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Abstract 

 

Understanding the biophysical properties that describe protein binding events has allowed 

for the advancement of drug discovery through structure-based drug design and in silico 

methodology. The accuracy of these in silico methods depends entirely on the parameters that we 

determine for them. Many of these parameters are derived from the structural information we have 

obtained as a community and therein resides the importance of integrity of the quality of this 

structural data.  

First, the curation and contents of the Binding MOAD database are extensively described. 

This database serves as a repository of 25,759 high-quality, ligand-bound X-ray protein crystal 

structures complemented by 9138 hand-curated binding affinity data for as many of those ligands 

as appropriate. The newly implemented extended binding site feature is presented, establishing 

more robust definitions of ligand binding sites than those provided by other databases. Finally, the 

contents of Binding MOAD are compared to similar databases, establishing the value of our dataset 

and which purposes it best serves.  

Second, a robust dataset of 305 unique protein sequences with at least two ligand-bound 

and two ligand-free structures for each unique protein is cultivated from Binding MOAD and the 

PDB. Protein flexibility is assessed using Cα RMSD for backbone motion and χ1 angles to quantify 

side-chain motions. We establish that there is no statistically significant difference between the 

available conformational space for the backbones or the side chains of unbound proteins when 

compared to their bound structures. Examining the change in occupied conformational space upon 

ligand binding reveals a statistically significant increase in backbone conformational space of 

miniscule magnitude, but a significant increase of side-chain conformational space. To quantify 

the conformational space available to the side chains, flexibility profiles are established for each 

amino acid. We found no correlation between backbone and side-chain flexibility. Parallels are 

then made to common practices in flexible docking techniques. 



x 

 

Six binding-site prediction algorithms are then benchmarked on a derivation of the 

previously established dataset of 305 proteins. We assessed the performance of ligand-bound vs 

ligand-free structures with these methods and concluded that five of the six methods showed no 

preference for either structure type. The remaining method, Fpocket, showed decreased 

performance for ligand-free structures. There was a staggering amount of inconsistency in 

performance with the methods; different structures of the exact same protein could achieve wildly 

different rates of success with the same method. The performance of individual structures for all 

six methods indicated that success and failure rates were seemingly random. Finally, we establish 

no correlation between the performance of the same structures with different methods, or the 

performance of the structures with structure resolution, Cruickshank DPI, or number of unresolved 

residues in their binding sites. 

Last, we examine the chemical and physical properties of protein-protein interactions 

(PPIs) with regard to their geometric location in the interface. First, we found that the relative 

elevation changes of the protein interface landscapes demonstrate that these interfaces are not as 

flat as previously described. Second, the hollows of druggable PPI interfaces are more sharply 

shaped and nonpolar in nature, and the protrusions of these druggable PPI interfaces are very polar 

in character. Last, no correlations exist between the binding affinity describing the subunits of a 

PPI and other physical and chemical parameters that we measured. 
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Chapter 1. Introduction 

 

Proteins are naturally flexible biopolymers capable of performing a wide variety of 

biochemical functions including signaling, protein processing, regulation, and alteration of small 

molecules (metabolism, for example). Many of these processes involve small molecules in the 

form of substrates, cofactors, and allosteric regulators. These binding events are critical for the 

field of medicinal chemistry because they present numerous targetable interactions amenable for 

engineering therapeutic agents. Due to the significant variety of biochemical and physical 

properties of both protein binding sites and the ligands that bind to them, there has been significant 

amounts of research and debate about the most influential factors in creating high-affinity ligands. 

These factors can be largely attributed either to the ligand, or to the protein.  

This dissertation studies the binding interactions between proteins and their ligand targets 

by utilizing a large database of high-quality, X-ray crystal structures of protein-ligand complexes 

called Binding MOAD.1-3 This study is completed in a very protein-centric manner, concentrated 

on the different aspects of protein flexibility and how the shape of proteins is influenced by ligand 

binding events. The bulk of the investigation is preceded by introduction of new, more robust 

definitions of binding sites in Binding MOAD. The main study of protein flexibility is then 

accomplished, and the dataset is then further utilized in a brief survey of ligand binding site 

prediction algorithms to test how well they can replicate these more robustly defined binding sites. 

Lastly, this dissertation presents a basic study of protein-protein interface topography.   

 

1.1 Protein Flexibility 

Proteins are naturally flexible biomacromolecules made up of amino acids. This flexibility 

comes as a result of the nearly infinite combinations and arrangements of the amino acids it is 

composed of. Though proteins are polymeric in assembly, they primarily exist in folded 

conformations guided and stabilized by non-covalent interactions. Their flexibility is a vital 
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component of binding substrates, performing enzymatic catalysis, and releasing bound 

substrates.4-5 

 Studying the flexibility of proteins and their binding sites has yielded some key insights of 

what governs protein-ligand interactions (PLIs). Heringa and Argos’ study of PLIs yielded some 

cases of binding induced strain in clusters of residues in or near ligand binding sites.6 This strain 

manifested as non-rotameric side-chain strain, meaning the side chains were occupying high 

energy conformations, but not actually switching to the next rotameric position. They hypothesized 

that side chains occupying strained conformations away from the energetic minimum allowed may 

help to drive enzymatic reactions.7 Luque and Freire describe how protein binding sites are often 

characterized by regions of both high and low stability.8-9  Some of the instable regions have been 

shown to be absolutely necessary for proper protein function.10 Catalytic residues in enzymes are 

typically located in highly stable regions of the protein core, which may allow for some 

preorganization of the binding site. Low stability regions have been shown to play a role in 

communication between allosteric binding sites and primary active sites. This preorganization 

concept has been investigated heavily, and its extent is subject to heavy debate within the 

community.11  

 

1.2 Protein-Ligand Binding 

Theories about small molecule interactions with proteins have changed constantly over the 

past century and continue to evolve. In 1894, the “lock and key” model was proposed by Herman 

Emil Fisher, describing the shape of ligand binding pockets as being predetermined in nature and 

only allowing ligands of the proper complementary shape to bind.12-14 In 1948, Linus Pauling 

suggested that enzymes were complementary molecules in structure to the activated complexes for 

the reactions which they catalyze. 15-16 These ideas were built upon and the “induced fit’ model 

was proposed in 1958 by Daniel Koshland, suggesting that protein binding sites adjust to 

accommodate ligands.17  Current theories range across that gamut, but many acknowledge that 

proteins exist in an equilibrium of energetically similar states.4, 9, 18-20 Ligands may then bind and 

“trap” proteins in a desired conformational state, which may shift the equilibrium of the system 

towards a distribution of conformations more favorable to the binding reaction.21  
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 Ligand binding events are often quantified using the free energy of binding for a ligand 

(∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔). This free energy of binding, given by the relationship: ∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  ∆𝐻𝑏𝑖𝑛𝑑𝑖𝑛𝑔 −

𝑇∆𝑆𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  −𝑅𝑇 ln(𝐾𝑎), where enthalpy (∆𝐻) and entropy (∆𝑆) are the state variables that 

govern the interaction, which is often measured by the equilibrium constant between the protein 

and ligand (𝐾𝑎). The specific contribution of entropy and enthalpy is dependent on the identity of 

the protein and ligand, as well as the conditions (i.e. concentrations of other molecules and solvents 

present). Differing solvent conditions for separate crystal structures only exacerbate this problem, 

as solvent has been shown to have a massive impact on various dynamics of protein structures.22 

Several factors govern the determination of both the entropy and enthalpy of a protein-ligand 

binding event, but these values are inherently difficult to calculate accurately.13, 23 Due to this, 

comparison between binding constants of different types (IC50, Ki, Kd) can yield wildly varying 

results.  

 

 Solvation and Desolvation 

Biological processes such as ligand binding occur in aqueous environments, and that water 

plays a significant role in the binding process. As it is the bulk solvent, water surrounds basically 

every component of a protein as well as free ligands at equilibrium. Therefore, that water must be 

displaced from both the protein’s binding site, as well as the ligand’s surface before ligand binding 

is possible.13 Waters inside of protein binding sites are typically partially occupied and able to 

associate/dissociate freely. Desolvation can be both favorable and unfavorable to binding, and 

usually correlates to the polarity of the entity being desolvated. Desolvating charged groups is 

almost always unfavorable to binding24, while the hydrophobic effect results in desolvation as a 

favorable process to binding. 

The hydrophobic effect was first discussed in 1945 by Frank and Evans, as a means to 

explaining the positive influence non-polar molecules can have on the free energy of binding, 

despite the desolvation that must occur.25 Introduction of a non-polar molecule to an aqueous 

environment is normally an energetically unfavorable process.26 This is due to disruption of the 

network of hydrogen bonds between water molecules, around where the non-polar molecule is 

located. However, in the case of a protein in an aqueous environment, a non-polar molecule can 

bury itself within the protein and the external water is able to rearrange back to a favorable 
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hydrogen-bonding network, resulting in a positive impact on the free energy of binding.27 It has 

been shown that solvent reorganization can attribute anywhere from 25% to 100% of the enthalpy 

gained in small-molecule binding.28 It has also been shown that the enthalpic contribution of the 

hydrophobic effect is proportional to the amount of buried non-polar surface area.27 

 

 Van der Waals Interactions and Electrostatic Interactions 

Van der Waals (VdW) interactions are one of the most significant contributors to high-

affinity binding events with proteins.29 These low-energy interactions are created by London 

Dispersion forces when placing atoms in contact with each other. Binding sites tend to be buried 

cavities, with little solvent exposure.30 This idea of buried-ness becomes important in high-affinity 

ligand binding events to ensure the maximum amount of surface contact with the ligand. The “lock 

and key” ligand binding model is based on this principle, as a perfect fit is only attainable when 

one specific ligand is involved.   

Electrostatic interactions are a broad classification of polarized molecular interactions 

which include hydrogen bonds, salt bridges, and metal contacts. Electrostatic interactions are less 

common than VdW interactions but have a much larger impact on the enthalpy of binding. Strong 

hydrogen bonds form between a polar-atom-bound hydrogen and another polar atom, where the 

polar atoms are commonly an O or an N. These stronger hydrogen bonds generally contain an 

enthalpic contribution 3-7 kcal/mol, implying the amount of energy necessary to break the bond. 

Weaker hydrogen bonds also exist, where the hydrogen-bound atom is not of electronegative or 

polar origin. An example of this weaker hydrogen bonding is a CH-O hydrogen bond, which 

typically contain only 1-2 kcal/mol, outside of examples with charged species.31 These weaker 

hydrogen have been crystallographically observed32 and also experimentally observed by means 

of solvent boiling temperature comparisons of halogenated and hydrogenated solvents.16 

Importantly, the strength of any hydrogen bond is highly dependent on its geometry.13, 33 

In a biological context, hydrogen bonding with water must be considered when describing 

ligand binding events. Both ligands and proteins are constantly interacting with water, as it is the 

bulk solvent in most biological environments. In order for PLIs to occur, both the protein and the 

ligand must undergo desolvation, which has both an enthalpic and entropic cost. Since the free 

energy of binding represents total difference between the standard free energy of the ligand-free 

protein and the standard free energy of the ligand-bound complex, and the chemical space of the 
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entire protein is typically much larger than the chemical space of the binding site, it is believed 

that the specifically observable PLIs do not greatly contribute to the free energy of binding.13 Past 

work has shown that expanding a ligand’s footprint to achieve another hydrogen bond may not 

yield any improvement in binding affinity.34 This occurred because the enthalpic gain of an 

additional hydrogen bond can be outweighed by the entropic cost of desolvation of the protein’s 

polar group participating in the hydrogen bond, as well as the entropic cost of forcing a specific 

orientation for that polar group. 

Lastly, salt bridges are the strongest class of electrostatic interaction. Salt bridges are 

formed between a positively charged and negatively charged set of functional groups. Despite the 

strength of salt bridges, the desolvation penalty of removing water from a charged group is still 

quite large.35 

Despite knowing the individual strengths of these different types of interactions, their 

contribution to the free energy of binding in real practice is far more convoluted. There are many 

arguments for which interaction types contribute the most towards extremely tight binding events. 

An important set of studies focused on the binding of biotin to streptavidin, as it is the tightest 

known protein-ligand complex discovered at the time and still is now, 25 years later. Early 

calculations based on free energy perturbation indicated that the extreme binding affinity in the 

biotin-streptavidin system was due to van der Waals contacts and also suggested that the binding 

pocket for biotin was preformed, supporting the lock and key theory of binding.36 A newer study 

combined quantum/molecular mechanics and Monte Carlo computational techniques on 

hydrogen-bonding residues in streptavidin, and revealed that networks of hydrogen bonding were 

responsible for the strong binding of the biotin-streptavidin complex.37 Later work confirmed the 

presence of a sophisticated hydrogen bonding network using isothermal calorimetry, revealing an 

11-fold greater contribution to the free energy of binding for two coupled residues involved in 

hydrogen bonding when comparing to what their individual contributions would be, otherwise.38 

 

 Defining Protein-Ligand Binding Sites and Unified Binding Sites 

In most studies based on structural biology, protein binding sites are derived from protein-

ligand contacts using the bound ligands in the crystal structures used. This approach has the benefit 

of only providing contacts which are physically observed in the crystal structure, which is itself a 

set of data derived from an actual biophysical experiment. Some may deem these to be “real” 
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contacts where other suspected contacts are questionable. While this benefit is appreciable, the 

consequential assumption of relevant binding residues is heavily influenced by the number of 

ligand-bound structures contained in the dataset used for a given experiment.  

Studies using smaller, younger datasets sometimes dealt with the lack of sufficient data to 

represent either ligand binding state of a protein (apo or holo) by using apo-holo protein pairs as a 

representation of observable conformational change upon ligand binding. While this approach may 

help reveal appreciable differences in protein conformation tied to its ligand binding state, it 

doesn’t reveal inherent flexibility of either ligand binding state. Incorporating multiple of each 

structure type is therefore advantageous to describing the inherent variance present both with and 

without ligands bound. 

When incorporating multiple protein structures for binding site definition, the binding site 

contacts for multiple different ligands in different structures must be combined in some manner, 

and two approaches are immediately apparent: an exclusive method, and an inclusive method. 

With exclusive contact merging, only residues commonly contacted by all included ligands would 

be considered. This more restrictive definition could be useful in identifying necessary binding 

residues in a very rigid context, such as an enzymatic catalytic site where only crucial residues 

immediately surrounding a catalytic ensemble are to be identified. However, when attempting to 

describe biophysical properties of an ‘entire’ binding site, this method is undesirable. The converse 

approach is an ‘inclusive’ method, where all of the binding site residues contact by any ligand of 

the represented protein are considered as part of the binding site. 

This more complete definition of a binding site can be viewed as a ‘union’ of all 

representations of a binding site for a given protein sequence, and we will therefore refer to it as a 

Union Binding Site (UBS). The UBS concept is heavily utilized in Chapters 2-3 of this dissertation, 

and some of its implications are probed in Chapter 4. 

 

 Predicting Protein-Ligand Binding Sites 

Another useful application of robust binding site knowledge is in predicting binding site 

locations where they may not be known. With the increasing popularity of structure-based drug 

design, acquisition of structural information for relevant new targets has become even more 

important. If the structural information is obtained early in the investigation of a new target, the 
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relevant binding cavities may not be known, especially in cases where there are allosteric binding 

sites present.  

Ligand binding-site prediction methods are divided into four categories for discussion: 

template-based methods (sometimes referred to as genomic-based methods), geometry-based 

methods, energy-based methods, and other methods.  

Template-based methods utilize the atlas of already known protein information as a protein 

roadmap to guide the detection algorithm. Their assumption is that binding sites of new protein 

sequences may be located using the known binding sites of close structural homologs.  

Geometry-based methods explore and characterize protein surfaces using a number of 

biophysical parameters such as Van der Waals radii to locate pockets or clefts. Most geometric 

methods assume that the binding site of a protein is a cleft or pocket in the protein surface. 

Exploration of the protein surface may be accomplished by calculation of molecular distance, 

solvent accessible surface area (SASA), and cavity volume. These measurements are computed 

using probes, spheres, grids, and other forms of spatial voids, which are then clustered or further 

analyzed to yield ranked cavities presumed to be binding sites.  

Energy-based methods rely on calculation of phenomena such as hydrogen bonding and 

pi-stacking to locate regions of the protein where ligands are likely to bind. These LBS-prediction 

methods are expected to be relatively quick in terms of computation time, so energy-based methods 

must only account for simple phenomena or make many assumptions to reduce the number of 

calculations necessary. These methods utilize probe molecules and chemical moieties to generate 

potentials which are then scored to locate binding sites.  

Methods may be categorized as “other” methods, because they either use a different set of 

physicochemical phenomena not discussed previously, or are a combination of different 

approaches.39 Examples of new parameters include sequence-conservation, use of machine 

learning protocols, targeted-sequence (i.e. finding residues that bind metal ions), ligand-centric 

methods which use some derivation of a pharmacophore model to search for binding sites, and 

‘meta-analyses.’ Meta analyses combine any number of the previous types of methodology or even 

full methods and use a scoring algorithm to combine the results of the different protocols and rank 

them to find the best predicted site that multiple methods can agree on.  

While there are many types of binding-site prediction algorithms, their rates of success can 

vary wildly over different targets. Robust methodology such as molecular dynamics simulations 
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using small molecule fragments are unquestionably better at predicting relevant binding locations 

of protein surfaces, but binding-site prediction methods are expected to be fast and accessible. 

Individual binding-site prediction methods and further expansion of each method type can be 

found in section 4.2.2. 

 

1.3 Protein-Protein Binding 

Protein-protein binding events, often discussed as protein-protein interactions (PPIs), occur 

between two or more protein chains. These chains may be identical or non-identical in sequence, 

and the duration of interaction may be either transient or permanent, as well as obligate or non-

obligate in nature. Furthermore, transient PPIs can be either strong or weak, which is believed to 

correlate strongly with the stand-alone stability of the individual monomers.40 Due to the large 

number of potential types of interactions and the many dynamic physical features of protein 

interfaces, PPIs are some of the most complicated macromolecular interactions known to 

biochemists.40-41 

PPIs can be arrange in both an isologous or heterologous way with respect to structural 

symmetry.40 Isologous association involves the same surface on both monomers, which relies on 

them either being identical chains, or closely related structural homologs. Heterologous association 

involves binding to a different interfacial position for each monomer, which results in infinite 

aggregation outside of an arrangement with cyclic symmetry. 

The interaction between the protein chains can be broken down into chemical and 

geometric analysis.42 Large scale geometry of PPIs is primarily an analysis of structural 

orientation. Interactions of dimeric protein pairs vary from simple, flat interfaces with an oval 

shaped contact patch, to situations where the larger of the pair completely engulfs the smaller 

protein or peptide chain.  Finer geometric aspects of the interaction describe the intertwined or 

interdigitated nature of the complexed protein-protein chains. Surface complementarity43 has been 

utilized in attempt to quantitatively describe the intertwined nature of the interface, but the 

topographical nature of it lacks qualitative definition when using such a broad metric. While 

interfaces are generally deemed as symmetrical and therefore “flat and featureless” 41, 44-46, PPIs 

do contain topographically interesting features of “protrusions” that pass across the theoretical 

center plane of an interface, burying themselves in a “hollow” in the adjacent protein chain.43, 47 
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Chemical properties of PPIs are relatively similar to the analysis of protein-ligand interaction sites. 

These analyses consist of calculating the relative frequencies of the various types of amino acids 

or atoms: polar, nonpolar, and charged. 

 While obvious differences between protein-protein binding hot spots and protein-ligand 

binding exist, there are many parallels. The hotspots for binding proteins also rely on rigid and 

flexible residues to bind and eject binding partners. Nussinov showed that rigid residues may be 

used as anchors, while surrounded by flexible residues. 48-50 

 

 Defining PPI Interfaces 

The issue of accurately defining the residue contacts of a PPI stems from both the lack of 

structural data of the complexed pair of proteins and the characteristics of protein-protein binding 

events. The nature of binding between protein partners is far less promiscuous than PLIs, as most 

protein-binding proteins only have one desired partner in a biological context. However, due to 

the either extremely stable, or instable nature of PPIs, structural information for either the 

complexed or uncomplexed state of the binding partners is often elusive. Furthermore, the affinity 

of a protein complex can be altered by changes in the concentration of ions and molecules in 

solution, pH, temperature, covalent modification and, of course, the presence of molecules capable 

of binding to either protein in the complex.40 These details further complicate the acquisition of 

structural information for PPIs, since they are the very techniques that crystallographers use to 

create appropriate buffer solutions to stabilize protein crystal formation.  

The characteristics of protein-protein binding are also different than protein-ligand binding 

in numerous ways, first and foremost by the sheer size of the interaction area. Due to this large 

interaction area, the most prevalent method of determining interaction area has been to track the 

loss of solvent accessible surface area (SASA) from residues upon complexation.43, 51-54 The 

features of this methodology and their consequences will be discussed further in Chapter 5. 

 

1.4 Use of databases 

Due to the inherent variation of proteins and their adapted conformations in X-ray crystal 

structures, it is important to investigate a wide range of proteins bound to a variety of ligands. 

Different proteins having different contributions to free energy of binding is unsurprising, and 
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necessary. Databases of these interactions are a necessary component to completing our research, 

because we aim to make generalized statements regarding a wide variety of diverse protein-ligand 

(Chapters 2-4), and protein-protein (Chapter 5) complexes. Structural coordinates are vital to 

reinforcing our claims, so databases focusing on structural content are of highest importance. 

Pairing affinity information with the structural information provides an invaluable opportunity to 

test the correlative nature of binding strength against many physicochemical properties of the 

corresponding protein targets. This work focuses primarily on the use of Binding MOAD as a 

central resource of protein-ligand crystal structures. A few other databases, namely BindingDB, 

PDBbind, and AffinDB contain similar information. The deficiencies of these databases are 

discussed in depth in Chapter 2, as well addressing a few other related databases. The two 

databases used heavily in dataset creation for the experimental work in this dissertation are briefly 

introduced below. 

 

 Binding MOAD 

Binding MOAD is a collection of high quality, X-ray crystal structures of protein-ligand 

complexes maintained by the Carlson laboratory at the University of Michigan. This database aims 

to couple binding data with structural information to assist with drug-discovery centric research 

and the study of PLIs in a broad biophysical context. The construction, maintenance, and contents 

of this database are discussed in depth during Chapter 2. A few other databases with distinct 

protein-ligand information are discussed more in depth during Chapters 2 and 3. 

 

 2P2I DB 

The protein-protein interaction inhibitors database (2P2I db)55-56 is dedicated to hand-

curated structural information of PPIs with known inhibitors. This database is curated primarily 

from the PDB and focuses on inhibition of heteromeric protein-protein complexes. The dataset 

aims to contain the complexed-state, and a ligand-bound structure for at least one of the individual 

protein partners, or a very close homologue if no direct matches are available. The original release 

of 2P2I db consisted of 17 protein-protein complexes representing 14 families and 56 small 

molecule inhibitors.56 The database is updated regularly, far more frequently than there are 

corresponding publications. The most recent update contains 31 PPIs and 242 small molecule 
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inhibitors.57 Curation and other details of 2P2I db is discussed extensively in section 5.2.4.1. A 

few other databases with distinct PPI information are presented in Chapter 5. 

 

1.5 Overview of thesis 

The major areas addressed in this dissertation include expansion of binding site data 

contained in Binding MOAD, probing of ligand-binding induced flexibility in proteins and their 

binding sites, survey of geometrically based binding-site prediction algorithms, and rudimentary 

mapping of protein-interface topography.  

Chapter 2 describes Binding MOAD, including data acquisition and updating procedures. 

The major contribution of this body of work to Binding MOAD is the introduction of unified 

binding-sites to the database. This function is utilized heavily in Chapters 3 and 4. 

Chapter 3 presents a large-scale study on ligand-binding induced flexibility of protein 

backbones, as well as side-chain flexibility of their binding sites. This is the first study of its kind 

to probe the inherent flexibility of both control groups: ligand-bound structures, and ligand-free 

structures, as well as contrasting between the two states. The dataset includes 4048 protein 

structures, 2369 ligand-bound (holo), and 1679 ligand-free (apo), collectively divided into 305 

protein families which each contain at least 2 apo and 2 holo structures. 

Chapter 4 presents a survey of six binding-site prediction algorithms against a condensed 

version of the dataset created in Chapter 3. The intent of this research is to probe the performance 

differences between ligand-bound and ligand-free crystal structures with ligand binding-site 

prediction methodology. Relationships between structure quality and performance are also 

investigated. 

Finally, Chapter 5 introduces a geometric method of analysis for protein-protein interfaces, 

to describe their localized surface topography as an attempt to better understand their unique 

binding characteristics. Both chemical and physical properties are attributed in the geometric space 

of the interface surface, and correlations between various characteristics are investigated.  
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Chapter 2. Binding MOAD (Mother of All Databases) 

2.1 Introduction 

Studies across biochemical disciplines regularly utilize datasets of macromolecular 

structure for their targets of interest. Often, these data are X-ray crystal structures of protein targets 

acquired from the Protein Data Bank (PDB).58-59 Early protein datasets were small enough to exist 

only as a list of relevant PDB IDs inside of their publication. As the amount of data utilized in 

these types of studies has increased from mere tens of structures to the hundreds or even thousands 

of structures employed in more modern publications, the list sizes are too large to be included in 

the main body-text. This has resulted in datasets presented as separate downloadable entities or 

even hosted on the web as publicly accessible tools. Publicly available resources are of 

unquestionable use to the scientific community, so long as they are maintained regularly and 

transparently described in their or original publication as to be reproducible and accurately utilized. 

Binding MOAD is a database of carefully curated, high quality, protein-ligand crystal 

structures of biologically interesting small molecules. This database includes binding data for 

many of the ligand-protein pairs, curated from their primary citation. The database is accessible 

via the web at www.BindingMOAD.org. Data is presented to users on a per-structure basis, but 

the proteins are also grouped by various sequence identity cutoffs to make finding similar 

structures easier. A few different versions of the dataset are available for download on the 

downloads page. This includes a version with only the curated binding data, as well as a fully 

compressed and zipped copy of the collective biological unit files for all entries.  

Our aim is to make Binding MOAD the largest resource of high-quality, protein-ligand 

complexes available from the Protein Data Bank and augment that set with appropriate binding 

data as well as tools for finding similar binding sites and binding partners. When initially 

introduced in 2005, Binding MOAD contained 5331 protein-ligand complexes, augmented with 

1375 binding data for 26% of the protein-ligand complexes.2 Currently, Binding MOAD contains 

25,759 protein-ligand structures with 12,432 different ligands, for which we have 9,142 binding 

data. The focus of this chapter is the introduction of unified binding sites to incorporate data 
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redundancy in a meaningful way to Binding MOAD. These uniquely robust binding sites have 

great potential to fortify in silico methodology, providing additional data for binding site prediction 

algorithms. Binding MOAD will be the first database to carry this variety of extended binding site 

information. A few examples of the most valuable useful and largest related databases are outlined 

below. Strengths and weaknesses of each database are noted, and the comparative utility of 

Binding MOAD is highlighted. 

2.2 PDBbind 

PDBbind was originally created by Shaomeng Wang and coworkers and is now maintained 

by Renxiao Wang and coworkers.60-61 It contains 17,900 total complexes with binding data, 14,761 

of those consisting of protein-small molecule ligand pairings, which is referred to as the “general 

set.” This general set is then reduced to a “refined set” utilizing a number of cutoffs: only X-ray 

crystal structures, requiring a resolution better than 2.5 Å, R-factor lower than 0.250, all fragments 

of ligand molecules must be present, all backbone and sidechain fragments of the protein binding 

sites (defined within 8 Å of the ligand) must be present, binding constants must be between 1 pM 

and 10 mM and must be absolute measurements (i.e. Kd ~ 1 nM is not accepted), with ligands 

<1000 g/mol molecular weight, peptides ≤ 10 amino acids, polynucleotides < 4 residues, and 

ligand buried surface area must be > 15% of the total ligand surface area.62 This refined set contains 

4,154 protein-ligand complexes.  

The refined set is then further reduced to a “core set,” which aims to represent each present 

protein sequence with three members, requiring a 100-fold difference in binding affinity between 

the three structures (10 fold between each structure pair). The workflow for this dataset follows: 

1. The refined set is binned by 90% sequence identity and only families with >4 members 

are kept 

2. The binding constants within the families are compared, requiring a 10-fold difference 

between the minimum and median, and 10-fold difference between the median and 

maximum (maximum being the tightest binder)  

3. The electron density fit a number of criteria, including complete and proper 

envelopment of the ligand as well as a lack of “too much” positive and/or negative 

electron density within the ligand binding site.  
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a. Systems which have a maximum/median/minimum structure fail step 3, are 

then replaced with the next closest family member in the category from step 2, 

when available, in attempt to keep as much data as possible.  

This final core set contains 285 complexes which represents 95 unique proteins, as each 

represented protein has three structures.  

PDBbind’s recent efforts have been focused on expanding their most rigorous dataset, the 

core set, to increase the amount of available data to be used in their scoring function benchmark, 

the Comparative Assessment of Scoring Functions (CASF).63 Binding MOAD’s somewhat 

stringent entrance criteria places its dataset somewhere between the PDBbind general set, and the 

refined set, while Binding MOAD’s CSAR-NRC HiQ64-65 set is more equivalent to the PDBbind 

core set.  At this point in time, PDBbind is the only database that still directly competes with 

Binding MOAD as a resource of paired binding and structural information.  

2.3 sc-PDB 

The sc-PDB is a database of ligand-able binding sites based on the PDB, which provides 

all-atom descriptions of proteins, their ligands, their binding sites and the binding mode for each 

ligand.66-67 The 2017 release of sc-PDB contains 16,034 entries, corresponding to 4782 different 

proteins and 6326 different ligands. Requirements for entry include: Resolution better than 3 Å 

(NMR structures allowed), valid ligand, and at least one protein chain must have annotations in 

Uniprot. The sc-PDB aims to be a provider of high quality protein-ligand structures suitable for 

computational drug design methodology, such as docking. Notably, the sc-PDB does not contain 

affinity data for their complexes. 

The structures in the sc-PDB are protonated, if hydrogens were not in the initial structure, 

while leaving arginine and lysine nitrogens positively charged as well as aspartic and glutamic 

acids negatively charged. This protonation is aided by ionized templates built from the HET group 

dictionary and optimized using the BioSolveIT Hydescorer program.68-69 Binding sites are 

constructed using a 6.5 Å heavy-atom-to-heavy-atom cutoff from the ligand, covalently attached 

ligands and cofactors are allowed. Binding-site water molecules are also identified (any water with 

at least 2 hydrogen bonds in the binding site) in about two-thirds of the binding sites in the sc-

PDB. Some analysis of binding site similarity is also accomplished. One of the primary goals of 

the sc-PDB is to provide a dataset for inverse docking, specifically to study drug-like molecules. 
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Due to the pre-processed and refined nature of the sc-PDB, its data set is significantly 

different than the content of Binding MOAD or PDBbind. This coincides with their mission to 

provide structures suitable for computational drug design methodology, but they inadvertently 

remove structural information that would be valuable to the drug design process, too. An otherwise 

high-quality structure may not have any chains annotated in Uniprot, but still be a newly 

discovered close homolog to an important target. Such a structure would be granted entrance to 

Binding MOAD and searching for it would reveal structures and ligands of close homologs also 

contained in our dataset. 

2.4 BioLiP 

BioLiP is a ligand-complex centric database maintained by the Zhang lab at the University 

of Michigan.70 The focus of this database is to serve a resource for virtual screening and template-

based ligand binding site prediction methods. They aim to contain only biologically relevant 

molecules as ligands in their database, and to expand their collection to also contain DNA/RNA-

ligand complexes. BioLiP does address that protein numbering problems with files in the PDB 

(see 2.7.2 for details) are a community issue and makes some corrected PDB files downloadable. 

Entrance criterion for BioLiP completely revolve around ligand validity, structure resolution is not 

considered. BioLiP boasts 407,148 data entries (Accessed 1/2018), with 225,979 regular (non-

metallic) ligands and 23,492 binding data. Of these binding data, they attribute 10,971 to be 

sourced from Binding MOAD, 16,980 from PDBbind, 7331 from BindingDB and 64 from manual 

curation.  

There are two major downsides of BioLiP. Firstly, its 407,148 data entries are not cannon 

with most of the databases in this field, as each chain of a PDB file is considered a separate entry 

in BioLiP and therefore the database does not adequately address redundancy when describing its 

full dataset. Secondly, due to the lack of resolution cutoffs for structure entry, over 150,000 of the 

database’s “entries” are of resolution we would typically consider to be poor (>2.6 Å). While the 

authors’ intended mission of creating a perfectly parseable database for computational purposes is 

noble, the database is of limited use for our work without major filtering efforts. 

2.5 Other Protein-Ligand Databases 

PDBbind is the only protein-ligand centric database that operates along the same set of 

goals as Binding MOAD. Below are some other notable databases that serve different important 
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functions, as well as a few that are no longer well-maintained. The PDB serves as a centralized 

resource for structural information for both protein and nucleic acid-based targets, but contains 

such a breadth of information with such a wide range of quality that external subsets of the PDB’s 

collection are necessary. This being said, the PDB is always making improvements to provide a 

better website experience, better filtering tools, as well as incorporating more cultivated data from 

outside resources.  

 Binding DB 

The Binding Database (Binding DB) is centered around a high-volume collection of 

affinity data for small molecule ligands and biopolymers binding to protein targets. 71-72 The 

majority of this affinity data is in Ki format, but other forms of binding constants are also found. 

The current version of Binding DB contains 1,427,022 binding data for 639,152 small molecules 

across 7,026 protein targets. Clustered down, their database reduces to 2291 nonredundant targets 

at 100% sequence identity, and 5816 targets at 85% sequence identity. Binding DB is also 

responsible for creation of the datasets for the Drug Design Data Resource (D3R) competition.73 

Binding DB’s strength lies in the sheer volume of data encompassing experimental conditions for 

determination of binding information, even including raw data in some cases. The bane of this 

resource in the context of this work is that the binding information is rarely coupled to structural 

information. Trying to condense this information to a reduced number of structures would 

inevitably result in binding constants being paired to structural data that it does not truly represent 

due to difference in conditions (i.e. protein crystallized at pH 5 and assay conditions at pH 9).  Due 

to the voluminous direction that Binding DB has taken, it now contends as a resource of the same 

nature as ChEMBL.74 Additionally, previous work in our laboratory has revealed that close to 85% 

of the data in Binding DB is redundant with ChEMBL.75 

 ChEMBL 

ChEMBL is an extremely large database dedicated to containing binding, functional and 

ADMET information for drug-like bioactive compounds.74 Hosted by the European 

Bioinformatics Institute (EBI) and part of their vast array of publicly available resources, it’s a 

powerhouse for collecting data in the bioinformatics field and BindingDB gets a large amount of 

its data from ChEMBL.75 Release version 23 of ChEMBL contains 14,675,320 bioactivity values 

across 1,735,442 distinct compounds against 11,538 targets. This data was obtained from 67,722 
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different publications. Importantly, ChEMBL does not necessitate the presence of structural 

information for its different targets, resulting in many data that do not have a corresponding crystal 

structure. While ChEMBL is an undoubtable powerhouse for its field of information, as well as 

rate of content update, culling through the amount of information yielded from this resource is a 

daunting task and the sections of work in this dissertation all require structural information. 

 Relibase, Relibase+ 

Relibase, part of the Cambridge Structural Database (CSD), is a dataset collection focused 

on protein-ligand complexes without affinity information.76-77 Relibase+ is the premium access 

version of the database, while Relibase is the web-interface version that is freely available to the 

academic public. For its initial release in 2002, Relibase+ contained 15,454 PDB entries 

represented by 50,514 individual ligand sites, with 4530 unique ligands.76 While this resource is 

valuable, its definition of valid ligands is far too inclusive, allowing ions, inorganic salts (such as 

sulfate), and common crystallographic additives such as polyethylene glycol to be considered valid 

ligands (whereas they are not valid in Binding MOAD). Studying interactions with smaller 

molecules like ions may be beneficial for studying a specific molecular feature in the context of a 

specific protein. Binding MOAD considers some of these small moieties to be part of the protein, 

and ionic species that are not part of a larger molecule are not considered valid ligands at this time, 

as the database focuses on substrate-like molecules, organic cofactors, and inhibitors. 

