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ABSTRACT 

 

A protein’s global fold provide insight into function; however, function specificity is often detailed 

in sidechain orientation. Thus, determining the rotamer conformations is often crucial in the 

contexts of protein structure/function prediction and design. For all non-glycine and non-alanine 

types, chi-1 rotamers occupy a small number of discrete number of states. Herein, we explore the 

possibility of describing evolution from the perspective of the sidechains’ structure versus the 

traditional twenty amino acid types. To validate our hypothesis that this perspective is more crucial 

to our understanding of evolutionary relationships, we investigate its uses as evolutionary, 

substitution matrices for sequence alignments for fold recognition purposes and computational 

protein design with specific focus in designing beta sheet environments, where previous studies 

have been done on amino acid-types alone. Throughout this study, we also propose the concept of 

the “chi-1 rotamer sequence” that describes the chi-1 rotamer composition of a protein. We also 

present attempts to predict these sequences and real-value torsion angles from amino acid sequence 

information. 

First, we describe our developments of log-odds scoring matrices for sequence alignments. Log-

odds substitution matrices are widely used in sequence alignments for their ability to determine 

evolutionary relationship between proteins. Traditionally, databases of sequence information 

guide the construction of these matrices which illustrates its power in discovering distant or weak 
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homologs. Weak homologs, typically those that share low sequence identity (<30%), are often 

difficult to identify when only using basic amino acid sequence alignment. While protein threading 

approaches have addressed this issue, many of these approaches include sequenced-based 

information or profiles guided by amino acid-based substitution matrices, namely BLOSUM62. 

Here, we generated a structural-based substitution matrix born by TM-align structural alignments 

that captures both the sequence mutation rate within same protein family folds and the chi-1 

rotamer that represents each amino acid. These rotamer substitution matrices (ROTSUMs) 

discover new homologs and improved alignments in the PDB that traditional substitution matrices, 

based solely on sequence information, cannot identify.  

Certain tools and algorithms to estimate rotamer torsions angles have been developed but typically 

require either knowledge of backbone coordinates and/or experimental data to help guide the 

prediction. Herein, we developed a fragment-based algorithm, Rot1Pred, to determine the chi-1 

states in each position of a given amino acid sequence, yielding a chi-1 rotamer sequence. This 

approach employs fragment matching of the query sequence to sequence-structure fragment pairs 

in the PDB to predict the query’s sidechain structure information. Real-value torsion angles were 

also predicted and compared against SCWRL4. Results show that overall and for most amino-acid 

types, Rot1Pred can calculate chi-1 torsion angles significantly closer to native angles compared 

to SCWRL4 when evaluated on I-TASSER generated model backbones.  

Finally, we’ve developed and explored chi-1-rotamer based statistical potentials and evolutionary 

profiles constructed for de novo computational protein design. Previous analyses which aim to 

energetically describe the preference of amino acid types in beta sheet environments (parallel vs 

antiparallel packing or n- and c-terminal beta strand capping) have been performed with amino 

acid types although no explicit rotamer representation is given in their scoring functions. In our 
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study, we construct statistical functions which describes chi-1 rotamer preferences in these 

environments and illustrate their improvement over previous methods. These specialized 

knowledge-based energy functions have generated sequences whose I-TASSER predicted models 

are structurally-alike to their input structures yet consist of low sequence identity.  
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Chapter 1: Introduction to Protein Informatics 

1.1  Protein Folding 

Proteins are one of the major four biomolecule classes which assist in a plethora of biological 

processes within cells including signaling, metabolism, providing structure, molecular transport, 

etc... Compositionally, proteins are a polymer of unique, covalently linked organic compounds 

known as amino acids. The identity of the amino-acid is granted by one of at least twenty functional 

groups (R) which confer specific physiochemical properties. Hence, the overall physiochemical 

property of a protein is the product of its amino acid composition which influences the protein’s 

folding and/or function. During the polymerization process, covalent linkages of two amino acids 

result in the formation of an amide bond also described as peptide bonds in the context of protein 

synthesis. Peptide bond formation is accomplished by the nucleophilic addition-elimination 

reaction involving the nucleophilic amino group of an amino acid and the carboxyl group of 

another amino acid or the nascent peptide chain removing a water molecule in the process. Figure 

1.1 shows an example tripeptide after two polymerization events involving three total single amino 

acids.  
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The resulting covalent bonds give rise to the formation of the protein’s backbone and are the basis 

to support higher-order protein structures. The folding process can be simply described by four 

protein structure levels: 

Four levels of protein structure: 

1) Primary Structure: the linear sequence of amino-acids held together covalently by peptide 

bonds. 

2) Secondary Structure: regular sub-structural elements of a protein bound primarily by 

hydrogen bonds. Major classes of secondary structure include alpha-helix, beta-strand and 

coil. Alpha-helix and beta-strands have deeper classifications based on specific hydrogen 

bonding patterns. The protein backbone assumes a set of ϕ and ψ torsion angles within 

defined ranges to accommodate these secondary structures [2]. 

3) Tertiary Structure: the resulting three-dimensional structure of a protein monomer 

proceeding after collapse of the hydrophobic core. Interactions on the sidechain-level 

greatly influence the tertiary structure. 

4) Quaternary Structure: the three-dimensional assembly containing multiple monomers that 

forming a biological unit. Monomers typically associate by non-covalent interactions. 

Figure 1.1. Zwitterion representation of a generic tripeptide.  
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While quaternary structures are optional for some proteins, many biological functions 

require the formation of peptide complexes to carry out a particular function. 

Figure 1.2 illustrates the different stages of the folding process. 

 

 

1.2  Protein Databases 

1.2.1 The UniProt Database 

Managed by the UniProt Consortium, the UniProt database is a meta-repository that combines 

manually (UniProtKB/Swiss-Prot) and automatically (UniProbKB/TrEMBL) annotated sequences 

Figure 1.2. The four levels of protein structure.  
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[3, 4]. Currently, there are currently over 114 million sequence entries submitted in the repository 

comprising of over 38 billion total amino acids. Submission to the UniProt database requires some 

form of evidence of the expressed protein via Edman degradation [5] or tandem mass spectrometry 

(MS/MS) [6]. Annotated sequences here include a robust set of information including the protein’s 

reported function and potential cellular location. Although users are free to use the entire database 

for analysis, the UniProt Consortium also offers several clustered sets of sequences, UniRef [7] 

and UniParc [8], to remove sequence-level redundancy.  

1.2.2 Structure Databases 

1.2.2.1 The Protein Databank 

Curated and managed by members of the Research Collaboratory for Structural Bioinformatics 

(RCSB), the Protein Databank [9] offers an archive to store experimentally resolved structures of 

large biomolecules including proteins and nucleic acids. To date, there are 140,109 submitted 

biological structures submitted to the repository, and notably, the number of PDB entries is three 

orders of magnitude less than that of the UniProt database [10]. Structures that populate this 

database are often discovered by x-ray crystallography [11] and nuclear magnetic resonance 

(NMR) [12] techniques; however, recent progress in cryo-electron microscopy (cryo-EM) [13] 

offers a third mechanism to probe biomolecular structure although structure resolution is typically 

lower than the former two methods. On the other hand, cryo-EM can offer great value in 

elucidating the overall structure large molecular complexes [14]. 

1.2.2.2 SCOPe 

Often, structural biologists are curious about the structural-evolutionary relationship between 

proteins. The Structural Classification of Protein—Extended (SCOPe) database [15] provides 

domain-level structural fold classification to entries submitted in the PDB. The classification is 
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hierarchy where the top (most general) classes discriminate proteins by their main secondary 

structure composition or by special features (e.g. all α, all β, α+ β, α/ β, membrane, coiled-coil, 

etc…). A more detailed lineage of the protein are then described by closely related structures and 

typically follow the following hierarchy: Class  Fold  Superfamily  Family  Protein  

Species  PDB entry ID.  

1.3  Substitution Matrices and Sequence Alignments 

As mentioned previously, primary structures of the protein highlight the unidirectional sequence 

of amino-acids of a protein. Collapsing amino-acids into their respective one-letter representation, 

a protein sequence is formed. Generally, similar sequences will often fold to similar three-

dimensional structures [16]; however, attempts to determine similarity without computer 

assistance can often be non-trivial especially if they are evolutionarily distant or do not share a 

similar sequence length. 

Accurate scoring functions are crucial to determine the optimal alignment a sequence pair. At the 

heart of these sequence alignment functions lie scoring matrices which quantify the propensity of 

amino acids types to mutate into other types throughout evolution [17]. The BLOSUM [18] and 

PAM [19] substitution matrix families are the most well-known; however, BLOSUM62 is the most 

ubiquitously used as it is typically the default scoring metric in sequence algorithms including 

BLAST. The construction of these matrices depend on sequence information from evolutionary 

related proteins. The elements that compose the matrix usually take the form of a log-odds ratio: 

𝑆𝑖𝑗 = log (
𝑝𝑜𝑏𝑠

𝑝𝑒𝑥𝑝
) 
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where pobs and pexp are the observed and expected mutation pair probability, respectively.  Further 

details regarding how these probabilities are obtained are discussed in Chapter 2. Moreover, the 

probabilities inherit in the BLOSUM matrices, specifically, are sampled from the Blocks database 

[20], a repository that stores multiple sequence alignments of conserved regions across protein 

families. 

The Needleman-Wunsch approach [21] is a deterministic algorithm to determine the best global 

alignment between a protein sequence pair. Adopting dynamic programming approaches, 

Needleman-Wunsch simplifies the problem of global alignment into scoring of individual residue 

pairs. For each residue pair, three candidate scores are determined from the possibilities if the 

residue pair aligns, if a gap is should be introduced instead, or if a gap should be extended [22]. 

The total score for that pair is the maximum of those three possibilities plus the alignments that 

precede it. 

The time complexity for this approach is O(MN), where M and N are the lengths of either protein 

sequence since every protein pair is considered. Space complexity is also O(MN) due to the 

construction of matrices required to store the scores.  However, recently, more efficient algorithms 

to reduce time and space requirements have been proposed [23]. 

1.4  Structural Alignments 

Structural alignments are the preferred method to determine protein pair relationships. Identifying 

proper and robust ways to quantify structural similarity are still being investigated; however, 

several methods including RMSD [24] determination, DALI [25], and TM-score [26], are three of 

the most widely used criteria to describe structural relationship between protein pairs. Alignment 

methods that consider spatial coordinates of a molecule are typically performed in two stages: 
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superposition of one molecule onto its partner and a value in the form of spatial deviation between 

the molecules’ components. 

RMSD (root-mean squared deviation) calculations are typically determined as a two-stage 

approach: calculation of a rotation matrix [27] to perform a superposition of one molecule onto 

another and RMSD calculation of the superimposed pair of molecules. The Kabsch algorithm is 

widely used to determine the optimal rotation matrix which simultaneous searches for the RMSD 

minimum. The universal form of RMSD is shown as: 

𝑅𝑀𝑆𝐷 = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 

where N atoms of structures x and y are spatially compared. 

Using this criterion to quantify structural similarity of protein pairs presents some major limitations. 

For example, some localized area which are poorly aligned and are very spatially distant will 

significantly impact the global RMSD. Also, larger protein pairs will typically favor higher RMSD 

values compared to smaller pairs since the deviations are compounded. These concerns along with 

the absence of a theoretical limit on this equation makes it difficult to provide a standard to 

determine similarity and protein fold relationships.  

1.5  TM-score 

These drawbacks are the primary motivation for the invention of new methods to quantify 

structural similarity. From any arbitrary protein pair, there should be some quantifiable 

measurement and cutoff to determine evolutionary relationship. Approaches including MaxSub 

[28] finds the optimal substructure between a pair of proteins, but information not within 3.5 
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Ångstroms of the superposition is not considered in the MaxSub scoring function. Alignments 

with near-complete template alignment coverage and 50% template alignment coverage can yield 

the same MaxSub score; thus, Zhang et al. developed the Template-Modeling score (TM-score) to 

quantify the deviation of all aligned residues. [26]. 

The equation for TM-score assumes the following form: 

𝑇𝑀𝑠𝑐𝑜𝑟𝑒 = 𝑚𝑎𝑥

[
 
 
 1

𝐿𝑇𝑎𝑟𝑔𝑒𝑡
∑

1

1 + (
𝑑𝑖

𝑑0
)

2

𝐿𝑎𝑙𝑖

𝑖=1
]
 
 
 

 

where Ltarget is the length of the target protein and Lali is the length of the aligned residues. The 

symbol d0 is a normalization constant to minimize the effect on protein length on the TM-score. 

Moreover, the theoretical minimum and maximum scores for any protein pair are 0 and 1, 

respectively. Zhang et al. performed statistical studies to determine the correlation of the TM-score 

and protein fold relationship. From the study, the authors note that a TM-score of at least 0.5, based 

on extreme value distribution model, confidently suggests the structure pair belongs to the same 

fold family [29]. 

While adaptation of the TM-score is increasing, there is still some minor disadvantages. While this 

approach is, for the most part, length-independent, extremely small proteins still exhibit TM-score 

anomalies.   

1.6  Rotamers 

Each amino acid type contains a unique functional (also known as R-) group that provides it a 

physio-chemical identity. While backbone torsion angles’ degrees of freedom offer a variety of 

different local conformations, sidechains also display rotational entropy. For most amino acids, a 
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set of chi (χ) torsion angles (e.g. {χ1, χ2, …}) are adaptable around single bonds. The size of the χ 

angle set is dependent on the length, or number of rotatable bonds, of the sidechain. Rotamers are 

conformational poses or instance of the varying angles of the χ torsion set. The minimum 

requirements for the first order of χ angles (χ1) are atoms at the sidechain β and γ position. 

Therefore, alanine and glycine do not have sufficient atoms to adopt a rotamer. Throughout the 

following studies, however, we confer one rotamer state upon alanine and glycine although no 

realistic, physical representation exists. Another exception to this rule is the proline sidechain. Due 

to proline’s cyclical nature, its Cβ-γ is not directly rotatable; however, the torsion angle is still 

considered for proline across this bond. The dihedral angle here, instead, describes its “puckering” 

conformation as one of two states: syn- or anti-proline. 

1.6.1 Chi-1 Rotamers 

Our study focuses primarily on the first-order of the sidechain torsion angle set, or χ1. Newman 

projections of the atoms involved in this set give insight into the rotational entropy along the Cβ-

γ bond. Due to the heterogeneity of these atoms, conformation preferences are observed. 

Alleviation of steric strain is a predominate force in the placement of involved atoms giving rise 

to three stereochemical conformations. These confirmations are described as gauche-, trans, or 

gauche+ depending on the interaction between the backbone nitrogen atom and the sidechain Cβ 

atom. Unexpectedly, the trans is not the most observed confirmations here as the interaction 

between the backbone carbonyl group and the sidechain beta atom is the more profound interaction. 

Therefore, another consequence of this preference is the disproportionate observed frequencies of 

the χ1 rotamer. 
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As shown in Figure 1.2, the χ1 rotational isomers are well-defined and discrete. Orders of χ angles 

that exhibit this property are typically descried as “rotameric”, and, generally, as the angle order 

increases, the rotameric characteristics diminish.  

