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ABSTRACT

Topology optimization is a method where the distribution of materials within a
design domain is optimized for a structural performance. Since the geometry is rep-
resented non-parametrically, it facilitates innovative designs through the exploration
of arbitrary shapes. Due to its unconstrained exploration, however, topology opti-
mization often generates impractical designs with features that prevent economical
manufacturing, e.g., complex perimeters and many holes. Above all, existing topol-
ogy optimization methods assume that the optimized structure will be made as a
single piece.

However, structures are usually not monolithic (i.e., single-piece), but assemblies
of multiple components, e.g., cars, airplanes, or even chairs. It is mainly because pro-
ducing multiple components with simple geometries is often less expensive (i.e., better
manufacturability) than producing a large single-piece part with complex geometries,
even with the additional cost of assembly.

This dissertation discussed a topology optimization method for designing struc-
tures assembled from components, each built by a certain manufacturing process,
termed the Multi-component Topology Optimization (MTO). The prior art of MTO
used discrete formulations solved by genetic algorithms. To overcome the high com-
putational cost associated with non-gradient heuristic optimization, this dissertation
proposed a continuously relaxed gradient-based formulation for MTO. The proposed
formulation was demonstrated with three manufacturing processes.

For the sheet metal stamping process, by modeling stamping die cost manufactur-
ing constraints and assuming resistant spot welding joints, the simultaneous optimiza-
tion of base topology and component decomposition was, for the first time, attained
using an efficient gradient-based optimization algorithm based on design sensitivities.

For the composite manufacturing process, a cube-to-simplex projection and pe-
nalization method was proposed to handle the membership unity requirement. With
the multi-component concept, a unique structural design solution for economical com-
posite manufacturing was achieved. The component-wise anisotropic material orien-
tation design for topology optimization was presented without prescribing a set of
alternative discrete angles as required by most existing material orientation methods.

xii



For the additive manufacturing process, the MTO method enabled the design
of additively manufactured structures larger than the printer’s build volume. By
modeling manufacturing constraints on the build volume limit and elimination of
enclosed holes, the optimized structure was an assembly of multiple components,
each produced by a powder bed additive manufacturing machine. The first reported
3D example of MTO was presented.
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CHAPTER 1

Introduction

1.1 Motivation
Structures are usually not monolithic (i.e., single-piece), but assemblies of multiple
components. For example, a car usually has about 30000 parts [1]. The Boeing 737
airplane is made up of 367000 parts [2]. Most dinosaur skeletons have several hundred
individual bones [3]. Even a frying pan is made of a disc base and a handle.

This dissertation was originally motivated by a fundamental question: why so
many parts for structural products? Apparently, if different materials are necessary,
a product has to be decomposed into pieces. This is the case for the frying pan,
which requires thermal insulation materials to prevent the handle from getting too
hot and heat conduction materials to heat up food. In addition, if relative motions
are required, a structure also has to be decomposed into pieces. This is the case for
dinosaur skeletons, where bones, connected by muscles and joints, move relative to
each other.

However, the above two arguments are not applicable to the automotive Body In
White (BIW), which is usually an assembly of many sheet metal stamped components
joined by resistance spot welding. An automotive BIW can be made from a single
material (e.g., steel), and does not involve any relative motions. It is mainly because
producing multiple components with simple geometries are less expensive than pro-
ducing a single piece BIW with complex geometries, even with the additional cost
of assembly. In other words, the manufacturability of multi-component structures is
often much better than that of single-piece structures. The manufacturability argu-
ment for a multi-component structural product is the main motivation and focus of
this dissertation while the other two, i.e., the materials and relative motions, are not.

1



1.2 Background
Topology optimization is a method for designing structures by optimally distributing
materials within a prescribed design domain. It is an interdisciplinary research area
between computational mechanics and design optimization. Unlike sizing and shape
optimization, which are often based on parametric geometry representations, topology
optimization describes geometries non-parametrically. It facilitates innovative designs
through the exploration of arbitrary shapes.

Figure 1.1 presents several state-of-the-art example structures designed by topol-
ogy optimization. It is obvious to see that structures generated by topology op-
timization are vastly different from conventional designs. Such out-of-box designs
demonstrated the benefit of topology optimization in design exploration. However,
these examples also revealed another significant shortcoming of designs generated by
topology optimization: lack of manufacturability. Structures shown in Figure 1.1(a–
b) are 3D digital models, which are still far away from realization into airplanes and
cars. Structures shown in Figure 1.1(c–f) are prototypes produced by additive man-
ufacturing, which are clearly not ready for economical production in large quantities.

As seen in Figure 1.1, current state-of-the-art topology optimization designs share
two major similarities, i.e., the complex overall geometry and the single-piece design,
both of which lead to their lack of manufacturability. In contrast, structures de-
signed for improved manufacturability or economical production in large quantities
are usually assemblies of multiple components with simple component geometries.
For example, Figure 1.2 shows a conventional chair assembly designed for economical
production, which is composed of multiple beam and plate components assembled
with fasteners.

The rest of this section reviews topology optimization methods (Section 1.2.1)
and two related topics about improving manufacturability for topology optimization.
Section 1.2.2 discusses related works in single-piece topology optimization for man-
ufacturability. Section 1.2.3 discusses previous works in topology optimization of
multi-component structures.

1.2.1 Topology optimization

According to [4], topology optimization is a natural outcome of introducing the mate-
rial micro-structure design to shape and sizing optimization. Cheng & Olhoff (1981)
discussed the optimal thickness distribution for elastic plates [5]. Their work led to
a series of works on optimal design problems introducing micro-structure. Kikuchi

2



(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Example current state-of-the-art structures designed by topology opti-
mization. (a) Concept aircraft wing (Technical University of Denmark); (b) auto-
motive body structure (Altair Engineering); (c) motorcycle frame structure (Airbus
APWorks); (d) structural steel component (Arup); (e) lightweight car seat proto-
type (Toyota Central R&D Labs); (f) Generico chair (Marco Hemmerling and Ulrich
Nether). (Online images)

3



Figure 1.2: A conventional chair assembly designed for economical production. (On-
line images)

and Bendsøe (1988) first introduced the material distribution approach for topology
optimization [6].

Since the late 1980s, different methods have been developed for topology optimiza-
tion, e.g., the Solid Isotropic Material with Penalization (SIMP) method [7, 8], the
Evolutionary Structural Optimization (ESO) method [9], the topological derivative-
based and level-set method [10, 11, 12, 13], the non-gradient method [14, 15], and
the moving morphable components method [16]. For general introduction of dif-
ferent topology optimization methods, readers are referred to several review pa-
pers [17, 18, 19, 20].

Based on different types of design domains, topology optimization can be classified
into discrete (truss/beam) approaches and continuum (pixel/voxel) approaches. The
continuum approach is the focus of this dissertation. Since the optimal structures
of the discrete approaches are the collections of predefined primitive members, such
as trusses and beams, the continuum approaches have advantages in representing
realistic products with complex geometries.

Based on different types of optimization algorithms utilized, topology optimiza-
tion can be classified into gradient-based methods and non-gradient methods. The
gradient-based method is the focus of this dissertation. Recently, in topology opti-
mization community, non-gradient methods received some serious critiques regarding
their applicability in continuum topology optimization problems [18, 21]. It is due,
mainly, to their lack of design sensitivities (i.e., gradient information), and the asso-
ciated high computational cost.

Figure 1.3 presents the conventional, single-piece continuum topology optimiza-
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Figure 1.3: Conventional, single-piece continuum topology optimization problem de-
scription.

tion problem description. In a prescribed design domain D, under given boundary
conditions (e.g., displacement boundary condition on Γd and traction boundary con-
dition on Γn), the problem is to optimize a structural performance by designing the
existence of materials in each design point, subject to some constraints (e.g., volume
fraction). It can be summarized as a generalized shape design problem of finding the
optimal material distribution.

Other than mechanical design problems, topology optimization has also been ap-
plied to a variety of other applications, e.g., heat transfer [22], turbulent flow [23],
antennas [24], architecture [25], and micro-systems [26].

1.2.2 Topology optimization for manufacturability

This section discusses manufacturing constraints for conventional, single-piece topol-
ogy optimization. Two major classes are discussed including the general-purpose
manufacturing constraints and process-specific manufacturing constraints.

It is well-known that continuum topology optimization tends to generate numer-
ous small holes, i.e., checkerboards [27, 28]. This behavior leads to mesh-dependency
and non-existence of solutions. To resolve this issue, regularization schemes have
been developed. They can be summarized into two main categories, the filtering
methods [29, 30, 31, 32] and the constraint methods [33, 34, 28, 35, 36]. Recently,
the PDE-based filtering method [37, 38] gained popularity due to its ease of imple-
mentation and superior computational efficiency. When a regularization scheme is
applied to topology optimization, it not only avoids numerical instabilities, but gen-
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erates results with much simpler geometries. The reduced shape complexity usually
leads to better general manufacturability. Therefore, such regularization schemes are
regarded as general-purpose manufacturing constraints.

Manufacturing constraints modeled for certain manufacturing processes are re-
ferred to as process-specific manufacturing constraints. Such constraints are usually
imposed on part geometries. They are often more specific than general-purpose man-
ufacturing constraints. For example, if a part is designed for molding and casting,
it has to be open and lined up with the draw direction of the die. If this restric-
tion is not applied to topology optimization, the resulting geometry is likely to have
cavities and overhang features that would prohibit drawing the die. To ensure the
manufacturability of structural topology designs for molding and casting, Zhou et al.
(2002) [39] proposed to model the moldability constraint as additional single variable
linear inequality constraints. Similar moldability manufacturing constraints were in-
tegrated into level-set topology optimization [40, 41]. Recently, methods based on
fictitious physical models were developed to ensure the moldability of topology opti-
mized structures [42, 43]. Extrusion constraints have also been proposed to enforce
uniform cross-sections [39, 44]. To better conform to manufacturing processes tailored
to plate structures, a geometry projection method was proposed to generate assem-
blies of discrete geometric components [45, 46]. For composite resin transfer molding,
a data-driven model for resin filling time prediction was developed and integrated into
topology optimization [47]. To reduce the amount of support materials required for
additive manufacturing, different overhang manufacturing constraint methods were
developed (e.g., [48, 49, 50, 51, 52, 53, 54]). For parts designed for additive man-
ufacturing, enclosed voids should be avoided, so that the un-melted metal powders
or internal support materials can be removed from the component once it has been
built. A virtual temperature method was proposed to eliminate enclosed voids by
constraining the maximum temperature field of a fictitious thermal analysis [55, 56].
To generate bone-like porous structures as lightweight infill for additive manufactur-
ing, the method based on an upper bound constraint on localized material volume
fraction was proposed [57, 58].

For more manufacturing oriented topology optimization methods, readers are re-
ferred to recent review papers [59, 60].

In summary, while the integration of manufacturing constraints in topology opti-
mization can lead to better manufacturability of the optimized structure, its perfor-
mance is often degraded. In some cases, the sacrifice of structural performance can
be drastic. It is partially because the manufacturing constraints are always applied
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to the entire single-piece structure. The single-piece assumption may overly simplify
the geometries, which goes completely against the benefit of topology optimization.
However, in the scope of this dissertation, when manufacturing constraints are ap-
plied to each individual component of a multi-component structure instead of the
entire single-piece structure, they will gain new interpretations.

1.2.3 Multi-component topology optimization

MTO is an evolution of conventional, monolithic (i.e., single-piece) topology opti-
mization, which not only optimizes the overall base topology, but the component
decomposition. From a viewpoint of mathematical formulation, it is closely related
to multi-material topology optimization (e.g., [61, 62, 63, 64, 65, 66]), where differ-
ent materials in multi-material structures can be regarded as different components
in multi-component structures. Unlike most topology optimization studies (includ-
ing multi-material topology optimization) that focus merely on optimizing various
structural performances, MTO is motivated by the need of generating ready-to-
manufacture optimal structures made as assemblies of multiple components, each
of which conforms geometric constraints imposed by a chosen manufacturing process.

Another related topic to MTO is the topology optimization for embedded compo-
nents, also known as the component layout optimization (e.g., [67, 68, 69, 70, 71, 72,
73]). Though these works are important for certain applications, e.g., the integration
of rigid objects, actuators and integrated circuits, the components are assumed with
fixed geometries and only allowed floating during the course of optimization.

There are three major classes in prior art of MTO. The first class assumes a
priori knowledge of joint locations [74, 75, 76, 77]. The second class assumes that
component decomposition is an independent problem from base topology optimiza-
tion [78, 79, 80, 81, 82]. By relaxing the above two assumptions, the third class
poses the simultaneous optimization of base topology and component decomposi-
tion, which is the focus of this dissertation. It was originally formulated as discrete
optimization problems and solved by genetic algorithms [83, 84, 85]. However, as
discussed in Section 1.2.1, such non-gradient heuristic methods for topology opti-
mization have received criticisms regarding their computational inefficiency for high
resolution problems [18, 21]. To address the criticisms, this dissertation proposes to
model the component decomposition as a relaxed continuous problem, and developed
a gradient-based framework for MTO.

Instead of designing a part via conventional, single-piece topology optimization,
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MTO can be directly applied to designing structures assembled from components,
each built by a certain manufacturing process.

1.3 Dissertation goal
The primary goal of this dissertation is to develop a new mathematical formulation for
MTO that can provide scalable multi-component structural design solutions, which
also take manufacturing limitations into account. Prior MTO methods were limited
to discrete formulations solved by genetic algorithms, which were not suitable for
large-scale problems.