 LPDB 

The Ligand-Protein Database (LPDB) was an early database with only 195 protein-ligand 

complexes with binding data representing 51 different receptors across 21 protein classes.78 LPDB 

was focused around providing researchers with computer generated docking decoys to aid in 

developing more accurate scoring functions. This database has been updated very little since its 

initial release. 

 AffinDB 

AffinDB represents a dataset of structural data coupled to affinity data with a number of 

other experimental details provided, such as SMILES and molecular weight of bound ligands, and 

pH for the crystallization and biological assay conditions. Published originally in 2006 by Gerhard 

Klebe and coworkers, AffinDB has not been regularly maintained since that time, containing only 
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748 affinity data for 474 PDB structures.79 The small data size of this database leaves it completely 

redundant or outdated by the content of Binding MOAD and PDBbind.  

 Databases: Summary 

PDBbind is the only true competitor to Binding MOAD, providing a similar collection of 

protein data. The entrance criteria are nearly identical, but the provided subsets of data are where 

the databases start to differ. The Binding MOAD dataset falls somewhere between PDBbind’s 

general set and refined set, and the HiQ dataset available from Binding MOAD is not as stringent 

as PDBbind’s core set. Neither of these approaches are technically wrong, it all depends on the 

applications that users are interested in. The sc-PDB is the most similar of the remaining databases, 

but the pre-processed nature of its dataset puts it into a docking/ in silico pre-prep niche that sets 

itself apart. 

ChEMBL and Binding DB provide a tremendous amount of binding data over a significant 

volume of protein targets, but do not have enough structural data coupled together to classify as 

the same type of database as MOAD or PDBbind. Relibase is another voluminous database but is 

gated behind web-access portals which make it somewhat difficult to work with. The gating also 

makes it difficult to extract details about the contents of its dataset. These difficulties are 

compounded when Relibase+ is considered, as it is also gated behind a pay-wall. LPDB and 

AffinDB are two smaller databases that were very similar to Binding MOAD in their initial states, 

but neither have been regularly updated and are thus no longer as relevant. 

2.6 Redundancy 

Data redundancy can be a huge issue when discussing large collections of crystallographic 

data. Many protein complexes have multiple complexes with different bound ligands. Targets with 

medicinally based biochemical interest such as HIV protease, dihydrofolate reductase, thrombin, 

and trypsin, as well as targets used to study different biophysical methodologies such as lysozyme 

and thermolysin, tend to have a very large number of structures in the PDB. Binding databases to-

date have rarely addressed redundancy. In the cases that they do, it’s usually handled by providing 

clustered datasets at various sequence identity cutoffs. Binding MOAD’s most strict cutoff is 90% 

sequence identity, which reduces the 25,769 structures to 7,599 unique protein families. In 

practice, this method of accounting for redundancy usually functions by analyzing each cluster of 

proteins and selecting one or a few structures that best represent the population. Unfortunately, 
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this means that some nuances of the collective data are lost, since all of the structures aren’t used. 

We therefore present the idea of extended, or unified binding sites to provide a collective 

representation of the binding sites in a family of proteins, rather than single depictions thereof. 

2.7 Unified Binding Sites 

Unified binding sites are a construction of binding sites across an ensemble of structures 

of the same protein. These extended sites provide a much more robust binding site definition which 

may illuminate portions of a binding cavity that are only sometimes contacted. This extra data 

could serve as a powerful tool for in silico drug design methodology. Our unified binding sites are 

constructed utilizing distance cutoff measurements from ligands using coordinates from the 

corresponding PDB files. Similar conceptual methodology has been presented in the past, 

primarily by ProBis.80 Their method of calculating these sites is less straightforward, and 

extracting the end-information from the various PDB files is difficult because their method does 

not address the numbering problems described below in 2.7.2.  

 Construction 

Binding sites are typically a representation of protein residue heavy atoms within a given 

distance cutoff of the heavy atoms of the bound ligand. Commonly, any residue with a heavy atom 

within 4.5 Å of the bound ligand is considered part of the binding site. Small molecule ligands 

come in many shapes and sizes, especially in larger binding sites such as protein kinases and 

proteases, where the natural substrate is very large. Thus, an assembly of many representations of 

the same binding site may yield a far more robust definition of the binding site. 

 Protein Numbering 

The most difficult aspect of assembling these unified binding sites is making sure that the 

addressed binding site residues are compatibly formatted. Two structures of the same protein will 

often be numbered in the same fashion, but it can be exceedingly difficult to identify and fix 

examples where this is not the case, when using automated scripts for data processing. There are 

examples of well resolved, high-quality crystal structures that unfortunately suffer from multiple 

of these numbering ailments. Therefore, we addressed this issue by renumbering protein structures 

prior to the assembly of unified binding sites to make sure that the merging process was seamless. 
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A resource of numbering mapping was necessary, as the slew of possible numbering issues made 

conception of logic-based code to automatically renumber the PDB files exceedingly complicated. 

 UniProtKB and PDBSWS 

The UniProt Knowledgebase (UniProtKB) is a central access point for extensively curated 

protein information, including details about protein function, classification (including EC 

information), and even manually annotated cross references to other protein structures.81 Andrew 

Martin published PDBSWS in 2005, a resource for cross-referencing protein sequence numbering 

between PDB structures by cross-mapping with data from UniProtKB.82 There are a number of 

fundamental arguments for how protein structures should be numbered, using the carefully 

annotated data in UniProt resolves this issue. Importantly, the mapping data in PDB SWS is 

available as a CSV, which is an easily parseable file format.  

2.8 Methods 

 Top-Down Approach 

Other protein-ligand databases such as ChEMBL and BindingDB cultivate their data in a 

“bottom-up” direction, starting with the literature and available binding information for important 

ligands, and gathering structural data along the way if it is available. Since we are only interested 

in interactions where corresponding structural data exists, we operate along a “top-down” approach 

which starts with the PDB. We first import the entire PDB, removed inappropriate structures and 

use the remaining structures to guide our literature searches in a systematic fashion. Since almost 

all protein structures are annotated with the authors’ names and the appropriate reference, 

obtaining the appropriate reference for the literature portion of the search is straightforward.  

 Condensing the PDB 

Our data pipeline begins with Perl scripts that assess whether each protein structure is an 

appropriate entry for Binding MOAD, see Figure 2-1: Binding MOAD Update Process. Our scripts 

take advantage of the BioPerl toolkit to make parsing PDB files easy.83 As the original data 

pipeline of Binding MOAD was developed using mmCIF files, we can accommodate whichever 

file format is deemed to be up-to-date in the bioscience community.  

 Starting with the entire PDB (105,206 structures on 1/2/2015), we eliminated theoretical 

models, NMR structures, and structures with poor resolution (> 2.5 Å). Large macromolecular 
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complexes between proteins and nucleic acids were removed. However, we wanted to keep any 

metabolic enzymes that process nucleic acids, so structures with chains of four nucleic acids or 

less were kept in Binding MOAD. Short chains of 10 amino acids or less were counted as peptide 

ligands. Short-chain ligands were identified in the SEQRES section of the PDB format. Small 

molecule ligands were identified in the HETATM and FORMUL sections.  

 Figure 2-1: Binding MOAD Update Process 

 

Covalently linked ligands were identified by calculating the minimum distance between 

the protein and each ligand. Minimum distances greater than 2.4 Å were considered noncovalent. 

Values between 2.1 – 2.4 Å were flagged and examined by hand, in context with the literature to 

determine covalency appropriately. Distances less than 2.1 Å were considered covalent unless the 

close contact was to a metal ion (we considered many common catalytic metals to be part of the 

protein during this analysis). All close contacts to metals were examined visually. This was crucial 

in the case of zinc-containing enzymes where zinc-ligand distance < 2.1 Å is not necessarily a 

covalent bond.84 HET groups within 2 Å of another HET were considered as multipart ligands 

(unless they had partial occupancy and were actually two ligands occupying the same space). If 

any group of a multipart ligand was covalently linked to the protein, all components are identified 

as a covalent modification. This was important in the case of sugar chains on glycosylated proteins. 

Proteins with covalent modifications can still be part of the database if they have another 

acceptable ligand. If all ligands are covalent or inappropriate (see Table 2-1 in section 2.7.3), the 

crystal structure is rejected.  

 Hand Curation 

Literature citations for all final structures to be included in Binding MOAD were read to 

confirm the validity of the ligands, as well as extract binding data. Our order of preference for 

affinity data is: Kd > Ki > IC50. Great care is taken to ensure that ligands entered into Binding 
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MOAD are biochemically significant and are of relevant function in the crystal structure being 

considered. As this initial data screening process is automated, a list of criteria is used to flag 

ligands into various classifications; Table 2-1 establishes some of the classifications that these 

ligands may belong to. 

Table 2-1: Definitions for Unusual HET Groups 

Classification Type of HET (Examples) 

110 Suspect 

Ligands 

Sugars (glucose, galactose, fructose, xylose, sucrose, β-D-xylopyranose) 

Small organic molecules (benzene, toluene, phenol, t-butyl alcohol) 

Membrane Components (phosphatidylethanolamine, palmitic acid, 

decanoic acid) 

Small metabolites that may be buffer components (Citric acid, succinate, 

tartaric acid) 

77 Partial 

Ligands 

Chemical Groups (amino group, ethyl group, butyl group, methoxy group, 

methyl amine) 

Inorganic centers of transition state or product mimics (aluminum 

fluorides, beryllium fluorides, boronic acids) 

Modified amino acids (oxygens of oxidized CYS, phosphate on TYR) 

552 Rejected 

Ligands 

Unknown or dummy groups (UNK, DUM, unknown nucleic acids or 

fragments thereof) 

Salts and buffers (Na+, K+, Cl-, PO4
3-, CHAPS, TRIS, Me4N

+) 

Solvents (DMSO, hexane, acetone, H2O2) 

Crystal additives, cryoprotectants, and detergents (Polyethylene glycol, 

oxtoxynol-10, dodecyl sulfate, methyl paraben, 2,3-propanediol, 

pentaethylene glycol, cibacron blue) 

Metal complexes used for phase resolution (terpyridine platinum, bis 

bipyridine imidazole osmium) 

Metal ions that are part of the protein (Mg2+, Zn2+, Mn2+, Fe2+, Fe3+) 

Catalyic centers that are part of the protein (4Fe-4S cluster, Ni-Fe active 

center)   

Heme groups (heme D, bacteriochlorophyll, cobalamin, protoporphyrin IX) 

For brevity, not all compounds are listed in this table. 
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Many factors aside from the identity of the ligand are also considered. Short protein-ligand 

distances and suspected ligands are flagged for manual inspection during the hand-check stage. 

Suspect ligands are typically crystallographic additives but may be valid ligands in some cases. 

Partial ligands are unlikely to be stand-alone entities and typically represent a portion of a multi-

part ligands. Any HET with 3 heavy atoms or fewer is automatically part of this list. The covalency 

check identifies if these HET groups are modifications to the protein or a ligand. 

 Modifications to amino acids are on the partial ligand list because they can be part of the 

protein or part of a peptide ligand, and their listing in PDB files varies in both cases. Complexes 

containing heme groups must contain another valid ligand, as heme groups are considered to be 

part of the protein and not a ligand. Due to the close proximity of various metals and even small 

molecule ligands to heme groups, determining valid ligands in these cases can be convoluted. We 

refer to the corresponding literature for clarification whenever possible. Due to this nature, many 

cytochromes are excluded from Binding MOAD, which we acknowledge are very useful targets 

to have biochemical information for. We plan to add support for more robust description of these 

enzymes to Binding MOAD in the future.  

 Addressing Redundancy by Sequence 

Grouping proteins by similar sequence allows users to find multiple related structures, 

which makes various types of comparison and dataset construction much easier. Enzyme 

classification (EC) numbers are used to group enzymes that perform similar catalytic reactions. In 

the past, Binding MOAD clustering was based on EC groupings, but this method has been 

abandoned for a number of reasons. The EC number listed in PDB files is not always correct, or 

present at all. In the latter case, filling in the missing data gaps is convoluted. But, most 

importantly, there still exists massive variation within Enzyme Classifications, so grouping into 

homologous protein families by sequence has proven to be more beneficial, straightforward, and 

reproducible. Structure sequences are compared using BLAST85 and family leaders are chosen as 

detailed in this schema: 

1. Use BLAST to compare each protein chain of each entry to all other chains, different 

sequence cutoffs are used for a few different perspectives: 

a. 90% sequence identity 

b. 70% sequence identity 

c. 50% sequence identity 
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2. Choosing the family leader: The details of this priority list are as follows: 

a. Tightest binder (where binding data is available) 

i. In cases where a family has no entry with binding data, complexes of ligand-

protein or ligand-cofactor-protein are chosen over protein-cofactor 

complexes. 

b. Best resolution (complexes with ligands preferred over cofactor-only complexes) 

c. Wild-type over structures with site mutations 

d. Most recent deposition date 

e. Factors such as R or Rfree values 

f. If all the above criteria are identical, the entries are likely from the same paper, 

which will be used to help in the tie-breaker 

 Addressing Redundancy using Unified Binding Sites 

The most difficult aspect of assembling unified binding sites comes in the form of protein 

numbering. Protein numbering is rarely always done the same way in a group of more than a few 

structures. This is emphasized in a number of somewhat common cases:  

• Numbers are simply skipped over, attempting to relate a given protein structure to a relative 

in an enzymatic cascade where perhaps a fragment was removed mid-sequence in a 

previous cascade transformation 

• Awkward nomenclature for starting new protein chains: 

o Adding some base number to the residue number to encode the chain:  

Chain A: 1001, 1002, 1003, 1004… ;  Chain B: 2001, 2002, 2003, 2004… 

o Picking up where you “left off”: Chain A: 303, 304, 305, TER 305 ; Chain B 306, 

307, 308 

• Residual purification tags on the N-terminal ends of the protein that are not accurately 

accounted for in the SEQRES section of the PDB file 

• Unresolved residues are not always accounted for in the protein numbering, sometimes the 

number gap is left and sometimes it is skipped 

• Insertions are not always numbered as they should be (3a, 3b, 3c, 3d vs. 3, 4, 5, 6) 
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o This also applies to point 1. Where it could be attempting to represent the biological 

relative proteins, where perhaps a sequence fragment is added during an enzymatic 

cascade 

• Largely unresolved loops of protein with repeat amino acids in the sequence, where only 

one of them is resolved (i.e. a sequence of Arg Lys Lys Glu, with one Lys as the only 

residue resolved). 

 

Two structures of the same protein will often be numbered in the same fashion, but as more 

data is added from more different sources, it becomes increasingly likely that this will not be the 

case. It is exceedingly difficult to identify and fix examples where numbering issues arise when 

using automated scripts for data processing. There are many examples of well resolved, high-

quality crystal structures that unfortunately suffer from multiple of these numbering ailments. 

Therefore, we addressed this issue by renumbering protein structures prior to the assembly of 

unified binding sites to make sure that the merging process was seamless. A resource of numbering 

mapping was necessary, as the slew of possible numbering issues made conception of logic-based 

code to automatically renumber the PDB files too complicated. 

To start, a similarity matrix of all protein chains in Binding MOAD was constructed, using 

sequence alignment tools; this was accomplished with both NEEDLE86 (part of the EMBL-EBI 

toolkit) and with BLAST at different times.85, 87 PDB SWS was used as our resource for 

renumbering templates.82 PDB structures were then renumbered using the following framework: 

1. If the PDBid/chain combo is found in PDB SWS, renumber it accordingly 

2. If the PDBid is found in PDB SWS, but not for the current chain, use any sequence 

identical chain within the same PDBid that is found in PDB SWS 

3. If the PDBid is not found in PDB SWS, use another structure that has a 100% sequence 

identical chain as the renumbering template. 

4. If no structures in a homologous family are found in PDB SWS, check to see if their 

numbering already matches up 

a. These cases are usually small homologous families, where manual inspection 

of this type is reasonable 
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In cases where multiple renumbering frameworks were provided by PDB SWS for a single 

homologous family, the mapping for the family leader was chosen and the whole family was 

renumbered in the same manner. 

 Annual Updates 

We conduct annual updates to incorporate more structures into Binding MOAD as they become 

available from the PDB. Our 2017 update began in January. The update procedure follows: 

1. Use the PDB’s list of obsolete entries to identify any existing structures in Binding MOAD 

that should be removed or replaced. 

2. Download new set of PDB files. The previous version will be compared to identify new 

structures that have been added to the PDB since the last update. 

3. Identify good protein-ligand complexes in the new structures using our script pipeline. 

4. Script outputs are then double checked by hand to validate the outputs. No new structures 

are entered into MOAD without manual inspection. 

a. New het groups are examined by hand during this process 

5. Sequences are re-binned into new homologous family groupings, and new leaders are 

chosen as described in 2.6.5. 

2.9 Results and Discussion 

The creation and maintenance of Binding MOAD is an assembly of many years of work 

by several different people. I am directly responsible for developing the data pipeline for 

renumbering PDB files using PDB SWS and subsequently determining unified binding sites.  

I also dedicated a significant amount of time towards the annual updating of Binding 

MOAD’s dataset. Between the 2010-2014 releases of Binding MOAD, ~8800 new structures were 

added, and I was responsible for approximately 3500 of those structures. These updates take a 

considerable amount of time to complete, even with multiple people. The advent of PDF 

availability and E-publication was a significant boon to this process but has also aided the PDB’s 

rate of growth. Using keyword searches is advantageous for text-rich papers, some examples of 

important key words to search include: ‘ki’, ‘kd’, ‘ic50’, ‘affinity’, ‘bind(ing)’, ‘association’, 

‘dissociation’, ‘constant’, ‘inhibitor’, ‘covalent’, ‘coordinate’, and ‘inhibition’. Some articles 

contain crucial information in their figures or captions, but not all figure captions and figures are 

easily parseable with ‘find’ functions.  
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The most recent update of Binding MOAD was derived from the version of the PDB 

extracted on January 2, 2015 (105,206 entries), a total of 25,759 valid protein-ligand complexes 

were obtained. Binding MOAD contains 12,432 unique, valid ligands within the 25,759 

complexes. Figure 2-2 provides the distribution of these valid ligands by molecular weight. The 

ligands range from 4-278 heavy atoms, with an average molecular weight of 433 g/mol; an 

example of the average ligand is adenosine-5’-diphosphate (ADP), which has a molecular weight 

of 427 g/mol. Figure 2-2 shows that the number of large ligands (>500 g/mol) drops off quickly. 

The largest ligands are sugar, peptide, and nucleic acid chains.  

 

Figure 2-2: Distribution of the current 12,432 unique ligands by molecular weight.  

The average ligand in Binding MOAD is 433 g/mol. The largest are polysaccharides, peptides, and 

polynucleic acids. 

 

Binding MOAD also contains 9138 binding data across the 25,759 complexes. These 

binding data are composed of 2937 Kd or Ka, 3104 Ki, and 3097 IC50 values. These binding 

affinities range over 16 orders of magnitude; Table 2-2 presents median, tightest, and weakest 

binding values for each type of binding data, and the distribution of the three types of binding is 

presented in Figure 2-3. For Figure 2-3, the binding data are represented as free energy of binding 

(-kcal/mol), using -RT ln (data), where the values were converted to molar units and Ka data were 
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converted to Kd. This application is simply for ease of viewing and comparison for the reader, as 

the assumption of 298 K temperature is not strictly appropriate for many values, and this 

approximation is not always relevant for Ki and IC50 experimental conditions for other reasons.  

 

Table 2-2: Average and Median of binding data within Binding MOAD 

Classification Median Tightest Weakest 

Kd, Ka (as 1/Ka) 2.48 uM 10 pM 1.4 M 

Ki 319 nM 11 pM 0.837 M 

IC50 148 nM 12 fM 0.355 M 

 

 

Figure 2-3: The distribution of binding-affinity data within Binding MOAD.  

Data is available as Kd (orange), Ki (grey), or IC50 (blue). For this histogram, binding data were converted 

to free energies by -RT ln (data), where the data were converted to molar units and Ka values were converted 

to Kd. 
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 Clustering Binding MOAD into Homologous Protein Families 

The protein sequences of the entries in Binding MOAD were grouped into homologous 

protein families. When clustered at 100% sequence identity, 13,539 unique protein sequences were 

identified. When the criterion for sequence identity is relaxed, fewer protein families are found 

and the size of those families increases, which is expected.  Clustering at 90% sequence identity 

results in 7599 protein families, which is our preferred way to portray the dataset, 70% sequence 

identity yields 6348 families, and 50% yields 4913 families. Applications of Binding MOAD 

typically do not utilize the 100% sequence identity families, but this extremely stringent grouping 

is utilized heavily in the creation of the protein flexibility dataset used in Chapter 3 and Chapter 4.  

 Database Growth and Updates 

As mentioned previously, we are committed to the growth of Binding MOAD as a quality 

data resource in the community. Since being introduced in 2004, Binding MOAD has regularly 

expanded its collection with new data. Early updates brought in ~1500 new structures each year, 

but the rapid growth of the PDB has afforded us with many more structures in recent years. The 

growth of Binding MOAD is presented in Table 2-3.3  

Table 2-3: Growth Data for Binding MOAD (2004-2014) 

Release (version, PDB 

download date) 

Protein-ligand 

complexes 

Protein 

Families 

Unique 

ligands 

Binding affinity 

coverage  

Initial release in 20041 5331 1780 2630 1375 (25.8%) 

Prior to website in 2005 8250 2732 3932 2374 (28.8%) 

1st (v2006, 12/31/2006)2  9836 3151 4665 2950 (30.0%) 

2nd (v2007, 12/31/2007) 11,366 3583 5348 3452 (30.4%) 

3rd (v2008, 12/31/2008) 13,138 4078 6210 4146 (31.6%) 

4th (v2009, 12/31/2009) 14,720 4624 7064 4782 (32.5%) 

5th (v2010, 12/31/2010) 16,948 5198 8140 5630 (33.2%) 

6th (v2011, 12/31/2011) 18,764 5772 9048 6311 (33.6%) 

7th (v2012, 12/31/2012) 21,109 6443 10,156 7284 (34.5%) 

8th (v2013, 12/31/2013) 23,269 6960 11,173 8156 (35.0%) 

9th (v2014, 01/02/2015) 25,759 7599 12,432 9138 (35.5%) 
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2.10 Conclusions 

We have detailed the further development and are continuing to expand Binding MOAD. 

In the future, we aim to continue our annual updates to keep pace with the growth of the PDB. 

Binding MOAD has over twenty-five thousand, hand-curated, protein-ligand X-ray crystal 

structures that contain ligands of biological relevance. Binding data is available for over one-third 

of the entries, and this coverage has only increased with every update of the database. The value 

of Binding MOAD is not necessarily present in the quantity of its data, but more-so in the quality. 

Maintaining this data quality is only achievable due to the considerable amount of effort placed in 

the update process and hand-curation. We are planning to add similarity-based metrics to search 

the dataset, both in terms of ligand similarity as well as protein similarity. Furthermore, we plan 

to incorporate more benefits of Natural Language Processing (NLP) into our data curation pipeline, 

to help streamline the process and reduce the heavily curator-intensive nature of the database 

updates.  

Our datasets are available online at http://www.BindingMOAD.org. This web-accessible 

resource is available to the research community, and our web interface also allows for users to 

contact us if they find any aspects of our curated data to be incorrect. Each structure’s webpage 

includes: Details about ligands (both valid and invalid), available binding data, PDBid for 

structural coordinates, EC class, homologous protein families with links to related structures at 

multiple sequence cutoffs (90%, 70%, 50%), as well as a protein viewer for visualization of the 

ligand bound in the extended binding site (using NGL viewer).88 When searching by PDBid, users 

may be presented with information as to why a particular structure was excluded from Binding 

MOAD’s dataset (resolution > 2.5 Å, no appropriate ligand, etc.).   

Downloadable copies of our dataset are available from the download page of our web 

server. We have chosen to make the structures available as biological unit files as opposed to PDB 

files. Biological units contain the proper multimer for biological activity, as opposed to PDB files 

which do not necessarily do so. Proteins that occur in formations with easily divisible symmetry 

operators, such as dimers, are often misrepresented in PDB files, where the only true dimeric 

representation of that protein occurs when a dimeric pair crystallizes in the same unit cell. Utilizing 

biological unit files provides users with structures that are most related to the biological activities 

listed in Binding MOAD, and thus the best representation of our mission to provide high quality 

structural information complimented by appropriate binding data.    
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Chapter 3. Protein Flexibility and Ligand Binding 

 

3.1 Abstract 

Understanding how ligand binding influences protein flexibility is important, especially in 

rational drug design. Protein flexibility upon ligand binding is analyzed herein using 305 proteins 

with 2369 crystal structures with ligands (holo) and 1679 without (apo). Each protein has at least 

two apo and two holo structures for analysis. The inherent variation in structures with and without 

ligands is first established as a baseline. This baseline is then compared to the change in 

conformation in going from the apo to holo states to probe induced flexibility. The inherent 

backbone flexibility across the apo structures is roughly the same as the variation across holo 

structures. The induced backbone flexibility across apo-holo pairs is larger than that of the apo or 

holo states, but the increase in RMSD is less than 0.5Å. Analysis of χ1 angles revealed a distinctly 

different pattern with significant influences seen for ligand binding on side-chain conformations 

in the binding site. Within the apo and holo states themselves, the variation of the χ1 angles is the 

same. However, the data combining both apo and holo states show significant displacements. Upon 

ligand binding, χ1 angles are pushed to new orientations outside the range seen in the apo states. 

Influences on binding site variation could not be easily attributed to features such as ligand size or 

X-ray structure resolution. By combining these findings, we find that binding site flexibility is 

compatible with the common practice in flexible docking, where backbones are kept rigid and side 

chains are allowed some degree of flexibility. 

 

3.2 Introduction 

Proteins are naturally flexible biopolymers composed of a string of amino acids folded into 

a largely non-covalent structure.89 The degree of flexibility is often tightly coupled to the protein’s 

function, especially for enzymes. Understanding the flexibility in proteins is important in protein 

folding, protein engineering, and rational drug design.  
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A key feature of protein-ligand binding sites is that they have both characteristically rigid 

and flexible residues.8-9 Rigidity can aid in specificity and tightness of ligand binding, while 

flexibility allows for entry of ligands into the binding site and can also be involved in 

communication between allosteric and orthosteric binding sites. Clusters of residues near binding 

sites are often observed in strained conformations.6-7 Ligand binding was seen to induce strain in 

these residues, and it was hypothesized that this increase in internal energy could be used by the 

protein for catalysis and ejecting a ligand from an active site.  

Being able to fully account for induced changes is especially important in protein-ligand 

docking. Docking proves to be very difficult in practice when conformational changes occur upon 

binding.90-91 The cross-docking problem is illustrative of the difficulties of accounting for protein 

flexibility in ligand binding. Cross docking attempts to dock a ligand from one crystal structure 

into the binding site of another structure of the same protein, but research shows that many ligands 

do not fit unless the protein is allowed to adjust to the ligand.92-95 The larger the required 

adjustment, the harder it is to accurately predict protein-ligand binding.96 Protein flexibility needs 

to be incorporated to accurately represent protein-ligand binding. 

As we outline below, there have been many studies examining the extent and properties of ligand 

binding by comparing apo and holo protein crystal structures. A number of studies have also 

examined the local characteristics of their binding sites, such as side-chain flexibility or solvent 

accessible surface area (SASA), while some studies have examined only global protein changes 

upon ligand binding. Analyses of most studies fell into two categories: root mean square deviation 

(RMSD) calculations of backbone atoms or rotameric analysis of amino acid side chains. These 

different approaches have led to conflicting conclusions which our study helps to reconcile. Below, 

we summarize the most significant findings to date. 

 Backbone Analysis 

Structural variation appears small when assessed through backbone motion. Gutteridge and 

Thornton found that enzymes in their small dataset of 11 proteins (11 apo, 14 holo) bound to either 

a substrate or product tended to be more structurally similar to each other than to free enzyme 

(substrate and product structures had an average C RMSD of 0.36 Å while apo enzymes averaged 

0.75 Å RMSD to the substrate structures and 0.69 Å RMSD to the product structure).97  
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Gutteridge and Thornton followed their work noted above by looking for conformational 

changes upon ligand binding in a larger set of structures. In their study of 60 enzymes, ~75% of 

holo-apo pairs had C RMSD of ≤ 1 Å. This RMSD was contrasted with the C RMSD observed 

among apo-apo protein pairs as a baseline, where ~83% of 31 apo-apo pairs had a C RMSD of ≤ 

1 Å.98  

Gunasekaran and Nussinov classified 98 proteins into three categories based on maximum 

C displacement between holo and apo structures: rigid proteins (≤ 0.5 Å), moderate (0.5 Å < and 

≤ 2.0 Å), and flexible (> 2 Å).99 All classes had the same contact density, so flexibility in certain 

residues was not due to loose packing. Rigid and moderately flexible proteins were seen to have 

more polar-polar interactions: 35% and 34% for rigid and moderately flexible versus 28% for 

flexible proteins. Overall, most of the  and  changes between apo and holo were minimal. All 

classes had a few binding site residues with  and  angles in poor regions of the Ramachandran 

map. There were more in apo than holo structures, and they tended to cluster near the binding site. 

Furthermore, they found no notable difference in SASA of the binding site residues of their three 

classifications of binding sites (rigid, moderately-flexible, and very-flexible).99 

Brylinski and Skolnick found that most apo-holo protein pairs did not exhibit a significant 

structural difference and that holo-holo protein pairs exhibited even less change, using the C 

RMSD metric.100 For 521 single-domain apo-holo structural pairs, 80% had an RMSD ≤ 1 Å, and 

among a set of single-domain holo-holo pairs, ~ 92% had an RMSD ≤ 1 Å. 

Fradera et al. found that the binding site's structure is preserved upon ligand binding as 

evidenced by the fact that the average all-atom, binding site RMSD changes ≤ 1 Å, that more than 

90% of atoms in contact with the ligand move less than 1 Å, and that most binding sites had only 

modest changes in their electrostatic potentials.101 However, they found that these small 

movements were capable of inducing significant changes in volume and shape such that volume 

similarity indices () ranged from 0.44 to 0.90. The disparity in geometric similarity indices point 

to the need for other modes of analysis to accompany RMSD. These results hint that small changes 

in backbone displacement can result in greatly increased availability of side-chain conformational 

space.  
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 Side Chain Analysis 

Analysis of side chains reveals additional qualities of protein flexibility and highlights the 

detriment of excluding side-chain motion in docking. In a validation study of the SLIDE docking 

tool, Zavodszky and Kuhn examined how many binding events could be modeled if an apo protein 

structure was only allowed minimal side-chain rotations.102-104 They compared their flexible 

SLIDE docking tool to rigid docking with 20 different proteins (having 63 holo structures and 20 

apo structures), where the backbone RMSD between the apo and holo structures ≤ 0.5 Å (thus no 

backbone changes would be necessary to dock the ligand). Only minimal side-chain changes were 

needed. SLIDE was able to dock all of the ligands within 2.5 Å RMSD of the crystal-structure 

pose while rigid docking only worked for 32 of the 63 structures. SLIDE changed 94% of the side 

chains by < 45° and 82% of the side chains less than 15°. This range of movement used in SLIDE 

is comparable to the natural variation observed among different holo crystal structures. Among the 

holo crystal structures in their set, 90% of the side chains changed by < 45°, and 75% changed by 

< 15°. Thus, small changes are typical, but more importantly, they are critical for accurate results 

in half of their studied protein structures. 

Heringa and Argos have also described how ligand binding was sufficient to induce strain 

and push some binding site side chains into rotamers outside of the typical minima.6-7 This 

encourages the idea of rotameric changes being heavily influenced by ligand binding events.  

Zhao, Goodsell, and Olson examined flexibility differences between amino acids.105 They 

examined the variation of 1 angles among different apo structures of the same protein to establish 

limits of natural variation in the side-chain 1 of each amino acid. The authors established ranges 

for each amino acid that represent 90% of the observed conformations. Ile, Thr, Asn, Asp, and 

large aromatics showed limited flexibility, but Ser, Lys, Arg, Met, Gln and Glu were very flexible.  

Najmanovich et al. examined side-chain flexibility upon ligand binding with their BPK 

database of 221 proteins containing 523 holo structures matched with 255 apo structures.106 

Overall, 94.4% of all 1 angles changed less than 60°. In 40% of the apo-holo protein pairs, none 

of the χ1 values differed by more than 60°. However, the other 60% had at least one χ1 undergo a 

large conformation change beyond 60°. Rotations of 60° or greater in binding-site residue side 

chains are significant enough that most rigid docking will fail.96, 104, 107 More importantly, many 

movements that are less than 60° will still be problematic. Therefore, less than 40% of these 

structures can be adequately treated without including flexibility. This study then showed that no 
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correlation could be found between backbone movements (measured in the largest Cα 

displacement) and side-chain flexibility (measured as the fraction of side chains undergoing a 

change of ≥ 60°). This easily explains cases where Cα RMSD implies a protein is rigid, but -angle 

analysis reveals a flexible binding site. 

Najmanovich and coworkers further explored side-chain flexibility utilizing their SEQ 

dataset, which contains 188 apo-holo protein pairs.108 They concluded that at least one residue in 

the binding site undergoes significant rotameric change upon ligand binding in about 88% of their 

tested cases. At most, five rotamer changes account for all observed movements in 90% of their 

test cases, and rotamer changes are essential in 32% of flexible binding sites. The different amino 

acids were shown to have an 11-fold difference in their probability to undergo changes. There are 

two major takeaways from this work. First, at least one flexible residue is present in nearly all of 

the binding sites that they tested. Second, different amino acids have notably different propensities 

to undergo change in rotameric confirmation. 

Current Study 

The previous studies reveal that there are often a few key residues with significant 

flexibility within binding sites of otherwise rigid residues that do not undergo significant 

rearrangement upon ligand binding. However, some of the studies noted above are limited to very 

small sets of proteins. Additionally, none of the studies covered all three comparison types: Apo-

apo, holo-holo, and apo-holo.109 This is especially important because analysis of induced flexibility 

(apo-holo) has little relevance without first knowing the inherent variability in each structure type 

(apo-apo, holo-holo). While changes from ligand binding have been observed, they have not been 

appropriately separated from inherent variation in proteins.  

This study aims to assess protein flexibility upon ligand binding, employing a large dataset 

and focusing on contrasting inherent flexibility to changes upon binding. Each protein in the 

dataset has at least two holo and two apo structures, so we may compare the observed variation 

observed in proteins with ligands (holo-holo pairs), without ligands (apo-apo pairs), and between 

the two sets (apo-holo pairs). We use a large and carefully created dataset so that the observed 

differences can be statistically quantified. This study describes a comprehensive set of 305 protein 

sequences, represented by 2369 holo and 1679 apo protein crystal structures. We describe 

statistically significant differences in flexibility upon ligand binding. To confirm these changes are 



 

36 

 

truly due to flexibility, correlations to other properties such as ligand size and crystal-structure 

resolution were investigated. 

 

3.3 Methods  

 Holo Dataset Curation 

The non-redundant holo structure dataset was derived from Binding MOAD, a source of 

high quality protein-ligand complexes that have a maximum of 2.5 Å resolution.3 Biologically 

relevant ligands are differentiated from opportunistic binders in the crystal structures (e.g. salts, 

buffers, phosphate ions) of Binding MOAD, making curation of relevant ligand structures 

straightforward. Furthermore, use of Binding MOAD excludes covalently attached ligands. 

Structures with more than one valid ligand were excluded from this study in favor of binary 

protein-ligand complexes to ensure that only one pocket was being analyzed in each protein. Any 

structures containing additional molecules in their binding site, such as additives, were also 

excluded. 

