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ABSTRACT

Modeling and estimating interactions amongst multiple groups of variables is an impor-

tant task for understanding the structure of complex systems. In particular, for time series,

the interdependence structure can be either on contemporaneous correlations, or on lead-lag

cross-relations. Both structures are of interest in diverse applications in economics, finance,

functional genomics, neuroscience and control theory.

This thesis addresses a number of topics related to such interdependence structures, un-

der high-dimensional scaling, namely when the number of time series under consideration

becomes larger than the number of available time points. The first part of the thesis considers

modeling and estimating interactions between observable blocks of variables, as well as their

respective within-block dependence structures, in high-dimensional independent and iden-

tically distributed (iid), as well as temporal dependent settings. In the iid case, we model

the blocks of variables of interest through a multi-layered Gaussian graphical model, and

introduce a penalized maximum likelihood (MLE) procedure that provides both statistical

and algorithmic guarantees, leveraging the structure of the log-likelihood function and its

bi-convex nature. For the case where the data exhibit temporal dependence, the blocks are

modeled through a stable Vector Autoregressive (VAR) system with group Granger-causal

ordering. Building upon the work for the iid case, we estimate their lead-lag relationships,

as well as the contemporaneous dependence structure using a penalized MLE criterion, un-

der different structural assumptions of the transition matrices — sparse or low rank. We

establish theoretical properties for the estimates analogous to the iid case, modulo an ad-

ditional cost due to the temporal dependence in the data. Moreover, we devise a testing

procedure for the presence of such group Granger causality, tailoring it to the posited struc-

tural assumptions on the transition matrix that couples the blocks. The devised estimation

and testing procedure are assessed via numerical experiments, and further illustrated on a

real data example from economics that examines the impact of the stock market on major

macroeconomic indicators.

However, large stable VAR systems have the inherent limitation that the transition matrix

xii



needs to be very sparse or has small averaged magnitude to satisfy the stationary constraint.

This further raises the issue of whether VAR model is the appropriate modeling framework

for ultra large number of time series. To this end, we consider systems of time series that can

be summarized by a small set of latent factors. In the second part of this thesis, we focus

on estimating the interaction between an observable process and a dynamically evolving

latent factor process. Specifically, we extend the popular in applied economics work, factor-

augmented vector autoregressive (FAVAR) model to high dimensions and study estimation

of the model parameters by formulating an optimization problem that involves a low-rank-

plus-sparse type decomposition. Moreover, we investigate model identifiability issues and

establish theoretical properties for the proposed estimator. The performance of the proposed

method is evaluated through synthetic data, and the model is further illustrated on an

economic data set that examines interlinkages between commodity prices and macroeconomic

variables. Along a slightly different line of inquiry where the contemporaneous dependence

is of prime interest rather than lead-lag relationships, we extend the approximate factor

model where correlations amongst the idiosyncratic (error) component are assumed to be

weak, to the case where moderate-to-strong correlations are allowed. Using a formulation

similar to the FAVAR problem, we propose an algorithm to estimate the model parameters

and investigate its statistical and algorithmic properties. The model and the quality of the

resulting estimates are illustrated on log-returns of stock prices of large financial institutions

from the banking, brokers & dealers and insurance sectors.
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CHAPTER I

Introduction

Technological advances enable the collection of large number of time series that in turn

creates a need for novel modeling, inference and forecasting methods. Of particular interest is

how such a large number of time series interact with each other, either contemporaneously or

across time or both. There are two popular paradigms in modeling a large panel of stationary

time series: (i) vector autoregressions (VAR) that examine the lead-lag relationships of the

time series under consideration, by modeling the linear dependence of current values of each

time series on past values of itself as well as other time series; and (ii) dynamic factor models

(DFM), which primarily investigate the contemporaneous correlation structure amongst the

time series of interest.

This thesis focuses on developing modeling frameworks for systems involving multiple

interacting blocks of time series. In addition, computationally efficient algorithms are intro-

duced to obtain estimates of the model parameters, and their statistical properties estab-

lished under high-dimensional scaling. Within the VAR framework, we specifically consider

a special instance of VAR models, where blocks of time series are naturally partitioned into

interacting blocks with Granger-causal ordering; within the DFM framework, we extend the

current approximate factor models framework in which idiosyncratic components are required

to be weakly correlated to a new modeling regime where strong correlations are permitted.

Further, we consider the estimation of high-dimensional factor-augmented vector regressive

(FAVAR) models, which can be viewed as the bridge connecting the two paradigms, while

partially addressing some of their respective limitations.

1.1 Existing Work and Challenges.

VAR models constitute a popular framework for modeling multiple time series due to

their analytical tractability. Further, they have been the subject of extensive theoretical and

empirical work. Ever since their introduction, VAR models have been used in various areas
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such as macroeconomic modeling [? ], finance [? ], control theory [? ], and more recently

neuroscience [? ]. In particular, VAR models represent a standard tool for macroeconomic

forecasting and investigating the interdependences of multiple macro-economic indicators,

while further allowing policy makers to examine the effect of structural shocks through

impulse response function analysis. However, since the number of parameters in VAR models

grows quadratically with the number of time series under study and the issue is additionally

compounded with the number of lags involved, the actual size (number of time series) of the

VAR system is typically limited, due to sample size considerations.

Recent work, through imposing (structured) sparsity constraints on the model parame-

ters, has enabled the estimation of large scale VAR models even in the presence of relatively

small sample sizes. Such sparse VAR models have been employed in diverse application do-

mains; for example, ? ] examined connectivity patterns across brain regions, while ? ? ] the

interactions amongst genes. Further, theoretical properties of sparse VAR model parameter

estimates were also established; specifically, ? ] examined Lasso penalized Gaussian VAR

models and proved consistency results, while providing technical tools useful for analysis of

sparse models involving temporally dependent data.

In contrast to VAR models that focus on temporal cross-correlations across time series,

DFMs investigate contemporaneous relationships by aggregating their cross-correlation in-

formation into a few latent factors that exhibit temporal dynamics themselves, and express

each variable as a linear combination of such factors plus an idiosyncratic component. Such

models have been widely used in reducing the dimension of large datasets; in particular, in

the field of economic forecasting [? ] and financial econometrics [? ]. By focusing on the

factor model equation which decomposes the large number of series into factors, it results

in a factor model, whose properties have been thoroughly investigated in ? ] under the

assumption that the correlations amongst the idiosyncratic components are weak.

Factor-augmented vector autoregressive models (FAVAR), initially proposed by ? ], as a

combination of the above two paradigms provides a middle ground in terms of modeling. On

one hand, it summarizes the information of a large panel of times series into latent factors

through the calibration equation which resembles the information aggregation within the

DFM scheme; on the other, it further investigates the temporal effect of the latent factors

on another set of core variables of interest by jointly modeling the two as a VAR system.

The framework has been employed in a large body of empirical work [e.g. ? ? ], and its

estimation and theoretical properties in the low-dimensional setting have been investigated

by ? ].

Despite the long history and diverse application of the aforementioned models, a consid-

erable number of interesting questions and challenges still remain regarding their statistical
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properties under high-dimensional scaling, with selected ones addressed in this thesis. First,

within the VAR modeling framework, estimation and inference of a VAR system comprising

of blocks with Granger-causal ordering, under structural assumptions on the parameters.

The concept of Granger causality [? ] and its related testing problems have been thoroughly

studied in low-dimensional settings, yet is missing in the high-dimensional time series con-

text. Second, within the DFM framework, the relaxation of the weakly correlated assumption

amongst the idiosyncratic components. In particular, due to its theoretically appealing prop-

erties in establishing consistency results for the estimates, the weakly correlated assumption

is prevalent in the literature analyzing such models, yet is excessively stringent and often

fails to hold in real applications. In fact, practitioners have detected such issues [e.g., ? ? ],

yet failed to address them in a principled way due to the lack of appropriate technical tools.

Finally, comes the extension of FAVAR models to the high-dimensional setting. Currently

the investigation of such models lies solely in the low-dimensional context with the core

block of interest consisting of only a few variables. There is a need to extend them to the

high-dimensional setting, allowing the inclusion of a larger number of time series, so that

their bridging role between VAR and DFM can be fully explored and utilized.

1.2 Thesis Contributions.

This thesis makes the following contributions to the existing literature. As a general algo-

rithmic and theoretical development, we consider the estimation of both the regression and

error covariance parameters for a multivariate regression model through penalized maximum

likelihood. We establish the algorithmic convergence of the optimization procedure and the

consistency properties of the estimators, leveraging the bi-convexity of the objective function

and appropriately bounding the estimation error through all iterations of the algorithm. The

key results and employed proof techniques are broadly applicable to other settings, where

the objective function of the underlying statistical estimation problem is bi-convex.

Within the high-dimensional VAR modeling paradigm, we consider the VAR-X model

(X standing for the inclusion of exogenous variables), with the two blocks (endogenous and

exogenous variables) being components of a joint VAR system with Granger-causal order-

ing. Specifically, we focus on the estimation of model parameters under certain structural

assumptions (e.g. sparsity, low-rankness) and provide estimators with statistical guaran-

tees. Moreover, we devise a testing procedure that addresses the hypothesis testing problem

with the null hypothesis being that a group of variables does not collectively Granger-cause

another, while taking into consideration the structural characteristics of the parameter in

question under the alternative. Since both the estimation and the testing procedure are
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for time series data, the effect of temporal dependence introduces a number of technical

challenges that need to be accounted for and properly handled.

We extend the FAVAR model to the high-dimensional setting and enable the estimation

of its model parameters, so that a much larger set of variables can be studied. Since all

of the currently existing model identification constraints that are feasible under the low-

dimensional setting fail to remain effective when we deal with a high-dimensional setting,

we propose a novel model identification scheme applicable to that setting. Moreover, it can

be seamlessly incorporated in the optimization problem, that yields estimators with good

statistical properties. Further, we establish a high-probability error bound of the estimated

transition matrix of the underlying VAR model, when one block of variables (the factors)

is contaminated with non-random errors, due to it being estimated from other time series

data.

Finally for the DFM paradigm, it is worth pointing out that the current framework

already accommodates a large number of time series, since to obtain consistent estimates for

the factors the size of the panel of variables is required to grow to infinity [? ]. However as

previously mentioned, all current results rely on the assumption that the correlation among

the idiosyncratic components is weak, but often fails to hold in practice. Therefore, we relax

the weakly correlated assumption for idiosyncratic components in approximate factor models

and propose a new model which allows for moderate-to-strong correlations. Specifically,

without deviating too much from the grand DFM paradigm, the proposed model provides a

principled way of dealing with datasets with such features, while having sufficient modeling

and theoretical justifications. Building upon the formulation in estimating high-dimensional

FAVAR models, we consider an optimization problem which is further convexified so that the

corresponding alternating minimization algorithm has convergence guarantees; meanwhile,

its global optimizer, which corresponds to the model parameter estimates, possesses certain

statistical guarantees.

For all proposed formulations and corresponding estimators in the above settings, we also

consider their empirical implementation issues and devise computationally efficient proce-

dures to obtain the estimates. Further, these models are used in several real applications

involving financial and economic data, and yield interpretable results that uncover some of

the interactions among the variables of interest.

1.3 Organization of the Thesis.

The main body of this thesis consists of four chapters (Chapters II to V), with each

addressing the issues outlined above sequentially, and is concluded with Chapter VI.
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In Chapter II, through a multi-layered Gaussian graphical model, we consider the estima-

tion of inter- and intra- block structure under the setting where the data are independently

identically distributed (iid). The proposed formulation is based on penalized maximum like-

lihood, and we consider a block-coordinate descent algorithm to obtain an estimate that

is guaranteed to be a global optimizer and has statistical guarantees, while leveraging the

bi-convexity of the objective function and the descent property of the algorithm. The per-

formance of the proposed estimator is evaluated on synthetic data, in conjunction with its

two-step competitors that effectively terminates the alternating procedure after one iteration.

In Chapter III, we consider the estimation of a multi-block VAR system whose com-

ponents have Granger-causal ordering, under certain structural assumptions on the model

parameters. With a similar penalized ML formulation to that of the iid setting, we provide

estimates corresponding to both the transition matrices and the inverse covariance matrix,

with the former capturing the lead-lag relationship between and within blocks and the latter

capturing the contemporaneous conditional interdependence. Further, we devise a procedure

for testing the existence of group Granger-causality, tailoring to the structural characteristic

of the parameter in question under the alternative hypothesis. The performance of both the

estimation and the testing procedures are assessed via simulation studies, and the model is

illustrated on a motivating real data application involving both stock prices and macroeco-

nomic variables.

Next, in Chapter IV, we extend the FAVAR model to high-dimensional settings. With

the proposed model identification constraint, we enable the estimation of the FAVAR model

under such settings. Specifically, for the calibration equation, we formulate an optimization

problem based on least squares loss and the structural assumptions of the parameters, while

further compactifying the formulation based on the identification constraint; then for the

VAR equation, we estimate the transition matrix based on the estimated factors from the

calibration equation and the observed samples of the core variables. The obtained estimates

are proved to have good statistical properties. Further, we consider the empirical imple-

mentation of the proposed formulation, whose estimation and forecasting performance are

evaluated based on synthetic data. Finally, we employ the model to study the interlinkage

among commodity prices while taking into account the effect of global economic activities.

Finally in Chapter V, we consider a relaxation of the weak correlation assumption in

approximate factor models. Specifically, by modeling the dynamics of the idiosyncratic

component of the classical factor model through a sparse VAR, then de-correlating such serial

correlation, we obtain a new model which automatically allows for a stronger correlation

among the idiosyncratic component and simultaneously resolves the endogeneity issue of the

original model. Building upon the formulation in estimating the high-dimensional FAVAR
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models, we further convexify the formulation, so that the estimator given by the global

optimizer possesses both algorithmic and theoretical guarantees. Again, the performance

of the estimation procedure is evaluated through synthetic data, and the model is further

applied to a financial dataset comprising of the stock prices of large financial institutions

across banking, broker & dealers and insurance companies to investigate their connectivity

pattern over time.
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CHAPTER II

Penalized Maximum Likelihood Estimation of Multi-layered

Gaussian Graphical Models

2.1 Introduction.

The estimation of directed and undirected graphs from high-dimensional data has received

a lot of attention in the machine learning and statistics literature [e.g., see ? , and refer-

ences therein], due to their importance in diverse applications including the understanding

of biological processes and disease mechanisms, financial systems stability and social inter-

actions, just to name a few [? ? ? ]. In the case of undirected graphs, the edges capture

conditional dependence relationships between the nodes, while for directed graphs they are

used to model causal relationships [? ].

However, in a number of applications the nodes can be naturally partitioned into sets

that exhibit interactions both between them and amongst them. As an example, consider

an experiment where one has collected data for both genes and metabolites for the same set

of patient specimens. In this case, we have three types of interactions between genes and

metabolites: regulatory interactions between the two of them and co-regulation within the

gene and within the metabolic compartments. The latter two types of relationships can be

expressed through undirected graphs within the sets of genes and metabolites, respectively,

while the regulation of metabolites by genes corresponds to directed edges. Note that in

principle there are feedback mechanisms from the metabolic compartment to the gene one,

but these are difficult to detect and adequately estimate in the absence of carefully collected

time course data. Another example comes from the area of financial economics, where one

collects data on returns of financial assets (e.g. stocks, bonds) and also on key macroeco-

nomic indicators (e.g. interest rate, prices indices, various measures of money supply and

various unemployment indices). Once again, over short time periods there is influence from

the economic variables to the returns (directed edges), while there are co-dependence rela-

tionships between the asset returns and the macroeconomic variables, respectively, that can
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be modeled as undirected edges.

Technically, such layered network structures correspond to multi-partite graphs that pos-

sess undirected edges and exhibit a directed acyclic graph structure between the layers, as

depicted in Figure 2.1, where we use directed solid edges to denote the dependencies across

layers and dashed undirected edges to denote within-layer conditional dependencies.

Layer 2Layer 1 Layer 3

Figure 2.1: Diagram for a three-layered network.

Selected properties of such so-called chain graphs have been studied in the work of ? ],

with an emphasis on two alternative Markov properties including the LWF Markov property

[? ? ] and the AMP Markov property [? ].

While layered networks being interesting from a theoretical perspective and having sig-

nificant scope for applications, their estimation has received little attention in the literature.

Note that for a 2-layered structure, the directed edges can be obtained through a multivariate

regression procedure, while the undirected edges in both layers through existing procedures

for graphical models (for more technical details see Section 2.2.2). This is the strategy lever-

aged in the work of ? ], where for a 2-layered network structure they proposed a multivariate

regression with covariance estimation (MRCE) method for estimating the undirected edges

in the second layer and the directed edges between them. A block coordinate descent algo-

rithm was introduced to estimate the directed edges, while the popular glasso estimator [? ]

was used for the undirected edges. However, this method does not scale well according to the

simulation results presented and no theoretical properties of the estimates were provided.

In follow-up work, ? ] used a cyclic block coordinate descent algorithm and claimed

convergence to a stationary point leveraging a result in ? ] (see Proposition 2 in the Supple-

mental material). Unfortunately, a key assumption in ? ] —namely, that a corresponding

coordinate wise optimization problem that is given by a high-dimensional lasso regression
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has unique minimum- fails and hence the convergence result does not go through.

In related work, ? ] proposed the Plug-in Joint Weighted Lasso (PWL) and the Plug-

in Joint Graphical Weighted Lasso (PWGL) estimator for estimating the same 2-layered

structure, where they use a weighted version of the algorithm in ? ] and also provide

theoretical results for the low dimensional setting, where the number of samples exceeds the

number of potential directed and undirected edges to be estimated. Finally, ? ] proposed a

method for estimating the same 2-layered structure and provided corresponding theoretical

results in the high dimensional setting. The Dantzig-type estimator [? ] was used for the

regression coefficients and the corresponding residuals were used as surrogates, for obtaining

the precision matrix through the CLIME estimator [? ]. In another line of work [? ? ?

], structured sparsity of directed edges was considered and the edges were estimated with a

different parametrization of the objective function. We further elaborate on the connections

of our work with these three papers in Section 2.5.

The above work assumed a Gaussian distribution for the data, in more recent work by

? ], the authors constructed the model under a general mixed graphical model framework,

which allows each node-conditional distribution to belong to a potentially different univariate

exponential family. In particular, with an underlying mixed MRF graph structure, instead

of maximizing the joint likelihood, the authors proposed to estimate the homogeneous and

heterogeneous neighborhood for each node, by obtaining the `1 regularized M -estimator

of the node-conditional distribution parameters, using traditional approaches [e.g. ? ] for

neighborhood estimation. However, rather than estimating directed edges directly, the di-

rected edges are obtained from a nonlinear transformation of the estimated homogeneous and

heterogeneous neighborhood, whose sparsity pattern gets compromised during the process.

In this work, we obtain the regularized maximum likelihood estimator under a sparsity

assumption on both directed and undirected parameters for multi-layered Gaussian graphical

models and establish its consistency properties in a high-dimensional setting. As discussed

in Section 2.3, the problem is not jointly convex on the parameters, but convex on selected

subsets of them. Further, it turns out that the problem is biconvex if we consider a recursive

multi-stage estimation approach that at each stage involves only regression parameters (di-

rected edges) from preceding layers and precision matrix parameters (undirected edges) for

the last layer considered in that stage. Hence, we decompose the multi-layer network struc-

ture estimation into a sequence of 2-layer problems that allows us to establish the desired

results. Leveraging the biconvexity of the 2-layer problem, we establish the convergence of

the iterates to the maximum-likelihood estimator, which under certain regularity conditions

is arbitrarily close to the true parameters. The theoretical guarantees provided require a

uniform control of the precision of the regression and precision matrix parameters, which
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poses a number of theoretical challenges resolved in Section 2.3.

In summary, despite the lack of overall convexity, we are able to provide theoretical

guarantees for the MLE in a high dimensional setting. We believe that the proposed strat-

egy is generally applicable to other non-convex statistical estimation problems that can be

decomposed to two biconvex problems. Further, to enhance the numerical performance of

the MLE in finite (and small) sample settings, we introduce a screening step that selects

active nodes for the iterative algorithm used and that leverages recent developments in the

high-dimensional regression literature [e.g., ? ? ? ]. We also post-process the final MLE

estimate through a stability selection procedure. As mentioned above, the screening and

stability selection steps are beneficial to the performance of the MLE in finite samples and

hence recommended for similarly structured problems.

The remainder of the chapter is organized as follows. In Section 2.2, we introduce the pro-

posed methodology, with an emphasis on how the multi-layered network estimation problem

is decomposed into a sequence of two-layered network estimation problem(s). In Section 2.3,

we provide theoretical guarantees for the estimation procedure posited. In particular, we

show consistency of the estimates and convergence of the algorithm, under a number of

common assumptions in high-dimensional settings. In Section 2.4, we show the performance

of the proposed algorithm with simulation results under different simulation settings, and

introduce several acceleration techniques which speed up the convergence of the algorithm

and reduce the computing time in practical settings. Finally in Section 2.5, we briefly dis-

cuss the connections between different parametrizations of the layered network estimation

problem.

2.2 Problem Formulation.

Consider an M -layered Gaussian graphical model. Suppose there are pm nodes in Layer

m, denoted by
~Xm = (Xm

1 , · · · , Xm
pm)>, for m = 1, · · · ,M.

The structure of the model is given as follows:

– Layer 1. ~X1 = (X1
1 , · · · , X1

p1
)> ∼ N (0,Σ1).

– Layer 2. For j = 1, · · · , p2: X2
j = (B12

j )> ~X1 + ε2j , with B12
j ∈ Rp1 , and ~ε2 =

(ε21, · · · , ε2p2
)> ∼ N (0,Σ2).

...
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– Layer M . For j = 1, 2, · · · , pM :

XM
j =

M−1∑
m=1

{(BmM
j )> ~Xm}+ εMj , where BmM

j ∈ Rpm for m = 1, · · · ,M − 1,

and ~εM = (εM1 , · · · , εMpM )> ∼ N (0,ΣM).

The parameters of interest are all directed edges that encode the dependencies across layers,

that is,

Bst :=
[
Bst

1 · · · Bst
pt

]
, for 1 ≤ s < t ≤M,

and all undirected edges that encode the conditional dependencies within layers after adjust-

ing for the effects from directed edges, that is:

Θm := (Σm)−1, for m = 1, · · · ,M.

It is assumed that Bst and Θm are sparse for all 1, . . . ,M and 1 ≤ s < t ≤M .

Given centered data for all M layers with each layer m = 1, · · · ,M denoted by Xm ∈
Rn×pm whose rows are iid realizations of ~Xm, we aim to obtain the MLE for all Bst, 1 ≤ s <

t ≤M and all Θm,m = 1, · · · ,M parameters. Henceforth, we use ~Xm to denote the random

vector of Layer m nodes, and Xm
j to denote the jth column in the data matrix Xm ∈ Rn×pm

whenever there is no ambiguity.

Through Markov factorization [? ], the full log-likelihood function can be decomposed as

`(Xm;Bst,Θm,1 ≤ s < t ≤M, 1 ≤ m ≤M)

= `(XM |XM−1, · · · ,X1;B1M , · · · , BM−1,M ,ΘM )

+ `(XM−1|XM−2, · · · ,X1;B1M−1, · · · , BM−2,M−1,ΘM−1)

+ · · ·+ `(X2|X1;B12,Θ2) + `(X1; Θ1)

= `(X1; Θ1) +
∑M

m=2
`(Xm|X1, · · · ,Xm−1;B1m, · · · , Bm−1,m,Θm).

Note that the summands share no common parameters, which enables us to maximize the

likelihood with respect to individual parameters in the M terms separately. More impor-

tantly, by conditioning Layer m nodes on nodes in its previous (m− 1) layers, we can treat

Layer m nodes as the“response” layer, and all nodes in the previous (m−1) layers combined

as a super “parent” layer. If we ignore the structure within the bottom layer ( ~X1) for the

moment, the M -layered network can be viewed as (M − 1) two-layered networks, each com-

prising a response layer and a parent layer. Thus, the network structure in Figure 2.1 can be

viewed as a 2 two-layered network: for the first network, Layer 3 is the response layer, while
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Layers 1 and 2 combined form the “parent” layer; for the second network, Layer 2 is the

response layer, and Layer 1 is the “parent” layer. Therefore, the problem for estimating all(
M
2

)
coefficient matrices and M precision matrices can be translated into estimating (M −1)

two-layered network structures with directed edges from the parent layer to the response

layer, and undirected edges within the response layer, and finally estimating the undirected

edges within the bottom layer separately.

Since all estimation problems boil down to estimating the structure of a 2-layered network,

we focus the technical discussion on introducing our proposed methodology for a 2-layered

network setting1. The theoretical results obtained extend in a straightforward manner to an

M -layered Gaussian graphical model.

Remark 2.1. For the M -layer network structure, we impose certain identifiability-type con-

dition on the largest “parent” layer (encompassing M − 1 layers), so that the directed edges

of the entire network are estimable. The imposed condition translates into a minimum

eigenvalue-type condition on the population precision matrix within layers, and conditions

on the magnitude of dependencies across layers. Intuitively, consider a three-layered net-

work: if ~X1 and ~X2 are highly correlated, then the proposed (as well as any other) method

will exhibit difficulties in distinguishing the effect of ~X1 on ~X3 from that of ~X2 on ~X3. The

(group) identifiability-type condition is thus imposed to obviate such circumstances. An

in-depth discussion on this issue is provided in Section 2.3.4.

2.2.1 A two-layered network setup.

Consider a two-layered Gaussian graphical model with p1 nodes in the first layer, denoted

by X = (X1, · · · , Xp1)′, and p2 nodes in the second layers, denoted by Y = (Y1, · · · , Yp2)′.

The model is defined as

– X = (X1, · · · , Xp1)> ∼ N (0,ΣX).

– For j = 1, 2, · · · , p2: Yj = B>j X + εj, Bj ∈ Rp1 and ε = (ε1, · · · , εp2)> ∼ N (0,Σε).

The parameters of interest are: ΘX := Σ−1
X ,Θε := Σ−1

ε and B := [B1, · · · , Bp2 ]. As with

most estimation problems in the high dimensional setting, we assume these parameters to

be sparse.

Now given data X ∈ Rn×p1 and Y ∈ Rn×p2 with their rows being iid random samples of

X and Y respectively, both centered, we would like to use the penalized maximum likelihood

1In Appendix A.4 we give a detail example on how our proposed method works under a 3-layered network
setting.
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approach to obtain estimates for ΘX , Θε and B. The full log-likelihood can be written as

`(X,Y;B,Θε,ΘX) = `(Y|X; Θε, B) + `(X; ΘX). (2.1)

Note that the first term only involves Θε and B, and the second term only involves ΘX .

Hence, (2.1) can be maximized by maximizing `(Y|X) w.r.t. (Θε, B), and maximizing `(X)

w.r.t. ΘX , respectively. Θ̂X can be obtained using traditional methods for estimating undi-

rected graphs, e.g., the Graphical Lasso [? ] or the Nodewise Regression prcoedure [? ].

Therefore, the rest of this paper will mainly focus on obtaining estimates for Θε and B. In

the next subsection, we introduce our estimation procedure for obtaining the MLE for Θε

and B.

Remark 2.2. Our proposed method is targeted towards maximizing `(Y|X; Θε, B) (with

proper penalization) in (2.1) only, which gives the estimates for across-layers dependencies

between the response layer and the parent layer, as well as estimates for the conditional

dependencies within the response layer each time we solve a 2-layered network estimation

problem. For an M -layered estimation problem, the maximization regarding `(X; ΘX) occurs

only when we are estimating the within-layer conditional dependencies for the bottom layer.

2.2.2 Estimation algorithm.

The conditional likelihood for response Y given X can be written as

`(Y|X) = ( 1√
2π

)np2|Σε ⊗ In|−1/2 exp
{
−1

2
(Y − Xβ)>(Σε ⊗ In)−1(Y − Xβ)

}
,

where Y = vec(Y), X = Ip2 ⊗X and β = vec(B). After writing out the Kronecker product,

the log-likelihood can be written as

`(Y|X) = constant +
n

2
log det Θε −

1

2

p2∑
j=1

p2∑
i=1

σijε (Yi −XBi)
>(Yj −XBj).

Here, Yj is the j-th column of Y and σijε denotes the ij-th entry of Θε. With `1 penalization

which induces sparsity, we formulate the following optimization problem using penalized

log-likelihood, which was initially proposed in ? ], and has also been examined in ? ]:

min
B∈Rp1×p2
Θε∈S

p2×p2
++

{ 1

n

p2∑
j=1

p2∑
i=1

σijε (Yi−XBi)
>(Yj −XBj)− log det Θε +λn

p2∑
j=1

‖Bj‖1 + ρn‖Θε‖1,off

}
, (2.2)
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and the first term in (2.2) can be equivalently written as

tr

{
1

n

[
(Y1−XB1)>

...
(Yp2−XBp2 )>

][
(Y1−XB1) ··· (Yp2−XBp2 )

]
Θε

}
:= tr(SΘε).

where S is defined as the sample covariance matrix of E := Y −XB. This gives rise to the

following optimization problem:

min
B∈Rp1×p2
Θε∈S

p2×p2
++

{
tr(SΘε)− log det Θε + λn

p2∑
j=1

‖Bj‖1 + ρn‖Θε‖1,off

}
=: f(B,Θε), (2.3)

where ‖Θ‖1,off is the absulote sum of the off-diagonal entries in Θ, λn and ρn are both positive

tuning parameters.

Note that the objective function (2.3) is not jointly convex in (B,Θε), but only convex

in B for fixed Θε and in Θε for fixed B; hence, it is bi-convex, which in turn implies that

the proposed algorithm may fail to converge to the global optimum, especially in settings

where p1 > n, as pointed out by ? ]. As is the case with most non-convex problems, good

initial parameters are beneficial for fast convergence of the algorithm, a fact supported by

our numerical work on the present problem. Further, a good initialization is critical in

establishing convergence of the algorithm for this problem (see Section 2.3.1). To that end,

we introduce a screening step for obtaining a good initial estimate for B. The theoretical

justification for employing the screening step is provided in Section 2.3.3.

An outline of the computational procedure is presented in Algorithm II.1, while the

details of each step involved are discussed next.

Screening. For each variable Yj, j = 1, · · · , p2 in the response layer, regress Yj on X via

the de-biased Lasso procedure proposed by ? ]. The output consists of the p-value(s) for each

predictor in each regression, denoted by Pj, with Pj ∈ [0, 1]p1 . To control the family-wise

error rate of the estimates, we do a Bonferroni correction at level α: define α? = α/(p1p2)

and set Bj,k = 0 if the p-value obtained for the k’th predictor in the j’th regression Pj,k

exceeds α?. Further, let

Bj = {Bj ∈ Rp1 : Bj,k = 0 if k ∈ Ŝcj} ⊆ Rp1 , (2.4)

where Ŝj is the collection of indices for those predictors deemed “active” for response Yj:

Ŝj = {k : Pj,k < α?}, for j = 1, · · · , p2.

14



Algorithm 2.1: Computational procedure for estimating B and Θε.

Input: Data from the parent layer X and the response layer Y.
Screening:

for j = 1, · · · , p2 do
regress Yj on X using the de-biased Lasso procedure in ? ] and obtain the corre-
sponding vector of p-values Pj

end

obtain adjusted p-values P̃j by applying Bonferroni correction to vec(P1, · · · , Pj) de-
termine the support set Bj for each regression using (2.4).

Initialization:
Initialize column j = 1, · · · , p2 of B̂(0) by solving (2.5).

Initialize Θ̂
(0)
ε by solving (2.2.2) using the graphical lasso [? ].

Alternating Search:

while |f(B̂(k), Θ̂
(k)
ε )− f(B̂(k+1), Θ̂

(k+1)
ε )| ≥ ε do

update B̂ with (2.6) update Θ̂ε with (2.8)
end

Refitting B and Θε

for j = 1, · · · , p2 do

Obtain the refitted B̃j using (2.9)
end

re-estimate Θ̃ε using (2.10) with W coming from stability selection.

Output: Final Estimates B̃ and Θ̃ε.

Therefore, subsequent estimation of the elements of B will be restricted to B1 × · · · × Bp2 .

Alternating search. In this step, we utilize the bi-convexity of the problem and estimate

B and Θε by minimizing in an iterative fashion the objective function with respect to (w.r.t.)

one set of parameters, while holding the other set fixed within each iteration.

As with most iterative algorithms, we need an initializer; for B̂(0) it corresponds to a

Lasso/Ridge regression estimate with a small penalty, while for Θ̂ε we use the Graphical

Lasso procedure applied to the residuals obtained from the first stage regression. That is,

for each j = 1, · · · , p2,

B̂
(0)
j = arg min

Bj∈Bj

{
‖Yj −XBj‖2

2 + λ0
n‖Bj‖1

}
, (2.5)

where λ0
n is some small tuning parameter for initialization, and set Ê

(0)
j := Yj −XB̂

(0)
j . An

initial estimate for Θ̂ε is then given by solving for the following optimization problem with

the graphical lasso [? ] procedure:

Θ̂(0)
ε = arg min

Θε∈S
p2×p2
++

{
log det Θε − tr(Ŝ(0)Θε) + ρn‖Θε‖1,off

}
,
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where Ŝ(0) is the sample covariance matrix based on (Ê
(0)
1 , · · · , Ê(0)

p2 ).

Next, we use an alternating block coordinate descent algorithm with `1 penalization to

reach a stationary point of the objective function (2.3).

– Update B as

B̂(k+1) = arg min
B∈B1×···×Bp2

{
1

n

p2∑
i=1

p2∑
j=1

(σ̂ijε )(k)(Yi −XBi)
>(Yj −XBj) + λn

p2∑
j=1

‖Bj‖1
}
, (2.6)

which can be obtained by cyclic coordinate descent w.r.t each column Bj of B, that

is, update each column Bj by:

B̂
(t+1)
j = arg min

Bj∈Bj

{
(σ̂jjε )(k)

n
‖Yj + r

(t+1)
j −XBj‖2

2 + λn‖Bj‖1

}
, (2.7)

where r
(t+1)
j = 1

(σ̂jjε )(k)

[∑j−1
i=1 (σ̂ijε )(k)(Yi −XB̂

(t+1)
i ) +

∑p2

i=j+1(σ̂ijε )(k)(Yi −XB̂
(t)
i )
]
, and

iterate over all columns until convergence. Here, we use k to index the outer iteration

while minimizing w.r.t. B or Θε, and use t to index the inner iteration while cyclically

minimizing w.r.t. each column of B.

– Update Θε as

Θ̂(k+1)
ε = arg min

Θε∈S
p2×p2
++

{
log det Θε − tr(Ŝ(k+1)Θε) + ρn‖Θε‖1,off

}
, (2.8)

where Ŝ(k+1) is the sample covariance matrix based on Ê
(k+1)
j = Yj − XB̂

(k+1)
j , j =

1, · · · , p2.

Refitting and stabilizing. As noted in the introduction, this step is beneficial in applica-

tions, especially when one deals with large scale multi-layer networks and relatively smaller

sample sizes. Denote the solution obtained by the above iterative procedure by B∞ and Θ∞ε .

For each j = 1, · · · , p2, set B̃j = {Bj : Bj,i = 0 if B∞j,i = 0, Bj ∈ Rp1} and the final estimate

for Bj is given by ordinary least squares:

B̃j = arg min
Bj∈B̃j

‖Yj −XBj‖2. (2.9)

For Θε, we obtain the final estimate by a combination of stability selection [? ] and graphical

lasso [? ]. That is, after obtaining the refitted residuals Ẽj := Yj − XB̃j, j = 1, · · · , p2,

based on the stability selection procedure with the graphical lasso, we obtain the stability

path, or probability matrix W for each edge, which records the proportion of each edge being
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selected based on bootstrapped samples of Ẽj’s. Then, using this probability matrix W as

a weight matrix, we obtain the final estimate of Θ̃ε as follow:

Θ̃ε = arg min
Θε∈S

p2×p2
++

{
log det Θε − tr(S̃Θε) + ρ̃n‖(1−W ) ∗Θε‖1,off

}
, (2.10)

where we use ∗ to denote the element-wise product of two matrices, and S̃ is the sample

covariance matrix based on the refitted residuals Ẽ. Again, (2.10) can be solved by the

graphical lasso procedure [? ], with ρ̃n properly chosen.

2.2.3 Tuning parameter selection.

To select the tuning parameters (λn, ρn), we use the Bayesian Information Criterion(BIC),

which is the summation of a goodness-of-fit term (log-likelihood) and a penalty term. The

explicit form of BIC (as a function of B and Θε) in our setting is given by

BIC(B,Θε) = − log det Θε + tr(SΘε) +
log n

n
(
‖Θε‖0 − p2

2
+ ‖B‖0)

where

S :=
1

n

[
(Y1−XB1)>

...
(Yp2−XBp2 )>

][
(Y1−XB1) ··· (Yp2−XBp2 )

]
,

and ‖Θε‖0 is the total number of nonzero entries in Θε. Here we penalize the non-zero

elements in the upper-triangular part of Θε and the non-zero ones in B. We choose the

combination (λ∗n, ρ
∗
n) over a grid of (λ, ρ) values, and (λ∗n, ρ

∗
n) should minimize the BIC

evaluated at (B∞,Θ∞ε ).

2.3 Theoretical Results.

In this section, we establish a number of theoretical results for the proposed iterative

algorithm. We focus the presentation on the two-layer structure, since as explained in the

previous section the multi-layer estimation problem decomposes to a series of two-layer ones.

As mentioned in the introduction, one key challenge for establishing the theoretical results

comes from the fact that the objective function (2.3) is not jointly convex in B and Θε.

Consequently, if we simply used properties of block-coordinate descent algorithms, we would

not be able to provide the necessary theoretical guarantees for the estimates we obtain.

On the other hand, the biconvex nature of the objective function allows us to establish

convergence of the alternating algorithm to a stationary point, provided it is initialized from

a point close enough to the true parameters. This can be accomplished using a Lasso-based
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initializer for B and Θε as previously discussed. The details of algorithmic convergence are

presented in Section 2.3.1.

Another technical challenge is that each update in the alternating search step relies

on estimated quantities—namely the regression and precision matrix parameters—rather

than the raw data, whose estimation precision needs to be controlled uniformly across all

iterations. The details of establishing consistency of the estimates for both fixed and random

realizations are given in Section 2.3.2.

Next, we outline the structure of this section. In Section 2.3.1 Theorem 2.1, we show

that for any fixed set of realization of X and E 2, the iterative algorithm is guaranteed to

converge to a stationary point if estimates for all iterations lie in a compact ball around the

true value of the parameters. In Section 2.3.2, we show in Theorem 2.4 that for any random

X and E, with high probability, the estimates for all iterations lie in a compact ball around

the true value of the parameters. Then in Section 2.3.3, we show that asymptotically with

log(p1p2)/n → 0, while keeping the family-wise type I error under some pre-specified level,

the screening step correctly identifies the true support set for each of the regressions, based

upon which the iterative algorithm is provided with an initializer that is close to the true

value of the parameters. Finally in Section 2.3.4, we provide sufficient conditions for both

directed and undirected edges to be identifiable (estimable) for multi-layered network.

To aid the readability of the main results, we only present statements of theorems and

propositions, while all proofs are relegated to Appendix A (Sections A.1 and A.2).

Throughout this section, to distinguish the estimates from the true values, we use B?

and Θ?
ε to denote the true values.

2.3.1 Convergence of the iterative algorithm.

In this subsection, we prove that the proposed block relaxation algorithm converges to

a stationary point for any fixed set of data, provided that the estimates for all iterations lie

in a compact ball around the true value of the parameters. This requirement is shown to be

satisfied with high probability in the next subsection 2.3.2.

Decompose the optimization problem in (2.3) as follows:

min
B∈Rp1×p2
Θε∈S

p2×p2
++

f(B,Θε) := f0(B,Θε) + f1(B) + f2(Θε),

2We actually observe X and Y, which is given by a corresponding set of realization in X and E based on
the model.
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where

f0(B,Θε) =
1

n

p2∑
j=1

p2∑
i=1

σijε (Yi −XBi)
>(Yj −XBj)− log det Θε = tr(SΘε)− log det Θε,

f1(B) = λn‖B‖1, f2(Θε) = ρn‖Θε‖1,off,

and Sp2×p2
++ is the collection of p2 × p2 symmetric positive definite matrices. Further, denote

the limit point (if there is any) of {B̂(k)} and {Θ̂(k)
ε } by B∞ = limk→∞ B̂

(k) and Θ∞ε =

limk→∞ Θ̂
(k)
ε , respectively.

Definition 2.1 (stationary point [? ] pp.479). Define z to be a stationary point of f if

z ∈ dom(f) and f ′(z; d) ≥ 0,∀ direction d = (d1, · · · , dN) where dt is the tth coordinate

block.

Definition 2.2 (Regularity [? ] pp.479). f is regular at z ∈ dom(f) if f ′(z; d) ≥ 0 for all

d = (d1, · · · , dN) such that

f ′(z; (0, · · · , dt, · · · , 0)) ≥ 0, t = 1, 2, · · · , N.

Definition 2.3 (Coordinate-wise minimum). Define (B∞,Θ∞ε ) to be a coordinate-wise min-

imum if

f(B∞,Θε) ≥ f(B∞,Θ∞ε ), ∀Θε ∈ Sp2×p2
++ ,

f(B,Θ∞ε ) ≥ f(B∞,Θ∞ε ), ∀B ∈ Rp1×p2 .

Note for our iterative algorithm, we only have two blocks, hence with the above notation,

N = 2.

Remark 2.3. ? ] proved that if the level set {x : f(x) ≤ f(x0)} is compact and f satisfies

certain conditions [? , see Theorem 4.1 (a), (b) and (c) for details], the limit point given by

the general block-coordinate descent algorithm (with N ≥ 2 blocks) is a stationary point of

f . However, the conditions given in Theorem 4.1 (a), (b) and (c) are not satisfied for the

objective function at hand. Hence, for the problem under consideration, a different strategy

is needed to prove convergence of the 2-block alternating algorithm to a stationary point,

and the resulting statements hold true for all problems that use a 2-block coordinate descent

algorithm.

Since dom(f0) is open and f0 is Gâteaux-differentiable on the dom(f0), by ? ] Lemma

3.1, f is regular in the dom(f). From the discussion on Page 479 of [? ], we then have:
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Fact 1: Every coordinate-wise minimum is a stationary point of f .

The following theorem shows that any limit point (B∞,Θ∞ε ) of the iterative algorithm de-

scribed in Section 2.2.2 is a stationary point of f , as long as all the iterates are within a

closed ball around the truth.

Theorem 2.1 (Convergence for fixed design). Suppose for any fixed realization of X and E,

the estimates
{

(B̂(k), Θ̂
(k)
ε )
}∞
k=1

obtained by implementing the alternating search step satisfy

the following bound for some R > 0 that only depends on p1, p2 and n:∣∣∣∣∣∣∣∣∣(B̂(k), Θ̂(k)
ε )− (B?,Θ?)

∣∣∣∣∣∣∣∣∣
F
≤ R(p1, p2, n), ∀k ≥ 1.

Then any limit point (B∞,Θ∞ε ) of the iterative algorithm is a stationary point of f .

Remark 2.4. Recall that in classical parametric statistics, MLE-type asymptotics are derived

after establishing that with probability tending to 1 as the sample size n goes to infinity,

the likelihood equation has a sequence of roots (hence stationary points of the likelihood

function) that converges in probability to the true value. Any such sequence of roots is

shown to be asymptotically normal and efficient. Note that such (a sequence of) roots

may not be global maximizers since parametric likelihoods are not globally log-concave [see

Chapter 6 ? ]. Here we show that the (B∞,Θ∞ε ) obtained by the iterative algorithm is

a stationary point which satisfies the first-order condition for being a maximizer of the

penalized log-likelihood function (which is just the negative of the penalized least-squares

function). Moreover, if we let n go to infinity, (B∞,Θ∞ε ) converges to the true value in

probability (shown in Theorem 2.4), and therefore behaves the same as the sequence of roots

in the classical parametric problem alluded to above. Thus, while (B∞,Θ∞ε ) may not be the

global maximizer, it can, nevertheless, to all intents and purposes, be deemed as the MLE.

Remark 2.5. The above convergence result is based upon solving the optimization problem

on the “entire” space, that is, we don’t restrict B to live in any subspace. However, when

actually implementing the proposed computational procedure, the optimization of the B

coordinate is restricted to B1 × · · · × Bp2 (as defined in eqn (2.4)). It should be noted that

the same convergence property still holds, since for all k ≥ 1, the following bound holds, for

some R′ > 0: ∣∣∣∣∣∣∣∣∣(B̂(k)
restricted, Θ̂

(k)
ε )− (B?,Θ?

ε)
∣∣∣∣∣∣∣∣∣

F
≤ R′(p1, p2, n). (2.11)

Consequently, the rest of the derivation in Theorem 2.1 follows, leading to the convergence

property. The bound in eqn (2.11) will be shown at the end of Section 2.3.2.
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2.3.2 Estimation consistency.

In this subsection, we show that given a random realization of X and E, with high

probability, the sequence
{

(B̂(k), Θ̂
(k)
ε )
}∞
k=1

lies in a non-expanding ball around (B?,Θ?
ε),

thus satisfying the condition of Theorem 2.1 for convergence of the alternating algorithm.

It should be noted that for the alternating search procedure, we restrict our estimation on

a subspace identified by the screening step. However, for the remaining of this subsection, the

main propositions and theorems are based on the procedure without such restriction, i.e., we

consider “generic” regressions on the entire space of dimension p1 × p2. Notwithstanding, it

can be easily shown that the theoretical results for the regression parameters on a restricted

domain follow easily from the generic case, as explained in Remark 2.9.

Before providing the details of the main theorem statements and proofs, we first introduce

additional notations. Let β = vec(B) be the vectorized version of the regression coefficient

matrix. Correspondingly, we have β̂(k) = vec(B̂(k)) and β? = vec(B?). Moreover, we drop

the superscripts and use β̂ and Θ̂ε to denote the generic estimators given by (2.12) and

(2.13), as opposed to those obtained in any specific iteration:

β̂ := arg min
β∈Rp1p2

{
− 2β>γ̂ + β>Γ̂β + λn‖β‖1

}
, (2.12)

Θ̂ε := arg min
Θε∈S

p2×p2
++

{
− log det Θε + tr

(
ŜΘε

)
+ ρn‖Θε‖1,off

}
, (2.13)

where

Γ̂ =
(
Θ̂ε ⊗

X>X

n

)
, γ̂ =

(
Θ̂ε ⊗X>

)
vec(Y)/n, Ŝ =

1

n

(
Y −XB̂

)>(
Y −XB̂

)
.

Remark 2.6. As opposed to (2.12) and (2.13), if γ̂ and Γ̂ are replaced by plugging in the true

values of the parameters, the two problems in (2.12)) and (2.13) become

β̄ := arg min
β∈Rp1p2

{
− 2β>γ̄ + β>Γ̄β + λn‖β‖1

}
, (2.14)

Θ̄ε := arg min
Θε∈S

p2×p2
++

{
− log det Θε + tr

(
SΘε

)
+ ρn‖Θε‖1,off

}
, (2.15)

where

Γ̄ =
(
Θ?
ε ⊗

X>X

n

)
, γ̄ =

(
Θ?
ε ⊗X>

)
vec(Y)/n, S =

1

n

(
Y −XB?

)>(
Y −XB?

)
=: Σ̂ε.

In (2.14), we obtain β using a penalized maximum likelihood regression estimate, and (2.15)

corresponds to the generic setting for using the graphical Lasso. A key difference between
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the estimation problems in (2.12) and (2.13) versus those in (2.14) and (2.15) is that to

obtain β̂ and Θ̂ε we use estimated quantities rather than the raw data. This is exactly how

we implement our iterative algorithm, namely, we obtain β̂(k) using Ŝ(k−1) as a surrogate for

the sample covariance of the true error (which is unavailable), then estimate Θ̂
(k)
ε using the

information in β̂(k). This adds complication for establishing the consistency results. Original

consistency results for the estimation problem in (2.14) and (2.15) are available in ? ] and ?

], respectively. Here we borrow ideas from corresponding theorems in those two papers, but

need to tackle concentration bounds of relevant quantities with additional care. This part

of the result and its proof are shown in Theorem 2.4.

As a road map toward our desired result established in Theorem 2.4, we first show in

Theorem 2.2 that for any fixed realization of X and E, under a number of conditions on

(or related to) X and E, when ‖Θ̂ε − Θ?
ε‖∞ is small (up to a certain order), the error of

β̂ is well-bounded. We then verify in Propositions 2.1 and 2.2 that for random X and E,

the above-mentioned conditions hold with high probability. Similarly in Theorem 2.3, we

show that for fixed realizations in X and E, under certain conditions (verified for random

X and E in Proposition 2.3), the error of Θ̂ε is also well-bounded, given ‖β̂ − β?‖1 being

small. Finally in Theorem 2.4, we show that for random X and E, with high probability, the

iterative algorithm gives {(β̂(k),Θ
(k)
ε )} that lies in a small ball centered at (β?,Θ?

ε), whose

radius depends on p1, p2, n and the sparsity levels.

Next, for establishing the main propositions and theorems, we introduce some additional

notations.

– Sparsity level of β?: s?? := ‖β?‖0 =
∑p2

j=1 ‖B?
j ‖0 =

∑p2

j=1 s
?
j . As a reminder of the

previous notation, we have s? = max
j=1,··· ,p2

s?j .

– True edge set of Θ?
ε : S

?
ε , and let s?ε := |S?ε | be its cardinality.

– Hessian of the log-determinant barrier log det Θ evaluated at Θ?
ε :

H? :=
d2

dΘ2
log Θ

∣∣
Θ?ε

= Θ?−1
ε ⊗Θ?−1

ε .

– Matrix infinity norm of the true error covariance matrix Σ?
ε :

κΣ?ε := |||Σ?
ε |||∞ = max

i=1,2,··· ,p2

p2∑
j=1

|Σ?
ε,ij|.

– Matrix infinity norm of the Hessian restricted to the true edge set:

κH? :=
∣∣∣∣∣∣(H?

S?ε S
?
ε
)
∣∣∣∣∣∣
∞

= max
i=1,2,··· ,p2

p2∑
j=1

∣∣H?
S?ε S

?
ε ,ij

∣∣.
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– Maximum degree of Θ?
ε : d := max

i=1,2,··· ,p2

‖Θ?
ε,i·‖0.

– We write A & B if there exists some absolute constant c that is independent of the

model parameters such that A ≥ cB.

Definition 2.4 (Incoherence condition [? ]). Θ?
ε satisfies the incoherence condition if:

max
e∈(S?ε )c

‖H?
eS?ε

(H?
S?ε S

?
ε
)−1‖1 ≤ 1− ξ, for some ξ ∈ (0, 1).

Definition 2.5 (Restricted eigenvalue (RE) condition [? ]). A symmetric matrix A ∈
Rm×m satisfies the RE condition with curvature ϕ > 0 and tolerance φ > 0, denoted by

A ∼ RE(ϕ, φ) if

θ′Aθ ≥ ϕ‖θ‖2 − φ‖θ‖2
1, ∀θ ∈ Rm.

Definition 2.6 (Diagonal dominance). A matrix A ∈ Rm×m is strictly diagonally dominant

if

|aii| >
∑
j 6=i

|aij|, ∀i = 1, · · · ,m.

Based on the model in Section 2.2.1, since we are assuming X = (X1, · · · , Xp1)> and

ε = (ε1, · · · , εp2)> come from zero-mean Gaussian distributions, it follows that X and ε

are zero-mean sub-Gaussian random vectors with parameters (ΣX , σ
2
x) and (Σ?

ε , σ
2
ε ), respec-

tively. Moreover, throughout this section, all results are based on the assumption that Θ?
ε is

diagonally dominant.

Remark 2.7. Before moving on to the main statements of Theorem 2.2, we would like to

point out that with a slight abuse of notation, for Theorem 2.2 and its related propositions

and corollaries, the statements and analyses are based on equation (2.12) only, with any

deterministic symmetric matrix Θ̂ε within a small ball around Θ?
ε . Similarly in Theorem 2.3,

Proposition 2.3 and Corollary 2.2, the analyses are based on equation (2.13) only, for any

given deterministic β̂ within a small ball around β?. The randomness of β̂ and Θ̂ε during

the iterative procedure will be taken into consideration comprehensively in Theorem 2.4.

Theorem 2.2 (Error bound for β̂ with fixed realizations of X and E). Consider β̂ given by

(2.12). For any fixed pair of realizations of X and E , assume the following:

A1. Θ̂ε is a deterministic matrix satisfying the bound ‖Θ̂ε − Θ?
ε‖∞ ≤ νΘ where νΘ =

ηΘ

(√
log p2

n

)
and ηΘ is some constant depending only on Θ?

ε ;

A2. Γ̂ ∼ RE(ϕ, φ), with s??φ ≤ ϕ/32;
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A3. (Γ̂, γ̂) satisfies the deviation bound

‖γ̂ − Γ̂β?‖∞ ≤ Q(νΘ)

√
log(p1p2)

n
,

where Q(νΘ) is some quantity depending on νΘ.

Then, for any λn ≥ 4Q(νΘ)
√

log(p1p2)
n

, the following bound holds:

‖β̂ − β?‖1 ≤ 64s??λn/ϕ.

The following two propositions verify the RE condition for Γ̂ and deviation bound for

(Γ̂, γ̂) hold with high probability for a random pair (X,E), given any symmetric, matrix Θ̂ε

satisfying (A1).

Proposition 2.1 (Verification of RE condition for random X and E). Consider any deter-

ministic matrix Θ̂ε satisfying (A1). Let the sample size satisfy n & max{s?? log p1, d
2 log p2}.

With probability at least 1− 2 exp(−c3n) for some constant c3 > 0, Γ̂ satisfies the following

RE condition:

Γ̂ := Θ̂ε ⊗ (X>X/n) ∼ RE
(
ϕ?(min

i
ψi − dνΘ), φ? max

i
(ψi + dνΘ)

)
,

where ϕ? =
Λmin(Σ?X)

2
, φ? = (ϕ? log p1)/n, and ψi is defined as:

ψi := σiiε −
p2∑
j 6=i

σijε ,

where σijε ’s denote the entries in Θ?
ε hence ψi is the gap between its diagonal entry and the

sum of off-diagonal entries for row i.

Proposition 2.2 (Deviation bound for (Γ̂, γ̂) for random X and E). Consider any deter-

ministic matrix Θ̂ε satisfying (A1). Let sample size n satisfy n & log(p1p2). With probability

at least

1− 12c1 exp{−(c2
2 − 1) log(p1p2)} for some c1 > 0, c2 > 1,

the following bound holds:

‖γ̂ − Γ̂β?‖∞ =
1

n
‖X>EΘ̂ε‖∞ ≤ Q(νΘ)

√
log(p1p2)

n
,
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where

Q(νΘ) = c2

{
dνΘ

[
Λmax(Σ?

X)Λmax(Σ?
ε)
]1/2

+
[Λmax(Σ?

X)

Λmin(Σ?
ε)

]1/2}
. (2.16)

Remark 2.8. In Proposition 2.1, the quantity d2 log p2 that shows up in the sample size

requirement is a result of νΘ = O(
√

log p2/n), which is the common order of error in a

generic graphical Lasso problem. Hence here we explicitly list it for the purpose of showing

results for the generic graphical Lasso estimation problem. In our iterative algorithm, the

order of ν
(k)
Θ depends on the relative order of p1 and p2, which may potentially make the

sample size requirement more stringent. This will be discussed in more detail in the proof

of Theorem 2.4.

Given the results in Theorem 2.2, Proposition 2.1 and Proposition 2.2, next we provide

Corollary 2.1, which gives the error bound for β̂ for random realizations of X and E.

Corollary 2.1 (Error Bound for β̂ for random X and E). Consider any deterministic Θ̂ε

satisfying the following element-wise `∞-bound:

‖Θ̂ε −Θ?
ε‖∞ ≤ νΘ,

with νΘ = ηΘ

√
log p2

n
. Then for sample size n & log(p1p2) and for any regularization param-

eter λn ≥ 4Q(νΘ)
√

log(p1p2)
n

with the expression of Q(·) given in (2.16), there exists c1 > 0

and c2 > 1 such that with probability at least:

1− 12c1 exp{−(c2
2 − 1) log(p1p2)} − 2 exp(−c3n),

the following bound holds:

‖β̂ − β?‖1 ≤ 64s??λn/ϕ, (2.17)

where ϕ = 1
2
Λmin(Σ?

ε)(min
i
ψi − dνΘ).

Next, we move onto analyzing the error bound of the other component, for a fixed given

β̂.

Theorem 2.3 (Error bound for Θ̂ε for fixed realizations of X and E). Consider Θ̂ε given

by (2.13). For any fixed pair of realization (X,E), assume the following:

B1. β̂ is a deterministic vector satisfying ‖β̂ − β?‖1 ≤ νβ, where νβ = ηβ

(√
log(p1p2)

n

)
,

withηβ being some constant depending only on β?;

B2. ‖Ŝ − Σ?
ε‖∞ ≤ g(νβ) where Ŝ = 1

n
(Y − XB̂)>(Y − XB̂), and g(νβ) is some quantity

depending on νβ;
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B3. Incoherence condition holds for Θ?
ε .

Then, for ρn = (8/ξ)g(νβ) and sample size n satisfying n & log(p1p2), the following error

bound for Θ̂ε holds:

‖Θ̂ε −Θ?
ε‖∞ ≤ {2(1 + 8ξ−1)κH?}g(νβ), (2.18)

where ξ is the incoherence parameter as defined in Definition 2.4.

Proposition 2.3 gives an explicit expression for g(νβ) under condition (B1). Specifically,

it shows how well Ŝ concentrates around Σ?
ε for random X and E, given some B̂ exhibiting

a small error from its true value (or β̂, equivalently),

Proposition 2.3. Consider any deterministic β̂ satisfying (B1). Then for sample size n

satisfying n & log(p1p2), with probability at least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 6c1 exp{−(c2
2 − 1) log(p1p2)}, for some c1 > 0, c2 > 1, τ1, τ2 > 2,

the following bound holds:

‖Ŝ − Σ?
ε‖∞ ≤ g(νβ),

where

g(νβ) =

√
log 4 + τ2 log p2

c?εn
+ ν2

β

(√ log 4 + τ1 log p1

c?Xn
+ max

i
(Σ?

X,ii)
)

+ 2c2νβ

[
Λmax(Σ?

X)Λmax(Σ?
ε)
]1/2
√

log(p1p2)

n
,

(2.19)

c?ε and c?X are population quantities given in (A.30) and (A.35), respectively.

Given Theorem 2.3 and Proposition 2.3, we provide Corollary 2.2, which gives the error

bound for Θ̂ε for random realizations of X and E:

Corollary 2.2 (Error bound for Θ̂ for random X and E). Consider any deterministic β̂

satisfying the following bound

‖β̂ − β?‖1 ≤ νβ,

with νβ = ηβ

√
log(p1p2)

n
. Also suppose the incoherence condition (B3) is satisfied. Then, for

sample size n & log(p1p2) and regularization parameter ρn = (8/ξ)g(νβ) with g(νβ) given

in (2.19), with probability at least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 6c1 exp{−(c2
2 − 1) log(p1p2)}, for some c1 > 0, c2 > 1, τ1, τ2 > 2,
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the following bound holds:

‖Θ̂ε −Θ?
ε‖∞ ≤ {2(1 + 8ξ−1)κH?}g(νβ).

After providing the error bound for (2.12) and (2.13), in Theorem 2.4 we establish that

with high probability, the error of the sequence of estimates obtained in the alternating

search step of the algorithm described in Section 2.2.2 is uniformly bounded; that is, the

sequence of estimates lie in a non-expanding ball around the true value of the parameters

uniformly with a radius that does not depend on the iteration number k.

Theorem 2.4 (Error bound for {β̂(k)} and {Θ̂(k)
ε }). Consider the iterative algorithm given

in Section 2.2.2 that gives rise to sequences of {β̂(k)} and {Θ̂(k)
ε } alternately. For random

realization of X and E, we assume the following:

C1. The incoherence condition holds for Θ?
ε .

C2. Θ?
ε is diagonally dominant.

C3. The maximum sparsity level for all p2 regression s? satisfies s? = o(n/ log p1).

(I) For sample size satisfying n & log(p1p2), there exist constants c1 > 0, c2 > 1, c3 > 0 such

that for any

λ0
n ≥ 4c2

[
Λmax(Σ?

X)Λmax(Σ?
ε)
]1/2
√

log(p1p2)

n
,

with probability at least 1 − 2 exp(−c3n) − 6c1 exp{−(c2
2 − 1) log(p1p2)}, the initial estimate

β̂(0) := vec(B̂(0)) satisfies the following bound

‖β̂(0) − β?‖1 ≤ 64s??λ0
n/ϕ

? := ν
(0)
β , (2.20)

where ϕ? = Λmin(Σ?
X)/2. Moreover, by choosing ρ0

n = (8
ξ
)g(ν

(0)
β ) where the expression for

g(·) is given in (2.19), with probability at least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 2 exp(−c3n)− 6c1 exp{−(c2
2 − 1) log(p1p2)}, for some τ1, τ2 > 2,

the following bound holds:

‖Θ̂(0)
ε −Θ?

ε‖∞ ≤ {2(1 + 8ξ−1)κH?}g(ν
(0)
β ) := ν

(0)
Θ . (2.21)

(II) For sample size satisfying n & d2 log(p1p2), for any iteration k ≥ 1, with probability at

least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 12c1 exp{−(c2
2 − 1) log(p1p2)} − 2 exp(−c3n),
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the following bounds hold for all β̂(k) and Θ̂
(k)
ε :

‖β̂(k) − β?‖1 ≤ Cβ

(
s??
√

log(p1p2)

n

)
, ‖Θ̂(k)

ε −Θ?
ε‖∞ ≤ CΘ

(√ log(p1p2)

n

)
,

where s?? is the sparsity of β?, Cβ and CΘ are constants depending only on β? and Θ?
ε ,

respectively.

As a direct result of Proposition 1 in ? ] and Corollary 3 in ? ], the following bound also

holds:

Corollary 2.3. Under the same set of conditions C1, C2 and C3 in Theorem 2.4, there

exists τ1, τ2 > 2, c1 > 0, c2 > 1, c3 > 0 and constants C ′β and C ′Θ such that for all iterations

k, the following bound holds:

||β̂(k) − β?||2 ≤ C ′β

(√s?? log(p1p2)

n

)
, |||Θ̂(k)

ε −Θ?
ε |||F ≤ C ′Θ

(√(s?ε + p2) log(p1p2)

n

)
,

with probability at least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 12c1 exp{−(c2
2 − 1) log(p1p2)} − 2 exp(−c3n),

where s?? and s?ε are the sparsity for β? and Θ?
ε , respectively.

Remark 2.9. As mentioned earlier in this subsection, the actual implementation of the alter-

nating search step is restricted to a subspace of Rp1×p2 . Next, we outline the corresponding

theoretical results for this specific scenario in which for each regression j, some fixed superset

of the indices of true covariates is given, and the regressions are restricted to these supersets,

respectively. Note that we need to make sure that the restricted subspace contains all the

true covariates for the results below to be valid.

Let Sj denote the given fixed superset for each regression j, and we consider regressing the

response on XSj . We use β̂
(k)
R to denote the corresponding vectorized estimator of iteration

k, that is,

β̂
(k)
R = (B̂

(k)′

1,Restricted, · · · , B̂
(k)′

p2,Restricted)>,

where B̂
(k)′

j,Restricted is obtained by doing the regression in (2.7), however with the indices of

covariates restricted to Sj. Also, we let β?R be the corresponding true value of β̂
(k)
R . Note

that it always holds that

‖β̂(k)
R − β

?
R‖ = ‖β̂(k) − β?‖.
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Now let

S̄ =
⋃

j∈{1,··· ,p2}

Sj,

and let s̄ be its cardinality. It can be shown that the best achievable error bound for β̂
(k)
R is

identical to β̂
(k)

S̄
, where β̂

(k)

S̄
is obtained by considering covariates XS̄ for all p2 regressions,

instead of the entire X. For this specific reason, formally, we state the theoretical results for

the case where we consider regressing on XS̄, which is almost identical to the generic case.

Suppose conditions C1, C2 and C3 in Theorem 4 hold, then there exists constants c1 >

0, c2 > 1, c3 > 0, τ1 > 2, τ2 > 2 such that: (I) for sample size satisfying n & log(s̄p2), w.p. at

least 1− 2 exp(−c3n)− 6c1 exp{−(c2
2 − 1) log(s̄p2)}, for any

λ0
n ≥ 4c2

[
Λmax(Σ?

XS̄
)Λmax(Σ?

ε)
]1/2
√

log(s̄p2)

n
,

the initial estimate β̂
(0)

S̄
satisfies the following bound:

‖β̂(0)

S̄
− β?S̄‖1 ≤ 64s??λ0

n/ϕ
?
S̄ := ν

(0)
βS̄
,

where ϕ?
S̄

= Λmin(Σ?
XS̄

)/2 and Σ?
XS̄

is the population covariance of the random vector X

restricted to S̄. Moreover, by choosing ρ0
n = (8

ξ
)g(ν

(0)
βS̄

) where the expression for g(·) is given

in (2.19), with probability at least

1− 1/s̄τ1−2 − 1/pτ2−2
2 − 2 exp(−c3n)− 6c1 exp{−(c2

2 − 1) log(s̄p2)},

the following bound holds:

‖Θ̂(0)
ε −Θ?

ε‖∞ ≤ {2(1 + 8ξ−1)κH?}g(ν
(0)
βS̄

) := ν
(0)
Θ .

(II) For sample size satisfying n & d2 log(s̄p2), for any iteration k ≥ 1, with probability at

least

1− 1/s̄τ1−2 − 1/pτ2−2
2 − 12c1 exp{−(c2

2 > 1) log(s̄p2)} − 2 exp(−c3n),

the following bound hold for all β̂
(k)

S̄
and Θ̂

(k)
ε :

‖β̂(k)

S̄
− β?‖1 ≤ Cβ

(
s??
√

log(s̄p2)
n

)
, ||β̂(k)

S̄
− β?||

2
≤ C ′β

(√s?? log(s̄p2)

n

)
,

‖Θ̂(k)
ε −Θ?

ε‖∞ ≤ CΘ

(√
log(s̄p2)

n

)
, |||Θ̂(k)

ε −Θ?
ε |||F ≤ C ′Θ

(√(s?ε + p2) log(s̄p2)

n

)
,
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where s?? is the sparsity of β?, Cβ, C ′β, CΘ and C ′θ are all constants that do not depend on

n, S̄, p2.

2.3.3 Family-wise error rate control of the screening step.

As mentioned in the Introduction, for the iterative algorithm to work effectively, it is cru-

cial to initialize from points that are close to the true parameters. Our screening step provides

such guarantees asymptotically. Based on the screening step described in Section 2.2.2, initial

estimates for each column of the regression matrix are obtained by Lasso or Ridge regression

with the support set restricted to the one identified by the screening step. It is desirable

for the screening step to correctly identify the true support set. In particular, we would like

to retain as many true positive predictor variables as possible without discovering too many

false positive ones. The following theorem states that as long as log(p1p2)/n = o(1) and the

sparsity is not beyond a specified level, the screening step will be able to recover all true

positive predictors, while keeping the family-wise type I error under control.

Theorem 2.5. Let S?j denote the true support set of the jth regression and s?j be its cardi-

nality. Suppose that log(p1p2)/n→ 0 and the following condition for sparsity holds:

max{s?j , j = 1, · · · , p2} = o(
√
n/ log p1).

Then, the screening step described in Section 2.2 will correctly recover S?j for all j = 1, · · · , p2

with probability approaching to 1, while keeping the family-wise type I error rate under the

pre-specified level α.

Remark 2.10. The specified level for sparsity is necessary for the de-biased Lasso procedure

in ? ] to produce unbiased estimates for the regression coefficients. In terms of support

recovery for the screening step, with log(p1p2)/n = o(1), we only require s? = o(p1), which

is much weaker and easily satisfied.

The following corollary connects the screening step with the alternating search step,

under the discussed asymptotic regime :

Corollary 2.4. Consider the model setup given in Section 2.2.1. Let s? denote the maximum

sparsity for all B?
j , j = 2, · · · , p2, and d denote the maximum degree of Θ?

ε . Also, let s??

denote the sparsity for β? and s?ε denote the sparsity for Θ?
ε . Assume there exist positive

constants cs? , cs?? , cd, cs̄, cp2 satisfying

0 < cs? + cs̄ < 1/2; 0 < cs?? + cs̄ < 1; 0 < 2cd + cs̄ < 1; 0 < max{cs?ε , cp2}+ cs̄ < 1
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such that

s? = O(ncs); s?? = O(ncs?? ); s?ε = O(ncs?ε ); d = O(ncd); s̄ = O(en
cp1 ); p2 = O(ncp2 ).