The secondary goal is to expand MTO applications to varieties of manufacturing
processes. Prior MTO methods were limited to the sheet metal stamping process.

1.4 Dissertation outline
The remainder of this dissertation is organized as follows. Chapter 2 presents a gen-
eral gradient-based continuous framework for MTO. Chapter 3, 4, and 5 discuss
three MTO applications, including stamping, composite manufacturing, and addi-
tive manufacturing. Finally, Chapter 6 summarizes the dissertation and discusses
opportunities for future research.
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CHAPTER 2

A general gradient-based continuous formulation for
multi-component topology optimization

This chapter introduces a new gradient-based continuous framework for MTO. It is
a relaxation of the discrete formulation in [84] and [85], which is briefly reviewed first
in Section 2.1 for the sake of comparison.

2.1 Prior art: non-gradient discrete formulation
As seen in Figure 2.1(b), a prescribed design domain D is discretized into finite
elements such that every other adjacent structural element (square) sandwiches a joint
element (thin rectangle). Discrete design variables are assigned to both structural (x)
and joint (y) elements, where:

xi =

1 if structural material exists in element i

0 otherwise
,

and

yj =


2 if joint material exists in element j

1 if structural material exists in element j

0 otherwise

.

In the case of yj = 2, it indicates the existing of a joint in element j, and the neighbor
two structural elements belonging to different components.

Figure 2.1(c) shows a ground topology graph such that a node represents a struc-
tural element, and an edge represents a joint element. A given combination of x and
y can be interpreted as a unique topology graph, e.g., Figure 2.1(d). After certain
repairing of invalid structures, a topology graph is realized as a multi-component
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Design domain D

(a) (b) (c)

(d) (e) (f)

Figure 2.1: The non-gradient discrete framework for multi-component topology op-
timization. Different colors indicate different components. The thin black elements
indicate joint locations. (a) Design domain; (b) discretized design domain; (c) ground
topology graph; (d) topology graph of a certain design; (e) realized multi-component
design; (f) repaired multi-component design.
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topology design, e.g., Figure 2.1(f).
Using discrete variables x and y, a multi-objective MTO problem can be formu-

lated with both structural performance and manufacturing costs modeled as objec-
tives. Additional constraints can be added if needed, e.g., weight target. Because the
overall optimization problem is modeled with discrete variables and manufacturing
cost functions are often not directly differentiable, in [84], a multi-objective genetic
algorithm was used to solve it.

As discussed in Chapter 1, such non-gradient discrete formulation will encounter
computational efficiency limitations. With the Kriging-interpolated level-set exten-
sion [85], the number of design variables can be significantly reduced. However, due
to the nature of non-gradient methods and lack of sensitivity information during
optimization, the computational efficiency improvement is still marginal.

To overcome these challenges, this dissertation presents a continuously relaxed
formulation for MTO in a gradient-based framework. For the first time, the simulta-
neous optimization of base topology and component decomposition is attained using
an efficient gradient-based optimization algorithm based on design sensitivities.

2.2 Continuously relaxed design field
As demonstrated in Figure 2.2, in the continuous MTO formulation, there are two
layers of design fields. The first layer is the material density field ρ as a common field
for all components, which describes the overall base topology. The second layer is the
membership vector field m = (m(1),m(2), · · · ,m(K)). m(k) represents the fractional
membership of a design point in the design domain to the k-th component, k =

1, 2, · · · , K, where K is the prescribed, maximum allowable number of components.
The specification of K is not needed in the discrete formulation as discussed in Section
2.1. Both ρ and m(k) are continuous variables ranging between 0 and 1. In order to
ensure the unique selection of the component for each design point, an additional
important criterion needs to be satisfied at the end of optimization. The membership
to only one component converges to 1 while the memberships to all other components
converge to 0. In this dissertation, different methods have been proposed to meet this
requirement. Chapter 3 proposes to use many equality constraints to ensure the unity
of fractional component memberships. For each design point i, a linear constraint∑K

k=1m
(k)
i = 1 is added. In Chapter 4 and 5, different nonlinear projection methods

are used to replace the large number of equality constraints.
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(a)

(b)

(c)

Figure 2.2: Demonstration of the two-layer design field, and the resulting simulation
model for an example case of number of components K = 3. (a) Simulation model;
(b) density field ρ; (c) membership field m(k).

2.3 Continuously relaxed formulation
With the continuously relaxed design field, a general gradient-based continuous MTO
formulation can be summarized as follows:

minimize
ρ,m(1),··· ,m(K)

F

subject to h ≤ 0

ρ ∈ [0, 1]D

for k = 1, 2, · · · , K :

g(k) ≤ 0

m(k) ∈ [0, 1]D

, (2.1)

where ρ and m(k) are the density and membership design fields; F is the structural
performance objective (e.g., stiffness and strength); g(k) is a vector of manufacturing
constraints applied to each decomposed component k based on different manufac-
turing process applications; h is a vector of other constraints based on other design
requirements (e.g., volume fraction). Both the objective (F ) and constraints (h and
g(k)) should be modeled as continuous and differentiable functions with respect to all
design fields for the use of efficient gradient-based optimization.
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The manufacturing constraint modeling for gradient-based topology optimization
has been a challenging task due to the nature of “blurry” intermediate topologies.
Relaxation and approximation are often needed. For example, [28] used the total
variation of the density field to approximate the complexity of an intermediate topol-
ogy when its perimeter cannot be directly quantified. The MTO adds an additional
layer of difficulties to the manufacturing constraint modeling, because the “blurry”
effect is also applicable to the intermediate component decomposition. The compo-
nent boundaries will not be clear until the end of optimization while the geometric
constraint evaluation has to be done at the component level throughout the optimiza-
tion.

2.4 Chapter summary
This chapter presented a general gradient-based continuous MTO formulation that
will be used for different manufacturing processes in the rest of this dissertation.
The overall base topology was described with a density design field following the
conventional, density-based topology optimization methods (e.g., SIMP). To model
the component decomposition in a relaxed continuous manner, the concept of frac-
tional membership of a design point to different components was introduced. After
the relaxation of design fields, the gradient-based continuous MTO formulation was
presented, which built a foundation for the rest of this dissertation.
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CHAPTER 3

Multi-component topology optimization for
stamping

This Chapter presents the MTO application to stamped sheet metal structures,
termed the Multi-component Topology Optimization for Stamping (MTO-S). Stamp-
ing is the process of placing flat sheet metal into a stamping die where a tool and the
die surface will form the flat sheet metal into a net shape. Stamping has been widely
used across different industries due to its primary advantage of high production rate
with minimum operator intervention. As discussed in Chapter 1, most structural
products are assemblies of multiple components. This is especially true for stamped
sheet metal products. Different welding processes have been developed to connect
the components into a final product assembly. While some products with small scale
and simple geometries can be made as a single piece, e.g., water sinks, most sheet
metal products are designed as multi-component structures, e.g., automotive, ships.

3.1 Why multiple components for stamped sheet metal struc-
tures

The cost of stamping dies contributes to the majority of the cost for manufacturing
sheet metal products, which consists of the cost of die-set materials and the cost for
machining the die. As die-set raw materials are usually purchased as rectangular
prisms, the cost of die-set materials can be empirically modeled as proportional to
the size of the bounding box enclosing each component [86]. The cost for machining
the die can be modeled as proportional to a complexity index, which is defined as the
perimeter of each component normalized by its bounding box size [86].

The sheet metal assemblies are usually joined by a welding process, which will
inevitably require additional assembly costs compared with a single-piece product.
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However, compared with the investment in stamping dies, the assembly cost is rela-
tively low and sometimes even negligible.

Therefore, for a complex sheet metal product, it is often more cost effective to de-
sign it as an assembly of multiple components with simple component geometries than
producing a single-piece product with complex geometries, even with the additional
cost of assembly.

The standard practice of designing a multi-component stamped sheet metal prod-
uct is to design and optimize its overall (single-piece) base geometry first, and then
decompose it to refine part boundaries and joint configurations. Such practice, known
as a two-step approach, is likely to yield suboptimal solutions with respect to the
overall structural performance and/or manufacturing and assembly costs, since the
optimal decomposition obtained in the second step is largely dependent on the op-
timal overall geometry obtained in the first step. The MTO-S method proposed
in this chapter intends to realize the simultaneous design of the base topology and
component decomposition for stamped sheet metal multi-component structures.

3.2 Domain discretization and design variable configuration
A prescribed design domain D is discretized into finite elements in the same man-
ner as in Figure 2.1(b). Due to this special domain discretization, the mathematical
formulation presented in this Chapter is mesh-dependent. Mesh-independent formu-
lations will be presented in Chapter 4 and 5. Design variables are only defined in
structural elements as shown in Figure 3.1. Following the two-layer design variables.
For a structural element i, the (fictitious) density ρi takes a continuous value ranging
from zero to one, similar to the conventional SIMP formulation. The membership
design variable mi is a vector of size K, where K is the prescribed, maximum allow-
able number of components. Each element m

(k)
i of mi also takes a continuous value

ranging from zero to one, representing the fractional membership of element i in com-
ponent k. An additional linear constraint

∑K
k=1 m

(k)
i = 1 is added to each structural

element i in order to ensure the unity of total fractional memberships. Similar math-
ematical formulations can be found in multi-material topology optimization studies
(e.g., [87, 88]).
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Figure 3.1: Definition of the design variables, structural element, and two joint ele-
ment types.

3.3 Continuously-relaxed mesh-dependent joint model
The joint model assumes resistance spot-welding joints, which usually have less stiff-
ness than structural members [89]. The joint model formulation, however, is general
enough to be applicable to other joining processes with different material properties.
There are two types of joint elements, as shown in Figure 3.1. One is the thin strip
between two structural elements p and q, denoted as the Type A joint. The equivalent
Young’s modulus of such joint elements is determined by density ρ and membership
m of the two neighbor structural elements. A joint stiffness matrix H is defined
as a K × K symmetric matrix where all diagonal elements are Young’s modulus of
structural materials E(S), and all off-diagonal elements are Young’s modulus of joint
materials E(J) (< E(S) for resistance spot-welded joints). Matrix H can be written
as:

H = {hij} =

E(S) if i = j

E(J) if i ̸= j
. (3.1)

The equivalent Young’s modulus Epq of a Type A joint element between structural
elements p and q is computed as:

Epq = ρpm
ᵀ
pHmqρq, (3.2)
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(a) (b) (c) (d)

Figure 3.2: Sample extreme scenarios for Type A joints. Black, gray and white colors
represent the structural materials, joint materials, and voids, respectively. Other
colors represent different components with structural materials. (a) Between two,
fully dense structural elements that belong to the same component; (b) between two,
fully dense structural elements that belong to different components; (c) between two
voids; and (d) between a fully dense structural element and a void.

where ρp and ρq are densities of structural elements p and q, and mp and mq are their
corresponding memberships. Figure 3.2 shows sample extreme scenarios for Type A
joints. The equivalent Young’s modulus of a Type A joint takes a value Epq = E(S)

if structural elements p and q both belong to the same component and have full den-
sity values, indicating the joint element is actually a part of a structural member
(Figure 3.2(a)); Epq = E(J) if the neighbor structural elements belong to different
components and have full density values, indicating the joint element represents a
welded joint (Figure 3.2(b)); and Epq = 0 if at least one of p and q has zero density
value (Figure 3.2(c–d)). Otherwise, Epq takes a value between zero and E(S), indi-
cating the joint element is “in a fractional state”, somewhere between void (no weld)
and structural solid.

The other type of joint element is the smaller square diagonal element, denoted
as Type B joint in Figure 3.1. Its equivalent Young’s modulus Eabcd surrounded by
structural elements a, b, c, and d, is defined as the penalized average of the four
neighbor Type A joint elements:

Eabcd = ((Eab + Eac + Ebd + Ecd)/4)
Pw , (3.3)

where Eab, Eac, Ebd, and Ecd are the equivalent Young’s moduli of Type A joint
elements between structural elements a and b, a and c, b and d, and c and d, respec-
tively. The power Pw = log(E(S)+E(J))/2E

(J) ensures that Eabcd takes reasonable values
for most conceivable circumstances.

Figure 3.3 shows sample extreme scenarios for Type B joint elements. While the
penalization strategy in Equation (3.3) is tuned to cover the most common scenarios
in Figure 3.3(a–d), it produces somewhat (albeit negligibly infrequent) unnatural out-
comes under several other scenarios such as the ones shown in Figure 3.3(e–i). Under
the scenario in Figure 3.3(e), Equation (3.3) sets Eabcd = 0, leading to a disconnected
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...

Figure 3.3: Sample extreme scenarios for type B joints. Black, gray, and white colors
represent the structural materials, joint materials, and voids, respectively. Other
colors represent different components with structural materials. (a) Between four,
fully dense structural elements that belong to the same component; (b) between four
voids; (c-d) between four, fully dense structural elements that belong to two different
components; (e-f) between two, fully dense structural elements that belong to the
same component and two voids; (g) between three, fully dense structural elements
that belong to the same component and one void; (h) between four, fully dense
structural elements that belong to three different components; and (i) between four,
fully dense structural elements that belong to four different components.

component. However, this would be discouraged during the process of minimizing
compliance, and also would potentially contribute to eliminating checkerboard pat-
terns. Under the scenarios in Figure 3.3(f–g), Equation (3.3) assigns Eabcd with a
very small value that can be virtually considered as zero. The values of Eabcd in
conditions Figure 3.3(h–i) would be slightly smaller than E(J). Since such conditions
rarely happen, the effect would also be negligible.

