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ABSTRACT

In the presence of tight capital, time and talent constraints, many traditional op-

erational challenges are reinforced (and sometimes redefined) in the entrepreneurial

setting. This dissertation addresses some of these challenges by examining theoret-

ically and experimentally several problems in entrepreneurship and innovation for

which the existing literature offers little guidance. The dissertation is organized into

three chapters.

When tight time-to-market constraints are binding an important question in prod-

uct development is how much time a development team should spend on generating

new ideas and designs vs executing the idea, and who should make that decision. In

the first chapter of this dissertation I develop an experimental approach to examin-

ing this question. Entrepreneurial ventures can have limited (often zero) cash inflow

and limited access to capital, and so use equity ownership to compensate founders

and early employees. In the second chapter I focus on the challenges of equity-based

incentive design, examining the effects of contract form (equal vs non-equal equity

splits) and time (upfront vs. delayed contracting) on effort and value generation in

startups. In “technology-push” (relative to “demand-pull”) innovation, technology

teams often develop a new capability that may find voice in a wide range of indus-

trial settings. However, the team may lack the appropriate marketing budget to

explore each in great depth, or even all of them at any depth. In the third chapter I

study entrepreneurial market identification, developing and testing search strategies

for choosing a market for a new technology when the number of potential markets is

large but the search budget is small.

ix



Introduction

Why do some entrepreneurial teams succeed in commercializing a new technology

or in solving an important problem, and some fail? Often, the environment plays a

role: a favourable macroeconomic or political climate, a powerful incumbent or a new

regulatory framework can propel or sink a rising startup. These are not the issues

addressed in this dissertation, mainly because early-stage entrepreneurial teams can

rarely do something about them. Instead, this dissertation focuses on the internal

dynamics in a startup team: the planning and scheduling of new product development,

the division of ownership in the team or the exploration of new avenues for technology

commercialization. These decisions can be (and should be, as I will argue) managed

proactively by the startup team to avoid predictable mistakes.

Despite the rise of interest in entrepreneurial ventures, there is little organized

knowledge in the field of entrepreneurship that can be of use to the entrepreneurial

practice. Much of the existing research (at the time when this dissertation was

written) had been conducted with the goal of informing policy-making, and not en-

trepreneurial decision-making.

In the absence of frameworks to think about entrepreneurial problems, much of

the guidance for entrepreneurs is derived from individual success stories and popular

press, which frequently collect idiosyncratic experiences that are not validated by

data. At the same time, with the rise of entrepreneurial education (offered by business

schools, engineering and design schools, incubators and accelerators), there appears to
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be a greater need for a more systematic investigation of the entrepreneurial dilemmas.

The purpose of this dissertation is to take some initial steps in that direction.

Located at the technological core of the firm, the field of Operations Management

is perhaps uniquely suited to address some of the entrepreneurial challenges. Indeed,

entrepreneurial work is inherently cross-functional, mainly out of necessity, as a rela-

tively small team needs to manage the various aspects of running a business. Further,

entrepreneurial problems are inherently process and cost driven, again necessitated

by tightly constrained resources available to early-stage companies. Both of these re-

alities make the entrepreneurial context both interesting and familiar to Operations

Management researchers.

Why, then do we need “entrepreneurial” Operations Management, and how is it

different from “traditional” Operations Management? In the presence of tight capital,

time and talent constraints, many classical operational challenges are reinforced (and

sometimes redefined) in the entrepreneurial setting. As a result, the extent to which

operations management research extrapolates seamlessly to startups is limited in some

key contexts, and few studies are validated by data. This includes problems related

to incentive design, job design, product development, and market research, which are

explored in this dissertation.

Given the current, understudied nature of entrepreneurship, no single stream of

work (including this dissertation) can fully answer even one entrepreneurial question.

Rather, this dissertation highlights one aspect of managing entrepreneurial innovation

processes – the role of human behavior.

The use of behavioral analysis, and of behavioral experiments in particular, is

relatively new in the entrepreneurship and innovation literature. However, there

are good reasons to use experimental methods to examine the success factors of en-

trepreneurship and innovation. In established and mature processes there is (often)

a recipe for executing a task, decision support systems are in place, success drivers

2



are well-understood, and there are existing, well-defined indicators to evaluate per-

formance (Loch, 2017). In contrast, the development and launch of novel products

involves the innovative generation of new processes and the discovery of (rather than

prior knowledge of) key success drivers. To understand these creative processes, one

must closely examine internal behavioral dynamics in those processes. Experimental

methods were designed specifically to achieve this goal.

The remainder of this dissertation examines three problems. The first chapter

develops an experimental approach to examining time allocation in product devel-

opment. In the second chapter I focus on the challenges of equity-based incentive

design, examining the effects of contract form (equal vs non-equal equity splits) and

time (upfront vs. delayed contracting) on effort and value generation in startups. In

the third chapter I study entrepreneurial market identification, developing and test-

ing search strategies for choosing a market for a new technology when the number of

potential markets is large but the search budget is small.

3



CHAPTER I

Ideation-Execution Transition in Product

Development

1.1 Introduction

A basic feature of product development is that the number of ideas being actively

considered decreases as the development unfolds. Design texts and organizations

involved in product development refer to this process as the idea or design funnel

(Wheelwright and Clark , 1992; Cooper et al., 1997; Ulrich and Eppinger , 2011). Es-

pecially for physical products the winnowing from many to few ideas is driven by the

high costs of turning early ideas and sketches into tangible objects. As a design moves

from rapid prototypes and appearance models to customer-ready versions vetted on

production tool sets using genuine materials, material and tooling costs rise. There

are also increasing time costs as the deadline nears and there is less time to recover

from exploratory failures. Both of these realities prompt design teams to narrow

their ideas to a few, and then most frequently to one, before proceeding into the more

expensive development phases.

While most product design teams understand the importance of narrowing down

and eventually committing to an idea, there is little guidance for when to transition

from ideation to implementation and who should make this decision. In this paper
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we design a laboratory experiment to study two open questions, unresolved in the

literature: (1) How does the allocation of time to the ideation and execution phases

of development affect the design performance and (2) does performance differ with

the development team or the management making this allocation decision?

While those questions are relevant in most development situations our analysis

focuses on product development contexts with the following characteristics: (a) there

is a hard launch date; (b) there are rising costs as the development effort transits from

ideation to implementation; (c) the product is subject to measurable, objective perfor-

mance metrics; and (d) there is either a single designer or a single dominant decision

maker on the design team. Development processes with hard launch dates, rising

costs and objectively measurable performance characterize many physical engineered

products in automotive component manufacturing, medical diagnostics, defense, in-

dustrial electronics and other industries.

Hard launch dates can derive from contractual obligations in business-to-business

and business-to-government settings, industry trade shows or high selling seasons, all

of which can impose serious penalties for missing the deadline. Excluded would be

development processes without a hard launch deadline, for example a creative writer

not under contract, one of the more speculative development efforts in a company’s

portfolio, or situations in which the firm can internally extend the time-to-market

horizon without serious penalty.

Many physical engineered products will experience rising costs over the develop-

ment effort as prototypes become more polished and use production-quality materi-

als. It is not that design changes after the transition are impossible, but they are

more costly. Indeed, the serious cost consequences of downstream ECOs (Engineering

Change Orders) are legend in many industrial settings (e.g. Loch and Terwiesch, 1999;

Terwiesch and Loch, 1999). However late changes may incur no additional cost in

other settings, for example graphic design services or editing a novel, and our results
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may not apply there.

Objective, measurable performance metrics are typical of engineering products

that rely more on functional objectives and less on subjective aesthetically related

ones, or where success or failure of a new product depends on the ability of the firm

to match new offerings with poorly understood consumer tastes. Our results may not

apply, for example, in the fashion or entertainment industries.

A single dominant decision maker (working alone or leading a team) is a formal

characteristic of some efforts (for example, furniture companies which contract with

well-known designers) and an informal characteristic of others. A dominant decision

maker can arise organically within a team, or be a de facto reality in companies with

a clear power hierarchy among the departments represented on the team. In these

decisions are concentrated in the hands of one person rather than being shared. Our

results may not apply in settings lacking this feature.

To be able to control the design progress and the resources (costs and time) con-

sumed by the development it is common today for an organization to adopt some vari-

ant of a phase-review framework (Krishnan and Ulrich, 2001; Ulrich and Eppinger ,

2011). At a high level these frameworks feature an “ideation” phase (where the gen-

eral design strategy is determined), a “realization” or “execution” phase (where the

idea is rendered in more accurate materials first using prototyping and later mass

production tools and machines), and a “commercialization” phase (where all the re-

maining business aspects of product launch and ramp up are put into place, including

supply chain formation, sales force training, communications and promotions, fulfill-

ment, etc.). In this paper we study the first two phases. From a designer’s perspective

phase-review stages can also be viewed as stages of a creative process that begins with

a design mandate and ends in the implementation of the chosen idea(s) in a final,

fully functional product. These are creative processes in that only the design con-

straints are provided and designers can explore an open-ended landscape of unknown
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potential for the best solution they can find that satisfies those constraints.

We argue that the time allocation to development phases and decision control

may affect design behaviors with important consequences for design performance. We

examine those effects in an experimental task that involves designing and building a

physical object. Our experimental task is a physical design challenge that reproduces

the four process features listed above. It has binding time constraints and it has two

phases with a transition point after which there is an increased opportunity cost for

expended materials. Designs are subject to an objective, measurable performance

metric, and we study the behaviors of individual designers. Within the described

context participants are free to pursue their own unique ideation and implementation

strategies exploring an open-ended but searchable solution space in which the optimal

is (and will forever be) unknown.

In our experiments exploration is essentially free in the ideation phase but is made

costly in the execution phase. The total amount of time to complete the task is fixed

by a binding deadline and is kept constant across all of our treatments while the

relative allocation of time to ideation and execution is varied in the treatments. In

three Exogenous schedule treatments the transition time is imposed externally. The

designer is assigned to either an early (after 25% of the time), midpoint (after 50%

of the time) or late (after 75% of the time) transition. Which of these is best is not

clear: with an early transition point the designer may not have enough time to find a

breakthrough idea but will have more time for polished execution. A later transition

point allows more time for ideation but may jeopardize the timely realization of the

chosen idea. Do you want to spend more time searching for a great idea, or executing

a given idea? Or, would you prefer the compromise solution of transiting at the

halfway point?

How flexible the transition point should be and who will ultimately make the

transition decision is equally important. The designer or design team has richer in-
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formation about the progress of the ideation task and may be in a better position to

declare when to transit into higher cost development (Bell , 1969). Also, giving them

ownership over the process could increase their sense of satisfaction, or responsibility

or both (Hackman and Oldham, 1980; Pasmore, 1988). Being better informed and

more motivated should have positive design consequences. Alternatively, the ideation

phase may be more intrinsically enjoyable than execution which may delay the tran-

sition (Boudreau et al., 2003). Or, the additional cognitive burden of deciding when

to transit may detract from the energy invested in the ideation process. An exoge-

nously imposed transition point could also serve as a concrete goal, which may have

motivational benefits (Locke and Latham, 2002). Procrastination, lack of structure

and/or cognitive load may have negative design consequences. Our fourth experi-

mental treatment addresses the question of who should select the transition point by

letting the designer rather than the experimenter choose the transition time.

Our study is the first attempt we are aware of to study the effects of different de-

velopment schedules on design strategies and performance. Our contributions fall into

three categories. First, to be able to study the internal creative process of generat-

ing and evaluating design alternatives we introduce a unique data-gathering method.

This includes a new experimental task and a structured approach to tracking and

recording design strategies while maintaining experimental control. The resulting

data set is a rich collection of variables that capture not only how well individuals

perform, but also what design activities they engage and what types of ideas they de-

velop. The analysis of the design strategies and of the launched ideas consolidates our

findings by explaining why certain development schedules induce better performance.

Second, our main experimental results are surprising given the conventional wis-

dom about the trade-off of experimentation (to find a good idea) versus execution

(to implement the idea in functional form), which would lead one to suspect some

monotonic or U-shaped performance in transition time. We find that mean perfor-

8



mance levels are statistically indistinguishable when the amount of time allocated to

the ideation vs. execution phase is varied exogenously. There is, however a variance

effect that aligns with intuition: both the probability of failure and mean performance

conditional on non-failure increase with the length of the ideation phase, hence there

is a risk-return tradeoff when choosing the length of the ideation time. By contrast,

endogenously chosen transition points are uniformly worse than any of the exogenous

times. That is, the designers perform worse when they have to make the transition de-

cision on their own, compared to each of the exogenously imposed transition times. In

additional treatments we examine several competing explanations and show that the

dominant cause of improved performance is the clear punctuation of the exploratory

and the delivery phases in exogenous transition regimes.

Third, our results add texture to several conventional design wisdoms. In par-

ticular, we find that (consistent with the conventional development paradigms) early

build, testing and failing fast are associated with superior design performance, and

that these behaviors occur less frequently when designers are given scheduling auton-

omy. That is, early physical experimentation is both a direct contributor to perfor-

mance, and an observable manifestation of a more latent cognitive effect that can be

influenced with managerial regimes. Another popular recommendation, “Quantity is

Quality” features mixed results in our experiments, and is probably not uniformly

true. Our results also indicate that the quality of generated ideas, the ability to select

the best ideas and to implement the chosen idea in functional form can all be vehicles

for success or failure.

1.2 Literature

The streams of literature that inform our first question (how long should the

development phases be?) and our second question (who should make the allocation

decision?) have few overlaps. In the following we will first discuss the OM literature
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on the relative time allocation to the development phases and then move to broader

psychology, marketing and job design work on creativity and project management.

1.2.1 Operational factors

The question of how to schedule product development phases has attracted some

attention in OM. In an early empirical study Mansfield (1988) finds that Japanese

manufacturers were able to improve new product quality without increasing devel-

opment costs by allocating a significantly larger share of time and money to the

implementation stages of the process compared to US firms which tend to spread

resources evenly over the development stages. The subsequent literature considers

several distinct forces driving the transition timing, however the high-level trade-off

is often similar. Early transition to execution can result in insufficient exploration

and poorer design choices. Late transition can facilitate the discovery of a better

design configuration, but is costly in development and puts timely completion at risk

(Verganti , 1999; Biazzo, 2009).

One of the objectives of product development is to achieve a product-market fit

(Krishnan and Ulrich, 2001). Transitioning from ideation to execution early on may

compromise the product-market fit especially when the market is not fully defined

and downstream redesign is prohibitively costly. The time when design features are

finalized should therefore depend on the pace at which market intelligence becomes

available and on the ability of the firm to implement late design changes further

downstream (Krishnan et al., 1997). Later transition lets the design team follow

the market more closely, but leaves little time for more incremental improvements

that help reduce the production costs and increase the manufacturing yields (Cohen

et al., 1996; Özer and Uncu, 2013). Therefore, the transition to the execution phase

should occur early when customers prioritize prices over quality assuming that the

cost savings achieved during the later stages of development can be passed on to the
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customers (Kalyanaram and Krishnan, 1997; Bhattacharya et al., 1998).

The cited OM papers invoke plausible assumptions regarding the design effects of

different transition times, but most are not validated with data and none delve into

the behavioral drivers of those effects. The implicit assumption is that more time

allocated to a stage will result in better execution of that stage. One of our goals is

to explore the behavior of designers working under different time schedules in order

to learn about the behavioral consequences of early vs. late transition, as well as

of internal vs. externally imposed decision control. Holding the contextual (market

and technological) factors constant we study the consequences of the timing of the

transition and the operational autonomy on the design activities and the effects of

these activities on design performance.

1.2.2 Job design and task structure

While the OM literature focuses on the factors exogenously determined by the

firm’s technological and market environment some worker-centric arguments can be

found in the job design and work processes literature. In a series of studies of behav-

ioral dynamics in individuals and teams working towards a deadline Gersick (1988,

1989, 1991) finds that individuals perceive the midpoint of the work period as a

transformative moment and that this realization helps them to transition from initial

learning and exploration to more execution-related activities. Choo (2014) presents

evidence for a midpoint effect empirically in a study of Six Sigma project schedules:

he finds a U-shaped effect of problem definition time on project duration. If these

findings apply to design-related tasks, we should see halfway transitions resulting in

better performance than either late or early transitions.

Regarding decision control Ariely and Wertenbroch (2002) find that individuals

struggle to stick to self-imposed deadlines and perform better when a long task is

split into equally spaced intervals with intermediate deliverables. Dennis et al. (1996,
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1999) arrive at similar results using a business-challenge task in a laboratory setting.

In the same vein, goal-setting theory (c.f. Locke and Latham, 2002) would predict that

an exogenous transition time may function as a specific goal serving as an important

motivator. If the advantages of time decomposition extend to design tasks, managers

should impose the transition time exogenously upon the design team, rather than

give them operational autonomy. There is some support for externally imposed time

constraints from the human resource management literature. In particular, workers

often prefer spending their time on tasks that “are the easiest, most familiar, or most

satisfying”(Boudreau et al., 2003) rather than allocating their time in a performance-

maximizing way. Therefore, individuals may be unable to correctly allocate their

time if one of the activities (e.g. exploration of ideas) is intrinsically more enjoyable

than the other activities.

However, a larger part of the human resource literature would support a designer-

determined transition time. Research in the job design literature supports the hypoth-

esis that granting workers autonomy to make important decisions will positively affect

performance (c.f. Hackman and Oldham, 1980; Pasmore, 1988), especially when the

challenges workers face are relatively unpredictable, as would be the case in creative

tasks (c.f. Bell , 1969, and references there). This finding has been reinforced in the

product development context. Using structured interviews with product development

executives Sethi and Iqbal (2008) show in a survey of R&D managers that when a

phase-review process is enforced rigidly new product performance can suffer. Maccor-

mack et al. (2001) conduct a survey of firms in the tech industry and find that flexible

development processes are associated with better performing projects than processes

in which the design team follows an uncompromising schedule of completion dates

with stringent criteria.

To summarize the extant literature, OM models suggest that the optimal time

allocation between ideation and execution can depend on contextual factors such
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as technological pace, engineering and supplier flexibility, and market forces but is

relatively silent on the internal behavioral and cognitive dynamics at play. Behavioral

models in psychology and job design do not address our contextual setting directly,

and offer (mixed) recommendations for task assignment in general. No single stream

of research can be directly extrapolated to our experimental setting, in which we

abstract away from external contextual detail and explore the internal consequences

of varying ideation versus execution times and decision rights. Consequently, rather

than forming ex ante hypotheses based on extant theory, we adopt a more inductive,

exploratory approach to our data.

1.2.3 Experimental tasks in the literature

The psychology literature is dominated by tests of “creative production” (for ex-

ample concept lists) that focus on ideation, or tests of “creative insight” (i.e. puzzles

or riddles) that invoke an “aha” moment (Sawyer , 2012). Examples of the latter

include the 9-dot problem and the candle problem (Duncker , 1945), both of which

have a process dimension with the candle task also having a physical execution com-

ponent. However, both tasks have only one (discovered) solution whereas the product

development setting has an open-ended landscape of solutions each of which can be

evaluated on a continuous scale.

There have been several attempts to study the invention of useful physical ob-

jects (Finke et al., 1992; Moreau and Dahl , 2005) and new product definition deci-

sions (Ederer and Manso, 2013; Herz et al., 2014). None of those tasks reflect the

development-specific structure with distinct phases and development costs increasing

over time. Methodologically, our analysis is related to the studies by Girotra et al.

(2010) and Kornish and Ulrich (2011) both of which examine the features of ideas

generated in a business idea challenge and relate them to performance. While our

experiment is different in that it has a physical execution component in addition to
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the ideation stage, we also study the pool of all generated ideas and find that there

are multiple drivers of performance with ideation, selection and implementation of

the idea each accounting for some of the observed performance differences.

1.3 Experimental Design

To address the specifics of the product development setting we develop a real-

effort physical task with an infinite strategy space. Our task reflects development

contexts with (a) hard launch dates, (b) increasing costs to exploration, (c) objectively

measurable performance metrics and (d) an individual designer or a strong team

leader making design decisions.

1.3.1 Subjects and task description

118 subjects were recruited at the University of Michigan to participate in the

study. The mean age of the subjects was 22.4. Approximately one half of the sub-

jects were students with a major in social sciences and arts (including business and

economics); the other half were students with a major in sciences, medicine and

mathematics.1 Subjects were paid a $5 show-up fee plus a payoff contingent on their

performance in the design task. The total payoff including show-up fee ranged from

$6 to $32. Participants worked individually on the following task: given 10 playing

cards and 10 paper clips build a structure as tall as possible that will support as many

coins as possible (up to a maximum of 16 dollar quarters).2

Participants were informed that the task consisted of two phases. During phase 1

all participants were given ample materials to experiment and explore. During phase

1Appendix A.4 presents detailed demographics data.
2For the exact transcript of the experimental instructions see Appendix A.4 . The full set of

instructions including the description of all measures collected during the experiment is included in
the online supplements (http://webuser.bus.umich.edu/ekagan/research.html). Our experimental
task is a version of a challenge used at creativity competitions among high schools and colleges. See,
for example, http://www.iu13.org/images/uploads/documents/IS/PULSE/PULSE_newsletter_

Feb2014.pdf, page 4.
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2 participants were given only 10 cards and 10 clips to work with. At the end of the

experiment, each participant was required to present his/her structure that contained

at most the 10 cards, 10 clips and 16 quarters they were given. Participants were

free to use their time as they saw fit and were only constrained by the amount of

materials in phase 2. In particular, they did not have to replicate the phase 1 design

during phase 2.

Participants were paid based on the performance of their final design in phase

2. Performance was determined by the product of the number of coins and the

construction height. The following formula was used to scale the payoffs to an average

hourly rate of approximately $15:

Monetary value of supported coins× height of the structure in inches

3

1.3.2 Experimental procedures

In all treatments participants were given 20 minutes in total.3 They were randomly

assigned to one of four treatments. Three treatments featured an exogenously imposed

transition from the ideation phase to the execution phase while varying the shares

of the time allocated to the phases. In these treatments participants were given 5

(10, 15) minutes for ideation, after which ideation materials were taken away. Then

participants received the second (exactly 10 cards and 10 clips) set of materials, and

were asked to build the structure that was to be submitted for performance evaluation.

They then had 15 (10, 5) minutes to finish their work. In the fourth treatment we

asked participants to choose their own transition time. Participants were instructed

3When choosing the appropriate duration of the task our objective was to impose binding time
constraints, and at the same time provide enough time for exploration of the design space. To
calibrate the allowed development time we ran a pilot session with 9 participants. The task duration
in the pilot was 20 minutes. Each subject was able to complete the task with payoffs ranging from
$2.67 to $18.67. All subjects appeared to be working throughout the duration of the task, i.e. the
time deadline was binding. The pilot data are not used in the presented analysis due to minor
differences in the instructions. However, including the pilot data does not affect the performance
results.
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to raise their hand to indicate the transition to the execution phase, after which their

exploration materials were collected and the second (constrained) set of materials was

distributed. We refer to this treatment as the Endogenous treatment.

We used a between-subjects design with 4 experimental sessions run in each treat-

ment. Each participant was monitored discreetly by a camera placed behind a one-

way mirror located close to the ceiling of the laboratory.4 Throughout the experiment

participants were separated from their neighbors by partition panels. Remaining time

was announced every 5 minutes and a clock was projected on a large screen, visible

to all participants. Upon completion of the design task we elicited subjects’ risk

and ambiguity attitudes using the Holt and Laury method (Holt and Laury , 2002)

and administered the Need for Cognitive Closure survey (42-item questionnaire about

uncertainty attitudes, Webster and Kruglanski , 1994).5

In section 5 we will consider three additional treatments in which transitions were

also determined endogenously by the designers, but either the information provided

to the designers or the mechanics of the transitions differed. The specific details of

the experimental procedures for those additional treatments will be discussed later.

1.4 Experimental Results

The remainder of this paper is organized as follows. This section will investigate

whether design performance and design activities vary with the transition time and

with the initiator of the transition. Sections 4.1-4.3 will examine the differences at the

performance level. Sections 4.4-4.6 will use the video data to study the micro-process

engaged by the designers (discussion of the video-analysis methodology is postponed

until section 4.4). Section 5 will examine several additional scenarios with endogenous

4A consent form informing the participants about the videotaping was distributed and signed
before the experiment.

5In addition to the main task earnings participants could earn between $1 and $5 from the
elicitation of risk and ambiguity preferences. None of the elicited risk and ambiguity attitude
measures were significantly related to design performance.
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transitions and section 6 will re-examine our data focusing on the relative importance

of idea generation, selection and implementation.

1.4.1 Performance comparisons: Measurement

Performance is measured as the dollar payoff obtained in the design task. We

begin with performance comparisons across the four treatments using two-sided non-

parametric tests. We then present more precise estimates of mean performance differ-

ences obtained in OLS and Tobit regressions controlling for demographic differences

and endogenously chosen transition times. We further examine the performance dis-

tributions generated by each treatment using tests of stochastic dominance, tests of

equality of variances and quantile regressions. We will sometimes use the short no-

tation 5/15, 10/10, 15/5 when referring to the three Exogenous treatments, Exog

when referring to the pooled Exogenous treatment and Endog when referring to the

Endogenous treatment.

1.4.2 Performance comparisons: Results

Design performance comparisons

Mean performance in each treatment is shown in panel (a) of Figure 1.1. The

differences between any two of the three Exogenous treatment groups are not sig-

nificant at any conventional level (Rank Sum test, lowest p = 0.491). In contrast,

there is a significant difference of $2.25 between the means of the pooled Exogenous

and the Endogenous treatments ($5.64 vs $3.39, Rank Sum test, p = 0.012). That

is, on average the design performance is improved by about 66% when a designer’s

schedule is changed from endogenously determined to exogenously imposed. Both

the means and the medians of performance in each of the Exogenous treatments are

higher than in the Endogenous treatment with the 5/15 and 10/10 treatments being

significantly better (Rank Sum test, p = 0.024 and p = 0.020). The 15/5 treatment
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Figure 1.1: Performance across treatments
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Note. In panel (a) bars show mean treatment performance ($). Panel (b) shows within-treatment
performance distribution. Three observations in the 10/10 treatment feature performance greater
than $16 ($17.3, $17.3 and $24). Support values of performance distribution in the other treatments
reach a maximum value of $16. For presentation purpose in panel (b) these three observations in
the 10/10 treatment have been assigned a value of $16.

is not significantly different from the Endogenous treatment despite having a higher

mean and median (Rank Sum test, p = 0.135). This is driven by the high dispersion

of performance outcomes in the 15/5 treatment rather than by a smaller magnitude

of the difference.

While different exogenous allocations of time to development phases do not change

mean performance, they do affect the likelihood of design failure. 23% of participants

in the 15/5 treatment are not able to build a viable structure as compared to 13% in

the 10/10 treatment (Two-sided Proportion test, p = 0.348) and 4% in the 5/15 treat-

ment (p = 0.055). The occurrence of failures rises monotonically with the length of

the ideation phase for the Exogenous transition (Trend test, p = 0.052, Cuzick , 1985).

However, at 33% the proportion of zeroes is the highest for the Endogenous transi-

tion group with the difference between Endogenous and pooled Exogenous treatments

being significant at p = 0.018 (Proportion test). The percentages of design failures,

mean performance and mean performance conditional on non-failure are summarized

in Table 1.1.
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Table 1.1: Summary statistics of participant performance by treatment
Mean performance

Treatment % Failures Mean performance ($) given non-failure ($)

Endogenous 33.33 3.39 5.08
5/15 4.17 5.17 5.39
10/10 13.33 6.28 7.24
15/5 22.58 5.38 6.95

All treatments 25.31 5.01 6.22

Notes. % Failures column shows the percentage of participants unable to present a valid structure
after 20 minutes. Mean performance column shows performance measured as the dollar payoff
obtained in the design task (excluding the show-up fee of $5 and payoffs from uncertainty attitudes
elicitation). Mean performance given non-failure column shows mean performance of the subjects
who were able to present a valid structure.

Regression results in Table 1.2 confirm the results of non-parametric tests. Par-

ticipants in the Endogenous transition group perform uniformly worse than each of

the Exogenous treatment groups. Columns (1) and (2) show Probit marginal effects

with non-failure as the dependent variable. When the decision-maker is concerned

with minimizing the risk of design failure the 5/15 and the 10/10 treatments are both

significantly better than endogenous decision control. In contrast, 15/5 is not signif-

icantly different from the Endogenous treatment.6 Columns (3) and (4) report the

OLS coefficients with design performance as the dependent variable. Given a baseline

performance of $3.39 obtained in the Endogenous transition treatment (Endogenous

treatment is the omitted dummy variable in all regressions in Table 1.2), performance

differentials range from $1.78 to $3.18 depending on the specification and the assigned

Exogenous treatment.

