.01.
Different network densities are considered by controlling the parameter
λ = 2.5, 3.0, 3.5.
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4.4 Conclusion

To summarize, in this paper, the SIT model is proposed to model the information

diffusion mechanism. Comparing to other popular and widely used models for epi-

demic processes such as SIR and SIS, the SIT model captures explicitly the “intrinsic

time value”, a key feature of information such as news, rumors, etc. Due to the

path dependent diffusion probability along edges between susceptible and informed

neighbors, traditional theoretical tools such as bond percolation approach is not ap-

plicable, which induces technical difficulties for analyzing the model from a theoretical

perspective. Here we refer to the MF approach, covering both the homogeneous and

heterogeneous cases. In particular, by incorporating the factor δt, capturing the fact

that at least one neighbor of any newly informed neighbor is also informed, we are

able to obtain much more accurate theoretical results from the MF analysis in terms

of the agreement to the MC simulation results. Specifically, for homogeneous MF

case, an analytical solution for the time dependent diffusion size at arbitrary time

point is obtained, while for heterogeneous MF case, a close form solution of time

dependent diffusion size at early stage of the evolution is obtained, which in turn

presents us the phase transition time points as well as epidemic threshold. To the

best of our knowledge, the factor δt has always been set to either 0 or 1 in the liter-

ature, and this is the first time it is accurately incorporated. On the other hand, we

proposed a novel approach to estimate the final diffusion size based on constructing

a MWT approximation which provides an exact approximation for tree-like networks

and a highly accurate one for sparse networks. The latter is also fast to compute and

provides another general tool for the analyst to obtain accurate approximations of

the “epidemic’s” size.
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CHAPTER V

Information diffusion maximization on multilayer

networks with community structures via Particle

Swarm Optimization

5.1 Introduction

Information diffusion process has been extensively studied in the recent decades

across various research disciplines due to its applications in various areas such as

marketing, disease control, news propagation and political propaganda in terms of

diffusion control [21, 71, 129, 90, 13, 3, 122]. On the one hand, we might be interested

in minimizing some epidemic process such as disease transmission on the networks

by disseminating information about the disease on the network, or minimizing the

spread of certain news/information/rumor itself as in social census [129, 135, 130].

On the other hand, we are interested in maximizing the diffusion size as in marketing,

news services and political propaganda. For example, in marketing application, viral

marketing strategy is applied to promote a new product over a certain population

based on the word of mouth diffusion of recommendations between individuals via

connections of friendship or any other kind with the goal of maximizing the number

of products purchasing [71]. Similarly in news propagation or political propaganda,

we want to maximize the total size of population informed of the news or to adopt

107



some ideas. Naively speaking, if we do not have any budget constraint, we could

well inform every one at time t = 0, in other words, we could set all the nodes as

seed nodes, defined as the set of nodes aware of the information at the beginning.

Of course, this is an over simplified problem and we would not expect to see this

situation in real life given a large enough population.

Alternatively, we could set the budget constraint as the total number of seed nodes

allowed to start with and the problem becomes finding k out of N nodes to target so

as to maximize the diffusion size, which is a NP hard problem and different strategies

are developed under different mathematical frameworks. In threshold models such as

cascade model, linear threshold model and game theoretic approaches, for example,

various algorithmic approaches were proposed to find approximate solutions [32, 61].

On the other hand, in independent interaction models such as the SIS and SIR models

where the information diffusion process is treated as an epidemic process, various

strategies based on measures such as k-shell, node degree and betweenness centrality

are used to guide seed node selection process [65, 105, 43].

However, if we look closely at the problem in terms of application, the assumptions

are still not very realistic as follows. (1) The cost of setting as seed node might be

different across nodes for some applications and it is not very reasonable to assume

a budget of k seed nodes allowance. For example, in marketing, the cost of a super

star would be much higher compared to a random person you encounter on the street

if you want him or her to advertise the product for you. And therefore, setting a

hub node may quickly eat up your budget in a much higher rate than 1/k if we

assume equivalent cost across nodes. (2) Once the budget is fixed, we did not take

into consideration the cost any more in the optimization problem above, which is

not reasonable since in some applications what really matters is the profit, which

is equal to the revenue minus the cost. For example, in marketing, what we really

want o maximize is the profit from the viral marketing activity, which for simplicity
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purpose can be defined as the revenue from the products sold minus the cost invested

in advertisement in the form of seed nodes allocation. Under this situation, we might

be very flexible about the cost as long as the profit is large. For example, if the cost of

advertisement is generally very cheap, we might ask more people and more platforms

to advertise for us, while on the other hand, if the cost is generally very high, we

might become pretty parsimonious.

In this work, we address this issue by the following. First of all, we use SIM model

for our diffusion process and for simplicity reason define revenue as the total diffusion

size in saturation, i.e., the total number of nodes ever get informed, or purchased the

product in context of marketing, if we allow the system to evolve to infinite time.

As for cost, we design the cost function for each node based on two characteristics.

One plausible way is to define the personal cost of each node in terms of the degree

of connectivity K, which in marketing context represents how popular/influential a

person is in terms of spreading the recommendation for product purchase. However,

this does not take into consideration of personal perception: some people might think

of themselves very influential and thus would charge more because they know some

people much more popular/influential. This means we need to take into consideration

of the topology of the network starting from the seed node at hand, and one measure

very suitable for this task is the personal MWT of the node, which is the expected

diffusion size starting from the seed node assuming a tree like diffusion pattern.

Therefore, in the following experiments, we design the cost function as following.

In terms of degree K, personal cost for each node can be proportional to its degree,

and the total cost is thus costtot =
∑M

i=1Ki ∗ W if we assume there are M nodes

selected in the seen nodes set and W is the weight to control the cost. One possible

variation is costtot =
∑M

i=1K
Q
i , where the exponent Q is used to control the cost. On

the other hand, in terms of MWT, we also can have two version of cost function, either

costtot =
∑M

i=1MWTi ∗W or costtot =
∑M

i=1MWTQi . And the total profit is defined
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as PT = Ftot − costtot, where Ftot is simply the total size of diffusion in saturation if

we start with the M seed nodes selected. And our objective is to optimize the total

profit under different cost functions over a range of W and Q.

In fact, we can generalize the framework by assuming that the information diffuses

on multilayer networks and for simplicity purpose, we include two layers, the primary,

which is generated by standard stochastic block model with embedded community

structure, and the secondary, which is generated as a scale free network. Information

diffusion process on networks with community structure and on multilayer networks

has been extensively studied, but not in our context in terms of profit optimiza-

tion objective. The community structure in the primary layer captures the following

feature: The network of influence or friendship of people tends to form communi-

ties, with dense connections within each community and sparse connections between

communities[42]. And the diffusion process can evolve itself on this primary network

and people exchange information or recommend new products by word of mouth.