Each structure in the holo set was clustered based on the sequence identity using stringent 

criteria of 100% sequence identity in both directions. A subsequent 95% sequence identity 

clustering of those families was then performed to suggest any families that should be merged due 

to simple N or C terminal amino acid additions. Sequence identity between structures was 

determined using BLAST.110 Any families differing in protein core sequence were kept separate. 

An index of all apo and holo structures for each protein family in this dataset is provided in 

Appendix A. 

 Apo Dataset Curation 

A set of apo structures was first compiled by screening the PDB for structures of 2.5 Å 

resolution or better and then identifying only the structures without any HET groups (except for 

water) or only having HET groups that are not biologically relevant (such as crystallographic 

additives).58 Acceptable additives were restricted to HET groups of 5 atoms or less and a molecular 

weight of 100 Daltons or less. Each HET group was inspected for chemical appropriateness. Apo 

structures were matched to holo structures by aligning sequences and requiring 100 % sequence 

identity. Proteins that did not have at least two holo proteins and two apo proteins were excluded 
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from the dataset at this point.  An index of all apo and holo structures for each protein family in 

this dataset is provided in Appendix A. 

 File Setup and Preparation 

These steps were taken prior to any calculations. The first biounit model containing the 

relevant ligand of the corresponding PDB structure was used by default for each structure. All 

hydrogens were removed from the files. Ligand data was extracted, and then all ligands were 

removed from the files. Waters were removed.  

All protein systems were renumbered utilizing the pdbSWS prior to binding site calculation 

and assembly.82 In the cases where this would result in more than one numbering pattern inside of 

a family, one structure’s numbering was applied to the other structures. If this was not possible 

and there was no method to renumber a structure to the same pattern as the rest of its family apart 

from manual processing, it was discarded from the dataset out of consideration for reproducibility. 

Renumbering structures was necessary because some structures were numbered differently 

(especially common when going between apo and holo structures). Protein numbering becomes 

critically important in the case of unified binding sites, where it is necessary to harvest residue 

data from the site when there are no ligands present to define the site (apo structures). 

 Ligand Size 

The molecular weight for each ligand was extracted from Binding MOAD. A unique 

feature of this set is the size of the ligands involved. This dataset allows for ligands composed of 

more than one HETATM group from the crystal structure. This study allowed peptides up to 10 

amino acids, nucleotides up to 4 nucleic acids, and other multi-HET ligands. Multi-HET ligands 

were appropriately treated as one large molecule. For example, the inhibitor Aeruginosin98-B, in 

the PDB structure 1AQ7 of bovine trypsin, is comprised of the HET groups 

“34H+DIL+XPR+AG2”. Newer HET groups have been made recently that combine some of these 

multipart ligands, but these were not yet implemented to the PDB at the time of this analysis. 

 Binding Site Identification and Compilation of the “Union” Binding Sites 

Each site was defined to include all protein residues within 4.5 Å of the biologically 

relevant ligands, which should capture both hydrogen-bonding and van der Waals interactions. 

Hydrogen atoms were not considered in the distance calculation for either the protein or the ligand. 
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Most of the crystal structures for a given protein had different ligands bound, so many could have 

a slightly different set of residues near the ligand. Therefore, the summation of all sets of residues 

in all complexes for each protein was used to identify the “union” binding pocket for that protein, 

or its unified binding site.  

 Maximum RMSD and χ-angle Range Calculations 

In order to compare the overall similarity of all the structures of a protein, we calculated a 

maximum RMSD. RMSDs are pair-wise comparisons, and our analysis compared all structures of 

the same protein to one another. The RMSD calculations were based on all Cα in the backbone of 

the protein. Methods established previously in our lab were used to compute standard RMSD.111 

Binding-site RMSD values were also calculated for the unified binding sites. 

To examine the flexibility of the side chains, χ1 was measured for residues, except Gly and 

Ala, utilizing an in-house Perl script. Pro was measured as a control for method proofing, but it is 

not shown in any of the presented data. Valines are represented by both of the two available χ1 

angles, as Valine is symmetrical at atom γ for the calculation. Isoleucine also contains two χ1 

angles, but the angle used in this analysis is that of the longer carbon chain.  

Binning for χ1 angle plots was accomplished via an in-house Perl script. Data for each 

amino acid was binned on a per-residue, per-family basis, and then averaged over the total number 

of that residue in the entire dataset. For example, there are 405 Arg residues in the 305 binding 

sites, each of those are binned with their corresponding data, and then the bins for each of the 405 

residues are averaged together to represent all Arg residues in the dataset. 

The variation for a given residue was measured by determining the range of χ1 values 

observed for each residue in each binding site. This range is the smallest mathematical angle that 

contains all χ1 angles observed for each amino acid. (eg. Values of 30˚, 45˚, and 100˚ would yield 

a χ1 angle range of 100-30 = 70˚.) 

 SASA Calculations 

SASA was calculated using NACCESS.112 Default probe size (r = 1.4 Å) was used. All 

hydrogens, ligands, water, and HET groups were removed prior to calculation. This is default 

behavior for HET groups, however in the case of peptide ligands it is necessary to remove the 

ligand from the file. SASA was calculated for all residues of the protein sequences first, and then 

the binding sites were extracted for analysis. 
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 Statistical Methods 

To assess if an observed difference between two groups (being apo, holo, or the entire apo-

holo dataset) is sufficient to reject the null hypothesis that the two groups have identical 

distributions, Wilcoxon signed-rank tests were used (performed in JMP).113  These tests applied to 

the distribution of maximum RMSD measurements among the families and average χ1 angles.   

In lieu of that manner of statistical test, error bars describing 95% confidence intervals for 

Figure 3-6 were jack knifed by 1000 resamples of the data at 90% of the original dataset’s size or 

“leaving 10% out.” 

All statistical analyses were performed utilizing the statistical packages JMP and R.113-114 

 

3.4 Results and Discussion 

 Dataset Properties 

The most recent release of Binding MOAD3 was clustered to obtain relevant holo 

structures, matching apo structures were obtained from the RCSB Protein Data Bank (PDB)58-59  

as described in the methods section. Upon filtering for proteins with at least 2 holo structures and 

2 apo structures, this dataset reduces to 305 different proteins, represented by 2369 holo structures 

and 1679 apo structures. An index of all apo and holo structures for each protein family in this 

dataset is provided in Appendix A. Our dataset is over an order of magnitude larger than the 

previously utilized datasets for this type of study. Our dataset has relatively low redundancy with 

previously utilized datasets. For example, Skolnick’s dataset of 521 apo-holo protein pairs has 

only 69 apo and 49 holo structures in common with our dataset.100  

The proteins with the most holo structures are carbonic anhydrase II followed by trypsin, 

with 174 and 120 holo structures, respectively. The proteins with the most apo structures are 

lysozyme followed by ribonuclease-A, which have 280 and 79 apo structures, respectively. This 

redundancy is accounted for by giving each protein family one overall value (a maximum, mean, 

or median) to describe all of its data in our analyses. 

The ligands in our dataset are diverse and represent many different classes of molecules. 

The average molecular weight of the ligands is 374 g/mol with 80% of ligands less than 500 g/mol 

and 95% less than 800 g/mol. The heaviest ligand is a seven-residue synthetic peptide bound to 
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Endothiapepsin in structure 4LP9 at 999.18 g/mol. The smallest ligand is hydantoin which is bound 

to a Zinc dihydropyrimidinase in crystal structure 4LCS and weighs 100 g/mol.  

The crystal structures of the apo proteins and holo proteins have average resolutions of 

1.82 Å and 1.84 Å, respectively. Apo and holo median resolutions were 1.84 Å and 1.85 Å, 

respectively. There were 159 families better resolved in their holo form, 139 families better 

resolved in their apo form, and seven families with the same average resolution in both their holo 

and apo forms. Therefore, there is little bias between the resolution of the holo and apo sets that 

could influence the measurements used in this study. 

 Unified Binding Sites 

Traditional descriptions of ligand binding sites use residues within some distance cutoff of 

the ligand contained in a protein crystal structure. Contacts here are defined by a 4.5 Å cutoff 

between any heavy atom of a bound ligand, and any heavy atom belonging to an amino acid residue 

in the protein sequence. Our “unified binding sites” are a union of all residues within a 4.5 Å 

distance cutoff from any bound ligand within any of the holo structures in a protein family 

(hydrogens were not considered). These unified binding sites represent the totality of the binding 

site. Union binding sites averaged 21 ± 9 amino acids in size. 

 Flexibility of Protein Backbones 

Backbone RMSD overlays for the entire backbone of all structures of each protein were 

obtained and the maximum RMSD value for each type of pairing (e.g. apo-apo, apo-holo, holo-

holo) within each family was determined (see Methods). Family maxima were chosen instead of 

medians or averages to readily identify proteins capable of large conformational changes. Table 

3-1 presents the averages and medians of the maximum RMSD values for the 305 unique proteins. 

Distributions of the maximum RMSD are given in Figure 3-1. The maximum RMSD for the apo 

pairs, holo pairs, and apo-holo pairs are compared for each of the protein families in Figure 3-2. 
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Figure 3-1. Distribution of maximum backbone RMSD for each protein family. The data for the apo-

apo pairs is shown in red, holo-holo pairs are shown in blue, and apo-holo pairs are shown in green. There 

is no statistical significance to the difference in apo-apo vs holo-holo data (p > 0.05, difference in medians 

= 0.025 Å). The difference between the apo-holo data and apo-apo data are significant (p < 0.0001, 

difference in medians 0.241 Å), as is the difference between the apo-holo and holo-holo data (p < 0.0001, 

difference in medians 0.266 Å). 
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Figure 3-2. Analyses of maximum backbone RMSD for each protein family. Each point represents the 

maxima observed in one protein family, and the number of points of each section is labeled in black 

(numbers in parenthesis are points with values > 3.5 Å). A) The maximum across the apo-apo pairs is 

compared to the maximum of the holo-holo pairs; 207 proteins display RMSD ≤ 1 Å for both groups.  B) 

The maximum across the apo-holo pairs is compared to the maximum of the apo-apo pairs; 201 proteins 

display RMSD ≤ 1 Å for both groups. C) The maximum across the apo-holo pairs is compared to the 

maximum of the holo-holo pairs; 201 proteins display RMSD ≤ 1 Å for both groups.  
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Apo structures and holo structures have similar conformational variation based on the 

comparison of the maximum apo RMSDs versus maximum holo RMSDs of each protein (Figure 

3-1 and Figure 3-2A). In general, proteins tend to have the same conformational flexibility within 

the apo and holo states. Only 10% of the proteins’ apo structures show significantly greater 

backbone flexibility than their holo structure counterparts, and 12% of the proteins’ holo structures 

show significantly greater backbone flexibility than their apo structure counterparts (31 apo 

families, 39 holo families). There were 28 families with both Apo and Holo maximum RMSD > 1 

Å, indicating that both binding states are relatively flexible. The maximum backbone RMSD for 

apo and holo structures were both < 1 Å for 207 of the 305 proteins, showing that ~68% had 

negligible conformational flexibility regardless of ligand binding. Wilcoxon signed-rank tests 

support this, showing that apo vs. holo data distributions are not significantly different with p > 

0.05 (see Methods).  

As we expect, there is greater variation seen in going between apo-holo pairs (Figure 3-1 

and Figure 3-2B-C). Compared to apo-apo and holo-holo pairs, 15% of proteins (45 protein 

families) have significantly more conformational space available to their backbones between the 

unbound and the bound state (apo-holo pairs) when compared to either the apo (Figure 3-2B) or 

holo (Figure 3-2C) states. Importantly, these 45 protein families are not completely redundant 

between the two cases, sharing only 14 proteins in those 45. 

Analyzing RMSD measurements across all proteins, the amount of conformational space 

available to apo proteins is not significantly different than that of holo proteins (p > 0.05) (Figure 

3-1 and Figure 3-2A, Table 3-1). Most notably, the amount of conformational space between apo 

and holo structures is greater than that within either the apo (p < 0.0001) or holo (p < 0.0001) 

protein sets (Figure 3-1 and Figure 3-2B-C, Table 3-1). This suggests that the backbones in each 

of the apo and holo datasets occupy equally sized subsets of the total conformational space 

available, and there is a great deal of overlap between the two sets. While statistically significant, 

the difference of 0.86 Å RMSD in apo structures, 0.72 Å RMSD in holo structures, and 1.16 Å 

RMSD between all structures is less than 0.5 Å RMSD of change. This is likely negligible in the 

context of an entire protein structure and is close to experimental error, given B-factors for most 

backbone atoms. 
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Table 3-1. Averages and Medians of the Maximum Backbone RMSDs. 

 Average (Å) Median (Å) 

Apo-Apo Pairs 0.86 0.45 

Holo-Holo Pairs 0.72 0.43 

Apo-Holo Pairs 1.16 0.69 

 

RMSD values were also calculated specifically for the atoms within the unified binding 

sites to focus on localized changes incurred upon ligand binding. Binding-site backbone 

displacement is slightly greater than the whole backbone (Table 3-2). However, the distribution of 

RMSD by family and type remains largely unchanged (Appendix Figure A-1A-C). These results 

are observed for both the apo and holo structure subsets (Appendix Figure A-1D-E).  

 

Table 3-2. Averages and Medians of the Maximum Backbone RMSDs for binding site residues only. 

 Average (Å) Median (Å) 

Apo-Apo Pairs 1.19 0.31 

Holo-Holo Pairs 1.16 0.36 

Apo-Holo Pairs 1.80 0.59 

 

Relationships between other metrics have also been investigated. Ligand size would 

logically impact the magnitude of protein-ligand contact area, and structure resolution can 

drastically affect our perception of a molecular environment, so it is appropriate to question 

whether or not these factors have impacted our results. R2 values between RMSD vs. ligand mass, 

and RMSD vs. structure resolution were calculated to be < 0.02 at the very best, for all cases. This 

indicates that no linear relationship is observable between backbone motion and ligand mass, or 

structure resolution.  

 Conformational Sampling of Protein Side Chains 

Analysis of the protein backbone describes large-scale organizational changes in a protein 

structure, but it does not answer questions about atomic contacts with ligands. To focus solely on 

side-chain behavior, we calculated the χ1 angles for residues within the unified binding sites (see 

Methods). Comparing χ1 angles only describe the relative positions of the side chains, not 

necessarily a degree of flexibility. Therefore, we use the range of χ1 angles seen across all 
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structures in a set as a metric for dataset-to-dataset comparisons (see Methods). Comparing χ1 

angle ranges yields information about the extent of occupied conformational space across sets of 

structures, like all apo structures, all holo structures, or apo and holo structures combined 

(apo+holo). Distributions of the maximum χ1 angle ranges are given in Figure 3-3. The maximum 

χ1 angle ranges for the apo structures, holo structures, and apo+holo structures are compared for 

each of the 305 protein families in Figure 3-4. It should be noted that a great majority of the χ1 

ranges increase in all proteins because the apo+holo set has more structures than the apo or holo 

set alone. 

 

Figure 3-3. Distribution of the maximal χ1 range in each binding site. Again, the flexibility of the apo 

and holo states are approximately the same. When the structures are combined, much greater variation is 

seen in the maximum χ1 range. The ranges observed across the apo structures are shown in red, and the 

ranges across the holo structures are shown in blue. The line in green shows the χ1 ranges measured when 

the apo and holo structures are analyzed together (apo+holo). The population of structures with maximum 

χ1 ranges occupying one conformational well (0-60°), two wells (60°-180°), and all three wells (180°-360°) 

are given in red, blue, and green numbers for the apo, holo, and apo+holo analysis, respectively. 
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Figure 3-4. Comparisons of the maximal χ1 range in each binding site. For each protein family, the 

maximum χ1 range is given for A) apo vs holo structures, B) apo vs apo+holo structures, and C) holo vs 

apo+holo structures. The number of points of each section is labeled in black (numbers in parenthesis are 

the points > 3.5 Å). 
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The distribution of maximum χ1 angle ranges shows the most variable side chain for each 

protein’s binding site.  The trimodal distribution comes from those side chains occupying one, two, 

or three of the conformational wells around the χ1 angle.  It is clear that the majority of apo and 

holo sets have at least one χ1 angle that spans two conformational wells (ie, the population from 

60-180° is largest for apo and holo sets). Only 26% of apo structures, and 30% of holo structures 

have χ1 ranges that represent only one energy well (≤ 60˚). When the two sets are combined (the 

green line for apo+holo in Figure 3-3), there is a significant increase in the number of proteins 

where the most flexible residue has a χ1 angle range that spans all three conformational wells 

available (ie, the population >180°). This shows that in going from the holo to apo state, many 

systems have side chains pushed into new conformational states not observed in the holo state.  

This is perhaps better seen in Figure 3-4B,C where roughly one third of the systems show 

significant displacement of their χ1 angles (apo+holo χ1 angle ranges increase by ≥60°). 

Traditional statistical tests are not appropriate for the data on maximal χ1 ranges because 

the distribution is trimodal. If we examine the average χ1 ranges for each protein, the data are near-

normal in their distribution and appropriate for Wilcoxon signed-rank tests. The average binding-

site residue in holo structures exhibits a χ1 range of 27.5°, while the χ1 range averages 24.5° in apo 

structures. The ranges of side-chain motion in holo structures and apo structures are statistically 

indifferent (p > 0.05, Figure 3-5). This follows the trend seen in the RMSD calculations, where the 

amount of available conformational space to apo structures is approximately the same size as the 

amount for holo structures. More importantly, the average χ1 range when combining all structures 

(holo+apo) is 42.6° (p < 0.0001 compared to both apo and holo datasets). This larger range of χ1 

values for all (apo + holo) structures, as opposed to the corresponding apo or holo sets alone, 

suggests that ligand binding induces rotameric changes in side-chain orientations beyond the 

threshold of inherent variation.  
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Figure 3-5. Distribution of the average χ1 range in each binding site. The ranges observed across the 

apo structures are shown in red, and the ranges across the holo structures are shown in blue. The line in 

green shows the χ1 ranges measured when the apo and holo structures are analyzed together (apo+holo). 

The medians of the average χ1 range are 19° for the apo structures, 21° for the holo structures, and 37° for 

the apo+holo structures. The flexibility of the apo and holo states are approximately the same with no 

statistical significance in their difference (p > 0.05). When the structures are combined, much greater 

variation is seen in the maximum χ1 range. The difference between the medians of the apo+holo and apo 

structures is 18° (p < 0.0001), and the difference to the holo structures is 16° (p < 0.0001).  

 

The difference in side chains between the apo and holo binding sites supports the concept 

of ligand binding inducing a fit or constraining the binding site.7 While ligand binding does not 

generally induce changes of large magnitude the backbone, it has a more significant impact on the 

side chains. This is supported by a study of B-factors between holo and apo structures where 71% 

of binding-site protein atoms become less mobile upon ligand binding, and 29% become more 

mobile.115 

Again, relationships to ligand size and structure resolution were investigated. All R2 values 

for χ1 range vs. ligand size and χ1 range vs. structure resolution were < 0.03, indicating that no 

correlation exists between these factors.  
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 Correlation Between Backbone and Side-chain motion 

Correlations between backbone and side-chain motion were assessed by calculation of R2 values 

between appropriate datasets using JMP.113 Comparison of the maximum RMSD vs. maximal χ1 

range for apo-apo pairs, holo-holo pairs, and apo-holo pairs yielded poor R2 values of 0.02, 0.16 

and 0.04, respectively. Lack of correlation between backbone RMSD and χ1 range suggests that 

addressing the flexibility of protein backbones and protein side chains is appropriate. 

 Flexibility of Individual Amino Acids Within the Unified Binding Sites 

Establishing that significant changes in side-chain orientation occur upon ligand binding 

inspired an investigation of the χ1 angles on a per-amino-acid basis. Radar plots of the occupied χ1 

angles for each amino acid type across the binding sites of all proteins utilized in this study were 

generated (See Appendix Figure A-2A-R). The χ1 angles are distributed into three energy wells, 

with the largest population present where the side chain is gauche only to the N-terminal direction 

of the backbone. This case is exceedingly prevalent for any amino acids capable of forming an 

intramolecular hydrogen bond between its side chain and backbone nitrogen. The least common 

orientation places the side chain gauche to both the N- and C-terminal directions of the backbone, 

which is a very high energy conformation. Overall, this data shows that side chains in ligand-

bound binding sites do not occupy exclusively different conformational space than unbound 

structures. The larger χ1 range resulting from calculating with all apo and all holo structures 

combined simply implies that there are rotameric changes occurring upon ligand binding.  

The cumulative distributions in Figure 3-6 display the inherent flexibility of each amino 

acid type within binding sites of all structures. Important guidelines for incorporating protein 

flexibility in structure-based drug design may be extracted from the trends in these figures. If 

residues were allowed to sample 30° of χ1 conformational space, between 47-90% of side-chain 

variation could be captured, depending upon the residue type (most flexible Ser and most rigid 

Trp). In another perspective, trying to capture 90% of all variation would require only about 40° 

of sampling for the most rigid residue(s), but the most flexible would have to be allowed over 200° 

of sampling. To represent 90% of the variation in Ser would require 240° of motion, which is 

approximately the complete range of motion between the three energy wells. 
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Figure 3-6. Cumulative distributions of binding-site χ1 ranges for each type of amino acid. The data 

describes the flexibility of different amino acids as a gradient of rotameric state change. Separated into 

three groups: A) rigid residues, B) semi-flexible residues, and C) very flexible residues. Error bars represent 

95% confidence intervals. 
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Using this type of breakdown, we rank the amino acids (from least flexible to most flexible) 

Trp, Tyr, Phe, His < Ile, Asp, Asn, Thr, Glu, Val, Cys, Leu < Met, Arg, Gln, Lys, Ser. Other studies 

have shown very similar trends with serine and lysine being flexible and the large, bulky amino 

acids such as tryptophan being rigid, although the ranking is not exact.105-106, 115 We determine this 

trend by observing the relative amounts of χ1 angle range representation at 40°. This trend coincides 

with classical biochemical intuition, where large hydrophobic residues are more sterically 

constrained. Not all large polar or charged residues show the same degree of flexibility in χ1.  

This information is immediately applicable in flexible protein docking. Using different 

thresholds of data inclusion (i.e. what 1 range is accommodated with 60% of some residue’s data), 

restrictions could be placed on residues during flexible docking relative to their starting positions 

(rotameric flip allowed or not). The occupation of observed 1 angles can be used to finding 

“forbidden” rotameric states. Leucine, for instance, almost never occupies the energy well 

characterized by two gauche interactions with the backbone (2.92% of apo data, 3.41% of holo 

data in Appendix Figure A-2J). 

 Solvent Accessible Surface Area 

SASA calculations have been applied to describe protein-protein binding events 116-117, as 

well as physicochemical properties of biologically relevant ligands.118 Figure 3-7 displays the 

median, minimum, and maximum SASA values for apo structures and holo structures within each 

of the 305 protein families. There does not appear to be any significant difference observed in 

SASA for holo structures against their apo counterparts. A distribution of ΔSASA between the 

minimum SASA apo structure and maximum SASA holo structure for each family is presented in 

Figure 3-8. The great majority of proteins (72%) have ΔSASA ≤ 100 Å2, which is rather small. 

Only 9% of all proteins lose SASA upon binding ligands (ΔSASA < 0 Å2).  These findings agree 

with Gunasekaran and Nussinov’s results suggesting no distinguishable changes in SASA upon 

ligand binding for flexible, semi flexible, or rigid proteins as classified by other metrics.99 
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Figure 3-7. Median solvent accessible surface area of unified binding-site residues: apo structures vs. 

holo structures. Error bars represent the minimum and maximum SASA value in each family for each 

structure type. 
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Figure 3-8. Distribution of the maximum change in solvent accessible surface area of unified binding-

site residues. ΔSASA was calculated as maximum Holo SASA – minimum Apo SASA. 

 

3.5 Conclusions 

Understanding protein flexibility is important in drug design, especially as crystal 

structures become more widely used as models for binding prediction.119 This study examines how 

ligand binding influences protein flexibility. More specifically, it uses a large collection of proteins 

that have at least two holo and two apo structures to examine backbone and binding site variation 

among holo or apo structures inherently, as well as what differences arise from ligand binding.  

We have shown that ligand-free structures and ligand-bound structures have nearly 

identical amounts of structural variation, in terms of residual backbone motion (RMSD). A similar 

range of motion was seen in both the global and binding-site backbones for both the apo and holo 

structure subsets. The apo-holo pairs showed only slightly larger RMSD. 

Examining the side chains through χ1 angle ranges reveals that apo structures and holo 

structures have roughly the same flexibility. However, when apo and holo states are combined, the 

χ1 angle ranges significantly increase, displaying that binding sites frequently have at least one 

side chain that gets pushed into new conformations in the presence of ligands.  
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Through the significant variance in observed side-chain conformations, and relative lack 

of backbone motion, we support a model of ligand binding where backbone motion is minute, and 

side-chain flexibility is essential. The lack of correlation between the backbone and side-chain data 

further suggests that sampling large amounts of conformational space with protein side-chains is 

not necessarily coupled to having a flexible backbone. Combining these ideas indicates that 

addressing side-chain flexibility separately from backbone motion is appropriate, which agrees 

with many modern approaches to flexible ligand docking. 
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Chapter 4. Binding Site Prediction 

 

4.1 Abstract 

Structural biology and genomics projects have provided information about a plethora of 

proteins with unknown function and interactions. Methodology to identify binding sites is both 

cost effective and quick, allowing for the characterization of the protein-ligand binding in these 

new targets. Past studies have focused on reproducing known binding sites based on ligand-bound 

crystal structures in numerous different datasets. Here, we present a dataset of 304 unique protein 

sequences (families), represented by 2528 protein structures with at least two ligand-bound and at 

least two ligand-free structures to represent each family. Unified binding sites representing all 

bound ligands within each protein family are used for a more robust depiction of the important 

residues for ligand binding. This work includes a brief survey of six binding-site prediction 

methods on this dataset: Surfnet, Ghecom, Ligsitecsc, Fpocket, Depth, and AutoSite. The primary 

focus of this survey is to examine the performance of ligand-bound vs. ligand-free structures of 

the same protein. It is commonly believed that it is easier to properly predict binding sites when 

the pockets are already formed by the presence of a bound ligand. The results reveal that apo 

structures and holo structures perform equally in the majority of cases. Distributions of the 

Matthew’s correlation coefficients for ligand-bound vs. ligand-free structure performance show 

no statistically significant difference in structure type vs. performance for Surfnet, Ghecom, 

Ligsitecsc, Depth, and Autosite. For Fpocket, there is a statistically significant but low magnitude 

enhancement in performance for holo structures. The results also show that there is no relationship 

between ‘quality’ factors of these crystal structures, such as resolution, and their likelihood of 

success with the binding-site prediction algorithms. Surprisingly, most families have structures 

that succeed and others that fail for the same binding site and the same detection method. We 

expected much higher consistency across varying protein structures of the same sequence. 
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4.2 Introduction 

Interactions between proteins and small molecule ligands are a cornerstone of biochemical 

function. These interactions vary in specificity, which allows for invention of new molecules to 

modulate the function of protein targets. Modern drug discovery heavily utilizes structure-based 

drug design, which requires structural information for the target of interest (typically a protein). 

As structural information for new targets is obtained, there are cases where little is known about 

the binding pocket(s) of the protein. Consequently, significant effort has gone into the development 

of ligand binding-site (LBS) prediction algorithms to help solve this issue. As with many 

computational methodologies, extensive testing and validation of these algorithms has been a 

common topic in the literature.39, 120-121 Unfortunately, due to the timespan of these different 

validation and benchmarking publications, very few of them use the same dataset. Another 

common theme among the datasets is the underrepresentation of ligand-free (apo) crystal 

structures, as most datasets are disproportionately populated with ligand-bound (holo) structures, 

mirroring the relative population of the Protein Data Bank (PDB)58.  

 Datasets 

The PDB serves as a central repository of structural information for the scientific 

community. The vast size of the PDB makes it time-consuming and intimidating to harvest data, 

so the computational community has created resources as focused subsets of the PDB for easier 

dataset creation, as well as including extra information not available from the PDB. Binding 

MOAD3 and PDBbind61 are web databases focused on protein-ligand interactions, coupling 

binding data with structural information for drug discovery efforts. ChEMBL74 and BindingDB72 

are large databases also heavily focused on protein-ligand interactions, but they contain many 

binding data for which there may not exist structural data. Lastly, there are more specialized 

datasets. DrugBank122 is a web database devoted specifically to protein-ligand interactions where 

the ligands are drug or drug-like molecules, allowing for dataset construction for 

polypharmacological purposes with ease.  LigASite123 and BioLiP70 are web-accessible datasets 

of protein structures both with and without ligands, intended for use in method development of 

prediction-based computational methodology.  

Dataset creation and use are common issues in computational science in general. Previous 

LBS-prediction algorithms have been trained and tested using numerous different datasets and 
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databases. The different publications therefore yield vastly different perspectives of how the 

methods perform. Some methods were trained and tested using manually curated datasets from the 

PDB124-126, and some using previously established databases such as LigASite127 or datasets such 

as the Astex diverse set.128 Older publications were more likely to use manually curated datasets, 

as some of the publicly available datasets and resources were not yet available. Resources such as 

LigASite123 and BioLiP70 have been created with the direct intent for use in prediction method 

training and testing since that time.  

 The Astex diverse set is made up of 85 diverse, relevant protein-ligand complexes which 

is often utilized for benchmarking prediction-based methodology.129 Although it is a high quality 

dataset, it is also relatively small and it does not contain any apo structures. LigASite is a dataset 

of 286 non-redundant proteins with at least one holo and one apo structure for each protein. Though 

apo protein examples are present in this data set, most proteins are only represented by a single 

apo structure. Also, the contained holo structures do not all contain biologically relevant 

molecules. Small molecules such as glycerol, which is commonly used as a crystallographic 

additive, appear in the top-10 most prevalent ligands in their dataset. The curation process for 

LigASite did not specifically address common crystallographic additives and inadequately handles 

small ionic groups for a biological context. LigASite has not been updated since 2012, deeming it 

less relevant for newer targets. Therefore, we still see a need for more robust datasets for 

benchmarking computational methodology. 

 Our dataset is derived from Binding MOAD3, a collection of high-quality holo crystal 

structures, followed by sequence-based acquisition of apo structures from the PDB using similar 

quality criterion for entrance into Binding MOAD. This dataset was culled to 1446 holo structures, 

and 1082 apo structures, representing 304 unique protein sequences (families) where all structures 

have resolution of 2.5 Å or better and all holo structures contain ligands that are biologically 

relevant. The unified binding sites (UBSs) have been calculated for all protein families in this 

dataset, which represent the union of all residues contacted by any bound ligand within a family. 

This dataset is much larger and contains many more ligand-free structures than any of the datasets 

used in past work cited here. The curation process for this dataset is described in the Methods 

section. This is a subset of the dataset used in Chapter 1. 
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 Binding-Site Prediction Methods 

LBS-prediction methods are divided into four categories for discussion: template-based 

methods (sometimes referred to as genomic-based methods), geometry-based methods, energy-

based methods, and other methods.  

Template-based methods utilize the atlas of already known protein information as a map 

to guide the algorithm. Their assumption is that binding sites of new protein sequences may be 

located using the known binding sites of close structural homologs. Some examples of template-

based methods include: 3DLigandSite130, FINDSITE131, Firestar132, I-TASSER133, IntFOLD134, 

and ProBis80. 

Geometry-based methods explore and characterize protein surfaces using a number of 

biophysical parameters such as Van der Waals radii to locate pockets or clefts. This is because 

most geometric methods assume that the binding site of a protein is a cleft or pocket in the protein 

surface. Exploration of the protein surface may be accomplished by calculation of molecular 

distance, solvent accessible surface area (SASA), and cavity volume. These measurements are 

computed using probes, spheres, grids, and other forms of spatial voids, which are then clustered 

or further analyzed to yield ranked cavities presumed to be binding sites. Geometric methods have 

the advantage of not requiring any prior knowledge about a protein target or any of its close 

structural relatives, aside from having structural information to work with. This property is 

advantageous to the purpose of this work. Some examples of geometry-based methods include: 

SURFNET124, Ghecom135, Ligsitecsc
125, Fpocket136, and Depth126. 

Energy-based methods rely on calculation of phenomena such as hydrogen bonding and 

pi-stacking to locate regions of the protein where ligands are likely to bind. These LBS-prediction 

methods are expected to be relatively quick in terms of computation time, so energy-based methods 

must only account for simple phenomena or make many assumptions to reduce the number of 

calculations necessary. These methods utilize probe molecules and chemical moieties to generate 

potentials for locating binding sites. Some examples of energy-based methods include: 

AutoSite128, SiteHound137, Q-SiteFinder138, and FTSite.139 

A number of different methods may be categorized as “other” methods, because they either 

use a different set of physicochemical phenomena not discussed previously or are a combination 

of different approaches.39 Some early methods were based on protein sequence, attempting to 

predict important residues for binding in protein families based on protein sequence or sequence 
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conservation, but these methods never performed very well.120, 140 Newer iterations of sequence 

based methods have been published, but many are designed to target specific types of binding sites 

(e.g. transition metal and iron-binding complexes141 or specifically zinc-binding sites142). Due to 

this targeted nature, while they may perform well in their categories, these methods are not robust 

enough for general ligand binding-site prediction. Even the best performing sequence-based 

methods are typically outperformed by structure-based methods.140 

The idea of sequence conservation has been incorporated into other methods, such as the 

upgrade from Ligsite to Ligsitecsc by including a re-ranking of top predicted pockets using 

sequence conservation.125 Propensity-based methods rank potential binding pockets on a by-atom 

basis (in the context of likelihood of interacting with a bound ligand) and tally up scores of 

predicted pockets to either rank novel pockets (e.g. LISE143-144) or re-rank pockets from other 

methods (e.g. STP algorithm145, Hirayama’s method146).  

Machine learning methods have also been attempted, which utilize any number of 

previously established physicochemical parameters. These methods utilize computational 

prediction algorithms ranging from relatively simple Random Forest decision trees all the way to 

sophisticated neural networks trained on up to dozens of physicochemical parameters. An example 

is Gutteridge and Thornton’s neural network method147, which predicts the likelihood of a residue 

being catalytic in nature, where neural network inputs consist of: solvent accessibility, type of 

secondary structure, depth, cleft the residue resides in, as well as conservation score and residue 

type. LIBRUS148 is a support vector machine learner which primarily utilizes sequence-based 

information, but performed poorly. Similarly, LigandRFs140 utilizes random forest ensembles to 

predict binding sites purely from sequence information. Though it was one of the best sequence-

based performers, the authors note that structure-based methods still outperform sequence-based 

ones, even with the help of machine learning.140 

A last category of “other” methods are ligand-centric methods. These methods develop a 

specific algorithm or template for locating binding sites of a single molecule of interest (or a small 

library of molecules). These methods typically utilize machine learning, and could be considered 

a subset of those methods, but they are unique in their approach of being so targeted to molecules 

of interest. The UTProt Galaxy pipeline149 can select and use support vector machines, neural 

networks, and random forest ensembles to optimize parameters for a user-input molecule and 

derive a prediction function based on that molecule which will be presented back to the user for 
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binding-site prediction experiments on targets of their choice. While noteworthy for its unique 

approach, this methodology is not applicable for the purposes of this work. 

There are also newer methods deemed as ‘meta-analyses’ which combine multiple methods 

and multiple types of methodology, with some variety of a re-scoring algorithm to try and achieve 

the best facets of each type of method they use. Some examples include ConCavity127 which uses 

3 methods and MetaPocket150 which uses 8 methods. While robust, these methods are only 

available as webservers and are not as user-tunable in order to have seamless integration of the 

multiple method pipeline. As such, users have limited options to customize parameters for their 

purposes. 

