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ABSTRACT

Cluster cosmology, as investigated by the number counts method, is deeply linked

to the constituent properties of our Universe and small-scale astrophysical phenom-

ena. In the number counts method, a key challenge is relating observations of cluster

galaxy members or the gas component to the total mass of the system. This dis-

sertation aims to address this challenge by developing a better understanding of

mass–observables relation, with a subsequent goal of enhancing the interpretation of

cluster samples that have emerged from large-scale multi-wavelength surveys. These

surveys include the XMM-XXL project, the Local Cluster Substructure Survey (Lo-

CuSS), and eventually the Dark Energy Survey data (DES). The results of this work

support the science goal of understanding the content and evolution of the Universe’s

most massive systems, thereby improving cosmological constraints leading to a better

understanding of the constituents of our Universe.

In this dissertation, I propose a novel method for cluster mass estimation based on

member galaxy kinematics. I demonstrate a percent-level accuracy for the expected

conditional log-mass, which implies that this algorithm is one of the most accurate

algorithms available in the literature. The accuracy of this algorithm is extensively

evaluated on a set of large-scale simulations. Next, all key systematics are identified

and calibrated. With this method, we then estimate dynamical masses of a large,

optically-selected cluster sample derived from the Sloan Digital Sky Survey (SDSS)

and an X-ray-selected cluster sample derived from the XXL Survey.

xiii



The multi-wavelength scaling behavior of cluster observables is driven by the as-

trophysical evolution of the baryonic components within the potential well of massive

halos. To facilitate the multi-wavelength scaling modeling, I study the stellar and

gas content of dark matter halos extracted from the BAHAMAS simulations, a set of

large-scale, full-physics hydrodynamical simulations. The results verify the popular

log-normal model of the halo population, but deviate from the power-law approxima-

tion. With these simulations, I establish a new set of predictions, most importantly

an intrinsic anti-correlation between gas mass and stellar content of these systems.

This anti-correlation is a key prediction that we continue to strive to confirm through

a subset of the LoCuSS cluster sample.

I implement a robust hierarchical Bayesian inference algorithm, which models the

effects of sample selection and the measurement error covariance, to examine the

gas and stellar contents of the underlying dark matter halos. To study the relation

between the mass of dark matter halos and the multi-wavelength cluster observables,

I apply this model to a subset of the LoCuSS cluster sample. Most importantly,

this model enables us to examine the predicted anti-correlation between gas and

stellar content of these systems. Finally, the results of this study establish the first

empirical evidence for this anti-correlation, which has a profound implication for how

the Universe’s most massive structures formed and evolved.

xiv



CHAPTER I

Introduction

The never-ending quest for understanding the fundamental laws of our Universe

has inspired many generations of scientists, philosophers, and mathematicians. Hu-

mankind’s mental engagement with the Universe certainly predates civilization and

the record of history. The onset of this journey began with pondering the natural

world and the Universe, which goes back to ancient history. Philosophers are the

ones who inaugurated this inquiry, searching for the fundamental laws of the Uni-

verse, with the natural philosophy movement, i.e. the philosophical study of nature

and the physical universe. This expedition later branched out into numerous intel-

lectual arenas under the umbrella of natural science. A major branch of natural

science, which studies nature on the grand scale, is cosmology, and another branch

is astronomy, which studies the physical phenomena occurring in the cosmos.

1.1 Cosmology and Astronomy as an Empirical Science

Cosmology and astronomy are two overlapping branches of natural science. Sim-

ilar to other branches, these disciplines progress with the growth of empirical data.

The first human who first gazed up at the dark sky obtained the first data which tells

a story about our Universe. Today, gigantic data collection instruments are instead

taking these data for us. Theoretical and experimental scientists have been working

1
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together to provide a new interpretation of the accumulated data, to confirm exist-

ing theories, or rule them out. Sporadically, a new theory is developed to explain

observational data which could not be explained with the past theories.

Obtaining reliable and interpretable observational data requires precise and cal-

ibrated instruments and appropriate measurement techniques. Such instruments

emerged in the early seventeenth century with the invention of the optical telescope.

This new instrument revolutionized the entire field of astronomy by providing a new

and precise means of measuring and observing astronomical objects and events. The

data obtained through this new instrument began the shift in our understanding of

the Universe, which led to the modern astronomy as we know it today.

1.2 Scientific Discoveries of Early Days

Before the invention of the optical telescope by Europeans, early astronomers

made a number of significant observational discoveries and established some dazzling

theoretical models. These pioneering observational discoveries and theoretical feats

played a key role in boosting scientific discovery. These discoveries aided astronomers

of the seventeenth century and later in establishing the modern view of astronomy. In

the following, a few of these remarkable, but mostly under-appreciated, discoveries,

which are mostly ignored in typical western historical anecdotes, are pointed out

(Ragep 2007).

One noteworthy example is a Persian astronomer, Abd al-Rahman al-Sufi (Azophi),

who made the first documented observations of the Large Magellanic Cloud and the

Andromeda Galaxy (Hafez et al. 2011). Around the year 964, Abd al-Rahman al-Sufi,

in his book of Fixed Stars, described these new systems as a “Little Cloud”. Figure

1.1 is taken from a copy of the Al-Sufi’s manuscript in which shows the Andromeda
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Figure 1.1: The Andromeda galaxy from the earliest copy of the Al-Sufi’s manuscript dated 1009-10.
The drawing of the Andromeda galaxy, which is described in the main text as a “Little Cloud”, lying
near the mouth of the Big Fish. This drawing illustrates the Andromeda galaxy with a small cloud of
dots, which is the first documented observation of another galaxy. Source: Oxford, Bodleian Library
MS. Marsh 144, page 167. http://bodley30.bodley.ox.ac.uk:8180/luna/servlet/s/fj1968

http://bodley30.bodley.ox.ac.uk:8180/luna/servlet/s/fj1968
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Galaxy with a small cloud of dots. These data were the gold standard in astronomy

at the time when the naked eye still was the only observational instrument. About

700 years later a European astronomer, Simon Marius, rediscovered the Andromeda

Galaxy with observations made through telescopes (Bond 1848).

Ghiyath ad-Din Abul-Fath Umar ibn Ibrahim al-Khayyam Nishapuri (Umar Khayyam),

a prominent mathematician, astronomer, poet, and an atheist of the eleventh century,

established and directed an observatory at Isfahan to reform the Persian calendar.

Under his direction, a team of scholars recalibrated the Persian calendar by fixing

the first day of the year, beginning of spring or Nowruz, at the exact moment of

the passing of the Sun’s center across vernal equinox. This work led to the Jalali

calendar, which is claimed to be the most accurate calendar in use today (Akrami

2011; Aminrazavi 2013).

In the early thirteenth century, Muhammad ibn Muhammad ibn al-Hasan al-Tusi

(Nasir al-Din Tusi), who is praised as the founder of trigonometry as a mathemati-

cal discipline (Lindberg & Shank 2013), established the Maragha observatory. The

Maragha observatory is probably the first major international institution where sci-

entists of many disciplines gathered to teach and conduct research (Ballay 1990).

The observations he made at this observatory led to accurate tables of planetary

movements, which is illustrated in his book “Ziji ilkhani”. However, he is best

known for the development of a mathematical method to describe the plants’ mo-

tion. Ptolemy initially proposed his model Equant to describe the motion of planets;

however, Tusi developed the “Tusi-couple” as an alternative to Ptolemy’s model.

This method models the harmonic motion via a circle of radius R rolling inside a

circle of radius 2R (see Figure 1.2). A property of the Tusi-couple is that points

on the inner circle that are not on the circumference trace ellipses. This method is
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Figure 1.2: A sketch by Nasir al-Din Tusi in his book which shows his mathematical model of
planets motion on the sky. Source: Biblioteca Apostolica Vaticana, Vat. Arabic ms 319, fol. 28
verso. http://digi.vatlib.it/view/MSS_Vat.ar.319/0062.

further developed by other members of the Maragha School, including Ibn al-Shatir,

and eventually appeared in Nicolaus Copernicus’ famous book the “De revolution-

ibus orbium coelestium” (On the Revolutions of the Heavenly Spheres)1 to explain

the planets’ motion on the sky (Kennedy 1966; Neugebauer 2012).

Computational techniques are not unique to the modern era. These techniques

had been used to find the solution of mathematical equations or the motion of the

planets in the sky for many centuries before computers were invented. Ghiyath al-

Din Jamshid Masud al-Kashi (al-Kashani), a Persian astronomer and mathematician,

performed a numerical method to estimate the numerical value of π, and successfully

performed this calculation to 16 decimal digits (Azarian et al. 2010). More impor-

tantly, Al-Kashani was one of the pre-modern astronomers who pioneered the field

of computational astronomy. In the early fifteenth century, Al-Kashi invented two

1Kennedy (1966), who coined the term Tusi-couple, noticed that there is a striking similarity between models in
Copernicus’s “De revolutionibus orbium coelestium”, including his Mercury and lunar models, and Ibn al-Shatir’s
models.

http://digi.vatlib.it/view/MSS_Vat.ar.319/0062
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mechanical computing machines which could determine the time of an astronomical

event or the location of the planetary system on the sky based on the historical

observational data (Kennedy 1947, 1950, 1951, 1952). The first one is the Plate of

Zones, which was used to determine the longitude of the Sun, Moon, and the other

planets. The second is the Plate of Conjunctions, which was used to ascertain the

time of day at which planetary conjunctions.

1.3 Emergence of New Paradigms in Scientific Discovery

Even though scholars in the pre-nineteenth century developed or performed com-

putational techniques, these techniques were not widely used by the scientific com-

munity. Theory and observation (or experiment) have been at the forefront of and

constituted the two primary pillars of the scientific discovery for many centuries.

However, a challenge, then and now, is that a large class of theoretical models are

complex and non-linear. Finding the general solution of these non-linear models is

typically infeasible and analytically intractable. To find an analytic solution, typi-

cally a great number of simplifying assumptions are imposed. While these reduced

solutions can provide insight or describe simple scenarios, they are not generalizable

and in many cases they are erroneous. Analytical methods are thus insufficient to

make reliable predictions specifically in non-linear or complex regimes. To overcome

these difficulties, numerical techniques, now and then, have to be developed and

employed.

The first evidence of the use of numerical techniques can be traced back at least

to the Babylonian period. Before the advent of modern electronic computational

machines, including computers, numerical methods often depended on manual inter-

polation of numbers, which could be read off of large tabulated data, or mechanical
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machines. In the early twentieth century, electronic computational machines were

invented. This invention immediately prompted a broad class of computational tech-

niques that developed and performed aimed to solve analytically intractable prob-

lems. Consequently, computational discipline emerged as a new paradigm in scientific

discovery. This new interdisciplinary field of research instigated a new class of tech-

niques that have enhanced the rate of scientific discoveries. Central among these

techniques are numerical simulations aimed at finding solutions to complex, non-

linear differential equations. In the mid-twentieth century, this new area of research

instantly became popular among scientists of various disciplines and provided new

insights and predictions which were not possible before. Ultimately, the numerical

simulations were accepted as another pillar of the scientific discovery.

In the past decade, the scientific community has experienced another revolution

in the way that science is carried out. Specifically, improvements in data acquisition

techniques and technologies led to the exponential growth of empirical data. This

growth has prompted the emergence of a new paradigm (Hey et al. 2009), big data

analytics. This new paradigm soon produced a proliferation of new techniques and

models. This fledgling discipline is expected to enhance the rate of scientific discovery

by thoroughly exploiting massive datasets and extracting patterns from them. Due

to the importance of this, still developing, interdisciplinary domain of research in

enabling the scientific progress, it is considered as the most recent pillar of the

scientific discovery.

Today, these four pillars of the scientific discovery, i.e. theory, observation, numer-

ical modeling, and big data analytics, are empowering one another and accelerating

the pace of uncovering the mysteries of Nature.
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1.4 The Triumph of Modern Cosmology

The onset of Modern Cosmology. There are several landmark events that

signal the maturation of cosmology from mere speculations to an active research

discipline. The modern description of space-time began with a celebrated paper of

Albert Einstein in 1905 who introduced the Special Theory of Relativity, positing

that space and time are not separate continua. Ten years later in 1915, Einstein

published the General Theory of Relativity, which reformulated Newton’s theory of

gravity. The General Theory of Relativity theory illustrates how matter and energy

density warp space-time, and provided new sets of predictions. This theory predicts

that the light bends in the presence of gravitational potential. For the first time,

Eddington and his collaborators showed the deflection of starlight by the potential

well of Sun during the total solar eclipse of May 29, 1919 (Dyson et al. 1920). This

observation provided the first empirical evidence in favor of the General Theory of

Relativity. However, this observation was not sufficient to say whether the Universe

is dynamic or static.

In the meantime, scarce, but ground-breaking, observational studies played a cen-

tral role in developing the hot big bang model. The pivotal discovery of the linear

velocity-distance relation for galaxies by Edwin Hubble in 1929 ruled out the static

Universe. Many scholars, including Willem de Sitter and Alexander Friedmann, de-

veloped the first pieces of the expanding Universe. They derived the expansion his-

tory of the Universe under the isotropic and homogeneous assumption. A key predic-

tion of this expanding Universe is the existence of the Cosmic Microwave Background

radiation (Gamow 1948), which was accidentally discovered by the Bell labs scientists

in 1964 (Penzias & Wilson 1965). This discovery did set the stage for many discover-
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ies to become possible with the cosmic microwave background radiation (CMB). The

existing theories, however, could not explain the degree of flatness and homogeneity

inferred from the observational data. To explain away these fine-tuning problems,

the inflationary models, in which the Universe goes through a period of exponential

expansion, were proposed during 1980’s. These pieces slowly came together to build

our current understanding of the Cosmos under the standard hot big bang model.

Rise of Surprises. Even though the standard model of particle physics and

the General Theory of Relativity had successfully passed many empirical tests, a

number of observational studies led to surprises. These unexpected observations re-

quired another sort of matter-energy which could not be explained by the standard

model of particle physics. Central among them was a study of the Coma cluster

by Fritz Zwicky who illustrated that the amount of matter associated with the light

received from galaxies could not explain the gravitational well predicted by the ve-

locity dispersion of the galaxies inside it (Zwicky 1937). In 1970, 37 years later, a

measurement of the rotation curve of spiral galaxies at large radii by Vera Rubin and

Kent Ford confirmed the need for a substantial amount of invisible matter (Rubin &

Ford 1970), which is best known as dark matter. Another surprising, but important,

discovery was the evidence for the acceleration of the expansion of the Universe by

the Supernova Cosmology Project and the High-Z Supernova Project teams (Riess

et al. 1998; Perlmutter et al. 1999).

The Advent of Large Scientific Collaborations. As new discoveries came

along, the entire field of astronomy and cosmology started to grow significantly. In

the past century, the field also experienced a growth in the number of theoretical

models and theoretical predictions. To test these models random and scarce observa-

tional studies were insufficient; consequently, cosmology became a data-demanding
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discipline. To address this need, the community evolved into teams supporting large-

scale collaborative projects. Today, these collaborations are playing a key role in

providing a large volume of data for the community and enabling new scientific dis-

coveries. The primary aim of these collaborations is to design, build, and conduct

large survey programs to provide data required for assessing the existing theories

and making discoveries.

Among all the sub-fields in astronomy, projects which looked for the CMB pio-

neered building such a large and successful collaboration. For instance, the Cosmic

Background Explorer (COBE), operating from 1989 to 1993, confirmed that the

CMB has a blackbody spectrum, and more importantly, discovered the primordial

anisotropy of CMB, which is on the order of δT
T
≈ 10−5. This experiment was the pre-

cursor to the NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) mission and

ESA’s Planck mission which verified these findings and constrained the cosmological

parameters with unprecedented accuracy.

It was the Sloan Digital Sky Survey (SDSS), designed in the 1990’s by James

Gunn and many colleagues (Gunn et al. 1998), that brought astronomy into the big

data era. This optical survey was designed to cover one-third of the available celestial

sphere. The observations initially led to an acquisition of positions and brightness of

about a billion stars, galaxies, and quasars. This dataset was then supplemented with

spectra of about a million astronomical objects. To put these numbers into context,

this survey produced about 200 GB of data every night, adding to a database that

stands at tens of TB today. And the next generation of astronomical surveys, such as

the Dark Energy Survey and the Large Synoptic Survey Telescope, would eventually

produce several orders of magnitude larger datasets.



11

1.5 The Key Role of Scientific Computing in Modern Cosmology

The Onset of Cosmological Simulations. During the 1970’s and 1980’s, sci-

entists tried to piece together the jigsaw puzzle of how the hot big bang model can

give rise to non-linear structures such as galaxies, galaxy groups, and galaxy clus-

ters. These systems are a result of gravitational instability in the primordial density

fluctuations. Many analytical solutions for the evolution and collapse of the initial

density field were proposed with the caveat of many simplified and unrealistic as-

sumptions, such as spherical symmetry or simple equations of state. Various teams

started examining the non-linear structure formation by employing N-body simula-

tions, meanwhile significant progress in the numerical techniques and the invention

of electronic computing machines enabled carrying out large-scale simulations. The

advent of the cosmological simulations led to a better understanding of the forma-

tion and growth of the cosmic structure from the primordial density fluctuations.

The first generation of computer simulations of the cosmic structure appeared in

the 1980’s; and the results supported the gravitational instability and the cold dark

matter model (Aarseth et al. 1979; Turner et al. 1979; Bhavsar et al. 1981; Centrella

& Melott 1983; Davis et al. 1985; Efstathiou et al. 1985). Since then the compu-

tational cosmology has grown as an influential branch of cosmology. Thus far, the

computational cosmology has played the leading role in gaining insight regarding the

non-linear evolution of the cosmic structure and constraining astrophysical phenom-

ena occurring at small scales.

Thanks to the increase in the computational power and a significant investment

in fast, parallelizable computational algorithms, running larger and more complex

simulations become viable (see figure 1.3). The modern cosmological simulations are



12

evolving the large-scale structure and solving small-scale effects and astrophysical

events. Among these phenomena, the most important ones are plasma cooling,

galaxy formation and evolution, the formation of stars and star clusters and their

fate, the energy injection via feedback of supermassive black and supernovae, and the

effects of the cosmic rays on baryonic plasma (Borgani & Kravtsov 2011). Typically,

astrophysical phenomena are tuned so that the resultant statistics reflect the current

observational trends. Sometimes, the outcome leads to novel predictions which could

be followed up with observational data. These predictions allow us to falsify or

confirm the input model, thereby constraining the tuning parameters.

The modern application of numerical simulations falls into two primary categories.

In the first and the original category, numerical simulations are concerned with mod-

eling physical phenomena. The second class of emerging applications is centered

on examining data analysis algorithms and inference models. Today, many research

teams are working to provide technologies which can generate synthetic night skies

or data catalogs for a specific observatory or a survey program. These synthetic data

products are then employed by the community to develop new or evaluate existing

statistical inference models or data analysis algorithms.

Where Data Meets with Theory. A major challenge is that the scale and

complexity of these datasets are exceeding the capacity of traditional data analy-

sis algorithms and models (see figure 1.3). Therefore, analyzing such large datasets

poses formidable computational and modeling challenges. Another major challenge

is how to deal with and extract unbiased insight from these empirical datasets. To ex-

tract unbiased information and conclusion from such unprecedentedly large volumes

of data, the community will soon need to revisit outdated models and techniques.

This demands scalable, fast, and realistic models that enable process automation,
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Figure 1.3: Left. The growth of the size of N-body simulations wit time. In the past 4 decades,
the increase in the size of simulations is consistent with Moore’s empirical law, i.e. the computing
power doubles every 18 months. The figure is taken from Dolag et al. (2008). Right. The growth
of data obtained in the past two decades. The plot shows volume of information stored in a number
of past, present, and future astronomical surveys or databases and archives. The data points on
this plot is taken from Mickaelian (2016).

enhanced insight, and precise inference. Thus, novel big data analytics is a key to

unlocking the mysteries of the Universe.

1.6 Clusters of Galaxies, the Intersection of Cosmology and Astronomy

Clusters of Galaxies (Clusters) – the most massive virialized objects in the Uni-

verse formed at peaks of the initial density field – are acknowledged as one of the

primary probes of cosmological parameters (Huterer & Shafer 2018). The population,

spatial distribution, and internal structure of these massive systems are sensitive to

dark energy models, the sum of neutrino masses, non-Gaussian primordial fluctua-

tions, the nature of gravity, and astrophysics (see, Allen et al. 2011; Weinberg et al.

2013). Thus far, modern cluster samples have produced competitive cosmological

constraints (e.g., Vikhlinin et al. 2009; Rozo et al. 2010; Mantz et al. 2014; de Haan

et al. 2016); and now larger and deeper cluster samples are in the process of being

assembled. Many observational campaigns are dedicated to identifying and measur-
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ing the properties of these systems with high statistical significance. To put it into

context, near-future multi-wavelength imaging survey programs (such as WFIRST,

eRosita, Euclid, CMB-S4, and LSST) are expected to find hundreds of thousands

of new systems. Soon we are going to reach cosmic completeness for clusters with

masses above a few times 1014M� providing a unique discovery opportunity to study

astrophysics and the growth of structure with unprecedented detail.

While the wealth of clusters samples derived from deep, wide-area surveys of-

fer discovery opportunities in fundamental physics and astrophysics, modeling and

analysis of these datasets introduce theoretical and computational challenges. The

main theoretical challenge is how to formulate accurate and precise inference models

which map observational space into theory space. These models are expected to be

complex and non-linear, thereby computationally challenging.

To tackle the modeling challenge, this dissertation employs simulations. Obser-

vational systems, clusters, and theoretical systems, halos, are embedded in different

spaces. Halos are typically three-dimensional structures predicted by theory while

clusters are 2+N dimensional structures identified in the sky, and here N is redshift

or flux or color space. The simulations of these systems provide a powerful means

of a modeling formulation, parametrization, and calibration. Therefore, simulations

are employed to develop a more accurate and precise inference model.

To tackle the computational challenge, a novel population model and a cluster

mass calibration technique are proposed. The population model allows constructing

a fast and accurate computation of a cluster cosmology likelihood model. Further-

more, this dissertation establishes a new, fast mass-calibration technique. The pro-

posed mass calibration technique maps cluster observables into theoretical space by

employing thousands of galaxy spectra.
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The primary aim of this dissertation is to support the science goal of the Dark

Energy Survey (DES), the Local Cluster Substructure Survey (LoCuSS), and the

XMM-XXL Consortium programs. To achieve this goal, this dissertation establishes

new data analysis tools and applies well-vetted and validated models to the data

derived from these surveys. Another key contribution of this dissertation is estab-

lishing new computational expectations for cluster property covariance, which are

tentatively confirmed with data derived from the LoCuSS program.

1.7 Astronomical Surveys to Which this Dissertation Contributes

The XMM-XXL Consortium. The XXL survey, an XMM-Newton Very Large

Programme, is a large X-ray program conducted by XMM-Newton satellite to map

two extragalactic regions of 25 square degrees, at a depth of ∼ 5×10−15 erg/cm2/s in

the [0.5−2] keV band. Similar to DES the main goal of this project is to constrain the

dark energy equation of state and other key cosmological parameters. This survey

is employing counts of clusters, identified via hot gas emitting X-ray, as the primary

probe of the cosmological parameters. At intermediate redshift, the XXL coverage

and depth enables detection of about 250 clusters for redshifts between 0.3 < z < 0.5,

which have masses around 5× 1013 – 1014 M� (Pierre et al. 2016).

The Local Cluster Substructure Survey (LoCuSS). LoCuSS is a systematic

multi-wavelength survey of clusters designed to measure the mass and structure of

these massive systems as accurately as possible. LoCuSS provides a sample of about

50 X-ray luminous clusters in the redshift range 0.15 ≤ z ≤ 0.3 selected from the

ROSAT All-Sky Survey catalogs. This project measures a variety of observable

properties, including total mass. The primary goal of this survey is to estimate

the weak-lensing mass of each cluster and determine the scaling behavior of cluster
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observables with the weak-lensing mass. These results will support the science goal of

numerous big projects that aim to measure dark energy to high precision, including

Euclid and LSST (Okabe & Smith 2016).

The Dark Energy Survey (DES). DES is an optical survey using a 570-

megapixel camera installed on the Blanco telescope to map 5,000 square degrees

grizY optical passbands to a limiting magnitude of mr = 24, which is two magni-

tudes fainter than SDSS. The primary goal of DES is to determine the Dark Energy

equation of state and other key cosmological parameters to high precision. To achieve

this goal, DES will employ four complementary probes, including population statis-

tics of galaxy clusters. DES is expected to map 5,000 square degrees in grizY and to

provide a catalog of 300 million galaxies with photometric redshifts. The expecta-

tion is that about 200 million of these objects will have shape measurements for weak

lensing analysis. The DES Science Verification, the first stage of DES which mapped

about 250 square degrees to nearly the full DES depth, has a sky surface density of

roughly 7 clusters per square degree with richness λ > 20, implying 35,000 clusters

over the full DES survey area (Dark Energy Survey Collaboration et al. 2016).

1.8 The Structure and Contribution of this Dissertation

The work in this dissertation is motivated by the importance of galaxy clusters

as a powerful probe of the cosmological parameters and astrophysics. While this

dissertation falls within the realm of the standard model of cosmology, it makes an

important contribution in enabling the search for the fundamental physics of the

Universe via the population of galaxy clusters.

The simulations and models employed in this dissertation rely heavily on the

standard model of cosmology, which will be discussed in Chapter II. In this Chapter,
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I further discuss the notation and the halo-cluster language which is used throughout

this dissertation. I also outline a simple halo population model which can enhance

cosmological analysis with a set of galaxy clusters. The accuracy of this population

model is evaluated in later chapters.

In Chapter III, I study the baryonic content of halos derived from hydrodynamical

simulations. This study leads to a number of predictions for the gas and stellar

content of halos which could be followed-up observationally. Moreover, the results of

this chapter enable a more accurate parametrization of the cluster observables–mass

relation. Finally, the halos derived from these cosmological simulations are employed

to assess the precision of the halo population model discussed in Chapter II.

A key challenge in cluster cosmology is cluster mass calibration, i.e. estimating

the expected conditional mass of a selected cluster sample. Chapter IV establishes

a novel, independent cluster mass calibration technique. To estimate the expected

conditional mass, my colleagues and I introduced a new ensemble mass calibration

method based on member galaxy kinematics. In Chapter IV, this model is introduced

and then evaluated with simulated data. Furthermore, all the potential systemat-

ics are identified, and their effects are studied. Subsequently, this new method is

applied to an optically selected cluster catalog. The result provides a competitive

and independent mass–optical richness relation which enhances the constraints on

the cosmological parameters derived from an optical survey, such as SDSS and DES

data.

The work presented in Chapter V is a result of a collaboration with the XMM-

XXL Consortium project. To enable their ongoing cluster cosmology effort, a new

cluster mass–X-ray temperature relation is estimated. This new cluster mass–X-ray

temperature relation relies on the method developed in Chapter IV. This work em-
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ploys spectra derived from many spectroscopic campaigns that have an overlap with

the XXL survey. A major finding is that this new estimate is currently dominated by

the systematic uncertainties; therefore, any progress in addressing the systematics

would make a significant impact on the constraining power of clusters.

Unbiased statistical models are required to interpret the empirical data and infer

the underlying population of halos. In Chapter VI, I develop an inference model

which enables the multi-wavelength analysis of a cluster sample considering key sys-

tematic effects. These systematics include the effects of covariance between observ-

ables, the measurement error covariance, the sample selection, and the distribution

of the covariate parameter. This model is, then, applied to a subset of the LoCuSS

cluster sample to study the relation between the mass of dark matter halos and clus-

ter observables. With this method and the LoCuSS sample, a number of theoretical

predictions for the baryonic content of halos are examined. The results of this work

have profound implications for how the Universe’s largest structures form and evolve.

The results of Chapter III establishes new predictions for the massive halos. One

prediction, which has not previously been studied with observational data, is that

there is an anti-correlation between gas mass and stellar mass of massive halos. This

finding prompts the postulate that these cosmic giants are closed boxes, meaning

that they retaining their cosmic baryonic content. The LoCuSS sample and the

model developed in Chapter VI enables testing this prediction, and provide the first

observational constrain on this covariance parameter. There results are presented

in Chapter VII. The findings of this chapter provide the first observational evidence

that supports the closed box model.

Finally, I conclude this dissertation in Chapter VIII, and discuss future directions.
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1.9 Beyond this Dissertation

During the course of this dissertation, I have been involved in several research

projects and extra circular activities which led to novel research opportunities, which

are not included in this dissertation. I have excluded them, because they are, for the

most part, beyond the scope of this dissertation. However, I briefly describe these

projects and their impact in the following.

Exploring the Halo Mass Function and the Merger History of Warm

Dark Matter Universes. Astrophysicists and particle physicists are actively at-

tempting to determine the nature of dark matter. To explain some of the small-scale

observed phenomena, a new class of dark matter models, known as warm dark mat-

ter, have been studied in the literature. Adding to this stream of work, with Andrew

Benson, a staff scientist at the Observatories of the Carnegie Institution for Science,

I constructed an analytical model that determines the halo mass function and merger

history of a warm dark matter Universe (Farahi & Benson 2013; Benson et al. 2013).

In this research, we illustrated how to construct these functions without the need for

running full N-body simulations. Our results show that the halo mass function and

progenitor mass functions of a cold dark matter universe differ significantly compared

to those of the warm dark matter universe.

Evaluating the XXL Cosmology Pipeline. Synthetic skies, which are “ob-

served” by virtual telescopes patterned after real instruments, provide exceptional

tools to study and estimate cross-correlation signals, survey specific characteristics,

and examine various sources of confusion in the detection and measurement of clus-

ters. To creat a realization of such skies, I developed a fast and scalable template

technology2. This algorithm realizes synthetic X-ray emission maps from groups and

2Xtra: X-ray Template Realization Algorithm, https://github.com/afarahi/XTRA

https://github.com/afarahi/XTRA
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clusters of galaxies. The resultant maps are used by the XMM-XXL program (Pierre

et al. 2016) to refine estimates of the selection function and assess the accuracy and

precision of their cosmological pipeline (Valotti et al. 2017).

Super-Massive Black Hole (SMBH) Science with eROSITA. It is typi-

cally believed that every large galaxy hosts an SMBH, and a fraction of these objects

are revealed by an extremely bright Active Galactic Nucleus (AGN). In a collabo-

ration with the XMM Cluster Survey (XCS) team, I performed a scaling relation

analysis to study the scaling behavior of the mass of SMBHs, MSMBH, with their

AGN observables, including the X-ray variability and the X-ray luminosity. The

results of this study allow us to evaluate the reliability of MSMBH estimates derived

from short exposure LX measurements. An important application of this work is

that the mass inference algorithm, developed in this work, enhances SMBH science

in the era of eROSITA where hundreds of thousands of AGN LX values are expected

to be measured (Mayers et al. 2018).

Gravitational Collapse in AdS. The interest in asymptotically Anti-de-Sitter

(AdS) has seen a resurgence in the past two decades. This interest was motivated

by applications from the AdS/CFT correspondence. Gravitational collapse is one of

the dynamical processes in a gravitational theory, which could occur in AdS space as

well. In a collaboration with Leo Pando Zayas, I developed a simulation technology

which enables us to study the gravitational collapse and formation of a black hole in

AdS space (Farahi & Pando Zayas 2014). The techniques involved in this study could

help us to better understand the information paradox and quantum turbulence.

Dual Description of a Superconductor. The AdS/CFT correspondence also

provides theoretical tools which allows us to study the quantum behavior of a strongly

coupled system by solving a dual gravitational problem in a higher dimension. Re-
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cent studies illustrated that gravitational theory can provide a holographically dual

description of a superconductor. Extending this line of research, with Leo Pando Za-

yas and other collaborators, I performed numerical simulations to study the effects of

disorder on a holographic superconductor using AdS/CFT techniques (Areán et al.

2015, 2014). As an important result, we noticed that moderate disorder, characterize

by the amplitude of the noise, enhances superconductivity, which is consistent with

experimental results.

In addition to Astronomy and Physics, I am deeply involved in a number of high-

impact data science and outreach projects and initiatives. I will describe two of these

projects which led to important publications.

The Michigan Data Science Team, A Data Science Education Program

with Significant Social Impact. The Michigan Data Science Team3 (MDST) is

an outreach, student-led organization at the University of Michigan which teaches

practical data science skills to students. For the past two years, I served as the Vice

President of projects on the MDST leadership board. With MDST, I established a

sustainable and high impact educational environment in which undergraduate and

graduate students can serve the community by employing data science skills in a

“Service-Learning” framework (Farahi et al. in preparation). The resultant projects

often led to novel, data science research opportunities for students outside of conven-

tional research labs. The most impactful projects emerged from a collaboration with

the City of Flint (Abernethy et al. 2016; Chojnacki et al. 2017) and a collaboration

with the City of Detroit (Gardner et al. 2017). As a noteworthy example, during

the Flint Water Crisis, we collaborated with the City of Flint to develop predictive

and classification algorithms to enhance the on-going water recovery efforts. During

3http://midas.umich.edu/mdst/

http://midas.umich.edu/mdst/
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the course of this collaboration, we identified several risk factors associated with the

elevated levels of lead in the city’s drinking water (Abernethy et al. 2016). We also

studied the effects of sample selection on the prediction outcomes and developed an

unbiased predictive model to inform citizens who are at the risk of lead contamination

in their drinking water (Chojnacki et al. 2017).

A Case Study of Education and Public Outreach (EPO). The need for

improved communication between scientists and the general public is recognized

worldwide. In the past decade, many large-scale astronomy programs have devoted

resources to EPO programs and initiatives. To enhance future EPO programs, we

conducted a survey of the DES collaboration members to provide data-driven rec-

ommendations (Farahi et al. in preparation). In this work, we studied scientists

attitudes towards STEM EPO, their motives for participation, and any deterrents

from engagement. This also included an analysis of collaboration members’ opinions

about DES EPO specifically and how to best manage EPO for large science collabo-

rations. We finally explored the value of centralized EPO efforts and provided a list

of recommendations for increasing scientists’ engagement. As an important finding,

we surprisingly noticed that there is a disparity between the types of EPO activities

scientists deem valuable, such as on-air media and elementary or high school teacher

development, and those in which they participate, such as public presentations.



CHAPTER II

The Standard Model of Cosmology

This chapter provides the basis for the rest of this dissertation. The primary

goal of this chapter is to set the theoretical foundations of cluster cosmology and

the notation used throughout. Throughout this dissertation, it is assumed that the

Universe follows the ΛCDM model. Thus, I first overview this model and discuss its

implications. I then present the essential ingredients of large-scale structure, most

importantly the formation of bound structures known as halos. This chapter con-

tinues with a discussion of implications and ingredients of cosmological simulations.

Finally, a halo population model is proposed which is employed in constructing a

cosmological inference model. It is worth emphasizing that, in this chapter, I do

not present, propose, or develop any new theory or alternative theory to explain the

observable Universe.

2.1 The Geometry and the Evolution of the Universe

The standard model of cosmology is built upon the basis of the Cosmological

Principle. Based on this principle there is no special place in the Universe, which

is also known as the Copernican principle. From the cosmological perspective,

this means that on large enough scale the Universe is the same everywhere. This

postulates that the Universe ought to be homogeneous, the same in all positions, and

23
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isotropic, the same in all directions. To date, empirical data have confirmed that

the observable Universe is extremely homogeneous and isotropic. There has been

no compelling observational evidence of deviations from the Cosmological Principle.

Under this simplified, but accurate, assumption, modeling the geometry and the evo-

lution of the Universe is a rather straightforward task. To describe the geometry and

the evolution of the Universe, the General Theory of Relativity, proposed by Albert

Einstein in 1915, is employed. Since 1915, the General Theory of Relativity has

exhaustively tested with observational data (Will 2014). These studies all confirmed

the predictions of the General Theory of Relativity at almost any relevant scale in

cosmology and astronomy. Hence, there is no compelling evidence of a violation of

the General Theory of Relativity.

Early observations conducted by Edwin Hubble demonstrated that the distant

galaxies appear to be receding from us. This finding postulates that the Universe

is not static and expands over time. Another implication of this finding is that the

Universe cannot be homogeneous and isotropic in time. Therefore, the standard

model of cosmology distinguishes between space and time, where spacelike slices are

individually homogeneous and isotropic.

2.1.1 Friedmann Equation

The separation of space and time allows us to consider the spacetime as a product

of two manifolds T × R, where T represents the time direction, and R is a three-

dimensional, spacelike, manifold. The isotropy implies that R is invariant under

rotations, and homogeneity implies that R is invariance under translations. There-

fore, the Universe’s metric can be of the form

(2.1) ds2 = −dt2 + a(t)γij(u)dxidxj ,
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where t is the timelike coordinate, and (x1, x2, x3) are the spacelike coordinates. The

function a(t) is known as the scale factor, which describes the size of the Universe

at time t and its evolution. The spacelike coordinate system, (x1, x2, x3), is known

as the Comoving Coordinate, in which cross terms, dt dui, are taken to be zero.

An observer who stays at constant xi, a “comoving” observer, observes the universe

as isotropic1. The isotropy and homogeneity assumptions imply that the γij, metric

on x, should be maximally symmetric, thereby spherically symmetric (Carroll 1997).

The metric can be put in the form

(2.2) γij(u)dxidxj =
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2) .

This is the famous Robertson-Walker metric. Equation 2.2 is invariant under

the transformation

(2.3) k −→ k

|k| , r −→
√
|k|r , a −→ a

|k| .

This invariance implies that the only relevant parameter is k
|k| . Hence, we only can

imagine three not unique scenarios, k = −1 (open universe), k = 0 (flat universe),

and k = +1 (closed universe).

2.1.2 Fluid Equation

Thus far, we have not made use of the General Theory of Relativity. The Universe

may be described with many species of perfect fluids, matter and energy, with density

ρi. The energy-momentum tensor for a perfect fluid can be written in form of

(2.4) Tµν = (pi + ρi)UµUν + pigµν

where gµν is the metric tensor, and ρi and pi are energy density and pressure, respec-

tively, of fluid i as measured in the rest frame. Uµ is the four-dimensional velocity

1We note that the Earth is not a comoving observer as the earth moves respect to the CMB rest frame. This
effect induces a dipole anisotropy in CMB which has been detected and measured by the CMB experiments.
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of the fluid. We note that the fluid is at rest in the comoving coordinate. Thus, the

velocity vector in natural units will be,

(2.5) Uµ = (1, 0, 0, 0) .

And finally, the energy-momentum tensor is

(2.6) Tµν =



ρ 0 0 0

0

0 gijp

0


.

2.1.3 Equation of State

We first consider the conservation of energy equation. This equation reads

(2.7) ∂0ρ = −3(ρ+ p)
ȧ

a
.

Equation (2.7) can also be derived from the First Law of Thermodynamics. This

expression, however, does not tell anything about the relationship between density,

ρ, and pressure, p. To make progress, it is necessary to choose an equation of state.

The equation of state is typically defined as

(2.8) p = p(ρ) = wρ ,

where w depends on the fluid being considered. Substituting this into Equation (2.7)

and rearranging leads to

(2.9)
ρ̇

ρ
= −3(1 + w)

ȧ

a
.

Assuming w does not run with the scale factor, the above equation can be integrated

to obtain

(2.10) ρ = a−3(1+w) .
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Essentially all of the perfect fluids relevant to cosmology obey a constant equation of

state. This relation applies to all components of the Universe, radiation, cold-matter

and dark energy, but w takes on different values. There exists also baryonic matter

which is considered as collisionless, non-relativistic matter at large-scales. But at

small-scales the equation of state of the baryonic matter become important. This is

further discussed in Section 2.4.