On the other hand, the scale free secondary layer network captures the channel of

advertisements via mass media. For example, putting an advertisement spoken for by

some super stars on platforms such as TV show, or on popular websites will behave

in this similar way. As pointed out by some literature, people are becoming more and

more resistant to traditional platforms of advertisements, and the hub nodes in the

secondary layer are not as effective as their low degree counter parts in the primary

layer[71]. To capture this feature, we set the diffusion rate on secondary layer to

be 10%β, with β the diffusion rate between nodes from the same community on the

primary layer. On the other hand, due to the lower influence across communities, we

also set the diffusion rate between nodes from different communities to be 10%β. As

for solving this optimization problem, we refer to the hybrid version of binary parti-

cle swarm optimization (PSO) algorithm, which is a powerful algorithm for general

combinatorial optimization purpose[62, 63, 84].
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The organization of the rest of the work is as following. In Section 5.2 we introduce

the binary PSO algorithm and verify the feasibility of the algorithm by its successful

performance on a set of test functions in numerical experiments. And in Section 5.3

we apply the algorithm on our profit optimization problem. We learned that when the

cost function is very heterogeneous across candidate seed nodes as in the case when

cost is a function of degree K, the optimal set of nodes selected will be mainly a set of

low degree nodes, and only in the case of extremely small W or Q would high degree

nodes be included. On the other hand, if the cost function is pretty homogeneous

across nodes as in the case when cost is a function of MWT, the optimal seed nodes

set will build up from high degree nodes to low degree nodes. For comparison, we

also include the result based on a naive strategy: maximum personal profit (MPP),

which is to identify the candidate seed node that will produce the highest profit if we

set it as the single seed node. Specifically, for primary layer we find one seed node

for each community and for secondary layer scale free network we find one for the

whole network. When W or Q is not too small, good agreement between the optimal

seed node allocation result based on PSO and that based on MPP is achieved. When

we couple the two layer networks together, the community structure effect would be

quenched in terms of the seed nodes allocation. And in our settings, utilizing two

layers of networks for diffusion purpose outperforms single layer in terms of the total

profit.

5.2 Particle Swarm Optimization

Particle swarm optimization algorithm was firstly introduced by Kennedy and

Eberhart in 1995 for the optimization of continuous nonlinear functions and train-

ing neural networks [62]. The method was discovered through simulation of artificial

social models such as bird flocking and fish schooling, and is a evolutionary compu-

tational technique, extremely useful in solving problems of optimizing an objective
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function in the multidimensional space of parameters [80]. In the original setting,

each particle flies in the space of parameters with its position representing a possible

candidate solution and the velocity representing the speed of changing its position.

The position of the ith particle at time t is a vector xi(t) = [xi1(t), · · · , xiD(t)] with

i = 1, · · · , N , where N is the population size of the particles and D is the dimen-

sion of the problem at hand. The particle moves according to the following update

equations,

vi(t+ 1) = vi(t) + c1(pi(t)− xi(t))R1 + c2(gi(t)− xi(t))R2 (5.2.1)

xi(t+ 1) = xi(t) + vi(t+ 1) (5.2.2)

Here c1 and c2 are two constants, usually in the range c1, c2 ∈ (0, 4), R1,R2 are two

diagonal matrices with R1[d, d],R2[d, d] ∼ Uniform(0, 1), pi(t) is the personal best

position so far up to time t for particle i in terms of the objective function value, and

gi(t) is the global best position so far for all the particles up to time t. Intuitively, a

particle’s position at the next time step is a compromise amoung its previous position,

previous velocity, best personal position and best global position, with c1 and c2 to

control the weight of each contribution. In the following years after the introduction

of the technique, a lot of attempts were made to improve the performance. In 1997

Shi and Eberhart introduced a new factor w named inertia weights for the previous

velocity and soon after many variants appeared, including random inertia weight

and linearly decreasing inertia weight among others[116, 36, 131]. And the update

function for vi(t) becomes

vi(t+ 1) = w(t)vi(t) + c1(pi(t)− xi(t))R1 + c2(gi(t)− xi(t))R2 (5.2.3)
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Then in 2002, Clerc and Kennedy introduced the constriction factor to ensure con-

vergence of the algorithm and can be simplified as the following[24],

vi(t+ 1) = K
[
vi(t) + c1(pi(t)− xi(t))R1 + c2(gi(t)− xi(t))R2

]
K =

2∣∣2− ϕ−√ϕ2 − 4ϕ
∣∣ , where ϕ = c1 + c2 > 4 (5.2.4)

On the other hand, a lot of attempts were also made on controlling the topology

of the particles population, especially for the factor gi(t) in order to achieve better

performance. First of all, instead of as the global best position, gi(t) was set as

local best position, defined as the optimal one of the best personal positions of the

k neighbors of the particle i. Some examples include random networks topology, 1D

lattice and Von Neumann lattice[64].

The PSO algorithm was originally designed to solve continuous real valued prob-

lems, but fortunately, variants were proposed to solve discrete problems, of which

the most representative and most popular one is the discrete binary version of the

PSO algorithm proposed by Kennedy and Eberhart in 1997[63]. Since then, it has

been widely studied and applied in various fields as a combinatorial optimization al-

gorithm, including variable selection, signal processing, traveling salesman problem,

and knapsack problems among others[80, 53, 79, 102, 126].

In the discrete binary version of the PSO algorithm proposed by Kennedy and

Eberhart, the particles fly in the space restricted to binary 0 and 1 in each dimension,

but the velocity update equation (2.1) is kept unchanged. Here the positions xi(t) =

[xi1(t), · · · , xiD], xid ∈ {0, 1}, d = 1, · · · , D still represent possible candidate solutions.

However, just as in logistic regression, each dimension of the velocity vid(t) here does

not represent the real change in position anymore, instead, it represents the log odds

of the dth dimension of the particle i taking value 1 compared to 0. In this way, the

position of particles in the space is ephemeral and probabilistic since the position
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does not exist until realized by the following,

xid(t+ 1) =


1, if S(vid(t+ 1)) > u

0, otherwise

(5.2.5)

Here S(vid(t + 1)) = evid(t+1)

1+evid(t+1) = 1
1+e−vid(t+1) is sigmoid function, or, in terms of

logistic regression, the probability form, and u ∼ Uniform(0, 1) is a random number

following uniform distribution in the range [0, 1]. On the other hand, of course,

those strategies developed for improving performance for the continuous version of