Template-based methods are typically among the best performers during large-scale 

benchmarking exercises such as the contact prediction section of the Critical Assessment of Protein 

Structure Prediction (CASP).151 The LBS-prediction section and its separate assessment in CASP 

has not appeared since CASP round X.152-153 The Continuous Automated Model EvaluatiOn 

(CAMEO) webserver where users may test their server-based automated methods is also of 

importance for benchmarking.154 This work is not intended to test the same types of success rate 

as those large-scale experiments. Rather, the intent is to specifically assess the success rates of 

ligand-free (apo) crystal structures against their ligand-bound (holo) counterparts for identical 

protein sequences. Template-based methods have also been excluded from our comparisons, as 

utilizing libraries of sequence-based template information would inevitably lead to the use of holo 

structure knowledge to solve the binding site locations in apo structures.   

For this work, we elected to use six methods: SURFNET, Ghecom, Ligsitecsc, Fpocket 

Depth, and AutoSite. The first five of the methods are geometry-based, while AutoSite is energy-

based. Choosing methods was based on two primary factors. First, the availability of source-code 

to be installed and used on our own machines was required, as using web-servers for large amounts 

of data was not a viable option. Secondly, we excluded methods that had shown poor performance 

in previous benchmarks, as detecting performance differences between different structures of the 

same target is further complicated when the methods are not performing well in general. This list 

of methods is by no means exhaustive and is simply intended to provide a set of base information 

as to how LBS-prediction methods perform on different types of structures. 
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 SURFNET 

SURFNET is one of the earliest binding site prediction methods, published in 1995.124 The 

algorithm grows spheres along the protein surface such that they reach a size where they touch two 

atoms on their edges, and contain no other atoms. Overlapping spheres as well as spheres with a 

radius smaller than a user-established threshold are then discarded and the remaining spheres are 

clustered into cavities. The resulting clustered cavity with the largest volume is assumed to be the 

putative binding site.   

 Ghecom 

Ghecom (grid-based HECOMi finder) takes spherically-based solvent approaches to a new 

avenue.135 The VdW surface of a protein is mapped using solvent probes of varying radii. Utilizing 

the resulting grid information from the differently sized probes, the algorithm then incorporates 

mathematical morphology to simplify the protein surface and volume representations by only 

using small probes to describe areas where larger probes cannot reach. The author of Ghecom 

proved that this method can reproduce the Connolly volumes derived from other methods. 

 LIGSITEcsc 

LIGSITEcsc is an update of the original LIGSITE method.125, 155 For the original LIGSITE 

method, proteins were projected onto a 3D grid. Grid points were considered part of the protein if 

they were within 3 Å of any protein atom, otherwise they were considered solvent points. Grid 

points were then scanned for protein-solvent-protein (PSP) events, where vectors in the x, y, and 

z axis directions are used to connect various series of grid points to find paths that start with a 

protein grid point, pass through one or more solvent points, and end at a protein grid point. This 

analysis is done with redundancy, as each grid point may be part of multiple PSP events, which is 

by design. A threshold is established by the user for how many PSP events are required for pocket 

detection, and solvent grid points that participate in greater than that threshold number of PSP 

events are considered part of a pocket. These remaining pocket grid points are then clustered to 

yield pockets in the protein.  

LIGSITEcsc provides multiple advancements over the old method. Scanning is increased 

from 3 axes (x, y, z) to 7 axes by also including the four cubic diagonals. This is only possible 

because instead of protein coordinates being used to represent the protein, the Connolly surface is 

used. The method proceeds as follows: First, the protein is projected onto a 1Å 3D grid. The grid 
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size is minimized by principle component analysis of the protein, followed by a reorientation of 

the protein on the grid such at the top three determined principle axes are realigned to the x, y, and 

z directions, respectively.  Grid points are then labelled as protein, surface, or solvent. Grid points 

are part of the protein if there is at least one atom within 1.6 Å. The solvent excluded surface is 

calculated using the Connolly algorithm.156 The resulting Connolly surface is a combination of the 

Van der Waals surface, and the probe sphere surface (with a radius if 1.4 Å) wherever it would 

touch two or more atoms. Grid points are considered part of the surface if they are within 1 Å of 

any of the calculated Connolly surface vertices. Due to this close threshold, grid points labelled as 

surface points will also be labelled as protein points. The algorithm then scans for surface–solvent–

surface (SSS) events, utilizing the seven available scanning axes (x, y, z, cubic diagonals). Solvent 

points which participate in more than the user-specified threshold for number of SSS events are 

considered to be part of a pocket. The default SSS threshold is 6. Pockets are assembled by a 

DBSCAN type of clustering using a threshold of 3 Å for adding neighboring points into pocket 

clusters. At this point, the algorithmic processing would be denoted as LIGSITEcs, the final ‘c’ 

step to being LIGSITEcsc results from re-ranking the top three largest pockets by residue 

conservation score, taking all residues within 8 Å into account. The conservation score of these 

sites is derived from the ConSurf-HSSP database.157  

 Fpocket   

Fpocket is a pocket detection method based on alpha spheres and Voronoi tessellation, 

which aims to be a freely available counterpart to the Site-Finder algorithm part of the MOE 

software suite from the Chemical Computing Group.136 Fpocket first analyzes the atomic 

coordinates using the Voronoi tessellation package in Qhull. This package returns the Voronoi 

vertices, atomic neighbors, and vertex neighbors for the coordinates. Alpha spheres, spheres that 

contact four atoms and do not contain any atoms, are constructed from all possible pairs of Voronoi 

vertices. Two thresholds, a ‘larger’ size and ‘smaller’ size, are established for the alpha spheres, 

and only spheres above or below one of those thresholds are kept. The resulting alpha spheres are 

then classified according to the atom types of the four atoms they touch as apolar if at least three 

of the four atoms are of low negativity (< 2.8, such as a carbon or sulfur in a protein), or polar if 

they contact 2 or more polar atoms (such as oxygen and nitrogen). The classified set of alpha 

spheres is then subjected to three types of clustering. First, a rough segmentation pass is 

accomplished by using the neighbor list output from Qhull which indicates which Voronoi vertices 
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are connected by a common edge. The algorithm checks if the spheres based on interconnected 

vertices are close to each other utilizing a distance threshold and clusters them appropriately. 

Clusters with only one sphere are removed at this point, and the center of mass is calculated for 

each of the remaining clusters. Next, clusters with closely oriented centers of mass are combined. 

Finally, a multiple linkage clustering approach is carried out based on the contained vertices in 

each cluster. If two clusters have enough vertices in proximal space to each other, they are 

combined. After the clustering is over, the remaining alpha sphere clusters are further pruned by 

user-set thresholds requiring a minimum number of spheres per cluster, as well as a minimum 

number of apolar spheres per cluster. The final remaining clusters are then characterized as pockets 

using a Partial Least Squares fitting and scoring based on implemented pocket descriptors in 

Fpocket. 

 Depth 

Depth is a geometric method based on the relationship between solvent accessible surface 

area (SASA), and molecular depth.126, 158 SASA in this method is calculated for the protein target 

utilizing a rolling-ball method, and normalized against Ala-X-Ala tripeptides to prevent over-

attribution of accessibility.159-160 Molecular depth is defined as the distance between a molecule 

(as an average of the distances of all of its constituent atoms) and bulk solvent. In the case of 

binding site prediction, this is the depth of amino acid residues in the protein sequence from the 

bulk solvent outside of the globular protein.  

The solvation process begins with placing a protein in a pre-equilibrated box of SPC216 

water such that all residues are buried by at least two hydration shells (5.6 Å). All clashing waters, 

those within 2.6 Å of any protein atom, are then removed. Non-bulk water clusters are then 

removed via calculations involving water neighborhoods (waters contained within a spherical 

distance from the atom in question). The user may set two variables here, the number of minimum 

waters required in the water neighborhood, and the radius size that dictates this neighborhood. The 

default values imply water neighborhoods containing at least 4 other water molecules within a 4.2 

Å distance, which the authors assess as being 1.5 hydration shells.  

This process is iterated until there is no further removal of water from the solvent box, 

implying that all non-bulk water has been removed. This entire process is repeated to achieve 

realistic implementation of solvent diffusion. For each pass of solvation, the protein inside the 

water box is rotated at a random angle along a random axis that passes through the protein’s center 
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of mass. Following this random rotation, the protein is then shifted an arbitrary distance (<2.8 Å, 

the distance between any two waters in the grid) along the X-axis. The user may set how many 

times this re-solvation process is performed, but the default value is 25 solvations. 

Binding cavities are then determined under the assumption that the only remaining water 

is bulk water outside of the protein surface, and a pocket would otherwise have some solvent in it, 

therefore having higher SASA. Pocket residues, therefore, have large molecular depths, and higher 

SASA. The algorithm then assigns probability values based on SASA and residue depth to each 

amino acid in the protein sequence. Those residues with probabilities above a user-alterable 

threshold are then kept as potential binding cavity residues. The protein is then re-solvated (25 

times by default), using the same process as above, except that only clashing waters are removed 

this time. Water molecules within 4.2 Å of any potential binding cavity residue are noted, and any 

water within 4.2 Å of those retained waters are also noted. These noted water networks are then 

used to determine the rest of the binding site residues that are then assembled into the predicted 

cavity provided to the user. 

 AutoSite 

AutoSite is an energy-based method which uses AutoDock161 affinity maps computed with 

AutoGrid4162 for three generic atom-type grids to identify binding sites. The three AutoDock 

generic atom types are hydrophobic (carbon, C), hydrogen-bond acceptor (oxygen, OA), and 

hydrogen-bond donor (hydrogen, HD). These maps are regularly spaced (1.0 Å, in most cases) 

grids made up of one of the three generic atom types. The computed affinity maps yield 

information about the sum of all interaction energies between each grid point and all receptor 

atoms in its local area. The affinity maps only represent atom-specific affinities and do not include 

electrostatics or charge-based desolvation. AutoSite computes probe maps which cover the entire 

protein surface and then selects high affinity points from each map based on affinity cutoffs, which 

are probe-specific. The algorithm then merges the three sets (for each atom type) of high affinity 

points into a composite map by selecting the minimum value at each grid position. The resulting 

points are then clustered to find putative binding sites. 
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4.3 Methods 

 Dataset Construction 

Holo structures were derived from Binding MOAD3, a source of high quality protein-ligand 

complexes that have a maximum of 2.5 Å resolution. Biologically relevant ligands are 

differentiated from opportunistic binders (e.g. salts, buffers, phosphate ions) in the crystal 

structures of Binding MOAD, making curation of relevant ligand structures straightforward. 

Furthermore, use of Binding MOAD excludes covalently bound ligands. Structures with more than 

one valid ligand were excluded from this study in favor of binary protein-ligand complexes to 

ensure that only one pocket was being analyzed in each protein. Any structures containing 

additional molecules in their binding site, such as additives, were also excluded.  

Holo structures were then clustered by 100% sequence identity in both directions, without 

replacement (to ensure a non-redundant dataset). A subsequent 95% sequence identity clustering 

of those families was then performed to suggest any families that should be merged due to simple 

N or C terminal amino acid additions. Sequence identity between structures was determined using 

BLAST.85 Any families differing in protein core sequence were kept separate. 

Apo structures were then cultivated from the PDB using the same bidirectional 100% 

sequence identity BLAST procedure, requiring better than 2.5 Å resolution.59 Structures were 

screened for bound molecules, and only those containing acceptable additives or no additives at 

all were kept. Acceptable additives were restricted to HET groups of 5 atoms or less and a MW of 

100 Daltons or less. Each HET group was inspected for chemical appropriateness.  

Finally, proteins that did not have at least two holo proteins and two apo proteins were 

excluded from the dataset at this point.  

 Family Size Reduction 

After construction of the UBS (described below), but before binding-site prediction, 

protein families with more than 10 structures of a single type (apo, holo) were reduced to 10 of 

those type of structures utilizing the following procedure: Exhaustive pairwise RMSDs were 

calculated for each family (every possible apo-apo, apo-holo, and holo-holo combination) using 

Gaussian weighted RMSD methodology developed previously in our laboratory.111 Matrices were 

constructed for holo-holo pairs, and separately apo-apo pairs, for families in need of reduction. 

These matrices were then utilized in PAM clustering (Partitioning Around Medoids) in the R 
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statistical package to determine the 10 most diverse structures to represent a family at hand.114 For 

example, the largest family (family 1) of Lysozyme had to be reduced from 280 apo structures to 

10 apo structures (utilizing a 280x280 pairwise RMSD matrix). 

Theoretically, because the entirety of the holo structure set is used to construct the UBS 

prior to this data reduction, their influence on the outcome of the experiment remains. This 

reduction was only intended to reduce computation time for the prediction methods. These 

methods reduced the dataset from 2369 holo and 1679 apo structures, to 1448 holo and 1026 apo 

structures. Lastly, due to poor binding site resolution in structure 1HNK, which resulted in having 

10 binding site residues unresolved, its entire family (two apo, two holo) was removed from the 

dataset. This results in the final dataset of 304 protein families, with 1446 holo and 1082 apo 

structures. 

 File Choice, Setup, and Preparation 

These steps were taken prior to any binding-site calculations. The first biounit model 

containing the relevant ligand of the corresponding PDB structure was used by default for each 

structure. All hydrogens were removed from the files. All ligands and waters were removed from 

the files.  

All protein systems were renumbered utilizing the pdbSWS database prior to binding site 

calculation and assembly.82 In the cases where this would result in more than one numbering 

pattern inside of a family, one structure’s numbering was applied to the other structures. If this 

was not possible and there was no method to renumber a structure to the same pattern as the rest 

of its family apart from manual processing, it was discarded from the dataset out of consideration 

for reproducibility. 

Renumbering structures was necessary because some structures were numbered differently 

(especially common when going between apo and holo structures). Protein numbering becomes 

critically important in the case of UBSs, where it is necessary to harvest residue data from the UBS 

when there are no ligands present to define the site (apo structures).  

After binding sites were identified (detailed in the following section), the files were 

reduced to contain only the chain(s) involved with a single copy of a binding site. 
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 Binding Site Identification and Compilation of the “Union” Binding Site (UBS) 

The binding site was defined to include all protein residues within 4.5 Å of any biologically 

relevant ligand for each protein, which should capture both hydrogen-bonding and van der Waals 

interactions. Hydrogen atoms were not considered during this 4.5 Å calculation (for either the 

protein or the ligand). Most of the crystal structures for a given protein had different ligands bound, 

so many could have a slightly different set of residues near the ligand. Therefore, the summation 

of all sets of residues in all complexes for each protein was used to identify the “union” binding 

pocket for that protein, i.e., unified binding site (UBS). 

 Responding to Computational Errors 

Structures which resulted in errors when submitted to a particular method were very 

uncommon, and most of the time reformatting the PDB file in some manner alleviated the issues 

(eg. the multiple residue conformation issue detailed in the AutoSite section 4.3.8.6).  Structures 

which produced errors for the various methods are provided below in Table 4-1. Notably, none of 

these structures were problematic with more than one method. 

 

Table 4-1: PDBids for structures which resulted in system errors for the various LBS-prediction 

methods. Apo structures are denoted in red, holo structures are denoted in blue. 

Surfnet  Ghecom Ligsite Fpocket Depth AutoSite 

3n5k 4ey1 3o4g None None 1a16 

1su4 1g7b 1ve6   1e3z 

 1tym 2hu7   1h2j 

 4ajz 2ogz   1e43 

  2hu5   1tgb 

     2vb9 

 

Importantly, failures of 3n5k and 1su4 with Surfnet occur due to the algorithm attempting 

to generate an interaction array which is larger than a hard-coded threshold value. We opted to not 

edit the source code to fix this error. 

 Responding to Empty Prediction Files 

For all but one method (Fpocket), structures yielding no predicted pockets was an 

extremely rare occurrence (Table 4-2). Fpocket yielded no predicted pockets for 40 different 

structures (17 apo, 23 holo). Yielding zero pockets resulted in a score of zero for precision, recall, 
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F score, and MCC. These failures were double checked by-hand as single command-line 

submissions, to ensure no other issues were taking place. 

Table 4-2. PDBids for structures which resulted in no predicted pockets for the various LBS-

prediction methods. Apo structures are denoted in red, holo structures are denoted in blue. 

Surfnet Ghecom Ligsite 

Fpocket 

Apo 

Fpocket 

Holo Depth AutoSite 

N/A 1g7b 1ve6 1aki 1a7x 2olz 1b2d 

 4ey1 3o4g 1b2d 1b0d  1n40 

 1tym 2hu5 1g7b 1j4h  1vie 

 4ajz 2hu7 1guj 1our  2vjz 

  2ogz 1mi7 1tym  1uof 

   1rnu 1uzv  1vif 

   1u1t 1zt9  2oly 

   1uoj 2boj  2rk2 

   1yy6 2oly  3lb2 

   1zz6 2olz  4ajz 

   2rh2 2z3h   

   2vjz 3dcq   

   3a93 3ipe   

   3az5 3qe8   

   3w3b 4ajx   

   4bwo 4ajz   

   4f4t 4b4q   

    4b4r   

    4joj   

    4jor   

    4lkd   

    4tun   

    4tz8   

 Assessment Metrics 

There are numerous metrics for assessing predicted pockets. In the publications presenting 

these LBS-prediction methods, assessment metrics were often specific to the method being 

presented, and some proximity calculations to actual binding site residues or ligand atoms were 

also used. For instance, Fpocket’s metrics (PocketPicker criterion and Mutual Overlap criterion) 

were based around the relationship between the alpha spheres in the predicted pocket and the atoms 

of the bound ligand.136 For the purpose of this work, methodology that required reference to the 

ligand atoms was avoided, as our binding sites are defined using many ligands. Metrics that utilize 

specific aspects of some methodology (such as those using alpha spheres) was also avoided, as the 
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assessment metrics need to be applicable to all methods used. Receiver Operator Characteristic 

(ROC) curves are a classic method for analysis of these types of data. However, it has been 

thoroughly discussed that analyzing ROC curves for performance of functional residue prediction 

can be highly misleading.148, 163  

We have therefore chosen to assess methods utilizing metrics intended for binary 

classification events revolving around the four elements of the resulting confusion matrix: True 

Positives, False Positives, True Negatives, and False Negatives. Both precision/recall analysis, as 

well as Matthew’s Correlation Coefficients (MCCs) have proven to be useful in the assessment of 

prediction methods.127, 135, 158 As such, we use MCCs, as well as F scores, which are calculated 

from precision and recall, as metrics to represent the predictive power of the various methods. The 

calculation of these metrics is presented below in Scheme 1. 

Scheme 1: Formulae for Matthew’s Correlation Coefficient (MCC), Precision (P), Recall (R), and 

F score (F). 

𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑇𝑁 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

𝑀𝐶𝐶 =  
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹 =  2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
 

 Precision is value between 0-1 where 1 is a perfect score, representing the likelihood of a 

method’s predictions to be correct. Recall is a value between 0-1 where 1 is a perfect score, 

representing what percentage of the true correct answer is represented by the true positives 

predicted by the algorithm. The F score is a value that represents the harmonic mean of precision 

and recall. In our analysis, F score values were presented instead of P or R values because they 

simplified the predictive power of a method into a single number for easier comparison between 

different methods or data types (holo vs. apo).  

Precision and recall do not account for true negatives in any way and are thus blind to the 

relative ratio of possible answers that could be derived; in this case, this alludes to the size of the 
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binding site in relation to the size of the protein. While going as far as rewarding methods for 

correct true negatives (metrics such as accuracy) would be disadvantageous to the purpose of this 

work, MCCs are a good medium where correct true negatives are not rewarded, and false positives 

are still punished albeit less severely. The MCC also has the advantage of being one stand-alone 

metric, where precision and recall need to be condensed to an F score to provide a single figure. 

Both P/R and MCCs have been used in LBS-prediction benchmarks in the past. We will present 

both F scores (representing P and R) as well as MCCs for a more robust analysis.  

 Prediction Method Parameters 

4.3.8.1 Depth 

Depth126, 158 was run with these conditions set in the parameters file: detection threshold 

of 0.8, cavity size of 4.2, resolvation cycles set to 5, solvent shell size of 4.2 Å, 25 depth cycles, 

minimum number of required solvent neighbors set to 4, ASA resolution of 92, ASA probe 

radius of 1.4 Å, and USE_MSA set to 1. A web version of DEPTH, as well as a download mirror 

for the software can be found at: http://cospi.iiserpune.ac.in/depth/htdocs/intro.html  

4.3.8.2 Fpocket 

Fpocket136 settings were left at their default values for pocket detection. The defaults are: 

minimum alpha-sphere radius (3 Å), maximum alpha-sphere radius (6 Å), minimum apolar 

neighbors for apolar consideration (3), minimum a-sphere per pocket (30), maximum first cluster 

distance (1.73 Å), maximum distance for single linkage clustering (2.5 Å), minimum number of 

neighbors close to each other (3), maximum distance between two pockets’ barycenter (4.5 Å), 

minimum proportion of apolar spheres in a pocket (0), number of Monte-Carlo iterations for the 

calculation of pocket volume (2500). Information about Fpocket, as well as a download mirror, 

can be found at: http://fpocket.sourceforge.net/  

 

4.3.8.3 Ghecom 

Ghecom135 was run with large probes (mode = ‘P’), and the top binding site was defined 

as cluster #1 in the output clustered PDB file. The web version of Ghecom, as well as a download 

mirror for the software can be found at: http://strcomp.protein.osaka-u.ac.jp/ghecom/  

 

http://cospi.iiserpune.ac.in/depth/htdocs/intro.html
http://fpocket.sourceforge.net/
http://strcomp.protein.osaka-u.ac.jp/ghecom/
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4.3.8.4 LIGSITEcsc  

LIGSITEcsc
125 was run with the number of pockets set to 1 (-n 1), using ‘-i’ to direct to 

input files through a wrapping script, with the rest of the parameters set to their default values (1 

Å grid space, SSS event threshold set to 6, surface density 0.5). As pockets are provided as a 

centroid atom of the surface cluster, residues within an 8 Å sphere were back-calculated to 

represent the binding pocket. This protocol is derived from that of the authors.125  A web version 

of LIGSITEcsc
 and a download mirror can be found at: http://projects.biotec.tu-dresden.de/pocket/ 

 

4.3.8.5 SURFNET 

SURFNET124, 164 parameters are as follows: gap files were generated with the following 

parameters (N, N, Y, 4.5) for: None map-format, SITE records Not required for mask region, and 

Yes to requiring neighboring atoms for mask region with a 4.5 Å cutoff (the same cutoff used for 

defining the binding sites from the original ligands). Binding site residues were then extracted 

from the generated gap files for each structure. SURFNET’s web portal can be found here: 

https://www.ebi.ac.uk/thornton-srv/software/SURFNET/ 

4.3.8.6 AutoSite 

AutoSite128 requires PDBQT format files, which are a proprietary file format for the 

AutoDock suite of tools. Before generating PDBQT files for the dataset, scripts were run to remove 

any multiple-occupancy resides from the initial biounit files (eg. ASER, BSER, where the two 

occupancies would sum to 1). The highest occupancy representation for each residue was kept. 

This process was necessary because the PDBQT file conversion process does not accommodate 

multiple occupancy residues well, and results in ATOM section lines with >80 characters that are 

unreadable by any PDB parser. 

 The PDBQT files were then generated using Autodock Tools. AutoSite was run with 

default settings, and the top predicted binding site cluster was analyzed for each protein structure 

(XXXX_cl_1.pdb). Actual predicted binding site residues were back-calculated from these point 

clusters using a 4.5Å distance cutoff. AutoSite’s web portal can be found here: 

http://adfr.scripps.edu/AutoDockFR/downloads.html A guide for preparing PDBQT files can be 

found here: http://autodock.scripps.edu/faqs-help/how-to/how-to-prepare-a-receptor-file-for-

autodock4  

http://projects.biotec.tu-dresden.de/pocket/
https://www.ebi.ac.uk/thornton-srv/software/SURFNET/
http://adfr.scripps.edu/AutoDockFR/downloads.html
http://autodock.scripps.edu/faqs-help/how-to/how-to-prepare-a-receptor-file-for-autodock4
http://autodock.scripps.edu/faqs-help/how-to/how-to-prepare-a-receptor-file-for-autodock4
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4.4 Results and Discussion 

 Dataset Properties 

The most recent release of Binding MOAD was clustered using a very strict sequence 

identity cutoff to obtain relevant holo structures, and matching apo structures were obtained from 

the PDB as described in the methods section.3 Upon filtering for proteins with at least 2 holo 

structures and 2 apo structures and reducing all families to a maximum of 10 structures for each 

apo/holo state (see methods), this dataset reduces to 304 different proteins, represented by 1446 

holo structures and 1082 apo structures.  

The proteins with the most holo structures prior to family size reduction are carbonic 

anhydrase II followed by trypsin, with 174 and 120 holo structures, respectively. The proteins with 

the most apo structures before family size reduction are lysozyme followed by ribonuclease-A, 

which have 280 and 79 apo structures, respectively. This redundancy is accounted for in two major 

ways. First, when describing prediction assessment for each protein sequence (family), the value 

will be given as an average, median, maximum, or minimum for the entire family as one value to 

represent all contained structures. Second, families with more than 10 of either type of structure 

are reduced to the 10 most diverse (via RMSD) representatives for prediction calculations. For 

example, the carbonic anhydrase II family has 174 holo structures, and all of the ligands for the 

174 structures are used to build the UBS, so all structures are truly represented; however, only the 

10 most diverse holo structures are used in the prediction calculations to save computational time. 

This process is detailed in the Methods section. The results of this family size reduction are 2528 

protein structures (1446 holo, 1082 apo) which are actually tested with every one of the six LBS-

prediction methods.  

The biologically relevant ligands that occupy the holo structures in this dataset are diverse 

and represent many different classes of molecules. The average molecular weight (MW) of the 

ligands is 374 g/mol with 80% of ligands less than 500 g/mol and 95% less than 800 g/mol. This 

large range in molecular size helps with building diverse UBSs. The distribution of UBS sizes and 

number of each residue type represented across all binding sites are presented in Figure 4-1A-B. 
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Figure 4-1. A) Distribution of the sizes of unified binding sites for the 304 protein families in this 

dataset, as % frequency. B) Distribution of amino acid composition of the 304 unified binding sites. 

 

 LBS Prediction 

Predictive power is assessed using two metrics in this work: F scores and Matthew’s 

Correlation Coefficients (MCCs). Justification for this type of analysis and description thereof can 

be found in Methods. Comparison between performance of different methods, or of different sets 

of data (apo vs. holo), will be represented by p values from Wilcoxon rank-sum tests. 

Biounit files for all 2528 protein structures were prepared as described in the methods 

section. All structures were submitted to each of the six LBS-prediction methods and the top 

predicted pocket of each method was analyzed. For the methods that yield a grid representation of 

the binding site rather than actual binding site members (AutoSite, Ligsitecsc), the binding sites 

were back-calculated using a distance cutoff of 4.5 Å unless a different cutoff was specified in the 
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citation for the method (8 Å for Ligsitecsc
125). Any structures which did not yield any predicted 

pockets were assigned zero values for MCC, precision (P), recall (R, also referred to as sensitivity 

or true-positive rate), and F score, after they were inspected to ensure the programs completed 

their calculations properly. The procedure for dealing with structures that resulted in errors for the 

various methods, as well as a list of these very few structures, is provided in the methods section. 

Analysis metrics were then calculated for the rest of the resulting structures using in-house parsing 

scripts. 

Our analysis of the predictive power for the six LBS-prediction methods begins by 

presenting distributions of F scores for all methods (Table 4-3, Figure 4-2A-F). These are 

distributions of the family medians, divided into the subcategories of apo structures and holo 

structures. Importantly, Wilcoxon rank-sum analysis of apo vs. holo distributions yields p > 0.05 

for all methods except for Fpocket (p = 0.04). On first inspection of Figure 4-2, it may appear as 

though a large percentage of structures fail to run in Ghecom, Ligsitecsc, Fpocket, and AutoSite, 

but data points falling in the zero-score area are structures that either do not predict the correct 

binding site as their #1 predicted site or structures where no site is predicted at all (a rare 

occurrence, see methods section 4.3.6). 

 

Table 4-3. Median of family median F scores and MCCs for apo and holo datasets for all six LBS-p 

methods. Wilcoxon p values are the same as those found in Figure 4-2 and Figure 4-3. 

 Apo F Holo F 

Wilcoxon p:  

F score 

Apo 

MCC 

Holo 

MCC 

Wilcoxon 

p: MCC 

Surfnet 0.23 0.23 > 0.05 0.22 0.23 > 0.05 

Ghecom 0.48 0.54 > 0.05 0.50 0.53 > 0.05 

Ligsitecsc 0.49 0.52 > 0.05 0.47 0.50 > 0.05 

Fpocket 0.42 0.53 0.04 0.43 0.52 0.03 

Depth 0.40 0.42 > 0.05 0.38 0.40 > 0.05 

Autosite 0.32 0.46 > 0.05 0.28 0.43 > 0.05 
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Figure 4-2. Distribution of family median F scores of apo and holo protein structures. Data presented 

for A) Surfnet (p > 0.05), B) Ghecom (p > 0.05), C) Ligsitecsc (p > 0.05), D) Fpocket (p = 0.04), E) Depth 

(p > 0.05), and F) AutoSite (p > 0.05). 

 

While Fpocket does appear to have a slight performance preference for holo protein 

structures, the magnitude indicated by the p value is not large. This implies that the predictive 

power for these methods is not heavily impacted by the presence of a pre-organized binding site 

with a ligand in the starting structure. The same trend is observed when using MCCs as the 

evaluation metric of predictive power (Table 4-3, Figure 4-3A-F). Only Fpocket (p = 0.03) has a 



 

76 

 

statistically significant (p < 0.05) correlation between predictive power and structure type (holo 

vs. apo), again suggesting that holo structures perform slightly better with this method, but the 

trend is weak. 

 

 

Figure 4-3. Distribution of family median Matthews Correlation Coefficients (MCCs) of apo and holo 

protein structures. Data presented for A) Surfnet (p > 0.05), B) Ghecom (p > 0.05), C) Ligsitecsc (p > 

0.05), D) Fpocket (p = 0.03), E) Depth (p > 0.05), and F) AutoSite (p > 0.05) 
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For both MCC analysis and F scores, two primary patterns of predictive power are 

observed. Surfnet and Depth appear to have a higher likelihood of mediocre predictive power (F 

score < 0.7, MCC < 0.6), while also having a much lower rate of complete failure (scores near 

zero). The other four methods appear to have a more bimodal distribution of scores, either 

accurately predicting a relatively large portion of the binding site or failing completely in their top 

predicted site (18-22% of protein families).  

Of the 2528 protein structures (1446 holo, 1082 apo) processed with these methods, only 

five structures failed (zero correct binding site residue predictions, R = 0) in every one of the six 

methods. Additionally, 1053 structures failed to predict any part of the binding site (R = 0) in at 

least one method, but 952 of those structures have at least 50% of their binding site predicted by 

at least one other method (R > 0.5).  The performance of many structures appears to be dissimilar 

between the methods. Exhaustive comparison of the resulting F scores and MCCs for each 

individual PDB structure between every combination of the six LBS-prediction methods was 

performed, resulting in R2 < 0.1 for every comparison. This shows that the performance of any 

given structure with one method provides no indication of how that structure will perform with 

another method. 

Another analysis for the success of each method is to view the F-scores and MCCs as a by-

family comparison between the two structure types (i.e. how do the apo structures of a given 

protein perform relative to the holo structures of the exact same protein?). Using family medians 

for the representative family data points, and family minima/maxima as error bars, the predictive 

power of the six methods is presented for the F scores in Figure 4-4A-F and MCCs in Figure 4-5A-

F. Interestingly, family maxima and minima span the gamut of performance for each method for 

nearly all of the 304 protein families in both F scores and MCCs. For most of the protein sequences 

(families) in this study, there simultaneously exist high-quality structures which a given method 

can accurately predict the majority of the ligand binding site, as well as structures where the same 

method completely fails to identify the same binding site as the top site. This is true for both the 

apo and holo states of the proteins and has serious implications for benchmarking LBS-prediction 

methods, as the choice of protein structure greatly influences outcome. This inherent variability 

makes it impossible to rank methods and points to a need for greater consistency on the part of the 

methods. 
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Figure 4-4. Family median F scores of apo and holo protein structures. Data presented for a) Surfnet, 

b) Ghecom, c) Ligsitecsc, d) Fpocket, e) Depth, and f) AutoSite where the error bars are constructed from 

the family minima and maxima. Line: y = x 
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Figure 4-5. Family median MCCs of apo and holo protein structures. Data presented for a) Surfnet, b) 

Ghecom, c) Ligsitecsc, d) Fpocket, e) Depth, and f) AutoSite where the error bars are constructed from the 

family minima and maxima. Line: y = x 
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 Relationship to Structure Quality 

Was it possible that the performance of a given crystal structure in any LBS-prediction method 

was related to the overall quality of that structure? Structure quality was assessed in two ways: 

structure resolution and Cruickshank Diffraction Precision Index (DPI).165 There is some 

redundancy here, as resolution is used in the calculation of DPI, but DPI is a far more complete 

measure of X-ray crystal structure quality. Across all comparisons of F score vs. resolution, F score 

vs. DPI, MCC vs. resolution, and MCC vs. DPI, the highest R2 value obtained was 0.03. This 

implies no correlation between structure quality and the performance of the structures in LBS 

prediction with the methods showcased here. 

 As an additional metric of quality, unresolved residues were considered. For these 

experiments, the unified binding sites were examined across all structures within a family, and any 

missing (unresolved) residues were noted. Residues outside of the binding sites were not tallied in 

this process. One family was removed from the dataset for due to an excessive number of missing 

residues in structure 1HNK (see Methods). There were 61 families in the dataset which had at least 

one structure with at least one UBS residue missing.  

The performance of the structures in those families were compared on a per-family basis, 

i.e. the structures without any missing residues vs. the structures with at least one residue missing. 

Structure type (apo or holo) was not considered for this analysis. With 61 families, six methods, 

and 2 performance prediction classifiers per method (F score and MCC), this resulted in 732 

comparisons. Of these 732 comparisons, 683 displayed no significant difference (p > 0.05) in 

performance when analyzed using Wilcoxon rank-sum. The remaining 49 cases where there were 

statistically significant p values represented 19 families.  

If unresolved residues were problematic in this analysis, their impact would likely show up 

in the performance metrics of every method we tested. Instead, 12 of the 19 families only showed 

statistically significant performance differences for one method, and they were not always the 

same method: Autosite (3 families), Surfnet (1 family), Depth (3 families), Ligsitecsc (1 family), 

Ghecom (4 families), and Fpocket did not show any differences for performance in any family. Of 

the remaining 7 family cases, 6 of the families showed differences with only two methods, and the 

last case showed significant differences with five of the six methods. 

Most interestingly, the impact on performance of these structures with missing residues is 

not always negative. The family of Concanavalin A, which showed significant performance 
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differences for five methods, has three apo structures (1apn, 1dq2, 1enq) which are missing some 

residues in the binding site and seven apo structures without any missing residues, as well as 10 

holo structures which are not missing any residues. The performance of the five methods (Surfnet, 

Ghecom, Ligsite, Depth, and Autosite) improves on the structures which have missing residues, in 

every case. 

Structures missing UBS residues were uncommon, and those structures causing any 

significant difference on the performance of any of the methods was exceedingly less common 

still. As such, we elected to not exclude any of these data, as missing residues appear to have an 

overall miniscule impact on the performance of the methods. 

 

 Conclusion 

The six LBS-prediction methods showcased in this work mostly failed to accurately predict 

the full extent of the UBSs in the provided proteins. UBSs are our more robust definition of a 

protein binding site derived from the bound ligands of multiple crystal structures of the same 

protein, rather than each structure having its own binding site definition based on a single ligand. 

Our UBS definition may be deemed too generous, but they should only aid methods that 

tend to ‘over-predict’ binding sites, which is a somewhat expected problem with LBS-prediction 

methods. This is mostly due to the nature of binary classification methods, as they tend to extract 

many false positives when being pushed towards a 100% recall rate. The top 10 LBS-prediction 

methods in round IX of CASP166 had an average MCC of 0.62 for the 129 targets in that round. 