• Radiation may be used to describe either actual electromagnetic radiation or

relativistic matter such as light neutrinos. The equation of state for relativistic

particles follow w = 1
3
. Therefore, when the Universe is radiation-dominated

the energy density in matter falls off as ρ ∝ a−4.

• Cold-matter is collisionless and non-relativistic matter, which obeys w = 0.

Accordingly, the pressure is negligible in comparison with the energy density.

To a high precision and for a large enough scale this is true for both cold-dark

matter and baryonic matter, including stars and hot gas. When the Universe is

matter-dominated, the energy density falls off as ρ ∝ a−3.

• The cosmological constant or Vacuum Energy or Dark Energy follows the equa-

tion of state in which w = −1.2 For dark energy, the energy density is constant

and independent of the scale factor.

2.1.4 Friedmann Equations

To describe the evolution of the Universe, we need to solve the Einstein’s equa-

tions,

(2.11) Rµν = 8πG(Tµν −
1

2
gµνT ) .

2There are competing models in which the dark energy is not exactly w = −1 and evolve over time or take another
value close to −1. For example, there are Quintessence models in which dark energy is a scalar field and does, in
fact, vary slowly with time. Thus far, there is no statistically significant evidence for such model. We, therefore, do
not explore the dark energy models beyond the cosmological constant, where w = −1.
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There are two non-zero terms, terms with µν = 00 or µν = ii. These two terms are

(2.12) − 3
ä

a
= 4πG(ρ+ 3p) ,

and

(2.13)
ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− p) .

Rearranging the above two equations leads to

(2.14)
ä

a
= −4πG

3
(ρ+ 3p) ,

and

(2.15)

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
.

Together these are known as the Friedmann equations. Metrics of the form Equa-

tion (2.2) which obey the Friedmann equations define the Friedmann-Robertson-

Walker (FRW) universes.

2.1.5 Hubble Law

The rate of expansion of the Universe is characterized by the Hubble parameter,

(2.16) H(a) =
ȧ

a
.

The value of the Hubble parameter at the present epoch is the Hubble constant, H0.

Accordingly, the evolution factor is defined as

(2.17) E(a) ≡ H(a)

H0

,

where E(a) is basically the normalized Hubble parameter. To solve the Friedmann

equations first we define the density parameter. For each fluid specie, the corre-

sponding density parameters Ωi, is defined as following

(2.18) Ωi =
8πG

3H2
ρi =

ρi
ρcrit

,
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where ρcrit = 3H2

8πG
. One can easily show that the sum of densities are equal to one

and the curvature term
∑

Ωi = 1 + k
H2a2

. For convenience, the same quantity can

be defined for the curvature as well,

(2.19) Ωk =
−k
H2

.

Therefore, the curvature term fall off as ρ ∝ a−2. Because the curvature decays

slower than the matter and radiation, a small value for the curvature at the early

Universe would become significant today 3.

Finally, dividing the Friedmann Equation by H2
0 gives

(2.20)
H(a)2

H2
0

=
Ωr,0

a4
+

ΩM,0

a3
+

Ωk,0

a2
+ ΩΛ,0 ,

where Ωi,0 is the density of component i at current time. The exact value of each

component is subject of current studies. The cosmological probes approximately

found the following values, Ωr,0 ≈ 10−6, ΩM,0 ≈ 0.3, Ωk,0 ≈ 0, and ΩΛ,0 ≈ 0.7

(Planck Collaboration et al. 2014).

The ΛCDM model successfully explains the observational data that probe the

geometry and the expansion history of our Universe since the end of inflation. In

this dissertation, we study the Universe during the period of the structure formation;

and this model is sufficient for our purpose during this period.

2.2 Cosmological Redshift

Typical observations in cosmology are dealing with photons. There are also exper-

imental setups which are looking for the direct signature of dark matter particles, cos-

mic neutrinos, cosmic high energy particles, and more recently gravitational waves;

however, photons still make up the dominant part of the observational experiments
3The inflationary models are proposed to solve the curvature fine-tuning problem and a few other fine-tuning

problems.
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and current astronomical data. Measuring the number of photons received from

an event or an object and their energy, i.e. frequency, are two typical measurable

quantities.

A comoving observer can measure the frequency of photons. The measured fre-

quency is ν = −UµV µ, where V µ = dxµ/dλ (Carroll 1997). Accordingly, the fre-

quency of photons are changing as the Universe expands. This can be formulated

with

(2.21)
νi
νj

=
aj
ai
.

where ν is the frequency of photons. Instead of frequency or wavelength, cosmologists

and astronomers prefer to map these quantities into space of redshift z. Redshift is

defined between the two events by the fractional change in wavelength,

(2.22) z =
λ0 − λ1

λ1

.

Combining the above equation with Equation (2.21) gives the cosmological redshift

(2.23) z =
a0

a1

− 1 .

The scaling parameter at current time is usually set to be 1, a0 = 1. Therefore,

according to Equation (2.23), the scale factor of an astronomical object is

(2.24) a =
1

1 + z
,

where z is the redshift of that object. We can write all above equations in term of

redshift, for example the Evolution Parameter become

(2.25) E(z) =
H(z)2

H2
0

= Ωr,0(1 + z)4 + ΩM,0(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ,0 .
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2.2.1 Observed Redshift

It is worth mentioning that the cosmological redshift, which is defined in Section

2.2, is not the only source of the photon redshift. This redshift differs from the

conventional Doppler effect. The cosmological redshift is the direct effect of the

expansion of space, while the Doppler redshift is induced by the relative velocities

of the observer and the source. Astronomical objects are dynamical systems and

move in comoving spacetime. Their relative velocity respect to the observer induces

additional redshift, which is called the “Doppler shift”.

There is one additional source of frequency change in collected photons. The

General Theory of Relativity predicts that there is time dilation within a gravi-

tational well. This effect is known as the “gravitational redshift”. Assuming the

Schwarzschild solution of the Einstein equations, the redshift associated with a pho-

ton traveling in the gravitational field of an uncharged, point mass would change

according to

(2.26) 1 + z =
1√

1− 2GM
rc2

,

where M is the mass creating the gravitational field, G is the gravitational constant,

r is the distance of the source in the Schwarzschild coordinate, and c is the speed of

light.

The gravitational redshift effect is significant near a black hole. As an object ap-

proaches the event horizon of a black hole, theoretically the redshift could be as large

as infinity. However, this effect is typically minimal while it could still be measur-

able. For instance, this effect can be measured on Earth using the Mössbauer effect,

first observed in the Pound-Rebka experiment (Pound & Rebka 1960). Another in-

teresting example of such an effect is the Sachs-Wolfe effect (Sachs & Wolfe 1967).
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The expansion of space changes gravitational potential wells of the large-scale struc-

ture. This change induces gravitational redshift which is imprinted on temperature

fluctuations in the cosmic microwave background radiation at large scales.

These three competing effects, cosmological redshift, doppler redshift, and gravi-

tational redshift, contribute to the measured redshift simultaneously. The magnitude

of these effects depends on many factors, most importantly the distance of the source

from the observer and the environment of the source. For instance, the measured

redshift of near-by objects is dominated by the Doppler shift (e.g., the redshift of

the Andromeda galaxy), while the measured redshift of very distant galaxies is dom-

inated by the cosmological redshift. For the purpose of this dissertation though, we

are not concerned about the gravitational redshift, as it is negligible.

The relative velocity of galaxies within the large-scale structure is of our particular

interest, as this quantity can be employed to map the potential well of dark matter

halos or estimate the mass of these objects. Zwicky (1937) is the first who measured

a mass of such an object with measuring the relative velocity of galaxies inside a

cluster of galaxies. This quantity is used in this work as well to construct a relation

between the mass of dark matter halos and their observables (see Chapter IV for

more detail).

2.3 Growth of Structure

During the inflationary epoch, the scale factor grew exponentially and causes

quantum fluctuations to become classical. Because of the exponential expansion,

these tiny, quantum fluctuations stretched to macroscopic scales, and eventually left

the horizon. This process is called “freeze in”. After the termination of the infla-

tion, during the radiation-dominated and matter-domination epochs, these stretched
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quantum fluctuations re-entered the horizon. These tiny fluctuations induce pertur-

bations on the metric of the spacetime which couples them to matter and photon.

This coupling led to fluctuations in matter and photon density which can be stud-

ied and characterized via its signatures on the CMB, the primordial temperature

fluctuations.

The initial density modes which re-entered the horizon started to grow as a result

of the gravitational force. To model this evolution, the relativistic Boltzmann equa-

tion is employed to evolve matter and photons. This model can describe the evolution

of the density field and radiation fluctuation until the decoupling epoch when matter

and photons are decoupled from one another. After this epoch, the matter, cold-dark

matter and the baryonic matter, behaves like collisionless, non-relativistic particles,

which could be described solely by the theory of gravity. Finally, the gravitational

theory is employed to describe the growth of the cosmic structure. This growth can

be modeled with the Newtonian physics on top of the expanding Universe back-

ground, which is discussed in Section 2.1. At the peaks of this density field, the dark

matter halos, massive virialized objects in the Universe, begin forming and growing.

The next section presents a model that describes how these halos were formed and

evolved.

2.3.1 Growth of Matter Density Fluctuations and Halo Formation

The linear solution of the Boltzmann equation until the decoupling era would

approximate the evolution of matter in the early Universe pretty accurately. This

solution sets the initial condition within which growth of the cosmic structure started.

We start with the initial density field to study the non-linear evolution and growth
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of structure after the decoupling epoch. First, the density contrast is defined as

(2.27) δ(r, t) ≡ ρ(r, t)− ρ̄(t)
¯ρ(t)

,

where ρ̄(t) is the average density at time t. To evolve this density field, the spherical

collapse solution is followed. The spherical collapse solution was first proposed by

Gunn & Gott (1972). Assuming that the seeds of gravitationally bound structures

are spherical density, they illustrated that, in Einstein de Sitter Universe (EdS), the

density field evolves as

(2.28) δEdS ∝ t
2
3 .

What we observe today are discrete, gravitationally bound systems, which are

formed at the peaks of the matter density fluctuations. In order to relate the initial

density fluctuations in the early Universe to the structure we observe today, we need

a model which describes the space density of these gravitationally bound structures,

which are known as dark matter halos. Historically, the space density of dark

matter halos is referred to as the “halo mass function” (HMF). To determine

HMF, theoretical models typically rely on the assumption that the smoothed over-

density field δ(r, t) is a Gaussian random field with a scale-dependent variance σ(r) =

〈δ〉. Press & Schechter (1974) were the first who attempted to model and determine

HMF. They assumed that the probability that an overdense region has a value above

a critical over-density δc is

(2.29) P (> δc) =
1√
2σ

∫ ∞
ρc

exp
(
−ν

2

)
dδ =

1

2
erfc

(
ν√
2

)
,

where ν = δc/σ is the critical over-density in units of the variance. P (> δc), is equal

to the fraction of mass collapsed into halos with mass greater than M , F (> M). This

model predicts that only half of the entire mass of the Universe collapse into halos,
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lim
σ→∞

P (> δc) = 1/2. To avoid this problem Press & Schechter (1974) multiplied

the result by an ad hoc factor of two, leading to F (> M) = 2P (> δc) where F is

the fraction of collapsed mass. This model predicts the cumulative number count.

Observationally, however, it is more appealing to have an estimation of the number

density of objects within a mass bin [M,M+dM ], i.e. dn = n(M)dM or HMF. This

prediction can be directly compared with empirical data derived from observations.

HMF is determined by manipulating F (> M). Thus, HMF is

(2.30) n(M)dM =
ρ

M
F (M)dM =

ρ

M2
f(ν)

∣∣∣∣ d lnσ

d lnM

∣∣∣∣ dM ,

where σ(R) is the variance of the smoothed density field which is

(2.31) σ2(R) = 〈δ2(x,R)〉 =
1

2π2

∫
dk P (k) W 2

k (R)k2 .

P (k) is the matter power-spectrum and Wk(R) defines the smoothing function in the

Fourier space. Note that the scale, R, and the corresponding mass, M , are uniquely

related to each other through M = 4π
3
ρ̄R3. Thus, σ can be re-evaluated in term of

M .

According to the Press & Schechter (1974) ansatz f(ν), the fraction of collapsed

mass in a unit of ln ν, reads

(2.32) fPS(ν) =

√
2

π
ν exp

(
−ν

2

2

)
.

After this pioneering work, many other authors attempted to model and determine

f(ν), thereby HMF, by employing peak theory or excursion set theory4 (e.g., Bardeen

et al. 1986; Bond et al. 1991; Paranjape et al. 2013). While these rather simple

analytical approaches do a remarkable job of describing the observed trends, they

4I explored the excursion set theory and integrated this model into a semi-analytical simulation to construct HMF
and merger history of a Warm Dark Matter universe (Farahi & Benson 2013; Benson et al. 2013). These studies are
beyond the scope of this dissertation, thereby not discussed.
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Figure 2.1: This figure illustrated that the number counts of halos as a function of redshift is
sensitive to the cosmological parameters. This is a prediction for a survey covering 5,000 square
degrees assuming a complete sample of halos more massive than 1014 M�/ h

−1. The figure is taken
from Huterer & Shafer (2018).

are inaccurate and imprecise, thereby insufficient, to be applicable in modeling the

current observational data. The current attempts in constraining the cosmological

parameters with 1% precision require percent level calibration of HMF as a function

of the cosmological parameters. As an alternative, cosmological simulations have

since been used to derive an accurate estimation of this quantity (e.g., Jenkins et al.

2001; Reed et al. 2007; Tinker et al. 2008).

A key lesson from the functional form of HMF is that the number density of halos

is sensitive to the cosmological parameters and the initial condition, which itself is a

function of the cosmological parameters. Figure 2.1 demonstrates the sensitivity of

the number counts of halos as a function of redshift to the cosmological parameters.

Vikhlinin et al. (2009) performed a cosmological analysis with a set of these systems

derived from an observational study, successfully illustrated that the number density
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of their sample rules out a dark matter only universe. Since this study clusters are

considered as one of the primary probes of the cosmological parameters. To turn

clusters into a competitive cosmological probe, however, there are many challenges.

A major practical challenge is measuring the mass of these systems as it is not directly

observable.

The mass of dark matter halos is typically estimated with properties derived from

the luminous matter residing in the potential well of these systems. Dark matter

halos provide gravitational potential wells within which baryonic hot plasma cools

and forms stars and galaxies. Each dark matter halo contains hot plasma, which

is in the form of ionized hot gas, and stellar population, typically in the form of

galaxies. Considering the gravitation physics implies that the mass and redshift of

halos determines the total amount of baryonic matter within these systems. However,

how much of the initial gas turns into the stars depends on the efficiency of cooling

and the feedback mechanisms that inject energy into the hot plasma. A major lesson

in the past two decades is that the highest mass halos that host groups and clusters

of galaxies are less efficient at converting baryonic gas into stars. Therefore, the

majority of baryons end up in a hot intracluster medium (ICM, Briel et al. 1992).

Measuring galaxy formation and their assembly across cosmic history is a key to

understanding the astrophysical processes happening within halos and eventually

inferring the mass of these systems.

The following section, I will present the self-similar model. This simple model

describes how the observable quantities of dark matter halos scale with their total

mass. Even though this model cannot capture all the essential ingredients of baryonic

physics, it provides a basis for the rest of the work presented in this dissertation.
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2.4 Galaxy Clusters

The primary goal of this dissertation is to model and study how the mass of

halos scales with their observable quantities. It is useful to review the self-similar

model, originally proposed by (Kaiser 1986), which attempts to quantify these scaling

relations. This model assumes only gravitational physics and employs the spherical

collapse model. Another key assumption of this model is that the total baryonic

content of halos follows the dark matter content at all scales (Bertschinger 1985).

In the following I will illustrate that the observable quantities from the luminous

matter follow a power-law form with halo mass.

2.4.1 Self-similar Model of Galaxy Clusters

The gravitational force is a scale-invariant process. If gravity is the dominant

force on the scale of massive dark matter halos, then it is expected that the derived

quantities from the baryonic content of dark matter halos are scaled versions of each

other. The observable properties of these massive systems are therefore determined

only by their mass and redshift. Redshift determines the critical density

(2.33) ρc(z) =
3H2(z)

8πG
=

3H2
0E

2(z)

8πG
= E2(z)ρc,0 ,

where E(z) = H(z)/H0 defined in Section 2.2.

It is conventional to define halo mass as that, centered on a local potential mini-

mum, contained within a sphere of radius r∆ encompassing an over-density ∆ relative

to the critical density, thus

(2.34) M∆ =
4

3
πr3

∆∆ρc(z) ∝ E2(z)r3
∆ .

The combination of mass and redshift sets the strength of the local Newtonian

gravitational potential, Φ, and circular velocity of the halo, vcirc, through the com-
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bination E(z)M∆:

(2.35) v3
circ ∝ Φ3/2 ∝ E(z)M∆ .

The above relation motivates our use of the effective potential well depth, E(z)M∆,

as the independent degree of freedom in the scaling laws we consider in this disser-

tation. To reemphasis the role of the cosmological simulations, (Evrard et al. 2008)

accurately and precisely calibrated by N-body simulations of cold dark matter par-

ticles (Evrard et al. 2008). They illustrated that the scaling power, derived from

simulations, is very close to prediction of the self-similar model.

Intracluster medium (ICM) is the superheated plasma that falls into the potential

well provided by the dark matter halos. The ICM particles are assumed to be in

hydrostatic equilibrium inside these deep potential wells (Cavaliere & Fusco-Femiano

1978). This equilibrium satisfies the Virial Theorem between gravitational potential

energy U and kinetic energy, K, of ICM particles, 〈U〉 = −2〈K〉. Thus, the total

kinetic energy can be written in terms of the average kinetic energy of the ICM

particles, i.e. the cluster X-ray temperature, TX , leading to

(2.36) TX ∝ [M∆E(z)]2/3 .

The X-ray emission from the ICM is dominated by thermal bremsstrahlung emission,

for which the resulting luminosity scales as LX ∝ ρ2
gasr

3Λ(TX), where there are

two factors of the gas density ρgas because the radiation is produced by a two-

body interaction, and Λ(TX) is the cooling function. In the soft-band range [∼

0.1− 2.4keV], the integral of the cooling function is nearly independent of TX , while

across the full energy range used for bolometric X-ray luminosity it scales with T
1/2
X

(Blanchard et al. 1992). This leads to

(2.37)
LX,soft

E(z)
∝M∆E(z) ,

LX,bol

E(z)
∝ [M∆E(z)]4/3 .
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Figure 2.2: A multi-wavelength view of a massive, dunamically relaxed galaxy cluster. This figure
illustrates the multi-wavelength realization of Abell-1835 (z = 0.25) at X-ray (left), optical (middle),
and mm (right) wavelengths. The figure is taken from Allen et al. (2011).

As probes of the same thermal energy, YX and YSZ have the same self-similar

scaling, as can be derived from the product of Mgas and TX :

(2.38) Y E(z) ∝ [M∆E(z)]5/3 ,

under the simple assumption of a constant gas fraction, fgas. The similar assumption

of a constant stellar fraction, f?, leads to

(2.39) Mgas = fgasM∆ ∝M∆ , LK = M? = f?M∆ ∝M∆ .

since K-band luminosity, LK , is a good indicator of the total stellar mass. Finally,

a relation between richness, the number counts of galaxies with the virial boundary

of a halo, and mass would be in form of

(2.40) λ =
M?

m?,gal

∝M∆ ,

assuming each cluster has a galaxy population drawn from a universal luminosity

function with some effective mean stellar mass, m?,gal.

The term mass–property relation is employed to represent the functional form

of conditional halo statistics, p(S|M, z), where S is a set of intrinsic properties of

the population of halos of mass M at redshift z. To discuss the three-dimensional
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spatial measurements of halo properties, here, instead of observable, the term prop-

erty is used. While not directly observable, estimators for these quantities can be

constructed from optical, infrared, X-ray or SZ observations. Figure 2.2 illustrates

multi-wavelength observations of a massive galaxy cluster which can be used to esti-

mate the properties and eventually the mass of this system. Even though the above

idealistic model is based on a number of simplified assumptions, it provides a basis

by which mass–property relation can be described. For instance, according to the

self-similar model, mass–property relation can be modeled with a power-law form.

2.5 Cosmological Hydrodynamical Simulations

Cosmological hydrodynamical simulations, which evolve gravitationally-coupled

baryons and dark matter, provide mass, redshift, and environment dependent predic-

tions for the observables of massive halo. Historically, these simulations have played

a leading role in studying the baryonic content of dark matter halos and guiding the

modeling and parametrization of observational quantities (e.g., Evrard 1990; Evrard

et al. 1996; Bryan & Norman 1998; Sembolini et al. 2013; Le Brun et al. 2017; Barnes

et al. 2017; Pillepich et al. 2018). While significant progress has been made, multi-

fluid hydrodynamic simulations remain challenged by the wide dynamic range and

complex astrophysical elements involved in modeling the formation of stars, super-

nova feedback, and supermassive black hole effects. In a recent attempt to address

these challenges, McCarthy et al. (2017) have taken a novel approach by tuning

sub-grid control parameters to match the observed galaxy stellar mass function and

the hot gas mass fractions of groups and clusters simultaneously. Their simulations

include metal-dependent radiative cooling, star formation, and prescriptions for both

supernova and active galactic nucleus (AGN) feedback.
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A variety of numerical schemes for solving the coupled system of collisional bary-

onic matter and collisionless dark matter have been developed in the past decades.

These methods generally fall into two categories: (i) particle-based methods, which

discretize mass, and (ii) mesh-based methods, which discretize space (for a review

see Dolag et al. 2008). In this section, we briefly overview some of the relevant pieces

and ingredients of cosmological simulations.

2.5.1 N-body simulations

Large-scale structure formation started after the decoupling epoch when the Uni-

verse was dominated by matter. The leftover radiation is not playing a significant

role in determining the evolution of the baryonic content of the Universe, thereby

ignored in simulations employed in this work. In particle-base schemes, the cold-

dark matter is typically described as a collisionless, nonrelativistic fluid of particles

with mass m, position x, and momentum p, where x is taken to be the comoving

position. Accordingly, the momentum is p = ma2ẋ and proper peculiar velocity is

v = aẋ. The phase-space distribution function f(x,p, t) of the dark-matter fluid can

be described by the collisionless Boltzmann equation,

(2.41)
∂f

∂t
+

p

ma2
∇f −m∇Φ

∂f

∂p
= 0 .

In this equation Φ is the gravitational potential which is described by the Poisson

equation,

(2.42) ∇2Φ(x, t) = 4πGa2[ρ(x, t)− ρ̄(t)] .

In the above equation, ρ is the density field and ρ̄ is the mean density of the Universe

when the scale factor was a. The scale factor depends on the cosmological parameters

and is solved independently. Having the phase-space distribution function, f(x,p, t),
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we can determine the density easily as following

(2.43) ρ(x, t) =

∫
f(x,p, t)dp .

The above equation is typically solved by sampling the phase-space density by a

finite number of N representative particles. The solution is determined by integrating

the equations of motion,

(2.44)
dp

dt
= −m∇Φ

and

(2.45)
dx

dt
=

p

ma2
.

The gravitational evolution of dark matter particles describes the large-scale

statistics quite well but fails to describe the statistical quantities and observables

at small-scales. To describe these observables and the mass and redshift evolution

of baryonic content of dark matter halos, it is essential to model and include the

baryonic physics and the relevant astrophysical events. Hydrodynamical simulations

have emerged to address these needs. New ingredients are added to capture relevant

baryonic physics and the effects of feedback, basically any phenomenon other than

gravity.

2.5.2 Baryonic physics

The baryonic plasma content of the Universe can typically be described as addi-

tional ideal fluid. Therefore, to follow the evolution of the fluid, one usually has to

solve a set of hydrodynamic equations. These equations are

(2.46)
dv

dt
= −∇P

ρ
−∇Φ ,
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(2.47)
dρ

dt
= −ρ∇v ,

and

(2.48)
du

dt
= −P

ρ
∇ · v − Λ(u, ρ)

ρ
.

The above equations are the Euler equation, continuity equation, and the first law of

thermodynamics, respectively. One additional equation, which relating the pressure

P to the internal energy u, is required to have a complete set of solvable equations.

The latter equation is the equation of state. Assuming an ideal, non-relativistic,

monatomic gas, this will be

(2.49) P = (γ − 1)ρu ,

where γ = 5/3. Finally, Λ(u, ρ) is the cooling function due to the radiative losses.

The hydrodynamical equations for an expanding Universe are

(2.50)
∂v

∂t
+

1

a
(v · ∇)v +

ȧ

a
v = − 1

aρ
∇P − 1

a
∇Φ ,

(2.51)
∂ρ

∂t
+

3ȧ

a
ρ+

1

a
∇ · (ρv) = 0 ,

and

(2.52)
∂

∂t
(ρu) +

1

a
v · ∇(ρu) = −(ρu+ P )

(
1

a
∇ · v + 3

ȧ

a

)
.

There are four additional, required ingredients to model the baryonic content of

these massive cosmic giants. Each one of these ingredients is briefly described the

following.

(i) Cooling. The cooling function, Λ(u, ρ), is added to the first law of ther-

modynamics to describe radiative cooling of the plasma that exists inside virialized
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systems, dark matter halos. Therefore, this is a key ingredient in studying the bary-

onic content of halos. This function strongly depends on the temperature and the

metallicity of the plasma, i.e. hot gas.

(ii) Star formation. Reservoirs of cold and dense gas can turn into collisionless

stars. As the stellar population evolves, it feeds back mass and energy via stellar

wind and supernova explosions, which would heat the cold gas. As for star formation,

a relatively simple recipe is that originally introduced by Katz et al. (1996), which

is often used in cosmological simulations. According to this prescription, for a gas

particle to be eligible to form stars, it must have a convergent flow,

(2.53) ∇vgas < 0 ,

and have density in excess of some threshold value. These criteria are complemented

by requiring the gas to be Jeans unstable, which is described with

(2.54)
hgas

cgas

>
1√

4πGρgas

,

where hi is the smoothing length and ci is the local sound speed. Once a gas particle

is eligible to form stars, it forms stars with the rate can be written as

(2.55)
dρstar

dt
= −dρgas

dt
=
cstarρgas

tstar

,

where cstar is a dimensionless star formation rate parameter and tstar the characteristic

timescale for star formation.

(iii) Supernovae Feedback. High mass stars eventually ran out of fuel, col-

lapse, and then followed by an explosion as type-II supernovae (SN II). This violent

event would release some amount of energy to the surrounding gas. Under the ap-

proximation that the typical lifetime of massive stars which explode as SN II does not

exceed the typical time step of the simulation, this energy released instantaneously,
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with the feedback energy deposited in the surrounding gas. A further improvement

can be achieved by a more accurate model of the feedback energy, metal enrichment

of the surrounding gas, and the effects of SN Ia (Borgani et al. 2008).

(iv) Active galactic Nucleus (AGN) Feedback. AGN feedback can heat up

the surrounding gas via radiation. This process can also mix-up the hot and cold

gas through the mechanical wave resulted from the mass accretion on a black hole

(BH). The AGN mechanical feedback can be modeled with the following equations

(Ostriker et al. 2010),

(2.56)
dMBH

dt
=

1

1 + η

dMin

dt
,

(2.57)
dMout

dt
= η

dMBH

dt
,

(2.58)
dEw

dt
= εwc

2 dMBH

dt
,

(2.59)
dpw

dt
= vw

dMout

dt
,

where dMBH

dt
is the mass accretion rate on the BH, dMout

dt
is the mass outflow rate, dMin

dt

is the mass inflow rate, εw is the efficiency of generating mechanical energy with an

AGN wind, vw is the AGN wind velocity, and η ≡ Ṁout/Ṁin = 2εwc
2/|vw|2. Finally,

dEw

dt
is proportional to the energy rate deposited into the surrounding gas, and a

mechanism that describes a flux of hard X-rays photons.

2.6 Population Statistics of Massive Halos and Galaxy Clusters

As mentioned earlier, the number density of massive halos is an essential ingredi-

ent of a cluster cosmology analysis. Cluster surveys identify massive halos in the sky

by measuring their bulk properties integrated within an angular aperture. Derived
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observable properties populate a signal vector, S, with elements that may include

measures of optical richness, λ (number of red galaxies), galaxy velocity dispersion,

σgal, X-ray luminosity, LX, temperature, TX, derived hot gas mass, Mgas, SZ decre-

ment ,YSZ, and surface mass density from weak-lensing shear, Σlens. As the scaling

relations are following a power-law relation it is more convenient to define the halo

properties in natural log space. The natural log of a vector of properties S is defined

with s ≡ ln(S) and the natural log of the halo mass is defined with µ ≡ ln(M/Mp),

where Mp is a pivot mass. Note that a vector of properties is expressed with bold

font, s, and an element of this vector is expressed with italic font, s. The expected,

comoving number density of halos expected within some specific property bin, i, at

redshift bin, j, is given by the convolution,

(2.60)

〈
dni,j(s, z)

dV

〉
=

∫ zj+1

zj

dz
dV

dz

∫ si+1

si

ds

∫ ∞
−∞

dµ
dn(µ, z)

dµ
p(s|µ, z) ,

with p(s|µ, z) the conditional likelihood of the property used to select the halo sample,

dn(µ,z)
dµ

is the halo mass function, and V is the volume element of universe at redshift z.

The cosmological parameters define the halo mass function and the volume element

in this equation. The dependency of these functions to the cosmological parameters

for standard model of cosmology is pretty well understood.

The number abundance of clusters within a property bin and redshift bin can be

easily measured from observational data. By comparing the theoretical prediction

and observational data, one can constrain the cosmological parameters. To perform

such an analysis, a knowledge of p(s|µ, z) is required, which is the subject of this

dissertation. Thus, producing competitive cosmological constraints with a set of

clusters requires an unbiased estimation of halo properties from cluster observables.

Knowledge of these mapping functions is also critical for the understanding of the

multi-phase baryon evolution. A considerable effort has gone into measuring and
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calibrating the halo mass–cluster observables of the most massive halos in our Uni-

verse (see Giodini et al. 2013, for a recent review). However, these studies have

been limited by samples of tens to low hundreds, systematic uncertainties in total

mass estimates, and complex or ill-defined sample selection criteria. Recent efforts

are improving on these fronts (e.g., Mantz et al. 2016a,b; Zou et al. 2016; Saro et al.

2017). The work in this dissertation extend these efforts to accurately and precisely

model the baryonic content of galaxy clusters. Furthermore, I examine some of the

above relations with the clusters derived from cosmological simulations and cluster

identified in the observational data. In the following section, I discuss the notation

which is employed throughout this work.

2.6.1 The Mass–Multi-Property Relation

The mass–multi-property relation, p(s|µ, z), is the joint probability distribution

for a vector of halo properties at fixed halo mass. It is typically assumed that this

joint probability distribution has a log-normal form,

(2.61) P (s |µ, z) ∝ exp

{
−1

2
(s− 〈s|µ, z〉)TΣ−1(s− 〈s|µ, z〉)

}
,

where 〈s|µ, z〉 defines the log-mean behavior, and Σ defines the covariance of Gaussian

deviations about the log-mean. Each diagonal element of the covariance matrix

specifies the variance of properties while the off-diagonal elements are the property

covariance, all at fixed halo mass. The assume log-normal form is explicitly evaluated

in Chapter III of this dissertation. Assuming a power-law form, the expected value

of the property vector, conditioned on halo mass and redshift, is

(2.62) 〈s|µ, z〉 = π(z) +α(z)µ ,

where the vectors π and α are the normalizations and slopes of the halo properties

scaling law. The scatter of a property about the mean relation is expressed with
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σ. In practice, the normalization and the slope can be redshift-dependent. The

redshift-dependent of these quantities are studied for stellar mass and gas mass in

Chapter III.

If s is an vector of multi-wavelength properties then to construct p(s|µ, z) the

full covariance between each pair of properties is required. The diagonal element of

this covariance specifies the property variance about the mean relation, and the non-

diagonal elements is proportional to the correlation between two property residuals

about the mean relations. The latter is referred to as property covariance. This

property covariance is a subject of our investigation in Chapter III and Chapter VII

of this dissertation.

2.6.2 An Analytical Model of Conditional Statistics

Under the power-law and log-normal assumptions coupled with a simple param-

eterization of HMF, Evrard et al. (2014) derive closed-form expressions for multi-

property population statistics. A few of these expressions are presented in the fol-

lowing. This analytic model exposes fundamental parameter degeneracies between

the shape of HMF, which is driven mainly by the cosmological parameters, and

mass–property relation parameters determined by astrophysical processes, discussed

in Section 2.4. Another appealing advantage of this model is that the model sup-

ports fast computation of expectations for cosmological likelihood analysis, which

can substantially speed up the evaluation of a cluster sample inference models.

The smoothness of the mass function allows a logarithmic polynomial expansion,

(2.63)
dn(µ, z)

dµ
= exp

[
β0(z)−

3∑
j=1

βj(z)

j!
µj

]
,

consisting of an amplitude, exp {β0(z)}, and linear through cubic coefficients, βj(z),

that control the shape. In theory, one can go beyond the cubic approximation; how-
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ever, in practice the cubic approximation is sufficient for percent level accuracy. This

claim is explicitly evaluated in Chapter III. (Evrard et al. 2014) derived a complete

set of first order, second order, and third order expressions. These expressions are

used in later chapters.

First Order Approximation of a Cluster Selected Sample. The non-

uniform shape of HMF would have an effect of the log-mean total halo mass selected

by a given observable, sa. The expression for the log-mean total halo mass is

(2.64) 〈µ | sa〉 =

[(
sa − πa
αa

)
− β1σ

2
µ|a

]
,

where σ2
µ|a = σ2

a/α
2
a is the first-order estimate of the mass variance selected by

property sa. The other first order approximation of the key observable quantities are

also shown in the following.

The probability density function of an observable sb, for a selected sample of

another observable, sa, has a log-normal form with mean and variance

〈sb|sa〉 = πb + αb[ 〈µ|sa〉+ β1 rab σµ|a σµ|b ] ,(2.65)

σ2
b|a = α2

b [σ2
µ|a + σ2

µ|b − 2rab σµ|aσµ|b ] ,(2.66)

where rab is the intrinsic correlation coefficient between properties sa and sb at fixed

mass. This is a key quantity which is studied in this work both using halos derived

from simulations and observational data. This intrinsic correlation induces a bias

in the mean of sb. This effect can be understood by the fact that the dominant

lower mass halos that scatter upward into the chosen sa bin will also have a positive

deviation from the mean sb if rab is positive. And if rab is negative, the effect is

reversed. It is understood that the above functions can be a function of redshift.

However, a redshift correction is not required as all these derived quantities are

conditioned on redshift.
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This work pays careful attention to the intrinsic property correlation matrix,

as this quantity is not yet carefully studied. Improved knowledge of this matrix

should have a major impact on inference analysis using multi-wavelength cluster

data (Cunha 2009).

Second Order Approximation. As it is illustrated in the first order approxi-

mation, the convolution brings HMF coefficients into the expression for the log-mean

total halo mass selected by a given observable, sa,

(2.67) 〈µ | sa, z〉 = xs

[(
sa − πa
αa

)
− β1σ

2
µ|a

]
,

where σ2
µ|a = σ2

a/α
2
a is the first-order estimate of the mass variance selected by

property sa, and

(2.68) xs ≡ (1 + β2 σ
2
µ|a)

−1 ' (1− β2 σ
2
µ|a) ,

is a compression factor less than unity that is sensitive to the curvature of HMF.

This compression factor appears in other statistical measures. It also worth noting

that the magnitudes of the corrections due to the shape of HMF is directly related

to the property scatter. If this scatter is small (large) then the corrections would be

small (large) accordingly.



CHAPTER III

Simulated Halo Population Properties: scalings,
log-normality, and covariance

Philosophy and Contribution

In this chapter, I study the scaling behavior of the baryonic - stellar and hot gas

- content of dark matter halos derived from hydrodynamical simulations. The work

in this chapter provides new insights regarding these scaling relations. Additionally,

this work establishes new theoretical, model-dependent predictions which could be

falsified or confirmed via future observational data. Finally, I explicitly evaluate

the accuracy of population model which is discussed in Chapter II. This chapter is

taken from Farahi et al. (2017a), “Localized massive halo properties in bahamas and

macsis simulations: scalings, log-normality, and covariance”. The analysis and plots

presented in this Chapter are my own work. The simulations have been performed

and the halo catalogs are generated by the co-authors.

3.1 Chapter Introduction

The total baryonic content of dark matter halos appears in inform of hot gas or

cold, stellar material. In the previous chapter, we discussed how this baryonic plasma,

trapped inside the potential well of a dark matter halo, evolve, cools and form stars.

According to the self-similar model of Chapter II, the mass of these luminous matters

52
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should follow the mass of the host halo with a power-law relation with a power index

of one. Deviation from this prediction is expected as the self-similar model does not

capture all astrophysical phenomena occurring in these systems. In the past two

decades, measuring this potential deviation motivated a number of observational

studies (Giodini et al. 2013). These studies attempted to measure the statistical

relation between the halo mass and its gas and stellar content (Mantz et al. 2016a,b;

Saro et al. 2017; Schellenberger & Reiprich 2017). However, no consensus has been

reached yet regarding the exact value of the index of these power-laws.

The primary goal of this Chapter is to study the functional form of multi-wavelength

properties of a halos population conditioned on halo mass and redshift, p(S|M, z),

which defines the mass–property relation (MPR). In addition to the mean relation,

multi-wavelength population statistics requires a good understanding of the covari-

ance between pairs of intrinsic properties or observable quantities. This covariance

is an essential element in modeling multi-wavelength cluster samples, as pointed

out by Nord et al. (2008) for the case of inferring luminosity evolution from X-ray

flux-limited samples. The diagonal elements of the covariance matrix linking mass

to observable properties are becoming better measured, but currently off-diagonal

elements are poorly known (Mantz et al. 2016a). Cosmological hydrodynamics sim-

ulations, however, are a great tool for gaining insight into the detailed form of the

MPR, including property covariance.

The likelihood of little or no loss of baryons from the deepest potential wells

motivates an expectation of anti-correlation in the gas and stellar mass fractions in

the highest massive halos. If all clusters of fixed halo mass are closed baryon boxes

with baryons partitioned into stars and gas, then a particular system with slightly

more (less) gas than average must contain a lower (higher) stellar mass than average,
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meaning a strong anti-correlation between gas mass and stellar mass. Such an anti-

correlation is apparent in the Rhapsody-G simulations of Wu et al. (2015), where a

correlation coefficient r = −0.7 is found for gas and stellar mass deviations about

the mean in a sample of ten 1015 M� halos and their progenitors. In lower-mass halos

hosting groups and poor clusters of galaxies, feedback can effectively drive baryons

outside of the virial radius (e.g., Lau et al. 2010; Sembolini et al. 2013; Le Brun et al.

2017; Truong et al. 2018), reducing or eliminating the degree of anti-correlation.

Another key assumption in modeling MPRs is the form of the conditional distri-

bution of properties at fixed halo mass, usually assumed to take a log-normal form.

Under a log-normal assumption coupled with a simple parameterized approximation

to the halo space density, or mass function, Evrard et al. (2014, hereafter E14) de-

rive closed-form expressions for multi-property population statistics. The analytic

model exposes fundamental parameter degeneracies between the shape of the mass

function, which is driven by cosmology, and MPR parameters determined by astro-

physical processes (see Chapter II). Practically, the model supports fast computation

of expectations for cosmological likelihood analysis.

The goals of this Chapter are: i) to measure the mass and redshift dependencies of

MPRs for stellar mass and hot gas mass; ii) evaluate the statistical form of the MPR

likelihood, and; iii) test the accuracy of the E14 model in a simulation setting where

the intrinsic properties are measured directly. Unlike previous “zoom-in” simulations

(e.g., Wu et al. 2015), the bahamas simulation models baryon behavior in a large

cosmic volume, enabling study of a wide range of halos hosting groups and clusters.