As n→∞,

P
(
{The screening step correctly recovers the true support set for all Bj, j = 1, · · · , p}

)
→ 1,

and for all iterations k:

max
k≥1

∣∣∣∣∣∣∣∣∣(β̂R, Θ̂
(k)
ε )− (β?R,Θ

?
ε)
∣∣∣∣∣∣∣∣∣

F

p→ 0.

The proof of this corollary follows along the same lines as Theorem 2.4, and we leave the

details to the reader.

2.3.4 Estimation error and identifiability.

In this subsection, we discuss in detail the conditions needed for the parameters in our

multi-layered network to be identifiable (estimable). We focus the presentation for ease of

exposition on a three-layer network and then discuss the general M -layer case.

Consider a 3-layer graphical model. Let X̃ = [( ~X1)>, ( ~X2)>]> be the (p1+p2) dimensional

random vector, which represents the “super-layer” on which we regress ~X3 to estimate B13,

B23 and Σ3. As shown in Theorem 2.2, the estimation error for β̂ takes the following form:

‖β̂ − β?‖1 ≤ 64s??λn/ϕ,

where ϕ is the curvature parameter for RE condition that scales with Λmin(ΣX̃) (see Propo-

sition 2.1). Therefore, the error of estimating these regression parameters is higher when

Λmin(ΣX̃) is smaller. In this section, we derive a lower bound on this quantity to demonstrate

how the estimation error depends on the underlying structure of the graph.

For the undirected subgraph within a layer k, we denote its maximum node capacity

by v(Θk) := max1≤i≤pk
∑pk

j=1 |Θij|. For the directed bipartite subgraph consisting of Layer

s→ t edges (s < t), we similarly define the maximum incoming and outgoing node capacities

by vin(Bst) := max1≤j≤pt
∑ps

i=1 |Bst
ij | and vout(B

st) := max1≤i≤ps
∑pt

j=1 |Bst
ij |. The following

proposition establishes the lower bound in terms of these node capacities

Proposition 2.4. The following lower bound holds for the minimum eigenvalue of ΣX̃ :

Λmin(ΣX̃) ≥ v(Θ1)−1v(Θ2)−1
[
1 +

(
vin(B12) + vout(B

12)
)
/2
]−2

.
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The three components in the lower bound demonstrate how the structure of Layers 1 and

2 impact the accurate estimation of directed edges to Layer 3. Essentially, the bound suggests

that accurate estimation is possible when the total effect (incoming and outgoing edges) at

every node of each of the three subgraphs is not very large. This is inherently related to the

identifiability of the multi-layered graphical models and our ability to distinguish between the

parents from different layers. For instance, if a node in Layer 2 has high partial correlation

with nodes of Layer 1, i.e., a node in Layer 2 has parents from many nodes in Layer 1 and

yields a large vin(B12); or similarly, a node in Layer 1 is the parent of many nodes in Layer

2, yielding a large vout(B
12). In either case, we end up with some large lower bound for

Λmin(ΣX̃) and it can be hard to distinguish Layer 1→ 3 edges from Layer 2→ 3 edges.

For a general M -layer network, the argument in the proof of Proposition 2.4 (see Sec-

tion A.2 for details) can be generalized in a straightforward manner. In the 2-layer network

setting, with the notation defined in Section 2.2, by setting ~ε1 = ~X1, we have

[ ~ε1
~ε2

]
= P

[ ~X1

~X2

]
, where P =

[ I O

−(B12)> I

]
.

For an M -layer network, a modified P is given in the following form:

P =

[ I 0 ··· O
−(B12)> I ··· O

...
...

...
...

−(B1,M−1)> −(B2,M−1)> ... I

]
,

and combines node capacities for different layers. The conclusion is qualitatively similar, i.e.,

the estimation error of an M -layer graphical model is small as long as the maximum node

capacities of different inter-layer and intra-layer subgraphs are not too large.

2.4 Performance Evaluation and Implementation Issues.

In this section, we present selected simulation results for our proposed method, in two-

layer and three-layer network settings. Further, we introduce some acceleration techniques

that can speed up the algorithm and reduce computing time.

2.4.1 Simulation results.

For the 2-layer network, as mentioned in Section 2.2.1, since the main target of our

proposed algorithm is to provide estimates for B? and Θ?
ε (since ΘX can be estimated sepa-

rately), we only present evaluation results for B? and Θ?
ε estimates. Similarly, for the 3-layer

network, we only present evaluation results involving Layer 3, using the notation in Section
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2.3.4, that is, B?
XZ , B

?
Y Z and Θ?

ε,Z estimates, which is sufficient to show how our proposed

algorithm works in the presence of a “super-layer”, taking advantage of the separability of

the log-likelihood.

2-layer network. To compare the proposed method with the most recent methodology

that also provides estimates for the regression parameters and the precision matrix (CAPME,

[? ]), we use the exact same model settings that have been used in that paper. Specifically,

we consider the following two models:

• Model A: Each entry in B? is nonzero with probability 5/p1, and off-diagonal entries

for Θ?
ε are nonzero with probability 5/p2.

• Model B: Each entry in B? is nonzero with probability 30/p1, and off-diagonal entries

for Θ?
ε are nonzero with probability 5/p2.

As in ? ], for both models, nonzero entries ofB? and Θ?
ε are generated from Unif [(−1,−0.5) ∪ (0.5, 1)],

and diagonals of Θ?
ε are set identical such that the condition number of Θ?

ε is p2.

(p1, p2, n) (p1, p2, n)
Model A (30, 60, 100) Model B (200, 200, 100)

(60, 30, 100) (200, 200, 200)
(200, 200, 150)
(300, 300, 150)

Table 2.1: Model Dimensions for Model A and B.

To evaluate the selection performance of the algorithm, we use sensitivity (SEN), speci-

ficity (SPE) and Mathews Correlation Coefficient (MCC) as criteria:

SEN =
TN

TN + FP
, SPE =

TP

TP + FN
, MCC =

TP× TN− FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

Further, to evaluate the accuracy of the magnitude of the estimates, we use the relative error

in Frobenius norm:

rel-Fnorm = |||B̃ −B?|||F/|||B
?|||F or |||Θ̃ε −Θ?

ε |||F/|||Θ
?
ε |||F.

Tables 2.2 and 2.3 show the results for both the regression matrix and the precision matrix.

For the precision matrix estimation, we compare our result with those available in ? ],

denoted as CAPME.

As it can be seen from Tables 2.2 and 2.3, the sample size is a key factor that affects the

performance. Our proposed algorithm performs extremely well in its selection properties on
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(p1, p2, n) SEN SPE MCC rel-Fnorm
Model A (30,60,100) 0.96(.018) 0.99(.004) 0.93(.014) 0.22(.029)

(60,30,100) 0.99(.009) 0.99(.003) 0.93(.017) 0.18(.021)
(200,200,150) 0.99(.001) 0.99(.001) 0.88(.009) 0.18(.007)
(300,300,150) 1.00(.001) 0.99(.001) 0.84(.010) 0.21(.007)

Model B (200,200,200) 0.97(.004) 0.98(.001) 0.92(.002) 0.19(.009)
(200,200,100) 0.32(.010) 0.99(.001) 0.49(.009) 0.85(.006)

Table 2.2: Performance evaluation for the estimated regression matrix over 50 replications.

(p1, p2, n) SEN SPE MCC rel-Fnorm
Model A (30,60,100) 0.77(.031) 0.92(.007) 0.56(.030) 0.51(.017)

CAPME 0.58(.030) 0.89(.010) 0.45(.030)
(60,30,100) 0.76(.041) 0.89(.015) 0.59(.039) 0.49(.014)
(200,200,150) 0.78(.019) 0.97(.001) 0.55(.012) 0.60(.007)
(300,300,150) 0.71(.017) 0.98(.001) 0.51(.011) 0.59(.005)

Model B (200,200,200) 0.73(.023) 0.94(.003) 0.39(.017) 0.62(.011)
CAPME 0.36(.020) 0.97(.000) 0.35(.010)

(200,200,100) 0.57(.027) 0.44(.007) 0.04(.008) 0.84(.002)
CAPME 0.19(.010) 0.87(.000) 0.04(.010)

Table 2.3: Performance evaluation for the estimated precision matrix over 50 replications.

B and strikes a good balance between sensitivity and specificity in estimating Θε.
3 For most

settings, it provides substantial improvements over the CAPME estimator.

3-layer network. For a 3-layer network, we consider the following data generation mech-

anism: for all three models A, B and C, each entry in BXY is nonzero with probability 5/p1,

each entry in BXZ and BY Z is nonzero with probability 5/(p1+p2), and off-diagonal entries in

Θε,Z are nonzero with probability 5/p3. Similar to the 2-layered set-up, the nonzero entries in

Θε,Z are generated from Unif[(−1,−0.5)∪ (0.5, 1)] with its diagnals set identical such that its

condition number is p3. For the regression matrices in the three models, nonzeros in BXY are

generated from Unif[(−1,−0.5)∪ (0.5, 1)], and nonzeros in BXZ and BY Z are generated from

{Unif[(−1,−0.5) ∪ (0.5, 1)] ∗ Signal.Strength}, where the signal strength in the three models

are given by 1, 1.5 and 2, respectively. More specifically, for Model A, B and C, nonzeros in

BXZ or BY Z are generated from Unif[(−1,−0.5) ∪ (0.5, 1)], Unif[(−1.5,−0.75) ∪ (0.75, 1.5)]

and Unif[(−2,−1) ∪ (1, 2)], respectively.

As mentioned in the beginning of this subsection, we only evaluate the algorithm’s per-

formance on BXZ , BY Z and Θε,Z . Based on the results shown in Tables 2.5, 2.6 and 2.7, the

signal strength across layers affects the accuracy of the estimation, which is in accordance

with what has been discussed regarding identifiability. Overall, the MLE estimator performs

satisfactorily across a fairly wide range of settings and in many cases achieving very high

3In practice, for the debias Lasso procedure, we use the default choice of tuning parameters suggested in
the implementation of the code provided in ? ]; for FWER, we suggest using α = 0.1 as the thresholding
level; for tuning parameter selection, we suggest doing a grid search for (λn, ρn) on [0, 0.5

√
log p1/n] ×

[0, 0.5
√

log p2/n] with BIC.
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Layer 3 Signal Strength (p1, p2, p3, n)
Model A 1 (50,50,50,200)
Model B 1.5 (50,50,50,200)
Model C 2 (50,50,50,200)

(20,80,50,200)
(80,20,50,200)
(100,100,100,200)

Table 2.4: Model Dimensions and Signal Strength for Model A, B and C.

(p1, p2, p3, n) SEN SPE MCC rel-Fnorm
Model A (50,50,50,200) 0.51(.065) 0.99(.001) 0.69(.049) 0.68(.050)
Model B (50,50,50,200) 0.85(.043) 0.99(.001) 0.898(.025) 0.36(.056)
Model C (50,50,50,200) 0.97(.018) 0.99(.002) 0.96(.016) 0.16(.040)

(20,80,50,200) 0.55(.078) 0.99(.001) 0.72(.059) 0.63(.066)
(80,20,50,200) 0.99(.006) 0.99(.002) 0.94(.017) 0.08(.032)
(100,100,100,200) 1.00(.001) 0.99(.001) 0.87(.016) 0.07(.007)

Table 2.5: Performance evaluation for estimated regression matrix BXZ over 50 replications.

(p1, p2, p3, n) SEN SPE MCC rel-Fnorm
Model A (50,50,50,200) 0.53(.051) 1.00(.000) 0.72(.036) 0.65(.041)
Model B (50,50,50,200) 0.90(.033) 1.00(.000) 0.95(.019) 0.25(.049)
Model C (50,50,50,200) 0.98(.013) 1.00(.000) 0.99(.007) 0.12(.042)

(20,80,50,200) 0.95(.013) 1.00(.000) 0.98(.007) 0.19(.030)
(80,20,50,200) 0.96(.027) 0.99(.001) 0.97(.022) 0.14(.063)
(100,100,100,200) 1.00(.000) 1.00(.000) 0.99(.002) 0.025(.002)

Table 2.6: Performance evaluation for estimated regression matrix BY Z over 50 replications.

(p1, p2, p3, n) SEN SPE MCC rel-Fnorm
Model A (50,50,50,200) 0.69(.044) 0.638(.032) 0.20(.036) 0.82(.017)
Model B (50,50,50,200) 0.77(.050) 0.82(.036) 0.42(.071) 0.68(.040)
Model C (50,50,50,200) 0.88(.041) 0.91(.019) 0.63(.059) 0.56(.034)

(20,80,50,200) 0.72(.041) 0.80(.028) 0.36(.050) 0.72(.021)
(80,20,50,200) 0.90(.028) 0.92(0.011) 0.68(.039) 0.58(.018)

(100,100,100,200) 0.96(.014) 0.96(0.003) 0.68(.016) 0.49(.010)

Table 2.7: Performance evaluation for estimated precision matrix Θε,Z over 50 replications.

values for the MCC criterion.

2.4.1.1 Simulation results for non-Gaussian data.

In many applications, the data may not be exactly Gaussian, but approximately Gaus-

sian. Next, we present selected simulation results when the data comes from some distri-

bution that deviates from Gaussian. Specifically, we consider two types of deviations based

on the following transformations: (i) a truncated empirical cumulative distribution function

and (ii) a shrunken empirical cumulative distribution functions as discussed in ? ]. In both

simulation settings, we consider Model A with (p1, p2, n) = (30, 60, 100) under the two-layer

setting, and the transformation is applied to errors in Layer 2. Table 2.8 shows the simulation

results for these two scenarios over 50 replications.

Based on the results in Table 2.8, relatively small deviations from the Gaussian distribu-
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tion do not affect the performance of the MLE estimates under the examined settings that

are comparable to those obtained with Gaussian distributed data.

Setting Parameter SEN SPE MCC rel-Fnorm
Model A (30, 60, 100) B 0.96(.017) 0.99(.003) 0.94(.012) 0.20(.028)

shrunken Θε 0.76(.031) 0.91(.008) 0.55(.030) 0.51(.019)
Model A (30, 60, 100) B 0.96(.021) 0.98(.004) 0.93(.015) 0.21(.034)

truncation Θε 0.76(.033) 0.92(.008) 0.56(.035) 0.52(.023)

Table 2.8: Simulation results for B and Θε over 50 replications under npn transformation.

2.4.2 A comparison with the two-step estimator in ? ].

Next, we present a comparison between the MLE estimator and the two-step estimator

of ? ]. Specifically, we use the CAPME estimate as an initializer for the MLE procedure

and examine its evolution over successive iterations. We evaluate the value of the objec-

tive function at each iteration, and also compare it to the value of the objective function

evaluated at our initializer (screening + Lasso/Ridge) and the estimates afterward. For il-

lustration purposes, we only show the results for a single realization under Model A with

p1 = 30, p2 = 60, n = 100, although similar results were obtained in other simulation set-

tings. Figure 2.2 shows the value of the objective function as a function of the iteration under

both initialization procedures, while Table 2.9 shows how the cardinality of the estimates

changes over iterations for both initializers. It can be seen that the iterative MLE algorithm

significantly improves the value of the objective function over the CAPME initialization and

also that the set of directed and undirected edges stabilizes after a couple iterations.

Figure 2.2: Comparison between Cai’s estimate and our estimate.
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0 1 2 3 4 5 6 refit

Our initializer B̂(k) 275 275 275 275 275 275 275 275

Θ̂
(k)
ε 282 255 247 247 248 248 248 260

CAPME initializer B̂(k) 433 275 275 275 275 275 275 275

Θ̂
(k)
ε 979 267 250 249 249 248 248 260

Table 2.9: Change in cardinality over iterations for B and Θε.

Based on Figure 2.2 and Table 2.9, we notice that Cai et. al’s two-step estimator yields

larger value of the objective function compared with our initializer that is obtained through

screening followed by Lasso. However, over subsequent iterations, both initializers yield the

same value in the objective function, which keeps decreasing according to the nature of

block-coordinate descent.

2.4.3 Implementation issues.

Next, we introduce some acceleration techniques for the MLE algorithm aiming to reduce

computing time, yet maintaining estimation accuracy over iterations.

(p2+1)-block update. In Section 2.2, we update B and Θε by (2.6) and (2.8), respectively,

and within each iteration, the updated B is obtained by an application of cyclic p2-block

coordinate descent with respect to each of its columns until convergence. As shown in

Section 2.3.1, the outer 2-block update guarantees the MLE iterative algorithm to converge

to a stationary point. However in practice, we can speed up the algorithm by updating B

without waiting for it to reach the minimizer for every iteration other than the first one.

More precisely, for the alternating search step, we take the following steps when actually

implementing the proposed algorithm with initializer B̂(0) and Θ̂
(0)
ε :

– Iteration 1: update B and Θε as follows, respectively:

B̂(1) = arg min
B∈B1×···×Bp2

{ 1

n

p2∑
i=1

p2∑
j=1

(σijε )(0)(Yi −XBi)
>(Yj −XBj) + λn

p2∑
j=1

‖Bj‖1

}
,

and

Θ̂(1)
ε = arg min

Θε∈S
p2×p2
++

{
log det Θε − tr(Ŝ(1)Θε) + ρn‖Θε‖1,off

}
,

where Ŝ(1) is the sample covariance matrix of Ê(1) := Y −XB̂(1).

– For Iteration k ≥ 2, while not converged:
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· For j = 1, · · · , p2, update Bj once by

B̂
(k)
j = arg min

Bj∈Bj

{(σjjε )(k−1)

n
‖Yj + r

(k)
j −XBj‖2

2 + λn‖Bj‖1

}
,

where

r
(k)
j =

1

(σjjε )(k−1)

[ j−1∑
i=1

(σijε )(k−1)(Yi−XB̂
(k)
i ) +

p2∑
i=j+1

(σijε )(k−1)(Yi−XB̂
(k−1)
i )

]
. (2.22)

· Update Θε by

Θ̂(k)
ε = arg min

Θε∈S
p2×p2
++

{
log det Θε − tr(Ŝ(k)Θε) + ρn‖Θε‖1,off

}
,

where Ŝ(k) is defined similarly.

Intuitively, for the first iteration, we wait for the algorithm to complete the whole cyclic

p2 block-coordinate descent step, as the first iteration usually achieves a big improvement

in the value of the objective function compared to the initialization values, as depicted in

Figure 2.2. However, in subsequent iterations, the changes in the objective function become

relatively small, so we do (p2 + 1) successive block-updates in every iteration, and start to

update Θε once a full p2 block update in B is completed, instead of waiting for the update in

B proceeds cyclically until convergence. In practice, this way of updating B and Θε leads to

faster convergence in terms of total computing time, yet yields the same estimates compared

with the exact 2-block update shown in Section 2.2.

Parallelization. A number of steps of the MLE algorithm is parallelizable. In the screen-

ing step, when applying the de-biased Lasso procedure [? ] to obtain the p-values, we need

to implement p2 separate regressions, which can be distributed to different compute nodes

and carried out in parallel. So does the refitting step, in which we refit each column in B in

parallel.

Moreover, according to ? ? ? ] and a series of similar studies, though the block update in

the alternating search step is supposed to be carried out sequentially, we can implement the

update in parallel to speed up convergence, yet empirically yield identical estimates. This

parallelization can be applied to either the minimization with respect to B within the 2-block

update method, or the minimization with respect to each column of B for the (p2 + 1)-block
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update method. Either way, r
(k)
j in (2.22) is substituted by

r
(k)
j,parallel =

1

(σjjε )(k−1)

p2∑
i 6=j

(σijε )(k−1)(Yi −XB̂
(k−1)
i ),

which is not updated until we have updated Bj’s once for all j = 1, · · · , p2 in parallel.

Table 2.10 shows the elapsed time for carrying out our proposed algorithm using 2-

block/(p2+1) -block update with/without parallelization, under the simulation setting where

we have p1 = p2 = 200, n = 150. The screening step and refitting step are both carried out

in parallel for all four different implementations. 4

2-block (p2 + 1)-block 2-block in parallel (p2 + 1)-block in parallel
elapsed time (sec) 5074 2556 848 763

Table 2.10: Computing time with different update methods.

As shown in the table, using (p2 + 1)-block update and parallelization both can speed

up convergence and reduce computing time, which takes only 1/7 of the computing time

compared with using 2-block update without parallelization.

Remark 2.11. The total computing time depends largely on the number of bootstrapped

samples we choose for the stability selection step. For the above displayed results, we used 50

bootstrapped samples to obtain the weight matrix. Nevertheless, one can select the number

of bootstrap samples judiciously and reduce them if performance would not be seriously

impacted.

2.5 Discussion.

In this chapter, we examined multi-layered Gaussian networks, proposed a provably con-

verging algorithm for obtaining the estimates of the key model parameters and established

their theoretical properties in high-dimensional settings. Note that we focused on `1 penal-

ties for both the directed and undirected edges, since it was assumed that the multi-layer

network was sparse both between layers and within layers. In many scientific applications,

external information may require imposing group penalties, primarily on the directed edge

parameters (B). For example, in a gene-protein 2-layer network, genes can be grouped

according to their function in pathways and one may be interested in assessing the path-

way’s impact on proteins. In that case, a group lasso penalty can be imposed. In general,

the proposed framework can easily accommodate other types of penalties in accordance to

the underlying data generating procedure. The exact form of the error bounds established

4For parallelization, we distribute the computation on 8 cores.
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would be different, depending on the exact choice of penalty selected. Nevertheless, as long

as the penalty is convex, all arguments regarding bi-convexity and convergence follow, and

we can use similar strategies to bound the statistical error of the estimators, obtained via

the iterative algorithm.

Next, we discuss connections of this work to that in ? ? ? ]. In these papers, an

alternative parameterization of the 2-layer network is adopted. Specifically, all nodes in

layers 1 and 2 are considered jointly and assumed to be drawn from the following Gaussian

distribution: (
X

Y

)
∼ N

0,

(
ΩX ΩXY

ΩY X ΩY

)−1
 ,

and by conditioning Y on X, one obtains

Y |X ∼ N
(
−Ω−1

Y Ω′XYX,Ω
−1
Y

)
. (2.23)

Compare (2.23) with our model set-up in Section 2.2.1, the following correspondence holds:

B = −ΩXY Ω−1
Y , ΩY = Θε. (2.24)

Note that the correspondence in (2.24) is only guaranteed to hold in selective settings. Specif-

ically, at the population level, the correspondence between (ΩXY ,ΩY ) and (B,Θε) holds in

the absence of any sparsity penalization. Further, in a low-dimensional data setting without

penalty terms in the objective function, the estimates from the two parameterizations would

be similar provided that the problem is well-conditioned and the sample size reasonably

large.

However, the situation is different in high-dimensional settings and in the presence of

sparsity penalties. Specifically, given data X and Y , instead of parametrizing the model

in terms of (B,Θε), the authors in [? ? ? ] consider the following optimization problem,

parametrized in (ΩXY ,ΩY ):

min
ΩXY ,ΩY

g(ΩXY ,ΩY ) ≡ g0(ΩXY ,ΩY ),+R(ΩXY ,ΩY ) (2.25)

where g0(ΩXY ,ΩY ) = − log det ΩY + 1
n
tr
[
(Y + ΩXY Ω−1

Y X)′ΩY (Y + ΩXY Ω−1
Y X)

]
is jointly

convex in (ΩXY ,ΩY ), and R(ΩXY ,ΩY ) is some regularization term. In particular, the

element-wise `1 norm on ΩY , and the element-wise `1 or column-wise `1 norm (matrix 2, 1

norm) on ΩXY are the main penalties under consideration in those papers.

Despite the convex formulation in (2.25), we would like to point out that in general, the
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sparsity pattern in B and ΩXY are not transferable through the regularization term, which

underlies a major difference between the formulation in (2.25) and the one presented in this

paper. Given the correspondence in (2.24), there are two cases where B and ΩXY share the

same sparsity pattern: 1) ΩY (or Θε, equivalently) is diagonal, or 2) both the ith row in

B and ΩXY are identically zero, for an arbitrary i = 1, · · · , p1. However, both settings are

fairly restrictive and unlike to occur in many applications.

Note that the linear model represents a natural modeling tool for a number of prob-

lems and the regression coefficients have a specific scientific interpretation. This is easily

accomplished through the (B,Θε)-parametrization, by adding proper regularization to B

(e.g., penalty which enforces element-wise sparsity or group-Lasso type of sparsity, etc) if

necessary. However, with the (ΩXY ,ΩY )-parametrization, the underlying sparsity in the

true data generating procedure, encoded by B, will not be easily incorporated, and to add a

regularization term on ΩXY may lose the scientific interpretability, and may also lead to an

estimated B whose sparsity pattern is completely mis-specified, obtained from (2.24) with

Ω̂XY , Ω̂Y plugged in.

Another difference we would like to point out is that once we add penalty terms to the

objective function in the low dimensional setting, or switch to the high dimensional setting

(as considered in ? ] and ? ]), the correspondence between the optimizer(s) of (2.1) and the

optimizer(s) of (2.25) become difficult to connect analytically.
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CHAPTER III

Regularized Estimation and Testing of High-dimensional

Multi-block Vector Autoregressive Models

3.1 Introduction.

The study of linear dynamical systems has a long history in control theory [? ] and

economics [? ] due to their analytical tractability and ease to estimate their parameters.

Such systems in their so-called reduced form give rise to Vector Autoregressive (VAR) models

[? ] that have been widely used in macroeconomic modeling for policy analysis [? ? ? ], in

financial econometrics [? ], and more recently in functional genomics [? ], financial systemic

risk analysis [? ] and neuroscience [? ].

In many applications, the components of the system under consideration can be natu-

rally partitioned into interacting blocks. For example, [? ] studied the impact of monetary

policy in a small open economy, where the economy under consideration is modeled as one

block, while variables in other (foreign) economies as the other. Both blocks have their own

autoregressive structure, and the inter-dependence between blocks is unidirectional: the for-

eign block influences the small open economy, but not the other way around, thus effectively

introducing a linear ordering amongst blocks. Another example comes from the connection

between the stock market and employment macroeconomic variables [? ? ? ] that focuses

on the impact through a wealth effect mechanism of the former on the latter. Once again,

the underlying hypothesis of interest is that the stock market influences employment, but

not the other way around. In another application domain, molecular biologists conduct time

course experiments on cell lines or animal models and collect data across multiple molecular

compartments (transcripotmics, proteomics, metabolomics, lipidomics) in order to delineate

mechanisms for disease onset and progression or to study basic biological processes. In this

case, the interactions amongst the blocks (molecular compartments) are clearly delineated

(transciptomic compartment influencing the proteomic and metabolomic ones), thus leading

again to a linear ordering of the blocks [see ? ].
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The proposed model also encompasses the popular in marketing, regional science and

growth theory VAR-X model, provided that the temporal evolution of the exogenous block

of variables “X” exhibits autoregressive dynamics. For example, ? ] examine the sensitivity

of over 500 product prices to various marketing promotion strategies (the exogenous block),

while ? ] examine changes in subscription rates, search engine referrals and marketing ef-

forts of customers when switched from a free account to a fee-based structure, the latter

together with customer characteristics representing the exogenous block. ? ] examine re-

gional inter-dependencies, building a model where country specific macroeconomic indicators

evolve according to a VAR model and they are influenced exogenously by key macroeconomic

variables from neighboring countries/regions. Finally, ? ] studies the impact of the price of

oil on Gross Domestic Product growth rates for a number of countries, while controlling for

other exogenous variables such as the country’s consumption and investment expenditures

along with its trade balance.

The proposed model gives rise to a network structure that in its most general form corre-

sponds to a multi-partite graph, depicted in Figure 3.1 for 3 blocks, that exhibits a directed

acyclic structure between the constituent blocks, and can also exhibit additional dependence

between the nodes in each block. Selected properties of such multi-block structures, known as

chain graphs [? ], have been studied in the literature. Further, their maximum likelihood es-

timation for independent and identically distributed Gaussian data under a high-dimensional

sparse regime is thoroughly investigated in ? ], where a provably convergent estimation

procedure is introduced and its theoretical properties are established.

xt−1

yt−1

zt−1

xt

yt

zt

xt+1

yt+1

zt+1

time ttime t − 1 time t + 1

Figure 3.1: Diagram for a dynamic system with three groups of variables

Given the wide range of applications of multi-block VAR models, which in addition

encompass the widely used VAR-X model, the key contributions of the current paper are

fourfold: (i) formulating the model as a recursive dynamical system and examining its stabil-

ity properties; (ii) developing a provably convergent algorithm for obtaining the regularized

maximum likelihood estimates (MLE) of the model parameters under high-dimensional scal-

ing; (iii) establishing theoretical properties of the ML estimates; and (iv) devising a testing
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procedure for the parameters that connect the constituent blocks of the model: if the null

hypothesis is not rejected, then one is dealing with a set of independently evolving VAR mod-

els, otherwise with the posited multi-block VAR model. Finally, the model, estimation and

testing procedures are illustrated on an important problem in macroeconomics, as gleaned

by the background of the problem and discussion of the results provided in Section 3.6.

For the multi-block VAR model, we assume that the time series within each block are

generated by a Gaussian VAR process. Further, the transition matrices within and across

blocks can be either sparse or low rank. The posited regularized Gaussian likelihood function

is not jointly convex in all the model parameters, which poses a number of technical chal-

lenges that are compounded by the presence of temporal dependence. These are successfully

addressed and resolved in Section 3.3, where we provide a numerically convergent algorithm

and establish the theoretical properties of the resulting ML estimates, that constitutes a key

contribution in the study of multi-block VAR models.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce

the model setup and the corresponding estimation procedure. In Section 3.3, we provide

consistency properties of the obtained ML estimates under a high-dimensional scaling. In

Section 3.4, we introduce the proposed testing framework, both for low-rank and sparse

interaction matrices between the blocks. Section 3.5 contains selected numerical results that

assess the performance of the estimation and testing procedures. Finally, an application to

financial and macroeconomic data that was previously discussed as motivation for the model

under consideration is presented in Section 3.6.

Notations. Throughout this chapter, we use |||A|||1 and |||A|||∞ respectively to denote the ma-

trix induced 1-norm and infinity norm of A ∈ Rm×n, that is, |||A|||1 = max1≤j≤n
∑m

i=1 |aij|,
|||A|||∞ = max1≤i≤m

∑n
j=1 |aij|, and use ‖A‖1 and ‖A‖∞ respectively to denote the element-

wise 1-norm and infinity norm: ‖A‖1 =
∑

i,j |aij|, ‖A‖∞ = maxi,j |aij|. Moreover, we use

|||A|||∗, |||A|||F and |||A|||op to denote the nuclear, Frobenius and operator norms of A, respec-

tively. For two matrices A and B of commensurate dimensions, denote their inner product

by 〈〈A,B〉〉 = trace(A′B). Finally, we write A & B if there exists some absolute constant c

that is independent of the model parameters such that A ≥ cB.

3.2 Problem Formulation.

To convey the main ideas and the key technical contributions, we consider a recursive

linear dynamical system comprising of two blocks of variables, whose structure is given by:

Xt = AXt−1 + Ut,

Zt = BXt−1 + CZt−1 + Vt,
(3.1)
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where Xt ∈ Rp1 , Zt ∈ Rp2 are the variables in groups 1 and 2, respectively. The temporal

intra-block dependence is captured by transition matrices A and C, while the inter-block

dependence by B. Noise processes {Ut} and {Vt}, respectively, capture additional contem-

poraneous intra-block dependence of Xt and Zt, after conditioning on their respective past

values. Further, we assume that Ut and Vt follow mean zero Gaussian distributions with

covariance matrices given by Σu and Σv, i.e.,

Ut ∼ N (0,Σu), and Vt ∼ N (0,Σv).

With the above model setup, the parameters of interest are transition matrices A ∈ Rp1×p1 ,

B ∈ Rp2×p1 and C ∈ Rp2×p2 , as well as the covariances Σu,Σv. In high-dimensional settings,

different combinations of structural assumptions can be imposed on these transition matri-

ces to enable their estimation from limited time series data. In particular, the intra-block

transition matrices A and C are sparse, while the inter-block matrix B can be either sparse

or low rank. Note that the block of Xt variables acts as an exogenous effect to the evolution

of the Zt block [e.g., ? ? ]. Further, we assume Ωu := Σ−1
u and Ωv := Σ−1

v are sparse.

Remark 3.1. For ease of exposition, we posit a VAR(1) modeling structure. Extensions to

general multi-block structures akin to the one depicted in Figure 3.1 and VAR(d) specifica-

tions are rather straightforward and briefly discussed in Section 3.7.

The triangular (recursive) structure of the system enables a certain degree of separability

between Xt and Zt. In the posited model, Xt is a stand-alone VAR(1) process, and the time

series in block Zt is “Granger-caused” by that in block Xt, but not vice versa. The second

equation in (3.1), as mentioned in the introductory section, also corresponds to the so-called

“VAR-X” model in the econometrics literature [e.g., ? ? ? ], that extends the standard

VAR model to include influences from lagged values of exogenous variables. Consider the

joint process Wt = (X ′t, Z
′
t)
′, it corresponds to a VAR(1) model whose transition matrix G

has a block triangular form:

Wt = GWt−1 + εt, where G :=
[
A O
B C

]
, εt =

[
Ut
Vt

]
. (3.2)

The model in (3.2) can also be viewed from a Structural Equations Modeling viewpoint

involving time series data, and also has a Moving Average representation corresponding to

a structural VAR representation with Granger causal ordering [? ]. As mentioned in the

introductory section, the focus of this paper is model parameter estimation under high-

dimensional scaling, rather than their cause and effect relationship. For a comprehensive

discourse of causality issues for VAR models, we refer the reader to ? ? ], and references
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therein.

Next, we introduce the notion of stability and spectrum with respect to the system.

System Stability. To ensure that the joint process {Wt} is stable [? ], we require the

spectral radius, denoted by ρ(·), of the transition matrix G to be smaller than 1, which is

guaranteed by requiring that ρ(A) < 1 and ρ(C) < 1, since

|λIp1×p2 −G| =

∣∣∣∣∣λIp1 − A O

−B λIp2 − C

∣∣∣∣∣ = |λIp1 − A||λIp2 − C|,

implying that the set of eigenvalues of G is the union of the sets of eigenvalues of A and C,

hence

ρ(A) < 1 , ρ(C) < 1, ⇒ ρ(G) = max{ρ(A), ρ(C)} < 1.

The latter relation implies that the stability of such a recursive system imposes spectrum

constraints only on the diagonal blocks that govern the intra-block evolution, whereas the

off-diagonal block that governs the inter-block interaction is left unrestricted.

Spectrum of the joint process. Throughout, we assume that the spectral density of

{Wt} exists, which then possesses a special structure as a result of the block triangular

transition matrix G. Formally, we define the spectral density of {Wt} as

fW (θ) =
1

2π

∞∑
h=−∞

ΓW (h)e−ihθ, θ ∈ [−π, π],

where ΓW (h) := EWtW
′
t+h. For two (generic) processes {Xt} and {Zt}, define their cross-

covariance as ΓX,Z(h) = EXtZ
′
t+h and ΓZ,X(h) = EZtX ′t+h. In general, ΓX,Z(h) 6= ΓZ,X(h).

The cross-spectra are defined as:

fX,Z(θ) :=
1

2π

∞∑
h=−∞

ΓX,Z(h)e−ihθ, and fZ,X(θ) :=
1

2π

∞∑
h=−∞

ΓZ,X(h)e−ihθ, θ ∈ [−π, π].

For the model given in (3.2), by writing out the dynamics of Zt, the cross-spectra between

Xt and Zt are given by

fX,Z(θ)(Ip2 − C>e−iθ) = fX(θ)B>e−iθ, and (Ip2 − Ceiθ)fZ,X(θ) = BeiθfX(θ). (3.3)

Similarly, we have

(Ip2 − Ceiθ)fZ(θ) = BeiθfX,Z(θ) + fV,Z(θ). (3.4)
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Combining (3.3) and (3.4), and after some algebra, the spectrum of the joint process Wt is

given by

fW (θ) = [H1(eiθ)]−1
(
H2(eiθ)[12×2 ⊗ fX(θ)]H∗2 (eiθ) +

[
O O
O Σv

] )
[H∗1 (eiθ)]−1, (3.5)

where 12×2 is a 2× 2 matrix with all entries being 1, ∗ denotes the conjugate transpose, and

H1(x) :=
[

Ip1 O
O Ip2−Cx

]
∈ R(p1+p2)×(p1+p2), H2(x) :=

[
Ip1 O
O Bx

]
∈ R(p1+p2)×(2p1).

Equation (3.5) implies that the spectrum of the joint process {Wt} can be decomposed into

the sum of two parts: the first, is a function of fX(θ), while the second part involves the

embedded idiosyncratic error process {Vt} of {Zt}, which only affects the right-bottom block

of the spectrum. Note that since {Wt} is a VAR(1) process, its matrix-valued characteristic

polynomial is given by G(θ) := I(p1+p2)−Gθ, and its spectral density also takes the following

form [c.f. ? ? ]:

fW (θ) =
1

2π

[
G−1(eiθ)

]
Σε

[
G−1(eiθ)

]∗
, where G(x) =

[
Ip1−Ax O
−Bx Ip2−Cx

]
, Σε =

[
Σu O
O Σv

]
.

One can easily reach the same conclusion as in (3.5) by multiplying each term, followed by

some algebraic manipulations.

3.2.1 Estimation.

Next, we outline the algorithm for obtaining the ML estimates of the transition matrices

A,B and C and inverse covariance matrices Σ−1
u and Σ−1

v from time series data. We allow for

a potential high-dimensional setting, where the ambient dimensions p1 and p2 of the model

exceed the total number of observations T .

Given centered times series data {x0, · · · , xT} and {z0, · · · , zT}, we use XT and ZT

respectively, to denote the “response” matrix from time 1 to T , that is:

XT =
[
x1 x2 . . . xT

]>
and ZT =

[
z1 z2 . . . zT

]>
,

and use X and Z without the subscript to denote the “design” matrix from time 0 to T − 1:

X =
[
x0 x1 . . . xT−1

]>
and Z =

[
z0 z1 . . . zT−1

]>
.

We use U and V to denote the error matrices. To obtain estimates for the parameters of

interest, we formulate optimization problems using a penalized log-likelihood function, with

regularization terms corresponding to the imposed structural assumptions on the model

47



parameters–sparsity and/or low-rankness. To solve the optimization problems, we employ

block-coordinate descent algorithms, akin to those described in ? ], to obtain the solution.

As previously mentioned, {Xt} is not “Granger-caused” by Zt and hence it is a stand-

alone VAR(1) process; this enables us to separately estimate the parameters governing the

Xt process (A and Σ−1
u ) from those of the Zt process (B, C, and Σ−1

v ).

Estimation of A and Σ−1
u . Conditional on the initial observation x0, the likelihood of

{xt}Tt=1 is given by:

L(xT , xT−1, · · · , x1|x0) = L(xT |xT−1, · · · , x0)L(xT−1|xT−2, · · · , x0) · · ·L(x1|x0)

= L(xT |xT−1)L(xT−1|xT−2) · · ·L(x1|x0),

where the second equality follows from the Markov property of the process. The log-

likelihood function is given by:

`(A,Σ−1
u ) =

T

2
log det(Σ−1

u )− 1

2

T∑
t=1

(xt − Axt−1)>Σ−1
u (xt − Axt−1) + constant.

Letting Ωu := Σ−1
u , then the penalized maximum likelihood estimator can be written as

(Â, Ω̂u) = arg min
A∈Rp1×p2 ,Ωu∈S++

p1×p1

{
tr
[
Ωu(XT −XA>)>(XT −XA>)/T

]
− log det Ωu

+λA‖A‖1 + ρu‖Ωu‖1,off

}
.

(3.6)

Algorithm 3.1 describes the key steps for obtaining Â and Ω̂u.

Algorithm 3.1: Computational procedure for estimating A and Σ−1
u .

Input: Time series data {xt}Tt=1, tuning parameter λA and ρu.

Initialization: Initialize with Ω̂
(0)
u = Ip1 , then

Â(0) = arg min A

{
1
T |||XT −XA>|||2F + λA‖A‖1

}
.

Iterate until convergence:

(1) Update Ω̂
(k)
u by graphical Lasso [? ] on the residuals with the plug-in estimate Â(k).

(2) Update Â(k) with the plug-in Ω̂
(k−1)
u and cyclically update each row with a Lasso

penalty, which solves

min
A

{
1
T tr
[
Ω̂(k−1)
u (XT −XA>)>(XT −XA>)/T

]
+ λA‖A‖1

}
.

Output: Estimated sparse transition matrix Â and sparse inverse covariance matrix Ω̂u.
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Specifically, for fixed Ω̂u, each row j = 1, . . . , p1 of Â is cyclically updated by:

Â
[s+1]
j· = arg min

β∈Rp1

{
ω̂jju
T ||XT ;·j + r

[s+1]
j −Xβ||

2

2
+ λA‖β‖1

}
,

where

r
[s+1]
j = 1

ω̂jju

[ j−1∑
i=1

ω̂iju
(
XT ;·j −X(Â

[s+1]
i· )>

)
+

p1∑
i=j+1

ω̂iju
(
XT ;·j −X(Â

[s]
i· )>

)]
.

Here Ω̂
(k)
u =

[
(ω̂iju )(k)

]
is the estimate from the previous iteration, and for notation conve-

nience we drop the index (k) for the outer iteration and use [s] to denote the index for the

inner iteration, for each round of cyclic update of the rows.

Estimation of B, C and Σ−1
v . Similarly, to obtain estimates of B, C and Ωv := Σ−1

v , we

formulate the optimization problem as follows:

(B̂, Ĉ, Ω̂v) := arg min
B∈Rp2×p1 ,C∈Rp2×p2

Ωv∈S++
p2×p2

{
tr
[

1
T Ωv(ZT −XB> − ZC>)>(ZT −XB> − ZC>)

]
− log det Ωv + λBR(B) + λC‖C‖1 + ρv||Ωv||1,off

}
, (3.7)

where the regularizer R(B) = ‖B‖1 if B is assumed to be sparse, and R(B) = |||B|||∗ if B is

assumed to be low rank. Algorithm 3.2 outlines the procedure for obtaining estimates B̂, Ĉ

and Ω̂v. Note that B̂(k) and Ĉ(k) need to be treated as a “joint block” in the outer update

and convergence of the “joint block” is required before moving on to updating Ωv.

In many real applications, B is low rank and C is sparse, while in other settings both

are sparse. In the first case, Xt “Granger-causes” Zt and the information can be compressed

to a lower dimensional space spanned by a relative small number of bases compared to the

dimension of the blocks, and Zt is autoregressive through a subset of its components. Next,

we give details for updating B and C under this model specification.

For fixed Ω̂
(k)
v , with B being low rank and C sparse, the updated B̂(k) and Ĉ(k) satisfies

(B̂(k), Ĉ(k)) = arg min
B,C

{
1
T tr
[
Ω̂(k−1)
v (ZT −XB> − ZC>)>(ZT −XB> − ZC>)

]
+λB|||B|||∗ + λC ||C||1

}
.

To obtain the solution to the above optimization problem, B and C need to be updated

alternately, and within the update of each block, an iterative algorithm is required. Here we

drop the superscript (k) that denotes the outer iterations, and use [s] as the inner iteration

index for the alternate update between B and C, and use {t} as the index for the within
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Algorithm 3.2: Computational procedure for estimating B, C and Σ−1
v .

Input: Time series data {xt}Tt=1 and {zt}Tt=1, tuning parameters λB, λC , ρv.

Initialization: Initialize with Ω̂
(0)
v = Ip2 , then

(B̂(0), Ĉ(0)) = arg min
(B,C)

{
1
T |||ZT −XB> − ZC>|||2F + λBR(B) + λC‖C‖1

}
.

Iterate until convergence:

(1) Update Ω̂
(k)
v by graphical Lasso on the residuals with the plug-in estimates B̂(k) and Ĉ(k)

(2) For fixed Ω̂
(k)
v , (B̂(k+1), Ĉ(k+1)) solves

min
B,C

{
1
T tr
[
Ω̂(k)
v (ZT −XB> − ZC ′)>(ZT −XB> − ZC>)

]
+ λBR(B) + λC‖C‖1

}
.

• Fix Ĉ [s], update B̂[s+1] by Lasso or singular value thresholding, which solves

min
B

{
1
T tr
[
Ω̂(k)
v (ZT −XB> − ZĈ [s]>)>(ZT −XB> − ZĈ [s]>)

]
+ λBR(B)

}
;

• Fix B̂[s], update Ĉ [s] by Lasso, which solves

min
C

{
1
T tr
[
Ω̂(k)
v (ZT −XB̂[s]> − ZC>)>(ZT −XB̂[s]> − ZC>)

]
+ λC‖C‖1

}
.

Output: Estimated transition matrices B̂, Ĉ and sparse Ω̂v.

block iterative update.

• Update B̂[s+1] for fixed Ĉ [s]: instead of directly updating B, update B̃ := Ω̂
1/2
v B with

B̃{t+1} = Tαt+1λB

(
B̃{t} − αt+1∇g(B̃{t})

)
, (3.8)

where Tτ (·) is the singular value thresholding operator with thresholding level τ ,

g(B̃) : = 1
T tr
[
B̃>B̃X>X− 2X>(ZT − ZĈ [s]>)Ω̂1/2

v B̃
]
,

∇g(B̃) = 2
T

[
B̃X>X− Ω̂1/2

v (ZT − ZĈ [s]>)>X
]
.

Denote the convergent solution by B̃{∞}, and B̂[s+1] = Ω̂
−1/2
v B̃{∞}.

• Update Ĉ [s] for fixed B̂[s]: each row j = 1, . . . , p2 of Ĉ [s] is cyclically updated by

Ĉ
{t+1}
j· = arg min

β∈Rp2

{
ω̂jjv
T ||(ZT −XB̂[s]>)·j + r

{t+1}
j − Zβ||

2

2
+ λC‖β‖1

}
,

where

r
{t+1}
j = 1

ω̂jjv

[ j−1∑
i=1

ω̂ijv
[
(ZT−XB̂[s]>)·j−Z(Ĉ

{t+1}
i· )>

]
+

p2∑
i=j+1

ω̂ijv
[
(ZT−XB̂[s]>)·j−Z(Ĉ

{t}
i· )>

]]
,
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and ω̂ijv are entries of Ω̂v coming from the previous outer iteration.

Although based on the outlined procedure, a number of iterative steps are required to obtain

the final estimate, we have empirically observed that the number of iterations between the

B,C and Ωv blocks is usually rather small. Specifically, based on large number of simulation

settings (selected ones presented in Section 3.5), for fixed Ω̂
(k)
v , the alternate update for B

and C usually converges within 20 iterations, while the update involving (B,C) and Ωv takes

less than 10 iterations.

In case, B is sparse, it can be updated by Lasso regression as outlined in Algorithm 2

(details omitted).

Remark 3.2. In the low dimensional setting where the Gram matrix X>X is invertible, the

update of B when R(B) = |||B|||∗ can be obtained by a one-shot SVD and singular value

thresholding; that is, we first obtain the generalized least squares estimator, then threshold

the singular values at a certain level. On the other hand, in the high dimensional setting,

an iterative algorithm is required. Note that the singular value thresholding algorithm

corresponds to a proximal gradient algorithm, and thus a number of acceleration schemes are

available [see ? ? ? ? ], whose theoretical properties have been thoroughly investigated in ?

]. We recommend using the acceleration scheme proposed by ? ], in which the “momentum”

is carried over to the next iteration, as an extension of ? ] to composite functions. Instead

of updating B̃ with (3.8), an “accelerated” update within the SVT step is given by:

B̃{t+1} = Tαt+1λB

(
y − αt+1∇g(B̃{t})

)
, where y = B̃{t} − t− 1

t+ 2

(
B̃{t} − B̃{t−1}).

Note that the objective function in (3.6) is not jointly convex in both parameters, but

biconvex. Similarly in (3.7), the objective function is biconvex in
[
(B,C),Ωv

]
. Consequently,

convergence to a stationary point is guaranteed, as long as estimates from all iterations lie

within a ball around the true value of the parameters, with the radius of the ball upper

bounded by a universal constant that only depends on model dimensions and sample size [?

, Theorem 4.1]. This condition is satisfied upon the establishment of consistency properties

of the estimates.

To establish consistency properties of the estimates requires the existence of good initial

values for the model parameters (A,Ωu), and (B,C,Ωv), respectively, in the sense that they

are sufficiently close to the true parameters. For the (A,Ωu) parameters, the results in ? ]

guarantee that for random realizations of {Xt, Et}, with sufficiently large sample size, the

errors of Â(0) and Ω̂
(0)
u are bounded with high probability, which provides us with good ini-

tialization values. Yet, additional handling of the bounds is required to ensure that estimates

from subsequent iterations are also uniformly close to the true value (see Section 3.3.2 The-

orems 3.1). A similar property for (B̂(0), Ĉ(0), Ω̂
(0)
v ) and subsequent iterations is established
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in Section 3.3.2 Theorems 3.2 (see also Theorem B.2 in Appendix B.1).

3.3 Theoretical Properties.

In this section, we investigate the theoretical properties of the penalized maximum like-

lihood estimation procedure proposed in Section 3.2, with an emphasis on the error bounds

for the obtained estimates. We focus on the model specification in which the inter-block

transition matrix B is low rank, which is of interest in many applied settings. Specifically,

we consider the consistency properties of Â and (B̂, Ĉ) that are solutions to the following

two optimization problems:

(Â, Ω̂u) = arg min
A,Ωu

{
tr
[
Ωu(XT −XA>)>(XT −XA>)/T

]
− log det Ωu + λA‖A‖1 + ρu‖Ωu‖1,off

}
,

(3.9)

and

(B̂, Ĉ, Ω̂v) = arg min
B,C,Ωv

{
tr
[
Ωv(ZT −XB> − ZC>)>(ZT −XB> − ZC>)/T

]
− log det Ωv

+λB|||B|||∗ + λC‖C‖1 + ρv||Ωv||1,off

}
.

(3.10)

The case of a sparse B can be handled similarly to that of A and/or C with minor modifications

(details shown in Appendix B.5).

3.3.1 A road map for establishing the consistency results.

Next, we outline the main steps followed in establishing the theoretical properties for the model

parameters. Throughout, we denote with a superscript “?” the true value of the corresponding

parameters.

The following key concepts, widely used in high-dimensional regularized estimation problems,

are needed in subsequent developments.

Definition 3.1 (Restricted Strong Convexity (RSC)). For some generic operator X : Rm1×m2 7→
RT×m1 , it satisfies the RSC condition with respect to norm Φ with curvature αRSC > 0 and tolerance

τ > 0 if
1

2T
|||X(∆)|||2F ≥ αRSC|||∆|||2F − τΦ2(∆), for some ∆ ∈ Rm1×m2 .

Note that the choice of the norm Φ is context specific. For example, in sparse regression

problems, Φ(∆) = ‖∆‖1 corresponds to the element-wise `1 norm of the matrix (or the usual

vector `1 norm for the vectorized version). The RSC condition becomes equivalent to the restricted

eigenvalue (RE) condition [see ? ? , and references therein] imposed on ΓX := Ωu ⊗ X′X
T

1. This is

1We say ΓX satisfies the RE condition if ∀θ, θ′ΓXθ ≥ αRE‖θ‖2 − τ‖θ‖21 for some curvature αRE and

tolerance τ . If we define the operator XΩu
(induced jointly by X and Ωu) as: XΩu

(∆) := X∆′Ω
1/2
u , then
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the case for the problem of estimating transition matrix A. For estimating B and C, define Q to

be the weighted regularizer Q(B,C) := |||B|||∗+ ΛC
λB
‖C‖1, and the associated norm Φ in this setting

is defined as

Φ(∆) := inf
Baug+Caug=∆

Q(B,C),

where Baug := [B,Op2×p2 ] and Caug := [Op2×p1 , C].

Definition 3.2 (Diagonal dominance). A matrix Ω ∈ Rp×p is strictly diagonally dominant if

|Ωii| >
∑
j 6=i
|Ωij |, ∀ i = 1, · · · , p.

Definition 3.3 (Incoherence condition [? ]). A matrix Ω ∈ Rp×p satisfies the incoherence condition

if:

max
e∈(SΩ)c

‖HeSΩ
(HSΩSΩ

)−1‖1 ≤ 1− ξ, for some ξ ∈ (0, 1),

where HSΩSΩ
denotes the Hessian of the log-determinant barrier log det Ω restricted to the true

edge set of Ω denoted by SΩ, and HeS is similarly defined.

The above two conditions are associated with the inverse covariance matrices Ωu and Ωv. Specif-

ically, the diagonal dominance condition is required for Ω?
u and Ω?

v as we build the consistency

properties for Â and (B̂, Ĉ) with the penalized maximum likelihood formulation. The incoherence

condition is primarily required for establishing the consistency of Ω̂u and Ω̂v.

We additionally introduce the upper and lower extremes of the spectrum, defined as

M(fX) := esssup
θ∈[−π,π]

Λmax(fX(θ)) and m(fX) := essinf
θ∈[−π,π]

Λmin(fX(θ)).

Analogously, the upper extreme for the cross-spectrum is given by:

M(fX,Z) := esssup
θ∈[−π,π]

√
Λmax(f∗X,Z(θ)fX,Z(θ)),

with f∗X,Z(θ) being the conjugate transpose of fX,Z(θ). With this definition,M(fX,Z) =M(fZ,X).

Next, consider the solution to (3.9) that is obtained by the alternate update of A and Ωu. If Ωu

is held fixed, then A solves (3.11), and we denote the solution by Ā and its corresponding vectorized

version as β̄A := vec(Ā):

β̄A := arg min

β∈Rp
2
1

{
− 2β>γX + β>ΓXβ + λA‖β‖1

}
, (3.11)

ΓX satisfying the RE condition implies XΩu satisfying the RSC condition. For the rest of this section, we
will loosely refer to “ΓX satisfying the RE condition” (or equivalently, XΩu

satisfying the RSC condition) as
“ΓX satisfying the RSC condition”, whenever there is no ambiguity.
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where

ΓX := Ωu ⊗ X>X
T , γX := 1

T

(
Ωu ⊗X>

)
vec(XT ). (3.12)

Using a similar notation, if A is held fixed, then Ωu solves (3.13):

Ω̄u := arg min
Θ∈S++

p1×p1

{
log det Ωu − trace (SuΩu) + ρu‖Ωu‖1,off

}
, (3.13)

where

Su = 1
T (XT −XA>)>(XT −XA>). (3.14)

For fixed realizations of X and U, by [? ], the error bound of β̄A relies on (1) ΓX (or the operator

XΩu) satisfying the RSC condition; and (2) the tuning parameter λA is chosen in accordance with

a deviation bound condition associated with ‖X>UΩu/T‖∞. By ? ], the error bound of Ω̄u relies

on how well Su concentrates around Σ?
u, that is, ‖Su − Σ?

u‖∞. Specifically, for (3.12) and (3.14),

with Ω?
u and A? plugged in respectively, for random realizations of X and U, these conditions hold

with high probability. In the actual implementation of the algorithm, however, quantities in (3.12)

and (3.14) are substituted by estimates so that at iteration k, β̂
(k)
A and Ω̂

(k)
u solve

β̂
(k)
A := arg min

β∈Rp
2
1

{
− 2β>γ̂

(k)
X + β>Γ̂

(k)
X β + λA‖β‖1

}
,

Ω̂(k)
u := arg min

Ωu∈S++
p1×p1

{
log det Ωu − trace

(
Ŝ(k)
u Ωu

)
+ ρu‖Ωu‖1,off

}
,

where

Γ̂
(k)
X = Ω̂(k−1)

u ⊗X>X
T , γ̂

(k)
X = 1

T

(
Ω̂(k−1)
u ⊗X>

)
vec(XT ), Ŝ(k)

u = 1
T

[
XT−X(Â(k))>

]>[
XT−X(Â(k))>

]
.

As a consequence, to establish the finite-sample bounds of Â and Ω̂u given in (3.9), we need Γ̂
(k)
X

to satisfy the RSC condition, a bound on ‖X>UΩ̂
(k−1)
u ‖∞ and a bound on ‖Ŝ(k)

u − Σ?
u‖∞ for all

k. Toward this end, we prove that for random realizations of X and U, with high probability,

the RSC condition for Γ̂
(k)
X and the universal bounds for ‖X>UΩ̂

(k−1)
u ‖∞ and ‖Ŝ(k)

u − Σ?
u‖∞ hold

for all iterations k, albeit the quantities of interest rely on estimates from the previous or current

iterations. Consistency results of Â and Ω̂u then readily follow.

Next, consider the solution to (3.10) that alternately updates (B,C) and Ωv. As the regular-

ization term involves both the nuclear norm penalty and the `1 norm penalty, additional handling

of the norms is required which leverages the idea of decomposable regularizers [? ]. Specifically, if
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Ωv and (B,C) are respectively held fixed, then

(B̄, C̄) := arg min
B,C

{
1
T tr
[
Ωv(ZT −XB> − ZC>)>(ZT −XB> − ZC>)

]
+ λB|||B|||∗ + λC ||C||1

}
,

Ω̄v := arg min
Ωv

{
log det Ωv − trace

(
SvΩv

)
+ ρv‖Ωv‖1,off

}
,

where Sv = 1
T (ZT −XB> − ZC>)>(ZT −XB> − ZC>). If we let W := [X,Z] ∈ RT×(p1+p2), and

define the operator WΩv : Rp2×(p1+p2) 7→ RT×p2 induced jointly by W and Ωv as

WΩv(∆) := W∆>Ω1/2
v for ∆ ∈ Rp2×(p1+p2), (3.15)

then B̄aug := [B̄, Op2×p2 ] and C̄aug := [Op2×p1 , C̄] are equivalently given by

(B̄aug, C̄aug) = arg min
B,C

{
1
T |||ZTΩ1/2

v −WΩv(Baug + Caug)|||2F + λB|||B|||∗ + λC ||C||1
}
, (3.16)

where Baug := [B,Op2×p2 ], Caug := [Op2×p1 , C] ∈ Rp2×(p1+p2). Then, for fixed realizations of Z,

X and V, with an extension of ? ] the error bound of (B̄aug, C̄aug) relies on (1) the operator

WΩv satisfying the RSC condition; and (2) tuning parameters λB and λC are respectively

chosen in accordance with the deviation bound conditions associated with

|||W>VΩv/T |||op and |||W>VΩv/T |||∞. (3.17)

The error bound of Ω̄v again relies on ‖Sv − Σ?
v‖∞. In an analogous way, for the actual

alternate update,

(B̂(k)
aug, Ĉ

(k)
aug) = arg min

B,C

{
1
T |||ZT

[
Ω̂(k−1)
v

]1/2 −W
Ω̂

(k−1)
v

(Baug + Caug)|||
2

F
+ λB|||B|||∗ + λC ||C||1

}
,

Ω̂(k)
v := arg min

Ωv

{
log det Ωv − trace

(
Ŝ(k)
v Ωv

)
+ ρv‖Ωv‖1,off

}
,

and the error bound of (B̂, Ĉ, Ω̂v) defined in (3.10) depends on the properties of W
Ω̂

(k)
v

,

|||W>VΩ
(k)
v /T |||op and |||W>VΩ

(k)
v /T |||∞ for all k. Specifically, when Ωv and (B,C) (in (3.15)

and (3.17), resp.) are substituted by estimated quantities, we prove that the RSC condition

and bounds hold with high probability for random realizations of Z, X and V, for all

iterations k, which then establishes the consistency properties of (B̂, Ĉ) and Ω̂v.

3.3.2 Consistency results for the Maximum Likelihood estimators.

Theorems and 3.2 below give the error bounds for the estimators in (3.9) and (3.10) ob-

tained through Algorithms III.1 and III.2, using random realizations coming from the stable
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VAR system defined in (3.1). As previously mentioned, to establish error bounds for both

the transition matrices and the inverse covariance matrix obtained from alternating updates,

we need to take into account that the quantities associated with the RSC condition and the

deviation bound condition are based on estimated quantities obtained from the previous it-

eration. On the other hand, the sources of randomness contained in the observed data are

fixed, hence errors from observed data stop accumulating once all sources of randomness are

considered after a few iterations, which govern both the leading term of the error bounds

and the probability for the bounds to hold.

Specifically, using the same notation as defined in Section 3.3.1, we obtain the error

bounds of the estimated transition matrices and inverse covariance matrices iteratively, build-

ing upon that for all iterations k:

(1) Operator X
Ω̂

(k)
u

and Operator W
Ω̂

(k)
v

satisfy the RSC condition;

(2) deviation bounds hold for ‖X>UΩ̂
(k)
u /T‖∞, ‖W>VΩ̂

(k)
v /T‖∞, and |||W>VΩ̂

(k)
v /T |||op;

(3) a good concentration given by ‖Ŝ(k)
u − Σ?

u‖∞ and ‖Ŝ(k)
v − Σ?

v‖∞.

We keep track of how the bounds change in each iteration until convergence, by properly

controlling the norms and track the rate of the error bound that depends on p1, p2 and T , and

reach the conclusion that the error bounds hold uniformly for all iterations, for the estimates

of both the transition matrices A,B and C and the inverse covariance matrices Ωu and Ωv.

Theorem 3.1. Consider the stable Gaussian VAR process defined in (3.1) in which A? is

assumed to be s?A-sparse. Further, assume the following:

C1. The incoherence condition holds for Ω?
u.

C2. Ω?
u is diagonally dominant.

C3. The maximum node degree of Ω?
u satisfies dmax

Ω?u
= o(p1).

Then, for random realizations of {Xt} and {Ut}, and the sequence {Â(k), Ω̂
(k)
u }k returned by

Algorithm III.1 outlined in Section 3.2.1, there exist constants c1, c2, c̃1, c̃2 > 0, τ > 0 such

that for sample size T % max{(dmax
Ω?u

)2, s?A} log p1, with probability at least

1− c1 exp(−c2T )− c̃1 exp(−c̃2 log p1)− exp(−τ log p1),

the following hold for all k ≥ 1 for some C0, C
′
0 > 0 that are functions of the upper and lower

extremes M(fX),m(fX) of the spectrum fX(θ) and do not depend on p1, T or k:

(i) X
Ω̂

(k)
u

satisfies the RSC condition;
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(ii) ‖X>UΩ̂
(k)
u /T‖∞ ≤ C0

√
log p1

T
;

(iii) ‖Ŝ(k)
u − Σ?

u‖∞ ≤ C ′0

√
log p1

T
.

As a consequence, the following bounds hold uniformly for all iterations k ≥ 1:

|||Â(k) − A?|||F = O
(√

s?A log p1

T

)
, |||Ω̂(k)

u − Ω?
u|||F = O

(√
(s?Ωu+p1) log p1

T

)
.

It should be noted that the above result establishes the consistency for the ML estimates

of the model presented in ? ].

Theorem 3.2. Consider the stable Gaussian VAR system defined in (3.1) in which B? is

assumed to be low rank with rank r?B and C? is assumed to be s?C-sparse. Further, assume

the following

C1. The incoherence condition holds for Ω?
v.

C2. Ω?
v is diagonally dominant.

C3. The maximum node degree of Ω?
v satisfies dmax

Ω?v
= o(p2).

Then, for random realizations of {Xt}, {Zt} and {Vt}, and the sequence {(B̂(k), Ĉ(k)), Ω̂
(k)
v }k

returned by Algorithm III.2 outlined in Section 3.2.1, there exist constants {ci, c̃i}, i = (0, 1, 2)

and τ > 0 such that for sample size T % (dmax
Ω?v

)2(p1 + 2p2), with probability at least

1−c0 exp{−c̃0(p1+p2)}−c1 exp{−c̃1(p1+2p2)}−c2 exp{−c̃2 log[p2(p1+p2)]}−exp{−τ log p2},

the following hold for all k ≥ 1 for C0, C
′
0, C

′′
0 > 0 that are functions of the upper and lower

extremes M(fW ),m(fW ) of the spectrum fW (θ) and of the upper extreme M(fW,V ) of the

cross-spectrum fW,V (θ) and do not depend on p1, p2 or T :

(i) W
Ω̂

(k)
v

satisfies the RSC condition;

(ii) ‖W>VΩ̂
(k)
v /T‖∞ ≤ C0

√
(p1+p2)+p2

T
and |||W>VΩ̂

(k)
v /T |||op ≤ C ′0

√
(p1+p2)+p2

T
;

(iii) ‖Ŝ(k)
v − Σ?

v‖∞ ≤ C ′′0

√
(p1+p2)+p2

T
.

As a consequence, the following bounds hold uniformly for all iterations k ≥ 1:

|||B̂(k) −B?|||
2

F + |||Ĉ(k) − C?|||
2

F = O
(

(r?B+s?C)(p1+2p2)

T

)
,

|||Ω̂(k)
v − Ω?

v|||
2

F = O
(

(s?Ωv+p2)(p1+2p2)

T

)
.
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Remark 3.3. It is worth pointing out that the initializers Â(0) and (B̂(0), Ĉ(0)) are slightly

different from those obtained in successive iterations, as they come from the penalized least

square formulation where the inverse covariance matrices are temporarily assumed diagonal.

Consistency results for these initializers under deterministic realizations are established in

Theorems B.1 and B.2 (see Appendix B.1), and the corresponding conditions are later verified

for random realizations in Lemmas B.1 to B.4 (see Appendix B.2). These theorems and

lemmas serve as the stepping stone toward the proofs of Theorems 3.1 and 3.2.

Further, the constants C0, C
′
0, C

′′
0 reflect both the temporal dependence among Xt and

Zt blocks, as well as the cross-sectional dependence within and across the two blocks.

3.3.3 The effect of temporal and cross-dependence on the established bounds.

We conclude this section with a discussion on the error bounds of the estimators that

provides additional insight into the impact of temporal and cross dependence within and

between the blocks; specifically, how the exact bounds depend on the underlying processes

through their spectra when explicitly taking into consideration the triangular structure of

the joint transition matrix.

First, we introduce additional notations needed in subsequent technical developments.

The definition of the spectral densities and the cross-spectrum are the same as previously

defined in Section 3.2 and their upper and extremes are defined in Section 3.3.1. For {Xt}
defined in (3.1), let A(θ) = Ip1 − Aθ denote the characteristic matrix-valued polynomial of

{Xt} and A∗(θ) denote its conjugate. We further define its upper and lower extremes by:

µmax(A) = max
|θ|=1

Λmax (A∗(θ)A(θ)) , µmin(A) = min
|θ|=1

Λmin (A∗(θ)A(θ)) .

The same set of quantities for the joint process {Wt = (X ′t, Z
′
t)
′} are analogously defined,

that is,

µmax(G) = max
|θ|=1

Λmax (G∗(θ)G(θ)) , µmin(G) = min
|θ|=1

Λmin (G∗(θ)G(θ)) .

Using the result in Theorem 3.2 as an example, we show how the error bound depends on

the underlying processes {(X ′t, Z ′t)′}. Specifically, we note that the bounds for (B̂(k), Ĉ(k))

can be equivalently written as

|||B̂(k) −B?|||
2

F + |||Ĉ(k) − C?|||
2

F ≤ C̄
(

(r?B+s?C)(p1+2p2)

T

)
,

which holds for all k and some constant C̄ that does not depend on p1, p2 or T . Specifically,
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by Theorem B.2, Lemmas B.3 and B.4,

C0 ∝
[
M(fW ) + 1

2π
Λmax(Σv) +M(fW,V +)

]
/m(fW ).

where {V +
t } := {Vt+1} denotes the shifted Vt process. This indicates that the exact error

bound depends on m(fW ),M(fW ) andM(fW,V +). Next, we provide bounds on these quanti-

ties. The joint process Wt as we have noted in (3.2), is a VAR(1) process with characteristic

polynomial G(θ) and spectral density fW (θ). The bounds for m(fW ) and M(fW ) are given

by ? , Proposition 2.1], that is,

m(fW ) ≥ min{Λmin(Σu),Λmin(Σv)}
(2π)µmax(G)

and M(fW ) ≤ max{Λmax(Σu),Λmax(Σv)}
(2π)µmin(G)

. (3.18)

Consider the bound for M(fW,V +). First, we note that {Vt} is a sub-process of the joint

error process {εt}, where εt = (U ′t , V
′
t )
′ and we additionally let {ε+

t } = {εt+1}. Then, by

Lemma B.12,

M(fW,V +) ≤M(fW,ε+) ≤M(fW )µmax(G),

where the second inequality follows from ? , Proof of Proposition 2.4].

What are left to be bounded are µmin(G) and µmax(G). By Proposition 2.2 in ? ], these

two quantities are bounded by:

µmax(G) ≤
[
1 +
|||G|||∞ + |||G|||1

2

]2

(3.19)

and

µmin(G) ≥ (1− ρ(G))2 · |||P |||−2
op ·

∣∣∣∣∣∣P−1
∣∣∣∣∣∣−2

op
,

where G = PΛGP
−1 with ΛG being a diagonal matrix consisting of the eigenvalues of G.

