
Trajectory Optimization and Machine Learning to
Design Feedback Controllers for Bipedal Robots

with Provable Stability

by

Xingye Da

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in the University of Michigan
2018

Doctoral Committee:

Professor Jessy W. Grizzle, Chair
Assistant Professor C. David Remy
Assistant Professor Shai Revzen
Assistant Professor Ramanarayan Vasudevan

Xingye Da

xda@umich.edu

ORCID iD: 0000-0003-4439-4980

c© Xingye Da 2018

To my family

ii

ACKNOWLEDGEMENTS

The work presented here would not have been possible without the contribution

and support of many others. I want to express my most sincere appreciation to

Prof. Jessy Grizzle for his continual enthusiasm and unconditional support. I wish to

thank the members of my dissertation committee, Prof. C. David Remy, Prof. Shai

Revzen, and Prof. Ramanarayan Vasudevan, for their support and insightful feed-

back. I was privileged to have hardware and software instruction from the members

of Agility Robotics, Jonathan Hurst, Damion Shelton, Mikhail Jones, Andy Abate,

Ryan Domres, and Daniel Bennett. The code for optimization, simulation, and con-

trol originated with Mikhail Jones. Brian Buss and Brent Griffin welcomed me into

the lab and patiently trained me to solve real-world problems on MARLO. My exper-

imental work would not have been possible without the collaboration of Omar Harib

and Ross Hartley, day and night. I want to thank Yukai Gong for taking care of

Cassie Blue and performing outstanding experiments. Ayonga Hereid, Eva Mungai,

and Bruce Huang brought a cheerful atmosphere to the lab. To Shelly Feldkamp,

Judi Jones, Katherine McAlpine, Catharine June, Nicole Moore, Damen Provost, I

owe many thanks for their timely, professional assistance. I extend many thanks to

Koushil Sreenath, Quan Nguyen, and Hamed Razavi for our fruitful collaboration.

To my fiancée Chengying Luo, I am so grateful to have you in my life. My work has

more meaning because I can share it with you. To my family in China and the many

friends I met in Ann Arbor, I could not have done this without you.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF APPENDICES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Starting Point . 3

1.2.1 Basic HZD: Strengths and Weaknesses 5
1.2.2 Bilinear Matrix Inequalities for Local Exponential

Stability . 6
1.2.3 Robust Optimization of Orbits 7

1.3 Main Ideas of This Dissertation 9
1.4 Contributions . 12

1.4.1 Contribution to HZD 13
1.4.2 Contribution to Machine Learning 13
1.4.3 Broader Impacts . 14

1.5 Overview of Thesis . 14

II. Literature Overview . 15

2.1 Reduced Order Model . 15
2.2 Online Optimization . 16
2.3 Gait Library . 16
2.4 Supervised Learning and Reinforcement Learning 17

iv

2.5 Hybrid Zero Dynamics . 18

III. Robot Model . 19

3.1 Robot Description . 19
3.2 Yaw Reduction via Foot Design 21

IV. Gait Library of Periodic Orbits 23

4.1 Background . 24
4.2 Contributions and Organization of This Chapter 25
4.3 2D Gait Design and Stabilization 26

4.3.1 Gait Design Using Virtual Constraints 27
4.3.2 Gait Library and Locally Stabilizing Feedback Con-

troller . 29
4.3.3 Longitudinal Speed Regulation 31
4.3.4 Unifying The Timing Variable or Phase Used for

Control . 32
4.4 Lateral Control for Straight-line Walking 34
4.5 Model-based Analysis and Simulation 35

4.5.1 Local Exponential Stability in 2D and 3D 35
4.5.2 Parameter Update based on Longitudinal Speed . . 38

4.6 Experimental Results . 38
4.6.1 Partial Controller 39
4.6.2 Complete Controller of Figure 4.1 41

4.7 Discussion and Conclusions 42

V. Intuitive Method of Machine Learning Control 44

5.1 Control Policy Overview . 45
5.1.1 Control Policy . 46
5.1.2 Dataset Generation Through Optimization 46
5.1.3 Machine Learning Methods 47
5.1.4 Training and Testing 48

5.2 Speed Regulation Policy . 48
5.2.1 Dataset Generation 49
5.2.2 Feature Selection 49
5.2.3 Training Methods 49
5.2.4 Stability Remark 49

5.3 Transition Gait Policy . 50
5.3.1 Dataset Generation 50
5.3.2 Feature Selection 51
5.3.3 Training Methods 52
5.3.4 Stability Remark 52

5.4 Terrain Adaption Policy . 52

v

5.4.1 Dataset Generation 53
5.4.2 Feature Selection 53
5.4.3 Training Methods 53

5.5 Simulation . 54
5.5.1 Speed Regulation Policy 54
5.5.2 Transition Policy 54
5.5.3 Terrain Policy . 55

5.6 Experiments and Discussion 57
5.6.1 Speed Regulation and Transition 58
5.6.2 Sagittal Terrain Adaptation 59
5.6.3 Lateral Terrain Adaptation 59
5.6.4 Unified Policy . 60

5.7 Conclusions and Next Steps 60

VI. Formal Method of Machine Learning Control 62

6.1 Presentation of Main Ideas 65
6.1.1 Model Assumptions 67
6.1.2 Extracting a Feedback from Open-loop Trajectories 68
6.1.3 Building a Reduced-Order Target Model 73
6.1.4 Embedding the Target Dynamics in the Original Sys-

tem . 77
6.1.5 Extended Class of Models 82
6.1.6 Orbit Library and Design of the Insertion Map . . . 83

6.2 Inverted Pendulum on a Cart 84
6.2.1 System Model . 85
6.2.2 Stabilizing the Upright Equilibrium While Respect-

ing a Barrier . 85
6.2.3 Orbit Library and Transitioning Among Periodic Or-

bits . 93
6.3 Hybrid Model and Control 99

6.3.1 Hybrid Model . 100
6.3.2 Setting up the Optimization Problem 101
6.3.3 Generalized Hybrid Zero Dynamics 104
6.3.4 Stabilizing the Original Model 109

6.4 Bipedal Walking Gaits . 112
6.4.1 MARLO Model Update 112
6.4.2 Design of Planar Periodic Gaits and Transition Tra-

jectories via Optimization 113
6.4.3 Controller Design via Machine Learning 115
6.4.4 Example Performance Analysis 116

6.5 Experiments on a 3D Bipedal Robot 122
6.5.1 Update 3D-MARLO Configuration 122
6.5.2 Optimization . 123
6.5.3 Machine Learning 124

vi

6.5.4 Experimental Implementation 125
6.5.5 Results . 127

VII. Discussion and Conclusion . 130

7.1 Strategy . 130
7.2 Curse of Dimensionality . 131
7.3 Original HZD vs G-HZD . 131
7.4 Stability Mechanism . 132
7.5 Future Work . 133

APPENDICES . 135

BIBLIOGRAPHY . 151

vii

LIST OF FIGURES

Figure

1.1 MARLO Experiment Summary . 1
1.2 Pendulum Models . 2
1.3 The ultimate solution . 4
1.4 BMI control experiment . 7
1.5 Robust control experiment . 8
3.1 MARLO on the rough terrain . 20
3.2 MARLO configuration . 20
3.3 Two-point contact foot . 22
4.1 2D design to 3D implementation diagram 27
4.2 3D controllers comparison . 35
4.3 Abstract of basin of attraction comparison 36
4.4 Compare the settling time . 37
4.5 Compare the meet of a physical constrainta 37
4.6 Configuration variable plots . 39
4.7 Speed plot . 40
4.8 Torque plots . 40
4.9 Yaw plot . 41
5.1 MARLO on the Wave Field . 45
5.2 Control Policy Design and Implementation 46
5.3 Gait transition . 50
5.4 Fitting plot . 55
5.5 Speed tracking for three learning controllers 56
5.6 Transitioning of controller and optimization 56
5.7 Simulation of push recovery . 57
5.8 Simulation of rough terrain . 57
6.1 The Supervised Machine Learning approach. 64
6.2 Details of the surface design . 64
6.3 Finite horizon optimization setting 72
6.4 The case of no learning feedback function 72
6.5 Inverted pendulum cart model . 86
6.6 Full-order model fitting . 88
6.7 Evolution of the optimization-cost function 89

viii

6.8 Learned controller vs. MPC in a slow update 90
6.9 Reduced-order model fitting . 92
6.10 Response of the reduced-order model 94
6.11 Output error of the reduced-order model 95
6.12 Example of singularity . 96
6.13 The cause of the singularity . 97
6.14 Tranisition in different orbits . 99
6.15 Error output during transition . 100
6.16 Process of design transient gaits . 114
6.17 Fitting results on MARLO . 117
6.18 Simulation of speed tracking . 117
6.19 The largest eigenvalue of the Poincaré map 118
6.20 Plot of perturbation response . 119
6.21 Leg angle fitting . 120
6.22 Knee angle fitting . 120
6.23 Gain selection . 121
6.24 Stick figure of gait transition . 121
6.25 Raw data, filtered and offline filtered of the velocity 126
6.26 Sagittal velocity response in 3D walking 128
6.27 Leg torque plot in 3D walking . 128
6.28 Lateral velocity plot in 3D walking 129
6.29 Hip torque in 3D walking . 129
7.1 Cassie with a Segway . 134
D.1 Response of a classica MPC controller 150

ix

LIST OF TABLES

Table

4.1 Optimization constraints . 30
4.2 Largest eigenvalue of various controllers 35
4.3 Three largest eigenvalues when α[k] is updated 36
5.1 Optimization constraints for machine learning 47
5.2 Experiment Videos . 58
6.1 Training for full state . 70
6.2 Training for reduced state . 78
6.3 MATLAB Neural Network Fitting Parameters 87
6.4 Optimization Constraints for formal machine learning 115
A.1 Table of Multimedia . 136

x

LIST OF APPENDICES

Appendix

A. Index to Multimedia Extensions . 136
B. Normal Forms for Mechanical Models 137
C. Proofs . 140
D. Relation to Backstepping, Zero Dynamics, and Immersion and Invariance146

xi

ABSTRACT

This thesis combines recent advances in trajectory optimization of hybrid dynam-

ical systems with machine learning and geometric control theory to achieve unprece-

dented performance in bipedal robot locomotion. The work greatly expands the class

of robot models for which feedback controllers can be designed with provable stabil-

ity. The methods are widely applicable beyond bipedal robots, including exoskeletons,

and prostheses, and eventually, drones, ADAS, and other highly automated machines.