Columns (5) and (6) report Tobit regression coefficients accounting for the clus-

tering of performance outcomes at zero to improve the precision of the estimates and

also allowing estimation of the (conditional) treatment effects for non-zero perfor-

6To check whether multiple hypothesis testing had a notable influence on our results we calculated
Bonferroni-Holm adjusted p-values (Holm, 1979) for this and other important results. Multiple
hypothesis adjustment has been suggested in the experimental literature to counteract potential
type I errors resulting from testing the effects of multiple independent treatments on the same
outcome variable (c.f. Athey and Imbens, 2016; List et al., 2016). For additional details on the
adjustment methodology and for the summary of results see Appendix A .
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mance. Unconditional marginal effects range from $2.19 (p = 0.054) for the 15/5

treatment to $3.08 for the 10/10 treatment (p = 0.010). Conditional on non-failure

the treatment effects range from $1.57 to $2.23 accounting for approximately 72% of

the unconditional marginal effects.7

In sum, each of the exogenous schedules dominates the endogenously determined

schedules. The treatment effects on performance can be traced in part to design

failures, but these do not fully explain the results since a substantial gap remains

after controlling for non-failure.

Variance effects in performance.

Especially for creative tasks the decision-maker may be interested in the right

tail of the performance distribution rather than in measures of central tendency,

so it is useful to examine the entire distribution of performance in each treatment.

Figure 1.1b) suggests that each Exogenous treatment dominates the Endogenous

treatment in the sense of First Order Stochastic Dominance (FOSD). Formally, FOSD

tests (Anderson, 1996; Ng et al., 2011) confirm the dominance in performance of the

(pooled) Exogenous treatments.8 This means that the Exogenous treatments would

yield a higher expected utility for the Endogenous treatment for any decision maker

with a non-decreasing utility function.

While the pooled Exogenous treatments dominate the Endogenous treatment at

7Age and college major help identify two subpopulations of subjects who performed significantly
better than the rest: subjects who were enrolled in sciences, mathematics and engineering (n = 52)
and older subjects (median split by age, resulting in n = 59). For robustness we ran all regression
specifications on these subpopulations. Treatment effects are greater in magnitude relative to the full
sample: unconditional average marginal effects are between 2.91 and 4.64 for the Tobit specification
in column (6), p-values are between 0.013 and 0.097.

8Anderson (1996) is a non-parametric test based on splitting the combined performance data into
equally spaced intervals and then comparing the number of observations in each interval between
treatment groups. Using a quartile split we find that the Endogenous treatment is dominated by
the pooled Exogenous treatments (p = 0.027). Ng et al. (2011) method uses quantile regression
coefficients (and their asymptotic distributions) to determine whether one group has consistently
higher/lower marginal effects over a range of quantiles. Using this method we are able to reject the
Null of the non-dominance of either of the two distributions at p < 0.05.
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any given quantile, the size of the performance gap depends on the transition time

and the quantile range (see figure 1.1b). In particular, the performance gap between

10/10 and the Endogenous treatment remains substantial ($2-$4) at any within-group

quantile. By contrast, the gap is relatively narrow ($0-$2) for the bottom 60% when

comparing 15/5 and the Endogenous treatment and for the top 40% when comparing

5/15 and the Endogenous treatment. This suggests a variance effect in transition time.

Indeed, the 5/15 and 15/5 treatment cdfs exhibit a single-crossing property implying

that the preferred exogenous regime depends on the risk preferences of the decision-

maker in question. The variance increase is confirmed by tests of equality of variances

(Levene, 1960). The variance in the 5/15 treatment is lower than the variance in

pooled 10/10 and 15/5 treatments, and also lower than in the 15/5 treatment with

the difference being marginally significant (p = 0.069 and p = 0.075).9

In sum, while there are no differences in mean performance there are variance ef-

fects in performance within the Exogenous treatments. While a risk neutral decision-

maker would be indifferent in transition time (as long as it is imposed exogenously),

a risk-averse decision-maker would avoid long ideation phases while a risk-seeking

decision maker would avoid short ideation phases.

Endogenously chosen transition times.

We next study when designers make the transition when they are given the deci-

sion rights and whether performance differs with the endogenously chosen times. The

average endogenously chosen transition time is 10.74 minutes. With endogenous tran-

sitions, later transition times are associated with significantly reduced performance

9The following example illustrates the preference order conditional on the degree of risk aversion.
Suppose a decision-maker is an expected utility maximizer characterized by the power utility function
u(x) = xa. Given the performance data in the Exogenous treatments, she prefers 5/15 for a ∈
(0, 0.44), and 10/10 for a ∈ [0.44,∞). The least preferred exogenous allocation is 15/5 for a ∈
(0, 0.85) and 5/15 for a ∈ [0.85,∞). That is, later transition is characterized by both greater upside
and greater downside risk, but there are some non-linearities in the underlying data (the marginal
improvement in performance given non-failure is strong as one goes from 5/15 to 10/10 but the
improvement is negligible as one goes from 10/10 to 15/5).
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Table 1.2: Performance comparisons across treatments.
(1) (2) (3) (4) (5) (6)

Probit Probit OLS OLS Tobit Tobit

5/15 treatment 1.301** 1.416*** 1.780 2.372* 3.039* 3.688**
(0.513) (0.523) (1.217) (1.310) (1.679) (1.720)

10/10 treatment 0.680* 0.794** 2.891** 3.177** 3.859** 4.181**
(0.368) (0.401) (1.363) (1.363) (1.589) (1.608)

15/5 treatment 0.322 0.395 1.996 2.406* 2.602 3.093*
(0.338) (0.361) (1.268) (1.311) (1.585) (1.598)

Constant 0.431* 0.390 3.386*** -2.866 1.985* -4.473
(0.227) (0.796) (0.783) (3.894) (1.125) (3.997)

Controls NO YES NO YES NO YES

Observations 118 112 118 112 118 112

Notes. Probit, OLS and Tobit coefficients are reported. The omitted category is the Endogenous
treatment. Dependent variable is non-failure (1Performance>0) for Probit and continuous Perfor-
mance ($) for OLS and Tobit. Endogenous treatment dummy is omitted in all specifications. Con-
trols are age, gender and Engineering major (Yes/No). The difference in the number of observations
is due to six subjects not providing demographic data.
* p < 0.1, ** p < 0.05, *** p < 0.01.

(ρ = −0.365, p = 0.037). That is, while performance is invariant in transition time

with exogenously determined schedules, performance deteriorates in transition time

for designer-determined schedules.

Exogenous transitions lead to significantly improved performance both before and

after controlling for the transition times. The pooled Exogenous treatment has an

average advantage of $2.77 (Tobit regression, p < 0.01) relative to the Endogenous

treatment. After controlling for the transition times the gap is almost unchanged at

$2.76. However, after adding the interaction term between the Endogenous treatment

dummy and the transition time we find that the performance gap between Endog and

Exog increases in transition time. The performance effect of Exogenous transition is

negligible and not statistically significant when comparing performance at the 5th

minute ($0.48, p = 0.793). However, it increases in magnitude and statistical signif-

icance with later transition time reaching $2.49 at the 10th minute and $3.91 at the
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15th minute (the effect is significant at p < 0.05 starting with minute 9).10

Summarizing the performance comparisons, in the Exogenous treatments the in-

crease in risk of failure with longer ideation is at least partially offset by the improved

performance of non-zero constructions. That is, later transition increases the risk

but does not affect mean performance. In contrast, performance in the Endogenous

treatment is uniformly worse than in any of the Exogenous treatments with later

endogenous transitions performing worse than earlier endogenous transitions.

1.4.3 Performance comparisons: Discussion

Given that designers have heterogeneous abilities and may differ in their explo-

ration strategy one could expect that they are in a good position to decide when

to initiate the transition and start execution. We have seen the opposite, that the

Endogenous transition treatment does worse than any of the Exogenous treatments

even after controlling for age, major and the endogenously chosen transition times.

Endogenous treatment participants tended to fail more, garnering zero reward,

but even restricted to non-failures the Exogenous scenarios are better than the En-

dogenous scenario. In fact increased failures explain only 1/3 of the advantage of the

Exogenous treatment. The advantage of the Exogenous decision control extends to

the entire distribution of performance outcomes with the Endogenous treatment be-

ing first order stochastically dominated by the combined Exogenous treatments. The

negative effects of internal decision control persist for comparisons at any within-

group performance percentile, so a decision maker prefers the Exogenous treatments

as long as her utility function is non-decreasing in payoffs.

Can the inferior performance of the Endogenous transition group be explained

by the transition times they choose? We explored this alternative by making perfor-

10The coefficient of the interaction between decision control and transition time is not statisti-
cally significant: β = −0.560, p = 0.104. Rather than focusing on the average interaction effect
our analysis uses the interaction to estimate the effects of decision control holding transition time
constant.
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mance comparisons between Exogenous and Endogenous groups holding transition

times constant and found that transition time and decision control interact. When

designers have to choose transition times for themselves we see a deterioration of

performance with later transition times suggesting that late transitions are at least

partially responsible for the observed treatment differences. A plausible interpreta-

tion of this finding is that designers who transition late are forced into executing

their design under time pressure and this hurts performance. Few of them are able

to exploit a long ideation phase to find a truly exceptional (and executable) design.

However, even when the time split is 50-50 the gap between the Endogenous and the

Exogenous groups remains significant, so poor performance of those who choose to

transition late does not explain all of the performance gap.

In contrast to the substantial differences between the Exogenous and Endoge-

nous treatments, all of the Exogenous groups do similarly well in mean performance.

However, we find that the risk of failure (zero payoff) increases in transition time,

suggesting a risk-return trade-off that aligns with intuition. Longer ideation times

and shorter execution times are higher risk schedules. The converse, short ideation

times and long execution times have the lowest performance improvement relative

to the endogenous base case conditional on non-failure. This makes intuitive sense.

While it is not clear that these effects will exactly balance (so there is no statistical

difference among treatments) in more general cases, we would still expect risk-averse

decisions makers to prefer shorter ideation and longer execution times.

Our review of the job design and the organizational psychology literature (section

2.2) suggested three potential mechanisms that may drive poor performance in the en-

dogenous transition regime. The first one, the idea that the intrinsic enjoyment of one

of the phases may prevent an efficient endogenous allocation of time is not supported

in our data. Mean performance does not vary with exogenous time allocation, so in

principle any (reasonably) chosen transition time could lead to good performance.

24



Rather, there appears to be something about the exogeneity of the time constraint

that improves design performance. Either of the two remaining mechanisms suggested

in the literature (increased cognitive load in endogenous transitions and motivational

effects of process goals) could drive the performance gap. The next sections will

further unpack the performance advantage of exogenous transition regimes by ana-

lyzing the design activities (sections 4.4-4.6) and by examining alternative managerial

regimes that keep transitions endogenous but change some aspects of the transition

process (section 5).

1.4.4 Design Process: Measurement

We continue the investigation by looking at the micro-structure of the creative

effort and examine what behaviors are related to improved performance and whether

those behaviors differ with the time allocation and decision control. Using individual-

level videos we were able to record (a) subjects’ activities, i.e. their exploration

and testing strategies and (b) the structural properties of the ideas they launch.

The examination of the design process data helps develop intuition for what is good

design practice and how the design strategies and the launched ideas differ with

endogenous/exogenous decision control.

Data-gathering approach

To allow insight into the micro-structure of the creative exercise and its relation-

ship to outcomes the video data first required an interpretive stage to go from the

raw data to data amenable to statistical analysis. Qualitative research techniques

were designed specifically to achieve such mappings. The body of work on qualitative

methods is now extensive (c.f. Strauss , 1991; Miles and Huberman, 1994; Maxwell ,

2012; Saldaña, 2011; Yin, 2013, and references there), and converges on “coding” as

the method of choice to map unstructured inputs into more highly structured data.
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A code is a symbol (letter, number, word or phrase) that reflects the content of a

segment of qualitative data. Researchers derive codes either inductively (looking at

the visuals and cataloging what appears to be happening) or deductively (constructing

categories based on existing theory and/or the research questions being asked) or, as

in our case, a combination of the two. Since we were looking at idea generation and

execution, our attention was naturally focused on those and related activities. Then,

once a code is derived, the compromising effects of subjectivity are reduced by having

independent researchers code the videos (mapping visual inputs into code categories

with time stamps), and further reduced by using multiple independent coders and

looking for consistency among them.

In most cases, and in ours, deriving a usable coding scheme is a time-consuming

iterative process. Each of the co-authors reviewed videos and proposed a scheme de-

signed to capture subjects’ behaviors, and then all co-authors attempted to use each

scheme on a varying test set of videos in a search for agreement. After several conver-

gence failures with alternative coding schemes we generated one based on cataloging

the structural elements of an idea and reviewed the final structures generated by the

subjects to assure comprehensiveness (see the electronic companion at the end of this

document for our final coding scheme and figure 1.2 for examples of some structures

and their codes). We then recruited and trained student coders and asked that each

coder analyze each video and record the results in a data sheet. These data sheets

were checked for inter-coder consistency and then used as inputs to our analysis.

The coders were unaware of the experimental results and the research questions.

The coded variables were aggregated by averaging the values submitted by the coders.

Each coder first worked on three training videotapes (which covered a wide range of

construction strategies) to provide a sufficient level of understanding of the tracking

and classification method. To ensure that coding outcomes did not interact with

the treatments we assigned and randomized the order in which the videotapes were
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coded. The data set was divided into 8 parts with each treatment split into 2 parts.

The order in which the coders performed the coding was ABCDABCD for coder 1,

BCDABCDA for coder 2 and CDABCDAB for coder 3.11

Recording design ideas

The main building block of our coding approach is a “design idea” or a “de-

sign strategy” which characterizes the basic appearance features of each construction

launched by a designer. Each design idea was characterized by four attributes:

1. general form (P/WB/ML/Fl)

2. load bearing strategy (V/A)

3. integration of components (SEP/MP)

4. use of materials (F/T/P)

The first attribute, the construction’s general form can be a “pedestal” (P), a “wall/box”

(WB), a “multiple-legs” structure (ML) and a “flat stack” (Fl). A “pedestal” is char-

acterized by a narrow load-bearing surface. The difference between WB and ML

is that WB features multiple, connected (or visibly touching across a large surface)

cards making up a wall. ML has several stand-alone “legs” connected only on top. Fl

is a flat stack of cards piled horizontally. The second attribute of an idea is its load

bearing strategy which can be vertical (V), angled (A), or both. The third attribute

refers to how the construction components (coins or layers) are connected. Compo-

nents can have a separating surface card between them (SEP) or a multi-purpose

surface, for example when coins are placed directly on the sharp corner of a folded

11Our main concern in creating a randomized coding order were possible learning and fatigue
effects. The total net runtime of the videotapes exceeds 40 hours and coders typically spent an
additional 40 hours interpreting and filling in the coding forms. The supplementary documents at
http://webuser.bus.umich.edu/ekagan/research.html provide several inter-coder reliability measures
for the design strategy variables. Most of the variables show high levels of consistency.
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Figure 1.2: A sample of design ideas

 

P-V-MP-F 

ML-A-SEP-F ML-A-MP-F ML-A-SEP-F WB-V-MP-FT 

P-V-MP-F 

 

ML-A-SEP/MP-F 

 

P/ML-V-MP/SEP-F 

 

ML/WB-A/V-SEP-F 

 

Fl-V-SEP ML-V-SEP-F WB-V-SEP-F 

Notes. The images are examples of single-level and two-level structures annotated with their code.

card. The fourth attribute, use of materials can include folding (F), tearing (T) and

piercing (P), or any combination of those elements. Figure 1.2 demonstrates several

ideas along with their assigned codes.

Many construction ideas featured more than one layer. For such multi-layered

constructions first each layer was characterized using the 4-attribute vector. Then,

28



if layers were identical the entire construction was characterized using the layer code

(c.f. the leftmost construction in the bottom row of figure 1.2). If a construction

exhibited two or more different layers the attributes of each layer were included in

the code (see for example the three rightmost constructions in the bottom row of

figure 1.2).

Variable definition

Assigning a descriptive code to each idea creates a clear rule that helps distinguish

a new idea from a variation on an existing idea. A new idea was recorded each time

any of the four elements of the idea code were changed. The change of code could

either be triggered by a change of the structural properties of an existing construction

or by an addition of a layer with a hitherto unused structural property. We used the

number of design ideas each subject entertained before committing to a design as a

measure for idea quantity.

In addition to counting the number of ideas we recorded the times when each idea

was launched and when it was abandoned. Similarly, we tracked and recorded several

other activities engaged by the designers. In particular, we recorded the number of

coin stacking attempts, the number of construction collapses as well as the times when

those events occurred. The descriptive statistics of these variables are presented in

Appendix A.12

12Our list of variables initially included the number and times of variations on each idea. However,
due to low consistency (correlations across coders < 0.3) those variables were discarded. We also
attempted to combine measures of search behavior and testing/failures by looking at the number
of ideas with at least one collapse/failure, as well as number of collapses/failures per idea. These
measures showed low levels of inter-coder consistency and did not predict performance.
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1.4.5 Design Process: Results

Design activities and design performance

With exogenous decision control the frequency of failures and mean performance

given non-failure both increased with later transitions leading to similar mean per-

formance levels in the Exogenous treatments. The design process data are consis-

tent with those performance results. In particular, in the Exogenous treatments

most process measures exhibit only mild differences in transition time. The only

significant trend can be observed for the times-to-last stacking (16:28 min in 5/15,

16:57 min in 10/10, 18:29 min in 15/5, p < 0.01). However the relationship be-

tween this process measure and the payoff measures is weak (Exogenous treatments:

ρpayoff, time-to-last stacking = −0.22, p = 0.046, ρprobability of failure, time-to-last stacking = −0.01,

p = 0.950).13

In contrast to the within-Exogenous treatment comparisons there were some strik-

ing differences in the design activities engaged in the (pooled) Exogenous and in the

Endogenous treatments. We focus in particular on the differences in activity tim-

ing.14 Figure 1.3a)-1.3c) shows that the times of launching the first idea, the first

test and experiencing the first collapse each occur with a substantial delay in the

Endogenous treatment (Rank Sum tests, p = 0.017, p = 0.011, p = 0.091), relative

to the pooled Exogenous treatments. That is, designers in the Endogenous condition

13While the differences in the times-to-last stacking are statistically significant, the differences in
the times-to-last idea are not (6:22 min in 5/15, 07:43 min in 10/10, 08:05 min in 15/5, p = 0.156).
In the 5/15 treatment the last idea is launched after the transition to execution (6 : 22 > 5 : 00,
one-sided t−test: p = 0.088) and in 10/10 and 15/5 treatments the last idea is launched before the
transition (07 : 43 < 10 : 00, p = 0.014 and 08 : 05 < 15 : 00, p = 0.000). This suggests that there is
some degree of endogeneity in how much time is spent on ideation even with exogenous transitions.
An alternative measure of time allocation between ideation and execution is the number of ideas
explored after a successful stacking. Trying new ideas after the first successful stacking indicates
that a designer is engaged in a broader exploration of the design space, as opposed to stopping and
polishing an idea that works. Similar to the time-to-last idea, there was a mild trend of exploring
more new ideas after a successful stacking with later transition time, however the trend was not
significant (Exog treatment means: 0.49, 0.62, 0,75; Trend test: p = 0.239).

14There were treatment differences in other process variables, however those process variables
failed to predict performance, so we do not discuss them here. See Appendix A for the complete
list.
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Figure 1.3: Activity times and design performance
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Note. Figures (a), (b) and (c) show mean times to first idea, stacking and collapse by treatment.
Figures (d), (e) and (f) show the relationships between those variables and performance. The dotted
line indicates locally weighted scatterplot smoothing (bandwidth = 0.8).

spend more time pondering about possible design strategies or exploring the materi-

als before launching a (recognizable) design idea. We also ran duration analysis with

time-to-first stacking and time-to-first idea as dependent duration variables. Consis-

tent with the non-parametric test results Endogenous transition is associated with

longer time-to-first build and with longer time-to-first stacking. For example, for the

time-to-first stacking the Endogenous treatment is associated with a delay of 2.86

minutes (p < 0.01).15

15Cox Proportional Hazard model was used to estimate marginal effects in the duration analysis.
Additional analysis revealed that the delays in first stacking were also associated with reduced
exploration measured as the number of ideas after a successful stacking (ρ = −0.33, p < 0.01)
and with reduced testing intensity measured as the number of successful stackings on new ideas
after a successful stacking (ρ = −0.28, p < 0.01). Similar results were obtained for the delays in
time-to-first idea. Both the number of ideas after a successful stacking and the number of successful
stackings on new ideas were significantly reduced in the Endogenous treatment (Rank sum tests,
p < 0.01 and p = 0.024) and both were also significantly related to payoff (ρ = 0.18, p = 0.051 and
ρ = 0.19, p = 0.042). That is, delayed physical ideation in the Endogenous treatment results in
insufficient exploration of the design space and insufficient testing, leading to reduced performance.
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Correlation analysis reveals that the tracked count variables (number of construc-

tion ideas, stackings and collapses) are not significantly related to design performance

(all ρ < 0.15, all p > 0.1). However, times-to-first idea, stacking and collapse are

associated with greatly improved performance, as shown in figure 1.3d)-1.3f). In par-

ticular, the ability to create a viable structure early on is associated with improved

performance (ρ = −0.308, p < 0.001). Performance is also improved when the first

coin stacking occurs early on (ρ = −0.349, p < 0.001) and when the first failure

occurs early on (ρ = −0.250, p = 0.014). Similar results were obtained in regression

analysis after controlling for individual differences.16

Do process variables explain treatment differences in performance?

Our results so far indicate that both decision control and delays in important

activities explain large portions of performance differences. We have also seen that

endogenous decision control is associated with delays in each of those activities. How-

ever, it is unclear how much of the treatment differences in performance are explained

by the process delays, and how much remains unexplained. To examine the relative

contribution of the process delays to the performance gap we regressed performance

on both the Endogenous treatment dummy variable and the process variables. Table

1.3 shows the Tobit coefficients and the percentages of common variation in perfor-

mance explained by the process variables.17

16To test for non-linearities in the relationship between the timing of ideas and performance we
created variables for the number of ideas in each 2 minute interval of the 20 minute period. This
alternative specification confirmed that more ideas led to better performance when those ideas were
explored in the first two minutes (p < 0.01), whereas the number of ideas in later periods did not
affect performance. Similar results were obtained for 3, 4, 5, 6 minute windows, highest p = 0.022.
We conducted similar robustness analyses for times-to-first stacking and collapse, both of which were
consistent with the presented results.

17The percentages were calculated as follows. We first calculated the marginal effects of the
process variables and of the Endogenous treatment. We then calculated the predicted performance
differences using those marginal effects and average treatment values of the process variables. This
was done by taking the ratio of the predicted difference between the Endogenous and the pooled
Exogenous treatment that is due to the process variable and the total predicted difference (that is
due to both the treatment dummy and the process variable). For robustness we also tested several
alternative specifications that included multiple process variables, discretized process variables and
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Table 1.3: Relationships between performance and process variables
(1) (2) (3) (4) (5) (6) (7)

Exog (pooled) 3.653*** 3.747*** 4.052*** 4.170*** 3.174** 2.379* 4.725***
(1.323) (1.356) (1.362) (1.333) (1.294) (1.267) (1.518)

# Ideas 0.434
(0.665)

# Stackings -0.143
(0.206)

# Collapses -0.477*
(0.255)

Time-to-first -0.542***
idea (min) (0.161)
Time-to-first -0.465***
stacking (min) (0.120)
Time-to-first -0.275**
collapse (min) (0.127)

Constant -4.594 -5.632 -4.003 -4.031 -2.542 -5.772 -4.341
(3.971) (4.101) (4.147) (3.914) (3.809) (4.143) (4.239)

Observations 112 108 108 108 108 107 90

Variation explained by process variable
NA NA NA 17.78% 35.78% 11.23%

Note. Tobit coefficients are reported. The omitted category is the Endogenous treatment. Perfor-
mance ($) is the dependent variable. Age, Engineering major (Yes/No) and gender are controlled
for. The number of observations is reduced by four in columns 2-7 due to four videos being defective.
Time variables are measured in minutes elapsed from the beginning of the design task. In columns
6 and 7 the number of observations is reduced due to one participant never attempting a stacking
and eighteen participants never experiencing a collapse. Comparisons for which the treatment effect
and the fitted value difference had opposite signs, or in which the process effect was not significant
are denoted by “NA”. * p < 0.1, ** p < 0.05, *** p < 0.01.

Columns (2)-(4) of table 1.3 confirm that the count variables (# ideas, # stackings,

# collapses) do not explain the advantage of exogenous transitions. Among the time

variables (columns 5-7) time-to-first stacking has the greatest explanatory power:

one minute of delay costs the designer $0.37 (marginal effect significant at p < 0.01)

explaining approximately 36% of the performance variation. Time-to-first idea is also

significantly related to performance explaining approximately 18% of performance

variation (p < 0.01). The performance effect of first failure is somewhat weaker,

explaining only 11% of the combined performance variation (p = 0.033). Note also

quadratic specifications, all of which confirmed our results.
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that adding the time-to-first idea and time-to-first stacking to the list of regressors

lowers the magnitude and the significance level of the Exogenous treatment coefficient

(highest p−value is 0.058 in column 6). That is, the treatment effect on performance

is partially explained by the delays in those activities.

In sum, early build, testing and even failures all have positive effects on design

performance and explain up to one third of the treatment differences. With the

endogenous decision control those activities are delayed by several minutes causing

significantly reduced performance.

1.4.6 Design Process: Discussion

The analysis of the micro-structure of the design effort highlights some behavioral

manifestations of the endogenous decision control. When endowed with full schedul-

ing autonomy designers launch their first construction, attempt their first test and

experience their first failure with a substantial delay, all of which leads to greatly

reduced design performance.

The delays in physical activities explain a significant share of the performance

advantage. In contrast, different Exogenous allocations of time to phases do not

affect these design activities. Also, pure count measures (as opposed to timing) of

design activities do not explain performance differences. Taken together these results

confirm some conventional wisdoms and contradict another, commonly associated

with good design practice. In particular, designers are often advised to “get physical

fast” (go rapidly to first build) and “fail fast” (test early), both of which are supported

by our results. Also, designers are often told that in the ideation stage “Quantity is

Quality” (the more ideas, the better). This is not supported by our data.

We also find that the negative effects of delays in physical development do not

disappear fully once the transition time is fixed exogenously. In fact the delays explain

about one third of the performance difference between the (pooled) Exogenous and the
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Endogenous treatments. This has two important implications for managing product

development. First, managers may be able to improve new product performance by

imposing strict time bounds on ideation and by limiting extensions of the exploratory

period. Second, design performance may benefit from an additional requirement

on design teams to build early physical prototypes of their ideas. We present new

evidence for the validity of the latter recommendation in section 6 where we reexamine

the effect of early physical build/test and the effects of prototyping on performance.

The benefits of early prototyping and testing have been studied extensively in

the product development and project management literature (Iansiti , 1995; Thomke,

1998; Dow et al., 2009; Parvan et al., 2015). However, the literature is less ex-

plicit about the relationship between early physical representation of design ideas

and scheduling autonomy. In fact, the literature sometimes considers “flexible devel-

opment processes”, “failing fast” and “get physical fast” to be part of the “lean” de-

velopment paradigm and does not differentiate between decision control and process-

related recommendations to design teams (c.f. Iansiti , 1995; Maccormack et al., 2001;

Biazzo, 2009). Our findings suggest that firms need to be cautious when applying

“lean” ideas to their design projects. In our data scheduling flexibility had negative

design consequences, whereas strict bounds on ideation resulted in earlier physical

build and testing leading to greatly improved performance.

The above analysis and discussion leave several process-related questions unan-

swered. First, we cannot determine with the extant data whether the delays in

time-to-first build and test are the immediate cause of poor performance (in which

case they may be directly addressed by managers) or if they are a manifestation of

some latent cognitive effect of the endogenous decision control. Second, while we were

able to uncover several drivers of design performance the gap between Exogenous and

Endogenous transition groups remains even after controlling for design activities, en-

dogenously determined transition times and individual differences (to the extent that
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we could identify and measure those factors). This suggests a more careful examina-

tion of the psychological drivers of performance differences.