Since |||P−1|||op ≥ |||P |||
−1
op , it follows that

|||P |||−2
op ·

∣∣∣∣∣∣P−1
∣∣∣∣∣∣−2

op
≥
∣∣∣∣∣∣P−1

∣∣∣∣∣∣2
op
·
∣∣∣∣∣∣P−1

∣∣∣∣∣∣−2

op
= 1,

and therefore

µmin(G) ≥ (1−max{ρ(A), ρ(C)})2 . (3.20)

Remark 3.4. The impact of the system’s lower-triangular structure on the established bounds.

Consider the bounds in (3.19) and (3.20). An upper bound of µmax(G) depends on |||G|||∞ and

|||G|||1, whereas a lower bound of µmin(G) involves only the spectral radius of G. Combined

with (3.18), this suggests that the lower extreme of the spectral density is associated with

the average of the maximum weighted in-degree and out-degree of the system, whereas the
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upper extreme is associated with the stability condition: the less the system is intra- and

inter-connected, the tighter the bound for the lower extreme will be; similarly, the more stable

(exhibits smaller temporal dependence) the system is, the tighter the bound for the upper

extreme will be. Finally, we note that an upper bound for (|||G|||∞ + |||G|||1) is given by

max{|||A|||∞ + |||B|||∞, |||C|||∞}+ max{|||A|||1, |||B|||1 + |||C|||1}.

The presence of |||B|||∞ and |||B|||1 depicts the role of the inter-connectedness between {Xt}
and {Zt} on the lower extreme of the spectrum, which is associated with the overall curvature

of the joint process.

The impact of the system’s lower-triangular structure on the system capacity. With G being

a lower-triangular matrix, we only require ρ(A) < 1 and ρ(C) < 1 to ensure the stability

of the system. This enables the system to have “larger capacity” (can accommodate more

cross-dependence within each block), since the two sparse components A and C can exhibit

larger average weighted in- and out-degrees compared with a system where G does not

possess such triangular structure. In the case where G is a complete matrix, one deals with

a (p1 + p2)-dimensional VAR system and ρ(G) < 1 is required to ensure its stability. As

a consequence, the average weighted in- and out-degree requirements for each time series

become more restrictive.

3.4 Testing Group Granger-Causality.

In this section, we develop a procedure for testing the hypothesis H0 : B = 0. Note that

without the presence of B, the blocks Xt and Zt in the model become decoupled and can be

treated as two separate VAR models, whereas with a nonzero B, the group of variables in

Zt is collectively “Granger-caused” by those in Xt. Moreover, since we are testing whether

or not the entire block of B is zero, we do not need to rely on the exact distribution of its

individual entries, but rather on the properly measured correlation between the responses and

the covariates. To facilitate presentation of the testing procedure, we illustrate the proposed

framework via a simpler model setting with Yt = ΠXt + εt and testing whether Π = 0;

subsequently, we translate the results to the actual setting of interest, namely, whether or

not B = 0 in the model Zt = BXt−1 + CZt−1 + Vt.

The testing procedure focuses on the following sequence of tests for the rank of B:

H0 : rank(B) ≤ r, for an arbitrary r < min(p1, p2). (3.21)

Note that the hypothesis of interest, B = 0 corresponds to the special case with r = 0. To
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test for it, we develop a procedure associated with canonical correlations, which leverages

ideas present in the literature [see ? ].

As mentioned above, we consider a simpler setting similar to that in ? ? ], given by

Yt = ΠXt + εt,

where Yt ∈ Rp2 , X ∈ Rp1 and εt is independent of Xt. At the population level, let

EYtY >t = ΣY , EXtX
>
t = ΣX , EYtX>t = ΣY X = Σ>XY .

The population canonical correlations between Yt and Xt are the roots of∣∣∣∣∣−ρΣY ΣY X

ΣXY −ρΣX

∣∣∣∣∣ = 0,

i.e., the nonnegative solutions to

|ΣY XΣ−1
X ΣXY − ρ2ΣY | = 0, (3.22)

with ρ being the unknown. By the results in ? ? ], the number of positive solutions to (3.22)

is equal to the rank of Π, and indicates the “degree of dependency” between processes Yt

and Xt. This suggests that if rank(Π) ≤ r < p, we would expect
∑p

k=r+1 λk to be small,

where the λ’s solve the eigen-equation

|SY XS−1
X SXY − λSY | = 0, with λ1 ≥ λ2 ≥ · · · ≥ λp,

and SX , SXY and SY are the sample counterparts corresponding to ΣX ,ΣXY and ΣY , re-

spectively.

With this background, we switch to our model setting given by

Zt = BXt−1 + CZt−1 + Vt, (3.23)

where Vt is assumed to be independent of Xt−1 and Zt−1, B encodes the canonical correlation

between Zt and Xt−1, conditional on Zt−1. We use the same notation as in Section 3.3; that

is, let ΓX(h) = EXtX
′
t+h, ΓZ(h) = EZtZ ′t+h, and ΓX,Z(h) = EXtZ

′
t+h, with (h) omitted

whenever h = 0. At the population level, under the Gaussian assumption,[
Zt
Xt−1

Zt−1

]
∼ N

([
0
0
0

]
,

[
ΓZ Γ′X,Z(1) ΓZ(1)

ΓX,Z(1) ΓX ΓX,Z
Γ′Z(1) Γ′X,Z ΓZ

])
,
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which suggests that conditionally,

Zt
∣∣Zt−1 ∼ N

(
ΓZ(1)Γ−1

Z Zt−1,Σ00

)
and Xt−1

∣∣Zt−1 ∼ N
(
ΓX,ZΓ−1

Z Zt−1,Σ11

)
,

where

Σ00 := ΓZ − ΓZ(1)Γ−1
Z Γ′Z(1) and Σ11 := ΓX − ΓX,ZΓ−1

Z Γ′X,Z . (3.24)

Then, we have that jointly

[
Zt
Xt−1

] ∣∣∣Zt−1 ∼ N
([

ΓZ(1)
ΓX,Z

]
Γ−1
Z Zt−1 ,

[
ΓZ Γ′XZ(1)

ΓXZ(1) ΓZ

]
−
[

ΓZ(1)
ΓXZ

]
Γ−1
Z [ Γ′Z(1) ΓZX ]

)
,

so the partial covariance matrix between Zt and Xt−1 conditional on Zt−1 is given by

Σ10 = Σ′01 := ΓX,Z(1)− ΓZ(1)Γ−1
Z ΓX,Z . (3.25)

The population canonical correlations between Zt and Xt−1 conditional on Zt−1 are the

non-negative roots of ∣∣Σ01Σ−1
11 Σ10 − ρ2Σ00

∣∣ = 0,

and the number of positive solutions corresponds to the rank of B; see ? ] for a discussion

in which the author is interested in estimating and testing linear restrictions on regression

coefficients. Therefore, to test rank(B) ≤ r, it is appropriate to examine the behavior of

Ψr :=
∑min(p1,p2)

k=r+1 φk, where φ’s are ordered non-increasing solutions to

|S01S
−1
11 S10 − φS00| = 0, (3.26)

and S01, S11 and S00 are the empirical surrogates for the population quantities Σ01,Σ11 and

Σ00. For subsequent developments, we make the very mild assumption that p1 < T and

p2 < T so that Z>Z is invertible.

Proposition 3.1 gives the tail behavior of the eigenvalues and Corollary 3.1 gives the

testing procedure for block “Granger-causality” as a direct consequence.

Proposition 3.1. Consider the model setup given in (3.23), where B ∈ Rp2×p1. Further,

assume all positive eigenvalues µ of the following eigen-equation are of algebraic multiplicity

one: ∣∣Σ01Σ−1
11 Σ10 − µΣ00

∣∣ = 0, (3.27)

where Σ00,Σ11 and Σ01 are given in (3.24) and (3.25). The test statistic for testing

H0 : rank(B) ≤ r, for an arbitrary r < min(p1, p2),
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is given by

Ψr :=

min(p1,p2)∑
k=r+1

φk,

where φk’s are ordered decreasing solutions to the eigen-equation |S01S
−1
11 S10 − φS00| = 0

where

S11 = 1
T
X>(I − Pz)X, S00 = 1

T
(ZT )> (I − Pz) (ZT ) , S10 = S ′01 = 1

T
X>(I − Pz) (ZT ) ,

and Pz = Z(Z>Z)−1Z>. Moreover, the limiting behavior of Ψr is given by

TΨr ∼ χ2
(p1−r)(p2−r).

Remark 3.5. We provide a short comment on the assumption that the positive solutions to

(3.27) have algebraic multiplicity one in Proposition 3.1. This assumption is imposed on the

eigen-equation associated with population quantities, to exclude the case where a positive

root has algebraic multiplicity greater than one and its geometric multiplicity does not match

the algebraic one, and hence we would fail to obtain r mutually independent canonical

variates and the rank-r structure becomes degenerate. With the imposed assumption which

is common in the canonical correlation analysis literature [e.g. ? ? ], such a scenario

is automatically excluded. Specifically, this condition is not stringent, as for φ’s that are

solutions to the eigen-equation associated with sample quantities, the distinctiveness amongst

roots is satisfied with probability 1 [see ? , Proof of Lemma 3].

Corollary 3.1 (Testing group Granger-causality). Under the model setup in (3.23), the test

statistic for testing B = 0 is given by

Ψ0 :=

min(p1,p2)∑
k=1

φk,

with φk being the ordered decreasing solutions of∣∣∣S01

[
diag(S11)

]−1
S10 − φS00

∣∣∣ = 0.

Asymptotically, TΨ0 ∼ χ2
p1p2

. To conduct a level α test, we reject the null hypothesis H0 :

B = 0 if

Ψ0 >
1

T
χ2
p1p2

(α),

where χ2
d(α) is the upper α quantile of the χ2 distribution with d degrees of freedom.
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Remark 3.6. Corollary 3.1 is a special case of Proposition 3.1 with the null hypothesis being

H0 : r = 0, which corresponds to the Granger-causality test. Under this particular setting,

we are able to take the inverse with respect to diag(S11), yet maintain the same asymptotic

distribution due to the fact that S01 = S10 = 0 under the null hypothesis B = 0. This

enables us to perform the test even with p1 > T .

The above testing procedure takes advantage of the fact that when B = 0, the canonical

correlations among the partial regression residuals after removing the effect of Zt−1 are very

close to zero. However, the test may not be as powerful under a sparse alternative, i.e.,

HA : B is sparse. In Appendix B.4, we present a testing procedure that specifically takes

into consideration the fact that the alternative hypothesis is sparse, and the corresponding

performance evaluation is shown in Section 3.5.3 under this setting.

3.5 Performance Evaluation.

Next, we present the results of numerical studies to evaluate the performance of the

developed ML estimates (Section 3.2.1) of the model parameters, as well as that of the

testing procedure (Section 3.4).

3.5.1 Simulation results for the estimation procedure.

A number of factors may potentially influence the performance of the estimation proce-

dure; in particular, the model dimension p1 and p2, the sample size T , the rank of B? and the

sparsity level of A? and C?, as well as the spectral radius of A? and C?. Hence, we consider

several settings where these parameters vary.

For all settings, the data {xt}t and {zt}t are generated according to the model

xt = A?xt−1 + ut,

zt = B?xt−1 + C?zt−1 + vt.

For the sparse components, each entry in A? and C? is nonzero with probability 2/p1 and

1/p2 respectively, and the nonzero entries are generated from Unif ([−2.5,−1.5] ∪ [1.5, 2.5]),

then scaled down so that the spectral radii ρ(A) and ρ(C) satisfy the stability condition.

For the low rank component, each entry in B? is generated from Unif(−10, 10), followed

by singular value thresholding, so that rank(B?) conforms with the model setup. For the

contemporaneous dependence encoded by Ω?
u and Ω?

v, both matrices are generated according

to an Erdös-Rényi random graph, with sparsity being 0.05 and condition number being 3.
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Table 3.1 depicts the values of model parameters under different model settings. Specif-

ically, we consider three major settings in which the size of the system, the rank of the

cross-dependence component, and the stability of the system vary. The sample size is fixed

at T = 200 unless otherwise specified. Additional settings examined (not reported due to

space considerations) are consistent with the main conclusions presented next.

model parameters
p1 p2 rank(B∗) ρA ρC

model dimension

A.1 50 20 5 0.5 0.5
A.2 100 50 5 0.5 0.5
A.3 200 50 5 0.5 0.5
A.4 50 100 5 0.5 0.5

rank
B.1 100 50 10 0.5 0.5
B.2 100 50 20 0.5 0.5

spectral radius
C.1 50 20 5 0.8 0.5
C.2 50 20 5 0.5 0.8
C.3 50 20 5 0.8 0.8

Table 3.1: Model parameters under different model settings.

We use sensitivity (SEN), specificity (SPC) and relative error in Frobenius norm (Error)

as criteria to evaluate the performance of the estimates of transition matrices A, B and C.

Tuning parameters are chosen based on BIC. Since the exact contemporaneous dependence

is not of primary concern, we omit the numerical results for Ω̂u and Ω̂v.

SEN =
TP

TP + FN
, SPE =

TN

FP + TN
, Error =

|||Est.− Truth|||F
|||Truth|||F

.

Table 3.2 illustrates the performance for each of the parameters under different simulation

settings considered. The results are based on an average of 100 replications and their stan-

dard deviations are given in parentheses.

performance of Â performance of B̂ performance of Ĉ

SEN SPC Error rank(B̂) Error SEN SPC Error

A.1 0.98(.014) 0.99(.004) 0.34(.032) 5.2(.42) 0.11(.008) 1.00(.000) 0.97(.008) 0.15(.074)
A.2 0.97(.014) 0.99(.001) 0.38(.015) 5.2(.42) 0.31(.011) 0.97(.008) 0.97(.004) 0.28(.033)
A.3 0.99(.005) 0.96(.002) 0.87(.011) 5.8(.92) 0.54(.022) 0.98(.000) 0.92(.009) 0.28(.028)
A.4 0.96(.026) 0.99(.002) 0.36(.034) 5.2(.42) 0.32(.012) 0.95(.009) 0.98(.001) 0.37(.010)

B.1 0.97(.008) 0.99(.001) 0.37(.017) 11.4(1.17) 0.15(.008) 1.00(.000) 0.99(.001) 0.09(.021)
B.2 0.98(.008) 0.99(.001) 0.38(.016) 21.2(.91) 0.12(.006) 1.00(.000) 0.99(.001) 0.08(.018)

C.1 1.00(.000) 0.97(.005) 0.25(.015) 5.6(.52) 0.23(.006) 1.00(.000) 0.92(.021) 0.11(.072)
C.2 0.99(.007) 0.95(.004) 0.45(.022) 5.0(.00) 0.31(.014) 1.00(.000) 0.92(.019) 0.04(.011)
C.3 1.00(.000) 0.96(.004) 0.18(.013) 6.7(1.16) 0.19(.011) 1.00(.000) 0.87(.029) 0.14(.067)
C.3’ 1.00(.000) 0.99(.002) 0.13(.016) 5.2(.42) 0.23(.005) 1.00(.000) 0.90(.021) 0.06(.023)

Table 3.2: Performance evaluation of Â, B̂ and Ĉ under different model settings.

Overall, the results are highly satisfactory and all the parameters are estimated with a

high degree of accuracy. Further, all estimates were obtained in less than 20 iterations, thus

indicating that the estimation procedure is numerically stable. As expected, when the the

spectral radii of A and C increase thus leading to less stable {Xt} and {Zt} processes, a
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larger sample size is required for the estimation procedure to match the performance of the

setting with same parameters but smaller ρ(A) and ρ(C). This is illustrated in row C.3’ of

Table 3.2, where the sample size is increased to T = 500, which outperforms the results in

row C.3 in which T = 200 and broadly matches that of row A.1.

Next, we investigate the robustness of the algorithm in settings where the marginal

distributions of {Xt} and {Zt} deviate from the Gaussian assumption posited and may be

more heavy-tailed. Specifically, we consider the following two distributions that have been

studied in ? ]:

• t-distribution: the idiosyncratic error processes {ut} and {vt} are generated from mul-

tivariate t-distributions with degree of freedom 3, and covariance matrices (Ω?
u)
−1 and

(Ω?
v)
−1, respectively.

• elliptical distribution: (u′1, . . . , u
′
T ) and (v′1, . . . , v

′
T )′ are generated from an elliptical

distribution [e.g. ? ] with a log-normal generating variate logN (0, 2) and covariance

matrices Σ̃u and Σ̃v – both are block-diagonal with Σ?
u = (Ω?

u)
−1 and Σ?

v = (Ω?
v)
−1

respectively on the diagonals.

For both scenarios, transition matrices, Ω?
u and Ω?

v are generated analogously to those in the

Gaussian setting. We present the results for Â, B̂ and Ĉ under model settings A.2, B.1, C.1

and C.2 (see Table 3.1).

performance of Â performance of B̂ performance of Ĉ

SEN SPC Error rank(B̂) Error SEN SPC Error

A.2
t(df=3) 0.99(.005) 0.95(.013) 0.60(.062) 6.00(1.45) 0.24(.019) 0.96(.013) 0.96(.005) 0.27(.038)
elliptical 0.97(.014) 0.99(.001) 0.36(.016) 5.1(.30) 0.34(.009) 1.00(.000) 0.85(.026) 0.15(.033)

B.1
t(df=3) 0.98(.008) 0.95(.014) 0.61(.083) 10.4(.49) 0.34(.026) 0.99(.015) 0.95(.004) 0.25(.091)
elliptical 0.95(.015) 0.99(.001) 0.37(.024) 10.1(.22) 0.40(.013) 1.00(.000) 0.90(.013) 0.09(.001)

C.1
t(df=3) 0.99(.001) 0.92(.011) 0.22(.03) 6.0(1.13) 0.09(.014 1.00(.000) 0.93(.016) 0.10(.068)
elliptical 1.00(.000) 0.90(.006 0.32(.013) 5.2(.44) 0.13(.007) 1.00(.000) 0.92(.020) 0.07(.041)

C.2
t(df=3) 0.99 (.002) 0.95(.023) 0.37(.056) 5.1(.22) 0.22(.017) 1.00(.000) 0.89(.017) 0.10(.029)
elliptical 0.88(.029) 0.97(.001) 0.43(.032) 5.1(.14) 0.40(.020) 1.00(.000) 0.86(.026) 0.10(.046)

Table 3.3: Performance evaluation of Â, B̂ and Ĉ under non-Gaussian settings.

Based on Table 3.3, the performance of the estimates under these heavy-tailed settings is

comparable in terms of sensitivity and specificity for A and C, as well as for rank selection

for B to those under Gaussian settings. However, the estimation error exhibits some dete-

rioration which is more pronounced for the t-distribution case. In summary, the estimation

procedure proves to be very robust for support recovery and rank estimation even in the

presence of more heavy-tailed noise terms.

Lastly, we examine performance with respect to one-step-ahead forecasting. Recall that

VAR models are widely used for forecasting purposes in many application areas [? ]. The
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performance metric is given by the relative error as measured by the `2 norm of the out-

of-sample points xT+1 and zT+1, where the predicted values are given by x̂T+1 = ÂxT and

ẑT+1 = B̂xT + ĈzT , respectively. It is worth noting that both {Xt} and {Zt} are mean-

zero processes. However, since the transition matrix of {Xt} is subject to the spectral radius

constraints to ensure the stability of the corresponding process, the magnitude of the realized

value xt’s is small; whereas for {Zt}, since no constraints are imposed on the B coefficient

matrix that encodes the inter-dependence, zt’s has the capacity of having relative large values

in magnitude. Consequently, the relative error of x̂T+1 is significantly larger than that of

ẑT+1, partially due to the small total magnitude of the denominator.

The results show that an increase in the spectral radius (keeping the other structural

parameters fixed) leads to a decrease of the relative error, since future observations become

more strongly correlated over time. On the other hand, an increase in dimension leads

to a deterioration in forecasting, since the available sample size impacts the quality of the

parameter estimates. Finally, an increase in the rank of the B matrix is beneficial for

forecasting, since it plays a stronger role in the system’s temporal evolution.

‖x̂T+1−xT+1‖2
‖xT+1‖2

‖ẑT+1−zT+1‖2
‖zT+1‖2

baseline A.1 0.89(.066) 0.23(.075)

spectral radius
C.1 0.62(.100) 0.10(.035)
C.2 0.93(.062) 0.17(.059)
C.3 0.68(.096) 0.10(.045)

rank
B.1 0.92(.044) 0.14(.038)
B.2 0.94(.042) 0.14(.025)

dimension
A.2 0.87(.051) 0.24(.073)
A.3 0.96(.040) 0.44(.139)
A.4 0.89(.059) 0.274(.068)

Table 3.4: One-step-ahead relative forecasting error.

3.5.2 A comparison between the two-step and the ML estimates.

We briefly compare the ML estimates to the ones obtained through the following two-step

procedure:

– Step 1: estimate transition matrices through penalized least squares:

Ât-s = arg min
A

{
1
T
|||XT −XA>|||2F + λA‖A‖1

}
,

(B̂t-s, Ĉt-s) = arg min
(B,C)

{
1
T
|||ZT −XB> − ZC>|||2F + λB|||B|||∗ + λC ||C||1

}
.

– Step 2: estimate the inverse covariance matrices applying the graphical Lasso algorithm

[? ] to the residuals calculated based on the Step 1 estimates.
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Note that the two-step estimates coincide with our ML estimates at iteration 0, and they

yield the same error rate in terms of the relative scale of p1, p2 and T . We compare the two

sets of estimates under setting A.1 with B? being low rank and setting A.2 with B? being

sparse, whose entries are nonzero with probability 1/p1.

In Table 3.5, we present the performance evaluation of the two-step estimates and the

ML estimates under setting A.1. Additionally in Tables 3.6 and 3.7, we track the value of the

objective function, the relative error (in ‖ · ‖F ) and the cardinality (or rank) of the estimates

along iterations, with iteration 0 corresponding to the two-step estimates. A similar set of

results is shown in Tables 3.8 to 3.10 for setting A.2, but with a sparse B?. All other model

parameters are identically generated according to the procedure described in Section 3.5.1.

As the results show, the ML estimates clearly outperform their two-step counterparts,

in terms of the relative error in Frobenius norm. On the other hand, both sets of estimates

exhibit similar performance in terms of sensitivity and specificity and rank specification.

More specifically, when estimating A, the ML estimate decreases the false positive rate

(higher SPC). Under setting A.1, while estimating B and C, both estimates correctly identify

the rank of B, and the ML estimate provides a more accurate estimate in terms of the

magnitude of C, at the expense of incorrectly including a few more entries in its support set;

under setting A.2 with a sparse B?, improvements in both the relative error of B and C are

observed. In particular, due to the descent nature of the algorithm, we observe a sharp drop

in the value of the objective function at iteration 1, as well as the most pronounced change

in the estimates.

performance of Â performance of B̂ performance of Ĉ

SEN SPC Error Error rank(B̂) SEN SPC Error

two-step estimates 0.97 0.95 0.52 0.27 5 1.00 0.98 0.12
ML estimates 0.97 0.97 0.36 0.24 5 1.00 0.95 0.05

Table 3.5: Performance comparison under A.1 with a low-rank B.

iteration 0 1 2 3 4 5
Rel.Error 0.521 0.408 0.376 0.360 0.359 0.359
Cardinality 227 169 160 155 155 155
Value of Obj 128.14 41.74 37.94 37.85 37.70 37.70

Table 3.6: Relative error of Â and the values of the objective function under A.1.

iteration 0 1 2 3 4 5 6 7 8 9 10

Rel.Error of B̂ 0.274 0.235 0.236 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237

Rank of B̂ 5 5 5 5 5 5 5 5 5 5 5

Rel.Error of Ĉ 0.119 0.050 0.049 0.049 0.048 0.048 0.048 0.047 0.047 0.047 0.047

Cardinality of Ĉ 30 34 38 41 39 39 39 39 39 39 39
Value of Obj 160.41 134.26 131.90 131.48 131.38 131.17 131.01 130.96 130.96 130.85 130.8

Table 3.7: Relative error of B̂,Ĉ and the values of the objective function under A.1.
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performance of Â performance of B̂ performance of Ĉ
SEN SPC Error SEN SPC Error SEN SPC Error

two-step estimates 0.97 0.95 0.44 0.96 0.98 0.45 1 0.99 0.35
ML estimates 0.97 0.98 0.35 0.99 0.95 0.34 1 0.98 0.30

Table 3.8: Performance comparison under A.2 with a sparse B.

iteration 0 1 2 3 4
Rel.Error 0.438 0.346 0.351 0.351 0.351
Cardinality 479 350 325 324 324
Value of Obj 156.58 48.25 38.16 36.97 36.93

Table 3.9: Relative error of Â and the values of the objective function under A.2.

iteration 0 1 2 3 4

Rel.Error of B̂ 0.454 0.340 0.337 0.337 0.337

Cardinality of B̂ 301 325 323 323 323

Rel.Error of Ĉ 0.35 0.304 0.302 0.302 0.301

Cardinality of Ĉ 63 70 74 74 74
Value of Obj 143.942 59.63 41.46 41.87 41.87

Table 3.10: Changes over iteration under A.2.

3.5.3 Simulation results for the block Granger-causality test.

Next, we illustrate the empirical performance of the testing procedure introduced in

Section 3.4, together with the alternative one (in Appendix B.4) when B is sparse, with the

null hypothesis being B? = 0 and the alternative being B? 6= 0, either low rank or sparse.

Specifically, when the alternative hypothesis is true and has a low-rank structure, we use the

general testing procedure proposed in Section 3.4, whereas when the alternative is true and

sparse, we use the testing procedure presented in Appendix B.4. We focus on evaluating the

type I error (empirical false rejection rate) when B? = 0, as well as the power of the test

when B? has nonzero entries.

For both testing procedures, the transition matrix A? is generated with each entry being

nonzero with probability 2/p1, and the nonzeros are generated from Unif ([−2.5,−1.5] ∪ [1.5, 2.5]),

then further scaled down so that ρ(A?) = 0.5. For transition matrix C?, each entry is nonzero

with probability 1/p2, and the nonzeros are generated from Unif ([−2.5,−1.5] ∪ [1.5, 2.5]),

then further scaled down so that ρ(C?) = 0.5 or 0.8, depending on the simulation setting.

Finally, we only consider the case where vt and ut have diagonal covariance matrices.

We use sub-sampling as in ? ] and ? ] with the number of subsamples set to 3,000; an

alternative would have been a block bootstrap procedure [e.g. ? ? ? ]. Note that the length

of the subsamples varies across simulation settings in order to gain insight on how sample

size impacts the type I error or the power of the test.
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Low-rank testing. To evaluate the type I error control and the power of the test, we

primarily consider the case where rank(B?) = 0, with the data alternatively generated based

on rank(B?) = 1. We test the hypothesis H0 : rank(B) = 0 and tabulate the empirical

proportion of falsely rejecting H0 when rank(B∗) = 0 (type I error) and the probability

that we reject H0 when rank(B∗) = 1 (power). In addition, we also show how the testing

procedure performs when the underlying B? has rank r ≥ 0. In particular, when rank(B?) =

r?, the type I error of the test corresponds to the empirical proportion of rejections of the null

hypothesis H0 : r ≤ r?, while the power of the test to the empirical proportion of rejections

of the null hypothesis set to H0 : r ≤ (r? − 1). The latter resembles the sequential test in ?

].

Empirically, we expect that when B? = 0, the value of the proposed test statistic mostly

falls below the cut-off value (upper α quantile), while when rank(B?) = 1, the value of the

proposed test statistic mostly falls beyond the critical value χ2(α)p1p2/T with T being the

sample size, hence leading to a detection. Table 3.11 gives the type I error of the test when

setting α = 0.1, 0.05, 0.1, and the power of the test using the upper 0.01 quantile of the

reference distribution as the cut-off, for different combinations of model dimensions (p1, p2)

and sample size.

type I error (B? = 0) power (rank(B?) = 1)
(p1, p2) sample size α = 0.01 α = 0.05 α = 0.1 cut-off χ2(0.01)p1p2/T

ρ(C?) = 0.5

(20, 20)
T = 500 0.028 0.123 0.227 1
T = 1000 0.015 0.073 0.137 1
T = 2000 0.011 0.059 0.118 1

(50, 20)
T = 500 0.070 0.228 0.355 1
T = 1000 0.026 0.125 0.226 1
T = 2000 0.013 0.094 0.163 1

(20, 50)
T = 500 0.484 0.751 0.857 1
T = 1000 0.089 0.246 0.375 1
T = 2000 0.020 0.088 0.164 1

(100, 50)
T = 500 0.997 0.999 1 1
T = 1000 0.608 0.828 0.908 1
T = 2000 0.166 0.374 0.511 1

ρ(C?) = 0.8

(20, 50)
T = 500 0.533 0.789 0.880 1
T = 1000 0.130 0.306 0.452 1
T = 2000 0.045 0.145 0.252 1

(50, 20)
T = 500 0.083 0.250 0.382 1
T = 1000 0.039 0.133 0.234 1
T = 2000 0.019 0.096 0.174 1

type I error (H0 : r ≤ 5) power (H0 : r ≤ 4)
α = 0.01 α = 0.05 α = 0.1 cut-off χ2(0.01)(p1−4)(p2−4)/T

ρ(C?) = 0.5

rank(B?) = 5

(20, 50)
T = 500 0.092 0.274 0.400 1
T = 1000 0.034 0.140 0.236 1
T = 2000 0.022 0.096 0.178 1

(50, 20)
T = 500 0.454 0.722 0.829 1
T = 1000 0.126 0.313 0.452 1
T = 2000 0.062 0.184 0.284 1

Table 3.11: Empirical type I error and power for low-rank testing.

Based on the results shown in Table 3.11, it can be concluded that the proposed low-

rank testing procedure accurately detects the presence of “Granger causality” across the
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two blocks, when the data have been generated based on a truly multi-layer VAR system.

Further, when B? = 0, the type I error is close to the nominal α level for sufficiently large

sample sizes, but deteriorates for increased model dimensions. In particular, relatively large

values of p2 and larger spectral radius ρ(C?) negatively impact the empirical false rejection

proportion, which deviates from the desired control level of the type I error. In the case

where rank(B?) = r > 0, the testing procedure provides satisfactory type I error control for

larger sample sizes and excellent power.

Sparse testing. Since the rejection rule of the HC-statistic is based on empirical process

theory [? ] and its dependence on α is not explicit, we focus on illustrating how the

empirical proportion of false rejections (type I error) varies with the sample size T , the

model dimensions (p1, p2) and the spectral radius of C?. To show the power of the test, each

entry in B? is nonzero with probability q ∈ (0, 1) such that q(p1p2) = (p1p2)θ with θ = 0.6, to

ensure the overall sparsity of B? satisfies the sparsity requirement posited in Proposition B.1.

The magnitude is set such that the signal-to-noise ratio is 1.2. Note that the actual number

of parameters is p1p2, while the total number of subsamples used is 3000 with the length of

subsamples varying according to different simulation settings to demonstrate the dependence

of type I error and power on sample sizes.

type I error (B? = 0) power (SNR(B?) = 0.8)
(p1, p2) 200 500 1000 2000 200 500 1000 2000

ρ(C?) = 0.5

(20, 20) 0.244 0.097 0.074 0.055 1 1 1 1
(50, 20) 0.393 0.131 0.108 0.074 1 1 1 1
(20, 50) 0.996 0.351 0.153 0.093 1 1 1 1
(100, 50) 1.000 0.963 0.270 0.115 1 1 1 1

ρ(C?) = 0.8
(50, 20) 0.402 0.158 0.112 0.075 0.829 0.996 1 1
(20, 50) 0.999 0.430 0.166 0.111 1 1 1 1

Table 3.12: Empirical type I error and power for sparse testing.

Based on the results shown in Table 3.12, when B? = 0, the proposed testing procedure

can effectively detect the absence of block “Granger causality”, provided that the sample

size is moderately large compared to the total number of parameters being tested. However,

if the model dimension is large, whereas the sample size is small, the test procedure becomes

problematic and fails to provide legitimate type I error control, as desired. When B? is

nonzero, empirically the test is always able detect its presence, as long as the effective

signal-to-noise ratio is beyond the detection threshold.

3.6 Real Data Analysis Illustration.

We employ the developed framework and associated testing procedures to address one

of the motivating applications. Specifically, we analyze the temporal dynamics of the log-
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returns of stocks with large market capitalization and key macroeconomic variables, as well

as their cross-dependence. Specifically, using the notation in (3.1), we assume that the Xt

block consists of the stock log-returns, while the macroeconomic variables form the Zt block.

With this specification, we assume that the macroeconomic variables are “Granger-caused”

by the stock market, but not vice versa. Note that our framework allows us to pose and

test a more general question than previous work in the economics literature considered. For

example, ? ] building on previous work by [? ? ] tests only the relationship between the

employment index and the composite stock index, using a bivariate VAR model. On the

other hand, our framework enables us to consider the components of the S&P 100 index and

the “medium” list of macroeconomic variables considered in the work of ? ].

Next, we provide a brief description of the data used. The stock data consist of monthly

observations of 71 stocks corresponding to a stable set of historical components comprising

the S&P 100 index for the 2001-2016 period. The macroeconomic variables are chosen from

the “medium” list in ? ]; that is, the 3 core economic indicators (Fed Funds Rate, Consumer

Price Index and Gross Domestic Product Growth Rate), plus 17 additional variables with ag-

gregate information (e.g., exchange rate, employment, housing, etc.). However, in our study,

we exclude variables that exhibit a significant change after the financial crisis of 2008 (e.g.

total reserves/reserves of depository institutions). We process the macroeconomic variables

to ensure stationarity following the recommendations in ? ]. As a general guideline, for real

quantitative variables (e.g., GDP, money supply M2), we use the relative first difference,

which corresponds to their growth rate, while for rate-related variables (e.g., Federal Funds

Rate, unemployment rate), we use their first differences directly. The complete lists of stocks

and macroeconomic variables used in this study are given in Appendix B.7.

We start the analysis by using the VAR model for the stock log-returns to study their

evolution over the 2001-2016 period. Analogously to the strategy employed by ? ], we

consider 36-month long rolling-windows for fitting the model Xt = AXt−1 +Ut, for a total of

143 estimates of the transition matrix A. VAR models involving more than 1 lag were also

fitted to the data, but did not indicate temporal dependence beyond lag 1.

To obtain the final estimates across all 143 subsamples, we employ stability selection [?

], with the threshold set at 0.6 for including an edge in A.2 Figure 3.2 depicts the global

clustering coefficient [? ] of the skeleton of the estimated A over all 143 rolling windows,

with the time stamps on the horizontal axis specifying the starting time of the corresponding

window.

The results clearly indicate strong connectivity in lead-lag stock relationships during the

financial crisis period March 2007-June 2009. It is of interest that the data exhibit such

2The threshold is set at a relatively low level to compensate for the relative small rolling window size.
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Figure 3.2: Global clustering coefficient of estimated A over different periods

sharp changes at time points that correspond to well documented events in the literature;

namely, March 2007 when several subprime lenders declared bankruptcy, put themselves up

for sale or reported significant losses and June 2009 that the National Bureau of Economic

Research declared as the end point of the crisis. Similar patterns were broadly observed

in ? ? ], albeit for a different set of stocks and using a different statistical methodology.

Specifically, ? ] considered financial sector stocks (banks, brokerages, insurance companies),

while ? ] considered European banking stocks, and both studies used bivariate VAR models

to obtain the results, thus ignoring the influence of all other components on the pairwise

Granger causal relationship estimated and hence producing potentially biased estimates of

connectivity.

Next, we present the analysis based on the VAR-X component of our model, given by

Zt = BXt−1 + CZt−1 + Vt with the stock log-returns corresponding to the Xt block and the

(stationary) macroeconomic variables to the Zt block. As before, we fit the data within each

rolling window, with the tuning parameters based on a search over a 10 × 10 lattice (with

(λB, λC) ∈ [0.5, 4] × [0.2, 2], equal-spaced) using the BIC. It should be noted that for the

majority of the rolling windows, the rank of B is 1 (data not shown). The sparsity level of the

estimated C over the 143 rolling windows is depicted in Figure 3.3. The connectivity patterns

in C show more complex and nuanced patterns than for stocks. Several local peaks depicted

correspond to the following events: (i) March-April 2003, when the Federal Reserve cut the

Effective Federal Funds Rate aggressively driving it down to 1%, the lowest level in 45 years

up to that point, (ii) January-March 2008, a significant decline in the major US stock indexes,

coupled with the freezing up of the market for auctioning rate securities with investors

declining to bid, (iii) January-April 2009, characterizes the unfolding of the European debt

crisis with a rescue package put together for Greece and significant downgrades of Spanish

and Portuguese sovereign debt by rating agencies and (iv) July 2010, that correspond to the
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Figure 3.3: Sparsity of estimated C over different periods

enactment of the Dodd-Frank Wall Street Reform and Consumer Protection Act and the

acceleration of quantitative easing by the Federal Reserve Board.

Based on the previous findings, we partition the time frame spanning 2001-2016 into

the following periods: pre- (2001/07–2007/03), during- (2007/01–2009/12) and post-crisis

(2010/01-2016/06) one. We estimate the model parameters using the data within the entire

sub-period(s).

The estimation procedure of the transition matrix A for different periods is identical to

that described above using subsamples over rolling-windows. For the pre- and post- crisis

periods, since we have 76 and 77 samples respectively, the stability selection threshold is

set at 0.75, whereas for the during-crisis period, at 0.6 to compensate for the small sample

size (36). Table 3.13 shows the average R-square for all 71 stocks, as well as its standard

deviation, which is calculated based on in-sample fit; i.e.,the proportion of variation explained

by using the VAR(1) model to fit the data. The overall sparsity level and the spectral radius

of the estimated transition matrices A are also presented. The results are consistent with

the previous finding of increased connectivity during the crisis. Further, for all periods the

estimate of the spectral radius is fairly large, indicating strong temporal dependence of the

log-returns.

2001/07–2007/03 2007/01–2009/12 2010/01–2016/06
Averaged R sq 0.31 0.72 0.28
Sd of R sq 0.103 0.105 0.094

Sparsity level of Â 0.17 0.23 0.19

Spectral radius of Â 0.67 0.90 0.75

Table 3.13: Summary for estimated A within different periods.

Figures 3.7 to 3.9 depict the estimated transition matrices A for different periods, as a

network, with edges thresholded based on their magnitude for ease of presentation. The
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node or edge coloring red/blue indicates the sign positive/negative of the corresponding

entry in the transition matrix. Further, node size is proportional to the out-degree, thus

indicating which stocks influence other stocks in the next time period. The most striking

feature is the outsize influence exerted by the insurance company AIG and the investment

bank Goldman Sachs, whose role during the financial crisis has been well documented [? ].

On the other hand, the pre- and post-crisis periods are characterized by more sparse and

balanced networks, in terms of in- and out-degree magnitude.

Next, we focus on the key motivation for developing the proposed modeling framework,

namely the inter-dependence of stocks and macroeconomic variables over the specified three

sub-periods. The p-value for testing the hypothesis of lack of block “Granger causality”

H0 : B = 0, together with the spectral radius and the sparsity level for the estimated

C transition matrices are listed in Table 3.14. Specifically, for all three periods, the rank

of estimated B is 1, indicating that the stock market as captured by its leading stocks,

“Granger-causes” the temporal evolution of the macroeconomic variables. The fact that the

rank of B is 1, indicates that the inter-block influence can be captured as a single portfolio

acting in unison. To investigate the relative importance of each sector in the portfolio, we

group the stocks by sectors. The proportion of each sector (up to normalization) is obtained

by summing up the loadings (first right singular vector of the estimated B) of the stocks

within this sector, weighted by their market capitalization. Further, the estimated transition

matrices C’s are depicted in network form, in Figures 3.4 to 3.6. It is worth noting that the

temporal correlation of the macroeconomic variables significantly increased during the crisis.

Note that the proportion of various sectors in the portfolio is highly consistent with their

role in stock market. For example, before crisis the financial sector had a large market

capitalization (roughly 20%), while it shrunk (to roughly 12%) after the crisis. Also, the

Information Technology (IT) and Financial (FIN) sectors are the ones exhibiting highest

volatility (high beta) relative to the market, while the Utilities is the one with low volatility

(low beta) , a well established stylized fact in the literature for the time period under

consideration.

Next, we discuss some key relationships emerging from the model. We start with total

employment (ETTL), whose dynamics are only influenced by its own past values as seen by

the lack of an incoming arrow in Figure 3.5. Further, an examination of the left singular

vector (see Table 3.15) of B strongly indicates the impact of the stock market on total

employment. This finding is consistent with the analysis in ? ], which argues that the

crash of the stock market provides a plausible explanation for the great recession. However,

the analysis in ? ] is based on bivariate VAR models involving only employment and the

stock index. Therefore, there is a possibility that the stock market is reacting to some other
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information captured by other macroeconomic variables, such as GDP, capital spending,

inflation, interest rates, etc. However, our high-dimensional VAR model simultaneously

analyzes a key set of macroeconomic variables and also accounts for the influence of the

largest stocks in the market. Hence, it automatically overcomes the criticism leveraged by

[? ] about misinterpretations of findings from small scale VAR models due to the omission

of important variables, and further echoed in the discussion in [? ].

Another interesting finding is the strong influence of the stock market on GDP in the

pre- and post-crisis period, consistent with the popular view of being a leading indicator

for GDP growth. Further, capital utilization is positively impacted during the crisis period

by GDP growth and total employment—which are both falling and hence reducing capital

utilization—and further accentuated by the impact of the stock market—also falling—thus

reinforcing the lack of available capital goods and resources.

In summary, the brief analysis presented above provides interesting insights into the

interaction of the stock market with the real economy, identifies a number of interesting

developments during the crisis period and reaffirms a number of findings studied in the

literature, while ensuring that a much larger information set is utilized (a larger number of

variables included) than in previous analysis. Therefore, high-dimensional multi-block VAR

models are useful for analyzing complex temporal relationships and provide insights into

their dynamics.

2001/07–2007/03 2007/01–2009/12 2010/01–2016/16
p-value for testing H0 : B = 0 0.075 0.009 0.044

Sparsity level of Ĉ 0.06 0.25 0.06

Spectral radius of Ĉ 0.35 0.76 0.40

Table 3.14: Summary for estimated B and C within different periods.

Pre-Crisis During-Crisis Post-Crisis
FFR -0.24 -0.26 -0.23
T10yr -0.09 0.14 0.16
UNEMPL -0.07 0.01 -0.07
IPI -0.43 0.34 0.26
ETTL 0.33 0.24 0.13
M1 0.23 -0.12 -0.47
AHES -0.01 0.30 0.17
CU -0.49 0.32 0.27
M2 0.10 -0.04 -0.32
HS 0.51 -0.02 -0.02
EX -0.18 0.41 0.06
PCEQI -0.07 -0.18 0.41
GDP 0.10 -0.02 0.05
PCEPI 0.00 0.14 -0.01
PPI -0.15 0.00 0.06
CPI 0.01 0.15 -0.31
SP.IND -0.06 -0.53 0.38

Table 3.15: Left singular vectors of estimated B for different periods.
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Remark 3.7. We also applied our multi-block model with the first block Xt corresponding

to the macro-economic variables and the second block Zt the stocks variables (results not

shown). The key question is whether there is also “Granger causality” from the broader

economy to the stock market. The results are inconclusive due to sample size issues that

do not allow us to properly test for the key hypothesis whether B = 0 or not. Specifically,

the length of the sub-periods is short compared to the dimensionality required for the test

procedure. A similar issue arises, which is related to the detection boundary for the sparse

testing procedure during the crisis period. Further, for a sparse B, an examination of its

entries shows that Employment Total did not impact the stock market, which is in line with

the conclusion reached at the aggregate level by ? ]. On the other hand, GDP negatively

impacts stock log-returns, which may act as a leading indicator for suppressed investment

and business growth and hence future stock returns.

3.7 Discussion.

We briefly discuss generalizations of the model to the case of more than two blocks, as

mentioned in the introductory section. For the sake of concreteness, consider a triangular

recursive linear dynamical system given by:

X
(1)
t = A11X

(1)
t−1 + ε

(1)
t ,

X
(2)
t = A12X

(1)
t−1 + A22X

(2)
t−1 + ε

(2)
t ,

X
(3)
t = A13X

(1)
t−1 + A23X

(2)
t−1 + A33X

(3)
t−1 + ε

(3)
t ,

...

(3.28)

where X(j) ∈ Rpj denotes the variables in group j, Aij (i < j) encodes the dependency

of X(j) on the past values of variables in group i, and Ajj encodes the dependency on its

own past values. Further, {ε(j)t } is the innovation process that is neither temporally, nor

cross-sectionally correlated, i.e.,

Cov(ε
(j)
t , ε(j)s ) = 0 (s 6= t), Cov(ε

(i)
t , ε

(j)
s ) = 0 (i 6= j, ∀ (s, t)), Cov(ε

(j)
t , ε

(j)
t ) =

(
Ω(j)

)−1
,

with Ω(j) capturing the conditional contemporaneous dependency of variables within group j.

The model in (3.28) can also be viewed from a multi-layered time-varying network perspec-

tive: nodes in each layer are “Granger-caused” by nodes from its previous layers, and are also

dependent on its own past values. As previously mentioned, in various real applications, it is

of interest to obtain estimates of the transition matrices, and/or test if “Granger-causality”

is present between interacting blocks; i.e., to test Aij = 0 for some i 6= j.
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The triangular structure of the system decouples the estimation of the transition matrices

from each equation, and hence a straightforward extension of the estimation procedure pre-

sented in Section 3.2.1 becomes applicable. Specifically, to obtain estimates of the transition

matrices Aij’s for fixed j and 1 ≤ i ≤ j, and the inverse covariance Ω(j), the optimization

problem is formulated as follows:

({Âij}i≤j , Ω̂(j)) = arg min
Aij ,Ω(j)

{
− log det Ω(j)+

1

T

T∑
t=1

(
x

(j)
t −

j∑
i=1

Aijx
(i)
t−1

)>
Ω(j)

(
x

(j)
t −

∑
1≤i≤j

Aijx
(i)
t−1

)
+

j∑
i=1

R(Aij) + ρ(j)‖Ω(j)‖1,off

}
, (3.29)

where the exact expression for the R(Aij) adapts to the structural assumption imposed

on the corresponding transition matrix (sparse/low-rank). Solving (3.29) again requires

an iterative algorithm involving the alternate update between transition matrices and the

inverse covariance matrices. Further, for updating the values of the transition matrices, a

cyclic block-coordinate updating procedure is used.

Consistency results can be established analogously to those provided in Section 3.3, under

the posited conditions of restricted strong convexity (RSC) and a deviation bound. With a

larger number of interacting blocks of variables, lower bounds for the lower extremes of the

spectra involve all corresponding transition matrices. The error rates that can be obtained

are as follows: (i) if equation k only involves sparse transition matrices, then the finite-

sample bounds of the transition matrices in this layer in Frobenius norm are of the order

O
(√ log pk+log

∑
i≤k pk

T

)
, while (ii) if some of the transition matrices are assumed low rank, then

the corresponding finite sample bounds are of the order O
(√pk+

∑
i≤k pk
T

)
.

Another generalization that can be handled algorithmically with the same estimation

procedure discussed above is the presence of d-lags in the specification of the linear dynam-

ical system. Based on the consistency results developed in this work, together with the

theoretical findings for VAR(d) models presented in ? ], we expect all the established theo-

retical properties of the transition matrices estimates to go through under appropriate RSC

and deviation bound conditions.

78



C.D
20%

C.S
0%

ENERGY
8%

FIN
36%

H.C
5%

IND
2%

IT
18%

MATL
2%

TELECOM
9%

UTIL
0%

PRE-CRISIS

FFR

T10yr

UNEMPLIPI

ETTL

M1

AHES

CU

M2

HS

EX

PCEQI

GDP

PCEPI

PPI

CPI

SP.IND

Figure 3.4: Sector proportion and estimated C for pre-crisis period.
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Figure 3.5: Sector proportion and estimated C for during-crisis period.
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Figure 3.6: Sector proportion and estimated C for post-crisis period.
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Figure 3.7: Estimated transition matrix for stock dynamics between 2001 to 2007.
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Figure 3.8: Estimated transition matrix for stock dynamics between 2007 to 2009.
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Figure 3.9: Estimated transition matrix for stock dynamics between 2010 to 2016.
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CHAPTER IV

Regularized Estimation of High-dimensional Factor-Augmented

Vector Autoregressive (FAVAR) Models

4.1 Introduction.

There is a growing need in employing a large set of time series (variables) for modeling

social or physical systems. For example, economic policy makers have concluded based on

extensive empirical evidence [e.g. ? ? ? ] that large scale models of economic indicators

provide improved forecasts, together with better estimates of how current economic shocks

propagate into the future, which produces better guidance for policy actions. Another reason

for considering large number of time series in social sciences is that key variables implied

by theoretical models for policy decisions1 are not directly observable, but related to a large

number of other variables that collectively act as a good proxy of the unobservable key

variables. In other domains such as genomics and neuroscience, advent of high throughput

technologies have enabled researchers to obtain measurements on hundreds of genes from

functional pathways of interest [? ] or brain regions [? ], thus allowing a more comprehensive

modeling to gain insights into biological mechanisms of interest. There are two popular

modeling paradigms for such large panel of time series, with the first being the Vector

Autoregressive (VAR) model [? ] and the second being the Dynamic Factor Model (DFM)

[? ? ].

The VAR model has been the subject of extensive theoretical and empirical work primar-

ily in econometrics, due to its relevance in macroeconomic and financial modeling. However,

the number of model parameters increases quadratically with the number of time series in-

cluded for each lag period considered, and this feature has limited its applicability since in

many applications it is hard to obtain adequate number of time points for accurate esti-

mation. Nevertheless, there is a recent body of technical work that leveraging structured

1such as the concept of output gap for monetary policy, the latter defined as the difference between the
actual output of an economy and its potential output
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sparsity and the corresponding regularized estimation framework has established results for

consistent estimation of the VAR parameters under high dimensional scaling. ? ] examined

Lasso penalized Gaussian VAR models and proved consistency results, while providing tech-

nical tools useful for analysis of sparse models involving temporally dependent data. [? ]

extended the results to other regularizers, ? ] to the inclusion of exogenous variables (the

so-called VAR-X model in the econometrics literature), [? ] to models for count data and

? ] to the simultaneous estimation of time lags and model parameters. However, a key

requirement for the theoretical developments is a spectral radius constraint that ensures the

stability of the underlying VAR process [see ? ? , for details]. For large VAR models, this

constraint implies a smaller magnitude on average for all model parameters, which makes

their estimation more challenging, unless one compensates with a higher level of sparsity.

Nevertheless, very sparse VAR models may not be adequately informative, while their esti-

mation requires larger penalties that in turn induce higher bias due to shrinkage, when the

sample size stays fixed.

The DFM model aims to decompose a large number of time series into a few common

latent factors and idiosyncratic components. The premise is that these common factors are

the key drivers of the observed data, which themselves can exhibit temporal dynamics. They

have been extensively used for forecasting purposes in economics [? ], while their statistical

properties have been studied in depth [see ? , and references therein]. Despite their ability to

handle very large number of time series, theoretically appealing properties and extensive use

in empirical work in economics, DFMs aggregate the underlying time series and hence are

not suitable for examining their individual cross-dependencies. Since in many applications

researchers are primarily interested in understanding the interactions between key variables

[? ? ], while accounting for the influence of many others so as to avoid model misspecification

that leads to biased results, DFMs may not be the most appropriate model.

To that end, ? ] came up with a compromise model, called the Factor Augmented VAR,

that aims to summarize the information contained in a large set of time series by a small

number of factors and include those in a standard VAR. Specifically, let {Ft} ∈ Rp1 be the

latent factor and {Xt} ∈ Rp2 the observed sets of variables, they jointly form a VAR system

given by [
Ft

Xt

]
= A(1)

[
Ft−1

Xt−1

]
+ · · ·+ A(d)

[
Ft−d

Xt−d

]
+

[
wFt

wXt

]
. (4.1)

In addition, there is a large panel of observed time series Yt ∈ Rq, whose current values are

influenced by both Xt and Ft:

Yt = ΛFt + ΓXt + et. (4.2)
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Hence, the primary variables of interest Xt together with the unobserved factors Ft—both

are assumed to have small and fixed dimensions—drives the dynamics of the system, and

the factors are inferred from (4.2).

Note that there is very limited theoretical work [e.g. ? ] on the FAVAR model and some

work on identification restrictions for the model parameters [e.g. ? ]. However, the fixed

dimensionality (p1 + p2) assumption is rather restrictive in many applications as discussed

next. The model has been extensively used in empirical work in economics and finance

[e.g. ? ? ], where customarily a very small size block Xt is considered. For example, in

the paper that introduced the FAVAR model [? ] Xt comprises of three “core” economic

indicators (industrial production, consumer price index and the federal funds rate) and Yt

of 120 other economic indicators. The VAR model considered is augmented by one factor

summarizing the macroeconomic indicators and its dependence over time involves 7 lags,

thus increasing the sample size requirement for its estimation. In a recent application, ? ]

applies the FAVAR model to macroeconomics effects of oil supply shocks, the VAR model

comprises of 8 times series (observed and latent), but due to the limitation in sample size to

avoid non-stationarities (T = 120) the lag of the model is fixed to 1. Hence, as argued in ? ]

there is a growing need for large scale FAVAR models and this papers aims to examine their

estimation in high-dimensions, leveraging sparsity constraints on key model parameters.

The key contributions of this chapter are the investigation of the theoretical properties

of estimates of the FAVAR model parameters under high-dimensional scaling, together with

the introduction of an identifiability constraint compatible with the high-dimensional nature

of the model. At the technical level there are two sets of challenges that are successfully

resolved: (i) the calibration equation involves both an observed set of predictor variables

and a set of latent factors, and their interactions require careful handling to enable accurate

estimation of the factors, which is crucial for estimating the transition matrix since they

constitute part of the input to the VAR system; and (ii) the presence of a block of variables

in the VAR system that are subject to error due to it being an estimated quantity intro-

duces a number of technical challenges, which are compounded by the presence of temporal

dependence.

Outline of the chapter. The remainder of the chapter is organized as follows. In Sec-

tion 4.2, the model identifiability constraint is introduced, followed by formulation of the

objective function to be optimized that obtains estimates of the model parameters. Theo-

retical properties of the proposed estimators, specifically, their high probability finite-sample

error bounds, are investigated in Section 4.3. Subsequently in Section 4.4, we introduce an

empirical implementation procedure for obtaining the estimates and present its performance
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evaluation based on synthetic data. An application of the model on interlinkages of com-

modity prices and the influence of world macroeconomic indicators on them is presented

in Section 4.5, while Section 4.6 provides some concluding remarks. All proofs and other

supplementary materials are deferred to Appendix C.

Notations. Throughout this chapter, we use |||A|||· to denote matrix norms for some generic

matrix A ∈ Rm×n. For example, |||A|||1 and |||A|||∞ respectively denote the matrix induced

1-norm and infinity norm, |||A|||op the matrix operator norm and |||A|||F the Frobenius norm.

Moreover, We use ‖A‖1 and ‖A‖∞ respectively to denote the element-wise 1-norm and

infinity norm. For two matrices A and B of commensurate dimensions, denote their inner

product by 〈〈A,B〉〉 = tr(A>B). Finally, we write A & B if there exists some absolute

constant c that is independent of the model parameters such that A ≥ cB; and A � B if

A & B and B & A hold simultaneously.

4.2 Model Identification and Problem Formulation.

The FAVAR model proposed in ? ] has the following two components, as seen in Section

4.1: a system given in (4.1) that describes the dynamics of the latent block Ft ∈ Rp1 and

the observed block Xt ∈ Rp2 that jointly follow a stationary VAR(d) model (the “VAR

equation”); and the model in (4.2) that characterizes the contemporaneous dependence of

the large observed informational series Yt ∈ Rq as a linear function of Xt and Ft (the

“calibration equation”). Further, wFt , wXt and et are all noise terms that are independent

of the predictors, and we assume they are serially uncorrelated mean-zero Gaussian random

vectors: wFt ∼ N (0,ΣF
w), wXt ∼ N (0,ΣX

w ) and et ∼ N (0,Σe). In this study we consider a

potentially large VAR system that has many coordinates, hence in contrast to ? ] and ? ]

where both p1 and p2 are fixed and small, we allow the size of the observed block, p2, to be

large2 and to grow with the sample size; yet the size of the latent block, p1, can not be too

large and is still assumed fixed. Moreover, the size of the informational series, q, can also

be large and grow with the sample size. Further, we assume that the transition matrices

{A(i)}di=1 and the regression coefficient matrix Γ are sparse. Finally, the factor loading matrix

Λ is assumed to be dense.

2We do not impose the restriction that p2 is smaller than the available sample size.
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4.2.1 Model identification considerations.

The latent nature of Ft leads to the following observational equivalence across the fol-

lowing two models: for any invertible matrix Q1 ∈ Rp1×p1 and Q2 ∈ Rp1×p2 ,

Yt = ΛFt + ΓXt + et ≡ Λ̃F̃t + Γ̃Xt + et,

where

Λ̃ := ΛQ1, F̃t := Q−1
1 Ft −Q−1

1 Q2Xt, Γ̃ := Γ + ΛQ2. (4.3)

Hence, the key model parameters (Λ,Γ) and the latent factors Ft are not uniquely identified, a

known problem even in classical factor analysis [? ]. Thus, additional restrictions are required

to overcome this indeterminacy, since there is an equivalence class indexed by (Q1, Q2) within

which individual models are not mutually distinguishable based on observational data. For

the FAVAR model, a total number of p2
1+p1p2 restrictions are needed for unique identification

of Λ, Γ and Ft.

Various schemes have been proposed in the literature to address this issue. Specifically,

? ] imposes the necessary restrictions through the coefficient matrices of the calibration

equation, requiring Λ =
[

Ip1∗
]

and Γ[1:p1],· = 0; that is, the upper p1 × p1 block of Λ is

set to the identity matrix and the first p1 rows of Γ to zero. ? ] considers different sets

of restrictions (respectively labeled as IRa, IRb and IRc), all involving parameters from

both the calibration and the VAR equations; in particular, p1p2 of the total restrictions

required are imposed through Cov(wXt , w
F
t ) = O and the remaining p2

1 ones are imposed in

an analogous fashion to those in classical factor analysis.

In the low-dimensional setting (p2 fixed), one can proceed to estimate the parameters sub-

ject to these restrictions. For example, ? ] uses a single-step Bayesian likelihood approach

that fully incorporates their proposed identifiability restrictions, yet is computationally in-

tensive. The procedure in ? ] requires the projection onto the orthogonal space spanned by

samples of Xt as the very first step and the inverse matrix associated with of the sample

covariance of wtX for further rotation. However, in high-dimensional settings, the growing di-

mension p2 of the observed block Xt will further exacerbate the computational inefficiency of

the aforementioned Bayesian approach. Further, neither the projection step nor the matrix

inversion one are possible, which automatically renders the estimation procedure proposed

in ? ] infeasible3.

Next, we introduce an alternative identification scheme (IR+) that is compatible with

the model specification and can also be seamlessly incorporated in the estimation procedure.

3For a full account of the estimation procedure in ? ] and why it fails to go through in high dimensions,
see Appendix C.4
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First, we require:

(IR) Λ =
[

Ip1∗
]
: the upper p1 × p1 block of Λ is an identity matrix, while the bottom block

is left unconstrained.

Note that (IR) only involves p2
1 constraints and yields uniquely identifiable Λ and F , for any

given product ΛFt. Note that the latent factor under (IR) remains completely unrestricted

which is desirable given its use in the VAR system. The (IR) constraint corresponds to a

commonly employed identifiability scheme in classical factor analysis [e.g. ? ]. Specifically,

with (IR), the indeterminacy incurred by Q1 ∈ Rp1×p1 in (4.3) vanishes; however, the issue

is not fully resolved, since for any Q2 ∈ Rp1×p2 , the following relationship holds:

Yt = ΛFt + ΓXt + et ≡ ΛF̌t + Γ̌Xt + et,

where

F̌t = Ft −Q2Xt Γ̌ := Γ + ΛQ2. (4.4)

All such models encoded by (F̌t, Γ̌), form an equivalence class indexed by Q2 that specifies

the transformation. We denote this equivalence class by C(Q2) and the magnitude of Q2

can be interpreted as a rough measure of discordance between the true data-generating

model encoded by (Ft,Γ) and those encoded by (F̌t, Γ̌). In particular, such discordance

becomes zero when Q2 = O and C(Q2) degenerates to a singleton that contains only the true

data-generating model, which requires the imposition of p1p2 restrictions on primary model

quantities. For example, as previously mentioned, ? ] impose the restrictions through Γ by

constraining its first p1 rows to be equal to zero. Nevertheless, from a model perspective it

translates to expressing the first p1 coordinates of Yt as noisy versions of Ft, which in turn

makes it difficult to appropriately choose those coordinates in applications. ? ] requires

Cov(wXt , w
F
t ) = O which resolves the identifiability issue at the population level, but this

constraint can not be operationalized in the high-dimensional setting as explained above.

An applicable constraint to high-dimensional settings is given by Cov(Ft, Xt) = O which

yields the necessary p1p2 restrictions. Yet, it is excessively stringent and limits the appeal

of the FAVAR model, while also being challenging to operationalize. Therefore as a good

working alternative, we address the identifiability issue through a weaker constraint that

effectively limits sufficiently the size of the C(Q2).

To this end, we first let X ∈ Rn×p2 , Y ∈ Rn×q and F ∈ Rn×p1 be centered data matrices

whose rows are samples of Xt, Yt and the latent process Ft respectively, and F̌ is analogously

defined. The characterization of C(Q2) is through the sample versions of the underlying
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processes. Specifically, define the set of factor hyperplanes induced by C(Q2) by

S(Θ̌) := {Θ̌ := F̌Λ> | F̌ are samples of F̌t defined through (4.4)}.

Further, let Θ (without the check) denote the factor hyperplane associated with the true

data-generating model, to distinguish it from some generic element in S(Θ̌) that is denoted

by Θ̌. Note that Θ ∈ S(Θ̌) and Θ̌ coincides with Θ when Q2 = 0. In addition, we require

that all elements in S(Θ̌) to satisfy the following constraint:

(Compactness) |||Θ̌/
√
n|||op ≤ φ, that is, the largest singular value of (Θ̌/

√
n) does not

exceed a pre-specified value φ.

(Compactness) limits the spikiness of all possible Θ̌’s by imposing a box constraint on their

eigen-spectra, and restricts the factor hyperplane set induced by C(Q2) to its φ-radius subset

Sφ(Θ̌), where

Sφ(Θ̌) := {|||Θ̌/
√
n|||op ≤ φ | Θ̌ ∈ S(Θ̌)}.

This in turn limits the size of the equivalence class C(Q2) under consideration, since there

is a one-to-one correspondence at the set level between C(Q2) and the factor hyperplane set

induced by it. Since Θ ∈ S(Θ̌), φ ≥ φ0 := |||Θ/
√
n|||op. The

√
n factor is introduced to reflect

proper scaling with respect to the available number of samples. Note that this constraint

also indirectly limits the magnitude of Q2, since by singular value inequalities4 and (4.4), we

get

|||XQ>2 Λ>/
√
n|||op − |||Θ/

√
n|||op ≤ |||Θ̌/

√
n|||op ≤ φ.

The above gives that

|||Q2|||op ≤
φ+ φ0

σmin(X/
√
n)σmin(Λ)

, (4.5)

where σmin denotes the smallest nonzero singular value that comes from the reduced SVD

of the corresponding matrix. Even though the bound in (4.5) may not be the tightest,

it nevertheless imposes an effective constraint on Q2, since it no longer allows Q2 to take

arbitrary values in the set of p1×p2 matrices. Consequently, the size of the equivalence class

C(Q2) is also limited, which implies that although the models encoded by (Ft,Γ) and (F̌t, Γ̌)

may not be perfectly distinguishable based on observational data, at the population level

the discordance between the two models can not be too large.

In summary, our proposed identification scheme (IR+) entails two parts: (IR) and (Com-

pactness). The former provides exact identification within the factor hyperplane and narrows

4For two generic matrices A and B of commensurate dimensions, let σ1 ≥ σ2 ≥ · · · denote their singular
values in decreasing order, then the following inequality holds: σi(A + B) ≥ σi(A) − σ1(B). This can be
derived from Theorem 3.4.1 in ? ].
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the scope of observationally equivalent models to C(Q2), while the latter limits its size. Hence,

(IR+) can be viewed as an approximate identification scheme of the true data generating

model.

Thus, for estimation purposes henceforth, it becomes adequate to focus on this restricted

equivalence class, rather than its individual elements. The (IR+) constraint is suitable for

the high-dimensional nature of the problem and can easily be incorporated in the formulation

of the optimization problem for parameter estimation (see Section 4.2.2), which in turn yields

estimates with tight error bounds (see Section 4.3).

Remark 4.1. It is worth pointing out that the sparsity requirement on Γ further limits the

size of the equivalence class C(Q2). To see this, note that for an arbitrary element in C(Q2), Γ̌

satisfies Γ̌ = Γ+ΛQ2. In order for Γ and Γ̌ to have the same support, Q2 needs to be further

restricted. However, since the support set of Γ is unknown, this further implicit restriction

on structural equivalence can not be enforced or verified, and the effective equivalence class

can not be characterized through the support set either.

4.2.2 Proposed formulation.

Without loss of generality, we focus on the case where d = 1 in subsequent technical

developments, so that Zt := (F>t , X
>
t )> follows a VAR(1) model Zt = AZt−1 +Wt:[

Ft

Xt

]
=

[
A11 A12

A21 A22

][
Ft−1

Xt−1

]
+

[
wFt

wXt

]
. (4.6)

The generalization to the VAR(d) (d > 1) case is straightforward since for any generic

VAR(d) process satisfying Ad(L)Zt = wt where Ad(L) := I − A(1)L − · · · − A(d)Ld, it can

always be written in the form of a VAR(1) model for some dp-dimensional process Z̃t [see ?

, for details].

Based on the introduced model identification scheme (IR+), we propose the following

procedure to estimate the FAVAR model with a sparse coefficient matrix Γ and a dense

loading matrix Λ, together with a sparse transition matrix A. Observed data matrices X and

Y are identical to what have been previously defined, and to distinguish the responses from

their lagged predictors when considering the VAR system, we let Xn−1 := [x1, . . . , xn−1]>

denote the predictor matrix and Xn := [x2, . . . , xn]> the response one; Fn,Fn−1,Zn,Zn−1

are analogously defined. Based on these notations, the sample versions of the VAR system

and the calibration equation in (4.6) and (4.2) can be written as

Zn = Zn−1A
> + W, and Y = FΛ> + XΓ> + E =: Θ + XΓ> + E.
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We propose the following estimators obtained from a two-stage procedure for the coefficient

matrices Λ, Γ and subsequently the transition matrices {Aij}i,j=1,2.

– Stage I: estimation of the calibration equation under (IR+). We formulate the following

constrained optimization problem using a least squares loss function and incorporating

the sparsity-induced `1 regularization of the sparse block Γ, the rank constraint on the

hyperplane Θ, and (Compactness):

(Θ̂, Γ̂) := arg min
Θ∈Rn×q ,Γ∈Rq×p2

{ 1

2n
|||Y −Θ−XΓ>|||2F + λΓ‖Γ‖1

}
,

subject to rank(Θ) ≤ r, |||Θ/
√
n|||op ≤ φ.

(4.7)

Once Θ̂ is obtained, under (IR), the estimated factors F̂ and the corresponding loading

matrix Λ̂ are extracted as follows:

F̂ = F̂PC(Λ̂PC
1 )>, Λ̂ = Λ̂PC(Λ̂PC

1 )−1, (4.8)

where Λ̂PC
1 is the upper p1 sub-block of Λ̂PC, with F̂PC and Λ̂PC being the PC estimators

[? ] given by F̂PC :=
√
nÛ and Λ̂PC := V̂ D̂/

√
n. The estimates Û , D̂ and V̂ are

obtained from the SVD of Θ̂ = ÛΘ̂V̂ >. Note that after these algebra, F̂ is the first p1

columns of Θ̂.

– Stage II: estimation of the VAR equation based on X and F̂. With the estimated

factor F̂ as the surrogate for the true latent factor F, the transition matrix A can be

estimated by solving

Â := arg min
A∈R(p1+p2)×(p1+p2)

{ 1

2n
|||Ẑn − Ẑn−1A

>|||
2

F + λA‖A‖1

}
, (4.9)

where Ẑn := [F̂n,Xn] and Ẑn−1 is analogously defined. The `1-norm penalty induces

sparsity on A according to the model assumption.