One main idea of this thesis is to greatly expand the use of multiple trajectories

in the design of a stabilizing controller. The computation of many trajectories is now

feasible due to new optimization tools. The computations are not fast enough to

apply in the real-time, however, so they are not feasible for model predictive control

(MPC). The offline “library” approach will encounter the curse of dimensionality for

the high-dimensional models common in bipedal robots. To overcome these obstruc-

tions, we embed a stable walking motion in an attractive low-dimensional surface of

the system’s state space. The periodic orbit is now an attractor of the low-dimensional

state-variable model but is not attractive in the full-order system. We then use the

special structure of mechanical models associated with bipedal robots to embed the

low-dimensional model in the original model in such a manner that the desired walk-

ing motions are locally exponentially stable.

The ultimate solution in this thesis will generate model-based feedback controllers

for bipedal robots, in such a way that the closed-loop system has a large stability

basin, exhibits highly agile, dynamic behavior, and can deal with significant pertur-

xii

bations coming from the environment. In the case of bipeds: “model-based” means

that the controller will be designed on the basis of the full floating-base dynamic

model of the robot, and not a simplified model, such as the LIP (Linear Inverted

Pendulum). By “agile and dynamic” is meant that the robot moves at the speed of

a normal human or faster while walking off a curb. By “significant perturbation” is

meant a human tripping, and while falling, throwing his/her full weight into the back

of the robot.

xiii

CHAPTER I

Introduction

1.1 Motivation

Bipedal robots have the potential to travel through rough terrain and over human

infrastructure for search and rescue missions. This thesis seeks feedback controllers

that endow bipedal robots with a large stability basin, exhibit agile, dynamic be-

havior, and can deal with significant perturbations coming from the environment.

Experimental results are shown in Figure 1.1.

Model-based control methods seek to synthesize a feedback controller on the basis

of one or more dynamic models of a system. Bipedal robots generally have numerous

links connected through joints such as hips, knees, and ankles, which result in a

Figure 1.1: MARLO Experiment Summary. MARLO walking blind with passive
feet. The feedback algorithms are tested on challenging terrain outdoors. While
these images mostly show successes, sometimes the robot fails spectacularly, such as
the robot catching fire while the Discovery Channel was filming. Failures, breaking
the robot, and repairing it are all important learning experiences.

1

LIPM SLIPIPF

Figure 1.2: Pendulum Models. Adapted from [50, Figure 5]. Three low-dimensional
models that are frequently used as approximate representations of walking robots.
From left to right: the Linear Inverted Pendulum (LIP) lumps the mass of the robot at
a point moving at a constant height and assumes massless legs; the Inverted Pendulum
with Flywheel (IPF) relaxes the assumption on constant height and adds a flywheel to
account for internal angular momentum; and the Spring-Loaded Inverted Pendulum
(SLIP) adds a spring to model a robot’s legs as a massless pogo stick. There is no
obvious way to embed these low-dimensional models into the full model of a robot.

high degree of freedom mechanical model and therefore in a dynamic model with a

relatively high dimensional state space. The most common approach in the literature

to getting around the high dimension of the model is to represent a locomotion task

through the dynamics of a low-dimensional inverted pendulum (e.g., LIP, SLIP or

others shown in Figure 1.2), which when equipped with a foot-placement strategy

can exhibit stable walking or running motions [60, 96, 95, 94]. The robot itself is

then controlled in such a way that its center of mass approximately follows the target

dynamics of the selected pendulum model. The many challenges associated with

this more common approach include: achieving stable solutions in the full model;

exploiting the full capability of the machine, especially in light of physical constraints

of the hardware or environment; deciding how to associate the states of the low-

dimensional pendulum with the full-order system; and finally, even deciding upon

the appropriate pendulum model for a given task is not evident: what is the correct

model for turning while stepping off a platform?

For these reasons, this thesis does not rely on a pre-specified pendulum model to

encode a walking motion. Instead, the thesis follows the approach of using the full-

2

order model directly. It seeks to design controllers for high degree-of-freedom (DoF)

bipedal robots with several degrees of underactuation (DoU), or, if the robot is “fully

actuated”, it wishes to take into account the limited ability of ankle torques to affect

the overall evolution of the robot. The thesis will focus on the tasks of walking stably

forward, backward, or in place, and transitioning among such motions. The gaits will

be dynamic in the sense that they can use the full capability of the robot regarding

speed, terrain type, and other forms of agility. Moreover, of course, the controller

needs to be embedded on the robot for real-time implementation.

The ultimate solution in this thesis is illustrated in Figure 1.3. To overcome the

obstructions imposed by high-dimensional bipedal models, the thesis embeds a stable

walking motion in an attractive low-dimensional surface of the system’s state space.

The process begins with trajectory optimization to design an open-loop periodic walk-

ing motion of the high-dimensional model and then adding to this solution, a carefully

selected set of additional open-loop trajectories of the model that steer toward the

nominal motion. A drawback of trajectories is that they provide little information

on how to respond to a disturbance. To address this shortcoming, Supervised Ma-

chine Learning is used to construct a low-dimensional state-variable realization of the

open-loop trajectories. The periodic orbit is now an attractor of the low-dimensional

state-variable model but is not attractive in the full-order system. A special structure

of mechanical models associated with bipedal robots is then used to embed the low-

dimensional model in the original model in such a manner that the desired walking

motions are locally exponentially stable.

1.2 Starting Point

The starting point for the ideas developed in the thesis is the Hybrid Zero Dy-

namics (HZD) method in [126], a successful control approach for directly using the

full-order model of a bipedal robot. The thesis first explores a few intuitive approaches

3

Machine Learning

Full-order system Tasks

(Periodic walking, Transitioning)

Trajectory
optimization

Input-Output
Linearization

Trajectories

form a low-dimensional surface

Low-dimensional model

is a state-variable realization

of the trajectories

Controller

stabilizes the full-order system

Figure 1.3: The overall approach. The full-order model, the desired objectives, and
physical constraints are combined into a trajectory optimization problem for designing
a periodic gait. Using model structure or physical insight, a low-dimensional surface
of initial conditions is selected for trajectory building, with the trajectories designed
to approach the periodic orbit. If the trajectories form a low-dimensional surface,
Supervised Machine Learning is used to extract a vector field from the data that
realizes the trajectories. System structure is then used again to render the low-
dimensional model (surface and vector field) invariant and attractive.

4

to overcome numerous drawbacks of both basic 2D walking results and state-of-the-

art 3D walking results. A formal approach is then given in subsequent chapters with

new theorems for control design with stability proofs.

1.2.1 Basic HZD: Strengths and Weaknesses

In HZD, stable walking is identified with asymptotically stable periodic orbits in a

hybrid dynamic model. The periodic orbit is generated through trajectory optimiza-

tion of the full-order hybrid model. If the model satisfies the following conditions:

• There exists a hybrid invariant surface in the state space.

• The periodic orbit is asymptotically stable in the surface.

• The transverse dynamics are feedback linearizable.

Then a state-variable feedback can be found to asymptotically stabilize the orbit in

the full-order model.

In the case of planar robots with only one degree of underactuation, these condi-

tions turn out to be easy to meet. While this theory has been successfully implemented

on many robots [7, 5, 24, 55, 74, 116, 115, 101], lower-limb prostheses [45, 2, 132] and

even an exoskeleton for hands-free walking [3], it has important limitations that this

thesis overcomes:

• In basic HZD, only one optimization is done, namely the determination of the

periodic orbit. Hence, only that solution is guaranteed to be feasible (i.e., in

addition to satisfying the mechanical model, feasible solutions must respect ac-

tuator limitations and ground reaction force specifications, for example). Here,

an entire (low-dimensional) surface of feasible solutions is built.

• For robots with one degree of underactuation, the stability mechanism in [125,

Ch. 5.4] relies on energy loss at impacts, similar to the stability proofs for

5

passive robots walking down a slope. Here, more general stability mechanisms

in bipedal robots [94], such as posture adjustments through foot placement and

knee bend, automatically arise.

• Only gaits for which a monotonic variable can be identified can be treated with

the basic HZD method. Here, a much richer set of locomotion primitives can

be realized, such as stepping in place or transitioning from walking forward to

walking backward. As in [120, 100, 32], the feedback is allowed to be time-

dependent, enriching the set of possible closed-loop solutions.