The large samples from bahamas allow us to apply a localized regression approach

to estimate mass-dependent MPR parameters. However, the 400h−1 Mpc simulation

size limits the number of the most massive halos; bahamas statistical coverage drops
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off above 3 × 1014 M�. We therefore also include the macsis simulation ensemble

which, like Wu et al. (2015), uses the zoom-in technique to extend the mass range

of the bahamas sample while employing the same astrophysical model, resolution,

and cosmology (Barnes et al. 2017).

This Chapter organized as follows. In Section 3.2 we present the simulation sam-

ples used in this work while Section 3.3 describes our non-parametric local linear

regression (LLR) model. The LLR results, including covariance of hot gas and stel-

lar mass at fixed halo mass, are presented in Section 3.4. In Section 3.5 we test the

performance of the E14 analytic model, followed by discussion in Section 3.6 and a

summary in Section 3.7.

Chapter’s Notation. Throughout this Chapter, we use radial and mass scales

defined by a spherical density contrast with respect to the critical density of the

universe, ρcrit(z); M∆ indicates the mass within which the average total mass density

is ∆ρcrit(z). Halo masses are expressed in units of M�, not h−1M�).

3.2 Simulations

We use the bahamas cosmological hydrodynamical simulation (McCarthy et al.

2017) run using the Gadget-3 SPH code with subgrid prescriptions for metal-dependent

radiative cooling, star formation, and stellar and AGN feedback developed as part of

the OverWhelmingly Large Simulations project (Schaye et al. 2010). The periodic

400h−1 Mpc cube we use here adopts a flat ΛCDM cosmology with Planck 2013 cos-

mological parameters (Planck Collaboration et al. 2014), namely Ωm,Ωb,ΩΛ, σ8, ns, h =

0.3175, 0.049, 0.6825, 0.834, 0.9624, 0.6711 where Ωm, Ωb and ΩΛ are the normalized

densities in matter, baryons and vacuum energy, σ8 sets the power spectrum normal-

ization, ns is the primordial spectral index, and h ≡ H0/(100 km s−1 Mpc−1) is the
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dimensionless Hubble constant.

The wind velocity associated with stellar feedback and the heating temperature

associated with the AGN feedback in bahamas are adjusted so as to reproduce the

observed local galaxy stellar mass function and the amplitude of the relation be-

tween hot gas mass and halo mass of local X-ray-selected galaxy groups and clusters.

Non-tuned features match an unprecedentedly wide range of observed properties,

including galaxy and hot gas radial profiles as well as the behavior of stacked SZ and

X-ray luminosity as a function of galaxy stellar mass (McCarthy et al. 2017).

Cosmological simulations featuring volume-complete hydrodynamics with full sub-

grid physics at high spatial and mass resolution are very computationally expensive.

The 400h−1 Mpc bahamas simulation has spatial resolution of 4h−1 kpc and resolves

a 1014 M� halo with ∼ 30, 000 particles. Because of the limited number of very high

mass halos in the realized volume, the macsis project (Barnes et al. 2017) was

developed to extend the sample to higher mass halos. The macsis ensemble consists

of 390 “zoom-in” simulations (Tormen et al. 1997) of individual halo regions drawn

from a parent 3.2 Gpc N-body simulation. The hydrodynamic resimulations employ

the same resolution and sub-grid prescriptions as bahamas in a Planck cosmology

with nearly identical parameters as bahamas (parameter values typically differ in

the third significant digit, see Barnes et al. 2017).

As described in McCarthy et al. (2017), halos are identified using a “friends-of-

friends” percolation method. The spherically integrated quantities used here are

measured using the minimum of the local gravitational potential as the halo center,

and any sub-halos that lie outside the characteristic radii, R∆ are ignored.

The samples we use, listed in Table 3.1, include all halos with M500 > 1013M� at

redshifts z = 0, 0.5 and 1.0. Note that there the redshift slice for macsis sample
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Table 3.1: Halo sample sizes with M500 > 1013 M�.

Redshift bahamas macsis
1 11387 377

0.5/0.46a 17668 377
0 21987 385

a 0.5=bahamas , 0.46=macsis

is 0.46. The combined bahamas and macsis simulations offer tens of thousands of

halo realizations covering a wide dynamic range in total mass.

The halo properties we study are the aggregate stellar mass, Mstar, and the hot

phase gas mass, Mgas, measured within spheres enclosing densities of ∆ = 500 and

200 times the critical density, ρcrit(z). Note that the hot gas mass includes particles

with temperatures greater than 105 K while the stellar mass uses all star particles

within R∆.

For this study, we combine bahamas and macsis samples into a super-sample.

Since the bahamas and macsis are not using exactly the same cosmology, we re-

normalize the baryonic contents of the macsis sample to align the global baryon

fraction, Ωb/Ωm, to that assumed in the bahamas cosmology; however, the magni-

tude of this correction is small, < 2%. We also note that there is small difference in

the redshift of bahamas and macsis samples, 0.5 versus 0.46. Since we show below

that the redshift evolution of the properties we examine is relatively weak, we do not

apply any correction for this redshift.

The complex interactions of mergers, turbulence, cooling, chemical enrichment,

and feedback from supernovae and AGN play out within the evolving cosmic web net-

work of large-scale structure to determine the overall statistical nature of the baryon

component masses within the halo population. While matching observed mean stel-

lar and gas fraction behavior, within the limits of current observational uncertainties,

has been done in the bahamas and macsis simulations by tuning a small number of
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sub-grid parameters, higher-order features of the property statistics should be con-

sidered model-dependent predictions of the underlying astrophysical theory. Within

the context of these simulations’ numerical and astrophysical treatments, we focus

this Chapter on the model’s expectations for running of the slope and scatter of

the MPR with mass and redshift. Future work can examine the robustness of these

features using multiple simulations by independent groups.

3.3 Mass-localized Regression

In this section, we describe a localized linear regression model to characterize

the conditional joint property likelihood, p(Mstar, Mgas| Mhalo, z), of the simulated

halo ensemble. In practice, the power-law nature exhibited by most properties with

respect to mass motivates the use of logarithmic variables.

The method produces mass localized estimates of the intercepts, slopes and co-

variance of this pair of properties as a function of halo mass at fixed redshift. The

assumption of a log-normal form for the conditional likelihood underlies this model,

and we demonstrate the validity of this assumption in Section 3.4.2.

Following E14, our underlying population model considers a vector of properties,

S, associated with halos of total mass, M∆, at redshift, z. Using natural logarithms

of the properties, s = ln S, and mass, µ = lnM∆, the log-mean scaling of property a

at a fixed redshift is locally linear

(3.1) 〈sa |µ, z〉 = πa(µ, z) + αa(µ, z)µ ,

with redshift- and scale-dependent parameters that we measure by differentially

weighting halos in the simulation ensemble around a chosen mass scale. In this

model the normalization of the property element, Sa, is eπa(µ,z).

At a fixed redshift, we determine local fit parameters — the slope αa(µ), intercept,
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πa(µ), and intrinsic sample variance, σ2
a(µ) — for property sa by minimizing the

weighted square error,

(3.2) ε2a(µ) =
n∑
i=1

w2
i (sa,i − αa(µ)µi − πa(µ))2 ,

where the sum i is over halos, µi ≡ ln(Mhalo,i/M), and wi is the local weight centered

on the mass scale, M ≡ eµ. We sweep through values of M covering the mass scale

of poor groups to rich clusters, M500 ∈ {1013, 1015}M�, in the joint bahamas and

macsis halo samples.

We use a Gaussian weight in log-mass,

(3.3) wi =
1√

2πσLLR

exp

{
− µ2

i

2σ2
LLR

}
,

with σLLR = 0.46, equivalent to 0.2 dex in halo mass. As the central halo filter scale,

µ, is varied, we record the local slope and intercept fit parameters. Ideally we want

the weighting scheme has the smallest possible width; however practically this is not

achievable as we ran out of clusters, as a result the fit parameters become noisy. If

the width is too large, then it smooths out the effect of running. We test whether

decreasing the width of the weighting scheme changes our results, and we find that

the estimates become noisier, but the shapes and the estimated values are effectively

the same. We therefore conclude that the size of the width is sufficiently small for

the purpose of this work.

With a local slope and intercept for each property, j, we can compute the local

property covariance using the same weighting scheme. We use an unbiased weighted

estimator of the property covariance matrix, C (Gough 2009),

(3.4) Ca,b = A
n∑
i=1

wi δsa,i δsb,i ,
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where δsa,i ≡ sa,i − αaµi − πa is the residual deviation from the local best-fit, (a, b)

are labels representing either stellar mass or hot gas mass, and the pre-factor is

(3.5) A =

n∑
i=1

wi(
n∑
i=1

wi

)2

−
n∑
i=1

w2
i

.

The covariance matrix for our pair of halo properties has one correlation coeffi-

cient,

(3.6) rgas,star =
Cgas,star√

Cgas,gas Cstar,star

.

We note that fitting a global power-law to MPRs that run with scale could induce

covariance as an artifact of the poor, i.e. underfit, regression model. The locally

estimated covariance is unbiased, easily computable, and asymptotically approaches

the population true value in the limit of σLLR → 0 and Nhalo →∞.

3.4 Results

In this section, we begin by presenting the LLR scaling behavior of log-mean stellar

mass and hot gas mass as a function of halo mass and redshift. We then examine

the form of the conditional likelihood PDF, finding excellent agreement with a log-

normal form, the assumption behind the weighted Pearson covariance, equation (3.4).

Finally, we investigate the redshift and mass dependence of the star-gas covariance.

Unless otherwise stated, error bars and shaded regions in the figures below are one

standard deviation based on bootstrap estimates of 1000 re-sampled halo datasets.

3.4.1 LLR fits to scaling relations

Figure 3.1 shows how the hot gas mass (top) and stellar mass (bottom) of the

bahamas and macsis halo population scale with total mass at three redshifts and

for two critical overdensity scales, ∆ = 500 and 200. LLR fit lines are also shown.
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Figure 3.1: Halo baryon contents (points) measured within over-densities, ∆ = 500 (left) and
200 (right), for Mgas (top) and Mstar (bottom) as a function of total halo mass at three redshifts
indicated in the legend. Lines show the LLR fits. Parameters for the ∆ = 500 case are shown in
Figures 3.2 and 3.3.



62

Figure 3.2: Dependence of the slope and scatter of hot gas mass (left) and stellar mass (right)
MPRs on total halo mass for ∆ = 500. Lines show the LLR estimates and shaded regions give 1σ
confidence bootstrap errors in the parameters. The scatter is the root-mean square of the natural
log of the measured property.

Overall, the conditional statistics display similar forms at different overdensities and

redshifts, but the fit parameter values depend on scale, redshift and halo mass.

Figure 3.2 shows the mass and redshift dependence of the gas/star LLR slope and

rms scatter at ∆ = 500. There is strong scale dependence in the slopes of the MPR

scalings in both Mgas and Mstar, with milder redshift dependence. For Mgas both

the slope and scatter at fixed halo mass increase at lower redshifts, and the running

behavior of the slope is non-monotonic with halo mass, exhibiting a peak value near a

group-scale mass, M500 ∼ 3× 1013 M�. For Mstar the redshift sensitivity of the MPR

parameters at fixed halo mass is more modest, and the slope at tends to slightly

decrease toward lower redshifts. The running of the Mstar slope is approximately

linear in the log of halo mass.

In the bahamas simulation study of Le Brun et al. (2017), a broken (piece-wise

constant) power-law is used to fit the scaling of hot gas mass with halo mass. The

broken power-law approach introduces a particular mass scale — the transition, or

break, mass — that is not anticipated by the relatively smooth astrophysical pro-

cesses operating within halos. The LLR approach enables the detection of continu-
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ously varying, scale-dependent features without introducing an arbitrary halo mass

scale. Indeed, the smooth behaviors of the local slopes in Figure 3.2 do not support

a broken power-law approximation for either hot gas mass or stellar mass.

For cluster-scale systems above ∼ 5 × 1013 M�, the slopes in both gas mass and

stellar mass run nearly linearly with log-mass, approaching the naive self-similar

expectation of one in the highest mass systems from above and below, respectively.

This is in agreement with Barnes et al. (2017) who find a slope ∼ 1 when only the

most massive systems are considered, but find a steeper slope using the superset of

bahamas and macsis halos more massive than 1014 M�.

As hierarchical clustering progresses and halos grow larger and develop deeper

potential wells, feedback driven by the central galaxy becomes more confined to the

core region, allowing gravity to become dominant and self-similar scalings to recover.

The simulations show this type of progression, with slopes at z = 0 in Mgas and Mstar

lying within 1.00 ± 0.05 at masses, M500 > 1015 M�. Furthermore, for the highest-

mass systems, the MPR parameters do not vary significantly with redshift, but there

are statistically significant changes in the slope and normalization for group-scale

systems. The above trends persist at both overdensity scales presented in this work.

We confirm, but do not present here, similar behavior at ∆ = 2500.

Figure 3.3 shows the scale and redshift behavior of the ∆ = 500 LLR normaliza-

tions for stellar and hot gas masses. The normalizations are presented as halo mass

fractions normalized by mean cosmic baryonic fraction. Recall that we have aligned

the macsis cosmic baryon fraction to that of the bahamas simulation.

Above a halo mass of ∼ 3×1014 M�, the total gas mass and stellar mass fractions

become nearly constant; however, there is strong mass and redshift evolution for

lower mass systems. The nearly fixed high mass behavior provides strong evidence
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Figure 3.3: LLR normalizations of hot gas mass (solid) and stellar mass (dashed), expressed as
mass fractions, fa = eπa(µ,z)/M , where πa(µ, z) is the scale- and redshift-dependent log-mean,
equation (3.1), normalized by the cosmic mean baryon fraction of the bahamas universe. Shaded
regions show the intrinsic scatter within the population rather than uncertainty in the mean be-
havior. The top and bottom panels are for ∆ = 500 and 200 respectively.
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Figure 3.4: Conditional likelihood distribution derived from scaling relation residuals, equation (3.7)
in hot gas mass (left) and stellar mass (right). Colors indicate redshift as in Figure 3.1. The mean
bias is typically less than 1%, skewness is less than 1, and kurtosis is less than 5 which are strong
indicators of log-normality. Rank (Q-Q) comparison, shown in the inset of each panel, indicate only
mild deviations in log-normality in the wings of each distribution.

that baryon venting is negligible, while considerable venting occurs at the mass scale

of groups. The weak redshift dependence at high mass is in good agreement with

trends observed from a joint analysis of South Pole Telescope (SPT) and Dark Energy

Survey (DES) data in a sample of 93 massive SPT clusters (Chiu et al. 2017).

The interplay between cooling and feedback controls the relative mean proportions

of the integrated gaseous and stellar masses in a way that introduces considerable

variance at the group mass scale, but the variance decreases for richer clusters with

deeper potential wells. Associated with this, the covariance of gas and stars deter-

mines the scatter in overall baryon content. We find evidence for a “closing box”

scenario at the high-mass end, with increasing anti-correlation of stellar mass and

gas mass at later times. We present this result in Section 3.4.3.

3.4.2 Log-normality of conditional statistics

The log-normal shape of conditional statistics, an implicit assumption in previous

analyses, is a core ingredient of the E14 population model. In the context of modeling

star formation, a log-normal shape for final stellar masses is expected when random
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multiplicative factors govern the evolution of the system (e.g. Larson 1973; Adams &

Fatuzzo 1996). Observational studies of galaxy clusters broadly support this form,

although with currently modest sample sizes (e.g., Pratt et al. 2009; Mantz et al.

2010; Czakon et al. 2015; Mantz et al. 2016a).

Non-Gaussian terms in MPR statistics can introduce bias in cosmological analysis

based on cluster counts (Erickson et al. 2011; Weinberg et al. 2013). Such terms

cannot be characterized through measurement of the scatter alone. We use the large

bahamas halo samples to study the PDF shape in detail, and assess the degree to

which conditional property statistics of the simulated halo sample follow a log-normal

frequency distribution.

Previous simulation studies have addressed this issue with generally smaller sam-

ples. Using an ensemble of N-body and non-radiative hydrodynamics simulations,

Evrard et al. (2008) show that the PDF of dark matter velocity dispersion at fixed

halo mass is very close to log-normal, with some samples showing a modest skew

caused by a minority population of post-merger, transient systems. The construc-

tion of the bahamas and macsis halo samples effectively filters out the small fraction

of such secondary objects. Stanek et al. (2010) demonstrate log-normal PDFs for

multiple properties within a sample of ∼ 4000 halos drawn from the Millennium Gas

Simulations, as do other hydrodynamic simulations with smaller samples (Fabjan

et al. 2011; Biffi et al. 2014; Le Brun et al. 2017; Truong et al. 2018).

Given the LLR fit for property sa (with a a label indicating either ln Mstar or

ln Mgas), we calculate the normalized deviation of halo i from the mean relation,

(3.7) δ̃a,i ≡ δsa,i/σa(µi) =
sa,i − αa(µi)µi − πa

σa(µi)
,

where αa(µi) and σa(µi) are the local slope and scatter of the MPR evaluated at the

total mass of the ith halo (see, Figure 3.2).
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Figure 3.4 presents the PDF of the normalized residuals of gas mass (top panels)

and stellar mass (bottom panels) for ∆ = 500 at z = 0, 0.5 and 1. These results

are consistent for all overdensities. The inset of each panel provides a Q-Q plot1

to illustrate deviations from the normal form. The residuals in the log of stellar

mass are extremely Gaussian, while the gas mass displays slight negative skewness

and non-zero kurtosis. We note that only a small fraction halos, < 1%, are outliers

with low gas mass. Understanding the physical causes of this minor deviation from

normality lies beyond the scope of this work. The Gaussian form persists for both

Mgas and Mstar and over all over-density scales considered in this work.

These results provide strong evidence that the log-normal form is adequate to

model the intrinsic quantities of halos. In Section 3.5 we demonstrate that employ-

ing a local form of the E14 model achieves sub-percent accuracy in estimating the

population mean mass selected on baryon mass.

Within the scope of cluster cosmology, non-Gaussian MPR shapes were formulated

by Shaw et al. (2010) in terms of an Edgeworth series expansion,

(3.8) P (Mproxy|Mtrue) ≈ G(x)− γ

6

d3G

dx3
+

κ

24

d4G

dx4
+
γ2

72

d6G

dx6
,

where the skewness, γ, is defined as,

(3.9) γ =
〈(Mproxy −Mtrue)

3〉
σ2

,

and the kurtosis, κ, is defined as,

(3.10) κ =
〈(Mproxy −Mtrue)

4〉
σ4

− 3,

and G(x) is a Gaussian distribution. We note that achieving sub-percent level sys-

tematic uncertainty in cluster number counts under a log-normal approximation with
1The quantile-quantile (Q-Q) plot is a visualization technique for determining if a population sample comes from

an assumed distribution. Axes compare rank quantiles of the model to quantiles of the sample.
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a mass proxy having 20% scatter requires roughly γ < 7 and κ < 90 (see, equation

(156) of Weinberg et al. 2013). The skewness and kurtosis values for our halo samples

are at least an order of magnitude smaller than what is needed to achieve sub-percent

uncertainty in number count statistics, but more work is needed to confirm this result

for realistic cluster samples.

In principle, if the form of an observable conditional statistics at fixed halo mass

is known, it can be easily incorporated into a cosmological analysis without intro-

ducing additional source of systematic error due to the uncertainty in the form of

distribution. When modeling observational data, the form of the conditional statis-

tics of measured quantities may differ from a log-normal form, for example due to

projection effects (e.g., Cohn et al. 2007; Erickson et al. 2011). Analysis of such data

using a log-normal assumption in the likelihood leads to systematic biases in halo

mass that in turn can bias cosmological parameter constraints. These additional

uncertainties are strongly dependent on survey characteristics and data reduction

pipeline and so must be modeled explicitly (e.g., Juin et al. 2007; Farahi et al. 2016;

Pacaud et al. 2016; de Haan et al. 2016).

3.4.3 Stellar–hot gas covariance

A complete multi-wavelength MPR likelihood model will include property covari-

ance. For cosmology, knowledge of property covariance improves dark energy con-

straints when performing analysis of joint, multi-wavelength cluster samples (Cunha

2009). For astrophysical studies, Nord et al. (2008) demonstrate how covariance

between temperature and luminosity can confuse studies of luminosity-temperature

redshift evolution. Covariance of observed hot gas properties has recently been mea-

sured in X-ray selected samples (Mantz et al. 2010, 2016a; Andreon et al. 2017).

In simulations, a covariance matrix of dark matter and hot gas properties was first
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Figure 3.5: The LLR correlation coefficient between stellar mass and gas mass at fixed halo mass,
equation 3.4 at the redshifts indicated. Anti-correlation is favored at low redshifts and masses above
1014 M�.

presented by Stanek et al. (2010) for halo samples in the Millennium Gas simulation.

Based on a small sample of high mass halos and their progenitors run with RAMSES

hydrodynamics including AGN feedback, Wu et al. (2015) published the first non-zero

correlation of hot gas and stellar mass fractions. We perform a similar measurement

here on a much larger sample of halos evolved with an independent numerical method.

The correlation coefficient of gas and stellar mass at fixed total mass, equation

3.4, is plotted as a function of halo mass in Figure 3.5. The color scheme is consistent

with that used in Figure 3.1. The correlation coefficient begins near zero at 1013 M�

and becomes increasingly negative at higher halo mass. The values plateau around

3 × 1014M� and decline in amplitude for the highest mass halos. The results at

∆ = 200 follows a similar pattern as ∆ = 500.

The lack of correlation for group size halos can be explained through an “open

box” scenario in which the total baryonic content of a halo is not conserved. Feedback

effects at low masses are efficient at venting material out of the relatively shallow
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potential well. As shown by McCarthy et al. (2011), the gas ejection takes place at

high-redshifts, 2 . z . 4, in the progenitors of present-day groups. The ejection is

sufficiently energetic that the gas is not re-accreted later on. For higher mass halos,

however, the gas is re-accreted. The anti-correlation above 1014 M� is indicative of a

more “closed box” nature in which the overall baryon fraction of halos more closely

resembles the global value, Ωb/Ωm. The redshift behavior in Figure 3.5 indicates that

the box is closing more tightly over time, with the extremal value of r decreasing

from −0.25 at z = 1 to −0.5 at z = 0.

Wu et al. (2015) find a correlation coefficient of −0.68 at ∆ = 500, stronger than

what is found here. The different behaviors appears are likely due to the smaller

variance in stellar mass in the bahamas and macsis samples for the most massive

systems, & 1015M�. We return to this issue in more detail in Section 3.6.

Another application of the covariance is in estimating the expected value of two

properties, for example 〈log Mstar| log Mgas〉. According to the E14 analytic model,

which will be discussed in detail in Section 3.5, the expected value stellar mass about

fixed gas mass requires an estimation of the correlation coefficient between the two

property about fixed halo mass. Figure 3.6 illustrates the effect of ignoring this

covariance. Figure 3.6 shows the estimated 〈log Mstar| log Mgas〉 excluding (dashed

line) and including (solid line) the correlation coefficient. We note that excluding

this factor leads to a few percent bias, which is proportional to the full covariance,

i.e. the gas mass scatter, stellar mass scatter, and the correlation coefficient.

3.5 Validating the analytic population model

Cluster population statistics are linked to the constituents of the universe through

the growth of cosmic structure, and many ongoing and future cluster surveys are
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Figure 3.6: The effect of correlation coefficient on estimating 〈log Mstar| log Mgas〉 for ha-
los in the bahamas simulation at redshift zero. The red (dashed) line is the predicted
〈log Mstar| log Mgas〉 assuming the correlation coefficient of zero; and the red (dashed) line is the
predicted 〈log Mstar| log Mgas〉 assuming the correlation coefficient estimated in 3.5.



72

focused on using cluster population statistics to constrain models of dark energy

and cosmic acceleration (e.g., Mantz et al. 2015; de Haan et al. 2016; Mantz et al.

2016a; Dark Energy Survey Collaboration et al. 2016; Pierre et al. 2016). The multi-

property space density and conditional statistics of the population of massive halos

are essential ingredients of such efforts. The evidence presented above indicates that

the bahamas and macsis halo populations obey the log-normal statistics assumed

by the E14 analytic model. In this section we explicitly test the accuracy of that

model by examining the expected log-mass of halos, 〈lnM |sa〉, selected by an in-

trinsic property, sa. This model is introduced in Chapter II. However, for the sake

of completeness, we remind some of the relevant elements and equations. For the

complete set of mathematical expressions, we refer the reader to Chapter II.

The smoothness of the mass function allows a logarithmic polynomial expansion,

(3.11)
dn(µ, z)

dµ
= exp

[
β0(z)−

3∑
j=1

βj(z)

j!
µj

]
,

consisting of an amplitude, eβ0(z) and linear through cubic coefficients, βj(z), that

control the shape. These coefficients vary smoothly with redshift. Figure 3.7 shows

the differential number counts as a function of halo mass for redshift z = 0 slices

as points, and the corresponding mass function fits as lines. We analyze the z = 0

sample and fit the number counts of halos to the above third-order polynomial. To

estimate the β’s we fit a third order polynomial to the ln dn(M,z)
d lnM

− lnM . We find

values of β0 = 8.42, β1 = 2.93, β2 = 0.86, and β3 = 0.42 2. The β1 term represents

Eddington bias from convolution of a pure power-law mass function. Generally, the

slope of the mass function lies in the range β1 ∈ [2, 4], the curvature term β2 ' 1,

and the variance ranges from (0.05)2 to (0.3)2 (see Fig. 3.2).

2Note that the β1 and β2 terms in E14 are the local first and second derivatives of HMF evaluated at a pivot
mass, while the β1 and β2 in this work are derived from fitting the halo mass function over the mass range shown in
Figure 3.7.
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Figure 3.7: The halo mass function derived from the bahamas simulation. The line is a third-order
polynomial fit to the data points, equation (3.11), for redshift z = 0.

Figure 3.8: Tests of the E14 model for halos selected by hot gas mass (left) and stellar mass (right).
In each panel the upper sub-panels show the total halo mass of individual halos as a function of the
selection mass, with black curves showing the LLR estimates of the underlying true 〈lnM500|sa〉
relation, where sa = ln Mgas or ln Mstar. The red dashed (green solid) lines are predictions from
inverting the global (local) MPRs, ignoring Eddington bias, while the blue lines show E14 model
expectations that include the mass function convolution at second order. The lower sub-panels
show the bias in the estimated halo mass, with dashed black lines showing ±1% accuracy with
respect to the LLR true estimate.
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The model estimate can be compared to the true log-mean halo mass in the

simulations. To determine the underlying “true” values of 〈µ|sa, z〉, we perform the

inverse LLR fit to that used above, meaning we fit for the mean total halo mass,

M500, as a function of either stellar mass or gas mass. We perform this regression

above Mstar = 1012 M� and Mgas = 4× 1011 M�. The results are shown as black lines

in the upper panels of Figure 3.8.

The lower panels of Figure 3.8 show the accuracy of various estimates compared

to the direct LLR fits. Green lines show the naive estimator, 〈µ|sa, z〉 = (sa−πa)/αa,

using best fit with constant slopes over halos with total masses > 1013M�. This naive

estimator, which ignores both the mass dependence of the slope and the Eddington

bias, struggles to achieve mass accuracy at the level of 10%.

Red dashed lines improve on this naive estimate by using the local slope from the

LLR model, Figure 3.2, while still ignoring the Eddington correction. This model

is an improvement but it does not reach percent-level mass accuracy, given by the

horizontal dotted lines in the lower panels of Figure 3.8.

Applying the full expression of equation (2.67), with the bias term and local

estimates of the slope and scatter, leads to the blue line in Figure 3.8. This estimate

recovers the true mean mass within 1% for selection by Mgas over the entire mass

range shown.

Equation (2.67) is similarly accurate for selection by Mstar above a stellar mass

of 1012.3M�. Below this the error grows, approaching a 5% bias at the lowest stellar

masses. In halos near 1013M� that host poor groups of galaxies, the scatter in

cumulative stellar mass within halos is large, σ ' 0.3. The equivalent mass scatter

at fixed Mstar, given by σµ = σ/α is larger, σµ ' 0.4, since the LLR slope is sub-

linear, α ∼ 0.8. The magnitude of the bias correction, proportional to the MPR
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variance, is largest for the low-mass halos selected by Mstar. In addition, there may

be some non-Guassianity beginning to appear in p(Mstar Mhalo) at these low masses,

as close inspection of Figure 3.8 indicates.

What we have shown is that simple properties of simulated halos, namely Mgas and

Mstar, follow the E14 model form at a level sufficient to achieve sub-percent accuracy

in estimated log-mean total halo mass. The test here, involving intrinsic halo proper-

ties, Sint, measured directly within the simulations, is a prelude to more realistic tests

using mock observables. Projection and telescope/instrument effects introduce an

extra convolution, p(Sobs|Sint, z), that may introduce non-Gaussianity into the form

of the measured observables, Sobs. We defer such survey and instrument-specific

studies to future work.

Future work will extend this analysis to include additional observable properties

such as X-ray temperature or luminosity. Support for cosmological analysis also re-

quires mapping intrinsic to observed properties in a survey-specific manner, a process

that could induce non-Gaussian features into the conditional statistics.

3.6 Discussion

Here we discuss our findings in the context of previous simulation work. We offer

some initial thoughts on observations, but leave detailed study of modeling observed

MPRs to future work.

3.6.1 Mean MPR behavior

The cosmo-OWLS simulations, precursor to those used here, display hot gas scal-

ing trends similar to those of bahamas and macsis simulations. Le Brun et al.

(2017) fit the median behavior in mass bins for halos above 1013 M� and 0 < z < 1.5

to both single and broken power law forms. For ∆ = 500 they find a single power-law
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slope in Mgas of 1.32± 0.02, intermediate to the values shown in Figure 3.2. Using a

break point of M500 = 1014 M�, they find a high-mass slope of 1.18± 0.02, similar to

our LLR values at 3× 1014 M�. For low masses between the break and sample limit,

they find redshift-dependent behavior with a slope of 1.74 at z = 0 declining to 1.32

at z = 1. The bahamas and macsis samples behave similarly; the local LLR slope

of the Mgas MPR is most sensitive to redshift below 1014 M�.

Using an independent smoothed particle hydrodynamics code, Truong et al. (2018)

simulate 24 massive halos with astrophysical treatment that includes AGN feedback.

While their methods are not directly calibrated to match the observed gas content

of clusters, their estimate of the Mgas MPR slope is ∼ 1.07, near the value found for

halo masses 3× 1014M� in the bahamas and macsis simulations.

The IllustrisTNG project (Springel et al. 2018) produces full-physics simulations

of 100 and 300 Mpc volumes with a moving-mesh code and an updated feedback

model. Pillepich et al. (2018) study the stellar contents of a subset of halos at

redshift z < 1 derived from the TNG100 and TNG300 simulations. Fitting a single

power-law to the total stellar mass MPR around a mass scale of M500 = 1014 M�,

they find a slope of 0.84, in very good agreement with our findings.

The trend toward a self-similar slope of one in the Mgas MPR is supported by the

observational sample of relaxed, high mass clusters by Mantz et al. (2016a). Using

weak lensing masses, they find a slope of 1.04±0.05 in the Mgas−MWL relation for 40

clusters with kTX > 5 keV. Studies of lower mass clusters typically find super-linear

scaling of gas mass with halo mass, such as the slope of 1.22±0.04 found by Lovisari

et al. (2015) for a sample of 82 clusters. Nevertheless, a fair comparison between

simulation results and observational study should include various systematic and

observational effects ignored in this analysis, such as selection effect of clusters and
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projection effects.

3.6.2 Diagonal elements of the property covariance

The intrinsic scatter in the MPR for a certain property sets its quality as a proxy

for total halos mass. Among observable X-ray properties, it has previously been

noted that Mgas has low scatter in both observations (Okabe et al. 2010; Mantz

et al. 2016a) and hydrodynamic simulations (Stanek et al. 2010; Le Brun et al. 2017;

Barnes et al. 2017; Truong et al. 2018).

For cosmo-OWLs, Le Brun et al. (2017) find a scatter of 0.11 in Mgas at fixed

halo mass of 1014 M� at z = 0, which agrees well with our results. They find redshift

and mass trends similar to those found here. Wu et al. (2015) find Mgas scatter of

0.08 in the Rhapsody-G simulations of ten massive halos, including their progenitors.

Truong et al. (2018) find a somewhat smaller scatter of 0.06 in their sample of 24

halos.

We note that the scatter derived in this work is an intrinsic halo property whereas

the observational data are measured in a projected space. Given the incoherent

nature of projections, the scatter derived from observational data should be larger

that the intrinsic values derived in this work. For instance, Mantz et al. (2016a) find

0.09±0.02 for Mgas for halos above 3×1014M� which is marginally larger than what

is found in this work.

On the scatter in overall stellar mass at fixed halo mass, relatively little work has

been published from either simulations or observations. Pillepich et al. (2018) find

scatter of 0.16 in Mstar the TNG100 and TNG300 simulations for halos ∼ 1014 M�, in

good agreement with the bahamas and macsis results. A more detailed comparison

is needed to compare trends with mass and redshift more precisely. In the Rhapsody-

G sample, Wu et al. (2015) find Mstar a larger scatter of 0.34 in a combined sample
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comprised of ten massive halos at z = 0 and their progenitors at z = 0.5 and 1.

The previous observational constrains on the scatter of stellar mass at fixed halo

mass have been consistent with our findings (e.g., Andreon 2010, 2012). In a differ-

ent work, Zu & Mandelbaum (2015) combine the galaxy stellar mass function with

galaxy-galaxy lensing and galaxy clustering from a sample of Sloan Digital Sky Sur-

vey (SDSS) clusters and find a scatter in the natural log of central galaxy stellar mass

of 0.4 for clusters with masses near 1014 M�. They also find statistically significant

evidence in favor of the scatter in Mstar decreasing with increasing halo mass, but

this refers only to the central galaxy, not the total stellar content.

3.6.3 The off-diagonal element of the property covariance

In contrast to the diagonal elements which determine the mass proxy quality

of individual properties, the off-diagonal covariance elements of the joint property

matrix have received far less attention.

The results presented in Section 3.4.3 are from hydrodynamics simulations that

have been carefully calibrated to reproduce the observed mean relations between

gas mass and halo mass and stellar mass and halo mass. While model-dependent,

these theoretical predictions are testable empirically with current and future multi-

wavelength survey data.

The Rhapsody-G simulation by Wu et al. (2015) established the first estimate

of anti-correlation between stellar and gaseous content of halos. In this work, we

extend their analysis by using a much larger halo sample that extends to galaxy

group scales.

In agreement with Wu et al. (2015), we find that the most massive systems are

approximately “closed boxes”, but our correlation coefficient peaks at a smaller mag-

nitude than the value of −0.68 found in that work. For the group size halos, the
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link between the stellar mass and hot gas mass is strongly reduced (see Figure 3.5).

This trend is due to more efficient feedback in low mass halos that ejects a significant

fraction of the gas from the progenitors of the groups to radii outside R500, which is

evident from the change in the normalization of the total baryonic content.

Furthermore, we see redshift evolution in the correlation coefficient toward larger

anti-correlation at later times. This evolution might suggest that halos of fixed mass

vent their baryonic content more efficiently at high redshift. This interpretation

indicate that baryon fractions increase with increasing redshift at fixed halo mass.

However, this scenario is not supported by the LLR normalizations (Figure 3.3).

Instead, we observe increasing scatter at lower redshift for both gas mass and stellar

mass at fixed halo mass, which allows more a longer lever arm to support correlation.

This increase in the scatter could be the primary factor which explains the observed

redshift evolution. Accretion events might be the key in understanding this trend.

Massive halos gain mass through merging and accretion, and the rate of accretion

declines with redshift (Fakhouri et al. 2010). Due to the stochastic nature of these

events, these events add additional “irreducible scatter” which could weaken the

strength of anti-correlation.

A key difference between the Rhapsody-G simulation results of Wu et al. (2015)

and ours is the scatter in Mstar at fixed halo mass, which for high mass halos is much

larger in Rhapsody-G (> 30%) than bahamas and macsis simulation (< 10%).

We note that the Rhapsody-G sample combines all halos progenitors into a single

sample. The different sample definitions, along with different numerical and modeling

treatments for star formation and feedback, are likely both conspiring to create the

difference in property correlation behavior.

The return toward zero of the correlation coefficient for high mass systems most
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likely has a simple origin: the very small effect of scatter in Mstar. Comparing

Figures 3.2 and 3.3, we see that a typical 1015 M� halo at z = 0 will have converted

10% of its baryons into stars, with 75% remaining in hot gas within R500. The

fractional deviations in these components are 0.1 and 0.05, respectively, meaning the

contributions to the baryon fraction scatter are roughly 0.01 for stars and 0.04 for

hot gas. These small values leave little room for coupling deviations in gas mass

with those in stellar mass. By comparison, the contributions to the baryon fraction

scatter at 1014 M� are larger by roughly a factor of two, 0.02 for stars and 0.07 for

hot gas.

Put another way, we expect irreducible scatter in the baryon content of halos when

masses are defined using a simple spherical threshold. Deviations are sourced by the

basic nature of the dynamics — collisionless for dark matter and stars but collisional

for gas — as well as edge effects introduced by the spherical filter, including choice

of center. A measure of this irreducible scatter can be found from the gravity-only

models of Stanek et al. (2010), which show a fractional scatter in gas/baryon mass

(there are no stars) at fixed halo mass of 0.036 ± 0.001. This value is very close to

the level seen in the hot gas phase of bahamas and macsis halos above 1015 M�.

We remind the reader that these are results from a model-dependent simulation.

These predictions await testing by future empirical studies, which will ultimately be

capable of constraining the baryon content covariance of clusters with high accuracy.

3.6.4 Observational prospects for stellar-hot gas mass covariance

The historical absence of well-defined, uniform, multi-wavelength cluster samples

explains the sparsity of observational attempts to constrain the off-diagonal elements

of the property covariance matrix. The few extant studies focus on covariance be-

tween X-ray observables (e.g., Mantz et al. 2010; Maughan 2014; Mantz et al. 2016a;
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Andreon et al. 2017). To the best of our knowledge, no constraint on the correlation

between an optical and X-ray property pair has been reported. Finally, modeling the

mapping between cluster observables and intrinsic halo properties is an important

task.

A minimum requirement is to obtain both stellar mass and gas mass estimates

for a large cluster sample with a well-defined selection function. Uniformity of the

sample is a key factor; combining several heterogeneous datasets is not an option

due to complexity in modeling the full selection function.

The Local Cluster Substructure Survey (LoCuSS) survey3 is taking the lead to

make such a measurement possible by combining multi-wavelength observables for a

well-defined cluster sample of moderate size. The results from the LoCuSS sample

and the constraints are presented in Chapter VII of this dissertation. The results in

Chapter VII are the first empirical test of the findings of this Chapter.

3.6.5 Sensitivity to Cosmological Parameters

To test whether our findings are sensitive to the underlying cosmology, we ana-

lyzed the WMAP9 cosmology suite of the bahamas simulation at z = 0, 0.5, and

1.0. We obtain results in good agreement with results from the Planck cosmology.

Specifically, we find evidence for a log-normal PDF and see trends in LLR scaling

parameters, including off diagonal elements, similar to those we report here. This

reaffirms that the log-normal assumption is a sufficient statistical model independent

of cosmological parameters. We also note that the actual values for the slope and

scatter is not appreciably different from what have been reported in this Chapter.

3http://www.sr.bham.ac.uk/locuss/

http://www.sr.bham.ac.uk/locuss/
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3.7 Chapter Conclusion

We present population statistics for volume-limited samples of massive halos se-

lected from the bahamas simulation and its high-mass extension, macsis. The

combination of these two sets of simulations provides large sample sizes across a

wide dynamic range in halo mass realized with consistent, sub-grid physics treat-

ments for star formation and feedback from supernovae and active galactic nuclei.