 

 

Fortunately, we can classify each χ1 angle as an independent state and investigate whether we can 

replace amino-acid type designations with χ1 rotamer states. Our exact definition of rotamer states 

are adopted from Dunbrack’s library [30] . Each amino acid has three discrete χ1 state except for 

proline (two states possible), alanine, and glycine (where the latter two only has one rotamer state 

defined). Since these independent states inherently consists of some structural information of the 

sidechain, the overall hypothesis is that there is an improvement of quality in fold recognition for 

protein structure prediction and energy function accuracy for evolutionary protein design. 

Figure 1.3. Sidechain dihedral distributions of MET chi-1 and GLN chi-3. Relative observed 

probability distributions of methonine’s chi-1 angles and Glutamine’s chi-3 angles. Curves on the 

right panel indicate various glutamine’s chi-1 and chi-2 rotamer states. [1] 
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1.7  Computational Protein Design 

There exists a complimentary problem to protein structure prediction. Instead of elucidating the 

native structure for a given sequence, consider attempting to discover the best sequence available 

from a given backbone structure or optional desired function. This inverse approach to protein 

structure prediction is known as protein design. Protein design can take many forms. Human 

intuition can often provide information regarding specific mutations to enhance or diminish a 

protein’s function. Moreover, we can experimentally mutate a protein’s sequence randomly and 

subject the mutants to a procedure which screens them based on a specific property (e.g. foldability, 

binding affinity to a ligand, etc…). We can achieve similar goals in silico via use of human-

developed mathematical models, or force fields, which simulate the selection process. While the 

aforementioned design forms are often labelled as “protein engineering”, de novo protein design 

studies exist in attempts to build a protein sequence “from scratch” given either backbone 

coordinates or some sort of desired target protein function. 

Major milestones in the de novo protein design have been accomplished within the last few decades 

[31]. Historical achievements in the field include the first design of a protein domain by Mayo et 

al. [32] and the design of Top7, which consists of a fold reportedly never observed in nature by 

Kuhlman et al. [33]. Modern protein design algorithms typically consist of two major components: 

a search algorithm to sample candidate sequences and a force field to apply quantitative “selection” 

upon these sequences.  

1.8  Protein Design Decoy Search by Monte Carlo Simulations 

Monte Carlo simulations [34] provide a stochastic, non-biased method to generate candidate 

sequences, usually performed by single (or a relatively smaller number) of mutations iteratively. 
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Coupled with a force field, the Monte Carlo procedure can guide the algorithm to select candidate 

mutations based on the predicted energy or score provided by the energy function. For typical 

energy minimization processes, candidate sequences that are determined to have lower energy than 

its predecessor are accepted for further mutations while higher energy sequences are rejected. The 

major limitation to this approach is this will quickly reach a dead-end and the algorithm will be 

“trapped” in a local minima [35]. There are several ways to address this problem. First, one can 

apply a certain principle to occasionally accept sequences with higher energy. The Metropolis-

Hastings criterion [36, 37] periodically accepts higher energy sequences depending on two factors: 

a randomly generated value p between 0 and 1 and the magnitude of the energy gain. The 

Metropolis criterion is dictates that a sequence with increased energy ΔE will be accepted if: 

 𝑝 > exp(−
𝛥𝐸

𝑘𝑇
) (1.1) 

where k and T are the Boltzmann constant and temperature, respectively. Other approaches to 

escaping local minima and discovering the global minima include Simulated Annealing [38] which 

initiates the simulation at a high temperature and slowly decreases the temperature (e.g. decreases 

chance of accepting high energy sequences) throughout the process. Replica-Exchange Monte 

Carlo [39] has also shown promise, especially in protein structure prediction [40], to generate low 

energy models. Here, multiple trajectories occupy a unique simulation temperature (selected 

temperatures often span across a large range) and independently undergoes the simulation but 

occasionally swaps its decoy with a neighbor of an adjacent temperature index.  

One of the major challenges of protein design, also shared by the protein structure prediction 

community, is the development of accurate force fields which can identify optimum sequence and 
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structure pairs [41, 42]. Most algorithms, therefore, claim uniqueness from their algorithm and 

implemented force fields to guide their optimization procedures. 

1.9  Force Fields 

Force fields are often represented as a sum of smaller energy functions and are usually chosen to 

serve a specific purpose. Some classical physics-based force fields include CHARMM [43], 

AMBER [44], and OPLS [45]. These functions assume a functional form very similar to each other, 

but contains slight variations in the energy components in parameterization. These functions are 

also typically derived from first principals from physics, chemistry, and/or quantum mechanics 

and perform accurately on relatively smaller molecules. Molecular dynamic simulations using 

these models have recently achieved the ability fold proteins slightly above 92 amino acids; 

however will spend days to complete [46]. 

 

𝑈(�⃗� ) = ∑ 𝑘𝑖
𝑏𝑜𝑛𝑑(𝑟𝑖 − 𝑟0)

2 + ∑ 𝑘𝑖
𝑎𝑛𝑔𝑙𝑒(𝜃𝑖 − 𝜃0)

2

𝑎𝑛𝑔𝑙𝑒𝑠𝑏𝑜𝑛𝑑𝑠

+ 
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∑∑
𝑞𝑖𝑞𝑗

휀𝑟𝑖𝑗
𝑗≠𝑖𝑖

 

 

 

For problems that involve a larger scale of protein folding and design, deriving fast, yet accurate, 

energy functions is crucial. One proposal to address this challenge is to use real protein data and 

empirics to inform mathematical functions. From this, statistical effective energy functions [47] 
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were invented. These energy functions are based on energetic relationships with probabilities 

found in nature and are often derived from Boltzmann’s equations. One basic form of the SEEF is 

typically exhibited as the following equation: 

𝐸𝑖 = −𝑘𝑇ln(
𝑝(𝑖)

𝑝(𝑟𝑒𝑓)
) 

In this equation, we can assign an energy E to state i if we have knowledge of its probability and 

the probability of the system’s reference state ref. While the calculation of a target state’s 

probability is often apparent, the selection of an appropriate reference state is usually non-trivial. 

In fact, many published atomic statistical potentials differ mainly by the chosen reference state 

[48-50] . One theoretical assumption that is typically made when considering these equations is 

that the population where probabilities are sampled from represents a Boltzmann distribution. In 

cases where SEEFs are applied to protein problems, statistical are often extracted from the PDB 

although the database itself doesn’t accurately represent this special distribution. Nevertheless, 

these SEEFs are still extremely accurate and are used widely across state-of-the-art force fields 

[51, 52]. 

Throughout this dissertation, the target states’ probabilities and the selection of the reference state 

used in the following energy functions will be described for each potential. Detailed derivations 

for our approach in designing SEEFs are outlined in Chapter 4. 

1.10  Questions Explored by the Dissertation 

A protein’s ability to fold is primarily dictated by the sidechain’s physiochemical properties, 

granted by its amino acid type, and their relative positions within the sequence. The detailed 

function, however, is often determined by the specific orientation of several rotamers. Χ1 rotamers 
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provide sidechain structural information as well as inherit knowledge of the amino acid type. We 

hypothesize that the using rotameric representations over simple amino acid ones yields better 

performance in fold recognition for protein structure prediction and in generating native-like 

sequences in computational protein design. To support this statement we propose several 

experiments and share results based on the following questions addressed in the following 

chapters: 

Chapter Two: Do χ1 based substitution matrices perform better than amino acid-based ones in 

sequence alignment and fold recognition? 

Chapter Three: Can we reliably predict the χ1 rotamer class and real-value dihedral angle from 

sequence information alone? 

Chapter Four: Are statistically energy functions that draw on the statistics of χ1 rotamers from the 

PDB useful for protein design applications? Can we improve designs of beta sheets using these 

potentials? 
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Chapter 2: Chi-1 Substitution Matrix from Structural Alignments by TM-align 

2.1 Introduction 

Substitution matrices describe the evolutionary relationship, usually in the form of conservation, 

between two amino acids in a protein family [17]. Traditional substitution matrices describe the 

ease of these changes among amino acids, and are typically useful in scoring relationships between 

two, and even multiple, sequences by alignment [17]. Notably, major substitution matrix families, 

BLOSUM [18] and PAM [19], serve as the scoring metric in alignment procedures that involve 

dynamic programming, including (PSI-) BLAST [53, 54] and protein threading algorithms. 

BLOSUM62 is perhaps the most widely used substitution matrix across most alignment platforms 

due to its ability to identify strong and weak homologs of protein sequences. While, this method 

is suitable to identify related sequences, it falls short in highlighting related proteins with low 

sequence identity but significant structural similarity.  

Other forms of log-odds substitution matrices are represented here which use structural 

information to generate the elements in the table. Upon measuring structure similarity between 

proteins to construct these matrices, we utilize the TM-score [26] by TM-align [55] between 

protein backbones found in the Protein Databank (PDB) [9]. This structural score similarity is a 

widely adopted measurement to describe structural similarity. 
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For this study, we explored the impact of reclassifying amino-acid types into their structural χ1 

rotamer types. Ideally, all possible rotamer types across all possible χ angles could be realized as 

its own type. Unfortunately, due to the relatively low number of structural information in the PDB 

that could sufficiently describe the distribution of rotamers across all proteins plus the flexibility 

of higher order chi angles, we decided to only consider the first χ dihedral. We define these states 

similar to those previously described [30]. Three χ1 angle states exist for most amino acid types, 

except for alanine and glycine (which are considered to consist of only one rotamer type). 

Furthermore, proline’s χ1 rotamer types assume either syn or anti. 

We record the performance of our substitution matrix by its ability to identify homologs compared 

to the BLOSUM62 matrix. We identify one major potential of improvement to previous 

substitution matrices is the extraction of structural data from the PDB. Often, comparison of 

sequence information between two proteins offers sufficient information to determine a potential 

relationship. However, a structurally related pair may lack sufficient similarity on the sequence 

level [10] to be identified by sequence alignment methods. Purely sequence-based substitution 

matrices thus cannot adequately describe some structural underlying factors. Current methods to 

address this, usually found in protein threading methods to fit or “thread” the sequence onto a 

structure template [16]. These often involve a more thorough approach, including information such 

as predicted information regarding the protein’s secondary structure, backbone torsion angles, and 

solvent accessibility [56]. Protein family profiles (or position-specific scoring matrices) are 

exhaustively used as well and can also be applied outside of protein fold-recognition [57]. 

Previously, we designed a fixed-backbone protein algorithm, EvoDesign [58], whose scoring 

system is greatly influenced through a structural-based sequence profile augmented by information 

gained in the BLOSUM62 matrix. The substitution matrices described here can also be applied to 
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evolutionary approaches to protein design. The construction of a rotamer substitution matrix 

(ROTSUM) and the rotamer profile are described and assessed here. 

2.2 Material and Methods 

2.2.1 Rotamer Sequence 

For the purposes of our studies, we discretize χ1 rotamers based on both amino-acid type and 

dihedral angle. The angles are binned into one of three categories for non-proline residues: 

gauche+ [0°, 120°), trans [120°, 240), or gauche- [-120°, 0°). For example, phenylalanine χ1 

rotamer angles that are gauche+, trans, or gauche- are designated as F1, F2, or F3, respectively. 

The first character depicts the amino acid single character representation and is followed by the 

rotameric class represented as an integer. Furthermore, a single byte, alphanumeric representation 

of these rotamer types, suitable for in silico sequence alignments, are mapped shown in Appendix 

A and an example rotamer sequence is illustrated in Figure 2.1. Alanine and glycine do not have 

rotameric possibilities, thus its designation is always A1 or G1. Proline has syn- [0°, 240°) or anti-

[-120°, 0°) confirmations and are designated as either P1 or P2. Therefore, a total number of 55 χ1 

rotameric types are available for the twenty common amino acids. Herein, we define a rotamer 

sequence as an array of these rotameric designations. We can, thus, express protein sequences as 

either a canonical amino-acid sequence or rotamer sequence. An automated, auxiliary tool to 

determine a rotamer sequence from protein structure, Rot1Calc, is also available on the Rot1Pred 

site https://zhanglab.ccmb.med.umich.edu/Rot1Suite/. 



22 

 

 

2.2.2 Construction of the Rotamer Substitution Matrix 

To consider the evolutionary relationship between χ1 rotamers, a substitution matrix was created 

to describe the propensity of a χ1 rotamer to mutate into another across evolution. In contrast to 

the Henikoff method for generation of a substitution matrix, we cannot simply use a sequence 

database to accomplish this task since detailed structural information of rotamer dihedrals are 

required. Instead, we considered closely related protein structures found in the PDB to determine 

rotamer evolution. The first step in generating the matrix involves an all-against-all protein 

structure alignment of a non-redundant (by 70% sequence identity) subset of the PDB. Here, we 

generated TM-score cutoffs of 0.5 to 0.9 in 0.05 increments. From all pairwise alignments where 

the TM-score is above a certain threshold, we calculated the total χ1 rotamer substitution frequency 

for each aligned positions. To prevent inaccuracies that may arise from alignment boundaries, 

alignment pairs that consists of an unaligned neighbor are excluded. From the observed 

substitution frequencies, we also calculated the expected substitution frequencies eij from the 

individual χ1 rotamer probabilities (Eqn. 1, 2). Our final substitution matrix S is calculated as a 

log-odds ratio in bit units (Eqn. 3). 

Figure 2.1. Rotamer Sequence. Top: Canonical amino acid sequence represented as a sum of 

one-byte character. (20 possibilities). Middle: Readable sum of double byte representation of a 

chi-1 rotamer states. First byte is one of twenty amino acid types. The second byte is the rotamer 

class. (55 possibilities). Bottom: Sum of single byte representation of the rotamer character. 
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 𝑝𝑖 = 𝑞𝑖𝑖 +∑
𝑞𝑖𝑗

2

55

𝑖,𝑖≠j

 (2.1) 

 𝑒𝑖𝑗 = 𝑝𝑖 ∗ 𝑝𝑗 (2.2) 

 𝑆𝑖𝑗 = 𝑙𝑜𝑔2(
𝑞𝑖𝑗

𝑒𝑖𝑗
) (2.3) 

 

Naturally, substitution matrices’ distributions with more stringent structural similarity cutoffs 

increase in distance from the expected (or background) distribution of rotamer pairs. An effective 

and robust substitution matrix should contain enough information of the structure information as 

possible without too much bias toward very closely related proteins. This will provide enough 

information to identify both close and distant protein homologies. Quantification of the distance 

between two distributions are often described by relative entropy which defines how much 

information is gained from divergence of a second distribution [59]. Although the derivation of 

the ROTSUM matrices are fundamentally different from previous sequence-derived sequence-

based substitution matrices, the different matrix types can still be compared. We define the 

information gain for a distribution from the background distribution (H): 

 𝐻 = ∑∑𝑞𝑖𝑗 × 𝑠𝑖𝑗

𝑖

𝑗=1

20

𝑖=1

 (2.4) 

ROTSUM matrices uniquely take the form of a 55×55 substitution matrix; thus, our relative 

entropy calculations were performed on a “collapsed”, 20×20 version of the ROTSUM matrices 

(named here as COLLMX). We obtained these matrices by adding all rotamer probabilities 
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belonging to the same amino-acid type. Relative entropy values of 0 indicate that the rotamer (or 

amino-acid) pair distributions are non-distinguishable from the expected distribution. 