While we cannot directly compare to this value, as the datasets and methods being tested are not 

similar, it does give a reference value for what state of the art methods are capable of in 

competition. Due to this, the lack of F scores and MCCs with values close to 1 is unsurprising. 

More importantly, the predictive power of the six algorithms did not appear to correlate 

with the ligand-bound state (apo vs. holo) of the protein structure being used. This implies that, 

contrary to historical belief, apo structures can perform as well as, or better than, holo structures 

and vice versa. In order to extend this idea to other computational methodology, more high-quality 

datasets need to be made available to the community which have proper representation of apo 

structures.  

 



 

82 

 

Chapter 5. Protein-Protein Interface Topography 

 

5.1 Abstract 

Protein-protein interactions (PPIs) serve as one of the less understood frontiers of drug 

discovery. These elusive targets present challenges both in their fragility and their physicochemical 

complexity. Herein, we explore the topographic nature of these supposedly ‘flat and featureless’ 

interfaces in attempt to better understand their mechanism of binding small-molecule PPI 

inhibitors. The protein-protein interaction inhibitors database (2P2I db) serves as a repository for 

structural data relevant to PPI inhibition, containing data for both the complexed PPI as well as 

ligand-bound PPI subunits. Data from 2P2I is employed to represent druggable PPIs in a small-

scale investigation of the physical and chemical characteristics of PPI interfaces. These druggable 

PPI interfaces are complemented by a much larger set (derived from PDBbind) of complexed PPIs 

for which there are no known inhibitors, by which we infer that they are currently less druggable. 

These less druggable structures are accompanied binding data describing the interaction of their 

subunits. First, we assess the physical and chemical characteristics of the 2P2I set to determine 

what makes them amenable to modulation by small-molecules. Second, we apply the same 

characterization methods to the PDBbind set, to probe for relationships between their affinity of 

complexation and characteristics that make them more or less druggable. We find that the hollowed 

areas in druggable PPI subunits are more sharply shaped than other subunits, and they contain 

primarily nonpolar aliphatic and aromatic residues. Conversely, the protrusions from these 

druggable subunits primarily contribute charged polar residues to interact with their complexing 

partner. Lastly, we found no relationship between the binding affinity of the PPI complexes and 

any of the physical or chemical properties investigated. 

5.2 Introduction 

Protein-protein interactions (PPIs) represent one of the most complex levels of organization 

in biological molecules and are the basis of more complicated multimeric proteins.43 Designing 
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molecules to modulate PPIs has therefore become a valuable pursuit for medicinal chemists due 

to their enormous therapeutic potential.45, 167-168 It became immediately apparent that finding small 

molecules that adequately modulated PPIs was exceedingly difficult, as the properties of protein-

protein binding events are different than protein-ligand binding events.168 Traditional high-

throughput and fragment-based screening approaches have had some success with PPIs, but have 

only achieved ligands with similar affinity to the natural protein partners.41 While this appears 

promising, affinity on the order of the natural complexing partner requires specific structural 

circumstances in order to outcompete the energetically-favorable, hydrophobically-collapsed state 

of the complexed PPI.41 PPIs may be characterized by a number of descriptors including: 

obligatory nature, binding strength, stability, number of interacting partners, and shape.43, 51 Here, 

we revisit the basis of these descriptors, as understanding physicochemical principles of PPIs is a 

crucial first step in determining their druggability as a target class.167 

 

 Characteristics of PPIs 

5.2.1.1 Obligation 

The obligation of two protein partners to complex with each other is defined by the 

necessity of their complexation in order to carry out their intended function in vivo. Obligation is 

derived from a biological context, where some proteins are complexed immediately after synthesis 

or during protein folding.167 Obligate PPIs are therefore thought to be permanent interactions. 

Permanent PPIs are so stable that attempting to dissociate the protein partners will result in 

denaturing one or both partners.167 This property makes these permanent PPIs an extremely 

difficult set of targets for drug design, as any potential drug molecules would need to act on these 

targets upon their synthesis or immediately thereafter during folding and complexation.167 Even 

though transient PPIs are therefore theoretically more amenable to modulation by small molecules, 

some still consider them undruggable by traditional medicinal chemistry approaches.45 

The obligate nature and duration of complexation between two protein partners are not 

binary classifiers. Instead, there is a continuum between non-obligate and obligate, as well as 

transient and permanent interactions when describing protein-protein partners.40 The nature of 

obligation between two protein partners would intuitively be coupled with the binding affinity 

which describes their interaction, but this correlation has been disproven.40 That said, binding 

affinity has been used to define and separate transient complexes from permanent complexes.169  
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5.2.1.2 Stability 

Immediately related to the permanence of a protein complex is the stability of the complex. 

Protein-protein complexes are typically either extremely stable or conversely unstable. In the case 

of stable complexes, the stability of the complexed set of protein partners is a mirror of the 

instability of the individual partners upon dissociation. That is to say, in these extremely stable 

protein-protein complexes, at least one of the partners is unstable when the complex is broken.167 

In the case of unstable complexes, each of the protein partners is stable by itself in an uncomplexed 

state, implying less favorable pressure for complex formation. It has been suggested that proteins 

which participate in these weakly transient associations are more likely to be promiscuous binders, 

participating in numerous PPIs.168, 170 Crucial work by Kastritis et al.171 probed stability of PPIs 

through testing the sensitivity of PPI affinity to the following environmental factors: pH, ionic 

strength, temperature, presence of small molecules, and covalent modifications (such as 

phosphorylation). Their findings suggest that the stability and affinity of a protein-protein complex 

can be moderately affected by temperature and ionic strength and exceptionally affected by pH.171 

These findings shed light on the ever-difficult task of acquiring structural information for PPIs, as 

these environmental factors are the very tool that crystallographers utilize to grow protein crystals. 

With this in mind, it is unsurprising that either the complexed or uncomplexed states of many PPIs 

remain structurally elusive.  

5.2.1.3 Multimeric States 

PPIs can describe many different multimeric protein states, from simple binary homodimer 

complexes all the way to unpredictably chained oligomeric interactions, such as those found as 

amyloid β-peptide fibrils, indicated in advanced stages of Alzheimer’s disease172. Multimeric 

interfaces which incorporate more than two partners complicate every aspect of drug design. For 

this reason, our work along with many past studies concentrates on binary complexes. 

5.2.1.4 Shape 

The shape of a PPI can be described on multiple levels. On the tertiary level, the entire PPI 

has a given shape which falls into one of a few categories: flat, engulfed, twisted, or armed.43 Flat 

interfaces are the simplest type, with no distinct structural characteristics protruding across the 

interface (Figure 5-1A). Flatness of a PPI surfaces is characterized by its planarity, a 

mathematically determined parameter.40, 43, 47 Engulfed interfaces describe an interaction where a 
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small globular protein is complexed with another partner (which is typically much larger in size), 

which engulfs it (Figure 5-1B). Twisted interfaces contain structural elements that twist together, 

commonly beta sheets or alpha helices separated by loops from the bulk of the globular protein 

(Figure 5-1C). Armed interfaces exist where there are protein extremities such as loops or even 

small domains which wrap themselves around their complexed partner(s) (Figure 5-1D). Jones & 

Thornton47 suggested that heterodimeric complexes had a tendency to be flatter, and more planar, 

while homodimeric (more permanent) complexes often displayed more twisted, engulfed contact 

surfaces. Other works have noted that PPIs are relatively flat and featureless as a whole41, 44-46, 

suggesting that designing small molecules that bind efficiently to PPIs is extremely difficult. 
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Figure 5-1. Different types of interfaces. The four general geometric varieties of PPIs: A) Flat (PDBid: 

2WP3), B) Engulfed (PDBid: 3TNF), C) Twisted (PDBid: 5FYN), and D) Armed (PDBid: 1AHE).  

 

 Differences from Protein-Ligand Binding 

First and foremost, PPIs describe events whereby a protein interacts with another protein 

chain instead of a small-molecule partner, so there are no natural substrates we may start from for 

structure-based drug design.41 As a reflection of that protein character, many early stage inhibitors 

tend to be peptide-based, which have drawbacks for pharmaceutical purposes.168 Peptide inhibitors 

tend to have a higher molecular weight than traditional small molecules, drastically decreasing 

ligand efficiency and also resulting in poor bioavailability.168, 170  

Ligand recognition, for terms of specificity, is governed largely by shape complementarity 

of a ligand to the protein target.168 PPIs archetypally lack any deep pockets44 and are thought to be 

flat and featureless41, 44-46. These characteristics present enormous specificity problems for 

potential inhibitors, not the least of which is finding inhibitors that modulate PPIs in the first place. 

There is an underrepresentation of known PPI inhibitors in the datasets used to train in silico 

methodology used for screening purposes.44 Due to this, discriminating molecules capable of 

modulating PPIs from drug decoys is difficult.44 

Energetically, protein-ligand interactions (PLIs)  and PPIs are both largely driven by the 

hydrophobic effect.173 However, protein-ligand binding sites are typically small enough that the 

ligand by itself can aid in displacing the bound waters within the site to drive the hydrophobic 

effect. The majority of protein-protein interfaces are primarily hydrophobic in composition, with 

patches or zones of hydrophilic groups at the outer edges of the interface in order to help draw 

water out of the interface upon complexation.43, 53 Therefore, in order for a ligand to bind to a PPI 

interface with the same mechanism of action as a typical orthosteric inhibitor, the ligand would 

need to be nearly the size of the interface. If the energetically beneficial properties of protein-

protein complexation were distributed evenly about the entire interface, modulation to be 

dissociated by a small molecule ligand would likely be impossible. This cannot be the case, as 

small molecule inhibitors of PPIs do exist, begging the question “What is their mechanism of 

action?”.  

Successful binding of a small-molecule ligand to a PPI implies that there must exist a 

location specific to that binding event, due to the size difference between the effector and the 

target. Indeed, the presence of a defined pocket capable of binding small-molecule ligands is 
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necessary for drug-class modulation of a PPI, but that alone is not sufficient.174 Moreover, PPIs 

utilize a larger number of smaller pockets compared to PLIs, where fewer, large binding pockets 

normally observed.45 As small molecule ligands have been demonstrated to destabilize and 

dissociate PPIs, the energetically favorable characteristics of PPIs are therefore not evenly 

distributed.  

PPI interfaces are large, but there are crucial, smaller regions —recognition patches, or 

hotspots— which are responsible for the majority of the free energy of binding.167-168, 175-176 The 

average interface area of homodimers has been measured at ~1940 Å2, and heterodimers at ~970 

Å2. These total interface areas can be clustered into smaller contact patch regions which may 

function as recognition patches.54 The first (largest) patch in any interface is typically on the order 

of 800 Å2, with every subsequent patch being much smaller.54 There is a correlation between 

interface size and the number of hotspots present in the interface, where larger interfaces have 

more hotspots.53-54 Additionally, homodimers also tend to have more, larger hotspots than 

heterodimeric complexes.54 Identifying hotspot residues through computational means is relatively 

difficult, but sequence mutagenesis studies can reveal crucial hotspot residues through noticeable 

drop in the free energy of binding.171 

 

 Definition of PPI Interfaces 

Multiple protocols have been used for defining which atoms or residues are considered part 

of a PPI interface. Some of the earliest work defined the interface residues as any displaying lower 

solvent-accessible surface area (SASA) in the complexed dimer when compared to the lone 

monomers.51 177 This method was augmented with thresholds for residue-level and atom-level 

definitions43 as follows: residues considered part of the interface decrease by > 1.0 Å2 upon 

complexation, and interface atoms decrease by >0.01 Å2 upon complexation. These thresholds 

were incorporated to the method to account for crystallographic errors for atom placement and 

small computational errors when calculating SASA.40, 43, 47 Defining the interface atoms via 

decreases in SASA upon complexation should yield the locations where water has vacated as the 

interface halves collapse within each other, thus representing the role of the hydrophobic effect.  

Predicting PPI surfaces and residues became a logical next step in the characterization of 

these critical biochemical events. During the 1990s-2000s, protein-ligand docking exercises as 

well as ligand-binding site prediction methodology were readily benchmarked and quickly became 
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community tested and better understood as tools for drug design and other applications. 178 Until 

that point, protein-protein docking software had been pursued but only really existed in closed 

academic environments. As docking and prediction software go hand-in-hand, benchmarking and 

community-encouraged development was necessary for growth of these technologies. 

The Critical Assessment of Predicted Interactions (CAPRI) is a community initiative 

dedicated to the prediction of protein-peptide and protein-protein interactions from unpublished 

structural data, introduced in 2002.178 Inspired by the community-wide impact that CASP179 had 

on pushing the limits of protein-folding technology, CAPRI is crucial to driving creators of 

prediction functions, as well as scoring functions to adapt and improve their methodologies to cope 

with the robust-nature of PPIs. In the most recent, 6th round of CAPRI, the authors note tangible 

improvements in the best state-of-the-art methodology for predicting protein-peptide complexes, 

and low-to-medium quality protein-protein complexes.180 Still, the authors conclude that adequate 

modeling of conformational flexibility between interacting proteins needs improvement.180 The 

authors also note that publicly available webservers for PPI prediction underperform private 

algorithms in the task of predicting protein-peptide interactions, owing to this being a newer class 

of targets and the webservers being undertrained on them.180 

 

 Datasets and Databases 

A common problem with past research in computational biology is the transparency and 

availability of datasets used. Early publications did not have the luxury of pre-curated databases 

for specific purposes such as PPIs or PLIs and thus, had to curate their own datasets. The primary 

issue with this is comparison of results across multiple studies. While studying new targets is 

imperative for discovery of new information, revisiting previously studied targets serves as an 

invaluable means of checking newer methodology where reference material exists. A number of 

useful datasets and databases have been curated for the purposes of small molecule discovery in 

the context of PPIs. Some are dedicated specifically to this cause, and some are subsets of larger 

databases.  

5.2.4.1 2P2I db 

The protein-protein interaction inhibitors database (2P2I db55-57) is a collection of structural 

data for PPIs where there exists at least one high-quality structure for the complexed protein 
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partners and at least one high-quality structure of one of the protein partners bound to a small 

molecule or inhibitory peptide. This collection contains only hetero complexes and does not 

contain covalently-bound inhibitors, as both of those cases exhibit wildly different behavior. The 

inhibitors in this set are also of orthosteric nature, as allosteric mechanisms would occur outside 

of the protein interface. 

 PPI structures are cultivated from the PDB58 using the Dockground181 server. Filtering is 

accomplished by keeping only structures with resolution > 2.0 Å2, discarding disordered proteins 

and complexes with nucleic acids. This yielded 202 heteromeric complexes for the initial version 

of 2P2I db. The PDB is then queried using an advanced query to obtain free protein structures 

corresponding to each complex bound to small molecule inhibitors. Inhibitors are manually 

checked to ensure the binding location is indeed at the interface. The end result is nine protein-

protein complexes and 25 protein-ligand complexes for the first published version of 2P2I db.56 

The most recent update (accessed: 7/09/2018) contains 31 PPIs and 242 small molecule 

inhibitors.57  

These proteins are divided into three classes:  protein-peptide complexes (class 1), globular 

proteins (class 2), and bromodomains (class BRD). Many of the structures of the bromodomains 

are constructed from homology models (for BRD3-1, BRD3-2, BRD4-2, BRDT-1, and KRAS) 

using closely related homologues as templates (identity ranging from 75-94%).57 Binding data are 

acquired, where available, from Binding MOAD3, PDBbind61, or BindingDB72. The update 

process for this database is largely automated, so updates are frequent. 

The nature of 2P2I’s curation emphasizes integrity of structural data with respect to known 

binders, as information about ligands is only provided where there exists structural data to 

accompany it. While having additional ligand data seems appealing, the biochemical accuracy of 

the data, i.e. matching chemical conditions, is imperative to the relevance of the data. Therefore, 

excluding extraneous data which is not coupled directly to structural information is an appreciated 

characteristic of this data resource. 

5.2.4.2 PDBbind 

The curation and contents of PDBbind are extensively discussed in section 2.2 of Chapter 

2.61 Along with the wealth of protein-ligand data that PDBbind possesses, it also contains a 

downloadable set of PPI complexes. Notably, there are also binding data for many of these 

complexes. For instance, the 2016 release of the protein-protein complex dataset had 1335 Kd data, 
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129 Ki data, and 37 IC50 data. Interestingly, the more useful and accurate KD measurements are far 

more common for these difficult PPI targets. Despite advertisement as primarily a protein-ligand 

database, this is one of the largest collections of curated protein-protein affinity binding data.  

5.2.4.3 TIMBAL 

TIMBAL182-183 is a ligand-centric database, focused on holding molecules with molecular 

weight <1200 Daltons that modulate PPIs. Peptide molecules are limited to 10 peptide bonds, or 

11 total residues. The database covers 50 known PPI drug targets, including protein complexes 

that can be stabilized by small molecules for therapeutic effect. Originally hand curated, the newest 

updates of TIMBAL are exclusively automated searches of ChEMBL184. The ChEMBL data are 

then matched with structures from the PDB to obtain protein-small molecule, protein-protein 

complex, and unbound protein structural data. The newest version (update 10-JUN-2015 using 

ChEMBL_20) of TIMBAL contains >14,000 data points for ~7000 small molecules with 50 PPI 

targets.183 Notably, more than 9000 data entries are for integrins alone, as the surface receptors 

have been pursued as therapeutic targets for nearly two decades. The small molecules are separated 

into inhibitory and stabilizing classes, the latter being a small subset of the data. However, there 

are therapeutic opportunities for molecules with such mechanisms of action.  

The size of this collection is impressive but harvesting binding data purely from ChEMBL 

and matching them to structural data later is not appropriate if care is not taken to match 

environmental conditions such as pH and temperature. Use of this database should be accompanied 

by rigorous data validation to ensure that binding conditions and structural conditions are 

appropriately matched. Importantly, there is no requirement that the inhibitors included in 

TIMBAL’s dataset be orthosteric modulators, so some allosteric inhibitors are likely present. This 

may be a boon or a hindrance, depending on the experimental context. 

5.2.4.4 iPPI-DB 

The iPPI-DB185-186 is another ligand-centric database. The development of iPPI-DB was 

focused on curating a collection of low molecular weight compounds capable of modulating the 

function of PPIs. The authors describe low molecular weight as compounds with MW < 1000 

g/mol. Entries are curated directly from journal articles and patents. The authors claim only 

journals with “expertise in medicinal chemistry” are considered but provide no definition of how 

this condition is applied to their curation process. They require that the PPI targets be discussed in 
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multiple publications in order to stress targets that are well documented to have implications in a 

disease state. Valid ligands are only allowed to contain the following atom types: C, N, O, S, P, 

and halogens. Peptides and macrocycles are discarded, though the authors provide no details as to 

the description of these molecules for their filtering process.  The latest publication of iPPI-DB 

contains 2461 binding data for 1650 compounds across 13 families of highly homologous PPI 

targets.186 The most recent version of their dataset (accessed 7/05/2018) contained 1756 ligands 

across 18 families of PPIs.  

While iPPI-DB’s web interface is impressive and user friendly, there are major concerns 

about the vague descriptions of the cultivation of their dataset. The database is forwardly ligand-

centric, with queries focusing specifically on the types and affinities of ligands the user aims to 

locate, also allowing for designation of general PPI homologous family of interest. Structural 

information is not provided for their protein families, and individual homologues are not available 

as searching options. This relatively relaxed classification of their protein targets is alarming, given 

the strong language used to confer their commitment to traditional medicinal chemistry approaches 

and relevancy of molecules and the targets they bind to. The authors also do not stipulate the mode 

of PPI modulation, so allosteric ligands are likely also part of their dataset. 

 Relevant Webservers and Tools 

Many computationalists prefer to make their own in-house tools, but some more 

complicated methodology has been incorporated into webservers and publicly available tools. The 

most significant contributors have been noted below. 

5.2.5.1 2P2I inspector 

Along with their comprehensive database discussed in 5.2.4.1, 2P2I also contains a useful 

tool for computing various physical, chemical, and geometric properties of PPIs. Interface 

propensities are calculated using in-house shell and tcl scripts57, and presented using VMD 

(http://www.ks.uiuc.edu/Research/vmd). Missing hydrogen atoms are added with PyMOL 

(https://www.pymol.org). Gap volumes, planarity, eccentricity, and circularity are computed using 

the PRINCIP program imbedded in SURFNET124. 
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5.2.5.2 PROTORP 

PROTORP187 was a web server dedicated to the analysis of protein-protein interactions in 

3D structures. The server calculated a number of physical and chemical parameters related to the 

binding energy of association for the two components of the complex. Some parameters include: 

residues present in the interaction site, size of the interaction site as measured by SASA (calculated 

with NACCESS), and geometric characteristics including planarity, length, breadth, and numerical 

eccentricity. Gap volumes are also provided.  While ProtorP is no longer online, it was significant 

web resource in its time. Many aspects of the ProtorP server were calculated using the  PRINCIP 

program within SURFNET124, as it was developed by the same group. 

5.2.5.3 InterProSurf 

InterProSurf188 is a web server dedicated to predicting which surface residues on a provided 

protein are most likely to interact with other protein targets. The prediction method is based on 

SASA of the interface residues combined with known propensity values (from past publications) 

for PPI interfaces and a clustering algorithm to locate patches of surface residues which match the 

appropriate characteristics of a protein-protein interface. 

5.2.5.4 PDBsum 

PDBsum189-190 is a web server which provides structural information on entries of the PDB. 

The analytics performed by PDBsum are provided in a very visual format, ranging from structural 

characterization of secondary structure to analysis of structural quality and details of protein-

protein contact regions. PDBsum is a notable resource for target-specific study of various PDB 

structures. The image-based output of the server is not amenable to cultivation of data for large 

datasets, but the represented information is available in text format through web utilities such as 

wget. The entire contents of the PDBsum database are downloadable, as well. While this is not a 

dedicated resource for PPI information, it contains a dedicated tab of information for PPI 

structures. The PPI interface residues can be extracted from the protein-protein contact plots. 

5.2.5.5 PDBePISA 

The PISA server (Proteins, Interfaces, Structures and Assemblies), also termed PDBePISA, 

is a web tool provided by the European Bioinformatics Institute (EBI) as an extension of the 

European Molecular Biology Laboratory (EMBL). The PISA server analyzes interfaces found in 
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asymmetric units and predicts probable quaternary structures based on crystallographic data. The 

tool is tied to a database, which contains pre-calculated information as to make analysis much 

quicker for users. Many terms and parameters are described as provided on the website, but the 

methods used for calculation are not provided, and there is no overarching publication in which to 

find them. Some provided parameters for an input PPI structure include: surface area of contact 

patches within the provided structure, ΔGsolvation as the solvation free energy gain upon formation 

of the specific interface being analyzed (many are provided and labelled accordingly), symmetry 

operators of the interface, number of interacting atoms in the interface, number of hydrogen bonds, 

number of salt bridges, number of disulfide bridges, and some very customized parameters related 

to the probability of the formation of that interface, as well as its significance.  

While the information provided by the server is undoubtedly useful for the study of 

individual proteins of interest, and the data are downloadable, users cannot process many structures 

at a time. This renders the tool less useful for large-scale analyses of datasets containing many 

protein structures.  

 

 Investigations of Physicochemical Properties of PPIs 

A plethora of previous publications have studied physicochemical parameters of PPIs 

including: residue composition, SASA, accessibility of side chains, electrostatics, and localized 

geometry of the interface residues. As the studies occurred over a large span of time, they will be 

addressed chronologically. 

5.2.6.1 Early Work 

Early work by Janin et al. in 198851 used a set of 23 oligomeric proteins (16 PDB structures, 

7 donated from cited laboratories) to investigate amino-acid composition, hydrophobicity, and 

SASA properties of the PPIs. The most important contribution of this work was the introduction 

of the SASA-based method of determining PPI interface residues. Residues displaying any degree 

of -ΔSASA when going from their uncomplexed to complexed state are considered to be part of 

the interface. Other significant findings include: smaller interfaces have approximately 700 Å2 of 

buried SASA, while larger ones cover between 3000-10000 Å2, which constitutes up to 40% of 

the protein’s total surface area in the extreme case of catalase. These buried SASA figures were 

calculated with the following equation: 
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𝑆𝐴𝑆𝐴𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 =
(𝑆𝐴𝑆𝐴𝑠𝑢𝑏𝑢𝑛𝑖𝑡 1 + 𝑆𝐴𝑆𝐴𝑠𝑢𝑏𝑢𝑛𝑖𝑡2) − 𝑆𝐴𝑆𝐴𝑐𝑜𝑚𝑝𝑙𝑒𝑥

2
 

where SASAsubunit1 and SASAsubunit2 are the results of calculating the SASA of the isolated 

subunits, with the assumption that their structure does not change upon separation. Oligomers with 

small interfaces had globular subunits with accessible surface areas similar to those of monomeric 

proteins, which suggests that those small-interfaced dimers assembled from pre-formed protein 

monomers. Some data about the composition of the interface residues vs the general solvent-

exposed protein exterior, as well as the interior (core), were gathered. However, this dataset was 

very small, so development in this area required more data for clarity.  

Similar work by Argos was completed in 1988177 with a dataset composed of 58 proteins 

with 24 oligomeric subunits and 34 independent, uncomplexed domains. This study concluded that 

the composition of protein-protein interfaces was similar to that of the general protein surface. 

Interestingly, they found that the contact surfaces showed a relatively uniform distribution of polar 

and non-polar atoms over the interface surface. Later works find the opposite of this, so this finding 

was likely due to the small dataset. There was an increased abundance of large, aromatic amino 

acids, as well as Arg present in the interface when compared to the general protein surface. There 

were also an unusually large number of self-contacts (i.e. Met-Met, Phe-Phe, Leu-Leu, and Asn-

Asn), as well as less-traditional pairings (Ser-Asp, and Tyr-Asp) within in the interfaces. They 

found that, on average, subunits and domains lose approximately 20% of their water-accessible 

surface area to form the respective interfaces, with considerable variation (5-43%). This was one 

of the first studies to investigate the geometric orientation of the interfaces, using complicated 

spline-interpolations on a 0.5 x 0.5 Å grid. The interface surfaces often displayed a flat overall 

cross-section, especially for subunits where symmetry is involved. Domain interfaces were nearly 

evenly divided between flat and curved. Finally, Argos found that ~70% of the total interface 

surface was contributed by single residues in distinct structural units, which is to say that the 

interface is not represented by a continuous chain of amino acids, but rather fragments of distant 

motifs. 

5.2.6.2 Thornton’s Major Contributions 

Jones & Thornton published a robust article43 on similar topics and introduced interface 

planarity as a concept in 1995. This study used a dataset of 32 nonhomologous protein dimers 
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cultivated from the PDB. This was an exhaustive study of physical, chemical, geometric, and 

propensity properties of PPIs. Four metrics for assessing PPIs were discussed therein.  

First, to better quantify the geometric shape and orientation of the interface, planarity was 

introduced. Planarity was defined by the RMS deviation of all atoms in an interface from the least 

squares plane through those atoms. Furthermore, the circularity of the plane was also considered, 

as a ratio of the standard deviations along the x and y dimensions of the defined plane (within the 

plane). The circularity of the proteins in this study ranged from 0.48-1.0 for 31 of the 32 proteins, 

with the last yielding a circularity of 0.33. They noted that the oblong shape of this final protein 

was likely due to its biological function as a parasitic surface coat protein. 

Second, the concept of interface segmentation was introduced in order to better understand 

Argos’ finding where the interfaces consisted of fragments of distant structural motifs. Interface 

residues separated by more than five residues in the sequence were allocated to different segments 

to help quantify the degree of segmentation in the interfaces. The number of segments in their 

datasets ranged from 2 to 15 and there was a weak correlation with the size of the interface (r = 

0.59).  

As a third addition to classifiers, gap volume —a parameter implemented in 

SURFNET124— was further conceptualized into a gap volume index to quantify the 

complementarity between the surfaces of the two subunits which compose a PPI. Gap volume is 

calculated by inserting spheres with up to a 5 Å radius between every pair of subunit1-subunit2 

interface atoms and shrinking the volume of the sphere gradually until no other interface atoms 

are contained within the sphere. If the radius is shrunk below a given threshold (default 1.0 Å), it 

is removed completely. Remaining gap spheres are summed across the entire interface to yield the 

total gap volume. This gap volume index is then calculated as: 𝐺𝑎𝑝 𝑉𝑜𝑙𝑢𝑚𝑒 𝐼𝑛𝑑𝑒𝑥 =

𝐺𝑎𝑝 𝑉𝑜𝑙𝑢𝑚𝑒 (Å3)

𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑆𝐴𝑆𝐴 (Å2)
 . The gap index values for their 32 proteins revealed that homodimers and 

permanent heterodimers tend have higher surface complementarity than transient heterodimers. 

This should render transient complexes as more druggable, but it is important to note that this 

surface complementarity is merely a measure of packing density in the interface and does not 

reveal any information about the interaction network holding the interface together.167 Parallels 

were drawn to strength of binding seen in vivo for homodimers where some protein complexes 

will denature before they dissociate.  
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Lastly, protrusion of interface residues from the molecular surface of the interface were 

measured using SASA values for the twenty standard amino acids, comparing the interface 

residues to the generic protein exterior residues. Their findings showed that all residues, except for 

Ser, showed increased accessibility in the interface (mean exterior residue: 36.09 Å2 vs 43.56 

Å2 for interface residues), some showing large increases (Trp, Tyr, Phe, Arg, Met) of ≥20% more 

exposed surface area. The decrease in accessibility for Ser in interfaces was minimal (~1% relative 

surface area decrease). From these results, they concluded that the increase in SASA inside the 

interface points to increased flexibility and side chain mobility inside of the interface. The 

implication of such a flexible state could indicate that interfaces are not preformed but that residues 

take on new conformational states when/after dimerization takes place.   

Importantly, the SASA-based determination of PPI interface residues first implemented by 

Janin51 was utilized in this work, but altered slightly. The authors added a threshold whereby, to 

be considered as part of the interface: single atoms must display ΔSASA < -0.01 Å2
 and residues 

must display ΔSASA < -1.00 Å2 when going from the uncomplexed to complexed protein state. 

Additionally, the ending notes stated that many of the features calculated in the publication were 

to be made available as a computational tool in the near future. The PRINCIP program within 

SURFNET124 suite is that later product. 

Additional findings include: SASA is roughly correlated to molecular weight of protomers 

(r = 0.69), buried SASA per subunit ranges from 368.1 - 4746.1 Å2
, there are an average of 0.88 

hydrogen bonds per 100Å2 of SASA buried (for interfaces covering > 1500 Å2 per subunit), and 

interfaces are more hydrophobic than the exterior of proteins but not as hydrophobic as protein 

cores.  

5.2.6.3 Janin’s Major Contributions 

Three studies in 1999-200352-54 were completed by Janin and coworkers with datasets of 

75 heteromeric protein-protein complexes for the former two and an additional dataset of 122 

homodimers for the final study. With the similarity of the three studies, their findings will be 

discussed jointly. The geometric model of an interface composed of rim residues and buried 

residues is heavily discussed, where any interface residues (defined by those that lose SASA upon 

complexation) that still have SASA after complexation are rim residues, and those that approach 

~0 Å2 of SASA are buried residues. The authors discuss some metrics using “buried SASA” 
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referring to the SASA which is no longer present on complexation of the two subunits, therefore 

burying it. 

The authors clustered the atoms in their interfaces using an average linkage clustering 

method in order to subdivide the contact surfaces into patches, also referred to as hotspots. The 

average homodimeric interface contains one or two patches. Each of these patches bury a total of 

600-1600 Å2, are composed of 65% nonpolar atoms, and include ~18 hydrogen bonds. About 77% 

of the homodimers in their dataset had a buried SASA > 1000 Å. The typical heterodimeric 

complexes had a buried SASA between 600-1000Å.  They found that homodimeric interfaces were 

typically twice as large as heterodimers, on average. Each side of a heterodimeric interface has an 

average of one hotspot, which is about 800 Å2 in size. Homodimers tend to have more hotspots 

which are larger. The cores of the interfaces, composed of the previously defined “buried” 

residues, were an average of 32 residues per monomer in homodimers, and only 12 residues per 

component of their heterodimeric complexes. The core residues of the interfaces were enriched in 

aliphatic and aromatic residues, depleted in charged residues (with the exception of Arg), and 

generally resembled the interior of the protein. Despite these contrasting figures between 

homodimers and hetero complexes, they both contained approximately 1 hydrogen bond per 75 

Å2 of polar interface area. 

5.2.6.4 Binding Affinity of PPIs 

The most recent publications on PPIs have not discussed as many of the geometric 

characteristics of their binding state and have concentrated more on other issues such as stability 

and relationships to ligand binding events. 

A study by Kastritis et al.171 in 2011 investigated the effects of environmental factors such 

as pH and temperature on the stability of PPIs as measured by changes in their ΔGbinding with a 

dataset of 144 protein-protein complexes curated from the PDB. This dataset included antigen-

antibody pairs, enzyme-inhibitor, enzyme-substrate, and enzyme-receptor complexes, as well as 

G-protein pairs. All structures were coupled with Kd measurements ranging between 10-5
 – 10-14 

M. This study exercised rigorous attention to detail in terms of the binding affinities used. While 

the binding affinities were not necessarily included alongside the structural information in the 

publication of origin for each structure, the authors of this work painstakingly manually curated 

binding constants appropriate for the crystallization conditions for each target structure in their 

dataset. They also considered the biophysical techniques utilized to acquire the binding constants 
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and the associated error metrics that could result from the measurements, as well as binding 

constants achieved as a conversion (i.e. calculation of Kd from an appropriate Ki).  

The authors found that the measurements in their dataset had all been conducted from 18-

35°C, with only 3 exceptions. The potential impact on the affinity of the PPI complex from this 

was small. They found that changing ionic strength in the range of 0.1—0.5M could have a similar, 

but slightly larger effect. However, pH was undoubtably the most powerful environmental variable 

for controlling the affinity of a PPI complex. Change of pH in the range of 5.5-8.5, which covered 

about 95% of their dataset, resulted in a change of Kd by a factor of 10-50, corresponding to ΔG ~ 

1.4-2.3 kcal/mol. The impact of pH surpassed the effects of temperature and ionic strength by far.  

They noted that collecting affinity data from publications was exceedingly laborious and 

had confidence in their paired affinity-structure pairings to within a factor of 2-10 for Kd, or 0.4—

1.4 kcal/mol for ΔG. Most importantly, the concluding remarks were aimed towards prediction 

and modeling of binding affinities for PPIs: “… it makes little sense to model or predict a Kd to 

within better than an order of magnitude, unless one is also prepared to model its dependence on 

pH, and possibly also ionic strength and temperature.”171 Notably, this becomes even more crucial 

for the elusive low-affinity complexes, for which obtaining structural data is exceedingly difficult 

due to their fragility when preparing crystals. 