PSO algorithm such as local neighbors, constriction factors and inertia weights still

applies since the velocity update function remains. Since the introduction of this

binary version of the PSO algorithms, due to its powerful applications in various

fields, a lot of modifications/improvements were developed tailored for the tasks at

hand, including charged binary PSO, genotype-phenotype binary PSO and PSO with

mutation and cross over processes [117, 70, 84]. For example, in analogy to the

genotype-phenotype mechanism in biology, Lee, etc, proposed viewing the velocity as

genotype x
(g)
id (t), hidden, and position as phenotype vid(t) = x

(p)
id (t), and the particles

fly in the genotype space with possible mutation,

vid(t+ 1) = K
[
vid(t) + c1(pid(t)− xid(t))R1 + c2(gid(t)− xid(t))R2

]
x

(g)
id (t+ 1) = x

(g)
id (t+ 1) + vid(t+ 1)

x
(g)
id (t+ 1) =


−x(g)

id (t+ 1), if pm > u

x
(g)
id (t+ 1), otherwise

(5.2.6)

Here as before u ∼ Uniform(0, 1) and pm is the probability of velocity mutation

chosen for best performance. As a matter of fact, the only difference between this

formulation and the original proposed by the Kennedy is the conceptual framework,

114



since we can easily combine the two update equations above and it becomes the

version with inertia weight w = 1 +K.

vid(t+ 1) = vid(t) +K
[
vid(t) + c1(pid(t)− xid(t))R1 + c2(gid(t)− xid(t))R2

]
(5.2.7)

From empirical experience, we figured that the best version for our purpose is the a

slightly modified version based on the hybrid binary PSO algorithm introduced in [84]

because of its fast convergence speed and capability of reaching global optima. Both

mutation from Genetic algorithm and cross over process back to previous personal

best position are included, and the detailed procedure is shown in the pseudo code.
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Algorithm 2 Binary Particle Swarm Optimization with Mutation and Crossover

Input: Particles population size N , dimension of the problem D, maximum allowed
velocity Vmax, velocity upper bound vmax for initialization, mutation probability
pm, cross over probability pc, inertia weight w and weights c1, c2, formula F (xi)
that returns the value of the objective function based on the position xi, total
number of iterations T and the stopping criteria ε.

1: Initialize xid(0)
iid∼ Bernoulli(pi), i = 1, · · · , N, d = 1, · · · , D, where pi = i/N

2: P← X, g← ArgMax(X, F ), where X = [x1, · · · ,xN ], and P = [p1, · · · ,pN ]

3: Initialize vid(0)
iid∼ Uniform(−vmax, vmax), i = 1, · · · , N, d = 1, · · · , D

4: t← 0
5: while t < T and F (g) < ε do
6: for i← 1, · · · , N do

7: R1[d, d]
iid∼ Uniform(0, 1),R2[d, d]

iid∼ Uniform(0, 1), d = 1, · · · , D
8: vi(t+ 1)← w(t)vi(t) + c1(pi(t)− xi(t))R1 + c2(gi(t)− xi(t))R2

9: for d← 1, · · ·D do
10: vid(t+ 1)← min(Vmax,max(−Vmax, vid(t+ 1)))
11: u← Uniform(0, 1), xid(t+ 1) = bool

(
1

1+e−vid(t+1) > u
)

12: um ← Uniform(0, 1), and xid(t+ 1) =
∣∣xid(t+ 1)− 1

∣∣) if um > pm
13: uc ← Uniform(0, 1), and xid(t+ 1) = pid(t)

)
if uc > pc

14: end for
15: if F (xi(t+ 1)) > F (pi(t)) then
16: pi(t+ 1)← xi(t+ 1))
17: else
18: pi(t+ 1)← pi(t)
19: end if
20: end for
21: g← ArgMax(P, F )
22: t← t+ 1
23: end while
24: return g, F (g)

To investigate the effectiveness of the algorithm in solving general combinatorial

optimization problems, we apply the algorithm on the following set of test functions
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following [70, 63] ,

f1 =
∑3

i=1
x2
i , xi ∈ [−5.12, 5.12], x

(opt)
i = 0

f2 = 100(x2 − x2
1)2 + 100(x3 − x2

2)2 + (1− x1)2 + (1− x2)2, xi ∈ [−5.12, 5.12], x
(opt)
i = 1

f3 = 6× 3 +
∑3

i=1
bxic, xi ∈ [−5.12, 5.12], x

(opt)
i ∈ [−5.12,−5)

f4 =
∑3

i=1

(
x2
i − 10cos

(
2πxi

)
+ 10

)
xi ∈ [−5.12, 5.12], x

(opt)
i = 0

f5 = 0.5 +
sin2

(√
x2

1 + x2
2 + x2

3

)
− 0.5[

1 + 0.001(x2
1 + x2

2 + x2
3)
]2 xi ∈ [−51.2, 51.2], x

(opt)
i = 0

f6 =
1

4000

∑3

i=1
(xi − 100)2 −

∏3

i=1
cos
(xi − 100√

i

)
+ 1, xi ∈ [−512, 512], x

(opt)
i = 100

(5.2.8)

The first part is the function itself, second part is the search range we used, third part

is the value of xi in each dimension to achieve optimal value of objective function,

which is fmin = 0 for all cases. These test functions were originally in continuous

form and designed for testing continuous optimization algorithms. But we can con-

vert floating point numbers into binary and still make use of these test functions for

discrete case. For example, x ∈ (−5.12, 5.12) can be converted into a 10 bits binary

number xb = [xb1, · · · , xb10] such that x =
(∑10

i=1 2x
b
i (10−i) − 512

)
/100. For the opti-

mization process, we used the following set of parameters: N = 50, D = 30, Vmax =

6, vmax = 0.6, pm = 0.02, pc = 0.1, T = 100, w = 1, c1 = c2 = 2. Then we run 100 real-

izations of the algorithm on all of the 6 functions and record the percentage number

of realizations that could reach different levels of accuracy (defined as when the value

of the objective function for global optimal is no larger than the error level) versus

iteration. We can see that after 50 iterations, the true global optimal when objective

function value is zero can be achieved for a small percentage of the realizations for

most of the functions. Since for our purpose, we only need to find the optimal con-

figuration as well as the corresponding value of the objective function once, we can
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run the optimization algorithm several times, say M times, and each time set T not

large, and choose the best from these several realizations. In practice for our usage,

we set M = 20, T = 50.

For illustrative purpose, we plot one dimensional case for the three of the test

functions f4, f5, f6 as following,

Figure 5.1: Left to right: (a), f4, Rastrigin; (b), f5, Schaffer’s F6; (c), f6, Griewank;
1 Dimensional plot of three representative test functions

We can see that the test functions are so complicated such that it is very easy to

get trapped in local optima, but the optimization results are actually pretty good as

shown bellow. Therefore, we are confident that we can apply the algorithm for our

purpose following the above strategy.
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Figure 5.2: Upper row from left to right: (a), f1, Spherical; (b), f2, Rosenbrock; (c),
f3, Step. Lower row from left to right: (d), f4, Rastrigin; (e), f5, Schaffer’s
F6; (f), f6, Griewank. Percentage of realizations reaching different level
of accuracy versus iterations

5.3 Application of PSO on information diffusion

In this section, we apply the above hybrid binary PSO algorithm on seed nodes

selection for information diffusion maximization purpose.