Two psychological effects of endogenous decision control are suggested by the liter-

ature. Endogenous decision-making could result in the experience of choice overload

(Iyengar and Lepper , 2000), or (more generally) cognitive overload caused by the

complexity of the task (Dennis et al., 1996, 1999). In particular, being preoccupied

with scheduling tasks may detract from direct value-adding activities leading to poor

performance. Or, alternatively a fixed transition point may provide the designer with

a motivational boost by signaling the approaching phase transition. Recent work in

goal-setting theory has shown that milestone progress checks that give individuals

feedback on their advancement to a superior goal (here: design success) may lead to

better work outcomes (Locke and Latham, 2002; Fishbach et al., 2006). Indeed, exoge-

nously imposed transitions may be perceived by designers as process goals improving

self-efficacy and design performance.

To explore these possibilities the next section will examine three new treatments.

If early building and testing is the key to better performance, we may be able to

enhance performance by sharing this wisdom with designers. This could be expected

to encourage earlier building and testing, and potentially enhance performance. If

cognitive load is the reason for deteriorated performance, then relieving the designer of

the scheduling duties by asking her to pre-commit to a transition time before the task

begins should exhibit enhanced performance. If framing the process as proceeding in

phases is the key to better performance, even if timing is chosen endogenously, then

we should be able to enhance performance by demanding a minimally performing

deliverable that clearly punctuates a phase, prior to allowing a transition.
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1.5 Additional Treatments: Alternative Scenarios with En-

dogenous Transition

We examine three new scenarios that allow a clean test of some of the recom-

mendations developed in section 4, help determine the relative importance of the

psychological drivers of performance, and explore whether improved performance can

be achieved without imposing an exogenous time schedule. In particular, we examine

transition regimes in which (1) transitions are endogenous but early build and test-

ing are encouraged, (2) transitions are endogenous but designers are asked to choose

binding transition times before they start working, and (3) transitions are endogenous

but are permitted only after a demonstration of a minimum performance prototype.

Scenario 1 re-examines our process-related recommendation discussed in section 4 (of

encouraging early build and testing).18 Scenario 2 tests whether relieving designers of

scheduling duties while they are working on the design task is the main driving force.

Scenario 3 reflects a compartmentalized “stage-gate”-like regime with the design task

clearly framed as a phased process.

1.5.1 Experimental design

The basic setup of the new treatments was similar to the original four treatments:

subjects worked on the same design task, were given 20 minutes for completion and

the task was divided into the ideation and execution phases. 95 subjects were re-

cruited for these treatments. The treatments resembled the three scenarios described

above (the instruction text is reproduced in the electronic companion, at the end

of this document). In the first new treatment (henceforth referred to as the Nudge

treatment) we examined the effects of encouraging early build and testing. Designers

transitioned endogenously and were free to pursue any design strategy and choose the

18Note that sharing information with the designers may encourage a sense of urgency about certain
tasks, but would not clearly frame the creative process as a phased process.
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transition time as they saw fit. However, they were advised to begin early with phys-

ical build and testing. They were also informed that previous experiments indicated

a positive relationship between early build/testing and performance. In the second

(Pre-commit) treatment we asked designers to commit to a transition time before

they began working. The third (Prototype) treatment was identical to Endog with

the exception that transition into execution was allowed only after designers were able

to demonstrate a minimum viable construction (worth at least $1, corresponding to

the 25th percentile of the performance distribution in the original four treatments).

Designers who were not able to demonstrate a minimum viable construction were not

allowed to transition into execution receiving a payoff of $0.19

1.5.2 Experimental results

Performance comparisons

Design performance in each new treatment is not significantly different from the

(pooled) Exogenous transitions (Rank sum tests, all p > 0.40). Mean performance

in the Nudge (Pre-commit, Prototype) treatment is $5.53 ($6.07, $6.67). That is,

each of the treatments is associated with improved design performance, relative to

the Endogenous treatment ($3.39). However, while requiring a prototype and asking

to pre-commit to a transition time both lead to significant improvements (Rank Sum

tests, p = 0.023 and p = 0.025, respectively) the advantage of the Nudge treatment

is only marginally significant (p = 0.089).

The performance advantage of the new treatments relative to Endog is partly

driven by fewer design failures. However the differences in the proportion of failures

are not statistically significant (Probit regressions, p > 0.26). That is, Exogenous

5/15 and 10/10 are the only regimes with the failure rate being significantly reduced,

19In all treatments participants were paid based solely on their final performance; prototype
performance was not incentivized.
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relative to the Endogenous base case (c.f. columns 1 and 2 of table 1.2). Perfor-

mance results conditional on non-failure are similar to the unconditional performance

results. In particular, Nudge improves performance given non-failure, but not signif-

icantly (Rank Sum test, $6.86, p = 0.249), whereas Pre-commit and Prototype are

significantly better, relative to the Endogenous treatment ($7.77 and $8.90, p = 0.021

and p < 0.01, respectively)

Column 1 of Table 1.4 reports Tobit regression coefficients with performance as

the dependent variable (baseline treatment: Endog). The average performance ad-

vantages of the Nudge and the Pre-commit treatments are $2.05 (p = 0.082) and $2.03

(p = 0.078), respectively.20 However, the highest performance level is exhibited in the

Prototype treatment (average marginal effect: $3.20, p = 0.010). In columns (2)-(4)

we control for the effects of the process variables that have previously been shown to

affect design performance. Consistent with our previous findings one minute of delay

in the first physical build (first stacking, first failure) is associated with performance

drops of $0.39 ($0.33, $0.31, all p < 0.01). After controlling for the time-to-first build,

time-to-first test and time-to-first collapse Prototype retains its position as the best

performing treatment with the treatment effects being significant at p < 0.01 in each

specification. In contrast, the performance effects of Nudge and Pre-commit are less

robust to inclusion of the process variables. The implications of this result will be

discussed below.

Design process

The new treatments exhibit some differences in the activities engaged by the

designers.21 In particular, the number of ideas in Nudge and Pre-commit is related

20Pre-commit had a higher percentage of engineers (whose performance was significantly better
relative to non-engineers, regardless of the treatment), which explains the discrepancy between the
effect sizes and the significance levels in Rank Sum tests and those obtained in Tobit regressions. In
the latter college major was controlled for.

21When coding the video data from the additional treatments we only recorded a subset of the
original coding variables. The subset was selected based on the variables that were found to drive

39



to performance (ρ = 0.321, p = 0.084 and ρ = 0.500, p < 0.01). We did not see a

positive relationship between idea quantity and performance in any of the remaining

treatments (Prototype, Endog, Exog). That is, “Quantity=Quality” is not uniformly

supported, but rather depends on the transition regime in question.

There were also some differences in the timing of the activities. The time-to-first

idea is reduced by only 11 seconds in Nudge, relative to the Endogenous base case

scenario (Rank Sum test, p = 0.676), while the time-to-first stacking is reduced by

2.35 minutes (p = 0.081). In contrast, neither the times-to-first idea nor the times-to-

first stacking are significantly different in the Pre-commit and Prototype treatments,

relative to the Endogenous base case. That is, front-loaded ideation (in the form of

earlier tests) is both a unique feature of the Exogenous regime and a behavior that

can be encouraged by communicating its advantages to designers.

We have seen previously that approximately one third of the performance gap

between the Exogenous and the Endogenous treatments could be traced back to the

process delays. We repeat the process analysis for the new set of treatments. The

bottom panel of table 1.4 reports the results with the Endogenous treatment used

as the comparison benchmark in each case. As before, these comparisons are based

on the average delays in each treatment and the average marginal effects computed

using the Tobit estimates. Comparisons for which the treatment effects and the fitted

value differences have opposite signs are denoted by “NA”.

We first replicate the comparison of Endog and Exog using the new estimates of

the process variable effects.22 We find the portion of the performance gap explained

by the delays to be consistent with our previous results. The time-to-first stacking has

performance differences in the original four treatments (Time-to-first build, stacking, collapse, as well
as the structural characteristics of the ideas). Due to the simplified coding procedure we expected
less variability in the coding, so we reduced the number of coders from three to one.

22The percentages for Exog/Endog comparisons in table 4 are slightly different than those com-
puted in table 3. This is driven by the differences in the marginal effects of the process variables
that are estimated using the original four treatments in table 3 and the full data set (original +
additional treatments) in table 4.
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the strongest explanatory power accounting for approximately 1/3 of the performance

differences between Endog and Exog. Similarly, approximately 1/3 of the performance

advantage of Nudge over Endog is explained by the time-to-first stacking. The Nudge

dummy variable becomes non-significant after the timing variable is added to the

list of regressors. That is, the treatment effect of Nudge is substantially weakened

after controlling for time-to-first stacking. In contrast to the Nudge treatment, the

advantage of the Pre-commit and the Prototype treatments appears to be largely

driven by other factors than the process delays. For both Pre-commit and Prototype

the delays accounted for only about 1/6 of the performance differences.

In sum, the additional treatments confirm that early build and particularly early

testing are associated with enhanced performance. However, encouraging early build

and testing does not close the entire performance gap between endogenous and exoge-

nous transitions. Similarly, reducing the cognitive load by asking designers to make

an ex-ante time allocation improves performance but does not explain the entire gap.

In contrast, requiring a minimum performance prototype closes the entire gap.

1.5.3 Discussion

The new treatments help refine our understanding of the drivers of the negative

performance effects of endogenous decision control. In particular, our results indicate

that the performance effects of early build and testing account for a significant share

of the performance differences resulting from varying the decision control. That is,

“Get physical fast” is supported, both as a direct contributor to performance but also

as an observable manifestation of a more latent cognitive effect that one can influence

with managerial regimes.

While accounting for a significant share of the performance gap nudging designers

to front-load the first physical build and testing does not close all of the gap. That

is, while some of treatment differences in performance are delay-driven, it is not the
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Table 1.4: Additional treatments: Treatment comparisons and timing of activities
(1) (2) (3) (4)

Exog (pooled) 3.584** 3.119** 2.498* 4.264***
(1.383) (1.352) (1.367) (1.584)

Nudge 2.937* 3.120* 2.241 2.871
(1.679) (1.629) (1.634) (1.994)

Pre-commit 2.908* 3.112* 2.429 4.103**
(1.642) (1.594) (1.593) (1.874)

Prototype 4.367** 4.951*** 3.856*** 6.587***
(1.684) (1.643) (1.645) (2.019)

Time-to-first idea (min) -0.490***
(0.114)

Time-to-first stacking (min) -0.416***
(0.094)

Time-to-first collapse (min) -0.400***
(0.104)

Constant -0.479 2.293 2.717 1.295
(2.988) (2.906) (3.010) (3.549)

Observations 205 199 198 154

Variation explained by process variable
Endog / Exog 17.20% 32.61% 17.36%
Endog / Nudge 3.02% 32.45% 28.92%
Endog / Pre-commit NA 17.82% 7.25%
Endog / Prototype NA 17.04% NA

Note. Tobit coefficients are reported. The omitted category is the Endogenous treatment. Perfor-
mance ($) is the dependent variable. Age, Engineering major (Yes/No) and gender are controlled
for. Time variables are measured in minutes elapsed from the beginning of the design task. Compar-
isons where treatment effects and fitted value differences had opposite signs are denoted by “NA”.
In column 2 the number of observations is reduced by six due to four defective videos and due to
two participants not being able to develop any ideas. In columns 3 and 4 the number of observations
is further reduced due to some participants never attempting a stacking or experiencing a collapse.
* p < 0.1, ** p < 0.05, *** p < 0.01
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single dominant factor. Similarly, cognitive load remains a viable influence on the

creative process, but not in isolation. Choosing ex ante and pre-committing to a time

split closes some of the performance gap between exogenous and endogenous transi-

tions, but an unexplained portion remains. In contrast, requiring a minimum viable

prototype fully closes the performance gap suggesting that endogenous transitions

can indeed result in good performance when the design task is explicitly framed as a

phased process with a concrete deliverable punctuating the transition.

Similar to exogenous transitions, the intermediate objective to build a prototype

may be perceived by designers as a process goal improving their self-efficacy and their

design performance (c.f. Locke and Latham, 2002). The advantage of the prototype

requirement may be caused by strong motivational effects provided not only by a

specific goal, but also by the immediate evaluation of and feedback on the design

progress.

While these alternative endogenous regimes improved mean performance each of

them was associated with increased risk, relative to the exogenous treatments. In fact

design failures were significantly more frequent in each treatment with endogenous

transition, relative to the exogenous regimes with short and halfway transitions. That

is, while risk-neutral decision-makers may choose endogenous transitions and allow

transition after a demonstration of a prototype, risk-averse decision makers should

avoid any regimes with endogenous transition.

Taken together our results so far suggest that the clear compartmentalization

of the design process into exploratory and execution phases leads to good design

performance. The phasing can be imposed either explicitly by setting the length of

the phases or by demanding a prototype that exceeds a minimum performance hurdle.

Our process results indicate that the quantity of ideas matters less than the timing

when ideas are launched. We next investigate the role of idea quality for design

performance and its contribution to design success (or failure), relative to the role of
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selecting and implementing the chosen idea.

1.6 The role of idea generation, selection and implementa-

tion

We use the structural properties of ideas to group similar ideas across designers,

construct a measure of idea performance and decompose individual performance into

3 components: (1) the average quality of generated ideas, (2) the ability to select the

best idea, and (3) the ability to create the best representation of that idea. Each of

these steps undoubtedly contributes to design performance, but it is not clear which

steps are most sensitive to active management of the creative process.

The investigation of these design activities is partly motivated by the lack of exper-

imental and empirical research on later, more physical stages of product development.

The experimental results presented in this section reveal that the relative importance

of ideation and execution components in fact depends on the chosen transition regime,

suggesting that a focus on creative metrics alone may hide those interactive aspects.

1.6.1 Methodology

Having recorded the codes for each idea that designers attempted as well as the

payoffs earned with each idea that was submitted we can characterize the creative

micro-process of each designer. We begin by computing the idea quality score for

each idea that was submitted, by averaging the payoffs obtained with that idea.

We then use idea quality as an input for three metrics: idea generation, selection,

implementation. The idea generation score is calculated as the average quality of all

ideas a designer has attempted. The selection score is calculated as the difference

between the average quality of the explored ideas and the quality of the submitted

idea. The implementation score is calculated as the difference between one’s own final
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payoff and the average quality score of the submitted idea over all subjects.23

By construction, the sum of the three metrics is the final payoff Πi obtained by

participant i:

Πi =

(
E[Πj|j ∈ Ji]

)
︸ ︷︷ ︸

Quality of generated ideas

+

(
E[Πk|k ∈ Ki]− E[Πj|j ∈ Ji]

)
︸ ︷︷ ︸

Selection ability

+

(
Πi − E[Πk|k ∈ Ki]

)
,︸ ︷︷ ︸

Implementation ability

where Ji is the subset of participants who have submitted the ideas that i has con-

sidered. The expectation E[Πj|j ∈ Ji] is taken over all ideas that i has explored and

over all participants in Ji. Ki is the subset of participants who have submitted the

same idea that i has submitted. The expectation E[Πk|k ∈ Ki] is taken over all par-

ticipants in Ki. Because the three performance metrics sum up to the participant’s

overall payoff we will be able to measure what percentage of the treatment differ-

ence in performance is caused by differences in the quality of generated ideas, by the

difference in selection ability and/or by the difference in implementation ability.

1.6.2 Results

Our idea pool consists of 79 submitted construction ideas (counting ideas identified

by at least one coder). The most popular idea was submitted 24 times in the original

treatments and 17 times in the additional treatments. One traditional measure of

creativity, the novelty of an idea relative to the ideas generated by others is not

rewarded in our setting. In fact, there is no significant relationship between idea

“popularity”, i.e. the number of participants submitting an idea, and idea quality

23In order to compute ideation, selection and implementation scores for each subject we construct
what is sometimes referred to in the innovation literature as the “idea pool” – a collection of ideas
with attributes assigned to each idea, such as the number of people that engaged that idea, the
idea-specific performance distribution etc. Idea pools have been used in several theoretical and
experimental studies in the innovation and product development literature (Girotra et al., 2010;
Kornish and Ulrich, 2011; Erat , 2012; Erat and Krishnan, 2012).
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(coder-specific Pearson correlation coefficients, all p > 0.1).

Next we investigate the extent to which the ability to generate ideas, to select

an idea and to produce the best version of that idea drive performance differences

between treatments. We use Rank Sum tests when making comparisons that involve

the full sample of subjects, as well as OLS regressions, particularly when examining

subject subpopulations.

Treatment comparisons

We do not find significant differences in any of the three metrics (idea generation,

selection, implementation) between the three Exogenous treatments (Rank sum test:

p > 0.147). Further, there are no significant differences along the ideation or selection

metrics between the Endogenous and (pooled) Exogenous treatments (Rank sum test:

p > 0.196). There is, however a significant difference in implementation when com-

paring the (pooled) Exogenous treatment to the Endogenous treatment (difference

in means: 1.282, Rank Sum test: p = 0.039). Similar results were obtained in OLS

regressions after controlling for the demographic variables. Decomposing the perfor-

mance gap between the Exogenous and Endogenous treatments reveals that ideation

explains 30.59%, selection explains 17.30% and implementation explains 52.11% of

the overall performance differences. That is, ideation-driven metrics play a sub-

ordinate role in explaining the advantage of Exogenous transitions, relative to the

implementation metrics.

We repeat the decomposition of the overall performance gap for the treatments

examined in the additional treatments. The comparison baseline is the Endogenous

treatment in each case. Our comparisons indicate that Nudge is associated with a

marginally significant improvement in selection (Rank Sum test, p = 0.067), but not

in ideation (p = 0.155) or implementation (p = 0.255). Neither ideation nor selection

are improved in Pre-commit, relative to Endog (p = 0.386 and p = 0.273). However,
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Pre-commit is associated with significantly improved implementation (p = 0.026).

Prototype is associated with significantly improved ideation (p = 0.020) and improved

selection (p = 0.037) but not implementation (p = 0.193). Similar results were

obtained in regression analysis controlling for the individual differences.24

The portions of the overall performance gap explained by the three metrics are

summarized in the left half of figure 1.4. To improve precision and to account for

the individual differences this analysis uses OLS predicted values rather than the raw

data. The contribution profiles reveal two patterns in our data. First, the portions of

the performance gap explained by the ideation, selection and implementation metrics

are similar in the Exogenous transitions and in Pre-commit. This suggests that the

implementation advantage of Exogenous transitions is driven mainly by the ex ante

allocation of the time to phases, rather than by the exogeneity of the time constraint.

Second, selection and, to a greater extent ideation drive the performance advantage

of Prototype with ideation explaining almost 60% of the performance gap to the

Endogenous treatment. In fact, ideation performance in Prototype is significantly

improved not only relative to the Endogenous treatment, but also relative to the

Exogenous treatment (Wald test, p = 0.035).

In sum, while the treatments with ex ante fixed transition (Exogenous and Pre-

commit) lead to better physical implementation of the chosen idea, treatments in

which the transition decision is made “on-the-go” (Nudge and Prototype) improve

the quality of ideas and the ability to select good ideas, relative to the Endogenous

24There were several instances when an idea was attempted but not submitted by anyone. The
reported results exclude such ideas. For robustness we re-ran the analysis with an imputed score
assigned to such discarded ideas. The imputation was done by regressing the mean payoffs of the
submitted ideas on their structural characteristics and then by generating predicted scores for the
discarded ideas. With this specification the differences between Exogenous treatments remained
non-significant while the ideation and the selection advantage of Prototype remained unchanged (by
construction, the implementation metrics is unaffected by the discarded ideas). We also ran the
analysis considering only ideas that were submitted by at least 2 subjects to account for possible
noise in unique idea quality measures. The results were similar to the reported analysis. The
implementation advantage of Exog (difference in means: 1.70, Rank Sum test: p = 0.026) and the
ideation advantage of Prototype could be confirmed (difference in means: 1.44, Rank Sum test:
p = 0.048).
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Figure 1.4: Idea generation, selection and implementation contribution to perfor-
mance gap

0 20 40 60 80 100
percent

Endog/Exog, full sample

0 20 40 60 80 100
percent

Endog/Nudge, full sample

0 20 40 60 80 100
percent

Endog/Pre-commit, full sample

0 20 40 60 80 100
percent

Endog/Prototype, full sample

0 20 40 60 80 100
percent

Endog/Exog, subjects with 2+ ideas

0 20 40 60 80 100
percent

Endog/Nudge, subjects with 2+ ideas

0 20 40 60 80 100
percent

Endog/Pre-commit, subjects with 2+ ideas

0 20 40 60 80 100
percent

Endog/Prototype, subjects with 2+ ideas

Ideation Selection Implementation

Note. The bars indicate the shares of the performance gap explained by each of the three met-
rics (ideation, selection, implementation). The percentages are obtained by first computing OLS
marginal effects for each metrics with Endog as the baseline and then by dividing the marginal
effect on each of the metrics by the sum of those marginal effects. Age, gender and engineering
major are controlled for.

base case.

Alternative metrics

To understand the role of idea selection the above analysis was repeated for the

subset of designers who explored at least 2 distinct design ideas (our previous analysis

may downplay the role of selection because the selection score is 0 whenever a designer

explores only one design idea).

We find that restricting the sample to subjects with at least two ideas puts a

greater weight on selection. Selection is driving a substantial portion of the perfor-

mance gap between Endog and Nudge and of the gap between Endog and Prototype

(37.93% and 43.84%; Rank Sum tests: p = 0.155 and p < 0.01, respectively). By

contrast, selection explains no more than 20% of the performance advantage of Exog

and Pre-commit. The right panel of figure 1.4 repeats the decomposition of the
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performance differences using OLS predicted values rather than the raw data. The

results indicate that after controlling for the demographic variables selection explains

approximately 40% of the performance gap between Endog and Nudge and 48% of

the performance gap between Endog and Prototype. By contrast, selection fails to

explain the performance advantage of Exog or the advantage of Pre-commit even in

this restricted sample, accounting for at most 20% of the gap.

Selection (as defined in this paper) can only be a performance driver when there

are quality differences between the explored ideas and the submitted idea. Therefore,

it may be informative to examine the temporal sequence of ideas and the quality of

each idea by treatment.

The left panel of figure 1.5 shows that Prototype exhibits a substantial quality

improvement as one goes from the first to the second idea (mean difference: $3.85,

two sample t−test, p < 0.01). Subjects do not substantially improve idea quality

as they explore new ideas in any treatment other than Prototype. In fact, in the

Endogenous treatment subsequent ideas are on average $0.19 worse than initial ideas.

Further, designers in Prototype produce significantly better second ideas, relative to

the Endogenous treatment (OLS treatment coefficient: 3.36, p = 0.023). However, as

shown in the right panel of figure 1.5 even those designers in Prototype who explore

only one idea achieve higher ideation scores relative to the Endogenous base case

(OLS treatment coefficient: 2.57, p = 0.028). In fact, Prototype is also better than

the Exogenous treatment (Wald test, p = 0.054).

Lastly, the quality of submitted ideas is significantly improved in Prototype relative

to the Endogenous (OLS treatment coefficient: 3.21, p < 0.01) and also relative to

the Exogenous treatment (Wald test, p = 0.018). In sum, the positive ideation effect

of Prototype extends to comparisons of the initial idea, the subsequent ideas, and the

submitted idea.

49



Figure 1.5: Idea quality by treatment
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1.6.3 Discussion

Using the pool of all design ideas attempted and/or submitted in our experiment

we have shown that physical execution of an idea explained most of the performance

advantage of exogenous decision control. In contrast, the average quality of ideas

and the ability to select good ideas was not affected by the decision control. This

result is new in the literature on creativity and innovation that has been almost

exclusively focusing on early ideation stages of the process. In contrast, the advantage

of Prototype was driven mainly by idea quality. Initial ideas, average explored ideas

and submitted ideas were all improved, relative to endogenous transitions, in fact idea

quality was improved even relative to exogenous transitions. Taken together, these

results suggest that the relative contribution of ideation, selection and implementation

components interacts with the chosen transition regime. A focus on ideation-driven

or implementation-driven metrics alone may therefore lead to poor design outcomes.

In the presence of the prototype requirement designers who attempted only one

idea exhibited superior idea quality scores, relative to the Endogenous base case sce-

nario. At the same time, those designers who did not submit their initial idea (which

was typically used as the prototype) frequently had low quality initial ideas, but were

able to significantly improve idea quality later on. This suggests that the prototyping
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requirement may trigger a more conscious evaluation of the design approach, leading

to improved allocation of the development time.

The finding that individuals are able to discover better ideas when required to

prototype is also in line with the findings in the problem-solving and brainstorming

literatures. Cognitive evaluation theory (Deci and Ryan, 1985) posits that individ-

uals feel more competent and capable of completing a task when they experience a

feeling of being “on track”. Intermediate milestones may increase workers’ intrinsic

motivation by enabling that experience. Positive effects of an expected evaluation

on creative performance have been found in a verbal task (Shalley and Perry-Smith,

2001). In our experiment the prototype requirement may be seen by designers as

a milestone check providing progress feedback and giving them a feeling of being in

control leading to improved idea quality.

1.7 Concluding remarks

This is the first experimental attempt to our knowledge to study the design per-

formance effect of time allocations to ideation and execution phases in an innovation

task, and the decision rights for choosing transition times between them. We used

a controlled laboratory experiment with individual designers working on an open-

ended design challenge to create a physical product subject to clear and measurable

performance objectives.

The main insight from our analysis is that design performance suffers when all

decisions are left in designers’ hands. Imposing constraints on the design process,

either in form of exogenous transition times or in form of a concrete transition point

deliverable, outperformed giving designers full decision-making autonomy. This is

surprising given that putting decision rights where information is richest, and giving

individuals control over their work are expected to be beneficial based on the job

design literature.
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Another surprise was that within the Exogenous treatments we saw no significant

mean performance differences in transition time. One might intuitively expect that

since both ideation and execution are important, a transition at the halfway point

might be best. Instead, the average performance was constant regardless of transition

time, but there was a risk-return trade-off. Variance goes up with the length of the

ideation period, mostly driven by a high incidence of failures for late transitions. That

is, although a risk neutral firm would be indifferent, a risk-averse firm would prefer

shorter ideation and longer implementation periods with the converse being true for

a risk-seeking firm.

We analyzed the gap between the Exogenous and Endogenous treatments by look-

ing at the micro-structure of the creative process, and found that the quantity of ex-

plored ideas did not consistently predict performance. The conventional logic, “Quan-

tity = Quality when brainstorming” featured mixed results in our experiments, and

is probably not uniformly true. In contrast, the timing of activities differed between

the Exogenous and Endogenous treatments, at least partially explaining the results.

Specifically, delays in important activities such as the appearance of the first idea,

the first test and even the first failure were significantly related to poor design per-

formance (but did not explain all of the performance differences). So “Get Physical

Fast” and “Fail Fast” are robustly good recommendations, but do not in isolation

explain performance gaps.

The results around rapid build/test align with conventional design wisdom, but

the independent effect of an exogenous deadline is less intuitive. To better under-

stand the advantage of exogenous deadlines we examined several alternative scenarios

in which transitions were designer-determined, but the transition process or the infor-

mation provided was changed. We found that delays in physical construction could

be prevented by encouraging early build/testing, but that alone was not sufficient

for good performance. In contrast, allowing transition only after designers were able
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to present a minimum performance prototype led to performance levels on par with

exogenous transitions. However, the prototyping requirement lead to significantly in-

creased failure risk, relative to Exogenous regimes with early and halfway transition.

Given the emphasis on idea generation in the creativity literature, we attempted to

separate out the impact of the quality of the ideas generated on performance, relative

to idea selection and implementation. The relative contribution of ideation, selection

and implementation varied by treatment, with each of them being significant in one

or more treatments. So, all three can be vehicles for success or failure (and none can

be ignored).