3.4 Structural compliance objective considering the joint prop-
erty

As a result of the special domain discretization and the relaxed joint stiffness model
discussed above, joint locations and properties can now be integrated into the overall
structural compliance computation, written as:

F = fᵀu = uᵀK(E)u, (3.4)

18



where f is the external load and u is the solved displacement. K(E) is the global
stiffness matrix assembled from the element stiffness Ke. K(E) is a function of
E containing the equivalent Young’s moduli of structural and joint elements. For
structural element i, the equivalent Young’s modulus Ei = ρPd

i E(S), which is the
power law in the conventional SIMP formulation. Pd is the density penalty parameter.
For joint elements, the equivalent Young’s moduli are calculated based on Equations
(3.2) and (3.3).

3.5 Manufacturing constraint modeling for stamping
As discussed in Section 3.1, the manufacturing cost of a stamping die mainly consists
of the die-set material cost and the cost for machining the die [86].

3.5.1 Die-set material cost

The cost of die-set materials is modeled as proportional to the area of the bounding
box enclosing each component [86].

The computation of bounding boxes is a fundamental problem in computer graph-
ics. Based on the tightness of the bounding box, it can be computed in several dif-
ferent ways. The Axis-aligned Bounding Box (ABB) can be computed efficiently by
fixing the orientation of the bounding box. However, it’s not sufficiently tight for
many applications. The Oriented Bounding Box (OBB) whose orientation is deter-
mined by an approximation analysis is much tighter than ABB yet still not optimal.
The Minimum Area Bounding Box (MABB) is the theoretically ideal solution to de-
scribe the size of a component. Unfortunately, its high computational complexity
make it virtually unusable for practical problems. OBB is used in this dissertation
to quantify the component size.

Many algorithms have been developed for the bounding box computation in com-
puter graphics (e.g., [90, 91, 92, 93]). Unfortunately, existing algorithms are not
directly applicable to our problem because they all require fixed input geometries
with “clear” part boundaries. To accommodate the “blurry” intermediate topologies
during the course of MTO, a weighted principal component analysis is proposed to
approximate the orientation of the bounding box. A weighted projection method
is proposed to approximate the size of the bounding box. The weighting function
contains the information of both density and membership design variables. The den-
sity design variables model the “blurry” effect on the overall base topology while the
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membership design variables model the “blurry” effect regarding the intermediate
component decomposition.

The orientation of the bounding box of component k is approximated using a
weighted principal component analysis, where centroid xi of each structural element
i in the design domain is associated with a fictitious weight ρim

(k)
i as illustrated in

Figure 3.4. For each component k, the weighted covariance matrix Σ(k) can be written
as follows:

Σ(k) =

∑N
i=1 ρim

(k)
i (xi)(xi)

ᵀ∑N
i=1 ρim

(k)
i

, (3.5)

where N is the number of structural elements. By applying the singular value decom-
position on Σ(k), two orthogonal principal components v(k)

1 and v
(k)
2 can be extracted,

which will describe the approximate orientation of the OBB of component k.
The area of OBB of component k is approximated using the weighted projection

variance, where the variances of the centroids xi, weighted with ρim
(k)
i , and projected

onto v
(k)
1 and v

(k)
2 , are considered as the approximation of the length of the two sizes

of the OBB. For each component k, the length (or width) of the OBB in direction
v
(k)
j is approximated as a weighted projection variance:

l
(k)
j =

∑N
i=1 ρim

(k)
i (z

(k)
ij − c

(k)
j )2∑N

i=1 ρim
(k)
i

, (3.6)

where z
(k)
ij = (xi)

ᵀv
(k)
j is the projection of xi onto v

(k)
j , and c

(k)
j is the center of

component k in the v
(k)
j direction, given as:

c
(k)
j =

∑N
i=1 ρim

(k)
i z

(k)
ij∑N

i=1 ρim
(k)
i

. (3.7)

By multiplying the length and width, the area of the OBB for component k can be
calculated, which is used as an approximation of the cost of die-set materials:

A(k) =
2∏

j=1

l
(k)
j . (3.8)
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Figure 3.4: Computation of the bounding box with the continuously relaxed design
variables. This is a mesh-dependent formulation. (The mesh-independent formulation
is presented in Figure 5.1.)
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3.5.2 Die machining cost

The die machining cost for component k is modeled as proportional to a complexity
index, which is the perimeter of each component normalized by its OBB size [86]:

X(k) =
P (k)

√
A(k)

, (3.9)

where P (k) is the perimeter length to be sheared during stamping. By generalizing
the perimeter calculation, previously developed for single-piece topology optimiza-
tion [28], P (k) can be approximated as the total variation of the density design vari-
ables, weighted with the membership design variables, in a matrix form:

P (k) =

nely−1∑
i=1

nelx∑
j=1

|m(k)
ij ρij −m

(k)
i+1,jρi+1,j|+

nely∑
i=1

nelx−1∑
j=1

|m(k)
ij ρij −m

(k)
i,j+1ρi,j+1|,

(3.10)

where nelx and nely are the number of structural elements in x- and y-axis in the
design domain. Due to the need of differentiability with respect to ρi and mi, the
absolute operator in Equation (3.10) is numerically approximated as:

|x| ≡
√
(1 + 2ε)x2 + ε2 − ε, (3.11)

where ε is a small positive real number balancing the accuracy and smoothness of the
approximation.

It is noted that the manufacturing cost models discussed in this section would not
be in the dollar-to-dollar level accuracy. It is due, mainly, to the numerical approxi-
mations involved and other unknown factors, such as machine specifications and labor
costs. However, in the concept generation stage, for which topology optimization is
most suitable, the proposed simplified manufacturing cost models would be adequate
for capturing the trend of manufacturing costs.

3.6 Optimization formulation
The overall MTO-S problem is formulated as the minimization of structural com-
pliance subject to constraints on the cost of die-set materials and die machining,
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summarized as follows:

minimize
ρ,m(1),··· ,m(K)

F (u)

subject to g1 :=
K∑
k=1

A(k)
(
ρ,m(k)

)
≤ α∗

g2 :=
K∑
k=1

P (k)
(
ρ,m(k)

)√
A(k)

(
ρ,m(k)

) ≤ β∗

for i = 1, 2, ..., N :

ρi ∈ [0, 1]

g
(i)
3 :=

K∑
k=1

m
(k)
i = 1

for k = 1, 2, ..., K and i = 1, 2, ..., N :

m
(k)
i ∈ [0, 1]

, (3.12)

where ρ and m(k) are the density and membership design variables; K is the pre-
scribed, maximum allowable number of components; N is the number of structural
elements; F is the structural compliance objective defined in Equation 3.4; A(k) is
the approximate OBB area of component k; α∗ is the maximum allowable total OBB
area (≈ die-set material cost); P (k) is the approximate perimeter of component k;
and β∗ is the maximum allowable total complexity (≈ die machining cost). The tra-
ditional volume fraction constraint for topology optimization is not included, because
the OBB area constraint serves a similar role as the volume fraction constraint. The
additional constraint on memberships for each element i ensures the unity of the to-
tal fractional memberships. Finally, both densities and memberships take continuous
values ranging from zero to one.

3.7 Numerical results
This section presents numerical results of the gradient-based MTO-S. A cantilever
example is presented in Section 3.7.1 to show its detailed optimization iterations.
Another Messerschmidt-Bölkow-Blohm (MBB) beam example is presented in Sec-
tion 3.7.2 to demonstrate the effect of the die machining cost constraint. Their design
domains and boundary conditions are summarized in Figure 3.5. Symmetry bound-
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Figure 3.5: Design domain and boundary condition settings for the (a) cantilever
example; (b) Messerschmidt-Bölkow-Blohm beam example.

ary conditions were applied to the MBB example. The ratio of the width of Type A
joint elements to the length of structural elements was set as 0.2 for the cantilever
example. For problems with finer mesh, which was the case for the MBB example,
this ratio was set to 1. The ratio of the Young’s modulus of joint elements to that
of structural elements was set as 0.2, reflecting that spot-welding joints are less stiff
than base structures. This value can also be set differently per design requirements.
The convergence criteria for optimization are set as follows. The lower bounds on the
size of a step and on the change in the value of the objective function were all set as
1e− 5. The maximum number of iterations was set as 100 and 400 for the cantilever
and MBB examples, respectively. The optimizer would terminate when any of the
above three criteria was met.

The constrained optimization problem in Equation (3.12) was solved by the interior-
point method using the Matlab fmincon. the first derivatives of the objective and con-
straints were analytically derived with the assistance of the Matlab symbolic math
toolbox, whereas the Hessian was numerically approximated using a finite-difference
approach. The optimization usually converges within a few hundreds of iterations.
For comparison, to solve similarly sized problems, previous methods based on non-
gradient discrete formulations and genetic algorithms required significantly more func-
tion evaluations, e.g., 100000 in [84], and 60000 in [85].
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The finite-difference approximation of Hessian inevitably brings computational ef-
ficiency concerns for large-scale studies. More computationally efficient implementa-
tions can be achieved by, e.g., using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method to return a quasi-Newton approximation to the Hessian, deriving the Hessian
analytically, and using first-order optimization solvers that do not require Hessian. In
the past attempts by the authors, the BFGS required more iterations for convergence,
likely due to its relatively inaccurate approximation compared with finite-differencing.
Also, the algorithms that require only the first-order gradients did not perform well,
due to the large number of linear equality constraints for membership unity.

3.7.1 Iterative details: cantilever

The proposed gradient-based continuous MTO-S is first applied to a 10×5 (structural
element mesh) cantilever example to show its detailed optimization iterations. Its
design domain D and boundary condition settings are presented in Figure 3.5(a).

The number of components was set as K = 3. As seen in Figure 3.6, at iteration
1, density and membership design variables ρi and m

(k)
i were uniformly initialized

as 0.4 and 1/K respectively. Due to the relatively coarse mesh in this example, the
complexity (die machining cost) constraint was not included.

Figure 3.6 shows the iterative history of the density design variable ρi in the first
row, membership design variable m(k)

i in the second row, and intermediate components
(product of the two) ρim

(k)
i in the third row. The red and green lines indicate the

orientation of bounding boxes. It can be seen that centers of the bounding boxes also
update during optimization. As seen from the iterative details, membership variable
m

(k)
i started to converge to a certain component at iteration 15. At the end of

optimization, component boundaries were almost black and white when optimization
converged at iteration 74.

Though several elements near the component boundaries still had fractional mem-
berships, they were resolved by assigning those elements to the component with the
largest m

(k)
i . The post-processed multi-component topology design is shown in Fig-

ure 3.7(a). The thin gray elements between every two components are the resulting
joint locations with the less stiff Young’s modulus. For a comparison, the optimized
single-piece topology design using the conventional SIMP approach without regular-
ization is presented in Fig. 3.7(b). Even without the complexity constraint that would
penalize checkerboard patterns, they did not appear in the result in Fig. 3.7(a). It
appears that the combination of having no volume constraint and the introduction
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(c) (d)

(e) (f)

Figure 3.6: Optimization iterative details for the cantilever example at (a) iteration
1; (b) iteration 5; (c) iteration 10; (d) iteration 15; (e) iteration 30; and (f) iteration
74.
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(a) (b)

Figure 3.7: A comparison between the multi-component topology and conventional,
single-piece topology for the cantilever example. (a) The optimized multi-component
cantilever topology design. The gray regions indicate joint locations (assuming spot-
welding joints) with the smaller Young’s modulus than base structural materials; (b)
the conventional, single-piece cantilever topology design.

of the total bounding box area constraint encourages designs without checkerboard
in order to have more materials. The special domain discretization also contributes
to the elimination of checkerboard patterns in the optimized topology.

Figure 3.8 presents the optimization convergence history. Since the total bound-
ing box area constraint was violated initially, the optimizer attempted to decrease
the total bounding box area in early iterations while sacrificing the compliance ob-
jective. Once the total bounding box area constraint reached the prescribed limit α∗,
the optimizer continued by minimizing the compliance objective, driven mainly by
the compliance sensitivity while keeping the manufacturing constraint active. The
optimization converged in 74 iterations when the termination criterion for the change
of objective value was met.

3.7.2 Die machining cost: Messerschmidt-Bölkow-Blohm beam

This section discusses the effects of the complexity (i.e., die machining cost) con-
straint limit β∗ through a 240× 40 MBB example. Its design domain and boundary
condition settings are shown in Figure 3.5(b). Only half of the design domain was
optimized because of the symmetry in boundary conditions and the initial design do-
main. While checkerboard patterns were discouraged by the new total bounding box
area constraint and the special domain discretization, undesired small features would
still appear for problems with increased mesh, which in turn would increase the die
machining cost. Therefore, a complexity constraint, as described in Equation (3.9),
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Figure 3.8: Convergence history of the cantilever example. Due to the relatively
coarse mesh in this example, the complexity (die machining cost) constraint was not
included.

was introduced to control the die machining cost.
Figure 3.9 shows three multi-component topology designs with different settings

of the complexity constraint limit β∗. The same value of the total bounding box area
constraint limit α∗ was applied to all three cases. Figure 3.9 also presents the “true”
bounding box and “true” perimeter for each decomposed component. Lower com-
plexity indices 3.45 and 3.03 were achieved by decreasing the complexity constraint
limit β∗ compared with the baseline 3.99 with the limit β∗ = ∞ (i.e., no complexity
control). Once again, even without the complexity control, checkerboard patterns
did not appear, as seen in Figure 3.9(a). With the decrease of β∗, the overall com-
plexity of the optimized topology could be reduced, resulting in less expensive overall
stamping die machining cost. Similar effect on the complexity control could also be
achieved by filtering methods. It was observed that the complexity constraint limit
β∗ had little influence on the component decomposition, but greater effect on the
overall base topology of the multi-component structures.