 

2.2.3 Alignment Quality Generated by ROTSUM and Rotamer Sequences 

Here, we implement a conventional Needleman-Wunsh [21] approach to compare the quality of 

the ROTSUM vs BLOSUM62. For our benchmark, we employ the MUSTER500 [56] dataset 

which consists of 500 proteins. Each component of the dataset was aligned against all proteins in 

the non-redundant PDB. All hits equal to and above 30% sequence identity (determined by the 

BLOSUM62 matrix) are removed from consideration. The significance of the alignment was 

determined by the Z-score of the alignment, where the Z-score is equal to the number of standard 

deviations from the mean alignment score of the template library to the specific query: 

 𝑍𝑎𝑙𝑖,𝑖 =
𝑆𝑎𝑙𝑖,𝑖−< 𝑆𝑎𝑙𝑖 >

𝜎𝑎𝑙𝑖
 (2.5) 

Sali,i is the score of alignment i calculated for a given pair of sequences containing the query and a 

template sequence. <Sali> and σali are the average score of all template alignments against the query 

and the standard deviation of the score distribution, respectively. TM-scores for the top alignments 

(highest Z-score) for each query when subjected to either the ROTSUM or BLOSUM62 matrix 

are then determined.  

2.2.4 Sequence alignment 

The first scoring function involves only the ROTSUM72 substitution matrix to assess its individual 

impact against BLOSUM62. For a given query position i and template position j, the alignment 

score is defined as 
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 𝑆𝑖𝑗(𝑎𝑎𝑖 , 𝑎𝑎𝑗) = 𝑀𝐵𝐿(𝑎𝑎𝑖 , 𝑎𝑎𝑗) (2.5) 

where aa represents the amino acid type. Next, we utilize another scoring function specifically for 

χ1 rotamer sequences of the query sequence rather than amino acid types. The scoring function is 

defined as 

 
𝑆𝑖𝑗(𝑋𝑖

1, 𝑋𝑗
1) = 𝑀𝑅𝑂𝑇(𝑋𝑖

1, 𝑋𝑗
1) 

(2.6) 

where X1 represents the χ1 rotamer type. Finally, we derived a combined scoring function which 

considers both relationships between the χ1 rotamer type and the amino acid type. The scoring 

function is a weighted, linear combination of the two previous equations: 

 
𝑆𝑖𝑗(𝑎𝑎𝑖 , 𝑎𝑎𝑗 , 𝑋𝑖

1, 𝑋𝑗
1) = 𝑤𝐵𝐿𝑀𝐵𝐿(𝑎𝑎𝑖 , 𝑎𝑎𝑗) + 𝑤𝑅𝑂𝑇𝑀𝑅𝑂𝑇(𝑋𝑖

1, 𝑋𝑗
1) 

(2.7) 

where wBL and wROT are the respective weighting factors for the amino acid and χ1 rotamer 

substitutions. In this study, the ROTSUM weighting factor wROT was evaluated from 0.0 to 1.0 in 

increments in 0.1 while satisfying the constraint: wROT + wBL = 1.0.  

 

2.2.5 Sequence- and Structure-derived profiles 

For the template library, profile matrices and be generated from structure-derived multiple 

sequence alignments. The details of the profile construction procedure is outlined in Chapter 4. 

Our dataset assumes we do not have prior information regarding its three-dimensional structure. 

To construct a profile for our each protein in this set, the source of sequences used to create the 
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MSA comes from alignments generated by Section 2.2. We select query-anchored sequence 

alignments whose Z-scores values are above 1.5 and subsequently combine them into an MSA and 

construct the profile matrix. 

For a given query position i and template position j, the alignment score is defined as: 

 
𝑆𝑖𝑗 = ∑(𝑄(𝑖, 𝑘) × 𝑇(𝑗, 𝑘)) + 𝑆𝑆(𝑖, 𝑗) + 𝐶

55

𝑘=1

 
(2.8) 

where Q and T are the sequence-derived query and structure-derived template profiles, 

respectively. Symbol k represents the 55 χ1 rotamer types (where each column in the profile is 

assigned to a unique χ1 rotamer type). The second term in Eqn. 2.8 returns a value that represents 

a match (SSmatch = 0.65) or mismatch (SSmismatch = -0.65) between the predicted secondary structure 

element at position i of the query sequence and the secondary structure element of position j of the 

template sequence. Finally, the last term, C, is simply a constant previously tuned. 
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2.3 Results 

2.3.1 ROTSUM Matrices 

We employ TM-score as measurement to quantify structural evolutionary relationship since the 

correlation of the score and evolutionary relationship is greater than RMSD [29]. TM-align also 

provides an alignment between structure pairs without knowledge of either protein’s sequence. We 

circumvent the need of a motif database e.g. Blocks database [20] or phylogenetic information. In 

doing so, we avoid any use of including explicit amino acid sequence information. We clustered 

structures into groups whose backbones share a TM-score above a given cutoff. Figure 2.2 exhibits 

the truncated and rounded form of the symmetric ROTSUM72 matrix. The full real-value form of 

each ROTSUM matrix is available on the Rot1Align website (see Section 2.4). The integral 

Figure 2.2. ROTSUM72 Matrix. (Top) Preview of the 55×55 chi-1 rotamer substitution matrix. 

(Bottom-left) Truncated substitution matrix of the rotamer substitution matrix collapsed into their 

respective amino acids. (Bottom-right) Truncated BLOSUM62 matrix as comparison to the 

matrix previewed in (b).  
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character proceeding “ROTSUM” represents the decimal TM-score cutoff (0.72 in this case). We 

illustrate ROTSUM72 due to its similar relative entropy compared to BLOSUM62’s (see Section 

3.2). The bottom-left matrix shows the collapsed form of ROTSUM72 matrix and shown adjacent 

to the BLOSUM62 matrix for comparison. One hallmark of the ROTSUM matrices is their ability 

to quantify rotamer conservation throughout evolution. For a given amino acid type, a particular 

rotamer state will tend to maintain that rotamer state. Interestingly, even across amino acid types, 

rotamer classes tend to also be conserved. For example, the log odds score for the ASP1 to GLU1 

mutation is greater than either intra-amino acid rotamer mutation score (ASP1 to ASP2 or ASP1 

to ASP3). Although the derivation of the ROTSUM72 matrix contains absolutely no a priori 

knowledge of the sequences used to compose the rotamer substitutions (TM-align requires only 

Cα trace of either protein), many substitution scores between the two matrices nearly are identical.  

2.3.2 Relative Entropy 

Figure 2.3 illustrates the relative entropies for the ROTSUM matrices and their respective 20×20 

collapsed forms. As expected, substitution matrices derived from pairwise structure alignments 

with greater TM-score cutoffs increase in information gain from background distributions. The 

relative entropy for BLOSUM62 is shown as a horizontal line for comparison. Drastic relative 

entropy loss of the rotameric representation collapsing to the amino acid types indicates support 

for our hypothesis: knowledge of a position’s rotamer state provides more information for the 

alignment procedure to match two positions than just knowing the amino-acid type alone. 
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2.3.3 Fold Recognition with ROTSUM  

2.3.3.1 Rotamer vs Amino Acid Sequence Alignment by Dynamic Programming  

To assess the individual effects of ROTSUM on recognizing protein fold against BLOSUM62, we 

aligned each protein sequence in the dataset against a non-redundant (by 70% sequence identity) 

PDB library. We identify the optimal alignments guided by a substitution matrix with the 

Needleman-Wunsch dynamic programming approach. For both cases, we employ both gap 

opening (11) and gap extension (1) penalty [22]. Scores of the alignments were calculated only via 

ROTSUM8 or BLOSUM62. Upon completion of all possible pairwise alignments between a query 

and all protein templates in a nonredundant protein database, we determine and sort the Z-score 

Figure 2.3. Relative Entropies of ROTSUM Matrices. Calculated relative entropies (in bit 

units) are shown for all generated ROTSUM matrices under different TM-score cutoffs. For 

each cutoff, both relative entropies for the 55×55 matrix (blue) and its corresponding 20x20 

collapsed (green). 
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for each alignment. The resulting alignment with the highest Z-score was used as input for 

structural alignment in determining the TM-score between the query and best template structure. 

Figure 2.4 shows the best TM-score in the top N alignments for ROTSUM8 and BLOSUM62 

(N=1, 2, or 5). The average TM-scores for the best discovered alignments were 0.392 and 0.376 

for ROTSUM8 and BLOSUM62, respectively (p-value = 3.6E-4). Although there is a considerable 

increase in the TM-score using ROTSUM, there are still cases where BLOSUM62 can identify 

folds readily while ROTSUM cannot and vice-versa. Illustrative examples of contrasting 

performance are shown in Figure 2.5. 

Additionally, we attempted to improve the sequence alignment quality by implementing a scoring 

function which combines ROTSUM8 and BLOSUM62. We repeated this combination several 

times while varying the weights of the respective matrices wR8 (for ROTSUM8) and wB62 (for 

BLOSUM62) under the restraint wR8 + wB62 = 1.0. Table 2.1 summarizes the average TM-score, 

RMSD, and fraction alignment coverage amongst all top 1 hits for all protein queries. The most 

optimal weight combination (wR8 = 0.8 and wB62 = 0.2) yields an average TM-score of 0.393 (p = 
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3.7E-5). This supports the notion that ROTSUM matrices provides a relatively stronger impact to 

the quality of the alignment than BLOSUM62. 

 

 

 

 

 

 

 

 

Figure 2.4. TM-score of the best alignments provided by ROTSUM8 or BLOSUM62. 
Needleman Wunsch alignments of the MUSTER test set containing 500 query proteins and their 

top hits given by either ROTSUM8 or BLOSUM62. Top alignments utilizing either matrix were 

used to determine the TM-score of the aligned residues between the query and its highest scoring 

alignment.  
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wR8 wB62 Avg. TM-score Avg. RMSD Coverage 

0 1 0.376 12.799 0.933 

0.1 0.9 0.382 (3.7E-4) 12.668 0.930 

0.2 0.8 0.388 (9.9E-6) 12.546 0.930 

0.3 0.7 0.391 (7.9E-7) 12.322 0.928 

0.4 0.6 0.392 (5.1E-7) 12.299 0.927 

0.5 0.5 0.392 (2.3E-6) 12.374 0.926 

0.6 

0.7 

0.4 

0.3 

0.392 (6.5E-6) 

0.392 (2.8E-6) 

12.420 

12.420 

0.923 

0.920 

0.8 

0.9 

0.2 

0.1 

0.393 (3.7E-5) 

0.389 (1.7E-3) 

12.358 

12.400 

0.918 

0.916 

1.0 0 0.391 (3.6E-4) 12.224 0.914 

Table 2.1. NW-Alignments with combined scoring matrices. Average TM-score, RMSD, and 

coverage are reported for Top 1 alignments of the weighted scoring function. Wilcoxin rank-

signed test was used to determine the significance (in the form of p-value—shown in 

parentheses) in mean difference between the weighted scoring function and alignments 

generated purely by BLOSUM62. 
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2.3.3.2 Correlation between Z-score and TM-score 

The Z-score quantitatively describes the quality of the alignment between query and template 

sequence pairs amongst other templates in the sequence database and will usually directly correlate 

with its respective TM-score. Figure 2.6 presents the TM-score for each query’s top sequence 

alignment’s Z-score. To identify aligned structure pairs with TM-scores above 0.5 and using a Z-

score cutoff of 1.6, we obtain a false positive rate and false negative rate of 14.3% and 17.9%, 

respectively. State-of-the-art fold recognition programs and other more robust approaches 

typically have false rates an order of magnitude lower than this approach. However, we simply 

highlight the individual performance of the matrix and its ability to discern good and poor 

alignments. 

 

Figure 2.5: Alignment comparisons of best alignments determined by ROTSUM8 and 

BLOSUM62. Needleman-Wunsch dynamic programming was used to find the top template 

alignment using either ROTSUM8 or BLOSUM62. The query is shown in red cartoon while the 

top template found is shown in greed cartoon. Assessment values are reported here as TM-

score/sequence identity in parenthesis. 1. Top template and alignment hit of the 1fexA query. 1a) 

Best alignment found by ROTSUM8. 0.582/0.22 1b) Best alignment found by BLOSUM62 

(0.177/0.22). 2. Top template and alignment hit of the 1f15c query. 2a) Best alignment found by 

ROTSUM8 (0.123/0.24). 1b) Best alignment found by BLOSUM62 (0.617/0.25). 
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2.3.3.3 Rotamer-Profile Assisted Fold Recognition 

Profile-profile alignments (PPAs) have shown promise in threading algorithms and are more 

sensitive in identifying templates for hard targets than simple sequence alignments [60]. Here, we 

attempted a proof-of-concept to determine if similar principles can be applied with rotamer-

sequence profiles. Figure 2.7 shows the best TM-score for the top N alignments using the scoring 

function defined by equation 3.7. For the best TM-score in the top 1 alignment, the average TM-

scores for a dataset of 100 proteins subjected to both rotamer profile-rotamer profile alignments 

(RPRPAs) and PPAs were 0.593 and 0.615, respectively. Also, the average best TM-score were 

0.615 (RPRPAs) and 0.633 (PPAs) for top 2 alignments and 0.627 (RPRPAs) and 0.646 (PPAs) 

for top 2 alignments. Overall, although there was a tremendous increase in RPRPA performance 

Figure 2.6: Alignment comparisons of Top-1 hit by ROTSUM8 and BLOSUM62. The Z-score 

of 500 target protein’s best TM-score in top 1 alignment and their corresponding TM-scores are 

plotted. Horizontal line indicates a TM-score of 0.5. The vertical line represents the z-score 

threshold of 1.6 where the lowest false positive rate and false negative rate for TM-score > 0.5 

classification are located. 
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compared to basic rotamer sequence alignments, RPRPAs, using this approach, did not outperform 

PPAs. There are several factors that affect its performance. First, all template and queries must 

undergo a TM-align search to identify similar structures. In cases where a fold is relatively rare 

compared to others, the profile may not be well-informed due to a low number of structures that 

occupy the multiple sequence alignment. PSI-BLAST profiles have the luxury of using sequence 

databases which are extremely rich in entries and deeply covers most protein family compared to 

the PDB. Moreover, variables tuned for this scoring function, including the constant shift and 

secondary structure match, have been well tuned for PPA. Future studies should also consider 

tuning these variables but only when well-informed profiles have been constructed. 

 

 

 

 

Figure 2.7: Best TM-scores of Top N alignments by sequence-based versus rotamer-

sequence based profiles. Best TM-score in the top N alignments calculated by a rotamer-

profile/rotamer-profile alignments and profile-profile alignments were determined for a 

dataset of 100 proteins. Left: N=1; middle: N = 2; right: N = 5.  
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2.4 Discussion 

In this study, we describe the construction and performance of structurally-derived χ1 rotamer 

sequence-based substitution matrices (also known as ROTSUM). While the ROTSUM matrices 

are symmetric and its elements are expressed as log-odds, there are major intrinsic differences 

between them and previously used substitution matrices. First, the obtained frequencies originate 

from structure alignments by TM-align instead of a sequence database. Interestingly, the non-

redundant database used for this experiment is significantly limited compared to that of sequence 

database in both size and variety. Though the structure database covers most, if not all, folds 

created by nature, we may not have a representative set of proteins in this database especially for 

those proteins that are difficult to experimentally validate. The accuracy of the structural database 

is perhaps also something to consider. Low-resolution crystal structures or NMR structure may 

not capture the intended χ1 rotamer relevant for its function. However, even structures with low 

assignment accuracy are also identified by use of ROTSUM. 