Importantly, it has proven difficult to meet the basic HZD conditions for 3D robots,

in general, or even for planar robots with more than one degree of underactuation. In

the few cases where researchers have achieved asymptotically stable 3D walking, the

closed-loop performance has shown a limited ability to recover from environmental

uncertainty or force perturbations. In this light, two main approaches are discussed

next and compared to the methods in this thesis.

1.2.2 Bilinear Matrix Inequalities for Local Exponential Stability

The method proposed in [20, 51], based upon the (Jacobian) linearization of the

Poincaré map, seeks to achieve local exponential stability, aka orbital stability, for

robots with more than one degree of underactuation. For such robots, a periodic orbit

developed through HZD has no a priori guarantee of asymptotic stability within a

hybrid invariant surface designed through optimization. The method of [20, 51] begins

by replacing the nominal invariant surface by a parameterized family of surfaces,

where each surface has the same dimension, contains the given periodic orbit, and one

of the surfaces is the original surface. A bilinear matrix inequality (BMI) optimization

problem is then set up to search for parameters so that the Jacobian of the Poincaré

map has its eigenvalues in the unit circle. In other words, it seeks to reshape the

6

Figure 1.4: MARLO walks in the laboratory over 20 steps on point feet.

invariant surface so that the given periodic orbit is locally exponentially stable in the

surface.

The parameter search may or may not be successful, and designs based on Ja-

cobian linearization may not result in an adequate region of attraction. In practice,

the BMI-based controller gave the bipedal robot MARLO the ability to consistently

traverse the length of the laboratory, a distance of 20 to 25 steps. Impressively, this

was accomplished on point feet, which as far as we know, had never been done be-

fore. Testing on rough terrain or under impulse-like shoves was not done. Moreover,

choosing an “effective” parameterization for the invariant surface can be hard to do.

1.2.3 Robust Optimization of Orbits

The approach proposed in [48] avoids linearization in the controller design and

allows the initial periodic orbit to change so as to enhance stability robustness. It

also can handle more than one degree of underactuation.

One way to think about its underlying premise is to encode a numerical version of

7

Figure 1.5: MARLO walks on boards and on the grass.

Sontag’s famous Input-to-State Stability [112], where the “inputs” are disturbances

applied to the model. The key idea is to set up an optimization problem that designs

both a periodic orbit and a robust controller simultaneously. The optimization prob-

lems have the usual term to assess energy consumed per distance traveled, subject to

constraints on periodicity, walking speed, foot clearance, actuator limitations, ground

reaction forces, etc. In addition, there are additional terms in the cost function that

measure the ability of the system to converge to the periodic orbit after perturba-

tion. The perturbations considered include ground height changes and deviations in

center of mass velocity, which are not necessarily small (i.e., local). The optimization

problem so posed allows the periodic orbit to be reshaped in order to minimize the

cost function. Thus, it tends to find orbits that are “easier to stabilize” in the hybrid

invariant surface.

The controller was validated experimentally on MARLO, allowing the robot to

walk over structured piles of 5cm boards as well as boards randomly thrown across

the laboratory floor. In addition, the robot walked on a variety of surfaces outdoors,

including on grass at a speed of 0.9 m/s to 0.95 m/s as shown in Figure 1.5. The

closed-loop robustness has been significantly improved compared to the method in

[20, 51], but is still not good enough for large terrain variations or force perturbations.

Similar to the method proposed in [20, 51], the controller parameterization (and

hence, its structure) must be specified before beginning the optimization. Each per-

turbation requires simulating the dynamics for multiple walking steps which leads to

8

a large parameter optimization problem. The method may have difficulty scaling up

to more diverse perturbations. Moreover, the approach does not come with a formal

proof of closed-loop stability.

The work in [48] has, however, two fundamental ideas that this thesis builds upon:

• it uses trajectories other than the periodic orbit itself in the design of the feed-

back controller; and

• the feedback controller breaks away from the now-classical paradigm of “holo-

nomic virtual constraints” introduced in [126], that is, relative degree two output

functions parameterized by a strictly increasing gait timing variable.

1.3 Main Ideas of This Dissertation

One main idea of this dissertation is to greatly expand the use of multiple trajec-

tories in the design of a stabilizing controller. The computation of many trajectories

is now feasible due to new optimization tools. The optimization methods used in

[126, 48] are based on single shooting. The highly nonlinear, non-convex parameter

optimization problem based on [126] takes approximately one hour on a current lap-

top to find a feasible periodic orbit for a nine degree of freedom, 3D biped model with

two degrees of underactuation. The computational time can be much worse if one

does not have a good initialization. For the robust optimization problem of [48], the

solution time grows to more than four hours for the same robot.

Very importantly, the new optimization tool introduced in [58, 53] returns solu-

tions much faster and with far fewer local optima. On the same laptop used above,

it takes about 2 minutes to solve the optimization problem for the above 3D model

with a random initial guess. Empirical results in [58, 53] show that when seeded with

randomly generated initial guesses, 79 of 100 trials converged to the same solution.

For a simpler 2D model, it takes about 2 seconds to find a solution, and almost any

9

random guess converged to the same solution. This new and powerful tool allows the

exploration of many different combinations of cost function and constraints in a short

amount of time, and, of course, the computation of hundreds of trajectories in the

time it used to take to find only one.

An intuitive manner to employ multiple trajectories is to build a controller around

an entire family of periodic orbits, instead of a single periodic orbit. For example, a

set of orbits, O, is designed where each orbit corresponds to a unique forward walking

speed v. Assume for each vmin ≤ v ≤ vmax there exists a state-feedback controller

u = Γv(x),

where x ∈ Rm is the robot’s state vector, that renders the associated orbit Ov locally

exponentially stable. Under the assumption that the commanded walking speed, v,

“varies sufficiently slowly,” the robot’s speed can be increased and decreased while

maintaining stability. In this way, speed transitions are achievable. The stability of

each orbit relies on the controller Γv and the stability of the transitions relies on v

changing slowly. In the control community, this methods goes under the name of

Gain Scheduling.

Building on the method of gain scheduling, this thesis proposes a novel policy for

transitioning among orbits that, empirically, in any case, achieves a larger stability

region. Suppose there exists a map

π : Rm → [vmin, vmax],

projecting the state to forward speed, such that, for x ∈ Ov, π(x) = v. Consider then

a controller given by

u = Γπ(x)(x).

10

Now, when the robot’s state is perturbed away from a given walking speed, the control

policy attempts to remap itself to one that is “near the new walking speed”. The

intuition for this policy resulting in a larger basin of attraction is that, whereas for

a given speed v, the controller Γv respects key physical constraints, when the robot

undergoes a larger perturbation, it typically fails (e.g., the robot falls) because Γv

solicits actions that are beyond the robot’s capabilities (or the capabilities of the

surface it is walking on). If the perturbed state is near a new periodic orbit for a

different walking speed, say v̄, then applying the controller Γv̄ is more likely to respect

the constraints and keep the robot upright.

An interesting analytical phenomenon is associated with the above control policy.

Suppose that the robot is walking in steady state at speed v, and in one step, a

perturbation moves it exactly to a new steady-state speed, v̄. Suppose further that

the disturbance now disappears. Then under the control policy u = Γπ(x)(x), the

robot will continue walking at the new speed, v̄. The closed-loop control system is

hence “neutrally stable”: the eigenvalues of the Poincaré map have a magnitude less

than one except for the eigenvalue associated with the forward speed, which is exactly

one. In other words, the closed-loop robot is acting like an integrator. An additional

proportional controller with hand-tuned gain which provides little control effort will

render the system locally exponentially stable. To extend the idea further, the thesis

also discusses a map to both walking speed and changes in terrain height, where the

robot will recenter its orbit to one associated with current speed and ground slope.

As an aside, it is noted that when doing the above work, the dissertation also ad-

dresses stepping in place, v = 0, as well as walking backwards, v < 0. Consequently,

gait design based on a monotonically increasing gait timing variable had to be aban-

doned in favor of a more general control policy based on time; see also [120, 100].

While this additional generality is quite important in its own right, exploring it now

would interrupt the flow of ideas. The discussion is therefore delayed to later in the

11

dissertation.

The next chapter in the story of multiple trajectories is to include transient tra-

jectories instead of only periodic trajectories. The motivation is to design a controller

that is more robust, with a faster settling time (i.e., no longer constrained to v chang-

ing slowly, as in gain scheduling), and also free of the hand-tuned component. The

trajectory optimization can be set up as a finite-time convergence problem over a

few steps. If the optimization were solvable in real-time, a model predictive control

(MPC) method would result. However, this would requirer to solve the optimization

at least a thousand times faster than current methods. Doing explicit MPC, that is,

computing control solutions offline and parameterizing them in some manner for on-

line use, encounters the curse of dimensionality. For a high-degree-of-freedom robot,

the required number of sampled solutions can easily exceed a trillion.

A naive solution is to randomly generate a few trajectories and use regression or

supervised learning to fit a mapping from state to action. The hope is to learn a

general feedback policy from sparse samples of control actions. This approach works

occasionally, but a more theoretically sound method is needed.

The main result of this thesis is a formal approach for using transient trajecto-

ries in controller design. A carefully selected surface of initial conditions is used to

generate transient trajectories and also a periodic orbit. The transient trajectories

are constructed to “fill out” an invariant surface in the state-time space in which

the periodic orbit is asymptotically stable. The surface also satisfies the assump-

tions for HZD, and thus, a feedback can be designed to stabilize the orbit in the

full-dimensional state space. The overall method is summarized in Figure 1.3.