In principle, there may be additional contemporaneous dependence amongst the coordi-

nates of the error processes et, w
X
t , w

F
t , respectively. In that case, one has to make additional

assumptions on the structure of the inverses of covariance matrices Σe, ΣX
w and ΣF

w (e.g.

sparsity) and modify the loss function accordingly. The complete estimation procedure for a

VAR system whose error process exhibits contemporaneous dependence is discussed in detail

in ? ] and an analogous strategy can be adopted for this model. We do not further elaborate

in this study, since our prime interest is estimating the coefficient/transition matrices of the

FAVAR model.
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The formulation in (4.9) based on the least squares loss function and the surrogate F̂

is straightforward. However, the formulation for the calibration equation merits additional

discussion. First, note that the factor hyperplane Θ has at most rank p1 and therefore has

low rank structure relative to its size n× q. We impose a rank constraint in the estimation

procedure to enforce such structure. Together with the (IR+) constraint introduced above,

the objective then becomes to estimate accurately the parameters of a model within the

equivalence class C(Q2), in the sense that the estimate of an arbitrary Θ̌ (Θ̌ ∈ C(Q2)) is

close to the true data generating Θ. Once this goal is achieved, this would enable accurate

estimation of the transition matrix of the VAR system.

From an optimization perspective, the objective function admits a low-rank-plus-sparse

decomposition and compactification is necessary for establishing the statistical properties of

the global optima in the absence of explicitly specifying the interaction structure between

the low rank and the sparse blocks (or the spaces they live in). Note that the form of the

compactness constraint is dictated by the statistical problem under consideration. For ex-

ample, ? ] studies a multivariate regression problem, where the coefficient is decomposed to

a sparse and a low rank block. In that setting, a compactness constraint is imposed through

the entry-wise infinity norm bound of the low rank block. ? ] studies a graphical model

with latent variables where the conditional concentration matrix is the parameter of interest.

The marginal concentration matrix is decomposed to a sparse and a low rank block via the

alignment of the Schur complement, and the compactness constraint is imposed on both

blocks and manifests through the corresponding regularization terms in the resulting opti-

mization problem. Hence, the compactness constraint takes different forms but ultimately

serves the same goal, namely, to introduce an upper bound on the magnitude of the low

rank–sparse block interaction, with the latter being an important component in analyzing

the estimation errors. The compacteness constraint adopted for the FAVAR model serves

a similar purpose, although the presence of temporal dependence introduces a number of

additional technical challenges compared to the two aforementioned settings that consider

independent and identically distributed data.

Finally, we remark that the model identification scheme (IR+) incorporated in the op-

timization problem as a constraint, enables us to establish high-probability error bounds

(relative to the true data generating parameters/factors) for the proposed estimators, as

shown next in Section 4.3. Therefore, although (IR+) does not encompass the full p2
1 + p1p2

restrictions, it provides sufficient identifiability for estimation purposes.
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4.3 Theoretical Properties.

In this section, we investigate the theoretical properties of the estimators proposed in

Section 4.2.2. We focus on the formulation (4.7) and (4.9), whose global optima correspond

to (Θ̂, Γ̂) and Â, respectively.

Since (4.9) relies not only on prime observable quantities (namely Xt), but also on es-

timated quantities from Stage I (namely F̂t), the analysis requires a careful examination

of how the estimation error in the factor propagates to that for A. We start by outlining

a road map of our proof strategy together with a number of regularity conditions needed

in subsequent developments. Section 4.3.1 establishes error bounds for Γ̂, Θ̂ 5and Â under

certain regularity conditions and employing suitable choices of the tuning parameters, for

deterministic realizations from the underlying observable processes. Specifically when con-

sidering the error bound of A, the error of the plug-in estimate F̂ is assumed non-random

and given. Subsequently, Section 4.3.2 examines the probability of the events in which

the regularity conditions are satisfied for random realizations, and further establishes high-

probability upper bounds for quantities to which the tuning parameters need to conform.

Finally, the high-probability finite sample error bounds for the estimates obtained based on

random realizations of the data generating processes readily follow after properly aligning

the conditioning arguments, and the results are presented in Section 4.3.3.

Throughout, we use superscript ? to denote the true value of the parameters of interest,

and ∆ for errors of the estimators; e.g., ∆A = Â−A?. All proofs are deferred to the relevant

Appendices.

A road map for establishing the consistency results. As previously mentioned, the

key steps are:

• Part 1: analyses based on deterministic realizations using the optimality of the esti-

mators, assuming the parameters of the objective function (e.g., the Hessian and the

penalty parameter) satisfy certain regularity conditions;

• Part 2: analyses based on random realizations that the probability of the regularity

conditions being satisfied, primarily involving the utilization of concentration inequal-

ities.

In Part 1, note that the first-stage estimators obtained from the calibration equation are

based on observed data and thus the regularity conditions needed are imposed on (functions

of) the observed samples. On the other hand, the second-stage estimator relies on the

5Consequently, the error bounds of F̂ and Λ̂ under IR are also obtained.
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plugged-in first-stage estimates that have bounded error; therefore, the analysis is carried out

in an analogous manner to problems involving error-in-variables. Specifically, the required

regularity conditions on quantities appearing in the optimization (4.9) involve the error

of the first stage estimates, with the latter assumed fixed. In Part 2, the focus shifts to

the probability of the regularity conditions being satisfied under random realizations, again

starting from the first stage estimates, with the aid of Gaussian concentration inequalities

and proper accounting for temporal dependence. Once the required regularity conditions

are shown to hold with high probability, combining the results established in Part 1 for

deterministic realizations, provide the high-probability error bounds for Θ̂ and Γ̂. The high-

probability error bound of the estimated factors is subsequently established, which ensures

that the variables which Stage II estimates rely upon are sufficiently accurate with high

probability. Based on the latter result, the regularity conditions required for the Stage II

estimates are then verified to hold with high probability at a certain rate. In the FAVAR

model, since the estimation of the VAR equation is based on quantities among which one

block is subject to error, to obtain an accurate estimate of the transition matrix requires

more stringent conditions on population quantities (e.g., extremes of the spectrum), so that

the regularity conditions hold with high probability. In essence, the joint process Zt need to

be adequately “regular” in order to get good estimates of the transition matrix , vis-a-vis the

case of the standard VAR model where all variables are directly observed. Next, we introduce

the following key concepts that are widely used in establishing theoretical properties of high-

dimensional regularized M -estimators [e.g. ? ? ], as well as quantities that are related to

processes exhibiting temporal dependence [see also ? ].

Definition 4.1 (Restricted Strong Convexity (RSC)). A matrix X ∈ Rn×p satisfies the RSC

condition with respect to norm Φ with curvature αRSC > 0 and tolerance τn ≥ 0, if

1

2n
|||X∆|||2F ≥

αRSC

2
|||∆|||2F − τnΦ2(∆), ∀ ∆ ∈ Rp×p.

In our setting, we consider the norm Φ(∆) = ‖∆‖1.

Definition 4.2 (Deviation condition). For a regularized M -estimator given in the form of

Â := min
A

{ 1

2n
|||Y −XA>|||2F + λA‖A‖1

}
,

with HA := 1
n
X>X denoting the Hessian and GA := 1

n
Y>X denoting the gradient, we define

the tuning parameter λA to be selected in accordance with the deviation condition, if

λA ≥ c0‖HA − GA(A?)>‖∞.
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Definition 4.3 (Spectrum and its extremes). For a p-dimensional stationary process Xt,

its spectral density fX(ω) is defined as fX(ω) := 1
2π

∑∞
h=−∞ΣX(h)eiωh, where ΣX(h) :=

E(XtX
>
t+h). Its upper and lower extremes are defined as

M(fX) := ess sup
ω∈[−π,π]

Λmax(fX(ω)), and m(fX) := ess inf
ω∈[−π,π]

Λmin(fX(ω)).

The cross-spectrum for two generic stationary processes Xt and Yt is defined as

fX,Y (ω) :=
1

2π

∞∑
h=−∞

ΣX,Y (h)eiωh,

where ΣX,Y (h) := E(XtY
>
t+h), and its upper extreme is defined as

M(fX,Y ) := ess sup
ω∈[−π,π]

√
Λmax

(
f ∗X,Y (ω)fX,Y (ω)

)
, where ∗ denotes the conjuate transpose.

Additionally, we let SX := 1
n
X>X denote the sample covariance matrix, and similar

quantities (e.g., SE) are analogously defined. Denote the density level of Γ? by sΓ? := ‖Γ?‖0,

and that of A? by sA? .

We start by providing error bounds for Γ̂ and Θ̂, as well as those of the corresponding

F̂ and Λ̂ extracted under IR. For the optimization problem given in (4.7), we assume that

r ≥ p1 and φ is always compatible with the true data generating mechanism, so that Θ? is

always feasible.

The error bounds of Θ̂ and Γ̂ for deterministic realizations rely on: (i) X satisfying

the RSC condition with curvature αX
RSC; and (ii) the tuning parameter λΓ being chosen

in accordance with the deviation bound condition that is associated with the interaction

between X and E, the strength of the noise, and the interaction between the space spanned

by the factor hyperplane and the observed X. Upon the satisfaction of these conditions, the

error bounds of Θ̂ and Γ̂ are given by

|||∆Γ|||2F + |||∆Θ/
√
n|||2F ≤ C1λ

2
Γ

(
(p1 + r) + (2

√
sΓ? + 1)2

)
/min{αX

RSC, 1}2,

and these conditions hold with high probability for random realizations of Xt and Yt. Since

F̂ is the first p1 columns of Θ̂, it possesses an error bound of the similar form.

Next, we briefly sketch the error bounds of Â. For the optimization in (4.9), for deter-

ministic realizations, the results in ? ] can be applied with the corresponding RSC condition

and deviation condition imposed on quantities associated with Ẑn and Ẑn−1, and the error
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for Â is in the form of

|||∆A|||2F ≤ C2sA?λ
2
A/(α

Ẑ
RSC)2.

Then, for random realizations, assuming ∆F known and non-random, to satisfy the corre-

sponding regularity conditions, we additionally require that the following functional involing

the spectral density of the underlying joint process Zt exhibits adequate curvature, that is,

m(fZ)/
√
M(fZ) > c0h1(∆Fn−1) for constant c0 and some function h1 of the error ∆Fn−1 that

captures its strength. Moreover, the deviation bound is of the form h2(∆F), which can be

viewed as another function of the error6. Further, since ∆F is bounded with high probability

from the analysis in Stage I, it will be established that h1(∆F) and h2(∆F) are both upper

bounded at a certain rate, thus ensuring that the RSC condition and the deviation conditions

can both be satisfied unconditionally, by properly choosing the required constants.

4.3.1 Statistical error bounds with deterministic realizations.

Proposition 4.1 below gives the error bounds for the estimators in (4.7), assuming certain

regularity conditions hold for deterministic realizations of the processes Xt and Yt, upon

suitable choice of the regularization parameters.

Proposition 4.1 (Bound for ∆Θ and ∆Γ under fixed realizations). Suppose the fixed realiza-

tions X ∈ Rn×p2 of process {Xt ∈ Rp2} satisfies the RSC condition with curvature αX
RSC > 0

and a tolerance τX for which

τX ·
(
p1 + r + 4sΓ?

)
< min{αX

RSC, 1}/16.

Then, for any matrix pair (Θ?,Γ?) satisfying |||Θ?/
√
n|||op ≤ φ that generates Yt, for estima-

tors (Θ̂, Γ̂) obtained by solving (4.7) with regularization parameters λΓ satisfying

λΓ ≥ max
{

2‖X>E/n‖∞, Λ1/2
max(SE), (p1 + r)φΛ1/2

max(SX)
}
,

the following bound holds:

|||∆Γ|||2F + |||∆Θ/
√
n|||2F ≤

16λ2
Γ

(
p1 + r + (2

√
sΓ? + 1)2

)
min{αX

RSC, 1}2
. (4.10)

Based on Proposition 4.1, under fixed realizations of Xt and Yt, the error bounds of Γ̂

and Θ̂ are established. Using these Stage I estimates and the IR condition, estimates of

6note the deviation bound in principle also depends on other population quantities such as m(fZ),M(fZ),
Λmax(Σw) etc.
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the factors and their loadings can be calculated. In particular, since ∆F corresponds to the

first p1 columns of ∆Θ, the above bound automatically holds for ∆F. Further, the following

lemma provides the relative error of the estimated Λ under IR and the condition Λ
1/2
max(SF),

which translates to the requirement that the leading signal of F overrules the averaged row

error of ∆Θ.

Lemma 4.1 (Bound of ∆Λ). The following error bound holds for Λ̂, provided that Λ
1/2
max(SF) >

|||∆Θ/
√
n|||F:

|||∆Λ|||F
|||Λ?|||F

≤
√
p1 · |||∆Θ/

√
n|||F

Λ
1/2
max(SF)− |||∆Θ/

√
n|||F

(
1 + 1/|||Λ?|||F

)
. (4.11)

Up to this point, error bounds have been obtained for all the parameters in the calibration

equation. The following proposition establishes the error bound for the estimator obtained

from solving (4.9), based on observed X and estimated F̂, and assuming ∆F is fixed.

Proposition 4.2 (Bound for ∆A under fixed realization and a non-random ∆F.). Consider

the estimator Â obtained by solving (4.9). Suppose the following conditions hold:

A1. Ẑn−1 := [F̂n−1,Xn−1] satisfies the RSC condition with curvature αẐ
RSC and tolerance τZ

for which sA?τZ < αẐ
RSC/64;

A2. ‖Ẑ>n−1

(
Ẑn − Ẑn−1(A?)>

)
/n‖∞ ≤ C(n, p1, p2) where C(n, p1, p2) is some function that

depends on n, p1 and p2.

Then, for any λA ≥ 4C(n, p1, p2), the following error bound holds for Â:

|||∆A|||F ≤ 16
√
sA?λA/α

Ẑ
RSC.

Note that Proposition 4.2 applies the results in ? , Proposition 4.1] to the setting in this

study, where Stage II estimation of the transition matrix is based on Ẑn and Ẑn−1; conse-

quently, the regularity conditions should be imposed on corresponding quantities associated

with Ẑn and Ẑn−1.

Propositions 4.1 and 4.2 give finite sample error bounds for the estimators of the param-

eters obtained by solving optimization problems (4.7) and (4.9) based on fixed realizations

of the observable processes Xt and Yt, and the regularity conditions outlined. Next, we ex-

amine and verify these conditions for random realizations of the processes, to establish high

probability error bounds for these estimators.

4.3.2 High probability bounds under random realizations.

We provide high probability bounds or concentrations for the quantities associated with

the required regularity conditions, for random realizations of Xt and Yt. Specifically, we note
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that when Xt is considered separately from the joint system, it follows a high-dimensional

VAR-X model [? ]

Xt = A22Xt−1 + A21Ft−1 + wXt ,

whose spectrum fX(ω) satisfies

fX(ω) =
[
A−1
X (e−iω)

](
A21fF (ω)A>21 + fwX (ω) + fwX ,FA

>
21 + A21fwX (ω)

)[
A−1
X (e−iω)

]∗
,

with AX(z) := I− A22z. Similar properties hold for Ft. Throughout, we assume {Xt}, {Ft}
and {Yt} are all mean-zero stable Gaussian processes.

Lemmas 4.2 to 4.5 respectively verify the RSC condition associated with X and establish

the high probability bounds for ‖X>E/n‖∞, Λmax(SX) and Λmax(SE).

Lemma 4.2 (Verification of the RSC condition for X). Consider X ∈ Rn×p2 whose rows

correspond to a random realization {x1, . . . , xn} of the stable Gaussian {Xt} process, and its

dynamics is governed by (4.6). Then, there exist positive constants ci (i = 1, 2) such that

with probability at least 1− c1 exp(−c2nmin{γ−2, 1}) where γ := 54M(gX)/m(gX), the RSC

condition holds for X with curvature αX
RSC and tolerance τX satisfying

αX
RSC = πm(fX), τX = αRSCγ

2
( log p2

n

)
/2 ,

provided that n & log p2.

Lemma 4.3 (High probability bound for ‖X>E/n‖∞). There exist positive constants ci (i =

0, 1, 2) such that for sample size n & log(p2q), with probability at least 1−c1 exp(−c2 log(p2q)),

the following bound holds:

‖X>E/n‖∞ ≤ c0

(
2πM(fX) + Λmax(Σe)

)√ log p2 + log q

n
. (4.12)

Lemma 4.4 (High probability bound for Λmax(SX)). Consider X ∈ Rn×p2 whose rows

correspond to a random realization {x1, . . . , xn} of the stable Gaussian {Xt} process, and its

dynamics is governed by (4.6). Then, there exist positive constants ci (i = 0, 1, 2) such that

for sample size n & p2, with probability at least 1− c1 exp(−c2p2), the following bound holds

for the eigen-spectrum of SX:

Λmax(SX) ≤ c0M(fX).

Lemma 4.5 (High probability bound for Λmax(SE)). Consider E ∈ Rn×q whose rows are

independent realizations of the mean zero Gaussian random vector et with covariance Σe.

Then, for sample size n & q, with probability at least 1 − exp(−n/2), the following bound
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holds:

Λmax(SE) ≤ 9Λmax(Σe).

In the next two lemmas, we verify the RSC condition for random realizations of Ẑn−1

and obtain the high probability bound C(n, p1, p2) for ‖Ẑ>n−1

(
Ẑn − Ẑn−1(A?)>

)
/n‖∞, with

the underlying truth F being random but the error ∆F non-random. Note that this can be

equivalently viewed as a conditional RSC condition and deviation bound, when conditioning

on some fixed ∆F.

Lemma 4.6 (Verification of RSC for Ẑn−1). Consider Ẑn−1 given by

Ẑn−1 = Zn−1 + ∆Zn−1 = [Fn−1,Xn−1] + [∆Fn−1 , O],

with rows of [Fn−1,Xn−1] being a random realization drawn from process {Zt} whose dynam-

ics are given by (4.6). Suppose the lower and upper extremes of its spectral density fZ(ω)

satisfy

m(fZ)/M1/2(fZ) > c0 · Λ1/2
max

(
S∆Fn−1

)
where S∆Fn−1

:= ∆>Fn−1
∆Fn−1/n,

for some constant c0 ≥ 6
√

165π. Then, with probability at least 1 − c1 exp(−c2n), Ẑn−1

satisfies the RSC condition with curvature

αẐ
RSC = πm(fZ)− 54Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + πm(fZ)/27, (4.13)

and tolerance

τn =
(π

2
m(fZ) + 27Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + πm(fZ)/27

)
ω2

√
log(p1 + p2)

n
,

where ω = 54M(fZ)
m(fZ)

, provided that the sample size n & log(p1 + p2).

Lemma 4.7 (Deviation bound for ‖Ẑ>n−1

(
Ẑn− Ẑn−1(A?)>

)
/n‖∞). There exist positive con-

stants ci (i = 1, 2) and Ci (i = 1, 2, 3) such that with probability at least 1 − c1 exp
(
−
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c2 log(p1 + p2)
)

we have

C(n, p1, p2) ≤ C1

[
M(fZ) +

Λmax(Σw)

2π
+M(fZ,W+)

]√ log(p1 + p2)

n

+ C2

[
M1/2(fZ) max

j∈{1,...,p1}
‖∆Fn,·j/

√
n‖
]√ log p1 + log(p1 + p2)

n

+ C3

[
Λ1/2

max(Σw) max
j∈{1,...,(p1+p2)}

‖εn,·j/
√
n‖
]√ log(p1 + p2)

n

+
1

n
‖∆>Fn−1

∆Fn‖∞ +
1

n
‖∆>Fn−1

∆Fn−1(A?11)>‖∞,

(4.14)

where εn := ∆Zn−∆Zn−1(A?)> = [∆Fn−∆Fn−1(A?11)>,−∆Fn−1(A?21)>], and {W+
t } := {Wt+1}

is the shifted Wt process.

Remark 4.2. Before moving to the high probability error bounds of the estimates, we discuss

the conditions and the various quantities appearing in Lemmas 4.6 and 4.7 that determine

the error bound of the estimated transition matrix and underlie the differences between the

original VAR estimation problem based on primal observed quantities (“Original Problem”

henceforth), and the present one in which one block of the variables enters the VAR system

with errors. Note that the statements in the two lemmas are under the assumption that the

error in the Ft block is pre-determined and non-random.

As previously mentioned, due to the presence of the error of the latent factor block, the

corresponding regularity conditions need to be imposed and verified on quantities with the

error incorporated, namely, Ẑ, instead of the original true random realizations Z. Lemma 4.6

shows that with high probability, the random design matrix although exhibits error-in-

variables, will still satisfy the RSC condition with some positive curvature as long as the

spectrum of the process Zt has sufficient regularity relative to the magnitude of the error,

with the former determined by m(fX)/M1/2(fX) and the latter by Λ
1/2
max(S∆Fn−1

). In partic-

ular, the RSC curvature is pushed toward zero compared with that in the Original Problem,

due to the presence of the second term in (4.13) that would be 0 if ∆Fn−1 = 0, i.e., there

were no estimation errors. This curvature affects the constant scalar part of the ultimate

high probability error bound obtained for the transition matrix.

Lemma 4.7 gives the deviation bound associated with the Hessian and the gradient (both

random), which comprises of three components attributed to the random samples observed,

the non-random error, and their interactions, respectively. Further, it is the relative order

of these components that determines the error rate (as a function of model dimensions and

the sample size). In particular, for the Original Problem, only the first term in (4.14) exists

and yields an error rate of O(
√

log(p1 + p2)/n) [see also ? ]. For the current setting, as it
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is later shown in Theorem 4.1, since |||∆F/
√
n|||F � O(1), the dominating term of the three

components is the one attributed to the non-random error7 and it ultimately determines the

error rate of Â, which will also be O(1).

4.3.3 High probability error bounds for the estimators.

Given the results in Sections 4.3.1 and 4.3.2, we provide next high probability error

bounds for the estimates, obtained by solving the optimization problems in (4.7) and (4.9)

based on random snapshots from the underlying processes Xt and Yt.

Theorem 4.1 combines the results in Proposition 4.1 and Lemmas 4.2 to 4.5 and provides

the high probability error bound of the estimates, when Θ̂ and Γ̂ are estimated based on

random realizations from the observable processes Xt and Yt, with the latter driven by both

Xt and the latent Ft.

Theorem 4.1 (High probability error bounds for Θ̂ and Γ̂). Suppose we are given some

randomly observed snapshots {x1, . . . , xn} and {y1, . . . , yn} obtained from the stable Gaussian

processes Xt and Yt, whose dynamics are described in (4.6) and (4.2). Suppose the following

conditions hold for some (CX,l, CX,u) and (Ce,l, Ce,u):

C1. CX,l ≤ m(fX) ≤M(fX) ≤ CX,u;

C2. Ce,l ≤ Λmin(Σe) ≤ Λmax(Σe) ≤ Ce,u.

Then, there exist universal constants {Ci} and {ci} such that for sample size n & q, by

solving (4.7) with regularization parameter

λΓ = max
{
C1(2πM(fX) + Λmax(Σe))

√
log(p2q)

n
, C2(p1 + r)φM1/2(fX), C3Λ1/2

max(Σe)
}
,

(4.15)

the solution (Θ̂, Γ̂) has the following bound with probability at least 1− c1 exp(−c2 log(p2q)):

|||∆Θ/
√
n|||2F + |||∆Γ|||2F . C(m(fX),M(fX),Λmax(Σe)) · κ(sΓ? , p

3
1, r

3, φ) =: K1, (4.16)

for some function C(m(fX),M(fX),Λmax(Σe)) that does not depend on n, p2, q, and κ(·) that

depends linearly on sΓ?, p
3
1, r3 and the box constraint φ.

Note that the above bound also holds if we replace ∆Θ by ∆F under IR. Next, using the

results in Proposition 4.2, Lemmas 4.6 and 4.7 and combine the bound in Theorem 4.1, we

establish a high probability error bound for the estimated Â in Theorem 4.2.

7with the implicit assumption that log(p1 + p2)/n � o(1) which is indeed the case for this study.
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Theorem 4.2 (High probability error bound for Â). Under the settings and with the proce-

dures in Theorem 4.1, we additionally assume the following condition holds for the spectrum

of the joint process Zt:

C3. m(fZ)/M1/2(fZ) > CZ for some constant CZ.

Then there exists universal constants {ci}, {c′i} and {Ci} such that for sample size n & q,

such that the estimator Â obtained by solving for (4.9) with λA satisfying

λA = C1

(
M(fZ) +

Σw

2π
+M(fZ,W+)

)√ log(p1 + p2)

n
+ C2M1/2(fZ)

√
log(p1 + p2) + log p1

n

+ C3Λ1/2
max(Σw)

√
log(p1 + p2)

n
+ C4,

with probability at least(
1− c1 exp{−c2 log(p2q)}

)(
1− c′1 exp{−c′2 log(p1 + p2)}

)
, (4.17)

the following bound holds for ∆A:

|||∆A|||2F ≤ Č(K1,m(fZ),M(fZ)) · κ̌(sA?),

for some function Č(K1,m(fZ),M(fZ)) that does not depend on n, p2, q and κ̌(·) that depends

linearly on sA?. Here K1 denotes the upper bound of the first stage error shown in (4.16).

Remark 4.3. Note that to establish the high probability finite-sample error bound of the

transition matrix estimate Â, the sample size requirement n & q for the proposed estimation

procedure is more stringent compared to that for the Original Problem, with the latter given

by n &
√

log(p1 + p2). The root of this discrepancy is due to the estimated factor, whose

accurate recovery from the calibration equation requires the concentration of Λmax(SE) that

provides adequate control over ∆F, which in turn places the tightest condition on the sample

size.

Remark 4.4. As a straightforward generalization, for a VAR(d), d > 1 system Zt = (F>t , X
>
t )>,

a similar error bound holds by considering the augmented process Z̃>t := (Zt, Zt−1, . . . , Zt−d+1)

that satisfies

Z̃t = ÃZ̃t−1 + W̃t, where Ã :=

 A(1) A(2) ··· A(d)

Ip O O O

...
...

...
...

O O Ip O

 , W̃t =

[
Wt
0
...
0

]
.

In particular, with probability at least
(
1− c1 exp{−c2 log(p2q)}

)(
1− c′1 exp{−c′2 log(d(p1 +
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p2))}
)
, the following bound holds for the estimate of Ã:

||∆Ã||
2

F
≤ C̃(K1,m(fZ̃),M(fZ̃)) · κ̃(sÃ?).

However, note that although the error bound is still of the same form, the stronger tempo-

ral dependence yields a larger C̃(K1,m(fZ̃),M(fZ̃) through the RSC curvature parameter;

specifically, a smaller value of m(fZ̃). Its impact on the deviation bound will not manifest

itself in terms of the order of the error, since it only affects the constants in front of lower

order terms in the expression of choosing λA.

4.4 Implementation and Performance Evaluation.

We first discuss implementation issues of the proposed problem formulation for the high-

dimensional FAVAR model. Specifically, the formulation requires imposing the compactness

constraint for identifiability purposes and for obtaining the necessary statistical guarantees

for the estimates of the model parameters. However, the value φ in the compactness con-

straint is hard to calibrate in any real data set. Hence, in the implementation we relax this

constraint and assess the performance of the algorithm. Due to its importance in constrain-

ing the size of the equivalence class C(Q2), we examine in Appendix C.3 certain relative

extreme settings where the proposed relaxation fails to provide accurate estimates of the

model parameters.

Implementation. The following relaxation of (4.7) is used in practice:

min
Θ,Γ

f(Θ,Γ) :=
{ 1

2n
|||Y −Θ−XΓ>|||2F + λΓ‖Γ‖1

}
, subject to rank(Θ) ≤ r, (4.18)

which leads to Algorithm 4.1.

The implementation of Stage I requires the pair of tuning parameters (λΓ, r) as input,

and the choice of r is particularly critical since it determines the effective size of the latent

block. In our implementation, we select the optimal pair based on the Panel Information

Criterion (PIC) proposed in ? ], which searches for (λΓ, r) over a lattice that minimizes

PIC(λΓ, r) :=
1

nq

∣∣∣∣∣∣∣∣∣Y − Θ̂−XΓ̂>
∣∣∣∣∣∣∣∣∣2

F
+ σ̂2

[ log n

n
‖Γ̂‖0 + r(

n+ p

nq
) log(nq)

]
,

where σ̂2 = 1
nq
|||Y − Θ̂−XΓ̂>|||

2

F. Analogously, the implementation of Stage II requires λA

as input, and we select λA over a grid of values that minimizes the Bayesian Information
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Algorithm 4.1: Computational procedure for estimating A, Γ and Λ.

Input: Time series data {xi}ni=1 and {yi}ni=1, (λΓ, r), and λA.
Stage I: recover the latent factors by solving (4.18), through iterating between (1.1) and (1.2)
until |f(Θ(m),Γ(m))− f(Θ(m−1),Γ(m−1))| < tolerance:

(1.1) Update Θ̂(m) by singular value thresholding (SVT): do SVD on the lagged value-
adjusted hyperplane, i.e., Y −X(Γ̂(m−1))> = UDV >, where D := diag

(
d1, . . . , dmin(n,q)

)
,

and construct Θ̂(m) by

Θ̂(m) = UDrV, where Dr := diag
(
d1, . . . , dr, 0, . . . , 0

)
.

(1.2) Update Γ̂(m) with the plug-in Θ̂(m) so that each row j is obtained with Lasso regression
(in parallel) and solves

min
β

{ 1

2n
||(Y − Θ̂(m))·j −Xβ||

2
+ λA‖β1‖1

}
.

Stage I output: Θ̂ and Γ̂; the estimated factor F̂ and Λ̂ via (4.8) under (IR).
Stage II: estimate the transition matrix by solving (4.9): update each row of A (in parallel) by
solving the Lasso problem:

min
β

{ 1

2n
||(Ẑn)·j − Ẑn−1β||

2
+ λA‖β‖1

}
.

Stage II output: Â.

Output: Estimates Γ̂, Λ̂, Â and the latent factor F̂.

Criterion (BIC):

BIC(λA) =

q∑
i=1

log RSSi +
log n

n
‖Â‖0,

where RSSi := ‖(Xn)·i − Xn−1Â
>
i· ‖2 is the residual sum of square of the i-th regression.

Extensive numerical work shows that these two criteria select very satisfactory values for the

tuning parameters, which in turn yield highly accurate estimates of the model parameters.

Simulation setup. Throughout, we assume ΣX
w , ΣF

X and Σe are all diagonal matrices,

and the sample size is fixed at 200, unless otherwise specified. We first generate samples of

Ft ∈ Rp1 and Xt ∈ Rp2 recursively according to the VAR(d) model in (4.1), and then the

samples of Yt ∈ Rq are generated according to the linear model given in (4.2). In particular,

(IR) is imposed on the true value of the parameter, hence Λ? that is used for generating Yt

always satisfies the restriction Λ =
[

Ip1∗
]
.

For the calibration equation, the density level of the sparse coefficient matrix Γ ∈ Rq×p2 is

fixed at 5/p2 for each regression; thus, each Yt coordinate is affected by 5 series (coordinates)

from the Xt block on average. The bottom (q−p1)×p1 block of the loading matrix Λ ∈ Rq×p1
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is dense. The magnitude of nonzero entries of Γ and that of entries of Λ may vary to capture

different levels of signal contributions to Yt, and we adjust the standard deviation of et to

maintain the desired level of the signal-to-noise ratio for Yt (averaged across all coordinates).

For the transition matrix A of the VAR equation, the sparsity for each of its component

block {Aij}i,j=1,2 varies across settings, so as to capture different levels of the influence from

the lagged value of the latent block Ft on the observed Xt. Note that to ensure stability of

the VAR system, the spectral radius of A, %(A), needs to be smaller than 1. In particular,

when a VAR(d) (d > 1) system is considered, we need to ensure that the spectral radius of

Ã is smaller than 18, where we let p = p1 + p2 and

Ã :=

 A(1) A(2) ··· A(d)

Ip O O O

...
...

...
...

O O Ip O

 .
Table 4.1 lists the simulation settings and their parameter setup.

q p1 p2 sA11
sA12

sA21
sA22

SNR(Yt)
A1 100 5 50 sA = 3/(p1 + p2) 1.5
A2 200 10 100 sA = 3/(p1 + p2) 1.5
A3 200 5 100 3/p1 2/p2 2/p1 2/p2 1.5
A4 300 5 500 3/p1 2/p2 0.8 2/p2 1.5
B1 200 5 100 sA(1) = 3/(p1 + p2) 2
(d = 2) sA(2) = 2/(p1 + p2)
B2 200 5 100 0.5 3/p2 0.5 3/p2 2
(d = 4) 0.2 2/p2 0.25 2/p2

sA(3) = 2/(p1 + p2)
sA(4) = 2/(p1 + p2)

B3 100 5 25 0.5 2/p2 0.5 2/p2 2
(d = 4) 0.2 1.5/p2 0.1 1.5/p2

sA(3) = 1/(p1 + p2)
sA(4) = 0.8/(p1 + p2)

Table 4.1: Parameter setup for different simulation settings for the VAR equation.

Specifically, in settings A1–A4, (F>t , X
>
t )> jointly follows a VAR(1) model. The (average)

signal-to-noise ratio for each regression of Yt is 1.5. For settings A1 and A2, the transition

matrix A is uniformly sparse, with A2 corresponding to a larger system; for settings A3

and A4, we increase the density level (the proportion of nonzero entries) for the transition

matrices that govern the effect of Ft−1 on Ft and Xt. In particular, for setting A4, we consider

a large system with 500 coordinates in Xt, and the factor effect is almost pervasive on these

coordinates (through the lags), as the density level of A21 is set at 0.8. Settings B1, B2 and

B3 consider settings with more lags (d = 2 and d = 4, respectively), and to compensate

for the higher level of correlation between Ft and Xt, we elevate the signal-to-noise for each

8In practice, this can be achieved by first generating A(1), . . . , A(d), align them in Ãinitial and obtain the
scale factor ζ := %target/%(Ãinitial), then scale A(i) by ζi. The validity of this procedure follows from simple
algebraic manipulations.
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regression of Yt to 2. For B1, the transition matrices for both lags (A(1) and A(2)) have

uniform sparsity patterns, with A(2) being slightly more sparse compared to A(1); for B2, the

transition matrices for the first two lags have higher sparsity in the component that governs

the Ft−i → Xt cross effect, and those for the last two lags have uniform sparsity. B3 has

approximately the same scale as observed in real data, and due to a small p2, the system

exhibits a higher sparsity level in general.

Performance evaluation. We consider both the estimation and forecasting performance

of the proposed estimation procedure. The performance metrics used for estimation are

sensitivity (SEN), specificity (SPC) and the relative error in Frobenius norm (Err) for the

sparse components (transition matrices A and the coefficient matrix Γ), defined as

SEN =
TP

TP + FN
, SPC =

TN

FP + TN
, Err = |||∆M |||F/|||M

?|||F (for some generic matrix M).

We also track the estimated size of the latent component (i.e., the rank constraint in (4.7),

jointly with λΓ is selected by PIC), as well as the relative errors of Θ̂, F̂ and Λ̂. For

forecasting, we focus on evaluating the h-step-ahead predictions for theXt block. Specifically,

for settings A1–A4, we consider h = 1; for settings B1–B3, we consider h = 1, 2. We use

the same benchmark model as in ? ] which is based on a special case of the Minnesota prior

distribution [? ], so that the for any generic time series Xt ∈ Rp, each of its coordinates

j = 1, . . . , p follows a centered random walk:

Xt,j = Xt−1,j + ut,j, ut,j ∼ N (0, σ2
u). (4.19)

For each forecast x̂T+h, its performance is evaluated based on the following two measures:

RE = ‖x̂T+h − xT+h‖2
2/‖xT+h‖2

2, RER =

1
p2

∑p2

j=1

∣∣ x̂T+h,j−xT+h,j

xT+h,j

∣∣
1
p2

∑p2

j=1

∣∣ x̃T+h,j−xT+h,j

xT+h,j

∣∣ ,
where RE measures the `2 norm of the relative error of the forecast to the true value; whereas

for RER, it measures the ratio between the relative error of the forecast and the above

described benchmark. In particular, its numerator and denominator respectively capture

the averaged relative error of all coordinates of the forecast x̂T+h and that of the benchmark

x̃T+h that evolves according to (4.19), while the ratio measures how much the forecast based

on the proposed FAVAR model outperforms (< 1) or under-performs (> 1) compared to the

benchmark.

All tabulated results are based on the average of 50 replications. Table 4.2, 4.3 and 4.4,
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respectively, depict the performance of the estimates of the parameters in the calibration and

the VAR equations, as well as the forecasting performance under the settings considered.

PIC-selected r Err(Θ̂) Err(F̂) Err(Λ̂) SEN(Γ̂) SPC(Γ̂) Err(Γ̂)
A1 4.8(.40) 0.32(.010) 0.56(.074) 0.67(.345) 0.99(.007) 0.98(.003) 0.45(.013)
A2 9.96(.19) 0.32(.008) 0.90(.065) 2.54(1.30) 0.99(.005) 0.98(.001) 0.52(.010)
A3 4.78(.54) 0.33(.048) 0.73(.103) 2.59(1.59) 0.99(.003) 0.99(.001) 0.57(.009)
A4 4.42(.49) 0.38(.040) 0.84(.100) 2.66(2.14) 0.97(.009) 0.99(.001) 0.59(.015)
B1 5(0) 0.23(.004) 0.41(.043) 0.54(.020) 1.00(.000) 0.97(.011) 0.27(.014)
B2 5(0) 0.26(.007) 0.38(.047) 0.42(.087) 1.00(.000) 0.99(.002) 0.37(.007)
B3 5(0) 0.25(.007) 0.34(.031) 0.34(.080) 1.00(.000) 0.99(.001) 0.32(.012)

Table 4.2: Performance evaluation of the parameters in the calibration equation.

lag SEN(Â) SPC(Â) Err(Â) SEN(Â22) SPC(Â22) Err(Â22)
A1 0.99(.003) 0.95(.012) 0.35(.019) 0.99(.001) 0.96(.013) 0.31(.022)
A2 0.98(.008) 0.97(.004) 0.46(.018) 0.99(.001) 0.98(.003) 0.39(.017)
A3 0.86(.050) 0.98(.006) 0.73(.029) 0.93(.032) 0.98(.005) 0.65(.034)
A4 0.75(.046) 0.92(.002) 0.71(0.024) 0.99(.001) 0.92(.002) 0.60(.018)

B1 A(1) 0.99(.003) 0.98(.002) 0.47(.017) 0.99(.002) 0.98(.002) 0.46(.017)

A(2) 0.97(.010) 0.98(.002) 0.55(.017) 0.98(.011) 0.98(.003) 0.55(.018)

B2 A(1) 0.89(.017) 0.88(.003) 0.71(.014) 0.90(.017) 0.99(.003) 0.70(.014)

A(2) 0.75(.028) 0.88(.003) 0.89(.020) 0.77(0.032) 0.88(.003) 0.90(.021)

A(3) 0.84(.025) 0.88(.003) 0.85(.015) 0.85(.027) 0.88(.004) 0.84(.018)

A(4) 0.72(.022) 0.88(.003) 0.99(.017) 0.73(.025) 0.88(.003) 0.98(.017)

B3 A(1) 0.93(.034) 0.96(.010) 0.61(.043) 0.94(.035) 0.97(.009) 0.60(.045)

A(2) 0.77(.078) 0.96(.010) 0.74(.044) 0.78(.084) 0.97(.010) 0.74(.046)

A(3) 0.80(.098) 0.96(.012) 0.75(.052) 0.81(.102) 0.97(.010) 0.74(.056)

A(4) 0.74(.122) 0.97(.011) 0.78(.059) 0.72(.134) 0.97(.009) 0.79(.065)

Table 4.3: Perofrmance evaluation of the estimated transition matrices in the VAR equation.

A1 A2 A3 A4 B1 B2 B3

h = 1
RE 0.53(.117) 0.60(.075) 0.80(.075) 0.56(.109) 0.62(.060) 0.89(.091) 0.81(.094)

RER 0.38(.065) 0.38(.046) 0.45(.064) 0.40(.055) 0.35(.171) 0.42(.217) 0.32(.129)

h = 2
RE 0.66(.127) 0.94(.173) 0.90(.402)

RER 0.24(.071) 0.29(.118) 0.26(.174)

Table 4.4: Evaluation of forecasting performance.

Based on the results listed in Tables 4.2 and 4.3, we notice that in all settings, the

parameters in the calibration equation Θ̂ and Γ̂ are well estimated, while the rank slightly

underestimated. Further, the SEN and SPC measures of Γ̂ show excellent performance

regarding support recovery. It is worth pointing out that the estimation accuracy of the

parameters in the calibration equation strongly depends on the signal-to-noise ratio of Yt. In

particular, if the signal-to-noise ratio in A1-A4 is increased to 1.8, the rank is always correctly

selected by PIC, and the estimation relative error of Θ̂ further decreases(results omitted for

space considerations)9. Under the given IR, we decompose the estimated factor hyperplane

into the factor block and its loadings. The results show that both quantities exhibit a higher

relative error compared to that of the factor hyperplane. Of note, the loadings estimates

9This also comes up when comparing the relative error of Θ̂ in the A1-A4 settings to that in the B1-B2
ones, where the latter two have a higher SNR.
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exhibit a lot of variability as indicated by the high standard deviation in the Table.

Regarding the estimates in the VAR equation, for settings A1, A2 and B1 that are char-

acterized by an adequate degree of sparsity, the recovery of the skeleton of the transition

matrices is very good. However, performance deteriorates if the latent factor becomes “more

pervasive” (settings A3 and A4), which translates to the A21 block having lower sparsity. On

the other hand, this does not have much impact on the recovery of the A22 sub-block, as for

these two settings, SEN and SPC of A22 still remain at a high level. For settings with more

lags, performance deteriorates (as expected) although SEN and SPC remain fairly satisfac-

tory. On the other hand, the relative error of the transition matrices increases markedly.

Nevertheless, the estimates of the first lag transition matrix is better than the remaining

ones. Further, the results indicate that smaller size VAR systems (B3) exhibit better per-

formance than larger ones. Finally, in terms of forecasting (results depicted in Table 4.4),

the one-step-ahead forecasting value yields approximately 50% to 90% RE (compared to

the truth), depending on the specific setting and the actual SNR, while it outperforms the

forecast of the benchmark by around 40% (based on the RER measure). Of note, the 2-step-

ahead forecasting value for settings with more lags outperforms the benchmark by an even

wider margin with the RER ratio decreasing to less than 0.3.

4.5 Application to Commodity Price Interlinkages.

Interlinkages between commodity prices represent an active research area in economics,

together with a source of concern for policymakers. Commodity prices, unlike stocks and

bonds, are determined more strongly by global demand and supply considerations. Never-

theless, other factors are also at play as outlined next. The key ones are: (i) the state of

the global macro-economy and the state of the business cycle that manifest themselves as

direct demand for commodities; (ii) monetary policy, specifically, interest rates that impact

the opportunity cost for holding inventories, as well as having an impact on investment and

hence production capacity that subsequently contribute to changes in supply and demand

in the market; and (iii) the relative performance of other asset classes through portfolio al-

location [see ? ? , and references therein]. We employ the FAVAR model and the proposed

estimation method to investigate interlinkages amongst major commodity prices. The Xt

block corresponds to the set of commodity prices of interest, while the Yt block contains rep-

resentative indicators for the global economic environment. We extract the factors Ft based

on the calibration equation and then consider the augmented VAR system of (Ft, Xt), so that

the estimated interlinkages amongst commodity prices are based on a larger information set

that takes into account broader economic activities.
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Data. The commodity price data (Xt) are retrieved from the International Monetary Fund,

comprising of 16 commodity prices in the following categories: Metal, Energy (oil) and

Agricultural. The set of economic indicators (Yt) contain core macroeconomic variables and

stock market composite indices from major economic entities including China, EU, Japan,

UK and US, with a total number of 54 indicators. Specifically, the macroeconomic variables

primarily account for: Output & Income (e.g. industrial production index), Labor Market

(unemployment), Money & Credit (e.g. M2), Interest & Exchange Rate (e.g. Fed Funds

Rate and the effective exchange rate), and Price Index (e.g. CPI). For variables that reflect

interest rates, we use both the short-term interest rate such as 6-month LIBOR, and the

10-year T-bond yields from the secondary market. Further, to ensure stationarity of the time

series, we take the difference of the logarithm for Xt; for Yt, we apply the same transformation

as proposed in ? ]. A complete list of the commodity prices and economic indicators used in

this study is provided in Appendix C.5. For all time series considered, we use monthly data

spanning the January 2001 to December 2016 period. Further, based on previous empirical

findings in the literature related to the global financial crisis of 2008 [? ], we break the

analysis into the following three sub-periods [? ]: pre-crisis (2001–2006), crisis (2007–2010)

and post-crisis (2011–2016), each having sample size (available time points) 72, 48, and 72,

respectively.

We apply the same estimation procedure for each of the above three sub-periods. Starting

with the calibration equation, we estimate the factor hyperplane Θ and the sparse regression

coefficient matrix Γ, then extract the factors based on the estimated factor hyperplane under

the (IR) condition. For each of the three sub-periods, 4, 3, and 3 factors are respectively

identified based on the PIC criterion, with the key variable loadings (collapsed into cate-

gories) on each extracted factor listed in Table 4.5, after adjusting for ΓXt. Based on the

pre-crisis crisis post-crisis
F1 F2 F3 F4 F1 F2 F3 F1 F2 F3

bond return − + + − + −
economic output + + +
equity return + − − − +
interest/exchange rate ∗ ∗
labor + − −
money & credit + + +
price index + + −
trade − ∗ ∗

Table 4.5: Composition of the factors identified for three sub-periods. +, − and ∗ respectively stand for positive (all economic
indicators have a positive sign in Λ), negative and mixed (sign) contribution.

composition of the factors, we note that the factors summarize both the macroeconomic en-

vironment and also capture information from the secondary market (bond & equity return),

as suggested by economic analysis of potential contributors to commodity price movements

[? ? ]. Hence, the obtained factors summarize the necessary information to include in
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the VAR system that examines commodity price interlinkages over time. Further, across

all three periods considered, Economic Output and Money & Credit indicators contribute

positively to the factor composition. In particular, the positive contribution from the M2

measure of money supply for the US during the crisis period and that from the Fed Funds

Rate post crisis are pronounced; hence, the estimated factors strongly reflect the effect of

the Quantitative Easing policy adopted by the US central bank. The contribution of the

other categories are mixed, with that from bond returns being noteworthy due to their role

as a proxy for long-term interest rates, which impact both the cost of investment in increas-

ing production capacity and on holding inventories, as well as on the composition of asset

portfolios across a range of investment possibilities (stocks, bonds, commodities, etc.).

Next, using these estimated factors, we fit a sparse VAR(2) model to the augmented

(F̂>t , X
>
t )> system. The estimated transition matrices are depicted in Figures 4.1 to 4.3

as networks. It is apparent that the factors play an important role, both as emitters and

receivers. The effects from the first lag are generally stronger to that from the second one.

In particular, focusing on the first lag, the dominant nodes in the system have shifted over

time from (OIL, SOYBEANS, ZINC) pre crisis to (SUGAR, WHEAT, COPPER) during

the crisis, then to (OIL, SOYBEANS, RICE) post crisis. Based on node weighted degree,

the role of OIL is dominant in both pre- and post-crisis periods, but is much weaker during

the crisis.

Another key feature of the interlinkage networks is their increased connectivity during

the crisis period, vis-a-vis the pre- and post-crisis periods. The same empirical finding has

been noted for stock returns [see ? , and references therein]. Before the global financial

crisis of 2008, commodity prices were fast rising primarily due to increased demand from

China. Specifically, as Chinese industrial production quadrupled between 2001 and 2011,

its consumption of industrial metals (Copper, Zinc, Aluminum, Lead) increased by 330%,

while its oil consumption by 98%. This strong demand shock led to a sharp rise in these

commodity prices, particularly accentuated beginning in 2006 (the onset of the crisis period

considered in our analysis), briefly disrupted with a quick plunge of commodity prices in

2008 and their subsequent recovery in the ensuing period until late 2010, when demand from

China subsided, which coupled with weak demand from the EU, Japan and the US in the

aftermath of the crisis created an oversupply that put downward pressure on prices. These

events induce strong inter-temporal and cross-temporal correlations amongst commodity

prices, and hence are reflected in their estimated interlinkage network.
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4.6 Discussion.

This chapter considered the estimation of FAVAR model under the high-dimensional

scaling. It introduced an identifiability constraint (IR+) that is suitable for high-dimensional

settings, and when such a constraint is incorporated in the optimization problem based upon

the calibration equation, the global optimizer corresponds to model parameter estimates

with bounded statistical errors. This development also allows for accurate estimation of the

transition matrices of the VAR system, despite the plug-in factor block contains error due to

the fact that it is an estimated quantity. Extensive numerical work illustrates the overall good

performance of the proposed empirical implementation procedure, but also illustrates that

the (IR+) constraint is not particularly stringent, especially in settings where the coefficient

matrix Γ of the observed predictor variables in the calibration equation exhibits sufficient

level of sparsity.

Recall that the nature of the FAVAR model results in estimating the transition matrix of a

VAR system with one block of the observations (factors) being an estimated quantity, rather

than conducting the estimation based on observed samples. This introduces a problem of

independent interest, namely what statistical guarantees can be established for the estimates

of the transition matrix of a VAR system under high-dimensional scaling when one block

(or even all) of the variables are subject to error. Similar problems have been examined in

the high-dimensional iid setting [e.g. ? ], as well as low dimensional time series settings;

for example, ? ] examines parameter estimation of a univariate autoregressive process with

error-in-variables and in more recent work ? ] investigates parameter identification of VAR-X

and dynamic panel VAR models subject to measurement errors.

The results obtained in this paper provide some initial insights, based on the roadmap

used to establish them. Building on the discussion in Remark 4.2, consider the following

setting where one is interested in estimating a VAR system with one block of variables

contaminated by some non-random Z, so that the transition matrix is obtained by solving

min
A

{ 1

2n
|||
[

X
(1)
n

X
(2)
n +Zn

]
−
[ X

(1)
n−1

X
(2)
n−1+Zn−1

]
A>|||

2

F

+ λA‖A‖1

}
,

whereas the true data generating mechanism is that
(X(1)

t

X
(2)
t

)
jointly follow a VAR(1) model.

Then, based on Lemma 4.6 and 4.7, as long as the RSC condition on the corresponding

quantity is satisfied with high probability and the tuning parameter is chosen in accordance

with the deviation bound condition, the error of the estimated transition matrix is still well-

bounded. In particular, if the magnitude of Z satisfies |||Z/
√
n|||F � o(1), then the error of

the estimated transition matrix would still be O(
√

log(p1 + p2)/n), which is identical to that
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of a VAR model without error-in-variables, despite the fact that the estimation is based on

contaminated quantities rather than uncontaminated samples. In addition, the presence of

the contaminating Z does not affect the sample size requirement with the latter remaining at

n &
√

log(p1 + p2), although it does affect the exact error bound through both the deviation

bound and the curvature in the RSC condition. Thus, it is of interest to investigate the

conditions required on a random Z, so that the VAR estimates exhibit similar rates to those

without contamination and this constitutes a topic of future research.
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Figure 4.1: Estimated transition matrices for Pre-crisis period.
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Figure 4.2: Estimated transition matrices for the Crisis period.
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Figure 4.3: Estimated transition matrices for Post-crisis period

Left panel: Â(1); right panel: Â(2). Node sizes are proportional to node weighted degrees.
Positive edges are in red and negative edges are in blue. Edges with higher saturation have
larger magnitudes.
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CHAPTER V

Approximate Factor Models with Strongly Correlated

Idiosyncratic Errors

5.1 Introduction.

Factor models are widely used in a number of scientific fields for reducing the dimension

of data sets comprising of a large number of variables [? ]. A factor model assumes that

each variable under consideration can be expressed as a linear combination of a small number

of latent factors plus an idiosyncratic component (error term). Co-movements between the

variables can be accounted for by these few factors, thus aiding their interpretation. When

exact factor models are used in the analysis of cross-sectional data, it is assumed that the

idiosyncratic components are mutually uncorrelated [? ]. However, for time series data such

assumptions are often too restrictive, especially if a large number of them are considered. In

that case, it is of interest to examine approximate factor models that allow for correlations

within the idiosyncratic components, or equivalently the common factors do not fully capture

all relationships among the observed time series.

Such an approximate factor model was introduced in ? ] for the analysis of portfolios

comprising of a large number of assets. Since then a number of papers have appeared in the

literature investigating properties of such approximate factor models, under the assumption

that the correlations between the common factors and the idiosyncratic component, as well

as those amongst the idiosyncratic components are weak. Formally, the approximate factor

model is defined as

Xt = ΛFt + ut, t = 1, · · · , n, (5.1)

where Xt is a vector of p-dimensional time series, Ft a K-dimensional latent factor process,

Λ a p×K matrix of factor loadings and ut the vector of idiosyncratic components. It is often

further assumed that the factor process exhibits Vector Autoregressive dynamics, namely

Ft =
∑q

i=1 ΦiFt−i + ηt, where ηt is an independent and identically distributed error process
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and Φi are K × K transition matrices. The model in (5.1) is typically estimated through

principal component (PC) decomposition, which operates under the assumption that as the

time series panel size p→∞, the leading K eigenvalues of ΣX := E(XtX
>
t ) diverge whereas

all eigenvalues of Σu := E(utu
>
t ) are bounded, thus enabling the separation between the

common factors and the idiosyncratic components. Some key theoretical results for this

model are given in ? ? ], where the asymptotic normality of the estimated factors and

factor loadings1 obtained from PC analysis is established, under a
√
p/n→ 0 scaling for the

first result and a
√
n/p→ 0 scaling for the latter one. Further, in order that the maximum

deviation across time of the estimated factors relative to the true factors vanishes, it is

required that n/p→ 0.

In later work, ? ] consider the same factor model representation, but ut is allowed to

exhibit serial correlation within each coordinate and is assumed to be uncorrelated with Ft

across all time leads and lags. By decorrelating the coordinates of the ut error process, the

model can be rewritten as

Xt = ΛFt +D(L)Xt−1 + εt, (5.2)

where D(L) = diag(δ1(L), . . . , δp(L)) is a diagonal matrix with each entry being the autore-

gressive polynomial corresponding to coordinates of ut, while εt is a pure noise term that is

neither cross-sectionally nor serially correlated. The model implies that given Ft, the lagged

value of Xit does not help in predicting Xjt for i 6= j, since D(L) is diagonal. A detailed

review of variants of approximate factor models and their applications in macroeconomics

and finance are provided in ? ? ].

? ] note that when the number of time series under consideration is not too large, infer-

ence based on the PC estimator is distorted, if large values are present in the idiosyncratic

components (e.g. substantial jumps). As a remedy in practical settings, the authors pro-

pose to use the PC decomposition on X⊥t|t− instead of the original Xt, where X⊥t|t− is the

orthogonal projection of the observed process Xt on the space spanned by its time lags.

This approach implicitly assumes that dp < n where d is the number of lags on which the

orthogonal projection is carried out, otherwise a proper projection operator is not readily

available. A similar issue has been observed in ? ] which points out that even with moderate

serial dependence amongst the idiosyncratic components, the number of factors will be over-

estimated when the available sample size is not sufficiently large. This issue is also present

in the study of the sub-prime mortgage crisis by ? ] that uses the model in (5.2) to assess

the contribution of common factors to the spreads of Credit Default Swaps for a set of global

banks. Specifically, the authors remark that the presence of strongly correlated idiosyncratic

1up to some invertible transformation
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components renders the criterion proposed in ? ] for accurately selecting the number of

common factors ineffective. To address this problem and further test for a “spillover effect”

from lagged terms of other banks, the authors incorporate lagged terms of the Xt process

in the model. The analysis proceeds by estimating the posited model for each pair of banks

separately, resulting in running a large number of such models. However, a more principled

and informative analysis would be based on estimating a single model for all the banks, but

the latter would entail incorporating sparsity constraints due to the limited sample size (time

points) available. Note that procedures associated with filtering the impact of the temporal

dependence in the idiosyncratic component have also been considered in other applied work.

For instance, ? ] use a two-stage procedure, wherein a VAR model is first estimated and

subsequently a factor model fitted to the residuals. ? ] specify the lag terms explicitly and

estimate the factor and the transition matrix of lags through Kalman filter, which makes the

permissible time series panel fairly restrictive. In their empirical analysis, they only consider

three time series.

This brief literature review shows that on the theory front, the “weak correlation” as-

sumption is prevalent in the literature, since in essence it provides formal justification for

the use of PC analysis for estimating the space spanned by the common factors. Further, by

imposing additional regularity conditions it also enables establishing consistency of both the

factors and their respective loadings. However, once the idiosyncratic component exhibits

stronger dependence and thus the “weak correlation” assumption breaks down, existing

approaches that solely focus on estimating the factors lead to incorrect selection of them

and thus inaccurate inference [? ? ]. Hence, due to lack of appropriate analytical tools,

researchers undertaking empirical work resort to either filtering the data for temporal de-

pendence before using a factor model, or ignoring the issue altogether. It is thus highly

desirable to model the latent factors and past lags of the process simultaneously. To this

end, following ? ] we write the approximate factor model in the form given in (5.2), but allow

for D(L) to exhibit cross-correlation structure; i.e. D(L) is not assumed to be diagonal, but

merely sparse. Hence, the dynamics of the p time series in Xt can be written in the form of

a lag-adjusted static factor model, with the lag term impacting the current values through

sparse transition matrices of past values, and the noise term now being completely uncorre-

lated with the factor structure. Note that the common factors together with the lag term

play the role of mean structure of the observable process Xt in this formulation. In contrast

to the ? ] formulation, in our proposed model, for the observable process conditional on the

latent factors, the lagged value of the ith time series can be predictive of the present value

of time series j, if the corresponding entry in the sparse transition matrices is nonzero.

Based on the proposed formulation, two key quantities in the model are the space spanned
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by the common factors (henceforth called factor hyperplane) and the sparse transition matri-

ces of the time lags of the observable process. To obtain their estimates, we posit a penalized

least squares objective function, introduce an iterative algorithm to minimize it and establish

finite sample high-probability error bounds for the convergent solution estimates. It is of

interest to point out that although the issue of the contribution of lagged values of the Xt

process is noted in ? ], it is never further explored in their analysis. On the other hand,

since the transition matrices of the autoregressive components constitute key parameters

of our model formulation, we show in our application study that they provide useful and

interpretable information.

Finally, note that in recent work ? ], the authors consider a covariate-adjusted factor

model with unknown grouping structures among the multivariate response, which shares a

similar form with the posited model, when viewed as a regression model, modulo the absence

of the group-specific factors. Consistency results are established for the estimated regression

coefficients of that model and the factor loadings under rather stringent assumptions on the

deterministic realizations of the underlying stochastic processes, which however are hardly

satisfied for random realizations drawn from the assumed distributions. In our work, we

impose significantly weaker conditions on these deterministic sample quantities, which are

later verified to be satisfied with high probability for random realizations. Therefore, a by-

product of our results, with rather minor modifications, is the consistency of the model in ?

] under significantly weaker assumptions.

Thus, the key contributions of this chapter are the formulation and consistent estimation

of factor models that include past lags of the observed process, which explicitly accounts

for strong cross-correlations amongst the coordinates of the idiosyncratic component. As

previously mentioned, such a setting shows up often in empirical work, but due to lack of

approaches to properly handle it, the contribution of the idiosyncratic component is largely

ignored. The technical developments in this paper provide insights of how to handle the

interaction of the latent factor space with the past history of the observed process, and the

strategy used to establish consistency is broadly applicable to other models in the literature

[e.g. ? ] with similar structure. Of particular interest, are the verification of the Restricted

Strong Convexity and a Deviation Condition for Gaussian processes Xt, Ft, εt that are at the

heart of establishing consistency for the model under study. While the verification of such

conditions for high-dimensional VAR models [? ] and their variants [? ] is challenging, the

presence of a latent process and its strong interaction with the error process poses additional

technical complications, successfully resolved in Theorem 5.2.

The remainder of this chapter is organized as follows. In Section 5.2, we introduce our

model setup and the estimation procedure for the parameters of interest—the sparse tran-
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sition matrix (assuming for ease of presentation a single lag) and the common factor space.

Theoretical properties of the proposed estimator are established in Section 5.3, including its

high-probability statistical error bound, convergence property and its connections to other

possible model formulations and estimators in related literature. In Section 5.4, we intro-

duce an empirical implementation procedure and present the performance evaluation of the

estimates based on synthetic data. In Section 5.5, an application of our model to weekly

stock return data of large US financial institutions for the 2001 to 2016 period is considered.

An extension to serial dependence with more lags for the idiosyncratic component is briefly

discussed in Section 5.6. Finally, Section 5.7 concludes the paper.

Notation. Throughout this chapter, for some generic matrix A, we use ||| · ||| to denote

its matrix norms, including the operator norm |||A|||op, the Frobenius norm |||A|||F, the nu-

clear norm |||A|||∗, |||A|||1 = max1≤j≤n
∑m

i=1 |aij|, and |||A|||∞ = max1≤i≤m
∑n

j=1 |aij|. We

use ‖A‖1 =
∑

i,j |aij| and ‖A‖∞ = maxi,j |aij| to denote the elementwise 1-norm and infinity

norm. Additionally, we use %(A) to denote its spectral radius (max |λ(A)|). For two matrices

A and B of commensurate dimensions, denote their inner product by 〈〈A,B〉〉 = trace(A′B).

Finally, we write A % B if there exists some absolute constant c that is independent of the

model parameters such that A ≥ cB.

5.2 Problem Formulation and Estimation.

We introduce the model setup by assuming the idiosyncratic component follows the afore-

mentioned sparse VAR(d) model, which simultaneously incorporates the cross-sectional and

serial structure among its coordinates. To convey the main arguments, we assume without

loss of generality that d = 1 and present the extension to the general lag case in Section 5.6.

Toward this end, starting from the dynamic factor representation of the observable pro-

cess Xt = λ̃(L)ft+ut, where ft is the common factor and ut the idiosyncratic component, the

dynamics of ut satisfy B(L)ut = εt with B(L) = Ip−BL being the lagged matrix polynomial

for some sparse B. Multiplying B(L) on both sides leads to the dynamic factor model that

consists of (5.3) and (5.4), where Ft collects the lags of ft so that it only enters the dynamics

of Xt contemporaneously, and is additionally assumed to follow a VAR model:

Xt = ΛFt +BXt−1 + εt, (5.3)

Ft = Φ(L)Ft−1 + ηt. (5.4)

Note that Xt ∈ Rp is observable, whereas Ft ∈ RK (K � p) is a latent VAR(q) process with

Φ(L) := Φ1 + Φ2L + · · · + ΦqL
q−1 for some q. Further, εt is the mean zero noise process

that satisfies E(εitεjs) = 0 ∀i, j, s, t; Cov(Xt, εt+h) = 0 ∀ h ≥ 1, and is additionally assumed
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to be uncorrelated with Ft for its present and future values, i.e., Cov(Ft, εt+h) = 0 ∀h ≥ 0.

The parameters of interest are the factor hyperplane (to be specified later) and the sparse

transition matrix B. Although in principle, the transition matrices corresponding to the

dynamics of Ft in (5.4) can be recovered once the factors are identified, in this study in

accordance with work on this subject in the literature [e.g. ? ], we focus solely on the

recovery of the common factors. It is worth pointing out that due to the latency of the factors,

ΛR−1RFt = ΛFt always holds for any rotation matrix R ∈ RK×K ; therefore given ΛFt, to

separately identify (Λ, Ft) from its observationally equivalent counterpart (ΛR−1, RFt), a

total number of K ×K restrictions are required to resolve such indeterminacies.

Further, to ensure that Xt is covariance stationary, we only require that the spectral

radius of B satisfies %(B) < 1, with no further restrictions needed on Λ. Throughout this

paper, we assume Xt is covariance stationary and its spectral density exists, defined next.

Define the auto-covariance function of some generic process Xt as ΓX(h) = E(XtX
>
t+h), and

its spectral density gX(ω) is given by

gX(ω) :=
1

2π

∞∑
h=−∞

ΓX(h)eiωh.

To obtain the explicit expression of gX(ω) where Xt satisfies (5.3), we start from the filtered

process Zt := B(L)Xt = ΛFt + εt, whose spectral density satisfies

gZ(ω) = ΛgF (ω)Λ + gε(ω) + gε,F (ω)Λ> + ΛgF,ε(ω),

where we additionally define Γε,F (h) := E(εtF
>
t+h) and ΓF,ε(h) := E(Ft+hε

>
t+h), with gε,F (ω)

and gF,ε(ω) accordingly defined. As a consequence, the spectral density of Xt is expressed as

gX(ω) =
[
B−1(e−iω)

](
ΛgF (ω)Λ> + gε(ω) + gε,F (ω)Λ> + ΛgF,ε(ω)

)[
B−1(e−iω)

]∗
.

5.2.1 Estimation.

Given a snapshot of the p-dimensional observable process Xt, denoted by {x0, x1, . . . , xn},
let

Xn :=
[
x1 x2 . . . xn

]>
, Xn−1 :=

[
x0 x1 . . . xn−1

]>
, F :=

[
F1 F2 . . . Fn

]>
,

where Xn ∈ Rn×p and Xn−1 ∈ Rn×p respectively denote the contemporaneous response

matrix and the lagged predictor matrix, and F ∈ Rn×K denotes the latent factor matrix with

the latent factor Ft at time point t stacked in its rows. The noise matrix E is analogously
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defined. We additionally define the factor hyperplane associated with the latent factor F as

Θ := FΛ> ∈ Rn×p, and note that Θ has rank at most K. With the above notations, the

model in (5.3) for the observed samples can be written as follows:

Xn = Θ + Xn−1B
> + E.

To estimate the transition matrix B ∈ Rp×p, as well as the factor hyperplane Θ = FΛ> ∈
Rn×p, we consider the following constrained optimization problem

min
B,Θ

{ 1

2n

∣∣∣∣∣∣Xn −Θ−Xn−1B
>∣∣∣∣∣∣2

F

}
,

subject to rank(Θ) ≤ r, ‖B‖1 ≤ t, for some r and t,

(5.5)

with the feasible region determined through a rank constraint imposed on the factor hy-

perplane Θ and a sparsity-inducing norm constraint imposed on the transition matrix B.

However, note that the rank constraint makes the feasible region non-convex. Without ad-

ditional assumptions on the sequence of iterative updates of Θ and B obtained through an

alternating minimization algorithm, convergence to a stationary point of the sequence is not

guaranteed. Consequently, it becomes analytically intractable to characterize the resulting

solution obtained by terminating the computational procedure, subject to some empirical

convergence criterion. For this reason, we consider an alternative formulation based on

the tight convex relaxation of the rank constraint, whose optimal solution has convergence

guarantees and shares similar statistical properties vis-a-vis its non-convex counterpart (see

Section 5.3.4 Remark 5.2 for a detailed discussion).

Formally, we focus on analyzing the convex program in (5.6), which can be obtained

from (5.5) by alternatively considering the nuclear norm constraint for the factor hyperplane

and the `1 norm constraint for the sparse transition matrix B in the Lagrangian form:

(B̂, Θ̂) = arg min
B,Θ

{ 1

2n

∣∣∣∣∣∣Xn −Θ−Xn−1B
>∣∣∣∣∣∣2

F
+ λB||B||1 + λΘ|||Θ/

√
n|||∗

}
,

subject to Θ ∈ Bn(φ),

(5.6)

where Bn(φ) := {Θ ∈ Rn×p | |||Θ/
√
n|||∗ ≤ φ} is a nuclear norm ball of radius φ, and λB and

λΘ are tuning parameters. The constraint on the feasible region of Θ is to incur additional

compactness on the low rank component, as later explained in greater detail in Section 5.3.1.

Note that (B̂, Θ̂) falls into the class of regularized M-estimators, whose properties have been

extensively studied in the statistical literature for diverse settings [e.g., ? ? ]. In particular,

a polynomial-time computation procedure outlined in Algorithm V.1 can be used to obtain
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(B̂, Θ̂), which involves the alternating minimization with respect to B and Θ in each outer

update, and the composite gradient update [? ] for each inner update of Θ.

Algorithm 5.1: An alternate minimizing algorithm for estimating B and Θ based on (5.6).

Input: Time series data {xi}ni=0, tuning parameter λB, λΘ, feasible region constraint φ.