3.8 Chapter summary
This chapter proposed a topology optimization method for structures made of sheet
metal components. With the continuous density and membership design variables
and the cost modeling of stamping dies, simultaneous optimization of the overall
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(a)

(b)

(c)

Figure 3.9: Multi-component topology designs of the Messerschmidt-Bölkow-Blohm
beam example with different levels of complexity control. (a) High die machining
cost (complexity index: 3.99); (b) moderate die machining cost (complexity index:
3.45); (c) low die machining cost (complexity index: 3.03). From left to right: multi-
component topology, “true” bounding box, and “true” perimeter.
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base topology and component decomposition was realized in a continuously relaxed
manner. A continuously relaxed joint stiffness model was also developed to con-
sider the component interface property in the structural performance analysis. The
simplified cost model for stamping dies was developed based on an empirical cost
model [86]. As a result, MTO was, for the first time, solved using a gradient-based
method, which demonstrated promising potentials to dramatically improve the com-
putational efficiency over previous discrete formulations solved by genetic algorithms
(e.g., [84, 85]).

However, the development of the gradient-based MTO method was still in its in-
fancy. Some major limitations of MTO-S are acknowledged as follows. Though the
complexity control can help generate mesh-independent results without checkerboard
patterns, due to the special domain discretization and mesh-dependent joint stiffness
modeling, the overall MTO-S formulation is still deemed mesh-dependent. More-
over, to ensure the membership unity for each structural element, a large number of
equality constraints are required in the MTO-S formulation. Equality constraints are
generally not favored by gradient-based optimization, especially with large quanti-
ties. Therefore, the MTO-S problem was solved with the need of Hessian calculation.
Accurate Hessian calculation, however, is often computationally expensive.

To address the limitations discussed above, improved MTO formulations, which
are mesh-independent and do not require the many membership unity equality con-
straints, will be discussed in Chapter 4 and Chapter 5.
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CHAPTER 4

Multi-component topology optimization for
composite manufacturing

This chapter presents the MTO application to structures made of multiple composite
components (substructures) with tailored material orientations, termed the Multi-
component Topology Optimization for Composite manufacturing (MTO-C). Recent
societal demand for energy saving has prompted increased emphasis on lightweighting
in structural design. Due to its high strength-to-weight characteristic, the use of com-
posite materials in structural applications has become a popular alternative to replace
traditional materials, e.g., steel, aluminum. Advanced examples appear routinely on
spacecraft and aircraft. With the latest development of economical composite man-
ufacturing processes, e.g., resin transfer molding, the use of composite materials for
high-volume products at acceptable cost becomes possible, e.g., automotive struc-
tures.

4.1 Why multiple components for composite structures
While the utilization of fiber reinforced composite materials can dramatically cut
down structural weight, a significant trade-off exists between the production cost
and structural performance. Variable Axial Composite (VAC) is a class of compos-
ite materials reinforced by long fibers with varying orientations, produced by ad-
vanced manufacturing processes such as Automated Tape Layout (ATL), Tailored
Fiber Placement (TFP), and Continuous Fiber Printing (CFP). Generally speak-
ing, manufacturing processes with higher freedom in orientation control can produce
higher performing composites, but cost more than those with lower freedom in orien-
tation control. For this reason, the conventional fixed-axis composites, despite their
inferior performance, are widely adopted in many commercial applications, especially
for large-scale and mass-produced structural products.
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Figure 4.1: A qualitative comparison of different composite manufacturing processes
in terms of the production cost in large quantities (vertical axis) and freedom in
orientation control (horizontal axis). As a manufacturing process becomes more eco-
nomical for mass production, it sacrifices freedom in controlling fiber orientations.
The suitability of different topology design methods is also plotted. (SFIM: short
fiber injection molding; ATL: automated tape layout; TFP: tailored fiber placement;
CFP: continuous fiber printing)

Figure 4.1 shows a comparison of typical composite manufacturing processes in
terms of their freedom in fiber orientation control and suitability for economical pro-
duction in large quantities. The injection molding of resins mixed with short fibers,
also known as Short Fiber Injection Molding (SFIM), is included as a baseline bench-
mark, which approximately performs as isotropic materials due to random and dis-
continuous fiber orientations. Shown also in Figure 4.1 is the suitability of different
topology optimization methods for designing structures with anisotropic material
orientations. Structures designed by the continuous orientation methods are most
suitable for production by the manufacturing processes with the highest freedom in
orientation control, e.g., CFP. Conversely, structures designed by the conventional
isotropic topology optimization methods are well suited for production by the man-
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ufacturing processes at the lowest end of orientation control and cost, e.g., SFIM,
since materials perform almost as isotropic materials. In between these extreme is
a space for the manufacturing processes with moderate orientation control and cost,
e.g., conventional layup of fixed-axis composite panels, TFP, and ATL. Structures
that are suitable for production by these manufacturing processes should be made of
a relatively small number of distinct substructures (components), each of which has a
single material orientation, possibly with small variations for TFP and ATL, tailored
for overall structural performances. The MTO-C method proposed in this chapter
intends to fill this gap.

4.2 Prior art: anisotropic topology optimization
Motivated by the recent advent of composite manufacturing processes, much effort
has been made to develop topology optimization methods for designing anisotropic
material orientations. Based on their mathematical formulations, the existing meth-
ods can be categorized into two major classes: the discrete orientation method and
the continuous orientation method.

The first class optimizes the material orientations among a prescribed set of al-
ternative discrete angles, hence termed the discrete orientation method. Haftka and
colleagues developed discrete optimization formulations for selecting fiber orienta-
tion angles from a prescribed discrete set [94, 95, 96, 97], which were solved using
genetic algorithms. To enable the sensitivity analysis and the efficient gradient opti-
mization, Lund and colleagues proposed the Discrete Material Optimization (DMO)
approach [62, 98, 99], which relaxed the original combinatorial problem to a con-
tinuous optimization problem through material tensor aggregation and penalization.
As a result of efficient gradient optimization, the prescribed set of alternative dis-
crete angles can be of a larger size, but it remains as an input to the optimization.
Other variations following the DMO concept have also been developed, e.g., the shape
function with penalization method [100] and its generalization to more choices of al-
ternative discrete angles [101], and the peak function approach [102]. By introducing
additional unity constraints on the sum of the fractional selections of alternative
angles, other formulations [87, 88] have been proposed as alternatives to the DMO
formulation. A large number of unity constraints associated with these formulations,
however, imposes challenges on optimization solvers in large-scale problems. Despite
its popularity and intuitive formulation, these discrete orientation methods suffer
from a common issue: the need of a prescribed set of alternative discrete angles as an
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input. While, in theory, a set of infinitely large number of alternative discrete angles
can contain the true optimal angles, the methods are limited to find the best angles
only among the given alternatives, which may well be suboptimal. In addition, while
some extensions intend to address the selection of different angles for each substruc-
ture (typical for multi-panel construction of composite structures), the boundaries
between substructures are simply determined by the prescribed division of the design
domain, typically squares, without optimization processes.

The second class optimizes the material orientation within a continuous range of
angles, not among alternative discrete angles, hence termed the continuous orientation
method. The continuous fiber angle optimization [103, 104] is a method where the
orientation angles are regarded as continuous design variables that can take range
[0, 2π]. While intuitive, this angular representation suffers from the convergence to
the local minima due to the periodic nature of material properties with respect to the
orientation angles. To overcome this issue, Nomura et al. (2015) [105] proposed the
use of Cartesian components of the orientation vector as design variables combined
with an isoparametric projection, and empirically demonstrated superior convergence
behaviors.

4.3 Design field configuration and regularization
As demonstrated in Figure 4.2, in addition to the original two-layer (density ρ and
membership m(k)) design field presented in the general MTO formulation, discussed
in Chapter 2, a third layer of orientation design field ϑ(k) is added, which is a Carte-
sian vector (ς(k), ζ(k)) representing the orientation of each design point in component
k. Depending on the radius of the regularization filter applied to the orientation field,
the resulting material orientation for each component can either be unidirectional or
curvilinear. To resolve the mesh-dependent issue of the MTO-S formulation, regular-
izations are applied to all three-layer design field using the Helmholtz PDE filtering
and Heaviside projection, detailed in [38].
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(a)

(b)

(c)

(d)

Figure 4.2: Demonstration of the three-layer design field and the resulting simulation
model for an example case of number of components K = 3. (a) Simulation model;
(b) density field ρ; (c) membership field m(k); (d) orientation field ϑ(k). (The material
orientation for each component can be either unidirectional or curvilinear based on
the regularization filter radius used. This figure only shows the unidirectional case.)
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4.3.1 Density field

In a prescribed, fixed design domain D, a characteristic function χ is defined to
describe the material domain Ωd to be optimized:

χ(x) =

 0 for ∀x ∈ D \ Ωd

1 for ∀x ∈ Ωd

, (4.1)

where x stands for a design point in D and χ(x) is defined by a scaler function ϕ and
the Heaviside function H such that:

χ(x) = H
(
ϕ(x)

)
=

 0 for ∀x ∈ D \ Ωd

1 for ∀x ∈ Ωd

. (4.2)

To eliminate checkerboard patterns therefore generating mesh-independent results,
the Helmholtz PDE filter [37]is introduced to regularize ϕ:

−R2
ϕ∇2ϕ̃+ ϕ̃ = ϕ, (4.3)

where Rϕ is the filter radius, and ϕ̃ is the filtered field. Then the density field ρ can
be defined by an additional regularized Heaviside function H̃:

ρ = H̃(ϕ̃). (4.4)

After the series of regularization from ϕ to ρ, the resulting density field ρ is bounded
between 0 and 1.

4.3.2 Material orientation vector field

Following the Cartesian representation of continuous angles proposed in [105], the
original material orientation vector field υ(k) = (ξ(k), η(k)), bounded by box constraint
υ(k) ∈ [−1, 1]D × [−1, 1]D is first regularized by the Helmholtz PDE filter:

−Rυ∇2

[
ξ̃(k)

η̃(k)

]
+

[
ξ̃(k)

η̃(k)

]
=

[
ξ(k)

η(k)

]
, (4.5)

where Rυ = R2
υI; Rυ is the filter radius; I is an identity matrix. υ̃(k) = (ξ̃(k), η̃(k))

is the filtered orientation field. Then, the (unbounded) υ̃(k) is projected back to the
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Figure 4.3: Coordinate transformation for the Cartesian orientation representation
through an isoparametric projection method.

original box constraint with a regularized Heaviside function H̃:

ῡ(k) =

[
ξ̄(k)

η̄(k)

]
=

2H̃(
ξ̃(k)−1

)
2H̃

(
η̃(k)−1

)
 . (4.6)

As illustrated in Figure 4.3, the regularized orientation vector field ῡ(k) in a box
domain is then projected to a circular domain through an isoparametric projection
Nc:

ϑ(k) = Nc

(
ῡ(k)

)
=

Ncx

(
ξ̄(k), η̄(k)

)
Ncy

(
ξ̄(k), η̄(k)

)
 . (4.7)

where ϑ(k) = (ς(k), ζ(k)) is the projected orientation vector field. The transformation
from a box domain to a circular domain eliminates the need of the quadratic con-
straint ξ̄(k)2 + η̄(k)2 = 1 for each design point, and ensures singularity-free numerical
analyses. For the detailed implementation of the isoparametric projection Nc, readers
are referred to [105].

By setting different values for Rυ in Equation (4.5), the maximum allowable cur-
vature of the material orientation in each component k can be explicitly controlled.
With a large enough Rυ, the resulting material orientation can be unidirectional.

4.3.3 Component membership vector field

Following the similar regularization scheme as material density and orientation design
fields, the original membership vector field µ(k) is transformed to µ̃(k) and then µ̄(k)

through the Helmholtz PDE filter and regularized Heaviside projection. For each
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Figure 4.4: Coordinate transformation for the component membership design field
through a K-dimensional cube-to-simplex projection for an example case of K = 3.

design point, the resulting µ̄ = (µ̄(1), µ̄(2), · · · , µ̄(K)) is bounded by a K-dimensional
unit cube [0, 1]K . As illustrated in Figure 4.4, the regularized component membership
vector field µ̄ in a cube domain is then projected to a standard simplex domain
through an isoparametric projection Ns:

m = Ns

(
µ̄
)

(4.8)

where m = (m(1),m(2), · · · ,m(K)) is the projected component membership vector
field. The transformation from a cube domain to a standard simplex domain elimi-
nates the need of unity constraint m(1) +m(2) + · · ·+m(K) = 1 for each design point
and ensures singularity-free numerical analyses.

4.4 Cube-to-simplex projection method
The cube-to-simplex projection Ns = (N

(1)
s , N

(2)
s , · · · , N (K)

s ) is defined as

m(k) = N (k)
s

(
µ̄
)
=

M∑
i=1

s
(k)
i

(−1)(K+
∑K

k=1 c
(k)
i )

K∏
k=1

(µ̄(k) + c
(k)
i − 1)

 , (4.9)

where M = 2K and c
(k)
i ∈ {0, 1} are the number of vertices and the k-th element

of the i-th vertex of a K-dimensional unit cube, respectively, and s
(k)
i is vertex c

(k)
i

38



0 0.5 1
0

0.5

1

Ns−−−−−→

0 0.5 1
0

0.5

1

(a)

0
0

0.5

1

10.5 0.5
1 0

Ns−−−−−→

0
0

0.5

1

10.5 0.5
1 0

(b)

Figure 4.5: The cube-to-simplex projection examples for cases of (a) K = 2 and (b)
K = 3.

projected to a K-dimensional standard simplex domain, given as:

s
(k)
i =


c
(k)
i∑K

k=1 c
(k)
i

if
∑K

k=1 c
(k)
i ≥ 1

0 otherwise
. (4.10)

Figure 4.5 illustrates the projection of sampled points in a unit cube using Equa-
tions (4.8)–(4.10). While the figure shows only for cases K = 2 and K = 3, the
proposed cube-to-simplex projection in Equations (4.8)–(4.10) works for an arbitrary
number of dimensions.