1.4 Contributions

The work presented in this thesis contributes to the well-established framework

of HZD and greatly enhances it using Machine Learning tools.

12

1.4.1 Contribution to HZD

The weakness of the previous work on HZD was that it struggled to handle robots

with more than one degree of underactuation, which is very common in 3D robots.

Moreover, even for a planar robot, the theory presented in [126] for the HZD method

assumed a monotonically increasing phase variable that did not exist for stepping-in-

place gaits, where the speed is zero. In the first part of the thesis, the HZD work is

generalized to 3D walking without using a phase variable. Hence, it allows the robot

to walk forward, step in place, and walk backward. The work further combines a

set of periodic motions (including walking on slopes) to design a uniform controller

that both enlarges the region of attraction for each individual gait and allows smooth

transitions between periodic motions.

This thesis later designs motions that exploit the robot’s full capabilities while

respecting actuator limitations, ground contact forces, and terrain variability. To

overcome the limitation of MPC and the curse of dimensionality, the approach in

the thesis only samples on a thin set of the state space while it still asymptotically

stabilizes the desired walking motion in the full-order model of the robot.

1.4.2 Contribution to Machine Learning

Imitation learning, or teaching from demonstrations, requires good teaching ex-

amples to train the controller. The examples are in general time-costly to obtain. For

a high-dimensional system, the number of required examples can easily reach a tril-

lion because of exponential dependence on dimension. If a controller can be obtained

by imitation learning, there is still no proof of closed-loop stability.

This thesis only uses a small number of training examples to design a vector field

in a low dimensional surface on which the stability of a periodic orbit is guaranteed.

To stabilize the states that are “not on the surface”, a special structural feature of

mechanical models is invoked that allows HZD theory to be applied for the design of

13

a feedback that allows the periodic orbit to be asymptotically stable in the full state

space.

1.4.3 Broader Impacts

This thesis focuses on developing control design tools that have been successfully

implemented on the robots MARLO and Cassie in outdoor experiments. They have

also been applied to an exoskeleton that achieves hands-free dynamic walking [52]

and to an autonomous truck that adapts to road curvature and side winds [29]. Both

projects use the theoretical constructs of this thesis for their controller design. These

generalizations demonstrate that a broader class of nonlinear dynamical systems can

benefit from the work in this thesis.

1.5 Overview of Thesis

The remainder of this thesis is structured as follows: Chapter II reviews the

literature related to the thesis. Chapter III provides a description of the robot that will

be used in experiments and introduces two models for it: a 3D floating-based model

and a planar model. Chapter IV presents our first attempt to use multiple trajectories

(gait library) in the design of a controller for walking. Experimental work is presented

that uses the planar model to design a controller that is implementable on a 3D robot.

Chapter V uses a naive machine learning method to train a control policy. It presents

a gait library with richer features. augmenting periodic gaits for speeds and terrain

height with transient gaits. The formal use of machine learning is demonstrated

in Chapter VI. Mathematical theory and experimental work are provided. Finally,

Chapter VII summarizes the conclusions and discusses future directions.

14

CHAPTER II

Literature Overview

2.1 Reduced Order Model

Pendulum models are a ubiquitous means in the bipedal robotics literature to

reduce the computational burden of full-order models. The linear inverted pendulum

(LIP) model is especially prevalent for the design of flat-footed walking gaits based on

the Zero Moment Point criterion [59, 130, 84, 106, 61, 88, 90]. Numerical optimiza-

tion or closed-form computation is used to provide CoM trajectories and swing foot

positions for a reduced-order model. A low-level controller and inverse kinematics

then realize these on the full-order model or robot. Recent experimental uses of this

approach can be found in [93, 68, 41, 104].

The bottom line, however, is that with existing methods, when a pendulum model

is pre-specified as a template [42], the full-order model needs to compromise its achiev-

able motions to follow the template. Moreover, for each different task of the robot,

such as walking or running, the designer is faced with the selection of the “best” tar-

get model. In our approach, a low-dimensional model is generated from the full-order

model and the task. It is dynamically feasible and uses the full capability of the robot

to accomplish the task.

15

2.2 Online Optimization

One of the earliest applications of online optimization in bipedal walking was done

on a 5-degree-of-freedom simulation model of RABBIT [13, 14]; the computation time

for each sampling period was 37.08 s. More recently, Model Predictive Control (MPC)

was applied in the DARPA Virtual Robotics Challenge [40]. In that work, the compu-

tation time of the MPC solver was important, and a “real-time implementation” on

a full-order dynamic model of Atlas was achieved through the use of a novel physics

engine and a relaxed contact map. Experimental results on a humanoid robot HRP-2

were reported in [64]. The robot did not walk, but could balance while standing and

track a ball with its hands. MPC was applied to the full kinematics and centroidal

dynamics of Atlas in [69], and resulted in walking at 0.4 m/s. On a planar biped,

higher walking speeds from 0.43 m/s to 0.97 m/s are achieved in [54] using online

Hybrid Zero Dynamics (HZD) gait generation. The online optimization generates a

new controller based on the commanded speed and updates it at the beginning of the

next step. Average computational time is 0.4964 s.

Online computational burden has been reduced by using reduced-order models to

compute CoM trajectories and swing foot positions. A low-level controller and inverse

kinematics then realize these on the full-order model or robot. Recent experimental

uses of this approach can be found in [93, 68, 41]. Though a reduced-order model

may provide fundamental insight into the dynamics of a robot [42], with existing

implementations, it limits the achievable motions of the robot, and different tasks,

such as walking and running, typically require different models.

2.3 Gait Library

A means to get around the limitation of online computation is to pre-compute

a set of controllers and design a control policy to “stitch” them together. A policy

16

that switches the task (target walking speed, running vs. walking, stairs vs. flat

ground) is employed in [117, 74, 91]. Finite-state machines or motion primitives

are used in [86, 105, 73] for rough terrain and in [10] for reducing settling time.

Interpolation among gaits has been used to create a continuous family of gaits in

[39, 32, 82, 83]. Transient trajectories that approach the nominal periodic orbit were

added in [72, 33] to enlarge the basin of attraction. This thesis provides a formal

mathematical framework for the work in [33] and increases its applicability.

2.4 Supervised Learning and Reinforcement Learning

Imitation learning is a means to implement supervised learning for control. It uses

example trajectories from human motion or numerical optimization with the goal of

generalizing them to a controller that can imitate the trajectories. If these trajec-

tories and their interpolation cover the full state space, as in Nvidia’s end-to-end

self-driving car [17], then the system is stable. If the system is linearizable along the

trajectory, such as the Stanford helicopter [81, 1], iterative LQR will locally stabi-

lize the system, though model uncertainty has to be carefully calibrated. For a high

dimensional hybrid system, neither of these conditions is satisfied. To reduce the

number of required trajectories, reinforcement learning provides a gradient descent

method (policy gradient or Q-learning) to sample the trajectories in a particular di-

rection. The method has been verified on a Darwin robot for walking and turning in

[79]. To achieve walking experimentally and to mitigate the effects of model uncer-

tainty, the nominal trajectory associates a set of neighboring trajectories with various

model parameters. In this thesis, instead of training with neighbors, the trajectories

come from a wide range of parameters (e.g., speed from -0.8m/s to 0.8m/s). This

wide range potentially defines a large region of attraction. Other recent reinforcement

learning [71, 107, 35] methods claim to find control policies for legged robots, but they

have yet to demonstrate the ability to deal with model uncertainty, signal noise, and

17

actuator limitations.

2.5 Hybrid Zero Dynamics

A general discussion of Hybrid Zero Dynamics (HZD) has been presented in Chap-

ter I. In this section, we will highlight one particular aspect of HZD, namely, virtual

constraints, so that they can be used in subsequent chapters.

In [126], a monotonically increasing function of a robot’s generalized coordinates

q is first identified, often denoted by θ(q), and then a family of virtual constraints of

the form

y = h0(q)− hd(θ(q), α) (2.1)

are posited, where dim(y) = dim(u), the number of inputs, h0(q) represents quantities

to be regulated, such as knee angles and hip angles, and hd(θ(q), α) is a vector of

splines representing the to be determined desired evolution of h0(q). A parameter

optimization problem is posed to select the values of α (if they exist) so that y ≡ 0

along a periodic solution of the model, torque bounds are met, as are ground contact

forces. If the outputs y have vector relative degree two [125, pp. 119], the robot model

with outputs (2.1) is input-output linearizable, and hence a feedback controller can

be designed that drives the virtual constraints asymptotically to zero. If the surface

defined by the outputs being zero is invariant in the hybrid model of the robot, then

[125, Ch. 5] provides strong stability theorems for the closed-loop system.

18

CHAPTER III

Robot Model

3.1 Robot Description

The bipedal robot shown in Figure 3.1 is capable of 3D walking. Its total mass is

63 kg, with approximately 50% of the mass in the hips which house the four motor-

harmonic drive assemblies for leg motion in the sagittal plane, and 40% of the mass

in the torso, which houses the motors for the lateral motion of the legs and all of the

electronics. The legs are very light and are formed by a four-bar linkage. The robot is

approximately left-right symmetric. A more complete description is available in [97].

The configuration variables for the system can be defined as

q := (qz, qy, qx, q1R, q2R, q3R, q1L, q2L, q3L) ∈ R9.