Moreover, alignments generated by this structural alignment approach do not require the sequence 

of either structure to be known beforehand. Finally, the 55x55 matrix-form of ROTSUM matrices 

serves a unique purpose for χ1 rotamers although a 20x20 form can be utilized for canonical, 

amino-acid sequence alignments.  

Notably, not all rotamers for a given amino-acid type are not substituted for other rotamer types at 

the same rate, especially bulky aromatic residues. This is perhaps expected due to their inability to 

move freely in their relative positions in proteins. Especially in protein design, it is fatal to consider 

that all three χ1 rotamer types for these aromatic residues should be given the same weight. Thus, 

considering discrete χ1 rotamers is more appropriate for this task. We also discover that, generally, 

many rotamers with similar physiochemical properties tend to mutate to other types who share 
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similar χ1 angles. For example, the score which describes the mutation from ASP1 to GLU1 is 2.7 

bits, while mutating that same rotamer to either GLU2 or GLU3 grants a score of 0.1 bits and 0.6 

bits, respectively. Interestingly, the evolution of ASP1 to ASP2 or ASP3 is 3.6 bits and 2.8 bits, 

respectively. This suggests that the flexibility of the χ1 angle to switch to its other χ1 modes is on 

the same order as mutating to a glutamate residues whose rotamer shares a similar χ1 dihedral 

angle. 

Rotamer sequence alignment provides greater performance in the substitution matrix compared to 

basic amino-acid types. Obviously, rotamer alignment cannot be realized unless we know the 

structure of the protein’s sidechains. In Chapter 3, we explore methods to predict the χ1 rotamer 

sequence of a protein given only its amino-acid sequence information. 

Online server support for χ1 rotamer alignments and the substitution matrices constructed in this 

study are available for academic use at https://zhanglab.ccmb.med.umich.edu/Rot1Suite/.  
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Chapter 3: Categorical and Real-value Prediction of Chi-1 Rotamers from Sequence 

3.1 Introduction  

To date, there are approximately 24 million non-redundant entries in the UniProt database [61] yet 

only about 100,000 in the Protein Databank [9]. This large and growing discrepancy is making 

even more important to confidently match sequence and structure pairs [10]. This issue has been 

addressed in multiple facets including prediction of protein structural properties including phi- and 

psi-torsion angles in fold-recognition strategies. Understanding more probable structural 

properties of the protein can help identify template homologs in structure prediction. If reliably 

predictable, even sidechain orientation may be worthwhile to explore to identity if and any impact 

on fold recognition is significant compared to current methods.  

Knowledge of protein backbone torsion angles can often provide more information about 

topological units across the structure, such as secondary structure, in its fold [2]. Additionally, side 

chains can adopt its own set of chi (χ) dihedral angles where the size of the set is dependent on the 

length of the sidechain [62]. Due to steric hindrance in most cases, the sidechain’s gamma atom is 

naturally positioned away from the backbone carbonyl group, it’s been observed that the first order 

of chi angles (χ1—defined by the four atoms N, Cα, Cβ, [C/S/O]bγ) is discretized and can only 

adopt a relatively small number of states [30] . For the same reason, these discrete rotamer types 
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are not equally distributed. We explore the definition of rotamer types relevant for the experiments 

in Section 2.1.  

Sequence-based torsion angle prediction is an area of structural prediction that has yet to be fully 

explored. Backbone phi/psi angles from sequence information have been studied previously using 

artificial neural networks and/or support vector machines [63, 64]. However, χ1 rotamer prediction 

is another aspect of the problem that has not received sufficient attention. To this date and to the 

author’s knowledge, there are no algorithms that are trained to predict rotamer configuration from 

sequence alone. Typically, algorithms such as SCWRL [65, 66] require exact backbone 

coordinates to predict the atomic positions of the residue sidechains. Software that doesn’t rely on 

backbone coordinates do exist, however, they use additional information outside of sequence alone 

including chemical shifts from NMR experiments as seen in PREDITOR [67]. Here, although 

PREDITOR allows sequence-only submissions, the algorithm will use the most similar template’s 

χ1 rotamer information from the Protein databank. This approach doesn’t yield high accuracy for 

many proteins, especially those with low- to no-sequence homologs. 

In this study, we address the rotamer prediction problem using a sequence and secondary structure 

fragment-based approach to predict the χ1 rotamer for each position of a sequence query. We also 

set out to predict its real value χ1 dihedral angles at each position and compare it to torsion angles 

determined by a backbone coordinate-dependent method, SCWRL4 tested on I-TASSER-

modelled structures [40]. 
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3.2 Methods 

3.2.1 Datasets 

The template library used in this study is made from high resolution structures (<2.5A) that do not 

share sequence identity of more than 70%. PISCES [68] server was used to automatically generate 

the list of approximately 26,000 proteins that satisfy this criterion. Secondary structure elements 

and the χ1 rotamer sequence for the template structures are calculated by STRIDE [69] and 

Rot1Calc, respectively. Of these 26,000 proteins, 300 proteins were randomly selected as the test 

set. The PDBID for each dataset item is included in Appendix B. Unless specified otherwise, for 

each test set item, all proteins in the template library that share more than 30% sequence identity 

by Needleman-Wunsch sequence alignment [21] were removed for our benchmark results. Also, 

Figure 3.1. Rot1Pred Pipeline. Two chi-1 probability distribution matrices are generated from 

sequence-dependent sequence/secondary-structure alignments and profile-profile alignments. 
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we generated structural models for the testing set proteins using I-TASSER, where we identified 

and excluded homologous templates with a sequence identity greater than 30%. 

3.2.2 Rot1Pred: Fragment Alignment and Prediction 

Starting from solely sequence information, sequence fragments are generated with varying sizes 

of 6 to 30 amino acids starting from every position. The secondary structure element of each 

position is predicted by PSS-PRED [70]. For each position across a sequence, we generate these 

fragments and perform ungapped sequence alignments against fragments of the template library 

with the same window size. A score between aligned positions are generated based on a function 

that is a weighted linear-combination of amino-acid type and secondary structure type 

match/mismatch (Eqn. 1):  

 
𝑆(𝑎𝑎𝑞 , 𝑎𝑎𝑡, 𝑠𝑠𝑞 , 𝑠𝑠𝑡) = 𝑀(𝑎𝑎𝑞 , 𝑎𝑎𝑡) + 2 × 𝑆𝑆𝑚𝑎𝑡𝑐ℎ(𝑠𝑠𝑞 , 𝑠𝑠𝑡) (3.1) 

Symbols aa and ss are the amino acid type and secondary structure elements of a query fragment 

q at position i and template fragment t at position j, respectively. M represents the 20x20 collapsed 

form of the ROTSUM95 substitution matrix. Details of this matrix (COLLMX95) is shown in 

Appendix C. The score of two aligned fragments is, thus, the sum of the positional pairwise scores 

(Eqn. 2).  

 
𝑆𝑓𝑟𝑎𝑔 = ∑𝑆(𝑎𝑎𝑞,𝑧, 𝑠𝑠𝑞,𝑧 , 𝑎𝑎𝑡,𝑧 , 𝑎𝑎𝑡,𝑧)

𝑁

𝑧=1

 
(3.2) 

N is the length of the fragment and z is the relative position of the fragment length. 

As the raw-score is typically biased on the length of the fragment, we determine the significance 

of a score against all others of the same size using Z-score (Eqn. 3.3): 



43 

 

 
𝑍𝑓𝑟𝑎𝑔 =

𝑆𝑓𝑟𝑎𝑔−< 𝑆𝑓𝑟𝑎𝑔,𝑁 >

𝜎𝑁
 

(3.3) 

where Sfrag represents the score of the fragment, <Sfrag,N> represents the average score of all 

fragments that share the same size N, and σN represents the standard deviation of these scores. All 

Z-scores from all fragment sizes are then pooled and sorted. For each position of the query, we 

select fragments with the 125 top Z-scores and record the frequency of each χ1 rotamer type 

aligned. 

This process is repeated for each position in the protein. At the end of this process, we are given 

an Lx55 matrix that represents the distribution of χ1 rotamer types at every position. This 

frequency matrix is then converted to a probability matrix and adjusted by a pseudocount. The 

calculation of the pseudocount is derived from the equation introduced by PSIBLAST [53], but 

instead of using a 20x20 sequence substitution matrix, we provide a χ1 rotamer substitution matrix, 

named ROTSUM. The details of the construction of the ROTSUM matrix and its effects on 

sequence alignments will be showcased in a future study. The ROTSUM matrix used for this 

adjustment is downloadable from Rot1Pred website. From the adjusted probability matrix, we 

finally select the highest value for a specific amino-acid type for all query positions and report its 

predicted rotamer types.   
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3.2.3 Augmentation of Protein Threading with Rot1Pred 

Since we select sidechain conformers from sequence alignment information, we included a new 

alignment source from protein sequence-structure threading programs that also require only 

sequence information as input. Four types of threading programs were used to generate these 

query-anchored sequence alignments: protein profile-protein alignment + secondary structure 

match (PPA), SPARKS-X (SPX) [71], MUSTER (MUS) [56], and HHPred (HHP) [72]. The 

generated sequence alignments are trivially converted from amino-acid to χ1 rotamer sequence 

alignments. New probability distributions, Q are constructed by a weighted average between the 

adjusted probabilities in Section 2.3 and the probabilities from the threading alignments (Eqn. 4.4): 

Figure 3.2. The effect of various fold-recognition algorithms on categorical χ1 torsion angle 

prediction. The prediction accuracy is determined from the most probable rotamers in a multiple 

rotamer-sequence alignment generated by the individual threading algorithms (Sparks-X, Profile-

Profile alignment, MUSTER, and HHPred) compared to the χ1 rotamer in the native structure. 

Accuracies are calculated for different secondary structure elements (α helix, β sheet, and coil) 

and are also calculated for all positions. 
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𝐾𝑎𝑎,𝑖 = max(𝑤1𝑃𝑓𝑟𝑎𝑔𝑎𝑎,𝑖,𝑘

+ 𝑤2𝑃𝑡ℎ𝑑𝑎𝑎,𝑖,𝑘
) 

(3.4) 

 

Additionally, Rot1Pred can predict the real value of the dihedral angle. For a given query, we scale 

each of the angles in the top 125 fragments by their fragments’ Z-score. All angles that belong to 

a range [0, 120), [120, 240), or (-120, 0]—except for Proline (which are separately considered) are 

then summed and divided by the sum of the Z-scores, yielding a “weighted average” of the χ1 

dihedrals (Eqn. 5):  

 
𝛸𝑖,𝑘

1
=

∑ 𝑍𝑓𝑟𝑎𝑔,𝑖,𝑛,𝑘 × 𝛸𝑖,𝑛,𝑘
1𝑁

𝑛=1

∑ 𝑍𝑓𝑟𝑎𝑔,𝑖,𝑘
𝑁
𝑛=1

 
(3.5) 

Here, i refers to the query position, k refers to the rotamer class, and n is the number of total rotamer 

characters that align to the ith position. The selection of k is determined by the most observed 

rotamer class seen for the query’s amino acid type at position i. Details of the final class selection 

is outlined in section 2.4. 
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3.2.4 Rot1Pred Parameterization 

Several criteria were considered for tuning to optimize prediction accuracy on the training set. The 

following parameters were tuned and the optimum value is shown in parenthesis: minimum 

window size, maximum window size, relative weighting of amino-acid type and secondary 

structure match in fragment similarity searching, top N Z-score fragments to consider for multiple 

rotamer sequence alignment, and beta constant in weighting the impact of the substitution matrix 

in pseudocount generation. Specifically, for threading-enabled rotamer prediction, we selected 

specific criteria on template hits to be considered for its multiple sequence alignment: Z-score of 

the alignment, template structure resolution, and weighting of the adjusted probability table from 

fragment similarities and from threading-enabled alignments. 

 

Figure 3.3. Summary of Rot1Pred performance on categorical chi-1 rotamer identification. 

Prediction accuracy was determined by this study’s approach using either ‘30’% sequence 

identity cutoff for included templates in the Protein Databank or ‘all’ templates included. 
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3.2.5 Prediction of Real-value χ1 Dihedrals on Predicted Protein Structures 

The structure of each protein in the testing set was predicted by I-TASSER. In the search of 

structural templates by LOMETS [73], we removed all templates whose sequence identity is over 

30% of the query sequence. Following the I-TASSER simulation and clustering stage, we use the 

largest cluster’s decoy closest to the cluster center. Since the output of this decoy is only a Cα trace, 

we employ Pulchra [74] to construct the other backbone atoms. 

3.3 Results 

3.3.1 Parameterization of Fragment Alignment Scoring Function 

The choice of the range of fragment lengths used is crucial to obtain pertinent structural 

information from the template library. Fragments should be long enough to obtain specific data 

regarding the query sequence. However, fragments too long tend to compound error within the 

gapless alignment and will also render a temporal impact. Figure 6 illustrates an approach to 

optimize the range of fragment sizes used for this pipeline. While there is a clear optimum for the 

Figure 3.4. Effects of Sidechain solvent accessibility on prediction accuracy. Solvent accessibility 

for each residue type in the dataset proteins are calculated by STRIDE. Residues in the test set are 

binned by its amino-acid type and relative solvent accessibility in increments of 0.1. The fraction of 

correct rotamers for each bin are then calculated.  
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minima fragment size, the maximum fragment size steadily increases in accuracy. Since there are 

negligible diminishing returns after a size of 30, this value was chosen as the most practical 

considering a trade-off between accuracy and time. 

 

 

From tens of millions of alignments generated, it’s necessary to determine which alignments 

qualify as valuable to help in determining structural information for the query. One approach 

consists of taking the top N scoring alignments and extracting their rotamer information and 

determining which N provides the greatest prediction accuracy. Figure 7 illustrates the results from 

this proposal. As the number of chosen alignments increase, so does the accuracy. At N = 250, 

there is no apparent drop-off in accuracy. This is likely due to the weighting of the alignments. 

Those with very low Z-scores will contribute little toward the rotamer prediction while the 

converse will have a much greater prediction impact. As there is virtually no improvement from 

Figure 3.5. The effect of minimum and maximum fragment size on categorical X1 torsion angle 

prediction. Minimum (left) and maximum (right) fragment size. 
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N = 125 to N = 250, we consider the top 125 scoring fragments in favor of saving computational 

memory. 

Resolution from crystallographic results correlates well with the accuracy of spatial location of the 

protein’s atoms. Although resolutions <2.5 Ångstroms can typically resolve the structure of 

rotamers well [9], a systematic approach to determine the optimum resolution cutoff for this 

pipeline should exist. Thus, we performed our algorithms using several template libraries where 

the entries in each set were below a certain Ångstrom cutoff. Figure 3.7 displays the resulting 

prediction accuracy for each resolution cutoff. Although, a template library with the best resolved 

structures would be ideal, there isn’t, currently, sufficient data to well-inform the probability 

matrix. For instance, the template library with a resolution cutoff of 1.5 Ångstroms contains only 

4911 proteins while the library with resolution cutoff of 2.1 Ångstroms contains 19,924 entries. 

Figure 3.6. The effect of top N selection of scored fragments on prediction accuracy. 
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Pseudocount plays a tremendous role in smoothing probability distributions for cases where 

observed frequencies are low. Two tunable variables are considered for Rot1Pred: the beta 

constant used to describe the relative weighting of the pseudocount and the substitution matrix 

where the pseudocounts are sampled from (see Eqn 5 in [53]). Figure 3.8 and 3.9 illustrate the 

varying beta constants and different forms of the COLLMX matrix (See Section 2.3), respectively. 