Initialization: Initialize with Θ̂(0) = Op×p.
Iterate until convergence:
(1) Update B̂(m) with the plug-in Θ̂(m−1) so that each row j is obtained with Lasso regression

(in parallel) and solves

B̂j· = arg min
β∈Rp

{ 1

2n

∣∣∣∣∣∣[Xn − Θ̂(m)
]
·j −Xn−1β

∣∣∣∣∣∣2 + λB‖β‖1
}
. (5.7)

(2) Update Θ̂(m) with the plug-in B̂(m) by

Θ̂(m) = arg min
Θ∈Bn(φ)

{ 1

2n
|||Xn −Xn−1(B̂(m))> −Θ|||

2

F + λΘ|||Θ/
√
n|||∗

}
, (5.8)

where each inner update involves two singular value thresholding (SVT) operations:

Θ̂(m,t+1) = arg min
Θ∈Bn(φ)

{
〈〈Θ,∇Lm(Θ̂(m,t))〉〉+

η

2
|||Θ−Θ(m,t)|||2F + λΘ|||Θ/

√
n|||∗

}
,

for some stepsize η and ∇Lm(Θ) := − 1
n

(
Xn −Xn−1(B̂(m))> −Θ

)
.

Output: Estimated sparse transition matrix B̂ and the low rank hyperplane Θ̂.

Reconstruction of the factors. The solution to (5.6) provides an estimate of the factor

hyperplane, based on which realizations of the K-dimensional latent factors process can be

reconstructed under certain identifiability restrictions. As mentioned in Section 5.1, for any

invertible matrix R ∈ RK×K , the following equality holds

Θ = FΛ> =
[
FR>

][
ΛR−1

]>
:= F̌Λ̌>,

hence, given a factor hyperplane and the latency of the factors, to fully identify the factors

and the corresponding loading matrix (F,Λ) from their observationally equivalent counter-

part (F̌, Λ̌), a total number of K2 restrictions is required to address their indeterminancy.

Various choices for the identification restrictions have been discussed in the literature [e.g.,

? , and references therein], including the most popular PC estimator [? ] which assumes

orthogonality for both the factors and the loadings, as well as the ones that implicitly assume

certain ordering of the factors and impose specific structural restrictions on the loading ma-

trix [see PC2 and PC3 identification restrictions in ? ]. Under these restrictions, the factors
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and the loading matrix can always be uniquely identified2 and obtained based on the SVD

of the estimated hyperplane Θ̂. For example, the PC estimator that assumes 1
n
F>F = IK

and Λ>Λ is diagonal can be obtained by letting F̂PC =
√
nÛ and Λ̂PC = 1√

n
V̂ D̂, where Û ,

V̂ and D̂ come from the singular value decomposition of Θ̂ = ÛD̂V̂ >. Estimators subject

to other restrictions can be obtained by transforming the PC estimator accordingly. It is

worth noting that regardless of the identification restrictions that lead to different versions of

the estimated factors, the space spanned by the estimated factors is invariant once Θ̂ is ob-

tained. In other words, the estimated factor hyperplane already contains all the information

regarding the space spanned by the factors..

5.3 Theoretical Properties.

Next, we investigate the theoretical properties of the proposed estimator in Section 5.2.1.

The road map of the main steps in establishing these properties is: first, in Section 5.3.1

we derive statistical error bounds of Θ̂ and B̂ under certain regularity conditions, when

the proposed estimation procedure is used on a deterministic realization of the observable

process Xt. In particular, the regularity conditions assumed primarily entail the restricted

strong convexity (RSC) condition [? ] and that the choice of λB and λΘ are in accordance

with some deviation bound [? ]. Moreover, we also provide an error bound for the estimated

factor space measured by its sin θ distance relative to the true factor space, based upon the

magnitude of the error of the estimated factor hyperplane Θ̂. Subsequently, in Section 5.3.2,

we analyze the probability of the required conditions being satisfied as well as the high

probability bounds of relevant quantities, for random realizations drawn from the underlying

observable process Xt and the latent process Ft, under the Gaussianity assumption. From a

numerical perspective, we establish the convergence of the proposed iterative algorithm to

a stationary point in Section 5.3.3 and finally we discuss connections between the convex

formulation adopted in (5.6) and its non-convex original counterpart, as well as those between

the proposed framework and related work in the literature in Section 5.3.4. All proofs are

deferred to Appendices A and B.

Throughout our exposition, we use superscript ? to denote the true value of the parame-

ters of interest, and denote the errors of the estimators by ∆Θ := Θ̂−Θ? and ∆B := B̂−B?,

2For the PC estimator or under the PC2 restriction, where F′F/n = IK and Λ is assumed lower-triangular,
the identification is up to sign rotation; under the PC3 one, where the upper K ×K upper sub-matrix of Λ
is assumed an identity matrix and F is left unrestricted, the identification is exact [see ? ].

121



respectively. We focus on the estimator obtained through the convex program in (5.6), i.e.,

(B̂, Θ̂) = arg min
B,Θ

{
f0(B,Θ) + λB||B||1 + λΘ|||Θ/

√
n|||∗

}
,

subject to |||Θ/
√
n|||∗ ≤ φ,

where f0(B,Θ) = 1
2n

∣∣∣∣∣∣Xn −Θ−Xn−1B
>
∣∣∣∣∣∣2

F
. The true value of the parameters (B?,Θ?) is

assumed feasible.

5.3.1 Statistical error bounds with deterministic realizations.

We first discuss the extra constraint imposed for the feasible region of the above shown

convex program. The constraint is on the radius of the nuclear norm ball of Θ and aims

to “limit” the total signal of the low rank component through its eigen-spectrum, which is

closely associated with the amount of interaction between the latent factor space and the

observable space (spanned by Xt−1). In particular, since the basis of the factor space is latent,

it becomes contrived and impractical to impose any restrictions directly on their interaction.

Notwithstanding, such an interaction can be properly bounded by restricting the product

of the signals from the two spaces. As it is later shown in the proof of Theorem 5.1 and

Remark 5.1, the limited interaction between these two space acts as a relaxed surrogate of

the model identifiability restriction, with which the latent and the observable spaces become

distinguishable. A larger φ will potentially lead to a looser error bound since conceptually

the problem becomes more difficult due to the increased degree of interaction between the

two spaces allowed. Note that this constraint is in the same spirit as a similar one in ? ]

that limits the spikiness of the signal by imposing an `∞ norm constraint on the low rank

regression coefficient in that problem formulation. However, the problem in their setting

is fundamentally different from that in the current one, in that the low rank and sparse

regression coefficients both operate in the same space whose basis is observed, and the

constraint in the form of `∞ norm arises from being the dual norm of the `1 norm associated

with the sparse component. For our problem, since the basis for the low rank component

is non-observed and the factor hyperplane is treated as an “intercept” term, it is no longer

sufficient to limit the magnitude of individual entries; rather, a global constraint on the

eigen-spectrum proves necessary.

Next, we introduce additional notations needed in the ensuing technical developments.

We use K to denote the true dimension of factors, that is, rank(Θ?) = K and use s to denote

the cardinality of the support set of B?, i.e., s := ‖B?‖0. Let SX := X>n−1Xn−1/n denote the

sample covariance matrix of the predictors and let Λmax(SX) be its maximum eigenvalue. SE
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and Λmax(SE) are analogously defined for the noise process E. Note that SX corresponds to

∇2
Bf0, with the gradient ∇Bf0 given by ΥX := (Xn −Θ)>Xn−1/n.

Before stating the main results, we formally define the RSC condition [c.f. ? ? ]:

Definition 5.1 (Restricted Strong Convexity (RSC)). For some generic data matrix X ∈
Rn×p, it satisfies the RSC condition with respect to norm Φ with curvature αRSC > 0 and

tolerance τn ≥ 0 if

1

2n
|||X∆|||2F ≥

αRSC

2
|||∆|||2F − τnΦ2(∆), ∀ ∆ ∈ Rp×p.

In our context, we consider the elementwise `1 norm Φ(∆) = ‖∆‖1.

Additionally, for the B direction, we say the tuning parameter λB is chosen in accordance

with the deviation condition [? ] if

λB ≥ c0‖ΥX − SX(B?)>‖∞ = c0‖X>n−1E/n‖∞, for some constant c0 > 0.

Theorem 5.1 (Error bound for (B̂, Θ̂) under fixed realizations). Suppose the fixed realiza-

tions Xn−1 ∈ Rn×p of process Xt ∈ Rp satisfy the RSC condition with curvature αRSC > 0

and a tolerance τn such that

τn

(
s+ (2K)

(λΘ

λB

)2
)
< min{αRSC, 1}/16. (5.9)

Then, for any matrix pair (B?,Θ?) that generates the evolution of the Xt process, for esti-

mators (B̂, Θ̂) obtained by solving the optimization (5.6) with regularization parameters λB

and λΘ satisfying

λB ≥ max
{

2‖X>n−1E/n‖∞, 2φΛ1/2
max(SX)

}
and λΘ ≥ Λ1/2

max(SE), (5.10)

the following error bound holds:

|||∆B|||2F + |||∆Θ/
√
n|||2F ≤

64
(
λ2
B(
√
s+ 1)2 + λ2

Θ(2K)
)

min{αRSC, 1}2
. (5.11)

The proof of this theorem is in Appendix D.1.

Regarding the quantities appearing in (5.9), (5.10) and (5.11), we make the following

comments. First note that the tolerance τn ≥ 0 measures the extent to which the Hessian

of the B direction given by
(
X>n−1Xn−1/n

)
deviates from strong convexity. The smaller τn

is, the closer the Hessian gets to being strongly convex. For (5.9) to be satisfied, neither
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the rank of Θ? nor the cardinality of supp(B?) can be too large. As τn decreases (e.g., as

sample size increases), the Hessian becomes “more convex” so that conceptually we have

more degrees of freedom and get closer to a “low-dimensional regime”, so that the model can

handle a denser B? and a larger number of factors, as manifested by larger permissible values

for K and s, respectively. Moving on to (5.10), for the choice of λB, the cross-product term

‖X>n−1E/n‖∞ measures the maximum interaction between the design matrix Xn−1 and the

noise E, which according to the model assumption should center around 0; and the second

term φΛ
1/2
max(SX) is an upper bound for the latent-observable spaces interaction, presented

in the form of product signals. The choice of λΘ indicates that it needs to be stronger than

the maximum signal coming from the noise in the form of Λ
1/2
max(SE). Based on (5.10), we

further require the regularization parameters to overcome the maximum deviation from zero

of X>E, the latent-observable space interaction, and the maximum noise level. A smaller

λB is required when interactions between associated terms are weaker and a smaller λΘ is

required if the noise is weaker, thus leading to a tighter error bound for the estimators.

Lastly as shown in (5.11), the final error bound depends on the overall curvature of the

objective function, as well as the sparsity level of the sparse transition matrix and the true

number of factors. In summary, the quantities determining the tuning parameters and the

error bound clearly reflect how the information summarized by the factor hyperplane and

by the past history of the process itself interact, as well as their balance in order to be able

to estimate the model parameters consistently.

Note that Theorem 5.1 establishes the error bound for the estimated factor hyperplane

through the quantity ∆Θ. However, the prime quantity of interest is that of the estimation

of the space spanned by the latent factors vis-a-vis the true underlying one. To that end we

derive an error bound for sin θ that measures the distance between the estimated factor space

and the true factor space. In particular, we focus on analyzing the error between the leading

rank-K subspace spanned by Θ and Θ̂, although potentially Θ̂ could span an r-dimensional

subspace (whenever r 6= K) that depends on the value of the selected λΘ.

Note that regardless of the identification restrictions imposed on the factors, once Θ̂ is

obtained, the space spanned by the factors becomes invariant, since F̂ and F̂R> always span

the same space for any K ×K rotation matrix R. Therefore, it is sufficient to examine the

sin θ distance between ÛK and U?
K , where ÛK and U?

K are the first K left singular vectors

corresponding to Θ̂ and Θ?, respectively. Specifically, the angle between the spaces they

span is defined as

θ(F̂K ,F) = θ(ÛK , U
?
K) := diag

(
cos−1(σ̄1), cos−1(σ̄2), . . . , cos−1(σ̄K)

)
, (5.12)
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where σ̄1 ≥ σ̄2 ≥ · · · ≥ σ̄K ≥ 0 are singular values of Û>KU
?
K . The following proposition

associates the error of sin θ to that of ∆Θ, and its proof is available in Appendix D.1.

Proposition 5.1 (sin θ error of the estimated factor space). Suppose the estimated factor

hyperplane Θ̂ ∈ Rn×p is obtained by solving (5.6), whose error is given by ∆Θ = Θ̂ − Θ?.

Let σ1 and σK be the leading and the smallest nonzero singular values of Θ?. The following

bound holds for the sin θ distance between the estimated and the true factor spaces:

||| sin θ(F̂K ,F)|||
2

F ≤
2(2σ1 + |||∆Θ|||op) min

{√
K|||∆Θ|||op, |||∆Θ|||F

}
σ2
K

. (5.13)

The bound in (5.13) is obtained by considering Θ̂ as a ∆Θ-perturbation of Θ?, and the

size of the perturbation is upper bounded in Frobenius norm given by |||∆Θ/
√
n|||F given in

Theorem 5.1. The stronger the minimum signal is for the true space (i.e., σK), the tighter

the sin θ error bound will be. Note that for the true space spanned by F, although it is not

observable, it can nevertheless be interpreted as a random (but fixed for this specific part

of the analysis) realization drawn from the specified VAR model driving the dynamics of Ft,

which in turn directly influences the evolution of the observable Xt process.

5.3.2 High probability bounds under random realizations.

Next, we provide high probability bounds/concentrations for the key quantities associated

with the derived error bound in Section 5.3.1, for random realizations of the underlying factor

and error processes. Specifically, this involves the verification of the RSC condition, as well

as the examination of quantities associated with the deviation bound condition to which the

choice of (λB, λΘ) needs to conform, as shown in (5.10).

We introduce additional notations for the subsequent technical development. For some

generic process {Xt}, in addition to the auto-covariance function ΓX(h) and its spectral

density gX(ω), we define its maximum and minimum eigenvalue associated with the spectral

density gX(ω) introduced in Section 5.2 as follows [? ]:

M(gX) := ess sup
ω∈[−π,π]

Λmax(gX(ω)), m(gX) := ess inf
ω∈[−π,π]

Λmin(gX(ω)).

For two generic centered processes {Xt} and {Yt} that are assumed jointly covariance

stationary, whose spectral density is given by gX,Y (ω) := 1
2π

∑∞
h=−∞ ΓX,Y (h)eiωh where

125



ΓX,Y (h) = E(XtY
>
t+h), the upper extreme for gX,Y (ω) is analogously defined as

M(gX,Y ) := ess sup
ω∈[−π,π]

√
Λmax

(
g∗X,Y (ω)gX,Y (ω)

)
.

In general gX,Y (ω) 6= gY,X(ω), but M(gX,Y ) =M(gY,X).

For the processes involved in our proposed model, we assume that {Xt}, {εt} and {Ft}
are mean zero Gaussian processes. In particular, {εt} is a noise process that does not exhibit

temporal nor cross-sectional dependence, hence it is effectively a Gaussian random vector

with covariance Σε = σ2
ε Ip, and its spectral density simplifies to gε(ω) = Σε

2π
. Further, we

define the shifted process {ε̃t := εt+1} for notation convenience.

The following lemma verifies that with high probability, for random realizations of the

process {Xt}, the RSC condition is satisfied provided that the sample size is sufficiently

large:

Lemma 5.1 (verification of the RSC condition). Consider X ∈ Rn×p whose rows are some

random realization {x0, . . . , xn−1} of the stable {Xt} process with dynamic given in (5.3).

Then there exist positive constants ci (i = 0, 1, 2, 3) such that with probability at least 1 −
c1 exp(−c2n), the RSC condition holds for X with curvature αRSC and tolerance τn satisfying

αRSC = πm(gX), and τn = αRSCγ
2
( log p

n

)
/2 where γ := 54M(gX)/m(gX),

provided that n & s log p.

The next lemma establishes a high probability bound for the interaction term X>n−1E/n

that influences the choice of λn through its elementwise `∞ norm.

Lemma 5.2 (High probability bound for ‖X>n−1E/n‖∞). There exist positive constants

ci (i = 0, 1, 2) such that for sample size n & log p, with probability at least 1−c1 exp(−c2 log p),

the following bound holds:

‖X>n−1E/n‖∞ ≤ c0

(
M(gX) +M(gε) +M(gX,ε̃)

)√ log p

n
. (5.14)

Note that with the definition of the shifted processes {ε̃t}, we have gX,ε̃(ω) = e−ihωgX,ε(ω),

which implies M(gX,ε̃) = M(gX,ε). Hence, the term that measures the upper extreme of

the cross-spectrum between Xt and the shifted process in (5.14) can be replaced by its

unshifted counterpart. Moreover, since gε(ω) = σε
2π

, its upper extreme is given by M(gε) =

Λmax(Σε)/(2π).
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In the next two lemmas, we provide bounds for the extremes of the eigen-spectra of the

sample covariance matrices SX and SE for random realizations of {Xt} process and the noise

vector εt.

Lemma 5.3 (High probability concentration for Λmax(SX)). Consider X ∈ Rn×p whose rows

constitute random realizations {x0, . . . , xn−1} of the stable {Xt} process whose dynamics are

given in (5.3). Then, there exist positive constants ci (i = 0, 1, 2) such that for sample size

n & p, with probability at least 1− c1 exp(−c2p), the following bound holds:

Λmax(SX) ≤ c0M(gX).

Lemma 5.4 (High probability concentration for Λmax(SE)). Consider E ∈ Rn×p whose rows

are independent realizations of the mean zero Gaussian random vector εt with covariance Σε.

Then, for sample size n & p, with probability at least 1 − exp(−n/2), the following bound

holds:

Λmax(SE) ≤ 9Λmax(Σε).

Proofs for Lemmas 5.1 to 5.4 can be found in Appendix D.1. Up to this stage, we have

verified the RSC condition and obtained the high probability bounds for quantities that are

associated with the choice of (λB, λΘ), for random realizations from the underlying processes.

Theorem 5.2 combines the results in Theorem 5.1 and Lemmas 5.1 to 5.4, and provides a

high probability error bound of the estimates when the data are random realizations from

the underlying processes, as stated next.

Theorem 5.2 (high probability error bound with random realizations). Suppose we are given

a snapshot of length (n + 1) {x0, . . . , xn} from the p-dimensional observable process {Xt},
whose dynamics are described in (5.3). Then, there exist universal positive constants ci (i =

1, 2, 3) and c′i (i = 1, 2) such that for sample size n & p, by solving convex problem (5.6) with

regularization parameters

λB = max
{
c1QX,ε

√
log p
n
, c2φM1/2(gX)

}
and λΘ = c3Λ1/2

max(Σε),

where QX,ε := (2π)
(
M(gX)+M(gε)+M(gX,ε)

)
, the solution (B̂, Θ̂) has the following bound

with probability at least 1− c′1 exp
(
− c′2 log p

)
:

|||∆B|||2F + |||∆Θ/
√
n|||2F ≤ max

{
m−2(gX), π2

}(
C1 · s ·max

{ log p

n
, 1
}

+ C2 ·K
)
,

for some positive constants Ci (i = 1, 2) that are independent of n and p.
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Remark 5.1. We illustrate the result established in Theorem 5.2, which is inherently asso-

ciated with model identifiability. First, note that Theorem 5.2 implies the following rate of

convergence, since we require n & p for adequate concentration in the eigen-spectrum:

|||∆B|||2F + |||∆Θ/
√
n|||2F = O

( log p

n

)
+O(1) = O(1).

The requirement n & p is standard in the factor analysis literature [e.g., ? ]. This result

implies that with p = O(n) and as n goes to infinity, the error bound is always bounded

by some constant, but not vanishing. Such a non-vanishing bound is the consequence of Ft

being latent and the lack of exact identifiability restrictions between the space spanned by Ft

and that by Xt−1. Consider the full identification of the given model Xt = ΛFt+BXt−1 + εt.

Similar to the analysis in ? ] for the informational series of a factor-augmented VAR model,

there exist invertible matrices M11 ∈ RK×K and M12 ∈ RK×p such that

Xt = ΛFt +BXt−1 + εt = (ΛM11)︸ ︷︷ ︸
Λ̄

(M−1
11 Ft −M−1

11 M12Xt−1)︸ ︷︷ ︸
F̄t

+ (B +M12)︸ ︷︷ ︸
B̄

Xt−1 + εt, (5.15)

which are observationally equivalent to the original model. So for the model to be fully

identifiable (including the factors), a total number of K2 + Kp restrictions is required. If

exact identification of the factors is not required, then Kp restrictions are required to sep-

arate the space spanned by Ft from that by Xt−1. In low dimensional settings with a

different model setup, an estimation procedure based on (5.15) that takes into considera-

tion these Kp restrictions can be carried out in the following three steps: (1) projecting

on the orthogonal space of the observed variable so that it is profiled out, by multiplying

P⊥X := In −Xn−1(X>n−1Xn−1)−1X>n−1; (2) doing a one-shot estimation as in standard factor

analysis, based on the “profiled” model P⊥XXn = P⊥XFΛ> + V = FΛ> + V where V collects

the error term; (3) rotating the intermediate estimates (F̂, Λ̂) subject to the restrictions by

operating on the inverse with the aid of additional modeling assumptions on the dynamics

[see ? ]. In the high-dimensional setting, neither the projection operator, nor its inverse are

available and hence the above strategy can not be operationalized. Without imposing addi-

tional model assumptions that would be stringent and only made for the sake of mathematical

convenience, we formulate an optimization problem instead, and implicitly incorporate the

Kp restrictions through the assumption that the amount of interaction between the latent

factor space and the past lags of the observable process is appropriately controlled, which

manifests itself in the technical developments as the product of the total signal present in

these two spaces. Hence, with properly selected tuning parameters, the global minimizer of

the convex problem exhibits good statistical behavior in terms of its error that does not grow
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with p or n, so that there is adequate control over the performance of the estimator, even

though this upper bound of the error does not vanish asymptotically. This represents the

price to be paid for handling strongly correlated idiosyncratic components in approximate

factor models, under minimal identifiability restrictions.

5.3.3 Convergence analysis.

The convergence property of Algorithm V.1 that solves the optimization problem (5.6)

can be established using familiar arguments and exploiting its convex nature. As stated in

Section 5.2.1, the objective function

f(B,Θ) := f0(B,Θ) + λB‖B‖1 + λΘ|||Θ|||∗

is jointly convex in (B,Θ), with a convex feasible region given by

dom(f) =
{

Θ ∈ Rn×p, B ∈ Rp×p ∣∣ |||Θ/√n|||* ≤ φ
}
.

Thus, it directly follows from ? ] that the alternating minimization that generates the

sequence {(B̂(k), Θ̂(k))} converges to a stationary point which is also a global optimum,

though the global optimum is not necessarily unique.

5.3.4 Notes on model connections.

To conclude this section, we discuss connections between different formulations of the

problem, and compare and contrast the property of our proposed estimator with those ob-

tained in related work in the literature.

Remark 5.2. Connections between different formulations. First we note that if the rank

constraint in (5.5) were not relaxed to its convex counterpart, it would be natural to consider

the following optimization problem:

(B̃, Θ̃) = arg min
B∈Rp×p,Θ∈Rn×p

{ 1

2n

∣∣∣∣∣∣Xn −Θ−Xn−1B
>∣∣∣∣∣∣2

F
+ λB||B||1

}
,

subject to rank(Θ) ≤ r, |||Θ/
√
n|||∗ ≤ φ,

(5.16)

where we keep the nuclear norm ball constraint as in (5.6) to limit the overall signal in Θ.

Derivations along the lines of those in Sections 5.3.1 show that the global optimum (B̃, Θ̃)

possesses a similar statistical error bound with the same rate as the global optimum (B̂, Θ̂)

of the convex program (5.6), as shown in Theorem D.1 in Appendix D.3. This indicates

that the convex relaxation with respect to the Θ block is tight even for the joint problem
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involving both sets of parameters (Θ, B). However, the established statistical properties only

hold for the global optimum of (5.16). On the other hand, due to the non-convex nature

of the rank constraint, it is hard to devise an algorithm that provably ensures convergence

to this global optimum. Note that it is natural to investigate a penalized (non-convex)

Lagrangian formulation of (5.16), and devise a majorization-minimization algorithm that

is guaranteed to converge to some stationary point as a result of ? , Theorem 4], since the

regularity conditions needed in terms of the continuity of the gradient and the compactness

of the point-to-set map3 are satisfied. However, beyond asserting that this stationary point

satisfies the first-order optimality condition in a local neighborhood, we are not able to

further characterize this stationary point in terms of its statistical properties, since such

local optima may be far from the global optimum. The analysis of the global optimum of

the original problem formulation and discussion of the majorization-minimization procedure

are provided for the sake of completeness in Appendix D.3 and to illustrate the delicate

nature of the problem under consideration.

Remark 5.3. Discussion on obtaining the error bound. Note that for the approximate fac-

tor model, a large panel size (large p) is helpful, since the estimated factors are obtained

through cross-sectional aggregation. In particular, as discussed in ? ] and subsequent work,

by assuming that the leading K eigenvalues of ΣX diverge, whereas all eigenvalues of Σu

are bounded, separation between the common factors and the idiosyncratic components is

achieved as the panel size p goes to infinity. On the other hand, the Stock-Watson formu-

lation [? ] adopted in our work which accounts explicitly for strong correlations amongst

the coordinates of the idiosyncratic component, leads to a high-dimensional sparse regression

modeling framework. Hence, the estimates for the time-lags of the Xt process suffer from the

curse of dimensionality, if we do not compensate appropriately by an increase in the sample

size. Hence, we need to strike a balance between these two competing forces. Specifically,

when updating the estimate of the factor hyperplane by aggregating cross-sectional infor-

mation and compress it to a subspace with reduced dimension through the SVD, a larger

panel p is helpful. On the other hand, when updating the estimate of the sparse transition

matrix, a very high p is detrimental, unless appropriately compensated by a larger sample

size n. In addition, the temporal dependence of the coordinates of the Xt process along with

the presence of the latent factors add further complications. Thus, careful balancing of these

competing issues is needed to obtain estimates of the model parameters with adequate error

control.

Remark 5.4. On the error bound in ? ]. As briefly mentioned in Section 5.1, ? ] consider a

regression model for time series data involving latent factors that is broadly related to our

3See definition of the “point-to-set map” in ? ].
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posited model, as explained next. Specifically, the following formulation is considered: the

ith coordinate of time evolving response Yt belonging to group gi is modeled as

Yit = β>i Xit + λ>c,iFc,t + λ>gi,tFg,t + εit, (5.17)

where Yit ∈ Rp is the response, Xit ∈ Rqi is the observable covariate, and in addition there is

a common factor Fc,t ∈ Rr impacting all coordinates/responses, and a group-specific factor

Fgi,t ∈ Rrgi impacting certain coordinates/response, with the group membership being latent.

The paper provides consistency results for both a low-dimensional regime with q := max qi

fixed, and a high-dimensional one with q being a function of sample size n and thus diverging.

However, we note that to achieve the consistency results for a high-dimensional q, most of

the key assumptions imposed on the paper are for the realized samples. On the other

hand, these assumptions would fail to hold with high probability in the high-dimensional

regime with a diverging number of predictors q, since the paper requires the existence of

the generalized inverse of X>(In − F(F>F)−1F>)X (e.g., assumption D3), which can be

a highly unstable quantity. Such unaccounted randomness potentially affects the rate of

convergence of the estimators for the case of random realizations, an issue not addressed in

the paper. Further, the sample size requirement is rather stringent. Note that our technical

developments and the error bound obtained in our analysis are directly applicable to the

estimated parameters of (5.17), with all randomness properly controlled and the sample size

requirement compatible with other high-dimensional literature settings [e.g., ? ? ].

5.4 Implementation and Performance Evaluation.

The actual implementation of Algorithm V.1 requires as inputs λB, λΘ, as well as a

choice of φ for the constraint on the feasible region corresponding to the nuclear norm ball

of Θ. In practice, it is usually difficult to properly choose φ that is always compatible with

the feasibility assumption on Θ?. Notwithstanding, the computation procedure designed for

solving the convex program in (5.6) suggests that to obtain the estimates effectively involves

alternating between the following two steps: (1) a Lasso update on the rows of B; and (2)

SVT updates on Θ. This naturally motivates an empirical algorithm that can be used to

obtain the estimates in practice, outlined next in Algorithm 5.2.

Algorithm 5.2 can be viewed as an alternating minimization algorithm that solves

(Θ̂emp, B̂emp) := arg min
{ 1

2n

∣∣∣∣∣∣Xn −Θ−Xn−1B
>∣∣∣∣∣∣2

F
+ λB||B||1

}
,

subject to rank(Θ) ≤ r,
(5.18)
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Algorithm 5.2: An empirical AM algorithm to obtain B̂emp and Θ̂emp.

Input: Time series data {xi}ni=0, tuning parameter λB, rank constraint r.
Initialization: Initialize with Θ̄(0) = SVT(Xn)
Iterate until convergence:
(1) Update B̄(m) with the plug-in Θ̄(m−1) so that each row j is obtained with Lasso regression

(in parallel) and solves

B̄j· = min
β

{ 1

2n

∣∣∣∣∣∣[Xn − Θ̄(m−1)
]
·j −Xn−1β

∣∣∣∣∣∣2 + λB‖β‖1
}
.

(2) Update Θ̄(m) by singular value thresholding (SVT): do SVD on the lagged value-adjusted
hyperplane, i.e.,

Xn −Xn−1B̄
(m) = UDV, where D := diag

(
d1, . . . , dr, dr+1, . . . , dmin(n,p)

)
,

and construct Θ̄(m) by

Θ̄(m) = UDrV, where Dr := diag
(
d1, . . . , dr, 0, . . . , 0

)
.

Output: Estimated sparse transition matrix B̂emp = B̄(∞) and the low rank hyperplane Θ̂emp =
Θ̄(∞).

which is the penalized reformulation corresponding to (5.5). For each update, the partial

minimization step with respect to Θ or B ensures that the value of the objective function is

always non-ascending, which together with the fact that the objective function is bounded

below guarantees convergence of the objective function iterates. In practice, the algorithm

is terminated when the descent magnitude of the objective function between successive iter-

ations is smaller than some pre-specified tolerance level. Note that this algorithm does not

provide guarantees of convergence to a stationary point of the sequence of (Θ̄(k), B̄(k)) iter-

ates, which requires stronger assumptions, either that of convexity of the objective function

and the constraint region, or uniform compactness of the generated sequence of iterates. Note

that (5.18) can be viewed as an empirical relaxation of (5.16) by removing the constraint

associated with the nuclear norm ball.

Choice of the tuning parameter λB and the rank constraint r. The implementation

of Algorithm V.2 requires a specific pair of (λB, r) as input. We consider choosing the

optimal pair of (λB, r) based on the information criterion proposed in ? ], called the Panel

Information Criterion (PIC) and defined as:

PIC(λB, r) :=
1

np

∣∣∣∣∣∣∣∣∣Xn − Θ̂emp −Xn−1B̂
>
emp

∣∣∣∣∣∣∣∣∣2
F

+ σ̂2
[ log n

n
‖B̂emp‖0 + r(

n+ p

np
) log(np)

]
, (5.19)

where σ̂2 = 1
np
|||Xn − Θ̂emp −Xn−1B̂

>
emp|||

2

F
and (B̂emp, Θ̂emp) are solutions to (5.18) with

the specific pair of plug-in (λB, r). We choose the optimal pair (λB, r) over the lattice
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GλB × Gr := {λ(1)
B , . . . , λ

(j1)
B } × {r(1), . . . , r(j2)} that minimizes PIC.

Next, we present selected results of numerical studies to demonstrate the performance of

our proposed method, divided into two parts: in Section 5.4.1, we show the performance of

estimates obtained by implementing Algorithm V.2, under various model settings that cap-

ture different features of the data generating procedure; in Section 5.4.2, we briefly compare

the performance of the single-iterate estimator that is obtained by terminating the iterative

procedure at iteration 1, with varying factor-lag strength ratios (to be defined later).

Data generating mechanism. To examine different facets of the model settings that

impact the performance of the estimates, we generate data according to the lag-adjusted

factor model representation Xt = ΛFt+BXt−1 + εt. Since the interaction between the latent

factor space and the predictor space based onXt−1 is fundamental to both model specification

and estimation accuracy, we explicitly model their joint distribution. Specifically, consider

the joint distribution of (X>t−1, F
>
t )> under the Gaussianity assumption:(

Xt−1

Ft

)
∼ N

(
0,Σ :=

[
ΣX ΣXF

ΣFX ΣF

])
.

For the latent factor Ft, we assume ΣF = IK ; for the observed variable Xt, we assume ΣX is

either Toeplitz with exponential decay or has an equal correlation structure, depending on

the scenario under consideration:

[ΣX ]ij = ρ
|i−j|
X (Toeplitz) or [ΣX ]ij (i 6=j) = ρX , diag(ΣX) = 1 (equal correlation).

Entries in ΣXF are closely associated with the factor-lag correlation level, and we gener-

ate each entry in ΣXF from Unif(−ρ, ρ), with ρ > 0 specified at different levels. Finally,

after ΣX ,ΣF and ΣXF are generated, we inflate the diagonals of Σ to ensure its positive-

definiteness and also satisfying Λmax(Σ)/Λmin(Σ) = 10, then renormalize it so that Σ is a

correlation matrix. Due to the recursive nature of the model, to generate data with the desig-

nated correlation structure, Ft needs to be generated according to its distribution conditional

on Xt−1, that is,

(
Ft|Xt−1 = x

)
∼ N

(
ΣFXΣ−1

X x, ΣF − ΣFXΣ−1
X ΣXF

)
.

This procedure imposes the following empirical restriction on the model parameters, so that

the generated time series {x0, . . . , xn} is stationary:

% := %
(
ΛΣFXΣ−1

X +B
)
< 1.
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Finally, we generate the noise term according to εt ∼ N (0, σ2
ε Ip), for all t = 0, . . . , n.

To generate the sparse transition matrix B, we assume its sparsity level is 2/p for each row

that corresponds to the coefficients of each single time series regression, and further nonzero

entries are generated from Unif
(
[−κB − 0.1,−κB + 0.1] ∪ [κB − 0.1, κB + 0.1]

)
. Each entry

of the dense factor loading matrix Λ is generated from Unif
(
[−κΛ − 0.1,−κΛ + 0.1] ∪ [κΛ −

0.1, κΛ + 0.1]
)
. Note that the specification of κB and κΛ determines the factor-lag strength

ratio (SNRF/SNRX), in terms of their contribution to the overall signal. In particular, we

empirically calculate the overall SNR, SNR of Ft, and SNR of Xt as (averaged across the p

coordinates of the time series panel):

SNR =
1

p

p∑
j=1

Var
(
[FΛ> + Xn−1B

>]·j
)

Var(E·j)
, SNRF =

1

p

p∑
j=1

Var
(
[FΛ>]·j

)
Var(E·j)

, SNRX =
1

p

p∑
j=1

Var
(
[Xn−1B

>]·j
)

Var(E·j)
.

In practice, we need to adjust the values of κB, κΛ and σε jointly to get the desired level of

SNR and different allocations of the signal.

To measure the accuracy of the obtained estimates, for the sparse transition matrix B,

we use sensitivity (SEN), specificity (SPC) and relative error in Frobenius norm (RErrB) as

performance criteria:

SEN =
TP

TP + FN
, SPC =

TN

FP + TN
, RErrB = |||∆B|||F/|||B

?|||F .

For the factor hyperplane, since we don’t separately identify the factors and the factor space

is invariant to the identification restrictions, we measure the error of the space based on the

sin θ distance relative to the true factor space (sin θ.Err) and the relative error in Frobenius

norm of the hyperplane (RErrΘ):

sin θ.Err = ||| sin θ(U,U?)|||2F , RErrΘ = |||∆Θ|||F/|||Θ
?|||F ,

where θ(U,U?) is defined in (5.12).

Throughout all numerical experiments presented in this section, the sample size n is

fixed at 200. Moreover, for our proposed iterative estimator, tuning parameters (λB, r) are

chosen according to PIC, with r ranging between [max{K−2, 1}, K+2]. For each parameter

setting, the reported results are based on the average of 50 replications.

5.4.1 Performance evaluation of the proposed estimator.

We evaluate the performance of our proposed estimator under the simulation settings

listed in Table 5.1. For all settings, we also consider different levels of correlation between

Ft and Xt−1, with ρ taking values in {0.1, 0.3, 0.5, 0.7, 0.9}. Table 5.2 presents various per-
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p K % ΣX structure ρX factor-lag SNR ratio
(baseline) A0 100 2 0.5 eqcorr 0.2 2:1

A1 100 2 0.5 Toeplitz 0.5 2:1
A2 300 2 0.5 eqcorr 0.2 2:1
B1 100 2 0.8 eqcorr 0.2 1:1
B2 500 2 0.5 Toeplitz 0.5 2:1
C1 100 5 0.8 eqcorr 0.2 1:1
D1 300 10 0.8 Toeplitz 0.5 2:1
D2 300 5 0.8 eqcorr 0.2 10:1

Table 5.1: Simulation settings for performance evaluation. Settings that vary by 1, 2, 3 and 4 parameters compared with the
baseline setting A0 are indexed by A, B, C and D respectively.

formance metrics for (Θ̂emp, B̂emp) (the subscript is dropped for notation convenience hence-

forth). It can be seen that the estimates obtained from Algorithm V.2 exhibit good per-

formance in estimating both the factor hyperplane and identifying the skeleton of B̂. In

particular, (i) the covariance structure amongst the coordinates of the observed predictor

Xt−1 does not affect the performance, since A0 and A1 yield similar results; (ii) a larger

panel size p favors the factor hyperplane estimation as manifested in the form of a smaller

RErrΘ̂ and sin θ.Err, but requires the sparsity of the transition matrix to decrease accord-

ingly (recall that it is set to 2/p) for it to have comparable performance (A2, B2 vs. A0);

(iii) as we decrease the factor-lag SNR ratio so that the autoregressive structure becomes

stronger, B̂ has a better RErrB̂ as a result of larger SNRX , whereas the factor hyperplane es-

timation gets compromised (B1, C1 vs. A0). In particular, if the signal is distributed among

more factors (higher rank K) with the total SNRF fixed, the factor hyperplane estimation is

worse (B1 vs. C1). In general, the proposed estimator is robust to model stability and can

handle systems with many time series, although we have observed that for larger % or p, the

algorithm takes more iterations to converge.

5.4.2 Comparison to single-iterate estimates.

To illustrate how the optimal solution to (5.18) obtained by iterating helps in improving

the accuracy compared with a single-iterate (SI) estimate, we briefly compare the perfor-

mance of the two sets of estimates under various settings. Specifically, the SI estimator can

be equivalently obtained by first applying a SVD on Xn, and then fitting a sparse VAR(1)

model on the residuals. Note that this corresponds to a natural strategy of obtaining es-

timates for the model under consideration based on past work in the literature and in the

absence of all technical developments presented in this paper. In practice, since this proce-

dure also requires as inputs the number of factors r and the penalty parameter λsi
B (which

may not necessarily coincide with the optimal choice based on the iterative procedure), dur-

ing the SVD step we choose the number of factors according to the ICp1 criterion discussed
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ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

A0

B̂

SEN 0.93 0.99 0.98 0.98 0.96
SPC 0.98 0.95 0.95 0.96 0.96
RErr 0.86 0.83 0.86 0.85 0.85

Θ̂

Rank 2 2 2 2 2
sin θ.Err 0.039 0.033 0.034 0.041 0.025
RErr 0.17 0.16 0.16 0.17 0.15

A1

B̂

SEN 0.99 0.96 0.96 0.93 0.97
SPC 0.96 0.97 0.97 0.96 0.96
RErr 0.78 0.84 0.85 0.86 0.86

Θ̂

Rank 2 2 2 2 2
sin θ.Err 0.031 0.027 0.032 0.020 0.029
RErr 0.15 0.14 0.15 0.12 0.14

A2

B̂

SEN 0.98 0.97 0.99 0.99 0.94
SPC 0.98 0.98 0.98 0.97 0.98
RErr 0.84 0.86 0.85 0.83 0.84

Θ̂

Rank 2 2 2 2 2
sin θ.Err 0.013 0.012 0.012 0.006 0.005
RErr 0.13 0.12 0.12 0.10 0.08

B1

B̂

SEN 1.00 1.00 1.00 0.99 0.98
SPC 0.95 0.95 0.96 0.97 0.97
RErr 0.74 0.66 0.66 0.81 0.80

Θ̂

Rank 2 2 2 2 2
sin θ.Err 0.031 0.032 0.027 0.086 0.080
RErr 0.16 0.16 0.17 0.27 0.25

B2

B̂

SEN 0.98 0.97 0.99 0.91 0.91
SPC 0.97 0.99 0.97 0.97 0.98
RErr 0.83 0.80 0.77 0.85 0.84

Θ̂

Rank 2 2 2 2 2
sin θ.Err 0.005 0.06 0.015 0.005 0.004
RErr 0.09 0.09 0.13 0.09 0.08

C1

B̂

SEN 1.00 1.00 1.00 1 0.99
SPC 0.94 0.94 0.94 0.94 0.96
RErr 0.47 0.70 0.66 0.68 0.71

Θ̂

Rank 5 4.72 5 5 5
sin θ.Err 0.185 0.414 0.212 0.189 0.315
RErr 0.24 0.34 0.25 0.24 0.32

D1

B̂

SEN 1.00 1.00 1.00 1.00 1.00
SPC 0.97 0.99 0.98 0.99 0.99
RErr 0.84 0.83 0.82 0.82 0.85

Θ̂

Rank 10 10 10 10 10
sin θ.Err 0.210 0.172 0.201 0.176 0.208
RErr 0.26 0.21 0.23 0.22 0.23

D2

B̂

SEN 0.93 0.95 0.95 0.90 0.90
SPC 0.98 0.97 0.96 0.98 0.98
RErr 0.82 0.86 0.83 0.90 0.90

Θ̂

Rank 5 5 5 5 5
sin θ.Err 0.053 0.051 0.061 0.056 0.056
RErr 0.16 0.16 0.18 0.17 0.17

Table 5.2: Performance evaluation of B̂ and Θ̂ under settings in Table 5.2, based on the average of 50 replications.
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in ? ], i.e., we choose the number of factors r over a sequence that minimizes

ICp1(r) = log
(
V (r)

)
+ r
(p+ n

pn

)
log
( np

n+ p

)
, where V (r) :=

1

np
|||Xn − Θ̂si|||

2

F ;

and subsequently during the sparse VAR fitting step, we choose the penalty parameter based

on BIC, i.e., we choose the λsi
B that minimizes

BIC(λsi
B) =

p∑
j=1

log(RSSi) +
log n

n
‖B̂si‖0, where RSSj = ‖Ûn,·j − Ûn−1(B̂si

j·)
>‖2

2,

with Θ̂si := Θ̄(0), B̂si = B̄(1) , Ûn := Xn − Θ̂si and Ûn−1 being the matrix of its lags. As a

remark, the performance of Θ̂si will not be affected by that of B̂si, but not vice versa.

To compare the iterative and SI estimators in greater depth, we also include the “oracle

SI estimator” denoted by (B̂si?, Θ̂si?) to the comparison, obtained by doing the PC estimation

with the true number of factors as the rank constraint in the first step so that it is forced to

return the correct rank, and proceed to fit a VAR(1) model on the residuals. For these three

sets of estimates, we plot the SEN, SPC of B̂, B̂si and B̂si? as well as the sin θ.Err, RErr of

Θ̂, Θ̂si and Θ̂si?, over different ρ’s that controls the level of correlation between Ft and Xt−1.

As a remark, since in our study sin θ.Err is calculated based on the first K singular vectors

of the estimated hyperplane, the ordinary and the oracle SI estimates will always have the

same sin θ.Err. In other words, they will always span the same leading-K subspace, and the

difference will lie in the tail which is determined by the rank constraint.

The comparison is performed under selected simulation settings from Section 5.4.1 (A0,

A2, B1 and D2) that are also listed in Table 5.3. Note that for all four settings, the structure

of ΣX is fixed to be “equally correlated” with ρX = 0.2. Setting δ.1 is the baseline setting;

Setting δ.2 increases the dimension of the observable process, so that it favors the PC

estimation in step 1 whose asymptotics rely on the panel size approaching infinity [? ];

Setting δ.3 considers a more dependent autoregressive structure, manifested by the larger

% which makes {Xt} less stable and yields a smaller factor-lag SNR ratio. Finally, setting

δ.4 is designed to capture scenarios where the correlation between Ft and the idiosyncratic

component ut is weak, with an exceedingly dominating factor and weak signal in Xt−1.

p K % factor-lag SNR ratio choices of ρ for ‖Cov(Ft, Xt−1)‖∞
δ.1 100 2 0.5 2:1

{0.1, 0.3, 0.5, 0.7, 0.9}δ.2 300 2 0.5 2:1
δ.3 100 2 0.8 1:1
δ.4 300 5 0.8 10:1

Table 5.3: Simulation settings for comparing the iterative estimator and the one-shot estimator.

As depicted in Figures 5.1, 5.2 and 5.3, the iterative estimator outperforms the both

the ordinary and oracle SI versions across all performance metrics, and the discrepancy in
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Figure 5.1: Comparison for Setting δ.1. Left panel: the true positive rate (sensitivity) (left axis, in blue) and the false positive

rate (1-specificity) (right axis, in red) of B̂, B̂si and B̂si?. Right panel: relative error in Frobenius norm (left axis, in blue) and

the sinθ error (right axis, in red) of Θ̂, Θ̂si and Θ̂si?. Note: rank(Θ̂) ≡ 2, rank(Θ̂si) ≡ 1.
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Figure 5.2: Comparison for Setting δ.2. Left panel: the true positive rate (sensitivity) (left axis, in blue) and the false positive

rate (1-specificity) (right axis, in red) of B̂, B̂si and B̂si?. Right panel: relative error in Frobenius norm (left axis, in blue) and

the sinθ error (right axis, in red) of Θ̂, Θ̂si and Θ̂si?. Note: rank(Θ̂) ≡ 2, rank(Θ̂si) ≡ 1.
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Figure 5.3: Comparison for Setting δ.3. Left panel: the true positive rate (sensitivity) (left axis, in blue) and the false positive

rate (1-specificity) (right axis, in red) of B̂, B̂si and B̂si?. Right panel: relative error in Frobenius norm (left axis, in blue) and

the sinθ error (right axis, in red) of Θ̂, Θ̂si and Θ̂si?. Note: rank(Θ̂) ≡ 2, rank(Θ̂si) ≡ 3.
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Figure 5.4: Comparison for Setting δ.4. Left panel: the true positive rate (sensitivity) (left axis, in blue) and the false positive

rate (1-specificity) (right axis, in red) of B̂, B̂si and B̂si?. Right panel: relative error in Frobenius norm (left axis, in blue) and

the sinθ error (right axis, in red) of Θ̂, Θ̂si and Θ̂si?. Note: rank(Θ̂) ≡ 5, rank(Θ̂si) = 7 for ρ ∈ {0.1, 0.3, 0.5}, rank(Θ̂si) = 5
for ρ ∈ {0.7, 0.9} .

the accuracy of estimating B̂ becomes larger as we increase the level of correlation between

Ft and Xt−1. Under settings δ.1 and δ.2 where the signal for the factor is strong and

that for the lag is relatively weak, for the estimated B (left panels), when ρ is small, all

estimators exhibit good performance as indicated by a high TPR and a low FPR. As ρ

increases, TPR of the iterative estimator (solid line) stays above 0.9, where that of the SI

estimators drops significantly, where B̂si? (dotted line) has a slightly higher TPR compared

with B̂si (dashed line). For all three estimators, FPR stays at a relative low level (0.01 ≤
FPR ≤ 0.05) in all settings. For the estimated hyperplane, (i) the iterative estimator always

correctly estimates the number of factors (rank), whereas the SI one systematically under-

estimates the rank; (ii) the inaccuracy of the rank determination leads to a large relative

error for the estimated hyperplane (RErrΘ̂si is around 0.7 versus RErrΘ̂si? , RErrΘ̂ that are

both around 0.2); (iii) despite the rank being correctly specified for the oracle version, Θ̂si?

still exhibits worse performance compared with Θ̂ in both the relative error in magnitude and

the sin θ error regarding the space it spans; this result is in accordance with the conclusion

of Proposition 5.1. Under setting δ.3 where the factor and lag signals are comparable, all

three estimators show good performance in estimating the transition matrices in all settings,

with the iterative estimator exhibiting a slightly smaller FPR. The major problem for the

SI estimators lies in the factor hyperplane estimation, which systematically over-estimates

the true rank and has a significantly higher relative error, even for the oracle Θ̂si?. Note

that RErrΘ̂ again stays around 0.2, whereas RErrΘ̂si and RErrΘ̂si? can be as high as 0.6 to

0.7. Turning to Figure 5.4 which corresponds to Setting δ.4, where we have an exceedingly

strong factor and a weak auto-regressive structure, both the SI and iterative estimators

exhibit similar performance. In particular, the ordinary SI estimator obtains the correct

rank for ρ = 0.7 and ρ = 0.9, which makes it identical to the oracle SI estimator and the
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two have the same overall performance.

We also examined the performance of the SI estimates when the filtering VAR step is

applied first and then the FA model on the residuals (results not included) for settings δ.3

and δ.4. For the former, where the factor contributes equally to the VAR component, this SI

estimate identifies the rank correctly most of the time, but the specificity of the B estimates

suffer (values around 0.8) together with the sin θ.Err (values around 0.45). For the latter

setting, where the factor is the dominant contributor, the specificity of the B estimates

further deteriorate (values around 0.6), as well as those for sin θ.Err (values ranging from

1.2-2.8).

The simulation results clearly demonstrate our earlier point that the proposed model

formulation is capable of incorporating the correlation between the common factors and the

idiosyncratic error, as well as that amongst the coordinates of the idiosyncratic component.

After re-writing the model as a lag-adjusted factor model, the devised estimation procedure

yields a more accurate reconstruction of the factor hyperplane vis-a-vis the traditional factor

analysis through PC estimation (or SVD, equivalently), thus overcoming the difficulties

noted by ? ] in their empirical work. In addition, an estimated transition matrix with good

selection properties is available for further analysis even with moderate signal strength of

the corresponding component in the model (that translates into relatively strong correlations

amongst the coordinates of the idiosyncratic component).

5.5 Application to Log-Returns of US Financial Assets.

Factor models have been widely used in financial applications. In particular, they have

been employed in analyzing the dynamics of asset returns, either for the purpose of identifying

risk factors, or for estimating the covariance structure amongst assets for better portfolio

diversification and asset allocation [e.g., ? ]. We applied the proposed modeling framework

to a set of stocks return data corresponding to 75 large US financial institutions, which also

exhibit strong (serial) correlation in the error terms. Specifically, we analyze the log-returns

of 25 banks, 25 insurance companies and 25 broker/dealer firms for the period of 2001-16.

Note that this time period contains a number of significant events for the financial industry,

including the growth of mortgage bank securities [? ] in the early 2000s, rapid changes in

monetary policy in 2005-06, the great financial crisis [? ] in 2008-09 and the European debt

crisis in 2011-12 and their aftermath. Our analysis identifies a number of interesting patterns,

especially around the period 2007-09 encompassing the beginning, height and immediate

aftermath of the US financial crisis, both through changes in the factor structure and the

partial autocorrelation one governed by the VAR model transition matrix of the log-returns
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of these financial assets.

Data. The data consist of weekly stock return data corresponding to 75 large financial

institutions in terms of market capitalization, for the period of January 2001 to December

2016 and were obtained from the Center for Research in Security Prices (CRSP) database.

The 75 companies are categorized into three sectors: banks (SIC code 6000–6199), bro-

ker/dealers (SIC code 6200–6299) and insurance companies (SIC code 6300–6499), with 25

in each sector [see also ? ]. As we require that the data be available for the entire time span

under consideration, there are 56 firms that are kept for further analysis, since the remain-

ing ones either went bankrupt or were forced to merge with financially healthier companies

(e.g. Lehman Brothers and Merill Lynch in 2008, respectively). To get an overview of the

correlation structure amongst the stocks after accounting for the first principal component

that captures the average return of the portfolio comprising of the 56 stocks under consid-

eration [? ], we plot the correlation among the principal component regression residuals.

We consider the entire period as well as three sub-periods that have been considered in the

literature [c.f. ? ]: 2001–2006 (pre-crisis), 2007–2009 (crisis), 2010-2016 (post-crisis), and

plot the corresponding correlation map. As Figure 5.5 demonstrates, overall, we observe

positive correlation within each sector and negative correlation across the three sectors (top

left panel). Such a structural pattern is particularly predominant in the pre-crisis period (top

right panel), and is significantly less pronounced in the post crisis one (bottom right panel),

but gets disrupted during the crisis (bottom left panel). Specifically, apart from weakened

within-block positive correlations, strong negative and positive correlations across blocks are

observed. This suggests that different factor and auto-regressive structures emerge during

the crisis period. Further, note that similar results hold if we examine the residuals after

removing a second principal component, so as to capture a larger percentage of variance of

the stock returns.

The analysis is based on 104-week-long rolling windows to avoid issues with non-stationarity

due to length of the period under consideration. This strategy has also been used in [? ? ]

and allows monitoring change in the number of factors over time, as well as the sparsity level

of B which measures the connectivity of the partial autocorrelation network across these

financial institutions. We also track the change in R-squared and the R-squared attributed

to the factor over time, as a surrogate for the quality of the model fit. We fit the proposed

lag-adjusted factor model in each time window, with tuning parameters selected according

to PIC described in Section 5.4.

As Figure 5.6 shows, sharp changes are observed in both the factor structure and the

temporal dependence of stock returns during the crisis period. In particular, two change
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Figure 5.5: Correlation map for PCR residuals with the number of PC fixed at 1. Top left panel: 2001–2016; top right panel:
2001–2006, pre-crisis; bottom left panel: 2007-2009, crisis; bottom right panel: 2010–2016, post-crisis. Red to blue corresponds
to correlation from 1 to -1.

points respectively correspond to the beginning of the 2007 sub-prime mortgage crisis and

the ending of the 2008–2009 global financial crisis. Specifically, during the pre- and post-

crisis periods, only 1 factor is detected most of the time with the density of the transition

matrix being close to 0, suggesting that not much serial correlation exists in the idiosyn-

cratic component after the common factor (surrogate for market portfolio) is accounted for.

Nevertheless, our analysis identifies sharp changes in the connectivity of B̂ from 2005 to

2006 that is concordant with the period during which the Federal Reserve frequently ad-

justed monetary policy by rapidly raising the Federal Funds Rate from 2.5% as of 2/2/05 to

5.5% on 6/29/06. Since financial stock prices are sensitive and fast responding to changes in

interest rates, these successive increases in the Fed Funds Rate are reflected through the au-

toregressive component of the model. During the crisis period, up to 5 factors are detected,

together with a sharp increase in the connectivity pattern in B̂ reaching its maximum to-
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Figure 5.6: Results after fitting the model to the real data based on 104-week-long rolling windows over time. Left panel:
number of factors (right axis, in red) and the connectivity level of B̂ (left axis, in blue). Right panel: overall R-squared (solid
line) and the R-squared attributed to the factor (dotted line).

wards the end of 2008. In addition the R-squared jumps to 0.80, with 0.65 attributed to

the factor hyperplane and accompanied by the largest “R-squared gap”. Specifically, under

normal market conditions, most of the fit of the model (R-squared) comes from the factor

hyperplane (as the solid and dotted lines almost overlap); whereas during the crisis period,

the lag term explains a significant proportion of the R-squared, indicating the presence of

significant cross autocorrelations in the lag returns. Further, the proposed model provides

a much better fit to the data than the standard approximate factor model available in the

literature.

We further investigate the composition of the factors and the major emitters/receivers

for the network (transition matrix) during the crisis period. The singular values of the

estimated factor hyperplane correspond to the strength of each factor identified. Not sur-

prisingly, we have one dominant factor that accounts for around 50% of the signal in the

eigen-spectrum, with the rest distributed uniformly amongst the other four factors. Further,

assuming orthogonality amongst the factors for reconstruction purposes, their loadings is

retrieved from the right singular vector of Θ̂, up to sign rotation. As depicted in Figure 5.7,

all financial institutions contribute positively to the first factor, with Citigroup (C) and

Bank of America (BAC) being the top contributors. The composition of the second factor

shows an interesting pattern: negative contributors primarily belong to brokers/dealers and

insurers, whereas commercial banks contribute positively, albeit weakly. However, AIG (an

insurance company) contributes positively to the factor, unlike its peers and is consistent

with other findings that it played a prominent role during the crisis.4 The composition of

the remaining three factors is relatively unstructured. In Figure 5.8, we plot the partial

4According to an estimate as of January 2010, AIG accounted for 38% of the total losses incurred by
insurance companies (98.2 out of 261.0 billions) since 2007. Source: Bloomberg, see also ? ].
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autocorrelation network of the firms during the crisis after properly thresholding the entries

that have small magnitudes, with red denoting a positive link and with blue a negative

one. A careful examination of the node weighted in/out-degrees shows that the top emitters

are relatively uniform, in the sense that their weighted out-degrees do not differ by much;

whereas the top receivers are dominant, since the weighted in-degrees for HIG and AIG (two

insurance companies) are significantly higher compared with the rest. It is worth noting that

all top emitters concentrate in the insurance sector. Meanwhile, some of the top receivers

are also major contributors to the factors’ composition, e.g., HIG to the 2nd factor, AIG

to the 3rd, and ETFC to the 4th. This is an interesting finding, given the role that many

insurance companies played in magnifying the impact of the crisis on the overall stability

of the financial system, due to their large insurance underwriting of Credit Default Swaps

and subsequent exposure to accentuated risks [? ]. However, this analysis points to the

importance of insurance companies based on publicly available data and before their role in

the crisis was fully revealed and understood.

To conclude this section, we compare and contrast our results with those obtained in ? ],

in which the authors consider 100 financial institutions comprising of the largest 25 among

each of the four categories: hedge funds, broker/dealers, banks and insurers; thus, that data

set is enhanced by the inclusion of big hedge funds for which publicly available stock quotes

are not accessible. From the systemic risk standpoint, the authors measure the connectedness

of the system based on principal component analysis (PCA) and Granger-causality network

analysis during the 1994–2008 period, and identify increased level of interconnectedness dur-

ing the crisis period and the asymmetry in the degree of connectedness amongst different

sectors. Our results are qualitatively similar to these results, and the conclusions broadly

match. However, we would like to highlight some key differences in both modeling and in the

empirical results obtained. From the modeling perspective, ? ] consider two separate model-

ing strategies: (i) a Principal Components Analysis (akin to a static factor model) and (ii) a

Granger-causality based analysis through fitting a VAR model for each pair of stocks returns.

The PCA analysis examines a fixed number of principal components/factors and the authors

argue that the increasing proportion of variation explained by them is an indication of the

systematic response of the financial system to the crisis. Their pairwise based Granger-causal

network also reveals increased connectivity during the crisis period. Our model considers

latent factors and lead-lag relationships among stock returns simultaneously, thus gaining

better and more informative insights. In addition, the lead-lag relationships are considered

across all firms simultaneously rather than in a pairwise fashion. By incorporating the strong

correlations present in the idiosyncratic component (see also Figure D.1), our model is more

parsimonious. Specifically, during the crisis, ? ] uses 10 principal components to account
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Figure 5.7: Composition of the 5 factors identified during the crisis period.

C

BAC

JPM

WFC

AXP

RY

TBBK

TD

BK

BMO

BCM

STI

STT

COF

PNC

BBK

RF

SLM

GS

MS

BEN

SCHW

BLK

TROW

LM

AMTD

ETFC
AB

SEIC

JNS

EV FII

RJF
IVZ

AMG

WDR

AIG

UNH

MFC

MET

ALL

TRV

AFL

HIG

SLF

AET

ACE
PGR

MMC

LNC

L

CI

AON

XL

HUM
CNA

ACE
TRV

PGR CNA AON

HIG
AIG

ETFC
MS LNC

Figure 5.8: Partial autocorrelation network during the crisis, after proper thresholding of entries with small magnitudes. Top
emitters (in black bars): ACT, TRV, PGR, CNA, AON. Top receivers (in white bars): HIG, AIG, ETFC, MS, LNC.

for 85% of the returns variance, whereas only 5 suffice in our model; further, the leading

factor in their analysis only accounts 37% of the variance, compared to 50% in our model.

Finally, extending the analysis period to 2016 shows that after 2011 the influence of banks

and insurance companies on stock returns waned, as the marker slowly returned to normalcy.

However, we are in broad agreement with the ? ] conclusion on the heightened role of banks

and insurers up to 2009 (see figures in the Supplementary Material).

5.6 Extensions.

The proposed modeling framework and estimation procedure are easily generalizable to

cases where the idiosyncratic error ut exhibits further into the past temporal dependence,

and come with similar theoretical guarantees. Specifically, we use a sparse VAR(d) model
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to account for such dependency, that is,

Bd(L)ut = εt, where Bd(L) = Ip −B1L− · · · −BdL
d, εt

i.i.d∼ N (0, σ2
ε Ip).

with Bk’s assumed sparse. By stacking the lagged values of the factors and the corresponding

loading matrices, the dynamic of the observable process Xt can be written in the following

form, in terms of the latent static factor Ft ∈ RK :

Xt = ΛFt +B1Xt−1 +B2Xt−2 + · · ·+BdXt−d + εt. (5.20)

Similar to the VAR(1) case, the condition required for stationarity is the same as cases where

Xt were a VAR(d) process, that is, all roots of det(Bd(z)) should lie outside the unit circle:

det(Bd(z)) 6= 0 for all |z| ≤ 1.

Estimation and theoretical guarantees. Given a snapshot of the realizations from

{Xt}, denoted by {x0, . . . , xn}, we can estimate {Bk, k = 1, . . . , d} and the factor hyperplane

in an analogous way. Specifically, let the contemporaneous response and the lagged predictor

matrices be Xd
n ∈ Rnd×p and Xd

n−1 ∈ Rnd×dp by stacking the observations in their rows

with nd = n − d + 1 being the sample size. Ed
n is similarly defined to Xd

n. Further, letting

B := [B1, B2, . . . , Bd] ∈ Rp×dp, then with F and Θ identically defined to those in Section 5.2.1,

we can write

Xd
n = FΛ> + Xd

n−1B
> + Ed

n.

B̂ and Θ̂ can be obtained by solving an analogously formulated optimization, that is

(B̂, Θ̂) := arg min
B∈Rp×dp,Θ∈Rnd×K

{ 1

2nd
|||Xd

n −Xd
n−1B

> −Θ|||2
F

+ λB‖B‖1 + λΘ|||Θ|||∗
}
,

subject to |||Θ/
√
nd|||∗ ≤ φ.

(5.21)

Empirically at each iteration, Θ is updated by SVT with hard-thresholding and each row of

B is updated via Lasso regression.

With deterministic realizations based on which we solve the optimization problem, we can

obtain essentially the same error bound, with the conditions imposed on the corresponding

augmented quantities. Formally, the error bound is given in the next corollary, with a

superscript ? associated with the true value of the parameters, s :=
∑d

k=1 ‖B?
k‖0 being the

overall sparsity, and SX being the sample covariance matrix corresponding to Xd
n−1.

Corollary 5.1 (Error bound under VAR(d) dependence). Suppose the observations stacked

in Xd
n−1 are deterministic realizations from {Xt} process with dynamic given in (5.20), and
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Xd
n−1 satisfies the RSC condition with curvature αRSC > 0 and a tolerance τnd such that

τnd

(
s+ (2K)

(
λΘ

λB

)2
)
< min{αRSC, 1}/16. Then for any matrix pair (B?,Θ?) that drives the

dynamic of Xt, for estimators (B̂, Θ̂) obtained by solving (5.21) with λB and λΘ chosen such

that

λB ≥ max
{

2‖(Xd
n−1)>Ed

n/nd‖∞, 2φΛ1/2
max(SX)

}
and λΘ ≥ Λ1/2

max(SE),

the following error bound holds:

|||∆B|||2F + |||∆Θ/
√
nd|||2F ≤

64
(
λ2
B(
√
s+ 1)2 + λ2

Θ(2K)
)

min{αRSC, 1}2
. (5.22)

5.7 Discussion.

In this chapter, we introduced a novel modeling framework that generalizes the classical

approximate factor model to include lags of the observable process, so that stronger cor-

relations among the idiosyncratic component are allowed. The autoregressive structure is

assumed to be sparse, which enables its estimation for large time series panels. Estimation

of the model parameters is based on a convex optimization problem, and the resulting esti-

mates have high probability error bounds that can be expressed in terms of key structural

parameters (n, p,K, s, etc.), and exhibit superior empirical performance in synthetic data.

In addition to generalizing the model in ? ], our proposed model can also be perceived as a

robust treatment of endogeneity. Specifically, as noted by ? ], in the presence of large values

in ut and for a relatively small panel size p, the factor estimates will be distorted as a result

of this endogeneity. Here, by explicitly taking into consideration the lag term Xt−1 in the

dynamic evolution of Xt, the noise term εt becomes strictly exogenous. Our proposed model

and estimation procedure has the capacity of handling much stronger correlation between

Ft and ut, although ultimately we do require Cov(Ft, ut) to be indirectly bounded in some

appropriate way.
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CHAPTER VI

Conclusion

The main contributions of this thesis are: (i) the estimation and testing of the high-

dimensional VAR-X model; (ii) the extension-to-high-dimensional-setting of the FAVAR

model; and (iii) the relaxation of the weak correlation assumption of the approximate factor

model.

On the modeling front, as a special instance of the high-dimensional VAR models, we first

considered a VAR-X model with the endogenous and exogenous blocks being components

of a VAR system and having group Granger-causal ordering. We provided estimates of its

model parameters under structural assumptions on the transition matrices and the inverse

covariance matrices, and devised a procedure for testing the existence of such group Granger-

causality. Moving to FAVAR models, we extended them to the high-dimensional setting and

enabled their model parameter estimation under such setting, by investigating their model

identifiability issues and formulating an optimization problem that incorporates the newly

proposed identification constraint. Finally within the DFM scheme, we relaxed the weak

correlation assumption, proposed a new model that accommodates stronger correlations,

and provided estimates for the model parameters.

On the theoretical front, we addressed several technical challenges that are further com-

pounded by the presence of temporal dependence among the data. First, we proved the

consistency properties of the estimators obtained from the penalized maximum likelihood

formulation which jointly estimates the regression coefficient and the covariance matrix.

Moreover, we established the algorithmic convergence of the alternating minimization proce-

dure, leveraging the bi-convexity of the objective function and the descent property of each

update. Further, we investigated the statistical properties of the estimators corresponding

to a compactified low-rank-plus-sparse formulation that is based upon the least squares loss,

and established high-probability finite sample error bounds for the estimators.

On the application front, we employed the aforementioned models to several economic

datasets involving stock prices, commodity prices and major macroeconomic indicators. The
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results have revealed interesting connectivity patterns amongst or across these sets of vari-

ables, and have pointed to future exploration and refinements.
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APPENDIX A

Supplementary Materials to “Penalized Maximum Likelihood

Estimation of Multi-layered Gaussian Graphical Models.”

A.1 Proofs for main theorems.

Proof of Theorem 2.1. We initialize the algorithm at (B̂(0), Θ̂
(0)
ε ) ∈ dom(f). Then for all

k ≥ 1,

B̂(k) = arg min
B

f(B, Θ̂(k−1)
ε ), (A.1)

Θ̂(k)
ε = arg min

Θε

f(B̂k,Θε).

Now, consider a limit point (B∞,Θ∞ε ) of the sequence {(B̂(k), Θ̂
(k)
ε )}k≥1. Note that such

limit point exists by Bolzano-Weierstrass theorem since the sequence {(B̂(k), Θ̂
(k)
ε )}k≥1 is

bounded. Consider a subsequence K ⊆ {1, 2, · · · } such that (B̂(k), Θ̂
(k)
ε )k∈K converges to

(B∞,Θ∞ε ). Now for the bounded sequence {(B̂(k+1), Θ̂
(k)
ε )}k∈K, without loss of generality,1

we can say that

{(B̂(k+1), Θ̂(k)
ε )}k∈K → (B̃∞, Θ̃∞ε ), for some (B̃∞, Θ̃∞ε ) ∈ dom(f).

By (A.1) it follows immediately that Θ̃∞ε = Θ∞ε . Also, the following inequality holds:

f(B̂(k+1), Θ̂(k+1)
ε ) ≤ f(B̂(k+1), Θ̂(k)

ε ) ≤ f(B̂(k), Θ̂(k)
ε ).

Thus, by letting k →∞ over K, we have

f(B∞,Θ∞ε ) ≤ f(B̃∞,Θ∞ε ) ≤ f(B∞,Θ∞ε ),

1switching to some further subsequence of K if necessary.
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since f is continuous. This implies that

f(B̃∞,Θ∞ε ) = f(B∞,Θ∞ε ). (A.2)

Next, since f(B̂(k+1), Θ̂
(k)
ε ) ≤ f(B, Θ̂

(k)
ε ), for all B ∈ Rp1×p2 , let k grow along K, and we

obtain the following:

f(B̃∞,Θ∞ε ) ≤ f(B,Θ∞ε ), ∀B ∈ Rp1×p2 .