4.5 Elasticity tensor composition
By adopting the multi-phase SIMP-like formulation reported in past literature, the
elasticity tensor at each design point can be composed by overlaying the elasticity
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tensor for each component:

C = ρPd

K∑
k=1

(
m(k)

)Pm
C(k), (4.11)

where C and C(k) are the composed elasticity tensor and the elasticity tensor for
component k, respectively, and Pd and Pm are the penalization parameters for density
and component membership, respectively.

This way of composing the elasticity tensor for each phase (component in this case)
was considered the simplest choice for multi-phase topology optimization according
to [62]. However, it does not satisfy the unity constraint m(1)+m(2)+ · · ·+m(K) = 1,
which allows only one of phase fields (component membership fields in this case) m(k)

converging to 1. Rather, Equation (4.11) often favors all phase fields (component
membership fields in this case) m(k) converging to 1, since it would maximize the
composed tensor C with respect to m(k) ∈ [0, 1]. To resolve this issue, different
projection methods for phase fields have been proposed. Sigmund and colleagues [29,
106] originally proposed a two-phase formulation for topology optimization, which has
later been extended to more phases. Stegmann and Lund (2005) proposed another
projection method, termed the DMO [62]. The proposed cube-to-simplex projection
discussed in Section 4.4 can be seen an alternative approach to satisfy the membership
unity condition. Through the proposed cube-to-simplex projection, the vertices in a
unit cube that violate the unity condition (i.e., the ones outside of a standard simplex
attached to the cube) are projected inside of a cube and the convergence to them is
discouraged by the power law penalization.

By incorporating the material orientation field ϑ(k) into component elasticity ten-
sor C(k), the modified composed elasticity tensor C can be rewritten as:

C = ρPd

K∑
k=1

(
m(k)

)Pm
C(k)

(
ϑ(k)

)
, (4.12)

with the transformed anisotropic tensor C(k)
(
ϑ(k)

)
, given as:

C(k)
(
ϑ(k)

)
= Ci + T̂−1

(
ϑ(k)

)
·
(
Cu −Ci

)
· T̂′(ϑ(k)

)
, (4.13)

where Cu is a unrotated anisotropic tensor; Ci is an isotropic component. T̂ and T̂′

are transformations to rotate a tensor to a direction based on ϑ(k). For the detailed
explanation and derivation of the transformed anisotropic tensor, readers are referred
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to [105].

4.6 Optimization formulation
The overall optimization problem of multi-component topology and material orienta-
tion design can be stated as follows:

minimize
ϕ

µ(1),··· ,µ(K)

υ(1),··· ,υ(K)

F (u)

subject to g1 := Ad − V ∗ 6 0

ϕ ∈ [−1, 1]D

for k = 1, 2, ..., K :

g
(k)
2 := −B(k) + (1− δ) 6 0

µ(k) ∈ [−1, 1]D

υ(k) ∈ [−1, 1]D × [−1, 1]D

, (4.14)

where u is the displacement field obtained by solving the static equilibrium equations;
F (u) is the objective function for a structural performance; K is the prescribed,
maximum allowable number of components; g1 is the material volume constraint
with upper bound V ∗; g(k)2 is the constraint to ensure the material anisotropicity for
the k-th component with small constant δ; and Ad and B(k) are given as:

Ad =

∫
D

ρ dΩ

B(k) =
1

Ad

∫
D

ρ
∥∥∥ϑ(k)

∥∥∥ dΩ. (4.15)

In the case of the minimization of structural compliance as discussed in the following
examples, the objective function can be stated as:

F (u) =
1

2

∫
D

σᵀϵdΩ, (4.16)
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Table 4.1: Material properties for the numerical examples.
Symbol Value Description

Ef 1 Young’s modulus of reinforcement material
Em 1/15 Young’s modulus of matrix material
νf 0.22 Poisson ratio of reinforcement material
νm 0.38 Poisson ratio of matrix material
ff 0.5 fiber fraction for anisotropic material

and the static equilibrium equations can be stated as:

−∇ · σ = 0 in D

u = 0 on Γd

σ · n = t on Γn

, (4.17)

where σ = C · ϵ is the stress field; ϵ is the strain field; Γd is the Dirichlet boundary
defined by zero prescribed displacement; and Γn is the Neumann boundary defined
by the normal n and the prescribed traction t.

4.7 Numerical results
This section presents several numerical examples in 2D on compliance minimization
based on a simplified orthotropic material model per [107]:

E1 = ffEf + (1− ff )Em

E2 = {ff/Ef + (1− ff )/Em}−1

G12 = {ff/Gf + (1− ff )/Gm}−1

ν12 = ffνf + (1− ff )νm

ν21 = {ffνf + (1− ff )νm}
E2

E1

. (4.18)

Table 4.1 summarizes the values of the material properties in Equation (4.18) used
in the numerical examples.

The results obtained by the proposed multi-component topology and orientation
optimization were compared to the ones by 1) the single-piece topology optimiza-
tion with an isotropic material using the conventional SIMP method, and 2) the
single-piece topology and continuous orientation optimization using [105]. For the
single-piece topology optimization with an isotropic material, the equivalent material
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property of randomly orientated discontinuous short fibers were used per [108]:

Ẽ = 3
8
E1 +

5
8
E2

G̃ = 1
8
E1 +

1
4
E2

. (4.19)

The nonlinear constrained optimization problem in Equation (4.14) was solved by
the method of moving asymptotes [109] with the first derivatives of the objective and
constraints. The sensitivity analysis followed the standard adjoint method, and was
implemented using COMSOL Multiphysics. Interested readers are referred to [110]
for the sensitivity analysis using this software.

The continuation method was applied to the two penalty parameters Pd and Pm

and the anisotropicity constraint parameter δ in Equation (4.14), based on a fixed
continuation and convergence strategy. The density penalty Pd was initialized as
1.5, and updated to 2, 2.5, and 3 at iteration 60, 90, and 120 respectively. The
membership penalty Pm was initialized as 1, and updated to 1.5, 2, 2.5, and 3 at
iteration 60, 90, 120, and 150 respectively. The anisotropicity constraint parameter
δ was initialized as 1, and updated to 0.2, 0.1, and 0.02 at iteration 60, 90, and
120 respectively. The maximum number of iterations was set to 200. An alternative
strategy for continuation and convergence can also be implemented based on relative
measures, e.g., the maximum change in design variables and the first order optimality.

The initial density and component membership were uniformly set to ρ = V ∗ and
m(k) = 1/K, respectively. The initial angle θ(k) for each component k was set to:

θ(k) =

0° if k = 1

(k − 1)(180/K)° otherwise
, (4.20)

where the norm of orientation Cartesian components
∥∥∥ϑ(k)

∥∥∥ was initialized below 0.3,
indicating weak initial anisotropicity.

4.7.1 Single load: cantilever

The proposed method is first applied to a single load cantilever problem. Its design
domain D and boundary conditions are presented in Figure 4.6. The left side of the
cantilever is fixed in all degrees of freedom. A unit load is applied at the lower right
corner.

A square grid mesh with a side length of 0.02 is used to discretize the design
domain D using the Lagrange linear quadrilateral elements. The upper bound for
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Design domain D

t

h = 1

w = 2

Figure 4.6: Design domain and boundary conditions for the single load cantilever
problem.

the material volume fraction V ∗ is set as 0.5. The maximum allowable number of
components is set as K = 3.

4.7.1.1 Iterative details

Figure 4.7 shows intermediate multi-component topologies at different iterations dur-
ing the course of optimization. For each iteration, from left to right, the density field
ρ, membership field m(k), component field (product of the two) ρm(k), and material
orientation field ϑ(k) are shown. The filter radius Rϑ in Equation (4.5) is set to a large
enough value so the ϑ(k) can become unidirectional within each component k. The
colors of streamlines in orientation plots indicate the state of material anisotropicity
levels

∥∥∥ϑ(k)
∥∥∥ based on a color map whose scale is shown in the bottom.

As discussed earlier, the optimization was initialized with uniform density and
membership distributions. The material anisotropicity levels were initialized as very
weak, as seen in Figure 4.7(a). The component partitioning started happening when
the overall topology was not yet clear (Figure 4.7(b)), and finally converged at iter-
ation 200 (Figure 4.7(d)). Both the angular values and anisotropicity levels of the
optimized orientations are different from their initializations.

To demonstrate the effectiveness of the proposed cube-to-simplex projection and
penalization method, in Figure 4.8 (from left to right), the component membership
field in the cube domain µ̄(k), in the projected simplex domain m(k), and in the
penalized domain ρPd

(
m(k)

)Pm are visualized at different iterations during the opti-
mization. With the cube-to-simplex projection and penalization method, undesired
vertices in the original cube domain that do not satisfy the membership unity con-
straint have been eliminated. With the continuation on the penalization parameter
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(a)

(b)

(c)

(d)

0 10.80.60.40.2

Figure 4.7: Iterative details of all design fields for the single load cantilever problem
with K = 3 at (a) iteration 1; (b) iteration 5; (c) iteration 50; and (d) iteration 200.
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Pm, the component membership field gradually converged to the three vertices with
unique membership selections. The component partitioning at the end of optimiza-
tion at iteration 200 in Figure 4.7(d) shows that a unique selection of memberships for
each non-void design point is successfully achieved with the proposed cube-to-simplex
projection and penalization method.

The resulting multi-component topology and its component-wise unidirectional
orientations are plotted in Figure 4.9, by visualizing different components with col-
ors. It is clearly seen that the resulting material orientations mostly align the longi-
tudinal directions of beam-like substructures. This supports an empirical knowledge
that the optimal material orientation should coincide with the major principal stress
direction for compliance minimization problems. The resulting optimized structural
compliance is 6.21. While desirable for economical production in large quantities,
multi-component structures with component-wise unidirectional orientations like this
cannot be obtained by existing continuous orientation methods or discrete orientation
methods.

It is noticed that the isolated pieces can appear within one component phase k,
which is the case for the green pieces in Figure 4.9. It is not an issue for MTO-C be-
cause there is no manufacturing constraint applied to each individual component. The
resulting isolated pieces within one component phase will simply have the identical
unidirectional material orientation. Such phenomenon is also naturally discouraged
in the previous chapter for MTO-S and the later chapter for additive manufacturing
because of the component size constraint. However, the explicit control of one single
connected piece in each component phase can be critical for other applications. It is
not explicitly considered in this dissertation, and therefore left for future research.

The convergence history of the optimization process is plotted in Figure 4.10.
As seen in Figure 4.10(a), the local fluctuation of the compliance (objective func-
tion) was mainly caused by the continuation of the penalization parameters. Other-
wise, it was almost monotonically decreasing. As seen in Figure 4.10(b), the volume
constraint remained active throughout the optimization. As seen in Figure 4.10(c),
the membership field also satisfied the unity constraints, because the unity measure∫
D
ρ∥m∥ dΩ /Ad converged approximately to 1 at the end of optimization. As a result

of the adopted penalization scheme, the membership unity measure was not neces-
sary as an additional constraint in the optimization problem. It was plotted here just
for the monitoring purpose. As seen in Figure 4.10(d), the material anisotropicity
constraints for all components were active at the end of optimization as well.

As a comparison, the optimized single-piece topology with an isotropic material
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(a)

(b)

(c)

(d)

Figure 4.8: Iterative details for the convergence of the component membership field
at (a) iteration 1; (b) iteration 5; (c) iteration 50; and (d) iteration 200.
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Figure 4.9: The optimized three-component topology with component-wise unidirec-
tional orientations. Its optimized structural compliance is 6.21.

is presented in Figure 4.11(a) following the assumption of randomly oriented discon-
tinuous short fibers in Equation (4.19). Its optimized structural compliance is 9.92,
inferior to the anisotropic multi-component design. In addition, the optimized single-
piece topology with the continuous orientation design is presented in Figure 4.11(b)
following the method proposed in [105]. As expected, the resulting compliance is
4.07, which is superior than both cases discussed above.

4.7.1.2 Curvilinear fiber orientation

One way to further improve the performance of multi-component composite structures
is to allow curvilinear fiber orientations within each component instead of enforcing
unidirectional fiber orientations. By reducing the filter radius on the orientation
vector field, one can control the maximum allowable curvature of the fiber orienta-
tion within each component. Figure 4.12(a) presents the optimized three-component
topology design allowing a moderate level of curvature on fiber orientations. The
structural compliance is improved to 5.65, as opposed to 6.21 in the three-component
unidirectional case. Its design fields at the end of optimization are visualized in
Figure 4.12(b–c).