5.2.6.5 Drug-like Ligands and Small Molecule Properties 

A study by Karanicolas and coworkers44 aimed to characterize physicochemical 

differences between PLIs and PPIs utilizing the Astex diverse set129 and a PPI dataset  of 21 

nonredundant complexes derived from TIMBAL182 and 2P2I db55. To create their PPI set, they 

filtered complexes contained in TIMBAL and 2P2I db for only those containing non-covalent, 

orthosteric ligands between 200-675 Da. In cases where more than one inhibitor-bound structure 

had been solved, only that with the tightest binding affinity was kept. Structures containing 

cofactors were excluded. The Astex diverse set was used as a starting point for their “druglike” 

PLI dataset, but structures containing cofactors or secondary ligands were removed. Similarly to 

the PPI set, complexes with ligands outside of the 200-650 Da range were removed (as the largest 

in the PPI set was 651 Da). The final PLI set consisted of 46 binary protein-ligand complexes. A 

screening portion of the experiments also utilized a drug decoy set of 10,000 randomly selected 

compounds with MW between 200-750 Da from ZINC191. The DUD-E server192 was also utilized 

to create a custom-tailored set of 50 decoy compounds for their targets.  
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The overall ligand efficiency of PPI-bound ligands was lower than those of PLI-bound 

ligands. Bound inhibitors at protein interaction sites retained more exposed surface area than their 

counterparts at PLI sites. This also held true for other analogous sets of drug-like complexes, such 

as the full DUD-E set192. They noted that, of the traditional drug targets, serine proteases exhibited 

the most exposed bound-ligand surfaces. Virtual screening experiments utilizing the FRED 

software package193 were intended to be relatively easy on the screening software and aimed to 

probe their performance on PPI targets. For the more traditional Astex-based set, the known 

inhibitor was ranked within the top 2% of the library in 80% of the targets. Conversely, only 50% 

of the targets in the PPI set had their known inhibitor ranked within the top 2% of the library. This 

merely illustrates the bias our current methodology has towards protein-ligand binding events in 

typical, orthosteric ligand-binding sites in proteins, as opposed to the relatively exotic binding 

locations of protein-protein interfaces. Lastly, they docked some of the highest ranked decoys from 

the PPI screening experiment and observed the fraction of exposed ligand surface area (Θlig) in the 

bound pose. They found that the highest ranked decoy molecules also displayed high Θlig, much 

like the known PPI-inhibitors, despite this characteristic being more unique to PPI inhibition when 

contrasted against typical targets for small-molecule inhibition. They concluded that this 

observation pointed to protein conformation being the primary determinant of Θlig in inhibitory 

complexes, furthering the evidence that the physical landscape of PPIs is very different from 

traditional drug targets.  

 Moving Forward 

While many aspects of PPIs have been heavily investigated in the past, experts deemed 

that structural characterization parameters were inadequate to differentiate between different 

affinities or specificities of diverse PPIs at the time (2002).40 The recent virtual screening study by 

Karanicolas and coworkers44 furthered the idea that the physical landscape of PPIs is different than 

PLIs. More investigation and quantification of those differences is necessary. Issues of data 

availability for PPI targets have been lessened with the emergence of well-maintained databases 

devoted specifically to curating data for PPIs and PPI inhibition, and the new-found presence of 

structural data for PPIs in both their complexed, and ligand-bound states. For these reasons, 

revisiting ground-level physical characterization of PPIs seems appropriate again at this time. 

We aim to investigate the localized physical and chemical properties of druggable protein 

interfaces by examining a dataset of druggable PPI interfaces derived from 2P2I db57, where there 
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are structural data representing both the complexed PPI state and a ligand-bound, inhibited subunit. 

After establishing the characteristics of these druggable interfaces, we investigate a dataset of less 

druggable PPIs derived from PDBbind61. The proteins in this less druggable PPI set have no known 

inhibitors but binding data describing their affinity of complex formation is known. These less 

druggable structures will be separated into three data subsets based on their binding affinity, and 

their physical characteristics will be assessed for any patterns matching those of the druggable 

interfaces.   

The physical characterization will involve fitting planes to their interfaces, similar to the 

approach utilized by Thornton and coworkers.40, 43, 47, clustering various groups of atoms in relation 

to those planes, and quantifying structural features of protrusions and hollows that are present 

within the interfaces. By clustering the contact atoms in the interfaces, we can also extract 

information about which residues are most crucial, based on their positions relative to the subunit 

they belong to. Characterizing the local topography of these druggable and less druggable PPIs 

will ultimately allow us to assess whether or not these interfaces are truly flat and featureless. 

 

5.3 Methods 

 Dataset Acquisition and Filtering 

Two different overarching datasets are utilized in this work, an adaptation of the PDBbind 

PPI set61 and an adaptation of the 2P2I dataset57. Their adaptations and subsets are noted below. 

5.3.1.1 PDBbind PPI set 

The PDBbind PPI set serves as the basis for our complexed PPI dataset, intended to contain 

targets with no known small molecule inhibitors for either subunit in the complex. As ligands are 

not involved in this dataset, structural information coupled with protein-protein binding affinities 

was desired as an added layer of analysis.  

The 2016 version of the PDBbind PPI set was acquired from their website: 

(www.pdbbind.org.cn). The 1335 structures coupled to Kd or pKd data were chosen as a starting 

point. The Uniprot81 codes for all protein chains in the dataset were acquired.  Any structure 

containing a chain with a Uniprot sequence found in the 2P2I57 dataset (accessed 5/2016) or the 

TIMBAL183 dataset (accessed 5/2016) was removed, as existing in either dataset implies existence 

of a known inhibitor. Non-X-ray structures and structures with resolution > 2.5 Å were removed. 

http://www.pdbbind.org.cn/
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Structures with interfaces involving more than two unique protein chains, as well as structures 

with DNA/RNA complexes were removed. Homodimer complexes were also removed, as the 

targets in the 2P2I set are all heterodimers. The resulting PDBbind set consists of 347 PDB 

structures of unique protein-protein pairs with corresponding affinity data measured as a Kd. 

5.3.1.2 2P2I Dataset 

The 2P2I dataset serves as the basis of our “druggable” PPI set. In this set of druggable of 

PPIs every complexed pair of protein subunits is complemented with a ligand-bound form of at 

least one of those subunits. The 2016 release (accessed 5/2016) of the 2P2I57 dataset was acquired 

from their website: (http://2p2idb.cnrs-mrs.fr/).  

Each PPI complex represented in this dataset was required to have at least 1 complexed 

PPI structure and one ligand-bound PPI structure after our filtering of the dataset. Therefore, if the 

last complexed PPI structure, or last ligand-bound structure is removed via one of the filtering 

steps, the corresponding other structures are also removed. Structures based on homology models 

were removed from the dataset. Non-X-ray structures and structures with resolution < 2.5 Å were 

removed. Sequences were aligned using NEEDLE86, and ligand-bound structures displaying < 

80% sequence identity to their corresponding chain in the complexed PPI structure were removed. 

The single homoprotein complex (1TNF, representing tumor necrosis factor α) was removed, as it 

is both the only homoprotein complex in the dataset, and it is of questionably trimeric nature rather 

than binary association. The resulting 2P2I dataset consists of 16 unique PPI complexes, with 204 

ligand-bound, inhibited PPI structures. This dataset is analyzed in two parts, the 2P2I P-P dataset 

consisting of the 16 unique PPI complexes, and the 2P2I P-L dataset consisting of the 204 ligand-

bound PPI structures. 

 File Preparation 

For the ligand-bound P-L 2P2I dataset, structures were aligned to their appropriate same-

sequence partner in the complexed P-P 2P2I structure using HwRMSD194 alignment. This was 

necessary to use the same calculated plane from the corresponding complexed PPI structure to 

analyze the ligand-bound structures, where there is no second protein. Defining a plane for the P-

L 2P2I structures would not be possible, otherwise. The ligands were also removed from the P-L 

2P2I structures, as they are not analyzed in this work.  

The files of the PDBbind dataset required no preparation. 

http://2p2idb.cnrs-mrs.fr/
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 Determining PPI Contacts and Picking Chains 

Two sets of contact atoms are made for each dataset. The first set is simply the Cα of any 

residue which contacts the opposite subunit in the complex, based on a 4.5 Å cutoff. The second 

set is specifically the exact atoms within that 4.5 Å distance of the opposing subunit.  

5.3.3.1 PDBbind dataset 

PPI contact residues were determined using a 4.5 Å distance cutoff via an in-house perl 

parsing script which utilizes the 3D coordinates in the PDB files. The two sequences of interested 

are dictated by the index file provided with the PDBbind set. This index lists which two chains the 

binding affinity describes. In the case where multiple copies of these sequence pairs existed in the 

PDB file, the two chains which resulted in the largest number of contacts were chosen as the chains 

to represent each structure. The Uniprot IDs for the sequences of each chain were checked to 

ensure that the appropriate chains were considered. For example, in a structure containing a dimer 

of dimers (A-B and C-D), where chains A and C are the same, and B and D are the same: if A-B 

resulted in 100 total contact residues and C-D resulted in 115 total contact residues, C-D was the 

pair chosen to represent the structure. In this example, the index file likely would have listed chain 

A and chain B as the chains for the corresponding affinity value.   

5.3.3.2 2P2I dataset 

PPI contact residues for the PPI complexes were determined using a 4.5 Å distance cutoff 

via an in-house perl parsing script which utilizes the 3D coordinates in the PDB files.  

As this is a protein-centric study, contacts are determined using the complexed PPI 

structures of the P-P 2P2I subset. Contacts from these complexed PPI structures are then projected 

back onto the ligand-bound structure, since the ligand-bound structures in the 2P2I set are missing 

one of the subunits in the complex (as they are inhibited). Due to this, any residues which are not 

resolved in the ligand-bound interface structure are removed from the analysis. 

 

 Plane Calculations 

5.3.4.1 The Best-fit Plane (BFP) 

In-house calculation of the BFP was completed via 3D least-squares fitting in MATLAB195. 
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5.3.4.2 SURFNET — PRINCIP 

The PRINCIP program imbedded in SURFNET124 is a direct implementation of the 

methodology used by Jones & Thornton43 (discussed in section 5.2.6.2). The FORTRAN source 

code was altered slightly, so that the input for the software could be a full directory of PDB files, 

rather than one file at a time.  

5.3.4.3 The Interface Geometric Centroid (IGC) Plane 

To construct the IGC planes, the geometric centroid of each protein chain (each side of the 

interface) was first calculated as the mean of all Cα atoms in that chain’s contact residues. The 

centroid of the entire interface was then considered to be the mean of the two chain centroids. The 

plane was constructed from the normal vector between the two chain centroids, by forcing the 

plane to intersect with the interface centroid.  

 Planarity Calculations and Protrusion/Hollow Distances 

  The planarity RMS (pRMS) metric, previously implemented by Jones & Thornton43, is 

calculated as the root-mean-square deviation of all points in the interface from the interface plane. 

In their work, the best-fit plane was used. In this study, the best-fit plane was tested, but ultimately 

the IGC plane is used for analysis. The displacement of each atom from the plane is the same as 

the normal-vector distance for each atom. The normal-vector distances are solved by applying the 

plane’s normal vector as a velocity to each atom’s coordinates to calculate the necessary distance 

to be traveled to intersect the plane.  

The distance which any atom protrudes beyond its subunit’s side of the plane is aptly 

referred to as its protrusion distance. Conversely, the distance which any atom resides “behind” 

the plane on its own subunit’s side is deemed the hollow distance.   

 Point Projection and Clustering  

Before clustering, plane-projected atomic coordinates were obtained. The normal vector of 

the plane was utilized to project where any atom would intersect with the plane, in the normal-

vector direction. Essentially, the three-dimensional coordinate space is flattened to two dimensions 

on the interface plane.  
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Clustering was performed using a DBSCAN clustering algorithm implemented in R114. 

Parameters for DBSCAN clustering included ε = 3 Å (epsilon: Euclidian distance for clustering), 

and minimum points per cluster of 3.  

 Protein and Plane Graphics 

Graphics displaying protein structures, as well as those with graphical representations of 

planes were created using the  PyMOL196 molecular graphics software. 

Plane drawing was heavily assisted by a publicly available plane drawing script which 

automates the cGO plane drawing functions of PyMOL. This script can be found at found at: 

http://pldserver1.biochem.queensu.ca/~rlc/work/pymol/draw_plane_cgo.py  (Accessed: 7/9/2018) 

 

5.4 Results and Discussion 

The focus of this work is to quantify localized, geometric structural differences that exist 

between “druggable” and “less druggable” PPIs. For this context, druggable PPIs are simply 

defined as those which have known small molecule inhibitors, and less druggable PPIs are those 

which have not yet been successfully modulated by small molecules. While some arguments may 

be made for the differences in “bindable” and “druggable”, we will address the targets simply in 

the “druggable” context for this work for brevity.  

 Datasets 

We employ two datasets herein: a subset of the 2016 2P2I db dataset57 (which will be 

referred to as the 2P2I set) and a subset of the 2016 PDBbind PPI dataset61 (which will be referred 

to as the PDBbind set). The 2P2I set contains 16 unique heterodimeric PPI complexes which are 

represented by at least one structure of the complexed PPI subunits and at least one structure of a 

ligand-bound subunit where the complexation was inhibited. There are 204 total ligand-bound PPI 

structures in the 2P2I set. The PDBbind set consists of 347 complexed heterodimeric PPI structures 

for which there are Kd binding affinity data.  

These two datasets share no redundant proteins and are intended to represent druggable 

targets (2P2I set) and less druggable targets (PDBbind set). The acquisition and filtering of these 

datasets, along with any necessary preparations to the files are presented in sections 5.3.1 & 5.3.2 

of the methods.  
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Each of the datasets has relevant subsets of data. The 2P2I set can be separated into the 

complexed PPI structures and the ligand-bound PPI structures. The PDBbind set has three total 

subgroups of data, based on binding affinity. Theoretically permanent protein-protein complexes 

have a dissociation constants in the nM range or lower169 (Kd < 1 x 10-9 M or pKd > 9), while 

weakly transient complexes have dissociation constants in the μM range or higher169 (Kd > 1 x 10-

6 M or pKd < 6). We therefore classify the complexes with dissociation constants between those 

ranges (1 x 10-9 M < Kd < 1 x 10-6 M or 6 < pKd < 9) as strong transient complexes. The populations 

of these weak transient, strong transient, and permanent subsets are 97, 197, and 53 proteins, 

respectively.  

 Defining PPI Residues 

Early approaches for defining PPI residues involves calculating SASA for separated 

protein subunits and then calculation of SASA for the complex.51 Interacting residues were first 

defined as those that lost any amount of SASA51; later approaches adopted a threshold of necessary 

SASA loss in order to rule out small errors in calculations43. This adapted ΔSASA method with 

the small threshold (1.0 Å2 for residues, 0.01 Å2 for atoms) was the continued method of choice 

throughout the rest of the geometric studies of PPIs.40, 43, 47, 52-54, 197   

This method is seemingly more robust than the traditional distance-based cutoff for 

acquiring protein-ligand contacts because it includes residues that are not in direct contact with the 

contrasting protein chain, but it also misses some residues that are in close proximity according to 

our early experiments (data not shown). It seems the primary goal of this SASA-based detection 

method was to embrace the relationship between solvent accessible nonpolar surface that becomes 

buried upon complexation and the enthalpic contribution of the hydrophobic effect as discussed in 

1.2.1.27 While this is admirable, the assumption that the tertiary structure of these protein subunits 

do not undergo conformational change upon complexation is required for the SASA-based method, 

and it is likely not always true. Even so, global changes in SASA are not qualitative on the atom-

level, and do not shed light on the localized geometry of the protein surface that we aim to study 

in this work. 

We opted to focus our methodology on characterization of specifically the protrusions and 

hollows present in these interfaces. Complementarity of the interface halves is unquestionably 

necessary to facilitate solvent evacuation, hydrophobic collapse, and thereby complex formation. 

Perhaps the fitting of the protrusions is responsible for some degree of this complementarity. 
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Preventing association of the protein complex through mechanical disruption of this crucial seating 

mechanism via modulation by small molecules is plausible. 

Since the protrusion/hollow contact points are likely to represent the majority of the close-

proximity atom pairings in the interface, we elected to use a distance-based cutoff to determine 

PPI contact residues, similar to protein-ligand binding analysis. Our adaptation of the plane-based 

analysis method begins with determining PPI contact residues via a 4.5 Å distance cutoff. Cutoffs 

of up to 6.5 Å were investigated but led to overly biased fitting of planes due to the exaggeration 

of atoms contacted by the protrusions.  

5.4.2.1 Resulting PPI Contact Residues 

The 2P2I dataset has an added layer of complexity when describing its data. Since we have 

obtained a ligand-bound complex with one of the two subunits present in each of the 16 PPI 

complexes, the chains in the PPI complexes can be designated as the “druggable” chain and the 

“complementary” chain. Note that none of the PPIs have structural data for ligands bound to both 

of their subunits; the ligand-bound structures all represent the same subunit. The druggable chain 

corresponds to that which we have obtained a ligand-bound structure for, and the complementary 

chains are those which are displaced by the ligands in the set. These subsets will be referred to as 

the 2P2I P-P druggable and 2P2I P-P complementary sets. For the ligand bound structures in the 

2P2I set (2P2I P-L set), the contacts from the corresponding protein-protein complex are used to 

assess the structures, since one of the subunits for the overarching PPI is missing. Only the 2P2I 

P-P druggable and complementary chains are addressed for the analysis of the contact residues to 

follow, as their contact residues are used to define the contacts in the 2P2I P-L set.  

For ease of presentation, the amino acids have been divided into four chemical types: 

nonpolar aliphatic (Ala, Gly, Ile, Leu, Met, and Val), polar uncharged (Asn, Cys, Gln, Pro, Ser, 

and Thr), polar charged (Arg, Asp, Glu, His, and Lys), and aromatic (Phe, Trp, and Tyr). The 

complete distributions of contact residues by specific amino acids may be found in Appendix B. 

A distribution of the resulting PPI contact residues by chemical class for the druggable and 

complementary chains of the 2P2I set is presented in Figure 5-2. The composition of the whole 

interfaces for the ligand-bound P-L 2P2I structures are not presented, as their interfaces are defined 

by those of the P-P 2P2I set and are thus identical to their druggable chains. The PPI contact 

residues of both combined chains of the weak transient, strong transient, and permanent complexes 

of the PDBbind set are presented by chemical type in Figure 5-3. 
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Figure 5-2. Distributions of PPI contact residues by chemical type for the 16 PPI complexes of the 

2P2I set. Interface contact residues belonging to the druggable chains and complementary chains. 

 

 

Figure 5-3. Distributions of PPI contact residues by chemical type for the complexes of the PDBbind 

set. Interface contact residues belonging to the permanent, strong transient, and weak transient complexes. 

 

Interestingly, the druggable and complementary chains of the 2P2I dataset display distinct 

differences in composition (Figure 5-2). The general populations of polar uncharged and polar 

charged residues for the two sets are similar. However, druggable chains have a higher 

composition of aromatic residues (especially Tyr) while complementary chains have a higher 

composition of nonpolar aliphatic residues (especially Gly and Leu).   
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For the PDBbind data, both the weak and strong transient sets show nearly identical 

distributions of amino acid composition (Figure 5-3). The permanent complexes show a shift in 

composition away from the transient states, with a decrease in nonpolar aliphatic residues 

(especially Leu) and polar charged residues and an increase in polar uncharged and aromatic 

residues. 

While these variances in composition are intriguing, perhaps assessing the localized 

topography of these interfaces would yield more pertinent information about the differences in 

subunit affinity and druggability. For this, we must assess the interfaces more closely. 

 

 Plane Fitting 

We aim to gain information about the topographical details of these PPIs, so Thornton’s 

method of utilizing planes and exploring deviation from those planes served as a logical place to 

start. The metric of planarity RMS (pRMS) is defined as the root-mean-square deviation of all 

relevant points (interface atoms) from the plane in question and is pertinent to quantifying the 

flatness and relative shape of the interface being investigated.43 Relatively planar interfaces are 

defined as those exhibiting pRMS ≤ 6 Å. It became immediately apparent that the best-fit plane 

(BFP), the result from least-squares regression, can be improperly biased in two major ways.  

First, the best fit to a cloud of points representing the interface atoms may not yield a plane 

that bisects the interface, but rather a plane that bisects the globular proteins. Numerous occasions 

of this event were observed during early testing of BFP analysis, where we utilized an in-house 

BFP calculation implemented in MATLAB195 (see Methods, section 5.3.4). This event, which we 

will refer to as complex-bisection, is observed for all four of the major geometric shapes of 

interfaces in our datasets. It has seemingly little to do with the geometry of the interface, and it 

became increasingly prevalent when coupled with the ΔSASA-based definition of interaction 

residues. This observation is based on the results of analyzing our dataset with the PRINCIP 

program within the SURFNET124 software, an implementation of Thornton’s43 analysis methods. 

Figure 5-4 displays the bisection of the globular protein chains in the complex of Titin with 

obscurin-like protein 1 (PDBid: 2WP3). This example is crucial because the interface in 2WP3 is 

extremely planar. The BFP as a mathematical concept was incomplete for accommodating a 

geometrically simple interface. 
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Figure 5-4. Complex-bisection of the globular protein in 2WP3 by the mathematically best-fit plane. 

The best-fit plane calculated using Thornton’s method implemented in the PRINCIP program, part of 

SURFNET, fit to the planar interface of 2WP3 yielding a pRMS of 6.26 Å. 

 

Second, the fit of the BFP is biased towards the hollows of protrusion-hollow interactions. 

The mathematical nature of scanning for new contacts (atoms in our case) from single reference 

point (a protrusion) into relatively densely populated coordinate space (the hollow in the adjacent 

protein chain) yields many new explored points for that single referenced exploration starting 

point. Due to this, protruding a single side chain or loop fragment into an opposing partner’s space 

results in many more atoms detected on the “receiving” side of a protrusion in an interface. This 

is one of the very events that causes the BFP to be overfit, especially in an “all atom” context. Due 

to this, we aimed to define our planes in such a way that they would be more fit towards the protein 

backbone representation of each side of the interface and not the side chains. To accomplish this, 

we first tried the BFP method, fitting to only the Ca atoms of the protein-protein contact residues. 

These planes were deemed to still be inadequate, as the complex-bisection problem was no less 

frequent. At this point we elected to forego the BFP method and adopt a new approach.  

Planes only require a normal vector and a single point along that vector to be defined, so 

adapting new approaches was merely a task of picking appropriate calculable reference points 

from which to create planes. Early versions of this methodology utilized two separate planes, one 

of each side of the interface, in attempt to quantify the relative shape of the interface by the angle 

created between the two interface planes. From this, we learned that the orientation of the globular 
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protein has little impact on the exact geometry of the created PPI, and our approach to shape 

quantification needed to be more localized to the exact interface. From this we defined the interface 

geometric centroid (IGC) plane-fitting method. Each side of the PPI is summarized using the 

geometric centroid of all Cα atoms for the protein-protein contact residues (which could also be 

deemed the center of mass, since they are all carbon atoms). The vector between these two 

centroids is deemed the normal vector, and the mean point between the two centroids is considered 

the center of the interface. As an example, we observe the fit of the IGC plane for 2WP3 in Figure 

5-5, this is the same protein example used in Figure 5-4. The better representation of the IGC plane 

is immediately revealed, with a pRMS of 2.34 Å vs the BFP pRMS of 6.26 Å. 

 

Figure 5-5. IGC plane fit to 2WP3, a planar interface with a pRMS of 2.34 Å. 

 

The planarity pRMS was initially presented with the expectation that proteins exhibiting 

>6 Å of pRMS were expected to not be planar interfaces.43 This expectation was to represent the 

point where non-planar interfaces would result in sets of points that would yield a plane which did 

not adequately represent the proteins at all. However, the median PRINCIP BFP pRMS for the 

PDBbind dataset is 8.01 Å, indicating that most of the entire dataset is far from planar, which 

cannot be true. Conversely the median IGC plane pRMS is only 4.25 Å, with 263 of the 347 PPIs 

displaying pRMS < 6 Å for this method. Figure 5-6 presents the distribution of pRMS values for 

the IGC planes and the BFPs calculated with PRINCIP. Importantly, the pRMS of the PRINCIP 

calculated BFPs are similar to those calculated by our in-house BFP script (data not shown), which 
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also yielded many planes that bisected entire complexes. For these reasons, only the IGC planes 

will be utilized from this point forward. The distribution pRMS values for the weak transient, 

strong transient, and permanent subsets of the PDBbind dataset are nearly indistinguishable, so 

they are provided as one set in Figure 5-4.  

 

Figure 5-6. Distribution of pRMS values for IGC planes and PRINCIP best-fit planes for the 347 

proteins in the PDBbind set. IGC median = 4.25 Å, PRINCIP BFP median = 8.01 Å, distribution binned 

via left endpoint (i.e. pRMS of 2 displays 2.0-2.99) 

 

In order to learn about the interface landscape of the P-L structures in the 2P2I dataset, 

aligning of the structures was necessary. As these structures do not have both subunits of the PPI, 

planes cannot be calculated for them. Instead, the ligand-bound subunits were aligned to the 

appropriate partner in the corresponding complex structure of the P-P 2P2I set using HwRMSD194 

for the best alignment. The pRMS values of the IGC planes for both the P-P and P-L 2P2I sets are 

provided in Figure 5-7. The pRMS values of the P-L structures are slightly inflated, which is to be 

expected because they only represent one side of the total interface that the planes are calculated 

from. Even so, 94% of their pRMS values are < 6.0 Å which indicates that the alignment worked 
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appropriately and no extreme conformational changes are observed in the interfaces of the ligand-

bound structures.  

 

Figure 5-7. Distribution of pRMS values for IGC planes for both subsets of the 2P2I dataset. 

 

 Local Structure and Clustering 

To discern information related to the topography of the interface residues, the displacement 

of the interface atoms was calculated using the normal vector from IGC plane (see methods, section 

5.3.5). These are the same distances that were used for calculation of the planarity pRMS. The 

atoms for each subunit of the interface are then separated into two groups: protrusions and hollows 

referring to those points which protrude past the plane and those that reside ‘under’ the plane with 

the bulk of their protein chain, respectively. To reiterate, each interface now has four sets of data, 

for example: chain A protrusions (which reside more towards chain B, on the opposite side of the 

plane), chain A hollows (residing on chain A’s side of the plane), as well as the converse groups 

of chain B protrusions, and chain B hollows. 



 

113 

 

Earlier work employed the use of ‘segmentation’, or binning the interface residues into 

groups based on the residue number (resn) in the protein sequence. As a pseudo clustering method, 

the Δresn served as a Euclidean distance, where residues were required to be within Δresn < 6 of 

any residue present in a segment to be added to that segment. While this approach was functional 

in practice, it is not always relevant. For instance, in a case where part of an interface consists of 

two adjacent beta sheets, residues that are directly interacting with each other could be sorted into 

separate segments purely because of their distance from each other in the sequence. Many details 

of the interfaces in past studies were undoubtedly missed by that segmentation clustering. To 

improve upon this, a modernized clustering approach was taken. Two crucial details were noted 

for success of the chosen clustering algorithm: the number of clusters and the shape of the clusters 

in the interface were not known. A DBSCAN clustering algorithm appealed as the best approach. 

The aim of clustering was to characterize the individual protrusions and hollows that made 

up the interface. However, because we only had the contacting atoms of the residues, and not the 

entirety of the residues, mathematical compensation for the arbitrary distances between the atoms 

was necessary. The four groups of interface atoms were projected onto the plane, again utilizing 

the normal vector (section 5.3.6 of methods). Since the distances of the atoms from the interface 

were already known, that information was preserved elsewhere, even with the two-dimensionally 

flattened data. With the relevant interface atoms compressed into 2D space, they were clustered 

using a DBSCAN algorithm implemented in R114: requiring a minimum of 3 neighbors (ε) and 

using a Euclidean distance of 3.0 Å (section 5.3.6 of methods).  

5.4.4.1 Physical Characteristics of Clusters 

The four sets of grouped atoms logically form two sets of complementary features: one 

subunit’s protrusions should seat into the adjacent subunit’s hollows and vice versa. This variety 

of analysis is best suited for the 2P2I dataset, where the druggable subunit is known. The hollows 

found in the druggable subunit represent pockets where small molecules have potential to bind. 

Nonetheless, this analysis was applied to the PDBbind dataset in attempt to discern any possible 

differences in the behavior for the more strongly complexed subunits. 

In the pursuit of determining whether PPIs are truly “flat and featureless” 41, 44-46, we begin 

with the former half of “Are they flat?”. The physical characteristics of the interfaces and clusters 

will be assessed using the number of clusters, depth of those clusters (Dmax), and the shape of those 
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clusters. We define the shape of the clusters via a shape index (SI), where 𝑆𝐼 =  
𝐷𝑚𝑎𝑥

𝐷𝑅𝑀𝑆
, where Dmax 

is the maximum depth of any single atom that resides in that cluster and DRMS is the root-mean-

square depth of all atoms belonging to that cluster. As the SI approaches 1, the cluster shape 

becomes “dull” in that the maximum depth of the cluster is very close to all of the other depths in 

the cluster, resulting in a shape like a wide mesa. As the SI increases, the cluster’s shape resembles 

more of a pointed object, such as a typical stalactite or icicle. Table 5-1 presents the medians for 

number of clusters, Dmax, and SI for protrusions and hollows in all data subsets. 

 

Table 5-1. Physical characteristics of the interface clusters for all data subsets.  

Reported errors are standard deviation. 
 Median # 

Protrusion 

Clusters 

Median 

# Hollow 

Clusters 

Median 

Protrusion 

Dmax 

Median 

Hollow 

Dmax 

Median 

Protrusion 

SI 

Median 

Hollow 

SI 

2P2I P-P 

Druggable 
2 ± 1.5  2.5 ± 1.8 5.4 ± 2.9 Å 5.7 ± 2.6 Å 1.53 ± 0.27 1.56 ± 0.31 

2P2I P-P 

Complementary 
1 ± 0.9 2 ± 0.9 4.1 ± 2.3 Å 7.6 ± 3.4 Å 1.61 ± 0.24 1.49 ± 0.27 

2P2I P-L 3 ± 1.1 2 ± 1.7 5.7 ± 2.9 Å 5.3 ± 3.0 Å 1.46 ± 0.30 1.58 ±0.28 

PDBbind 

Permanent 

5 ± 2.1 8 ± 3.6 4.3 ± 3.7 Å 6.6 ± 3.8 Å 1.52 ± 0.27 1.46 ± 0.34 

PDBbind 

Strong Transient 
6 ± 2.9 9 ± 3.4 4.1 ± 4.6 Å 5.8 ± 4.5 Å 1.51 ± 0.28 1.47 ± 0.31 

PDBbind 

Weak Transient 

5 ± 2.0 8 ± 3.0 3.8 ± 3.5 Å 5.2 ± 3.8 Å 1.53 ± 0.27 1.47 ± 0.31 

Bolded table values indicate values which are explicitly discussed in the text. 

 The abundance of protein-peptide complexes and protein-protein complexes with very 

small contact areas in the 2P2I set becomes immediately apparent, as represented by the smaller 

number of clusters in the different 2P2I sets. That aside, the characteristics of their protrusions and 

hollows are very similar to those of the PDBbind sets. The most crucial details are the median 

protrusion SI for the complementary chains in the P-P 2P2I set coupled with the median hollow SI 

for the druggable chains in the P-P 2P2I set, as well as the median hollow SI for the 2P2I P-L 

structures. These measurements suggest that the hollows in the “druggable” subunit of the PPIs 

are shaped more sharply than other hollows found in the interfaces. These druggable hollows are 

not necessarily any deeper than the hollows in the rest of the interface, but a sharper shape would 

allow bound ligands to be less solvent exposed.  

The measured parameters for the three affinity-based PDBbind subsets are extremely 

similar. All three affinity-types of the PDBbind set have more hollows than protrusions, and 

hollows that are deeper than their protrusions reach. Perhaps these extra hollows are filled by very 
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small protrusions of residues. Our clustering approach required 3 nearby neighbors for clusters to 

be kept, which results in 97% of the structures having at least one un-clustered data point in their 

hollows and 95% of the structures having at least one un-clustered data point in their protrusions. 

Another metric of flatness could be described as the total deviation of the interface surface 

about the plane, akin to an ‘elevation’ change relative to the plane. This change in elevation could 

be measured as: |𝐷𝑚𝑎𝑥
𝑃𝑟𝑜𝑡𝑟𝑢𝑠𝑖𝑜𝑛| + |𝐷𝑚𝑎𝑥

𝐻𝑜𝑙𝑙𝑜𝑤|.  As a conservative estimate, the lowest Dmax observed 

in the protrusions of any group is ~3.8 Å (weak transient PDBbind set), and the lowest Dmax 

observed in the hollows of any group is ~5.2 Å (weak transient PDBbind set). These values would 

yield a net 9 Å of maximal elevation change relative to the plane across the interfaces of those 

proteins. While this metric does not describe the gradient of elevation change across the protein 

surface or account for the relative size of the interfaces, we can safely conclude that these interfaces 

are surely not flat.  

 

5.4.4.2 Chemical Characteristics of Clusters 

The assessment of these PPI targets continues with investigating chemical features present 

in these protrusions and hollows. The most characteristic residue of a protrusion or hollow is likely 

the deepest residue which is contacted by the opposing subunit. These residues were represented 

as the deepest atom in the cluster from which the cluster depth (Dmax) was calculated. Here, the 

residue composition of the interfaces are presented once more, but only for the representative 

residue of each cluster. For clarity, these representative residues are those from which the largest 

depth (Dmax) was calculated from the plane, either past the plane towards the adjacent subunit 

(protrusions) or ‘behind’ the plane towards the subunit to which the residue belongs (hollow). The 

distributions of representative protrusion and hollow residues for the druggable and 

complementary chains of the P-P 2P2I dataset are presented by chemical type in Figure 5-8. The 

order that the data is presented in Figure 5-8 has significance, as it portrays the nature of the data 

groups in the actual PPI, i.e. the druggable protrusions fit into the complementary hollows. The 

complete distribution by individual amino acid types for the P-P 2P2I set can be found in Appendix 

B. 
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Figure 5-8. Distributions of PPI contact residues representing the protrusions and hollows for the 16 

PPI complexes of the P-P 2P2I set by chemical type. Representative cluster residues belonging to the 

druggable chain protrusions, complementary chain hollows, complementary chain protrusions, and 

druggable chain hollows. 

 

It is immediately evident that the druggable chains primarily contribute protrusions of polar 

charged nature with complementary chains reciprocating that overwhelmingly polar charged 

nature in their hollows. Conversely, the complementary chains contribute primarily nonpolar 

aliphatic, as well as aromatic protrusions which are complemented by similar hollows in the 

druggable chain. These interaction types follow a logical cascade of events for PPI complex 

formation. The hydrophobic collapse of the specifically nonpolar and aromatic protrusions and 

hollows function to bring the polar charged protrusions and hollows into close proximity so that 

salt bridges may be formed, locking the interface in its complexed state. However, upon small 

molecule binding to one of these generally nonpolar pockets, either aliphatic or aromatic in nature, 

closing the gap of hydrophobic collapse becomes too difficult. The result of this small-molecule 

block prevents the appropriate polar charged moieties of the two subunits to ever reach close 

enough proximity to solidify the interface. Thus, the formation of the interface is inhibited. The 

role of this chemical complementarity between the two subunits cannot be coincidental.  

Figure 5-9 presents the distributions of representative cluster residues for the protrusions 

and hollows of the 204 ligand-bound P-L structures of the 2P2I set, alongside the druggable chains 

of the corresponding P-P structures. These two sets of data represent the same functional subunit 
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of the PPI and their chemical characteristics should be similar, so they are presented as a pair. The 

representative cluster residues for the ligand-bound structures are important, as any differences 

when compared to the druggable chains from the complexed P-P structure could indicate 

conformational changes due to ligand binding. 

The protrusions of the ligand-bound subunits show an extreme abundance of charged polar 

residues, while their hollows are comprised primarily of aliphatic nonpolar and aromatic residues. 

Their distribution of residue types mimics that of the druggable chains in the complexed PPIs 

which they represent, with the ligand-bound distribution being even further skewed. It is possible 

that the protrusions of the ligand-bound conformations display an increased representation of 

charged polar residues because those protrusions are solvent exposed in the ligand-bound 

structures. Similarly, when compared to the druggable chains of their complexed counterparts, the 

hollows of the ligand-bound structures show a slight increase in uncharged polar residues. This 

could represent small conformational changes by the subunit in attempt to hide its hydrophobic 

core residues from the interface surface, which is now mostly solvent exposed due to inhibition of 

complex formation. 

 

 

Figure 5-9. Distributions of PPI contact residues representing the protrusions and hollows for the 

ligand-bound PPI complexes of the P-L 2P2I set and the druggable chains of the P-P 2P2I set. 

Representative cluster residues belonging to the ligand-bound chain protrusions and hollows, presented 

alongside the protrusions and hollows of the druggable chains of their complexed PPI counterparts.  
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Finally, Figure 5-10 presents the distribution of the representative residues for the 

protrusions and hollows of the permanent, strong transient, and weak transient complexes of the 

PDBbind set, separated by chemical type. While the permanent complexes show a slight bias 

towards more aromatic residues, in both their protrusions and hollows, all groups of PDBbind 

structures show very similar distributions of side-chain functionalities. 