The variables (qz, qy, qx) correspond to the world frame rotation angles: yaw, roll,

and pitch. On the other hand, the variables (q1R, q2R, q3R, q1L, q2L, q3L) refer to local

coordinates, shown in Fig. 3.2. These second set of coordinates are also actuated,

resulting in 6 degrees of actuation u ∈ R6 and 3 degrees of underactuation. It should

be noted that the springs are assumed to be sufficiently stiff and have been deliberately

neglected from the model. Also note that for control purposes, the leg coordinates

(q1, q2) are rewritten as leg angle and knee angle (qLA, qKA), where qLA := 1
2
(q1 + q2)

19

Figure 3.1: MARLO, an ATRIAS 2.1 bipedal robot. ATRIAS-series robots were
designed by Jonathan Hurst and the Dynamic Robotics Laboratory at Oregon State
University. (Photo: Evan Dougherty)

Figure 3.2: Biped coordinates. (a) Lateral plane. (b) Sagittal plane. (c) Equivalent
sagittal model.

20

and qKA := q2 − q1.

The actuators on the legs that drive the coordinates (q1, q2) each operate behind

a 50:1 harmonic drive. For those motors, the power amplifiers currently on the robot

allow the motors to generate torques up to 5 Nm as opposed to a maximum of 3 Nm,

as was the case in previous work [21].

The models used for controller design, analysis, and simulation were presented

in [97]. In particular, the 2D representation is obtained from the 3D model by con-

straining (qy, qz, q3L, q3R) to zero; see [97, Sec. 4.5].

3.2 Yaw Reduction via Foot Design

The robot has been previously operated with a selection of different feet designs

[22, 21]. In this thesis, the two-point-contact passive foot design of [38], shown in

Figure 3.3, has been adopted. The foot is composed of a revolute ankle that is

connected to the leg (see Figure 3.2(b)) and an arc that bridges two rubber pads.

The ankle is free to rotate along a shaft on the arc, freeing the robot’s pitch motion.

In addition, the narrowness of the foot allows the robot to freely roll as well.

As opposed to the “hoof” design used in [21], the 20 cm distance between the

rubber contacts in the current foot counters yaw motion. Furthermore, in contrast to

the prosthetic foot used in [22], which could initiate contact at the front or the back

of the foot, the current foot acts like a point contact.

Ideally, with this foot in single support, the robot has two degrees of underactua-

tion corresponding to pitch and roll. In practice, yaw is significantly reduced but not

eliminated, as discussed in Section 4.6.

21

Figure 3.3: A two-point-contact foot was introduced in [38]. Polyurethane rubber
pads on the toe and heel reduce yaw, while leaving roll and pitch about the leg end
free. The same foot is used in this thesis.

22

CHAPTER IV

Gait Library of Periodic Orbits

This chapter presents a gait library method to design a feedback controller. As an

aside, the work also takes a walking gait that has been designed and stabilized on the

basis of an underactuated planar or 2D bipedal model, and shows how to implement

it on the 3D underactuated bipedal robot MARLO. The lateral and sagittal planes

of the robot are feedback controlled in a decoupled manner, while rotation in the

transverse plane, hereafter referred to as yaw, is mechanically limited through narrow

passive feet of non-zero length [38].

A large portion of the bipedal robotics literature considers planar models because

they are simpler to understand, easier to analyze, and faster to simulate and optimize,

to name just a few reasons. The authors of these papers, members of this thesis’s lab

included, typically argue, imply or hope that insight or progress made on analysis and

control methods for planar models serves as a valuable stepping stone to successful

deployment on physical robots in 3D. The present chapter will both support this line

of thinking with analysis and experiments for at least one instance of a control design

method, and offer words of caution where limitations of this approach are perceived.

23

4.1 Background

Research on passive bipedal walkers began with planar models [43, 77, 78]. It has

been taken into the 3D realm in at least two ways. Kuo included roll dynamics with

lateral hip actuation on an otherwise passive walker [70]. He showed that the open-

loop system did not have stable limit cycles and then proposed a linear state variable

feedback for the lateral dynamics to recover asymptotic stability when walking down

shallow slopes. Collins et al. stabilized a truly passive walker in 3D through clever

mechanical design of the feet [27], which coupled roll and yaw motions of the robot,

though the domain of attraction of the limit cycle was impractically small. The

Cornell Ranger walked unsupported in 3D for 65 km [16]. Though the robot was

powered, it used very minimal actuation in the sagittal plane and achieved passive

(or mechanical) stabilization in the lateral plane through specially designed legs.

A number of Wisse’s robots have used passive means to achieve adequate lateral

stabilization so that an essentially sagittal-plane robot could move about unsupported

in 3D [26, 127, 128].

Moving to the other end of the actuation spectrum, fully actuated bipedal robots,

Ames et al. developed a rigorous geometric framework to decouple the lateral and

sagittal plane dynamics through functional Routhian Reduction1 [9, 110, 111]. With

this method, a controller derived from an appropriate planar model can provably cre-

ate and stabilize a limit cycle in a 3D walker with yaw constrained to zero. The result

was experimentally confirmed on NAO [8, 91], which achieved dynamically-stable for-

ward walking at 15 cm/s. Gregg showed analysis and simulations of Routhian Reduc-

tion when yaw was un-actuated and viscous friction at the foot provided “rotational

stabilization” [44, 46]. Kajita et al. first developed the linear inverted pendulum

(LIP) model in 2D and demonstrated experimentally its application to bipedal walk-

1This is related to reduction through conserved quantities, where, roughly speaking, the time
rate of change of the momentum map evolves as a function of a cyclic variable.

24

ing [60]. The 2D and 3D LIP models proved fundamental in Pratt et al.’s work on

capture point [67, 93]. Hosoda appears to implement decentralized sagittal and lat-

eral control strategies on the pneumatically powered 3D biped Pneuman [56], though

the control algorithm is only partially described.

In the middle of the actuation spectrum, hoppers were early examples of underac-

tuated legged robots [96, 95]. Raibert developed the fundamental control strategy for

Spring-Loaded Inverted Pendulum (SLIP) models and demonstrated that decoupled

and identical sagittal and lateral plane controllers were adequate for control of his

hoppers in 3D [96, 95]. Raibert’s original SLIP-based strategy, perhaps augmented

with foot placement [94, 92], has been extended to the family of robots created by

Boston Dynamics [19]. Hurst designed the ATRIAS 2.1 series2 of bipedal robots

to instantiate approximately a 3D SLIP model [102]. The robot’s legs are formed

through a four-bar mechanism and series compliance actuation is implemented with

leaf springs. The feet, when point-feet are not being used, are passive. Inspired by

Raibert’s SLIP-based controllers, Rezazadeh et al. designed decoupled lateral and

sagittal plane controllers for ATRIAS [104], and demonstrated the robot’s agility at

the 2015 DRC [37]. The yaw motion of the robot was regulated passively through

the feet shown in Fig. 3.3, which allow the leg end to act as a pivot with respect to

pitch and roll, while yaw is limited through rubber pads attached to a narrow forward

pointing bar that is approximately 20 cm in length.

4.2 Contributions and Organization of This Chapter

This chapter focuses on the process of designing a feedback controller on the basis

of a planar bipedal model, and achieving a stable walking gait, both indoors and

outdoors, on a 3D underactuated bipedal robot. Decoupled lateral and sagittal plane

controllers will be used. The controller design builds upon previous work in [104, 21].

2ATRIAS stands for Assume the Robot Is A Sphere, emphasizing a 3D pendulum model.

25

The primary contributions of the present chapter include:

• An orbit updating method is developed to continuously transition over a wide

range of walking speeds. Relevant recent references are [123, 21], which designed

gaits for a fixed forward speed.

• The sagittal controller design provides systematic and generalizable methods

that consider the dynamic model and respect physical constraints commonly

found in legged locomotion. The controller in [104, 37] was based on a SLIP

model and hand tuning of parameters, which is limited to a specific class of

robots.

• A means of unifying time- and phase-based controllers is presented.

The remainder of the chapter is organized as follows. A planar model of the

robot is used in Section 4.3 to design a family of stabilized gaits, at speeds vary-

ing from stepping in place to walking at 0.8 meter per second. A means to track a

commanded speed profile is introduced. A foot-placement controller to stabilize the

lateral dynamics during straight-line walking is given in Section 4.4. Section 4.5 pro-

vides model-based analysis and simulation of the lateral and sagittal plane controllers

on a 3D model of the robot. Section 4.6 reports on experiments with the controller,

both indoor and outdoors, while Sect. 4.7 discusses advantages and disadvantages of

the approach taken in the chapter.

4.3 2D Gait Design and Stabilization

This section uses the 2D model to design an overall feedback controller that can

walk in place, transition to, and maintain a desired walking speed, while employing

walking gaits that are suitable for the conditions of the current step and respect

mechanical constraints of the robot and environment. The basic walking controller is

26

Lateral Controller
(Sect. 4.4)

vlat

2D MARLO

Gait Library
(Sect. 4.3.2, 4.3.3)

LIP Model

Speed Regulator
(Sect. 4.3.3) +

+
-

+

Average
vsag

vref δLA,sw

hd

Gait Design
(Sect. 4.3.1)

α

s,τ

3D MARLO

Figure 4.1: Feedback diagram illustrating the control structure. The lateral controller
is independent of the sagittal plane variables, making it possible to reduce the 3D
model to 2D for sagittal controller design. Gait design implements virtual constraints
in continuous time. Gait library updates gait parameters step to step based on the
current speed, deliberately rendering the closed-loop system “approximately neutrally
stable”, analogous to a linear inverted pendulum (LIP). The speed regulator works
by adjusting swing foot leg angle.

based on [125] and the stepping in place controller is based on [104]. The optimization

code used to generate walking gaits is based on [58]. The contribution lies in the

methods for gait transition and speed regulation, which are achieved by inducing the

longitudinal velocity of the robot to approximately evolve step to step as a discrete-

time integrator, analogous to that of a linear inverted pendulum [60, 98, 99], and then

stabilizing the integrator with a proportional-derivative foot-placement algorithm.