It is noted that the overall base topology is different from that of the unidirec-
tional case. This is due to the interaction between the density and membership fields
with the additional freedom on orientation tailoring. It should also be noted that by
allowing curvilinear orientations in composite structures, it is likely that more ad-
vanced composite processing techniques are required, which will come with a higher
production cost than composite manufacturing processes with unidirectional prepreg
preforms.
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Figure 4.10: Convergence history for the single load cantilever problem with K = 3.
(a) Compliance (objective function); (b) volume constraint; (c) membership unity
measure; (d) material anisotropicity constraints. (The membership unity measure
is plotted for the monitoring purpose, which is not included as a constraint in the
optimization.)
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(a) (b)

Figure 4.11: (a) Optimized single-piece topology with an isotropic material. Its
optimized structural compliance is 9.92; (b) optimized single-piece topology with
continuous material orientation. Its optimized structural compliance is 4.07.

4.7.1.3 Different number of components

The maximum allowable number of components K (i.e., the maximum allowable num-
ber of discrete orientations), is an input to the optimization. This section discusses
the effect of setting different values of K on the optimization results.

Figure 4.13 shows the optimized multi-component topologies with K equals to 1
to 4. The case of K = 3 has been previously presented in Figure 4.9. The structural
compliance improves as the maximum allowable number of discrete orientations in-
creases. Their optimized compliance values are 9.92, 6.76, 6.21, and 5.83 for K = 1,
K = 2, K = 3, and K = 4 respectively. Similar to the curvilinear study, the over-
all base topology adapts to different settings of K. It is not surprising to see that
with the increase of K, the base topology becomes rather similar to that of the opti-
mized single-piece topology with an isotropic material in Figure 4.11(a). The similar
observation that the base topologies for the anisotropic and isotropic designs are al-
most identical for single load compliance minimization problems, was also reported
in [105]. From the economical perspective, the fewer number of orientations will usu-
ally lead to less production cost in large quantities due to the reduced customization
of unidirectional fiber fabrics, and the reduced labor cost on manual prepreg preform
layups.

In summary, Table 4.2 compares the optimized structural performances for all
numerical examples discussed in Section 4.7.1. The optimized single-piece topology
with an isotropic material, assuming randomly oriented discontinuous short fibers,
yields the worst structural performance. The optimized single-piece topology with
the continuous material orientation based on [105] yields the best structural perfor-
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(a)

(b)

(c)

Figure 4.12: The optimized three-component design allowing component-wise curvi-
linear orientations. Its optimized structural compliance is 5.65. (a) The optimized
multi-component topology; (b) the optimized density field ρ; (c) from left to right:
the optimized membership field m(k), the optimized component field (product of the
two) ρm(k), and the optimized material orientation field ϑ(k).
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(a) (b)

(c) (d)

Figure 4.13: The optimized multi-component topologies with different number of
components K settings. (a) K = 1; (b) K = 2; (c) K = 3; (d) K = 4.

Table 4.2: Summary of the structural performance and estimated mass-production
cost of cantilever designs discussed in Section 4.7.1.

Iso-
tropic

MTO unidirectional MTO
curv

Con-
tinuousK = 1 K = 2 K = 3 K = 4

Compliance 9.92 9.27 6.75 6.21 5.83 5.65 4.07
Cost low med med med med med+ high

mance, followed by the optimized multi-component topology with curvilinear material
orientations, and then the optimized multi-component topologies with different num-
bers of unidirectional material orientations. Though their production costs are not
quantitatively modeled, the qualitative estimations are also listed in Table 4.2, which
illustrate the trade-off between structural performance and mass production cost.

4.7.2 Multi-load: tandem bicycle frame

To demonstrate the applicability of the proposed method to more realistic anisotropic
structural design problems, this section presents the design of a tandem bicycle frame.
Regular bicycle frame examples have been found in the past literature on topology
optimization [111, 112, 113]. It has served as a good academic example mainly because
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Figure 4.14: Design domain and boundary conditions for the multi-load tandem
bicycle frame example, where t

(p)
x = −1.5; t

(p)
y = −1.0; t

(h)
x = 1.0; t

(h)
y = −1.0;

wx = {−1.0,−0.25}; and wy = {−6.0,−1.5}. At location (0.0, 2.0), both degrees of
freedom in x and y are fixed. At location (63.5, 16.0), only the degree of freedom in
y is fixed. The lower left corner of the design domain is set as location (0.0, 0.0).

1) it has an intuitive structure that everyone is familiar with; 2) it is a simplified 2D
problem with only in-plane loading conditions; and 3) it has an irregularly-shaped
design domain that requires irregular meshing, which adds some complexity to other
examples with a rectangular domain. In addition to these properties, the design of a
tandem bicycle frame is inherently a multi-load problem depending on whether the
heavier rider is siting in the front or in the rear, which is very suitable for testing
anisotropic topology optimization.

Figure 4.14 shows the design domain and boundary conditions of a simplified
tandem bicycle frame example. The design domain is discretized with 11052 free
irregular quadrilateral elements. The example assumes that an adult and a child will
be riding the bicycle. Depending on who is sitting in the front, there are two loading
conditions. Each load is applied and solved independently. The objective for the
multi-load problem is formulated as follows:

Fm = F1 + F2, (4.21)

where Fm is the multi-load objective function; F1 and F2 are structural compliances
for the two loading conditions.

Figure 4.15(a) presents the benchmark isotropic single-piece topology design as-
suming randomly oriented discontinuous short fibers with a resulting compliance value
of 4952. Its deformation plots for the two loading conditions are also presented in
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(b)

(a) (c)

Figure 4.15: (a) The optimized single-piece tandem bicycle frame structure with an
isotropic material; (b) the deformed structure under the heavy front loading condition;
(c) the deformed structure under the heavy rear loading condition. Its optimized
multi-load structural compliance is 4952.

Figure 4.15(b–c). Figure 4.16(a) presents the optimized multi-component topology
with the material orientation design. Its design fields at the end of optimization are
presented in Figure 4.16(b–c). For the anisotropic multi-component topology design,
K is set as 3, and the unidirectional fiber orientation is enforced for each component
by setting the orientation filter radius larger than the size of the design domain. As
we have seen in previous results, the overall base topology is different from that of the
isotropic case. The optimized unidirectional fiber orientations mostly align the longi-
tudinal directions of beam-like substructures. The optimized multi-load compliance
for the multi-component case is 3312, which is more than 30% improvement over the
benchmark isotropic design.

4.8 Chapter summary
This chapter proposed a topology optimization method for structures made of mul-
tiple composite components (substructures) with tailored material orientations. The
method was capable of simultaneously optimizing the overall topology, component
partitioning, and unidirectional (or curvilinear) material orientation for each compo-
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(a)

(b)

(c)

Figure 4.16: The optimized multi-component tandem bicycle frame structure with
component-wise unidirectional material orientations. Its optimized multi-load struc-
tural compliance is 3312. (a) The optimized multi-component topology; (b) the opti-
mized density field ρ; (c) from left to right: the optimized membership field m(k), the
optimized component field (product of the two) ρm(k), and the orientation field ϑ(k).
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nent. In addition to the density and membership design fields in the general MTO
formulation as discussed in Chapter 2, an orientation vector field was introduced to
design the anisotropic material orientations. The proposed method was capable of
generating multi-component composite structures with tailored material orientations
for each component, without a prescribed set of alternative discrete angles. The
outcome was a unique composite structural design solution that could not be accom-
plished by either existing continuous or discrete material orientation methods, and
would be most suitable for economical composite manufacturing processes.

The proposed method was applied to several numerical examples with much higher
resolution than previously reported. This was mainly due to the proposed cube-
to-simplex projection and penalization method that eliminated the many equality
constraints.

The results were compared to the designs optimized by a conventional, single-piece
isotropic topology optimization method and a continuous orientation method. The
comparison revealed that the proposed method produced unique multi-component
topology designs with component-wise unidirectional material orientations. The pro-
posed method consistently generated designs with better structural performance than
single-piece, isotropic designs. Though the multi-component designs sacrifice on struc-
tural compliance compared to the single-piece designs with continuous material ori-
entation, they demonstrated potentially large cost savings in mass production via
economical composite manufacturing processes, which require a unidirectional orien-
tation for each component. By allowing the curvilinear orientation in each component,
the structural performance of the multi-component designs could be improved, at an
expense of less economical, advanced composite manufacturing processes.

The interface between different components in this chapter was assumed perfectly
bonded without structural performance degradation. In practice, the component
interface location will often have overlapped composite fabrics. Such behavior was
not modeled in this chapter.
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CHAPTER 5

Multi-component topology optimization for additive
manufacturing

This chapter presents the MTO application to structures assembled from components
built by powder bed additive manufacturing, termed the Multi-component Topology
Optimization for Additive manufacturing (MTO-A). Additive manufacturing is a
class of manufacturing processes that build structures by adding layer-upon-layer of
materials. It is capable of producing structures with “almost” any shapes, which can
be difficult, if not impossible, for traditional manufacturing processes, e.g., machining
and stamping. Additive manufacturing shares with topology optimization with a
similar trait that facilitates innovative designs through the relaxation of constraints
on component geometries. Topology optimization therefore has become a promising
tool for designing additive manufacturing products (e.g., [114, 115, 116, 57, 117].)

Additive manufacturing can be categorized into two major classes, the powder
bed process (e.g., selective laser sintering, direct metal melting) and the wire-fed pro-
cess (e.g., fused deposition modeling, electrohydrodynamic jet). Though this chapter
limits its scope in the former, most discussions are commonly applicable for both
classes.

5.1 Why multiple components for powder bed additively man-
ufactured structures

Although powder bed additive manufacturing is vastly more flexible than traditional
processes in terms of what shapes can be made, there are still some restrictions as
discussed below.

A component cannot be made if it physically exceeds the printer’s maximum
allowable build volume. The build volume is defined as the maximum size (in length,
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width and height) of an object that an additive manufacturing machine can produce.
For powder bed processes, the build volume restriction is rather significant due to
their strict powder bed size limits. This restriction has limited their applications to
produce relatively small parts.

Complete hollow features should be avoided during part design. Because the un-
melted powders trapped inside of any enclosed holes cannot be removed from the
component once it has been built.

The minimum feature size should be explicitly controlled. This size is determined
by the minimum printable feature size based on the machine specification.

If structures are designed in the multi-component manner, the design freedom dra-
matically increases due to the new interpretations of manufacturing restrictions. For
example, a structure exceeding the maximum build volume, which cannot be made
as a single piece, can now be produced as an assembly of multiple components. A
multi-component structures with “global” hollow features can now be manufactured
as well, as long as each component has no “local” enclosed holes therein. These new
interpretations of manufacturing restrictions unlock the possibility of designing struc-
tures with more complex geometry and better performance, taking full advantage of
the benefit of additive manufacturing and topology optimization. These benefits asso-
ciated with the multi-component structures assembled from additively-manufactured
components are discussed in a recent Formlab tutorial on “how to build bigger than
the printer’s build volume” [118]. In the tutorial, however, the component partition-
ing is treated as an arbitrary manual decision after the overall structural design is
complete, not as an outcome of a system-level optimization. The MTO-A method pro-
posed in this chapter intends to realize the simultaneous optimization of base topology
and component decomposition for structures assembled from additively-manufactured
components.

5.2 Design field configuration
The design field configuration of MTO-A follows that of the general MTO, as dis-
cussed in Chapter 2. There are two layers, including the density field ρ and mem-
bership vector field m = (m(1),m(2), · · · ,m(K)), where K is the maximum allowable
number of components. As discussed in Chapter 4, the regularization of ρ and m(k)

follows the framework detailed in [38], which includes the Helmholtz PDE filtering
and Heaviside projection.
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For details of the topology design representation, readers are referred to Sec-
tion 4.3.1 of this dissertation. The resulting regularized density field ρ is bounded
between 0 and 1.

The membership design representation follows the regularization scheme discussed
in Section 4.3.3. However, to ensure the membership unity, instead of using the cube-
to-simplex projection method proposed in Chapter 4, a different nonlinear projection
method, the DMO method [62], is used in this chapter. DMO has been widely used
in multi-material topology optimization studies. As discussed in Section 1.2.3, from
a viewpoint of mathematical formulation, MTO is closely related to multi-material
topology optimization. The successful use of a widely accepted multi-material topol-
ogy optimization method to the MTO problem somewhat proved that argument.

As detailed in Section 4.3.3, after the original membership field µ(k) is transformed
to µ̃(k) and µ̄(k), the resulting µ̄(k) preserves a clear bound between 0 and 1. The DMO
projection is then applied to the regularized membership field µ̄(k) as follows:

m(k) = {µ̄(k)}Pm

K∏
i=1
i ̸=k

[
1− {µ̄(i)}Pm

]
, (5.1)

where Pm is a penalization parameter similar to the SIMP power law. The DMO
projection method is effective in driving the membership convergence to 0 or 1, be-
cause an increase in the membership to one component always leads to a decrease in
the membership of all other components. It also encourages that the membership to
only one component converges to 1 while the memberships to all other components
converge to 0. It is noted that the cube-to-simplex projection method discussed in
Chapter 4 serves a similar purpose.

5.3 Manufacturing constraint modeling for powder bed addi-
tive manufacturing

This section discusses the modeling of two manufacturing constraints for powder bed
additive manufacturing, including the maximum build volume and the elimination of
enclosed holes. Both constraints are applied at the component level.
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5.3.1 Maximum allowable build volume

The build volume of a powder bed additive manufacturing machine is usually given
as a specification, defined by its maximum allowable length, width, and height. A
designed part can only be produced if it physically fits inside the bounding box defined
by these dimensions. There has been no previous work discussing constraining the
additive manufacturing part size for topology optimization. It is, mainly, due to the
fact that most existing topology optimization works assume the optimized structure
will be produced as a single-piece, which has already been naturally bounded by its
initial design domain. Therefore, there is no need for the build volume constraint.
However, this is not the case for MTO, where the initial design domain bounding
box is defined for the overall structure but not for the individual component. In
the computer graphics community, there are recent works discussing partitioning
3D printable parts based on a specified maximum build volume limit (e.g., [119,
120]). However, these works only dealt with partitioning of given geometries. Also,
the partitioning was treated as discrete problems, and generally solved by heuristic
optimization methods.