We introduce local linear regression to measure conditional statistical properties of

stellar mass and hot gas mass given total halo mass, including their covariance. We

assess the validity of the log-normal assumption in MPR models, and investigate the

accuracy of the multi-property analytical model of E14.

Our main findings are as follows.

• The scalings of 〈ln Mgas|Mhalo, z〉 and 〈ln Mstar|Mhalo, z〉 with halo mass are well

approximated by power laws with running exponents. For clusters with masses

above 1014 M�, the local slope and scatter behave monotonically with mass.

The local slope and scatter in stellar mass are nearly redshift independent,

while the hot gas slope and scatter tend to increase with increasing redshift.

Above 5 × 1014 M�, the behavior approaches simple self-similarity, with slopes

approaching one and very small fractional scatter in baryon component masses:

0.04 in hot gas and 0.08 in stellar mass. The component fractional scatter in

galaxy groups near ∼ 3× 1013 M� is significantly larger: 0.2 in hot gas and 0.3

in stellar mass.

• The PDF of residuals in gas and stellar mass about the local regression fit is

very close to log-normal. The deviations from normality in the intrinsic halo

population are too small to bias cosmological constraints from cluster counts,
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but further modeling of sample selection effects and of how intrinsic properties

map to those observed remains to be done.

• Studying the hot gas and stellar property covariance, we find that massive halos

display anti-correlation indicative of a “Closed Box” nature, with the box closing

increasingly tighter at later times. The correlation coefficient is suppressed in

lower mass halos, which are capable of venting a significant fraction of their

baryons outside their virial regions, as well as in the highest mass halos, where

small deviations about a small mean contribution in stellar mass has little effect

on the overall baryon content of these systems.

• We verify that the model proposed by E14 can predict the expected log total

mass of property-selected halo samples with sub-percent accuracy when local

MPR scaling parameters are used.

These theoretical predictions need to be confirmed or falsified through empirical

evidence from analysis of observational data. Chapter VII presents comparison with

an observational study. Future campaigns of multi-wavelength observational studies,

such as XXL (Pierre et al. 2016) and DES (Dark Energy Survey Collaboration et al.

2016), have the opportunity to test these predictions and enrich our knowledge of

baryon component physics.



CHAPTER IV

A Novel Galaxy Cluster Mass Estimator from Stacked
Spectroscopy

Philosophy and Contribution

In this chapter, I develop a new stacked cluster mass calibration technique. I

then evaluate accuracy and precision of this technique with a realistic synthetic

data catalog. Next, I identify and investigate all potential sources of systematics.

Finally I apply this model to a subset of optically-selected cluster sample to get

an estimation of the mean conditional halo masses. This chapter is taken from

Farahi et al. (2016): “Galaxy Cluster Mass Estimation from Stacked Spectroscopic

Analysis”. The analysis and plots presented in this Chapter are my own work. The

simulations have been performed and the halo and cluster catalogs are generated by

the co-authors, and the observational data is taken from the literature.

4.1 Chapter Introduction

As spelled out in chapter II, predicting cluster counts for a given cosmology re-

quires convolving the halo mass function (spatial number density as a function of

mass and redshift) with a likelihood function linking observable cluster properties to

total halo mass. As a result, the true halo mass of clusters is a crucial element in

the methodology of cluster count cosmology.

84



85

Ongoing and near-future cosmological surveys are dedicated to identifying clusters

for the purpose of studying cosmology and fundamental physics through spatiotem-

poral counts and other statistical properties of the cluster population. The largest

cluster samples are identified using photometric data, through color-based (Glad-

ders & Yee 2005; Koester et al. 2007; Dong et al. 2008; Murphy et al. 2012; Oguri

2014; Stanford et al. 2014; Bleem et al. 2015; Licitra et al. 2016) or photometric

redshift-based (Milkeraitis et al. 2010; Durret et al. 2011; Soares-Santos et al. 2011)

algorithms.

Because photometric data provides only coarse resolution in redshift, projection

of galaxies along the line of sight to a massive halo limits the ability of cluster-

finding algorithms to uniquely identify the galaxies that are members of a particular

massive halo. Spectroscopic data provides improved distance and mass estimators

for group and cluster selection (e.g., Robotham et al. 2011), but projection and mis-

centering still pose challenges for these methods (see e.g., Duarte & Mamon 2015,

and references therein).

These sources of confusion are fundamentally rooted in the fact that clusters and

halos are identified in different spaces: sky-redshift or sky-color space for clusters

and 3D real space or 6D phase space for halos. Peculiar velocities can blend distinct

halos in real space into a single structure in redshift space (e.g., van den Bosch et al.

2004; Biviano et al. 2006; Wojtak et al. 2007; Saro et al. 2013; Duarte & Mamon

2015). In addition, the fact that high mass halos in cold dark matter cosmologies

are dynamically evolving at late times means that substructure and mergers can

create complex, transient phase-space structure. In simulations, this complexity can

confuse assignment of subhalos hosting galaxies to their parent halos (Knebe et al.

2011).
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In practice, assigning galaxies as members of either clusters or halos is a matter

of convention, defined by application of specific, algorithm-dependent rules to galaxy

samples. Regardless of the particulars, the joint likelihood, Pα,i(k) that a galaxy, k,

is a member of both cluster α and halo i offers a means to map from one space to

the other (Gerke et al. 2005).

The total galaxy content, or richness, of a cluster can then be considered as a sum

of partial contributions from halos closely aligned along a common sightline. In this

Chapter, we apply such a membership-matching approach in simulations to build a

network linking clusters to halos, with network edges weighted by fractional cluster

membership.

We investigate the membership properties of the redMaPPer cluster finding algo-

rithm (Rykoff et al. 2014). The method, which identifies clusters through their red

sequence galaxy population, outputs background-corrected membership probabilities

(Rozo et al. 2009; Rykoff et al. 2012) to each galaxy in a cluster as well as central

galaxy probabilities for up to four cluster members. The method is designed to make

optimal use of data from large, multi-color photometric surveys such as the Sloan Dig-

ital Sky Survey (SDSS, York et al. 2000) and the Dark Energy Survey (DES, Dark

Energy Survey Collaboration et al. 2016). The SDSS redMaPPer cluster catalog

(Rykoff et al. 2014) has been extensively studied with multiwavelength data, includ-

ing comparisons to existing X-ray and Planck satellite Sunyaev-Zel’dovich catalogs

(Sadibekova et al. 2014; Rozo & Rykoff 2014; Rozo et al. 2015; Planck Collaboration

et al. 2016b).

The latest study in the redMaPPer series uses stacked spectroscopic analysis

of cluster member pairwise velocities to investigate photometrically assigned mem-

bership probabilities (Rozo et al. 2015, hereafter RMIV). In that work, very good
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agreement was found between spectroscopic and photometric definitions of cluster

membership after a small number of modest corrections for blue cluster members,

correlated line-of-sight structure, and photometric noise.

Using only SDSS data, the RMIV study could not study membership from the

perspective of the underlying halo population. Instead, spectroscopic members are

defined in velocity space using an assumed Gaussian form for the pairwise velocity

probability density function (PDF) of central and satellite cluster members. In this

Chapter, we use simulations to link spectroscopic cluster members to the underlying

halo population, leading to an estimate of the log-mean matched halo mass.

In Section 4.2, we apply the redMaPPer algorithm to a 10,000 deg2 synthetic

photometric galaxy catalog derived from lightcone outputs of N-body simulations.

We then employ a membership-based matching algorithm, described in Section 4.3,

to build bipartite graphs1 in which each cluster links to a set of halos ranked by

their fractional member contribution to that cluster, a measure we term member-

ship strength. This method is used to deconstruct the stacked pairwise velocity

distribution of central-satellite galaxies in Section 4.4.

In Section 4.5, we apply the N-body simulation-based virial scaling of Evrard

et al. (2008) to estimate the total mass at fixed cluster richness from the velocity

dispersion model of Section 4.4. We show that this dynamical mass recovers the log-

mean mass of halos matched by cluster membership to better than one percent. We

also test the robustness of our results to the details of the synthetic galaxy popula-

tion by implementing our analysis on an independent, higher-resolution simulation,

populated with a different galaxy prescription. Confounding effects of mis-centering

and velocity bias are then discussed. Using current estimates for the magnitudes of

1A bipartite graph links two disjoint sets of nodes, U and V, with edges, each of which connects a node in U with
one in V. In our case U is the set of clusters and V the set of halos.
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these sources of systematic error, in Section 4.6 we estimate the halo mass scale of

the RMIV sample using their stacked velocity dispersion measurements. Our results

are summarized in Section 4.7.

Chapter’s Notation. Unless otherwise noted, our convention for the mass of

a halo is M200c, the mass contained within a spherical region encompassing a mean

density equal to 200 times the critical density of the universe, ρc(z).

4.2 Simulation samples and synthetic cluster catalog

We employ N-body simulations produced with a lightweight version of the Gad-

get code developed for the Millennium Simulation (Springel et al. 2005). Three

simulations, of 1.05, 2.6 and 4.0h−1 Gpc volumes, are used to produce a sky survey

realization covering 10,000 deg2 that resolves all halos above 1013 M� within z ≤ 2.

We refer to this suite of runs as the Aardvark simulation.

The resultant sky catalog is built by concatenating continuous lightcone output

segments from the three different N-body volumes using the method described in

Evrard et al. (2002). The smallest volume maps z < 0.35, the intermediate maps

0.35 ≤ z < 1.1 and the largest volume covers 1.1 ≤ z < 2. The simulations employ

20483 particles, except for the 1.0h−1 Gpc volume which uses 14003, and correspond-

ing particle masses are 0.27, 1.3 and 4.8×1011 h−1 M�. The Aardvark suite assumes a

ΛCDM cosmology with cosmological parameters: Ωm = 0.23, ΩΛ = 0.77, Ωb = 0.047,

σ8 = 0.83, h = 0.73, and ns = 1.0. The Rockstar algorithm is used for halo finding

(Behroozi et al. 2013a).

4.2.1 Galaxy population and halo membership

Galaxy properties are assigned to particles using the ADDGALS algorithm (Busha

et al. 2013; Chang et al. 2015). The algorithm is empirical, using the observed r-band
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luminosity function and trend of galaxy color with local environment as input. The

method assigns central galaxies to resolved halos, but satellites as well as centrals

in unresolved halos are assigned to dark matter particles in a probabilistic manner

weighted by a local dark matter density estimate. This density assignment scheme is

tuned to match the clustering properties of a sub-halo assignment matching (SHAM)

approach applied to a 400h−1 Mpc simulation using 20483 particles.

Central galaxies are placed at the center of resolved halos and assigned a velocity

at rest relative to the halo’s mean dark matter velocity within R200c. We explore the

issue of non-zero central galaxy velocities in the analysis below. All other galaxies

are assigned the positions and velocities of the corresponding particles to which they

are assigned. Note that no particle can host more than one galaxy. The velocity

assignment implies that the velocity dispersion of central–satellite pairs is expected

to follow the same scaling with halo mass as that identified in the simulation ensemble

of Evrard et al. (2008).

Regarding halo membership, our convention is that a galaxy, n, is assigned to one

and only one halo. Thus, if galaxy n is assigned to halo j, then the probability that

galaxy n belongs to halo i is Phalo,i(n) = δij. A spherical region of radius R200c is used

when defining halo membership. This region approximately defines the hydrostatic

region of massive halos but it does not extend to the outer caustic, or backsplash,

edge which contains a mix of infalling and outgoing material (Busha et al. 2005;

Cuesta et al. 2008; More et al. 2015). We note that R200c is similar in scale to the

search radius used by the redMaPPer cluster finding algorithm. In regions where two

or more halos spatially overlap, the galaxy is assigned to the nearest halo. In the

ADDGALS algorithm, galaxies can reside outside of a resolved N-body halo; 13% of

mi < 19 galaxies reside beyond R200c of a resolved halo.
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Figure 4.1: Color–magnitude diagram for Aardvark simulation galaxies occupying halos of mass
M200c > 1014 h−1 M� in the redshift interval 0.19 < z < 0.21. The line indicates the red sequence
ridge-line, g − r = 1.65− 0.32mr; 78% of galaxies brighter than mi = 19 lie within 0.2 mag of this
ridge-line.

While not strictly a halo occupation distribution (HOD) method, ADDGALS

produces an effective HOD for which intrinsic richness scales as a power law with halo

mass. At low redshift, λint, defined as the number of galaxies with Mr−5 log h ≤ −19

within R200c, scales with halo mass in a sub-linear fashion, λint ∝Mα with α ∼ 0.8.

To test the robustness of our conclusions to the intrinsic HOD structure of massive

halos, we repeat the analysis on the galaxy catalogs of Hearin & Watson (2013)

extracted from the Bolshoi simulation, which have a slightly steeper slope, α ∼ 1.0,

and smaller intrinsic scatter in λint compared to the Aardvark galaxy catalog. We

find similar results using the Bolshoi simulation.

The redMaPPer algorithm assumes that red galaxies are the prominent population

occupying high mass halos. In Figure 4.1, we show the distribution of g − r color as

a function of r-band magnitude, mr, for Aardvark galaxies in halos of mass M200c >

1014 h−1 M�, and in the narrow redshift interval, 0.19 < z < 0.21. A red sequence

is evident, containing 78% of galaxies brighter than 19th magnitude. The line shows
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the ridge-line approximate red sequence population. The slope and intercept are

consistent with those found in SDSS analysis of Hao et al. (2009, see their Fig. 11)

for the same redshift range.

While the ADDGALS method uses a local dark matter density to assign galaxy

luminosity to particles, the smoothing scale employed to calculate the local density

leaves the inner ∼ 100 kpc of high mass halos relatively devoid of galaxies other

than the central. As a result of this and possibly other factors, the frequency of

mis-centered clusters is larger in the Aardvark redMaPPer cluster catalog than in

the observed SDSS sample. We therefore work with two different cluster samples,

consisting of the correctly centered subset (denoted CEN) as well as the full set of

identified redMaPPer clusters (ALL). The exact definition of these two samples is

given in Section 4.2.3.

4.2.2 Cluster finding with redMaPPer

Cluster finding methods that use only optical photometry fall into two main cat-

egories based on whether the method uses colors directly or photometric redshifts

derived from those colors. The redMaPPer algorithm is in the former category; it

uses colors, along with training spectroscopy, to track the multi-band location of the

red sequence as a function of redshift (Rykoff et al. 2014). We note that redMaPPer

is continuously updated, so there is no unique redMaPPer catalog. Here, we rely on

the redMaPPer v5.10 SDSS catalog, as this constitutes the most recently publicly

available version.

The redMaPPer cluster finder is a matched filter algorithm with components that

characterize the luminosity function, red-sequence color, and projected number den-

sity of cluster galaxies. Writing the projected galaxy distribution in sky-magnitude

space as a sum of cluster members and a locally-uniform background component, the
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algorithm works iteratively to eventually tag each galaxy in the vicinity of a cluster,

α, with a probability, Pmem,α of being a member of that cluster. The richness, λ, is

defined as the sum of the membership probabilities over the set, Gα, of all member

galaxies

(4.1) λα =
∑
n∈Gα

Pmem,α(n) .

The redMaPPer algorithm applied to the Aardvark galaxy sample yields 3927

clusters with λ > 20 and redshift of [0.1 − 0.3] over 10,400 square degrees. By

comparison, there are 4522 clusters in the redMaPPer v5.10 DR8 cluster sample.

Figure 4.2 shows differential sky number counts, dn/dz, in units of number per

10, 000 square degrees, for clusters with λ > 20 (upper lines) and 80 (lower lines) in

the Aardvark and SDSS DR8 samples.

The number of clusters with λ > 20 in our simulation is lower by ∼ 24% relative

to the SDSS DR8 catalogs. While this suppression may partly reflect the underpop-

ulation of the inner ∼ 150 kpc regions of the most massive simulated halos, which

suppresses the membership probability PDF at high Pmem values for cluster mem-

bers, this effect is not the only potential cause. The lower central galaxy density of

massive Aardvark halos also makes it more difficult for redMaPPer to center clusters

correctly. We note that the simulation matches well the observed trend of increasing

counts with redshift. Finally, the difference may reflect differences in the underly-

ing cosmological parameters. The Aardvark simulation has a smaller dark matter

density (Ωm = 0.23) than most current observational constraints, which implies a

lower space density at fixed halo mass. The small difference in overall counts does

not influence the spectroscopic analysis below.
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Figure 4.2: Differential sky number counts per 10, 000 square degree of clusters with richness,
λ > 20 (thin lines) and 80 (bold lines) are shown for the Aardvark simulated galaxy catalog run
with RMv6.3.3 (solid) and SDSS DR8 run with RMv5.10 (dashed, Rozo et al. 2015) samples.

Table 4.1: Aardvark cluster samples, including the number of redMaPPer clusters, Ncl, the number
of galaxies in the spectroscopic samples, Nspec, and the number of spectroscopic, central-satellite
pairs, Npair.

Name Ncl Nspec Npair Sample description
ALL 3927 134464 130537 full sample with λ > 20
CEN 2294 78794 76500 correctly centered subsample of ALL
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4.2.3 Cluster and Spectroscopic samples

The full redMaPPer cluster catalogs for both observations and simulated galaxy

catalogs consist of clusters with λ > 20 in the redshift range z = 0.1 to 0.3.

To evaluate the sensitivity of our analysis to mis-centering, we identify a correctly

centered sub-sample of simulated clusters, those for which the central cluster galaxy

is also the central galaxy of the top-ranked, matched halo. Throughout this Chapter,

we refer to this correctly centered sub-sample as CEN, and denote the full simulated

cluster sample as ALL.

Our spectroscopic membership study is limited to cluster member galaxies with

mi < 19. The limit of mi < 19 is a compromise value lying between the SDSS

and GAMA limits used by RMIV. Because satellite galaxies in halos trace the dark

matter kinematics by construction, our results are not strongly sensitive to the choice

of magnitude limit.

Table 4.1 summarizes the number of clusters, number of galaxies, and number of

central–satellite galaxy pairs in the simulation samples used below.

4.3 Cluster–Halo membership matching

To match redMaPPer clusters to halos, we build a bipartite network between clus-

ters and halos with edges weighted by joint cluster–halo membership. The network is

built using all photometric redMaPPer members of the cluster. Edges are weighted

by the membership strength between cluster α and halo i, defined as

(4.2) Sα,i =
1

λα

∑
n∈Gα

Pmem,α(n)Phalo,i(n)

where Gα ≡ {ID}α is the list of galaxy ID’s associated with cluster α, Phalo,i(n)

is a boolean set to 1 if galaxy n is a member of halo i, as described in Section
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4.2. The strength, normalized to lie between 0 and 1, gives the fraction of the total

membership of cluster α contributed by halo i.

Recall that λα is the cluster richness defined in Equation (4.1). In essence, the

measured optical richness of a cluster can be expressed as a series of decreasing halo

contributions

(4.3) λα =
N∑
r=1

Sα,i(r) ,

where the halo list, i(r), is rank ordered such that Sα,i(1) ≥ Sα,i(2) ≥ ...Sα,i(N). The

matched halo of a cluster is defined as the halo with the highest strength; we use

the terms “matched halo” and “top-ranked halo” interchangeably throughout this

Chapter. The mapping is not exclusive; two clusters can be mapped to one halo. In

practice this happens infrequently. Out of 3927 redMaPPer clusters of redshift 0.1

to 0.3 only 38 clusters shared top rank halo. These 38 clusters mapped to 19 halos.

Our approach is similar to that of Gerke et al. (2005), who introduced the concept

of the largest joint member fraction to map clusters to halos. However, that work uses

a boolean measure of cluster membership. The probabilistic approach of redMaPPer

makes the strength definition equivalent to the largest group fraction used in Gerke

et al. (2005). Note that Rozo & Rykoff (2014) use a similar approach to match pairs

of clusters derived from different search algorithms applied to the same SDSS data.

4.4 Pairwise Velocity PDF: Halo Contributions to Spectroscopic Mem-
bership

The study of RMIV assessed the validity of redMaPPer photometric membership

probabilities by using spectroscopic redshifts. That work models the line-of-sight

velocity distribution of central–satellite pairs as a Gaussian distribution with zero

mean and a dispersion that scales with cluster richness and, implicitly, with halo
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Figure 4.3: The line-of-sight magnitude of central–satellite pairwise velocities for all spectroscopic
cluster members in the Aardvark simulation. The line shows the cut applied applied to the SDSS
sample by RMIV to separate cluster members (below) from projected contaminants (above). We
apply this cut to the Aardvark sample, eliminating ∼ 23(25)% of galaxy pairs from CEN (ALL)
samples.

mass. After removing projected pairs having larger than escape velocities, the PDF

of the remaining normalized pairwise velocities is modeled as a Gaussian plus a

uniform background.

We begin by demonstrating that the simulated galaxy sample displays similar

characteristics to the observations. Unlike the observations, our knowledge of the

halo membership of each galaxy allows us to deconstruct the spectroscopic likelihood

into distinct halo contributions.

4.4.1 Constructing the velocity PDF of cluster central–satellite pairs

Using redshifts of cluster members in the spectroscopic samples described in Sec-

tion 4.2.3, we determine pairwise velocities of each cluster’s satellite galaxies relative

to its central galaxy

(4.4) v = c

(
zgal − zcen

1 + zcen

)
,
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where c is the speed of light, and zgal and zcen are redshifts of satellite and central

galaxies, respectively. The galaxy redshifts in the simulation are used with zero

measurement error. Recall that central galaxies of resolved halos are at rest with

respect to their host halo.

In Equation (4.4), the central galaxy is defined by the redMaPPer cluster-finding

algorithm. In the CEN sub-sample this is also the central galaxy of the matched

halo. For clusters in the CEN sample with high strength, we expect the root mean

square velocity to be an unbiased estimate of the dark matter velocity dispersion of

the matched halo.

Figure 4.3 shows the distribution of pairwise velocity magnitudes against cluster

richness for the ALL sample. The structure is very similar to that found by RMIV

for the SDSS+GAMA spectroscopic data (see their Fig. 2), with a main component

at low velocities, referred to as the signal, and a cloud of projected pairs lying at

high velocities.

We apply the RMIV velocity cut, shown by the line in Figure 4.3, to remove

the projected contamination, eliminating ∼ 23(25)% of galaxy pairs in CEN (ALL)

sample.

As per RMIV, we model the velocity of a central-satellite pair as a random draw

from a Gaussian distribution with a richness and redshift dependent velocity disper-

sion, σv, modeled via

(4.5) σv(λ, zcen) = σp

(
1 + zcen
1 + zp

)β (
λ

λp

)α
where σp is the characteristic dispersion at the pivot point, λp = 30 and zp = 0.2 2,

corresponding to the approximate median cluster richness and redshift of our sample,

respectively.
2In this Chapter, the RMIV normalization is calculated using pivot richness, λp = 30, and redshift, zp = 0.2,

slightly different from the published RMIV pivot values.
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Figure 4.4: Left: The PDF of LOS pairwise velocities, normalized according to Equation 4.5,
for the correctly centered (CEN) sample of redMaPPer clusters in the Aardvark simulation. The
black line shows the best fit likelihood model, Equation (4.6), with parameters given in Table 4.2.
Middle: Same as left but using only galaxy pairs in the matched (top-ranked) halo associated with
each cluster. The black line shows the likelihood model, Equation 4.6, but with p = 1. Error bars
are 2σ based on bootstrap resampling. Right: Velocity PDF of galaxy pairs not belonging to the
matched halo.

To incorporate non-physically associated pairs, a flat velocity component is added

to the distribution. The likelihood of the stacked velocity distribution is given by

the following sum over pairwise velocities, vi,

(4.6) L =

Npair∏
i=1

[
pG(vi, σv(λ, z)) + (1− p) 1

2vmax

]
,

where G(vi, σv(λ, z)) is a Gaussian of zero mean and width σv(λ, z), and p, α, β, and

σp are free parameters to be determined by maximizing the likelihood. Each vi is the

line-of-sight (LOS) satellite–central pair velocity, Equation (4.4), and the product is

over all pairs in the sample.

As we shall see in Section 4.4.3, the fraction of pairs contained in the central

Gaussian, given by the parameter p, is not the same as the fraction of cluster members

contributed by the top-ranked halo.

4.4.2 Velocity PDF analysis

We maximize our likelihood to recover the scaling relation parameters between

cluster richness and velocity dispersion. We assume flat priors on all parameters to

calculate the posterior probability, and find the best-fit values given in Table 4.2.
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Table 4.2: Best fit parameters of the velocity dispersion model, Equation (4.5), using the likelihood,
Equation (4.6) for the simulations (ALL, CEN, and Bolshoi), and the observational data of RMIV.
Note that RMIV normalization is calculated at the pivot point, λp = 30 and zp = 0.2, used in
this Chapter. The Bolshoi simulation used only the z = 0 simulation snapshot so cannot constrain
β. The quantity 〈fh1〉 is the mean fraction of spectroscopic cluster members contributed by the
top-rank, matched halo. The notations are defined in equation 4.5 and equation 4.6.

sample σp [ km s−1] p α β 〈fh1〉
ALL 585± 2 0.885± 0.002 0.387± 0.007 0.83± 0.07 0.58
CEN 547± 2 0.919± 0.002 0.405± 0.008 0.87± 0.08 0.62

Bolshoi 535± 4 0.884± 0.003 0.295± 0.010 - 0.70
RMIV 598± 6 0.916± 0.004 0.435± 0.020 0.54± 0.19 -

The left panel of Figure 4.4 shows the PDF of the pair velocities normalized by the

expected velocity dispersion for the CEN cluster sample. The structure of the full

sample is similar. We bootstrap the cluster sample to compute means and standard

deviations of the PDF in 50 bins between −5 and 5 in v/σv, shown as the points

with error bars. The black line is a Gaussian of zero mean and unit variance plus

the constant distribution, with amplitude given by the best fit model. The model is

not a good fit to the data (χ2/dof = 82/16 over the signal region, v/σv ∈ [2.5, 2.5]).

We find parameters that are similar to the RMIV fit to the SDSS redMaPPer

sample. The CEN sample’s Gaussian magnitude, p = 0.919 ± 0.002, and velocity–

richness slope, α = 0.405±0.008, are very similar to the SDSS values of 0.916±0.004

and 0.44± 0.02, respectively. The ALL sample has reduced magnitude, p = 0.885±

0.002 and a slightly shallower slope, α = 0.387 ± 0.007, differences that we discuss

further in Section 4.5.2 below.

The velocity normalization, σp, is generally ∼ 10% lower than the RMIV value.

As we discuss in Section 4.5, non-zero central galaxy velocities, satellite galaxy ve-

locity bias, cosmology, and mis-centering frequency all play a role in setting the

normalization.

As found by RMIV, the best-fit model does not have an acceptable χ2, as re-
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flected by the deviations seen in the left panel of Figure 4.4 (χ2/dof = 82/16). We

show below that the deviations from the simple flat-plus-Gaussian model arise from

galaxies lying along the line of sight in halos outside the matched halo.

As an independent check that explores the sensitivity of these parameters to the

galaxy assignment scheme, we repeat the analysis using measurements at known halo

locations of the Bolshoi simulation catalogs of Hearin & Watson (2013). That work

uses age distribution matching, a method for predicting how galaxies of magnitude r

and color g−r occupy haloes, to populate halos with galaxies at redshift z = 0. When

using the galaxy catalog from the Bolshoi simulation, we rely on a z = 0 snapshot

rather than a properly constructed lightcone. We note the Hearin & Watson (2013)

catalog has only g and r data available, rather than the full 5-band photometry

available in the SDSS and Aardvark.

Results of this exercise produce a velocity PDF of similar shape to the Aardvark

CEN sub-sample. The best-fit parameters show a similar Gaussian magnitude, p =

0.89, but a shallower slope, α = 0.30, that reflects the steeper HOD slope in the

Bolshoi galaxy catalog compared to the Aardvark galaxy catalog. However, the

results and conclusions remain the same.

4.4.3 Halo-ranked contributions to the velocity PDF

The cluster–halo membership network allows us to determine what fraction of

pairs in the main Gaussian PDF component arise from the matched halo. For the

CEN sample, we find that, on average, 62% of galaxy pairs arise from within the

matched halo. For the full sample, the mean value decreases somewhat, to 58%. For

the Bolshoi catalog, in which all clusters are correctly centered by construction, the

mean is somewhat larger, 70%.

The middle panel of Figure 4.4 shows only the matched halo’s contribution to the
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pairwise velocity PDF of the CEN sample. As before, error bars are produced via

bootstrap resampling of the cluster sample using 50 bins between −5 and 5 in v/σv.

The black line shows a Gaussian with dispersion given by the best fit to the entire

spectroscopic sample (left panel), listed in Table 4.2. The principal difference with

the left panel is that we force p = 1, meaning no background component. While

there exists moderate kurtosis in this distribution, the high velocity wings of the

PDF are not well populated. Relative to the full CEN sample, the goodness of fit is

improved by nearly a factor of two (χ2/dof = 47/16 over v/σv ∈ [2.5, 2.5]).

The good match seen in the middle panel is important in that it indicates that

the best-fit velocity derived from the spectroscopic data set accurately recovers the

velocity dispersion of the top-ranked halo. This finding offers leverage for a mean

dynamical mass estimate as a function of cluster richness that we explore in the next

section.

The right hand panel of Figure 4.4 shows the contribution from satellite galaxies

outside of the matched halo. Clearly, a constant background does not adequately

capture this component, which is a sum over second and higher-ranked halos. For

the CEN sample, an average of 38% of spectroscopic pairs are not contributed by

the top-ranked halo. Of this total, an average of 10% and 5% come from the second-

and third-ranked halo, respectively. The remaining 23% is contributed by fourth

and higher ranked halos, with 12% in unresolved halos below our mass resolution

limit. Developing an accurate model for the projected galaxy contribution, while

potentially feasible within the context of the halo model, would involve choosing a

number of currently uncertain model elements that describe the halo occupation and

kinematic biases as a function of galaxy magnitude. We leave detailed modeling of

the projected component to future work.
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For the full sample (ALL), the overall non-matched halo fraction is slightly higher,

42%, with 12% and 6% arising from the second and third halo terms.

Similar results have been found in prior simulation studies. Using a spectroscopic

group finder based on a Voronoi-Delaunay tesselation, Gerke et al. (2005) and Gerke

et al. (2012) find that 70% of cluster galaxies truly belong to the matched host halo,

on average. Though they use a completely different group finder algorithm, their

conclusion regarding the level of interloper galaxies is consistent with the results

of our spectroscopic analysis. In a different study, Mamon et al. (2010) finds the

density of interloping dark matter particles in redshift space around massive halos

takes the form of a constant component plus a quasi-Gaussian component, similar

to the structure seen in the right panel of Figure 4.4.

4.5 Mass Estimation

In this section we derive a scaling relation between total mass and optical rich-

ness by applying the virial velocity scaling of massive halos to the pairwise velocity

dispersion model described above. We compare this stacked dynamical mass to that

derived from membership matching to halos, and find excellent agreement with the

log-mean matched mass at fixed richness.

We begin by using the CEN sample to avoid uncertainties caused by mis-centering,

then investigate mis-centering in Section 4.5.2.

4.5.1 Cluster mass from dark matter virial scaling

The classical virial theorem balances the kinetic energy with (modulo surface

terms) half the gravitational potential energy of a halo, thereby offering a scaling

law between velocity dispersion and mass within an enclosed radius. In a study

of multiple, independent N-body and adiabatic hydrodynamic simulations, Evrard
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et al. (2008, hereafter, E08) calibrated the dark matter virial relation.

In that work, the one-dimensional velocity dispersion of a halo, σh, is defined in an

orientation-averaged fashion using particles within R200c. The dispersion is measured

with respect to the mean dark matter velocity within that radius.

E08 showed that the halo velocity dispersion of the population follows a power-

law form with approximately log-normal scatter, meaning the conditional probability,

P (ln(σh)|M, z) = N (ln(σDM(M, z)), 0.046), where N denotes a normal distribution,

σDM(M, z) is the log-mean velocity dispersion at fixed mass and redshift, and 0.046

is the scatter in ln(σh) at fixed mass.

The log-mean velocity dispersion follows the scaling

(4.7) ln(σDM(M200c, z)) = πσ + ασ ln(h(z)M200c/1015 M�) ,

with amplitude πσ = ln(1082.9 ± 4.0) and slope ασ = 0.3361 ± 0.0026. Here,

h(z) = H(z)/100 km s−1 Mpc is the dimensionless Hubble parameter. The ellip-

soidal collapse model of Okoli & Afshordi (2016) offers a first-principles explanation

of the form and parameter values of this calibration.

At fixed mass, the distribution of velocity dispersion seen in the E08 simulation

ensemble is very close to log-normal, with a modest tail to higher values driven

by actively merging systems. Saro et al. (2013) show that the 1D LOS velocity

dispersion has higher scatter compared to angle-averaged velocity dispersion. The

normalization and slope of their scaling relation, found using sub-halos as galaxy

tracers, are within . 3% of the E08 values.

For a halo ensemble uniformly sampled in mass, the inverse of the above scaling

relation provides an unbiased estimate of the log-mean halo mass at fixed velocity

dispersion, P (ln(M)| ln(σh), z). For samples drawn from the expected cosmic mass

function, the log-mean mass will be biased low by approximately 5%, as detailed in
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Figure 4.5: The mass–richness scaling relationship derived from application of the virial relation to
stacked central satellite velocities, Equation (4.8), (solid black line) at redshift 0.2 is compared to
halo masses of correctly-centered redMaPPer clusters derived from galaxy membership matching
in the redshift range [0.1, 0.3] (yellow circles). The red dots with error bars show the median and
68% inclusion region of matched halo mass in different richness bins. The blue line is the best fit to
the membership-matched masses in this redshift range, with shaded region showing 95% confidence
uncertainties in this mean relation at redshift 0.2.
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Evrard et al. (2014). The magnitude of this correction is sub-dominant to systematic

errors discussed below, so we choose to ignore it in this work.

To estimate halo mass as a function of richness in the redMaPPer cluster pop-

ulation, we apply the inverse to the log-mean halo virial scaling relation found in

E08,

(4.8) ln(h(z)Mσ(λ, z)/1015 M�) = 3 ln

(
σv(λ, z)

1083 km s−1

)
,

where σv(λ, z) is the velocity dispersion scaling of central–satellite pairs analyzed in

Section 4.4 and the simple cubic power is consistent with the slope found in the E08

simulation ensemble.

If intrinsic galaxy richness, λ, were a nearly perfect tracer of halo mass, and

if cluster finders cleanly identified halo members, then the log-normal form of the

PDF relating velocity to mass (or vice-versa) implies that the virial-scaled mass,

ln(Mσ(λ, z)), should accurately measure the log-mean mass, 〈ln(M)|λ, z〉, at fixed

richness and redshift. Introducing (log-normal) scatter in richness at fixed mass can

produce shifts that depend on the local slope and curvature of the mass function as

well as the covariance of λ and σh at fixed M (Evrard et al. 2014). We defer a more

detailed examination of these issues to future work.

Galaxy joint member matching provides an independent mass estimate for each

cluster — the matched halo mass — that can used to assess the meaning of the

stacked dynamical mass estimate, Equation (4.8).

Figure 4.5, a key result of this Chapter, compares the mass scale inferred from

the scaled velocity dispersion with membership matched masses for the CEN sam-

ple. The thick black line shows the mass–richness scaling at redshift 0.2 inferred

from virial scaling, Equation 4.8, while the points show individual M200c values of

matched halos for individual correctly-centered clusters of redMaPPer richness, λ
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Figure 4.6: The normalization and slope of mass–richness scaling at redshift 0.2 inferred from
stacked dynamical masses (black contours) and membership matching in the redshift range [0.1, 0.3]
(blue) for correctly-centered redMaPPer clusters. Contours show 68% and 95% statistical uncer-
tainties.

within redshift range of [0.1, 0.3]. The red dots with error bars show the median and

68% inclusion region of matched halo mass in different richness bins.

The blue line and shaded blue region are the mean and 95% uncertainty of a least-

squares fit to the form, 〈lnM |λ, z〉 = πh + αh log(λ/λp) + βh log((1 + z)/(1 + zp)).

We find parameters πh = log(1.26 ± 0.02 [1014 M�]), αh = 1.33 ± 0.05 and βh =

−0.48± 0.43. The line is the z = 0.2 relation while the shaded area shows combined

uncertainties in the intercept and richness slope. We find that the slope with redshift

is consistent with zero with large uncertainties.

This virial scaling of stacked pairwise velocities is remarkably accurate in cap-

turing the scaling with richness of the log-mean membership matched halo mass.

Differences are less than 1% at the pivot point and within ∼ 5% over a broad range

in richness. Note that the E08 dark matter virial scaling is measured independently

of the Aardvark simulation, so the level of agreement between the M200c and mem-

bership matched masses is a non-trivial result.
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Constraints on the slope and normalization of the mass–richness scalings for the

CEN sample are compared in Figure 4.6. Black contours for the stacked dynamical

mass include only statistical uncertainties in the constrained velocity parameters,

not systematic errors discussed below. The blue contours are based on bootstrap

resampling of membership matched halos within the redshift range [0.18, 0.22]. The

normalizations at the λ = 30 pivot are consistent, while the slopes are in tension at

the level of 0.13, or roughly 2.2σ, in their central value. An ensemble of simulated

samples would be useful to reduce the statistical error on the membership matched

slope.

We turn next to discuss sources of systematic uncertainty before applying this

method to derive a constraint the matched halo masses of RMIV clusters.

4.5.2 Sources of Systematic Uncertainty

The good agreement between stacked dynamical mass and membership-matched

masses offers strong incentive to combine large photometric and spectroscopic galaxy

samples to relate cluster richness to halo mass.

Applying this method to survey data introduces several sources of systematic

error that must be modeled. The Aardvark synthetic sky realization is idealized in

several respects; central galaxies are at rest with respect to their underlying halo and

satellite galaxies trace the kinematics of the dark matter. Also, the differences in

stacked pairwise velocity model parameters for the CEN and ALL samples indicate

that mis-centering plays an additional role. In addition, variance in the velocity

dispersion of clusters of fixed richness, reflective of the variance in matched halo

mass, can introduce bias.

The following sections address these issues in turn, finding that the first two are

more important than the third. How satellite galaxies trace dark matter kinematics
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is the key source of systematic error.

Central galaxy velocities and satellite galaxy velocity bias

The degree to which galaxy velocities trace the kinematics of dark matter particles

in halos is a central issue for virial mass calibration. By construction, the central

galaxy is at rest with respect to its host halo in our simulations. In reality, central

galaxies are measured to have a non-zero velocity dispersion with respect to their

host clusters.

In cases of actively merging systems the rest frame of a cluster is often difficult to

define. In the post-merger phase, the central galaxy will settle to the center of cluster

due to dynamical friction on a timescale on the order of 1 Gyr (White 1976; Bird

1994), during which time the central galaxy will have a net velocity with respect

to the full halo. Based on a sample of nearly 500 Abell clusters with 10 or more

redshifts, Coziol et al. (2009) find that brightest cluster galaxies have velocities with

root mean square magnitude ∼ 0.3σcl, with σcl the line-of-sight velocity dispersion

of the host cluster. A similar ratio of 0.25 is found by Lauer et al. (2014) using 178

clusters with 50 or more member spectra. Martel et al. (2014) find a similar thermal

motion for central galaxies in a sample of 18 massive halos extracted from a large

cosmological, hydrodynamic simulation.