Our paper addresses the class of projects with a hard launch date, increased costs

of exploring new ideas in execution, objective, easily measurable performance metrics

and individual designers or strong team leaders. Our boundary contains many physi-

cal, engineering products in such industries as automotive, aerospace, medical devices,

computers, industrial equipment, and component engineering for B2B products. Our

findings do not directly inform other contexts, however survey data from 14 cross-

functional teams (76 students with engineering, business, and art and design back-

ground) who spent 12 weeks designing and developing physical consumer products

suggest that some of our findings may carry over to broader settings. The transition

from ideation to execution was endogenously determined by those teams. Consistent

with our findings, the two most frequently named obstacles to design success were

delays in physical build (mentioned by 55% of respondents) and planning/scheduling

difficulties (mentioned by 18% of respondents).25

Our results have several managerial implications. Managers should not endow

design teams with full decision control, but rather exogenously impose a constraint

that clearly signals a punctuation point between the ideation and execution phases of

a creative project. Two ways to impose such external requirements are to exogenously

25The data and the detailed description of those design projects are presented in the electronic
companion, at the end of this document.
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fix transition times or to demand a concrete, performance-oriented deliverable prior

to allowing the team to transition. The latter alternative is particularly relevant for

product development settings in which managers are not able to set or enforce strict

time schedules, or for settings where external reviews exist but transitions are de

facto endogenous.26

Risk-averse firms will prefer exogenous transitions with longer execution times,

while risk seeking firms can either impose shorter ideation times, or they can leave

the decision control to design teams and request minimum performance prototypes.

Regardless of the transition regime managers should both encourage and look for

early build and test, because these can directly help performance as well as being

markers of a productive inner design logic.

26There is frequently a high level of information asymmetry between a design team and the
reviewers in a phase review, who are often more senior managers responsible for managing a portfolio
of many projects. In such cases the potential exists for a team to strongly influence the reviewers’
decisions by strategically choosing the information it presents.
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CHAPTER II

Designing Incentives in Startup Teams

2.1 Introduction

In the presence of tightly constrained cash flows startup founders are frequently

compensated through equity shares—the rights to participate in the proceeds from

going public or from being acquired by another company. The division of equity

among the founders is manifest in their first “term sheet” that specifies how and when

equity vests (becomes earned) and under what conditions it can be withheld. The

design of these provisions has attracted considerable attention in the entrepreneurial

press with the conventional wisdom suggesting that equal splits are poor choices

(Wasserman, 2012; Moyer , 2012). The conventional logic is that by not connecting

rewards to either effort or contribution level equal split contracts can encourage free-

riding behaviors. In this paper we experimentally test this conventional wisdom,

among other entrepreneurial contracting hypotheses. In particular, we explore two

research questions: what is the effect of (1) contract form and (2) contracting time

on founder effort and on the value generated by the startup team?

Equity division in startups can take many forms from equal division to contribution-

proportional splits. The latter are based on the value assigned to various inputs pro-

vided by the founders including labor, capital and other assets, as well as contacts

and business leads they bring to the team (Moyer , 2012). Incentive theory suggests
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that such arrangements can align individual self-interest with the firm‘s objectives

better than equal division rules, predicting that they will result in higher effort levels

and value generation.

While the incentive strength arguments favor non-equal contracts, some of their

theoretical benefits may not be realized in practice, or at least not to the fullest

extent. Indeed, it is often unclear what team members generate value, and how

much. Many technology startups log working hours and track the number of lines of

code written, however both measures are crude gauges of effort and poor predictors

of value generation (Graham, 2004). Also, the significance of some key events may be

apparent ex post but may not be easily recognizable at the time those events occur.

Examples are industry contacts that open up new markets or product features whose

functional appeal is not apparent until a complementary technology emerges. The

delays in realization of an input‘s true value, and the interactions between various

inputs make it difficult to evaluate each contribution separately reducing the appeal

of contribution-based contracting.

Indeed, in practice most startups avoid including detailed effort or value tracking

into their term sheets. Instead, many prefer simpler contracts that include mini-

mal performance-oriented contribution thresholds, frequently referred to as “vesting”

contracts (Metrick and Yasuda, 2010). In these the initial equity allocation is ten-

tative and the final splits are granted only after the team members satisfy some

pre-specified contribution requirements. When a vesting requirement is not met, the

unvested shares are withheld and redistributed to the remaining shareholders. By

ignoring minor differences in contribution amounts vesting contracts therefore serve

as a compromise solution between equal and proportional contracts.1

1A common form of vesting provisions is time-based vesting, in which team members earn shares
by simply remaining part of the team for a specified length of time. An alternative approach to time-
based vesting is milestone-based vesting, in which the split is confirmed only after some milestone
tied to individual contribution has been reached. A milestone is typically an event that correlates
with value creation, such as the completion of a prototype or the first customer shipment. For
sample vesting contracts used in practice see Metrick and Yasuda (2010).
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Simpler, more egalitarian contracts are supported not only by practical consid-

erations (of not being able to track contributions), but also by the evidence of their

motivational benefits. Specifically, the human resources and the behavioral economics

literatures both suggest that large differences in earnings within the team may lead

to undesirable behaviors. Sharing the risks and the rewards equally may emphasize

solidarity with collective interests and promote cooperative behavior (Morgan and

Sawyer , 1979; Deutsch, 1975; Kroll et al., 2007), while large differences in pay may

lead to adverse reactions depressing effort and contributions (Pfeffer and Langton,

1993; Fehr et al., 2009). If these arguments apply in the startup contracting context,

contribution-proportional equity division should be avoided and vesting contracts may

be preferred, to allow some redistribution of equity while guarding against excessive

free-riding.

While there are few empirical studies on startup contracting, some survey data

suggest that equal division is associated with lower outside investments and with lower

valuations, relative to non-equal splits (Hellmann and Wasserman, 2016). However,

there are some important differences in the characteristics of teams choosing dif-

ferent contracts. Equal contracts are preferred by family firms whose ventures are

frequently funded by their informal networks and not by outside investors (Sahbaz ,

2013; Hellmann and Wasserman, 2016). Contractual choices are also affected by

founder experience with more seasoned teams including more contribution-dependent

components into their contracts. These selection effects dominate the relationship

between contract form and startup performance, leaving open whether the effect of

contract form on value creation is causal.

The timing of the contractual agreement is another important consideration for

incentive design in practice. Frequently the equity terms are not negotiated until

part way downstream in the innovation process. In particular, equity agreements

are often made at certain milestones, such as the conceptualization of the business
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idea, internal or external funding events, or the start of business operation (Jared ,

2016). When founders contract in the very early stages (i.e. before finalizing the

product concept), the direction of the venture and the roles of the founders are often

uncertain. In contrast, when founders contract after some work is completed, at least

some of the uncertainties will be resolved prior to contracting. This may lead to

better informed contracting decisions and to greater satisfaction with the contract,

increasing effort and value generation (Wasserman, 2012).

However, delayed contracting also has its drawbacks. The human resource litera-

ture suggests that pay ambiguity may reduce worker motivation (Belt and Paolillo,

1982; Barber and Roehling , 1993; Yuce and Highhouse, 1998). Not knowing how their

efforts will be rewarded the team may be reluctant to commit to the startup needs

prior to contracting. In particular, early-stage developers may feel discouraged from

participating in value creation if they anticipate that their efforts will not be fully

reflected in the contract.

To understand the effects of contract form and contracting time on founder ef-

fort and on startup performance we develop a new experimental game that captures

several key elements of the entrepreneurial innovation process. The value creation

begins with the founders jointly determining the initial startup value by deciding

how much effort to exert. Then, after observing the value generated in stage 1, the

effort allocation decisions are repeated in stage 2. The individual contributions and

the final value of the startup are correlated with founders’ effort investments but are

also affected by random noise. Once the final value is known, it is divided between

the founders according to an allocation rule (as will be explained below).

Our experimental investigation allows endogenous contract selection among sev-

eral contract alternatives that parallel the contract forms used in practice. These

include equal, vesting and proportional division rules. To isolate the incentive ef-

fects from the effects of the negotiation process and of selection we conduct control
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treatments in which we impose the contract form exogenously. After studying the

effects of contract form on contribution behavior we examine whether delaying the

contracting until after stage 1 affects founder efforts and startup value.

This is the first study to our knowledge to investigate the effects of equity con-

tracting on effort and value creation in an experimental setting.2 More broadly, this

is one of the first experimental studies of incentive design for (and by) collaborative

teams in the innovation and technology management literature, which often treats

incentive design in technology projects as a “principal-agent” problem bypassing any

within-team interactions (Loch, 2017).

Our results confirm the relationship between equal splits contracting and depressed

effort and contribution, but suggest a different causal sequence relative to conventional

wisdom. Rather than the contract form being the primitive and the behavior the

derived consequence, our results suggest the reverse. Personal characteristics are the

primitive and the contract form the derived consequence. In particular, our data

reveal the presence of three behavioral types (low, conditional and high contributors)

that differ in their preferences and behaviors. When contracting happens upfront low

contributors select into equal contracts and the remaining types select into non-equal

contracts. This results in the free-riding behaviors occurring more frequently in equal

contracts relative to non-equal contracts. That is, equal contracts are bad for team

performance, not because of their incentive strength but because of the founder types

that self-select into them.

However, when contracting is delayed, teams operate with richer information when

deciding on the contract. Free-riding intent of low contributors is revealed early on,

and others do not want to sign equal contracts with them. Further, robust con-

2The only existing experimental studies on equity contracting known to the authors are Jared
(2016) and Bao and Wu (2017). Jared (2016) explores the effects of contracting time on norm
formation (cooperative vs. competitive norm) and focuses on equal splits. Bao and Wu (2017)
examine inequality attitudes of employees to differences in equity and in salary. Our study is different
because it focuses on startup teams, explores the effects of both contract form and contracting time,
and because it examines effort as the main dependent variable.
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tributors are also revealed early on, which reduces others‘ reluctance to sign equal

contracts with them. Together, these behaviors result in low contributors no longer

being over-represented in equal contracts. More generally, since it is founder type

rather than the contract type (strength of incentives) that primarily impacts behav-

iors, with a stronger signal of type the contract form becomes less important leading

to a more even distribution of types over contracts and to smaller effort and value

differences between contracts.

Our findings have implications for startup investors and founders. Our results

add texture to the conventional wisdom that investors should avoid startups with

equal split contracts, clarifying that this result is driven primarily by the personal

characteristics of the teams selecting different contracts. Both investors and founders

should pay as much (or more) attention to personality type as they do to contract

form. But, if one is stuck with a given set of personalities delayed contracting (more

so than contract form) can improve performance.

2.2 Literature

There are several streams of literature that are relevant to our investigation. We

will first discuss the empirical research on the effects of equity splits on firm perfor-

mance and then move to the broader behavioral and experimental economics literature

on incentive design in collective production settings.

2.2.1 Entrepreneurship literature

Given the theoretical arguments in support of input or contribution-based con-

tracts as effective incentive instruments one may expect to find many startups using

such contracts. However, the contrary is the case in practice: equal division rules are

used frequently by startups and by partner-owned firms, more generally. Encinosa

et al. (2007) find that 54% of small medial-group practices divide all profits equally.
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Farrell and Scotchmer (1988) present similar data for law partnerships. Jared (2016)

reports that 64% of South-East Asian startups have an equal ownership split between

founders. Hellmann and Wasserman (2016) survey North American technology star-

tups and find that 35% divide equity equally.

To our knowledge, the only study to examine empirically the relationship be-

tween equity splits and startup performance is Hellmann and Wasserman (2016).

The survey-based evidence therein suggests that equal contracts are associated with

reduced outside investment and with reduced VC involvement. However, the authors

do not find a causal link between the contract form and those metrics. Rather, they

argue that equal contracts are chosen by teams with close social ties who tolerate

reduced team effort and value generation in favor of greater income equality. Our

data confirm that a large proportion of teams reject contribution-proportional splits

and that profit-seeking is not the sole motive for many teams, but suggest a different

mechanism. While some individuals are indeed driven to equal splits by inequality

aversion, a preference for equal contracts is most strongly associated with the desire

to free-ride on partner effort.

Other empirical and experimental research also questions the incentive strength

argument. Kroll et al. (2007) show that a more egalitarian division of shares between

the founders improves startup’s post IPO performance. Their argument is based

on increased team cohesion in groups with an even ownership structure. The team

cohesion argument is broadly related to the literature on horizontal pay differences

showing that productivity may suffer as a result of unequal pay (Pfeffer and Langton,

1993; Fehr et al., 2009).

Finally, some entrepreneurship research indicates that the focus on incentive

strength of the contract may hide some interactive aspects that are relevant for startup

performance in practice. Breugst et al. (2015) explore the collaborative dynamics in

a case study of 8 entrepreneurial teams some of which have equal and some non-equal
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contracts. They find that it is not the equity split per se, but its perceived justice that

affects team interactions and team effectiveness. In a similar vein, Jared (2016) shows

that equal splits may lead to a conflicted or to a cooperative environment depending

on the contextual circumstances of the equity negotiations.

These findings give some insights into the sociological and psychological antecedents

of a team adopting (or not) equal contracts, but provide little advice for startup teams.

In our investigation we are able to study both the incentive effects of contracts and

the selection effects, by examining scenarios with endogenously selected and exoge-

nously imposed contracts. Further we focus on the direct effects of contracts on

effort and contribution dynamics bypassing the contextual details of founder-investor

negotiations that may interact with the effects of contracts on cooperative behavior.

2.2.2 Behavioral economics literature

The micro-foundations of contribution behavior in team settings have been stud-

ied in the behavioral economics literature, particularly in the context of public goods

provision. One robust finding is the reduction of free-riding in regimes allowing pun-

ishment of low contributors (Ostrom et al., 1992; Rapoport and Au, 2001; Gürerk

et al., 2006, 2009; Gürerk , 2013; Putterman et al., 2011). Engel (2014) examines

mild and harsh punishments and finds that the positive effect of punishment on con-

tributions increases in the severity of the punishment. If these results carry over

to the startup setting, we should see proportional contracts perform best and equal

contracts perform worst. However, one caveat to extrapolating these findings to our

setting is the reward allocation system used in the public goods studies. These typ-

ically assume voluntary punishment by group members, whereas startup teams use

contractual sanctions.

Several studies suggest that when effort decisions are private or when effort cannot

be observed perfectly, the advantage of high-powered incentives may collapse (Cappe-
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len et al., 2007, 2010; Fischbacher , 2007; Grechenig et al., 2010; Bornstein and Weisel ,

2010; Sousa, 2010; Ambrus and Greiner , 2012). These papers show that teams are

willing to punish low contributors only when the differences in contribution amounts

are caused by free-riding and not when caused by luck. Indeed, Bao and Wu (2017)

show that workers are more sensitive to arbitrary differences in equity compensation,

than in salary compensation. Further, while both profit maximization and equitabil-

ity are important concerns, a significant share of individuals split equally in order to

signal unity to their partners (Corgnet et al., 2011; Luhan et al., 2013). If both profit

seeking and fairness concerns are important determinants of behavior in our setting,

vesting contracts may outperform both equal and contribution-proportional division

rules.

A related set of studies examines whether individuals who exhibit socially desirable

behaviors select into less egalitarian reward allocation regimes. Balafoutas et al.

(2013) find that low contributors select into regimes with redistribution, but the

selection effect is dominated by incentive effects. Tyran and Feld (2006); Gürerk

et al. (2009) and Sutter et al. (2010) show that selection effects can be stronger than

incentive effects in the public goods game setting. In a prisoner’s dilemma game

with and without punishment Dal Bó et al. (2010) show that both incentives and

selection affect the frequency of defections. Consistent with these results we find

that the preference for equal splits is associated with free-riding behaviors, and that

the sorting of low contributors into equal contracts is the primary driver of contract

performance differences. However, we also find that the extent to which free-riders

are able to select into egalitarian regimes depends on the availability (or lack) of effort

information prior to contracting.

The existing empirical and experimental literature is relatively silent on the ef-

fects of contracting time on startup performance. Sahbaz (2013) and Hellmann and

Wasserman (2016) report that a non-trivial share of startups delay contracting until
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further downstream in the innovation process. However, they do not find a significant

relationship between contracting time and performance. Wasserman (2012) argues

that early contracting may create clarity around the incentive structure, increasing

effort levels. Early negotiations may lead to fewer conflicts among the founders, par-

ticularly if the stakes increase over time. However, Wasserman (2012) also notes that

delaying the contracting may reduce the uncertainty around the firm value and the

individual contributions to it. This may help craft a more informed and thus a more

effective contractual agreement. Jared (2016) finds that delayed equal splits lead to

more cooperative norms relative to upfront equal splits. Though Jared (2016) does

not examine the effects of contracts on effort, his findings anticipate one of our results,

that contract performance depends on the availability of mutual effort signals prior

to contracting.

In sum, the extant empirical research presents mainly correlational evidence and

mixed results. The experimental literature suggests that allowing teams to penal-

ize free-riders will lead to higher contributions and value creation. This supports

contribution-based contracting. However, by focusing on one-shot contribution de-

cisions, observable efforts and (predominantly) ex post division of the surplus these

experimental studies are only partially reflective of the entrepreneurial context. None

of the existing experimental studies provide clear recommendations for entrepreneurs,

partly because the division rules examined there do not resemble the contractual

agreements used by startups in practice. Our model and experiment are designed to

address this gap by following more closely the contracting and collaborative dynamics

in startups.
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2.3 A stylized model of entrepreneurial contracting and value

creation

The contracting and collaboration environment in our experiment reflects several

features shared by many entrepreneurial ventures. The following scenario is the styl-

ized context of our model that maintains the relevant features and is used in the

experiment. After introducing the model setup we will discuss equilibrium effort

levels implied by each contract form.

2.3.1 Setup

A startup team consisting of two partners has identified a problem that they want

to develop a product to solve, creating a new business that they will own. They do

not yet know what the actual value of the business will be, or how much effort each

partner will allocate to the venture. There are two phases to the business development

effort. In each phase, each partner can choose to invest effort in the venture (with a

risky return as described below) or an outside option (with a certain return). This

is to model the outside employment or other options that each individual has, which

is also the opportunity cost for the effort invested in the venture. In practice, phase

I may feature market research, product concept selection and product development

activities, while phase II may involve more downstream processes, such as setting up

the supply chain or marketing and sales activities.

Each partner i ∈ {1, 2} begins stage s ∈ {1, 2} with a finite effort endowment

E that she can allocate between the venture and the outside option. There are two

dimensions to the real value increase of the venture as a result of the cooperative

efforts of the founders. First, each founder chooses to contribute effort eis ∈ [0, E] to

the venture. Second, the venture value is increased based on the joint investment of

both partners. This latter mapping is uncertain. For example, effort can be expended
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at a high cost to the contributor, but with a low value for the venture. However, the

real venture value increment is positively correlated with the joint effort investment

of both partners. Formally, i’s contribution in stage s, cis = mis × eis, where mis are

i.i.d. discrete random variables that can take a low, medium or high value with some

known probabilities (We choose a simple three-point mapping of effort to contribution

to make the game more accessible to the experimental subjects). In contrast, the

return to each individual for effort invested in their outside option is certain. That

is, in each stage founder i earns an additional private payoff of (E − eis)×K, where

K is a constant.3

Effort is private information, but the value contribution is public. After each

phase each team member observes the value increment resulting from their own and

from their partner’s effort allocation decision, but not the partner’s effort level. That

is, the amount of effort actually invested by the partner is shared in form of a noisy

signal. The quality of the product concept V1 (determined at the end of stage I)

depends on how much effort (and the returns to that effort) is invested in under-

standing customers and designing for their needs. At the end of stage I the team

members see a business valuation number V1 that is positively correlated with their

joint contributions, and also has a positive signal value about what the final business

value will be. In particular, V1 = ci1 + cj1. This is to model the end of the market

research phase, where the potential market valuation of the business is known if the

team can deliver a product or service that responds to the needs discovered in stage

I.

The partners then (privately) choose their individual level of effort in phase II

and the process repeats yielding stage II value V2 = ci2 + cj2. This is to model the

incremental increase of the firm value resulting from the actual product launch and

sales activities. At the end of stage II the team gets a final business valuation V

3Our model and experiment abstract away from any ex ante skill asymmetries within the team.
That is, mis has the same probability distribution for each partner i and in each stage s.
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that is positively correlated with the value at the end of stage I, and with the joint

contributions realized in stage II. In particular, the final valuation of the startup,

V = V1×V2. This is to model the actual business value, after the product design and

launch. The final earnings of each founder include her share of the firm value V and

her private payoffs. That is, founder i′s profit πi = σXi V + K(2E − ei1 − ei2), where

σXi denotes the share of the startup value allocated to founder i under contract X

(contracts will be discussed below).4

In sum, we model the entrepreneurial innovation process as a two-stage game.

Value creation begins with the founder contributions jointly determining the initial

startup value. These contributions are correlated with founders’ effort investments

but are also affected by random noise. Higher initial startup value increases the

attractiveness of contributing to the startup in the second stage. Once the final value

of the startup is known, it is divided between the founders according to an allocation

rule. The allocation can be made contingent on the individual contributions (effort is

not observable so cannot be contracted on) with four contract forms to choose from:

Equal split, Threshold vesting, Difference vesting and Proportional contracts. The

specifics of these contracts are described next.

2.3.2 Contracts

Our investigation focuses on contractual division rules in which the differences in

future (and not past) contributions can be contracted on. Such symmetric, forward-

looking contracts are typical for early stage ventures formed by teams of peers (rather

than entrepreneur-adviser or inventor-employee teams) in which founder roles are

comparable in importance. The contract menu used in our model and experiments

4Our two-stage model draws on the idea that the value of the venture is often much lower and
much more uncertain before the startup has found its product-market fit.The value crystallizes
once a working business model has been found. The two-stage model can also be interpreted as an
abstraction to the milestone-driven growth typical for many startups. Indeed, a startup’s valuation is
often shown to increase at isolated and well-defined events, a proof of concept of the core technology,
a successful demonstration of prototype performance, or a key customer acquisition (Nachum, 2015).
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draws on the equity contracts used by startups in practice (Wasserman, 2012; Moyer ,

2012). The contracts are further validated in pilot experiments, in which we allow

teams to design their own contracts from scratch (The pilot is described in section

4.2, the contract transcripts are reproduced in the online supplementary documents,

http://webuser.bus.umich.edu/ekagan/research.html).

The contract alternatives in our model and in our experiments are Equal split

(henceforth EQUAL), threshold vesting (THRESH VESTING), difference vesting

(DIFF VESTING) and contribution-proportional split (PROPORTION). With THRESH

VESTING a player loses 10 percentage points of equity each time she contributes less

than a fixed contribution threshold cTHRESH and the partner contributes at least

the threshold amount. The lost portion of the equity is reallocated to the partner.

With DIFF VESTING a player loses 10 percentage points each time she contributes

less than her partner and the difference is at least cDIFF . The lost portion of the

equity is, again, reallocated to the other player. With a PROPORTION contract a

player’s share is computed as the ratio of the sum of her contributions to the sum of

all individual contributions.

The contractual share allocated to player i under contract X is denoted by σXi ,

where X ∈ {EQUAL, THRESH VESTING, DIFF VESTING, PROPORTION}. The

contractual share allocated to player j, σXj = 1− σXi . In the UPFRONT contracting

scenario equity shares are calculated as follows:

σEQUALi = 0.5
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σTHRESH V ESTING
i =



0.3 if {cis < cTHRESH ∧ cjs ≥ cTHRESH} in both stages (s = 1, 2)

0.7 if {cis ≥ cTHRESH ∧ cjs < cTHRESH} in both stages (s = 1, 2)

0.4 if {cis < cTHRESH ∧ cjs ≥ cTHRESH} in exactly one stage

0.6 if {cis ≥ cTHRESH ∧ cjs < cTHRESH} in exactly one stage

0.5 otherwise

σDIFF V ESTING
i =



0.3 if {cjs − cis ≥ cDIFF} in both stages (s = 1, 2)

0.7 if {cis − cjs ≥ cDIFF} in both stages (s = 1, 2)

0.4 if {cjs − cis ≥ cDIFF} in exactly one stage

0.6 if {cis − cjs ≥ cDIFF} in exactly one stage

0.5 otherwise

σPROPORTIONi =
ci1 + ci2

ci1 + ci2 + cj1 + cj2

2.3.3 Model parameters

The parameters in our model and experiments are chosen such that (1) there is

a prospect of a substantial (but risky) gain for both value generation and expected

founder profits if the partners both invest full effort into the startup, and (2) dif-

ferent contract types exhibit different incentive and allocation properties, rendering

the contracting and effort decisions consequential. These considerations led to the

following parameter choices. Subjects are endowed with an effort budget E = 10

in each stage. The returns for effort, mis can take values 0.5, 1, and 2. The real-

ization probabilities of these values are 0.25, 0.5 and 0.25, respectively (mis has the

same probability distribution for each partner i and in each stage s). The constant

multiplier on the private investment, K = 5. The vesting thresholds cTHRESH and

cDIFF are both equal to 5. These parameter choices were validated in a pilot with 50

subjects (The pilot is described in sections 4.1-4.2).
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2.3.4 Equilibrium strategies

We next outline the equilibrium strategies in the UPFRONT and IMPOSED sce-

narios (The predictions for the DELAYED scenario are postponed until section 5).

A more detailed description of the equilibrium structure is relegated to the online

supplementary materials.

With EQUAL contracts stage II best response strategies depend only on the value

of V1. If V1 > v1 investing full effort into the startup is the best response to any

partner action. If V1 < v1 investing no effort is the best response to any partner

action. Following the backward induction logic and plugging in the continuation

payoffs into the stage I profit function, “Invest full effort endowment” is the unique

stage I best response to any partner action. The reason is that each player can

unilaterally achieve that V1 > v1 with a sufficiently high probability, making the

expected returns for effort invested in the startup greater than the returns for the

outside option. Further, because in equilibrium both partners will invest full effort in

stage I, the “high” state with V1 > v1 will always be reached in stage II resulting in

full stage II effort. That is, any less-than-maximal effort investment in either stage

implies off-equilibrium behavior.

With NON-EQUAL contracts the best response in stage II generally depends not

only on the sum of stage I contributions (as was the case for EQUAL), but also

on the individual stage I contributions ci1 and cj1. However, it can be shown that

simple strategies still exist for a range of V1 values. Intuitively, because NON-EQUAL

contracts tie the allocation of equity to individual effort and contribution, they lead

to more socially desirable behaviors (i.e. equal or higher effort levels conditional on

V1), relative to EQUAL contracts. Indeed, plugging in the continuation payoffs and

solving for the best response it can be shown that “Invest full endowment” is the

unique best response in stage I in each NON-EQUAL contract. That is, given our

parameter choices, effort differences among the contracts are predicted only in stage
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II and only on the off-equilibrium path. In equilibrium each contract is predicted to

lead to full effort investment in both stages (The off-equilibrium strategies in stage II

are characterized more explicitly in the supplementary materials, see table S1.2).

2.4 Experimental setup and results

2.4.1 Experimental strategy

To investigate the effects of equity contract form and of the contracting time on

effort and on startup performance we conducted a pilot treatment and 4 between-

subject treatments labelled IMPOSED EQUAL, IMPOSED PROPORTION, UP-

FRONT and DELAYED. In the IMPOSED treatments contracts were imposed exoge-

nously by the experimenters. In the UPFRONT and DELAYED treatments contracts

were selected endogenously by the team.

In the pilot treatment (conducted ahead of the remaining treatments) we asked

subjects to design their own contracts. The purpose of the pilot treatment was to ex-

plore inductively the contractual arrangements emerging from free-form negotiations,

to validate the model parameters and to examine the frequencies of different con-

tracts in a face-to-face setting. In the remaining treatments subjects interacted via

the z-Tree interface (Fischbacher , 2007). In the Endogenous negotiations treatments

subjects chose jointly one of four contract types (EQUAL, THRESH VESTING, DIFF

VESTING, PROPORTION). Our contract menu draws on the contractual agreements

used by startups in practice and also aligns with the contract types emerging from

the free-form pilot, as will be described below.

2.4.2 Pilot: Free-form negotiations

50 subjects were recruited at the University of Michigan to participate in the

pilot treatment. Two-person teams were formed at random, and each team was given
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two empty sheets of paper to be used for writing down the contracts. Each team

held private negotiations in a separate room with no time restriction. Once a team

completed their negotiations, the experimenters verified that each partner had signed

a copy of the contract and that the copies were identical, and brought the team to the

laboratory where they continued with the contribution phase of the experiment. Each

subject participated in three rounds of the startup game, with random re-matching

in each round. The average duration of one negotiation round was 3 minutes and 40

seconds. On average, subjects spent one hour in the laboratory earning $14 including

the show-up fee of $5.