Different from the stamping die-set material cost constraint discussed in Sec-
tion 3.5.1, where the overall size of bounding boxes should be minimized, the build
volume constraint needs to explicitly control the length, width, and height of each
bounding box. Following the stamping die-set material cost constraint, OBB is used
again to determine the component bounding box. However, an improved mesh-
independent formulation is presented in this chapter.

As demonstrated in Figure 5.1, each design point in the design domain D is
associated with K weights w(k) = ρm(k). x is the centroid position of a design point.
The weighted covariance matrix Σ(k) for each component k can be written as:

Σ(k) =
1

A
(k)
w

∫
D

ρm(k)xxᵀ dΩ , (5.2)

where x is assumed written as a column vector, and A
(k)
w =

∫
D
ρm(k) dΩ. By applying

the singular value decomposition to Σ(k), orthogonal principal components can be
extracted. They will be used to determine the length, width and height directions (=
the orientation of OBB), which are denoted as u

(k)
1 , u(k)

2 , and u
(k)
3 respectively.

For each component k, all design points x are then projected to each principal
direction. The approximate center of component k in the u

(k)
j direction can be com-
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Figure 5.1: Computation of the bounding box. This is a mesh-independent formula-
tion. (The mesh-dependent formulation was presented in Figure 3.4.)

puted as the weighted mean of all projected values:

c
(k)
j =

1

A
(k)
w

∫
D

ρm(k)z
(k)
j dΩ , (5.3)

where z
(k)
j = u

(k)
j

ᵀ
x is the projection of x on the u

(k)
j direction. The weighted squared

distance between every projection and the center can be computed as:

d
(k)
j = ρm(k)

{
z
(k)
j − c

(k)
j

}2

. (5.4)

Finally, the printer build volume constraint to bound the maximum allowable length,
width and height of each component k is defined as:

l(k) = max
x∈D

d
(k)
1 (x) ≤ L∗

w(k) = max
x∈D

d
(k)
2 (x) ≤ W ∗

h(k) = max
x∈D

d
(k)
3 (x) ≤ H∗

, (5.5)

where L∗, W ∗, and H∗ are the squared halves of the length, width, and height limits,
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respectively, imposed by the powder bed additive manufacturing machine specifica-
tion.

To maintain the constraint differentiability for use with gradient-based optimiza-
tion, the maximum operator in Equation (5.5) is approximated by the P-norm func-
tion as follows:

max
x∈D

d
(k)
j (x) ≈ Cf

[
1

A0

∫
D

{
d
(k)
j (x)

}Pn

dΩ

]1/Pn

, (5.6)

where A0 =
∫
D
dΩ, and Pn is a numerical tuning parameter. A moderate value

for Pn needs to be set to balance the numerical approximation accuracy and the
function smoothness. Due to the discrepancy between the P-norm value and the
“true” maximum value, an adaptive correction factor Cf is introduced, which is the
ratio between the “true” maximum value and the P-norm value from the previous
iteration. Similar correction strategy for the P-norm approximation was previously
reported in [121].

5.3.2 Elimination of enclosed holes

For conventional, single-piece topology optimization, the virtual temperature method
has been proposed to generate simply-connected topologies by constraining the maxi-
mum steady-state temperature of a fictitious thermal analysis [55, 56]. However, when
enclosed holes are not allowed in a single-piece structure, the use of topology optimiza-
tion becomes somewhat questionable, since the advantage of topology optimization
over the sizing and shape optimization is its capability for adding (and removing)
holes and exploring shapes with different connectivity. Designers may rather just use
the sizing or shape optimization in order to design parts without holes.

To eliminate holes enclosed within each component, the virtual temperature method
is generalized, to make it applicable to MTO. Instead of prohibiting enclosed holes in
the entire single-piece structure, the generalized constraint only prevents hole forma-
tion within each component. A linear finite element analysis on fictitious heat conduc-
tion is conducted for each component at each optimization iteration. By bounding the
steady-state maximum temperature in a component, the formation of holes enclosed
within a component is indirectly discouraged during the course of optimization.

For each component k, the Neumann boundary condition of a constant (fictitious)
heat flux is applied to every design point depending on its density field ρ:

Q = (1− ρ)Q0, (5.7)
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where Q0 is the maximum heat flux that can be applied if the material density
equals to zero. The Dirichlet boundary condition of zero temperature is applied
to all boundaries of the initial design domain D.

The (fictitious) coefficient of thermal conductivity for each design point of com-
ponent k is defined as:

K(k) =
(
1− ρm(k)

)Pk

K0, (5.8)

where Pk is a penalization parameter similar to the SIMP power law, and K0 is the
maximum thermal conductivity that can be applied if the material density equals to
zero or if the design point does not belong to component k. For each component
k, the steady-state temperature field t(k) can be computed by solving the thermal
equilibrium equation.

For a converged topology with only 0-or-1 densities and component memberships,
for example, the fictitious heat flux Q is applied to only the design points with zero
densities (i.e., voids) per Equation (5.7), which can conduct heat to the adjacent point
belonging to the same component per Equation (5.8). The design points with density
1 (i.e., solid materials), on the other hand, cannot conduct heat to the adjacent point
belonging to the same component, since they are regarded as a thermal insulator per
Equation (5.8). As a result, if enclosed holes exist in a component, the heat will
not be able to dissipate to the domain boundary, resulting in exponentially higher
steady-state temperature compared to components without enclosed holes. Therefore,
by constraining the maximum steady-state temperature in temperature field t(k),
holes enclosed in component k will be indirectly discouraged during the course of
optimization. The constraint for component k can be summarized as follows:

t(k)max = max
x∈D

t(k)(x) ≤ T ∗, (5.9)

where T ∗ is the constraint limit for the allowable maximum temperature. Similar
numerical approximation for the maximum operator as described in Equation (5.6) is
used to maintain the smoothness and differentiability of the constraint for use with
gradient-based optimization.

5.4 Optimization formulation
The MTO-A problem is formulated as the minimization of structural compliance sub-
ject to constraints on the maximum allowable build volume and absence of enclosed
holes for each component, as demonstrated in Figure 5.2. A design domain D is
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A design point

Material (component A)

No material Material (component B)

Deisgn domain D
Γn

Γd

t

Figure 5.2: Problem description of multi-component topology optimization for powder
bed additive manufacturing.

chosen so that loads and boundary conditions can be applied. Then the problem is
defined as finding the optimal material distribution and component partitioning si-
multaneously within D. Suppose that A (in blue) and B (in red) in Figure 5.2 are two
components, for instance, this particular partitioning is infeasible, since component
A does not satisfy the enclosed hole constraint while component B does not satisfy
the build volume constraint (assuming the dot rectangle is the prescribed, maximum
allowable build volume).
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The overall MTO-A problem can be formulated as follows:

minimize
ϕ,µ(1),··· ,µ(K)

F (u)

subject to g1 :=

∫
D

ρ dΩ− V ∗ ≤ 0

ϕ ∈ [−1, 1]D

for k = 1, 2, · · · , K :

g
(k)
2 := l(k) − L∗ ≤ 0

g
(k)
3 := w(k) −W ∗ ≤ 0

g
(k)
4 := h(k) −H∗ ≤ 0

g
(k)
5 := t(k)max − T ∗ ≤ 0

µ(k) ∈ [−1, 1]D

, (5.10)

where u is the displacement field obtained by solving static equilibrium equations;
F (u) is the objective function for a structural performance; K is the prescribed,
maximum allowable number of components; g1 is the volume fraction constraint; g(k)2

through g
(k)
4 are the maximum allowable build volume constraints for each component;

g
(k)
5 is the constraint to avoid enclosed holes for each component.

In the case of the minimization of structural compliance as discussed in the fol-
lowing examples, the objective function can be stated as:

F (u) =

∫
D

1

2
σᵀϵdΩ, (5.11)

and the static equilibrium equations can be written as:

∇ · σ = 0 in D

u = 0 on Γd

σ · n = t on Γn

, (5.12)

where σ = C ·ϵ(u) is the stress field; ϵ(u) is the strain field; C is the elasticity tensor
field; Γd is the Dirichlet boundary defined by zero prescribed displacement; and Γn is
the Neumann boundary defined by the normal n and the prescribed traction t.

The elastic tensor is obtained by a material interpolation scheme similar to multi-
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Table 5.1: Material properties and parameters for numerical examples.

Symbol Value Description
E 1 Young’s modulus
ν 0.3 Poisson ratio
Q0 2e4 fictitious heat flux
K0 2e3 fictitious thermal conductivity
T ∗ 1e3 the maximum allowable temperature limit
Pd 3 penalty for the SIMP density power law
Pm 6 penalty for the membership power law
Pk 6 parameter in the thermal conductivity interpolation
Pn 6 parameter in the P-norm approximation

material topology optimization as follows:

C = ρPd

K∑
k=1

m(k)C0, (5.13)

where C0 is the full elasticity tensor; ρ and m(k) are the regularized material density
field and component membership field; Pd is the penalization parameter for the SIMP
power law.

5.5 Numerical results
Similar to MTO-C, the constrained optimization problem of MTO-A in Equation (5.10)
was solved by the method of moving asymptotes [109] with only the first derivatives.
The sensitivity analysis followed the standard adjoint method and was implemented
using COMSOL Multiphysics. Interested readers are referred to [110] for the sensi-
tivity analysis using the software.

The design field was uniformly initialized as ρ = V ∗ and m(k) = 1/K. The
optimization would terminate when either the lower bound setting on the change of
the objective function value or the prescribed, maximum number of iterations was
satisfied.

Table 5.1 summarizes material properties and some parameters that are shared
among all numerical examples presented in this section.
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Figure 5.3: Design domain and boundary condition settings for the (a)
Messerschmidt-Bölkow-Blohm beam example; (b) cantilever example.

5.5.1 Iterative details: Messerschmidt-Bölkow-Blohm beam

To show the optimization iterative details, the MBB beam example was used. Its de-
sign domain D and boundary condition settings are presented in Figure 5.3(a). Only
half of the entire domain was optimized due to the symmetry, which was meshed
with 100 × 50 quadrilateral finite elements. A prescribed partitioning cutting plane
along the symmetry mid-boundary was assumed. This assumption is required for the
appropriate modeling of the maximum build volume constraint, which is also bene-
ficial to enhance the modularity of the optimized multi-component structures. The
maximum allowable number of components was set as K = 3. The volume fraction
constraint limit was set as V ∗ = 0.5. The maximum allowable length and width of
the build volume is set as L∗ = 1.5 and W ∗ = 0.6 respectively. In 2D examples, the
constraint on the height limit H∗ of the build volume was not needed. Figure 5.4
shows the evolution of the design field during the course of optimization at (a) itera-
tion 1, (b) iteration 35, (c) iteration 80, and (d) iteration 311 (end of optimization).
For each iteration, the density field ρ is plotted in the upper middle figure. The
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membership field m(k) is plotted in the bottom three figures. By combining both
design fields, the overall multi-component topology with intermediate decomposition
ρ
(∑K

k=1m
(k)
)

is plotted in the left figure. At the beginning of optimization, all de-
sign fields were uniformly initialized (Figure 5.4(a)). The component decomposition
happened when the overall base topology was not yet clear (Figure 5.4(b)). Then,
component boundaries started to appear (Figure 5.4(c)), and finally converged at
iteration 311 (Figure 5.4(d)).

As seen in Figure 5.4(d), a layer of gray transition zone was formed between com-
ponent mating boundaries. In the finite element simulation model, smaller Young’s
moduli were assigned to those elements, which indicated less stiff structural perfor-
mance than base materials. This behavior was caused by the regularization scheme
applied to the membership design field, as explained in Figure 5.5. Based on the PDE
filter radius and Heaviside function shape, the gray transition zone would appear sur-
rounding all design field profiles. It is usually not an issue for conventional, single-
piece topology optimization because this gray zone will only appear surrounding the
overall topology profile, which will not significantly affect the structural performance
evaluation. As for MTO, this gray zone also appeared surrounding membership de-
sign field profiles, which created gray component mating boundaries in the middle
of a multi-component topology assembly. This behavior is actually preferred when
a less stiff joining process is to be used to assemble the resulting multi-component
structures, e.g., the spot-welding joint as discussed in Chapter 3. As a result, joint
locations are somewhat also designed during the course of optimization as the place-
ment of joints in structurally less stiff locations will be discouraged. However, for a
more stiff joining process where the joint stiffness is as strong as base materials, such
gray zone behavior is not desired. In this case, a continuation scheme can be adopted
where the filter radius for the membership design field will be gradually decreased,
and the Heaviside function shape will be gradually skewed toward a step function-like
shape. Therefore, at the end of optimization, the gray zone between mating compo-
nent boundaries will become negligibly thin and have little influence on the structural
performance evaluation.

Figure 5.6 shows the evolution of manufacturing constraints during the course of
optimization. For each iteration, intermediate components ρm(k) are plotted in the
first row. The weighted squared distances d

(k)
j in both major and minor directions

of bounding boxes are plotted in row 2 and 3 respectively. The last row presents
the steady-state temperature distribution t(k) for the elimination of enclosed holes
constraint. At the end of optimization, all manufacturing constraints were satisfied.
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(a)

(b)

(c)

(d)

Figure 5.4: Design field iterative details for the Messerschmidt-Bölkow-Blohm beam
example at (a) iteration 1; (b) iteration 35; (c) iteration 80; and (d) iteration 311.
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Density

Membership

Figure 5.5: Component interface explanation. The gray zone between component
boundaries is less stiff than regular base materials in the simulation model. Different
colors indicate different components.