The controller is illustrated in Fig. 4.1.

4.3.1 Gait Design Using Virtual Constraints

Virtual constraints are kinematic relations among the generalized coordinates of

the robot that are enforced asymptotically via continuous-time feedback control in-

stead of by external forces. One virtual constraint in the form of a spline is imposed

for each independent actuator in the planar model. Parameter optimization is used

to select the coefficients in the virtual constraints so as to create a periodic orbit

27

achieving a desired walking speed, while respecting physical constraints. Because the

planar model has one degree of underactuation, when using the method of virtual

constraints for controller design, local exponential stability of a periodic orbit of the

closed-loop system can be established on the basis of a scalar quantity that can be

directly included in the optimization process [125][pp. 130].

The collection of virtual constraints is expressed as an output vector

y = h0(q)− hd(s, α), (4.1)

to be asymptotically zeroed by a feedback controller. Here, h0(q) specifies the quan-

tities to be controlled

h0(q) =



qx

qstKA

qswLA

qswKA


, (4.2)

where st and sw designate the stance and swing legs, respectively, and hd(s, α) is a

4-vector of Beziér polynomials in the parameters α specifying the desired evolution

of the h0(q).

When the desired walking speed of the periodic orbit is non-zero, the gait phasing

variable, s, is defined as

s :=
θ − θinit

θfinal − θinit
∈ [0, 1] , (4.3)

where θ is the absolute stance leg angle defined in Fig. 3.2(c), θinit is the initial value of

θ each step, and θfinal is the final value of θ corresponding to the periodic orbit found

in optimization. When the desired velocity is zero, or below a few tenths of a meter

per second, time, normalized between zero and one, is used instead to parameterize

28

the gait:

τ :=
t

T
∈ [0, 1] , (4.4)

where T is the duration of a step. In this case,

y = h0(q)− hd(τ, α). (4.5)

In both cases, the optimization is performed as in [125] [Chp. 6.6.2], with the

constraints given in Table 4.1. Technically, when using (4.5), the model is augmented

with

ṫ = 1, (4.6)

and the zero dynamics are computed for the augmented model, and instead of inte-

grating the squared torque and normalizing by step length [123][eq. (46)], the cost is

taken as

J =

∫ T

0

||u(t)||22dt, (4.7)

with T fixed at 0.35 s [104]. Time-based gaits were designed for linear velocities in

the sagittal plane, vsag, for the range −0.4 ≤ vsag ≤ 0.2 in increments of 0.2 m/s, and

phase-based gaits were designed for 0.4 ≤ vsag ≤ 0.8, with the same increments.

4.3.2 Gait Library and Locally Stabilizing Feedback Controller

Four time-based gaits were designed for −0.4 ≤ vsag ≤ 0.2 in increments of 0.2 m/s

and four phase-based gaits were designed for 0.4 ≤ vsag ≤ 1.0 with the same incre-

29

Table 4.1: Optimization constraints

Motor Torque |u| < 5 Nm

Impact Impulse Fe < 20 Ns

Friction Cone µ < 0.4

Vertical Ground Reaction Force > 300 N

Mid-step Swing Foot Clearance > 0.15 m

ments, for a total of eight gaits3. For values of vsag between the discrete speeds, vsag,i,

1 ≤ i ≤ 8, define the Beziér coefficients by linear interpolation

ζ(vsag) =
vsag − vsag,i

vsag,i+1 − vsag,i

, 1 ≤ i ≤ 7 (4.8)

α(vsag) = (1− ζ(vsag))αi + ζ(vsag)αi+1. (4.9)

The collection of gait designs is denoted by

A = {α(vsag) | − 0.4 ≤ vsag ≤ 1.0}. (4.10)

On the 2D and 3D models, as well as the robot, the virtual constraints were imple-

mented as in [123, Eqn. (47)] and [49] with a PD controller

u = −H−1(Kpy +Kdẏ), (4.11)

where

H =



−1/2 −1/2 0 0

−1 1 0 0

0 0 1/2 1/2

0 0 −1 1


3The number of gaits is arbitrary. A finer grid did not change the results. A coarser grid was

not tried.

30

is a constant matrix converting from control coordinates in (4.2) to the actuated

coordinates. The gains Kp and Kd are the same for each gait.

4.3.3 Longitudinal Speed Regulation

The objective is to develop a speed controller with a broad basin of attraction.

Tracking of a desired walking speed from zero to 0.8 m/s will be obtained. The design

is done on the 2D model and then implemented on the 3D model.

Let vsag[k] be the average longitudinal speed of the robot at the middle of step k.

The parameters of the virtual constraints (4.1) or (4.5) are updated to

α[k] = α(vsag[k]). (4.12)

This has two important consequences:

1. The local sagittal gait controller being applied is the one optimized for the

current walking speed. Hence, the current controller respects the constraints

enumerated in Table 4.1. In particular, impact impulse, a key source of failure

in experiments, should respect the designed constraints.

2. The closed-loop system is now “approximately neutrally” stable with respect to

walking speed, similarly to an inverted pendulum or (IP) [60, 67, 93], or more

generally, what has been called a symmetric hybrid system (SHS) in [98, 99].

The equilibrium point of the closed-loop system now corresponds to vsag[k]. If

at the next step the robot’s speed is perturbed by δv, under the update policy

(4.12), the system’s new equilibrium point will correspond to vsag[k + 1] =

vsag[k] + δv. This is similar to an integrator or a LIP model which has an

eigenvalue exactly at one. Moreover, the eigenvalue of the closed-loop system

that has been deliberately placed near one is independent of the current walking

speed of the robot.

31

It is checked in Sec. 4.5 that this “re-centering” of the gait parameters about

the current walking speed leaves all of the eigenvalues but one strictly within the

unit circle. Hence, the advantages of the controllers designed above are maintained.

Moreover, because of the approximate neutral stability of longitudinal speed step-to-

step, a PD foot-placement controller can achieve speed regulation and tracking over

a wide range of speeds with a constant set of controller gains.

The longitudinal speed regulator functions very similarly to the lateral controller

in Sect. 4.4. Specifically, it sets a target offset in the swing leg angle, qLA := 1
2
(q1+q2),

for the non-stance leg, via

δswLA,tgt[k] =Kp

(
vsag[k]− vref

sag

)
+Kd (vsag[k]− vsag[k − 1]) , (4.13)

where vref
sag is the reference speed. The offset can be implemented in many ways.

When using virtual constraints, it can simply be added to the last value of the Beziér

coefficients for the swing leg angle. Detailed virtual constraint based implementation

could be seen in [91, 124].

4.3.4 Unifying The Timing Variable or Phase Used for Control

In (4.5), the links of the robot and its posture are being coordinated on the

basis of time, while in (4.1) they are being coordinated with respect to an internal

phase variable. Time- and phase-based parameterizations have relative advantages

in different ranges of speed. When the robot is stepping in place for example, the

phase variable (4.3) is not even well defined because θinit and θfinal, the initial and

final values of the mechanical phase variable, are approximately equal. In such a case,

time is a more appropriate variable for synchronizing leg motion. When the robot

is moving slowly, step length is very short and θfinal − θinit is only a few degrees,

32

which may introduce too much sensitivity into the gait parametrization. On the

other hand, extensive experimentation on Rabbit, Ernie [75], MABEL, and Amber

[6] has shown the robustness of the phase-based implementations when walking at

speeds exceeding several tenths of a meter per second. Gregg et al. are compiling

evidence that human response to disturbances may actually better correlate with a

mechanical phase variable than to time [47]. Kong et al. show that iterative learning

control (ILC) performs better when trajectories are parameterized using phase rather

than time [66].

The following is a means to combine time- and phase-based parameters into a

single quantity. Let T be a nominal period of a gait and define

τ̇ =
1

T
+
L

T
[s(q)− τ] , τ+ = 0 (4.14)

where s(q) is computed as in (4.3) and L ≥ 0 is a gain to be chosen. This can

be viewed as a Luenberger observer for the phase. When L = 0, (4.14) reduces to

(4.4), and a singular perturbation argument shows that as L → ∞, (4.14) is purely

phase-based. Here it is selected as

L(vsag) =


0 |vsag| < 0.4

7vsag otherwise

, (4.15)

which is sufficient to regard τ as “approximately” purely phase-based when vsag ≥

0.7 m/s. Note that the feedforward-term,
1

T
remains when L > 0, and the value used

here is T = 0.35.

33

4.4 Lateral Control for Straight-line Walking

While the design of the lateral controller is not a focus of this work, we provide

in this section a lateral foot-placement strategy, based on [104], that is sufficient to

extend 2D controllers to 3D for the robot MARLO.