5.3.1 Experimental settings

The information diffusion process is carried out on three network settings, single

layered network A with community structure generated by standard stochastic block

model[30, 59, 42], single layered network B generated as a degree corrected scale free

network[129, 133], and multilayered networks realized by coupling network A and B.

Network A is generated as of size N = 1000 with 5 communities, with size 400,

200, 200, 100 and 100. The probability of connections between nodes from the same

community is pin = 0.02 and between nodes from different communities is pout =

0.0002 such that the degree distribution of community 1 is P (k) ∼ Poisson(8), for

community 2 and 3 is P (k) ∼ Poisson(4) and for community 4 and 5 is P (k) ∼
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Poisson(2), total number of connections between community 1 and 2(3) is distributed

as P (M12) ∼ Poisson(16), between 1 and 4(5) is P (M14) ∼ Poisson(8), between 2

and 3 is P (M23) ∼ Poisson(8), between 2 and 4(5) is P (M24) ∼ Poisson(4) and

between 4 and 5 is P (M45) ∼ Poisson(2). Network B is also of size N = 1000, with

degree distribution P (k) ∼ k−λ, where λ = 2.9 and the average degree is set to be

〈k〉 = 5.

To model the information diffusion process we use the susceptible-informed-immunized(SIM)

model introduced in Chapter 3 with diffusion rate β0 and immunization rate γ. As-

sume we start the diffusion process before immunization in a discrete time case, the

probability of a node k > 1 hops from the seed node to finally get informed is

pk =
β1

1− (1− γ)k+1(1− β1)

k∏
i=2

βi(1− γ)k+2−i

1− (1− γ)k+2−i(1− βi)
(5.3.1)

And for k = 1, we simply have:

p1 =
β1

1− (1− γ)2(1− β1)
(5.3.2)

where in general βij = 1−(1−β0)
∑K
k=1W

(k)
ij with W

(k)
ij being the weight of the kth edge

between node i and j, and for simplicity in notation we denote βij by βi. As discussed

before, we set the diffusion rate β0 = 0.05 for within communities, and β0 = 0.005 for

diffusion both between communities on primary layer and on secondary layer.

To facilitate identifying a set of candidate seed nodes, we first study the structure

of both MWT and saturated diffusion size F based on degrees of nodes for both

layer A and B. In layer A, nodes split into 3 groups in terms of MWT and F such

that community 1 forms one group, community 2 and 3 forms second group and

community 4 and 5 forms the third group. Similarly, in layer B nodes naturally split

into three clusters in terms of MWT vs degree, and it turns out that these three
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clusters represent three groups of nodes with distinct distance from the hub node of

degree K = 364, such that in cluster 1 all nodes are one hop from the hub, in cluster

2 all nodes are two hops from the hub and in cluster 3 all nodes are three or more

hops from the hub.

Figure 5.3: Upper row: (a-c), Layer A. Lower row: (d-f), Layer B. Structure of MWT
and F vs degree for both network layer A and B

As can be seen in layer A both MWT and F are well separated for the three groups

with larger group members producing both much higher MWT and F and the degree

does not contribute very much. On the other hand, for layer B only MWT for the

three clusters are well separated for the three groups and similarly degree does not

have much contribution. On the contrary, for F the three groups are not so separated

and F increases dramatically with degree especially when degrees are small.

In particle swarm optimization, as the dimension of the problem increases accuracy

tends to decrease[70, 80], so we do not want to include all nodes as possible candidates,

in which case the dimension is D = 1000. Instead, we choose a small subset D = 30

representative nodes from the whole network and search from these 30 nodes the

optimal set of seed nodes under different circumstances to achieve maximum profit.

To ensure that the 30 nodes are as representative as possible, in both layer A and B
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we distribute the 30 nodes evenly in the three clusters with number of candidate seed

nodes in each group proportional to the size of that group. Besides, within each group

we select nodes over the whole range of degrees so as to cover as many degrees as

possible, and for each degree set, we want to choose the one node with modest MWT

and F . The candidate seed nodes selection process is illustrated by the community

1 in layer A as shown in the following, with green stars representing the nodes being

selected as the candidate seed nodes.

Figure 5.4: Seed nodes selection process for community 1 in layer A

5.3.2 Experiments I: Primary layer A only

In this section, we study the information diffusion maximization process on pri-

mary layer A only. In the tables shown in Figure 5.5, the column Cm represents the

community the candidate seed nodes belong to, the column K represents the degree

of connectivity of the candidate seed nodes in layer A, column MWT represents the

MWT value and column F represents the saturated diffusion size if we start from the

single one candidate seed node. The row PT represents the maximum total profit

under the experimental setting obtained by PSO, and Pow represents the exponent

Q in the definition of cost function.

In each experiment, for the finally identified optimal set of seed nodes by PSO,
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1 indicates being included and 0 indicates otherwise, and for visual guidance, we

colored 1s in black. The red and pink cells in each community for each experiment

is achieved by MPP. Intuitively, if we want to maximize total profit, we would like

to select at least one seed node from each community and the the red and pink cells

represents this strategy when we choose one single seed node from each community

and if the optimal node is also selected by PSO, it will be colored in red, otherwise,

it will be pink.

Comparing the experimental results in table (a) and (c) in Figure 5.5 we have

the following 3 main findings. (1) More seed nodes are included in the identified set

by PSO in (a) than in (c) in the whole range values of W , and they form upper left

triangle in (a) and V shape in (c). (2) Agreement on seed nodes selection by PSO

and by MPP method for large W in (a), and agreement in (c) as long as W is not too

small. (3) At least one seed node from each community is selected except when W is

too large. To understand these findings, we can roughly replicate the structures by

thinking of the searching process for the optimal set of seed nodes in each community

in the first step as a competition in terms of total profit PT = Ftot − costtot between

the single one best seed node obtained based on MPP mechanism and a group of low

degree nodes available. And then extra seed nodes will be added to the winner set

step by step based on the same competition mechanism in terms of marginal profit

∆PT = ∆Ftot−∆(cost) until ∆PT ≤ 0, where ∆Ftot is marginal revenue, defined as

the extra diffusion size achieved by including the extra set of seed nodes, and ∆(cost)

is the marginal cost, defined as the extra cost of including the extra set of seed nodes.

For illustrative purpose, in the following we use community 1 as an example and

we will notice that the distinctive structure of seed nodes location for (a) and (c)

comes from the higher homogeneity of values of MWT compared to degree K across

nodes. In community 1, for example, the range of MWT is (53.9, 158.2) with the

maximum about 3 times of the minimum while for K the range is (1, 18) and the
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maximum is 18 times of the minimum. Suppose at step 1, we take two nodes of low

degree K = 2, 3 as a candidate for original set of low degree seed nodes and compete

with the node with degree K = 18 chosen by MPP mechanism when W ≤ 2.0. If we

assume that the diffusion processes starting from the two seed nodes are independent,

when we start with the two low degree nodes the final diffusion size is approximately

F
(2,3)
tot ∼ 400

[
1−(1−226.5/400)(1−254.6/400)

]
= 336.9, which is close to the diffusion

size when we start from the high degree node F (18) = 320.6.