Our pilot data show that equal splitting is a particularly appealing contract form

with 73% of the teams choosing equal split contracts. The appeal of equal contracts is

consistent with the behavioral economics literature on face-to-face interactions in joint

production and bargaining settings (Roth, 1995; Bochet et al., 2006; Corgnet et al.,

2011; Konow et al., 2009) and is also consistent with the empirical entrepreneurship

literature (Hellmann and Wasserman, 2016; Breugst et al., 2015; Jared , 2016)

In addition to the popularity of equal contracts, we were able to identify several

categories among the non-equal contracts emerging from the negotiations. In partic-

ular, the non-equal contracts fell into 3 categories: “threshold-based” (a contribution

below X points is penalized, where X is a constant), “difference-based” (a contribu-

tion below Y points, where Y depends on partner’s contribution), and “proportion-

based” (each partner is allocated a share of the profit proportional to the share of

points contributed). These allocation rules are consistent with the endogenously de-

signed redistribution schemes in the public goods literature (Rockenbach and Wolff ,

2016) and can also be mapped to the contracts used by startups in practice (Metrick

and Yasuda, 2010).5 The contract types were further refined and calibrated by the

5Rockenbach and Wolff (2016) report that endogenously designed allocation rules in public goods
games are typically based either on either absolute or relative thresholds: “Mechanisms were [de-
signed] in the form of pre-specified rules of deduction and/or redistribution contingent on complying
with provision targets. These provision targets were either fixed levels (e.g. full provision) or con-
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authors and then used to design the contract menu for the remaining treatments.

The transcripts of all contracts written by the subjects in the free-form treatment are

reproduced in the supplementary documents.6

2.4.3 UPFRONT and IMPOSED treatments

104 subjects were recruited at the University of Michigan to participate in the

UPFRONT and IMPOSED treatments of the experiment. After going through the

instructions all subjects were required to complete a mandatory quiz. Subjects then

played eight rounds of the startup game, with random re-matching in each round.

During the negotiations the interaction between the partners was limited to making,

rejecting and accepting contract offers (subjects could not exchange chat messages).

In the first two rounds subjects were given 4 minutes to agree on a contract. In the

subsequent rounds subjects were given 2 minutes to agree on a contract. If a team

was unable to agree on a contract, their endowments were allocated automatically to

their private accounts. On average subjects spent 50 minutes in the laboratory and

earned $14 including the $5 show-up fee. The exact transcript of the instruction text,

and the screen shots of the negotiation screens are reproduced in the supplementary

materials.7

In the remainder of section 4 we examine effort and value generated in each con-

tract when the contract is determined upfront. Section 5 examines the delayed con-

tracting scenario. Section 6 investigates the motives and behaviors of different per-

sonality types present in our data.

tingent on the other group members (e.g. not being the lowest contributing player).”(Rockenbach
and Wolff , 2016, p. 332).

6Due to a small number of observations and due to a large number of different contractual
arrangements we do not explore in detail the effects of contracts on effort in the pilot data. On
average (pooled) non-equal contracts were associated with an increase in contribution levels of 8.60
percentage points relative to equal contracts, but the effect was not statistically significant.

7All but one team in our data were able to agree on a contract. Among the four contracts no
single one attracted more than 40% of the teams in any given round, and each contract was chosen
by a non-trivial share of teams in each round. Further, neither the negotiation time, nor the number
of exchanged offers were predictive of effort and value generation.
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Figure 2.1: Mean effort levels and effort distributions (UPFRONT and IMPOSED
treatments)
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Results: aggregate effort and value comparisons

Figure 2.1(a) shows a substantial gap in effort levels between EQUAL and each

NON-EQUAL contract and a smaller gap between PROPORTION and each VEST-

ING contract. Average (stage I + stage II) effort levels are lower in EQUAL relative to

PROPORTION (mean difference: 43.49 percentage points), and also lower in pooled

VESTING relative to PROPORTION (mean difference: 11.62 percentage points).

Effort levels do not differ substantially between the two VESTING contracts. These

results suggest that effort levels rise monotonically in the extent to which the share

allocation is tied to contribution differences.

Not only the means, but also the distributions of effort levels in the UPFRONT

negotiation scenario differ between contracts, as shown in figure 2.1(b). In particular,
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each NON-EQUAL contract dominates EQUAL contracts in terms of effort and total

value generated (V ) in the sense of first order stochastic dominance (all p < 0.01).8

This suggests that an investor would prefer to fund a team with a non-equal contract

regardless of risk sensitivity. Further, figure 2.1(b) suggests that the advantage of

PROPORTION contracts relative to VESTING contracts is driven by frequent near-

maximum effort levels in the former. Indeed, over two thirds of the observations in

PROPORTION contracts feature effort levels above 80% of the subject’s endowment,

compared to only one third of the observations in VESTING contracts.

Compared to the robust differences in contract performance with endogenously se-

lected contracts, the differences between exogenously imposed contracts are small. In

particular, figure 1(c) shows that the effort gap between PROPORTION and EQUAL

contracts is approximately 9 percentage points. These results suggest that it is not

the incentive structure of the contract that matters most for contract performance,

but the personal characteristics of those who select these contracts.

Non-parametric tests of effort level differences

We have so far examined average effort and value generated in each contract with-

out specifying whether multiple observations of behavior in a contract came from one

subject or from multiple subjects. To isolate between-subject differences in behavior

we next examine effort levels observed in a single round of the experiment.

In the first experimental round of the IMPOSED treatment, the effort gap between

EQUAL and PROPORTION contracts is 0.20 percentage points (Rank Sum test, p =

0.868). In the last experimental round EQUAL falls behind PROPORTION by 7.34

percentage points, with the difference not being statistically significant (p = 0.183). In

contrast, the first round comparison in the UPFRONT negotiation treatment reveals

a 27.56 percentage point gap between EQUAL and PROPORTION (p = 0.018).

8This result is obtained using tests based on quantile regressions discussed in Ng et al. (2011).
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Further, that effort gap widens over time reaching 59.95 percentage points in the last

experimental round (p < 0.01). These results suggest that the endogenous contracting

environment generates a persistent effort gap between the contracts. Further, the

increase of the gap over time suggests that the differences are driven in part by

observed partner behaviors, and not by the incentive strength of the contract.

Regression analysis

We next examine the effects of contracts on effort using random effects regressions.

Columns 1-4 of table 2.1 report the effects of PROPORTION contracts on effort

when contracts are imposed exogenously by the experimenter (baseline is IMPOSED

EQUAL). The coefficients describe the changes in effort levels caused solely by the

change in the incentive structure and are free of any selection effects. Column 1 shows

that stage I effort levels differ by approximately 8 percentage points between EQUAL

and PROPORTION contracts, with the difference being marginally significant (p =

0.067). Column 2 shows that this effort gap expands to approximately 10 percentage

points and becomes statistically significant as we move from stage I to stage II (p =

0.027).

Column 3 shows that some of the effort level differences in stage II are explained

by the differences in V1. This is consistent with our equilibrium predictions. However,

column 4 shows that most of this effect is driven by the responses to stage I partner

contribution, cj1. Column 4 breaks V1 into some of its components and shows that

one point increase in stage I partner effort is associated with 0.64 percentage point

increase in own stage II effort (p < 0.01). In contrast, people are not sensitive

to exogenous changes in the returns for investing effort measured by their stage I

multiplier, mi1 (p = 0.872). These results suggest that subjects respond to incentive

strength differently than suggested by standard theory, which would predict similar

effects on effort of partner contribution and of the randomly assigned multiplier. In
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our data only the former affects effort levels.

The right half of table 2.1 repeats the analysis for the UPFRONT scenario.

Columns 5 and 6 show a substantial effort gap between EQUAL and each NON-

EQUAL contracts, and an increase in the gap as we go from stage I to stage II. In

particular, PROPORTION contracts are associated with an effort increase of 28 (37)

percentage points in stage I (stage II) relative to EQUAL. Given that the stage I

(stage II) effort gap was 8 (10) percentage points in the IMPOSED scenario, over

70% of the differences in contract performance appear to be driven by factors other

than the incentive strength of the contracts. Further, each VESTING contract is

associated with lower effort relative to PROPORTION contract. However, these dif-

ferences are at most 9.6 percentage points (Wald tests, p = 0.017 and p = 0.000).

There are no significant differences between the two VESTING contracts (p = 0.255).

Columns 7 and 8 suggest that some of the changes in effort are, again, a result of

the subjects reacting to observed partner behavior, and not to differences in incentive

strength. Column 8 shows that the effect of own stage I multiplier on stage II effort

is not statistically significant (p = 0.529) whereas the effect of partner contribution

is statistically significant (p = 0.000).

Summing up our results so far, EQUAL contracts are associated with uniformly

lower effort levels compared to each NON-EQUAL contract. However, over 70% of the

effort gap is driven by factors other than the incentive strength of the contract. Even

with exogenously imposed contracts effort differences are driven in part by reactions

to partner behavior, and not by the strength of incentives alone.

2.4.4 Discussion

While our results are consistent with the conventional wisdom that equal splits

are associated with low value generation, our data suggest that this is not driven

by the differences in incentive strength. If incentive strength drives the differences
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Table 2.1: Effects of contract form on effort
Treatment: IMPOSED Treatment: UPFRONT

Dep. Var: stage I stage II stage II stage II stage I stage II stage II stage II
effort effort effort effort effort effort effort effort

EQUAL baseline baseline baseline baseline baseline baseline baseline baseline

THRESH VEST 21.655*** 29.391*** 25.566*** 27.052***
(4.855) (5.156) (4.649) (5.010)

DIFF VEST 20.139*** 27.286*** 25.258*** 25.687***
(4.398) (5.337) (4.903) (5.132)

PROPORTION 8.004* 9.514** 7.391* 8.598** 27.803*** 36.871*** 31.850*** 33.634***
(4.375) (4.295) (4.031) (4.266) (5.018) (6.270) (5.743) (6.021)

V1 0.695*** 0.821***
(0.164) (0.117)

Own stage I 0.358 0.855
multiplier (2.221) (1.357)

Partner stage I 0.639*** 0.742***
contribution (0.209) (0.130)

Constant 43.827*** 38.930*** 31.271*** 36.048*** 28.384 *** 14.675 8.357 11.821
(8.706) (9.004) (9.168) (9.487) (9.407) (9.757) (9.179) (9.657)

Observations 400 400 400 400 432 432 432 432
Subjects 50 50 50 50 54 54 54 54

Tests of linear combinations of coefficients

THRESH VEST− 1.516 2.106 0.309 1.365
DIFF VEST (2.303) (1.850) (1.960) (1.918)

THRESH VEST− -6.147** -7.480** -6.284** -6.582**
PROPORTION (3.050) (3.122) (2.677) (2.626)

DIFF VEST− -7.664*** -9.585*** -6.593** -7.947***
PROPORTION (2.560) (2.598) (3.129) (3.115)

Note. Dependent variable is stage I effort (columns 1 and 5) and stage II effort (columns 2-4 and
6-8). Regression coefficients are obtained using random effects regression, standard errors clustered
at subject level. Controls: age, gender, experimental period.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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in effort, we should observe robust differences in contract performance even when

contracts are imposed exogenously rather than being selected endogenously by the

team. However, we see the opposite, that 75% of the effort gap between contracts

disappears when contracts are imposed externally. In the latter scenario selection

is not possible, suggesting that the effort gap between contracts is driven by the

individuals with socially desirable behaviors selecting into non-equal contracts and

vice versa.

Further, if subjects respond to incentive strength alone (as standard theory would

predict), we should observe similar reactions to partner-driven and exogenous changes

to the marginal return for investing effort into the startup. However, we again see

substantial deviations from theory predictions. Effort levels do not change in response

to exogenous changes in productivity but do change in response to partner effort,

suggesting that initial effort can be a salient signal that drives (or reduces) cooperative

behaviors in the team. In the next section we show that not only effort levels, but

also contract choices can be affected by initial effort signals when effort information

is available to the team prior to contract selection.

In addition to the effort gap between equal and non-equal contracts our data reveal

some differences between the non-equal contracts. However, these differences are

substantially smaller, relative to the equal/non-equal gap. This, again, is consistent

with the incentive strength being a secondary factor in our data. If incentive strength

was the main driving force, we should observe robust performance differences between

proportional contracts and vesting contracts because vesting contracts impose only

a mild penalty for free-riding. However, effort and value differences between vesting

and proportional contracts are small. In section 6 we show that this is primarily

because vesting contracts attract fewer undesirable founder types, relative to equal

contracts.

Selection patterns similar to ours have been observed in the experimental eco-
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nomics literature (Gürerk et al., 2006; Sutter et al., 2010; Dal Bó et al., 2010). This

literature shows that individuals with undesirable behaviors are frequently opposed to

high-powered incentive regimes. However, much of the literature focuses on examining

behavior in one-shot interactions characterized by a conflict between what is socially

efficient and individually optimal. Our study is different in that it presents teams

with a more contextualized environment (involving risky and partner-dependent re-

turns to effort investment) that is more reflective of collaborative work in startups.

Further, the contracting process itself is designed to reproduce the contracting dy-

namics in startups with a range of available contracting options from equal to fully

contribution-proportional. Such contractual division rules have not been examined

in the literature, which has mainly focused on voting-based reward allocation and

voluntary punishment of free-riders (Gürerk et al., 2006; Cappelen et al., 2007; Sutter

et al., 2010; Dal Bó et al., 2010).

Our results so far suggest that contractual offers may signal something about

the personality type of the individual when contracting happens upfront. Many en-

trepreneurial teams, however, delay contracting until at least some work is done

(Wasserman, 2012; Hellmann and Wasserman, 2016). In that case founders can

observe each other’s collaborative behaviors, which can provide another signal into

the personality of the partner, prior to contracting. In section 5 we investigate the

consequences of this additional signal.

2.5 Delayed contracting

In this section we examine a scenario in which equity contracting is delayed until

after stage I. The sequence of events is similar to the UPFRONT contracting treat-

ment, however the order of the stage I contribution phase and the negotiation phase

is reversed.
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2.5.1 Model parameters and equilibrium predictions

As in the UPFRONT treatment, each subject is endowed with 10 units of effort

to be allocated between the risky startup account and the safe private account in

each of the two contribution stages. As previously, the effort allocated to the startup

account is multiplied by 0.5, 1 or 2 with probabilities 0.25, 0.5 and 0.25. The contract

parameters are as follows:

σEQUALi = 0.5

σTHRESH V ESTING
i =


0.3 if {ci2 < cTHRESH ∧ cj2 ≥ cTHRESH}

0.7 if {ci2 ≥ cTHRESH ∧ cj2 < cTHRESH}

0.5 otherwise

σDIFF V ESTING
i =


0.3 if {cj2 − ci2 ≥ cDIFF}

0.7 if {ci2 − cj2 ≥ cDIFF}

0.5 otherwise

σPROPORTIONi =
ci2

ci2 + cj2

Notice that because our investigation focuses on forward-looking, ex ante symmetric

contracting, the allocation of shares in DELAYED NON-EQUAL contracts is based

on stage II contributions and is independent of stage I contributions. The equilibrium

structure is similar to the UPFRONT scenario. Different contracts feature different

off-equilibrium path predictions for stage II, but identical (full effort) predictions for

stage I. Complete characterization of the equilibrium is relegated to the supplemen-

tary materials.
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2.5.2 Experimental results

Aggregate effort and value levels (averaged over all contracts) are similar in the

UPFRONT and the DELAYED treatments. On average, subjects invest 67 (70)

percent of their effort endowment and their team value V is 278 (273) points in the

UPFRONT (DELAYED) treatments.9

However, there appears to be an interactive effect of contract form and contracting

time on effort (see fig. 2.2). In particular, the effort gap between EQUAL and

NON-EQUAL contracts, as well as the gap among the NON-EQUAL contracts both

shrink substantially in the DELAYED treatment relative to the UPFRONT scenario.

When contracting is delayed, the gap between EQUAL and THRESH VESTING

(DIFF VESTING) is 17.8 (12.3) percentage points. Further, THRESH VESTING

exhibit effort levels on par with PROPORTION, while both THRESH VESTING

and PROPORTION perform better than DIFF VESTING with the difference of 4.53

and 5.90 percentage points, respectively.

Regression analysis

Table 2.2 examines the effects of contracts on effort levels more formally, using

random effects regressions. Column 1 shows that none of the stage I effort differences

between contracts are statistically significant. This result is strikingly different from

the UPFRONT scenario, in which we saw substantial stage I effort differences between

contracts. Column 2 shows that both VESTING and PROPORTION contracts are

associated with increased stage II effort relative to EQUAL contracts (all p < 0.01).

9Random effects regressions confirm that there are no significant effort or value differences be-
tween pooled UPFRONT and pooled DELAYED treatments (p > 0.1). However, teams split their
effort endowments somewhat differently between stage I and stage II in UPFRONT and in DE-
LAYED. Given the multiplicative structure of the startup value function (V = V1×V2) the efficient
allocation of a fixed amount of effort (from the team perspective) would be to split effort evenly
between the stages. Such even allocations of effort are observed in all UPFRONT contracting sce-
narios. In contrast, in all DELAYED NON-EQUAL scenarios subjects increase effort by 15 to 20%
as they go from stage I to stage II.
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Figure 2.2: Mean effort and effort distributions in the DELAYED treatment
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However, these effort differences shrink by about 60 to 70 percent, relative to the

UPFRONT scenario suggesting that contract form and contracting time have an

interactive effect on effort. Column 3 of table 2.2 shows that the effect of V1 on effort

is significant (p < 0.01), but the strength of the effect is, again, reduced relative to the

UPFRONT scenario (UPFRONT: β = 0.821(0.117), DELAYED: β = 0.369(0.088)).

Column 4 suggests that this is driven primarily by a drop in the effect of stage I

partner contribution on subsequent effort, both in terms of magnitude and statistical

significance (UPFRONT: β = 0.742(0.130), DELAYED: β = 0.197(0.129)).

In sum, in the DELAYED scenario more egalitarian regimes perform better while

the contribution-proportional regime performs slightly worse relative to the UP-

FRONT scenario. Further, partners’ stage II effort is less sensitive to mutual stage I

effort levels. Both these effects may be driven by the availability of effort information

prior to contracting, allowing founders to identify free-riders early on and to reduce

the appeal of free riding by choosing NON-EQUAL contracts. This behavior will be

examined next.
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Table 2.2: Effects of contract form on effort in the DELAYED treatment

Treatment: Treatment: Treatment: Treatment:
DELAYED DELAYED DELAYED DELAYED

Dep. Var: stage I stage II stage II stage II
effort effort effort effort

EQUAL baseline baseline baseline baseline

THRESH VESTING 2.508 12.501*** 13.128*** 12.479***
(3.348) (4.123) (4.116) (4.163)

DIFF VESTING 0.272 11.154*** 11.664*** 11.175***
(2.867) (3.536) (3.523) (3.549)

PROPORTION 0.804 16.611*** 17.318*** 16.680***
(3.266) (3.965) (4.002) (3.999)

V1 0.369***
(0.088)

Own stage I multiplier 0.356
(1.022)

Partner stage I contribution 0.197
(0.129)

Constant 36.624*** 40.602*** 37.131*** 39.497***
(12.248) (12.032) (11.565) (12.144)

Observations 470 470 470 470
Subjects 56 56 56 56

Tests of linear combinations of coefficients

THRESH VESTING− 2.235 1.347 1.465 1.304
DIFF VESTING (2.041) (2.245) (2.262) (2.245)

THRESH VESTING − 1.704 -4.110* -4.189* -4.201*
PROPORTION (2.166) (2.273) (2.287) (2.377)

DIFF VESTING − -0.531 -5.457** -5.654** -5.505**
PROPORTION (1.977) (2.367) (2.303) (2.296)

Note. Dependent variable is stage I effort (columns 1) and stage II effort (columns 2-4). Regression
coefficients are obtained using random effects regression, standard errors clustered at subject level.
Two observations were removed because the team was not able to agree on a contract. Five of the six
experiment sessions involved 8 experimental periods, one session involved 10 experimental periods
(programming error). Qualitative results are not sensitive to omitting that session. Controls: age,
gender, experimental period.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Negotiation dynamics and contract choices in DELAYED

Similarly to the UPFRONT scenario, each contract is chosen by a non-trivial

share of the teams in each experimental round, and no contract dominates the con-

tracting decisions in the DELAYED treatment. However, an examination of the

negotiation dynamics reveals some important differences between the UPFRONT

and DELAYED treatments. In particular, in the DELAYED scenario teams nego-

tiate longer (UPFRONT: 23.47 seconds, DELAYED: 34.99 seconds, random effects

regression: p < 0.001) and exchange significantly more offers before agreeing on a

contract (UPFRONT: 2.09 offers, DELAYED: 3.04 offers, p < 0.001). These results

suggest that individuals are more persistent in pursuing their contract preferences

when contracting is delayed.

Further, our data suggest that the increased intensity of the negotiations in the

DELAYED scenario is driven primarily by the teams arguing about choosing (or

not) EQUAL division contracts. On average, when EQUAL contracts are mentioned

during the negotiations teams spend more time negotiating (49.15 seconds vs. 27.87

seconds, random effects regression: p < 0.001) and exchange more offers (4.73 offers

vs. 2.18 offers, p < 0.001), relative to the teams that do not consider EQUAL

contracts.

In addition to increased negotiation intensity in the DELAYED scenario, the

probability of the partner accepting an EQUAL offer is positively correlated with

the proposer’s stage I contribution level (ρ = 0.20, p = 0.056). Indeed, EQUAL

contract proposers can convince their partners to agree to an equal split only if they

show evidence of high effort, as shown in figure 2.3 (see Appendix B.2 for estimation

details). Specifically, if the proposer contributes nothing to the startup in stage I,

her EQUAL offer will be accepted with 20% probability. However, if the proposer

contributes the maximum possible value, 20 points, then her offer will be accepted

with 60% probability. On average, the odds of an EQUAL contract being accepted
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Figure 2.3: Response to contract proposals, as a function of proposer’s stage I con-
tribution (DELAYED)
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Note. Predictive margins of response to contract offers are displayed. Predictions are obtained using
Multinomial Logit regressions of response (0: reject, 1: counteroffer, 2: accept) on the proposer’s
contribution level. Standard errors are clustered at subject level. For the regression specification
and detailed estimation results see Appendix B.2.

increase by 11% with each contribution point (p = 0.042). In contrast, the probability

of acceptance is near-constant at 40 to 50 percent for each NON-EQUAL contract,

as illustrated in figures 2.3(b)-(d). In fact, the relationship between the proposer’s

contribution level in stage I and her partner’s response is not statistically significant

for any NON-EQUAL split offer (p > 0.268).10

In sum, the analysis of the negotiation dynamics suggests that with delayed con-

tracting initial effort is an important signal used by teams to decide on the contracts.

The availability of effort information affects equal contract proposers who are scruti-

nized more closely by their partners prior to agreeing to an equal split offer.

10Figure 2.3 uses Multinomial Logit predictions with the response to contract offer as dependent
variable (0: accept, 1: counteroffer, 2: reject). For robustness we repeat the analysis using random
effects Logit regressions with a binary dependent variable (0: accept, 1: not accept) and find similar
results.
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2.5.3 Discussion

When contracting happens prior to the start of collaboration equal division con-

tracts are associated with poor performance, mainly due to self-selection of free-riders

into equal contracts. But, when contracting is delayed the effort and value gap be-

tween equal and non-equal contracts narrows by more than 60% relative to the upfront

scenario. Further, the performance gap among the non-equal contracts, too shrinks to

a minimum; in fact effort and value levels in the different non-equal contracts become

statistically indistinguishable.

Our investigation of the negotiation dynamics suggests that the narrowing of the

contract performance gap is the result of the change in the information available to

the team when they select contracts. With upfront contracting, the contract offers

are the only signal available to the teams and there are few barriers for free-riders to

select into equal division contracts. Further, free-riding (and cooperative) behaviors

are reinforced as team partners reciprocate to each other’s initial contributions levels.

Together, these effects lead to a robust performance gap between equal and non-equal

contracts. However, with delayed contracting initial effort is another signal into the

personal characteristics of the proposer. Free-riders are revealed early on by their

partners, who can refuse equal contracts if they observe low initial effort signals.

Further, robust contributors are also revealed early on and others are willing to sign

equal contracts with them.

The positive effect of delayed contracting on equal contract performance, while

being conjectured in the entrepreneurial contracting literature, has not been vali-

dated by data (Hellmann and Wasserman, 2016; Jared , 2016). More generally, the

entrepreneurship literature is hesitant to recommend delayed contracting listing two

undesirable features of postponing the negotiations. First, not knowing how their ef-

forts will be rewarded, founders may be reluctant to invest effort in the pre-contracting

stages. Second, the value of the business (often) increases over time raising the stakes
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for the founders, which may lead to increased conflict potential and extend the ne-

gotiations (Wasserman, 2012). Our data confirm both these features of delayed

contracting. However, our results show that these effects are dominated by the ad-

ditional effort information exchanged prior to the negotiations, allowing founders to

match contracts to personality type. For founders who are concerned with free-riding

in their teams but skeptical about performance-based contracts, these results suggest

that delaying the contracting can improve performance.

In sum, in the delayed contracting scenario teams’ contracting decisions are driven

at least partly by the initial effort signals, with the consequence that undesirable

founder types are no longer able to self-select into equal contracts. However, the new

information available to teams prior to contracting may have other, more indirect

effects on behavior of both undesirable and desirable founder types. The next section

examines these effects more closely.

2.6 Characterization of types’ preferences and behaviors

Our results so far indicate that the effort gap between contracts is driven primarily

by the differences in personal characteristics of individuals who select these contracts.

Further, the information available to the team prior to contracting matters for con-

tract performance. In the UPFRONT scenario revealed negotiation preferences is the

only information available to negotiators, but in the DELAYED scenario teammates

have additional information to incorporate into their expectations for future perfor-

mance. In this section we examine these selection dynamics from a new angle, intro-

ducing a taxonomy of personality types who signal their type by the contract form

they favor in negotiations. Specifically, our data suggest three types—low contrib-

utors, conditional contributors and high contributors—and these behave differently

in negotiations and perform differently even under identical contracting regimes and

when faced with different partner behaviors.
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The examination of type behaviors addresses three open questions in our inves-

tigation. First, we have seen that behaviors in our data are driven not solely by

self-interest, or at least not in ways predicted by standard incentive theory, so it is

useful to characterize the relevant drivers of behavior more explicitly. Second, we

have shown that EQUAL contracts attract free-riders. However, it is also useful to

examine the differences between those who favor VESTING and those who favor

PROPORTION contracts. Third, effort information available to the team prior to

contracting has been shown to affect contract performance. Given that each person-

ality type may put different weights on different outcomes, it may be worthwhile to

examine how this additional effort information interacts with the types’ preference

structures.

We next discuss type assignment, the preference structure of each type and type

behaviors in each treatment. The description of our estimation methodology, the

robustness analyses and a more detailed discussion of the estimation results are left

to the supplementary materials.

2.6.1 Type assignment and types’ preferences

While there are many procedures to divide the subject population into types, we

use the contract offers subjects accept and reject in negotiations. These negotiation

data give a more nuanced window into personality types than the final contracts,

because they reflect individual preferences for different division rules (and not team

consensus). In our case, the availability of three contractual alternatives lends itself to

a three-type taxonomy (low contributors, conditional contributors and high contribu-

tors) with each type preferring one of the three contract forms (EQUAL, VESTING,

PROPORTION). The label choices for the types will become clear below.11

11We identify low (conditional, high) contributors as subjects who prefer EQUAL (VESTING,
PROPORTION) contracts to other contract forms in the initial three experimental rounds. We pool
THRESH VESTING and DIFF VESTING into one category because we do not find substantial
differences in behaviors between subjects who prefer one of these contracts.
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Table 2.3: Types’ preference structure.

Relevance for type

Low Conditional High

Factor contributor contributor contributor

Own profit Yes (marginally sign.) Yes Yes

Profit differences within team No Yes No

Effort differences within team No Yes No

Exerting less effort than partner Yes No No

Note. Each factor is computed in terms of expected values. Profit differences within team are
computed in relative terms, based on the expected deviation of the share allocated to player i and
the 50% norm (Bolton and Ockenfels, 2000). Effort differences are computed as expected absolute
difference between own effort and partner effort. “Yes” indicates that the corresponding factor is
associated with a statistically significant utility coefficient in the type’s utility function (p < 0.01).
“No” indicates that the factor is not associated with a statistically significant utility coefficient in
the type’s utility function (p > 0.1). For detailed results see the supplementary documents.