On a step-to-step basis, the objective is to obtain an asymptotically stable rela-

tionship

vlat[k + 1] = −k1vlat[k]− k0vlat[k − 1], (4.16)

where k is the current step index, vlat[`] is average lateral velocity at step `, and k1, k0

are gains such that the roots of λ2 + k1λ + k0 are in the unit circle. Foot placement

is a common means of regulating velocity over the ensuing step through selection of

the ground contact point of the inverted pendulum formed by the stance leg end and

the center of mass. A strategy based on the average lateral velocity has the benefit of

working independently of sagittal control, potentially enabling a 3D walking platform

to function for a set of 2D controllers, as illustrated in Fig. 4.1.

Following [104, Eqn. (5)], lateral foot placement is regulated by the target swing

hip angle by

qsw3,tgt[k] =q3,nom +Kp

(
vlat[k]− vref

lat

)
+Kd (vlat[k]− vlat[k − 1]) , (4.17)

where q3,nom is the nominal hip angle. The gains Kp and Kd are tuned by hand.

Because it is the contact point where the foot is placed that matters, as Kuo points

out in [70], any continuous-time controller that achieves qsw3,tgt[k] before ground contact

should be sufficient to stabilize the lateral dynamics. For normal forward walking

and stepping in place, vref
lat = 0, although a non-zero reference velocity can be used to

achieve sideways walking.

34

Torso roll angle stabilization is achieved using stance hip actuation as explained

in [104, Eqn. (10)].

Table 4.2: Largest eigenvalue of various controllers

v (m/s) 0.3 0.5 0.7

2D VC 0.93 0.94 0.91

2D VC-SR 0.76 0.73 0.64

3D L-VC 0.91 1.12 1.14

3D L-VC-SR 0.86 0.82 0.81

Time (s)
0 2 4 6 8 10 12

v sa
g
 (

m
/s

)

0.2

0.3

0.4

0.5

3D L-VC
3D L-VC-SR

Failure

Figure 4.2: Virtual constraints are designed for 0.5 m/s 2D walking and verified in 3D
with the lateral controller. The controller (3D L-VC) slows down and fails, whereas
the speed regulator (3D L-VC-SR) maintains the desired speed.

4.5 Model-based Analysis and Simulation

This section provides analytical and simulation support for the various components

of the overall controller presented in Sects. 4.3 and 4.4.

4.5.1 Local Exponential Stability in 2D and 3D

The Poincaré map was used to check the existence of fixed points (i.e., periodic

orbits) and to evaluate their stability. Table 4.2 first shows that the interpolated

virtual constraint controllers (4.8), labeled (2D VC), at 0.3, 0.5 and 0.7 m/s induce

35

Table 4.3: Three largest eigenvalues when α[k] is updated

v (m/s) 0.3 0.5 0.7

1.04 0.98 1.09

2D VC-U 0.26 0.31 0.39

0.19 0.20 0.25

0.34 0.5 1 1.8 m/s

3D L-VC-SR

3D L-VC-U-SR

Extrapolated gait

Figure 4.3: Updating α[k] enhances ability to reject velocity perturbations. The
Figure is a cartoon of a basin of attraction; it is not to scale.

local exponential stable fixed points in the 2D model, and that including the sagittal

plane step length regulator (4.13), labeled (2D VC-SR), reduces the magnitude of

the largest e-value. When implemented on the 3D model in combination with the

lateral controller (4.17), stability is not always maintained for the virtual constraint

controller, labeled (3D L-VC), as shown in row 3 of Table 4.2, while the inclusion

of the step-length regulator achieves local exponential stability; see (3D L-VC-SR)

and row 4 of Table 4.2. It is important to note that in this analysis, the parameters

in the virtual constraints are being held constant step to step; they are not being

updated as in (4.12).

Simulations of the (3D L-VC) and (3D L-VC-SR) controllers for 0.5 m/s are

shown in Fig. 4.2. Without explicit speed regulation, the robot with (3D L-VC)

slows to a point that it cannot complete a step and falls.

36

Time (s)
0 2 4 6 8 10

v sa
g
 (

m
/s

)

0

0.5

1

1.5

2

3D L-VC-SR
3D L-VC-U-SR

Figure 4.4: Two controllers recovering to nominal speed 0.5 m/s from respective
largest speed perturbation.

0 5 10 15 20

Im
pa

ct
 Im

pu
ls

e
(N

s)

10

20

30

40

50

3D VC-SR
3D Update-SR
Optimization Bound

Steps
0 5 10 15 20

C
os

t

0

500

1000

3D VC-SR
3D Update-SR

Figure 4.5: (Top) Evolution of impact impulse optimization constraint with respect to
step number when parameter updates are used versus not used. (Bottom) Associated
cost function on the torques. Both simulations are initialized at 1 m/s and settle to
the nominal speed of 0.5 m/s over 20 steps. Parameter updates significantly reduce
the impulse during ground contact and the optimization cost (4.7).

37

4.5.2 Parameter Update based on Longitudinal Speed

Table. 4.3 illustrates the “approximate neutral” stability of the planar controller,

labeled (2D VC-U), when the gait parameters are updated step to step on the basis

of longitudinal speed (4.12). It is seen that the largest eigenvalue is near one where

others are significantly less than one.

By updating the controller parameters, the gait design is “re-centered” at the

current operating point of the robot. Some of the benefits of performing the parameter

updates are now illustrated. Figure 4.3 shows improved ability to handle longitudinal

speed perturbations in 3D. When the controller parameters were initialized at vsag =

0.5 m/s and held constant, the 3D L-VC-SR controller can recover from an initial

velocity of 1.0 m/s, but fails for larger speeds. On the other hand, when controller

parameters were initialized at vsag = 0.5 m/s and updated step to step, 3D L-VC-

U-SR, the simulated closed-loop could recover from an initial velocity of 1.8 m/s,

considerably beyond the design range of the controller library4. A plot of speed versus

time is shown in Fig. 4.4 over 20 steps of the gait.

A more important benefit is illustrated in Fig. 4.5, namely the reduction of the

swing leg impact impulse5 and a reduction in the cost (4.7). Very soon after the first

parameter update takes place, the impact impulse constraint given in Table 4.1 is

respected. On the other hand, without parameter updates, is only asymptotically

respected.

4.6 Experimental Results

This section illustrates several of the controllers on the physical 3D robot. Videos

are available at Extension 2 and 3.

4Linear extrapolation was used to define the controller parameters.
5Related to swing leg vertical velocity at impact; see [87] for its correct definition.

38

197 198 199 200 201 202 203

R
ol

l,
P

itc
h

(d
eg

)

-2

0

2 Roll
Pitch

197 198 199 200 201 202 203

Le
g

A
ng

le
 (

de
g)

170

180

190

200

Right
Left

Time (s)
197 198 199 200 201 202 203

K
ne

e
A

ng
le

 (
de

g)

20

40

60

80

Right
Left

Figure 4.6: Configuration variables changed during walking around 0.8 m/s. Roll was
controlled to zero by lateral controller, while other variables were virtually constrained
by sagittal controller.

4.6.1 Partial Controller

The controller (3D L-VC) was executed five times on the robot, which was ini-

tialized at 0 m/s (i.e., stepping in place), speed was increased to 0.4 m/s, and then

the controller parameters were frozen at vsag = 0.6 m/s. It fell quickly on four of

the trials and achieved ten additional steps on one trial. This seems to support the

analysis in Table. 4.2.

When the speed regulator is added, the controller (3D L-VC-SR) produced

consistent outcomes, with the robot always walking the full distance of the laboratory,

approximately 10 m.

39

Time (s)
190 195 200 205

v sa
g
 (

m
/s

)

0

0.2

0.4

0.6

0.8
v

ref
v

exp

Figure 4.7: Gait transition under complete controller. The robot transitions from
zero to 0.8 m/s following the reference speed and then returns to stepping in place.

206 206.5 207 207.5

Le
g

T
or

qu
es

 (
N

m
)

-5

0

5
u1R
u2R
u1L
u2L

Time (s)
206 206.5 207 207.5

H
ip

 T
or

qu
es

 (
N

m
)

-2

-1

0

1
u3R
u3L

Figure 4.8: Torque output of actuators on the motor side during stepping in place.
The leg motors are connected with a 50:1 gear box while the hip’s gear ratio is 26.7:1

40

Time (s)
190 195 200 205

Y
aw

 (
de

g)

-90

-85

-80

-75

-70

-65

-60

-55

-50

walk-in-place

Figure 4.9: Although the two-point-contact feet reduce the yaw motion, it is not fully
eliminated. Yaw angle drifted about 20◦ while stepping in place.

4.6.2 Complete Controller of Figure 4.1

The complete virtual constraint controller with updated gait parameters and speed

regulator (3D L-VC-U-SR) is implemented on indoor and outdoor experiments. The

controller achieves a top walking speed of approximately 0.8 m/s 2. The longest walk

in a single experiment is 260 meters with ±7 degrees of slope variation 3. The posture

of the robot, as reflected in the pitch and role angles of the torso, are consistently

maintained as shown in Fig 4.6; in addition, it was consistent performance across

multiple experiments. Compared to aforementioned partial controllers, the complete

controller is able to transit seamlessly from 0 m/s to a target speed and then return

to stepping in place as shown in Fig. 4.7. To achieve this transition, 3D L-VC-

U-SR uses (4.14) and (4.15) to coordinate time- and phase-based control. Low

speed walking uses time-based synchronization while walking speeds above 0.4 m/s

transition to phase-based synchronization.

41

3D L-VC-U-SR is able to walk in place with lower torques than previous work

with ATRIAS in [104] (see Fig. 4.8). Lower torques are the result of knees that

are straighter and more rigid like the robot Rabbit [23], a torque-based optimization

criterion (4.7), and constraints to avoid saturation (Table. 4.1).