It then follows from (A.2) that

f(B∞,Θ∞ε ) ≤ f(B,Θ∞ε ), ∀B ∈ Rp1×p2 . (A.3)

Finally, note that f(B̂(k), Θ̂
(k)
ε ) ≤ f(B̂(k),Θε), for all Θ ∈ Sp2×p2

++ . As before, let k grow along

K and with the continuity of f , we obtain:

f(B∞,Θ∞ε ) ≤ f(B∞,Θε), ∀Θε ∈ Sp2×p2
++ . (A.4)

Now, (A.3) and (A.4) together imply that (B∞,Θ∞ε ) is a coordinate-wise minimum of f and

by Fact 1, also a stationary point of f .

Proof of Theorem 2.2. The statement of Theorem 2.2 is a variation of Proposition 4.1 in ?

], and its proof follows directly from the proof of the proposition in ? , Appendix B]. We

only outline how the statement differs. In the original statement of Proposition 4.1 in ? ],

the authors provide the error bound for β̄, obtained as per (2.14) whose dimension is qp2

with q denoting the true lag of the vector-autoregressive process, under an RE condition for

Γ̄ and a deviation bound for (γ̄, Γ̄). For our problem, we impose a similar RE condition on

Γ̂ and deviation bound on (γ̂, Γ̂), so as to yield a bound on β̂ that lies in a p1p2-dimensional

space.

Proof of Theorem 2.3. The statement of this theorem is a variation of Theorem 1 in ? ],

so here, instead of providing a complete proof of the theorem, we only outline how the

estimation problem differs in our setting, as well as the required changes in its proof.

In ? ], the authors consider the optimization problem in (2.15), and show that for a

random realization, with certain sample size requirement and choice of the regularization

parameter, the following bound for Θ̄ε holds with probability at least 1 − 1/pτ2 for some

τ > 2:

‖Θ̄ε −Θ?
ε‖∞ ≤ {2(1 + 8ξ−1)κH?}δ̄f (pτ2, n), (A.5)

152



where δ̄(r, n) is defined as

δ̄(r, n) := 8(1 + 4σ2) max
i

(Σ?
ε,ii)

√
2 log(4r)

n
. (A.6)

The quantity δ̄(pτ2, n) that shows up in expression (A.5) is the bound for ‖S − Σ?
ε‖∞ ≡

‖Σ̂ε − Σ?
ε‖∞. In particular, in Lemma 8 [? ], they show that with probability at least

1− 1/pτ2, τ > 2, the following bound holds:

‖S − Σ?
ε‖∞ ≤ δ̄(pτ2, n).

In our optimization problem (2.13), we are using Ŝ instead of S, hence a bound for ‖Ŝ−Σ?
ε‖∞

is necessary, and the remaining argument in the proof of Theorem 1 [? ] will follow through.

Therefore in our theorem statement, we use g(νβ) as a bound for ‖Ŝ − Σ?
ε‖∞ then yield

the bound for ‖Θ̂ε − Θ?
ε‖∞, since we are using the surrogate error Ê = Y − XB̂ in the

estimation, instead of the true error E.

Proof of Theorem 2.4. We first consider part (I) of the theorem. Note that by (2.5), β̂(0)

can be equivalently written as

β̂(0) ≡ arg min
β∈Rp1×p2

{
− 2β>γ0 + β>Γ0β + λ0

n‖β‖1

}
, (A.7)

where

Γ(0) = I⊗ X>X

n
, γ(0) = (I⊗X>)vec(Y)/n.

Consider the following events:

E1.
{

X>X
n
∼ RE(ϕ?, φ?)

}
,

E2.
{

1
n

∥∥X>E
∥∥
∞ ≤ c2

[
Λmax(Σ?

X)Λmax(Σ?
ε)
]1/2√ log(p1p2)

n

}
.

Note that E1 ∩ E2 implies the following events:

Γ(0) = I⊗ X>X

n
∼ RE(ϕ?, φ?), where ϕ? = Λmin(Σ?

X)/2.

and

‖γ(0) − Γ(0)β?‖∞ =
1

n
‖X>E‖∞ ≤ c2

[
Λmax(Σ?

X)Λmax(Σ?
ε)
]1/2√ log(p1p2)

n
. (A.8)

Hence, by Proposition 4.1 of ? ], the bound (2.20) holds on E1 ∩ E2.
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By Lemmas A.1 and A.2, P(E1) is at least 1−2 exp(−c3n), for some c3 > 0. By Lemma A.3,

P(E2) is at least 1 − 6c1 exp[−(c2
2 − 1) log(p1p2)] for some c1 > 0, c2 > 1. Hence, with

probability at least

P
(
E1 ∩ E2

)
≥ 1− P

(
E1c

)
− P

(
E2c

)
,

the bound in (2.20) holds, which proves the first part of (I). In particular, we have ‖β̂0 −
β?‖1 ≤ ν

(0)
β ∼ O(

√
log(p1p2)/n) on E1 ∩ E2.

To prove the second part of (I), note that by Theorem 2.3 the bound in (2.21) holds when

B1-B3 are satisfied. Now, from the argument above, B1 holds on the event E1 ∩ E2. Also,

from the proof of Proposition 2.3, B2 is satisfied, i.e.,

∥∥Ŝ(0) − Σ?
ε

∥∥
∞ ≤ g(ν

(0)
β ), where Ŝ(0) =

1

n
(Y −XB̂(0))>(Y −XB̂(0)), (A.9)

on E1 ∩ E2 ∩ E3 ∩ E4, where the events E3 and E4 are given by:

E3.
{∥∥E>E

n
− Σ?

ε

∥∥
∞ ≤

√
log 4+τ2 log p2

c?εn

}
for some τ2 > 2 and c?ε > 0 that depends on Σ?

ε ,

E4.
{∥∥X>X

n
− Σ?

X

∥∥
∞ ≤

√
log 4+τ1 log p1

c?Xn

}
for some τ1 > 2 and c?X > 0 that depends on Σ?

X .

Therefore, the probability of the bound for Θ̂
(0)
ε in (2.21) to hold is at least

P
(
E1 ∩ E2 ∩ E3 ∩ E4

)
, (A.10)

By Lemma A.2, Lemma A.3 and the proof of Proposition 2.3, the probability in (A.10) is

lower bounded by:

1− 2 exp(−c3n)− 6c1 exp[−(c2
2 − 1) log(p1p2)]− 1/pτ1−2

1 − 1/pτ2−2
2 .

Consider the following two cases where the relative order of p1 and p2 differ. Case 1:

p2 & p1, then ν
(0)
Θ ∼ O(

√
log p2/n); case 2: p1 & p2, then ν

(0)
Θ ∼ O

(
log(p1p2)/n

)
. In

either case, since we are assuming log(p1p2)/n to be a small quantity and it follows that√
log(p1p2)/n & log(p1p2)/n, the following bound always holds:

ν
(0)
Θ ≤ CΘ

√
log(p1p2)

n
≡MΘ,

where CΘ is some large fixed constant that bounds the constant terms in front of
√

log(p1p2)/n.

Now we consider part (II) of the theorem. Note that for each k ≥ 1, β̂(k) and Θ̂
(k)
ε are
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obtained via solving the following two optimizations:

β̂(k) = arg min
β∈Rp1×p2

{
− 2β>γ̂(k−1) + β>Γ̂(k−1)β + λn‖β‖1

}
, (A.11)

Θ̂(k)
ε = arg min

Θε∈S
p2×p2
++

{
log det Θε − tr(Ŝ(k)Θε) + ρn‖Θε‖1,off

}
, (A.12)

where

γ̂(k) = Θ̂(k) ⊗ X>Y

n
, Γ̂(k) = Θ̂(k) ⊗ X>X

n
, Ŝ(k) =

1

n
(Y −XB̂(k))>(Y −XB̂(k)).

Consider the bound on β̂(k) for k = 1. The argument is similar to that of β̂(0), with ap-

propriate modifications to account for the fact that the objective function now involves log

likelihood instead of least squares. Formally, we consider the event E1 ∩ E2 ∩ E3 ∩ E4 ∩
E5, where

E5.
{

1
n

∥∥X>EΘ?
ε

∥∥
∞ ≤ c2

[Λmax(Σ?X)

Λmin(Σ?ε )

]1/2√ log(p1p2)
n

}
.

Note that {‖Θ̂(0)
ε − Θ?

ε‖∞ ≤ ν
(0)
Θ } holds on this event. By Lemma A.3, P(E5) ≥ 1 −

6c1 exp[−(c2
2− 1) log(p1p2)]. Combining this with the lower bound on (A.10) and the sample

size requirement (note this sample size requirement can be relaxed to n & log(p1p2) if

p1 ≺ p2), we obtain that with probability at least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 12c1 exp[−(c2
2 − 1) log(p1p2)]− 2 exp[−c3n],

the following three events hold simultaneously:

A1’ ‖Θ̂(0)
ε −Θ?

ε‖∞ ≤ ν
(0)
Θ - O(

√
log(p1p2)/n);

A2’ Γ̂(0) ∼ RE(ϕ(0), φ(0)) where

ϕ(0) ≥ Λmin(Σ?
X)

2
(min

i
ψi − dMΘ) and φ(0) ≤ log p1

n

Λmin(Σ?
X)

2
(max

j
ψj + dMΘ);

A3’ ‖γ̂(0) − Γ̂(0)β?‖∞ ≤ Q(ν
(0)
Θ )
√

log(p1p2)
n

with the expression for Q(·) given in (2.16).

By Theorem 2.2, by choosing λn ≥ 4Q(MΘ)
√

log(p1p2)
n

, the following bound holds:

‖β̂(1) − β?‖1 ≤ 64s??λn/ϕ
(0). (A.13)
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The error bound for Θ̂
(1)
ε can now be established using the same argument for Θ̂

(0)
ε , with

the only difference that now we consider the event E1 ∩ . . . ∩ E5 instead of E1 ∩ . . . ∩ E4

and use (A.13) instead of (2.20).

Note that an upper bound for the leading term of the right hand side of (A.13) is at most

of the order O(
√

log(p1p2)/n), and can be written as

Cβ
(
s??
√

log(p1p2)

n

)
≡Mβ,

with Cβ being some potentially large number that bounds the constant term. Notice that

Mβ is of the same order as ν
(0)
β ; thus, for Θ̂

(1)
ε , we can also achieve the following bound:

‖Θ̂(1)
ε −Θ?

ε‖∞ ≤MΘ,

with high probability since we are assuming CΘ to be some potentially large number.

Note that the events E1, . . . ,E5 rely only on the parameters and not on the estimated

quantities, and on their intersection we have uniform upper bounds on the errors of β̂(k) and

Θ̂k
ε for k = 0, 1. Hence the error bounds for k = 1 can be used to invoke Theorems 2 and 3

inductively on realizations X and E from the set E1 ∩ . . . ∩E5 to provide high probability

error bounds for all subsequent iterates as well. This leads to the uniform error bounds of

part (II) with the desired probability.

Proof of Theorem 2.5. First, we note that with a Bonferroni correction, the family-wise type

I error will be automatically controlled at level α. Hence, we will focus on the power of the

screening step. Also, from Theorem 7 of ? ], it is easy to see that all the arguments below

hold for a large set of random realizations of X, whose probability approaches 1 under

the specified asymptotic regime when the eigenvalues of ΣX are bounded away from 0 and

infinity.

Let B? =
[
B?

1 · · · B?
p2

]
denote the true value of the regression coefficients and B̌j, j =

1, · · · , p2 denote the estimates given by the de-biased Lasso procedure in ? ]. With the given

level for sparsity, by Theorem 8 in ? ], each B̌j satisfies the following:

√
n(B̌j −B?

j ) = Z + ∆,

where Z ∼ N
(
0, σ2MjΣ̂XM

′
j

)
and ∆ vanishes asymptically. Here Σ̂X is the sample covari-

ance matrix of the predictors X, σ is the population noise level of the error term εj, and Mj

is the matrix corresponding to the jth regression, produced by the procedure described in ?
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]2. Let B̌j,i denote the ith coordinate of the jth regression coefficient vector B̌j and Σ̌j be

the covariance matrix of the estimator B̌j, then

Σ̌j =
σ2

n
MjΣ̂XM

>
j ,

and in particular, the variance of B̌j,i is Σ̌j,ii := σ̌jii. Using these notations, for a prespecified

level α, the test statistics for testing Hji
0 : B?

j,i = 0 vs. Hji
A : B?

j,i 6= 0, for all i = 1, · · · , p1; j =

1, · · · , p2 can be equivalently written as

T̂j,i =

1 if |B̌j,i|/σ̌jii > zα/(2p1p2),

0 otherwise.

where zα denotes the upper α quantiles of N (0, 1).

Define the “family-wise” power as follows:

P
(
all true alternatives are detected

)
= P

( ⋂
1≤j≤p2

⋂
k∈S?j

{T̂j,k = 1}
)

= 1− P
( ⋃

1≤j≤p2

⋃
k∈S?j

{T̂j,k = 0}
)
.

Correspondingly, the family-wise type II error can be written as

P
( ⋃

1≤j≤p2

⋃
k∈S?j

{T̂j,k = 0}
)
≤

p2∑
j=1

∑
k∈S?j

P
(
T̂j,k = 0

)
. (A.14)

By Theorem 16 in ? ], asymptotically, ∀k ∈ Sj, j = 1, · · · , p2,

P
(
T̂j,k = 0

)
≤ 1−G

( α

p1p2

,

√
nγ

σ[Σ−1
k,k]

1/2

)
; 0 < γ ≤ min |B?

j,k|, ∀k ∈ Sj, j = 1, · · · , p2.

(A.15)

Here

G(α, u) ≡ 2− P(Φ < zα/2 + u)− P(Φ < zα/2 − u),

where we use Φ to denote the random variable following a standard Gaussian distribution

2Details of the procedure is described in p.2871 in ? ], with M being an intermediate quantity obtained
by solving an optimization problem.
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and the choice of n in (A.15) doesn’t depend on k. Hence, (A.15) can be rewritten as

P
(
T̂j,k = 0

)
≤ 1−G

( α

p1p2

,

√
nγ

σ[Σ−1
k,k]

1/2

)
= P

(
Φ < zα/(2p1p2) −

√
nγ

σ[Σ−1
k,k]

1/2

)
− P

(
Φ > zα/(2p1p2) +

√
nγ

σ[Σ−1
k,k]

1/2

)
≤ P

(
Φ >

√
nγ

σ[Σ−1
k,k]

1/2
− zα/(2p1p2)

)
,

(A.16)

where we use Φ to denote the random variable following a standard Gaussian distribution.

Note that the following inequality holds for standard Normal percentiles:

2e−t
2 ≤ P(|Φ| > t) ≤ e−t

2/2,

and by taking the inverse function, the following inequality holds:√
− log

y

2
≤ zy/2 ≤

√
−2 log y.

Letting y = α
p1p2

, it follows that

(
− log

α

2p1p2

)1/2 ≤ zα/(2p1p2) ≤
(
− 2 log

α

p1p2

)1/2
,

hence

P
(
Φ >

√
nγ

σ[Σ−1
k,k]

1/2
− zα/(2p1p2)

)
≤ P

(
Φ >

√
nγ

σ[Σ−1
k,k]

1/2
−
√
−2 log

α

p1p2

)
.

Now given
log(p1p2)

n
→ 0,

it follows that √
2 log

(
p1p2

α

)
√
n/σ[Σ−1

k,k]
1/2
→ 0,

indicating that for sufficiently large n, the following lower bound holds for some constant

c0 > 0: ( √
nγ

σ[Σ−1
k,k]

1/2
−
√
−2 log

α

p1p2

)
≥ c0

√
n.

Note that c0 is universal for all choices of k, since this lower bound can be achieved by

substituting Σ−1
k,k by (1/Λmin(ΣX)), which is assumed to be bounded away from infinity.

Combined with the fact that P(Φ > t) ≤ e−t
2/2, the last expression in (A.16) can thus be
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bounded by

P
(
Φ >

√
nγ

σ[Σ−1
k,k]

1/2
− zα/(2p1p2)

)
≤ exp

[
− 1

2

( √
nγ

σ[Σ−1
k,k]

1/2
−
√
−2 log

α

p1p2

)2] ≤ e−c1n, (A.17)

for some universal constant c1 > 0, and the bound in (A.17) holds uniformly for all k ∈ Sj,∀j.
Combine (A.14), (A.15) and (A.17), it follows that

P
( ⋃

1≤j≤p2

⋃
k∈S?j

{T̂j,k = 0}
)
≤ s?p2 exp(−c1n). (A.18)

Now with log(p1p2)/n = o(1) and the given sparsity level, that is, s? = o(
√
n/ log p1), it

follows that

s?p2 exp(−c1n) = o(1),

and by (A.18), we have:

P
(
family-wise type II error

)
→ 0, ⇔ P

(
family-wise power

)
→ 1.

This is equivalent to establishing that, given log(p1p2)/n → 0, the screening step recovers

the true support sets S?j for all j = 1, 2, · · · , p2 with high probability, while keeping the

family-wise type I error rate under control.

A.2 Proofs for propositions and auxiliary lemmas.

In this subsection, we provide proofs for the propositions presented in Section 2.3, which

requires several auxiliary lemmas, whose proofs are presented along the context.

To prove Proposition 2.1, we need the following two lemmas. Lemma A.1 was originally

provided as Lemma B.1 in ? ], which states that if the sample covariance matrix of X

satisfies the RE condition and Θ is diagonally dominant, then (X>X/n) ⊗ Θ also satisfies

the RE condition. Here we omit its proof and only state the main result. Lemma A.2 verifies

that with high probability, the sample covariance matrix of the design matrix X satisfies the

RE condition.

Lemma A.1. If X>X/n ∼ RE(ϕ?, φ?), and Θ is diagonally dominant, that is, ψi := σii −∑
j 6=i σ

ij > 0 for all i = 1, 2, · · · , p2, where σij is the ijth entry in Θ, then

Θ⊗X>X/n ∼ RE
(
ϕ? min

i
ψi, φ? max

i
ψi
)
.
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Lemma A.2. With probability at least 1− 2 exp(−c3n), for a zero-mean sub-Gaussian ran-

dom design matrix X ∈ Rn×p1, its sample covariance matrix Σ̂X satisfies the RE condition

with parameter ϕ? and φ?, i.e.,

Σ̂X ∼ RE(ϕ?, φ?), (A.19)

where Σ̂X = X>X/n, ϕ? = Λmin(Σ?
X)/2, φ? = ϕ? log p1/n.

Proof. To prove this lemma, we first use Lemma 15 in ? ], which states that if X ∈ Rn×p is

zero-mean sub-Gaussian with parameter (Σ, σ2), then there exists a universal constant c > 0

such that

P
(

sup
v∈K(2s)

∣∣‖Xv‖2
2

n
− E

[‖Xv‖2
2

n

]∣∣ ≥ t
)
≤ 2 exp

(
− cnmin(

t2

σ4
,
t

σ2
) + 2s log p

)
, (A.20)

where K(2s) is a set of 2s sparse vectors, defined as

K(2s) := {v ∈ Rp : ‖v‖ ≤ 1, ‖v‖0 ≤ 2s}.

By taking t =
Λmin(Σ?X)

54
, with probability at least 1−2 exp

(
− c′n+ 2s log p1

)
for some c′ > 0,

the following bound holds:

|v>(Σ̂X − Σ?
X)v| ≤ Λmin(Σ?

X)

54
, ∀v ∈ K(2s). (A.21)

Then applying supplementary Lemma 13 in ? ], for an estimator Σ̂X of Σ?
X satisfying the

deviation condition in (A.21), the following RE condition holds:

v>Sxv ≥
Λmin(Σ?

X)

2
‖v‖2

2 −
Λmin(Σ?

X)

2s
‖v‖2

1.

Finally, set s = c′′n/4 log p1, then with probability at least 1− 2 exp(−c3n) (c3 > 0), Σ̂X ∼
RE(ϕ?, φ?) with ϕ? = Λmin(Σ?

X)/2, φ? = ϕ? log p1/n.

With the above two lemmas, we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. We first show that if Θ?
ε is diagonally dominant, then Θ̂ε is also

diagonally dominant provided that the error of Θ̂ε is of the given order and n is sufficiently

large. Define

ψ̂i = σ̂iiε −
∑
j 6=i

σ̂ijε ,

where σ̂ijε is the ijth entry of Θ̂ε, then ψ̂i is the gap between the diagonal entry and the
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off-diagonal entries of row i in matrix Θ̂ε. We can decompose ψ̂i into the following:

ψ̂i =
[
σiiε −

∑
j 6=i

σijε
]

+
[
(σ̂iiε − σiiε ) +

∑
j 6=i

(σijε − σ̂ijε )
]
.

Recall that we define ψi as ψi = σiiε −
∑p2

j 6=i σ
ij
ε . Hence

min ψ̂i ≥ min
i
ψi − |||Θ̂ε −Θ?

ε |||∞ ≥ min
i

(σiiε −
∑
j 6=i

σijε )− dνΘ = minψi − dνΘ,

max ψ̂i ≤ max
i
ψi + |||Θ̂ε −Θ?

ε |||∞ ≤ max
i

(σiiε −
∑
j 6=i

σijε ) + dνΘ = maxψi + dνΘ.
(A.22)

Now given νΘ = ηΘ
log p2

n
= O(

√
log p2/n), with n & d2 log p2, dνΘ = o(1), and it follows that

min
i
ψi − dνΘ ≥ 0.

Now by Lemma A.2, X>X/n ∼ RE(ϕ?, φ?) with high probability. Combine with Lemma A.1

and inequality (A.22), with probability at least 1− 2 exp(−c3n) for some c3 > 0, Γ̂ satisfies

the following RE condition:

Γ̂ = Θ̂ε ⊗ (X>X/n) ∼ RE
(
ϕ?(min

i
ψi − dνΘ), φ? max

i
(ψi + dνΘ)

)
, (A.23)

where ϕ? = Λmin(Σ?
X)/2, φ? = ϕ? log p1/n.

To prove Proposition 2.2, we first prove Lemma A.3.

Lemma A.3. Let X ∈ Rn×p be a zero-mean sub-Gaussian matrix with parameter (ΣX , σ
2
X)

and E ∈ Rn×p2 be a zero-mean sub-Gaussian matrix with parameters (Σε, σ
2
ε ). Moreover,

X and E are independent. Let Θε := Σ−1
ε , then if n & log(p1p2), the following two expres-

sions hold with probability at least 1 − 6c1 exp[−(c2
2 − 1) log(p1p2)] for some c1 > 0, c2 > 1,

respectively:

1

n

∥∥X>E
∥∥
∞ ≤ c2

[
Λmax(ΣX)Λmax(Σε)

]1/2√ log(p1p2)

n
, (A.24)

and
1

n

∥∥X>EΘε

∥∥
∞ ≤ c2

[Λmax(ΣX)

Λmin(Σε)

]1/2√ log(p1p2)

n
. (A.25)

Proof. The proof of this lemma uses Lemma 14 in ? ], in which they show that if X ∈ Rn×p1

is a zero-mean sub-Gaussian matrix with parameters (Σx, σ
2
x) and Y ∈ Rn×p2 is a zero-mean
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sub-Gaussian matrix with parameters (Σy, σ
2
y), then if n & log(p1p2),

P
(∥∥Y>X

n
− Cov(Yi, Xi)

∥∥
∞ ≥ t

)
≤ 6p1p2 exp

(
− cnmin

{ t2

(σxσy)2
,

t

σxσy

})
,

where Xi and Yi are the ith row of X and Y, respectively.

Here, we replace Y by E, and since E and X are independent, Cov(Xi, Ei) = 0. Let

t = c2σXσε
√

log(p1p2)/n, c2 > 1 we get

P
(∥∥X>E

n

∥∥
∞ ≥ c2σXσε

√
log(p1p2)

n

)
≤ 6c1(p1p2)1−c22 = 6c1 exp

[
− (c2

2 − 2) log(p1p2)
]
.

Note that the sub-Gaussian parameter satisfies σ2
X ≤ maxi(ΣX,ii) ≤ Λmax(ΣX). This directly

gives the bound in (A.24).

To obtain the bound in (A.25), we note that if E is sub-Gaussian with parameters (Σε, σ
2
ε ),

then EΘ is sub-Gaussian with parameter (Θ, θ2
ε ), where

θ2
ε ≤ max

i
(Θε,ii) ≤ Λmax(Θε) =

1

Λmin(Σε)
.

Then we replace Y by EΘε and yield the bound in (A.25).

As a remark, here we note that the event in (A.24) and (A.25) may not be independent.

However, the two events hold simultaneously with probability at least 1−2c2 exp[−c2 log(p1p2)],

with this crude bound for probability hold for sure.

Now we are ready to prove Proposition 2.2.

Proof of Proposition 2.2. First we note that

X>EΘ̂ε = X>EΘε + X>E(Θ̂ε −Θ?
ε),

which directly gives the following inequality:

‖γ̂ − Γ̂β?‖∞ =
1

n

∥∥X>EΘ̂ε

∥∥
∞ ≤

1

n

∥∥X>EΘ?
ε

∥∥
∞ +

1

n

∥∥X>E(Θ̂ε −Θ?
ε)
∥∥
∞. (A.26)

Now we would like to bound the two terms separately.

The first term can be bounded by (A.25) in Lemma A.3, that is,

1

n

∥∥X>EΘ?
ε

∥∥
∞ ≤ c2

[Λmax(ΣX)

Λmin(Σ?
ε)

]1/2√ log(p1p2)

n
.
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w.p. at least 1− 6c1 exp[−(c2
2 − 1) log(p1p2)].

For the second term, first we note that

1

n

∥∥X>E(Θ̂ε −Θ?
ε)
∥∥
∞ =

1

n
max

1≤i≤p1
1≤j≤p2

∣∣e′iX>E(Θ̂ε −Θ?
ε)ej

∣∣
≤ 1

n
max
i

∥∥e′iX>E
∥∥
∞max

j

∥∥(Θ̂ε −Θ?
ε)ej

∥∥
1
,

(A.27)

where we have ei ∈ Rp1 and ej ∈ Rp2 , and the inequality comes from the fact that |a′b| ≤
‖a‖∞‖b‖1. Note that

max
i

∥∥e′iX>E
∥∥
∞ = ‖X>E‖∞,

since ‖e′iX>E‖∞ gives the largest element (in absolute value) of the ith row of X>E, and

taking the maximum over all i’s gives the largest element of X>E over all entries. And for

max
j

∥∥(Θ̂ε −Θ?
ε)ej

∥∥
1
, it holds that

max
j

∥∥(Θ̂ε −Θ?
ε)ej

∥∥
1

= |||Θ̂ε −Θ?
ε |||1 = |||Θ̂ε −Θ?

ε |||∞,

where |||A|||1 := max‖x‖1=1 ‖Ax‖1 is the `1-operator norm, and the last equality follows from

the fact that |||A|||1 = |||A′|||∞. As a result, (A.27) can be re-written as:

1

n

∥∥X>E(Θ̂ε −Θ?
ε)
∥∥
∞ ≤

( 1

n
‖X>E‖∞

)(
|||Θ̂ε −Θ?

ε |||∞
)
. (A.28)

Now, using (A.24), w.p. at least 1− 6c1 exp[−(c2
2 − 1) log(p1p2)], we have

1

n

∥∥X>E
∥∥
∞ ≤ c2

[
Λmax(ΣX)Λmax(Σ?

ε)
]1/2√ log(p1p2)

n
,

and since ‖Θ̂ε − Θ?
ε‖∞ ≤ νΘ, it directly follows that |||Θ̂ε −Θ?

ε |||∞ ≤ dνΘ. Therefore, with

probability at least 1− 6c1 exp[−(c2
2 − 1) log(p1p2)],

1

n

∥∥X>E(Θ̂ε −Θ?
ε)
∥∥
∞ ≤ c2dνΘ

[
Λmax(ΣX)Λmax(Σ?

ε)
]1/2√ log(p1p2)

n
. (A.29)

Combine the two terms, we obtain the conclusion in Proposition 2.2.

Proof of Proposition 2.3. First we note the following decomposition:

‖Ŝ − Σ?
ε‖∞ ≤ ‖S − Σε‖∞ + ‖Ŝ − S‖∞ := ‖W1‖∞ + ‖W2‖∞,
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where S is the sample covariance matrix of the true errors E.

For W1, by Lemma 8 in ? ], for sample size

n ≥ 512(1 + 4σ2
ε )

4 max
i

(Σ?
ε,ii)

4 log(4pτ22 ),

the following bound holds w.p. at least 1− 1/pτ2−2
2 (τ2 > 2),

‖W1‖∞ ≤

√
log 4 + τ2 log p2

c?εn
, where c?ε =

[
128(1 + 4σ2

ε )
2 max

i
(Σ?

ε,ii)
2
]−1

. (A.30)

For W2, rewrite it as:

W2 =
2

n
E>X(B? − B̂) + (B? − B̂)>

(X>X

n

)
(B? − B̂). (A.31)

The first term in (A.31) can be bounded as:

∥∥ 2

n
E>X(B? − B̂)

∥∥
∞ ≤ 2|||B? − B̂|||1

∥∥ 1

n
X>E

∥∥
∞ ≤ 2‖β? − β̂‖1 ·

∥∥ 1

n
X>E

∥∥
∞. (A.32)

By Lemma A.3, with probability at least 1−6c1 exp[−(c2
2−1) log(p1p2)], the following bound

holds: ∥∥ 2

n
E>X(B? − B̂)

∥∥
∞ ≤ 2c2νβ

[
Λmax(ΣX)Λmax(Σ?

ε)
]1/2√ log(p1p2)

n
, (A.33)

with the sample size requirement being n & log(p1p2).

For the second term in (A.31), we consider the following bound:

‖(B? − B̂)>
(X>X

n

)
(B? − B̂)‖∞ ≤ |||B? − B̂|||1

∥∥(X>X

n

)
(B? − B̂)

∥∥
∞

≤ |||B? − B̂|||
2

1

∥∥(X>X

n

)∥∥
∞.

(A.34)

Here, we apply Lemma 8 in ? ] to the design matrix X, for sample size

n ≥ 512(1 + 4σ2
x)

4 max
i

(ΣX,ii)
4 log(4pτ11 ),

the following bound holds w.p. at least 1− 1/pτ1−2
1 (τ1 > 2),

∥∥(X>X

n

)
− ΣX

∥∥
∞ ≤

√
log 4 + τ1 log p1

c∗Xn
, where c?X =

[
128(1 + 4σ2

x)2 max
i

(ΣX,ii)
2
]−1

. (A.35)

This indicates that with this choice of n, the following bound holds with probability at least
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1− 1/pτ1−2
1 (τ1 > 2),

∥∥(X>X

n

)∥∥
∞ ≤

√
log 4 + τ1 log p1

c?Xn
+ max

i
(ΣX,ii).

Combine with the bound in (A.34), with probability at least 1−1/pτ1−2
1 (τ1 > 2), the following

bound holds:

‖(B? − B̂)>
(X>X

n

)
(B? − B̂)‖∞ ≤ ν2

β

(√ log 4 + τ1 log p1

c?Xn
+ max

i
(ΣX,ii)

)
. (A.36)

Now combine (A.32), (A.33) and (A.36), we reach the conclusion of Proposition 3, with the

leading term in the sample size requirement being n & log(p1p2).

Proof for Proposition 2.4. From the structural equations of a multi-layered graph introduced

in Section 2.2.1, and setting ~ε1 := ~X1, we can write

[ ~ε1
~ε2

]
=
[ I 0

−(B12)> I

][ ~X1

~X2

]
. (A.37)

Define P = [I, O;−(B12)>, I]. Then, PX̃ is a centered Gaussian random vector with a block

diagonal variance-covariance matrix diag(Σ1,Σ2). Hence, the concentration matrix of X̃

takes the form

ΘX̃ = Σ−1

X̃
=
[

I −B12

O I

][
Θ1 O
O Θ2

][
I O

−(B12)> I

]
.

This leads to an upper bound

|||ΘX̃ |||op
≤ |||Θ1|||op|||Θ

2|||op|||P |||
2
op.

The result then follows by using the matrix norm inequality |||A|||op ≤
√
|||A|||1|||A|||∞ [? ],

where |||A|||1 and |||A|||∞ denote the maximum absolute row and column sums of A, and the

fact that Λmin(ΣX̃) = |||ΘX̃ |||
−1
op .

A.3 Numerical comparisons between different parametrizations.

In this subsection, we provide some numerical evidence to substantiate the point we made

in Section 2.5, that the two parametrizations are not always equivalent. This is a point also

mentioned in the original work on AMP graphs by ? ], the framework adopted in this

paper. The other parametrization which we referred to as the (ΩXY ,ΩY )-parametrization
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corresponds to the LWF framework [see ? , p.34-35]. In the presence of sparsity penalization,

a specific sparsity pattern for the (B,Θε)-parameterization may not be recoverable through

the (ΩXY ,ΩY )-parametrization and vice versa.

Consider the following two simulation settings, in which the data are generated from the

AMP framework ((B,Θε)-parameterization) and the LWF framework ((ΩXY ,ΩY )-parametrization)

respectively.

• AMP framework. The data are generated according to the model Y = XB? + E,

similar to Model A described in Section 2.4; that is, each entry in B? is nonzero

with probability 5/p1, and off-diagonal entries for Θ?
ε are nonzero with probability

5/p2. Nonzero entries of B? and Θ?
ε are generated from Unif

[
(−1,−0.5) ∪ (0.5, 1)

]
,

and diagonals of Θ?
ε are set identical, such that the condition number of Θ?

ε is p2.

Table A.1 shows the performance of estimated B using different methods that are

designed for different parameterizations: the node-conditional method (mixed MRF)

and the proposed method in this study (PML).

(p1, p2, n) Method SEN SPC MCC
(30, 60, 100) mixed MRF (th) 0.86 0.71 0.45

PML 0.96 0.99 0.93
(60, 30, 100) mixed MRF (th) 0.96 0.76 0.70

PML 0.99 0.99 0.93
(200, 200, 150) mixed MRF (th) 0.80 0.99 0.70

PML 0.99 0.99 0.88

Table A.1: Performance for B̂ using different methods for different parameterizations.

• LWF framework. The data are generated based on the multivariate Gaussian specifi-

cation: (
X
Y

)
∼ N

(
0,
(

ΩX ΩXY
ΩYX ΩY

)−1)
.

Specifically, ΩX is banded with 1 on the diagonal and 0.2 on the upper and lower first

diagonal, ΩY is also banded with 1 on the diagonal and 0.3 on the upper and lower first

diagonal. Each entry in ΩXY is nonzero with probability 5/p1, and the nonzero entries

are generated from Unif
[
(−1,−0.8) ∪ (0.8, 1)

]
. Further, we bump up the diagonal of

the joint precision matrix
[ ΩX ΩXY

Ω′XY ΩY

]
such that it is positive definite. Table A.2 depicts

the selection property of the estimated ΩXY using different methods that are designed

for different parameterizations.

Note that to retrieve stable and meaningful results, for the AMP framework, the estimates

using mixed MRF are thresholded at a proper level, and for the LWF framework, the esti-

mates using PML are also thresholded.
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(p1, p2, n) Method SEN SPC MCC
(30, 60, 100) mixed MRF 0.84 0.88 0.63

PML-th 0.99 0.52 0.39
(60, 30, 100) mixed MRF 0.847 0.95 0.70

PML-th 1 0.80 0.52
(200, 200, 150) mixed MRF 0.89 0.93 0.70

PML-th 1 0.79 0.30

Table A.2: Performance for Ω̂XY using different methods for different parameterizations

It can be seen that the method compatible with the data generation mechanism exhibits

superior performance, vis-a-vis its competitor that was designed for another parameteriza-

tion. Further, the mixed MRF method suffers in terms of both sensititvity and specificity

under the AMP parameterization, while the PML method suffers in terms of specificity only

under the LWF parameterization.

A.4 An example for multi-layered network estimation.

As mentioned at the beginning of Section 2.2, the proposed methodology is designed

for obtaining MLEs for multi-layer Gaussian networks, but the problem breaks down into a

sequence of 2-layered estimation problems. Here we give an detailed example to illustrate

how our proposed methodology proceeds for a 3-layered network.

Suppose there are p1, p2 and p3 nodes in Layers 1, 2 and 3, respectively. This three-layered

network is modeled as follows:

– X ∼ N (0,ΣX), X ∈ Rp1 .

– For j = 1, · · · , p2: Yj = X>Bxy
j + εYj , Bxy

j ∈ Rp1 . (εY1 · · · εYp2
)′ ∼ N (0,Σε,Y ).

– For l = 1, 2, · · · , p3: Zl = X>Bxz
l + Y >Byz

l + εZl , Bxz
l ∈ Rp1 and Byz

l ∈ Rp2 .

(εZ1 · · · εZp3
)′ ∼ N (0,Σε,Z).

The parameters of interest are : ΘX , Θε,Y := Σ−1
ε,Y , Θε,Z := Σ−1

ε,Z , which denote the within-

layer conditional dependencies, and

BXY =
[
Bxy1 ··· Bxyp2

]
, BXZ =

[
Bxz1 ··· Bxzp3

]
and BY Z =

[
Byz1 ··· Byzp3

]
,

which encode the across-layer dependencies.

Now given data X ∈ Rn×p1 , Y ∈ Rn×p2 and Z ∈ Rn×p3 , all centered, the full log-likelihood

can be written as:

`(Z,Y,X) = `(Z|Y,X; Θε,Z , BY Z , BXZ) + `(Y|X; Θε,Y , BXY ) + `(X; ΘX). (A.38)
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The separability of the log-likelihood enables us to ignore the inner structure of the com-

bined layer X̃ := [X,Y] when trying to estimate the dependencies between Layer 1 and

Layer 3, Layer 2 and Layer 3, as well as the conditional dependencies within Layer 3. As

a consequence, the optimization problem minimizing the negative log-likelihood can be de-

composed into three separate problems, i.e., solving for {Θε,Z , BXZ , BY Z}, {Θε,Y , BXY } and

{ΘX}, respectively.

The estimation procedure described in Section 2.2.2 can thus be carried out in a recursive

way in a sense of what follows. To obtain estimates for {BXZ , BY Z ,Θε,Z}, based on the

formulation in (2.2), we solve the following optimization problem:

min
Θε,Z∈S

p3×p3
++

BXZ ,BY Z

{
− log det Θε,Z +

1

n

p3∑
j=1

p3∑
i=1

σijZ (Zi −XBxz
i −YByz

i )>(Zj −XBxz
j −YByz

j )

+λn(‖BXZ‖1 + ‖BY Z‖1) + ρn‖Θε,Z‖1,off

}
,

which can be solved by treating the combined design matrix X̃ := [X,Y] as a single super

layer and Z as the response layer, then apply each step described in Section 2.2.2. To ob-

tain estimates for BXY and Θε,Y , we can ignore the 3rd layer for now and apply the exact

procedure all over again, by treating Y as the response layer and X as the design layer. The

estimate for the precision matrix of the bottom layer ΘX can be obtained by graphical lasso

[? ] or the nodewise regression [? ].
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APPENDIX B

Supplementary Materials to “Regularized Estimation and Testing

of High-dimensional Multi-block Vector Autoregressive Models.”

B.1 Additional Theorems and Proofs for Theorems.

In this section, we introduce two additional theorems that respectively establish the

consistency properties for the initializers Â(0) and (B̂(0), Ĉ(0)), for fixed realizations of the

processes {Xt} and {Zt}. Specifically, Â(0) and (B̂(0), Ĉ(0)) are solutions to the following

optimization problems:

Â(0) := arg min
A

{
1
T
|||XT −XA>|||F + λA‖A‖1

}
, (B.1)

(B̂(0), Ĉ(0)) := arg min
B,C

{
1
T
|||ZT −XB> − ZC>|||F + λB|||B|||∗ + λC ||C||1

}
. (B.2)

Note that they also correspond to estimators of the setting where there is no contempo-

raneous dependence among the idiosyncratic error processes. If we additionally introduce

operators X0 and W0 defined as

X0 : X0(∆) = X∆>, for ∆ ∈ Rp1×p1 ,

W0 : W0(∆) = W∆>, for ∆ ∈ Rp2×(p1+p2) where W := [X,Z],

then (B.1) and (B.2) can be equivalently written as

Â(0) := arg min
A

{
1
T
|||XT − X0(A)|||F + λA‖A‖1

}
,

(B̂(0), Ĉ(0)) := arg min
B,C

{
1
T
|||ZT −W0(Baug, Caug)|||F + λB|||B|||∗ + λC ||C||1

}
,

where Baug := [B,Op2×p2 ], Caug := [Op2×p1 , C].
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Theorem B.1 (Error bounds for Â(0)). Suppose the operator X0 satisfies the RSC condition

with norm Φ(∆) = ‖∆‖1, curvature αRSC > 0 and tolerance τ > 0, so that

s?Aτ ≤ αRSC/32.

Then, with regularization parameter λA satisfying λA ≥ 4‖X>U/T‖∞, the solution to (B.1)

satisfies the following bounds:

|||Â(0) − A?|||F ≤ 12
√
s?AλA/αRSC and ‖Â− A?‖1 ≤ 48s?AλA/αRSC.

Theorem B.2 (Error bound for (B̂(0), Ĉ(0))). Let JC? be the support set of C? and s?C denote

its cardinality. Let r?B be the rank of B?. Assume that W0 satisfies the RSC condition with

norm

Φ(∆) := inf
Baug+Caug=∆

Q(B,C), where Q(B,C) := |||B|||∗ + λC
λB
‖C‖1,

curvature αRSC and tolerance τ such that

128τr?B < αRSC/4 and 64τs?C(λC/λB)2 < αRSC/4.

Then, with regularization parameters λB and λC satisfying

λB ≥ 4|||W>V/T |||op and λC ≥ 4
∣∣∣∣W>V/T

∣∣∣∣
∞,

the solution to (B.2) satisfies the following bounds:

|||B̂(0) −B?|||
2

F + |||Ĉ(0) − C?|||
2

F ≤ 4
(
2r?Bλ

2
B + s?Cλ

2
C

)
/α2

RSC.

In the rest of this subsection, we first prove Theorem B.1 and B.2, then prove Theorem 3.1

and 3.2, whose statements are given in Section 3.3.2.

Proof of Theorem B.1. For the ease of notation, in this proof, we use Â to refer to Â(0)

whenever there is no ambiguity. Let β?A = vec(A?) and denote the residual matrix and its

vectorized version by ∆A = Â− A? and ∆βA = β̂A − β?A, respectively. By the optimality of

Â and the feasibility of A?, the following basic inequality holds:

1
T
|||X0(∆A)|||2F ≤

2
T
〈〈∆A,X

>U〉〉+ λA {||A?||1 − ||A
? + ∆A||1} ,
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which is equivalent to:

∆>βAΓ̂
(0)
X ∆βA ≤ 2

T
〈∆βA , vec(X>U)〉+ λA

{
||β?A||1 − ||β

?
A + ∆βA||1

}
, (B.3)

where Γ̂
(0)
X = Ip1 ⊗ X′X

T
. By Hölder’s inequality and the triangle inequality, an upper bound

for the right-hand-side of (B.3) is given by

2
T
||∆βA||1

∣∣∣∣X>U
∣∣∣∣
∞ + λA‖∆βA‖1. (B.4)

Now with the specified choice of λA, by Lemma B.5, ‖∆βA|JA?‖1 ≤ 3‖∆βA|J cA?‖1 i.e., ∆βA ∈
C(JA? , 3), hence ‖∆βA‖1 ≤ 4‖∆βA|JA?‖1 ≤ 4

√
s?A‖∆βA‖. By choosing λA ≥ 4‖X>U/T‖∞,

(B.4) is further upper bounded by

3

2
λA‖∆βA‖1 ≤ 6

√
s?AλA‖∆βA‖. (B.5)

Combined with the RSC condition and the upper bound given in (B.5), we have

αRSC

2
‖∆βA‖2 − τ

2
‖∆βA‖2

1 ≤
1

2
∆>βAΓ̂

(0)
X ∆βA ≤ 3

√
s?AλA‖∆βA‖,

αRSC

4
‖∆βA‖2 ≤

(
αRSC

2
− 16s?Aτ

4

)
‖∆βA‖2 ≤ 3

√
s?AλA‖∆βA‖,

which implies

‖∆βA‖ ≤ 12
√
s?AλA/αRSC and ‖∆βA‖1 ≤ 48s?AλA/αRSC.

It is easy to see that these bounds also hold for ‖∆A‖F and ‖∆A‖1, respectively.

Next, to prove Theorem B.2, we introduce the following two sets of subspaces {SΘ,S⊥Θ}
and {RΘ,Rc

Θ} associated with some generic matrix Θ ∈ Rm1×m2 , in which the nuclear norm

and the `1-norm are decomposable, respectively [see ? ]. Specifically, let the singular value

decomposition of Θ be Θ = UΣV ′ with U and V being orthogonal matrices. Let r = rank(Θ),

and we use U r and V r to denote the first r columns of U and V associated with the r singular

values of Θ. Further, define

SΘ :=
{

∆ ∈ Rm1×m2|row(∆) ⊆ V r and col(∆) ⊆ U r
}
,

S⊥Θ :=
{

∆ ∈ Rm1×m2|row(∆) ⊥ V r and col(∆) ⊥ U r
}
.

(B.6)

Then, for an arbitrary (generic) matrix M ∈ Rm1×m2 , its restriction on the subspace S(Θ)
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and S⊥(Θ), denoted by MS(Θ) and MS⊥(Θ) respectively, are given by:

MSΘ
= U

[
M̃11 M̃12

M̃21 O

]
V ′ and MS⊥Θ = U

[
O O

O M̃22

]
V ′,

where Θ = UΣV ′ and M̃ is defined and partitioned as

M̃ = U ′MV =

[
M̃11 M̃12

M̃21 M̃22

]
, where M̃11 ∈ Rr×r.

Note that by Lemma B.7, MSΘ
+ MS⊥Θ = M . Moreover, when Θ is restricted to the sub-

space induced by itself ΘSΘ
(and we write ΘS for short for this specific case), the following

decomposition for the nuclear norm holds:

|||Θ|||∗ = |||ΘS + ΘS⊥|||∗ = |||ΘS |||∗ + |||ΘS⊥|||∗.

Let JΘ be the set of indexes in which Θ is nonzero. Analogously, we define

RΘ :=
{

∆ ∈ Rm1×m2|∆ij = 0 for (i, j) /∈ JΘ

}
,

Rc
Θ :=

{
∆ ∈ Rm1×m2|∆ij = 0 for (i, j) ∈ JΘ

}
.

(B.7)

Then, for an arbitrary matrix M , MJΘ
∈ RΘ is obtained by setting the entries of M whose

indexes are not in JΘ to 0, and MJ cΘ ∈ R
c
Θ is obtained by setting the entries of M whose

indexes are in JΘ to 0. Then, the following decomposition holds:

∣∣∣∣MJΘ
+MJ cΘ

∣∣∣∣
1

= ||MJΘ
||1 +

∣∣∣∣MJ cΘ∣∣∣∣1.
Proof of Theorem B.2. Again for the ease of notation, in this proof, we drop the superscript

and use (B̂(0), Ĉ(0)) to denote (B̂, Ĉ) whenever there is no ambiguity. Define Q to be the

weighted regularizer:

Q(B,C) = |||B|||∗ + λC
λB
||C||1.

Note that (B?, C?) is always feasible, and by the optimality of (B̂, Ĉ), the following inequality

holds:

1

T
|||ZT −W0(B̂aug + Ĉaug)|||

2

F+λB|||B̂|||∗+λC ||Ĉ||1 ≤
1

T
|||ZT −W0(B? + C?)|||2F+λB|||B?|||∗+λC ||C

?||1,

By defining ∆B
aug = B̂aug − B?

aug = [∆B, O], ∆C
aug = Ĉaug − C?

aug = [O,∆C ], we obtain the
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following basic inequality :

1
T
|||W0(∆B

aug + ∆C
aug)|||2

F
≤ 2

T
〈〈∆B

aug + ∆C
aug,W

>V〉〉+ λBQ(B?, C?)− λBQ(B̂, Ĉ). (B.8)

By Hölder’s inequality and Lemma B.8, we have

1
T |||W0(∆B

aug + ∆C
aug)|||2

F
≤ 2

T

(
|||∆B
SB? |||∗ + |||∆B

S⊥
B?
|||
∗

)
|||W>V|||op + 2

T

(
||∆C
J c
C?
||

1
+ ||∆C

J c
C?
||

1

)∣∣∣∣∣∣W>V
∣∣∣∣∣∣
∞

+ λBQ(∆B
SB? ,∆

C
JC? )− λBQ(∆B

S⊥
B?
,∆C
J c
C?

). (B.9)

With the specified choice of λB and λC , after some algebra, (B.9) is further bounded by

3λB
2
Q(∆B

SB? ,∆
C
JC? )− λB

2
Q(∆B

S⊥
B?
,∆C
J c
C?

).

By Lemma B.9, and using this upper bound, we obtain

αRSC

2
(|||∆B|||2F + |||∆C |||2F)− λB

2
Q(∆B,∆C) ≤ 3λB

2
Q(∆B

SB? ,∆
C
JC? )− λB

2
Q(∆B

S⊥
B?
,∆C
J c
C?

).

By the triangle inequality, Q(∆B,∆C) ≤ Q(∆B
SB? ,∆

C
JC? )+Q(∆B

S⊥
B?
,∆C
J c
C?

), rearranging gives

αRSC

2
(|||∆B|||2F + |||∆C |||2F) ≤ 2λBQ(∆B

SB? ,∆
C
JC? ). (B.10)

By Lemma B.7, with N = B?, M1 = ∆B
SB? , M2 = ∆B

S⊥
B?

, we get

rank(∆B
SB? ) ≤ 2r?B and 〈〈∆B

SB? ,∆
B
S⊥
B?
〉〉 = 0,

which implies |||∆B
SB? |||∗ ≤ (

√
2r?B)|||∆B

SB? |||F ≤ (
√

2r?B)|||∆B|||F. Since ∆C
JC? has at most s?C

nonzero entries, it follows that ‖∆C
JC?‖1 ≤

√
s?C |||∆C

JC? |||F ≤
√
s?C |||∆C |||F. Therefore,

Q(∆B
SB? ,∆

C
JC? ) = λB|||∆B

SB? |||∗ + λC
∣∣∣∣∆C
JC?
∣∣∣∣

1
≤ λB(

√
2r?B)|||∆B|||F + λC(

√
s?C)|||∆C |||F

With an application of the Cauchy-Schwartz inequality, (B.10) yields:

αRSC

2
(|||∆B|||2F + |||∆C |||2F) ≤

√
2r?Bλ

2
B + s?Cλ

2
C ∗
√
|||∆B|||2F + |||∆C |||2F

and we obtain the following bound:

|||∆B|||2F + |||∆C |||2F ≤ 4
(
2r?Bλ

2
B + s?Cλ

2
C

)
/α2

RSC.
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Proof of Theorem 3.1. At iteration 0, Â(0) solves the following optimization problem:

Â(0) = arg min
A∈Rp1×p1

{
1
T
|||XT −XA>|||2F + λA|||A|||∗

}
.

By Theorem B.1, its error bound is given by

||Â(0) − A?||1 ≤ 48s?AλA/αRSC,

provided that Γ̂
(0)
X = Ip1 ⊗X>X/T satisfies the RSC condition, and the regularization pa-

rameter λA satisfies λA ≥ 4‖X>U/T‖∞. For random realizations X and U, by Lemma B.1

and Lemma B.2, there exist constants ci and c′i such that for sample size T & s?A log p1, with

probability at least 1− c1 exp(−c2T min{1, ω−2}), where ω = c3µmax(A)/µmin(A)

(E1) Γ̂
(0)
X satisfies RSC condition with αRSC = Λmin(Σ?

u)/(2µmax(A)) ,

and with probability at least 1− c′1 exp(−c′2 log p1),

(E2) ‖X>U/T‖∞ ≤ C0

√
log p1

T
, for some constant C0.

Hence with probability at least 1− c1 exp(−c2T )− c′1 exp(−c′2 log p1),

‖Â(0) − A?‖1 = O
(
s?A

√
log p1

T

)
.

Moving onto Ω̂
(0)
u , which is given by

Ω̂(0)
u = arg min

Ωu∈S
p1×p1
++

{
log det Ωu − trace

(
Ŝ(0)
u Ωu

)
+ ρu‖Ωu‖1,off

}
,

where Ŝ
(0)
u = 1

T
(XT −XÂ(0)>)>(XT −XÂ(0)>). By Theorem 1 in ? ], the error bound for

Ω̂
(0)
u relies on how well Ŝ

(0)
u concentrates around Σ?

u, more specifically, ‖Ŝ(0)
u − Σ?

u‖∞. Note

that

‖Ŝ(0)
u − Σ?

u‖∞ ≤ ‖Su − Σ?
u‖∞ + ‖Ŝ(0)

u − Su‖∞,

where Su = U>U/T is the sample covariance based on true errors. For the first term,

by ? ], there exists constant τ0 > 2 such that with probability at least 1 − 1/pτ0−2
1 =
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1− exp(−τ log p1) (τ > 0), the following bound holds:

(E3) ‖Su − Σ?
u‖∞ ≤ C1

√
log p1

T
, for some constant C1.

For the second term,

Ŝ(0)
u − Su = 2

T
U>X(A? − Â(0))> + (A? − Â(0))

(
X′X
T

)
(A? − Â(0))′ := I1 + I2,

For I1, based on the analysis of ||A? − Â(0)||1 and ||X>U/T ||∞,

‖I1‖∞ ≤ 2|||A? − Â(0)|||∞||
1
T
X>U||∞ ≤ 2||A? − Â(0)||1||

1
T
X>U||∞ = O

(
s?A log p1

T

)
For I2,

‖(A? − Â(0))
(

X>X
T

)
(A? − Â(0))>‖∞ ≤ |||A? − Â(0)|||∞|||A

? − Â(0)|||1||
X>X
T
||∞

≤ ||A? − Â(0)||
2

1||
X′X
T
||∞,

where by Proposition 2.4 in ? ] and then taking a union bound, with probability at least

1− c′′1 exp(−c′′2 log p1) (c′′1, c
′′
2 > 0),

(E4) ||X>X
T
||∞ ≤ C2

√
log p1

T
+ Λmax(ΓX), for some constant C2.

Hence,

‖I2‖∞ = O
(

(s?A)2
(

log p1

T

)3/2
)

+O
(

(s?A)2 log p1

T

)
Combining all terms, and since we assume that T−1 log p1 is small, O(

√
T−1 log p1) becomes

the leading term, and the following bound holds with probability at least 1− c1 exp(−c2T )−
c′1 exp(−c′2 log p1)− c′′1 exp(−c′′2 log p1)− exp(−τ log p1):

‖Ŝ(0)
u − Σ?

u‖∞ = O
(√

log p1

T

)
.

Consequently,

‖Ω̂(0)
u − Ω?

u‖∞ = O
(√

log p1

T

)
.

At iteration 1, the vectorized Â(1) solves

β̂
(1)
A = arg min

β∈Rp
2
1

{
− 2β>γ̂

(1)
X + β′Γ̂

(1)
X β + λA‖β‖1

}
,
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where

γ̂
(1)
X = 1

T

(
Ω̂(0)
u ⊗X>

)
vec(XT ), Γ̂

(1)
X = Ω̂(0)

u ⊗ X>X
T
.

The error bound for β̂
(1)
A relies on (1) Γ̂

(1)
X satisfying the RSC condition, which holds for

sample size T & (dmax
Ω?u

)2 log p1 upon ‖Ω̂(0)
u − Ω?

u‖∞ = O(
√
T−1 log p1); and (2) a bound for

‖X>UΩ̂
(0)
u /T‖∞. For ‖X>UΩ̂

(0)
u /T‖∞,

1
T
X>UΩ̂(0)

u = 1
T
X>UΩ?

u + 1
T
X>U(Ω̂(0)

u − Ω?
u) := I3 + I4.

For I3, by Lemma 3 in ? ] and with the aid of Proposition 2.4 in ? ], again with probability

at least 1− c′′′1 exp(−c′′′2 log p1) we get

(E5)
∣∣∣∣ 1
T
X>UΩ?

u

∣∣∣∣
∞ ≤ C3

√
log p1

T
, for some constant C3.

For I4, by Corollary 3 in ? ], we get∣∣∣∣∣∣ 1
T
X>U(Ω̂(0)

u − Ω?
u)
∣∣∣∣∣∣
∞
≤ dmax

Ω?u
|| 1
T
X′U||∞||Ω̂

(0)
u − Ω?

u||∞ = O
(

log p1

T

)
.

Combining all terms and taking the leading one, once again we have

‖Â(1) − A?‖1 = O
(
s?A

√
log p1

T

)
,

which holds with probability at least 1− c1 exp(−c2T )− c̃1 exp(−c̃2 log p1)− exp(−τ log p1),

by letting c̃1 = max{c′1, c′′1, c′′′1 } and c̃1 = min{c′2, c′′2, c′′′2 }. It should be noted that up to this

step, all sources of randomness from the random realizations have been captured by events

from E1 to E5; thus, for Ω̂
(1)
u and iterations thereafter, the probability for which the bounds

hold will no longer change, and the same holds for the error bounds for Â(k) and Ω̂
(k)
u in

terms of the relative order with respect to the dimension p1 and sample size T . Therefore,

we conclude that with high probability, for all iterations k,

‖X>UΩ̂(k)
u /T‖∞ = O

(√
log p1

T

)
, ‖Ŝ(k)

u − Σ?
u‖∞ = O

(√
log p1

T

)
.

With the aid of Theorem B.1, it then follows that

|||Â(k) − A?|||F = O
(√

s?A log p1

T

)
, |||Ω̂(k)

u − Ω?
u|||F = O

(√
(sΩ?u+p1) log p1

T

)
.
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Proof of Theorem 3.2. At iteration 0, (B̂(0), Ĉ(0)) solves the following optimization:

(B̂(0), Ĉ(0)) = arg min
(B,C)

{
1
T
|||ZT −XB> − ZC>|||2F + λB|||B|||∗ + λC ||C||1

}
.

Let Wt = (X>t , Z
>
t )> ∈ Rp1+p2 be the joint process and W be the realizations, with operators

W0 identically defined to that in Theorem B.2 . By Theorem B.2,

|||B̂(0) −B?|||
2

F + |||Ĉ(0) − C?|||
2

F ≤ 4(2r?Bλ
2
B + s?Cλ

2
C)/α2

RSC,

provided that W satisfies the RSC condition and λB, λC respectively satisfy

λB ≥ 4|||W>V/T |||op and λC ≥ 4
∣∣∣∣W>V/T

∣∣∣∣
∞.

In particular, by Lemma B.3 for random realizations of X, Z and V, for sample size T &

(p1 + 2p2), with probability at least 1− c1 exp{−c2(p1 + p2)},

(E′1) W0 satisfies the RSC condition.

By Lemma B.4, for sample size T & (p1 + 2p2) and some constant C1, C2 > 0,

(E′2) |||W>V/T |||op ≤ C1

√
p1 + 2p2

T
and

∣∣∣∣W>V/T
∣∣∣∣
∞ ≤ C2

√
log(p1 + p2) + log p2

T
,

with probability at least 1 − c′1 exp{−c′2(p1 + 2p2)} and 1 − c′′1 exp{−c′′2 log[p2(p1 + p2)]},
respectively. Hence, with probability at least

1− c1 exp{−c2(p1 + p2)} − c′1 exp{−c′2(p1 + 2p2)} − c′′1 exp{−c′′2 log[p2(p1 + p2)]},

the following bound holds for the initializers as long as sample size T & (p1 + 2p2):

|||B̂(0) −B?|||
2

F + |||Ĉ(0) − C?|||
2

F = O
(
p1+2p2

T

)
+O

(
log(p1+p2)+log p2

T

)
. (B.11)

Considering the estimation of Ω̂
(0)
v , it solves a graphical Lasso problem:

Ω̂(0)
v = arg min

Ωv∈S
p2×p2
++

{
log det Ωv − trace

(
Ŝ(0)
u Ωv

)
+ ρv‖Ωv‖1,off

}
,

where Ŝ
(0)
v = 1

T
(ZT −XB̂(0)> − ZĈ(0)>)>(ZT −XB̂(0)> − ZĈ(0)>). Similar to the proof of
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Theorem 3.1, the error bound for Ω̂
(0)
v depends on ‖Ŝ(0)

v −Σ?
v‖∞, which can be decomposed as

‖Ŝ(0)
v − Σ?

v‖∞ ≤ ‖Sv − Σ?
v‖∞ + ‖Ŝ(0)

v − Sv‖∞,

where Sv = V>V/T is the sample covariance based on the true errors. For the first term, by

Lemma 1 in ? ], there exists constant τ0 > 2 such that with probability at least 1−1/pτ0−2
2 =

1− exp(−τ log p2) (τ > 0), the following bound holds:

(E′3) ‖Sv − Σ?
v‖∞ ≤ C3

√
log p1

T
, for some constant C3.

For the second term, let Π = [B,C] ∈ Rp2×(p1+p2), then

Ŝ(0)
v − Sv =

2

T
V>W(Π? − Π̂(0))> + (Π? − Π̂(0))

(
W>W
T

)
(Π? − Π̂(0))> := I1 + I2,

For I1, we have

|| 2
T
V>W(Π? − Π̂(0))>||∞ ≤ ||

2
T
V>W(Π? − Π̂(0))>||

F
≤ 2||| 1

T
W>V|||

op
|||Π? − Π̂(0)|||F.

Consider the leading term of |||Π? − Π̂(0)|||F as in (B.11), whose rate is O(
√
T−1(p1 + 2p2)).

We therefore obtain

‖I1‖∞ ≤ ‖I1‖F = O
(
p1+2p2

T

)
.

Similarly for I2,

‖I2‖∞ ≤ ‖I2‖F ≤ |||Π? − Π̂(0)|||
2

F|||
W>W
T
|||

op
,

where with a similar derivation to that in Lemma B.10, for sample size T & (p1 + p2), with

probability at least 1− c′′′1 exp{−c′′′2 (p1 + p2)}, we get

(E′4) |||W>W
T
|||

op
≤ C4

√
p1 + 2p2

T
+ Λmax(ΓW ), for some constant C4.

Hence,

‖I2‖∞ ≤ ‖I2‖F ≤= O
((p1 + 2p2

T

)3/2
)
.

Combining all terms and then taking the leading one, with probability at least

1− c1 exp{−c2(p1 + p2)} − c′1 exp{−c′2(p1 + 2p2)} − c′′1 exp{−c′′2 log[p2(p1 + p2)]}

−c′′′1 exp{−c′′′2 (p1 + p2)} − exp(−τ log p2),
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we obtain

‖Ŝ(0)
v − Σ?

v‖∞ = O
(√

p1+2p2

T

)
.

Note that here with the required sample size, (p1 + 2p2)/T is a small quantity, and therefore

O
((

p1+2p2

T

)3/2
)
≤ O

(
p1+2p2

T

)
≤ O

(√
p1+2p2

T

)
.

At iteration 1, the bound of |||B̂(1) −B?|||
2

F + |||Ĉ(1) − C?|||
2

F relies on the following two quan-

tities:

||| 1
T
W>VΩ̂(0)

v |||op
and

∣∣∣∣∣∣ 1
T
W>VΩ̂(0)

v

∣∣∣∣∣∣
∞
.

Using a similar derivation to that in the proof of Theorem 3.1,∣∣∣∣∣∣ 1
T
W>VΩ̂(0)

v

∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣ 1
T
W>V(Ω̂(0)

v − Ω?
v)
∣∣∣∣∣∣
∞

+
∣∣∣∣ 1
T
W>VΩ?

v

∣∣∣∣
∞, (B.12)

where by viewing VΩ?
v as some random realization coming from a certain sub-Gaussian

process, with probability at least 1− c̄′′1 exp{−c̄′′2 log[p2(p1 + p2)]}, we get

(E′5)
∣∣∣∣ 1
T
W>VΩ?

v

∣∣∣∣
∞ ≤ C5

√
log(p1 + p2) + log p2

T
, for some constant C5,

and ∣∣∣∣∣∣ 1
T
W>V(Ω̂(0)

v − Ω?
v)
∣∣∣∣∣∣
∞
≤ dΩ?v

max|| 1T W>V||∞||Ω̂
(0)
v − Ω?

v||∞

= O
(√

log(p1+p2)+log p2

T

)
·O
(√

p1+2p2

T

)
.

For ||| 1
T
W>VΩ̂

(0)
v |||op

, similarly we have

||| 1
T
W>VΩ̂(0)

v |||op
≤ ||| 1

T
W>V(Ω̂(0)

v − Ω?
v)|||op

+ ||| 1
T
W>VΩ?

v|||op
, (B.13)

where with probability at least 1− c̄′1 exp{−c̄′2(p1 + p2)},

(E′6) ||| 1
T
W>VΩ?

v|||op
≤ C6

√
p1 + 2p2

T
for some constant C6,

and

||| 1
T
W>V(Ω̂(0)

v − Ω?
v)|||op

≤ ||| 1
T
W>V|||

op
|||Ω̂(0)

v − Ω?
v|||op

≤ ||| 1
T
W>V|||

op

[
dΩ?v

max||Ω̂(0)
v − Ω?

v||∞
]

= O
(
p1+2p2

T

)
,
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where the second inequality follows from Corollary 3 of ? ]. Combining all terms from (B.12)

and (B.13), the leading term gives the following bound:

|||B̂(1) −B?|||
2

F + |||Ĉ(1) − C?|||
2

F ≤ C7

(p1 + 2p2

T

)
for some constant C7,

and this error rate coincides with that in the bound of |||B̂(0) −B?|||
2

F + |||Ĉ(0) − C?|||
2

F. This

implies that for Ω̂
(1)
v and iterations thereafter, the error rate remains unchanged. Moreover,

all sources of randomness have been captured up to this step in events E′1 to E′6, and therefore

the probability for the bounds to hold no longer changes. Consequently, the following bounds

hold for all iterations k:

‖W>VΩ̂(k)
v /T‖∞ = |||W′VΩ̂(k)

v /T |||op = O
(√

p1+2p2

T

)
and

‖Ŝ(k)
v − Σ?

v‖∞ = O
(√

p1+2p2

T

)
,

with probability at least

1−c0 exp{−c̃0(p1+p2)}−c1 exp{−c̃1(p1+2p2)}−c2 exp{−c̃2 log[p2(p1+p2)]}−exp{−τ log p2}.

for some new positive constants ci, c̃i (i = 0, 1, 2) and τ .1 The above bounds directly imply

the bound in the statement in Theorem 3.2, with the aid of Theorem B.2.

B.2 Key Lemmas and Their Proofs.

In this section, we verify the conditions that are required for establishing the consistency

results in Theorem B.1 and B.2, under random realizations of X, Z, U and V.

The following two lemmas verify the conditions for establishing the consistency properties

for Â(0). Specifically, Lemma B.1 establishes that with high probability, X0 satisfies the RSC

condition. Further, Lemma B.2 gives a high probability upper bound for ‖X′U/T‖∞ for

random X and U.

Lemma B.1 (Verification of the RSC condition). For the VAR(1) model {Xt} posited

in (3.1), there exist ci > 0 (i = 1, 2, 3) such that for sample size T & max{ω2, 1}s?A log p1,

1Here we slightly abuse the notations and redefine c0 := max{c1, c′′′1 }, c1 := max{c′1, c̄′1}, c̃1 := min{c′2, c̄′2},
c2 = max{c′′1 , c̄′′1}, c̃2 := min{c′′2 , c̄′′2}.
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with probability at least

1− c1 exp
[
−c2T min{1, ω−2}

]
, ω = c3

Λmax(Σu)µmax(A)

Λmin(Σu)µmin(A)
,

the following inequality holds

1

2T
|||X0(∆)|||2F ≥ αRSC|||∆|||2F − τ ||∆||

2
1, for ∆ ∈ Rp1×p1 ,

where αRSC = Λmin(Σu)
µmax(A)

, τ = 4αRSC max{ω2, 1} log p1/T .

Proof of Lemma B.1. For the specific VAR(1) process {Xt} given in (3.1), using Proposition

4.2 in ? ] with d = 1 directly gives the result. Specifically, we note that by letting θ = vec(∆),

1
T
|||X0(∆)|||2F = θ>Γ̂

(0)
X θ,

where Γ̂
(0)
X = Ip1 ⊗ (X>X/T ), and ‖θ‖2

2 = |||∆|||2F, ‖θ‖1 = ||∆||1.