 



 

119 

 

Figure 5-10. Distributions of PPI contact residues representing the protrusions and hollows for the 

complexes of the PDBbind set, by chemical type. Contact residues belonging to the: permanent, strong 

transient, and weak transient subsets of complexes separated by their A) protrusions and B) hollows. 

 

 Relationships to Other Metrics 

The primary purpose of seeking a less druggable set of data with the added element of 

binding affinity for the complex formation was to assess whether any relationships exist between 

these affinities and other physical parameters of the interfaces. However, attempting to draw 

correlations between binding affinity and interface size (# res), ratio of interface sizes (larger chain 

# res/smaller chain # res), pRMS, number of clusters, cluster depth, and cluster shape index all 

resulted in R2 values < 0.1.  

Nooren & Thornton concluded that the ΔGbinding between protomers was not related to the 

size, planarity, or polarity of the interfaces that they investigated.40 Finding that we could not 

distinguish between the affinity-based subsets of less druggable complexes using our cluster shape 

and depth parameters, or the chemical makeup of those clusters is therefore disappointing, but not 

unexpected. 

5.5 Conclusion 

We investigated the physical shape and chemical makeup of the protrusions and hollows 

found in the interfaces of the druggable PPIs represented by the 2P2I dataset, as well as the 

theoretically less druggable targets of the PDBbind set. We have established a new protocol for 

generating planes to represent the PPI interfaces, the interface geometric centroid (IGC) method. 

This new method displayed better planarity scores than the best-fit plane (BFP) method used in 

the past when compared both to our in-house implementation of the BFP method and to BFPs 

calculated by the PRINCIP program within SURFNET124. Not only did the IGC plane method 

show quantitative improvements, but it also circumvented a large issue with the BFP method in 

the form of complex bisection. The best-fit plane was often oriented such that it completely 

bisected the globular protein subunits rather than the interface between the subunits.   

The PPIs represented by the 2P2I set are largely of protein-peptide nature, which is evident 

throughout the analysis of the clusters. The 2P2I sets had fewer protrusions and hollows than the 

proteins in the PDBbind set. Druggable PPIs consisting of smaller interaction interfaces is not 
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coincidental, but likely a representation of the limitations in inhibiting the massively coordinated 

complexes of PPIs with small molecules.  

The respectively polar and nonpolar nature of the clustered protrusions and hollows 

observed in the PPI structures illuminates some necessary features of druggable interfaces. Those 

interfaces in which one subunit primarily contributes polar interactions and the other subunit 

primarily contributes nonpolar interactions may be a template for the discovery of druggable PPIs 

in the future. At the least, the hollows of the druggable subunit consisting primarily of nonpolar 

aliphatic and aromatic residues is significant. The sharply-shaped nature of the hollows in the 

druggable subunits, which would allow for bound ligands to better bury themselves from bulk 

solvent, also reiterates that buried surface area and ligand efficiency are important.  

The binding affinity describing the complexation of the subunits forming a PPI had very 

few apparent relationships with any of the characteristics we measured, confirming the findings of 

earlier work43, 47. Pointedly, the tighter binding complexes had slightly deeper hollows and farther-

reaching protrusions than the weaker complexes. Perhaps this hints at subunits with higher affinity 

being more interdigitated with one another. If this were true, these complexes would likely form 

soon after synthesis and be extraordinarily difficult to dissociate, much like homomeric complexes. 

We then return to the starting quandary of “Are PPIs truly flat and featureless?”. On the 

debate of flatness, there was no correlation between the number of protrusions or hollows and the 

pRMS of the interface (the planarity or flatness). This suggests that even our most planar interfaces 

showed similar numbers of protrusions and hollows to the more complicated interfaces. 

Furthermore, we showed that even the most “flat” interfaces in terms of deviation about the plane 

had a median of 9 Å of change in ‘elevation’ relative to the plane. While this value does not 

describe the gradient at which the surface changes elevation, or account for the size of the total 

interface surface, it demonstrates that these surfaces are not flat. 

The presence of many hollows offers an abundance of small pockets for which ligands 

could be designed, but many of the hollows are likely incapable of modulating the entire PPI. With 

the organized nature of the chemical contributions of the protrusions and hollows in the druggable 

PPIs studied here, it seems that the mission may not be to find the right pocket, but perhaps the 

correctly ordered PPI. 
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Chapter 6. Conclusions and Future Directions 

 

6.1 Significant contributions of this thesis 

The introduction of this thesis (Chapter 1) provided a brief overview of relevant 

physicochemical properties and concepts which are referenced and utilized throughout the rest of 

the work. The properties of solvation events, Van der Waals interactions, and electrostatic 

interactions are heavily discussed. These properties are the foundation to understanding 

biochemical binding events and describing specific interactions of binding events in proteins.  The 

details of small molecule binding are then contrasted to protein-protein binding events, and some 

relevant concepts for protein-protein interactions are presented. This chapter concludes with 

briefly introducing some crucial databases which are used in the experimental work of later 

chapters. 

 

Chapter 2 thoroughly introduces Binding MOAD3, a collection of high-quality, hand-

curated ligand-bound crystal structures maintained by the Carlson lab. We currently have 25,759 

protein-ligand complexes which represent 7599 families of proteins (when binned by 90% 

sequence identity) and 12,432 unique ligands. For these ligands, we have 9138 binding data, which 

covers 35.5% of the complexes in our dataset. My primary contribution to the latest developments 

in Binding MOAD is that of the data pipeline used to create the unified binding sites. Numerous 

formatting and protein numbering issues had to be rectified in order for assembly of these unified 

binding sites to be possible. As such, the inclusion of family binding site residues into the protein 

viewing tools available to our users are one of the newest features. We expect to complete a very 

large dataset update, for all new PDB structures deposited between 2015-2017, by the end of this 

year (2018).  

 

Chapter 1 presents a robust study of protein flexibility upon ligand binding. The work 

begins with curation of a large dataset of ligand-bound (holo) and ligand-free (apo) structures for 
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which each unique protein sequence has at least two structures of each type. This dataset is the 

largest of its kind and is utilized in the experimental work of both Chapter 1 and Chapter 4. Instead 

of defining the binding site on a by-structure basis where each holo structure has its own binding 

site definition, we utilized unified binding sites. The unified binding site for each protein target 

represents the union of all protein residues which contact any ligand across all of the bound 

structures representing that target. This robust definition helps us achieve information about the 

extended areas of the binding site, which is especially important in larger targets. 

We find that the inherent backbone flexibility across the apo structures is roughly the same 

as the variation across holo structures. The induced backbone flexibility across apo-holo pairs is 

larger than that of the apo or holo states individually, but the increase in RMSD is less than 0.5 Å. 

Analysis of χ1 angles revealed a distinctly different pattern with significant influences seen for 

ligand binding on side-chain conformations in the binding site. Within the apo and holo states 

themselves, the variation of the χ1 angles is the same. However, the data combining both apo and 

holo states show significant displacements. Upon ligand binding, χ1 angles are pushed to new 

orientations outside the range seen in the apo states. The side-chain flexibility of each amino acid 

was relatively quantified in this study. Rather than rotamer libraries, actual flexibility profiles for 

use in flexible side-chain docking of small molecules could be derived from these results. Finally, 

correlations between binding site variation and features such as ligand size and X-ray structure 

resolution were probed, but no such relationships were found. Combining all of the flexibility-

related details, we find that binding site flexibility is compatible with the common practice in 

flexible docking, where backbones are kept rigid and side chains are allowed some degree of 

flexibility. 

 

Chapter 4 presents a benchmarking exercise of six binding-site prediction methods, where 

we investigate their relative performance on apo structures and holo structures.  This work uses a 

culled down version of the dataset from Chapter 1. Most binding-site prediction benchmarks only 

utilize holo structures, because it is commonly believed that the methods are more successful with 

them. Our testing of Surfnet, Ghecom, Ligsitecsc, Fpocket, Depth, and AutoSite revealed that there 

were no functional differences between the performance of apo and holo structures in all methods 

except for Fpocket. Even in Fpocket’s case, the preference for holo structures was only minute. 

Furthermore, for almost every protein and every method tested, there was at least one of each type 
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of structure where the method failed to predict any part of the correct binding site. We used the 

unified binding sites as our definitions in this work, which is gratuitous towards having methods 

not completely fail, as there are even more possible “correct” answers in the binding site.  

At this point, the focus of the study shifted towards attempting to qualitatively assess why 

so many structures were failing, and where they were failing. We determined that there was no 

correlation between indicators of X-ray structure quality, such as resolution or Cruickshank DPI 

which is calculated from a number of structure factors, and the performance of the structures in 

any of the six methods. Furthermore, there was no correlation between the performance of any pair 

of the six binding-site prediction methods on specific structures. We expected much higher 

consistency across varying protein structures of the same sequence. These results have huge 

implications for the benchmarking of binding-site prediction methods for the entire community, 

as these methods appeared to succeed and fail on high-quality structures of the same protein 

sequence in both ligand-bound and ligand-free cases. We have demonstrated that there are very 

few methods which appear to show preference for apo vs holo protein structures. In order to extend 

this idea to other computational methodology, more high-quality datasets need to be made 

available to the community which have proper representation of apo structures. 

 

Chapter 5 presents an investigation of the topographic nature of protein-protein interactions 

(PPIs). The physical and chemical properties of these valuable but elusive targets are assessed on 

a geometric level, to characterize the shape of the interfaces as well as the locations of important 

functionalities in attempt to decipher what makes PPIs so difficult to modulate. We aimed to 

address the classical sentiment of PPIs being “flat and featureless.”  

Investigating the druggable interfaces of 16 proteins gave light to two major points. First, 

these druggable interfaces contain structural hollows which are more sharply shaped than those of 

the less druggable targets in the contrasting dataset. Second, the amino acid composition of the 

protrusions and hollows of the druggable chain were markedly different than the rest of the 

subunits we investigated. These druggable targets specifically had hydrophobic and aromatic 

hollows, while having abundantly charged polar protrusions. Their partner subunits for the total 

PPI had the opposite characteristics. With such a high population of charged polar residues, it is 

likely that most of the free energy of binding for the two subunits is stored within their inevitably 

formed salt bridges. From this we derived a logical binding model. During the standardized 
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hydrophobic collapse necessary to form a PPI, the presence of a bound small molecule in one of 

these sharply shaped hollows of the druggable subunit would prevent the sharply shaped, 

complementary protrusion that is supposed to seat there. Due to this, the chains would not be able 

to reach close enough proximity for the necessary salt bridges to form with the charged polar 

protrusions and their complementary hollows.  

With the measured physical parameters of the interface, we quantified a relative ‘elevation’ 

change of the interface surface relative to the mathematical plane we fit and used for the analysis 

of each protein. In the ‘flattest’ group of proteins, the weak transient subset of the PDBbind set, 

the median elevation change of a single subunit is on the order of 9 Å. While that distance is my 

no means grandiose for the context of an entire subunit, on the scale of druggable small molecules 

it is far from flat.  

 Our less druggable PPI set was chosen because all of the targets were annotated with 

dissociation constants describing the complexation of the protein subunits. We attempted to draw 

correlations between these dissociation constants and any of the physical characteristics we 

measured. Unfortunately, no correlations were found. We agree with previously accomplished 

work that any relationships between the free energy of binding between two protein subunits and 

measurable physical parameters of the PPI seem to be elusive.  

We concluded with a few parting notes. If druggable interfaces need to have overly biased 

distributions of polar and nonpolar characteristics for their protrusions and hollows, with a 

complementary chain showing the opposite bias of chemical complementarity, druggable 

interfaces are likely to be rare.  Perhaps pursuit of small-molecule modulation of PPIs is not a 

pursuit of finding the right molecules, but rather the right interface.  

 

6.2 Future Directions 

Structural information of protein targets is invaluable as a tool for the scientific community. 

Many characteristics of proteins have been better understood due to our ability to mathematically 

quantify and probe various features of protein structure. However, many details are still likely 

unknown to us. The information we obtained about both inherent protein flexibility and that which 

is induced by ligand binding is crucial, but only the first step. Unfortunately, biophysical 

experiments are subject to is the presence of bias in the datasets used, as well as assumptions 
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necessary to either perform calculations or form a sizable dataset to begin with. Future studies of 

protein flexibility could be improved in two major ways.  

First, instead of simply assessing by amino acid type, the study could be based on the 

footprints of X-Y-Z tripeptide sequences, where Y is the residue being studied in the sequence. A 

study accomplished this way could draw parallels between the classical Ramachandran φ and ψ 

angles with the χ1 angles we studied. Changes in side-chain behavior could be linked to presence 

of neighboring residues in sequence, as well. There undoubtedly exist strange side-chain 

conformations that are a product of the neighboring residue in sequence being an Arg or Lys which 

is stretching to form a salt bridge with another part of the protein sequence. Events like this which 

provide such large amount of energetic potential can surely influence other parts of the protein 

sequence. Without studying residues with the neighboring sequence in context, this information is 

lost. 

The second idea for improving the results of this experiment come from an even more 

diverse dataset. What could be learned about the biases of the methodology used for structural 

characterization if we had at least two ligand-bound and two ligand-free structures that were X-

ray structures, and another full set that were NMR structures for each protein? Related to this, even 

within one method, what bias does the space group of the crystal structure impose on the 

conformation of the proteins we study? A consequence of using previously established methods to 

grow new protein crystals of a previously studied protein is that most of the resulting structures 

have the same space group. Scientists are taught very early to never ‘reinvent the wheel,’ but are 

there consequences for never doing so? In the case of structural biology, I believe there may be.  

Similarly, the effects of space group could be tested on the success of binding-site 

prediction algorithms. The results we observed for the seemingly random nature of some structures 

working and some structures failing, regardless of their ligand bound state, is likely a case of bias 

introduced by training the methods on given data. The impact of space group and other 

crystallographic factors are not always heavily discussed but they are important in these prediction-

based contexts. 
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Appendices 

Appendix A. Supplemental Information for Protein Flexibility 

 

Table A-1. Index of Protein Flexibility Dataset 

Family Type comma separated list of PDBids 

1 apo

 1aki,4owc,1ljh,1ps5,1uig,2f30,1jit,2hu1,4h90,3agg,4etb,4h9e,2xbs,5lym,1rcm,2cgi,4b4j,

3kam,4et9,4uwn,4ngi,1lz9,3wum,1f0w,2cds,3ijv,2ybn,3a92,4hv1,2lym,1lsf,4uwu,3n9a,4lfp,2x0

a,4e3u,1lzt,1lsa,4lyz,3a90,2ybm,8lyz,4b4i,4b0d,6lyz,4lzt,3a94,1yl0,1z55,1lz8,2w1x,1jj1,2bly,4h

92,1n4f,4eta,4ngy,1jis,1uco,5lyt,2d4j,4h9f,4dd0,1ykx,2aub,3a95,4h9c,3p66,2a7f,4b49,1rfp,1ljf,2

epe,4neb,1hsx,1lje,4owe,4lyo,1vat,4p2e,3lyt,1vdt,4nwh,3iju,1f10,4ny5,4dt3,4htq,4j1a,1qtk,3lyz,

2hu3,3az6,4ngv,1yky,2ybl,2ybj,1hsw,1h87,3n9c,1hf4,4h8y,4d9z,1jpo,2g4q,3az5,2ybi,6lyt,1xek,

1lcn,4ngk,2w1l,3p65,2yvb,2lyz,4etc,3wua,1ykz,3p4z,4dd2,1vdp,2d6b,1iee,4lfx,1jj3,3wxu,1lsc,4

oot,2fbb,1azf,4lyt,4ng8,4ngj,1vau,3wul,4ngw,4htk,3ru5,2w1m,4a7d,4b1a,4ete,1wtm,1gwd,2ybh,

1lsb,4i8s,3wmk,3zek,3a93,193l,2xjw,1bwh,3lzt,3p64,4h8z,2blx,3wpj,1hc0,3wu7,1ljk,2w1y,1hel

,3rt5,4h9i,1v7s,4o34,1lyo,2c8p,3az4,1bwi,2a7d,1bvx,2d4k,2lzt,3wxt,1lys,2vb1,3txb,1jiy,1w6z,3

p68,1ljg,3wl2,1qio,2bpu,4eof,2z12,1dpw,4n5r,2f4a,3m3u,4tws,194l,3agh,4h9b,5lyz,2f2n,1lse,1l

ks,3rnx,3a8z,2htx,2c8o,1wtn,4lgk,1ljj,4qeq,3lyo,4uwv,3wu8,4h8x,3wpk,4ow9,1lj4,4h9a,4nfv,2g

4p,1dpx,3a96,1v7t,4axt,4ng1,3rz4,2zq4,4ngl,1xej,3txd,1b2k,1bgi,2z19,7lyz,2d4i,1vdq,3az7,1lza,

4b4e,1lkr,1xei,1lyz,4etd,4ngo,3aw7,3exd,3wu9,3wpl,2zq3,1lji,2lyo,1ved,2d91,4htn,1lsd,4h94,3n

9e,1lj3,4h9h,4h1p,4ngz,4iat,2xbr,4h91,1vds,3atn,1c10,4bs7,1lma,4h93,3lym,4hv2,1bwj,3a91,3r

w8,4et8,4nhi,1lpi,4j1b,3aw6,4lym,4qy9 

1 holo 4hp0,1hew,3qe8,1lzb,4tun,1t3p,1lzc,4hpi,3txj,3qng,1b0d,1uih 
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2 apo

 1ca3,1xev,1tbt,1te3,1tb0,3d93,3koi,1teq,1hca,2vvb,3kok,2vva,3ks3,4ca2,3kon,3mwo,1xe

g,2ax2,3d92,3m1j,1t9n,1teu,3kwa,2ili,1f2w,1rzd,1rzb,3gz0,2ca2,1rza,4cac,1cay,1cah,1rze,5cac,

1raz,1bv3,1rzc,1ca2,1ray,3tmj 

2 holo

 3k34,4ht0,3m5e,3p5a,3mhc,3m96,2q1q,3m2n,3oys,3s8x,3k7k,3bl1,3mho,4n16,3k2f,3my

q,4q6d,1eou,3efi,3n0n,2o4z,3t84,4knj,3n4b,4mlt,3hkn,2geh,3m3x,3b4f,4e3g,4r5b,3n3j,3caj,3ni5

,3sbh,3d9z,3d8w,3m67,2fmg,3mhm,2pow,4e4a,2q1b,1cnx,2h15,3t82,1kwr,3p58,3bl0,3sax,3mhl

,3p5l,2pou,3nb5,3dd8,1cny,3mmf,3sap,4q6e,3ffp,3oy0,2ez7,3mzc,3c7p,3daz,2hkk,3f8e,3dd0,3m

l2,2eu3,3eft,4mlx,2fmz,3f4x,4mo8,3n2p,3m40,3sbi,2eu2,4cq0,3mna,1cnw,4lp6,3s9t,3p4v,3oyq,

3t85,4e3h,4kni,1if8,3vbd,2aw1,1bnv,3ca2,3ryz,2weo,3v7x,3ibu,1bnt,2wej,1bn4,2x7t,3t5z,3ibl,1i

f6,2wd2,1okm,3rz5,1cim,1bnq,1g1d,4qy3,1g52,2weh,1ttm,1avn,1lug,1ze8,1bnn,1xq0,3bet,3ryx,

1if9,1oq5,2hl4,2osm,1g53,1bcd,3rz7,2weg,3rz0,2x7u,2hd6,2qo8,1i91,1bn1,1am6,1okl,1if7,1g54

,4bf6,1if4,1bnw,2qp6,3rz8,1cin,1bnu,1okn,4bf1,1bn3,3mnu,2abe,3rz1,2hnc,3ibi,1if5,3ibn,1i90,1

i8z,2f14,1cil,3ryj,4mdl,1xpz,4mdm,4mdg,4itp,4m2u,4kv0,3r17,4m2r,4ilx,4iwz,3r16 

3 apo 3pxr,1pw2,1hcl 

3 holo

 3pxy,3py0,4ez3,1h0v,1jsv,2vtp,1jvp,1fvt,4kd1,3le6,2vti,3lfs,1pxi,4lyn,1ykr,1pxn,2vts,1p

2a,2bhe,3unk,2vtq,2c68,3tiz,2c6o,2vtj,1w0x,2xmy,2uzo,1ke7,1dm2,1di8,1ke8,2c6i,1pxp,2uzn,2

b55,3lfq,2w05,2xnb,1hck,3lfn,2a4l,1y8y,1pxj,2vto,2btr,2vta,3uli,2vth,1ke5,3fz1,1wcc,1pxo,3ti1,

2c69,2vtm,2bts,1ckp,1ke6,2c6k,3ns9,2exm,4bgh,2r64,2c6l,2vtt,2vu3,2b54,2vtr,3unj,2a0c,3tiy,1

vyz,3wbl,2vtn,1aq1,2c6m,2b52,1pxl,3s2p,1r78,2fvd,2vtl,1ke9,1pye,2b53,2duv,2c5y,2v0d,2w1h,

1y91 

4 apo 2a7h,1c5v,1c1o,2g55,1jrs,1tpo,1s0q,1c2m,2agi,1jrt,1tld,1c2l,2ptn 

4 holo

 1y3y,1o2i,1gi6,1o3d,1o39,1ql7,1c2i,1c2e,1yp9,1y3x,1oyq,1xug,1c5s,1xuh,2g8t,1xuk,1k

1n,1c1t,2fx6,1mtw,1qa0,1o3e,1az8,1y3w,1qb6,1o3n,1c2k,1o3j,2bza,1c5p,1k1m,1mts,1o30,2agg

,1s0r,1c5q,1ghz,1c5u,1n6x,1o2v,1gi4,1k1p,1o3g,2tio,1c2d,1c1r,1c2h,1o36,1o3l,1bju,1xuj,1tx7,1

mtu,1o32,1o2q,1k1j,1c1s,1qbo,1k1o,1mtv,1g36,1o2l,1tx8,1gi1,1o3h,1o35,1ppc,1o2s,1o3m,1o2x

,1o38,1bjv,1c1p,1c2j,1c2f,1o3i,1y3v,2blv,1o2p,1k1i,1gj6,1o2y,1o31,1xui,1c5t,1eb2,1o2k,1gi0,1
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tps,1n6y,1o34,1pph,2g5n,1o2u,1o2r,1o2h,1qb9,2blw,1o3b,1o2z,1k1l,1o2o,1c1q,1c2g,1o37,1o3f,

1o2n,1o3o,1ce5,1o2j,1aq7,1o3k,2g5v,1j8a,1qb1,1o2w,1xuf,1qbn,1o33,1c1n 

5 apo

 3dh5,4rat,1jvt,2g4w,2e3w,4j5z,2rat,1kf5,6rat,1rbb,4ao1,1rnu,1kf2,3euz,7rat,1kf8,3ev0,2r

ns,4j67,3i6f,4j64,1rnv,1jvv,3eux,5rat,1rph,3i7w,3ev1,4j65,3rn3,1fs3,8rat,4j68,4j62,1xps,1aqp,1r

nw,3euy,1rbw,3rat,1bel,2g8q,3i6j,1js0,1rat,1rny,5rsa,4j6a,1rnx,3i67,2w5m,1rha,1rta,4mxf,9rat,4

j63,1rnq,1rbx,2g4x,4l55,4j60,1rnz,1a2w,1rno,1kf3,4j61,1rtb,2blz,1xpt,1kf7,3i6h,4ot4,1afu,2blp,

4j66,1rhb,3ev2,1kf4,7rsa 

5 holo

 1o0h,1jvu,3d7b,3d6q,3jw1,2w5i,3d8y,3d6o,3lxo,1o0o,1rpf,3d6p,4g8v,1rnc,1rob,1w4q,1

o0f,1rnd,1rcn,1rnm,2w5k,1u1b,1qhc,1o0m,1eos,1w4o,1rnn,2xog,1w4p,3ev3,1rpg,1wbu,4g8y,1j

n4,1o0n,1afk,2xoi,1eow,1f0v,2w5l,1z6s,4g90,2w5g,3d8z 

6 apo

 3msf,3ms3,3fxs,3fb0,4ow3,3fbo,3n21,4d91,4tnl,3p7s,2tli,5tli,4tli,7tli,3p7u,3p7v,3t2j,1fjo

,6tli,1fjq,1fju,1fj3,1l3f,3t2i,2a7g,3eim,3p7p,1tli,3p7t,3p7q,8tli,3p7r,3p7w,3tli,2g4z,1fjv 

6 holo

 4mxj,1y3g,1kkk,1kr6,4n4e,3nn7,3msn,4mwp,1kro,1kjp,1kl6,4mzn,1kjo,1kto,4oi5,1ks7,4

n66,1kei,4n5p,4mtw,1lnc,2tmn,1gxw,1pe8,1lne,1hyt,1lnb,2tlx,1pe5,1lna,3zi6,4tmn,5tmn,1zdp,1

fjt,4tln,1qf0,1z9g,1qf2,1pe7,3tmn,8tln,1lnf,3f28,1qf1,1tlp,3fcq,1tlx,5tln,1tmn,3f2p,1thl,1os0,6tm

n,1lnd 

7 apo

 4eyp,1trz,4f0o,3inc,1os4,3ilg,4fka,2vk0,4f1f,4ex1,4eww,3w80,2vjz,4ewx,4fg3,3w7y,4f0

n,1g7a,4ey9,4f1g,4eyn,4ewz,4f1d,1guj,3q6e,3tt8,4exx,3ir0,3exx,1g7b,4f51,4f4t,4eyd,4f1b,4ex0,

4f1a,4f1c,4f8f,4ey1,4f4v,1mso,1os3,3w7z,3e7z,4ak0,3e7y,2c8q,2c8r,1b17,3rto,4ins,1b2b,3mth,

1b2e,1b19,2tci,1b2f,9ins,2g4m,1b2d,1b2g,1b2a,1b18,3i40,3ins,1b2c,1zni,4a7e,1m5a,3i3z 

7 holo 2omi,2oly,1ben,1znj,2omg,1tyl,1tym,2olz,2omh,4ajx,4akj,1uz9,4ajz,1mpj,1wav 

8 apo 3cbr,4mrb,2qgb,3w3b,1e3f,2g4g,1bmz,3a4d,1f41,1tta,3d7p 

8 holo

 4hju,2flm,3imu,2g5u,3cn3,3gs7,3imr,3kgu,3esp,3tct,2fbr,2f7i,4pm1,3ims,3d2t,4fi7,2qge,

3ipe,1z7j,2b15,3cn1,2b9a,1tt6,3cn2,4fi8,2qgd,3eso,3glz,2g9k,3gs4,3ipb,1tyr,4hjt,1bm7,4l1s,1u2
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1,2qgc,2b77,1e4h,3cn4,4ky2,3imv,2gab,3cn0,3gs0,4fi6,3m1o,4l1t,2rox,4i85,1e5a,3imw,1tz8,2f8

i,3imt,2roy,3esn,3b56,1y1d 

9 apo 1swa,1swb,1swc,3ry1,2rtb,2rtc,1slf,2rta,2ize,2izd,2izc,2iza 

9 holo

 2g5l,4cpf,1swe,4cpe,1swd,1mk5,2rtm,2rti,2rtj,2rtr,2rtd,2rtk,1lcz,2rtg,1sle,2rte,2rto,2rtf,2

rtp,1sld,1slg,2rtq,2rtn,2rtl,2rth,1vwq,2izl,1vwf,1vwg,1vwc,1sts,2izi,1vwn,2izf,1vwr,2izh,1vwo,1

vwk,1vwd,1vwl,1vwa,2izg,1vwh,1vwb,2izk,1vwe,1vwi,2izj,1str,1vwp,1vwj,1vwm,1srj,1srf,1srg

,1sri,1pts 

12 apo 4lyi,4ior,2oss 

12 holo

 4ioo,4hbx,4nue,4o7c,4ioq,2yel,4bw4,4o72,4ogi,4j0s,4f3i,4wiv,3p5o,4mep,4j3i,4lzs,4o71

,4cfl,4c67,4meo,4o74,4bw2,3u5j,3u5l,4o7a,4nud,4o7b,4pce,4j0r,4mr3,4o78,4ogj,4mr4,4meq,4o

77,4e96,4o7f,4cfk,4nuc,4a9l,4o76,4o75,3zyu,4ps5,4hbv,4hby,4pci,3mxf,4bw1,4men,4bw3,3u5k 

13 apo 1kvm,2bls,1ke4 

13 holo

 4old,4jxw,2r9w,2pu2,1xgj,1xgi,4kz3,4kz7,1ll9,4jxs,2r9x,4kz4,1my8,4okp,4kz5,3gvb,4kz

9,3gr2,4jxv,4kz6,3gqz 

14 apo

 1rps,2hbe,1cls,1hga,1hab,3d7o,2hbf,1rq3,1j3y,1yhe,1ljw,1xz2,1mko,1qsi,1hgc,1fn3,1kd2

,1hgb,1j41,1xxt,1qsh,1dke,1bij,2w6v,1hho,1uiw,2dn2,2hhb,1gzx,2hbc,1bbb,1sdl,1bz0,2hbd,1hb

b,1thb,1sdk,1yh9,2dn3,1j40,1ird,1a3n,1j3z,2hhd,1b86 

14 holo 2d60,1g9v,2d5z 

15 apo

 2bdc,2fof,1h9l,2bd9,2foa,1esa,2foc,2foe,1lvy,1qix,2fo9,1gvk,2fob,2h1u,2fod,1haz 

15 holo 1elc,1eld,2bd4,1elb,1ele,1nes,2bdb,1bma,2est,1ela,1qr3 

16 apo 2pb8,2gns,2q1p,1cl5,1fb2,4gld,4fga,3fg5,2pyc 

16 holo

 2qvd,1zwp,1oxl,1tg4,1skg,1jq9,2arm,1fv0,1q7a,1tg1,1zyx,1kpm,1tp2,1tdv,1tj9,1jq8,1sqz

,1zr8,1th6,1y38,3h1x,1sxk,1tk4,1sv3 

18 apo 3lzy,4ape 
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18 holo

 1e81,3er3,1epm,1eed,3pmy,4er4,3pww,3pmu,3er5,2v00,3pll,4er2,4lp9,3prs,1ent,1e80,3p

bd,1od1,5er1,1epq,3pcw,3pgi,5er2,1epp,2er7,1epo,1er8,3pi0,1epl,1e5o,3pld,2er6,4lhh,1e82,1ep

n,2er9,3pm4,3pb5,3pbz,4er1 

19 apo

 1c6i,1c6e,1c6d,1l90,1c6c,1c6g,1c6f,1c6k,1c6h,3dmv,1c6j,2b6t,2b74,2b73,2b75,2b70,2b

6x,2b6z,2b6y,2b72,2b6w 

19 holo

 3dn4,3hh3,3dmz,1l83,3hh6,1nhb,3dn2,3dn0,185l,186l,3hh4,182l,3dmx,188l,181l,3dn3,1

84l,187l,3dn6,3hh5,3dn1,183l,2otz,2oty,2ray,2raz,2rb2,2rb0 

20 apo 1pud,4pun,1p0d 

20 holo

 1enu,2pwu,4q4s,2qii,2z7k,3sm0,4q4p,1k4h,3c2y,1r5y,3rr4,3eou,4q4q,1q66,1n2v,1q63,3

gc4,1k4g,1p0e,1p0b,4q4o,3s1g,1s38,1q65,3eos,1f3e,4puj,2bbf,1s39,3tll,4puk,3gc5,3ge7,4q4r,1q

4w 

21 apo

 2v1i,1azi,2frk,2o5q,3lr7,2vlz,1dwt,2frf,1npf,2o5s,2vlx,2frj,2o5t,1wla,3lr9,2o5b,1dws,2v

1j,2v1f,2v1k,1gjn,2v1g,2fri,1ymb,2v1h,2v1e,2vm0,2vly,1dwr 

21 holo 2o5l,2o58,2o5m,2o5o 

22 apo 3n2d,3s9q,4l66,4kwn,4kmk,4jtb,3mrw,4kl4 

22 holo 3n1n,3v2k,3rl9,3sj6,3u6z 

23 apo 4e5b,1wfc,1r39 

23 holo

 3rin,1w84,1wbo,2zb0,1zz2,2zb1,1wbw,1w82,1w7h,1wbs,4e6c,1wbv,2zaz,4e6a,1wbn,1w

83,1zyj,1wbt,1kv1,3kf7,3hv6,3hv5,3hv7,3gcu,4l8m,3huc,1m7q,1yqj,3itz,3gfe,3zya,3fc1,3u8w,1

ouy,1ouk 

24 apo 3m3d,1w75,1qif,1qie,1qih,1qig,2vt6,2vt7,1ea5,1qid,2va9 

24 holo

 1odc,1eve,1h23,2cmf,1h22,1dx6,1e66,1zgc,1zgb,1w4l,3zv7,2ckm,1w76,1w6r,1qti,1vot,1

gpk,2ack,2xi4,2vjc,1gpn 

25 apo 1mxw,1my0,1mxy,1mxv,1fto,1my1,1mxx,1mxz 
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25 holo

 4o3b,1m5c,1my3,1wvj,1mqg,1m5e,3bki,2aix,3bfu,1ftl,1mqi,1ftj,1m5b,1syh,1my4,4igt,1f

w0,4isu,1mxu,1mm7,4g8m,1nnp,4o3a,1nnk,1my2,1ms7,3bft,1ftm,1n0t,4o3c,1mm6,3tza,1mqj 

27 apo

 1dq0,1dq5,1nls,2g4i,2a7a,1dq2,3nwk,2uu8,1gkb,1jbc,3enr,1enq,1enr,1dq1,2ctv,1dq6,1qn

y,2enr,1scr,1apn,1vln,1nxd,1scs,1con 

27 holo 1jn2,1cvn,4pf5,1gic,1jw6,1ona,1i3h,1hqw,5cna,3d4k,1qdc 

28 apo

 3snb,2gt7,3vb6,1uk2,2bx3,2a5a,3vb7,3snd,2c3s,1uk3,2gz9,2h2z,3vb3,2z3e,1uj1,2duc 

28 holo 2gz7,3v3m,2z94,2gz8,1uk4 

29 apo 1sug,3i80,1oem,1oes,2cm2,2cm3 

29 holo

 2cni,1nl9,2cm7,1ph0,1xbo,2cnf,1onz,2vev,1ony,1nny,2veu,3eax,1qxk,1pyn,1wax,2cnh,2

vex,3eb1,2bge,1pxh,2vew,3i7z,2bgd,2vey,1nz7,2cng,2cm8,1no6,2cne,2cmc,2cmb 

34 apo 2oxu,4ijo 

34 holo

 4gql,4efs,4gr3,1y93,3tsk,2oxw,3lik,4gr0,3ljg,1rmz,3lil,3lir,3ts4,3f16,3nx7,3n2u,3ehy,3f1

9,3ehx,3n2v,3f18,3f15,3f17,3lk8,3f1a 

35 apo 4nva,1kxn,4oq7,4nvf 

35 holo 4jpl,4jm6,4jqm,4jmz,4jm9,4jqj,4jqn,4jpu,4jpt,4jm8,4jm5 

37 apo 3t0h,1yes,1yer 

37 holo

 3ft5,2xdx,2xht,2xjx,2xk2,2xhr,2xds,2xdk,2xab,2xdl,3ft8,4jql,3t10,4l94,3t0z,4l8z,4l91,3r

4m,1byq,1yet 

38 apo 3djh,3ce4,4p0h,4gru,3l5v 

38 holo 1ljt,3ijg,1ca7,2ooh,2ooz,3dji,3u18,3l5r,3l5p,3l5t,3l5u,3l5s 

39 apo

 3dw1,3dvs,3de0,3de1,1bjr,3ptl,3i37,3de6,1ptk,3i2y,1egq,3de5,3de4,2pkc,3de3,3de7,3dvr