 

 

Figure 3.7. The effect of template library resolution cutoff on prediction accuracy. 
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Figure 3.9. The effect of COLLMX version used for pseudocount generation on prediction 

accuracy.  

 

Figure 3.8. The effect of the pseudocount beta constant on prediction accuracy.  
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3.3.2 Accuracy of Rot1Pred in Rotameric Classification  

The evaluation of our methods’ performance is quantified by the comparison between the rotamer 

sequences generated by approaches explained in Section 2 versus rotamer sequences constructed 

by a naïve approach as described later. Alanine and glycine residues are excluded from the analyses 

due to the lack of a sidechain gamma atom. We compute the accuracy of Rot1Pred’s classification 

of a side chain’s rotamer state from the test set of 300 proteins mentioned previously. Since local 

sequence alignments are used to determine the significance of fragments, for each query sequence, 

we remove homologous templates whose sequence identity are over 30%. 

Naturally, the probability for each χ1 rotamer type for a given amino acid type is not equally 

distributed. One can naturally construct a rotamer sequence as the combination of the most 

observed rotamer type in the Protein Databank for each amino acid type in a query. This approach 

is labelled as ‘naïve’ in the following analyses and discussions. The naïve approach yields a 

prediction accuracy of 56.8% on the testing set, and we use this result as a baseline when 

considering Rot1Pred’s performance. 

 

3.3.3 Chi-1 Rotamer Sequence Prediction by Threading Algorithms 

As shown in Figure 3.2, all fold-recognition techniques yielded accuracies well-above that of the 

naïve approach. Profile-profile alignments (PPA) provided the highest reliability (63.4%) 

compared to its other counterparts. The strength of PPA perhaps derives from its high threading 

coverage allowing rotamer types to be inferred from relevant, related structures.  

Approaches from Section 2.3 and 2.4 were combined to provide a threading-assisted technique for 

χ1 rotamer prediction labelled as Rot1PredT throughout this study. The performance for both 
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Rot1Pred and Rot1PredT are summarized in Figure 3.3. Our benchmark results show that this 

approach detailed in this study can correctly identify 64.1% or 68.3% of the χ1 rotamers with 

homologous templates removed. For the purposes of using this approach with the entire template 

library, 88.72% accuracy was achieved. 

We explored the effects of fusing probabilities from sequence/secondary structure fragments and 

threading alignments across different levels of sidechain solvent exposure. In Figure 3.4, the 

fraction of correct rotamers were determine for a sidechain’s relative solvent accessibility ranging 

from 0.0 to 1.0 in 0.1 bin increments. For most amino-acid types, as expected the prediction 

capability degrades as the sidechain becomes more solvent-exposed. Considering all amino-acid 

types in the ‘ALL’ plot, the correlation is smoother perhaps due to sufficient sample number in the 

solvent accessible bins. Here, residues that typically reside deep in the core are much easier to 

predict compared to naturally solvent-exposed residues. This phenomenon is not new or unique. 

Other sidechain prediction algorithms like SCRWL, which even when a native backbone is 

supplied, cannot determine the correct conformational isomer for highly exposed residue types 

compared to others. 
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3.3.4 Accuracy of Real Value Dihedral Prediction 

The performance comparison between Rot1Pred and SCWRL4 on I-TASSER-modelled 

backbones is displayed in Table 3.1 and Table 3.2. The performance criteria are based on two 

calculations: mean absolute error (Eqn. 6) and the root mean squared deviation (Eqn. 3.7) of the 

χ1 torsion angle and gamma atom prediction between the prediction and native values, respectively.  

 Rot1Preda Naïveb (p) Rand_Withinc (p) Randd (p) SCRWL4e (p) 

CYS 45.95° 48.00° (4.7E-16) 82.62° (3.2E-24) 89.27° (1.7E-31) 59.60° (7.4E-07) 

ASP 43.09° 46.03° (4.4E-76) 87.58° (9.0E-162) 91.03° (8.6E-151) 59.60° (1.9E-30) 

GLU 51.51° 54.47° (1.6E-105) 91.15° (4.8E-153) 89.78° (5.2E-138) 62.26° (8.5E-19) 

PHE 40.26° 41.78° (3.1E-25) 86.49° (1.5E-119) 90.47° (1.7E-116) 59.17° (5.6E-28) 

HIS 45.00° 46.70° (7.6E-17) 87.35° (2.8E-56) 88.37° (2.5E-53) 58.41° (1.3E-08) 

ILE 29.55° 30.63° (4.3E-22) 90.78° (2.2E-234) 89.28° (2.5E-225) 50.89° (7.3E-66) 

LYS 49.06° 51.69° (3.6E-79) 91.45° (6.4E-146) 89.81° (5.0E-138) 62.48° (9.8E-27) 

LEU 37.77° 40.53° (2.0E-142) 89.74° (1.0E-304) 91.16° (4.4E-293) 54.43° (1.1E-61) 

MET 44.71° 47.50° (1.1E-27) 88.95° (4.7E-46) 88.09° (3.7E-38) 60.89° (4.0E-09) 

ASN 47.33° 50.30° (2.3E-55) 88.95° (1.3E-94) 91.05° (5.8E-94) 61.06° (2.1E-16) 

PRO 22.72° 22.83° (4.8E-01) 56.69° (1.6E-136) 90.45° (8.6E-223) 26.68° (7.3E-13) 

GLN 46.09° 48.86° (6.6E-53) 88.61° (7.4E-87) 92.84° (3.5E-100) 61.45° (8.1E-22) 

ARG 50.13° 52.92° (3.8E-65) 90.10° (1.0E-106) 88.64° (2.0E-96) 64.25° (7.4E-23) 

SER 62.60° 63.15° (3.6E-07) 77.00° (1.6E-56) 91.02° (9.2E-61) 77.77° (1.2E-18) 

THR 43.13° 42.50° (4.1E-16) 74.53° (4.3E-127) 88.74° (5.2E-130) 62.70° (1.2E-17) 

VAL 35.21° 35.92° (5.7E-25) 82.07° (1.0E-262) 91.01° (8.7E-246) 55.80° (8.3E-49) 

TRP 47.16° 48.92° (3.0E-09) 87.05° (7.6E-30) 92.90° (2.3E-30) 61.43° (4.7E-07) 

TYR 44.60° 45.85° (1.4E-16) 87.68° (1.2E-80) 84.18° (1.5E-64) 57.45° (9.2E-11) 

ALL 43.37° 45.19° (<1.0E-309) 85.23° (<1.0E-309) 90.05° (<1.0E-309) 58.81° (<1.0E-309) 

Table 3.1.  MAE of torsion angle prediction on I-TASSER modelled backbones. 

Torsion Angle Determinations: 
aRot1Pred: Rot1PredT algorithm 
bNaïve: Most observed probability for the predicted chi-1 category type 
cRand_Within: Random angle within the given range of the predicted chi-1 category type (See 

section 2.1) 
dRand: Random angle between 0.0° inclusive and 360.0° exclusive. 
eSCWRL4: SCWRL4 algorithm 
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𝑀
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 (3.7) 

In Eqns. 3.6 and 3.7 M is the number of proteins in the dataset, Li is the total number of residues 

in protein i, and j is an index in protein i. In Eqn. 3.6, P and N represent the predicted and native 

torsion angle, respectively, and are in the range of [0, 360). In Eqn. 3.7, the distance between the 

predicted and native gamma atoms after the backbone atoms (N, Cα, C) and the beta-carbon (Cβ) 

have been superposed is represented as dγ. Since angles can assume multiple representations for 

the same orientation (e.g. -20 and 340), we calculate the absolute distance of the smallest angle by 

Eqn. 3.8: 

 
𝐷′ = 𝑎𝑏𝑠(𝑋1𝑚𝑜𝑑360 − 𝑋2𝑚𝑜𝑑360)   

(3.8a) 

 
𝐷𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 = min(𝐷′, 360 − 𝐷′)   

(3.8b) 

Construction of the sidechain beta atom is done by equations outlined previously [75]. Sidechain 

τ angles and the Cα-β atom distance used in these equations are defined by averaging these values 

for each chi-1 rotamer type in the PDB. 

Rot1Pred’s prediction for the χ1 dihedral is more accurate when tested on a dataset of I-TASSER 

modelled backbones. Statistical values calculated in this section were performed via Wilcoxon 

signed-rank test. The mean absolute error for the dihedrals predicted for all amino acids are 37.13º 
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and 50.35º for Rot1Pred and SCWRL4, respectively, and for each amino acid type, the dihedral 

was predicted by Rot1Pred much more significantly than SCWRL4. Rot1Pred’s predicted torsion 

angles were also compared to randomly generated angles under three conditions: most probable 

angle of the χ1 category (Naïve), random angle within the χ1 category predicted by Rot1Pred 

(Rand_Within), and a random angle selected within the range [0.0, 360.0) (Rand). The comparison 

between Rot1Pred and Naïve highlights the quality of the real-value determination given the χ1 

category. Even though the mean absolute error between these two conditions only differ by only 

less than two degrees, the mean difference is extremely significant (p-value <1.0E-309). As 

expected, protein core-occupying residues (leucine, isoleucine, and valine) generally exhibit a 

lower MAE than other types. Proline’s MAE result is unique compared to other types due its ability 

to only adopt two χ1 rotamer states with average dihedral angles of +/- 25°. Rot1Pred accurately 

predicts the location of the gamma atom significantly across all amino acid types. Across all query 

positions in the testing test, the average gamma atom RMSD is 0.95Å or 1.25Å (p < 1.0E-309) for 

Rot1PredT and SCWRL4, respectively. This result suggests that Rot1Pred can better identify the 

position of the native gamma atoms than an algorithm which already has all backbone coordinate 

information. Notably, the method described in this study does not require the backbone coordinates 

to determine the χ1 torsion angle, but instead uses similar fragments found in the PDB. 

Interestingly, however, these fragments are not necessarily related especially since homologous 

templates (defined by sequence identity greater than 30 percent) were removed before prediction. 

One could expect even greater accuracy with all templates allowed. The major tradeoff for 

accuracy, however, is the time calculation since sequence fragments need to be searched compared 

to the near instant prediction by SCWRL. 
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3.4 Discussion 

We developed a sequence fragment-based Rot1Pred, for ab initio prediction of rotamer classes 

and/or real value torsion angles of the χ1 angle. The purpose of this work is two-fold: (1) predict 

χ1 rotamer sequences for purposes of sequence-structure alignments in potential threading 

programs, and (2) generate real value χ1 dihedrals for sidechain orientation determination in 

tertiary protein structure prediction. More details about the prospect of generating these alignments 

is currently being explored. The prediction time for this algorithm takes approximately 1.5 CPU 

 Rot1Pred Naïve (p) 

CYS 1.18 Å 1.50 Å (5.6E-09) 

ASP 0.95 Å 1.25 Å (3.9E-39) 

GLU 1.12 Å 1.32 Å (7.0E-12) 

PHE 0.87 Å 1.24 Å (1.3E-38) 

HIS 0.96 Å 1.22 Å (7.5E-13) 

ILE 0.69 Å 1.13 Å (1.6E-96) 

LYS 1.08 Å 1.32 Å (5.7E-12) 

LEU 0.83 Å 1.16 Å (2.5E-77) 

MET 0.97 Å 1.29 Å (3.1E-11) 

ASN 1.04 Å 1.29 Å (1.3E-17) 

PRO 0.62 Å 0.69 Å (7.4E-03) 

GLN 1.01 Å 1.29 Å (6.9E-18) 

ARG 1.09 Å 1.35 Å (7.4E-19) 

SER 1.24 Å 1.51 Å (1.4E-10) 

THR 0.90 Å 1.26 Å (6.9E-17) 

VAL 0.81 Å 1.23 Å (5.2E-112) 

TRP 0.99 Å 1.27 Å (9.5E-10) 

TYR 0.96 Å 1.21 Å (2.1E-17) 

ALL 0.95 Å 1.25 Å (<1.0E-309) 

Table 3.2. RMSD of Predicted Gamma Atom. 
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seconds per amino acid in the sequence on an x86 Intel 3.6 GHz processor. The webserver, 

executables, and source of the algorithms discussed here are found on the Rot1Suite and are 

available for users online at our webserver: https://zhanglab.ccmb.med.umich.edu/Rot1Pred. 

We investigated two ways of validating this algorithm. First, the accuracy of rotameric 

classification were compared to naïve approaches a backbone-dependent sidechain program. Next, 

I-TASSER generated models were constructed and partial sidechains were generated by Rot1Pred 

and SCWRL4. Performance of the structural prediction was measured as the RMSD between 

native gamma atoms. 

Although determination of the χ1 category provides an idea of the orientation of the side-chain, 

the detailed determination of the angle must also be considered. Without this consideration, one 

could simply choose the most probable angle for a given predicted χ1 category; however, as shown 

in Table 3.1, even a very minute alteration in the angle may confer a significant sidechain 

conformational change. This also supports the fact that χ1 angles are discretized and their torsion 

angle probability distribution is extremely tight. 

Rot1Pred performs well in predicting the real value χ1 rotamer compared to backbone-dependent 

methods. However, since the approached explained here does not consider rotamer-pair 

interactions explicitly, some steric clash can be expected. It is suggested that Rot1Pred should be 

applied to predicted models rather than native ones and further tuning by sidechain refinement 

strategies may be necessary. If the user has information of the native backbone already at-hand, 

SCWRL4, or similar algorithms, are suggested to be used instead. Users should also consider run-

time effects in predicted χ1 rotamers with Rot1Pred. Since a fragment-based approach is orders of 

magnitude slower than conventional backbone-dependent methods, one should consider the 

context for which the prediction algorithm is being used. Especially in cases where a full protein 
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structure is predicted from sequence alone, Rot1Pred would be highly suitable for sidechain 

prediction. As the gap between entries submitted in sequence and structure databases continues to 

widen, it is becoming more important to construct algorithms to provide structure information from 

sequence alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 

 

3.5 References 

1. Apweiler, R., et al., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res, 
2004. 32(Database issue): p. D115-9. 

2. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 235-42. 
3. Zhang, Y., Progress and challenges in protein structure prediction. Curr Opin Struct Biol, 

2008. 18(3): p. 342-8. 
4. Ramachandran, G.N., C. Ramakrishnan, and V. Sasisekharan, Stereochemistry of 

polypeptide chain configurations. J Mol Biol, 1963. 7: p. 95-9. 
5. Dunbrack, R.L., Jr. and M. Karplus, Backbone-dependent rotamer library for proteins. 

Application to side-chain prediction. J Mol Biol, 1993. 230(2): p. 543-74. 
6. Dunbrack, R.L., Jr. and F.E. Cohen, Bayesian statistical analysis of protein side-chain 

rotamer preferences. Protein Sci, 1997. 6(8): p. 1661-81. 
7. Wu, S. and Y. Zhang, ANGLOR: a composite machine-learning algorithm for protein 

backbone torsion angle prediction. PLoS One, 2008. 3(10): p. e3400. 
8. Song, J., et al., TANGLE: two-level support vector regression approach for protein 

backbone torsion angle prediction from primary sequences. PLoS One, 2012. 7(2): p. 
e30361. 

9. Krivov, G.G., M.V. Shapovalov, and R.L. Dunbrack, Jr., Improved prediction of protein 
side-chain conformations with SCWRL4. Proteins, 2009. 77(4): p. 778-95. 