In (a) the objective function we want to maximize is profit PT = Ftot−Ktot∗W =

Ftot
(
1 − Ktot

Ftot
W
)
, where Ftot is the saturated total diffusion size and Ktot is the sum

of degrees of all seed nodes. For step 1, substitute the above two candidates into

the objective function under the same W and assume an equal Ftot, then for the

first one K
(2,3)
tot = 5 ⇒ PT (2,3) = Ftot

(
1 − 5

Ftot
W
)

and for the second one K(18) =

18 ⇒ PT (18) = Ftot
(
1 − 18

Ftot
W
)
. Obviously, the first one wins and we choose the

set with two low degree seed nodes as the original optimal set. Of course, there

might be other combination of low degree seed nodes that would produce higher

PT , but still, this kind of candidates win. Then we add extra seed nodes step by

step based on the same competition mechanism but in terms of the marginal profit

∆PT = ∆Ftot −∆Ktot ∗W . Following the same analysis, we would tend to add low

degree nodes before high degree nodes. To investigate if the high degree node selected

based on MPP will be included, we look at the difference in marginal profit between

two seed nodes of different degrees K1 < K2

∆PT2−∆PT1 =
(
∆F

(2)
tot−∆F

(1)
tot

)
−
(
∆K

(2)
tot−∆K

(1)
tot

)
∗W =

(
∆F

(2)
tot−∆F

(1)
tot

)
−
(
K2−K1

)
∗W

With the same set of seed nodes, the difference in marginal revenue ∆Ftot = ∆F
(2)
tot −

∆F
(1)
tot between adding an extra node 2 versus 1 is constant, but the difference in

marginal cost
(
K2 − K1

)
∗W will be negligible in the range K ∈ [1, 18] if we have
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extremely small W and therefore the high degree seed node will be included in sacrifice

of some low degree seed nodes. On the other hand, as W increases, differences in

marginal cost might exceed differences in marginal revenue such that high degree

seed nodes are never included. However as W increases further the optimal one single

seed node selected based on MPP might become so low in degree such that it overlaps

with low degree seed nodes selected in step 1.

Similarly the objective function we want to maximize in (c) is Ftot−MWTtot∗W =

Ftot
(
1− MWTtot

Ftot
W
)
, following the same analysis, MWT

(2,3)
tot = 76.2 + 89.6 = 165.8⇒

PT (2,3) = Ftot
(
1 − 165.8

Ftot
W
)

while MWT (18) = 158.2 ⇒ PT (18) = Ftot
(
1 − 158.2

Ftot
W
)
.

So the second one wins and we choose the one high degree node selected based on

personal profit as the original optimal seed node. Then we add extra seed nodes based

on the same competition mechanism but in terms of the marginal profit ∆PT =

∆Ftot − ∆MWTtot ∗ W . Following the same analysis, we would tend to add high

degree seed nodes before low degree nodes as long as ∆PT > 0. In the region when

W is extremely small, the marginal cost ∆MWTtot ∗W would be negligible compared

to ∆Ftot resulting in a positive ∆PT and therefore, the seed nodes would build up

from high to low degrees, while when W becomes larger, it becomes unprofitable even

to add one extra seed node and thus only the one single seed node selected based on

personal profit is placed. This explains why the seed nodes number selected tends to

be smaller in (c) compared to (a) in most values of W and better agreement between

the set of seed nodes returned by PSO and by MPP is observed in (c).

As for finding (3), because of the extremely limited diffusion between communities,

including one extra group of nodes from each community would result in a positive

marginal profit ∆PT for most of the cases, except when Fi − costi < 0 for all seed

nodes in the community in which case even the step 1 would return no seed nodes

as any combination would produce negative profit. Here Fi is diffusion size if we set

node i as the single one seed node, and costi is the cost of doing so. This case is
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represented when there is no red or pink cells in the community and we can observe

pretty good agreement between the values of W or Q where pink/red disappears and

where entry 1 disappears. For example in (a), pink cells disappear after W = 5.0 in

community 5 and the entry 1 disappears only one step earlier and for community 4

both disappear after W = 5.0.

To sum up, in (a) we build up seed nodes in each community from low degree seed

nodes up to high degree nodes and whether the high degree nodes will be included or

not depends on the weight W . On the other hand, in (c) we build up the seed nodes

in each community from high degree to low degree and good agreement between the

set of seed nodes returned by PSO and by MPP is achieved if W is not too small.

For (b) and (d) we would expect similar phenomena, except in (b): (1) when Q

is small, say Q ≤ 0.5, we would expect fewer low degree seed nodes and (2) when Q

is large, say Q ≥ 2.0, we would expect more low degree nodes to be included. Both

the two phenomena can be explained by the property of power function. Suppose we

have two seed nodes and one’s degree is 4 times the other, then under condition (1)

K2/K1 = 4 ⇒ (K2/K1)0.5 = 2 cost only becomes 2 times and one extreme case is

K = 1 ⇒ cost = K0.5 = 1 not negligible anymore. Under condition (2), similarly,

K2/K1 = 4 ⇒ (K2/K1)2 = 16 the cost becomes 16 times and one extreme case is

K = 1 ⇒ cost = K4 = 1. ∆PT would be positive in this case if we include the low

degree nodes since fewer seed nodes are already included and including one extra seed

node result in a higher ∆Ftot compared to when there are already many seed nodes

selected as under condition (1).
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Figure 5.5: Upper left: (a), cost = K ∗W ; Upper right: (b), cost = KQ; Lower left:
(c), cost = MWT ∗W ; Lower right: (d), cost = MWTQ. Cost based on
degree K and MWT for layer A

5.3.3 Experiments II: Secondary layer B only

In this section we investigate the diffusion maximization process on secondary

layer B with all settings the same as above except stated otherwise. Similar to in
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layer A we put candidate seed nodes in all three clusters and in the tables shown

in Figure 5.6 red/pink cells represent the optimal seed node among candidate seed

nodes within each cluster based on MPP while the blue cells represent the global

optimal seed node among all the candidate seed nodes across the three clusters by

MPP. As before, red and dark blue indicate that the optimal node is also included

in the optimal set of seed nodes identified by PSO while pink and light blue indicate

otherwise.

Similarly, comparing (a) and (c) we have 3 main findings. (1) More seed nodes

are included in the identified set by PSO in (a) than in (c) in the whole range values

of W , and they form upper left triangle in (a) and V shape in (c). (2) Agreement on

seed nodes selection by PSO and by MPP in (c) as long as W is not too small. (3)

For most of the cases, there is no necessity of placing at least one node in each cluster

and we can basically treat all nodes the same way as if they are all in one community.