,2prk,3d9q,3de2,3i30,3prk,3dwe,3ddz,3dw3,3dvq,3i34,4dj5,1cnm 

39 holo 1pj8,1oyo 

42 apo 3kbs,3qys,3kbv,1mnz,4e3v,3kbw,3kcj,2gub,4a8n,4a8i,4a8r,4w4q,2glk,4a8l,3kbj 
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42 holo 3kbm,4qeh,3u3h,4duo,4qe5,4qee,4qe4,4qe1,3kbn 

43 apo 4ovh,1mmi,2pol,4pnv,3q4j,4k3s 

43 holo

 4mjr,4n94,4n98,4n95,4mjq,3d1e,3d1g,4k3o,4k3l,4n9a,4k3k,3d1f,4k3m,4k3r,4k3q,4k3p,

4n99,4mjp,4n96,4n97 

44 apo 2oot,2c6p 

44 holo

 3d7f,3bi0,4oc3,4oc2,2pvv,2pvw,4oc1,3d7d,4oc5,3d7g,3sjf,3bi1,2or4,3d7h,2xei,3bhx,4oc

4,4oc0,3iww,2c6c,2jbj 

45 apo 3the,4gwc,3tf3,4gsm,3th7,2zav,2pha 

45 holo

 3skk,3gn0,1wva,3kv2,2pho,3mfw,3lp4,3gmz,4gsz,3sjt,2pll,3mfv,4gsv,3dj8,3thh,3lp7,2ae

b,4gwd 

46 apo

 2ofm,1ikj,1ywc,1d3s,1x8p,1np4,1ywd,1ywa,1eqd,4hpb,1x8q,1u0x,1x8n,1ywb,4hpa,1d2u

,1x8o,1koi,3mvf,1erx 

46 holo 4hpd,4hpc 

50 apo 2y2v,3dl7,3dl4,2jgf 

50 holo 4arb,4ara,4b80,4b82,4b7z,4b85,4b83,1n5r,2gyu,1j07,2gyw,2gyv,2jf0,2whq,2wu4 

52 apo 3h2e,1tws 

52 holo

 4d8z,4db7,4d8a,4daf,3h22,4nil,1tx2,1tww,3h2m,3h24,3tyc,3h2f,1tx0,3h21,4d9p,3h26,3t

yd,4dai,4nhv,3h2n,4nl1,3h23,3h2a 

53 apo 3q40,2hd4,3osz,3dyb,2pq2,2duj,3aj8,3q5g,3qmp,1ic6,4b5l,3aj9,2v8b,2g4v,2dqk 

53 holo 1p7v,1p7w 

55 apo 2h7q,1phc 

55 holo

 1re9,1noo,4cp4,2cpp,6cpp,1yrc,8cpp,3cpp,3cp4,5cpp,5cp4,1phe,7cpp,1yrd,4cpp,2z97,1i

wi,2zax,2zwu,2zaw,2zwt 

56 apo 20gs,16gs 
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56 holo

 1aqx,3csj,10gs,2gss,7gss,1aqw,3gss,9gss,1aqv,5gss,6gss,8gss,2a2s,12gs,11gs,3pgt,2a2r,1

8gs,3dgq,3dd3 

57 apo 3wc6,1z5r 

57 holo

 2piz,1zg7,2pj4,2pj8,2pj9,1zg9,2jew,2pj5,3wc5,2pjc,2pja,1zg8,3wc7,2pj2,2pj3,2piy,2pj0,

3wab,2pjb,2pj1,2pj6,2pj7 

58 apo 2zk0,3vsp 

58 holo 3an3,2zno,3vjh,3d6d,3vso,2i4j,2zk6,3an4,2i4p,3hod,2i4z,3r8i,4e4q,2yfe 

60 apo 1uuw,1o7w,1o7m,1ndo,1o7h 

60 holo 1o7g,2hmm,1uuv,2hmo,1eg9,1o7n,2hmk,1o7p 

61 apo 3o5p,3o5q,3o5m,3o5l,3o5o 

61 holo

 4jfk,4jfj,4dro,4drp,4tx0,4drq,4w9o,4tw6,4jfl,4w9q,3o5r,4w9p,4jfm,4drm,4drk,4drn,4tw7 

63 apo 3p6r,3l61,3l62,3p6w,3p6u,3p6v,3p6s,3p6q 

63 holo 1t87,4g3r,1t88,3l63 

64 apo 3o7s,1ier,3u90,3af7,3f32,2z5r,2zg7,1gwg,2w0o,2z5q 

64 holo 3f39,1xz1,3f35,3f33,3f38,3f37,3f34,3f36,1xz3 

65 apo 4q6h,4e35,4e34 

65 holo

 4nmt,4k6y,4k76,4joe,4joj,4jor,4jog,4k72,4nmo,4jok,4jop,4joh,4nmp,4nmq,4nmr,4nmv,4

jof,4nms 

66 apo 1bsq,4lzv,3npo,4gny,4lzu,4iba,4ib9,1b8e 

66 holo 3nq3,1gx8,3uex,1b0o,3uev,1gx9,3uew,3nq9,3ueu,1gxa 

67 apo 1mop,2a88 

67 holo 2a84,1n2o,3le8,3isj,1n2g,1n2h,4ef6,1n2i,2a7x 

68 apo 4jtn,2b5h,4iep,4iez,4ieq,4kwj,4iex,4ieo,2gh2 

68 holo 4kwk,4iev,4ies,4iet,3eln,4jto,4ier,4kwl,4iew,4iey,4ieu 

69 apo 1d7h,1d6o,2ppn 

69 holo 1d7j,2fke,1qpf,1fkj,1j4h,1fkf,2dg3,1fki,1fkh,1a7x,1d7i,1fkb,1fkg,1j4i,1fkd,1j4r 

70 apo 1cmt,1cmq,1aa4 
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70 holo

 2eus,2euu,1cmp,2as6,2eup,1ryc,2as3,2eun,2as2,2euq,2as1,2y5a,2eut,2euo,2aqd,2eur 

72 apo 1aee,1aes 

72 holo

 1aeh,1aeu,1aed,1aek,1aev,1aeb,1aet,1aej,1aeo,1ac8,1aeq,2anz,1aef,1aem,1aen,1aeg,1ac4 

76 apo 2tga,1tgt,1tgb,1tgn,1tgc,2tgt,1btp 

76 holo 1tnh,1tnl,1tnk,1tng,1bty,1tni,1tnj 

78 apo 3fvj,4p2p 

78 holo 2azy,2b01,2azz,2b04,2b00,3o4m,2b03,1l8s,1fxf,1fx9,3qlm 

79 apo 3dr9,2qfk,4dwt,4dwu,3ord,3kun,4jyq,3mou,1ew6,4gzg 

79 holo 3lb3,3lb1,4fh7,4fh6,3lb2,4ilz,3lb4 

80 apo 8rnt,9rnt,3rnt 

80 holo 6gsp,5gsp,6rnt,1rnt,3bu4,1i0v,2rnt,2bu4,5bu4,1rgc,1gsp,7gsp,1bu4,4bu4 

81 apo 4qut,4tt2,4qsr,4tu6,3dai,4qsq 

81 holo 4tu4,4tz8,4tte,4tyl 

82 apo 4fov,2vw2,2vw0 

82 holo 4fpe,4fph,4fpf,4foq,4fpc,4foy,4fpl,4fow,4fpj,4fpk,4fq4,4fpy,4fp2,2vw1 

85 apo 1w5z,1w6c,1w6g,1sii,3kn4,1sih,1rjo,1w4n,3kii 

85 holo 2bt3,2cg0,2cg1,2cfw,2cfg,2cfl,2cfd 

86 apo 1qhz,7a3h 

86 holo 1qi0,1e5j,1hf6,8a3h,1w3l,4a3h,1h2j,1ocq,1w3k 

88 apo 3c2x,3umq,3usx,3uil,3uml,4q9e,3qs0,4oug,4q8s,4orv,4fnn 

88 holo 3rt4,3nw3,3o4k 

91 apo 4g03,2vue,1ao6,4emx,3jry,4g04,1bm0 

91 holo 2xw1,4l8u,4l9k,4iw2,4la0 

92 apo 1hai,1abj,1ppb 

92 holo 1hxf,1qhr,1qj1,1c5l,1hxe,1qj6,1awf,1ny2,1qj7,1ad8,2uuf,1hah 

93 apo 3sgx,1ueh,3qas 

93 holo 3th8,1x07 

94 apo 3p1e,3dwy 

94 holo 3p1d,4a9k 
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97 apo 1arp,1gzb,2e39,1arw,1arx,1ary,1gza,1arv,2e3a,1aru 

97 holo 1hsr,1ck6 

98 apo 1gdu,1xvm,1gdq,2g51,2g52,1xvo 

98 holo 1gdn,1fy5,1fy4,1pq8,1fn8,1pq7,1pq5 

99 apo 3ux0,3p1n 

99 holo 4dhs,4dhp,4dhu,4dhq,4dhr,4dho,4dhn,4dht,4dhm 

100 apo 2dea,3fh4,2nyq,1rtq,1lok,2prq,1amp 

100 holo 1txr,3vh9,1igb,1cp6,1ft7,2iq6 

101 apo 4bro,4brp,4brm,4br9 

101 holo 4bra,4bri,4brl,4brq,4brf,4brh,4brn,4brc,4bre 

102 apo 1fz0,1fz2,1fz4,1fz7,1fyz,1fz6,1fz9,1fz5,1fz8,1fz1,1fz3 

102 holo 1xu3,1xvd,1xu5 

104 apo 1xll,1xlh,1xlb,1xla,1xlk,1xle 

104 holo 1did,1xlc,1xlj,1die,1xlf,1xli,1xlg,1xld 

105 apo 1gmd,1ab9,1gmc,2gch,1yph,2gct,1gct 

105 holo 2p8o,1gha 

106 apo 1bs5,1xen,1bs4,1icj,1xeo,1bsz,1xem,1bs7 

106 holo 1g2a,1bs8,2ai8,1g27,1lru,1bs6 

108 apo 1q9k,1q9l 

108 holo 2r2e,3sy0,2r1y,2r2b,2r1x,3t65,2r1w,3t4y,2r2h,3bpc 

109 apo 2iuv,2iur,2ah1,2iup 

109 holo 2agw,2iuq,2hjb 

110 apo 4jy0,3mwv 

110 holo 4ju6,4j06,4j08,4j0a,4jvq,4jjs,4ju7,4ju3,4jju,4ju4,4j02 

111 apo 1dv1,1bnc 

111 holo 2w6o,2v59,2w70,2w6p,2v5a,2w6n,2w6m,2w6q,2w6z,2v58,2w71 

112 apo 3yas,1qj4,2yas,6yas,3c6y,3c6x,7yas,3c70,3c6z 

112 holo 1yas,1sc9,5yas 

113 apo 4afn,4bnw 

113 holo 4bnt,4bny,4bnv,4bo1,4bo0,4ag3,4bo2,4bnx,4bnu,4bo3,4bnz 

116 apo 3dps,1y1t,1sj9,2hsw,1y1q,3ddo,1y1r 
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116 holo 4e1v,3fwp 

118 apo 1h05,2dhq 

118 holo 2y76,4b6o,2y71,4ciw,4b6p,4ciy,1h0r,2xb8,1h0s,4b6q,2y77 

121 apo 2whe,1zol 

121 holo 4c4r,1z4o,4c4s,4c4t,1o03,1z4n 

122 apo 4v2f,1bjz 

122 holo 1ork,2x9d,2fj1,2vke,2o7o,2x6o 

123 apo 1td1,3e9z,1tcu 

123 holo 3fb1,3e9r,3e0q,3fnq,3faz,3iex,3djf,3f8w 

124 apo 1tk3,1nu6 

124 holo 3kwf,4lko,4jh0,2ogz,2ole,1rwq,3eio,1n1m 

126 apo 2e3m,2e3s 

126 holo 3h3r,2e3r,3h3s,2e3p,2z9y,3h3q,2e3n,2e3o,3h3t,2e3q 

128 apo 1fx6,1fxp 

128 holo 1fy6,3e12,1fwn,1pck,3e0i,1pe1,2a21,1jcx,1fws,1pcw 

130 apo 2cz7,2cyz,2zpb,2ahj 

130 holo 2zph,2zpf,2zpe,2zpi,2zpg 

131 apo 3tpj,3tpl 

131 holo 4ivt,4dv9,3tpp,4fgx,4dvf 

132 apo 3gxi,2nt0,1ogs,3gxd,2f61,3gxm,2nt1 

132 holo 3gxf,2nsx,3rik,3ril 

137 apo 3bui,3bud 

137 holo 3cv5,3bvw,3czn,3czs,3bvv,3buq,3bvx,3bvt,3bvu 

138 apo 8adh,1ye3 

138 holo 2jhg,2jhf,1n92,1hld,1het,1heu,2ohx,2oxi,1hf3 

139 apo 4usv,4clf,4cll,4cls,4clu,4ust 

139 holo 4clw,4clk,4usu,4usw 

141 apo 1hcb,1hug,1huh 

141 holo 2nmx,1bzm,2fw4,3lxe,2nn7,1czm,2nn1,1azm 

142 apo 1ous,1oux 

142 holo 1uzv,2bp6,3dcq,1our,2boj,1ovp,1ovs 
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143 apo 1swx,3rwv 

143 holo 4gjq,2evl,3s0k,4gix,4gxg,3rzn,2euk,4h2z,1sx6 

144 apo 3iqo,4pdz,3cr2 

144 holo 3gk2,3gk4,3gk1 

146 apo 3fwq,3at2 

146 holo 3bqc,3c13,3at4,3axw,2zjw 

148 apo 1ozw,1s13,1twn,1ozr,1s8c,1t5p,1n45,1twr 

148 holo 3hok,3k4f 

149 apo 1ejd,3spb,1ejc 

149 holo 3upk,1eyn,3lth,3swq 

150 apo 1m35,2bhb,1wl6,2bhc,1wlr 

150 holo 2bhd,1a16,1n51,2bh3,2bha,2bn7 

152 apo 2fu6,2fm6,2h6a,1sml,2fu7 

152 holo 2gfj,2gfk,2aio,2qdt,2fu8,2fu9 

153 apo 2q2m,2q39,4ib8,2blg,1qg5,1bsy,4ib7 

153 holo 4ib6,1bso 

154 apo 2vb9,2buh,1g5x 

154 holo 1fj4,2aq7,2vb8,2aqb,2vba 

157 apo 3vaj,3vam,3val,3vai,3vag,3vaf,3vak,3vah 

157 holo 4tu9,4tu8 

158 apo 3cdn,3cab,3cz2 

158 holo 3bfb,3bfh,3bfa,3bjh 

159 apo 2b3l,2b3h,2b3k 

159 holo 2nq6,4ikt,4ikr,4iku,2nq7,4iks 

161 apo 1bbc,3u8b,1pod 

161 holo 1poe,1db4,1kqu,1kvo,1j1a 

162 apo 2r2x,1rtc 

162 holo 4mx5,1br6,4hv3,4mx1,2p8n,3hio,2pjo,2r3d 

163 apo 2y1e,2jd2,2y1c 

163 holo 3zhz,3zi0,2jd1,2y1d,2y1g 

167 apo 1znk,2ozq,1qy0 
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167 holo 1znh,1zne,1znl,2dm5,1qy1,1zng,1qy2 

168 apo 3qcb,3qcd,3qcc 

168 holo 3qch,3qci,3qcj,3qce,3qcf,3qcg,3qck 

169 apo 1bhs,3km0 

169 holo 1jtv,1dht,3hb4,1i5r,1qyv 

170 apo 1meo,4ew1 

170 holo 1rbm,1rbq,4ew3,4ew2,1rc1,1rc0,1njs,1rbz 

171 apo 1r3m,1r5d,1bsr 

171 holo 11ba,3djo,3djv,1r5c,3djq,3djp,3djx 

172 apo 3f0d,3f0f,3f0e 

172 holo 3k2x,3f0g,3ieq,3jvh,3k14 

174 apo 3ojn,3ojj,3ojt,2ig9,3bza,1q0o 

174 holo 4ghh,3ojk,1q0c,4ghg 

175 apo 1w8v,2cpl,3k0n,3k0m 

175 holo 1w8l,1vbt,1ynd,1nmk,1vbs,1w8m 

178 apo 1ivg,1nn2 

178 holo 1ing,1inh,1ivf,1ive,1inx,1inw,1ivc,1ivd 

179 apo 1gqv,1hi2 

179 holo 2c05,1hi3,2c01,2c02,1hi5,2bzz,1hi4 

180 apo 4i2g,4i2a,4i2f,4i29 

180 holo 4i2d,4i2i 

181 apo 3g46,1nxf 

181 holo 3g4w,3g4v,3g4u,3g52,3g4y,3g53,3g4r 

182 apo 1tpd,2v5l,1ag1,1tpf,5tim 

182 holo 1iih,4tim,6tim,1trd 

183 apo 2bno,1zz6,1zzc,1zz9,2bnm 

183 holo 1zz8,1zz7,2bnn,1zzb 

184 apo 2cxn,2cvp,2cxu 

184 holo 2cxs,2cxr,2cxq,2cxo,2cxt,2cxp 

186 apo 1jp7,1jdu,1jds,1jpv,1je0 

186 holo 1jdv,1jdt,1je1,1jdz 
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188 apo 2ij5,1n40,3g5f 

188 holo 4g46,1n4g,4g48,4g47,2ij7 

189 apo 2x16,2x1u 

189 holo 2x1t,2vel,2ven,2x1s,2x1r,2x2g 

190 apo 1lls,1jw4,1omp 

190 holo 1jw5,1anf,3mbp,1dmb,4mbp,1ez9 

191 apo 3zty,3ztw,3zwk 

191 holo 3zup,3zwd,3zx5,3zw7,3zx4,3zu6 

192 apo 4d98,4d8y 

192 holo 4dao,4da6,4da7,4dae,4d9h,4d8v,4dab 

196 apo 1l4b,1l5n 

196 holo 1jhm,1jhu,1jh8,1jhp,1jhx,1l4e,1l5f 

197 apo 2hcv,3iud,3iui,3itx,3iuh,3ity 

197 holo 2i56,2i57 

199 apo 1o7j,1hfj,1hfk 

199 holo 1hg0,1hfw,1hg1 

202 apo 2v7i,2x66 

202 holo 2x67,2v7k,2v7m,2v7l,2x68 

203 apo 1w6l,1w8e,1gsk,2x88,1w6w,2bhf 

203 holo 1of0,3zdw 

205 apo 1sjs,3icd,1pb3 

205 holo 1pb1,5icd,1p8f,9icd 

207 apo 3q6q,3q6r 

207 holo 3q3a,3pa2,3q38,3ry8,3pa1,3q39 

208 apo 1pop,1ppd 

208 holo 1pip,1bqi 

209 apo 1dea,1cd5,1fs6,1fsf 

209 holo 1hor,1frz,1hot 

211 apo 3i13,1bvt,3i11,1bc2 

211 holo 1mqo,4tyt 

212 apo 3l3i,3l3g,3l3d,3l3j 
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212 holo 1m6o,3kpm,3dx6,3kpl 

216 apo 1dhy,1eil,1kw3,1eiq 

216 holo 1kw6,1kw8,1eir,1kw9 

217 apo 1tew,1jse,2lz2,135l,3lz2 

217 holo 1lzy,1jef,1ljn 

220 apo 1zah,1zal,2quv 

220 holo 2ot1,1zaj 

221 apo 4lgz,3v9j 

221 holo 3v9l,4lh1,3v9k,4lh2,4lh3 

222 apo 1iae,1iaa,1iad,1ast,1iab,1iac 

222 holo 1qjj,1qji 

224 apo 1mr5,1ms3,1ms4 

224 holo 1ms8,1ms9 

228 apo 1dup,1eu5,1euw 

228 holo 1seh,1dud,1rn8,2hr6,2hrm 

229 apo 4jh2,4jh1 

229 holo 4jh4,4jh7,4jh3,4jh6,4jh9,4jh5 

232 apo 2i3u,2i3r,2i4e 

232 holo 2i5x,2i4h,2h02,2i4g,2h04 

235 apo 2fs6,2fs7 

235 holo 2cbs,1cbs,2fr3,3cbs,1cbq 

236 apo 3d5g,1py3,1pyl 

236 holo 3dgy,3d4a,3d5i,3dh2 

237 apo 1ey0,1eyd,1stn 

237 holo 4wor,1sth,1snc,1stg 

239 apo 4m5v,4m5q 

239 holo 4m4q,4mk5,4m5u,4w9s,4mk2 

241 apo 3f1n,3f1p 

241 holo 3h82,4gs9,3h7w,4ghi,3f1o 

244 apo 4lsf,4lse,4lsi,4lsh 

244 holo 4gcs,4gcq,4gcp 
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245 apo 3b4o,3ex9 

245 holo 3cnm,3jum,3juo,3b4p,3jup 

246 apo 1dcs,1rxf 

246 holo 1uog,1uof,1rxg,1uo9 

247 apo 3gte,3gke 

247 holo 3gl2,3gob,3gl0,3gb4,3gts 

248 apo 1rrh,1rrl 

248 holo 1n8q,1jnq,1hu9,1no3 

249 apo 3hcv,3czf 

249 holo 1w0w,3bp7,1uxw,3b3i,1of2 

252 apo 1gpf,1e15 

252 holo 1w1v,1e6r,1o6i,1w1p,1ur8 

253 apo 1rtm,1kwt 

253 holo 1kww,1kwy,1kwv,1kwx,1kwu 

255 apo 1l7l,1uoj 

255 holo 4lkf,4lk7,4lkd,4lke 

257 apo 1ofb,1ofp 

257 holo 1oab,1ofo,1of6,1ofa,1hfb 

258 apo 3wng,3wne,3wnf,3wnh 

258 holo 3vqe,3vq8,3vq5 

259 apo 1f7d,1f7o 

259 holo 1f7k,1f7r,1f7n,1f7q,1f7p 

260 apo 4fot,4hoy,4iko,4fop,4jy7 

260 holo 4jwk,4jx9 

261 apo 1une,2bpp,1bp2,1g4i,1mkt 

261 holo 1fdk,1mkv 

262 apo 4erx,4qaj,4fno,4jc4 

262 holo 4qd3,4qbk 

263 apo 2q08,2q6e 

263 holo 3hk9,3hk8,3hk7,3hka,3hk5 

264 apo 1alb,1lib 
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264 holo 1lid,1lif,3jsq,3hk1,2ans 

266 apo 1t8p,3nfy 

266 holo 2f90,2a9j,2h4x,2h4z,2h52 

269 apo 1n9k,3cz4,1n8n,1rmq 

269 holo 2g1a,1rmt,1rmy 

270 apo 1pvf,2vnq 

270 holo 2vnp,1nfs,1ppw 

271 apo 4rj2,3onv,3ooe 

271 holo 1pke,1pk9,1pk7,3ut6 

273 apo 3wra,3wr8 

273 holo 3wr3,3wr9,3wr4,3wpm,3wrc 

276 apo 1yze,1yy6 

276 holo 2fop,2foo,2foj 

279 apo 4e52,1pw9 

279 holo 3ikr,3ikq,3ikp,3ikn 

280 apo 3rdu,3rds,3rdx 

280 holo 3rdq,3rdo,3rdm 

282 apo 1m4s,1m4t 

282 holo 2vu0,1nl7,1ou6,2vu1 

286 apo 2yeu,2yf4,2yf9,2yf3 

286 holo 2yfd,2yfc 

287 apo 4bt7,4bt2,4bt6 

287 holo 4bt3,4bt5,4bt4 

288 apo 2afm,2afo 

288 holo 3pbb,2afw,2afz,2afx 

291 apo 4i64,1r7i 

291 holo 4i6a,4i6w,4i56,4i6y 

292 apo 1gmq,1sar 

292 holo 2sar,1rsn,1gmr,1gmp 

293 apo 2fmi,2fmf,2flk 

293 holo 2fmh,2fka,2flw 
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294 apo 1n1b,1n1z 

294 holo 1n22,1n20,1n23,1n24 

296 apo 3kqz,3kqx 

296 holo 3t8w,4r76,3kr4,4k3n 

297 apo 1hn9,1hnk 

297 holo 1hnd,1hnj 

298 apo 1f6k,1f6p,1f5z 

298 holo 1f73,1f74 

300 apo 1y6v,1ed9,3tg0,1ed8 

300 holo 1ew9,1ew8 

301 apo 1mkx,1mkw 

301 holo 1uvt,1ett,1etr,1ets 

303 apo 2aju,2ajs 

303 holo 2ajx,2ajz,2ak1,2ajv 

305 apo 3s0f,3s0a,3rzs 

305 holo 3s0e,3s0b,3s0d 

306 apo 3par,3pbf,1r14,1r13 

306 holo 3pak,3paq 

307 apo 4enl,3enl 

307 holo 5enl,1els,6enl,7enl 

310 apo 3ppg,3ppf 

310 holo 4l61,4l64,4l5z,4l6o 

313 apo 1eo2,2bum,1eoa 

313 holo 2bur,1eob,1eoc 

315 apo 2ptx,2ptw 

315 holo 2ptz,2pu1,2pty,2pu0 

318 apo 1v8n,1v8i 

318 holo 1v8s,1v8l,1v8m,1v8r 

320 apo 2de6,2de5,3vmh 

320 holo 2de7,3vmg,3vmi 

322 apo 1u1s,4j6y,1u1t 



 

144 

 

322 holo 4j6x,4j5y 

326 apo 3kdh,3kl1 

326 holo 3kdi,3nr4,3ns2 

327 apo 3k5t,3hi7,3mph 

327 holo 3hig,3hii 

328 apo 2psr,1psr,3psr 

328 holo 2wos,2wor 

329 apo 1ime,1imf,4as4 

329 holo 1ima,1imb 

331 apo 3m8y,3m8w,3twz 

331 holo 3ot9,3uo0 

332 apo 1ho1,1ixq,1ixp 

332 holo 1ho4,1ixo 

334 apo 2gqv,1vie,2rh2 

334 holo 2rk2,1vif 

339 apo 1arl,1m4l,1cpx 

339 holo 1f57,2rfh 

342 apo 1yfu,4hvo 

342 holo 1yfx,1yfw 

343 apo 3ssw,1mi7 

343 holo 1wrp,2oz9,1zt9 

345 apo 3zo8,1dbf,2chs 

345 holo 1com,2cht 

346 apo 1v3b,1v2i 

346 holo 1v3c,1v3d,1v3e 

347 apo 4j0d,4j0c 

347 holo 4j0h,4j0i,4j0j 

348 apo 2isd,1djh,1dji 

348 holo 1djx,1djw 

349 apo 2oa6,2e4o 

349 holo 3bnx,3cke,3bny 
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351 apo 1fxx,3c95 

351 holo 3hl8,2qxf,3hp9 

352 apo 2sga,1sgc,3sga 

352 holo 5sga,4sga 

354 apo 4j0u,3zgq 

354 holo 4hor,4hot,4hos 

355 apo 4h00,4h01 

355 holo 4lcq,4lcr,4lcs 

359 apo 2oqy,3gd6,3fyy 

359 holo 3es8,3es7 

360 apo 3wsi,3wse,3wsd 

360 holo 3wsf,3wsg 

362 apo 4itn,4ehx 

362 holo 4itm,4ehy,4itl 

363 apo 3wmy,3wmz 

363 holo 3wn2,3wn1,3wn0 

364 apo 1ttc,3djt,3kgs 

364 holo 3kgt,1eta 

366 apo 3a7g,3a7f 

366 holo 3a7h,3a7j,3a7i 

367 apo 2y40,2y3z 

367 holo 2y42,2y41 

368 apo 3azy,3b01,3azx 

368 holo 3b00,3azz 

372 apo 1qdt,1qus,1qdr 

372 holo 1d0l,1qut 

375 apo 3pn2,3m6o 

375 holo 3m6p,3pn4,3pn3 

378 apo 1byi,1dbs 

378 holo 1dai,1dae,1dad 

380 apo 1nx2,1alv,4phn 
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380 holo 1nx3,1alw 

381 apo 4a8g,4a88 

381 holo 4a87,4a85,4a80 

384 apo 2wlc,2wld 

384 holo 2wle,2wlg,2wlf 

387 apo 1paf,1qcg 

387 holo 1d6a,1qcj,1qci 

388 apo 3pb6,3pb4 

388 holo 3pb7,3pb8,3pb9 

389 apo 1lbv,1lbw 

389 holo 1lby,1lbx,1lbz 

390 apo 2pa5,4icz 

390 holo 4ge6,4ge5,4ge2 

391 apo 1u6j,1u6i 

391 holo 3iqz,3iqf 

392 apo 2dup,2duo 

392 holo 2dur,2duq 

393 apo 3n5k,1su4 

393 holo 2agv,1wpg 

395 apo 3per,3q1g 

395 holo 3pf7,3pm5 

396 apo 1gy0,1gxy 

396 holo 1gxz,1og1 

398 apo 1ecg,1ecf 

398 holo 1ecj,1ecc 

401 apo 2d6k,2d6l 

401 holo 2d6n,2d6m 

402 apo 4bwo,4b4p 

402 holo 4b4q,4b4r 

405 apo 2ys7,2yrw 

405 holo 2ys6,2yrx 
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408 apo 2o9z,2oam 

408 holo 2e4g,2oal 

409 apo 3mwt,3mwp 

409 holo 3mx2,3mx5 

410 apo 1dc5,1dc3 

410 holo 1gad,1dc6 

414 apo 1ogf,1ogc 

414 holo 1oge,1ogd 

415 apo 1oxt,1oxs 

415 holo 1oxu,1oxv 

418 apo 3mvi,3mvt 

418 holo 1add,1a4m 

419 apo 1j1q,1gik 

419 holo 1j1r,1j1s 

420 apo 3ivy,3iw0 

420 holo 3iw2,3iw1 

421 apo 2ris,1tks 

421 holo 2riu,1tku 

422 apo 3o4g,1ve6 

422 holo 2hu5,2hu7 

423 apo 1m47,1m4c 

423 holo 1m48,1m49 

424 apo 2yvm,2yvn 

424 holo 2yvp,2yvo 

425 apo 3e8m,3e84 

425 holo 3e81,4hgo 

428 apo 1sz8,1yxl 

428 holo 1td7,1oxr 

430 apo 3zdx,3t3p 

430 holo 3zdy,3ze2 

431 apo 2j46,2j45 



 

148 

 

431 holo 1o87,2c04 

433 apo 1j2t,1j2u 

433 holo 1v7z,3a6d 

435 apo 2z3g,1wn5 

435 holo 2z3h,1wn6 

437 apo 7xim,4xim 

437 holo 1xim,6xim 

438 apo 4by3,4c6c 

438 holo 4c6m,4c6l 

439 apo 2y7e,2y7d 

439 holo 2y7f,2y7g 

440 apo 4w5h,4ntz 

440 holo 4w5j,4nu0 

442 apo 1ogh,1pkh 

442 holo 1pkk,1pkj 

444 apo 1odl,1odk 

444 holo 1odi,1odj 

445 apo 4kjt,4hsw 

445 holo 4kmv,4hsx 

447 apo 1u98,1u94 

447 holo 1xms,1xmv 

449 apo 3dxl,3dy9 

449 holo 3dye,3dzt 

451 apo 3kx7,3kv7 

451 holo 3kvz,3kw1 

452 apo 1ah6,1ah8 

452 holo 4asa,4asg 

453 apo 2ou4,2qul 

453 holo 2qun,2qum 

455 apo 3lxh,4c9m 

455 holo 3lxi,4c9l 
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457 apo 1x8g,3f9o 

457 holo 2gkl,2qds 

459 apo 3ppp,3ppn 

459 holo 3ppr,3ppq 

460 apo 2f2q,1t8a 

460 holo 2f47,2f32 

461 apo 1is6,1is5 

461 holo 1is3,1is4 

462 apo 3kje,3kjh 

462 holo 3kjg,3kji 

463 apo 1q7z,1q7m 

463 holo 3bol,3bof 

465 apo 3t2f,3t2b 

465 holo 3t2d,3t2e 

466 apo 1gsd,1k3o 

466 holo 1k3l,1k3y 

467 apo 2hlh,2hhc 

467 holo 3six,3siw 

468 apo 1knq,1ko1 

468 holo 1ko5,1ko8 

471 apo 1yuy,1yv2 

471 holo 1yvx,1yvz 

472 apo 2g3x,2noy 

472 holo 4i89,4i87 

473 apo 3quq,3qx7 

473 holo 3qu2,3qxg 

475 apo 1adi,1ade 

475 holo 1hon,1hop 

476 apo 3jsl,3jsn 

476 holo 4cc6,4cc5 

478 apo 4r05,4r8r 
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478 holo 4r8s,3p97 

480 apo 1lci,1ba3 

480 holo 3rix,4e5d 

484 apo 3ca0,3c9z 

484 holo 3ca6,3cah 

485 apo 1e43,1e3x 

485 holo 1e3z,1e40 

489 apo 1v3r,1vfj 

489 holo 1v3s,1v9o 

491 apo 1d9e,1x8f 

491 holo 1phw,1g7v 

493 apo 1k6i,1k6j 

493 holo 1k6x,1ti7 
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Figure A-1 (S1A-S1E). Analyses of maximum backbone RMSD for only unified binding site residues 

within each protein family. Each point represents the maxima observed in one protein family, and the 

number of points of each section is labeled in black (numbers in parenthesis are points with values > 3.5 

Å). A) The maximum across the apo-apo pairs is compared to the maximum of the holo-holo pairs, binding 

site residues only; 207 proteins display RMSD ≤ 1 Å for both groups.  B) The maximum across the apo-

holo pairs is compared to the maximum of the apo-apo pairs, binding site residues only; 201 proteins display 

RMSD ≤ 1 Å for both groups. C) The maximum across the apo-holo pairs is compared to the maximum of 

the holo-holo pairs, binding site residues only; 201 proteins display RMSD ≤ 1 Å for both groups. D) The 

maximum across the apo-apo pairs for only binding-site residues is compared to the whole backbone 

maximum for apo-apo pairs; 227 proteins display RMSD ≤ 1 Å for both groups. E) The maximum across 
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the holo-holo pairs for only binding-site residues is compared to the whole backbone maximum for holo-

holo pairs; 214 proteins display RMSD ≤ 1 Å for both groups. 
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Figure A-2 (S2A–R.) Radar plots of χ1 angle distributions. Distribution of χ1 angles observed in unified 

binding site residues. Values were normalized on a per-family basis before radar binning such that each 

unique protein sequence is represented equally, regardless of family size. Data for: A) All UBS residues, 
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B) Arg, C) Asn, D) Asp, E) Cys, F) Gln, G) Glu, H) His, I) Ile, J) Leu, K) Lys, L) Met, M) Phe, N) Ser, O) 

Thr, P) Trp, Q) Tyr, R) Val.
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Appendix B. Additional Figures for Protein-Protein Interfaces 

 

 

 

Figure B-1. Distributions of PPI contact residues for the 16 PPI complexes of the 2P2I set. Contact 

residues belonging to the: A) Druggable chains and B) Complementary chains 
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Figure B-2. Distributions of PPI contact residues for the complexes of the PDBbind set. Contact 

residues belonging to the: A) Permanent, B) Strong Transient, and C) Weak Transient complexes. 

 

 

 

Figure B-3. Distributions of PPI contact residues representing the protrusions and hollows for the 16 

PPI complexes of the P-P 2P2I set. Representative cluster residues belonging to: A) Druggable chain 
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protrusions, B) Complementary chain hollows, C) Complementary chain protrusions, D) Druggable chain 

hollows. 

 

 

 

 

Figure B-4. Distributions of PPI contact residues representing the protrusions and hollows for the 

204 ligand-bound PPI complexes of the P-L 2P2I set. Representative cluster residues belonging to the 

ligand-bound chain: A) protrusions, and B) hollows.  
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Figure B-5. Distributions of PPI contact residues representing the protrusions and hollows for the 

complexes of the PDBbind set. Contact residues belonging to the: A) permanent protrusions, B) permanent 

hollows, C) strong transient protrusions, D) strong transient hollows, E) weak transient protrusions, and F) 

weak transient hollows. 
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