10. Miao, Z., Y. Cao, and T. Jiang, RASP: rapid modeling of protein side chain conformations. 
Bioinformatics, 2011. 27(22): p. 3117-22. 

11. Berjanskii, M.V., S. Neal, and D.S. Wishart, PREDITOR: a web server for predicting 
protein torsion angle restraints. Nucleic Acids Res, 2006. 34(Web Server issue): p. W63-
9. 

12. Zhang, Y., I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 
2008. 9: p. 40. 

13. Wang, G. and R.L. Dunbrack, Jr., PISCES: a protein sequence culling server. 
Bioinformatics, 2003. 19(12): p. 1589-91. 

14. Heinig, M. and D. Frishman, STRIDE: a web server for secondary structure assignment 
from known atomic coordinates of proteins. Nucleic Acids Res, 2004. 32(Web Server 
issue): p. W500-2. 

15. Needleman, S.B. and C.D. Wunsch, A general method applicable to the search for 
similarities in the amino acid sequence of two proteins. J Mol Biol, 1970. 48(3): p. 443-
53. 

16. Yan, R., et al., A comparative assessment and analysis of 20 representative sequence 
alignment methods for protein structure prediction. Sci Rep, 2013. 3: p. 2619. 

17. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein 
database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402. 

18. Yang, Y., et al., Improving protein fold recognition and template-based modeling by 
employing probabilistic-based matching between predicted one-dimensional structural 
properties of query and corresponding native properties of templates. Bioinformatics, 
2011. 27(15): p. 2076-82. 

19. Wu, S. and Y. Zhang, MUSTER: Improving protein sequence profile-profile alignments by 
using multiple sources of structure information. Proteins, 2008. 72(2): p. 547-56. 

20. Soding, J., Protein homology detection by HMM-HMM comparison. Bioinformatics, 2005. 
21(7): p. 951-60. 

21. Wu, S. and Y. Zhang, LOMETS: a local meta-threading-server for protein structure 
prediction. Nucleic Acids Res, 2007. 35(10): p. 3375-82. 

22. Rotkiewicz, P. and J. Skolnick, Fast procedure for reconstruction of full-atom protein 
models from reduced representations. J Comput Chem, 2008. 29(9): p. 1460-5. 

23. Parsons, J., et al., Practical conversion from torsion space to Cartesian space for in silico 
protein synthesis. J Comput Chem, 2005. 26(10): p. 1063-8.



 

61 

 

 
 

Chapter 4: Evolutionary Protein Design using Chi-1 Rotamer Statistical Potentials 

4.1 Introduction 

Protein design can be considered as the inverse of protein structure prediction, where instead of 

starting from an amino-acid and predicting the lowest energy fold, a scaffold tertiary fold is used 

as input to search the “best-fit” sequence to that scaffold according to a given force-field [42, 76]. 

The vastness of the sequence-space presents itself as a major challenge in computational protein 

design. On the amino-acid level, the total number of unique sequences available is 20L. However, 

for most computational design applications, a rotamer library [77] is utilized to provide 

representation of a sidechain’s three-dimensional orientation required for most energy functions 

in a force field, and thus, the total number of possible rotamer combinations are even higher. 

Most successful protein structure prediction and design force-fields incorporate some form of a 

knowledge-based potential or statistically effective energy function (SEEF) [47]. Rosetta’s REF15 

[78] leverages potentials based on probabilities observed in the Protein Databank (PDB) [9]. One 

of the REF15 energy components derives an energy from the amino acid probability given 

backbone φ and ψ torsion angles. REF15 also implements the rotamer version of this energy 

function. A further study performed in the ABACUS protein design pipeline [79] refined this 
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energy function by predicting the energy for a χ1 rotamer given backbone torsion angles and 

solvent accessibility. 

Evolutionary protein design strategies which leverage conventional bioinformatics techniques 

have also shown promise. EvoDesign [58], a predecessor to the studies performed here, utilizes 

the PDB to construct a structure-derived sequence based position specific scoring matrix, or profile, 

in the form of an L×20 matrix, where L is the length of the input structure and 20 represents the 

number of amino acid types. The profile describes a probability-related distribution of amino-acids 

across the query structure. This distribution is generated proceeding a structural similarity search 

which extracts templates whose structures are similar to that of the input structure (usually with a 

TM-score threshold of 0.7 or greater) [26]. As expected, the profile serves as a mechanism to 

preserve conserved residues especially in cases where residues are imperative for a protein’s 

structure or function. One drawback to this method, as well as other potentials that uses amino-

acid probabilities to derive energy, is the lack of explicit structural information. In state-of-the-art 

computational protein design algorithms, rotamers are selected and judged based on the energy 

force field. Using this profiles in this form, thus, cannot discern energetically favorable rotamers 

from forbidden ones. This profile is, of course, supplemented by other energetic components [66, 

80] to ensure reliable rotamer choices.  

Here we propose a new evolutionary protein design algorithm, EvoDesign++, which contains a 

novel force field. The force field is a linear combination of seven weighted energy components:  

 

𝐸 = 𝑤1𝐸𝑅𝑜𝑡𝑃𝑟𝑜𝑓 + 𝑤2𝐸𝐶𝑜𝑒𝑣 + 𝑤3𝑆2 + 𝑤4𝐿𝐽 + 𝑤5𝐸𝑃𝑃𝐼 + 

𝑤6𝐸𝑏𝑒𝑡𝑎𝑆𝑒𝑙𝑓 + 𝑤7𝐸𝑏𝑒𝑡𝑎𝐼𝑛𝑡𝑟𝑎 + 𝑤8𝐸𝑏𝑒𝑡𝑎𝐼𝑛𝑡𝑒𝑟 
(4.1) 
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Each function in the force-field has been designed specifically for EvoDesign++, except for S2 

which has been adapted by the ABACUS [79] energy function. 

4.1.1 Framework for Statistical Potentials 

Assuming a canonical ensemble in thermodynamic equilibrium, each microstate i can be assigned 

a Boltzmann factor: 

 𝑒
−𝐸𝑖
𝑘𝑇  (4.2) 

where E, k, and T, represent the energy of microstate i, the Boltzmann constant, and temperature, 

respectively. The total number of possible microstates Ni that are accessible by the ensemble is 

described by the canonical partition function Z: 

 
𝑍 = ∑ 𝑒

−𝐸𝑛
𝑘𝑇

𝑁

𝑛=1

 
(4.3) 

Thus, we can conveniently assign a probability for each microstate, Pi by taking its corresponding 

Boltzmann factor and dividing it by the partition function. 

 𝑃𝑖 =
𝑒

−𝐸𝑖
𝑘𝑇

𝑍
 (4.4) 

From each microstate probability, we can rearrange the formula to explicitly express its energy in 

the system. 

 
𝐸𝑖 = −𝑘𝑇𝑙𝑛(𝑃𝑖) − ln(𝑍) 

(4.5) 
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After selection of any arbitrary reference microstate Eref, the energetic transformation from the 

reference state to the target state can be represented as ΔE. 

 
𝐸𝑟𝑒𝑓 = −𝑘𝑇𝑙𝑛(𝑃𝑟𝑒𝑓) − ln(𝑍) 

(4.6) 

 
𝛥𝐸𝑟𝑒𝑓→𝑖 = 𝐸𝑖 − 𝐸𝑟𝑒𝑓 = −𝑘𝑇𝑙𝑛 (

𝐸𝑖

𝐸𝑟𝑒𝑓
) 

(4.7) 

Most statistical potentials or statistically effective functions often take this form; however, the 

choice of a reference state is usually non-trivial and can make a considerable difference in the 

energy outcome.  

4.1.2 Challenges of Beta Strand Design 

Predicting beta strand contacts have posed an interesting challenge in the protein-structure 

prediction field [81]. Unlike alpha helices, the hydrogen bonding network found in beta sheets 

have no explicit relationship to the relative sequence locality of the included strands. For instance, 

the backbone of a beta strand on an N-terminus of a protein may hydrogen bond with another 

found on the C-terminus end. Thus, algorithms that attempt to enumerate all possible strand 

contacts in proteins that contain a considerable number of predicted beta strands may prove 

unfeasible. Fortunately, in a fixed-backbone design situation, the strand contacts are apparent in 

the input structure; however, de novo design of beta sheets produces a new set of challenges. The 

major goal of designing beta sheets is to prevent disruption of the beta sheet hydrogen bonding 

network. Slight changes in the amino-acid and rotamer composition can disturb these bonds, 

usually through changes in backbone torsion angles [62]. Exposed beta strands with unfulfilled 

hydrogen bonds confer molecules with a “sticky” property that promotes protein aggregation [82].  
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4.2 Methods 

4.2.1 Evolutionary Chi-1 Rotamer-based profile 

Structural homologs of the user-provided backbone structure are searched in a non-redundant 

monomeric structure database via TM-align [55]. Query-anchored alignments whose TM-score is 

above a selected cutoff are used to generate the multiple sequence-alignment. In the default case, 

a TM-score cutoff of 0.7 or is selected; however, for cases where the number of alignments does 

not successfully reach the threshold, we slowly decrement the cutoff by 0.05 until the number of 

sequences that compose the multiple sequence alignment is sufficient. For EvoDesign++, ten 

sequences are used as a minimum to construct a well-informed profile. These parameters were 

adopted from the parent version and can be further investigated for further tuning. Upon generation 

of the MSA, we convert each sequence to its rotamer-sequence form to generate the rotamer 

multiple sequence alignment (rMSA). Finally, we generate the position specific scoring matrix, or 

profile for the given scaffold. The details of the matrix construction are similar to that performed 

in PSI-BLAST [53]. The probability Q of a rotamer i at position pos is defined by:  

 𝑄𝑝𝑜𝑠,𝑖 =
(𝛼 + 𝑝𝑜𝑏𝑠𝑝𝑜𝑠,𝑖

) + (𝛽 + 𝑝𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑜𝑠,𝑖
)

(𝛼 + 𝛽)
 (4.8) 

Qi is a weighted average of the raw probability and the pseudocount probability, ppseudo, derived 

from a rotamer substitution matrix. Constants α and β represent the relative weighting of the 

probabilities, respectively. Constant α is defined by the unique number of rotamers in each position 

i minus one, and β was set as 5. The pseudocount probability ppseudo is defined by: 

 
𝑝𝑝𝑠𝑢𝑒𝑑𝑜𝑝𝑜𝑠,𝑖

= ∑
𝑝𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑜𝑠,𝑗

𝑃𝑗𝑞𝑖𝑗

55

𝑗=1,𝑖≠𝑗

 
(4.9) 
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where j is the rotamer idx, Pj is the background probability of rotamer j and qij is the observed pair 

probability of i and j inherit in the substitution matrix. Specifically, for ROTSUM, this is defined 

as: 

 
𝑞𝑖𝑗 = 𝑓𝑎𝑠 

(4.10) 

However, for the χ1 rotamer-based profile, we employ the ROTSUM72 matrix to calculate the 

pseudocount. Finally, the position-specific score of the profile ERotProf is defined by the equation: 

 
𝐸𝑅𝑜𝑡𝑃𝑟𝑜𝑓(𝑝𝑜𝑠𝑖) = −ln(

𝑄𝑝𝑜𝑠,𝑖

𝑃𝑖
) 

(4.11) 

The comparison of the canonical pseudocount generation (a) is compared with the ROTSUM-

based approach (b). 

4.2.2 Sequence-based Coevolution profile 

Sequence-based profiles, including PSI-BLAST or similar, also have the potential to effectively 

describe appropriate residue distributions across the design protein. Currently, EvoDesign is 

currently studying the effects of adding PSI-BLAST profiles to augment structure-derived ones. 

In EvoDesign++, however, different information about the protein family is extracted from the 

same matrix. 

Instead of using the PSI-BLAST profile directly, we are most concerned with the generated 

multiple sequence alignment anchored by the input sequence. If the user provides a protein 

structure whose complete protein sequence is known during submission, EvoDesign++ uses it as 

the input for PSI-BLAST. Alternatively, if no sequence information is provided alongside the 

structure, the sequence of the top template hit in the previous scoring function is used as input if 
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the TM-score is greater than or equal to 0.7. If neither criterion is satisfied, this scoring function 

is turned off.  

From the original protein structure query, we determine all residue pairs in the protein. An 

interacting pair is defined by two residues whose Cβ atoms are less than or equal to 8 Ångstroms. 

For the purposes of calculating this distance with no a priori knowledge of sidechain placement, 

we project a pseudo Cβ atom as if each position was mutated to an alanine residue. After all pairs 

are enumerated, we generate a two-dimensional matrix for each pair to describe the propensity of 

two amino-acid types coexisting.  

 
𝐸𝑐𝑜𝑒𝑣 = −𝑘𝑇ln(

𝑝𝑜𝑏𝑠𝑖
, 𝑝𝑜𝑏𝑠𝑗

𝑝𝑏𝑔𝑖
𝑝𝑏𝑔𝑗

) 
(4.12) 

The disadvantage to this scoring function is the lack of structural information presented by 

sequence databases. However, this is somewhat ameliorated by the relative size of the database 

yielding distributions which can effectively provide some information of pertinent interactions 

found throughout a protein family.  

4.2.3 Beta-Topology Statistical Potentials 

4.2.3.1 Construction of Beta Protein Database 

Starting from SCOPe [15] classification of all-beta protein structures, we culled this list to remove 

redundant structures by 70% sequence identity and structures with resolutions ≥ 2.5 Ångstroms 

using the PISCES [68] server. From the remaining single 2,689 chains, 84,520 beta strand-

occupying residues served as a dataset to calculate statistics explained further.  For analyses related 

to this section, we describe the background probability pbg as the probability for a χ1 rotamer in 

this dataset. 
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We adopted the five topological states reported in [83] and summarized in Figure 4.1. Two 

topologies consider a residue flanked by a single parallel (A) or antiparallel (B) neighboring beta 

strand. For the remaining topology types, the target residue is flanked by two neighboring strands 

that are both parallel (C), one parallel and one antiparallel (D), or both antiparallel (E) to the 

direction of the target residue’s strand. 

4.2.3.2 Self-Energy 

First, we considered leveraging the distribution of the χ1 rotamers across the defined topological 

states in this dataset. From previous knowledge of beta sheet propensities, one may expect that 

rotamers belonging to different amino-acid types would reflect observed propensities. 

 
𝐸𝑏𝑒𝑡𝑎_𝑠𝑒𝑙𝑓 = −𝑘𝑇𝑙𝑛 (

𝑝𝑜𝑏𝑠𝑖
|𝑇𝑖 , 𝑆𝑡𝑟𝑃𝑜𝑠𝑖

𝑝𝑏𝑔𝑖

) 
(4.13) 

Symbols Ti and StrPosi represent the beta strand topology type and the relative position on the 

strand (e.g. N- or C-terminus of the strand—See Section 4.3.1.2). The reference state for this 

Figure 4.1. Topology environments for beta sheet-occupying residues. Target design residue 

designated as a blue circle. Five different beta sheet environment types are defined: (A) double 

anti parallel, (B) double parallel, (C) triple antiparallel, (D) triple mixed, (E) triple parallel 
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scoring function was determined as the background probability of a χ1 rotamer across the entire 

PDB. 

4.2.3.3 Intra-Strand Pairwise Energy  

The first type of pairwise interactions considered are those consisting of two rotamers emplaced 

upon the same strand. 