For illustrative purpose, we first focus on cluster 1. Following the same analysis as

above we can roughly replicate the configurations by treating the searching process

as a competition in terms of profit PT between one optimal single seed node based on

personal profit and a group of low degree nodes available for the first step and then

step by step adding extra seed nodes based on competition in terms of marginal profit

∆PT . It turns out that the values of MWT ∈ (356.6, 605.4), where maximum is less

than 2 times of minimum, are much more homogeneous than the degrees K ∈ (1, 364),

where maximum is 364 times of minimum, across nodes compared to layer A, which

is reasonable since layer A was generated by standard SBM model while layer B was

generated as a scale free network.

Following the same procedure, take the two seed nodes of degree K = 7, 9 as

an example and compete with the optimal one seed node of degree K = 364 for

most values of W . Assume that the information diffusion process from the two seed

nodes are independent, then the total revenue when we start from both of them
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is approximately F
(7,9)
tot ∼ 1000(1 − (1 − 610.6/1000)(617.2/1000)) ∼ 851 which is

comparable with the personal revenue of the one hub node F (364) = 780.2. Then, we

assume the same revenue Ftot for the two, and under the same W . In (a) PT (7,9) =

F
(7,9)
tot − K

(7,9)
tot ∗ W = F

(7,9)
tot

(
1 − K

(7,9)
tot

F
(7,9)
tot

∗ W
)
∼ Ftot

(
1 − 16

Ftot
∗ W

)
and PT (364) ∼

Ftot
(
1 − 364

Ftot
∗ W

)
. Obviously the first candidate wins out and following the same

analysis, we know that for (a) the seed nodes set build up from low degree ones and the

hub node will be included only when W is extremely small when ∆PThub−∆PTKlow

is positive for some seed node of low degree Klow. The cluster does not make much

contribution in this case which is reasonable since if we look at Figure 5.6 (d) we will

notice that the F ∼ K plot is almost independent of the clusters. It is intuitively

correct since we do not have any community structure in layer B and we would expect

nodes of the same degree K to be statistically equivalent.

Similarly, in (c) PT (7,9) = F
(7,9)
tot −MWT

(7,9)
tot ∗W ∼ Ftot

(
1− 365.7+369.8

Ftot
∗W

)
while

PT (364) ∼ Ftot
(
1− 605.4

Ftot
∗W

)
. Obviously the second candidate wins out and we choose

the optimal one based on MPP and then we add extra seed nodes based on marginal

profit. Similarly we see that the set of seed nodes build up from high degree to low

degree and when W is not too small perfect agreement between the optimal node

returned by PSO and based on MPP is achieved. Note that when W is small some

cluster dependent structure appears, that is at least one node from each cluster are

included. For example when W = 0.005 if we treat all nodes as if they belong to

the same community we would not expect nodes of degree smaller than K = 14 to

be included from cluster 1 but one node of degree K = 5 is included from cluster 3.

Another example is when W = 0.01 from cluster 1 we would not expect any node

of degree K < 22 to be included but one node of degree K = 16 from cluster 2

is included. These findings are actually consistent with the community structured

property of MWT values and none for F as shown in Figure 5.3 (d-e). Since MWT
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of clusters 2 and 3 are much smaller compared to cluster 1

∆PT2,3 −∆PT1 =
(
∆F2,3 −∆F1

)
−
(
MWT2,3 −MWT1

)
∗W

= (MWT1 −MWT2,3) ∗W −
(
∆F1 −∆F2,3

)
(5.3.1)

When W is small enough such that the last node to be added following the above

seed node building up procedure in cluster 1 is with small enough degree such that

∆F1 and ∆F2,3 are so close that the difference in MWT values can compensate it

even multiplied by W .

As for (b) and (d), (d) is similar to (c) while (b) is a little bit different just as

in layer A when we expected less low degree nodes when Q is small and more low

degree nodes when Q is large. As Q becomes small, difference in cost for two nodes

of different degrees K1, K2 is much smaller and the cost becomes very homogeneous

across nodes, which is very similar to the case MWT. And therefore, for low Q we

would expect more similar structure to (c), and it turns out that it is the case in (b)

where very steep V shape is visible. On the contrary when Q is large, cost from low

degree nodes do not increase as fast as high degree nodes but ∆Ftot becomes more

significant due to smaller number of seed nodes included and therefore we would

expect to see more low degree nodes included, which is the case in (b).
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Figure 5.6: Upper left: (a), cost = K ∗W ; Upper right: (b), cost = KQ; Lower left:
(c), cost = mwt ∗ W ; Lower right: (d), cost = mwtQ. Cost based on
degree K and mwt for layer B

5.3.4 Experiments III: Multilayer A and B

In this section, we couple layer A and layer B together and let the information

diffuses on the two layered networks. We keep the candidate nodes position unchanged

in layer A but modify the corresponding position of the seed nodes in layer B. For
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tables (a-b) shown in Figure 5.7 we put all the candidate seed nodes in cluster 3 in

layer B and for tables (c-d) we put all the candidate seed nodes in cluster 1 in layer

B. For the two layered networks case, the cost of selecting a certain node i as a seed

node is
(
KA(i) +KB(i)

)
∗W in terms of degree K and

(
MWTA(i) +MWTB(i)

)
∗W

in terms of MWT, where KA(i)
(
KB(i)

)
is the degree of connectivity of node i in

layer A(B), and MWTA(i)
(
MWTB(i)

)
is the value of MWT of node i in layer A(B).

Similarly, the total cost is the summation of cost for each seed node.

From tables (a) and (c) in Figure 5.7 we have the following 2 findings. (1) Instead

of forming upper left triangle the seed nodes form a more of a V shape. (2) Community

structure effect is not as important as in single layer A, that is as W increases not so

important to have at least one node from each community.

Phenomenon (1) can be explained from two perspectives. On the one hand,

after coupling with the secondary layer B high degree nodes becomes much more

effective in diffusing information while on the other hand, after including the sec-

ondary layer degree in the cost function the distribution of cost across nodes become

more homogeneous and we would expect similar behavior as when we use MWT as

cost. As we discussed before, more heterogeneous F combined with more homo-

geneous cost across nodes would result in V shape, and homogeneous F combined

with heterogeneous cost would result in upper left triangle, thus the phenomenon.

Phenomenon (2) is because adding one seed node from a new community does not

result in an as high marginal profit as before in single layer A. On the one hand, in

∆PT = ∆Ftot−∆K ∗W = ∆Ftot
(
1− ∆K

∆Ftot
∗W

)
. ∆K = ∆KA+∆KB becomes larger

while at the same time ∆Ftot is smaller because the contribution from secondary layer

would diminish the marginal contribution from including an extra seed node. It is

not profitable anymore to include any seed node from the community once ∆PT < 0

and this happens earlier here compared to single layer A case. Note that for single

layer A case, ∆Ftot ∼ F , the marginal revenue is approximately the personal revenue
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if it is the only seed node in the community because of the extremely limited diffu-

sion between communities, but here ∆Ftot < F because of the contribution from the

secondary layer.