Lemma B.2 (Verification of the deviation bound). For the model in (3.1), there exist

constants ci > 0, i = 0, 1, 2 such that for T & 2 log p1, with probability at least 1 −
c1 exp(−2c2 log p1), the following bound holds:

‖X>U/T‖∞ ≤ c0Λmax(Σu)

[
1 +

1

µmin(A)
+
µmax(A)

µmin(A)

]√
2 log p1

T
. (B.14)

Proof of Lemma B.2. First, we note that,

∣∣∣∣X>U/T
∣∣∣∣
∞ = max

1≤i≤p1
1≤j≤p1

∣∣e>i (X>U/T
)
ej
∣∣ .

Applying Proposition 2.4(b) in ? ] for an arbitrary pair of (i, j) gives:

P
(∣∣e>i (X>U/T

)
ej
∣∣ > η

[
Λmax(Σu)

(
1 +

1

µmin(A)
+
µmax(A)

µmin(A)

)])
≤ 6 exp[−cT min{η, η2}].

Setting η = c0

√
2 log p1/T and taking a union bound over all 1 ≤ i ≤ p1, 1 ≤ j ≤ p1, we get

that for some c1, c2 > 0, with probability at least 1− c1 exp[−2c2 log p1],

max
1≤i≤p1
1≤j≤p1

∣∣e>i (X>U/T
)
ej
∣∣ ≤ c0Λmax(Σu)

[
1 +

1

µmin(A)
+
µmax(A)

µmin(A)

]√
2 log p1

T
.
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In the next two lemmas, Lemma B.3 gives an RSC curvature that holds with high proba-

bility for W induced by a random W, and Lemma B.4 gives a high probability upper bound

for |||W>V/T |||op and
∣∣∣∣W>V/T

∣∣∣∣
∞.

Lemma B.3 (Verification of the RSC condition). Consider the covariance stationary process

Wt = (X>t , Z
>
t )> ∈ Rp1+p2 whose spectral density exists. Suppose m(fW ) > 0. There exist

constants ci > 0, i = 1, 2 such that with probability at least 1 − 2c1 exp(−c2(p1 + p2)), the

RSC condition for W induced by a random W holds for αRSC and tolerance 0, where

αRSC = πm(fW )/4,

whenever T & (p1 + p2).

Proof of Lemma B.3. First ,we note that the following inequality holds, for any W:

1

2T
|||W0(∆)|||2F =

1

2T
|||W∆>|||2F =

1

2T

p2∑
j=1

∣∣∣∣[W>∆]j
∣∣∣∣2

2
≥ 1

2
Λmin

(
Γ̂

(0)
W

)
|||∆|||2F. (B.15)

where Γ̂
(0)
W = W>W/T . Applying Lemma 4 in ? ] on W together with Proposition 2.3 in

? ], the following bound holds with probability at least 1− 2c1 exp[−c2(p1 + p2)], as long as

T & (p1 + p2):

Λmin

(
Γ̂

(0)
W

)
≥ Λmin(ΓW (0))

4
≥ π

2
m(fW ),

where ΓW (0) = EWtW
>
t . Combining with (B.15), the RSC condition holds with κ(W) =

πm(fW )/4.

Lemma B.4 (Verification of the deviation bound). There exist constants ci > 0 and c′i >

0, i = 1, 2 such that the following statements hold:

(a) With probability at least 1− c1 exp[−c2(p1 + 2p2)], as long as T & (p1 + 2p2),

|||W>V/T |||op ≤ c0

[
M(fW ) + 1

2π
Λmax(Σv) +M(fW,V +)

]√p1 + 2p2

T
. (B.16)

(b) With probability at least 1−c′1 exp(−c′2 log(p1 +p2)−c′2 log p2), as long as T & c′3 log[(p1 +

p2)p2],

∣∣∣∣W>V/T
∣∣∣∣
∞ ≤ c′0

[
M(fW ) + 1

2π
Λmax(Σv) +M(fW,V +)

]√ log(p1 + p2) + log p2

T
.

(B.17)

182



Proof of Lemma B.4. (a) is a direct application of Lemma B.10 on processes {Wt} ∈ R(p1+p2)

and {V +
t } ∈ Rp2 , and (b) is a direct application of Lemma B.2.

B.3 Auxiliary Lemmas and Their Proofs.

Lemma B.5. Let β̂ be the solution to the following optimization problem:

β̂ = arg min
β∈Rp

{
1

2n
||Y −Xβ||22 + λn‖β‖1

}
,

where the data is generated according to Y = Xβ? + E with X ∈ Rn×p and E ∈ Rn. The

errors Ei are assumed to be i.i.d. for all i = 1, · · · , n. Then, by choosing λn ≥ 2‖X ′E/n‖∞,

the error vector ∆ := β̂ − β? satisfies ‖∆J ‖1 ≤ 3‖∆J c‖1.

Proof. Note that β? is always feasible. By the optimality of β̂, we have

1

2n
||Y −Xβ̂||

2

2 + λn‖β̂‖1 ≤
1

2n
||Y −Xβ?||22 + λn‖β?‖1

which after some algebra, can be simplified to

1

2
∆>
(
X>X

n

)
∆ ≤ 〈∆>, 1

n
X>E〉+ λn‖β?‖1 − λn‖β? + ∆‖1

≤ ‖∆‖1‖
1

n
X ′E‖∞ + λn‖β?‖1 − λn‖β? + ∆‖1,

with the second inequality obtained through an application of from Hölder’s inequality. With

the specified choice of λn, if follows that

0 ≤ λn
2
‖∆‖1 + λn

{
‖β?J ‖1 − ‖β?J + ∆J + β?J c + ∆J c‖1

}
=
λn
2

(‖∆J ‖1 + ‖∆J c‖1) + λn{‖β?J ‖1 − ‖β?J + ∆J ‖1 − ‖∆J c‖1} (β?J c = 0, `1 norm decomposable)

≤ λn
2

(‖∆J ‖1 + ‖∆J c‖1) + λn(‖∆J ‖1 − ‖∆J c‖) (triangle inequality)

=
3λn
2
‖∆J ‖1 −

λn
2
‖∆J c‖1,

which implies ‖∆J ‖1 ≤ 3‖∆J c‖1.

Lemma B.6. Consider two centered stationary Gaussian processes {Xt} and {Zt}. Further,

assume that the spectral density of the joint process {(X ′t, Z ′t)′} exists. Denote their cross-
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covariance by ΓX,Z(`) := Cov(Xt, Zt+`), and their cross-spectral density is defined as

fX,Z(θ) :=
1

2π

∞∑
`=−∞

ΓX,Z(`)e−i`θ, θ ∈ [−π, π],

whose upper extreme is given by:

M(fX,Z) = esssupθ∈[−π,π]

√
Λmax

(
f ∗X,Z(θ)fX,Z(θ)

)
.

Let X and Z be data matrices with sample size n. Then, there exists a constant c > 0, such

that for any u, v ∈ Rp with ‖u‖ ≤ 1, ‖v‖ ≤ 1, we have

P
[∣∣∣∣u>(X′Z

T
− Cov(Xt, Zt)

)
v

∣∣∣∣ > 2π (M(fX) +M(fZ) +M(fX,Z)) η

]
≤ 6 exp

(
−cT min{η, η2}

)
.

Proof. Let ξt = 〈u,Xt〉, ηt = 〈v, Zt〉. Let fX(θ), fZ(θ) denote the spectral density of {Xt}
and {Zt}, respectively. Then, the spectral density of {ξt} and {ηt}, respectively, is fξ(θ) =

u′fX(θ)u, fη(θ) = v′fZ(θ)v. Also, we note that M(fξ) ≤M(fX), M(fη) ≤M(fZ). Then,

2

T

[
T∑
t=0

ξtηt − Cov(ξt, ηt)

]
=

[
1

T

T∑
t=0

(ξt + ηt)
2 − Var(ξt + ηt)

]

−

[
1

T

T∑
t=0

(ξt)
2 − Var(ξt)

]
−

[
1

T

T∑
t=0

(ηt)
2 − Var(ηt)

]
.

(B.18)

By Proposition 2.7 in [? ],

P

(∣∣∣∣∣ 1

T

T∑
t=0

(ξt)
2 − Var(ξt)

∣∣∣∣∣ > 2πM(fX)η

)
≥ 2 exp

[
−cnmin(η, η2)

]
,

and

P

(∣∣∣∣∣ 1

T

T∑
t=0

(ηt)
2 − Var(ηt)

∣∣∣∣∣ > 2πM(fZ)η

)
≥ 2 exp

[
−cnmin(η, η2)

]
.

What remains to be considered is the first term in (B.18), whose spectral density is given by

fξ+η(θ) = u>fX(θ)u+ v>fZ(θ)z + u>fX,Z(θ)v + v>f ∗X,Z(θ)u,

and its upper extreme satisfies

M(fξ+η) ≤M(fX) +M(fZ) + 2M(fX,Z).
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Hence, we get:

P

(∣∣∣∣∣ 1

T

T∑
t=0

(ξt + ηt)
2 −Var(ξt + ηt)

∣∣∣∣∣ > 2π[M(fX) +M(fZ) + 2M(fX,Z)]η

)
≥ 2 exp[−cnmin(η, η2)].

Combining all three terms yields the desired result.

Lemma B.7. Let N and M be matrices of the same dimension. Then, there exists a

decomposition M = M1 +M2, such that

(a) rank(M1) ≤ 2rank(N);

(b) 〈〈M1,M2〉〉 = 0.

Proof. Let the SVD of N be given by N = UΣV ′, where both U and V are orthogonal

matrices and assume rank(N) = r. Define M̃ and do partition it as follows:

M̃ = U>MV =

[
M̃11 M̃12

M̃21 M̃22

]
.

Next, let

M1 = U

[
M̃11 M̃12

M̃21 O

]
V > and M2 = U

[
O O

O M̃22

]
V >, M̃11 ∈ Rr×r.

Then, M1 +M2 = M and

rank(M1) ≤ rank

(
U

[
M̃11 M̃12

O O

]
V >

)
+ rank

(
U

[
M̃11 O

M̃21 O

]
V >

)
≤ 2r.

Moreover,

〈〈M1,M2〉〉 = tr
[
M1M

>
2

]
= 0.

Lemma B.8. Define the error matrix by ∆B = B̂ − B? and ∆C = Ĉ − C?, and let the

weighted regularizer Q be defined as

Q(B,C) = |||B|||∗ +
λC
λB
||C||1.

With the subspaces defined in (B.6) and (B.7), the following inequality holds:

Q(B?, C?)−Q(B̂, Ĉ) ≤ Q(∆B
SB? ,∆

C
JC? )−Q(∆B

S⊥
B?
,∆C
J c
C?

).
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Proof. First, from definitions (B.6) and (B.7), we know that B?
S⊥ = 0 and C?

J c
C?

= 0. Using

the definition of Q, we obtain

Q(B?, C?) = |||B?
S +B?

S⊥|||∗ +
λC
λB

∣∣∣∣∣∣C?
J ?C

+ C?
J c
C?

∣∣∣∣∣∣
1

= |||B?
S |||∗ +

λC
λB

∣∣∣∣∣∣C?
J ?C

∣∣∣∣∣∣
1
,

and

Q(B̂, Ĉ) = Q(B? + ∆B, C? + ∆C)

= |||B?
S + ∆B

S⊥
B?

+ ∆B
SB? +B?

S⊥ |||∗
+
λC
λB

∣∣∣∣∣∣C?J ?C + ∆C
JC? + C?J c

C?
+ ∆C

J c
C?

∣∣∣∣∣∣
1

≥ |||B?
S + ∆B

S⊥
B?
|||
∗
− |||∆B

SB? |||∗ +
λC
λB

(∣∣∣∣∣∣C?J ?C + ∆C
JC?

∣∣∣∣∣∣
1

+
∣∣∣∣∣∣∆C
J c
C?

∣∣∣∣∣∣
1

)
≥ |||B?

S |||∗ + |||∆B
S⊥
B?
|||
∗
− |||∆B

SB? |||∗ +
λC
λB

(∣∣∣∣∣∣C?J ?C ∣∣∣∣∣∣1 +
∣∣∣∣∆C
JC?
∣∣∣∣

1
−
∣∣∣∣∣∣∆C
J c
C?

∣∣∣∣∣∣
1

)
.

The decomposition of the first term comes from the construction of ∆B
S⊥
B?

. It then follows

that

Q(B?, C?)−Q(B̂, Ĉ) ≤ λC
λB

∣∣∣∣∣∣C?J ?C ∣∣∣∣∣∣1 + |||∆B
SB? |||∗ − |||∆

B
S⊥
B?
|||
∗

+
λC
λB

(∣∣∣∣∆C
JC?
∣∣∣∣

1
−
∣∣∣∣∣∣∆C
J c
C?

∣∣∣∣∣∣
1
−
∣∣∣∣∣∣C?J ?C ∣∣∣∣∣∣1)

= |||∆B
SB? |||∗ +

λC
λB

∣∣∣∣∆C
JC?
∣∣∣∣

1
−
(
|||∆B
S⊥
B?
|||
∗

+
λC
λB

∣∣∣∣∣∣∆C
J c
C?

∣∣∣∣∣∣
1

)
= Q(∆B

SB? ,∆
C
JC? )−Q(∆B

S⊥
B?
,∆C
J c
C?

).

Lemma B.9. Under the conditions of Theorem B.2, the following bound holds:

1

T
|||W0(∆B

aug + ∆C
aug)|||

2

F
≥ αRSC

2
(|||∆B|||2F + |||∆C |||2F)− λB

2
Q(∆B,∆C).

Proof. This lemma directly follows from Lemma 2 in ? ], by setting Θ? = B?, Γ? = C?,

with the regularizer R(·) being the element-wise `1 norm. Note that σj(B
?) = 0 for j =

r+ 1, · · · ,min{p1, p2} since rank(B) = r. For our problem, it suffices to set M⊥ as J c
C? , and

therefore ‖C?
J c
C?
‖1 = 0.

Lemma B.10. Consider the two centered Gaussian processes {Xt} ∈ Rp1 and {Zt} ∈ Rp2,

and denote their cross covariance matrix by ΓX,Z(h) = (Xt, Zt+h) = E(XtZ
>
t+h). Let X

and Z denote the data matrix. There exist positive constants ci > 0 such that whenever

T & c3(p1 + p2), with probability at least

1− c1 exp[−c2(p1 + p2)],
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the following bound holds:

1

T
|||X>Z|||op ≤ QX,Z

√
p1 + p2

T
+ 4|||ΓX,Z(0)|||op,

where

QX,Z = c0 [M(fX) +M(fZ) +M(fX,Z)] .

Proof. The main structure of this proof follows from that of Lemma 3 in ? ], and here we

focus on how to handle the temporal dependency present in our problem. Let Sp = {u ∈
Rp|‖u‖ = 1} denote the p-dimensional unit sphere. The operator norm has the following

variational representation form:

1

T
|||X>Z|||op =

1

n
sup
u∈Sp1

sup
v∈Sp2

u>X>Zv.

For positive scalars s1 and s2, define

Ψ(s1, s2) = sup
u∈s1Sp1

sup
v∈s2Sp2

〈Xu,Zv〉,

and the goal is to establish an upper bound for Ψ(1, 1)/T . Let A = {u1, · · · , uA} and

B = {v1, · · · , vB} denote the 1/4 coverings of Sp1 and Sp2 , respectively. ? ] showed that

Ψ(1, 1) ≤ 4 max
ua∈A,vb∈B

〈Xua,Zvb〉,

and by ? ] and ? ], there exists a 1/4 covering of Sp1 and Sp2 with at most A ≤ 8p1 and

B ≤ 8p2 elements, respectively. Consequently,

P
[∣∣∣∣ 1

T
Ψ(1, 1)

∣∣∣∣ ≥ 4δ

]
≤ 8p1+p2 max

ua,vb
P
[
|(ua)>XZ(vb)|

T
≥ δ

]
.

What remains to be bounded is

1

T
u>X>Zv, for an arbitrary fixed pair of (u, v) ∈ Sp1 × Sp2 .

By Lemma B.6, we have

P
[∣∣∣∣u>(X>Z

T

)
v

∣∣∣∣ > 2π (M(fX) +M(fZ) +M(fX,Z)) η + |||ΓX,Z(0)|||op

]
≤ 6 exp

(
−cT min{η, η2}

)
.
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Therefore, we have

P
{
| 1
T

Ψ(1, 1)| ≥ 8π (M(fX) +M(fZ) +M(fX,Z)) η + 4|||ΓX,Z(0)|||op

}
≤ 6 exp

[
(p1 + p2) log 8− cT min{η, η2}

]
.

With the specified choice of sample size T , the probability vanishes by choosing η =

c0

√
p1+p2

T
, for c0 large enough, and we yield the conclusion in Lemma B.10.

Lemma B.11. Consider some generic matrix A ∈ Rm×n and let γ = {γ1, . . . , γp} (p < n)

denote the set of column indices of interest. Then, the following inequalities hold

Λmin(A>A) ≤ Λmin(A>γ Aγ) ≤ Λmax(A>γ Aγ) ≤ Λmax(A>A).

Proof. Let

V := {v = (v1, · · · , vn) ∈ Rn|v>v = 1}.

and

Vγ := {v = (v1, · · · , vn) ∈ Rn|v>v = 1 and vj = 0 ∀j /∈ γ}.

It is obvious that Vγ ⊆ V . By the definition of eigenvalues through their Rayleigh quotient

characterization,

Λmin(A>γ Aγ) = min
u>u=1,u∈Rp

u>(A>γ Aγ)u = min
v>v=1,v∈Vγ

v>(A>A)v ≥ min
v>v=1,v∈V

v′(A>A)v = Λmin(A>A).

Similarly,

Λmax(A>γ Aγ) = max
u>u=1,u∈Rp

u>(A>γ Aγ)u = max
v>v=1,v∈Vγ

v>(A>A)v ≤ max
v>v=1,v∈V

v>(A>A)v = Λmax(A>A).

Lemma B.12. Let {Xt} and {εt} be two generic processes, where εt = (U>t , V
>
t )>. Suppose

the spectral density of the joint process (X ′t, ε
′
t) exists. Then, the following inequalities hold

m(fX,V ) ≥ m(fX,ε), M(fX,V ) ≤M(fX,ε).

Proof. By definition, the spectral density fX,ε(θ) can be written as

fX,ε(θ) =

(
1

2π

) ∞∑
`=−∞

ΓX,ε(`)e
−i`θ =

(
1

2π

) ∞∑
`=−∞

[
EXtU

>
t+`, EXtV

>
t+`

]
e−i`θ

= (fX,U(θ), fX,V (θ)), θ ∈ [−π, π].
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It follows that

M(fX,ε) = ess sup
θ∈[−π,π]

√
Λmax(H(θ)),

where

H(θ) =

[
f ∗X,U(θ)

f ∗X,V (θ)

] [
fX,U(θ) fX,V (θ)

]
=

[
f ∗X,U(θ)fX,U(θ) f ∗X,U(θ)fX,V (θ)

f ∗X,V (θ)fX,U(θ) f ∗X,V (θ)fX,V (θ)

]
.

Note that

M(fX,V ) = ess sup
θ∈[−π,π]

√
Λmax(f ∗X,V (θ)fX,V (θ)).

By Lemma B.11, ∀θ, Λmin(f ∗X,V (θ)fX,V (θ)) ≥ Λmin(H(θ)) and Λmax(f ∗X,V (θ)fX,V (θ)) ≤ Λmax(H(θ)),

hence

m(fX,V ) ≥ m(fX,ε), M(fX,V ) ≤M(fX,ε).

B.4 Testing group Granger-causality under a sparse alternative.

In this section, we develop a testing procedure to test the null hypothesis against its

sparse alternatives, that is, H0: B = 0 vs. HA: B is nonzero and sparse. Throughout, we

impose assumptions on the sparsity level of B (to be specified later), and use the higher

criticism framework [c.f. ? ? ? ] as the building block of the testing procedure.

Once again, we start with testing sparse alternatives in a simpler model setting

Yt = ΠXt + εt,

where Yt ∈ Rp2 , Xt ∈ Rp1 , and εt ∈ Rp2 with each component being independent and

identically distributed (i.i.d) and also independent of Xt. We would like to test the null

hypothesis H0 : Π = 0. Written in a compact form, the model is given by

Y = XΠ> + E, (B.19)

where Y ∈ RT×p2 , X ∈ RT×p1 , and E are both contemporaneously and temporally indepen-

dent. The latter shares similarities to the setting in ? ], with the main difference being that

here we have a multi-response Y. By rewriting (B.19) using Kronecker products, we have

vec(Y) = (Ip2 ⊗X) vec(Π>) + vec(E) i.e., Y = Xvec(Π>) + E ,
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where Y = vec(Y) ∈ RTp2 ,X = Ip2 ⊗ X ∈ RTp2×p1p2 . Each coordinate in E is iid. In this

form, using the higher criticism [? ? ? ] with proper scaling, the test statistic is given by:

HC∗(X ,Y) = sup
t>0

H(t,X ,Y) :=

√
p1p2

2Φ̄(t)(1− 2Φ̄(t))

[
1

p1p2

p1p2∑
k=1

1
( √

T ·|X>k Y|
‖Xk‖2‖Y‖2 > t

)
− 2Φ̄(t)

]
, (B.20)

where Xk is the kth column of X and Φ̄(t) = 1 − Φ(t) with Φ(t) being the cumulative

distribution function of a standard Normal random variable. Intuitively,

(
1

p1p2

) p1p2∑
k=1

1
{√

TX>k Y/(‖Xk‖2‖Y‖2) > t
}

is the fraction of significance beyond a given level t, after scaling for the vector length and

the noise level. To conduct a level α test, H0 is rejected when HC∗(X ,Y) > h(p1p2, αp1p2)

where h(p1p2, αp1p2) ≈
√

2 log log(p1p2), provided that αp1p2 → 0 slowly enough in the sense

that h(p1p2, αp1p2) = 2
√

log log(p1p2)(1 + o(1)) [see ? ]. The effectiveness of the test relies

on a number of assumptions on the design matrix and the sparse vector to be tested. Next,

we introduce the three most relevant definitions for subsequent developments, originally

mentioned in ? ].

Definition B.1 (Bayes risk). Following ? ], the Bayes risk of a test T for testing vec(Π>) = 0

vs. vec(Π>) ∼ π, when H0 and H1 occur with the same probability, is defined as the sum of

type I error and its average probability of type II error; i.e.,

Riskπ(T ) = P0(T = 1) + π[Pvec(Π
>)(T = 0)],

where π is a prior on the set of alternatives Ω. When no prior is specified, the risk is defined

as the worst-case risk:

Risk(T ) = P0(T = 1) + max
vec(Π>)∈Ω

[Pvec(Π
>)(T = 0)].

Definition B.2 (Asymptotically powerful). We use Tn,p to denote the dependency of the

test on the sample size n and the parameter dimension p. With p→∞ and n = n(p)→∞,

a sequence of tests {Tn,p} is said to be asymptotically powerful if

lim
p→∞

Risk(Tn,p) = 0.

Definition B.3 (Weakly correlated). Let Sp(γ,∆) denote the set of p×p correlation matrices
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C = [cjk] satisfying the weakly correlated assumption: for all j = 1, . . . , p,

|cjk| < 1− (log p)−1 and {k : |cjk| > γ} ≤ ∆, for some γ ≤ 1,∆ ≥ 1.

With the above definitions, ? ] establishes that using the test based on higher criticism is

asymptotically powerful, provided that (1) vec(Π>) satisfies the strong sparsity assumption,

that is, the total number of nonzeros s?
vec(Π>)

= (p1p2)θ with θ ∈ (1/2, 1); (2) the correlation

matrix of X belongs to S(γ,∆) with γ and ∆ satisfying certain assumptions in terms of their

relative order with respect to parameter dimension and sample size; and (3) the minimum

magnitude of the nonzero elements of vec(Π>) exceeds a certain lower detection threshold.

Switching to our model setting in which

Zt = BXt−1 + CZt−1 + Vt, B ∈ Rp2×p1 ,

where B encodes the dependency between Zt and Xt−1, conditional on Zt−1, the above

discussion suggests that we can use higher criticism on the residuals R1 and R0, where R1

and R0 are identically defined to those in the low-rank testing; that is, R1 is the residual

after regressing X on Z, and R0 is the residual after regressing ZT on Z:

R1 = (I − Pz)X and R0 = (I − Pz)ZT ,

where Pz = Z(Z>Z)−1Z>. Writing the model in terms of R1 and R0, we have

R0 = R1B
> + V, i.e., R0 = R1βB + V ,

where R0 = vec(R0),R1 = I ⊗ R1, V = vec(V), and βB = vec(B>) ∈ Rp1p2 . To test

H0 : βB = 0, the higher criticism is given by

HC∗(R1,R0) = sup
t>0

H(t,R1,R0) :=

√
p1p2

2Φ̄(t)(1− 2Φ̄(t))

[
1

p1p2

p2∑
j=1

p1∑
i=1

1
( √

T |R>1kR0|
‖R1k‖2‖R0‖2 > t

)
− 2Φ̄(t)

]
= sup

t>0

√
p1p2

2Φ̄(t)(1− 2Φ̄(t))

[
1

p1p2

p2∑
j=1

p1∑
i=1

1
( √

T |S10,ij |√
S11,iiS00,jj

> t
)
− 2Φ̄(t)

]
(B.21)

where S10 = R>1 R0/T , S11 = R>1 R1/T and S00 = R>0 R0/T . The second equality is due to

the block-diagonal structure of R1. We reject the null hypothesis if

HC∗(R1,R0) > 2
√

log log(p1p2).
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Empirically, t can be chosen from {[1,
√

5 log(p1p2)] ∩ N} [? ].

Next, we analyze the theoretical properties of the above testing procedure. If the pa-

rameter dimension is fixed, then classical consistency results in terms of convergence (in

probability or almost surely) hold when letting T →∞, and everything follows trivially, as

long as the corresponding population quantities satisfy the posited assumptions.

In the remainder, we allow the parameter dimension p1p2 to slowly vary with the sample

size T . Let SR1 = R>1R1/T be the sample covariance matrix based on the residuals R1, and

let CR1 be the corresponding correlation matrix. The following proposition directly follows

from Theorem 4 in ? ].

Proposition B.1 (An asymptotically powerful test). Under the following conditions, the

testing procedure associated with the Higher Criticism statistics defined in (B.21) is asymp-

totically powerful, provided that the smallest magnitude of nonzero entries of B? exceeds the

lower detection boundary.2

(a) Strong sparsity: let pB = p1p2 be the dimension of β?B, then the total number of nonzeros

satisfies s?B = pθB, where θ ∈ (1/2, 1).

(b) Weakly correlated design: CR1 ∈ S(γ,∆) with the parameters satisfying ∆ = O(pε1),

γ = O(p
−1/2+ε
1 ), ∀ ε > 0.

Note that SR1 = I ⊗ S11, where S11 = R>1 R1/T ; hence, CR1 = I ⊗ C11, with C11 being

the sample correlation matrix based on R1. The weakly correlated design assumption is

thus effectively imposed on C11, with the parameters γ and ∆ satisfying the same condition.

The weakly correlated design assumption on C11 in Proposition B.1 is for a deterministic

realization of R1. The following corollary states that for a random realization of R1, obtained

by regressing a random X on Z, to satisfy the weakly correlated design assumption with

high probability, it is sufficient that the population counterparts of the associated quantities

satisfy the required assumptions.

Corollary B.1. Consider residual R1 obtained by regressing a random realization of X on

that of Z. Let Σ11 := ΓX−ΓX,ZΓ−1
Z Γ>X,Z be the covariance of Xt conditional on Zt, and ρ11 be

the corresponding correlation matrix. Suppose ρ11 ∈ S(γ,∆) with γ and ∆ satisfying the same

condition as in Proposition B.1. Then with high probability, the sample correlation matrix

based on R1 belongs to S(γ′,∆′), where γ′ and ∆′ respectively satisfy the same condition as γ

and ∆, provided that the same condition imposed on γ holds for
√
T−1 log(p1p2). Moreover,

the conclusion in Proposition B.1 holds.

2For a thorough discussion on the lower detection boundary, we refer the reader to ? ? ] and references
therein.
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Remark B.1. In the work of ? ] and ? ], the authors focus their analysis primarily on

the multiple regression setting, where the regression coefficient matrix directly encodes the

relationship between the response variable and the covariates, in an iid data setting. We

consider a more complicated model setting in which the regression coefficient matrix of

interest encodes the partial auto-correlations between a multivariate response and a set

of exogenous variables, while the data exhibit temporal dependence. It is worth pointing

out that with the presence of temporal dependence, the rate with respect to the model

dimension p and sample size T stays the same, as in the case where the data are iid [e.g.,

? ? ]; specifically, it is
√

log p/T in terms of the element-wise infinity norm, whereas the

associated constant is a function of the lower and upper extremes of the spectral density,

which intricately controls the exact coverage and power of the testing procedures. Therefore,

as long as the rate constraint on p and T is satisfied (as in Corollary B.1), the main conclusion

is compatible with previous work, and asymptotically, we either obtain the distribution of

the test statistic (low rank testing), or have a powerful test (sparse testing).

Remark B.2. To solve the global testing problem for the sparse setting, a possible alternative

is to construct a test statistic based on estimates of the regression coefficients, then perform

a global or max test on the estimated coefficients. A key issue for such a test is that the

estimated entries of B are biased due to the use of Lasso; therefore, a debiasing procedure

[e.g. ? ] would be required to obtain valid marginal distributions for the entries of the B

matrix. In contrast, the higher criticism test statistic is based on the correlation between

the response and the covariates (see Equation (B.20)), and here we employ the idea on the

residuals so that the effect of Zt block is removed. We do not directly deal with the estimates

of the B matrix and thus avoid the complications induced by the potentially biased estimates

of B.

B.5 Estimation and Consistency for an Alternative Model Specification.

In this section, we consider the finite-sample error bound for the case where both B and

C are sparse. We assume the presence of a sparse contemporaneous conditional dependence,

hence the alternate between the estimation of transition matrices and that of the covariance

matrix is required. In what follows, we briefly outline the estimation procedure and the error

bounds of the estimates. All notations follow from those in Section 3.3.
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The joint optimization problem is given by

(B̂, Ĉ, Ω̂v) = arg min
B,C,Ωv

{
tr
[
Ωv(ZT −XB> − ZC>)>(ZT −XB> − ZC>)/T

]
− log det Ωv

+ λB||B||1 + λC ||C||1 + ρv||Ωv||1,off

}
. (B.22)

For every iteration, with a fixed Ω̂
(k)
v , B̂(k+1) and Ĉ(k+1) are both updated via Lasso; for fixed

(B̂(k), Ĉ(k)), Ω̂
(k)
v is updated by the graphical Lasso.

Corollary B.2. Consider the stable Gaussian VAR system defined in (3.1) in which B? is

assumed to be s?B-sparse and C? is assumed to be s?C-sparse. Further, assume the following

C1. The incoherence condition holds for Ω?
v.

C2. Ω?
v is diagonally dominant.

C3. The maximum node degree of Ω?
v satisfies dmax

Ω?v
= o(p2).

Then, for random realizations of {Xt}, {Zt} and {Vt}, and the sequence {(B̂(k), Ĉ(k)), Ω̂
(k)
v }k

returned by Algorithm III.2 outlined in Section 3.2.1, with high probability, the following

bounds hold for all iterations k for sufficiently large sample size T :

|||B̂(k) −B?|||
2

F + |||Ĉ(k) − C?|||
2

F = O
((s?B + s?C)

(
log(p1 + p2) + log p2

)
T

)
,

and

|||Ω̂(k)
v − Ω?

v|||
2

F = O
((s?Ωv + p2)(log(p1 + p2) + log p2)

T

)
.

Note that when no contemporaneous dependence is present, (B̂, Ĉ) solves

(B̂, Ĉ) = arg min
(B,C)

{
1
T
|||ZT −W0(Baug + Caug)|||2F + λB‖B‖1 + λC‖C‖1

}
, (B.23)

whose error bound is given by

|||B̂ −B?|||
2

F + |||Ĉ − C?|||
2

F ≤ 4(λ2
B + λ2

C)/α2
RSC, (B.24)

provided that the RSC condition holds and the regularization parameters are chosen properly.

By setting the weighted regularizer as Q(B,C) = ‖B‖1 + λC
λB
‖C‖1 and ∆B := B̂ − B? can

be decomposed as (see equation (B.7))

‖∆B
JB + ∆B

J cB
‖1 = ‖∆B

JB‖1 + ‖∆B
J cB
‖1.
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The rest of the proof is similar to that of Theorem B.2 hence is omitted here.

B.6 Proof of Propositions and Corollaries.

Proof of Proposition 3.1. The joint process Wt = {(X>t , Z>t )>} is a stationary VAR(1) pro-

cess, and it follows that

Sw(h) :=

[
Sx(h) Sx,z(h)

Sz,x(h) Sz(h)

]
=

1

T

T∑
t=1

wtw
>
t+h

p→ ΓW (h) := EWtW
>
t+h, as T →∞,

which implies

Sx
p→ ΓX , Sz

p→ ΓZ , Sx,z
p→ ΓX,Z , Sx,z(1)

p→ ΓX,Z(1).

Note that sample partial regression residual covariances can be obtained by

S00 = Sz − Sz(1)S−1
z S>z (1), S11 = Sx − Sx,zS−1

z S>x,z, S10 = Sx,z(1)− Sz(1)S−1
z S>x,z.

An application of the Continuous Mapping Theorem yields

S00
p→ Σ00, S10

p→ Σ10, S11
p→ Σ11.

By ? ? ], the limiting behavior of TΨr is given by

TΨr ∼ χ2
(p1−r)(p2−r), as T →∞.

Note that since µ is of multiplicity one and the ordered eigenvalues are continuous functions

of the matrices, the following holds:

φk
p→ µk, ∀ k = 1, . . . ,min(p1, p2).

Proof of Corollary B.1. First, we note that R1 effectively comes from the following stochastic

regression:

Xt = QZt +Rt, for some regression matrix Q, (B.25)

with R1 = X − ZQ̂ being the sample residual. The population covariance of Rt is the
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conditional covariance of Xt on Zt, given by

Σ11 = Σ?
R := ΓX − ΓX,ZΓ−1

Z Γ>X,Z .

Σ11 is identical to that defined in equation (3.25). Writing the model in terms of data,

we have

X = ZQ+ R?,

where we use R? to denote the true error term, for the purpose of distinguishing it from the

residuals by regressing X on Z. Note that R? is also sub-Gaussian. First, we would like

to obtain a bound for ‖S11 − Σ11‖∞. Let SR be the sample covariance matrix based on the

actual errors, i.e., SR? = (R?)′(R?)/T , then

‖S11 − Σ11‖∞ ≤ ‖SR? − Σ11‖∞ + ‖S11 − SR?‖∞

The first term can be directed bounded by Lemma 1 in ? ], that is, there exists some constant

τ > 2, such that for large enough sample size T , with probability at least 1− 1/pτ−2
2 ,

‖SR? − Σ11‖∞ ≤ C0

√
log p2/T , for some constant C0 > 0.

Consider the second term. Rewrite it as

S11 − SR? = 2
T

(R?)>Z(Q? − Q̂) + (Q? − Q̂)>
(

Z>Z
T

)
(Q? − Q̂) := I1 + I2,

then for I1,

I1 ≤ 2|||Q? − Q̂|||1||
1

T
(R?)>Z||

∞
≤ 2
∣∣∣∣∣∣vec(Q?)− vec(Q̂)

∣∣∣∣∣∣
1
|| 1
T

(R?)>Z||
∞
.

By Lemma B.4, there exist constants ci > 0 such that with probability at least 1 −
c1 exp(−c2 log(p1p2)), for sufficiently large sample size T , we get

|| 1
T

(R?)>Z||
∞
≤ C1

√
log(p1p2)/T , for some constant C1 > 0. (B.26)

For I2, we have that

I2 ≤ |||Q? − Q̂|||
2

1

∣∣∣∣∣∣∣∣Z>Z

T

∣∣∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣vec(Q?)− vec(Q̂)

∣∣∣∣∣∣2
1

∣∣∣∣∣∣∣∣Z>Z

T

∣∣∣∣∣∣∣∣
∞
.

By Proposition 2.4 in ? ] and taking the union bound, there exist some constants c′1 and c′2
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such that with probability at least 1− c′1 exp(−c′2 log p2), for sufficiently large sample size T ,

we obtain ∣∣∣∣∣∣Z>ZT − ΓZ

∣∣∣∣∣∣
∞
≤ C2

√
log p2/T , for some constant C2 > 0,

which implies ∣∣∣∣∣∣Z>ZT ∣∣∣∣∣∣
∞
≤ C2

√
log p2/n+ max

i
(ΓZ,ii). (B.27)

By assuming that
∣∣∣∣∣∣vec(Q?)− vec(Q̂)

∣∣∣∣∣∣
1
≤ εQ, it follows that

I1 + I2 ≤ C ′1εQ

√
log(p1p2)

T
+ C ′2ε

2
Q

√
log p2

T
,

hence

‖S11 − Σ11‖∞ ≤ C0

√
log p2

T
+ C ′1εQ

√
log(p1p2)

T
+ C ′2ε

2
Q

√
log p2

T
. (B.28)

Regardless of the relative order of p1 and p2, one can easily verify that

‖S11 − Σ11‖∞ = O
(√

log(p1p2)
T

)
. (B.29)

by assuming log(p1p2)/T being a small quantity. Since

C11 = (diag(S11))−1/2 S11 (diag(S11))−1/2

and letting R̃t = diag(Σ11)−1/2Rt, we then have that C11 is simply the sample covariance

matrix based on residual surrogates of R̃t, whose error rate stays unchanged by scaling, i.e,

||C11 − ρ11||∞ = O(
√
T−1 log(p1p2)). The latter fact further implies that if ρ11 ∈ S(γ,∆),

then C11 ∈ S(γ′,∆′) with ∆′ ≥ ∆−(const)
√

log(p1p2)/T and γ′ ≥ γ+(const)
√

log(p1p2)/T .

It then follows that as long as
√
T−1 log(p1p2) satisfies the same condition imposed on

γ = O(p
−1/2+ε
1 ), that is,

p1−2ε
1 log(p1p2) = O(T ), for all ε > 0,

with high probability, the sample covariance matrix based on the residuals R1 satisfies the

weakly correlated design assumption, for a random realization X and Z.

Finally, we briefly outline the main steps of how to obtain the error bound in Corol-

lary B.2.

Proof of Corollary B.2. Let Wt = (X>t , Z
>
t )>. At iteration 0, (B̂(0), Ĉ(0)) solves (B.23), and
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the following bound holds:

|||B̂(0) −B?|||
2

F + |||Ĉ(0) − C?|||
2

F ≤ 4(λ2
B + λ2

C)/α2
RSC,

provided that W satisfies the RSC condition, and λB, λC both satisfy

λB ≥ 4‖W>V/T‖∞, λC ≥ 4‖W>V/T‖∞.

In particular, by Lemma B.3 and Lemma B.4, for random realizations of {Xt}, {Zt} and

{Vt}, for sufficiently large sample size, with high probability

W satisfies the RSC condition,

and ∣∣∣∣W>V/T
∣∣∣∣
∞ ≤ C1

√
log(p1 + p2) + log p2

T
,

for some constant C1. Hence, with high probability,

|||B̂(0) −B?|||
2

F + |||Ĉ(0) − C?|||
2

F = O
(

log(p1+p2)+log p2

T

)
. (B.30)

For Ω̂
(0)
v , it solves a graphical Lasso problem:

Ω̂(0)
v = arg min

Ωv∈S
p2×p2
++

{
log det Ωv − trace

(
Ŝ(0)
u Ωv

)
+ ρv‖Ωv‖1,off

}
,

where Ŝ
(0)
v = 1

T
(ZT −XB̂(0)> − ZĈ(0)>)>(ZT −XB̂(0)> − ZĈ(0)>). Similar to the proof of

Theorem 3.2, its error bound depends on ‖Ŝ(0)
v − Σ?

v‖∞. With the same decomposition and

consider only the leading term,

‖Ŝ(0)
v − Σ?

v‖∞ = O
(√

log(p1+p2)+log p2

T

)
, ⇒ ‖Ω̂(0)

v − Ω?
v‖∞ = O

(√
log(p1+p2)+log p2

T

)
.

At iteration 1, the bound of |||B̂(1) −B?|||
2

F + |||Ĉ(1) − C?|||
2

F relies on

‖ 1

T
W>VΩ̂(0)

v ‖∞ ≤ || 1T W>V(Ω̂(0)
v − Ω?

v)||∞ + || 1
T
W>VΩ?

v||∞,

≤ C2

√
log(p1+p2)+log p2

T
+ dΩ?v

max|| 1T W>V||∞||Ω̂
(0)
v − Ω?

v||∞

= O
(√

log(p1+p2)+log p2

T

)
,

(B.31)
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hence |||B̂(1) −B?|||
2

F + |||Ĉ(1) − C?|||
2

F = O( log(p1+p2)+log p2

T
), which coincides with the bound

of the estimator of iteration 0, implying the error rate remains unchanged henceforth. Up to

this step, all sources of randomness have been captured. Consequently, the following bounds

hold with high probability for all iterations k:

‖W>VΩ̂(k)
v /T‖∞ = O

(√
log(p1+p2)+log p2

T

)
,

and

‖Ŝ(k)
v − Σ?

v‖∞ = O
(√

log(p1+p2)+log p2

T

)
,

which imply the bounds in Corollary B.2.

B.7 List of Stock and Macroeconomic Variables

Stock Symbol Name Stock Symbol Company Name

AAPL Apple Inc. JNJ Johnson & Johnson Inc
AIG American International Group Inc. JPM JP Morgan Chase & Co
ALL Allstate Corp. KO The Coca-Cola Company
AMGN Amgen Inc. LMT Lockheed-Martin
AXP American Express Inc. LOW Lowe’s
BA Boeing Co. MCD McDonald’s Corp
BAC Bank of America Corp MDLZ Mondel International
BK Bank of New York Mellon Corp MDT Medtronic Inc.
BMY Bristol-Myers Squibb MMM 3M Company
C Citigroup Inc MO Altria Group
CAT Caterpillar Inc MRK Merck & Co.
CL Colgate-Palmolive Co. MS Morgan Stanley
CMCSA Comcast Corporation MSFT Microsoft
COF Capital One Financial Corp. NSC Norfolk Southern Corp
COP ConocoPhillips ORCL Oracle Corporation
CSCO Cisco Systems OXY Occidental Petroleum Corp.
CVS CVS Caremark PEP Pepsico Inc.
CVX Chevron PFE Pfizer Inc
DD DuPont PG Procter & Gamble Co
DIS The Walt Disney Company RTN Raytheon Company
DOW Dow Chemical SLB Schlumberger
DVN Devon Energy Corp SO Southern Company
EMC EMC Corporation T AT&T Inc
EXC Exelon TGT Target Corp.
F Ford Motor TWX Time Warner Inc.
FCX Freeport-McMoran TXN Texas Instruments
FDX FedEx UNH UnitedHealth Group Inc.
GD General Dynamics UPS United Parcel Service Inc
GE General Electric Co. USB US Bancorp
GILD Gilead Sciences UTX United Technologies Corp
GS Goldman Sachs VZ Verizon Communications Inc
HAL Halliburton WBA Walgreens Boots Alliance
HD Home Depot WFC Wells Fargo
HON Honeywell WMT Wal-Mart
IBM International Business Machines XOM Exxon Mobil Corp
INTC Intel Corporation

Table B.1: List of stocks used in the analysis.
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Symbol Description Transformation
FFR Federal Funds Rate abs diff
T10yr 10-Year Treasury Yield with Constant Maturity abs diff
UNEMPL Unemployment Rate for 16 and above abs diff
IPI Industrial Production Index relative diff
ETTL Employment Total relative diff
M1 M1 Money Stock relative diff
AHES Average Hourly Earnings of Production and Nonsupervisory Employees relative diff
CU Capital Utilization relative diff
M2 M2 Money Stock relative diff
HS Housing starts relative diff
EX US Exchange Rate abs diff
PCEQI Personal Consumption Expenditures Quantity Index relative diff
GDP real Gross Domestic Product relative diff
PCEPI Personal Consumption Expenditures Price Index relative diff
PPI Producer Price Index relative diff
CPI Consumer Price Index relative diff
SP.IND S&P Industrial Sector index relative diff

*abs diff: xt − xt−1, relative diff:
xt−xt−1

xt−1

Table B.2: List of macroeconomic variables and the transformation used in the analysis.
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APPENDIX C

Supplementary Materials to “Regularized Estimation of

High-dimensional Factor-Augmented Vector Autoregressive

(FAVAR) Models.”

C.1 Proofs for Theorems and Propositions.

This section is divided into two parts. In the first part, we provide proofs for the propo-

sition and theorem related to Stage I estimates, i.e., Θ̂ and Γ̂. In the second part, we give

proofs for the statements related to Stage II estimates, namely Â, with an emphasis on how

to obtain the final high probability error bound through properly conditioning on related

events.

Part 1. Proofs for the Θ̂ and Γ̂ estimates.

Proof of Proposition 4.1. Using the optimality of (Γ̂, Θ̂) and the feasibility of (Γ?,Θ?), the

following basic inequality holds:

1

2n
|||X∆>Γ + ∆Θ|||

2

F ≤
1

n

(
〈〈∆>Γ ,X>E〉〉+ 〈〈∆Θ,E〉〉

)
+ λΓ

(
||Γ?||1 − ||Γ̂||1

)
, (C.1)

which after rearranging terms gives

1

2n
|||X∆>Γ |||

2

F +
1

2
|||∆Θ/

√
n|||2F ≤

1

n
〈〈X∆>Γ , Θ̂−Θ?〉〉+

1

n

(
〈〈∆>Γ ,X>E〉〉+ 〈〈∆Θ,E〉〉

)
+λΓ

(
||Γ?||1 − ||Γ̂||1

)
.

(C.2)

The remainder of the proof proceeds in three steps: in Step (i), we obtain a lower bound for

the left-hand side (LHS) leveraging the RSC condition; in Step (ii), an upper bound for the

right hand side (RHS) based on the designated choice of λΓ is derived; in Step (iii), the two

sides are aligned to yiled the desired error bound after rearranging terms.
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To complete the proof, we first define a few quantities that are associated with the support

set of Γ and its complement:

S :=
{

∆ ∈ Rq×p2|∆ij = 0 for (i, j) /∈ SΓ?
}
,

Sc :=
{

∆ ∈ Rq×p2|∆ij = 0 for (i, j) ∈ SΓ?
}
,

where SΓ? is the support of Γ?. Further, define ∆S and ∆Sc as

∆S,ij = 1{(i, j) ∈ SΓ?}∆ij, ∆Sc,ij = 1{(i, j) ∈ ScΓ?}∆ij,

and note that they satisfy

∆ = ∆S + ∆Sc , ‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1

and

‖∆S‖1 ≤
√
s|||∆S|||F ≤

√
sΓ?|||∆|||F. (C.3)

Step (i). Since X satisfies the RSC condition, the first term on the LHS of (C.2) is lower

bounded by
αX

RSC

2
|||∆Γ|||2F − τX||∆Γ||21. (C.4)

To get a lower bound for (C.4), consider an upper bound for ||∆Γ||1 with the aid of (C.1).

Specifically, for the first two terms in the RHS of (C.1), by Hölder’s inequality, the following

inequalities hold for the inner products:

〈〈∆>Γ ,X>E〉〉 ≤ ‖∆Γ‖1‖X>E‖∞, 〈〈∆Θ,E〉〉 ≤ |||∆Θ|||∗|||E|||op = n|||∆Θ|||∗Λ
1/2
max(SE); (C.5)

for the last term, since

‖Γ̂‖1 = ‖Γ?S + Γ?Sc + ∆Γ|S + ∆Γ|Sc‖1 = ‖Γ?S + ∆Γ|S‖1 + ‖∆S|Sc‖1 ≥ ‖Γ?S‖1−‖∆Γ|S‖1 + ‖∆Γ|Sc‖1,

the following inequality holds:

‖Γ?‖1 − ‖Γ̂‖1 ≤ ‖∆Γ|S‖1 − ‖∆Γ|Sc‖1. (C.6)

Using the non-negativity of the RHS in (C.1), by choosing λΓ ≥ max
{

2‖X>E/n‖∞, Λ
1/2
max(SE)

}
,

the following inequality holds:

0 ≤ λΓ

2
‖∆Γ‖1+λΓ|||∆Θ/

√
n|||∗+λΓ(‖∆Γ|S‖1−‖∆Γ|Sc‖1) =

3λΓ

2
‖∆Γ|S‖1−

λΓ

2
‖∆Γ|Sc‖1+λΓ|||∆Θ/

√
n|||∗.
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Since ∆Θ = Θ̂− Θ? has rank at most p1 + r, |||∆Θ/
√
n|||∗ ≤

√
p1 + r|||∆Θ/

√
n|||F. It follows

that

λΓ

2
‖∆Γ|Sc‖1 ≤ λΓ

√
p1 + r|||∆Θ/

√
n|||F +

3λΓ

2
‖∆Γ|S‖1,

λΓ

2
‖∆Γ|S‖1 +

λΓ

2
‖∆Γ|Sc‖1 ≤ λΓ

√
p1 + r|||∆Θ/

√
n|||F +

3λΓ

2
‖∆Γ|S‖1 +

λΓ

2
‖∆Γ|S‖1,

‖∆Γ‖1 ≤
√

4(p1 + r)|||∆Θ/
√
n|||F + 4‖∆Γ|S‖1 ≤

√
4(p1 + r)|||∆Θ/

√
n|||F + 4

√
sΓ? |||∆Γ|||F,

where the second line is obtained by adding λΓ

2
‖∆Γ|S‖1 on both sides, and the last inequality

uses (C.3). Further, by the Cauchy-Schwartz inequality, we have

||∆Γ||1 ≤
√

(
√

4(p1 + r))2 + (4
√
s)2

√
|||∆Γ|||2F + |||∆Θ/

√
n|||2F,

that is,

‖∆Γ‖2
1 ≤ 4

(
p1 + r + 4s

)[
|||∆Γ|||2F + |||∆Θ/

√
n|||2F

]
. (C.7)

Combine (C.4) and (C.7), a lower bound for the LHS of (C.2) is given by

(αX
RSC

2
− 4τX

(
p1 + r + 4s

))
|||∆Γ|||2F +

(1

2
− 4τX

(
p1 + r + 4s

))
|||∆Θ/

√
n|||2F. (C.8)

Step (ii). For the first term in the RHS of (C.2), using the duality of the nuclear-operator

norm pair, the following inequality holds:

1

n
|〈〈X∆>Γ , Θ̂−Θ?〉〉| ≤ 1

n
|〈〈X∆>Γ , Θ̂〉〉|+

1

n
|〈〈X∆>Γ ,Θ

?〉〉| (C.9)

≤ |||X∆>Γ /
√
n|||op|||Θ̂/

√
n|||∗ + |||X∆>Γ /

√
n|||op|||Θ

?/
√
n|||∗. (C.10)

For |||X∆>Γ /
√
n|||op, we have

|||X∆>Γ /
√
n|||op ≤ |||X/

√
n|||op|||∆

>
Γ |||op ≤ |||X/

√
n|||op|||∆

>
Γ |||F = Λ1/2

max(SX)|||∆Γ|||F, (C.11)

where the first inequality comes from the sub-multiplicativity of the nuclear norm. Com-

bining with (IR+) box constraint on the eigen-spectrum and the feasibility of Θ?, we obtain

|||Θ?/
√
n|||∗ ≤ p1φ and |||Θ̂/

√
n|||∗ ≤ rφ, thus (C.9) is upper bounded by

(p1 + r)φΛ1/2
max(SX)|||∆Γ|||F.

Further, combining with (C.5) and (C.6), as long as λΓ ≥
{
‖X>E/n‖∞,Λ1/2(SE), (p1 +

203



r)φΛ
1/2
max(SX)

}
, the following upper bound holds for the RHS of (C.2):

λΓ|||∆Γ|||F + λΓ‖∆Γ‖1 + λΓ

√
p1 + r|||∆Θ/

√
n|||F + λΓ(‖∆Γ|S‖1 − ‖∆Γ|Sc‖1)

≤ λΓ

(
(2
√
sΓ? + 1)|||∆Γ|||F +

√
p1 + r|||∆Θ/

√
n|||F

)
≤ λΓ

√
(2
√
sΓ? + 1)2 + (p1 + r)2

√
|||∆Γ|||2F + |||∆Θ/

√
n|||2F.

(C.12)

Step (iii). Combine (C.8) and (C.12), by rearranging terms and requiring τX to satisfy

τX(p1 + r + 4sΓ?) < min{αX
RSC, 1}/16, the following inequality holds:

min{αX
RSC, 1}
4

(
|||∆Γ|||2F + |||∆Θ/

√
n|||2F

)
≤ λΓ

√
(2
√
sΓ? + 1)2 + (p1 + r)2

√
|||∆Γ|||2F + |||∆Θ/

√
n|||2F,

which gives

|||∆Γ|||2F + |||∆Θ/
√
n|||2F ≤

16λ2
Γ

(
(p1 + r) + (2

√
sΓ? + 1)2

)
min{αX

RSC, 1}2
.

Proof sketch for Theorem 4.1. First we note that the requirement on the tuning parameter

λΓ determines the leading term in the ultimate high probability error bound. By Lemma 4.4

and 4.5, to have adequate concentration for the leading eigenvalue Λmax(·) of the sample co-

variance matrices, the requirement imposed on the sample size makes
√

log(p2q)/n a lower

order term relative to M1/2(fX) and Λ
1/2
max(Σe), with the latter two being O(1) terms. Con-

sequently, the choice of the tuning parameter effectively becomes

λΓ � O(1),

and by conditions C1 and C2, there exists some constant C such that λ2
Γ ≤ C. The conclusion

readily follows as a result of Proposition 4.1.

Part 2. This part contains the proofs for the results related to Â.

Proof sketch for Proposition 4.2. The result follows along the lines of ? , Proposition 4.1]. In

particular, in ? ], the authors consider estimation of A based on the directly observed samples

of theXt process, with the restricted eigenvalue (RE) condition imposed on the corresponding

Hessian matrix and the tuning parameter selected in accordance to the deviation bound

defined in Definition 4.2.

On the other hand, in the current setting, estimation of the transition matrix is based

on quantities that are surrogates for the true sample quantities. Consequently, as long as
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the required conditions are imposed on their counterparts associated with these surrogate

quantities, the conclusion directly follows.

Finally, we would like to remark that the RSC condition used is in essence identical to

the RE condition required in ? ] in the setting under consideration.

Proof of Theorem 4.2. First, we note that under (IR), by Theorem 4.1, there exists some

constant K1 that is independent of n, p1, p2 and q such that the following event holds with

probability at least P1 := 1− c1 exp(−c2 log(p2q)):

E1 :=
{
|||∆F/

√
n|||F ≤ K1

}
.

Conditional on E1, by Proposition 4.2, Lemmas 4.6 and 4.7, with high probability, the

following event holds:

E2 :=
{
|||∆A|||F ≤ ϕ(n, p1, p2, K1)

}
,

for some function ϕ(·) that not only depends on sample size and dimensions, but also on K1,

provided that the “conditional” RSC condition is satisfied. What are left to be examined

are: (i) what does E1 imply in terms of the RSC condition being satisfied unconditionally;

and (ii) what does E1 imply in terms of the bound in E2,

Towards this end, for (i), we note that since

Λ1/2
max(S∆Fn−1

) = |||∆F/
√
n|||op ≤ |||∆F/

√
n|||F ≤ K1,

then as long as CZ in condition C3 satisfies CZ ≥ c0K1 with the specified c0 ≥ 6
√

165π,

with probability at least P1P2,RSC where we define P2,RSC := 1−c′1 exp(−c′2n), by Lemma 4.6

the required RSC condition is guaranteed to be satisfied with a positive curvature. For

(ii), with the aid of Lemma 4.7, with probability at least P1P2,DB where we define P2,DB :=

1− c′1 exp(−c′2 log(p1 + p2)), the following bound holds for the deviation bound C(n, p1, p2)

unconditionally: 1

C(n, p1, p2) ≤ C1

(
M(fZ) +

Σw

2π
+M(fZ,W )

)√ log(p1 + p2)

n
+ C2M1/2(fZ)

√
log(p1 + p2) + log p1

n

+ C3Λ1/2
max(Σw)

√
log(p1 + p2)

n
+ C4,

where the constants {Ci} have already absorbed the upper error bound K1 of the Stage

I estimates, compared with the original expression in Proposition 4.2. With the required

sample size, the constant becomes the leading term, so that there exists some constant K2

1Note that it can be shown that |||εn|||2F = O(|||∆F|||2F)
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such that unconditionally:

C(n, p1, p2) ≤ K2 � O(1).

Combine (i) and (ii), and with probability at least min{P1P2,RSC, P1P2,DB}, the bound in

Theorem 4.2 holds.

C.2 Proof for Lemmas.

In this section, we provide proofs for the lemmas in Section 4.3.2.

Proof of Lemma 4.1. Note that

Θ̂ = Θ? + ∆Θ = (F + ∆F)(Λ? + ∆Λ)>

∆Θ = ∆F(Λ?)> + F̂∆>Λ .

Multiply the left inverse of F̂ which gives

∆>Λ =
(
F̂>F̂

)−1
F̂>∆Θ +

(
F̂>F̂

)−1
F̂>∆F(Λ?)>.

Since for some generic matrix M , we have |||M−1|||F ≥ (|||M |||F)−1, an application of the

triangle inequality gives

|||∆Λ|||F ≤
|||F̂|||F
|||F̂>F̂|||F

(
|||∆Θ|||F + |||∆F(Λ?)>|||F

)
=
|||F̂/
√
n|||F

||| 1n F̂>F̂|||
F

(
1√
n

)
(
|||∆Θ|||F + |||∆F(Λ?)>|||F

)
≤ √p1Λ−1/2

max (S
F̂

)|||∆Θ/
√
n|||F

(
1 + |||Λ?|||F

)
,

where SF̂ := 1
n
F̂>F̂, and after relaxing the numerator and the denominator of

|||F̂|||F
|||F̂>F̂|||F

re-

spectively by

|||F̂|||F ≤
√
p1|||F̂|||op, |||F̂>F̂|||F ≥ |||F̂

>F̂|||op.

Further, note that |||F̂/
√
n|||

2

op = Λmax(SF̂) = |||SF̂|||op
. What remains is to obtain a lower

bound for

Λ1/2
max

(
SF̂

)
= |||(F + ∆F)/

√
n|||op.

One such bound is given by

|||(F + ∆F)/
√
n|||op ≥ |||F/

√
n|||op − |||∆F/

√
n|||op ≥ |||F/

√
n|||op − |||∆F/

√
n|||F

≥ Λ1/2
max(SF)− |||∆Θ/

√
n|||F,
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which leads to the following bound for |||∆Λ|||F, provided that the RHS is positive:

|||∆Λ|||F
|||Λ?|||F

≤ √p1
|||∆Θ/

√
n|||F

Λ
1/2
max(SF)− |||∆Θ/

√
n|||F

(
1 + 1/|||Λ?|||F

)
.

Proof of Lemma 4.2. First, suppose we have

1

2
v′SXv =

1

2
v′
(X′X

n

)
v ≥ αRSC

2
‖v‖2

2 − τn‖v‖2
1, ∀ v ∈ Rp; (C.13)

then, for all ∆ ∈ Rp×p, and letting ∆j denote its jth column, the RSC condition automatically

holds since

1

2n
|||X∆|||2F =

1

2

q∑
j=1

∆′j
(
X′X
n

)
∆j ≥

αRSC

2

q∑
j=1

‖∆j‖2
2 − τn

q∑
j=1

‖∆j‖2
1 ≥

αRSC

2
|||∆|||2F − τn‖∆‖

2
1.

Therefore, it suffices to verify that (C.13) holds. In ? , Proposition 4.2], the authors prove a

similar result under the assumption that Xt is a VAR(d) process. Here, we adopt the same

proof strategy and state the result for a more general process Xt.

Specifically, by ? , Proposition 2.4(a)], ∀v ∈ Rp, ‖v‖ ≤ 1 and η > 0,

P
[∣∣v>(SX − ΓX(h)

)
v
∣∣ > 2πM(gX)η

]
≤ 2η exp

(
− cnmin{η2, η}

)
.

Applying the discretization in ? , Lemma F.2] and taking the union bound, define K(2s) :=

{v ∈ Rp, ‖v‖ ≤ 1, ‖v‖0 ≤ 2k}, and the following inequality holds:

P
[

sup
v∈K(2k)

∣∣v>(SX−ΓX(h)
)
v
∣∣ > 2πM(gX)η

]
≤ 2 exp

(
−cnmin{η, η2}+2kmin{log p, log(21ep/2k)}

)
.

With the specified γ = 54M(gX)/m(gX), set η = γ−1, then apply results from ? , Lemma

12] with Γ = SX − ΓX(0) and δ = πm(gX)/27, so that the following holds

1

2
v>SXv ≥

αRSC

2
‖v‖2 − αRSC

2k
‖v‖2

1,

with probability at least 1−2 exp
(
−cnmin{γ−2, 1}+2k log p

)
and note that min{γ−2, 1} =

γ−2 since γ > 1. Finally, let k = min{cnγ−2/(c′ log p), 1} for some c′ > 2, and conclude that

with probability at least 1− c1 exp(−c2n), the inequality in (C.13) holds with

αRSC = πm(gX), τn = αRSCγ
2 log p

2n
,
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and so does also the RSC condition.

Proof of Lemma 4.3. We note that

1

n

∣∣∣∣X>E
∣∣∣∣
∞ = max

1≤i,j≤p

∣∣e>i (X>E/n
)
ej
∣∣,

where ei is the p-dimensional standard basis with its i-th entry being 1. Applying ? ,

Proposition 2.4(b)], for an arbitrary pair of (i, j), the following inequality holds:

P
[∣∣e>i (X>E/n

)
ej
∣∣ > 2π

(
M(gX) +

Λmax(Σe)

2π

)
η
]
≤ 6 exp

(
− cnmin{η2, η}

)
,

and note that et is a pure noise term that is assumed to be independent of Xt; hence, there is

no cross-dependence term to consider. Take the union bound over all 1 ≤ i ≤ p2, 1 ≤ j ≤ q,

and the following bound holds:

P
[

max
1≤i≤p2,1≤j≤q

∣∣e>i (X>E/n
)
ej
∣∣ > 2π

(
M(gX)+

Λmax(Σe)

2π

)
η
]
≤ 6 exp

(
−cnmin{η2, η}+log(p2q)

)
.

Set η = c′
√

log p/n for c′ > (1/c) and with the choice of n & log(p2q), min{η2, η} = η2, then

with probability at least 1− c1 exp(−c2 log p2q), there exists some c0 such that the following

bound holds:
1

n

∣∣∣∣X>E
∣∣∣∣
∞ ≤ c0

(
2πM(gX) + Λmax(Σe)

)√ log(p2q)

n
.

Before proving Lemma 4.4, we first state Lemma C.1 which provides a concentration

inequality in the operator norm.

Lemma C.1. Consider the stationary centered Gaussian process {Xt} ∈ Rp, whose spectral

density function gX(ω) exits and the maximum eigenvalue is bounded a.e. on [−π, π]. Then,

for X whose rows are random realizations {x0, . . . , xn−1} of {Xt}, the following bound holds

for SX = X>X/n, for some c > 0:

P
[
|||SX − ΓX(0)|||op > 4πM(gX)η

]
≤ 2 exp(−cnmin{η, η2}+ p log 8).

Proof of Lemma C.1. First, we note that by ? , Proposition 2.4], the following inequality

holds for any fixed v ∈ Sp, where Sp := {v ∈ Rp : ‖v‖ = 1} is the p-dimensional unit sphere:

P
[∣∣v′(SX − ΓX(0)

)
v
∣∣ > 2πM(gX)η

]
≤ 2 exp(−cnmin{η, η2}). (C.14)
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Additionally, by ? , Lemma 5.4],

|||SX − ΓX(0)|||op = sup
v∈Sp

∣∣v′(SX − ΓX(0)
)
v
∣∣ ≤ (1− 2δ)−1 sup

v∈Nδ
v′
[
SX − ΓX(0)

]
v,

where Nδ is a δ-net of Sp for some δ ∈ [0, 1), which guarantees that the sphere can essentially

be replaced by its δ-net whose cardinality is finite. Towards this end, based upon (C.14),

take the union bound over all vectors v in the 1
4
-net of Sp, whose cardinality is at most 8p

[e.g. ? ], we have

P
[∣∣∣∣∣∣ 1

n
X ′X − ΓX(0)

∣∣∣∣∣∣
op
> 4πM(gX)η

]
≤ P

[
sup
v∈Nδ

∣∣v′(S − ΓX(0)
)
v
∣∣ > 4πM(gX)η

]
≤ 8p · 2 exp

(
− cnmin{η, η2}

)
.

Proof of Lemma 4.4. The result follows in a straightforward manner based on Lemma C.1.

Specifically, by letting η = c′
√
p2/n for c′ > (log 8/c) and with n & p so that min{η2, η} = η2,

then if we relax Λmax(ΓX(0)) by its upper bound 2πM(gX) [? , Proposition 2.3], with

probability at least 1− c1 exp(−c2p2), the following bound holds for some c0:

Λmax(SX) ≤ c0M(gX).

Proof of Lemma 4.5. For E whose rows are iid realizations of a sub-Gaussian random vector

et, by ? , Lemma 9], the following bound holds:

P
[
|||SE − Σe|||op ≥ Λmax(Σe)δ(n, q, η)

]
≤ 2 exp(−nη2/2),

where δ(n, q, η) := 2
(√

q
n

+ η
)

+
(√

q
n

+ η
)2

. In particular, by triangle inequality, with

probability at least 1− 2 exp(−nη2/2),

|||SE|||op ≤ |||Σε|||op + |||SE − Σε|||op ≤ Λmax(Σε) + Λmax(Σε)δ(n, q, t).

So for n & q, by setting η = 1, which yields δ(n, q, η) ≤ 8 so that with probability at least

1− 2 exp(−n/2), the following bound holds:

Λmax(SE) ≤ 9Λmax(Σε).
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Proof of Lemma 4.6. It suffices to show that the following inequality holds with high prob-

ability for some curvature αẐ
RSC > 0 and tolerance τZ, where we define Γ̂Z := 1

n
Ẑ>n−1Ẑn−1:

1

2
θ>Γ̂Zθ ≥

αẐ
RSC

2
‖θ‖2 − τZ‖θ‖2

1, ∀ θ ∈ Rp.

Define ΓZ := 1
n
Z>n−1Zn−1, then Γ̂Z can be written as

Γ̂Z = ΓZ +
( 1

n
Z>n−1∆Zn−1 +

1

n
∆>Zn−1

Zn−1

)
+
( 1

n
∆>Zn−1

∆Zn−1

)
, (C.15)

First, notice that the last term satisfies the following natural lower bound deterministically,

since ∆F is assumed non-random and ∆Z = [∆F, O]:

θ>
( 1

n
∆>Zn−1

∆Zn−1

)
θ ≥ 0 ∀ θ ∈ Rp,

which however, does not contribute to the “positive” part of curvature. For the first two

terms, we adopt the following strategy, using Lemma 12 in ? ] as an intermediate step.

Specifically, ? , Lemma 12] proves that for any fixed generic matrix Γ ∈ Rp×p that satisfies

|θ>Γθ| ≤ δ for any θ ∈ K(2s)2, the following bound holds

|θ>Γθ| ≤ 27δ
(
‖θ‖2

2 +
1

s
‖θ‖2

1

)
, ∀ θ ∈ Rp. (C.16)

Then, based on (C.16), consider Γ = Γ̂ − Σ then rearrange terms, so that θ>Γ̂θ ≥ θ>Σθ −
27δ
2

(
‖θ‖2

2 + 1
2
‖θ‖2

1

)
. The RE condition follows by setting δ to be some quantity related to

Λmin(Σ).

In light of this, for the first two terms in (C.15), let

Ψ := ΓZ +
( 1

n
Z>n−1∆Zn−1 +

1

n
∆>Zn−1

Zn−1

)
,

denote their sum, in order to obtain an upper bound for
∣∣θ>(Ψ− ΓZ(0)

)
θ
∣∣, so that Lemma

12 in ? ] can be applied. To this end, since∣∣∣θ>[Ψ− ΓZ(0)
]
θ
∣∣∣ ≤ ∣∣∣θ′(ΓZ − ΓZ(0))θ

∣∣∣+
∣∣∣θ′( 1

n
Z′n−1∆Zn−1 +

1

n
∆′Zn−1

Zn−1

)
θ
∣∣∣,

2K(2s) := {θ : ‖θ‖0 = 2s} is the set of 2s-sparse vectors.
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we consider getting upper bounds for each of the two terms:

(i)
∣∣∣θ>(ΓZ − ΓZ(0))θ

∣∣∣ , (ii)
∣∣∣θ>( 1

n
Z>n−1∆Zn−1 +

1

n
∆′Zn−1

Zn−1

)
θ
∣∣∣.