Redshift-space distortion studies also support non-zero values for central galaxy

velocities (Skibba et al. 2011; Guo et al. 2015b,a). If the central galaxy population

has velocity dispersion scaling as some fraction, αc, of the host halo dispersion,

σcen = αcσhalo, then the central–satellite pairwise velocity normalization, σp, will be

enhanced by a factor (1 + α2
c)1/2 ' 1 + α2

c/2, the latter if αc is small compared

to unity. Mass estimates derived from virial scaling will be boosted by a factor

(1 + α2
c)3/2 ' 1 + 3α2

c/2 relative to the case of cold centrals (αc = 0). These factors
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assume that the satellite galaxy velocities are unbiased with respect to the dark

matter.

The velocity dispersion of satellite galaxies relative to the halo rest frame may

also biased (Carlberg 1994), so that σsat = αs σDM, where αs is the satellite galaxy

velocity bias. The simulation study of Wu et al. (2013) that combines N-body and

hydrodynamic models indicates that αs lies near unity, with brighter galaxies tending

to have values less than one and fainter galaxies slightly above unity, asymptotically

reaching a value of 1.05. This pattern is not seen in the redshift-space distortion

work of Guo et al. (2015b), discussed below.

Let σp,0 be the normalization of the central–satellite pairwise velocity dispersion

determined through the simulation analysis presented in Section 4.4.2. Recall that

the simulations are constructed to have αc = 0 and αs = 1. Introducing uncorre-

lated central and satellite galaxy velocity biases modifies the pairwise velocity PDF

normalization to

(4.9) σp = (α2
s + α2

c)1/2σp,0.

If these effects alone are responsible for the normalization difference between the

SDSS and Aardvark CEN samples (see Table 4.2), then we would require (α2
s +

α2
c)1/2 = 1.13.

Cluster mis-centering

While the analysis of Section 4.4.2 focused on the well-centered subsample of clus-

ters, the pairwise velocity PDF of the full sample has a similar form. However, the

fit parameters in Table 4.2 indicate that the normalization of the full sample is en-

hanced, 585 (ALL) versus 547 km s−1 (CEN), and the slope α is slightly decreased.

Because of the simulation limitations discussed in Section 4.2, the mis-centered frac-
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tion of simulated redMaPPer clusters in the ALL sample is larger than that of the

SDSS sample. Comparing to X-ray observations of a joint sample of more than 100

clusters, Rozo & Rykoff (2014) find that 86± 4% of high mass clusters are correctly

centered on the X-ray counterpart. This statistic is weighted toward higher richness

values, λ ∼ 100, but preliminary results of ongoing redMaPPer sample analysis in-

dicate that the full sample of λ > 20 redMaPPer clusters has a similar fraction of

well-centered clusters.

We exploit the differences in the CEN and ALL samples to estimate, using a

weighted sampling approach, how velocity PDF parameters shift as the fraction of

mis-centered clusters is varied.

The ALL cluster sample contains both mis-centered and correctly centered clus-

ters. Let fcen be the fraction of ALL galaxy pairs lying in the latter (CEN) sample.

Our approach is to simply create simulated central-satellite pairs drawn in propor-

tion from the CEN and (ALL-CEN) cluster samples in order to achieve a desired

fcen value.

Specifically, for a given fcen value, we randomly draw without replacement a total

of 10,000 galaxy pairs from these two cluster sub-populations in a way that satisfies

the fcen fraction. We run the MCMC chains for these samples to find the best fit

velocity PDF parameters for a total of 2000 realizations uniformly spanning 0.5 ≤

fcen ≤ 1.

Figure 4.7 shows how the velocity PDF parameters change with correctly centered

fraction, fcen. The black lines are the best linear fits as a function of fcen, with fit

parameters and their root mean square deviations, σ, listed in the legend of each

panel.

As the fraction of mis-centered clusters increases (lower fcen values), the velocity
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dispersion normalization, σp, increases while the slope, α, and Gaussian amplitude,

p, both decrease. As expected, the limit of fcen = 1 recovers parameters of the CEN

catalog (see Table 4.2).

We use this behavior to correct for the effect of mis-centering on the RMIV

pairwise velocity normalization. Assuming the fraction of correctly centered SDSS

redMaPPer clusters with λ > 20 to be fcen = 0.85 ± 0.053 leads to a ∼ 3% normal-

ization correction for correctly centered systems,

(4.10) σp,RMIV,CEN = 582± 8 km s−1 .

We use this value to evaluate the mass scale of SDSS redMaPPer clusters in Section

4.6 below. The mis-centering correction to the slope, α, is smaller than 0.01 and is

not applied below.

Velocity dispersion variance at fixed richness

The satellite–central velocity likelihood model employs a single Gaussian of width

σp(λ, z) at fixed richness, λ, but there is non-zero variance in velocity dispersion

values of a fixed-λ population that reflects the variance in matched halo mass. Scatter

in halo mass at fixed lambda is already incorporated into the simulations; the scatter

in matched halo masses shown in Fig. 4.5 is 0.85 in lnM . We perform here an explicit

test, independent of the simulated samples, to confirm that this scatter does not

strongly affect the recovered velocity PDF parameters.

We create ensembles of 10,000 galaxy pairs drawn from Gaussian distributions

with dispersion values log-normally distributed about a scaling mean relation, σp(λ, z),

Equation 4.5 with variance σ2
lnσ. Sampling in λ and redshift uniformly covers the

observed ranges of [20, 200] and [0.1, 0.3], respectively. We then perform the stacked

3The value of 0.85 ± 0.05 is slightly more conservative than that published for higher richness clusters in Rozo
et al. (2015).
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velocity PDF analysis on each simulated pair ensemble.

We find that the model parameters remain unbiased until σlnσ > 0.2, after which

the tails of the velocity distribution begin to affect the normalization p at the one

percent or greater level. The recovered values of σp and α, the key parameters in-

volved in mass estimation, are unaffected up to values of σlnσ = 0.5, or 1.5 scatter

in lnM . This degree of mass scatter is larger than either the simulated or observed

(Rozo & Rykoff 2014) values. Variance in host halo velocity dispersion at fixed rich-

ness is therefore a negligible source of systematic error in the velocity PDF modeling

and resultant mass estimates.

Orientation and Shape selection bias

Because dark matter halos are aspherical, optical cluster selection and richness

estimation on the sky are sensitive to halo orientation, with preferential selection of

structures elongated along the line of sight (e.g. Dietrich et al. 2014). The Hubble

Volume simulation analysis of Kasun & Evrard (2005) finds alignment of position and

velocity ellipsoids in massive halos, with median alignment angle of 22◦. Orientation

biases in an optically-selected cluster sample such as redMaPPer could produce shifts

in the mean stacked velocities. Along these lines,Skielboe et al. (2012) show that

the LOS velocity dispersion of galaxies lying along the major axis of SDSS clusters

is slightly larger than that of galaxies lying along the minor axis. Simet et al. (2017)

use analytic arguments to estimate a 4% ± 2% orientation bias (overestimate) in

stacked weak lensing masses for redMaPPer selected clusters.

A potentially counteracting effect, found by Ragone-Figueroa et al. (2010) in the

The MareNostrum Universe simulation, is that, at fixed mass, more elongated halos

have smaller 3D-averaged velocity dispersion than less elongated systems. They link

this effect to formation epoch, hence it is a form of assembly bias.
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We perform two tests on the Aardvark simulation to estimate orientation biases

on stacked dynamical.

First we ask whether the redMaPPer finder preferentially selects elongated halos.

To measure halo shape, we assume an ellipsoidal model and determine the three

eigenvalues, λi, of the shape tensor in position space for galaxy members. The

largest eigenvector gives the orientation. We define the elongation as c/a, where c is

is the minor axis and a the major axis of the shape tensor (see Section 2.4 of Kasun

& Evrard (2005) and Section 2 of Zemp et al. (2011) for more detail).

We find that the distribution of shapes for matched halos selected by redMaPPer

matches well the that of the overall halo population. Using bins of width 0.2 dex in

mass, the median and quartile values of c/a for the two populations match to within

∼ 0.02 for halos more massive than 1013.5 M�. Shape selection bias is not a large

effect for this sample.

The second test concerns possible orientation bias of redMaPPer selection. The

unbiased velocity dispersion is the 3D-averaged velocity dispersion of galaxies within

the halo. We measure the LOS and 3D velocity dispersion for all galaxies inside

matched halos. Regressing both velocity dispersion values against mass, we find

that the normalization of the LOS velocity dispersion is larger than the 3D value by

∼ 1.1%. This implies a 3.3% overestimation of the stacked dynamical mass at fixed

richness.

Because this level of bias is smaller that the other sources of uncertainty described

in Section 4.6), we do not explicitly apply a correction. We note that the specific

correction will depend on the algorithm employed for optical cluster selection.
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4.6 Stacked Dynamical Mass Scaling of SDSS redMaPPer Clusters

The above analysis indicates that the mass determined through virial scaling of

the pairwise velocity PDF normalization offers an unbiased estimate of the log-mean

mass of halos matched via joint galaxy membership.

We now turn to estimate the characteristic M200c mass scale of correctly centered

redMaPPer clusters as a function of richness λ at the pivot redshift zp = 0.2. Recall

from Section 4.5.2 and 4.5.2 that the pairwise velocity normalization depends on the

mis-centering frequency and the velocity bias of central and satellite galaxies. We

need to estimate the magnitudes of these effects, and their uncertainties, into our

mass estimate.

The normalization correction for mis-centering, assuming fcen = 0.85 ± 0.05 for

the SDSS redMaPPer sample, is already incorporated into the correctly-centered

estimate given in Equation (4.10).

To estimate the velocity dispersion of the underlying dark matter from the pair-

wise satellite–central galaxy measurements, we need to divide the latter by the

quadrature sum of the respective velocity bias factors,

(4.11) σp,RMIV,DM =
σp,RMIV,CEN

(α2
s + α2

c)1/2
.

The velocity bias of galaxies has been recently investigated by Guo et al. (2015a,b)

using SDSS galaxy clustering measured both in projected separation and in redshift

space. We employ the Guo et al. (2015b) estimates for the velocity bias factors of

bright (Mr ∼ −21.5, as appropriate for the bulk of the spectroscopic galaxies in

this study) galaxies (see their Fig. 8) of αc = 0.30 ± 0.05 and αs = 1.05 ± 0.08.

Their central galaxy dispersion is in line with previous estimates based on explicit

spectroscopy of cluster members (Coziol et al. 2009; Lauer et al. 2014) as well as
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with recent simulation expectations (Martel et al. 2014). There is more contention

on the velocity bias of satellite galaxies. In recent simulations, values less than one

have been measured for bright galaxies in massive halos (Munari et al. 2013; Old

et al. 2013; Wu et al. 2013). We note that the 2σ range of αs ∈ [0.89, 1.21] admits

values less than unity.

These velocity bias estimates imply a correction factor, (α2
s +α2

c)−1/2 = 0.92±0.07,

which leads to the dark matter velocity dispersion at the pivot richness and redshift

of

(4.12) σp,RMIV,DM = 535± 41 km s−1 .

Note that the uncertainty in this velocity is dominated by systematic error in the

velocity bias estimate.

Finally, using this value in Equation (4.8), we obtain an estimate of the log-mean

mass of redMaPPer clusters at the pivot richness and redshift of

(4.13) Mσ(λp = 30, zp = 0.2) = (1.56± 0.35)× 1014 M� ,

where to infer above mass scale we assume a ΛCDM cosmology with Ωm = 0.3,

ΩΛ = 0.7, and h(z = 0) = 0.7.

The scaling of the pairwise velocity normalization, σp(λ, z), determines how the

mean dynamical mass, Mσ(λ, z), scales with richness and redshift. Because of the

relatively weak constraint on the redshift scaling behavior of the SDSS cluster sample

velocities, we defer analysis of redshift evolution to a later study and concentrate here

on the behavior with richness at the pivot redshift of 0.2. The simulations indicate

the the mean dynamical mass, Mσ(λ, z), matches the log-mean membership matched

mass at the pivot richness, but as shown in Figure 4.6, the best-fit slope of log-mean
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mass with richness differs by 0.10 from the slope of Mσ(λ). We therefore include this

difference as a systematic error term when quoting the slope.

The result is an estimate for the log-mean membership matched mass of the SDSS

redMaPPer sample at redshift 0.2 of

(4.14) 〈ln(M200c/1014 M�)|λ, zp = 0.2〉 = π + αm ln(λ/30)

with normalization π = 0.44± 0.22 and slope αm = 1.31± 0.06stat ± 0.13sys.

Of the 22% error in the derived mass normalization, 21.5% arises from systematic

uncertainty in the velocity bias terms, particularly that of satellite galaxies. Mis-

centering contributes 2.6%, and statistical uncertainties from the stacked pairwise

velocity and virial calibration parameters are 3.2%. The error in ln(M) is essentially

triple the uncertainty in ln(αs). As a result, achieving ten percent error in mean

mass would require knowing αs to a fractional accuracy of ∼ 0.03. It remains to be

seen whether future spectroscopic campaigns, coupled with improved hydrodynamic

simulations of galaxy formation in massive halos to pin down systematic errors, can

achieve this level of precision.

4.7 Chapter Conclusion

Using galaxy catalogs derived from large N-body simulations, we study the map-

ping of galaxy clusters identified in sky-photometry space to the underlying real-

space population of halos through membership matching. We measure membership

strength, defined as the fraction of a cluster’s richness contributed by a given halo,

and build bipartite graphs linking clusters to halos with strength-weighted edges.

The matched halo of a cluster maximizes this strength.

We then study pairwise velocities, and derived masses, from stacked spectroscopic

analysis of clusters patterned after the spectroscopic analysis of SDSS redMaPPer
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clusters developed by RMIV. The structure in the simulated data is similar to that

of the observations, with galaxy pairwise velocities having a main Gaussian provi-

sionally identified as cluster members. We employ a sub-sample of correctly centered

clusters — those for which the central cluster galaxy is also the central galaxy of the

matched halo — as well as studying the full simulated cluster sample.

We then use our findings to estimate the log-mean, membership-matched mass of

SDSS redMaPPer clusters at z = 0.2. Our detailed results are as follows.

• Although the pairwise velocity PDF model is not a good fit to data, the rich-

ness and redshift dependent width of the PDF adequately reflects the log-mean

velocity dispersion of matched halos. Decomposing this main component into

halo contributions, we find that the top-ranked, matched halo contributes an

average of 62% (58%) of pairs in the correctly centered (full) cluster samples.

The second-ranked halo contributes ∼ 10%, the third ∼ 5%, and the remainder

contribute ∼ 20%, in the mean. The projected component, consisting of all

galaxy pairs not contributed by the top-ranked matched halo, has a pairwise

velocity PDF described roughly by a Gaussian plus constant form.

• Converting the velocity dispersion–richness relation to a mass–richness rela-

tion using the dark matter virial relation calibrated by independent simulations

(Evrard et al. 2008), we find this stacked dynamical mass recovers, to within a

few percent, the log-mean mass determined from membership matching between

clusters and halos.

• We model effects of cluster mis-centering and galaxy velocity bias in order to

correct the measured redMaPPer cluster velocity dispersion to reflect that of

correctly centered, dark matter halos. Using central and satellite velocity bias
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parameters αc = 0.30±0.05 and αc = 1.05±0.08, respectively (Guo et al. 2015b),

we infer a log-mean matched halo mass of M200,p = (1.56 ± 0.35) × 1014 M� at

the pivot richness, λp = 30, and redshift zp = 0.2, and a slope with richness of

1.31± 0.06stat ± 0.13sys for SDSS redMaPPer clusters.

Kinematic biases of central and, especially, satellite galaxies, are the dominant

source of systematic error. Further work is needed, both empirically and through

hydrodynamic simulations, to better constrain the relationship between galaxy ve-

locities and dark matter. One possible approach is to invert the analysis presented

here; comparing the stacked dynamical masses with stacked weak lensing masses of

the same sample with the aim of constraining velocity bias.



CHAPTER V

The Mass Scale of XXL Clusters from Ensemble
Spectroscopy

Philosophy and Contribution

In this chapter, I apply the ensemble mass calibration technique developed in

the previous chapter to estimate the mass–temperature relation for clusters selected

from the XXL survey program. The work in this chapter provides a new, indepen-

dent mass calibration which supports the science goal of the XXL cluster cosmology

analysis. This chapter is taken from Farahi et al. (2017b): “The XXL Survey. XXIII.

The Mass Scale of XXL Clusters from Ensemble Spectroscopy”. The statistical anal-

ysis, tests and validations, and plots presented in this chapter are my own work. The

observations obtained with XMM-Newton via XXL Survey program. The observa-

tional data is reduced and analyzed by the co-authors who are members of the XXL

collaboration. The co-authors provided the observational data catalogs, including

the cluster catalog and the galaxy catalog.

5.1 Chapter Introduction

Chapter II presents how the cosmic web of dark matter drives the gravitational

potential wells. The self-similar model presented in that chapter specifies how halo

properties scales with the redshift and mass of halos. This simple model predicts

120
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a power-law relation for the mass-property relations (MPRs). The idea that both

galaxies and hot gas are in virial equilibrium within a common gravitational potential,

originally proposed by Cavaliere & Fusco-Femiano (1976), leads to the expectation

that galaxy velocity dispersion scales as the square root of X-ray temperature, σgal ∝

T 0.5
X . This behavior reflects MPR scalings with total mass M ∝ T

3/2
X and M ∝ σ3

gal

at fixed redshift (for the derivation see Chapter II). However, astrophysical processes

within halos, such as star formation and associated supernova and AGN feedback,

can drive deviations from self-similarity.

For the most massive clusters in the sky, multiple surveys and follow-up observa-

tions are enabling individual halo masses to be estimated from gravitational lensing,

hydrostatic, and dynamical methods (see Allen et al. 2011; Kravtsov & Borgani 2012,

for reviews). These methods are subject to different sources of systematic uncertainty

(e.g., Meneghetti et al. 2014), and the samples to which they are applied may have

additional systematic shifts, relative to a sample complete in halo mass, due to sam-

ple selection. The resulting biases pose limits on the accuracy of empirically derived

MPRs.

Multiple, independent mass proxies allow for consistency tests that can expose

and help mitigate systematic errors. We present here a Virial analysis of 132 spec-

troscopically confirmed clusters identified in the XMM-XXL Survey (Pierre et al.

2016, hereafter XXL paper I). The method extends the stacked spectroscopic tech-

nique developed in Chapter IV, originally applied to optically selected clusters in

SDSS (Rykoff et al. 2014).

We focus first on the virial scaling of galaxy velocity dispersion with hot gas

temperature, then infer how mean total mass scales with temperature using an ad-

ditional degree of freedom that relates galaxy velocity dispersion to the underlying
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dark matter. This galaxy velocity bias is the largest source of uncertainty in our

mass estimate.

Early N-body simulations established virial scaling for purely dark matter halos

(Evrard 1989) and ensemble analysis of billion-particle and larger simulations pro-

vides a highly accurate calibration, with sub-percent error in the intercept of dark

matter velocity dispersion at fixed halo mass (Evrard et al. 2008).

Inferring a virial, or dynamical, mass of an individual cluster requires a large

number of spectroscopic members and a reliable interloper rejection algorithm (e.g.,

Biviano et al. 2006) such as that provided by the caustic technique (Rines et al. 2007;

Rines & Diaferio 2010; Gifford et al. 2013). For large cluster samples emerging from

surveys, a complementary approach to infer mean MPR scaling behavior is to employ

ensemble population analysis, effectively stacking the local velocities of galaxies in

multiple clusters to extract a mean velocity dispersion signal.

Here we have employed a large collection of galaxy spectroscopic redshifts as-

sembled from multiple sources for groups and clusters identified in the north field

of the XMM-XXL survey. The 132 systems span X-ray temperatures kT300kpc ∈

[0.48− 6.03] keV, and redshift z ∈ [0.03− 0.6], and the spectroscopic sources include

GAMA, SDSS-DR10, VIPERS, and VVDS Deep and Ultra Deep surveys.

The mass-temperature scaling has been studied extensively (e.g., Xue & Wu 2000;

Ortiz-Gil et al. 2004; Arnaud et al. 2005; Vikhlinin et al. 2006; Kettula et al. 2015;

Mantz et al. 2016b; Lieu et al. 2016). Observational relations generally steepen

from close to the self-similar for hot systems to a slope of ∼ 1.6 − 1.7 once cooler

systems (kT300kpc . 3 keV) are included (Arnaud et al. 2005; Lieu et al. 2016). More

than half of the clusters in the work presented in this chapter will be systems with

kT300kpc . 3 keV, which allows us to test deviation from the self-similar model, with
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yet another mass calibration technique.

As part of the first series of XXL papers, (Lieu et al. 2016, hereafter XXL paper

IV) estimates the mass–temperature scaling relation of X-ray bright systems using

weak-lensing mass measurements from the Canada-France-Hawaii Telescope Lens-

ing Survey (CFHTLenS) shear catalogue (Heymans et al. 2012; Erben et al. 2013).

The work presented here is complementary to that study where it provides a mean

dynamical mass as a function of X-ray temperature. The X-ray sample differs from

that used by XXL Paper IV, but the pipeline for deriving X-ray properties from the

XMM data is identical.

We describe the sample, data, and selection criteria in Section 5.2. The likelihood

model used to constrain the galaxy velocity dispersion scaling with temperature is

described in Section 5.3. In Section 5.4, we present results for this relation, followed

by a discussion of a range of systematic uncertainties and sensitivity analysis in

Section 5.5. A key result of this work, the dynamical mass-temperature relation, is

presented in Section 5.6. Finally we conclude this chapter in Section 5.7

Chapter’s Notation. Throughout this Chapter, we have assumed WMAP9

consistent cosmology with Ωm = 0.28, ΩDE = 0.72, and local Hubble constant h =

H0/100 km s−1 Mpc−1 = 0.7. Unless otherwise noted, our convention for the mass

of a halo is M200, the mass contained within a spherical region encompassing a mean

density equal to 200 times the critical density of the Universe, ρc(z). Similarly, r∆ is

defined as the radius of the sphere inside which the mean density is a factor ∆ times

the critical density of the universe at that redshift, and M∆ is the total mass within

that radius.



124

Figure 5.1: Spatial distribution of galaxies and clusters in the XXL north field used in this chapter.
Black circles show cluster centres with z ≤ 0.6 with area proportional to temperature. The heat
map shows the sky surface density of spectroscopic galaxies lying within a projected aperture of
3r500 around cluster centres.

5.2 Cluster and spectroscopic sample

The XXL survey consists of tiled 10 ks (or longer) exposures across two fields

of roughly 25 deg2 each. The observing strategy and science goals of the survey

are described in XXL Paper I while source selection and a resultant brightest 100

cluster sample are published in Pacaud et al. (2016, hereafter XXL Paper II). The

X-ray images were processed with the Xamin v3.3.2 pipeline (Pacaud et al. 2006),

which produces lists of detections of varying quality. The overall catalogue with

point sources will be available in computer readable form via the XXL Master Cat-

alogue browser http://cosmosdb.iasf-milano.inaf.it/XXL and at the Centre de

Données astronomiques de Strasbourg (CDS)1 (Chiappetti et al. 2017, hereafter XXL

Paper XXVIII), while cluster candidates are grouped by detection classes (C1, C2,

1http://cdsweb.u-strasbg.fr

http://cosmosdb.iasf-milano.inaf.it/XXL
http://cdsweb.u-strasbg.fr
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C3) and hosted in the same places as catalogue XXL-365-GC (Adami et al. 2017,

hereafter XXL Paper XX). The 2016 series of XXL papers, including (XXL Pa-

per II), pertained to the brightest 100 clusters and 1,000 AGN, while for the second

series, including the work presented in this chapter, we are publishing much deeper

samples: 365 clusters and 20,000 AGN, with slightly revised cluster properties and

scaling relations.

Of the XXL cluster sample 46% are classified as high-quality (C1) detections,

43% are intermediate quality (C2) and the remaining 11% are marginal quality (C3)

sources. We discard C3 sources in this work as they do not have reliable luminosity

and temperature measurements. The subject of this work is a subset in the XXL-N

area, with spectroscopically confirmed redshifts and with redshifts z < 0.6, generat-

ing a sample of 132 systems. A detailed discussion of the sample selection is provided

by XXL Paper XX and Guglielmo et al. (2017, hereafter XXL Paper XXII). 2

The sky distribution of the systems used in this work is shown in Fig. 5.1. X-ray

extended sources are shown as black circles and the color map shows the sky surface

density of spectroscopic galaxies lying in an aperture of radius r ≤ 3r500 with respect

to their centres. The r500 estimates are determined from weak lensing mass estimates

presented in XXL Paper IV. We next provide additional details of the group/cluster

and galaxy spectroscopic samples.

5.2.1 X-ray Temperatures

Of the 132 spectroscopically confirmed C1 and C2 clusters with z < 0.6, X-ray

temperatures are available for 106, 81 C1 and 25 C2 clusters. All are C1 clusters and

most but not all are included in the XXL 100 brightest sample of XXL Paper II. The

temperature determination, described in detail by Giles et al. (2016, hereafter XXL

2The cluster optical and X-ray images can be found in the XXL cluster database: http://xmm-lss.in2p3.fr:

8080/xxldb.

http://xmm-lss.in2p3.fr:8080/xxldb
http://xmm-lss.in2p3.fr:8080/xxldb
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Paper III), outputs the temperature measured within a physical 300 kpc aperture

for sufficiently high signal-to-noise-ratio systems.

After detection by Xamin v3.3.2 - a detection pipeline piloted by the XMM-LSS

project (Pacaud et al. 2006) - as an extended X-ray source, a background subtracted

radial profile is extracted in the [0.5−2] keV band. The detection radius is defined as

that at which the source is detected at 5σ above the background. A spectrum is then

fit from a circular aperture of radius of 300 kpc centred on the X-ray centroid, using

a minimum of five counts per energy bin, resulting in a temperature measurement we

refer to as T300kpc. Cluster spectral fits were performed in the 0.4−7.0 keV band with

an absorbed APEC model with the absorbing column fixed at the Galactic value,

and a fixed metal abundance of Z = 0.3Z�. For more detail on the data processing,

we refer the reader to Pacaud et al. (2016). We note that the measured X-ray

temperatures are non-core excised owing to the limited angular resolution of XMM-

Newton and the modest signal-to-noise-ratio of most detections. These temperatures

are taken from XXL Paper XX.

For the systems that lack direct temperature estimates, we estimate tempera-

tures from X-ray luminosities using published XXL scaling relations as follows. First,

background-corrected XMM count-rates within 300 kpc from the cluster centre in the

[0.5− 2] keV band are extracted. This forms the basis of a first luminosity estimate,

the starting point for an iterative scheme that uses the L − T scaling relation from

XXL Paper XX and the T −M500 relation from XXL Paper IV. The process assumes

isothermal β-model emission with parameters (rc, β) = (0.15r500, 2/3), and itera-

tions continue until convergence. This method outputs temperature, mass, and r500

estimates. Details of the steps above are described and reported in XXL Paper XX.

To check the internal consistency of the derived X-ray temperature, XXL Pa-
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Figure 5.2: Temperature vs. redshift of the full 132 XXL-N cluster sample. Blue circles are clusters
with measured temperature and magenta squares show clusters with inferred temperature.

per XX performs a comparison of T300kpc derived using the above approach with

direct temperature measurements for a subset of systems, finding good agreement.

Below, we show that the velocity dispersion scaling parameters using the subset of

systems with directly measured temperatures are consistent with those of the full

cluster sample.

Figure 5.2 shows redshifts and temperatures of the XXL-N clusters. At a given

redshift, higher mass systems that are both brighter and hotter tend to have direct

temperature measurements. As explained in Section 5.2.5, the sample size shrinks,

by roughly 3% (four clusters), after we apply velocity and aperture cuts discussed

below.

5.2.2 Spectroscopic sample

Concerning the spectroscopic database of galaxies, reduced spectra from several

public surveys are combined with XXL dedicated observing runs to create a large,

heterogeneous collection of redshifts. The surveys and observing programmes, listed

in Table 2 in XXL Paper XXII, include GAMA (45%, Hopkins et al. 2013; Liske
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et al. 2015), SDSS-DR10 (5% Ahn et al. 2014), VIPERS (32% Guzzo et al. 2014),

VVDS Deep and Ultra Deep (9% Le Fèvre et al. 2005, 2015). The remaining 9% are

obtained mainly by ESO Large Programme + WHT XXL dedicated observational

campaigns which are individually contributing less than 2%. The typical error in

redshift for galaxies is ∼ 0.00041(1 + z), equivalent to 120(1 + z) km/s. The full

list of spectroscopic catalogues are listed in XXL Paper XXII. We note that the

spectroscopic sample adopted in this work is a subset of the spectroscopic sample of

XXL Paper XXII.

Given that the catalogue sources overlap in the sky, a non-negligible number of

objects are observed by more than one project. The cleaning of catalogue duplicates

follows the selection criteria designed to identify the best spectrum in the final cat-

alogue, as described by XXL Paper XXII. The selection procedure is based on two

sets of priorities, the first regarding source origin and then the second regarding the

reliability flag attributed to the redshift estimate.

The full sample contains 120506 galaxies in the north XXL region, 63681 of which

are at z ≤ 0.6. For our default analysis, we employ a sub-sample comprised of those

galaxies lying within a projected distance of r500 from the centres of the clusters,

shown in Fig. 5.1, yielding 7751 galaxies. 3

5.2.3 Spectroscopic redshifts of XXL-selected clusters

All C1 and C2 candidate clusters identified within the XXL survey are followed

up for spectroscopic redshifts using an iterative semi-automatic process similar to

that used for the XMM-LSS survey (Adami et al. 2011).

First, spectroscopic redshifts from public and private sources lying within the

3The spectroscopic information for these galaxies, as well as for spectroscopically confirmed groups/clusters, is
hosted in the CeSAM (Centre de donnéeS Astrophysiques de Marseille) database in Marseille (CeSAM-DR2), publicly
available at http://www.lam.fr/cesam/.

http://www.lam.fr/cesam/
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X-ray contours are selected. These are sorted to identify significant (more than

3 galaxies) concentrations, including a preliminary “cluster population” based on

projected separation from the X-ray centroid. For the large majority of cases, a single

concentration appears, allowing for relatively unambiguous redshift determination.

A preliminary measure of the cluster redshift is the mean value of the redshift of

the preliminary cluster population. From this redshift, a physical region of 500 kpc

radius is defined, and all galaxies within this radius were selected as cluster members.

This procedure is iterated with all available redshifts within a 500 kpc physical radius

to get the final mean cluster redshift. However, for ambiguous cases where there are

not more than three galaxies with spectroscopic redshifts, the redshift is measured

by looking for the putative brightest cluster galaxy (BCG) in the i-band located close

to the X-ray centroid (see XXL Paper XX for a detailed discussion).

The cluster centre is defined by the peak in the detected X-ray emission. Because

X-ray emission is continuous and the gas traces the gravitational potential, we expect

fewer mis-centered clusters (mis-centered with respect to the dark matter potential

minimum) compared to photometrically-defined samples (Rykoff et al. 2012). We

defer a detailed treatment of cluster mis-centering to future work.

5.2.4 Galaxy-cluster velocities

Given the redshift, zc, of each XXL-N group or cluster, we measure the rest-frame

relative velocity of each galaxy within the target field of that cluster,

(5.1) vgal = c

(
zg − zc
1 + zc

)
,

where c is the speed of light and zg is the redshift of the galaxy.

In this chapter the original spectroscopic galaxy selection for each cluster is defined

only by sky location, not cluster redshift. Therefore, each cluster field contains a
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mix of galaxies residing within and outside the cluster environment. We describe

below the probabilistic method originally applied to SDSS redMaPPer systems by

Rozo et al. (2015), which involves a two-stage approach to handling foreground and

background galaxies.

5.2.5 Signal component and final cluster sample

The model framework, wherein observable properties scale with halo mass as

power laws with some intrinsic covariance, motivates the modeling process. For

systems with a given temperature, T300kpc, and redshift, we expect a log-normal dis-

tribution of halo mass with some intrinsic (10− 20%) scatter (Le Brun et al. 2017).

The galaxy velocities internal to these halos are assumed to follow a Gaussian distri-

bution with a dispersion that increases with halo mass. Because the intrinsic scatter

of these relations is not very large, the expected distribution of galaxy velocities,

vgal, at fixed T300kpc and z will also be close to Gaussian (see Becker et al. 2007, for

a specific model applied to galaxy richness instead of temperature). This collective

component is the fundamental signal we seek to model and extract from the data.

The first stage of the process removes projected interlopers with large vgal offsets,

much larger than those expected from the underlying Gaussian model. The threshold

value, vmax(T300kpc), is set empirically by examination of the absolute magnitude

of the line-of-sight galaxy velocities as a function of cluster temperature, given in

Fig. 5.3. Similar to the analysis of Chapter IV, where redMaPPer optical richness

plays the role of T300kpc, two populations emerge: a signal component at low velocities

and a projected population offset to higher velocities.

Based on the structure of Fig. 5.3, we define a maximum, rest-frame galaxy ve-
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Figure 5.3: Magnitude of the rest-frame velocity of cluster galaxies, Equation 5.1, as a function
of cluster temperature. Each dot is one galaxy, and some galaxies appear in the fields of multiple
clusters. The black line shows the cut, Equation 5.2, that separates the lower signal population
from a projected background. Points above the black line are disregarded in our analysis.

locity for the signal region of

(5.2) vmax(T300kpc) = 2500

(
kT300kpc

2.2 keV

)0.5

km s−1 .

Applying this cut along with the radial cut, r ≤ r500, eliminates four clusters from

the sample because no galaxies satisfy these cuts. The final cluster sample involves

1592 galaxies across 128 clusters, 103 of which have directly measured temperatures.

Figure 5.4 shows the distribution of spectroscopic galaxy counts within r500 in

the cluster sample after applying the velocity threshold, Equation 5.2. The modal,

median, and mean values of the distribution are 3, 9, and 12.4 respectively. After

applying the velocity and aperture cuts, the main contribution of spectroscopic sam-

ple came from GAMA (45%), VIPERS (30%), VVDS Deep and Ultra Deep (11%),

SDSS-DR10 (5%). The remaining catalogues individually contribute less than 2%.

In Section 5.5, we investigate the sensitivity of our results to vmax and r500 selection

thresholds, not finding statistically significant change.
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Figure 5.4: Frequency distribution of the number of spectroscopic members per cluster within r500
after removing the high-velocity background component using the velocity cut, Equation 5.2.

5.3 Cluster ensemble velocity model

The study of Rozo et al. (2015) introduced an ensemble likelihood model for

stacked cluster spectroscopy with the goal of assessing the quality of photomet-

ric membership likelihoods computed by the redMaPPer cluster finding algorithm

(Rykoff et al. 2012). This model was designed to take advantage of sparse, wide-area

spectroscopic samples, for which each cluster may have only a few member redshifts.

Subsequently, the approach was extended in the previous chapter to infer the scal-

ing of mass with optical richness, λRM. In the present chapter we follow a similar

approach, with X-ray temperature replacing λRM.

5.3.1 Ensemble galaxy velocity likelihood

Power-law scaling relations, originally motivated by the self-similar model (Kaiser

1986, see also Chapter II for more discussion), are confirmed in modern hydrody-

namic simulations, which model baryonic processes in halos (e.g., McCarthy et al.

2017; Truong et al. 2018). Consequently, we assume a power-law scaling relation

between characteristic galaxy velocity dispersion, σgal, and X-ray temperature of the
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form,

(5.3) σgal(T300kpc, z) = σp

(
kT300kpc

kTp

)α(
E(z)

E(zp)

)β
,

where kTp = 2.2 keV and zp = 0.25 are the pivot temperature and redshift, and

E(z) = H(z)/H0 is the normalized Hubble parameter.

The probability distribution function (PDF) of galaxy velocity at a given clus-

ter temperature is taken to be Gaussian with the above dispersion. The ensemble

likelihood for the signal component allows for a residual, constant background atop

this cluster member signal. The likelihood for the ensemble cluster-galaxy rest-frame

velocity sample is thus

(5.4) L =
n∏
i=1

[
p G(vgal,i|0, σgal(Ti, zi)) +

1− p
2vmax(Ti)

]
,

where G is the Gaussian distribution with zero mean and standard deviation, σgal,

vgal is the line-of-sight (LOS) velocity, Equation 5.1, and the sum i is over all galaxy-

cluster pairs in the spectroscopic sample lying below the maximum cutoff, Equa-

tion 5.2. The parameter p is the fraction of galaxies that contribute to the Gaussian

component, while 1−p is residual fraction of projected systems that are approximated

by a uniform distribution in the signal portion of velocity space.

We maximise this likelihood with respect to the four model parameters, σp, α,

β, and p. Below we find that the redshift evolution parameter, β, is both relatively

poorly constrained and consistent with zero. We therefore also perform a restricted

analysis in which we assume self-similar evolution (SSE), with β = 0.

5.3.2 Ensemble velocity model in simulations

This model has been tested against simulation in Chapter IV, using cluster rich-

ness instead of X-ray temperature, with several key findings. First, the spectroscopic
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Table 5.1: Expectation values and standard deviations of the marginalized posterior distributions
of free parameters of the model defined in Eqs. 5.3 and 5.4. Parameters listed below are for the
fiducial model; the self-similar evolution model, with β set to zero, returns identical central values
and errors for the other parameters and so are not listed.

σp [km/s] α β p

539± 16 0.63± 0.05 −0.49± 0.38 0.88± 0.015

mass estimate is a nearly unbiased estimator of 〈lnMmem|λRM〉, where Mmem is the

mass of the underlying halo that contributes the maximum fraction of the cluster’s

photometric member galaxies assigned by redMaPPer. Second, galaxies lying in the

signal region consist of a majority coming from the top-ranked, member-matched

halo (∼ 60%) as well as locally projected galaxies (∼ 40%) lying outside the matched

halo. Finally, the main source of systematic uncertainty in the SDSS cluster mass

estimate of Chapter IV is uncertainty in the magnitude of the galaxy velocity bias.

5.4 Velocity scaling results

In this section, we present the inferred σgal − kT300kpc scaling relation for the

full cluster sample. The fiducial analysis uses the signal velocity threshold of Equa-

tion 5.2, an angular limit of r500, and solves for the four degrees of model freedom

using the entire sample. Sensitivity tests of the angular and velocity thresholds used

in our fiducial treatment are presented in the next section.

We run the MCMC analysis module PyMC (Patil et al. 2010) to maximise the

likelihood and recover the scaling relation parameters between velocity dispersion of

galaxy members and temperature of hot cluster gas. We assume a uniform priors on

all parameters, with the following domain limits: p ∈ [0, 1], σp ∈ [50, 1000] km s−1,

α ∈ [−10, 10], and β ∈ [−10, 10]. The best-fit parameter values for the fiducial model

and the restricted SSE model are given in Table 5.1.

For the fiducial treatment, the posterior constraint on the slope of galaxy velocity
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dispersion scaling with temperature is α = 0.63 ± 0.05, is in tension with the self-

similar expectation of 0.5. A slope steeper than self-similar could potentially arise

from AGN feedback effects on the ICM. Recent simulations including AGN feedback

exhibit shifts in the global ICM temperature of halos that are mass-dependent, with

larger increases seen at lower masses (Le Brun et al. 2017; Truong et al. 2018). Since

the galaxy velocity dispersion is not directly coupled to AGN activity, the impact on

the ICM would lead to α > 0.5.

We find no significant change in the scaling amplitude with redshift but our con-

straint is weak, β = −0.49 ± 0.38. Since the fiducial analysis yields no evidence

of redshift evolution, it is no surprise that the posterior SSE parameter values are

identical to those of the fiducial analysis.