From tables (b) and (d) in Figure 5.7, similarly we have two findings. (1) When

W is low, the behavior is pretty similar to the V shape we observed for single layer

A. (2) As W increases we do not observe the right wing of V shape in terms of each

community and community structure effect disappears.

Phenomenon (1) can be similarly explained by the homogeneous cost function and

heterogeneous revenue function F across nodes. Phenomenon (2) can be explained by

borrowing the same analysis as above. Adding one seed node from a new community

does not result in an as high marginal profit as before in single layer A since in ∆PT =

∆Ftot − ∆MWT ∗W = ∆Ftot
(
1 − ∆MWT

∆Ftot
∗W

)
the factor ∆MWT = ∆MWTA +

∆MWTB becomes larger while at the same time ∆Ftot becomes smaller because the

contribution from secondary layer would diminish the marginal contribution from

including one extra seed node. As for the right wing of V shape, if we combine all

the communities together we will be able to observe it since as W increases seed

nodes disappears from big communities with high degree but remains or reappears in

smaller communities with not as high degree.
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Figure 5.7: Upper left: (a), (KA + KB) ∗ W for C3; Upper right: (b), (MWTA +
MWTB)∗W for C3; Lower left: (c), (KA +KB)∗W for C1; Lower right:
(d), (MWTA +MWTB) ∗W for C1. Layer A coupled with layer B

In order to investigate the effect on total profit of different seeding strategies in

terms of the hub node placement in secondary layer B when coupled with layer A,

134



we perform a series of experiments in the following as shown in Figure 5.8. In (a-b)

we keep everything the same as Figure 5.7 (a-b) except that we place one seed node

in layer A to the hub node for each experiment. For example, in the experiment

numbered 0 we place the node with degree KA = 1 in community 1 on layer A in

place of hub node on layer B and in the experiment numbered 17 we place the node

with degree KA = 9 in community 2 on layer A in the place of hub node on layer

B. In (c-d) we keep everything the same as Figure 5.7 (c-d) except placing hub node

following the same settings in (a-b) here. The degree of the hub node is KB = 364

and MWTB = 94.75

To compare the profit fairly under different experimental settings we need to

convert the profit into comparable values. The last row of the four tables represent

the normalized final profit, defined as the profit under the configuration given in the

table but changing the weight W to the minimum in the series of experiment. For

example, in table (b) we need to convert all the weight to the minimum Wmin = 1.0

so for the experiment numbered 0 the normalized profit becomes PT + (MWTAtot +

MWTBtot) ∗ (W −Wmin) = 332 + (94.75 + 53.9) ∗ (2.0− 1.0) = 480.7.

From Figure 5.7 we have the following 3 main findings. (1) For (a) and (c) only

under extremely small value of W would the hub corresponding seed node be selected

while for (b) and (d) it will always be selected except for very high W . (2) Almost all

nodes are included in (a, c) while for (b, d) only one single optimal is included. (3) It

would be more effective in terms of the normalized final profit to place hub in smaller

community and in place of lower degree KA in (b, d) but there is not significant

difference in (a, c).

Phenomena (1) and (2) can be explained by the analysis we did in the previous

sections. The cost function based on K in (a, c) is much more heterogeneous than the

cost function based on MWT in (b, d) after including the hub node in layer B and

therefore we expect the structure to be upper left triangle for (a, c) and V shape for
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the (b, d). From previous analysis, in left upper triangle we build up the seed nodes

from low degree to high degree and therefore only in the case of extremely small W

would we expect to see the hub and when the hub first disappears the rest low degree

nodes are still expected to remain. On the other hand, for V shape, the structure

would agree with one single optimal seed node based on MPP, and we would expect

only one hub node when W is moderate and the hub will disappear only when it is

not the optimal one based on MPP.

Phenomenon (3) can be analyzed through investigating the forming components of

total profit. For example, the difference in total profit between experiment numbered

0 and 6 is

PT0 − PT6 = F0 − F6 −
[
cost0 − cost6

]
Here cost0 =

(
KA
tot +KB

tot +KB
hub−KB

rep0− (KB
rm0 +KA

rm0)
)
∗W and similarly cost6 =(

KA
tot + KB

tot + KB
hub −KB

rep6 − (KB
rm6 + KA

rm6)
)
∗W where KA

tot is the total degree of

all the candidate seed nodes in layer A, KB
hub = 364 is the degree of the hub node on

layer B, KB
rep0 is the original degree of the node on layer B replaced by the hub in

experiment 0 and KA
rm0 is the total degree of all candidate seed nodes not included in

the optimal set in layer A in experiment 0. Similar definition follows for others. For

example in (a),

cost0 − cost6 =
[(
KB
rep6 + (KB

rm6 +KA
rm6)

)
−
(
KB
rep0 + (KB

rm0 +KA
rm0)

)]
∗W

= [(1 + (1 + 2 + 1 + 1))− (1 + (0 + 0))] ∗ 0.05 = 0.25

Similarly, for other cases in (a) and (c), the differences in the values of cost func-

tions are very small such that differences in contribution to the final total profit for

different experiments can be negligible. Since the final profit are almost identical

among placing hub node in different communities and degrees, we can conclude that

difference in revenue is also negligible. So, in the case of designing the cost function in
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terms of the degree K the placement of the hub node does not make a big difference.

As for (b) and (d), take (b) as an example,

cost0 − cost6 =
[
(MWTBhub +MWTA0 )− (MWTBhub +MWTA6 )

]
∗W

=
(
MWTA0 −MWTA6

)
∗W

= (53.9− 128.8) ∗ 1.0 = −74.9

And therefore,

PT0 − PT6 = F0 − F6 −
[
cost0 − cost6

]
= F0 − F6 + 74.9

On the other hand, from the last row, we know PT0 − PT6 = 481 − 416 = 65 and

therefore, F0 − F6 ∼ −10. Therefore, we can conclude that the higher total profit

achieved by placing the hub node in low degree mainly comes from lowered cost

because the change in revenue is expected to be negative, and is more significant

compared to the case (a, c) since in there many seed nodes are already included and

changing the position of the hub does not make much difference.