The energy component that describes this type of interaction is of the following form: 

 
𝐸𝑏𝑒𝑡𝑎_𝑖𝑛𝑡𝑟𝑎 = −𝑘𝑇ln(

𝑝𝑜𝑏𝑠𝑖
, 𝑝𝑜𝑏𝑠𝑖+2

|𝑇𝑖

𝑝𝑏𝑔𝑖
𝑝𝑏𝑔𝑗

) 
(4.14) 

The reference energy for a pair-wise χ1 rotamer interaction assumes independent interaction 

described as the product of the self-energies. 

4.2.3.4 Inter-Strand Pairwise Energy  

Next, we also consider pairwise rotamer interactions from different strands but close in spatial 

proximity: 

 
𝐸𝑏𝑒𝑡𝑎_𝑖𝑛𝑡𝑒𝑟 = −𝑘𝑇ln(

𝑝𝑜𝑏𝑠𝑖
, 𝑝𝑜𝑏𝑠𝑗

|𝑇𝑖𝑇𝑗 , 𝑟𝑒𝑙𝑅𝑆𝑀𝑆𝐷

𝑝𝑏𝑔𝑖
𝑝𝑏𝑔𝑗

) 
(4.15) 

This scoring function’s reference state is similar to the aforementioned state; however, both 

rotamers are not required to belong to the same strand type, and the relative orientation of the 

sidechains are considered when looking for similar oriented pairs in the PDB. 
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4.2.3.5 Beta Strand Termini Analysis  

From a design perspective, signaling for beta strand initiation and termination can provide control 

over its length and locality. From the dataset, we calculate the negative log likelihood of each χ1 

rotamer type: 

 
𝑁𝐿𝐿 = −ln(

𝑝𝑜𝑏𝑠𝑖,𝑡𝑒𝑟𝑚

𝑝𝑏𝑔𝑖

) 
(4.16) 

Here, we express this equation as a log likelihood rather than an SEEF for consistency with 

previous studies that express residue propensities in this form. Practically, either form is suitable 

for use in the EvoDesign++ force field. 

4.2.4 Inter-chain Chi-1 Rotamer Interaction Potential 

We derive another SEEF to describe the interaction between dimers at the rotameric level. 

 
𝐸𝑃𝑃𝐼 = −𝑘𝑇𝑙𝑛 (

𝑝𝑜𝑏𝑠𝑖
, 𝑝𝑜𝑏𝑠𝑗

|𝑆𝑆𝑖 , 𝑆𝑆𝑗 , 𝑆𝐴𝑖 , 𝑆𝐴𝑗 , 𝑟𝑒𝑙𝑅𝑀𝑆𝐷

𝑝𝑏𝑔𝑖
𝑝𝑏𝑔𝑗

) 
(4.17) 

4.2.4.1 Dataset  

To study the effects of drawing statistics from interfaces or protein monomers, we construct two 

databases which sample from these environments. The first dataset included rotamer pairs that 

were observed in native dimers. Starting from non-redundant interfaces clustered by PIFACE [84], 

structures whose resolution was < 2.5 Ångstroms were removed. From the resulting 12,799 protein 

interfaces, we considered rotamer pairs whose Cβ (or simulated Cβ) distances were within 8.0 

Ångstroms. 
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4.2.5 Monte Carlo 

4.2.5.1 Uniform Pseudo-Random Number Generation 

In 2011, the C++ standardization committee released a library for generation of pseudo-random 

numbers [85]. Previous uses of C programming language’s rand function were determined to not 

produce a uniform distribution of integers due to smaller entropy in the lower bits returned. 

Currently, the C++ standard random library provides utilities and interfaces to produce a reliably 

uniform series of values (as integer or floating-point representations). Herein, the design pipeline 

that requires pseudo-random number generators uses an engine based on the Mersenne Twister 

algorithm [86]. 

4.2.5.2 Trajectory generation 

Before initialization of the Monte Carlo process, a random χ1 rotamer sequence is generated with 

identical size to the query. For each Monte Carlo step, a candidate sequence is proposed by a χ1 

rotamer mutation at a random position in the sequence. Due to the unequal number of χ1 states 

across amino-acid types, we first randomize the amino acid selection then randomly choose one 

of its rotamer states. Moreover, to reflect the benefits of simulated annealing, the temperature is 

slowly decremented based on an exponential decay function.  

 
𝑇𝑖 = 𝑇0 × 0.9𝑖 

(4.18) 

where i is the iteration number of the Monte Carlo simulation and initial temperature T0 = 150. 

Next, the energy of the candidate sequence is then calculated by the χ1 -dependent force-field and 

compared to the previous accepted sequence. For all cases where the energy E of the candidate 

sequence i is lower than its accepted predecessor (Ei < Ei-1) we accept the mutation. EvoDesign++ 
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employs a Metropolis criterion [36] to occasionally accept mutations whose mutation confers a 

non-significantly greater energy.  

Following 20,000 iterations, SPICKER [87] clusters the final 25% of sequences of the trajectory 

and yields five sequences which represents the cluster centers of the largest five clusters. 

Alternatively, lowest energy sequences determined by the inherit force field are also reported by 

EvoDesign++. The advantages of using sequences from either approach have yet to be fully 

investigated with wetlab experiences for EvoDesign++ and its predecessor. 

4.2.6 Rotamer Library 

Although a full rotamer library is not theoretically required for this design algorithm, Van der Waal 

interactions complement the statistical functions well in creating a well-packed protein core. The 

size of the library should be seriously considered. One with low number of entries will provide 

sufficient coverage of rotamers at each position; however, the accuracy to represent the actual 

protein’s sidechain’s configuration may not be satisfactory. The converse is true when the number 

of rotamers in the library are many (typically in the tens of thousands). To address which sidechain 

orientations are significantly different from others, a SPICKER-based clustering approach of 

sidechains from the PDB is proposed.  

4.2.7 Energy Function Validation and Weight Training by Native Amino Acid Recovery 

A well-trained function should discriminate native-like sequences from random. Thus, we utilize 

the following objective function to tune various parameters and weights of our force field. We 

maximize this function which describes the probability of the native amino-acid p(aanat) seen when 

mutation the residue to the 19 other amino acid types [33]:  
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𝑃(𝑎𝑎𝑛𝑎𝑡) =

exp(−𝐸(𝑎𝑎𝑛𝑎𝑡))

∑ exp(−𝐸(𝑎𝑎𝑖))
20
𝑖

 
(4.19) 

In theory, if only the native amino-acid type were to perfectly occupy the top rank across all 

proteins’ positions, the design function would return naturally-found sequences; however, in 

practice, this hasn’t been observed. 

4.2.8 Structural Predictions of Designs 

Tertiary structure prediction of designed sequences served as an in-silica method to validate the 

efficacy of the design algorithm. Moderate use of evolution techniques during the design procedure 

led the decision to utilize ab initio structure prediction methods such as QUARK [88] over 

template-based ones such as I-TASSER [40]. To further reduce structural bias of template models, 

all structure templates greater than 30% global sequence identity to the designed sequence were 

removed before running QUARK. For all predicted models shown in this chapter, the refined 

model of the largest cluster center is chosen. 
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4.3 Results 

4.3.1 Beta Statistical Potentials 

4.3.1.1 Self-Energy Analysis 

 

Linglin Yu et al. illustrated that across all topology types, the OPUS-Beta self-packing energy for 

all residues exhibit the same pattern. The general trend shown by OPUS-Beta is the relative 

propensity of amino-acid types in beta strands. According to their functions, hydrophobic residues 

(valine, leucine, and isoleucine) are preferred across all beta sheet types. There are major 

implications with these results. First, the beta strand contact type is relatively independent of the 

amino acid type composition in the strands, and the strand packing is only influenced by backbone 

hydrogen bonding and/or external forces. This also implies that in a protein design situation, the 

selection of an amino-acid type in a beta strand should be independent of the strand’s surrounding 

environment with regards to its beta sheet configuration. Results shown in this study, however, 

Figure 4.2. Negative log-likelihood of chi-1 rotamers on beta strand topology types. The negative 

log-likelihood (NLL) calculated by Eqn 4.16 are determined for the 55 chi-1 rotamers on an all-

beta protein dataset. 
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exhibit a stark contrast to these implications. Valine chi-1 rotamer class 3 (VAL3) are preferred in 

triple parallel beta sheets while generally disfavored in triple anti parallel beta sheets.  

4.3.1.2 Beta Strand Cap Analysis 

We also investigated the χ1 rotamers’ propensity to occupy the N- and C-terminal caps of beta 

strands. Previous studies examined the propensities of amino acid types [89] on beta strand termini. 

FarzardFard et al. performed the analysis on a dataset that wasn’t exclusively all-beta protein 

structures. Figure 4.3 shows similar analysis but performed on the beta-protein dataset described 

earlier. Both results agree that the major beta strand terminators are aspartic acid, asparagine, and 

proline. However, also suggested by this figure, beta sheet initiators are often glycine and charged 

residues. Figures 4.4 and 4.5 show the negative log-likelihood distribution when the amino acids 

are categorized in their respective χ1 rotamer type. Interestingly, different observations which seem 

to contradict previous results. After the disambiguation, there is a strong preference for charged 

residues of class 3 (e.g. ASP3, GLN3, and LYS3) to occupy the N-terminus of beta strands while, 

generally, other classes of the same amino acid type plus all proline rotamers are disfavored here.  
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For C-terminus ends of beta strands, nearly the opposite trend is observed. Χ1 rotamer classes 1 

and 2 of asparagine and aspartate and all proline rotamers primarily dominate the population of C-

terminus occupying χ1 rotamers. While aspartate and asparagine consist of similar 

phyiochememical properties as their glutamate/glutamine counterparts, neither glutamine nor 

glutamate are preferred generally for the C-terminus ends. A reason for this phenomenon, 

suggested by FarzardFard et al., was due to glutamate’s longer sidechain (additional methylene), 

specific hydrogen-bonding patterns were not as readily available compared to aspartate. 

 

Figure 4.3. Amino acid propensity for beta strand initiation (N-terminus position of beta strand) 

and beta strand termination (C-terminus position of beta strand).  
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Figure 4.4. Chi-1 angle propensity for beta strand initiation (N-terminus position of beta strand)  

Figure 4.5. Chi-1 angle propensity for beta strand termination (C-terminus position of beta strand). 
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We illustrate the χ1 rotamer dependence of beta strand termination in Figure 4.6. In this example, 

we specifically analyze a strand-terminating aspartate’s hydrogen bonding patterns. The left image 

shows two hydrogen bonding instances (H-bond distances: 2.9Å and 3.1Å) involving the 

sidechain’s anionic oxygen atom and two backbone nitrogen atoms. These types of interactions 

could be crucial in close positioning the subsequent strand. Rotating the χ1 dihedral to -60°, which 

conforms to a class 3 aspartate rotamer state (ASP3; right image), results in a disruption of these 

bonds (new distances: 7.4Å and 6.4Å, respectively). Although the frequency ratio of ASP3 to 

ASP1 in all beta strands are 5:1, ASP3 rotamers are rarely seen in the strand-terminating position 

compared to ASP1 and ASP2. 

 

 

Figure 4.6. Example of hydrogen bonding patterns of ASP1 versus ASP3 at the beta strand-

terminating position (PDBID: 1a1xA; D24).  
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4.3.2 Design Case Studies 

4.3.2.1 Design of Ubiquitin Domain 

Ubiquitin offers a convenient test target for computational de novo design. Especially from an 

evolutionary perspective, there are a vast number of homologs, both close and diverse, that can be 

used as a quality set of templates for multiple sequence alignment and profile construction. PDB 

entry 1UBQ:chain A is a 76-mer protein with a near 50/50 composition of alpha helices and beta-

sheet residues. 

The crystal structure of wildtype ubiquitin (cyan), the QUARK-predicted structure of a designed 

sequence (green), and their TM-align superposition, are shown in Figure 4.7. Wildtype and 

designed ubiquitin share a sequence identity of 42% and a sequence similarity of 64.5% as 

determined by EMBOSS [90]. The structural similarity between the crystal structure and the 

QUARK-predicted model share a TM-score of 0.87. These findings suggest that the folding 

patterns are extremely similar. To further support this fact, we performed structure modeling on 

Figure 4.7. Structural comparison of native and designed ubiquitin (1ubqA).  Crystal structure of 

ubiquitin (cyan), QUARK-predicted model of design generated by EvoDesign++’s Rotamer 

Profile term only (green), and the pair superimposed by TM-align (rightmost). Wildtype and 

design NW-align sequence alignments are shown below the structures. 
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the wildtype 1ubqA sequence and compared the result to its crystal structure counterpart. The TM-

score for the structure pair was 0.88; this suggests that the structure of the design is well-predicted 

and could fold identically to the crystal structure, considering the model prediction error. 

4.3.2.2 Design of PDZ Domain 

 

The crystal structure of wildtype PDZ domain, the QUARK-predicted structure of a designed 

sequence, and their TM-align superposition, are shown in Figure 4.8. The sequence identity and 

sequence similarity between wildtype PDZ and its design are 32.0% and 54.7%, respectively. 

Compared to ubiquitin, PDZ’s fraction of beta sheet-occupying residues are higher. Initial attempts 

to predict the model proved difficult. Removal of templates over 30% sequence identity for the 

fragment generation in QUARK led to a poor structural alignment against the wildtype PDZ 

domain (TM-score 0.31). Using I-TASSER to predict its model allowing the full template library, 

Figure 4.8. Structural comparison of native and designed PDZ domain (1obyA).  Crystal structure 

of PDZ domain (cyan), I-TASSER-predicted model of design generated by EvoDesign++’s full 

monomer forcefield (green), and the pair superimposed by TM-align (rightmost). Wildtype and 

design NW-align sequence alignments are shown below the structures. 
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however, yielded an extremely strong structural similarity (TM-score 0.92) even with a low 

sequence identity. 

4.3.2.3 Design of Cas9 Protein Inhibitor AcrIIA4  

Recently, a Cas9 protein inhibitor, AcrIIA4, was discovered and crystallized [91]. From simple 

structural analysis comparing the structure across PDB70, only one structure (PDBID) was found 

whose TM-score was above 0.7. Several other templates shared a TM-score of slightly above 0.5. 

The resulting multiple sequence alignment, therefore, could not serve as a reliable component to 

design the inhibitor. However, designed sequences using the full force field often yielded 

sequences with sequence identity slightly higher than 30%.  

The crystal structure of wildtype AcrII4A inhibitor, the QUARK-predicted structure of a designed 

sequence, and their TM-align superposition, are shown in Figure 4.9. Although the sequence 

identity of the two protein sequences are 21%, they share a convincing structure similarity with a 

Figure 4.9. Structural comparison of native and designed AcrII4A domain (5VW1B).  Crystal 

structure of PDZ domain (cyan), QUARK-predicted model of design generated by 

EvoDesign++’s full monomer forcefield (green), and the pair superimposed by TM-align 

(rightmost). Wildtype and design NW-align sequence alignments are shown below the structures. 
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TM-score of 0.64. The sequence similarity, as determined by EMBOSS, is approximately 48%. A 

large recovery of the wildtype’s sidechain properties may ensure to conserve specific fold 

requirements. While all alpha helices are correctly accounted for and predicted, two of the three 

beta strands were predicted by QUARK. However, this phenomenon could be due to limitations 

of ab-initio prediction programs and not due to design issues. In the design’s predicted structure, 

the beta strand nearest to the c-terminus is represented as coil; however, the position of this coil 

strand is nearly within hydrogen-bond range of the second beta strand. Also, many of the residues 

in the AcrII4A interface are generally hydrophilic; however, in attempts to design new residues on 

the inhibitor’s interface, most of the residues selected by EvoDesign++ were hydrophobic. This is 

likely due to EPPI trained on monomeric rotamer interactions which primarily occur hydrophobic 

environments. 