The Gaussian component amplitude, p, is close to, but significantly different from

unity. While the value of 0.88±0.02 is consistent with the 0.916±0.004 value found by

Rozo et al. (2015) in their study of SDSS redMaPPer clusters, differences in selection

and measurement preclude a direct comparison. Besides sample selection differences,

the SDSS galaxy velocities are pairwise with respect to the central galaxy’s velocity,

whereas ours are determined by the mean cluster redshift, zc. Some of the difference

could reflect mis-centering, as a larger fraction of mis-centered clusters both reduces

p and increases σp (see the previous chapter). We defer detailed modeling of such

selection effects to future work.

Normalized velocity residuals about the mean scaling behavior in the fiducial

analysis are shown in Fig. 5.5. We bootstrap the galaxy sample to compute means

and standard deviations of the PDF in 64 bins between −4 and 4 in v/σgal, and these

are shown as points with error bars in the figure. The line is the model, a Gaussian of

zero mean, unit variance and amplitude given by the fiducial best fit plus a constant
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Figure 5.5: Normalized residuals of galaxy velocity about the mean scaling relation in the fiducial
analysis. Red points show the data and the black line is the model, Equation 5.4, a mixture of a
Gaussian and a uniform distribution. Error bars are calculated by bootstrapping the velocities of
the spectroscopic sample, using 64 bins between −4 and 4 in vgal/σgal. See text for discussion of
the goodness of fit.

background.

From Fig. 5.5, it is evident that our fit is not a good fit to data in the standard

chi-squared sense. The normalized velocity PDF structure is very similar to that seen

by Rozo et al. (2015) and in Chapter IV for redMaPPer clusters and simulations,

respectively. We find χ2/dof = 74/44 for vgal/σgal ∈ [−3, 3]. The estimated χ2/dof is

less than that for the best-fit value found by Rozo et al. (2015) for SDSS redMaPPer

clusters, χ2
SDSS/dof = 96/26.

While the centrally peaked nature of the normalized velocity PDF remains to be

carefully modeled, two potential sources of systematics are likely to be important.

One is projected large-scale structure; the simulations of Chapter IV show that only

∼ 60% of the galaxies in the signal component of velocity space actually lie within

r200 of the halo matched to each member of the cluster ensemble. Another is intrinsic

scatter in σgal−TX , which will distort the Gaussian shape. The fact that the χ2/dof
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Table 5.2: Summary of published σgal − kTX scaling relation parameters, using the notation1 of
Equation 5.3

Source σp (km s−1) α β fitting method N redshift

This work 539± 16 0.63± 0.05 −0.49± 0.38 Ensemble ML 132 z < 0.6

Wilson et al. (2016) 497± 85 0.86± 0.14 −0.37± 0.33 ODR 2 38 z < 1

Nastasi et al. (2014) 508± 147 0.64± 0.34 - BCES bisector 15 0.64 ≤ z ≤ 1.46

Xue & Wu (2000) 523± 13 0.61± 0.01 - ODR 2 145 z < 0.2
1 We note that sample definitions, analysis methods and notation vary across sources. Published intercepts are

renormalized to the fixed pivot temperature and redshift used in Equation 5.3.
2 Orthogonal Distance Regression

is smaller for the XXL sample compared to SDSS redMaPPer may reflect the fact

that the intrinsic scatter in galaxy velocity dispersion is smaller at fixed temperature

than at fixed richness, but differences in selection may also play a role.

Although the best fit is not a good fit to a Gaussian, the simulations of Chapter

IV show that the derived galaxy velocity dispersion scaling is unbiased with respect

to the log-mean value obtained by matching each cluster to the halo that contributes

the majority of its galaxy members. Because the galaxy velocities in that simulation

are unbiased relative to the dark matter by construction, the virial mass scaling

derived from the galaxy velocity dispersion, M(λRM, z) ∝ σ3
p(λRM, z), presents an

unbiased estimate of the log-mean, membership-matched halo mass of the cluster

ensemble. The reader interested primarily in mass scaling estimates can move directly

to Section 5.6.

We turn next to comparing our scaling of galaxy velocity dispersion with gas

temperature to previous work, and then explore the robustness of our parameter

values in Section 5.5.

Comparison with previous studies

Soon after early observations of extended X-ray emission from clusters indicated

a thermal gas atmosphere, a dimensionless parameter of interest emerged: the ratio

of specific energies in galaxies and hot gas, βspec = σ2
gal/(kTX/µmp), where µ is the
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Figure 5.6: Comparison of the σgal − kT300kpc scaling relation of this work with prior literature, as
labeled. Shaded regions are 1σ uncertainty on the expected velocity dispersion at given temperature.
The magenta line is the locus of constant specific energy ratio, βspec = σ2

gal/(kTX/µmp) = 1 with
µ = 0.6. The slope of Wilson et al. (2016) suffers from a potential bias discussed in the text.

mean molecular weight of the plasma and mp is the proton mass (note this beta is

fundamentally different from the symbol used in Section 5.3).

Early estimates of this ratio in small observational samples (Mushotzky et al.

1978) and gas dynamic simulations (Evrard 1990; Navarro et al. 1995) yielded βspec ≈

1, consistent with a scenario in which both components are in virial equilibrium

within a common gravitational potential. More recently, this ratio has been explored

at high redshift; Nastasi et al. (2014) find βspec = 0.85 ± 0.28 for 15 clusters with

z > 0.6.

Figure 5.6 compares the fiducial scaling relation of this work to previous deter-

minations in the literature. In addition, the dashed (magenta) line shows βspec = 1

assuming mean molecular weight µ = 0.6, appropriate for a metal abundance of

0.3Z�. Shaded regions show 1σ uncertainty on the expected velocity dispersion at a

given temperature.
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Table 5.2 summarizes the comparison with previous studies. The published scaling

relations are re-evaluated at the pivot point of this work to be directly comparable.

When appropriate, errors in the published slope are propagated to the normalization

error.

The measured slope in temperature is consistent between our work and previous

works. Wilson et al. (2016) find a slope 0.86 ± 0.14 for a sample of 38 clusters

from the XMM Cluster Survey. Using simulations, however, they show that the

orthogonal fitting method on their sample produces a substantial overestimate in

slope, by ∼ 0.3, in the test shown in their Table 7 and Fig. 9. They caution that

their fit overestimates the velocity dispersion of clusters above 5 keV. Similarly

Ortiz-Gil et al. (2004) uses the orthogonal fitting method and find a steep slope

∼ 1.00± 0.16 for a sample of 54 clusters.

If a bias correction is applied, the slope of Wilson et al. (2016) reduces to ∼ 0.55,

consistent with our findings. We note that a smaller shift of ∼ 0.2 would bring the

Ortiz-Gil et al. (2004) result into consistency with self-similarity at the 2σ level. For

a heterogeneous sample constructed from the literature, Xue & Wu (2000) report a

slope of 0.61± 0.01, consistent with our result.

The velocity dispersion normalizations given in Table 5.2 at the pivot temperature

and redshift are all in good agreement within their stated errors. The 3% fractional

uncertainty in our quoted normalization is among the tightest published constraints,

comparable to the statistical error of the more heterogeneous sample of Xue & Wu

(2000).
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Table 5.3: Sensitivity analysis of σgal−kT300kpc inferred parameters. See text for further discussion.

Model σp [km/s] α β p # Clusters # Galaxies

Fiducial 539± 16 0.63± 0.05 −0.43± 0.38 0.88± 0.02 128 1592

Measured kT300kpc only 547± 17 0.60± 0.05 −0.39± 0.39 0.87± 0.02 103 1421

r < 0.5r500 509± 20 0.67± 0.07 −1.29± 0.50 0.90± 0.02 127 891

r < 2.0r500 557± 13 0.56± 0.04 0.42± 0.32 0.82± 0.02 131 2810

vmax = 2000 km s−1 1 526± 18 0.62± 0.05 −0.50± 0.40 0.88± 0.02 128 1557

vmax = 3000 km s−1 1 549± 15 0.63± 0.05 −0.45± 0.37 0.88± 0.02 128 1617

αVmax = 0.3 2 539± 16 0.61± 0.05 −0.46± 0.39 0.88± 0.02 128 1591

αVmax = 0.7 2 543± 16 0.65± 0.05 −0.48± 0.38 0.88± 0.02 128 1589

zc 3> 0.25 550± 32 0.58± 0.09 −0.82± 0.79 0.87± 0.02 84 814

zc 3≤ 0.25 576± 48 0.63± 0.06 0.63± 1.42 0.88± 0.02 44 778
1 Normalization of the maximum velocity threshold in Equation 5.2
2 Slope in temperature of the maximum velocity threshold in Equation 5.2
3 Cluster redshift.

5.5 Systematic errors and sensitivity analysis

In this section, we investigate sources of uncertainty in the scaling presented in

the previous section, including survey selection and the sensitivity of the posterior

parameters to the details of the spectroscopic sample used to define the signal region.

Table 5.3 summarizes the results of the tests presented below. A cursory look at

the table indicates that most parameters shift by modest amounts, typically within

one or two standard deviations of the fiducial result, with the exception of the Gaus-

sian amplitude, p, discussed further below.

5.5.1 Temperature estimates

As presented in Section 5.2.1, the XXL temperatures are directly determined for

103 of the 128 clusters in our sample. A natural question to ask is whether our

results are sensitive to the temperature estimation method applied to the remaining

25 clusters.

We first note that the 103 systems with measured T300kpc tend to be more massive

at a given redshift, with higher galaxy richness. The higher richness translates into

more galaxies with spectroscopy, and it turns out that this subset holds most of the
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statistical weight of the spectroscopic sample. Within the fiducial r500 aperture, there

are 1421 galaxies in the 103 clusters with direct temperatures, compared with 171

galaxies in the 25 clusters with inferred temperatures. So ∼ 90% of the statistical

weight comes from clusters with measured temperatures.

As a consistency check, we refit the scaling relation after removing all clusters with

inferred temperature from the sample. The parameter constraints remain consistent

with our fiducial analysis.

5.5.2 Angular aperture

The velocity dispersion of dark matter particles in simulations varies weakly as

a function of distance from the halo centre (Old et al. 2013), and this effect has

been confirmed observationally (Biviano & Girardi 2003). We test the sensitivity

of our fit parameters by varying the angular aperture of inclusion by factors of 2±1

from the fiducial value of r500. We note that the size of the sample varies slightly

as the aperture is changed. The main change is that a larger aperture induces a

larger projection effect, evident from the Gaussian normalization, p = 0.82 ± 0.02

for 2r500 versus p = 0.90 ± 0.02 for 0.5r500. There are modest trends in the other

parameters, including a slightly steeper slope α = 0.67±0.07 at 0.5r500, and β is not

consistent with 0 at the ∼ 2σ level at 0.5r500, but the statistical power of the sample

is insufficient to determine these trends with high precision.

5.5.3 Signal component maximum velocity

Recall that the likelihood model is applied to a subset of all spectroscopic galax-

ies that lie in the signal region, with rest-frame velocities below a maximum value,

vmax(T300kpc), given by Equation 5.2. We test the effect of this maximum by indepen-

dently varying the amplitude by ±500 km s−1 (or ±20%) and the power-law index
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by ±0.2. The number of signal galaxies does not vary much with these changes,

indicating that our fiducial cut is roughly identifying the caustic edge that separates

bound and unbound galaxies in clusters (Miller et al. 2016). All parameters remain

within 1σ of their fiducial values as these changes are made.

5.5.4 Redshift range

We take the pivot redshift in this chapter, zp = 0.25, and split the full sample

into high and low redshift subsets. For these, we do not find statistically significant

deviations from the fiducial model parameters. The changes in the normalization,

slope, redshift evolution, and parameter p are all less than 1σ. Although, as to be

expected, there remains no effective constraints on the redshift evolution factor.

5.5.5 X-ray selection and Malmquist bias

The aim of our analysis is to produce unbiased estimates of the scaling relations

inherent to the population of dark matter halos. Selection by X-ray flux and angular

size (Pacaud et al. 2006) can introduce bias in the inferred σgal − kT300kpc scaling

relation if there is non-zero covariance between X-ray selection properties and galaxy

velocity dispersion (see Section 5.1 in Kelly 2007). Such data sets are said to

be “truncated”, and the truncation effects need to be explicitly modeled in the

likelihood.

There have not yet been observational estimates of the correlation between galaxy

velocity dispersion and X-ray properties at fixed halo mass. Halos in the Millennium

Gas simulations of Stanek et al. (2010) show intrinsic correlation coefficients of ∼ 0.3

for LX and σDM, where σDM is the velocity dispersion of dark matter particles in the

halos. However, translating this estimate into correlations involving σgal projected

along the line-of-sight is non-trivial and lies beyond the scope of this work. Redshift-
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space projection presumably dilutes any intrinsic halo correlation, unless the source

of the projected velocity component also carries associated X-ray emission.

The magnitude of potential selection biases can be addressed by simulating the

entire process of survey selection and subsequent spectroscopic analysis, along the

lines of that done by the previous chapter for redMaPPer optical selection. We defer

that work to future analysis. From the perspective of halo mass estimation, correc-

tions to the velocity dispersion scaling from sample selection are likely to be smaller

than the systematic uncertainty associated with galaxy velocity bias, as discussed

below.

5.6 Ensemble dynamical mass scaling of XXL clusters

In Chapter IV we use sky realizations derived from lightcone outputs of cosmo-

logical simulations to show that the mass determined through virial scaling of the

ensemble, or stacked, pairwise velocity dispersion offers an unbiased estimate of the

log-mean mass of halos matched via joint galaxy membership. Here, we apply this

approach to the fiducial velocity dispersion scaling in order to estimate the charac-

teristic mass scale, 〈lnM200|TX〉 of XXL clusters as a function of temperature at the

pivot redshift, zp = 0.25.

The simulation of the previous chapter assumed galaxies to be accurate tracers of

the dark matter velocity field, but real galaxies may be biased tracers. To estimate

the velocity dispersion of the underlying dark matter from the galaxy redshift mea-

surements, we introduce a velocity bias factor, bv, defined as the mean ratio of galaxy

to dark matter velocity dispersion within the target projected r200 region used in our

analysis. The normalization of the dark matter velocity scaling with temperature is
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then

(5.5) σp,DM =
σp
bv
,

where σp is the galaxy normalization with temperature, Equation 5.3.

Following the analysis presented in Chapter IV, we proceed by: i) imposing an

external bv estimate to derive the normalization of the dark matter virial velocity

scaling with X-ray temperature, then ii) applying the dark matter virial relation

calibrated by Evrard et al. (2008) to determine the scaling of total system mass with

temperature.

We use bv = 1.05±0.08 which is an empirical estimate derived from redshift-space

clustering of bright galaxies by Guo et al. (2015a). A similar value of 1.06± 0.03 is

found in the simulation study of Wu et al. (2013), although that study found galaxy

bias slightly below 1 for the brightest galaxies.

According to Guo et al. (2015a) the velocity bias runs with the absolute magnitude

of selected galaxies. Figure 5.7 show the distribution of absolute r-band magnitude

of selected galaxies in this work. We note that the peak of distribution of absolute

r-band magnitude of selected galaxies in this work is Mr = 21.5, which is consistent

with the brightest galaxy sample of (Guo et al. 2015a). This result justifies the

choice of our prior distribution, bv = 1.05± 0.08 found by Guo et al. (2015a) for this

magnitude threshold.

Using a velocity bias of 1.05±0.08 leads to an estimate of the dark matter velocity

dispersion at the pivot temperature and redshift,

(5.6) σp,DM = 516± 43 km/s .

We note that σp,DM uncertainty has contribution from the bv prior and σp posterior.
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Figure 5.7: The distribution of r-band absolute magnitude for selected galaxies after applying the
fiducial aperture and velocity cuts.

The virial scaling of halos in simulations displays a linear relationship between the

cube of the dark matter velocity dispersion, σ3
p,DM , and a mass measure, E(z)M∆,

where E(z) = H(z)/H0 is the normalized Hubble parameter. Using Equation 6 and

Table 3 of Evrard et al. (2008) along with h = 0.7, the total mass within r200 at the

pivot temperature and redshift is

(5.7) 〈ln(M200/1014 M�)〉 = 0.33± 0.24 ,

corresponding to M200 = (1.39+0.37
−0.30)× 1014 M�.

The full velocity scaling implies a log-mean mass for the XXL selected cluster

sample of

(5.8)

〈
ln

(
E(z)M200

1014M�

)
|T, z

〉
= πT + αT ln

(
T

Tp

)
+ βT ln

(
E(z)

E(zp)

)
,

with intercept πT = 0.45± 0.24, temperature slope αT = 3α = 1.89± 0.15, redshift

slope βT = 3β = −1.29±1.14. Recall that this result is based on 300 kpc temperature

estimates, T ≡ T300kpc.

Biviano et al. (2006) have examined the robustness of virial mass estimates in a

cosmological hydrodynamic simulation. They find that dynamical mass estimates are
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reliable for densely sampled clusters (over 60 cluster members). Due to the ensemble

technique adapted here, this work does not suffer from sparse sampling of cluster

members. Generally speaking, stacking techniques reduce the noise associated with

sparse samples, at the price of not constraining the intrinsic scatter.

While we explicitly remove extreme projected outliers in velocity space (see Fig. 5.3)

and account for a residual, constant contribution in the velocity likelihood, it is worth

noting that the central Gaussian component has contributions from galaxies that do

not lie in the main source halo. While this component retains some degree of pro-

jected galaxies, we previously showed that the dynamically-derived mass is a robust

estimate of log-mean mass at a given observable, in that case 〈lnM200|λRM, z〉. While

the optical and X-ray samples are selected differently, not enough is known about hot

gas and galaxy property covariance to model selection effects precisely. We discussed

in Section 5.5.5 why selection effects are unlikely to imprint significant bias into the

inferred scaling relation.

5.6.1 Comparison with previous studies

Figure 5.8 compares the mass-temperature scaling relation, a dynamical mass esti-

mates, derived in this chapter with previous studies that use weak lensing (XXL Pa-

per IV) and hydrostatic (Arnaud et al. 2005) mass estimates. Overall, there is a

good agreement within the uncertainties.

The data points with error bars are weak lensing estimates of M200 for a subsample

of the 100 brightest clusters in XXL (XXL Paper IV). In order to directly compare

our MPR with XXL Paper IV and other works, we evaluate all results at z = 0

using h = 1. When shifting the normalization, we assume SSE, βT = 0, yielding

πT = 0.09± 0.25.

Assuming self-similar redshift evolution, XXL Paper IV estimated the mass - tem-
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Figure 5.8: The M200 − kT scaling relation from this work (black line and dark shaded region) is
compared with published relations given in the legend and Table 5.4. Shaded regions are the 1σ
uncertainty in the expected mass at a given temperature. See the text for more discussion.

perature scaling relation using a subsample of 38 out of 100 brightest XXL clusters.

To improve their constraint, their sample is complemented with weak lensing mass

measurements from clusters in the COSMOS (Kettula et al. 2013) and CCCP (Hoek-

stra et al. 2015) cluster samples. While the data points plotted in Fig. 5.8 are taken

directly from XXL Paper IV, their published MPR is framed in terms of M500. We

therefore convert the normalization to M200 using an NFW profile with concentration

c = 3.1, the median value of the XXL Paper IV sample, for which M200/M500 = 1.4.

The slope of the weak lensing relation lies within ∼ 1σ of the self-similar expectation

of 1.5.

The assumption of hydrostatic equilibrium is commonly used to derive masses

from X-ray spectral images, and Arnaud et al. (2005) apply this method to a sample

of ten nearby, z < 0.15, relaxed clusters in the X-ray temperature range [2− 9] keV.

The masses are derived from NFW fits to the mass profiles, obtained under the
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Table 5.4: Comparison of the mass normalization, lnA = 〈ln(M200/1014 h−1M�) | kTX =
2.2 keV, z = 0〉, and slope of the mass–temperature determined by the works listed.

Paper lnA Slope Mass Proxy Number of Clusters redshift

This work 0.09± 0.25 1.89± 0.15 Dynamical Mass 132 z < 0.6

XXL Paper IV 1 0.31± 0.23 1.67± 0.14 Weak-lensing Mass 96 0.1 < z < 0.6

Kettula et al. (2015) 2 0.43± 0.17 1.73± 0.19 Weak-lensing Mass 70 0.1 ≤ z ≤ 0.5

Arnaud et al. (2005) 3 −0.09± 0.09 1.72± 0.10 Hydrostatic Mass 10 z < 0.16
1 The normalization is converted from M500 to M200 as described in the text.
2 CFHTLenS + CCCP + COSMOS cluster sample.
3 Spectroscopic temperature within the 0.1r200 ≤ r ≤ 0.5r200 region. All clusters.

hydrostatic assumption using measurements from the XMM-Newton satellite. We

note that they use a core-excised spectroscopic temperature from a 0.1r200 ≤ r ≤

0.5r200 region. Our result is consistent with that of Arnaud et al. (2005) within their

respective errors.

Kettula et al. (2015) combine 12 low mass clusters from the CFHTLenS and

XMM-CFHTLS surveys with 48 high-mass clusters from CCCP (Hoekstra et al.

2015) and 10 low-mass clusters from COSMOS (Kettula et al. 2013). From this

sample of 70 systems, they measure a mass - temperature scaling relation with slope

1.73± 0.19 for M200. When M500 is used, they find a slope of 1.68± 0.17 which they

argue may be biased by selection. Applying corrections to this (Eddington) bias,

they find a slope of 1.52± 0.17, consistent with self-similarity.

Table 5.4 summarizes these comparisons, showing the slopes and normalizations

scaled to z = 0 for a pivot X-ray temperature of 2.2 keV. The expected log mass is

the largest for weak-lensing proxies, and smallest under the hydrodynamic assump-

tion, but they are statistically consistent within their stated 10 − 20% errors. The

slope derived in this work is statistically consistent with the scalings derived from

weak-lensing and hydrostatic techniques. In agreement with prior work, we find a sig-

nificantly (> 2.5σ) steeper slope than the expected self-similar value of 1.5. A more

precise comparison would need to take into account different approaches to measuring
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X-ray temperature, as well as potential instrument biases (Zhao et al. 2015; Schel-

lenberger et al. 2015). For example, Arnaud et al. (2005) and Kettula et al. (2015)

measure core-excised temperatures within r200 while the temperatures used in this

work are measured within fixed physical radius. Comparing the non-core excised tem-

peratures of XXL clusters with the core excised temperatures used by Kettula et al.

(2013), XXL Paper IV found a mean ratio of 〈T300 kpc/T0.1−0.5r500,WL
〉 = 0.91± 0.05.

Several independent hydrodynamic simulations that incorporate AGN feedback,

including models from variants of the Gadget code (cosmo-OWLS; Le Brun et al.

2017; Truong et al. 2018) as well as RAMSES Rhapsody-G (Hahn et al. 2017a), find

slopes near 1.7 for the scaling of mean mass with spectroscopic temperature. These

results are in agreement with our finding. We note that the cluster sample used in this

work is dominated by systems with kTX < 3 keV, while Lieu et al. (2016)’s cluster

sample is dominated by clusters with temperature above 3 keV. Slopes steeper than

the self similar prediction for low temperature systems have been noted in preceding

observational works as well (e.g., Arnaud et al. 2005; Sun et al. 2009; Eckmiller et al.

2011).

5.6.2 Velocity bias

Similar to the previous chapter the dominant source of systematic uncertainty in

ensemble dynamical mass estimates comes from the uncertainty in the velocity bias

correction.

Dynamical friction is a potential physical cause for the velocity bias that would

generally drive galaxy velocities to be lower than that of dark matter particles within

a halo (e.g., Richstone 1975; Cen & Ostriker 2000; Yoshikawa et al. 2003). On the

other hand, clusters that are undergoing mergers tend to have galaxy members with

a larger velocity dispersion relative to the dark matter particles (Faltenbacher &
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Diemand 2006), and merging of the slowest galaxies onto the central galaxy could

also tend to drive bv to be greater than one. These competing effects are subject

to observational selection in magnitude, color, galaxy type, star formation activity

and aperture which need to be addressed with larger sample size. There is growing

observational evidence that velocity bias is a function of the aforementioned selection

variables (e.g., Guo et al. 2015a; Barsanti et al. 2016; Bayliss et al. 2017).

The space density of clusters as a function of velocity dispersion also constrains the

velocity bias in an assumed cosmology, and (Rines et al. 2007) find bv = 0.94± 0.05

and 1.28 ± 0.06 for WMAP1 and WMAP3 cosmologies, respectively. The quoted

errors are statistical and based on a sample of 72 clusters in the SDSS DR4 spec-

troscopic footprint. The study of Maughan et al. (2016) compares caustic masses

derived from galaxy kinematics (e.g., Diaferio 1999; Miller et al. 2016) with X-ray

hydrostatic masses. Such a comparison yields a measure of relative biases in hydro-

static and caustic methods, and their finding of 1.20+0.13
−0.11 for the ratio of hydrostatic

to caustic M500 estimates is consistent with unity at the < 2σ level. If incomplete

thermalization of the intracluster plasma leads hydrostatic masses to underestimate

true masses by 20% (e.g., Rasia et al. 2006, and references therein), then the central

value of Maughan et al. (2016) indicates that caustic masses would further underesti-

mate true masses. Because of the relatively strong scaling M ∝ b−3
v , a value bv ' 0.9

would suffice for consistency.

Redshift space distortions provide another means to test velocity bias (Tinker

et al. 2007). The current constraints from Guo et al. (2015b,a) indicate a magnitude-

dependent bias, with b−1
v changing from slightly above one for bright systems — the

value bv = 1.05 ± 0.08 we employ in Section 5.6 to infer total mass — to slightly

below one for fainter galaxies. Oddly, this trend is opposite to that inferred for
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galaxies from both hydrodynamic and N-body simulations, where bright galaxies are

kinematically cooler than dimmer ones (Old et al. 2013; Wu et al. 2013). The recent

observational study of (Bayliss et al. 2017) finds a similar trend.

In summary, studies are in the very early stages of investigating velocity bias in

the non-linear regime, both via simulations and in observational data. The statistical

precision of future spectroscopic surveys, such as DESI (DESI Collaboration 2016),

will empower future analyses that may produce more concrete estimates of bv as a

function of galaxy luminosity and host halo environment.

Given the current level of systematic error in mass calibration, our ensemble ve-

locity result is consistent with the weak-lensing mass calibration results of XXL Pa-

per IV. Similarly, the weak lensing results of Simet et al. (2017) and Melchior et al.

(2017) for redMaPPer clusters agree with the estimates of Chapter IV. Better under-

standing of the relative biases of weak lensing, hydrostatic and other mass estimators

will shed light on the magnitude of velocity bias in the galaxy population.

5.7 Chapter Conclusion

We model ensemble kinetic motions of galaxies as a function of X-ray tempera-

ture to constrain a power-law scaling of mean galaxy velocity dispersion magnitude,

〈lnσgal|T300kpc, z〉 for a sample of 132 spectroscopically confirmed C1 and C2 clusters

in the XXL survey. Spectroscopic galaxy catalogues derived from GAMA, SDSS

DR10, VIPERS, VVDS and targeted follow-up surveys provide the input for the

spectroscopic analysis. From the kinetic energy, we derive total system mass us-

ing a precise dark matter virial calibration from N-body simulations coupled with a

velocity bias degree of freedom for galaxies relative to dark matter.

Following Chapter IV, we employ a likelihood model for galaxy–cluster relative
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velocities, after removal of high-velocity outliers, and extract underlying parameters

by maximizing the likelihood using an MCMC technique. The analysis constrains

the behavior of a primary Gaussian component, containing ∼ 90% of the non-outlier

galaxies, the width of which scales as a power law with temperature, as anticipated

by assuming self-similarity (Kaiser 1986).

Based on 1908 galaxy-cluster pairs, we find a scaling steeper than self-similarity,

(5.9)

〈
ln

(
σgal

km s−1

)
| T300kpc, z = zp

〉
= ln(σp) + α ln

(
T300kpc

2.2 keV

)
,

with σp = 539 ± 16 and α = 0.63 ± 0.05 at a pivot redshift of zp = 0.25. While

redshift evolution is included in the likelihood, the data are not sufficiently dense at

high redshift to establish a meaningful constraint on evolution.

We identify and characterise several sources of systematic error and study the

sensitivity of inferred parameters to the galaxy selection model and assumptions of

the stacked model. The method is largely robust (Table 5.3). It is worth noting

that these systematic error sources are generally different from those of other mass

calibration methods, such as weak-lensing and hydrostatic X-ray methods, which

allows the XXL survey to have an independent estimate of the cluster mass scale.

Employing the precise N-body virial mass relation calibrated in Evrard et al.

(2008) coupled with an external constraint on galaxy velocity bias, σgal/σDM = 1.05±

0.08, we derive a halo mass scaling〈
ln

(
E(z)M200

1014 M�

)
| T300kpc, z = zp

〉
=

πT + αT ln

(
T300kpc

2.2 keV

)
+ βT ln

(
E(z)

E(0.25)

)
,

(5.10)

with normalization, πT = 0.45 ± 0.24, and slopes, αT = 1.89 ± 0.15 and βT =

−1.29± 1.14.

Within the uncertainties, our result is consistent with mass scalings derived from
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both weak-lensing measurements of the XXL sample (XXL Paper IV) and provides

an independent X-ray analysis using the hydrostatic assumption to obtain mass.

But uncertainties in the scaling normalization remain at the level of 10 − 25% (see

Table 5.2), and fractional errors in slope are also of order ten percent.

We note that the dominant source of uncertainty in our mass estimator is not

statistical, but systematic uncertainty due to the galaxy velocity bias. Deeper and

denser spectroscopic surveys, partnered with sophisticated sky simulations, will en-

able richer analyses than that performed here. As the accuracy of weak lensing and

hydrostatic mass estimates improve, the ensemble method we employ here could be

inverted to constrain the magnitude of velocity bias at small scales from future sur-

veys such as DESI (DESI Collaboration 2016). Such an approach has recently been

applied to a small sample of Planck clusters by Amodeo et al. (2017).

Larger numbers of spectroscopic galaxies at z > 0.5 are needed to constrain

the redshift evolution. In recent hydrodynamic simulations that incorporate AGN

feedback, Truong et al. (2018) present evidence for weak redshift evolution in the

slope of the mass-temperature scaling relation at z < 1, with stronger evolution at

z > 1. Next generation X-ray missions, such as eROSITA (Merloni et al. 2012) and

Lynx (Gaskin et al. 2015), will offer the improved sensitivity needed to identify and

characterise this population. In the meantime, deeper XMM exposures over at least

a subset of the XXL area can be used to improve upon the modest constraints on

evolution we obtain using the current 10 ksec exposures.

The best practice in comparing the forthcoming, more sensitive observational data

with theoretical models will require generating synthetic light-cone surveys from

simulations and applying the same data reduction techniques to the models and

observations.
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An extension that we leave to future work is to properly include temperature errors

into the ensemble spectroscopic likelihood model. Richer data will allow investigation

of potential modifications to the simple scaling model assumed here, including testing

for deviations from self-similarity (in the redshift evolution of the normalization or

a redshift-dependent slope, for example) and potential sensitivity to the assembly

history or large-scale environment of clusters.



CHAPTER VI

A Powerful Hierarchical Bayesian Model for Analyzing
Multi-wavelength Observables of Galaxy Clusters

Philosophy and Contribution

In this chapter, I develop and implement a new likelihood model which accounts

for the effects of sample selection, error covariance, and unobserved true halo masses.

I then apply this model to a sub set of LoCuSS cluster sample to estimate the

scaling relation parameters. The results provide a full calibration of conditional

mass–observables probability distribution for a wide range of observables. These

relations are a key element that enables a cosmological analysis with cluster samples.

This chapter is a modified version of Mulroy et al. (in preparation): “LoCuSS:

Galaxy Cluster Scaling Relations” to which I have contributed substantially. The

analysis and plots, except Figure 1, presented in this chapter are my own work. The

data is obtained and reduced by the collaborators.

6.1 Chapter Introduction

In Chapter II, it is illustrated that the abundance of galaxy clusters is a strong

function of the halo mass hosting the system. A cosmological analysis with these sys-

tems requires an accurate calibration of the probability distribution of observables

conditioned on halo mass. This requirement has motivated a significant effort to

155
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find and calibrate observable quantities which correlate with halo mass, i.e. scaling

relations (e.g., Giodini et al. 2013). As discussed in Chapter II, the baryon content

of these systems is observable, either in stellar material or in hot intracluster gas

(e.g., Gonzalez et al. 2013; Chiu et al. 2016). The derived properties of the stellar

and gas content of clusters are sensitive to a wide range of physical effects, including

cooling, star formation, feedback and accretion, which are not quantified with the

self-similar model of Chapter II. The observable properties of gas and stellar material

and their scaling with respect to the total cluster mass, which can give direct insight

into the physics of these processes, are the subject of this Chapter. In Chapter

IV and Chapter V, we develop an algorithm which estimates the mean-log mass of

clusters. That algorithm, however, does not determine the full conditional probably

distribution that is required for a cosmological analysis. To determine this proba-

bility distribution, a mass estimation for each individual cluster is required. In this

Chapter our primary goal is to estimate the full conditional mass–observables rela-

tion, p(s|µ, z). This includes mean relations, the scatter about each mean relation,

and the off-diagonal elements of the property covariance. The first two relations are

discussed in this Chapter and the latter is discussed in Chapter VII.

Ideally we would like to constrain the scaling relation of an observable with the

“true” mass of the cluster; however, in practice the true halo mass is not directly

measurable. A popular method of mass measurement uses X-ray properties together

with the simplifying assumption of hydrostatic equilibrium (e.g., Mathews 1978;

Sarazin 1988; Vikhlinin et al. 2006). More recently, significant progress has been

made in using the weak-lensing signal to probe the mass of galaxy clusters. When

carefully accounting for systematic effects, these masses are thought to be on average

unbiased with respect to the “true” mass (e.g., Oguri & Hamana 2011; Becker &
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Kravtsov 2011; Bahé et al. 2012). Crucially, these measurements do not rely on the

assumption of hydrostatic equilibrium; therefore are more reliable.

Perhaps the most often overlooked requirement for calibrating robust scaling re-

lations is a clear understanding of the cluster sample selection and correction for the

resulting selection biases. As each observable has a non-zero scatter in its relation

with mass, selection based on anything but ‘true’ mass can cause biases in the de-

rived relations relative to those of the underlying halo population. The latter are

often characterized by cosmological simulations (e.g., Le Brun et al. 2017). Cluster

samples are commonly selected from optical, X-ray or Sunyaev-Zel’dovich (SZ) sur-

veys (Rozo et al. 2009; Böhringer et al. 2004; Bleem et al. 2015), and constraints are

ultimately limited by understanding of the selection function and the sample size.

The 41 clusters in this chapter and the next chapter are particularly well studied

over a wide range of wavelengths (e.g., Marrone et al. 2012; Martino et al. 2014;

Mulroy et al. 2014; Haines et al. 2015; Okabe & Smith 2016). Combined with a

well described selection function, they provide the first cluster sample with which to

simultaneously constrain scaling relations for X-ray, SZ and optical observables.

In Section 6.2, we describe our cluster sample, its selection and the wide range

of multi-wavelength data which we use in this chapter and next chapter. In Section

6.3, we describe a new analysis tool, Hierarchical Bayesian method, to fit the scaling

relations. We present our results in Section 6.4. We, then, discuss these results and

compare them to the literature in Section 6.5. Finally, we conclude in Section 6.6.

Chapter’s Notation. We assume ΩM = 0.3, ΩΛ = 0.7 andH0 = 70 km s−1 Mpc−1.

In this cosmology, at the average cluster redshift, 〈z〉 = 0.22, 1 arcsec corresponds to

a projected physical scale of 3.55 kpc. We employ a spherical mass and radius con-

vention, M500 and R500, based on a mean, enclosed density of 500 times the critical
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density evaluated in the above cosmology.

6.2 Data

We study a sample of 41 X-ray luminous clusters from the “High-LX” sample

of the LoCuSS, which was selected from the ROSAT All Sky Survey catalogues

(RASS, Ebeling et al. 1998, 2000; Böhringer et al. 2004). These are all the clusters

satisfying a clearly defined selection criteria: nH < 7× 1020cm−2; −25◦ < δ < +65◦;

and an X-ray luminosity threshold of LX,RASSE(z)−1 > 4.4 × 1044erg/s for clusters

between 0.15 < z < 0.24, and LX,RASSE(z)−1 > 7.0× 1044erg/s for clusters between

0.24 < z < 0.30 (Figure 6.1), where E(z) ≡ H(z)/H0 =
√

ΩM(1 + z)3 + ΩΛ is the

evolution of the Hubble parameter. Therefore the only physical selection variable for

this sample of galaxy clusters is the RASS X-ray luminosity, LX,RASS .

The LX,RASS measurements cover the soft X-ray band from 0.1 to 2.4 keV, and are

taken from the ROSAT Brightest Cluster Sample and its low flux extension (BCS,

Ebeling et al. 1998; eBCS, Ebeling et al. 2000) for objects in the northern hemisphere,

and the ROSAT-ESO Flux Limited X-ray galaxy cluster survey (REFLEX, Böhringer

et al. 2004) for objects mostly in the southern hemisphere (δ < 2.5◦). For the clusters

in the overlap between surveys (Abell0267: BCS, REFLEX and Abell2631: eBCS,

REFLEX) we average the luminosities and errors. RASS luminosities are not core-

excised due to the angular resolution of the instrument, and so are sensitive to the

presence, or absence, of a cool-core.

We observed this sample of clusters at X-ray, optical, near-infrared, and millime-

ter wavelengths over the period 2005-2014, building up a unique and comprehensive

dataset. The main facilities that we used are Chandra, XMM-Newton, Suprime-

CAM on the Subaru telescope, Hectospec on the Multiple Mirror Telescope (MMT),
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Figure 6.1: The LX,RASSE(z)−1− redshift distribution of the LoCuSS clusters; The large points
show the 41 clusters passing the selection criteria and therefore used in this chapter and the next
chapter, while the circles show the LoCuSS “High-LX” clusters. The straight lines show the selection
criteria, the curves show the completeness limits for (e)BCS (Ebeling et al. 1998, 2000) and REFLEX
(Böhringer et al. 2004).

WFCAM on the United Kingdom Infrared Telescope (UKIRT), and the Sunyaev-

Zeldovich array. The total investment of telescope time amounts to several million

seconds. The details of the respective observations are provided in the wavelength

specific articles that are cited in the following sections, that describe the measure-

ments of galaxy cluster mass and observables that are used in this article.

6.2.1 Gravitational Weak-Lensing Masses

We use weak-lensing masses from Okabe & Smith (2016) (as tabulated in their

Table 2), who calculate masses by fitting an NFW (Navarro, Frenk & White 1997)

mass profile to the shear profile obtained from Subaru/Suprime-Cam observations.

We use M500 values, defined as the mass within radius r500, the radius within which

the average density is 500×ρcrit(z), where ρcrit(z) = 3H(z)2/8πG, the critical density

of the Universe. We adopt these weak-lensing determined radii, r500,WL, as the radii

within which we measure the other observables in this work (except YX and λ). The

systematic biases in the ensemble calibration of the weak-lensing mass calculations
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are controlled at ∼ 4 per cent level, based on careful selection of red background

galaxies, extensive tests of both faint galaxy shape measurement methods and mass

profile fitting methods (Okabe & Smith 2016). The measurement errors on M500

include contributions from shape noise, photometric redshift uncertainties and un-

correlated large-scale structure.

6.2.2 X-Ray Observables

We use X-ray measurements of the ICM described in Martino et al. (2014), where

most clusters were observed with the XMM-Newton EPIC or Chandra ACIS-I detec-

tors, except for Abell0611 and ZwCl0949.6+5207 which were only observed with the

Chandra ACIS-S detectors. As shown in Martino et al. (2014), The emission measure

profiles were robust to X-ray telescope cross-calibration issues for the selected energy

band.

We consider bolometric luminosity LX,ce and the average gas temperature TX,ce

within an annulus of [0.15 - 1]r500,WL to avoid the measurements being contaminated

by emission from the core. However the gas mass, Mgas , is measured within r500,WL.