Similarly, comparing experiment 12 and 0 in Figure 5.8 (b) for the effect of com-

munity size,

cost12 − cost0 =
[
(MWTBhub +MWTA12)− (MWTBhub +MWTA0 )

]
∗W

=
(
MWTA12 −MWTA0

)
∗W

= (16.1− 53.9) ∗ 1.0 = −37.8

On the other hand, from the last row, PT12 − PT0 = 518 − 481 = 37 and therefore,

F12 − F0 ∼ −1 and similarly, F24 − F12 ∼ −1. So placing the hub node in smaller

communities of the same degree does not make much difference in terms of revenue

and the high profit comes from the lower cost.
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To sum up, the difference in the total profit for different locations of hub node

in terms of community size and degree in layer A in (b, d) mainly comes from the

difference in cost value. As a matter of fact, the revenue would make contribution in

the opposite direction.
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Figure 5.8: Upper left: (a), (KA + KB) ∗ W with hub for C3; Upper right: (b),
(MWTA +MWTB)∗W with hub for C3; Lower left: (c), (KA +KB)∗W
with hub for C1; Lower right: (d), (MWTA +MWTB) ∗W with hub for
C1. Layer A coupled with layer B with hub node

Finally we include the plot shown in Figure 5.9 for PT vs W for both when

cost = K ∗W and cost = MWT ∗W including both the case with single layered A

and the case with coupled A and B layers.

139



Figure 5.9: Left: (a), PT vs W for cost = K ∗W ; Right: (b), PT vs W for cost =
MWT ∗W . PT vs W for the two cost functions

From the plots we can see that for our settings, including extra layer of diffusion

channel would result in a higher profit in the whole range of W values. In addition,

for the case cost = K ∗W as shown in (a) the profit would decrease very quickly with

W when W is small, while on the other hand, the profit is pretty resilient with W

increases further. This is consistent with the fact that under this scenario the system

can always outperform the one optimal seed node configuration based on personal

profit by choosing a group of low degree nodes, and the smaller W the stronger this

effect. For the case cost = MWT ∗W there is no early fast decreasing stage which is

also consistent with the fact that under this scenario the system build up seed nodes

from high to low degree and only under extremely small value of W would the system

include a group of low degree nodes so as to outperform the single optimal node.

Therefore, we would expect similar pattern for larger W range in (a) and basically

the whole range of W in (c), which is the case.

5.4 Conclusion

In summary, we employed a hybrid version of the binary particle swarm opti-

mization algorithm with mutation and cross over process from genetic algorithm in
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optimal seed nodes selection for the profit maximization objective in information dif-

fusion process on both single layered networks and coupled multi layered networks.

For comparison we also developed a seed node selection strategy based on MPP.

Roughly we can replicate the seed nodes location structure by treating the selection

process as multiple steps. In the first step it is the competition between a group of

low degree nodes and the single one optimal node based on MPP in terms of total

profit. Then step by step new seed nodes are added into the optimal set identified in

step 1 based on the same competition mechanism in terms marginal profit. When the

cost function is heterogeneous, e.g., as a function of the degree K, we would expect

the seed nodes to build up from low to high degree ones and form an upper left tri-

angle shape if we table them in a way with increasing W or Q from left to right and

increasing degree from top to bottom. On the other hand, cost function value would

become homogeneous across nodes if we take the network topology into considera-

tion, as in the case when cost is a function of MWT. Under this scenario, the seed

nodes would build up from high degree nodes and V shape in the seed nodes location

structure is expected. Besides, As W or Q increases, good agreement on seed nodes

selection is achieved between the results by PSO algorithm and by the strategy of

MPP. When we couple the primary layer of network containing community structure

with the secondary layer scale free network, the community effect is quenched, just as

expected, because the secondary layer would significantly facilitate the information

diffusion process between communities.
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CHAPTER VI

Conclusion

The focus of this thesis was on the following three topics: (i) new methods for

identifying phase transition epochs in dynamically evolving networks exhibiting com-

munity structure, (ii) introduction of new models motivated by information diffusion

problems along with the mathematical analysis of their evolution and (iii) develop-

ment of computational methodology for selecting seed nodes that optimize a per-

formance measure (e.g. a profit function) in information diffusion networks. The

work provided analytical tools for a number of timely problems in dynamic network

analysis.

Specifically, the low rank plus sparse noise model for time evolving networks pro-

vides a robust method for detecting phase transition epochs and at the same time

diagnosing the changes in community structure that contribute to the regime changes.

The methodology was assessed on a number of synthetic data sets, including the Ku-

ramoto model of coupled oscillators and showed its effectiveness. Further, the analysis

of the US Senate voting record over the last 35 years also provided insights into the

onset of political polarization, as well which factors contributed to it.

On the second thrust, the thesis proposed the SIM and SIT models and rigorously

analyzed their dynamics using mean field theory approximations for both the homoge-

neous and heterogeneous degree distribution case. Analytical solutions were obtained
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for early stage evolution when t → 0 and a very good agreement was achieved with

Mote Carlo (MC) simulation based results. Regarding the expected saturated diffu-

sion fraction, in most cases the result is obtained through the numerical solution of

the corresponding ODE. However, for the homogeneous network SIT model, a close

form solution for the whole time range is derived, and good agreement between the

MC simulation results was also achieved, particularly for denser networks. Further,

both epidemic thresholds and phase transition time points were obtained based on

early stage evolution analysis. Finally, we also obtained an analytical solution for the

probability of each node getting informed for both the SIT and SIM models depending

on the path to the seed node, and approximated the expected saturated diffusion size

by growing a MWT. Good agreement with numerical results can be achieved when

the network has a tree-like topology or is rather sparse.

Finally, the thesis examined the topic of maximizing functionals related to the

information diffusion process. By developing an appropriate optimal function and

optimizing it leveraging ideas from binary particle swarm optimization algorithm, we

were able to select the optimal set of seed nodes from a group of candidate seed nodes.

The analysis showed that for networks exhibiting community structure, it is always a

good strategy to allocate at least one seed node in each of the available communities,

while if there is a channel through a secondary network (multi-layer network structure)

having free scale structure, this is not the case anymore. We further noticed that if

the cost component of the profit function is very heterogeneous across nodes -e.g. a

function of degree of seed nodes- the optimal set of seed nodes corresponds to a group

of low degree nodes, with the high degree nodes included only in the case of extremely

small W or Q. On the other hand, if the cost is pretty homogeneous across nodes

-e.g. a function of the value of its MWT- the optimal set comprises of high degree

nodes, and good agreement between the optimal set returned by PSO and by MPP

is achieved in this case. The analysis provides new insights on the interplay between
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the topology structure of the underlying network and selecting a set of seed nodes to

optimize information diffusion.

For future work, theoretical analysis of information diffusion processes based on

the proposed SIM and SIT models, for networks with community structure and on

multi-layer networks represents a promising, but also technically challenging direc-

tion. The theoretical study can provide deeper insights into the diffusion process

mechnaisms on networks with complex topological structures, and can be used to

guide the optimal seed nodes selection process so that extensive simulation work can

be reduced to a minimum.
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networks. Phys. Rev. Lett., 113:208702, Nov 2014.
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