4.4 Discussion 

Here, we developed an evolutionary protein design algorithm, EvoDesign++. Although the general 

evolutionary approach to protein design has been adopted by its predecessor algorithm, EvoDesign 

[92], this pipeline includes a novel set of statistical effective energy functions and structure-based 

scoring matrices for purposes of computational protein design with a focus of generating native-

like beta sheets. The EvoDesign++ force field is a linear combination of seven energy function 

components plus an optional χ1 rotamer-based energy function for protein interface design. In this 

chapter, we mainly focus on the analysis of our beta sheet-related energy functions and its ability 

to detect appropriate rotamers under different beta sheet environments. Performing single site 

native amino acid recovery (outlined by Eqn. 4.19) on a small dataset of all-beta proteins, the 

native residues were identified, on average, in the top 5 out of 20 different amino acids. Moreover, 

the statistical potentials proposed treat strand positions specially. From structural analysis of beta 
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strand N- and C-terminus caps, we are able to identify some rotameric propensities for these beta 

strand locations that amino acid distributions could not readily detect. Moreover, we also showed 

exemplary easy, medium, and hard design targets for the algorithm. While these designs consist 

of relatively low sequence identities (~30%) compared to their input structure protein scaffold, 

they were readily foldable by protein structure prediction methods and their corresponding the 

TM-scores  (>0.6 for all cases)  suggest that the design model structures are evolutionarily related 

[29]. The EvoDesign++ protein design web-server is freely available online for academic use at 

https://zhanglab.ccmb.med.umich.edu/EvoDesign++/. 
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Chapter 5: Conclusions 

5.1 Overall Conclusions 

One central problem of structural biology is the prediction a protein’s structure and function [10]. 

Currently, we are equipped with over 114 million sequences in the UniProt database [3], but 

structural entries lags behind by over three orders of magnitude [9, 10]. With an ever-increasing 

focus on developing therapeutics which targets proteins within biological pathways and 

elucidating pathways and protein-protein interaction networks, obtaining as much structural 

information as possible is crucial for medicinal progress and our fundamental understanding of 

biochemistry. Recently, many advancements have been made in protein structure prediction and 

these improvements are biannually assessed by the structural biology community [93]. Template-

based modelling proves as an effective method to expose hidden structural information encoded 

in the protein sequence [40]. A variety of different fold recognition programs [56, 72, 73] often 

extract information regarding possible structural elements of the protein and use that information 

to find similar folds in the PDB [16]. In this study, we propose the use of χ1 rotamer information 

as a method for fold recognition. From our findings in Chapter 2, we observed χ1 rotamer 

substitutions across structures with similar fold, determined by TM-align [55]. Interestingly, 

rotamer classes are typically more conserved than rotamer mutations within the same amino-acid 

types (although there are some variable cases especially with amino acid types that are highly 
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solvent exposed). Typically, when sequence alignments are analyzed, we often cognitively 

imagine amino-acid mutation events without regard for the implicit structural information for each 

position. We also observe that rotamer-based substitution matrices are more sensitive in 

identifying structurally similar folds with low sequence identity than traditional substitution 

matrices [18]. We thus propose the possibility that fold recognitions programs to include χ1 rotamer 

structure as a criteria for sequence-structure alignment. 

Following backbone modelling in protein structure prediction, sidechain packing algorithms [65, 

66] are often employed to guide the construction of rotamers on the modelled backbone. In Chapter 

3, we observe that our proposed sequence-fragment based approach to χ1 rotamer prediction 

outperforms conventional methods that require a backbone structure [65] in accurate prediction in 

χ1 rotamer classification and real-value torsion angle. Our approach is structure-independent; the 

sequence information is the only input required to predict a χ1 rotamer sequence. A protein 

threading program which includes profile-profile and secondary structure alignments [73] is also 

employed to assist Rot1Pred in generation of a rotamer probability matrix to inform the prediction. 

In support of our argument for considering χ1 rotamer types as evolutionary independent entities, 

we explore their statistical relationship with various protein environments. Here, we 

mathematically represent these statistical relationships in the form of statistical effective energy 

functions (SEEF) [47]. These types of models are often desired in force fields used for molecular 

modeling and design [94]. In Chapter 4, we explore these functions and their performance in 

designing native-like protein molecules. Here we observed that our rotamer-based SEEFs are 

sensitive to the preference of the χ1 rotamer’s preference to occupy particular structural 

environments that amino acid-based potentials will miss. 
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5.2 Future Directions 

5.2.1 Backbone Structural Flavors in ROTSUM Matrices 

Currently the ROTSUM matrix provides a separation of amino acid types into their respective χ1 

classifications. Theoretically, further separation is possible with additional criteria. Secondary 

structure (e.g. alpha, beta, and coil) and solvent accessibility (e.g. core, interface, solvent-exposed) 

classifications are achievable; however two concerns should be addressed. The lack of statistical 

data to populate these different subclasses (at least 165 total vs 20 or 55). Although pseudocounts 

can be considered, the manner in which they are derived should be carefully decided. Also, 

previous studies [30] show a correlation between χ1 rotamer type and the secondary structure 

element for the given position. Thus, there may exist some redundancy in the matrix. Similar 

rationales can be applied for amino-acid types and their observed frequency in different levels of 

solvent exposure. 

5.2.2 Robust Chi-1 Rotamer-based Fold Recognition Algorithm 

Preliminary examples in Chapter 2 illustrate that simple alignments guided by ROTSUM can 

recognize folds which BLOSUM62 misses; however, for present technology, a more sophisticated 

algorithm may be required, especially if it will contribute to the performance of meta-threading 

pipelines such as LOMETS [73]. One proposal is to extend the rotamer profile-rotamer profile 

alignment algorithm. Since sequences used to populate the profile requires rotamer type 

information, the PDB could be used as a source. However, data may not be sufficient for many 

templates. Alternatively an alternative database can be constructed where sequences’ χ1 rotamers 

are predicted and the profile can thus be constructed from the predicted rotamer sequences.  
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5.2.3 Improvement of Rot1Pred Algorithm 

Initial attempts at predicting χ1 rotamer type for a position in an amino acid sequences using 

machine learning approaches were made although unsuccessful. Even employing techniques 

including equal sampling and regularization, did not yield results as effective as the method 

explained in Chapter 3. Perhaps more robust and sophisticated deep-learning approach yields 

significantly higher accuracy. Although not detailed in this dissertation, features used for machine 

learning included PSI-BLAST profiles [53], predicted secondary structure, solvent accessibility, 

and backbone torsion angles. Other types of features including Shannon entropy and predicted 

contacts could also be explored. 

5.2.4 EvoDesign++ Protein-Protein Interaction 

Computationally designing an effective protein interface are often assisted with experimental 

screening to determine crucial, or “hotspot”, residues regarding the protein’s function. Some 

approaches will often take cycles of computational design and experiments to optimize a binding 

site [95]. A force-field that can identity all, or most, hotspots and their relative contributions to a 

target objective function (e.g. perhaps in the form of binding affinity) would be ideal. Although 

the protein interface library lacks enough data to inform an effective probability distribution for 

rotamer interactions, an atomic statistical effective energy function derived and designed 

specifically for protein interface design may prove useful.  

5.3 Final Thoughts 

I am greatly optimistic for the future of computational structural biology. During the duration of 

these studies, we have witnessed a steady growth in the protein database (over 40,000 sequences 

have been submitted during my graduate studies at the University of Michigan). The explosion of 
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sequence entries have made statistical analysis of χ1 rotamers, and thus this dissertation, possible. 

As we look forward to the future, more diverse and high resolution structure submissions will 

better inform our mathematical models to accurately design proteins and predict protein structure 

and function. From the observations and results obtained in this study, it is suggested that statistics 

based on rotamers should be preferred over ones that describe amino acid-level behavior, 

especially if structural information of your target’s sidechain is already known. This includes 

amino acid substitution matrices that guide scoring functions. 

Naturally, given the studies performed here, one could begin to analyze the effect of including χ2 

rotamer information. Fortunately, many χ2 angles exhibit rotameric properties and can be easily 

separated into distinct states. However, assuming the chi-2 angle also displays three discrete states, 

a total of nine possible χ1 – χ2 rotamer combinations exist. Describing each state accurately depends 

on whether if the data is sufficient and also entropic effects that influence how often χ2 rotamers 

mutate in nature. Nevertheless, the community may soon experience enough data to realize this 

idea with the ever-growing PDB. Outside of rotamer-related studies, many other sub-fields of 

computational structural biology also rely on a diverse and vast structure repository. As the rate of 

the PDB growth advances, so does the birthrate of novel subfields and ideas that impact human 

health and our fundamental understanding of biology and biochemistry. Looking forward, it seems 

to be only a matter of time until computational structural biology and biology-related data science 

will “offer fantastic dreams of other worlds just beyond our reach”—Fritz Lang.  
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APPENDICES 

APPENDIX A 

3AA+classα 1AA+classβ RotCharγ  3AA+classα 1AA+classβ RotCharγ 

ALA1 A1 A  ASN1 N1 d 

CYS1 C1 B  ASN2 N2 e 

CYS2 C2 C  ASN3 N3 f 

CYS3 C3 D  PRO1 P1 g 

ASP1 D1 E  PRO2 P2 h 

ASP2 D2 F  GLN1 Q1 i 

ASP3 D3 G  GLN2 Q2 j 

GLU1 E1 H  GLN3 Q3 k 

GLU2 E2 I  ARG1 R1 l 

GLU3 E3 J  ARG2 R2 m 

PHE1 F1 K  ARG3 R3 n 

PHE2 F2 L  SER1 S1 o 

PHE3 F3 M  SER2 S2 p 

GLY1 G1 N  SER3 S3 q 

HIS1 H1 O  THR1 T1 r 

HIS2 H2 P  THR2 T2 s 

HIS3 H3 Q  THR3 T3 t 

ILE1 I1 R  VAL1 V1 u 

ILE2 I2 S  VAL2 V2 v 

ILE3 I3 T  VAL3 V3 w 

LYS1 K1 U  TRP1 W1 x 

LYS2 K2 V  TRP2 W2 y 

LYS3 K3 W  TRP3 W3 z 

LEU1 L1 X  TYR1 Y1 0 

LEU2 L2 Y  TYR2 Y2 1 

LEU3 L3 Z  TYR3 Y3 2 

MET1 M1 a     

MET2 M2 b     

MET3 M3 c     
Appendix Table A. Chi Rotamer Mappings 

α : Three letter amino acid type representation + chi-1 rotamer class 

β : One letter amino acid type representation + chi-1 rotamer class 

γ : Single-byte representation of chi-1 rotamer 
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Appendix B 

4uucA 4n67A 3zdsA 1suuA 3gt5A 4xzfA 

7odcA 4j27A 2pefA 4p3vA 4zv5A 5enqA 

1io7A 3ub6A 3gr4A 4iwbA 3q1xA 4iciA 

2qudA 4exkA 3h36A 4x2pA 1pm4A 4yusA 

4lx3A 4eetB 2yxnA 3u9qA 4ybrA 3t0hA 

1wbaA 1kmvA 5bvuA 3mz2A 3e05A 1dz3A 

1ihjA 2zb4A 5idqA 2xkiA 1tuvA 3mmyA 

3t47A 4qkwA 3l8dA 2cdcA 2petA 3ixlA 

1d2sA 4x9kA 5dm2A 4yg0A 3c6aA 5iqnA 

3zsjA 4wriA 3l4eA 1w2wB 1lucA 1yb3A 

4i4tA 1mj5A 4kruA 4a0dA 3dwgC 4mxtA 

3l1nA 5hmtA 4cnnA 4ne3B 3isaA 4jgiA 

4apxB 3znvA 4icvA 4lm8A 1g8kA 2qzuA 

4e0aA 3wa2X 3vgzA 1viaA 1k5nA 3kf6B 

3e2qA 2pr7A 4ijnA 1tkeA 4tx5A 1iujA 

4onwA 1p9hA 4c3sA 3bonA 3x38A 1o7iA 

5it3A 5a35A 4m0nA 5cxxA 5ivkA 2vzcA 

2aefA 5i32A 5hb7A 4cj0A 3qufA 2q40A 

3tioA 4n4uA 1z9lA 2rk3A 2fnuA 4zv0A 

3bsoA 4txwA 3hkwA 5cfaA 2gdmA 1jf8A 

3m0zA 3mqqA 4pwoA 4zx2A 3gr3A 2x46A 

5c2nA 4jkzA 3t8jA 4n0kA 3powA 3w20A 

2gpiA 2rb7A 4f01A 4uj7A 1d8wA 2qrlA 

3ha2A 4trkA 1xkpC 4ke2A 4h08A 3eipA 

2wz1A 4yucA 2oemA 4xraA 2pq7A 3iq0A 

3ak8A 2gb4A 2a14A 3e23A 4rl3A 4xfmA 

3ii7A 4yleA 4q3kA 3lwcA 3n3mA 3ly0A 

3gydA 2r2dA 3h7hA 2pv2A 2yjgA 4kk7A 

5dofA 4pkmA 2iqyA 3rkgA 1sx5A 4pdyA 

4zldA 3d3zA 4p3hA 4v3lC 4nbpA 3dfrA 

2x5pA 5cajA 5aogA 2ah5A 5f1sA 4p5nA 

3ebtA 2bsyA 3cc8A 4z39A 3r8yA 1o98A 

2waoA 3hnyM 2qsaA 4jjaA 4h5iA 3webA 

4g6tB 1qftA 2qguA 1oygA 3go2A 4jaqA 

2nwrA 1eaqA 4hz2A 2eabA 4inkA 4x8qA 

4uc1A 2iruA 5jh8A 3nd1A 4bqyA 4eunA 

3zg9A 2o1qA 4ntkA 3qzxA 4uqwA 4f0wA 

4hvtA 1lfkA 4zh5A 4osnA 2genA 1kq1A 

5it6A 1xakA 2hlyA 3gfaA 1agjA 3sjmA 

1jh6A 3pa6A 4bpsA 3oqpA 2bfeA 1qsaA 

2olrA 2uwaA 5a61A 3q23A 4d05A 3u9jA 

1t9hA 3sqzA 4c2vC 2id3A 2ejxA 4ku0D 

4q8rA 4k37A 5cegA 1iktA 4jndA 3ctzA 

3wydA 3fdhA 1xttA 4plzA 1oruA 4od6A 

1tifA 3fssA 4q7qA 3l32A 4jp0A 3hhyA 

3c4sA 5iu1A 3bmzA 4bqhA 3rpwA 3bhnA 

2cviA 3i45A 4wu0A 2anxA 4jduA 5elbA 

3lxpA 4v0hA 1qhqA 4v1kA 3f4mA 2j8bA 

1yd9A 1jcdA 3zjaA 3laeA 5b2pA 1nszA 

1p0hA 4hatB 4oh7A 2xnqA 4s12A 5fpzA 

Appendix Table B: Rot1Pred Dataset 
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Appendix C 

 

 

Appendix Table C. COLLMX95 Matrix. 