We also measure the integrated pressure proxy, YX , for all but the two clusters with

ACIS-S observations. Defined as the product of gas mass and average temperature

(Kravtsov et al. 2006), it is the X-ray equivalent of the SZ parameter described in

Section 6.2.3.

Both the luminosity and the YX parameter derive from spherically symmetric

templates of the X-ray emission measure per volume unit, [npne](r), that were pro-

jected along the line of sight, radially averaged and fitted to radial profiles of the

soft [0.5 - 2] keV X-ray surface brightness. The bolometric estimate of LX,ce derives

from an extrapolation of the soft surface brightness assuming the spectral energy dis-

tribution of the ICM to correspond to a redshifted isothermal plasma with average
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temperature 〈kBT 〉.

For each cluster we estimated the YX parameter by iterating about an existing

YX - M500 scaling relation, yielding a characteristic radius r500, different from the

weak-lensing r500,WL radius within which the other X-ray observables are measured.

For clusters observed with XMM-Newton we use the relation of Arnaud et al. (2010),

and for those observed with Chandra we use the relation of Vikhlinin et al. (2009).

Both relations are calibrated using hydrostatic mass estimates in a nearby cluster

sample. The gas masses were computed from spherical integrals of the gas density

profiles, np(r), and the gas temperatures correspond to spectroscopic measurements

within projected [0.15 - 0.75] r500 and [0.15 - 1] r500, following the prescription of the

relevant scaling relation study.

6.2.3 Millimetre Observables – Sunyaev-Zel’dovich Effect

The SZ effect is caused by the inverse compton scattering of CMB photons by hot

electrons, in this case in the ICM. These interactions boost the photon energy by ∼

kBT/mec
2, leading to a characteristic distortion of the CMB spectrum in the direction

of galaxy clusters. The CMB intensity is decreased below ∼220 GHz and increased

above, in proportion to the ‘comptonization’ parameter, Y , which is an integral of the

product of the electron density and temperature through the cluster. This integral

of thermal pressure in the ICM, which is roughly in hydrostatic equilibrium with the

gravitational potential well, should therefore be closely related to cluster mass.

Sunyaev-Zel’dovich Array – One of the SZ measurement data sets employed in

this chapter is based on observations with the Sunyaev-Zel’dovich Array (SZA), an

interferometer comprising eight 3.5-meter antennas observing at 27-35 GHz. During

the period of these observations, from 2006 to 2014, the SZA initially observed from

the floor of the Owens Valley, near Big Pine, CA, and later was relocated to the
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nearby Cedar Flat site of the Combined Array for Research in Millimeter-wave As-

tronomy (CARMA). For all observations presented here the SZA antennas observed

as an 8-element array, rather than in concert with other CARMA antennas as in, e.g.,

Plagge et al. (2013). The SZA was configured with six antennas in a compact config-

uration to maximize sensitivity to the large-scale cluster signal, with the remaining

two antennas placed as ‘outriggers’ to discriminate the emission from point-like radio

sources from the SZ signature of clusters. The resolution of the compact array was

approximately 2 arcmin, while baselines to the outrigger antennas yield a resolution

closer to 20 arcsec.

The SZ signal for each cluster was modeled as a generalized-NFW pressure profile

(Nagai et al. 2007) using the parameters determined by Planck Collaboration et al.

(2014) from a joint fit to SZ and X-ray profiles of 62 massive clusters. These param-

eters include a concentration parameter, c500, the ratio of r500 to the scale radius (rs)

of the pressure profile. The WL-derived values of r500 and their uncertainties were

used to define a gaussian prior for the value of the scale radius, rs = r500/c500.

We are able to measure YSZA for 30 of the 41 clusters, finding that the fields for nine

are contaminated and that two clusters (RXCJ2102.1-2431 and ZwCl0857.9+2107)

are non-detections. The two non-detections are near the low end of the sample lensing

mass limit. The contaminated clusters contain 30 GHz sources that are not point-like

at the 20 arcsec resolution of the SZA long baselines. In such cases, the interferomet-

ric measurement cannot cleanly distinguish between emission from spatially extended

radio sources and the spatially extended SZ effect signal, which appears as ‘negative’

emission. The degeneracy between extended radio source emission and cluster SZ

signal makes the SZ measurements unreliable.

Planck – We also calculate the Y parameter from the six Planck High Frequency
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maps (Planck Collaboration et al. 2016a) using a template fitting program similar

to the method described in Section 2.3 of Bourdin et al. (2017). The maps are high-

pass filtered to remove large scale signals from the cosmic infrared background, SZ

background, and instrumental offsets. On cluster scales, we subtract a spatially and

spectrally variable model of the CMB and galactic thermal dust anisotropies.

An Arnaud et al. (2010) pressure profile template is fit to the residual flux within

5r500,WL using χ2 minimisation, from which we calculate the cylindrical signal within

r500,WL. While we use the known cluster positions, the Planck team identify clusters

as peaks in the signal map with a signal to noise above 4, and as such identify 38 of

the 41 clusters in our sample. For this overlap, our flux measurements agree within

10 per cent with those measured by the Matched Multi-Filter 3 (MMF3) algorithm

(Planck Collaboration et al. 2016b). We attribute this difference to the possible

offsets of 1-2 arcmin in the cluster positions in the MMF3 analysis.

6.2.4 Optical and Infrared Observables

We also use optical and near-infrared observations of the member galaxies, calcu-

lating the K-band luminosity of the BCG, the total cluster K-band luminosity, and

the optical richness.

Near-Infrared Luminosity – To investigate the stellar content of the clusters,

we use near-infrared (NIR) data (Haines et al. 2009), where 38 clusters were observed

with WFCAM on UKIRT, and two (Abell0963 and ZwCl0857) with NEWFIRM on

the Mayall 4-m telescope at Kitt Peak National Observatory. We lack NIR data for

Abell2697. From these data we calculate both the K-band luminosity of the BCG,

LK,BCG , and the total K-band luminosity of the cluster members, LK,tot . The data

is analyzed similar to Mulroy et al. (2014).

We convert from apparent K-band magnitude to rest-frame luminosity, using a
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k-correction consistent with Mannucci et al. (2001), and the absolute K-band Vega

magnitude of the sun, MK,� = 3.39. For the total luminosity, we select cluster

members as galaxies lying along a ridge line in (J − K)/K space. We select those

within r500,WL of the cluster centre down to a magnitude of K ≤ K∗(z) + 2.5, basing

K∗(z) on Lin et al. (2006) and choosing this limit because 2 < K −K∗ < 2.5 is the

faintest 0.5mag width bin for which the average K-band magnitude error is < 0.1

for all clusters. To account for the background we perform this same calculation on

a control field (The UKIDSS-DXS Lockman Hole and XMM-LSS fields, Lawrence

et al. 2007) within 40 apertures of radius r500,WL, subtracting the average from LK,tot

and adding the standard deviation the measurement error. The other component of

the measurement error is calculated by propagating the error on the weak-lensing

radius. Note that the uncertainties in Mulroy et al. (2014) included a term calculated

using bootstrap resampling of the members that we do not include here, because we

are interested in the individual cluster measurement error and not the statistical

properties of an ensemble of similar clusters.

We note that the consistency found in Mulroy et al. (2014) between color-magnitude

selected luminosity and spectroscopically confirmed luminosity indicates the accuracy

of color-magnitude member selection in (J −K)/K space, due to the sensitivity of

near-infrared data to old stars and its relative insensitivity to recent star formation.

Richness – We calculate the richness, λ, defined in Rozo et al. 2009 and improved

in Rykoff et al. 2012, for the 33 cluster overlap between our sample and the SDSS

sample (Gunn et al. 1998; Doi et al. 2010; Alam et al. 2015). This matched filter

richness estimator is defined as the sum of the membership probabilities of all the

galaxies, and was constructed as a low scatter optical mass proxy through extensive

tests on the maxBCG cluster catalog (Koester et al. 2007).
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For all potential cluster members, their membership probability is calculated con-

sidering their clustercentric radius, g-r color and i-band magnitude. The richness

estimator is the sum of these probabilities integrated down to M∗ + 1.75, while

the measurement error is derived from the variance of the sum. The corresponding

radius is not equivalent to an overdensity radius such as r500, but rather scales de-

terministically as λ0.2. The mean value for our sample is 1.4Mpc. While the scale

misalignment with respect to the other measures may add some additional variance,

we retain the algorithm’s choice so as to preserve consistency with other redMaPPer

applications (Rykoff et al. 2012, 2016). From a purely statistical point of view, λ is

simply another label tagged to each cluster. We leave it to future work to identify

physically meaningful, minimum variance estimators of these labels.

6.3 Linear Regression

Scaling relations between observable properties and mass are characteristically

power-law in form. We linearize the problem by using the natural log of the values

and perform a Bayesian analysis to infer scaling parameters. To do so correctly

we have to take into account measurement errors, the halo mass function and the

selection criteria. Most commonly used regression methods (e.g., BCES, Akritas &

Bershady 1996, and FITEXY, Press et al. 1992; Tremaine et al. 2002) can handle

measurement errors, while methods from Kelly (2007) and Mantz (2016) also take

into account the independent variable distribution by modeling it as a Gaussian

mixture model inferred from the data.

However the selection function can still introduce significant biases, either directly

when the selection variable is considered directly in the regression, or indirectly due

to covariance between this selection variable and the observables of interest. It is
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Table 6.1: Elements of galaxy cluster observable vector

Element, Si Unit Description
LX,RASS E(z)−1 1044 erg/s Selection variable: RASS, soft-band X-ray luminosity
LX,ce E(z)−1 1044 erg/s Core-excised, bolometric X-ray luminosity
TX,ce keV Core-excised ICM temperature
Mgas E(z) 1014M� ICM gas mass within WL R500

YX E(z) 1014M�keV ICM (spherical) X-ray thermal energy within WL R500

YSZA E(z) 10−5 Mpc2 ICM (spherical) SZ thermal energy
YPl E(z) 10−5 Mpc2 ICM (cylindrical) SZ thermal energy
LK,BCG E(z) 1011 L� BCG K-band luminosity
LK,tot E(z) 1012 L� Total K-band luminosity within WL R500

λ E(z) none redMaPPer richness (count of galaxies)
MWL E(z) 1014M� weak-lensing mass

possible, in principle, to use the methods of Kelly (2007) and Mantz (2016) to correct

for selection effects when the selection variable is on the dependent axis, by using

upper limits and generating ‘censored’ or missing data below the selection limit

in an iterative process (Gelman et al. 2014). We noticed that this feature of the

Kelly (2007) linear regression code by applying it to our LX,RASS scaling relation.

However it is not so straight forward to correct for the bias caused by covariance

with the selection variable, i.e. when considering a dependent variable which is not

the selection variable, and this approach can be computationally challenging for a

larger dataset.

We therefore develop a hierarchical Bayesian model similar to the methods of

Kelly (2007) and Mantz (2016), which simultaneously considers the selection variable

alongside all other observables in order to explicitly model property covariance, i.e.

the intrinsics covariance between two observables at fixed halo mass, and correctly

propagate selection effects.

6.3.1 Hierarchical Bayesian Model

We define log-space variables, µ ≡ ln(M), where M is the total halo mass, and

s ≡ ln(S), where S is the vector of observables given in Table 6.1. In practice we
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normalize mass using the median weak-lensing mass of the LoCuSS sample. At a

fixed redshift, the joint probability that there exists a cluster with given observables

and mass can be written as the product

(6.1) P (s, µ |θ, ψ) = P (s |µ,θ)P (µ |ψ) ,

where θ is the set of parameters that characterize the scaling relation of observ-

able properties with mass, and ψ characterizes the distribution of the independent

variable, in this case the cosmological mass function of halos. For the analysis pre-

sented here, we simplify the latter term by assuming a fixed cosmology and use the

second-order mass function model of Evrard et al. (2014) at redshift 0.22. Since

the mass function shape has only a modest effect on the posterior scaling parameter

constraints, we do not attempt to marginalize over cosmology and so drop ψ from

the equations below.

We note that the mass discussed above is the true unobserved halo mass which

we marginalize over. The small sample size and limited set of observables force us to

make the simplifying assumption that weak-lensing mass is an unbiased measure of

true halo mass, albeit with non-zero scatter of ∼ 20% (e.g., Oguri & Hamana 2011;

Becker & Kravtsov 2011; Bahé et al. 2012). We retain weak-lensing mass, MWL, in

the vector of observables s and treat it in a special way to avoid parameter severe

degeneracies of the type discussed in Penna-Lima et al. (2017).

We model P (s |µ,θ), the first term in the joint probability distribution in Equa-

tion (6.1), as a log-normal distribution,

(6.2) P (s |µ,θ) ∝ exp

{
−1

2
(s−αµ− π)TΣ−1(s−αµ− π)

}
,

where the model parameters, θ = {π,α,Σ}, include the intercepts, π, and slopes, α,

of the log-mean behavior, as well as the property covariance matrix, Σ, of Gaussian
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deviations about the log-mean. Each diagonal element of the covariance matrix

specifies the variance of a property while the off-diagonal elements are the property

covariance, all at fixed true halo mass. Except for the parameters connected to

weak-lensing mass, which are fixed as explained below, the remainder are unknown

parameters to be constrained. Parameter priors are uninformative, as specified in

Table 6.2.

We impose a delta function prior on the scaling of MWL that assumes unit slope

and intercept with true mass, and a fixed log-normal scatter of 0.2. We tested values

for the scatter of 0.1 and 0.3, finding that our results and inferred parameters are

insensitive to this choice. We assume zero intrinsic correlation between weak-lensing

mass and all other observable properties, a, at fixed true halo mass: rMWL,a = 0. We

include the correlation of its measurement uncertainty with the other observables

defined within the weak-lensing radius (so-called ‘aperture bias’).

In practice we do not measure the true values of s; our measurements, so, include

observational uncertainties. We again assume a log-normal form for the measurement

errors,

(6.3) P (so|s) ∝ exp

{
−1

2
(so − s)TΣ−1

err(so − s)

}
,

where Σerr is the measurement error covariance. This matrix includes both diagonal

elements, given by the square of the fractional errors in each cluster’s measured prop-

erties, and off-diagonal “aperture bias” terms for Mgas , LK,tot and YSZA properties

measured within the characteristic radius inferred from weak-lensing mass. While

most other observables are measured within the weak-lensing determined radius, the

measurements are largely unaffected by small radial changes and so do not require

these off-diagonal terms.

The probability of measuring the observable properties, so,i, of a specific cluster,
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i, is found by marginalizing over the true quantities, s, resulting in

(6.4) P (so,i|µi,θ) ∝ exp

{
−1

2
(so,i − 〈so〉i)TΣ−1

tot,i(so,i − 〈so〉i)
}
,

where 〈so〉i = αµi + π, with µi the lensing mass estimate of the ith cluster, and

Σtot,i = Σ + Σerr,i. We make a similar log-normal assumption about the weak-lensing

mass measurements, µo,i, and include the measurement error and its aperture-driven

covariance with other measured property uncertainties in the regression analysis.

Our method is able to handle missing data, meaning systems for which not all

elements of the data vector are available. We marginalize over these missing quan-

tities by setting the missing values at the median of that observable quantity and

assuming a large error, 999 in the natural-log, on the missing value.

Finally, and most significantly, we are able to account for the effect of selection, as

the vector of observables includes the selection property (Kelly 2007; Gelman et al.

2014). Our selection function is simply a redshift dependent LX,RASS threshold (see

Figure 6.1), which is taken into account using a redshift dependent step function. The

likelihood of the model parameters is based on the selection-normalized properties,

(6.5) L(so,i |θ) =
∏
i∈C

∫
dµi Φ−1

i (µi,θ) P (so,i, µi |θ) ,

where C is the cluster sample and Φi(µi,θ) is a normalization factor due to the se-

lection function for cluster i given the set of model parameters, θ, and its estimated

weak-lensing mass. We interchange the order of integration and multiplication op-

erator to get,

(6.6) L(so,i |θ) ∝
∫

dµi
∏
i∈C

Φ−1
i (µi,θ) P (so,i, µi |θ) ,

Letting y ≡ lnLX,RASS, full distribution for LX,RASS, and denoting the z-dependent

threshold luminosity as yt(z), the normalization factor in Equation (6.5) and Equa-
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tion (6.6) becomes

(6.7) Φi(µi,θ) =

∫
dy Θ(y − yt(zi)) P (y, µi |θ) ,

where Θ(z) is the Heaviside function (see Figure 6.1). For each cluster and each it-

eration of the Markov Chain Monte Carlo (MCMC) analysis, the likelihood is renor-

malized according to Equation (6.7).

For practical reasons, we do not perform the integrations over mass explicitly in

Equation (6.6). Instead, we consider the set of 41 lensing masses as additional model

degrees of freedom and perform the MCMC algorithm to derive the broader posterior

distribution,

(6.8) P (θ, µi | so,i) ∝
[∏
i∈C

Φ−1
i (µi,θ) P (so,i, µi |θ)

]
P (θ)

where P (θ) is the prior distribution specified in Table 6.2. We then determine the

model parameter constraints, P (θ | so,i), by marginalizing over the posterior distri-

butions of the 41 cluster masses.

The MCMC algorithm is based on the PyMC library (Patil et al. 2010) and proceeds

as follows. For each iteration, a mass is assigned to each cluster drawn randomly

from the halo mass function, i.e. the prior distribution. Then a new set of model

parameters, θ, are drawn randomly from the prior distribution specified in Table

6.2. With the assigned cluster masses and chosen set of parameters, the selection

function is evaluated and the likelihood evaluated. The initial seeds are adapted in a

way to minimize the number of steps needed to reach the equilibrium. We choose the

central value of the weak-lensing masses as the initial seed for each cluster mass, µi,

and the scaling parameters are initialized with the Kelly (2007) regression estimate.

This choice of initial seeds allows us to reach equilibrium faster and does not have an
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Table 6.2: Prior distributions of scaling parameters for any property, a, other than weak lensing
mass. The same priors are used for all properties and pairwise combinations, a,b.

Variable Description Prior
πa Intercept N (0, 100)
αa Slope N (0, 100)
σa |µ Scatter (natural log) U(0, 5)
ra,b |µ Correlation coefficient U(−1, 1)

effect on the posterior distribution. The performance of this method is demonstrated

and compared with other methods in Section 6.3.2.

6.3.2 Performance of the Hierarchical Bayesian Method

We test the performance of the Hierarchical Bayesian method on 1,000 mock

datasets. To generate mass values for the independent axis we assume a Tinker mass

function as a function of redshift (Tinker et al. 2008), and use the hmf code (Murray

et al. 2013). The process of generating this vector is as follows:

1. Generate catalogue of X ≡MTrue and z using hmf code (Murray et al. 2013).

2. Generate MWL assuming σlnMWL|MTrue
= 0.1.

3. Generate Y, an observable selection variable, values assuming a Y-X scaling

relation.

4. Generate Z, an observable, values assuming a Z-X scaling relation and an in-

trinsic correlation coefficient -0.7.

5. Apply a correlated measurement errors of 0.1 with correlation coefficient 0.7 to

Y and Z values about fixed halo mass.

6. Select systems those above a Y limit.

After applying the Y selection, each dataset contains ∼ 50 objects, similar to our

LoCuSS sample. We calculate the best fit parameters for each dataset, and show the
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distribution of these parameters in Figure 6.2. We find that the estimated posteriors

for these parameters are consistent with the input values. We compare the best fit

parameters calculated using different methods:

• H-Bayes: the Hierarchical Bayesian Model presented in Section 6.3.1

• H-Bayes (no r): the same model, without modeling the error covariance r

• Kelly: the method of Kelly (2007), without modeling the selection

• OLS: Ordinary Least Squares

As expected, the methods that do not consider the selection function (Kelly (2007)

and OLS) perform poorly and estimate a shallower slope (and higher intercept) for

the selection variable Y and a steeper slope (and lower intercept) for Z due to its

negative covariance with Y. This leads the method of Kelly (2007) to underestimate

the intrinsic scatter in both relations. We note that while both H-Bayes methods are

accurate in the Y relation where modeling error covariance is unimportant, the H-

Bayes method that does not model error covariance is less accurate in the Z relation.

This also emphasis on the effect of the error covariance on the scatter parameter of

a non-selection variable.

6.4 Results

In this section we apply the Hierarchical Bayesian method described in Section

6.3.1 to the LoCuSS data described in Section 6.2. We discuss the resulting scaling

relation parameters below, focusing on the individual properties in turn. Constraints

on property correlations are presented in Chapter VII.

In order to characterize the scaling relations between cluster observables and mass,

we use a fixed pivot mass defined by the sample average, Mp = 7.41× 1014M�, and
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Figure 6.2: Distribution of best fit parameters for 1,000 mock datasets, constrained by four different
methods: H-Bayes - the Hierarchical Bayesian Model presented in Section 6.3.1 (blue); H-Bayes (no
r) - the same model, without modeling the error covariance (green); Kelly - the method of Kelly
(2007), without selection function (red); OLS - Ordinary Least Squares (cyan).

fit the log-mean behavior of property a to the form,

(6.9) 〈sa〉 = αa(µ+ e(z)) + πa

where µ = ln(M/Mp), e(z) = lnE(z) and the normalization is the natural log using

units given in Table 6.1. The mass, M , is the weak lensing mass which is assumed

to be an unbiased estimator of true mass, as discussed above. Since our method

constrains the covariance between observables at a fixed mass, we use the same

independent variable, µ + e(z), for all properties. Where this is not the natural

independent variable derived in Chapter II (i.e. for Mgas , LK and λ ) we include an

additional factor of e(z) to the dependent axis, as listed in Table 6.1.

As a check, we also perform the fits with µ as the independent variable and

appropriately modified ε factors on the dependent axes. As expected within such a

narrow redshift range, the results are consistent.
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Table 6.3: Scaling relation parameters

Observable Intercept Slope Scatter Self-Similar
exp(πa) αa σa|µ Slope

LX,RASS 4.17+1.63
−1.63 1.23+0.41

−0.41 0.57+0.15
−0.15 1.00

LX,ce 7.89+0.94
−0.94 0.98+0.20

−0.20 0.37+0.05
−0.05 1.33

TX,ce 6.97+0.54
−0.54 0.49+0.12

−0.12 0.20+0.04
−0.03 0.66

Mgas 0.97+0.05
−0.05 0.78+0.10

−0.10 0.15+0.04
−0.04 1.00

YX 6.08+0.80
−0.80 1.27+0.20

−0.20 0.33+0.06
−0.06 1.66

YSZA 7.75+1.20
−1.20 1.57+0.23

−0.23 0.30+0.09
−0.09 1.66

YPl 11.04+1.11
−1.11 1.15+0.16

−0.16 0.28+0.04
−0.04 1.66

LK,BCG 0.97+0.10
−0.10 0.21+0.16

−0.16 0.34+0.04
−0.04 –

LK,tot 16.82+0.88
−0.88 0.75+0.11

−0.11 < 0.19∗ 1.00

λ 125.27+10.44
−10.44 0.73+0.14

−0.14 0.24+0.05
−0.05 1.00

∗ The LK,tot scatter is not bounded from below (see Figure 6.5), so the value quoted is a 95th percentile upper limit.

6.4.1 Scaling Relations Parameters

The resulting posterior estimates of the scaling relation parameters are summa-

rized in Table 6.3, shown in Figure 6.3, and discussed below. In ensuing subsections,

we begin by presenting results for the selection variable, LX,RASS , then proceed to

examine hot gas and stellar scaling behaviors. Subsequent sections discuss intrinsic

property variance and the physical origins of deviations about the mean relations.

Selection variable – The posterior parameter constraints on the scaling of

LX,RASS with mass, listed in the first row of Table 6.3, entail large uncertainties

that are driven by significant sample incompleteness as a function of mass. The

upper left panel of Figure 6.3 shows that all but two of the 41 clusters lie above the

best-fit underlying scaling relation; the selection skims off only the brightest systems

as a function of mass. This behavior is a textbook example of Malmquist bias (Allen

et al. 2011; Mantz et al. 2016a; Giles et al. 2017).

While the inferred slope of 1.23±0.41 agrees with the self-similar expectation, the

30% uncertainty in slope dilutes the impact of this statement. The intrinsic scatter
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Figure 6.3: Scaling relations between cluster observable properties and potential well depth,
E(z)MWL. Individual cluster points with error bars are shown while the Hierarchical Bayesian
fits and 68 per cent confidence regions of the mean behaviors are given by solid lines and grey-
scales, respectively.
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(in natural log) of 0.57+0.15
−0.15 is much higher than the 0.37+0.05

−0.05 seen for the core-excised

counterpart, LX,ce , which we interpret as the consequence of including the core. We

have also performed analysis using Chandra/XMM-Newton luminosities that include

the core, finding an intrinsic scatter of 0.51+0.08
−0.08, consistent with the LX,RASS value.

The relatively large uncertainty in LX,RASS scaling parameters allows only weak

estimates of the correlation coefficients between LX,RASS luminosity and other cluster

properties. The largest coefficients, with values between 0.4 and 0.5 and uncertainties

of roughly 0.2, are with follow-up X-ray measures and YSZA . The full set of coef-

ficients includes hint of an anti-correlation between hot gas mass and stellar mass

discussed further Chapter VII.

X-ray Observables – For the X-ray properties (rows 2 through 5 of Table 6.3),

posterior constraints on the slopes of the scaling relations are consistently shallower

than self-similar model expectations at the ∼ 1 - 2 σ level, with uncertainties ranging

from 0.1 (Mgas and TX,ce ) to 0.2 (LX,ce and YX ). The shallow behavior for Mgas is

unexpected, as previous studies covering a wider dynamic range in cluster mass have

found that mean gas mass increases with halo mass in a super-linear fashion, Mgas

∝M1.2 (e.g., Pratt et al. 2009). However, as discussed below, the slope we find is only
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in 2σ tension with the Weighing the Giants study of Mantz et al. (2016b), who find a

slope of 1.004± 0.014 for a high-mass sample of clusters. A trend toward self-similar

behavior in the highest halo masses is seen in Chapter III, a set of hydrodynamical

simulations that include AGN heating.

We highlight that there is a degeneracy between the posterior slope of a prop-

erty and the covariance between that property and the selection variable, LX,RASS .

Physically, we expect a positive correlation between Mgas and LX,RASS residuals, but

we find the correlation coefficient to be only 0.19+0.25
−0.24. If this value were higher, the

slope of the Mgas relation would also increase.

SZ Observables – We find that the slopes of the two SZ-Y relations are consistent

with each other, with YSZA being steeper than YPl at the level of 1.5σ. They are also

within 2σ of the self-similar slope of 5/3, and the two SZ values bracket the YX slope

of 1.27± 0.20.

Regarding normalization, the cylindrical measurement of YPl can be converted

to a spherical estimate by dividing by factor, Ycyl/Ysph = 1.2 (Arnaud et al. 2010).

The resulting value of 9.3 ± 0.8 compares well with the SZA spherical intercept of

7.9± 1.0.

To compare to the X-ray normalization, we follow Arnaud et al. (2010) and nor-

malize YX by

(6.10) CXSZ =
σT
mec2

1

µemp

= 1.416× 10−19 Mpc2

M�keV
,

giving a YX intercept of 8.8 ± 0.8. To summarize, we find good agreement between

the normalizations of all three relations that measure the electron thermal energy

content.

We note that while the YSZA slope is in agreement with the self-similar relation,

the YPl is shallower. Assuming self-similarity and the high resolution measurement
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YSZA reflect the true relation, we interpret this as a consequence of the low resolution

of the Planck maps. The angular resolution of the Planck HFI channels is ∼ 5 - 10

arcmin, comparable to the angular size of intermediate and low mass clusters at the

redshift studied here. The range of weak-lensing r500 values for our sample is 3.7 -

9.1 arcmin.

The YPl measurement errors for the low mass clusters are large, so they do not

have a strong influence on the fit. The fit parameters are largely constrained by

the intermediate and high mass clusters, and an increase in the YPl measurement of

intermediate mass clusters would act to shallow the fitted slope. Indeed we find the

highest ratios of YPl to YSZA in low and intermediate mass clusters. As the YPl values

are calculated by fitting an Arnaud et al. (2010) profile to the signal at a cluster

radius limited by the HFI resolution, this is consistent with the unresolved clusters

being sensitive to any elevated signal in the outskirts, for example from infalling

substructure.

Stellar Observables – The measures of galactic stellar content, LK,BCG, LK,tot

and λ, provide complementary insights into the star formation history of high mass

halos. Both LK,tot and λ attempt to measure the total stellar content of a cluster, but

they differ in detail. The K-band total luminosity, LK,tot , is a background-corrected

estimate that uses all member galaxies within the weak-lensing estimate of r500,

whereas λ is a red-sequence weighted estimate determined within an aperture scaling

as λ0.2. The former is luminosity weighted while the latter is number-weighted. We

highlight that any interpretation of the stellar content derived from these galaxy

observable scaling relations relies on the assumption that they are reliable tracers

of the stellar mass. This is likely sensitive to the details of the measurement, and

determining the best stellar mass estimate would require further study.
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Despite their differences, the slopes of the LK,tot and λ scaling relations are consis-

tent, and in both cases shallower than the self-similar prediction. As both measures

scale with total stellar mass, they point to a stellar fraction that decreases with in-

creasing halo mass, implying that star-forming efficiency is a decreasing function of

halo mass (Gonzalez et al. 2007; Laganá et al. 2011). This result is supported by

abundance matching arguments (Behroozi et al. 2013b; Kravtsov 2013) and AGN-

based feedback scenarios in cosmological hydrodynamics models are tuned to pro-

duce this feature (Croton et al. 2006; De Lucia & Blaizot 2007; Planelles et al. 2013;

Pillepich et al. 2018, also the work presented in Chapter III) Both weak lensing

(Simet et al. 2017) and ensemble spectroscopic (Chapter IV and Chapter V of this

dissertation) mass estimate methods find mean mass scaling behavior, M ∝ λ1.3,

consistent with the our findings.

The close agreement in the LK,tot and λ slopes values may be somewhat fortuitous.

The radius within which λ is measured scales more slowly (λ0.20) than the halo radius

implied from the scaling of weak-lensing mass (λ0.46), within which LK,tot is measured.

While this could potentially lead to proportionally larger increases in λ compared

to LK,tot as halo mass decreases, a secondary factor such as a declining red galaxy

fraction in lower mass halos may compensate for the scale mismatch effect.

The LK,BCG scaling relation is very shallow, almost consistent with zero, demon-

strating that the luminosity of the BCG is not a strong function of mass for clusters

in this mass range. As halo mass increases, so does the galaxy velocity dispersion,

and accretion onto the BCG slows relative to the total mass growth of the cluster.

As these two processes are largely uncoupled it leads to large scatter in the relation,

consistent with our finding that the LK,BCG relation has a larger intrinsic scatter

than the LK,tot relation.
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Figure 6.5: Posterior PDF of the scatter in total K-band luminosity, σlnLK
, with the 68th and 95th

percentile upper limits indicated.

The normalizations of the BCG and total LK,tot relations provide a simple estimate

of the fraction of stellar mass associated with the BCG. We find a value of 5.8±0.5%,

with the uncertainty dominated by the BCG normalization error.

6.4.2 Intrinsic Variance

Knowledge of the intrinsic variance in cluster properties is important for precise

cosmological studies with the population, but empirical estimates of the full covari-

ance matrix, including both on-diagonal scatter and off-diagonal pair correlations

have only recently begun to emerge (Maughan 2014; Mantz et al. 2016b).

Caution is required when estimating the covariance of sample properties, as the

statistical (measurement) errors must be accurately determined and the selection

model must be correctly described. Considerable interest lies in the intrinsic scatter

of an individual property, σa, and its related scatter in halo mass, σa/αa, where αa

is the slope with mass of that property.

Regarding selection, the effect of including selection has a significant affect on

the posterior intrinsic scatter estimates. The “naive” regression model (see Section

6.3.2) produces scatter estimates that differ significantly from Table 6.3 for several
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X-ray properties, including the LX,RASS selection variable. Note, however that the

intrinsic scatter constraints on Mgas and TX,ce , as well as all of the SZ and optical

properties are consistent between the two treatments.

Since the model that includes selection effects should be closer to unbiased, we

employ the values in Table 6.3 as our primary results, with a note of caution that

posterior scatter constraints for LX,ce and YX appear to be most sensitive to the

selection model.

Reviewing the intrinsic scatter values, we note that Mgas and LK,tot have the

lowest values, while the LX,RASS selection variable is highest. The posterior in LK,tot

scatter has no finite lower bound. As shown in Figure 6.5, the PDF of the intrinsic

scatter in the LK,tot relation is not well fit by a Gaussian, so we quote 68th and 95th

percentile upper limit of 0.11 and 0.19 respectively. The 95th percentile upper limit is

slightly below with the intrinsic scatter in the λ relation. We note that the definition

of membership for the two observables is different and therefore recalculate LK,tot

using membership as determined in the λ calculation, finding the result unchanged.

We interpret this as an indication that LK,tot , as a tracer of the stellar mass, is a

slightly better proxy for cluster mass than the richness.

From Table 6.3 we can estimate the mass proxy power using the inferred scatter

in mass σµ|a = σa|µ/αa. BCG K-band luminosity is by far the least effective, with

a wide scatter of 1.6 in logarithmic mass. Total K-band light, on the other hand,

is much more tightly correlated, with an upper limit of ∼ 30%. Gas mass provides

0.20 ± 0.05 fractional accuracy in mass, as do all measures of Y . We stress that

these estimates are with respect to the lensing mass values, and the inference with

respect to true mass is dependent on our simplifying assumptions discussed in Section

6.3. Larger homogeneous samples of the type used here are needed to provide more
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accurate estimates of the intrinsic property covariance.

6.4.3 Posterior Distribution on True Halo Mass

Our model fits for the cluster halo mass, and so generates a posterior distribution

for the true mass of each cluster. We display them next to our weak-lensing mass

estimates in Figure 6.6. Any differences are due to a combination of two effects – the

mass function favoring low mass systems, and the scaling relations favoring systems

that lie near the expectation value. The latter effect can be understood with looking

at the residuals. Clusters with negative residuals from the scaling relations tend to

have posterior masses smaller than their weak-lensing masses (e.g., Abell0907 and

Abell0291), while those with positive residuals have the opposite (e.g., Abell2219

and Abell0781).

6.5 Discussion

6.5.1 Scaling Relations in the Literature

As we have discussed, to obtain robust scaling relations requires an unbiased

measurement of the true mass, an understanding of and correction for the selection

of the sample, and a method which allows for the covariance between the selection

function and the observable property. Mainly due to the paucity of high signal-to-

noise, uniform, multi-wavelength data for well-defined cluster samples, the number

of studies in the literature which meet all of these criteria is small. We will largely

restrict ourselves to these studies for comparison.

The most similar study to our own is that of Mantz et al. (2016b), who use

weak-lensing measurements and gas mass as estimators of the ‘true’ mass, and who

attempt to model the selection of their clusters. For the ICM properties, they also

allow for the covariance of those properties with the selection variable. Their sample
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Figure 6.6: The posterior masses on true halo mass from the Hierarchical Bayesian fit in grey,
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includes 27 clusters with weak-lensing masses and a larger sample with gas mass

measurements, and span a slightly wider redshift range than ours. In mild conflict

with our results, Mantz et al. (2016b) report that the core-excised gas temperature

and the gas mass agree with the self-similar predictions. They find a TX,ce relation

slope of 0.62 ± 0.04, consistent with the self-similar expectation of 0.67 but only

2σ discrepant with our estimate of 0.49 ± 0.12. Their estimate of the Mgas relation

slope is 1.007± 0.012, in agreement with unity and again marginally consistent with

our estimate of 0.78 ± 0.10. It is unclear what causes the differences in our results,

however given our method, selection and data analysis are all different from Mantz

et al. (2016b), a difference of this magnitude is not unexpected.

Similar to our results, Mantz et al. (2016b) also find that the soft-band X-ray

luminosity is steeper than the self-similar expectation and suggest that this is due

to non-gravitational heating and cooling processes in cluster cores.

Our study is the first to look at the simultaneous scaling of X-ray, SZ and optical

properties, and so there are few results to compare to the SZ and optical properties.

Mantz et al. (2016b) provide an empirical scaling (without modelling the covariance

and correcting for sample selection) and find a shallower YSZ slope than self-similarity

would predict (1.31 ± 0.03). Note that this measurement is using Mgas as the mass

parameter, but Mantz et al. (2016b) find a one-to-one relation between Mgas and

MWL . This is similar to our YPl slope, but quite different from our YSZA value.

Although not corrected for selection effects, studies have placed constraints on the

optical scaling relations of LK,tot (e.g., Lin et al. 2003, 2004; Mulroy et al. 2014, 2017)

and λ (e.g., Rykoff et al. 2012; Mantz et al. 2016b; Simet et al. 2017; Melchior et al.

2017), finding the slopes to be shallower than the self-similar predictions, consistent

with our results.
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Results from recent numerical simulations indicate that AGN heating produces

departures from self-similar scaling relations. Several independent groups find that

galactic physics with AGN feedback steepens the ICM scaling relations (Planelles

et al. 2013; Le Brun et al. 2017; Hahn et al. 2017b; Pillepich et al. 2018), in moderate

tension with our X-ray findings. The overall star formation efficiency declines with

increasing halo mass in these simulations, producing stellar mass scalings that are

sub-linear with M, in agreement with the LoCuSS behavior. One concern when

making sample comparisons is the likelihood that the scaling relation slopes may run

with halo mass and, to a lesser extent, redshift (see Chapter III of this dissertation).

However, the statistical power of this sample is not good enough for constraining

these running parameters.

6.6 Chapter Conclusion

The task of constraining scaling relations is complicated by the effects of the

selection function and the error covariance. In this chapter we have presented a new

multivariate approach to correct for these effects, and applied it to a multi-wavelength

observational dataset for which the selection function is well defined. For the first

time, we have provided well-constrained scaling relation parameters with mass for a

range of galaxy cluster observables, and our main results are as follows:

• We find that the ICM scaling relations are shallower than the self-similar expec-

tations at the 1-2 σ level, which could be affected by inexact selection model.

• The results of integrated optical observables, LK,tot and λ , are in good agree-

ment, with slopes of ∼ 0.7 suggesting that star-forming efficiency is a decreasing

function of cluster halo mass.

• We find no distinction between clusters of different dynamical state in the core-
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excised X-ray and high resolution SZ relations.

Our results indicate no difference between the scaling relations of core-excised

X-ray or high resolution SZ measurements for clusters of different dynamical states,

suggesting that selection on these variables would lead to dynamically diverse samples

of clusters. Further investigation with samples including lower mass clusters is needed

to fully understand any dependence of the cluster stellar fraction on its dynamical

state. While our results in this chapter are limited by the modest number of observed

clusters, our method will be applicable to future surveys and will lead to excellent

constraints on the physics of clusters and the cosmological parameters. This chapter

presents diagonal elements of the property covariance, the scatter parameter; and in

the next chapter, we discuss the off-diagonal elements of the property covariance.



CHAPTER VII

An Empirical Study of Intrinsic Halo Property Covariance

Philosophy and Contribution

In this chapter, I study the intrinsic property covariance at fixed halo mass and

compare the results with the predictions provided in Chapter III of this dissertation.

In this chapter, I will close the chain, which starts with performing simulations,

continues with making model-dependent predictions, acquiring an empirical dataset

to test this prediction, modeling the data, and finally ends with comparing with the

predictions. This chapter is a modified version of Farahi et al. (in preparation): “The

First Empirical Evidence that Galaxy Clusters are Closed Baryon Systems” which

is intended for submission to Nature Astronomy. This chapter heavily relies on the

data obtained and the analysis method developed in Chapter VI. The analysis and

plots presented in this chapter are my own work. The data is obtained and reduced

by the collaborators.