Figure 5.7 presents the optimized multi-component topology. Different colors
indicate different components, each of which will be produced by a powder-bed ad-
ditive manufacturing machine. The prescribed, maximum allowable build volume
is plotted as dot rectangles. Each component is bounded by the prescribed, maxi-
mum allowable bounding box length and width. There are no enclosed holes in any
individual component. It is also observed that enclosed holes can appear in the over-
all multi-component topology, which are acceptable according to the manufacturing
constraints, and are indeed preferable in terms of structural performance. Joints are
placed at the locations that will satisfy the build volume constraint and the hole con-
straint. For the sake of maximizing the overall structural stiffness, most joints (with
less stiff materials) are placed in locations subject to primarily compression.

5.5.2 Different build volume limits: cantilever

To show the multi-component topologies optimized for different prescribed build vol-
ume limits, a cantilever example was used. Its design domain D and boundary con-
dition settings are presented in Figure 5.3(b). The design domain was meshed with
100 × 50 quadrilateral finite elements. The maximum allowable number of compo-
nents was set as K = 4. The volume fraction constraint limit was set as V ∗ = 0.5.
The continuation scheme as described in Section 5.5.1 was applied to minimize the
less stiff joint effect on the overall structural performance.

Figure 5.8 presents four designs with different prescribed build volume limits.
Their maximum allowable build volume (defined as rectangles in this 2D example)

70



(a) (b)

(c) (d)

Figure 5.6: Manufacturing constraint iterative details for the Messerschmidt-Bölkow-
Blohm beam example at (a) Iteration 1; (b) iteration 35; (c) iteration 80; and (d)
iteration 311.
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Figure 5.7: The optimized multi-component topology for the MBB beam example.
The prescribed, maximum allowable build volume is plotted for each component.
Different colors indicate different components.

is presented in Figure 5.8(e). Topology 5.8(a) was generated by conventional, single-
piece topology optimization where a rectangle in the size of its initial design domain
(2 by 1) was needed to cover the entire geometry. By prescribing the maximum allow-
able build volume as L∗ = 1.5 and W ∗ = 0.6, a three-component topology 5.8(b) was
obtained. The outcome number of components was less than the maximum number
allowed as one of the components becomes unused. It demonstrated the robustness of
the formulation that the outcome number of components could converge to a number
different from the prescribed K. This was not the case for topology 5.8(c) where the
prescribed build volume was too small to have a three-component design with good
structural performance. Therefore, a four-component design was generated with the
prescribed limit set as L∗ = 1.0 and W ∗ = 0.4. Finally, a narrow build volume
was set as L∗ = 2.5 and W ∗ = 0.3 for the case 5.8(d). For all multi-component
designs 5.8(b-d), there were no enclosed holes in any decomposed component. How-
ever, the conventional, single-piece design 5.8(a) had four enclosed holes, which did
not satisfy the powder-bed additive manufacturing constraints. The four designs had
different base topologies in order to satisfy the corresponding prescribed build volume
limits while maximizing their structural performance.
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Figure 5.8: The optimized topologies for the cantilever example with different pre-
scribed maximum allowable build volume: (a) 2.0 × 1.0; (b) 1.5 × 0.6; (c) 1.0 × 0.4;
(d) 2.5× 0.3; (e) the prescribed maximum allowable build volume for (a-d).
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Figure 5.9: Design domain and boundary condition settings for the 3D simply-
supported center loading example.

5.5.3 3D example: simply-supported center loading

To show the proposed MTO-A method applied to a 3D problem, a simply-supported
center loading example is used. Its design domain and boundary condition settings
are presented in Figure 5.9. The maximum allowable number of components was set
as K = 3. The volume fraction constraint limit was set as V ∗ = 0.3. For comparison,
conventional topology optimization (without manufacturing constraints) was used to
generate the single-piece result, as shown in Figure 5.10. Due to the symmetry, only
the quarter design domain D (denoted as a dot cube in Figure 5.9) was optimized.
The quarter design domain was meshed with 30×30×30 hexahedron finite elements.
An enclosed hole was generated in the middle of the optimized structure. According
to the powder-bed additive manufacturing constraint, un-melted powders will be
trapped inside, and cannot be removed from the component once it is built. It has also
previously been reported that for ultra-high resolution topology optimization results,
many local hollow features can be generated [122]. The build volume required for this
part is equal to its initial design domain bounding box in the size of 2× 2× 1. The
multi-component topology shown in Figure 5.11 was optimized in the full 2 × 2 × 1

domain without applying any symmetry boundary conditions. The entire domain
was meshed with 30 × 30 × 15 hexahedron finite elements. A smaller and narrow
rectangular build volume limit of L∗ = 3.0, W ∗ = 1.2, and H∗ = 0.8 was specified.
By slicing the larger blue component, it can be seen that there is no enclosed hole
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(a) (b)

Figure 5.10: The conventional, single-piece optimized topology for the 3D simply-
supported center loading example without applying manufacturing constraints. (a)
The quarter domain optimized structure; (b) the mirrored half domain structure.

inside. Therefore, its overall base topology is different from that of the single-piece
topology in order to satisfy the prescribed build volume limit and elimination of
enclosed holes manufacturing constraints.

5.6 Chapter summary
This chapter presented the MTO application for structures assembled from com-
ponents produced by powder bed additive manufacturing. The weighted principal
component analysis was adopted to bound the size of each component to be kept
within the prescribed build volume limit. To avoid the formation of holes enclosed
within each component, the modified virtual temperature method was implemented.
The minimum length scale was controlled by the design field regularization.

Another well-studied manufacturing constraint for additive manufacturing is the
control of overhang features. The integration of this constraint into conventional,
single-piece topology optimization has been well studied (e.g., [48, 49, 50, 51, 52,
53, 54]). The constraint on overhangs was not included in this chapter, because for
powder bed processes, loose powders can support overhang features while printing.
The overhang consideration for the multi-component topology design is left for future
research. However, it is expected that the MTO concept discussed in this disserta-
tion will be beneficial even for wire-fed additive manufacturing processes where the
overhang design is critical, since the multiple build directions allowed in a multi-
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(a) (b)

Figure 5.11: The full domain optimized multi-component topology for the 3D simply-
supported center loading example with manufacturing constraints. (a) The full
domain optimized multi-component structure; (b) the sliced half domain multi-
component structure.

component design can largely relax the design space compared with existing methods
assuming only a single build direction.

The design field regularization of MTO-A followed that of MTO-C with the
Helmholtz PDE filter and Heaviside projection. However, to ensure the membership
unity, unlike in MTO-C where the cube-to-simplex projection was used, this chapter
used the DMO method. DMO is a widely-accepted method for multi-material topol-
ogy optimization. The successful use of DMO to an MTO problem somewhat proved
that they indeed share a similar mathematical root.

Several 2D examples and the first reported 3D example of MTO were presented
to demonstrate the MTO-A method.
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CHAPTER 6

Summary

6.1 Dissertation conclusion
This dissertation proposed a continuously relaxed gradient-based formulation for
MTO. The conventional density-based representation was used to relax the over-
all topology design. The concept of fractional memberships was introduced to relax
the component decomposition design. Three different methods were implemented to
handle the membership unity requirement, which only allows one unique selection of
memberships at the end of optimization for each design point. They are the equality
constraint method (Chapter 3), the cube-to-simplex projection method (Chapter 4),
and the DMO projection method (Chapter 5).

The proposed continuously relaxed gradient-based MTO formulation was applied
to designing multi-component structures made by three different manufacturing pro-
cesses. They are the sheet metal stamping (MTO-S in Chapter 3), the composite
manufacturing (MTO-C in Chapter 4), and the additive manufacturing (MTO-A in
Chapter 5). For each manufacturing process, the corresponding manufacturing con-
straints were modeled and integrated into the general MTO formulation discussed in
Chapter 2.

Several numerical examples were provided, which demonstrated the trade-off be-
tween the structural performance and manufacturability. The proposed multi-component
concept also showed advantages in further improving the manufacturability of struc-
tures designed by topology optimization. Because most existing topology optimiza-
tion methods assumed that the outcome optimized structures would be produced as
a single piece.

77



6.2 Contributions
This dissertation covers a multidisciplinary research topic between topology optimiza-
tion and design for manufacturability. Its contributions can be summarized in two
folds.

• A continuously relaxed gradient-based formulation for MTO was proposed.
Prior MTO methods were limited to discrete formulations solved by genetic
algorithms (e.g., [83, 84, 85]). Due to the use of efficient gradient-based opti-
mization enabled by the proposed continuous MTO formulation, scalable multi-
component topology design solutions became possible.

• In addition to the stamping process that has been investigated extensively in
previous MTO research (e.g., [79, 83, 84, 85]), this dissertation expanded the
MTO method to composite and additive manufacturing.

The contributions regarding the gradient-based continuous MTO formulation are
summarized as follows.

• The concept of fractional memberships was introduced, which made the con-
tinuous relaxation of component decomposition possible. (Chapter 2, 3, 4, 5)

• The cube-to-simplex projection and penalization method was proposed to han-
dle the membership unity requirement. (Chapter 4)

• The weighting scheme including both the density and membership design fields
was proposed to resolve the challenge of evaluating manufacturing constraints
with intermediate “blurry” overall topology and “blurry” component partition-
ing during the course of optimization. It also enabled the evaluation of manu-
facturing constraints for each component while existing methods only applied
manufacturing constraints to the overall topology. (Chapter 3, 4, 5)

• An explicit mesh-dependent joint stiffness model was proposed based on the
continuously relaxed design fields. (Chapter 3)

• An implicit mesh-independent component interface identification phenomenon
was observed and explained. This can be the foundation for the mesh-independent
joint stiffness model. (Chapter 5)

• As a result of the continuous relaxation, the manufacturability-driven MTO
problem was, for the first time, solved by efficient gradient-based optimization.
(Chapter 3, 4, 5)
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The contributions regarding the expansion of the MTO method to different man-
ufacturing processes are summarized as follows.

• A weighted principal component analysis was proposed to determine the ori-
entation of a component bounding box for MTO, which was the key to the
stamping die-set material cost modeling, and the additive manufacturing build
volume constraint modeling. (Chapter 3, 5)

• The MTO-C method enabled the design of anisotropic multi-component com-
posite structures. The component-wise anisotropic material orientation design
was achieved. The outcome design solutions are unique and cannot be obtained
by existing anisotropic topology optimization methods. It is most suitable for
economical production with the conventional high-volume composite manufac-
turing processes. (Chapter 4)

• The MTO-A method enabled the design of additively manufactured structures
larger than the printer’s build volume for powder bed additive manufacturing.
Prior methods were limited to single-piece topology designs smaller than the
printer’s build volume. (Chapter 5)

6.3 Future research
To further refine the proposed gradient-based continuous MTO formulation, the fol-
lowing immediate improvements are suggested.

• Joint stiffness specification for the mesh-independent MTO formulation

Though the joint stiffness specification can be prescribed for the mesh-dependent
MTO formulation as discussed in Chapter 3, it is not the case for the mesh-
independent MTO formulation, as discussed in Chapter 4 and 5. The current
mesh-independent formulation only takes the option of either considering less
stiff joints or assuming perfect bonding. Future research can follow the obser-
vation, briefly discussed in Chapter 5, that intermediate component boundaries
(= joint locations) are automatically identified in the regularized membership
field.

• Strength-based joint modeling

The proposed joint models in this dissertation will not be directly applicable
for stress and fatigue problems. Interested readers are referred to [123] for an
example of strength-based joint modeling in a level-set and XFEM framework.
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• Stress-based multi-component topology optimization

This dissertation only discussed the stiffness-based structural design. However,
the stress-based structural design is critical for certain applications.

• Elimination of disconnected components in each membership phase

The current MTO formulation does not have a mechanism to discourage the ap-
pearance of disconnected components to appear in a single membership phase.
However, this is not always an issue. For example, in MTO-C, if two discon-
nected components appeared in one membership phase, they would just have
the same material orientation. In MTO-A, if several disconnected components
appeared in one membership phase, they would still be produced in a powder
bed machine at the same time, and would not violate the build volume limit.
For some other manufacturing constraints, however, a single component for
each membership phase may be required.

To further expand the scope of MTO, the following future research topics are
suggested.

• The extension of MTO to other manufacturing processes

One immediate possible extension is the wire-fed additive manufacturing, which
will allow multiple flexible build directions to eliminate overhangs.

• The extension of MTO to incorporate material and process selections

This dissertation assumes a single manufacturing process and a single material
for all components. In light of the recent emphasis on the high-performance,
lightweight structures integrating multiple materials, the design synthesis of
Multi-component Multi-material Multi-process Topology Optimization (M3TO)
would be of great interests. The outcome of M3TO is expected to be an assem-
bly of multiple components with different materials each of which is optimized
for a certain manufacturing process.

• The implementation of MTO in an ultra-high resolution and fully parallel topol-
ogy optimization framework

From the prior non-gradient discrete formulation to a continuously relaxed
gradient-based formulation, this dissertation has taken a significant step in the
right direction for MTO to be used for real-world scalable structural system
designs. The next step is to enable the use of high performance computing
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and parallel computing. Interested readers are referred to [122] for an example
parallel topology optimization framework.
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