To allow insight into the drivers of type behaviors we use Conditional Logit anal-

ysis (McFadden, 1973). The range of Conditional Logit uses is extensive, but the

closest application to ours is the analysis of distributional preferences in the experi-

mental economics literature (see Frey and Meier , 2004; Bardsley and Moffatt , 2007;

Cappelen et al., 2007; Moffatt , 2016). In these studies, and in ours, Conditional Logit

is used to characterize the preferences of a population by estimating the coefficients

in utility models that account for self-interest (profit maximization) and a range of

nonself-interest factors. The functional forms of these models are chosen based on

their ability to explain the data, both in terms of adding intuition and their econo-

metric fit.

Results

Our estimation results indicate that all types are at least partly concerned with

own profit maximization. However, the extent to which other factors (not related to

narrow self-interest) affect their decisions differs by type. In particular, low contrib-

utors are primarily driven by the desire to work less yet share equally in any profits
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generated. Further, they put the lowest weight on their own profits relative to the

remaining types; in fact the utility coefficient on their own profit is only marginally

significant. Indeed, our models show that low contributors are the only type who will

tolerate lower earnings if they can invest less effort than their partners. Conditional

contributors care more about own profits than low contributors, but are also con-

cerned with effort and payoff of their partners. They will tolerate lower earnings if

they can avoid discrepancies in both effort and profits in the team. High contributors

are not concerned with anything other than their own payoffs. None of the coeffi-

cients on other, nonself-interest factors are statistically significant for them. Table 5

summarizes these results.12

2.6.2 Type behaviors

We next contrast type behaviors in the UPFRONT and DELAYED treatments.

We use effort and contracting data from experimental periods 4-8 for these compar-

isons (Periods 1-3 are excluded because they were used to assign subjects to types).

UPFRONT treatment

Figure 2.4(a) shows the contracts preferred by each type.13 The data reveal that

low contributors prefer EQUAL and PROPORTION contracts to VESTING con-

tracts. Conditional contributors are not entirely opposed to EQUAL contracts and

PROPORTION contracts, but typically lead with VESTING offers. High contribu-

tors express a preference for PROPORTION contracts most of the time. They never

12In this analysis, the utility coefficients are estimated using the UPFRONT data. The reason for
omitting the DELAYED data in the utility analysis is the interaction of effort signals and revealed
contract preferences in the DELAYED scenario. Detailed description of type assignment for both
UPFRONT and DELAYED treatments and the characterization of the utility functions is relegated
to the supplementary documents.

13We measure contract preferences of the types by tracking the initial contract offers they make
in the negotiations. If a subject makes no offers in a given round we use the contract he/she accepts
in the negotiations. For robustness we replicate the analysis using rejection and acceptance rates of
contracts, for each type. These robustness checks yield similar results.
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Figure 2.4: Contract preferences and effort levels by personality type (UPFRONT
treatment)

Note. Contract preferences show the shares of first contract proposals for each type in the UPFRONT
treatment (If a subject did not propose any contracts in a given round, he/she is assigned the first
contract he/she accepts). Effort comparisons show total (stage I + stage II) effort as a percentage
of endowment. The bar for high contributors in EQUAL is omitted in panel (b) because high
contributors never select EQUAL contracts.

lead with EQUAL contracts, but sometimes accept and offer VESTING contracts.

The differences in revealed contract preferences of the types were confirmed in

Probit regression analysis. Conditional contributors exhibit a stronger preference for

VESTING and a weaker preference for EQUAL contracts relative to low contributors,

whereas high contributors exhibit a stronger preference for PROPORTION contracts

relative to conditional contributors (all p < 0.05, see Appendix B for the estimation

results). These preferences align with intuition. Further, the types differ not only in

the contracts they favor, but also in the contracts they end up selecting, confirming

that the personality mix differs significantly between contracts.14

We now turn to the differences in effort levels between the types. Figure 2.4(b)

reveals that both low and conditional contributors’ effort levels are sensitive to the

chosen contract form, whereas high contributors are indifferent to the contract form.

14The result that low contributors prefer PROPORTION to VESTING contracts may appear
surprising. However, recall that low contributors care mainly about working less than their partners.
This can be done most easily in PROPORTION contracts, in which partner effort is highest among
all contracts.
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Further, low contributors exhibit lower effort levels in each contract form relative to

the remaining groups. To examine these differences more formally we regress effort

levels on the personality type dummy variable and the chosen contract (for estimation

results see Appendix B). Indeed, our regression results confirm that low contributors

exhibit lower effort relative to both conditional and high types, even after controlling

for the contract. Further, comparisons of within-type effort levels suggest that both

low and conditional contributors are more sensitive to the contract form than high

contributors and that conditional types are the only ones who adjust their stage

II effort levels based on observed stage I partner effort (for estimation results see

Appendix B).15

DELAYED treatment

In the UPFRONT treatment individuals signal their type by the contract offers

they make and accept in the negotiations. However, in the DELAYED scenario

initial effort is another signal that may affect how types behave in the negotiations.

Therefore, rather than identifying types based on their initial contract offers (as we did

in the UPFRONT scenario), we assign types based on type similarity scores that are

computed for each subject based on their contracting and stage II effort decisions.16

Comparisons of type behaviors reveal that the availability of additional effort

information changes the contract forms each type prefers in the negotiations and also

affects the effort levels they exhibit in contracts. In particular, we have seen that low

15We also examine whether types differ in the extent to which they act according to the equilibrium
predictions. We examine differences in type behavior when equilibrium analysis predicts full effort
provision and when it predicts zero effort provision in stage II and find that both low and conditional
contributors deviate from the equilibrium predictions more often than not, and by large amounts,
whereas high contributors act in accordance with equilibrium predictions in 73% of the cases.

16To account for the differences in the initial partner efforts subjects see prior to contracting, we use
these data to compute the utility that each subject would enjoy conditional on being low, conditional
or high type, given the contracting and stage II effort decisions they make. Using subjects’ decisions
in periods 1 through 8 we then compute the posterior probabilities for each subject of being the
low, conditional or high contributor type and assign each subject to the type with the highest
posterior probability. Our estimation procedure and estimation results are described in detail in the
supplementary materials.
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contributors want to maximize their own payoffs, subject to low effort expenditure.

In the UPFRONT treatment, these preferences led to low contributors self-selecting

into EQUAL contracts. However, in the DELAYED treatment free-riding intent is

revealed early on, with the consequence that low contributors are forced to either

increase initial effort (so that others sign equal contracts with them) or choose NON-

EQUAL contracts. Our results show that both these behaviors indeed occur in the

DELAYED scenario (Detailed results are relegated to the supplementary documents).

When contracting happens prior to collaborating, conditional contributors are

not entirely opposed to EQUAL contracts, but prefer VESTING contracts in which

they can avoid excessive free-riding and also reduce profit discrepancies in the team.

However, because they are facing more desirable behaviors in DELAYED EQUAL

contracts, they become more receptive to EQUAL offers, particularly when they see

high initial effort.

High contributors are strongly opposed to EQUAL contracts in the UPFRONT

treatment. They exert maximum effort and prefer the strongest incentive scheme to

induce their partners to do the same. However, if they observe high initial efforts

they may be less inclined to insist on PROPORTION contracts, particularly if they

believe that initial effort is predictive of future behavior. This should lead to the high

contributors becoming more receptive to both EQUAL and VESTING contracts,

relative to the UPFRONT scenario. Indeed, our data show that high contributors

sometimes (though still less frequently than other types) choose EQUAL contracts,

and also continue contributing near-maximum effort in DELAYED EQUAL.

In the aggregate, in the DELAYED scenario low contributors select into EQUAL

contracts at a lower rate, while conditional and high contributors select into EQUAL

contracts at a higher rate, relative to the UPFRONT scenario. This results in a more

even personality mix in each contract, reducing effort and value differences between

contracts.
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2.6.3 Discussion

Our data reveal the presence of three behavioral types (low, conditional and high

contributors) that differ in their motives and behaviors. While all three types prefer

more profit to less, the preference structure for two of the three types is more complex

and features tradeoffs of profit for other considerations. Specifically, low contributors

do not want to work more than their partners, and will tolerate lower payoffs if they

can work less than their partner. Conditional contributors dislike discrepancies in

both effort and payoffs within the team. High contributors are driven by self-interest

alone, in line with the preferences frequently assumed in standard economic analyses.

In the upfront scenario contractual offers and responses to these offers are the

only signals that founders have to work with. Low contributors signal their type by

offering and accepting equal contracts, because these allow them to work less yet

share equally in any profits generated. If low types end up in non-equal contracts

they are not indifferent to incentive strength, but still exert lower effort relative to

any other group in that contract. Conditional contributors prefer vesting contracts

because these reduce pay inequalities, relative to proportional splits, and at the same

time limit free-riding behaviors, relative to equal splits. Conditional contributors’

effort levels differ with the contract, however a significant part of the within-type

effort difference is driven by their attempts to match partner effort and not by the

incentive strength of the contract. High contributors are not concerned with anything

other than their own payoffs. They exert near-maximum effort and prefer proportional

contracts to vesting, because the former hold their partners fully accountable for their

actions. Further, high contributors strictly avoid equal contracts.

When contracting happens upfront, these behaviors lead to the low contributors

being overrepresented in equal contracts, and the other types being overrepresented

in non-equal contracts. That is, equal contracts are bad for team performance, not

primarily because of their incentive strength but because of the founder types that self-
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select into them. But, in the delayed contracting scenario, founders have additional

information to work with: the initial contribution of their partner. Low contributors

are revealed and others do not want to sign equal contracts with them. Further, robust

contributors are also revealed which reduces others’ reluctance to sign equal contracts

with them. Together, these behaviors result in low contributors no longer being over-

represented in equal contracts. More generally, since it is founder type rather than

the contract type (strength of incentives) that primarily impacts behaviors, with a

stronger signal of type the contract form becomes less important leading to a more

even distribution of types over contracts and to smaller effort and value differences

between contracts, relative to the upfront scenario.

Taken together, these results add texture to the signaling and selection dynamics

described in the previous sections. Different personality types have different desires,

and they pursue these desires consistently, in each contracting regime. However, the

availability of effort information that is not tied to contract means that in the delayed

scenario different contracts can attract their attention. For startup contracting in

practice these results suggest that the presence of undesirable personality types in

the team can be best handled by delaying the negotiations until further downstream

in the entrepreneurial innovation process.

2.7 Concluding remarks

This is the first experimental test to our knowledge of the relationship between

contract form and contracting time and effort and value generation in startups. Our

results confirm the conventional finding that equal splits are poor choices, but suggest

that this is driven not by the incentive differences between contracts, but mainly by

the differences in personality types. Equal splits are proposed and embraced by the

least desirable personality types who prefer working less than their partners even when

this harms their profits. Contribution-dependent contracts attract high contributors
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who invest high effort and prefer the strongest incentive for the partner to do the

same.

We also find a smaller contribution gap, between partially performance-dependent

(vesting) contracts and fully performance-dependent contracts. This is, again, driven

by the differences in personality type. Vesting contracts are preferred by individuals

who care not only about their own payoffs, but also dislike disparities in both, effort

levels exerted by the team and payoff levels. In contrast, individuals who choose fully

performance-dependent contracts are guided entirely by self-interest.

When contracting happens upfront, individuals can often select contracts that

align with their preferences. This generates a substantial effort gap between equal con-

tracts (dominated by undesirable personality types) and non-equal contracts (domi-

nated by desirable types). As a result, teams choosing equal contracts generate only

half of the value relative to the teams choosing non-equal contracts. However, when

contracting is delayed the effort and value gap between equal and non-equal contracts

shrinks by about 60 percent and the differences between the non-equal contracts dis-

appear completely.

The narrowing of the performance gap between contracts is the result of the change

in the signaling and selection dynamics. When contracting happens upfront revealed

contract preferences are the only signal available to the team, but in the delayed

scenario there is an additional (costly) effort signal that parties use to indicate who

they are and how they will behave in the future. In the presence of this additional

signal, equal contracts are accepted only when equal contract proposers demonstrate

that they are worthy of an equal split, by exerting high initial effort.

Our findings have several implications for startup investors. Our results confirm

the conventional wisdom that investors should avoid startups with equal equity splits

between founders. However, equal contracts chosen further downstream in the en-

trepreneurial process are markers of a more desirable personality mix, relative to equal
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contracts selected early on. Hence, information about when and how the contract was

chosen is as important as the contract form and should be included into the investors’

due diligence process.

Our findings also have implications for startup founders. Because personality

characteristics are the primary driver of behavior founders should pay as much (or

more) attention to personality type as they do to contract form. For a given mix

of personality types, however coalesced, the contract form can make a difference.

However, especially in the early stages founders may have neither the flexibility to

change the composition of their teams, nor the ability to include stringent terms

into their equity contracts. In such situations, delaying the contracting can improve

performance.

Our investigation focuses on founder teams formed by peers with few differences

in prior founder experience, who can (at least initially) be expected to add similar

value if they decide to participate in the venture. Such teams are a common, but

not the only form of early-stage startups. An important next step is to examine

the effects of different contracting regimes in teams that are more asymmetric and

differ in seniority (founder/advisor or inventor/first-employee teams) and expertise

(technical-developer/marketer teams).
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CHAPTER III

Entrepreneurial Market Research

3.1 Introduction

It is a common feature of new product and venture-capital portfolio management

in industry that decision-makers trade off risk and return when choosing new addi-

tions to their portfolios. Surveys of practice reveal that the solicitation of the risk

and return characteristics of potential projects can take a variety of forms, but it is

common to assess these two dimensions of a potential investment separately (Cooper

et al., 2006). This is because high risk high return investment opportunities are

perceived differently by portfolio managers than low risk low return opportunities,

even if their “expected value” is similar.

The assessment of the risk and return characteristics for any potential investment

can take a variety of forms. For example, structured questions about market size, the

level of competition, the uniqueness of the proposed product, and other characteris-

tics may be aggregated into a summary value measure. Separately, questions about

translational technology risk, regulatory risk, supply chain risk, commercialization

risk, and other sources of uncertainty are aggregated into a separate summary risk

measure. Portfolio managers then consider both of these dimensions when comparing

potential investments.

Some methods used in practice invoke a structured way to trade off risk and return.
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For example the ECV (Expected Commercial Value) method simply multiplies the

value estimate by a probability of success. Other methods present the value and

risk assessment separately and allow the portfolio managers to judgmentally trade

them off. For example, risk return diagrams or bubble diagrams plot the various

projects on the two-dimensional (risk-return) plane to give decision-makers a visual

representation of those characteristics of potential investments.

The common feature among all these methods is the solicitation of a value met-

ric and a risk metric for each potential investment and the consideration of these

two when choosing additions to the portfolio. This is also a common feature of en-

trepreneurial teams investigations into potential markets, wherein semi-structured

interviews of key informants solicit impressions of the potential value, and the risks,

for entering a given market, because these features will influence how potential in-

vestors value their venture.

Our objective is to inform this investigative process in the context of a startup

team which has developed a new material or technology that could potentially find

voice in a range of consumer and industrial applications, and the team wishes to

identify the most promising market direction in which to take their invention. We

assume that the team operates with finite time and budget, restricting the number

of markets that can be explored, and/or the depth in which they can explore any

one of them. The team explores a market by interviewing key informants in that

market and soliciting from them the potential value of their invention and the risks

they would face achieving that potential value in that market.

The more interviews the team can conduct in any one market the better their

estimates will become of the risks and potential returns for entering that market.

However, with finite resources, the team faces a classic exploration versus exploitation

trade-off in their allocation of time and budget. This means, they need to decide

carefully how many markets to explore, in what sequence and in what depth. In this
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paper we propose and test a range of search strategies to answer these questions.

Perhaps the most extensive literature studying the exploration-exploitation trade-

off is the Multi-arm bandit literature (For a summary of fundamental bandit results

and classic search policies see, for example, Auer et al., 2002; Gittins et al., 2011;

Bubeck et al., 2012). Leveraging this robust literature we study the performance of

the classic bandit search strategies and develop several new ones for three bandit

variants, accounting for the key features of the entrepreneurial market identification

problem.

The first variant is an extension of the classic Bernoulli bandit model, with the

additional consideration of sampling variance in the objective function. The Bernoulli

model is somewhat limited in that it can incorporate only sampling risk, and not

the inherent risk differences that are independent of the value of the arm (as the

variance in an arm’s performance is pre-ordained by the arm’s probability of success).

To incorporate inherent risk differences between the markets we introduce a second

model, adapted from the Normal bandit model. In the Normal model our objective

will be to discover the alternative with the maximum mean-variance score, defined

as the convex combination of the mean and the negative value of the variance with

pre-specified weights on the mean and the variance components.

While the Normal model allows a richer characterization of risk relative to the

Bernoulli model, the informational content of each signal is (similarly to the Bernoulli

model) collapsed into one scalar value. That is, neither the Bernoulli nor the Normal

models can separate between the information about market value and about market

risk obtained during the market research. To examine policy performance in a setting

with a richer signal content, we develop a third model that we will refer to as the

Risk-return model. The Risk-return model retains the customary weights on the risk

and return metrics, but measures risk via a second (risk-related) signal obtained in

each stage from the sampled alternative
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In addition to the described risk-return trade-offs, our investigation accounts for

three additional features of the entrepreneurial market identification problem: the

high cost of obtaining market information, the postponement of rewards until the

end of the search phase, and the requirement that the recommended policies can be

implemented by a human decision-maker.

The cost of conducting market research is driven mainly by the fact that purchase

intent can often not be surveyed directly from the end consumers of the technology

(consider, for example, a new imaging method in cancer treatment, or a new insula-

tion technology). Rather, market research is conducted via interactions with market

experts, such as physicians in the healthcare industry, lead engineers for some in-

dustrial devices, or athletes for sports apparel. Identifying, locating and accessing

these informants is costly in any market research effort, and particularly costly for

early-stage technology teams who are often time and cash constrained and cannot

explore each potential market in great depth, or even all of them at any depth. Our

investigation reflects this feature by examining scenarios in which the number of al-

ternatives is large, but the budget (i.e. the overall number of samples that can be

collected) is small.

Classic bandit models use the sum of undiscounted rewards over a finite horizon,

an average reward over the infinite horizon, or, more usually, a sum of discounted

rewards up to the infinite horizon as the objective function (Gittins et al., 2011).

This is a suitable choice for many operational settings, in which the decision-maker

must balance immediate profit generation and more risky, innovative activities that

can increase future profits. In contrast, the “reward” for an early-stage team is the

decision of an investor to fund them (or not) and the terms of that investment. In our

model the signals collected by the team during their search do not have immediate

payoff consequences. Rather, at the end of the market research phase the team selects

the market that appears to be “best” and that market is used to generate their payoffs.
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Because we are interested in search processes conducted by human decision-

makers, our goal is to identify effective policies that can be translated into intuitive

and easily implementable decision rules. This is different from most classic bandit

investigations that focus on computational performance of policies (solution quality,

speed, computational complexity), bypassing any implementability or intuitiveness

aspects of the policy in practice. To evaluate implementability we will (a) recom-

mend easy-to-communicate policies whenever their performance is sufficiently good,

(b) examine the search process of less intuitive policies to distill the features that

can be used to enhance simple policies and (c) stress-test each policy with regard to

human errors revealing how robust the policies are to some characteristic behaviors

of human decision-makers operating in stochastic environments. In particular, we

will examine the robustness of policies to limited memory (Gans et al., 2007), mental

sampling (Tong and Feiler , 2016), misalignment of the prior beliefs and the true dis-

tribution of arms (overconfidence, Herz et al., 2014), incorrect signal processing (also

known as “overprecision”, Herz et al., 2014) and random errors (“tremble”).1

To summarize, we will explore policy performance in three variants of the classic

Bandit model revised to reflect key attributes of this entrepreneurial setting. These

are: (a) each alternative exhibits a different risk profile, (b) the number of alternatives

exceeds the number of samples that can be drawn, (c) the search performance is valued

only by the selection made in the terminal stage, and (d) the search strategy needs

be implementable by a human decision-maker.

To be able to inform entrepreneurial decision-making in this setting we will in-

troduce three search models and examine the performance of a wide range of search

strategies in a multitude of scenarios. In this dissertation chapter we will restrict our

1Overoptimism and overprecision refer to the decision-maker’s incorrect perception of some or all
arms being better (in terms of their means and sampling standard deviations) relative to the true
information state. More broadly, these are manifestations of overconfident behaviors, which have
been found to be particularly prevalent among entrepreneurs (Busenitz and Barney , 1997; Forbes,
2005; Moore and Healy , 2008; Croson and Ren, 2013).
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analysis to scenarios defined within the context of the revised Bernoulli bandit model

(model 1) and of the revised Normal bandit model (model 2). Most of the existing

bandit policies were designed for either the Bernoulli or the Normal model, so testing

policy performance in these standard models will reveal where some of the existing

policies fail, once we account for the additional features of the entrepreneurial setting.

In future research we plan to build on this analysis and examine policy performance

in scenarios defined by the Risk-return model (model 3).

This is the first paper to our knowledge to formulate and study the entrepreneurial

market identification problem. Our initial results offer some insights for technology-

based startups seeking to commercialize their invention, and also add texture to some

of the classic solutions to the exploration-exploitation dilemmas in the broader search

and bandit literature.

First, we find that many classic index-based policies that perform well in conven-

tional search settings fail in our setting. For example, Gittins-index based solutions,

and Thompson sampling only work well with a small number of alternatives relative

to the sampling budget. In contrast, another well-known class of strategies, Stick-

with-the-winner, Switch-from-a-loser performs well across the different scenarios in

our setting. While the implementation of these policies is trivial in search processes

with binary market signals, it requires an adaptation step for non-binary signals. We

explore a broad range of such adapted Stick-switch policies and find that policies with

high threshold values for sticking with the current market (and a low threshold for

switching to a new market) perform better than any other conventional search policy.

Second, we are able to further improve upon the performance of Stick-switch

policies in settings with continuous signals, by adding a deep search stage at the

end of the search horizon. This is particularly valuable in settings in which inherent

market risk plays an important role. In these, a deep search stage can improve

search performance by up to 20% relative to the stand-alone Stick-switch policy. The
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relative advantage of such modified Stick-switch policies is confirmed in settings where

the decision-maker is characterized by imperfect recall and information processing

capacity.

The implication of these results in practice is that entrepreneurial teams should

begin market research by spending a large portion of their budgets to the exploration

of a broad range of potential markets, moving on quickly to new markets whenever

they receive unfavorable information about a market. Towards the end of the market

research phase teams should narrow down their search, deepening their understanding

of the best market(s) discovered so far.

The remainder of this paper is organized as follows. Section 3.2 introduces the

model. Section 3.3 describes the search policies. Section 3.4 presents the results of

the simulations. Section 3.5 studies the implementation of the algorithms focusing

on a boundedly rational decision-maker. Section 3.6 concludes.

3.2 Models

The iterative search and selection among multiple, risky alternatives has a mathe-

matical expression in the literature: the multi-arm bandit model (Gittins and Jones ,

1979; Gittins , 1979). In most existing applications of the bandit model, and in ours

the decision maker decides dynamically on the actions to be taken while observing

the outcomes of her past actions. In our setting, the decision-maker is the technology

team. The arms of the bandit are the different markets or applications contained in

M = {1, 2, ...,M}. The team has a (time and/or cash) budget represented by N that

determines how many samples they can collect to learn about the different markets.

In stage n = 0, 1, 2, ..., N −1 the team chooses market in ∈M, observes signals Win,n,

which are correlated with the true arm performance (in ways that will be described

later) and updates their beliefs about the desirability of arm i. In stage N the search

is complete and the team chooses the arm that appears to be best (“best” will be
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defined below).2

Since its conception, the bandit model has been extended in many directions to in-

vestigate exploration-versus exploitation trade-offs encountered in various operational

settings. For example, Bertsimas and Mersereau (2007) consider a marketer learning

the efficacy of alternative marketing messages, Caro and Gallien (2007) consider a re-

tailer making assortment decisions and learning about demand, Papanastasiou et al.

(2017) consider consumer populations learning (collectively) about the quality of ser-

vice providers, and Gans et al. (2007) consider a manufacturer learning the quality

of potential suppliers. However, to our knowledge none of the existing bandit models

extrapolate directly to the entrepreneurial market research problem. We will next

discuss the models in more detail.

3.2.1 Model 1 (Bernoulli Bandit)

The Bernoulli bandit model is one of the most studied Bandit variants, and will

be used as our starting point for identifying well-performing search strategies. Each

bandit arm (market) is uniquely defined by its probability of success, pi. Then, the

value of the technology in market i has two sources of variability or randomness: the

inherent randomness in the fact that the number of sales in market i is a random

variable, and the sampling error in the estimate of pi. In our analysis we will ignore

the inherent risk (because it is pre-ordained by parameter pi and restrict our atten-

tion to the sampling error. Then, our objective is to find the market in which the

technology will have the highest expected market share, while making sure that the

market information is representative of the true market potential. Mathematically,

the objective is to select iteratively markets i0, i1, ..., iN−1 to identify the market that

2The entrepreneurial team may not be aware of some markets. One might then think of M as
the number of markets the team was able to identify in their initial market research efforts.
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exhibits the best performance in the terminal stage N :

max
i0,i1,...,iN−1

vi(piN , p̂
N
iN , λ) = λpiN − (1− λ)

√
Var[p̂N

iN
] (3.1)

where iN = argmaxi∈M λp
N
i − (1− λ)

√
Var[p̂Ni ].

3.2.2 Model 2 (Mean-variance Normal Bandit)

Model 1 begins to incorporate risk into policy performance evaluation, but the

differences in market risk between the alternatives are restricted to the level of con-

fidence (i.e. sampling variance) with which the decision-maker can predict market

performance. To incorporate a richer characterization of risk, and to further ground

our results in the existing Bandit literature we will also examine policy performance

in a variant of the Normal bandit model with unknown mean and variance. In the

Normal model each signal is used to update both the return estimate (mean of the

distribution characterizing market i) and the risk estimate (variance of that distribu-

tion), which jointly determine the desirability of a market.

Let each market i ∈ M be characterized by a probability distribution Fi ∼

N(θi, σ
2
i ), where both the means θi and variances σ2

i are unknown. The objective

of the team in this setting is to select iteratively markets i0, i1, ..., iN−1 to identify the

market that exhibits the best performance in the terminal stage N :

max
i0,i1,...,iN−1

vi(θi, σi, λ) = λθiN − (1− λ)σiN (3.2)

where iN = argmaxi∈M λθ
N
i − (1− λ)σNi .

3.2.3 Model 3 (Risk-return Model)

While models 1 and 2 begin to account for some risk differences between the differ-

ent markets, they do not fully reflect the richness of the interactions between the team
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and their market informants. In model 3 we explicitly model the dual (risk+return)

nature of the market signals obtained by the team during market research.

Let each market be characterized by two constants, Si denoting the return that

can be earned in market i, and Ri denoting the aggregate risk measure for market i.3

The team initially knows little about Si or Ri, other than that these quantities are

non-negative and bounded. We will assume a non-informative prior for Si on [0, Smax],

and similarly for Ri on [0, Rmax]. We will denote the prior distributions by fS(si)

and fR(ri), respectively. If the team chooses market i, they receive two independent

signals: one about Si, and one about Ri. We will next describe the updating process

for Si; the updating for Ri follows the same logic and will be omitted for brevity.

Let S̃i,n be the market signals about Si obtained in stage n = {1, 2, ..., N} of the

search process. We will assume that each signal S̃i,n is an unbiased but noisy estimate

of the true quantity, Si. We will denote the sampling noise by εi,n and assume it is

stationary, denoting its pdf by gS(εi,n). We will further assume that the εi,n are

bounded on [−a, a], where a < Smax/2, and that E[εi,n|Si] = 0. Further, the signals

are additive in the true market size and the noise, S̃i,n = Si + εi,n. Using Bayes’ rule,

the team can update their belief about market size Si after observing signal S̃i,n as

follows:

Pr(Si = si|S̃i,n = s̃i) = fS(si|s̃i) =
gS(s̃i − si|si)fS(si)∫
t
gS(s̃i − t|t)fS(t)dt

, (3.3)

with the updated belief E[Si|S̃i,n] =
∫
si
sif

S(si|s̃i)dsi. In our baseline model we will

assume that the prior density fS(si) and the noise distribution gS(εi,n) are uniform.4

3Another common criterion for venture evaluation is time-to-market (used for example, in the
the Procter and Gamble three factor model of project evaluation, see Cooper et al., 2006). In our
model, time-to-market can be incorporated into the return measure by adjusting (delaying) the cash
flow projections.