7.1 Specifying the Model and the Notation

The analysis model assumes a multi-variate log-normal probability distribution.

In Chapter VI, we develop and employ a hierarchical Bayesian inference model which

accounts for the effect of the sample selection alongside the property covariance and

measurement error covariance. The analysis model and the performance test are

187
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discussed in Chapter VI of this dissertation. With a slope and intercept for each pair

of observables, a and b, we can estimate the covariance matrix. This covariance is

essentially defined as,

(7.1) Ca,b =
N

N − 1

n∑
i=1

δsa,i δsb,i,

where δsa,i ≡ sa,i−αaµi−πa is the residual deviation from the mean scaling relation

and N is the total number of clusters. Finally the property correlation is

(7.2) ra,b =
Ca,b√
Ca,a Cb,b

.

This correlation coefficient is the quantity of interest that we are after in this letter.

We note that our likelihood model constrains the correlation coefficients and the

scaling parameters simultaneously.

7.2 Closing the Loop – From Theory to An Observation

Historically, there has been a strong tendency to describe galaxy clusters as closed,

virialized objects, meaning that their baryonic content should be conserved and an

unbiased estimator of the cosmic mean baryon fraction. The first application of this

model dethroned the “standard CDM” model with Ωm = 1 (White et al. 1993),

and suggested Ωm = 0.3 (Evrard 1997). Subsequently, five years later the discovery

of dark energy dominated Universe, i.e. the ΛCDM model, came along with Type

Ia supernova (Riess et al. 1998). After two decades of obtaining data, that there

now exists precise, multi-wavelength observational data with a well-defined sample

selection, capable of testing the predictions of this long-standing model.

The original spherical collapse model postulates that the baryons and dark matter

trace one another within the virial boundary of a dark matter halo. In modeling the

formation of halos, assuming only the gravitational force and collisional shocks leads
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to self-similar solutions (Bertschinger 1985). In the self-similar solution, ideal fluids,

both collisionless and collisional fluids, take similar radial profiles when expressed

in units of the turnaround radius (Gunn & Gott 1972). Another implication of this

model is that this multi-phase, ideal fluid shows no radial separation, and the content

of radial shells, which are the building blocks of a cluster, reflects the comic mean

baryon fraction.

Within this formulation, massive halos are closed systems, retaining all their

gaseous and stellar matter. An implication of this closed box model is that there

would be zero scatter in total baryon mass conditioned on halo mass and redshift.

Most importantly, this model entails that a particular system with slightly more

(less) hot gas than average must contain a lower (higher) stellar mass than average,

leading to a strong anti-correlation between hot gas mass and stellar mass. This

anti-correlation is the primary observable we are after.

The simple self-similar model, thereby closed box postulations, does not capture

the effects of random perturbations – e.g. mergers and chaotic accretion from the

halo vicinity – and systematic astrophysical phenomena – e.g. the supernova feedback

and the active galactic nuclei (AGN) feedback. The mergers and chaotic accretion

potentially induce uncorrelated scatter, and leading to a weaker anti-correlation.

The feedback events can pull out the stellar or gaseous particles outside of the virial

radius of halos, which messes up the anti-correlation. In low-mass halos, such as

those hosting a single massive galaxy like the Milky Way, feedback from supernovae

and black holes is energetic enough to vent baryons in the gas phase out of these

relatively shallow gravitational potentials. The effect of these events on the reservoir

of the gas and stellar particles depends on the rate of energy deposition, and radial

scale by which halos are defined.
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The most massive halos, the hosts of rich galaxy clusters, could still preserve their

closed box nature. Feedback phenomena are not energetic enough to drive baryons

out of the host halo. Cosmological, hydro-dynamical simulations are indispensable

to predict the influence of these complex phenomena on total baryonic scatter and

the degree of anti-correlation between hot gas and stellar mass. The predictions for

the magnitude of this anti-correlation have recently emerged from two independent

hydrodynamical simulations, AMR-based Rhapsody-G (Wu et al. 2015) and SPH-

based BAHAMAS simulations (Chapter III of this dissertation).

Numerical simulations have established in great detail and with high statistical

significance how cold dark matter halo formation and evolution is driven by gravita-

tional amplification and collapse of the primordial dark matter density field (Springel

et al. 2005; Tinker et al. 2008). On the baryonic side, these simulations have also

successfully achieved high enough resolution and sub-grid complexity in order to ex-

plore, with high fidelity, how the baryonic components, such as stellar and gaseous

content, evolve within the potential wells of dark matter halos (Vogelsberger et al.

2014; McCarthy et al. 2017). The state-of-the-art simulations take the approach of

tuning sub-grid control parameters, that includes metal-dependent radiative cooling,

star formation, and prescriptions for both supernova and AGN feedback, to match

the observed galaxy stellar mass function and the hot gas mass fractions of groups

and clusters simultaneously (McCarthy et al. 2017).

Thus far, observational studies have thoroughly explored the scaling behavior of

baryonic observables (Giodini et al. 2013), including the scatter, but the constrains

for anti-correlation between the two baryonic phases of halos, the gaseous and stellar

phase, is unknown. This latter, unconstrained observable provides a novel and com-

plementary means of studying the closed box nature of halos. While both baryon
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scatter and the expected anti-correlation can examine the closed box scenario, the

former approach is sensitive to how well the measurement uncertainties and the

sample selection are understood and modeled. The latter approach is insensitive or

weakly sensitive to these systematics. To complement the scaling study of Chapter

VI, this Chapter establishes the first-ever empirical evidence of anti-correlation that

supports the closed box predictions and the predictions arose from the simulations.

Despite the few extant studies investigated the covariance of hot gas observables

(Mantz et al. 2010; Maughan 2014; Mantz et al. 2016a; Andreon et al. 2017), no

empirical study has attempted to constrain the intrinsic covariance for any pair of

a gas mass observable and a stellar mass observable. Typically the hot gas content

of clusters are measured via X-ray or millimeter bands, and the stellar content of

these systems are studied via optical or infrared bands. The historical absence of a

well-defined, multi-wavelength cluster sample explains the sparsity of observational

attempts to constrain the off-diagonal elements of the property covariance matrix.

The minimum requirement for this analysis is to obtain both stellar mass and gas

mass estimates for a cluster sample with a well-defined selection criterion and robust

halo mass measurements. These requirements are fulfilled with the advent of the

Local Cluster Substructure Survey (LoCuSS). In this Chapter, we report the first

empirical evidence of the anti-correlation for pairs of hot gas mass and stellar mass

observables, by employing a sub-sample of the LoCuSS original cluster sample.

The multi-wavelength nature of LoCuSS cluster sample offers a unique opportu-

nity to study both the stellar and hot gas content of the cosmic giants. Observations

of the LoCuSS cluster sample that utilized in this study spanned a decade, 2005-

2014, and includes data from the Subary 8.2-m telescope and the 3.8-m United

Kingdom Infrared Telescope on Mauna Kea, and the Chandra and XMM-Newton
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X-ray satellites. These data, the combination of X-ray and optical/infrared, allow

us to investigate the stellar and gaseous components with a set of well-defined ha-

los with robust mass measurements (Okabe & Smith 2016) (see Table 6.1 for the

complete list of observables employed in this Chapter). Another superior feature of

this sample is the existence of a well-defined selection criterion. Clusters are selected

from the ROSAT All-sky Survey (RASS) catalogs by applying a redshift-dependent

luminosity cut, where the sample is deemed to be complete; and to correct for the

effect of the sample selection, this selection criterion is incorporated into our analysis

model. We take a hierarchical Bayesian approach which accounts for the effects of

the sample selection, the measurement errors covariance, and the halo mass density

function. Our model simultaneously constrains the scaling parameters, i.e. the inter-

cept and the slope, and the full property covariance. The property covariance is the

covariance between a pair of observables about the mean mass–observable relation,

Equation 7.1. In this Chapter, we report the “property correlation”, which is merely

the property covariance divided by the intrinsic scatter of each observable, Equation

7.2.

Table 7.1 summarizes the estimated correlation coefficient for each pair of ob-

servables (off-diagonal, lower triangle elements) as well as the estimated scatter for

each observable (diagonal elements). These results provide the tightest and the

most comprehensive constraints for the property correlation among X-ray observ-

ables and the first constraints for the property correlation among pairs of X-ray and

optical/infrared observables.

Highlighted in Figure 7.1, there is a strong positive property correlation between

hot gas mass and X-ray luminosity as well as hot gas mass and integrated electron

thermal energy at fixed halo mass. These findings are in excellent agreement with
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previous observational findings (Mantz et al. 2016a; Andreon et al. 2017) and a set of

model-dependent predictions from hydrodynamical simulations (Stanek et al. 2010;

Truong et al. 2018). Despite the agreement between the empirical estimates and

simulations predictions of the property correlations, the scatters derived from sim-

ulations are significantly smaller than the observational estimates. This systematic

difference could be an indication of systematic bias in the quoted measurement errors

for the observational sample. The effect of this systematic uncertainty on the estima-

tion of the property correlation is sub-dominant compare to statistical uncertainties

as discussed in the next section.

The estimated positive correlation between gas mass and other X-ray observables

reflect the fact that the X-ray observables may be used as a noisy proxy for the

gas mass of halos. On the optical side, the optical-richness, λ, and near-infrared

luminosity, LK , may be used as a noisy proxy of the stellar content of halos, thereby

a positive correlation between these two observables are expected. We, indeed, find

∼ 2σ evidence that the correlation between LK and λ is positive.

Figure 7.2 depicts the posterior estimate for the property correlation of each pair

of hot gas mass proxy and stellar mass proxy. These trends are in agreement with

the closed box model expectation as well as the predictions from the hydrodynamical

simulations (Wu et al. 2015, and Chapter III of this dissertation). The uncertainties

on these quantities are broad; we, therefore, cannot rule out a particular prediction

from a set of simulations. These results are not currently dominated by the system-

atic uncertainties, nevertheless systematic effects would induce positive correlation

on the estimate of two anti-correlated observables.

There are two primary systematic effects which can wash out or weaken the es-

timated anti-correlation signal. The first systematic effect would be due to a bias



194

in the estimated scaling relation. A bias in the normalization and slope of the scal-

ing relation induces a positive correlation, but the magnitude of this bias out to be

substantial to have a significant effect on our results. The details are provided in

Section 7.3. To reduce the potential bias on the inferred scaling relation, we carefully

incorporate the sample selection, which is the primary source of such a bias, into our

model. The second systematic effect is linked to the fact that these observables are

a noisy estimator of stellar mass or hot gas mass of the underlying halo population.

This additional scatter would dilute the strength of an anti-correlation. This is dis-

cussed in detail in the next section. We note that this effect is implicitly revealed in

our results. The integrated light is a better indicator of the total stellar mass, i.e.

has less scatter, than the number of galaxies. The significant and systematic negative

shift in the inferred anti-correlation for LK and X-ray observables with respect to

the inferred anti-correlation for λ and X-ray observables indicates that the degree of

anti-correlation for the total stellar mass should be even stronger. Because this addi-

tional scatter is not quantified, we cannot correct for this effect. Nevertheless, we do

not expect this correction to be large, as the intrinsic scatter on the Mgas and LK is

itself small. Both of the above systematics are inducing positive correlation. Thus,

these results are a lower bound on the value of anti-correlation between the stellar

mass and the gas mass of the underlying halo population, and our main conclusion

remains unchanged.

The above results extend the evidence for the closed box model in which the most

massive halos maintain their baryonic content. If the massive halos are entirely closed

boxes and stellar content is a result of the cooling process, a property correlation

of negative one is expected. Feedback from supernovae and AGNs helps the mixing

hot gas and cold gas, but are not energetic enough to extract baryons from the
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very deep gravitational potential of the most massive halos, thereby only affects the

inner part of these cosmic giants. But, mergers and chaotic accretion from the halos

vicinity may induce uncorrelated perturbations in the baryonic content of halos. This

additional noise would also weaken the anti-correlation. Both of these effects have

been shown to operate observationally. These two competing effects, the cooling star

formation and the accretion, has an opposite effect which could be better understood

by the proposed property covariance, yet the exact value to be determined.

On a final note, it worth to mention that this property covariance is an essential

ingredient of a multi-wavelength cluster cosmology likelihood analysis (Evrard et al.

2014, and Chapter III of this dissertation). Hence, not only is this quantity an interest

of astrophysics studies, but a multi-wavelength cluster inference model would also

be incomplete, thereby biased, without this covariance element in it.

Now larger multi-wavelength cluster samples are in the process of being assem-

bled (Dark Energy Survey Collaboration et al. 2016). We, thus, expect the accuracy

of these measurements gets better with these upcoming sample. To support these

emerging cluster samples, a future research direction could provide realistic error

covariance for the observed quantities, which would be the primary source of sys-

tematics. In that regard, large simulated multi-wavelength cluster samples can play

a key role in better understanding of these systematics.

7.3 Systematic Effects

Here, we study the effect of systematic uncertainties in the estimated property

correlation, which support the claims made in the beginning of this chapter. We

are primarily interested in constraining the correlation coefficient between hot gas

mass and stellar mass of the underlaying halos population, which is expected to be
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Figure 7.1: The X-ray observables correlation coefficients at fixed halo mass. This compares predic-
tions emerged from SPH-based cosmological hydrodynamical simulations (markers) and the empiri-
cal constraints from the observational data (the box plots). The box plots are showing the posterior
constraints from the LoCuSS cluster sample (this work). The markers are model-dependent sim-
ulations predictions, each of which assumes different hydrodynamical treatment or provided by
different team. The statistical error bars on simulation predictions are all negligible (< 102); there-
fore they are not shown. Box plot is a standardized way of displaying a probability distribution.
The middle line shows the median of the posterior distribution; the box edges show the first and
third quartiles, which are equivalent at 25 and 75 percentiles respectively, and the whiskers extend
to show the rest of the distribution, 0.35 and 99.65 percentiles.
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Figure 7.2: The X-ray and optical observables correlation coefficients at fixed halo mass. This
compares predictions emerged from two independent hydrodynamical simulations, AMR-based
Rhapsody-G (Wu et al. 2015) and SPH-based BAHAMAS simulations (Chapter III of this dis-
sertation), and the empirical results from the LoCuSS cluster sample (the box plots). The gray
boxes are model-dependent, simulations predictions, each of which assumes different hydrodynam-
ical treatment. Box plot is a standardized way of displaying a probability distribution. The middle
line shows the median of the posterior distribution; the box edges show the first and third quartiles,
which are equivalent at 25 and 75 percentiles respectively, and the whiskers extend to show the rest
of the distribution, 0.35 and 99.65 percentiles.
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Table 7.1: Lower Triangle: The median and 68 percentile of the posterior distribution for the
correlation coefficient. Upper Triangle: The statistical significance of the estimated property
correlation assuming no-correlation, r = 0, as the null hypothesis. This has been calculated by
measuring the probability of having positive (negative) correlation according to the posterior dis-
tribution if the median is negative (positive). Diagonal: The intrinsic scatter of an observable
about the fixed weak-lensing mass.

LX kBTx Mgas YX Ypl YSZA LK λ

LX 0.37+0.05
−0.05 0.002 0.002 < 10−4 0.003 0.04 0.12 0.10

kBTX 0.51+0.13
−0.16 0.20+0.04

−0.03 0.24 < 10−4 0.19 0.08 0.15 0.15

Mgas 0.77+0.09
−0.13 0.17+0.21

−0.24 0.16+0.03
−0.03 0.009 0.006 0.32 0.14 0.27

YX 0.86+0.06
−0.10 0.69+0.10

−0.14 0.61+0.14
−0.19 0.34+0.06

−0.05 0.001 0.06 0.13 0.31

Ypl 0.57+0.12
−0.16 0.18+0.19

−0.20 0.58+0.13
−0.17 0.62+0.12

−0.16 0.28+0.04
−0.04 0.48 0.41 0.18

YSZA 0.44+0.17
−0.22 0.39+0.20

−0.25 0.12+0.22
−0.30 0.43+0.18

−0.24 0.01+0.22
−0.24 0.30+0.08

−0.09 0.31 0.27

LK −0.52+0.41
−0.27 −0.45+0.43

−0.32 −0.50+0.46
−0.33 −0.45+0.40

−0.32 0.09+0.37
−0.42 −0.24+0.49

−0.45 0.07+0.07
−0.05 0.08

λ −0.22+0.17
−0.17 −0.25+0.24

−0.22 −0.13+0.21
−0.21 −0.09+0.18

−0.19 0.18+0.18
−0.19 −0.16+0.26

−0.26 0.75+0.17
−0.43 0.24+0.05

−0.04

anti-correlated. We identify two primary sources of bias which can have an effect

on the estimated correlation. We note that both of these systematics are inducing

positive covariance for anti-correlated quantities. We discuss and quantify each of

these effects in the following.

The first potential systematic arises from a bias in the estimated scaling relation.

A biased scaling relation induces a positive correlation; however, a significant change

on the estimated the anti-correlation requires a substantial bias in the scaling rela-

tion. To illustrate this effect, we generate a set of simulated clusters and estimate the

correlation coefficient under different scenarios. We, first, take the LoCuSS weak-

lensing masses and assume a Mgas–MWL and LK–MWL relations. Draw a random

Mgas and LK from a multivariate log-normal distribution with a variable correlation

coefficient and 20% intrinsic scatter. Then, residuals are measured by assuming a

biased scaling relation. Finally, the correlation coefficient is estimated according to

Equation 7.2. For each input correlation coefficient, 1,000 realizations of LoCuSS-

like cluster sample are generated. Figure 7.3 illustrates the shift in the estimated
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Figure 7.3: The effect of bias in the scaling relation on the estimated property correlation. This
illustrates the estimated property correlation for a set of simulated clusters, with the same mass as
the LoCuSS cluster sample. To estimate the correlation coefficient a fixed slope of 0.75 for both
Mgass–M and LK–M relation is assumed, while the input slope takes different value specified in
the legend. The shaded areas are 68% confidence intervals derived from 1,000 realizations for each
input correlation coefficient.

correlation coefficient as a function of input correlation coefficient. The shift in the

estimated correlation coefficient is modest even for a very large bias in the assumed

scaling relation. A biased scaling relation is typically a indicator of unaccounted

sample selection. Because the sample selection is already taken into account in our

analysis, we do not expect a large bias in the estimated scaling relation for this

sample.

The second potential systematic arises from the additional, uncalibrated scat-

ter exists for a measured quantity with respect to the intrinsic halo quantity that

we are after. Although correcting for this effect is relatively straightforward, this

requires a prior estimate of this scatter conditioned on the halo quantity, for exam-
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ple Var(LK |Mstar). Figure 7.4 illustrates the effect of this additional scatter for a

LoCuSS-like cluster sample. To make a realization, we, first, take the LoCuSS weak-

lensing masses and assume a Mgas–MWL and a Mstar–MWL relations with unity slope.

Then, a random realization of Mgas,true and Mstar,true is drawn from a multivariate

log-normal distribution with a variable input correlation coefficient and 20% scatter.

Then, each intrinsic halo quantity, Mgas,true and Mstar,true, is further perturbed with

an additional scatter to get observed quantities, X = LK,obs and Y = Mgas,obs. Fi-

nally, the property correlation of this realization is estimated according to Equation

7.2. For each input correlation coefficient, 1,000 realizations are generated to get an

estimate of the bias uncertainties. Figure 7.4 illustrates the bias in the estimated

property correlation for a noisy measurement of true halo quantities, i.e. X and Y .

This additional scatter washes out the (anti)-correlation signal, unless this additional

scatter is calibrated and corrected for.

As an illuminative example, the systematic difference between the posterior es-

timate of correlation coefficient for {Mgas, LK} pair and {Mgas, λ} pair could be

understood via the “additional scatter” effect. We assume that λ is a nosier mea-

surement of LK with additional scatter of ∼ 20%. If we further assume that the

value of correlation coefficient between LK and Mgas about fixed halo mass is ∼ −0.5

and the intrinsic scatter of both Mgas and LK are ∼ 10%, then the expected value of

correlation coefficient for λ and Mgas would be about -0.22. This simple calculation

is in excellent agreement with our findings, and can describe the systematic shift in

the posterior distributions (See Figure 7.2).
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Figure 7.4: The effect of additional scatter between intrinsic quantities and the measured quantities
on the estimated property correlation. This figure illustrates the estimated correlation coefficient for
a set of simulated cluster samples, with the same mass as the LoCuSS cluster sample. To estimate
the property correlation of two observed quantities, we generate a realization of intrinsic quantities
with an input property correlation, and then add additional uncalibrated scatter to the intrinsic
quantities to get measured quantities. Finally, the property correlation of measured quantities are
estimated. These additional, uncalibrated scatters are specified in the legend. The shaded areas
are 68% confidence intervals derived from 1,000 realizations for each input correlation coefficient.



CHAPTER VIII

Conclusion

Galaxy clusters, the most massive collapsed objects in the Universe, are recog-

nized as a powerful probe of the cosmological parameters (Weinberg et al. 2013;

Huterer & Shafer 2018). These cosmic giants can be employed to study both the

growth of structure and the expansion history of the Universe. To achieve this goal,

the past generation of cluster samples have successfully delivered competitive cos-

mological constraints and practically illustrated that a population of clusters can

produce complementary results. Now, the next generation surveys are in the process

of obtaining larger and deeper cluster samples to further improve our understand-

ing of the physics of the Universe. One such ongoing survey is the Dark Energy

Survey (DES, Dark Energy Survey Collaboration et al. 2016), which is expected to

gather information on tens of thousands of these systems. While such large samples

of clusters provide ample opportunities for discovery, accurate and precise statistical

modeling of these systems are a significant challenge, which is the subject of this dis-

sertation. The developed models and techniques in this dissertation are a significant

step forward in the modeling of multi-wavelength cluster samples.

202
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One popular approach in constraining the cosmological parameters is to compare

the population statistics of galaxy clusters, as a function their observable properties,

with theoretical predictions. To calculate the conditional population statistics of

clusters, Chapter II proposes a new statistical approach. This population model

enables fast and accurate computation of cluster space density as a function of their

observable properties, which is a key ingredient of cluster cosmology analysis. The

space density of clusters as a function of their observable properties and redshift is

a quantity which can readily be derived from a cluster sample. However, theory

predicts the halo mass function (HMF), the space density of dark matter halos as a

function of their mass and redshift. Bridging the gap between theoretical predictions

and measured quantities demands two fundamental elements: (1) Modeling HMF as

a function cosmological parameters, (2) and mapping cluster observable properties

to the underlying halo mass.

Since the pioneering work of Press & Schechter (1974), many forms of HMF have

been put forward in the literature. Today, there are HMF which are calibrated, with

better than one-percent precision, against large suites of cosmological simulations.

The current modeling challenge rests in the second element mentioned above, mod-

eling and calibrating the underlying mass of a cluster sample. This dissertation aims

to address this challenge by adopting a multi-wavelength cluster analysis approach.

Simulations have also played a pivotal role in assessing the accuracy and precision

of the mass calibration models. As of today, the mass calibration of a cluster sample

remains as the dominant source of uncertainty in any cluster cosmology study.

Zwicky (1937) was the first to estimate a cluster’s mass from luminous matter.

Since then several independent mass measurement techniques have been put forward

– e.g., weak-lensing, dynamical, and hydrostatic techniques – and applied to various
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cluster samples. Adding to this stream of work, I take multiple approaches to model

and infer the mass scale of various cluster samples. In Chapter IV and Chapter V,

I present a novel mass calibration technique based on the ensemble of kinematics of

cluster member galaxies. This model is then applied to the cluster samples derived

from an optical, SDSS, and an X-ray, XMM-XXL, survey. To calibrate the mass

of a multi-wavelength cluster sample derived from the LoCuSS survey, I develop

a new inference algorithm. This model, which is described in Chapter VI, deter-

mines the mass–property relations for nine observables by employing weak-lensing

measurements of 41 LoCuSS-selected clusters.

The stacked technique developed in Chapter IV, similar to other stacking tech-

niques, comes with an inherent drawback. These techniques are capable of estimating

only the expected conditional halo mass and cannot capture the probability distri-

bution of individual cluster’s mass. To determine this probability distribution, an

independent inference algorithm is required, which is the subject of a new project I

am currently pursuing. It is typically assumed that the probability distribution of

halos’ mass has a log-normal form, which is widely used in the literature. In Chap-

ter III, I employ halos derived from suites of cosmological simulations to assess the

accuracy of this assumption. To extend this work, Chapter VI presents a new set

of estimates for the scatter about the mean relation, which defines the width of the

log-normal distribution, for nine cluster observables. The uncertainty in the halo

mass scatter conditioned on cluster observables is a primary source of systematic

uncertainty in cosmological analysis with clusters. In collaboration with the mem-

bers of the DES cluster working group, I am developing an algorithm which employs

multi-wavelength cluster data to infer this scatter parameter.
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Another essential element of a multi-wavelength cluster analysis is the property

covariance between two intrinsic properties of a halo population. In Chapter III,

I explore this property covariance for a set of halos derived from hydrodynamical

simulations. An outcome of this study leads to new prediction that two phase of

baryonic content of halos – stellar mass and gas mass – are anti-correlated at fixed

halo mass. Chapter VII of this dissertation employs the LoCuSS cluster sample to

empirically estimate this quantity for a broad set of cluster observables. The results

establish the first observational estimate of the degree of anti-correlation between

the stellar and gas content of halos and confirms the predictions made in Chapter

III. Furthermore, the results of this analysis open up a new, promising research

direction which has an impact on the better understanding of how the astrophysics

affect the baryonic content halos. Due to the importance of the property covariance

on multi-wavelength cluster cosmology analysis, an important future direction would

be to better constrain this quantity via future observations and to incorporate this

covariance into inference algorithms.

Inference models should be vetted with synthetic data before being applied to

observational data. In Chapter III of this dissertation, I utilize a set of halos de-

rived from hydrodynamical simulations to validate the proposed halo population

model introduced in Chapter II. The results of this validation suggest that while the

log-normal model is an accurate description of halo properties conditioned on halo

mass, the commonly used power-law model with constant slope is an insufficient ap-

proximation. This study suggests that low-order polynomial should be sufficient to

capture the scale- and time-dependent behaviors of the local slope and covariance of

halo mass-halo properties scaling relation.
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In a separate effort, I employed clusters derived from a light-cone produced by

N-body simulations to validate the stacked dynamical mass calibration technique

proposed in Chapter IV. As a third application of synthetic data for validation,

the hierarchical Bayesian model developed in Chapter VI is validated with many

realizations of synthetic LoCuSS-like datasets. As a future direction, I am currently

developing a technology which generates synthetic X-ray emission maps from groups

and clusters of galaxies to study the appropriate parameterization of the selection

function of X-ray surveys. This new direction will enable cosmological analysis with

cluster samples derived from X-ray surveys.

Narrowing the uncertainty on inferred cosmological parameters, ultimate goal

of any cosmology analysis, demands a better understanding of systematic effects.

Currently, the stacked weak–lensing method is the primary choice for the cluster mass

calibration of the emerging DES cluster sample. Given the widespread use of this

method, it is of interest to model and understand its potential systematics. A recent

analysis of the weak–lensing method has identified the following effects as the primary

sources of systematic uncertainty: (1) cluster’s orientation, (2) contamination due

to the correlated and uncorrelated projected structures, (3) the misidentified cluster

centers, and (4) the intrinsic halo mass scatter about the mean relation. A future

direction would be to model and calibrate each of the above systematics with DES-

like cluster catalogs synthesized from cosmological simulations. The results of this

analysis would support the science goal of constraining the dark energy equation of

state with the DES cluster sample.

Ultimately, a full calibration of halo mass–multi-wavelength cluster observables

should describe the full complexity of the mapping between halos and clusters. This

requires full knowledge of astrophysics, the detection algorithms, and measurement
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uncertainties. Building such knowledge requires a good understanding of the effects of

error covariance, intrinsic covariance between observables, cluster environment, and

sample selection, while the detection algorithms may alter measured properties due

to induce cluster orientation, projection, mis-centering, blending, and fragmentation.

Accurate and precise modeling of all these phenomena are the big challenge of cluster

cosmology. Last but not least, the work developed in this dissertation provides an

important step forward in the modeling of multi-wavelength cluster samples and

represents a critical step in the quest to unleash the full statistical power of future

cluster surveys.
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Bahé Y. M., McCarthy I. G., King L. J., 2012, MNRAS, 421, 1073

Ballay U., 1990, Arabica, 37, 389

Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304, 15

Barnes D. J., Kay S. T., Henson M. A., McCarthy I. G., Schaye J., Jenkins A., 2017,

MNRAS, 465, 213

Barsanti S., Girardi M., Biviano A., Borgani S., Annunziatella M., Nonino M., 2016,

A&A, 595, A73

Bayliss M. B., et al., 2017, ApJ, 837, 88

Becker M. R., Kravtsov A. V., 2011, ApJ, 740, 25

Becker M. R., et al., 2007, ApJ, 669, 905

Behroozi P. S., Wechsler R. H., Wu H.-Y., 2013a, ApJ, 762, 109

Behroozi P. S., Wechsler R. H., Conroy C., 2013b, ApJ, 770, 57

http://dx.doi.org/10.1103/PhysRevD.89.106003
http://dx.doi.org/10.1103/PhysRevD.89.106003
http://adsabs.harvard.edu/abs/2014PhRvD..89j6003A
http://dx.doi.org/10.1007/JHEP07(2015)046
http://adsabs.harvard.edu/abs/2015JHEP...07..046A
http://dx.doi.org/10.1051/0004-6361:20052856
http://adsabs.harvard.edu/abs/2005A%26A...441..893A
http://dx.doi.org/10.1051/0004-6361/200913416
http://adsabs.harvard.edu/abs/2010A%26A...517A..92A
http://dx.doi.org/10.1111/j.1365-2966.2011.20364.x
http://adsabs.harvard.edu/abs/2012MNRAS.421.1073B
http://dx.doi.org/10.1086/164143
http://adsabs.harvard.edu/abs/1986ApJ...304...15B
http://dx.doi.org/10.1093/mnras/stw2722
http://adsabs.harvard.edu/abs/2017MNRAS.465..213B
http://dx.doi.org/10.1051/0004-6361/201629012
http://adsabs.harvard.edu/abs/2016A%26A...595A..73B
http://dx.doi.org/10.3847/1538-4357/aa607c
http://adsabs.harvard.edu/abs/2017ApJ...837...88B
http://dx.doi.org/10.1088/0004-637X/740/1/25
http://adsabs.harvard.edu/abs/2011ApJ...740...25B
http://dx.doi.org/10.1086/521920
http://adsabs.harvard.edu/abs/2007ApJ...669..905B
http://dx.doi.org/10.1088/0004-637X/762/2/109
http://adsabs.harvard.edu/abs/2013ApJ...762..109B
http://dx.doi.org/10.1088/0004-637X/770/1/57
http://adsabs.harvard.edu/abs/2013ApJ...770...57B


210

Benson A. J., et al., 2013, MNRAS, 428, 1774

Bertschinger E., 1985, ApJS, 58, 39

Bhavsar S. P., Aarseth S. J., Gott III J. R., 1981, ApJ, 246, 656

Biffi V., Sembolini F., De Petris M., Valdarnini R., Yepes G., Gottlöber S., 2014,
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A&A, 466, 437

http://dx.doi.org/10.1086/591439
http://adsabs.harvard.edu/abs/2008ApJ...688..709T
http://dx.doi.org/10.1093/mnras/286.4.865
http://adsabs.harvard.edu/abs/1997MNRAS.286..865T
http://dx.doi.org/10.1086/341002
http://adsabs.harvard.edu/abs/2002ApJ...574..740T
http://dx.doi.org/10.1093/mnras/stx2927
http://adsabs.harvard.edu/abs/2018MNRAS.474.4089T
http://dx.doi.org/10.1086/156893
http://adsabs.harvard.edu/abs/1979ApJ...228..684T
http://dx.doi.org/10.1086/500288
http://adsabs.harvard.edu/abs/2006ApJ...640..691V
http://dx.doi.org/10.1088/0004-637X/692/2/1060
http://adsabs.harvard.edu/abs/2009ApJ...692.1060V
http://dx.doi.org/10.1038/nature13316
http://adsabs.harvard.edu/abs/2014Natur.509..177V
http://dx.doi.org/10.1016/j.physrep.2013.05.001
http://adsabs.harvard.edu/abs/2013PhR...530...87W
http://adsabs.harvard.edu/abs/1976MNRAS.174...19W
http://dx.doi.org/10.1038/366429a0
http://adsabs.harvard.edu/abs/1993Natur.366..429W
http://dx.doi.org/10.12942/lrr-2014-4
http://adsabs.harvard.edu/abs/2014LRR....17....4W
http://dx.doi.org/10.1093/mnras/stw1947
http://adsabs.harvard.edu/abs/2016MNRAS.463..413W
http://dx.doi.org/10.1051/0004-6361:20066813
http://adsabs.harvard.edu/abs/2007A%26A...466..437W


225

Wu H.-Y., Hahn O., Evrard A. E., Wechsler R. H., Dolag K., 2013, MNRAS, 436,

460

Wu H.-Y., Evrard A. E., Hahn O., Martizzi D., Teyssier R., Wechsler R. H., 2015,

MNRAS, 452, 1982

Xue Y.-J., Wu X.-P., 2000, ApJ, 538, 65

York D. G., et al., 2000, AJ, 120, 1579

Yoshikawa K., Jing Y. P., Börner G., 2003, ApJ, 590, 654

Zemp M., Gnedin O. Y., Gnedin N. Y., Kravtsov A. V., 2011, ApJS, 197, 30

Zhao H.-H., Li C.-K., Chen Y., Jia S.-M., Song L.-M., 2015, ApJ, 799, 47

Zou S., Maughan B. J., Giles P. A., Vikhlinin A., Pacaud F., Burenin R., Hornstrup

A., 2016, MNRAS, 463, 820

Zu Y., Mandelbaum R., 2015, MNRAS, 454, 1161

Zwicky F., 1937, ApJ, 86, 217

de Haan T., et al., 2016, ApJ, 832, 95

van den Bosch F. C., Norberg P., Mo H. J., Yang X., 2004, MNRAS, 352, 1302

http://dx.doi.org/10.1093/mnras/stt1582
http://adsabs.harvard.edu/abs/2013MNRAS.436..460W
http://adsabs.harvard.edu/abs/2013MNRAS.436..460W
http://dx.doi.org/10.1093/mnras/stv1434
http://adsabs.harvard.edu/abs/2015MNRAS.452.1982W
http://dx.doi.org/10.1086/309116
http://adsabs.harvard.edu/abs/2000ApJ...538...65X
http://dx.doi.org/10.1086/301513
http://adsabs.harvard.edu/abs/2000AJ....120.1579Y
http://dx.doi.org/10.1086/375148
http://adsabs.harvard.edu/abs/2003ApJ...590..654Y
http://dx.doi.org/10.1088/0067-0049/197/2/30
http://adsabs.harvard.edu/abs/2011ApJS..197...30Z
http://dx.doi.org/10.1088/0004-637X/799/1/47
http://adsabs.harvard.edu/abs/2015ApJ...799...47Z
http://dx.doi.org/10.1093/mnras/stw1992
http://adsabs.harvard.edu/abs/2016MNRAS.463..820Z
http://dx.doi.org/10.1093/mnras/stv2062
http://adsabs.harvard.edu/abs/2015MNRAS.454.1161Z
http://dx.doi.org/10.1086/143864
http://adsabs.harvard.edu/abs/1937ApJ....86..217Z
http://dx.doi.org/10.3847/0004-637X/832/1/95
http://adsabs.harvard.edu/abs/2016ApJ...832...95D
http://dx.doi.org/10.1111/j.1365-2966.2004.08021.x
http://adsabs.harvard.edu/abs/2004MNRAS.352.1302V

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Cosmology and Astronomy as an Empirical Science
	Scientific Discoveries of Early Days
	Emergence of New Paradigms in Scientific Discovery
	The Triumph of Modern Cosmology
	The Key Role of Scientific Computing in Modern Cosmology
	Clusters of Galaxies, the Intersection of Cosmology and Astronomy
	Astronomical Surveys to Which this Dissertation Contributes
	The Structure and Contribution of this Dissertation
	Beyond this Dissertation

	The Standard Model of Cosmology
	The Geometry and the Evolution of the Universe
	Friedmann Equation
	Fluid Equation
	Equation of State
	Friedmann Equations
	Hubble Law

	Cosmological Redshift
	Observed Redshift

	Growth of Structure
	Growth of Matter Density Fluctuations and Halo Formation

	Galaxy Clusters
	Self-similar Model of Galaxy Clusters

	Cosmological Hydrodynamical Simulations
	N-body simulations
	Baryonic physics

	Population Statistics of Massive Halos and Galaxy Clusters
	The Mass–Multi-Property Relation
	An Analytical Model of Conditional Statistics


	Simulated Halo Population Properties: scalings, log-normality, and covariance
	Chapter Introduction
	Simulations
	Mass-localized Regression
	Results
	LLR fits to scaling relations
	Log-normality of conditional statistics
	Stellar–hot gas covariance

	Validating the analytic population model 
	Discussion
	Mean MPR behavior
	Diagonal elements of the property covariance
	The off-diagonal element of the property covariance
	Observational prospects for stellar-hot gas mass covariance
	Sensitivity to Cosmological Parameters

	Chapter Conclusion

	A Novel Galaxy Cluster Mass Estimator from Stacked Spectroscopy
	Chapter Introduction
	Simulation samples and synthetic cluster catalog
	Galaxy population and halo membership
	Cluster finding with redMaPPer
	Cluster and Spectroscopic samples 

	Cluster–Halo membership matching
	Pairwise Velocity PDF: Halo Contributions to Spectroscopic Membership
	Constructing the velocity PDF of cluster central–satellite pairs
	Velocity PDF analysis
	Halo-ranked contributions to the velocity PDF

	Mass Estimation
	Cluster mass from dark matter virial scaling
	Sources of Systematic Uncertainty
	Central galaxy velocities and satellite galaxy velocity bias
	Cluster mis-centering
	Velocity dispersion variance at fixed richness
	Orientation and Shape selection bias


	Stacked Dynamical Mass Scaling of SDSS redMaPPer Clusters 
	Chapter Conclusion

	The Mass Scale of XXL Clusters from Ensemble Spectroscopy
	Chapter Introduction
	Cluster and spectroscopic sample
	X-ray Temperatures
	Spectroscopic sample
	Spectroscopic redshifts of XXL-selected clusters
	Galaxy-cluster velocities
	Signal component and final cluster sample

	Cluster ensemble velocity model
	Ensemble galaxy velocity likelihood
	Ensemble velocity model in simulations

	Velocity scaling results
	Systematic errors and sensitivity analysis
	Temperature estimates
	Angular aperture
	Signal component maximum velocity
	Redshift range
	X-ray selection and Malmquist bias

	Ensemble dynamical mass scaling of XXL clusters
	Comparison with previous studies
	Velocity bias

	Chapter Conclusion

	A Powerful Hierarchical Bayesian Model for Analyzing Multi-wavelength Observables of Galaxy Clusters
	Chapter Introduction
	Data
	Gravitational Weak-Lensing Masses
	X-Ray Observables
	Millimetre Observables – Sunyaev-Zel'dovich Effect
	Optical and Infrared Observables

	Linear Regression
	Hierarchical Bayesian Model
	Performance of the Hierarchical Bayesian Method

	Results
	Scaling Relations Parameters
	Intrinsic Variance
	Posterior Distribution on True Halo Mass

	Discussion
	Scaling Relations in the Literature

	Chapter Conclusion

	An Empirical Study of Intrinsic Halo Property Covariance
	Specifying the Model and the Notation
	Closing the Loop – From Theory to An Observation
	Systematic Effects

	Conclusion
	BIBLIOGRAPHY