For (i), we follow the derivation in ? , Proposition 2.4(a)], that is, for all ‖θ‖ ≤ 1,

P
[∣∣∣θ′(ΓZ − ΓZ(0)

)
θ
∣∣∣ > 2πM(fZ)η

]
≤ 2 exp

[
− cnmin{η2, η}

]
,

and further with probability at least 1−2 exp
(
−cnmin{η2, η}+2smin{log p, log(21ep/2s)}

)
,

the following bound holds:

sup
θ∈K(2s)

∣∣∣θ>(ΓZ − ΓZ(0)
)
θ
∣∣∣ < 2πM(fZ)η. (C.17)

For (ii), the two terms are identical, with either one given by

1

n
(Zn−1θ)

>(∆Zn−1θ).

To obtain its upper bound, consider the following inequality, based on which we bound the

two terms in the product separately:

sup
θ∈K(2s)

∣∣∣ 1
n
〈Zn−1θ,∆Zn−1θ〉

∣∣∣ ≤ ( sup
θ∈K(2s)

||Zn−1θ√
n
||
)(

sup
‖θ‖≤1

||
∆Zn−1θ√

n
||
)
. (C.18)

For the first term in (C.18), since rows of Zn−1 are time series realizations from (4.6), then if

we let ξ := Zn−1θ, ξ ∼ N (0n×1, Qn×n) is Gaussian with Qst = θ′ΓZ(t− s)θ. To get its upper

bound, we bound its square, and use again (C.17), that is,

sup
θ∈K(2s)

∣∣∣θ>( 1

n
Z>n−1Zn−1

)
θ
∣∣∣ < sup

θ∈K(2s)

θ′ΓZ(0)θ + 2πM(fZ) ≤ 2πM(fZ) + 2πM(fZ)η.

For the second term ‖∆Zn−1θ/
√
n‖, this is non-random, and for all ‖θ‖ ≤ 1, ‖∆Zn−1θ/

√
n‖ ≤

Λ
1/2
max

(
S∆Zn−1

)
= Λ

1/2
max

(
S∆Fn−1

)
. Therefore, the following bound holds for (C.18):

sup
θ∈K(2s)

∣∣∣ 1
n
〈Zn−1θ,∆Zn−1θ〉

∣∣∣ ≤ Λ1/2
max

(
S∆Fn−1

)√
2πM(fZ) + 2πM(fZ)η. (C.19)

Combine (C.17) and (C.19) that are respectively the bounds for (i) and (ii), and the following

211



bound holds with probability at least 1−2 exp
(
−cnmin{η2, η}+2smin{log p, log(21ep/2s)}

)
:

sup
θ∈K(2s)

∣∣∣θ>(Ψ− ΓZ(0)
)
θ
∣∣∣ ≤ 2πM(fZ)η + 2Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + 2πM(fZ)η. (C.20)

Now applying ? , Lemma 12] to Γ = Ψ − ΓZ(0), and δ being the RHS of (C.20), then the

following bound holds:

θ>Γ̂Zθ ≥ 2πm(fZ)‖θ‖2
2 − 27δ(‖θ‖2

2 +
1

s
‖θ‖2

1) =
(
2πm(fZ)− 27δ

)
‖θ‖2 − 27δ

s
‖θ‖2

1.

By setting η = ω−1 := m(fZ)
54M(fZ)

,

δ =
π

27
m(fZ)+2Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + πm(fZ)/27 ≤ π

27
m(fZ)+2Λ1/2

max

(
S∆Fn−1

)√55π

27
M(fZ)

Since we have required that m(fZ)/M1/2(fZ) > c0 · Λ
1/2
max(S∆Fn−1

) with c0 ≥ 6
√

165π,

2πm(fZ)− 27δ > 0. Therefore, the RSC condition is satisfied with curvature

αẐ
RSC = 2πm(fZ)− 27δ = πm(fZ)− 54Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + πm(fZ)/27 > 0,

and tolerance 27δ/(2s), with probability at least 1− 2 exp
(
− cnω−2 + 2s log p

)
. Finally, set

s =
⌈
cnω−1/4 log p

⌉
, we get the desired conclusion.

Proof of Lemma 4.7. First, we note that the quantity of interest can be upper bounded by

the following four terms:

1

n
||Ẑ>n−1

(
Ẑn − Ẑn−1(A?)>

)
||
∞

=
1

n
||
(
Zn−1 + ∆Zn−1

)>(
W + ∆Zn −∆Zn−1(A?)>

)
||
∞

≤ || 1
n

Z>n−1W||∞
+ || 1

n
∆>Zn−1

W||
∞

+ || 1
n

Z>n−1

(
∆Zn −∆Zn−1(A?)>

)
||
∞

+ || 1
n

∆>Zn−1

(
∆Zn −∆Zn−1(A?)>

)
||
∞

:= T1 + T2 + T3 + T4. (C.21)

We provide bounds on each term in (C.21) sequentially. T1 is the standard Deviation Bound,

which according to previous derivations (e.g., ? ] for the expression specifically derived for

VAR(1)) satisfies

1

n
||Z>n−1W||∞ ≤ c0

[
M(fZ) +M(fW ) +M(fZ,W+)

]√ log(p1 + p2)

n

with probability at least 1− c1 exp(−c2 log(p1 + p2)) for some {ci}. For T2, since rows of W
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are iid realizations from N (0,Σw), then for ∆>Zn−1
W ∈ R(p1+p2)×(p1+p2) which has at most

p1 × (p1 + p2) nonzero entries, each entry (i, j) given by

κij :=
( 1

n
∆>Zn−1

W
)
ij

=
1

n
∆>Zn−1,·iW·j

is Gaussian, and the following tail bound holds:

P
[
|κij | ≥ t

]
≤ e · exp

(
− cnt2

Λmax(Σw) max
i∈{1,...,p1+p2}

‖∆Z·i/
√
n‖22

)

= e · exp
(
− cnt2

Λmax(Σw) max
i∈{1,...,p1}

‖∆F·i/
√
n‖22

)
.

Taking the union bound over all p1 × (p1 + p2) nonzero entries, the following bound holds:

P
[ 1

n
||∆>Zn−1

W||∞ ≥ t
]
≤ exp

(
− cnt2

Λmax(Σw) max
i∈{1,...,p1}

‖∆F·i/
√
n‖2

2

+ log
(
ep1(p1 + p2)

))
.

Choose t = c0

(
Λ

1/2
max(Σw) max

i=1,...,p1

‖∆F·i/
√
n‖
)√ log(p1(p1+p2))

n
, the following bound holds with

probability at least 1− exp
(
− c1 log

(
p1(p1 + p2)

))
:

1

n
||∆>Zn−1

W||∞ ≤ c0Λ1/2
max(Σw) max

i=1,...,p1

‖∆F·i/
√
n‖
√

log p1 + log(p1 + p2)

n
.

For T3, let εn := ∆Zn −∆Zn−1(A?)> = [∆Fn −∆Fn−1(A?11)>,−∆Fn−1(A?21)>], then each entry

of 1
n
Z>n−1εn is given by (

1
n
Z>n−1εn

)
ij

=
1

n
Z>n−1,·iεn,·j,

and it has (p1+p2)×(p1+p2) entries. Next, note that column i of Zn−1 ∈ Rn can be viewed as

a mean-zero Gaussian random vector with covariance matrix Qi where (Qi)st = [ΓZ(t− s)]ii
satisfying Λmax(Qi) ≤ Λmax(ΓZ(0)) ≤ 2πM(fZ), so for any (i, j),

(
1
n
Z>n−1εn

)
ij

satisfies

P
[∣∣( 1

n
Z>n−1εn

)
ij

∣∣ > t
]
≤ exp

(
1− cnt2

Λmax(ΓZ(0)) max
j∈{1,...,p1}

‖εn,·j/
√
n‖2

)
.

Again by taking the union bound over all (p1 + p2)2 entries, and let

t = c0

(
2πM(fZ)

)1/2
max

j∈{1,...,p1}
‖εn,·j/

√
n‖
√

log p1 + log(p1 + p2)

n
,
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the following bound holds w.p. at least 1− exp(−c1 log(p1 + p2)):

1

n
||Z>n−1

(
∆Zn −∆Zn−1(A?)>

)
||
∞
≤ c0

(
2πM(fZ)

)1/2
max

j∈{1,...,(p1+p2)}
‖εn,·j/

√
n‖
√

log(p1 + p2)

n
.

For T4, it is deterministic, and satisfies

1

n
||∆>Zn−1

(
∆Zn −∆Zn−1(A?)>

)
||
∞
≤ || 1

n
∆>Zn−1

∆Zn ||∞
+ || 1

n
∆>Zn−1

∆Zn−1(A?)>||
∞

= || 1
n

∆>Fn−1
∆Fn ||∞

+ || 1
n

∆>Fn−1
∆Fn−1(A?11)>||

∞

Combine all terms, and there exist some constant C1, C2, C3 and c1, c2 such that with prob-

ability at least 1− c1 exp
(
− c2 log(p1 + p2)

)
, the bound in (4.14) holds.

C.3 Additional Numerical Studies.

In this section, we investigate selected scenarios where the relaxed implementation on

estimating the calibration equation may fail to produce good estimates, due to the absence

of the compactness constraint. For illustration purposes, it suffices to consider the setting

where Xt and Ft jointly follow a multivariate Gaussian distribution and are independent and

identically distributed across samples. Throughout, we set n = 200, p1 = 5, p2 = 50, q = 100,

and
(
Xt
Ft

)
∼ N (0,Σ) with Σij = 0.25 (i 6= j) and Σii = 1. The noise level is fixed at σe = 1.

First, we note that based on the performance evaluation shown in Section 4.4, the esti-

mates demonstrate good performance even without the compactness constraint. Note that

the simulation settings are characterized by adequate sparsity in Γ, which in turn limits the

size of the equivalence class C(Q2) as mentioned in Remark 4.1 in Section 4.2.1. Therefore, we

focus on the following two issues: (i) whether sparsity encourages additional “approximate

identification”; and (ii) whether a good initializer helps constrain estimates from subsequent

iterations to a ball around the true value.

We start by considering a non-sparse Γ. Specifically, for both Λ and Γ, their entries are

generated from Unif{(−1.5,−1.2) ∪ (1.2, 1.5)}. Additionally, we specify one model in C(Q2)

by setting Q2 = 5p1×p2 , which will generate the corresponding F̌, Θ̌ and Γ̌. Table C.1 depicts

the performance of the estimated Θ based on different initializers:

initializer Θ̂(0) Θ? 0n×q Θ? + 0.1 ∗ Zn×q Θ̌

Rel.Err 0.09 0.63 fail to converge within 5000 iterations 1.82 (0.02, relative to Θ̌)

Table C.1: Performance evaluation of Θ̂ obtained from different initializers under a non-sparse setting.

The results in Table C.1 show that the algorithm converges (if at all) to different local

optima whose values may deviate markedly for the true ones. Specifically, initializer Θ? +
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0.1 ∗ Zn×q, where each entry Θ? is perturbed by an iid standard Gaussian random variable

scaled by 0.1, fails to converge. Note that the perturbation is small, but the operator norm

of the initializer far exceeds φ0. Initializer Θ̌ yields an estimate that is far from the true data-

generating factor hyperplane, yet close to its observationally equivalent one. This suggests

that in non-sparse settings, without imposing the compactness constraint on the equivalence

class, a good initializer is required for the actual relaxed implementation to produce a fairly

good estimate of the true data generating parameters.

However, this is not the case if there is sufficient sparsity in Γ. Specifically, using the

same generating mechanism for Λ and Γ as in Section 4.4, we found that even with different

initializers, the algorithm always produces estimates that are close to each other and also

exhibit good performance. This finding strongly suggests that sparsity in Γ effectively shrinks

the size of the equivalence class and the algorithm after a few iterations produces updates

that are close to each other, irrespective of the initializer employed. Hence, the effective

equivalence class is constrained to the one whose elements are encoded by Γ̌ that have

similar characteristics in terms of the location of the non-zero parameters to Γ.

Finally, we consider a case that lies between the above two settings, that is, there is a

structured sparsity patter in Γ. Specifically, we set the last 5 columns of Γ to be dense

while the remaining ones are sparse. The overall sparsity level of Γ is fixed at 10%. Note

that in this case, the size of the corresponding equivalence class is much larger to the one

corresponding to a Γ with 10% uniformly distributed non-zeros entries, due to the presence

of the five dense columns. As the results in Table C.2 indicate, when the initializer starts to

initializer Θ̂(0) Θ? 0n×q Θ? + 0.1 ∗ Zn×q 20n×q
Rel.Err 0.65 0.65 0.65 0.68

Table C.2: Performance evaluation for Θ̂ obtained from different initializers under a structured-sparse setting.

deviate from the true value, there exist initializers that would yield inferior estimates.

In summary, in a non-sparse setting without compactification of the equivalence class,

different initializers yield drastically different estimates that are not close enough to the

true data-generating model, as expected by the approximate (IR+) condition employed.

The problem is largely mitigated for sufficiently sparse Γ, which leads to shrinking the

equivalence class. However, an exact characterization of the equivalence class is hard to

obtain in practice, since the location of the non-zero entries in Γ is unknown.

C.4 An Outline of the Estimation Procedure in Low-dimensional Settings.

For the sake of completeness, we outline the estimation procedure proposed in ? ] and

elaborate on the reasons that it is not applicable in high-dimensional settings. Note that the
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restriction Cov(wXt ,W
F
t ) = O is universal for all sets of identifications considered. Given a

sample version corresponding to the calibration equation

Y = FΛ> + XΓ> + E,

and that to the VAR equation

Zn = Zn−1A
> + W,

the estimation procedure is based on the following steps.

1. Project and estimate a factor model. Specifically, by left multiplying PX⊥ := Ip1 −
X(X>X)−1X>, the model to estimate becomes

PX⊥Y = PX⊥FΛ> + PX⊥E.

Proceed by doing factor analysis on PX⊥Y through a quasi-Maximum Likelihood pro-

cedure as detailed in ? ], and obtain intermediate estimates denoted by Λ̃, F̃, Γ̃ and

Σ̃ee.

2. Estimate a VAR model based on (F̃,X), and denote the intermediate estimate of the

transition matrix by Ã and the residual by W̃. Calculate the sample covariance matrix

of W̃, partitioned as [Σ̃ff
w , Σ̃

fx
w ; Σ̃xf

w , Σ̃
xx
w ].

3. Calculate a rotation matrix depending on the identification restrictions (either IRa,

IRb or IRc) so that the one under consideration is satisfied. Specifically, all such

rotation matrices involve

Σ̃ff ·x
w := Σ̃ff

w − Σ̃fx
w (Σ̃xx

w )−1Σ̃xf
w .

Apply the rotation matrix (or their related transformations) to all previous intermedi-

ate estimates to obtain the final estimates.

To initiate the procedure, PX⊥ is required for the first step; yet, this quantity is not readily

available in high-dimensional settings where p2 ≥ n. Moreover, subsequent calculations of

the rotation matrix are based on Σ̃ff ·x
w , with the latter relying on (Σ̃xx

w )−1, which again is

not properly defined under high-dimensional scaling.
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C.5 List of Commodities and Macroeconomic Variables.

Commodity Key Description
ALUMINUM PALUM Aluminum, 99.5% minimum purity, LME spot price
COCOA PCOCO Cocoa beans, International Cocoa Organization cash price
COFFEE PCOFFOTM Coffee, Other Mild Arabicas, International Coffee Organization New York cash price
COPPER PCOPP Copper, grade A cathode, LME spot price
COTTON PCOTTIND Cotton, Cotton Outlook ’A Index’, Middling 1-3/32 inch staple
LEAD PLEAD Lead, 99.97% pure, LME spot price
MAIZE PMAIZMT Maize (corn), U.S. No.2 Yellow, FOB Gulf of Mexico, U.S. price
NICKEL PNICK Nickel, melting grade, LME spot price
OIL POILAPSP Crude Oil (petroleum), simple average of three spot prices
RICE PRICENPQ Rice, 5 percent broken milled white rice, Thailand nominal price quote
RUBBER PRUBB Rubber, Singapore Commodity Exchange, No. 3 Rubber Smoked Sheets, 1st contract
SOYBEANS PSOYB Soybeans, U.S. soybeans, Chicago Soybean futures contract (first contract forward)
SUGAR PSUGAUSA Sugar, U.S. import price, contract no.14 nearest futures position
TIN PTIN Tin, standard grade, LME spot price
WHEAT PWHEAMT Wheat, No.1 Hard Red Winter, ordinary protein
ZINC PZINC Zinc, high grade 98% pure

Table C.3: List of commodities considered in this study. Data source: International Monetary Fund.

Name Description tCode Category Region
IPI US IP Index: total 5 Output & Income US
CUM US Capacity Utilization: manufacturing 2 Output & Income US
UNEMP US Civilian unemployment rate: all 2 Labor Market US
HOUST US Housing Starts: ttl new privately owned 4 Housing US
ISR US Total Business: inventories to sales ratio 2 Consumption US
M2 US M2 Money Stock 6 Money & Credit US
BUSLN US Commericial and industrial loans 6 Money & Credit US
REALN US Real estate loans at all commercial banks 6 Money & Credit US
FFR US Effective federal funds rate 2 Interest & Exchange Rates US
TB10Y US 10-year treasury rate 2 Interest & Exchange Rates US
BAA US Moody’s Baa corporate bond yield 2 Interest & Exchange Rates US
USDI US Trade weighted U.S.dollar index 5 Interest & Exchange Rates US
CPI US CPI: all iterms 5 Prices US
PCEPI US Personal Consumption Expenditure: chain index 5 Prices US
SP500 US S&P’s Common Stock Price Index: composite 5 Stock Market US
CPI EU Consumer Price Indices, percent change 2 Prices EU
IPI EU Industrial Production Index: total industry (excluding construction) 5 Output & Income EU
IPICP EU Industrial Production Index: construction 5 Output & Income EU
M3 EU Monetary aggregate M3 6 Money & Credit EU
LOANRES EU Credit to resident sectors, non-MFI excluding gov 6 Money & Credit EU
LOANGOV EU Credit to general government sector 6 Money & Credit EU
PPI EU Producer Price Index: total industry (excluding construction) 6 Prices EU
UNEMP EU Unemployment rate: total 2 Labor Market EU
IMPORT EU Total trade: import value 6 Trade EU
EXPORT EU Total trade: export value 6 Trade EU
EB1Y EU Euribor 1 year 2 Interest & Exchange Rates EU
TB10Y EU 10-year government benchmark bond yield 2 Interest & Exchange Rates EU
EFFEXR EU ECB nominal effective exchange rate againt group of trading partners 2 Interest & Exchange Rates EU
EUROSTOXX50 EU Euro STOXX composite index 5 Stock Market EU
IOP UK Index of Production 5 Output & Income UK
CPI UK CPI Index 5 Prices UK
PPI UK Output of manufactured products 5 Prices UK
UNEMP UK Unemployment rate: aged 16 and over 2 Labor Market UK
EFFEXR UK Effective exchange rate index, Sterling 2 Interest & Exchange Rates UK
TB10Y UK 10-year British government stock, nominal par yield 2 Interest & Exchange Rates UK
LIBOR6M UK 6 month interbank lending rate, month end 2 Interest & Exchange Rates UK
M3 UK Monetary aggregate M3 6 Money & Credit UK
CPI CN CPI: all iterms 5 Prices CN
PPI CN Producer price index for industrial products (same month last year = 100) 2 Prices CN
M2 CN Monetary aggregate M2 6 Money & Credit CN
EFFEXR CN Real broad effective exchange rate 2 Interest & Exchange Rates CN
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EXPORT CN Value goods 6 Trade CN
IMPORT CN Value goods 6 Trade CN
INDGR CN Growth rate of industrial value added (last year = 100) 2 Output & Income CN
SHANGHAI CN Shanghai Composite Index 5 Stock Market CN
TB10Y JP 10-year government benchmark bond yield 2 Interest & Exchange Rates JP
EFFEXR JP Real broad effective exchange rate 2 Interest & Exchange Rates JP
CPI JP CPI Index: all items 5 Prices JP
M2 JP Monetary aggregate M2 6 Money & Credit JP
UNEMP JP Unemployment rate: aged 15-64 2 Labor Market JP
IPI JP Production of Total Industry 5 Output & Income JP
IMPORT JP Import price index: all commodities 6 Trade JP
EXPORT JP Value goods 6 Trade JP
NIKKEI225 JP NIKKEI 225 composite index 5 Stock Market JP

Table C.4: List of macroeconomic variables in this study.

Data source: Fred St.Louis, ECB Statistical Data Warehouse, UK Office for National Statistics, Bank of England, National
Bureau of Statistics of China, YAHOO!. tCode: 1: none; 2: ∆Xt; 3: ∆2Xt; 4: logXt; 5: ∆ logXt; 6: ∆2 logXt; 7:
∆(Xt/Xt−1 − 1)
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APPENDIX D

Supplementary Materials to “Approximate Factor Models with

Strongly Correlated Idiosyncratic Errors.”

D.1 Proofs for Statistical Error Bounds.

Before presenting the proof of Theorem 5.1, we first define a few quantities associated

with the regularizers. Let S? denote the support set of B?, and let the SVD of Θ? be

Θ? = (U?)D?(V ?)>, with U?
K and V ?

K respectively denoting the first K columns of U? and

V ?. Let S, M and their complements respectively be defined as follows:

S :=
{

∆ ∈ Rp×p | ∆ij = 0 for (i, j) /∈ S?
}
,

Sc :=
{

∆ ∈ Rp×p | ∆ij = 0 for (i, j) ∈ S?
}
,

and

M :=
{

∆ ∈ Rn×p | row(∆) ⊆ V ?
K and col(∆) ⊆ U?

K

}
,

M⊥ :=
{

∆ ∈ Rn×p | row(∆) ⊥ V ?
K and col(∆) ⊥ U?

K

}
.

Further, for some generic matrix ∆1 ∈ Rp×p, we define its projection on S and Sc (denoted

by ∆1|S and ∆1|Sc , resp.) as

∆1|S,ij := 1
{

(i, j) ∈ S?}∆1,ij and ∆1|Sc,ij := 1
{

(i, j) /∈ S?}∆1,ij. (D.1)

With the above definitions and projections, we can write

∆1 = ∆1|S + ∆1|Sc , ‖∆1‖1 = ‖∆1|S‖1 + ‖∆1|Sc‖1, ∀ ∆1 ∈ Rp×p, (D.2)

and note that the following inequality holds:

‖∆1|S‖1 ≤
√
s|||∆1|S|||F ≤

√
s|||∆1|||F. (D.3)
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as ∆1|S has at most s nonzero entries where s := |S?|. In an analogous way, for some generic

matrix ∆2 ∈ Rn×p, its projections on M and M⊥ (denoted by ∆2|M and ∆2|M⊥ , resp.) are

defined as

∆2|M := U?

[
∆̃2,11 ∆̃2,12

∆̃2,21 O

]
(V ?)> and ∆2|M⊥ := U?

[
O O

O ∆̃2,22

]
(V ?)>, (D.4)

where ∆̃2 is defined below and partitioned as:

∆̃2 = (U?)>∆2(V ?) =

[
∆̃2,11 ∆̃2,12

∆̃2,21 ∆̃2,22

]
, with ∆̃2,11 ∈ RK×K .

Note that the following relationships hold

∆2 = ∆2|M +∆2|M⊥ , |||∆2|||∗ = |||∆2|M + ∆2|M⊥ |||∗ = |||∆2|M|||∗+ |||∆2|M⊥ |||∗, ∀ ∆2 ∈ Rn×p. (D.5)

Next, we introduce concepts and lemmas regarding decomposable regularizers [? ]. Define

the weighted regularizer as

R(B,Θ) := ‖B‖1 +
λΘ

λB
|||Θ/
√
n|||∗,

and let ∆B := B̂ −B? and ∆Θ := Θ̂−Θ?.

Lemma D.1. With the definitions of projections in (D.1) and (D.4), the following inequality

holds:

R(B?,Θ?)−R(B̂, Θ̂) ≤ R(∆B|S,∆Θ|M)−R(∆B|Sc ,∆Θ|M⊥).

Lemma D.2. With the definition of (D.4), the following holds for some generic ∆ ∈ Rn×p:

rank(∆M) ≤ 2 · rank(Θ?).

The proofs of these two lemmas are deferred to Supplement D.2. Based on the above

preparatory steps, we present next the proof of Theorem 5.1.

Proof of Theorem 5.1. We prove the bound for ∆B := B̂−B? and ∆Θ := Θ̂−Θ? under the

imposed regularity conditions, where (B̂, Θ̂) is the solution to the optimization problem (5.6).

Using the optimality of (B̂, Θ̂) and the feasibility of (B?,Θ?), the following basic inequality

220



holds on:

1

2n
|||Xn−1∆>B + ∆Θ|||

2

F ≤
1

n

(
〈〈∆>B,X>n−1E〉〉+ 〈〈∆Θ,E〉〉

)
+ λB

(
||B?||1 − ||B̂||1

)
+ λΘ

(
|||Θ?/

√
n|||∗ − |||Θ̂/

√
n|||∗

)
.

(D.6)

The LHS can be equivalently written as

1

2n
|||Xn−1∆>B + ∆Θ|||

2

F =
1

2n

(
|||Xn−1∆>B|||

2

F + |||∆Θ|||2F + 2〈〈Xn−1∆>B, Θ̂−Θ?〉〉
)
,

and by rearranging, (D.6) becomes

1

2n
|||Xn−1∆>B|||

2

F +
1

2
|||∆Θ/

√
n|||2F ≤

1

n
〈〈Xn−1∆>B, Θ̂−Θ?〉〉+

1

n

(
〈〈∆>B,X>n−1E〉〉+ 〈〈∆Θ,E〉〉

)
+λB

(
||B?||1 − ||B̂||1

)
+ λΘ

(
|||Θ?/

√
n|||∗ − |||Θ̂/

√
n|||∗

)
.

(D.7)

Based on (D.7), the rest of the proof is divided into three parts: in part (i), we provide

a lower bound for the LHS primarily using the RSC condition; in part (ii), we provide an

upper bound for the RHS with the designated choice of λB and λΘ; in part (iii), we align

the two sides and obtain the error bound after some rearrangement.

Part (i). In this part, we obtain a lower bound for the LHS of (D.7). Using the RSC

condition for Xn−1, the following lower bound holds for the LHS of (D.7):

1

2n
|||Xn−1∆>B|||

2

F +
1

2
|||∆Θ/

√
n|||2F ≥

αRSC

2
|||∆B|||2F +

1

2
|||∆Θ/

√
n|||2F − τn‖∆B‖2

1. (D.8)

To further lower-bound (D.8), consider an upper bound for ||∆B||1 with the aid of (D.6). By

Hölder’s inequality, the following inequalities hold for the inner products:

1

n
〈〈∆>B,X>n−1E〉〉 ≤ ‖∆B‖1‖X>n−1E/n‖∞, (D.9)

and
1

n
〈〈∆Θ,E〉〉 ≤ |||∆Θ/

√
n|||∗|||E/

√
n|||op = |||∆Θ/

√
n|||∗Λ

1/2
max(SE). (D.10)

By choosing λB ≥ 2‖X>n−1E/n‖∞ and λΘ ≥ Λ
1/2
max(SE), the following inequality can be

derived from the non-negativity of the RHS in (D.6):

0 ≤ λB
2
‖∆B‖1 + λΘ|||∆Θ/

√
n|||∗ + λBR(B?,Θ?)− λBR(B̂, Θ̂)

(1)

≤ λB
2
‖∆B|S‖1 +

λB
2
‖∆B|Sc‖1 + λΘ|||

∆Θ|M√
n
|||
∗

+ λΘ|||
∆

Θ|M⊥√
n
|||
∗

+ λB

(
R(∆B|S,∆Θ|M)−R(∆B|Sc ,∆Θ|M⊥)

)
,
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where the first two terms in (1) come from (D.2), the next two terms come from (D.5) and

the last two terms use Lemma D.1. After writing out R(·, ·) and rearranging, we obtain

λB
2
‖∆B|Sc‖1 ≤

3λB
2
‖∆B|S‖1 + 2λΘ|||

∆Θ|M√
n
|||
∗
,

λB
2
‖∆B|Sc‖1 +

λB
2
‖∆B|S‖1 ≤ 2λB‖∆B|S‖1 + 2λΘ|||

∆Θ|M√
n
|||
∗
,

that is,

‖∆B‖1 ≤ 2 · R(∆B|S,∆Θ|M). (D.11)

Note that for R(∆B|S,∆Θ|M), using (D.3) and Lemma D.2,

R(∆B|S,∆Θ|M) = ‖∆B|S‖1 +
λΘ

λB
|||∆Θ|M√

n
|||
∗
≤
√
s|||∆B|S|||F +

λΘ

λB
(
√

2K)|||∆Θ|M√
n
|||

F

≤
√
s|||∆B|||F +

λΘ

λB
(
√

2K)|||∆Θ/
√
n|||F.

(D.12)

Plug (D.12) into (D.11), and by the Cauchy-Schwartz inequality, we have

||∆B||21 ≤ 4
(
s+ (2K)(λΘ/λB)2

)[
|||∆B|||2F + |||∆Θ/

√
n|||2F

]
. (D.13)

Combine (D.8) and (D.13), a lower bound for the LHS of (D.7) is given by[αRSC

2
− 4τn

(
s+ (2K)(λΘ

λB
)2
)]
|||∆B|||2F +

[1

2
− 4τn

(
s+ (2K)(λΘ

λB
)2
)]
|||∆Θ/

√
n|||2F.

With the designated choice of τn satisfying 4τn
(
s+(2K)(λΘ

λB
)2
)
≤ min{αRSC, 1}/4, the above

bound can be further lower bounded by

min{αRSC, 1}
4

(
|||∆B|||2F + |||∆Θ/

√
n|||2F

)
. (D.14)

Part (ii). Next, we obtain an upper bound for the RHS of (D.7). Using the triangle

inequality and Hölder’s inequality, the first term satisfies

1

n
|〈〈Xn−1∆>B, Θ̂−Θ?〉〉| ≤ 1

n
|〈〈Xn−1∆>B, Θ̂〉〉|+

1

n
|〈〈Xn−1∆>B,Θ

?〉〉|

≤ |||Xn−1∆>B/
√
n|||op|||Θ̂/

√
n|||∗ + |||Xn−1∆>B/

√
n|||op|||Θ

?/
√
n|||∗.

For |||Xn−1∆>B/
√
n|||op, we have

1

n
|||Xn−1∆>B|||op ≤ |||Xn−1/

√
n|||op|||∆

>
B|||op ≤ |||Xn−1/

√
n|||op|||∆

>
B|||F = Λ1/2

max(SX)|||∆B|||F,
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where the first inequality comes from the sub-multiplicativity of the nuclear norm. Together

with the constraint on the feasible region and by choosing λB ≥ 2φΛ
1/2
max(SX), we have

1

n
|〈〈Xn−1∆>B, Θ̂−Θ?〉〉| ≤ 2φΛ1/2

max(SX)|||∆B|||F ≤ λB|||∆B|||F.

With (D.9) and (D.10), by choosing λB ≥ max
{
‖X>n−1E/n‖∞, 2φΛ

1/2
max(SE)

}
and λΘ ≥

Λ
1/2
max(SE), the following upper bound holds for the RHS:

λB‖∆B‖1 + λΘ‖∆Θ‖∗ + λB|||∆B|||F + λB
(
R(∆B|S,∆Θ|M)−R(∆B|Sc ,∆Θ|M⊥)

)
(1)

≤ λB
(
‖∆B|S‖1 + ‖∆B|Sc‖1

)
+ λΘ

(
|||∆Θ|M√

n
|||
∗

+ |||
∆

Θ|M⊥√
n
|||
∗

)
+ λB|||∆B|||F

+ λB
(
R(∆B|S,∆Θ|M)−R(∆B|Sc ,∆Θ|M⊥)

)
(2)

≤ 2λB‖∆B|S‖1 + 2λΘ|||
∆Θ|M√

n
|||
∗

+ λB|||∆B|||F = (2λB) · R(∆B|S,∆Θ|M) + λB|||∆B|||F
(3)

≤ (2λB)(
√
s+ 1)|||∆B|||F + (2λΘ)

√
2K|||∆Θ/

√
n|||F,

where (1) uses (D.2) and (D.5); (2) is obtained by writing out R(·, ·) and canceling terms;

and (3) uses (D.12). Further by the Cauchy-Schwartz inequality, an upper bounded for the

RHS is given by √
4λ2

B(
√
s+ 1)2 + 4λ2

Θ(2K)

√
|||∆B|||2F + |||∆Θ/

√
n|||2F (D.15)

Part (iii). Combine (D.14) and (D.15), and rearrange terms, the following bound directly

follows:

min{αRSC, 1}
4

(
|||∆B|||2F + |||∆Θ/

√
n|||2F

)
≤
√

4λ2
B(
√
s+ 1)2 + 4λ2

Θ(2K)

√
|||∆B|||2F + |||∆Θ/

√
n|||2F ,

|||∆B|||2F + |||∆Θ/
√
n|||2F ≤

64
[
λ2
B(
√
s+ 1)2 + λ2

Θ(2K)
]

min{αRSC, 1}2
.

Proof of Proposition 5.1. First, we note that for any given Θ̂ = Θ?+∆Θ, it can be viewed as

a ∆Θ-perturbation with respect to the true Θ?. As mentioned in the main text, as invertible

linear transformations preserve the subspace, so does scaling (with a non-zero scale factor),

it is equivalent to examining the sin θ distance between the first K singular vectors of Θ̂ and

Θ? (denoted by Û and U?, resp.). The rest follows seamlessly from the perturbation theory

of singular vectors. Specifically, by applying ? , Theorem 3] and assuming the singular

values of Θ? are given by σ1 > σ2 > · · · > σK > σK+1 = · · · = σn,p = 0, the following bound
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holds for ||| sin(Û , U?)|||:

||| sin θ(Û , U?)|||
2

F ≤
2(2σ1 + |||∆Θ|||op) min

{√
K|||∆Θ|||op, |||∆Θ|||F

}
σ2
K

.

Note that the same bound holds for the sin θ distance between the factor spaces.

Proof of Lemma 5.1. First, suppose we have

1

2
v>SXv =

1

2
v>
(X>X

n

)
v ≥ αRSC

2
‖v‖2

2 − τn‖v‖2
1, ∀ v ∈ Rp; (D.16)

then, for all ∆ ∈ Rp×p, and letting ∆j denote its jth column, the RSC condition automatically

holds since

1

2n
|||X∆|||2F =

1

2

q∑
j=1

∆>j
(
X>X
n

)
∆j ≥

αRSC

2

q∑
j=1

‖∆j‖2
2 − τn

q∑
j=1

‖∆j‖2
1 ≥

αRSC

2
|||∆|||2F − τn‖∆‖

2
1.

Therefore, it suffices to verify that (D.16) holds. In ? , Proposition 4.2], the authors prove a

similar result under the assumption that Xt is a VAR(d) process. Here, we adopt the same

proof strategy and state the result for a more general process Xt.

Specifically, by ? , Proposition 2.4(a)], ∀v ∈ Rp, ‖v‖ ≤ 1 and η > 0,

P
[∣∣v>(SX − ΓX(h)

)
v
∣∣ > 2πM(gX)η

]
≤ 2η exp

(
− cnmin{η2, η}

)
.

Applying the discretization in ? , Lemma F.2] and taking the union bound, define K(2s) :=

{v ∈ Rp, ‖v‖ ≤ 1, ‖v‖0 ≤ 2k}, and the following inequality holds:

P
[

sup
v∈K(2k)

∣∣v>(SX−ΓX(h)
)
v
∣∣ > 2πM(gX)η

]
≤ 2 exp

(
−cnmin{η, η2}+2kmin{log p, log(21ep/2k)}

)
.

With the specified γ = 54M(gX)/m(gX), set η = γ−1, then apply results from ? , Lemma

12] with Γ = SX − ΓX(0) and δ = πm(gX)/27, so that the following holds

1

2
v′SXv ≥

αRSC

2
‖v‖2 − αRSC

2k
‖v‖2

1,

with probability at least 1−2 exp
(
−cnmin{γ−2, 1}+2k log p

)
and note that min{γ−2, 1} =

γ−2 since γ > 1. Finally, let k = min{cnγ−2/(c′ log p), 1} for some c′ > 2, and conclude that

with probability at least 1− c1 exp(−c2n), the inequality in (D.16) holds with

αRSC = πm(gX), τn = αRSCγ
2 log p

2n
,

224



and so does also the RSC condition.

Proof of Lemma 5.2. We note that

1

n

∣∣∣∣X>n−1E
∣∣∣∣
∞ = max

1≤i,j≤p

∣∣e>i (X>n−1E/n
)
ej
∣∣,

where ei is the p-dimensional standard basis with the ith entry being 1. Applying ? ,

Proposition 2.4(b)], for an arbitrary pair of (i, j), the following inequality holds:

P
[∣∣e>i (X>n−1E/n

)
ej
∣∣ > 2π

(
M(gX) +M(gε) +M(gX,ε̃)

)
η
]
≤ 6 exp

(
− cnmin{η2, η}

)
.

Take the union bound over all 1 ≤ i, j ≤ p, and the following bound holds:

P
[

max
1≤i,j≤p

∣∣e>i (X>n−1E/n
)
ej
∣∣ > 2π

(
M(gX)+M(gε)+M(gX,ε̃)

)
η
]
≤ 6 exp

(
−cnmin{η2, η}+2 log p

)
.

Set η = c′
√

log p/n for c′ > (2/c) and with the choice of n % log p, min{η2, η} = η2, then

with probability at least 1− c1 exp(−c2 log p), the following bound holds:

1

n

∣∣∣∣X>n−1E
∣∣∣∣
∞ ≤ c0

(
M(gX) +M(gε) +M(gX,ε̃)

)√ log p

n
.

Before proving Lemma 5.3, we first state Lemma D.3 which provides a concentration

inequality in the operator norm.

Lemma D.3. Consider the stationary centered Gaussian process {Xt} ∈ Rp, whose spectral

density function gX(ω) exits and the maximum eigenvalue is bounded a.e. on [−π, π]. Then

for X whose rows are random realizations {x0, . . . , xn−1} of {Xt}, the following bound holds

for SX = X>X/n, for some c > 0:

P
[
|||SX − ΓX(0)|||op > 4πM(gX)η

]
≤ 2 exp(−cnmin{η, η2}+ p log 8).

The proof of this Lemma is deferred to Supplement D.2.

Proof of Lemma 5.3. The result follows in straightforward manner based on Lemma D.3.

Specifically, by letting η = c′
√
p/n for c′ > (log 8/c) and with n % p so that min{η2, η} = η2,

then if we relax Λmax(ΓX(0)) by its upper bound 2πM(gX) [? , Proposition 2.3], with

probability at least 1− c1 exp(−c2p), the following bound holds for some c0:

Λmax(SX) ≤ c0M(gX).
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Proof of Lemma 5.4. For E whose rows are iid realizations of a sub-Gaussian random vector

εt, by ? , Lemma 9], the following bound holds:

P
[
|||SE − Σε|||op ≥ Λmax(Σε)δ(n, p, η)

]
≤ 2 exp(−nη2/2),

where δ(n, p, η) := 2
(√

p
n

+ η
)

+
(√

p
n

+ η
)2

. In particular, by triangle inequality, with

probability at least 1− 2 exp(−nη2/2),

|||SE|||op ≤ |||Σε|||op + |||SE − Σε|||op ≤ Λmax(Σε) + Λmax(Σε)δ(n, p, t).

So for n ≥ p, by setting η = 1, which yields δ(n, p, η) ≤ 8 so that with probability at least

1− 2 exp(−n/2), the following bound holds:

Λmax(SE) ≤ 9Λmax(Σε).

D.2 Proofs of Auxiliary Lemmas.

Next, proofs of auxiliary lemmas D.1, D.2 and D.3 are provide. Variations of these

Lemmas have been proved in ? ] and ? ]; nevertheless, we provide them also here for the

sake of completeness.

Proof of Lemma D.1. First note that with the definition of (D.1) and (D.4), B?
Sc = 0 and

Θ?
M⊥ = 0. Then

R(B?,Θ?) = ||B?
S +B?

Sc||1 +
λΘ

λB
|||Θ?

M + Θ?
M⊥ |||∗ = ||B?

S||1 +
λΘ

λB
|||Θ?

M|||∗,
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and

R(B̂, Θ̂) = R(B? + ∆B,Θ
? + ∆Θ)

= ||B?
S +B?

Sc + ∆B|S + ∆B|Sc ||1 +
λΘ

λB
|||Θ?

M + Θ?
M⊥ + ∆Θ|M + ∆Θ|M⊥|||∗

≥ ||B?
S + ∆B|Sc ||1 − ||∆B|S||1 +

λΘ

λB

(
|||Θ?

M + ∆Θ|M⊥|||∗ − |||∆Θ|M|||∗
)

(i)

≥ ||B?
S||1 + ||∆B|Sc||1 − ||∆B|S||1 +

λΘ

λB

(
|||Θ?

M|||∗ + |||∆Θ|M⊥ |||∗ − |||∆Θ|M|||∗
)

≥ R(B?
S,Θ

?
M) +R(∆B|Sc ,∆Θ|M⊥)−R(∆B|S,∆Θ|M)

= R(B?,Θ?) +R(∆B|Sc ,∆Θ|M⊥)−R(∆B|S,∆Θ|M).

where (i) uses the property of decomposable regularizers. By rearranging, we obtain the

desired inequality.

Proof of Lemma D.2. Let the SVD of Θ? be given by Θ? = (U?)D(V ?)>, where both U? and

V ? are orthogonal matrices. Assume rank(Θ?) = K. For ∆ ∈ Rn×p, define ∆̃ as below and

it is partitioned as:

∆̃ := (U?)>∆(V ?) =

[
∆̃11 ∆̃12

∆̃21 ∆̃22

]
, where ∆̃11 ∈ RK×K .

Then by further defining

∆M := U?

[
∆̃11 ∆̃12

∆̃21 O

]
(V ?)> and ∆M⊥ := U?

[
O O

O ∆̃22

]
(V ?)>,

it is straightforward to see that ∆M + ∆M⊥ = ∆. Moreover,

rank(∆M) ≤ rank

(
U?

[
∆̃11 ∆̃12

O O

]
(V ?)>

)
+ rank

(
U

[
∆̃11 O

∆̃21 O

]
(V ?)>

)
≤ 2K.

Proof of Lemma D.3. First, we note that by ? , Proposition 2.4], the following inequality

holds for any fixed v ∈ Sp, where Sp := {v ∈ Rp : ‖v‖ = 1} is the p-dimensional unit sphere:

P
[∣∣v′(SX − ΓX(0)

)
v
∣∣ > 2πM(gX)η

]
≤ 2 exp(−cnmin{η, η2}). (D.17)
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Additionally, by ? , Lemma 5.4],

|||SX − ΓX(0)|||op = sup
v∈Sp

∣∣v′(SX − ΓX(0)
)
v
∣∣ ≤ (1− 2δ)−1 sup

v∈Nδ
v′
[
SX − ΓX(0)

]
v,

where Nδ is a δ-net of Sp for some δ ∈ [0, 1), which guarantees that the sphere can essentially

be replaced by its δ-net whose cardinality is finite. Toward this end, based upon (D.17),

take the union bound over all vectors v in the 1
4
-net of Sp, whose cardinality is at most 8p

[e.g. ? ], we have

P
[∣∣∣∣∣∣ 1

n
X ′X − ΓX(0)

∣∣∣∣∣∣
op
> 4πM(gX)η

]
≤ P

[
sup
v∈Nδ

∣∣v′(S − ΓX(0)
)
v
∣∣ > 4πM(gX)η

]
≤ 8p · 2 exp

(
− cnmin{η, η2}

)
.

D.3 Analyses for the Non-Convex Formulation.

In this section, we briefly analyze the statistical properties and the computational pro-

cedure corresponding to the non-convex formulation in (5.16), that is,

(B̃, Θ̃) = arg min
B∈Rp×p,Θ∈Rn×p

{ 1

2n

∣∣∣∣∣∣Xn −Θ−Xn−1B
>∣∣∣∣∣∣2

F
+ λB||B||1

}
,

subject to rank(Θ) ≤ r, |||Θ/
√
n|||∗ ≤ φ.

As a remark, in this formulation, since we have specified the maximum rank allowed for

Θ, which is equivalently to specifying the maximum cardinality of the support of the eigen-

spectrum, the nuclear norm ball constraint can be alternatively changed to a box constraint

through the operator norm, namely |||Θ/
√
n|||op ≤ φ, with the choice of the tuning parameter

λB modified accordingly.

D.3.1 Statistical error bound.

We assume the true value of the parameters (B?,Θ?) is always feasible, which automati-

cally imposes the assumption r ≥ K for the rank constraint r. The following theorem gives

the error bound of (B̃, Θ̃) with deterministic realizations.

Theorem D.1 (Error bound for (B̃, Θ̃) under fixed realizations). Suppose the fixed realiza-

tions Xn−1 ∈ Rn×p of process Xt ∈ Rp satisfying the RSC condition with curvature αRSC > 0
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and a tolerance τn for which

τn
(
K + r + 4s

)
< min{αRSC, 1}/16.

Then, for any matrix pair (B?,Θ?) that drives the dynamics of Xt, for estimators (B̃, Θ̃)

obtained by solving the optimization (5.16) with regularization parameters λB satisfying

λB ≥ max
{

2‖X>n−1E/n‖∞, Λ1/2
max(SE), 2φΛ1/2

max(SX)
}
,

the following error bound holds:

|||B̃ −B?|||
2

F + |||(Θ̃−Θ?)/
√
n|||

2

F ≤
16λ2

B

(
(K + r) + (2

√
s+ 1)2

)
min{αRSC, 1}2

.

Proof sketch of Theorem D.1. For notation convenience and consistency, here we still let

∆B := B̃−B? and ∆Θ := Θ̃−Θ? denote the errors. Using the optimality of (B̃, Θ̃) and the

feasibility of (B?,Θ?), we obtain the following basic inequality:

1

2n
|||Xn−1∆>B + ∆Θ|||

2

F ≤
1

n

(
〈〈∆>B,X>n−1E〉〉+ 〈〈∆Θ,E〉〉

)
+ λB

(
||B?||1 − ||B̃||1

)
. (D.18)

which by rearrangement gives

1

2n
|||Xn−1∆>B|||

2

F +
1

2
|||∆Θ/

√
n|||2F ≤

1

n
〈〈Xn−1∆>B, Θ̃−Θ?〉〉+

1

n

(
〈〈∆>B,X>n−1E〉〉+ 〈〈∆Θ,E〉〉

)
+λB

(
||B?||1 − ||B̃||1

)
.

(D.19)

Similar to the proof of Theorem 5.1, based upon (D.19), the rest of the proof is divided into

three parts: in part (i), we provide an lower bound for the LHS which primarily uses the

RSC condition; in part (ii), we provide an upper bound for the RHS with the designated

choice of λB; in part (iii), we align the two sides and obtain the error bound after some

rearrangement.

Part (i). As RSC holds for Xn−1, the first term on the LHS of (D.18) is lower bounded by

αRSC

2
|||∆B|||2F − τn||∆B||21. (D.20)
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Consider an upper bound for ||∆B||1. Using the non-negativity of the RHS in (D.18) and

with the designated choice of λB, the following inequality holds:

0 ≤ λB
2
‖∆B‖1+λB|||∆Θ/

√
n|||∗+λB(‖∆B|S‖1−‖∆B|Sc‖1) =

3λB
2
‖∆B|S‖1−

λB
2
‖∆B|Sc‖1+λB|||∆Θ/

√
n|||∗.

Since ∆Θ = Θ̃−Θ? has rank at most K + r, |||∆Θ/
√
n|||∗ ≤

√
K + r|||∆Θ/

√
n|||F. It follows

that

λB
2
‖∆B|Sc‖1 ≤ λB

√
K + r|||∆Θ/

√
n|||F +

3λB
2
‖∆B|S‖1,

λB
2
‖∆B|S‖1 +

λB
2
‖∆B|Sc‖1 ≤ λB

√
K + r|||∆Θ/

√
n|||F +

3λB
2
‖∆B|S‖1 +

λB
2
‖∆B|S‖1,

‖∆B‖1 ≤
√

4(K + r)|||∆Θ/
√
n|||F + 4‖∆B|S‖1 ≤

√
4(K + r)|||∆Θ/

√
n|||F + 4

√
s|||∆B|||F,

where the second line is obtained by adding λB
2
‖∆B|S‖1 on both sides, and the last inequality

uses (D.3). Further, by the Cauchy-Schwartz inequality, we have

||∆B||1 ≤
√

(
√

4(K + r))2 + (4
√
s)2

√
|||∆B|||2F + |||∆Θ/

√
n|||2F,

that is,

‖∆B‖2
1 ≤ 4

(
K + r + 4s

)[
|||∆B|||2F + |||∆Θ/

√
n|||2F

]
. (D.21)

Combine (D.20) and (D.21), a lower bound for the LHS of (D.19) is given by(αRSC

2
− 4τn

(
K + r + 4s

))
|||∆B|||2F +

(1

2
− 4τn

(
K + r + 4s

))
|||∆Θ/

√
n|||2F. (D.22)

Part (ii). Similar to the derivation in the proof of Theorem 5.1, with the required choice

of λB, the following upper bound holds for the RHS of (D.19):

λB|||∆B|||F + λB‖∆B‖1 + λB
√
K + r|||∆Θ/

√
n|||F + λn(‖∆B|S‖1 − ‖∆B|Sc‖1)

≤ λB

(
(2
√
s+ 1)|||∆B|||F +

√
K + r|||∆Θ/

√
n|||F

)
≤ λB

√
(2
√
s+ 1)2 + (K + r)2

√
|||∆B|||2F + |||∆Θ/

√
n|||2F.

(D.23)

Part (iii). Combine (D.22) and (D.23), by rearranging and requiring τn satisfying τn(K +

r + 4s) < min{αRSC, 1}/16, the following inequality holds:

min{αRSC, 1}
4

(
|||∆B|||2F + |||∆Θ/

√
n|||2F

)
≤ λB

√
(2
√
s+ 1)2 + (K + r)2

√
|||∆B|||2F + |||∆Θ/

√
n|||2F,
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which gives

|||∆B|||2F + |||∆Θ/
√
n|||2F ≤

16λ2
B

(
(K + r) + (2

√
s+ 1)2

)
min{αRSC, 1}2

.

D.3.2 A majorization-minimization algorithm.

We introduce a majorization-minimization (MM) algorithm that solves the penalized

(nonconvex) formulation corresponding to the non-convex program (5.16) with convergence

guarantees. Let σ1 > · · · > σr > σr+1 > · · · > σmin{n,p} be the singular values of Θ,

then (5.16) is equivalent to

min
B,Θ

{ 1

2n

∣∣∣∣∣∣Xn −Θ−Xn−1B
>∣∣∣∣∣∣2

F
+ λB||B||1

}
,

subject to |||Θ/
√
n|||∗ ≤ φ,

σr+1 = σr+2 = · · · = σmin{n,p} = 0,

whose penalized reformulation can be written as

min
B,Θ

{ 1

2n

∣∣∣∣∣∣Xn −Θ−Xn−1B
>∣∣∣∣∣∣2

F
+ λB||B||1 +

ρ

2

min{n,p}∑
k=r+1

σ2
k

}
,

subject to |||Θ/
√
n|||∗ ≤ φ.

(D.24)

Let the SVD of Θ be Θ = UDV > and define Ir :=
[

Ir×r O
O O

]
; then the following holds:

min{n,p}∑
k=r+1

σ2
k =

min{n,p}∑
k=1

σ2
k −

r∑
k=1

σ2
k = ‖Θ‖2

F − Tr
[
Θ>UIrU

>Θ
]
.

Therefore, the objective function in (D.24) can be written as

H(B,Θ) :=
1

2n

∣∣∣∣∣∣Xn −Θ−Xn−1B
>∣∣∣∣∣∣2

F
+ λB||B||1 +

ρ

2
|||Θ|||2F︸ ︷︷ ︸

h1(B,Θ)

− ρ
2

Tr
[
Θ>UIrU

>Θ
]

︸ ︷︷ ︸
h2(Θ)

,

where both h1 and h2 are convex. In other words, the objective function in (D.24) can be

expressed as the difference of two convex functions and has a convex feasible region. At

iteration m+ 1, a minorizer for h2(Θ) is given by

h(Θ|Θ(m)) ≥ h2(Θ(m)) +∇h2(Θ(m))>(Θ−Θ(m)),
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with equality attained at Θ = Θ(m), and ∇h2(Θ) := 2UIrU
>Θ. As a consequence, at

iteration m+ 1, a majarizer for H(B,Θ) is given by

H
(
B,Θ|(B(m),Θ(m))

)
≤ h1(B,Θ)−∇h2(Θ(m))>Θ− h2(Θ(m)) +∇h2(Θ(m))>Θ(m).

This motivates the following iterative joint update of the two blocks:

(B(m+1),Θ(m+1)) = arg min
B,Θ∈Bn(φ)

{
h1(B,Θ)−∇h2(Θ(m))>Θ

}
(D.25)

where Bn(φ) := |||Θ/
√
n|||∗ ≤ φ and the objective function in (D.25) is jointly convex in the

two blocks. Empirically, a search over an increasing sequence of ρ is necessary so that Θ(∞)

satisfies the exact rank constraint rank(Θ(∞)) ≤ r, due to the relaxation when considering

the Lagrangian formulation.

This MM algorithm is guaranteed to converge to some stationary point by ? , Theorem 4];

however, there is no guarantee that this stationary point corresponds to a global optimum.

Moreover, there exists a duality gap between the formulation in (5.16) and its penalized

counterpart in (D.24). In summary, although the statistical error for the desired non-convex

problem formulation is the same to that obtained through the convex relaxation given in

Section 5.2, we could not come up with an algorithm that provably converges to the global

minimum. On the other hand, for the convex relaxation we have provided an iterative

algorithm (Algorithm IV.1) that does so.

D.4 Supplement to the Real Data Analysis.

In this section, we provide additional details for the real data analysis, which substanti-

ates our model specification that consists of contemporaneous common factors, and a vector-

autoregressive idiosyncratic component. Since the crisis period witnesses prominent connec-

tivities within B̂, we primarily focus on this period for illustration purpose.

To examine the correlation and autocorrelation pattern amongst the residuals, we plot

in Figure D.1 the correlation and lag-1 autocorrelation amongst the residuals after adjusting

for the identified factor hyperplane, that is, Xn − Θ̂. According to the model specification,

there should not be much structural pattern left in the contemporaneous correlation, which

is indeed the case according to the left panel. On the other hand, we postulate that the

auto-covariance should exhibit certain patterns, parametrized by B̂. In the right panel, we

plot the partial auto-correlation matrix of the residuals after properly scaling the entries for

visualization purposes.

Further, we break down the connectivity amongst the nodes by sectors (banks, insurance,
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brokers/dealers) to examine the cross-sector interactions, shown in Figure D.2. According to

the figure, in general, at the relatively early stage of the crisis, insurance companies played

the role of a strong emitter within the financial system, and such a role was transferred to

the dealers/brokers toward the end of the crisis.

BA

PB

INS

C

BAC

JPM

WFC

AXP

RY

TBBK

TD

BK

BMO

BCM

STI

STT

COF

PNC

BBK

RF

SLM

GS

MS

BEN

SCHW

BLK

TROW

LM

AMTD

ETFC

AB

SEIC

JNS

EV

FII

RJF

IVZ

AMG

WDR

AIG

UNH

MFC

MET

ALL

TRV

AFL

HIG

SLF

AET

ACE

PGR

MMC

LNC

L

CI

AON

XL

HUM

CNA

C
BAC

JP
M

W
FC

AXP RY

TBBK TD BK
BM

O
BCM STI

STT
COF

PNC
BBK RF

SLM GS
M

S
BEN

SCHW
BLK

TROW LM
AM

TD
ETFC AB

SEIC JN
S

EV FII
RJF IV

Z
AM

G
W

DR
AIG

UNH
M

FC
M

ET
ALL TRV

AFL
HIG SLF

AET
ACE

PGR
M

M
C

LN
C L CI

AON XL
HUM

CNA

CONTEMPORANEOUS COVARIANCE of RESIDUALS, CRISIS

BA

PB

INS

C

BAC

JPM

WFC

AXP

RY

TBBK

TD

BK

BMO

BCM

STI

STT

COF

PNC

BBK

RF

SLM

GS

MS

BEN

SCHW

BLK

TROW

LM

AMTD

ETFC

AB

SEIC

JNS

EV

FII

RJF

IVZ

AMG

WDR

AIG

UNH

MFC

MET

ALL

TRV

AFL

HIG

SLF

AET

ACE

PGR

MMC

LNC

L

CI

AON

XL

HUM

CNA

C
BAC

JP
M

W
FC

AXP RY

TBBK TD BK
BM

O
BCM STI

STT
COF

PNC
BBK RF

SLM GS
M

S
BEN

SCHW
BLK

TROW LM
AM

TD
ETFC AB

SEIC JN
S

EV FII
RJF IV

Z
AM

G
W

DR
AIG

UNH
M

FC
M

ET
ALL TRV

AFL
HIG SLF

AET
ACE

PGR
M

M
C

LN
C L CI

AON XL
HUM

CNA

LAG1 AUTO−COVARIANCE of RESIDUALS, scaled by max, CRISIS

Figure D.1: Left panel: contemporaneous correlation among the residuals after adjusting for the factors. Right panel: partial
auto-correlation structure among the residuals for lag = 1.
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Figure D.2: Breakdown of connectivity by sub-categories. Lines with the same color indicate the same emitter: BA (red), PB
(green), INS (blue). Lines with the same type indicate the same (emitter ↔ receiver) pair: (BA ↔ PB)–dashed line, (BA ↔
INS)–dotted line, (PB ↔ INS)–solid line.

As a final sanity check, we compare our results with the ones based on a Fama-French 5

factor model (FF5). Specifically, we fit the following Fama-French 5 factor model for each

individual stock i:

Xit − RFt = αi + MmRt + SmBt + HmLt + RmWt + CmAt + εit.
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The comparison consists of two parts: (i) measuring the principal angle between our iden-

tified factor space and that spanned by FF5, and comparing their respective contribution

to model fit in terms of R-squared; (ii) comparing the residual structure, which involves the

contemporaneous correlation and the lead-lag relationship. Data of FF5 are retrieved from

the Kenneth R. French Data Library.

Part (i), factor comparison. We first compare the two factor spaces by measuring their

principal angle, defined as

Ω := arccos(d1) where d1 is the leading singular value of Q>
F̂
QF̃,

and here we use F̃ to denote the data matrix of FF5. During the crisis period of interest, Ω =

0.12, which is equivalent to a 6.8◦ angle. Further, for the factor contribution to explaining

the return variations, Table D.1 provides a summary of the R squared across the stocks for

both models, with the factors identified by our model having an overall higher R squared.

min 1st quantile median mean 3rd quantile max
Lag-Adjusted Factor Model 0.25 0.59 0.68 0.65 0.76 0.85
Fama-French 5 Factor Model 0.28 0.48 0.58 0.61 0.69 0.84

Table D.1: Summary for R-squared across stocks for Lag-adjusted factor model and Fama-French 5 factor model.

Part (ii), residual comparison. Next, we compare the pattern amongst the residu-

als. Figure D.3 shows the contemporaneous correlation among the FF5 residuals and the

transition matrix after a VAR(1) model is fitted. For the contemporaneous structure, we

note that FF5 residuals exhibit detectable sub-clusters within the banking sub-sector and

a stronger positive correlation within brokers/dealers. These structural patterns are less

evident in the left panel of Figure D.1 and the residuals behave more uniformly, although

the sub-clusterings formed by the big national banks and by the mid-size banks still exist.

Turning to the transition matrix, the two models are broadly comparable and a similar set

of important players have been identified, including AIG, HIG, ETFC etc.

Finally, we briefly compare our results with those obtained through the “single iterate”

procedure, i.e., first fit a factor model on Xn using the PC estimation where the number of

factors is chosen according to ? ], then a sparse VAR(1) model is fitted to the residuals, with

the tuning parameter that controls the sparsity chosen according to BIC. The PC+VAR

estimates differ from our estimates primarily in the following aspects: (1) the PC+VAR

estimate gives a rank 1 structure at all times, i.e., K̂ = 1 for all rolling windows, whereas our

estimate exhibits a more nuanced and informative factor structure during the crisis period;
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Figure D.3: Left panel: contemporaneous correlation among the FF5 residuals. Right panel: transition matrix for the VAR(1)
fitted to FF5 residuals

(2) as Figure D.4 shows, the crisis period witnesses an increase in the connectivity of the

sparse transition matrix, which is similar to what we have discovered with our proposed

model; (3) leading factors from both estimates explain around 50% of the total variation,

and for our estimates, the remaining four factors collectively account for another 15-20% of

the total variation. The sharp increase during the crisis period for the estimated B from

the PC+VAR estimate suggests that the idiosyncratic component has shown a much higher

degree of temporal dependence on its past than at more normal times, whereas the number

of factors during this period is likely to be under-estimated. Hence by properly incorporating

such dependence in the mean structure specification of the model, one can circumvent the

inaccuracy in estimating the number of factors, as pointed out by ? ].

0

0.004

0.008

0.012

0.016

0.02

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

C
on

ne
ct

iv
it

y 
of

 B

R
 s

qu
ar

ed

PC ESTIMATION + VAR(1) 

TTLRsq B.ttl

Figure D.4: Total R-squared based on the factor model (red line) and the connectivity of the estimated transition matrix of
fitting a sparse VAR(1) on the residuals (blue line).
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D.5 Supplement to VAR(d) Dependence.

We give some additional results for the case where ut exhibits VAR(d) dependence. Note

that with the model specification in (5.20), the spectral density of Xt takes the following

form:

gX(ω) =
[
B−1
d (e−iω)

](
ΛgF (ω)Λ> + gε(ω) + gε,F (ω)Λ> + ΛgF,ε(ω)

)[
B−1
d (e−iω)

]∗
.

As Section 5.6 focuses on stating the error bound based on fixed realizations of the process

upon certain regularity conditions are satisfied, in the rest of this section, we verify these

conditions and provide high probability bounds for relevant quantities when the data are

random realizations from the distribution.

Compared with the earlier analyses, a major difference lies in the fact that Xt now

has lag-d dependence. However, we note that by considering the stacked transition matrix

similar to ? ], each row of Xd
n−d can be viewed as a realization from a dp-dimensional process

X t, whose dynamic resembles the previous considered model in Section 5.2. Specifically, by

letting

X t :=


Xt

Xt−1

...

Xt−d+1

 ∈ Rdp, F t :=


Ft

0
...

0

 ∈ RdK , εt :=


εt

0
...

0

 ∈ Rdp

and

Λ :=



Λ O . . . O O

O
... O

O

O


∈ Rdp×dK , B :=



B1 B2 · · · Bd−1 Bd

Ip O · · · O O

O Ip · · · O O
...

...
. . .

...
...

O O · · · Ip O


∈ Rdp×dp,

an alternative representation for (5.20) is given by

X t = ΛF t +BX t−1 + εt. (D.26)

Thus, it suffices to verify the RSC condition in an identical way to that in Lemma 5.1, however

with the underlying process substituted by X t; for other quantities such as deviation or the
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extreme of the eigen-spectrum, the high probability bound should be given based upon X t

as well.

Lemma D.4. For Xd ∈ Rnd×dp whose rows are random realizations {x0, . . . , xn−1} of the

stable {X t} process with dynamic given in (D.26). Then there exist positive constants ci (i =

0, 1, 2, 3) such that with probability at least 1− c1 exp(−c2n), the RSC condition holds for Xd

with curvature αRSC and tolerance τnd satisfying

αRSC = πm(gX), τnd = αRSCγ
2 log dp

2nd
,

where γ := 54M(gX)/m(gX), provided that nd % (
∑d

k=1 ‖Bk‖0) log(dp).

Lemma D.5. There exist positive constants ci (i = 0, 1, 2) such that for sample size nd %

log(dp), with probability at least 1− c1 exp(−c2 log(dp)), the following bound holds:

‖(Xd
n−1)>Ed

n/nd‖∞ ≤ c0

(
M(gX) +M(gε) +M(gX,ε)

)√ log(dp)

n
.

Note that with the definition of εt, M(gX,ε) =M(gX,ε).

Lemma D.6. Consider X ∈ Rnd×dp whose rows are some random realization {x0, . . . , xn−1}
of the stable {X t} process whose dynamic is given in (D.26). Then there exist positive

constants ci (i = 0, 1, 2) such that for sample size nd % dp, with probability at least 1 −
c1 exp(−c2dp), the following bound holds for the spectrum of SX:

Λmax(SX) ≤ c0M(gX).

With the definition of X t, let vt := ΛF t + εt, then X t = BX t + vt. The following bounds

hold for M(gX) and m(gX) [? ]:

M(gX) ≤ 1

2π

Λmax(Σv)

µmin(B)
, and m(gX) ≥ 1

2π

Λmin(Σv)

µmax(Bd)
,

where we define µmax(Bd) := max|z|=1 Λmax

((
Bd(z)

)∗(Bd(z)
))

, µmin(B) := min
|z|=1

Λmin

(
B(z)∗B(z)

)
,

with B(z) = Idp −Bz.

237



BIBLIOGRAPHY

238


	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Existing Work and Challenges.
	Thesis Contributions.
	Organization of the Thesis.
	Penalized Maximum Likelihood Estimation of Multi-layered Gaussian Graphical Models
	Introduction.
	Problem Formulation.
	A two-layered network setup.
	Estimation algorithm.
	Tuning parameter selection.

	Theoretical Results.
	Convergence of the iterative algorithm.
	Estimation consistency.
	Family-wise error rate control of the screening step.
	Estimation error and identifiability.

	Performance Evaluation and Implementation Issues.
	Simulation results.
	Simulation results for non-Gaussian data.

	A comparison with the two-step estimator in cai2012covariate.
	Implementation issues.

	Discussion.
	Regularized Estimation and Testing of High-dimensional Multi-block Vector Autoregressive Models
	Introduction.
	Problem Formulation.
	Estimation.

	Theoretical Properties.
	A road map for establishing the consistency results.
	Consistency results for the Maximum Likelihood estimators.
	The effect of temporal and cross-dependence on the established bounds.

	Testing Group Granger-Causality.
	Performance Evaluation.
	Simulation results for the estimation procedure.
	A comparison between the two-step and the ML estimates.
	Simulation results for the block Granger-causality test.

	Real Data Analysis Illustration.
	Discussion.
	Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models
	Introduction.
	Model Identification and Problem Formulation.
	Model identification considerations.
	Proposed formulation.

	Theoretical Properties.
	Statistical error bounds with deterministic realizations.
	High probability bounds under random realizations.
	High probability error bounds for the estimators.
	Implementation and Performance Evaluation.
	Application to Commodity Price Interlinkages.

	Discussion.
	Approximate Factor Models with Strongly Correlated Idiosyncratic Errors
	Introduction.
	Problem Formulation and Estimation.
	Estimation.

	Theoretical Properties.
	Statistical error bounds with deterministic realizations.
	High probability bounds under random realizations.
	Convergence analysis.
	Notes on model connections.

	Implementation and Performance Evaluation.
	Performance evaluation of the proposed estimator.
	Comparison to single-iterate estimates.

	Application to Log-Returns of US Financial Assets.
	Extensions.
	Discussion.

	Conclusion
	APPENDICES
	Supplementary Materials to ``Penalized Maximum Likelihood Estimation of Multi-layered Gaussian Graphical Models."
	Proofs for main theorems.
	Proofs for propositions and auxiliary lemmas.
	Numerical comparisons between different parametrizations.
	An example for multi-layered network estimation.
	Supplementary Materials to ``Regularized Estimation and Testing of High-dimensional Multi-block Vector Autoregressive Models."
	Additional Theorems and Proofs for Theorems.
	Key Lemmas and Their Proofs.
	Auxiliary Lemmas and Their Proofs.
	Testing group Granger-causality under a sparse alternative.
	Estimation and Consistency for an Alternative Model Specification.
	Proof of Propositions and Corollaries.
	List of Stock and Macroeconomic Variables

	Supplementary Materials to ``Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models."
	Proofs for Theorems and Propositions.
	Proof for Lemmas.
	Additional Numerical Studies.
	An Outline of the Estimation Procedure in Low-dimensional Settings.
	List of Commodities and Macroeconomic Variables.
	Supplementary Materials to ``Approximate Factor Models with Strongly Correlated Idiosyncratic Errors."
	Proofs for Statistical Error Bounds. 
	Proofs of Auxiliary Lemmas.
	Analyses for the Non-Convex Formulation.
	Statistical error bound.
	A majorization-minimization algorithm.
	Supplement to the Real Data Analysis.
	Supplement to VAR(d) Dependence.
	BIBLIOGRAPHY
