4For Si ∈ [0, a)∪ (Smax−a, Smax] the distribution of noise will be truncated at the bounds, with
the consequence that the signal is not unbiased. In particular, we will assume that gS(εi,n|si) ∼
U [−a, a] for Si ∈ [a, Smax − a], that gS(εi,n|si) ∼ U [−si, a) for Si ∈ [0, a) and that gS(εi,n|si) ∼
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The end point of the market assessment is the composite value of market i, vi,

which we define as the weighted sum of return and composite risk, vi = λ×Si− (1−

λ)×Ri, where λ is the weight put on the return measure relative to the risk measure.

For the entrepreneurial team, the unknown quantities, Si and Ri are replaced by

their expectations, conditional on the knowledge state. The objective of the team

is to select the measurements i1, i2, .., iN−1 to discover the market with the highest

value vi. At the end of the market research phase, in stage N the entrepreneurial

team selects the market with the highest E[vi].

3.3 Search policies

As with many variations of this problem class exact solutions are elusive, but

we will consider a range of heuristics that have been found to perform well in dif-

ferent contexts and test them in simulation. We will then qualitatively analyze the

key structural components of well-performing heuristics and develop some new ones

with the objective of being able to clearly communicate them to non-mathematical

practitioners.

A key property of effective search strategies in traditional bandit models is the

ability of the strategy to balance exploitation (earning rewards from arms known to

perform well) and exploration (learning about the potential of new arms). Given

that in our setting the signal realizations do not directly contribute to the earnings,

one might expect the more exploratory policies to perform well. However, exploratory

policies may suffer from high variance of the chosen arm. The interaction of these, and

other model features for strategy performance is not obvious and has not been investi-

gated extant bandit literature. We will study strategy performance in the simulations,

using a variety of scenarios in which we vary the model parameters (pi, θi, σ
2
i , N,M, λ).

U [−a, Smax − si] for Si ∈ (Smax − a, Smax]. The truncation at the bounds can reflect either the
increased informativeness of extreme signals, or internal adjustments to overly pessimistic/optimistic
signals falling outside of the bounds.
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In addition we will examine policy performance when the decision-maker implement-

ing the policy exhibits imperfect recall and updating of parameters when processing

new information. Before discussing these scenarios in more detail we will survey the

search policies used in the extant literature and discuss the modifications to these

policies required by our setting.

The body of work on iterative search is now extensive, with most investigations

using the bandit or ranking and selection frameworks to study computational perfor-

mance of different policies (Kim and Nelson, 2006; Gittins et al., 2011; Powell and

Ryzhov , 2012). Most of these policies are well-functioning (in at least some context)

heuristics, which have the advantage of being efficient to implement. Each policy

π defines a (possibly stochastic) rule or function V π(Sn) mapping the state of the

knowledge in stage n, Sn to the alternative(s) to be selected. The state of knowledge,

Sn includes the parameters of the distribution describing the team’s beliefs about

each arm i in stage n. These parameters are {α̂ni , β̂ni }i=1,2,...,M in the Bernoulli bandit

scenario, and {α̂ni , β̂ni , θ̂ni , τ̂ni }i=1,2,...,M in the Normal bandit scenario. In the Risk-

return model the beliefs about the return and risk parameters will be denoted by

{Ŝni , R̂n
i }i=1,2,...,M . For certain policies Sn may also be required to include the history

of the previous draws, {ij}j=0,1,...,n−1.

Further, some policies will require as input the prior value estimates for each

arm (i.e. the weighted sum of the mean and risk parameter estimates given the

current information state). We will denote these quantities by v̂ni . In the Bernoulli

bandit scenario v̂ni = λp̂ni − (1 − λ)
√

Var[p̂ni ]. In the Normal bandit scenario v̂ni =

λθ̂ni − (1− λ)σ̂ni . In the Risk-return model v̂ni = λŜni − (1− λ)R̂n
i .

3.3.1 Simple, time-invariant heuristics

We first discuss the set of simple, time-invariant heuristics with clear practical

interpretation. Among these, perhaps the simplest policy is the pure exploration
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strategy that samples each market with probability 1/M (This policy can also be

adapted to sample randomly with replacement). The opposite of an exploration

policy is the pure exploitation (Also known as greedy or myopic policy). This policy

selects in each stage the arm with the highest expected performance (given the current

state of knowledge), breaking ties randomly. This has the advantage of always acting

to maximize the near term expected gain, but it may not explore enough to find the

best arm.

Another intuitive policy is Stick with a winner, switch from a loser. We will

sometimes refer to this policy as Stick-Switch or SS. This policy starts with a randomly

selected arm, and continues pulling that arm until the first negative signal (failure)

occurs. We will adapt the SS policy for continuous signal realizations (as in model

2) as follows: success (failure) will be defined as arm performance above (below) a

certain threshold. The threshold can be a constant parameter determined ex ante,

or an endogenous parameter determined dynamically. After the first failure a new

arm is selected at random, and the process is repeated until the search budget is

exhausted. If all arms have been sampled at least once, the arm with the highest

success/failure ratio, or the arm with the fewest pulls is sampled (This scenario will

not occur in our focal setting, where M > N). In the Risk-return model we will use

the composite signal, Wi,n = λS̃i,n − (1 − λ)R̃i,n to evaluate whether the signal is

recorded as a success or as a failure. We will also explore a variant of the SS policy,

SS2, which discards an arm after two consecutive failures, and a variant that uses the

ratio of successes to failures to determine whether or not to switch to the new arm

(which will be referred to as Ratio (+/-) policy).

3.3.2 Heuristics balancing exploration and exploitation

The simplest policy in this class divides the budget into an exploration phase in

which each arm is sampled at random, and an exploitation phase in which current
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high performers are sampled. This policy is sometimes referred to as the Test-rollout

policy (Schwartz et al., 2017). An alternative policy with a gradual transition from

exploration to exploitation is the ε-Greedy policy. This policy mixes random explo-

ration and exploitation in each stage, with pre-specified probabilities. It conducts

random exploration with probability ε and chooses the best arm (using the greedy

method) with probability 1−ε. The parameter ε is typically chosen to be a decreasing

function of the search stage n (See Sutton and Barto, 1998, for further variations on

this policy).

The next two policies are more sophisticated versions of the ε-Greedy policy.

Rather than sampling at random, these policies attach performance-dependent weights

to each arm. In particular, Boltzmann (sometimes referred to as Soft max ) policy

samples arm i with probability qsoft,ni proportional to its current predicted perfor-

mance v̂ni . The probability of choosing arm i is then given by

qsoft,ni =
eρv̂

n
i∑

i′∈M e
ρv̂n

i′
, (3.4)

where ρ ∈ [0,∞) is the “greediness” parameter (The policy becomes greedy as ρ →

∞).

The Randomized probability matching (Thompson sampling) policy is similar to

Soft max, except that the probability of choosing an arm is the probability of that

arm being the best one among all arms (Scott , 2010). That is, we choose arm i with

probability qthom,ni given by

qthom,ni = Pr
(
µni = max{µ1, µ2, ..., µM}

)
, (3.5)

where µi is the mean of the distribution characterizing arm i (pi in model 1, or θi

in model 2). This method is typically implemented by drawing a sample from each

arm’s posterior distribution at random, and choosing the arm with the highest draw
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value.5

3.3.3 Upper Confidence Bound (UCB) policies

The UCB class of policies was first introduced in (Lai and Robbins , 1985; Lai ,

1987) who proposed to add an “uncertainty bonus” to the arm’s empirical perfor-

mance when computing that arm’s index value. The size and the form of the uncer-

tainty bonus may differ depending on the exact policy implementation (Auer et al.,

2002; Audibert et al., 2008).6

Perhaps the most common variant of UCB is UCB1, given by:

vUCB1,n
i = v̂ni +

√
2log n

Nn
i

, (3.6)

where Nn
i is the number of times arm i has been played up to and including time n.

Notice that the second term is a decreasing function of the number of times an arm

has been pulled.

Another frequently examined variant is UCB2. The main idea of UCB2 is to

reduce the constant term in the fraction of time a suboptimal arm will be selected.

In particular, UCB2 splits the search horizon into epochs of varying length. In each

epoch the arm maximizing

vUCB2,n
i = v̂ni +

√
(1 + a)log(e× n/(1 + a)ri)

(1 + a)ri
, (3.7)

is selected and then played exactly d(1 + a)ri+1 − (1 + a)ri)e times before ending the

epoch and selecting a new arm. The term ri is a counter indicating how many epochs

5We also consider an adaptation of Thompson sampling, in which we use Pr
(
vni =

max{v1, v2, ..., vM}
)

instead of Pr
(
µn
i = max{µ1, µ2, ..., µM}

)
to determine which arm should be

played.
6UCB policies typically require each arm to be sampled at least once, or more than once before

they can take action. Whenever possible we will adapt these policies to our setting by assuming
that each arm has been sampled at least once or more times.
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arm i has been selected in and 0 < a < 1 is a tunable parameter.

UCB-tuned policy is similar to UCB1, but tunes the upper bound parameter in

the padded term. The idea behind this policy is that the larger the total number of

plays is, the more confident we should be before discarding a poor-performing arm.

The value of an arm under this policy is given by

vUCB−tuned,ni = v̂ni +

√
2log n

Nn
i min(1/4, V ar

n

i )
, (3.8)

where V ar
n

i is an estimate of the upper bound of the variance of arm i.7

The KL-UCB approach is based on a padding function derived from the Kullback

Leibler (KL) divergence (Maillard et al., 2011).. KL-UCB considers the distance

between the estimated distributions of each arm as a factor in the padding function.

The KL-UCB policy operates by choosing the arm maximizing following expression:

vKL−UCB,ni = Nn
i d(p̂ni ,M) ≤ log n+ c log log n, (3.9)

where M is the set of all possible distributions.8

Bayes-UCB (Kaufmann et al., 2012) is the only UCB variant developed specifically

for the Bayesian setting (the other UCB algorithms were developed for the frequen-

tist setting, ignoring the prior distribution of the arms’ values). The Bayes-UCB

algorithm estimates quantiles of each arm’s prior distribution to increasingly tight

bounds. In each iteration Bayes-UCB draws the arm that maximizes the following

expression:

7We use the Auer et al. 2002 approach, in which the estimate is given by V ar
n

i = V ar(v̂ni ) +√
2log n
Nn

i
.

8For Bernoulli arms d(p̂ni , p̂
n
i′) = p̂ni log

p̂n
i

p̂n
i′

+ (1 − p̂ni )log
1−p̂n

i

1−p̂n
i′

(Kullback and Leibler , 1951). Fur-

ther, Garivier and Cappe (2011) find that setting the parameter c = 0 results in the best average
performance. In our implementation we follow their recommendation.
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vBayes−UCB,ni = Q(1− 1

n
, v̂ni ), (3.10)

where Q(t, v̂ni ) is the t−th quantile of the predictive distribution for the value of each

arm.

The last policy in this category is DSEE (Deterministic Sequence of Exploration

and Exploitation). This policy was introduced specifically for mean-variance bandits

in Vakili and Zhao (2016). The idea is to explore at random in the first half of the

planning horizon, and to use UCB1 in the second half. We also explore variations of

this policy with other UCB-alternatives.

3.3.4 Forward-looking policies

The m-step look ahead (Knowledge gradient, or POKER, or Price of Knowledge)

policy solves exactly the bandit problem if it were to end after m steps. The idea of

collecting information based on the expected value of a single (or a few) measurements

was first introduced by (Gupta and Miescke, 1994, 1996) and applied to the bandit

setting in Frazier (2009). The m-step ahead policy chooses the arm i, with the highest

value vKG,n,mi , defined as follows:

vKG,n,mi = E
[

max
i′

v̂n+m
i′ −max

i′
v̂ni′ | αni , βni

]
. (3.11)

Notice that the arm index in equation 3.11 maximizes the incremental improvement

between stages n and n+m and between the the best arm in stage n and in stage m,

rather than the value of the arm that is expected to best in stage n+m. The reason

is computational – the look ahead policies are computationally expensive, and the

incremental improvement can often be approximated more easily than the predicted

value of the best arm.(Powell and Ryzhov , 2012).

Several variants of the look-ahead policy that have been developed specifically for
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the setting with unknown means and variances are “linear loss” (LL) policies. We will

consider two of these policies: LL1 and LL(1). Both these policies have been shown

to perform well in selection problems (Chick and Inoue, 2001; Chick , 2006; Chick

et al., 2010). Both policies use approximations to compute predictive distributions

for the maximum improvement resulting from pulling each arm.

The m-step look ahead strategy with m = N − n provides the optimal solution

to the bandit problem. Solving this dynamic program is computationally intractable

even for relatively small N . However, an optimal solution under some restrictive as-

sumptions (Exponential family of distributions, infinite horizon, geometric discount-

ing) is given by the Finite-horizon Gittins index Gittins index (Gittins and Jones ,

1979; Gittins , 1979). While not necessarily optimal when these assumptions are not

satisfied, Gittins indices have been shown to perform well in broader settings, for

example in finite-horizon problems (Niño-Mora, 2011). In our setting the Gittins-

index solution may not explore enough because our setting shifts all rewards to the

terminal stage. Further, the solution must account for the role of risk. To compute

Gittins indices for each arm we will use the dynamic programming solution concept

of Whittle (1980).

3.4 Simulation results

3.4.1 Simulation setup

To evaluate policy performance we conduct simulations over a set values of the

true parameters generated at random (in ways that will be described below). For

each set of simulations we will conduct K runs of the simulation, and in each run

k = 1, 2, ..., K a new state of the world, or “truth” ψk is generated from the same

distribution. In the Bernoulli bandit model the state of the world will be defined by

the vector of true means for each market, pk = [pk1 p
k
2 ... p

k
M ]. In the Normal bandit
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model the state of the world will be defined by the vector of tuples containing the

true means and standard deviations: {θk, σk} = [{θk1 , σk1}, {θk2 , σk2}, ... , {θkM , σkM}].

In the Risk-return model the state of the world will be defined by {Sk, Rk} =

[{Sk1 , Rk
1}, {Sk2 , Rk

2}, ... , {SkM , Rk
M}]. The matrix W k collects the signal realizations

W k
i,n for each alternative i ∈ M and all measurement stages n = 1, 2, ..., N. In each

simulation run k we evaluate the value of the policy π by

F π
k (ψk) = max

i∈M
vi(ψk)− vi*(ψk, π), (3.12)

where i* = argmaxiN∈M v̂
N
iN . Each sample path k is generated once and is used to

evaluate each policy. The performance of a policy over K runs is then evaluated by:

F̄ π =

∑
ψk∈Ψ F

π
k (ψk)

K
(3.13)

where Ψ is the set of true states of the world used in the simulations.

We will begin by examining the (conventional) bandit setting with few arms and

many samples, and with the mean performance of the chosen arm being the sole

performance metric. We will then examine the effects of two unique features of

the entrepreneurial search problem on policy performance: the effect of the number

of markets (relative to budget) and the effect of risk. We will then explore the

search processes of well-performing policies and heuristics. The examination of policy

performance under imperfect recall and updating is postponed until section 3.5.

3.4.2 Model 1: Informational risk (Bernoulli Bandit)

We first discuss simulation results for the Bernoulli bandit model (model 1). In

the first comparison of the policies we examine the role of the number of arms (mar-

kets), M on policy performance. Figure 3.1 shows mean performance for each policy,
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Figure 3.1: Policy performance, Bernoulli bandit
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Note. Optimality gap (see equations 3.12 and 3.13) is used as performance metric. Policies are
sorted by performance in the M = 40 scenario. Bars indicate bootstrapped 95% confidence intervals
for mean performance. Heuristics that require parameter choices were parametrized iteratively in
successive simulation runs: well-performing parameters are chosen.

along with the (bootstrapped) confidence intervals for mean performance.9 Policy

performance is evaluated using the optimality gap or regret in terms of the arm value

(defined in equation 3.12). We vary the number of arms (markets) between 10, 20

and 40 in these simulations, keeping the number of samples, N constant, and keeping

the weight on the mean estimate relative to the variance of that estimate constant

(λ = 1). We use the uninformative Beta (1,1) prior distribution, which aligns with

the true data generating process (misaligned priors will be examined in the next

9We created 5000 bootstrapped samples from actual performance data and used these samples
to evaluate mean policy performance. The endpoints of the confidence intervals are the 2.5th and
the 97.5th percentiles of that bootstrapped distribution. These intervals give a sense of statistical
reliability of our simulation results.
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section).10

Figure 3.1 reveals that the Stick-Switch and UCB-Bayes policies are the top per-

formers across the different scenarios. Thompson sampling is relatively successful (on

par with the top-performers) in the scenario with few arms, but performs very poorly

in scenarios with many arms. Unsurprisingly, Greedy and random policies perform

poorly across scenarios. Further, most of the policies that balance (in some way) ex-

ploration of new arms and exploitation of high performing arms perform better than

Greedy or random policies, but worse than Stick-Switch or UCB-Bayes.11

Figure 3.2 shows mean performance for each policy keeping the number of markets

constant, but varying the weights on mean and variance, λ. The Stick-Switch and

UCB-Bayes policies remain the top performers with the mean-variance measure of

policy performance. Among the remaining policies, Thompson policy exhibits the

most noticeable deterioration in performance as the weights are shifted away from

the mean and towards the variance. In contrast, Ratio, Boltzman and Greedy policies

perform better, relative to other policies with lower values of λ.

Search process

To examine the search process engaged by each strategy we will use the focal

scenario with more arms than samples (M = 40, N = 30), and with a substantial

weight on the variance relative to the mean (λ = 0.6). We examine policy behavior

by looking at several variables related to the breadth and depth of exploration, and

also at the changes in those measures over time. To examine the timing we look at

policy behavior in the beginning (first half), vis-à-vis at the end (second half) of the

search horizon. We focus in particular on the number of arms sampled, the number

10We repeat the analysis with negatively skewed priors (Beta(1,2); Beta (1,3) etc.) and find similar
results. However, the differences between policies shrink for strongly skewed prior distributions, in
our case, starting with Beta (1,3).

11These comparisons omit several UCB policies: UCB2, KL-UCB, UCB-tuned, whose performance
resembles the performance of UCB1 in most scenarios.
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Figure 3.2: Policy performance, Bernoulli bandit
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Note. Optimality gap (see equations 3.12 and 3.13) is used as performance metric. Policies are
sorted by performance in the λ = 0.4 scenario. Bars indicate bootstrapped 95% confidence intervals
for mean performance. Heuristics that require parameter choices were parametrized iteratively in
successive simulation runs: well-performing parameters are chosen.

of arms sampled at least x times, the number of arms sampled in the first vs. second

half, as well as on the number of reversals (a reversal is an event in which an arm is

chosen that has been sampled previously but discarded in favor of another arm). We

will next discuss how these quantities differ by search policy (the summary statistics

are relegated to Appendix C).

Table C.1 (Appendix C) reveals that different policies can arrive at good per-

formance results using somewhat different strategies. Consider the top-performing

strategy, UCB-Bayes. Table C.1 suggests that it explores, on average 7 arms, chooses

approximately half of those arms to conduct in-depth exploration (examining those

arms at least twice), and does not change behavior between the first and the second
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half of the search horizon. Interestingly, the second best search strategy, SS exhibits

an almost identical search process as UCB-Bayes. Taken together, the results that

both the performance and the search process of UCB-Bayes and SS are similar, as

well as the intuitiveness of the SS policy suggest that it is a suitable candidate for

communicating to human decision-makers.12

While SS and UCB-Bayes exhibit almost identical search processes, another suc-

cessful policy, Two-step-ahead uses a very different approach: it exhibits frequent

reversals, both in the first and the second half of the search horizon. In fact, we

were not able to distill the search process of the Two-step-ahead policy to a human-

implementable decision rule (We are not the first ones to find that step-ahead policies

do not follow an easily distinguishable decision pattern (See, for example, Powell and

Ryzhov , 2012, for a detailed discussion of interpretability of step-ahead policies).

One common feature of the three top-performing policies (UCB-Bayes, SS, Git-

tins) is that, despite the total number of arms being different between these policies,

they explore approximately half of the sampled arms only once, and the other half

at least twice). That is, when sampling variance is an important decision criterion,

good policies explore approximately half of the arms superficially, and the other half

in depth. Further, the exact number of the explored arms appears to be less impor-

tant for policy performance than the ratio between the number of arms explored once

and the number of arms explored at least twice. Stick-switch policies appear to be

well-calibrated to achieve this balance, while other policies, such as UCB-Bayes and

Gittins require more involved computation.

Lastly, the bottom 7 policies perform poorly because they either underexplore or

over-explore, relative to the successful policies. Indeed, Table C.1 suggests that they

sample either too few arms (UCB1, Greedy, Ratio policies), or too many (Thomson,

12The similarities between UCB-Bayes and SS are driven by the fact that a single negative signal
results in the UCB-Bayes policy assigning a very low index to the attendant arm, causing that arm
to never be used again.

121



Figure 3.3: Policy performance, Normal bandit
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Random policies). In a setting, in which both the mean and the variance matter of

the chosen arm matter, either too broad or too narrow exploration can lead to poor

results.

3.4.3 Model 2: Inherent market risk (Normal Bandit)

We omit the discussion of the differences in policy performance for scenarios with

varying number of arms (relative to samples): the relative ranking of the policies is

not affected by the number of arms.13 Instead, we focus on policy performance while

13One exception are Look-ahead policies: these perform well in Normal bandit settings with few
arms, but not in settings with many arms.
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varying the weights on the mean and the variance. Figure 3.3 shows the results for

the N(0, 1) prior distribution for the unknown mean and variance parameters. In

particular we examine scenarios with λ = {0.4, 0.6, 0.8, 1}. As before, we focus on the

setting with more arms than samples (M = 40, N = 30).

Figure 3.3 reveals that Stick-Switch policies again, perform well relative to the

other policies. In particular, SS-high is better than any of the remaining policies

in scenarios with a moderate weight on the variance (λ ∈ {0.6, 0.8}). SS-high is a

variant of the SS policy modified for the setting with continuous signals: it sticks with

the current arm if the signal value is “sufficiently” high. Stick-switch-high uses the

95th percentile of the prior distribution for the mean: any signal value above the 95th

percentile is interpreted as a success, and any value below that quantity is a failure.

Our computational experiments suggest that such higher cutoffs perform better than

lower cutoffs for moderate weights on the variance. Another SS variant, SS-mean,

which uses the mean of the prior distribution of the mean to define success performs

substantially worse than SS-high.14

Another policy, Thompson sampling, also performs well across the scenarios. It

is worth mentioning that Thompson sampling did not perform well in the Bernoulli

bandit scenario. One possible reason for the inconsistent performance of this policy

is differences in the nature of the signals in the two models. With bounded signals

Thompson sampling may undervalue strong signals, and may instead put too much

probability mass on new, unexplored arms (Indeed, Table C.1 in Appendix C suggests

that Thompson samples too many arms in the Bernoulli scenario). But, when signals

are unbounded, Thompson sampling can allocate more probability mass to really

good arms, and less probability mass to really bad arms, resulting in more nuanced

decisions when choosing which arm to sample.

Lastly, it may seem surprising that random allocation with no replacement is a

14Additional experiments have shown that any value between the 90th and 99th percentile performs
well in scenarios with (λ ∈ {0.6, 0.8}).
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relatively effective strategy in the scenario with λ = {0.8, 1}. However, when variance

plays a greater role in policy evaluation (λ = {0.4, 0.6}), random allocation of samples

to arms is an ineffective strategy. The reason is that high signal realizations are likely

to come from distributions with higher means, and are also likely to be generated by

distributions with higher variances, which is penalized in scenarios with low λ-values.

Search process

Table C.2 in Appendix C summarizes the process variables for model 2 (Normal

bandit) scenario. We again use the focal scenario with more arms than samples

(M = 40, N = 30), and with a substantial weight on the variance relative to arm

mean (λ = 0.6).

Let us first consider the number of arms sampled by each policy. Overall, suc-

cessful policies search more broadly in the Normal bandit scenario, relative to the

Bernoulli scenario. The top performing policy, SS-high exhibits a particularly broad

search behavior, both in the first and in the second half of the search horizon. Fur-

ther, most arms are sampled only once (as the threshold for sticking with an arm is

set high). The result is that only 2.57 arms are sampled more than once, and only

1.08 arms are examined more than 3 times. That is, SS-high achieves good results

by covering a substantial share of all available alternatives, and by narrowing down

to one well-performing candidate arm.

Thompson sampling, the runner-up, exhibits a similar search process, though it

searches somewhat less broadly relative to SS-high. Further, Thompson sampling

examines fewer arms in the second half relative to the first half of the horizon and

exhibits reversals, mainly in the second half of the horizon, suggesting that it follows

a more conservative strategy in later stages of the search process. Another successful

policy with a similar (although somewhat less broad) search process is DSEE.

The search process analysis suggests that good results can be achieved using very
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different search strategies. Building on this insight we will next propose several new

heuristics that combine some of the favorable properties of different policies.

3.4.4 Stick-switch based policies

The search process analysis reveals that Stick-switch policies are time-invariant

(in that they do not change the search strategy over the course of the search horizon),

whereas some of the other high performing policies become less exploratory over time.

We will use this insight to construct two types of modified Stick-switch policies: one

that uses the Stick-switch approach in the beginning of the search, but switch to

another, more conservative policy in the later stages of the search, and one that uses

an adaptive threshold for deciding whether to stick with the current arm or to switch

to a new arm.

In particular, we first construct policies that use the Stick-switch approach in the

first N1 stages of the search, where 1 ≤ N1 < N and another, more conservative

policy, such as Greedy, or Gittins in the remaining N − N1 stages.15 These policies

will be labeled SS-Greedy, SS-Gittins, etc. In addition, we examine adaptive Stick-

switch policies, in which the switching threshold increases or decreases gradually over

the course of the search horizon. These policies will be labeled SS-adapt.

Figure 3.4 summarizes the results for the Normal bandit model (In the Bernoulli

bandit case the improvement relative to the stand-alone Stick-switch policy was in-

significant). All of the modified SS policies perform better relative to the standalone

Stick-switch policy. We find in particular, that SS-Greedy and SS-Gittins reduce the

optimality gap by up to 15.8% relative to the standalone Stick-switch policy, and

that the improvement is particularly big in the scenarios with a stronger weighting of

the variance (λ = 0.4). Additional process analysis reveals that the improvement is

15N1 can be determined deterministically, by examining alternative values of N1, or it can be
an endogenous parameter determined by the current arm value predictions. We use the former in
the results presented in this section, and the latter as a robustness check. We use N1 = 25 in the
simulations discussed in this section, but find similar results for N1 ∈ [20, 27].
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Figure 3.4: Stick-switch-based policies, Normal bandit
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achieved through reduced exploration and through a narrowing of the search to the

few well-performing arms during the last few sampling stages.

Note in particular, that the most effective policies, SS-Greedy and SS-Gittins

combine the broad exploration of the Stick − switch approach in the first part of

the search, and the exploitation approach in the later part of the search (Greedy and

Gittins policies are the most conservative policies in the Normal bandit scenario, cf.

table C.2 in Appendix C).
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3.4.5 Discussion

Our investigation so far suggests that the Stick-switch policy and its derivatives

are promising candidates to be shared with entrepreneurial teams conducting market

research for a new technology.

In both the the Bernoulli and the Normal setting we saw that the performance of

Stick-switch policies could be matched by more complex policies that involve exact

computation and carrying forward of the prior and posterior distributions for each

market’s value. For example, in the Bernoulli model the UCB-Bayes policy performed

on par with Stick-switch policies but required a computation of quantile functions

with stage-dependent quantiles. However, we found that the search process engaged

by Stick-switch policies was almost identical to UCB-Bayes, and that modified SS

policies did not achieve substantial improvements over the standalone Stick-Switch

approach.

While Stick-switch policies are easy to implement in settings with binary signals,

the implementation for continuous signals is less clear. We have examined several

Stick-switch policy variants adapted to the continuous signal setting and found that

Stick-switch policies with high cutoff values (for classifying signals into “successes”

and “failures”) performed well across a variety of scenarios. Further, the performance

of Stick-switch policies was stable for large deviations from the optimal parameters

for the cutoff value. Overall, the robustness, and the intuitive nature of Stick-switch

policies makes them desirable candidates to be communicated to market researchers

for their implementation in practice.

In the Normal model Thompson sampling performed on par with the Stick-switch

policy, but required a random device to select an arm in each stage, making it an

unsuitable choice for sharing with a human decision-maker. However, we used one of

the properties of the Thompson sampling strategy, frequent reversals to successful

alternatives in the later stages of the search, to construct several new top-performing
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policies. In particular, an additional performance improvement could be achieved by

combining Stick-switch policies with conservative policies to help narrow down to a

few promising candidate markets at the end of the search.

In addition to policy and parameter selection, another implementation concern

is the correct execution of the algorithm by the decision-maker. We have so far

considered a decision-maker whose priors align with reality, and who is able to update

and remember all the prior and posterior distributions of the involved quantities

when deciding which alternatives to sample. In the next section we will relax these

assumptions.

3.5 Policy performance under imperfect recall and updating

3.5.1 Simulation setup

In this section we will examine the robustness of policies to imperfect implementa-

tion by the decision-maker. We will examine 4 types of cognitive limitations: limited

memory, mental sampling, overconfidence (misaligned priors), as well as overpreci-

sion (placing too much weight on signals relative to the prior). These are some of the

behaviors that have been considered in dynamic search processes, and more gener-

ally, in repeated stochastic decision-making environments (Ederer and Manso, 2013;

Herz et al., 2014; Tong and Feiler , 2016). We will also briefly discuss the role of

random choices (sometimes referred to as “tremble” in the experimental economics

literature Bardsley and Moffatt , 2007; Moffatt , 2016) in the search process. We will

next describe how these behaviors are operationalized in the simulations.

“Limited memory” describes the scenario in which, rather than remembering the

signals observed in periods 1, 2, ..., n−1, the decision-maker in stage n only remembers

the signals observed in periods l, l+1, ..., n−1, where l > 1. The posterior distribution

of the parameters is constructed by updating the prior distribution for each arm with

128



the signals that are contained in the decision maker’s memory.

“Mental sampling” describes the scenario in which, rather than using all the signals

in her memory, the decision-maker uses a random sample of those signals to construct

the posterior distributions for each arm from the prior distributions. If we denote

the decision-maker’s memory by L, and the size of her mental sample by O, where

O ≤ L, then the probability that any signal is used in the construction of the posterior

distributions is O/L. The sampling is carried out without replacement, and occurs

independently in each period.

“Overoptimism” describes the scenario in which the decision-maker begins the

search with a more favorable prior distributions for some or all alternatives, relative

to the truth. Denoting the degree of overoptimism about arm i by zi, we construct

overoptimistic prior distributions by endowing the decision maker with a Beta(α̂0,i +

zi, β̂0,i) prior for arm i in the Bernoulli bandit scenario, and with a θ̂0,i + zi prior

for the mean parameter in the Normal bandit scenario. A decision-maker for whom

zi > 0 is overoptimistic.

“Overprecision” describes the scenario in which the decision-maker places too

much emphasis on the observed signals relative to the prior distribution. Note that

unlike “overoptimism” which affects one’s prior beliefs in stage 0, “overprecision”

affects the updating at each stage of the search process. If we denote the degree of

overoptimism by ui, then the parameters of the Beta−distribution in the Bernoulli

bandit model are updated as follows: α̂n,i = α̂n−1,i + Wn,i × ui, and β̂n,i = β̂n−1,i +

(1−Wn,i)× ui in the Bernoulli model, and similarly for the Normal model (For the

updating equations see, for example Powell and Ryzhov , 2012).16

3.5.2 Simulation results

We use the following parameters in the four scenarios discussed in this section:

16As a robustness check we also examine variations of this behavior, for example placing too much
weight on positive signals but not on negative signals, and vice versa.
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Figure 3.5: Policy performance under imperfect recall and updating, Bernoulli bandit
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• “Limited memory”: L = N/2, O = N/2, zi = 0, ui = 1 for all i ∈M

• “Mental sampling”: L = N , O = N/2, zi = 0, ui = 1 for all i ∈M

• “Overoptimism”: L = N , O = N , zi = 1, ui = 1 for all i ∈M

• “Overprecision”: L = N , O = N , zi = 0, ui = 2 for all i ∈M

These parameters have been chosen to be consequential for policy performance with-

out washing out all of the differences between policies. Further, in each scenario

we assume that the recall and updating limitations affect both the search and the
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selection stages of the process.17

Figure 3.5 suggests that most of our results hold in the Bernoulli bandit (model

1) case, even after when the decision-maker makes errors in the updating process.

First, Stick-switch remains the best performing strategy in each scenario. This is not

surprising given that the Stick-switch approach does not require the computation of

posterior distribution, and only considers the signal realizations to decide which arm

to choose next. Therefore, when the Stick-switch policy is employed, the recall and

updating errors only affect the performance in the last round, in which the policy

selects the best arm to be chosen for the reward.

In contrast to the Stick-switch approach, the UCB-Bayes policy is affected in the

“limited memory” and in the “mental sampling” scenarios (but not in the “overop-

timism” and “overprecision” scenarios). That is, correct computation of quantile

functions required by the UCB-Bayes policy appears to be sensitive to wrong param-

eter values. Another computationally expensive strategy, Gittins-policy performs well

under a variety of assumptions, except for the scenario in which the decision-maker

places too much emphasis on recent signals (“overprecision”).18

Figure 3.6 shows the effects of imperfect recall and updating in the Normal ban-

dit model. Again, the relative ranking of the policies is almost unchanged in the

“limited memory” and “mental sampling” scenarios. In particular, SS-Greedy, which

was found to outperform the remaining policies in the perfect updating and recall

scenarios continues to be a top performer. Interestingly, some policies’ performance

improves under overoptimism (In particular, UCB and Gittins policies), relative to

their performance in the baseline scenarios. This suggests that these policies may be

adapted to perform better in our setting by changing the selection mechanisms they

17An alternative would be to assume that the decision-maker suffers from imperfect recall and
updating during the search but is able to look back at the entire sequence of signals at the end of
the search. We examine this possibility in a robustness check and do not find qualitative differences
from the results presented in this section.

18We conduct additional simulations, in which only a subset of all arms was affected by “overop-
timism” and found similar results.
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Figure 3.6: Policy performance under imperfect recall and updating, Normal bandit
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employ.

In addition to the results presented in figures 3.5 and 3.6 we conducted simula-

tions in which the decision-maker was assumed to implement the policy imperfectly,

choosing an arm at random in some rounds, instead of choosing the arm according to

the algorithm (introducing “tremble” into the selection process). These simulations

showed a general reduction of the differences in policy performance, but did not affect

the relative ranking.

132



3.5.3 Discussion

The investigation of policy performance under imperfect recall and updating con-

firms the advantage of Stick-switch policies over the remaining policies. Because

Stick-switch policies do not require iterative updating of posterior distributions of

the arms, they survive some of the cognitive limitations that can be expected when

the search is conducted by humans. In contrast, many other policies are negatively

affected by these types of recall and updating errors, resulting in the deterioration

of their performance. For example, some of the more computationally intensive poli-

cies, such as Gittins or UCB-Bayes, exhibit reduced performance. The robustness

of Stick-switch policies to human implementation errors suggests that they are good

candidates for being shared with decision-makers in practice.

3.6 Concluding remarks

This is one of the first papers to formulate and examine the entrepreneurial market

identification problem. We first revised the bandit model to reflect the key features

of the entrepreneurial setting. We then used a novel approach to identify solutions

to this problem, which involved simulation and interpretation of successful search

strategies, with the goal of sharing these strategies with entrepreneurial decision-

makers in practice.

We first evaluated policy performance in the Bernoulli bandit setting and found

that the intuitive Stick with the winner - switch from a loser strategy performed at

least as well or better than any other conventional search policy.

We then adapted the Stick-switch logic to the setting with continuous signals and

found that the resulting search algorithm, again, outperformed all of the remaining

policies. Examining the search process engaged by different policies, we were able

to further improve performance of the Stick-switch approach. This was achieved by
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adding a deep search stage at the end of the search horizon, during which the best

discovered alternatives are sampled repeatedly. The resulting approach is effective in

a multitude of settings, robust to deviations from the assumptions of perfect recall

and updating, and easy to communicate to decision-makers in practice.

Our results are intriguing given the emphasis of the search literature on index

policies designed for optimal or near-optimal computational performance and not for

human implementation. We find that in our setting such index-based policies do

not outperform simpler heuristics, such as the Stick-switch algorithm. One of the

drivers of this result is the fact that most index policies were designed to deal with a

setting with few alternatives and many samples. But, when the number of alternatives

to consider is a decision variable itself (as is the case when hypotheses outnumber

samples), these policies fail to capture the relevant trade-offs.

The next steps for this investigation are twofold. First, the effectiveness of Stick-

switch policies needs to be validated with humans. This will involve first communi-

cating the policy mechanism to non-mathematical decision-makers and then examin-

ing its implementation and performance relative to some other (potentially decision-

makers’ own) search strategies.

Second, our computational results focus on settings with (ex ante) identical and

uncorrelated alternatives. However, in some settings a different model of the un-

derlying market landscape may be more appropriate. For example, markets may be

divided into clusters, with strong within-cluster similarities. In this setting a signal

from one market in a cluster may reveal something about some other markets. We

also do not examine the setting in which both the inherent risk and the sampling

uncertainty affect policy evaluation. Whether or not relative policy performance will

change in these scenarios is open.
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APPENDIX A

Additional Tables for Chapter I

A.1 Participant demographics

Table A.1: Demographic variables (treatment means)

College major

Treatment
Social sci,
arts, hu-
manities

Bus,
law,
econ

Sci, med

Engineer-
ing,

architec-
ture

Age
Gender
(1=f)

Perfor-
mance

($)

Endog 0.36 0.14 0.41 0.09 23.27 0.64 3.39

5/15 0.28 0.13 0.52 0.07 21.52 0.39 5.17

10/10 0.48 0.06 0.23 0.23 22.52 0.56 6.28

15/5 0.41 0.03 0.41 0.14 22.07 0.52 5.38

Nudge 0.25 0.28 0.30 0.17 20.57 0.65 5.53

Pre-commit 0.16 0.27 0.25 0.28 22.63 0.63 6.07

Prototype 0.25 0.17 0.38 0.20 21.84 0.31 6.67

Total 0.31 0.16 0.35 0.17 22.09 0.53 5.49
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A.2 Exogenous and Endogenous treatments, process vari-

ables

Table A.2: Design activity variables: summary statistics

Treatment means Treatment means

5/15 10/10 15/5 p−value Exog Endog p−value

Count Variables

# ideas 1.79 1.89 2.09 0.229 1.94 1.63 0.067

# elements 3.89 3.82 4.09 0.312 3.94 3.69 0.318

# all collapses 2.56 2.90 2.46 0.982 2.63 1.80 0.033

# coin collapses 1.65 2.05 1.82 0.865 1.85 1.18 0.029

# other collapses 0.90 0.86 0.65 0.930 0.79 0.61 0.248

# all coin stackings 5.65 5.51 5.95 0.895 5.71 4.38 0.016

# successful stackings 4.00 3.46 4.13 0.738 3.87 3.19 0.140

Time variables

Time-to-first idea 02:51 04:36 02:55 0.704 3:28 4:39 0.017

Time-to-first collapse 06:32 08:06 07:25 0.477 7:26 9:24 0.091

Time-to-first stacking 05:44 06:52 04:27 0.627 5:38 8:18 0.011

Time-to-last idea 06:22 07:43 08:05 0.156 7:28 8:05 0.721

Time-to-last collapse 13:00 14:20 13:46 0.836 13:47 13:51 0.924

Time-to-last stacking 16:28 16:57 18:29 0.009 17:23 16:37 0.415
Note. Columns 2-4 and 6-7 show means of activity variables by treatment. Reported p−values
indicate significance levels from Trend tests for 5/15, 10/10, 15/5 comparisons and two-sided Rank
Sum tests for Exog vs Endog comparisons.
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A.3 Multiple Hypothesis Adjustment

Table A.3: Multiple hypothesis adjustment

Analysis Variable Coef
Unadjusted
p−value

Adj. p−value
(Holm, 1979)

Endog and Exog treatments: 5/15 1.416 0.009 0.027

Treatment effect on 10/10 0.794 0.046 0.092

non-failure (Table 2, col. 2) 15/5 0.395 0.265 0.265

Endog and Exog treatments: 5/15 3.688 0.034 0.068

Treatment effect on 10/10 4.181 0.011 0.033

performance (Table 2, col. 6) 15/5 3.093 0.056 0.068

Endog, Exog and Exog 3.584 0.010 0.040

additional treatments: Nudge 2.937 0.082 0.156

Treatment effect on Pre-commit 2.908 0.078 0.156

performance (Table 4, col. 1) Prototype 4.367 0.010 0.040

Endog, Exog and Exog 3.119 0.022 0.066

additional treatments: Nudge 3.120 0.057 0.104

Joint effects of treatments Pre-commit 3.112 0.052 0.104

and process variables Prototype 4.951 0.003 0.012

(Table 4, col. 2) Time-to-first idea -0.490 0.000 0.000

Endog, Exog and Exog 2.498 0.069 0.207

additional treatments: Nudge 2.241 0.172 0.258

Joint effects of treatments Pre-commit 2.429 0.129 0.258

and process variables Prototype 3.856 0.020 0.080

(Table 4, col. 3) Time-to-first stacking -0.416 0.000 0.000

Endog, Exog and Exog 4.264 0.008 0.024

additional treatments: Nudge 2.871 0.152 0.152

Joint effects of treatments Pre-commit 4.103 0.030 0.060

and process variables Prototype 6.587 0.001 0.004

(Table 4, col. 4) Time-to-first collapse -0.400 0.000 0.000
Note. The adjusted p-values are calculated for each “family” of hypotheses. We draw on the
definition of the family of hypotheses in List et al. (2016). We define the “family” of hypotheses
as the group of tests of the effects of multiple treatments (and additional covariates in question) on
the same outcome variable, in our case binary or continuous measures of performance. We use the
Holm-Bonferroni adjustment (Holm, 1979). This procedure is a sequential version of the Bonferroni
correction. We first obtain the unadjusted p−values. The hypotheses are then ordered from the one
with the smallest p-value to the one with the largest. The hypothesis with the lowest p-value is
tested first using the standard Bonferroni correction. The second p−value is then adjusted using
the Bonferroni correction but the number of hypotheses is reduced by one. The same procedure is
repeated for the remaining p−values.
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A.4 Instructions [Exact Transcript, Endog Treatment]

Your objective is to build a structure that will support as many coins as possible as

high off the table as possible. Your structure may use at most 10 cards and 10 clips.

You will have a total of 20 minutes to complete this task. Please raise your hand if

you finish working earlier, so that the experimenter can evaluate your work.

Your Payoff.

Your performance will be judged based on the following formula:

Your Payoff =
[height of the highest set of coins in inches]× [monetary value of these coins]

3

The coins that count toward your payoff include the highest stack of coin (measured

as the distance between the highest coin and the table), and all other coins at the

same height level as this stack. The height will be rounded to the nearest inch. For

example, if your highest coin is 9 inches off the table and there is a total of 8 coins

stacked at that height, you will receive 9×8×$0.25
3

= $6 for this task. Please keep in

mind that your structure has to be stable, so that the experimenter can measure the

height reliably. To be precise, your structure has to stand for at least 3 minutes. If

it collapses within 3 minutes after submission, your payoff for this task will be 0.

Note that if you place coins at different heights, coins that are not at the same

level as the highest set of coins will not count towards your payoff. For example

if your structure is 9 inches high, but you have placed 8 quarters at the top and 5

quarters at the height of 2 inches, your payoff will only include the value of the 8

quarters at the top. Thus, your payoff will still be 9×8×$0.25
3

= $6. In other words,

only the set of coins at the highest distance off the table counts. You are not allowed

to distribute the coins over multiple structures.
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Timing.

Completion of the task consists of two parts: Design and Implementation. For

the design part you will get an unlimited amount of playing cards and clips. The

design materials should help you explore different possibilities. Experimenting may

improve the final outcome of your work. Make sure that you make the most out of

the materials you are given.

Once you feel certain about the final structure you want to submit, raise your

hand. The experimenter will then take away your first set of materials and give you

the final set of materials. Now the set of materials will include 10 cards and 10 clips

only. These are the materials that you will use for the implementation.

You will have a total of 20 minutes, which means you must plan ahead, so that

you have enough time to build your final structure. For example, if you raise your

hand after 10 minutes, you will have 10 minutes left to implement your design using

the final set of materials. It is your responsibility to tell the experimenter when you

want to get the final set of materials, so that you can build your final structure.
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APPENDIX B

Additional Tables for Chapter II

B.1 Estimation results for negotiation process in DELAYED

treatment.

This appendix presents detailed estimation results discussed in Chapter 2.5. Table

B.1 shows coefficient estimates for the regression of the probability of a contract offer

being accepted (vs. being rejected or receiving a counteroffer) on the proposer’s stage

I contribution. Predictive margins in figure 3 are computed using this specification.

B.2 Subject heterogeneity by type.

The following tables present detailed estimation results discussed in section 2.6.

Table B.2 shows coefficient estimates for the regression of the probability of a subject

expressing a preference for a certain contract form and of a subject selecting a certain

contract on the subject’s type. Table B.3 shows coefficient estimates for the regression

of effort on both contracts and subject type. Table B.4 shows within-type effort

changes between contracts and type-specific response to partner effort. In all three
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Table B.1: Effects of proposer’s stage I contribution on contract acceptance decisions

Dependent
Var.: Response

Sample:
EQUAL

offers

Sample:
THRESH

offers

Sample:
DIFF offers

Sample:
PROP offers

Accept contract (baseline) (baseline) (baseline) (baseline)

(Response = 0)

Offer another Proposer’s st.I -0.170** -0.032 0.077 0.007

contract contribution (0.083) (0.052) (0.060) (0.046)

(Response = 1)

Constant 0.208 -1.992 0.851 2.102*

(1.586) (2.089) (1.509) (1.273)

Reject contract Proposer’s st. I -0.097* -0.030 0.023 -0.020

(Response = 2) contribution (0.054) (0.050) (0.044) (0.037)

Constant 1.212 1.281 0.303 0.723

(0.969) (1.796) (1.024) (0.693)

Observations 87 125 138 138

Note. Dependent variable is the response to a contract offer (0: Accept, 1: Offer a different contract,
2: Reject). Estimation is conducted using Multinomial Logit model, standard errors clustered at
subject level. Each column uses observations in which a given contract type was offered. Coefficients
are reported in relative risk ratio format. Age, gender and period are controlled for.

tables estimation is conducted using experimental data from experimental rounds 4-8

(to separate the analysis of type behaviors from type assignment for which rounds

1-3 data was used).

For robustness the analyses presented in tables B.2- B.4 have been replicated using

experimental data from rounds 1-8. In a further robustness check we regressed effort

on type and contract variables and all pair-wise interactions between contracts and

types. For further robustness, we repeat the analysis interacting the type variable

with the incentive strength of the contract (taking the value 1 for EQUAL, 2 for

VESTING and 3 for PROPORTION contract). These robustness checks confirm our
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results.

Table B.2: Contract preferences and contract choices, by type.

Contract Dependent variable: Dependent variable:

Contract preference Final contract

EQUAL Conditional contributor -3.106*** -0.804

(0.904) (0.630)

High contributor -16.272*** -15.010***

(0.905) (0.718)

Constant -0.538 -3.561**

(1.279) (1.413)

VESTING (baseline) (baseline)

PROPORTION Conditional contributor -1.953** -1.155*

(0.835) (0.662)

High contributor 0.084 0.607

(0.909) (0.772)

Constant -2.004 -0.830

Subjects 54 54

Observations 270 270

Tests of lin. com. of coefficients

EQUAL High contributor − NA NA

conditional contributor

PROPORTION High contributor − 7.664*** 5.825***

conditional contributor (4.477) (3.317)

Note. Dependent variable is the expressed preference for a contract form (column 1) and final
contract selected by the team (column 2). Preference for a contract is measured as the first offer
made in negotiations. Estimation is conducted using Multinomial Logit model, standard errors
clustered at subject level. Coefficients are reported in relative risk ratio format (i.e. the ratio of
type-specific choice probabilities for different contracts). V ESTING contracts and Low contributors
are used as the baseline. All coefficients are estimated using data from experimental rounds 4-8 (to
separate type identification conducted in rounds 1-3 from type behavior). The bottom panel of
the table shows tests of linear combinations of coefficients (again using the risk ratio format). NA
denotes tests for which there is an insufficient number of observations of a type in a certain contract.
Age, gender and experimental period are controlled for.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B.3: Effort, by contract and type.

Dependent variable

Stage I effort Stage II effort Total effort

VESTING 22.467*** 32.962*** 27.316***

(7.354) (8.860) (6.885)

PROPORTION 30.036*** 42.412*** 35.622***

(7.811) (9.005) (7.491)

Conditional contributor 14.748 18.162** 16.424*

(9.174) (8.235) (8.602)

High contributor 18.099* 20.447** 19.365**

(10.012) (9.620) (9.758)

Constant 16.563 -0.448 8.532

(15.345) (14.848) (13.875)

Observations 270 270 270

Subjects 54 54 54

Tests of linear combinations of coefficients

VESTING − -7.569** -9.451*** -8.306***

PROPORTION (3.651) (3.630) (2.895)

High contributor − 3.35 2.285 2.941

Conditional contributor (6.504) (7.063) (6.725)

Note. Dependent variable is effort (stage I effort in column 1, stage II effort in column 2, total effort
in column 3). Baseline is low contributor and EQUAL contract. Estimation is conducted using
random effects regression model. All coefficients are estimated using data from experimental rounds
4-8 (to separate type identification conducted in rounds 1-3 from type behavior). Standard errors
are clustered at subject level. Age, gender and experimental period are controlled for.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B.4: Within-type, between contract effort comparisons.

Dependent variable: Stage II effort

Sample: Low Conditional High Low Conditional High

type type type type type type

EQUAL (baseline) (baseline) NA (baseline) (baseline) NA

VESTING 29.993** 32.253*** (baseline) 30.130** 30.229*** (baseline)

(13.831) (11.219) (13.532) (11.419)

PROPORTION 42.362*** 45.027*** 2.269 41.045** 41.855*** 1.843

(15.719) (11.394) (3.325) (16.414) (11.895) (3.121)

Partner stage I 0.186 0.629*** 0.328

contribution (0.320) (0.212) (0.262)

Constant 4.787 28.755* 24.641 2.300 28.970* 23.323

(103.814) (14.900) (26.221) (106.659) (15.168) (25.390)

Observations 45 175 50 45 175 50

Subjects 9 35 10 9 35 10

Tests of linear combinations of coefficients

VESTING − -12.370 -12.770*** NA -10.910 -11.630** NA

PROPORTION (13.860) (4.578) NA (13.630) (4.642) NA

Note. Dependent variable is stage II effort. Baseline for low and conditional contributors is EQUAL
contract. Baseline for high contributors is VESTING contract (there is not a sufficient number
of observations of high contributors in EQUAL contracts). Estimation is conducted using random
effects regression model. All coefficients are estimated using data from experimental rounds 4-8 (to
separate type behaviors from type identification conducted in rounds 1-3). NA denotes tests for
which there is an insufficient number of observations of a type in a certain contract. Standard errors
are clustered at subject level. Age, gender and experimental period are controlled for.
* p < 0.1, ** p < 0.05, *** p < 0.01.

145



APPENDIX C

Additional Tables for Chapter III

C.1 Process analysis for Bernoulli and Normal bandit mod-

els.
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Table C.1: Bernoulli Bandit: Search process for Beta(1, 1) prior distribution, λ = 0.6, N = 30,M = 40, K = 10000

Policy
Optim.

gap
Arms

sampled

Arms
sampled
2+ times

Arms
sampled
3+ times

Arms
sampled

in 1st half

Arms
sampled

in 2nd half
Reversals

Reversals
in 1st half

Reversals
in 2nd half

UCB-Bayes 0.076 7.26 3.56 2.32 4.75 3.32 0.00 0.00 0.00

SS 0.078 9.04 4.42 2.89 5.49 4.30 0.00 0.00 0.00

Gittins 0.090 4.88 2.44 1.62 4.24 1.56 0.00 0.00 0.00

KG2 0.093 10.76 5.06 3.18 6.89 5.84 12.60 6.17 6.43

DSEE 0.099 15.00 2.41 1.60 15.00 2.42 2.45 0.00 2.45

SS2 0.099 4.30 2.62 2.25 3.10 2.10 0.00 0.00 0.00

KG2 0.100 13.06 5.24 3.06 7.10 8.26 12.81 6.24 6.58

Test-Rollout 0.102 12.65 3.42 1.69 12.64 1.94 3.93 2.00 1.93

Eps-Greedy 0.107 12.66 3.72 1.88 8.26 6.52 8.76 3.67 5.09

Ratio (+/-) 0.108 3.78 1.89 1.25 3.46 1.28 0.00 0.00 0.00

Boltzmann 0.108 3.80 1.87 1.41 3.49 1.37 0.81 0.47 0.34

UCB1 0.124 3.02 1.50 1.50 2.76 1.23 0.00 0.00 0.00

Greedy 0.143 2.71 1.35 1.35 2.60 1.10 0.00 0.00 0.00

Thompson 0.159 22.14 5.73 1.52 12.98 12.49 7.12 1.70 5.41

Random w rpl 0.192 21.32 6.86 1.53 12.64 12.65 7.97 2.00 5.96

Random w/o rpl 0.265 30.00 0.00 0.00 15.00 15.00 0.00 0.00 0.00

Note. Policies are sorted by their performance (Optimality gap, column 2). Optimality gap denotes the distance between the best arm (in terms of
value vx) and chosen arm. Reversals are samples drawn from an arm that has been previously played and discarded in favor of another arm.
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Table C.2: Normal Bandit: Search process for N(0, 1) prior distribution, λ = 0.6, N = 30,M = 40, K = 10000

Policy
Optim.

gap
Arms

sampled

Arms
sampled
2+ times

Arms
sampled
3+ times

Arms
sampled

in 1st half

Arms
sampled

in 2nd half
Reversals

Reversals
in 1st half

Reversals
in 2nd half

SS-high 0.618 23.75 2.58 1.08 12.29 11.70 0.00 0.00 0.00

Thompson 0.625 19.48 3.57 1.37 12.11 9.33 5.41 1.49 3.92

DSEE 0.628 15.89 3.27 1.96 15.00 3.89 4.08 0.00 4.08

Ratio (+/-) 0.674 13.46 2.41 1.13 8.97 5.10 0.00 0.00 0.00

Test-Rollout 0.681 15.89 4.82 1.85 12.65 5.94 5.55 2.00 3.55

Boltzmann 0.689 16.46 5.78 2.42 10.64 9.19 9.01 2.77 6.23

UCB-Bayes 0.701 11.49 2.73 1.81 6.72 5.41 0.01 0.00 0.00

UCB1 0.741 9.48 3.63 2.30 5.78 4.42 0.00 0.00 0.00

Eps-greedu 0.742 12.54 4.08 2.14 8.13 6.53 8.50 3.50 5.00

SS2 0.776 12.26 11.97 1.32 6.70 6.35 0.00 0.00 0.00

SS-mean 0.806 9.03 4.42 2.88 5.49 4.29 0.00 0.00 0.00

LL(1) 0.833 8.87 2.50 2.00 4.72 5.13 1.63 0.32 1.30

LL1 0.841 10.01 4.00 2.97 6.51 5.18 15.27 6.63 8.64

Random w/o rpl 0.847 30.00 0.00 0.00 15.00 15.00 0.00 0.00 0.00

Random w ppl 0.870 21.28 6.89 1.53 12.65 12.65 8.00 2.00 6.00

Gittins 0.919 5.56 1.83 1.41 5.29 1.36 1.21 0.95 0.25

Greedy 1.167 2.33 1.46 1.26 2.22 1.09 0.00 0.00 0.00

Note. Policies are sorted by their performance (Optimality gap, column 2). Optimality gap denotes the distance between the best arm (in terms of
value vx) and chosen arm. Reversals are samples drawn from an arm that has been previously played and discarded in favor of another arm.
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Gürerk, Ö., B. Irlenbusch, and B. Rockenbach (2006), The Competitive Advantage of
Sanctioning Insitutions, Science, 312 (August 2016), 108–11, doi:10.1126/science.
1123633.
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