Fig. 4.9 shows yaw angle over a transition experiment. The feet successfully

reduced yaw compared with previous work with ATRIAS in [21][Fig. 3], but yaw is

not completely constrained. During stepping in place, yaw drifts 20◦.

4.7 Discussion and Conclusions

This chapter approached 3D walking by designing separate control modules for

lateral stabilization, sagittal gait design, and longitudinal speed regulation, as shown

in Fig. 4.1. An advantage of this approach is that it gives a hierarchial view of con-

trol design. The lateral controller reduced the 3D model to 2D. Advanced control

methods could be used efficiently in 2D to design a finite set of stabilizing controllers

for a range of fixed walking speeds. In particular, the sagittal plane controllers were

designed using a complete mechanical model of the robot, and this allowed important

physical restrictions, such as actuator bounds, friction cone, contact impulse, and foot

clearance to be directly addressed without hand-tuning on the robot. Interpolation

and “re-centering” of the sagittal plane controllers allowed the construction of a con-

tinuous gait library of stabilizing controllers. When combined with a linear PD speed

regulator, this allowed the tracking of longitudinal speed commands, while continuing

to respect important physical constraints even when walking speed varied.

This hierarchical method was shown to be effective on a physical robot by conduct-

ing experiments both in the laboratory and outdoors. The robot could be initialized

to walk in place, and then commanded to increase speed to 0.8 m/s, followed by a

reduction in speed to stepping in place. For these experiments, yaw (or turning) was

ignored in the control design. It was assumed instead that a yaw rate of approximately

42

zero would be imposed passively through the foot design.

A clear advantage of using the full 2D model, versus replacing the robot imme-

diately with one of the many pendulum models [60, 96, 95] when doing controller

design, was that optimization could be employed, which provided a straightforward

means to address the aforementioned physical constraints. A clear drawback of taking

a decoupled perspective on the three primary planes of motion, sagittal, lateral, and

transversal, is that it limits the type of gaits that can be achieved to those that do

not “excite” inherent coupling in the dynamics. Agile motions such as rapid turning

[121, 129] or dodging an obstacle clearly require using the full 3D model. For underac-

tuated robots, however, even walking slowly in 3D is challenging because the periods

of oscillation in the sagittal and lateral planes must be synchronized [99, 98, 60].

Counting on a physical means for yaw “stabilization” is a leap of faith at best,

and a not uncommon means of failure in some of the experiments done on the robot

used in this chapter. Active steering is needed and will be added soon.

When stepping in place, the mechanical phase variable used in previous work [125]

was not a viable option, so time was used [100, 104]. A Luenberger-like estimator was

used to combine time-based and phase-based gait controllers in a seamless manner.

In the following work, we will only use the time-based gait controller for simplicity

and generality reasons.

43

CHAPTER V

Intuitive Method of Machine Learning Control

This chapter proposes an offline approach to design an explicit model-based feed-

back control policy using ideas from parameter optimization and Machine Learning

(ML). The control design process begins by using parameter optimization to generate

both training and testing sets of controllers that induce walking gaits in a bipedal

robot model. Virtual constraints provide a convenient parametrization of the feed-

back control laws and corresponding gaits [125]. The training and testing sets include

locally exponentially stable periodic walking gaits at various speeds, both forward and

backward, and for various constant ground slopes, flat ground, uphill and downhill.

They also include aperiodic gaits that transition among a subset of the periodic gaits

in a fixed number of steps.

Supervised learning is then used to train a state-variable feedback control policy.

The feature space for the supervised learning includes parameters from a reduced-

order biped model (e.g., initial stance leg angle and average speed), exogenous signals

(target walking speed is used here, but turning angle could be used as well) and per-

ception input (e.g., terrain height or slope). This policy is compared with a testing

set of optimal gaits in simulation and is subsequently evaluated on the 3D underactu-

ated robot MARLO. In a simulation of stepping in place, the learned policy takes at

most one more step than an optimal gait to recover from initial velocity and position

44

errors. In experiments, the learned policy allows MARLO to recover from ≈ 200 N

kick. It also enables MARLO to walk down a 22 deg slope and walk on the Wave

Field, which presents sinusoidally varying ground height (see Fig. 5.1).

5.1 Control Policy Overview

The control policy proposed here relates a vector of features to a set of control

parameters. This policy will be constructed using supervised learning techniques from

a carefully designed training dataset. The process includes:

1. choosing features and control parameters;

2. generating the datasets through optimization;

3. fitting the control policy using a training set with supervised learning algo-
rithms; and

4. assessing the policy with a testing set and simulations.

Figure 5.1: Bipedal robot MARLO walked on the University of Michigan’s Wave
Field, a sinusoidally varying grass terrain. Photo was taken by Roger Hart.

45

Figure 5.2: Control Policy Design and Implementation

The steps are specified in the following sections for individual policies. Figure 5.2

shows an overview of the policy design process.

5.1.1 Control Policy

A control policy π : Φ → A is a function that maps a feature vector φ ∈ Φ to a

vector of control parameters α ∈ A. In this chapter, α is a set of Bézier coefficients

inducing a desired trajectory, qd(t). A low-level feedback controller is then used to

minimize the tracking error. The specifics of the feedback controller derivation are

given in previous work [32]. The focus of this chapter is to build the control policy.

5.1.2 Dataset Generation Through Optimization

Parameter optimization [125, Sec. 6.3] is used to build a dataset for supervised

learning. Each optimization provides a single dynamically feasible path qd(t) over one

or more steps. α and φ are extracted at each step. Here, the dataset is constructed

from as few as seven to as many as a hundred optimizations, selected to represent the

small number of behaviors that the control policy is to learn. All optimizations are

46

Table 5.1: Optimization constraints

Motor Toque |u| < 5 Nm

Step Duration T = 0.35 s

Friction Cone µ < 0.6

Impact Impulse Fe < 15 Ns

Vertical Ground Reaction Force > 300 N

Mid-step Swing Foot Clearance > 0.18 m

set up to respect constraints given in Table 5.1 and to minimize the sum of squared

torques. Other constraints implemented depend on the nature of the control policy

that is to be learned.

5.1.3 Machine Learning Methods

Once the dataset has been generated, various machine learning techniques can

be used to regress the control policy π(·). This section compares three fitting meth-

ods: linear interpolation (LI), support vector machines (SVMs), and neural networks

(NNs). The three methods show similar performance in fitting quality and speed

tracking. Detailed discussion is available in the simulation section.

5.1.3.1 Linear Interpolation

When the feature φ is a scalar, linear interpolation can be used as

πLI(φ) = (1− ζ(φ))αi + ζ(φ)αi+1 (5.1)

ζ(φ) =
φ− φi
φi+1 − φi

, (5.2)

where φi and φi+1 are features in the training set between the input φ. It can be

extended to bilinear interpolation (BiLI) if the feature has two variables. Since the

method only uses local data, it is good to fit an evenly distributed data set.

47

5.1.3.2 Support Vector Machines

Support vector machines (SVMs) are a common ML technique that can be used for

function regression (also known as SVR). The SVM algorithm can be used to regress a

nonlinear function by applying the “kernel trick” [18]. In this chapter, the regression

was learned using the LIBSVM toolbox with the radial basis function kernel.

5.1.3.3 Neural Networks

Neural Networks (NNs) are an increasingly used method for nonlinear function

approximation. They rely on a series of connected “neurons”, usually sigmoid func-

tions, and a set of weights that can be learned [34]. In this chapter, the learning is

implemented using MATLAB’s Neural Network Toolbox with 5 hidden layers. The

networks are trained using the default Levenberg-Marquardt algorithm.

5.1.4 Training and Testing

The training and testing datasets are built separately. For each of the learning

algorithms listed, a control policy π(·) is learned using only the training dataset. Each

resulting control policy is assessed using the separate testing dataset. The coefficient

of determination (R2) and the root mean square error (RMSE) provide one way to

evaluate how closely the output of the control policy matches the test data. The

utility of the control policy is further verified by running simulations.

5.2 Speed Regulation Policy

Chapter IV designed a gait library for speed tracking via optimization. The dis-

crete set of gaits was then interpolated to produce a continuously defined feedback

controller. Even when the discrete gaits were (locally) exponentially stable, the re-

sulting closed-loop system was at best neutrally stable. Subsequently, exponential

48

stability was recovered with a supplemental foot placement policy, which allowed

MARLO to walk forwards and backwards at a variety of speeds. This section refor-

mulates the design procedure as a supervised learning problem.

5.2.1 Dataset Generation

To generate the training dataset, 13 separate parameter optimizations are run.

Each optimization generates a periodic gait at different sagittal velocities vavg. The

set of gaits is denoted by

Atrain = {α(vavg) | − 1.2 ≤ vavg ≤ 1.2}, (5.3)

where vavg increases in steps of 0.2 m/s. A similar testing set of gaits Atest is designed

for the same speed range but at a finer grid of 0.05 m/s. The optimization is set up

to respect constraints given in Table 4.1 and to minimize the sum of squared torques.

Additional constraints for periodicity and the average velocity are also included.

5.2.2 Feature Selection

The only difference among the optimizations is the average velocity. Therefore, a

logical feature choice is φ = {vavg}.

5.2.3 Training Methods

Since φ is a scalar quantity, linear interpolation (LI) can be used to fit the control

policy π(·). This is what was used in [32]. For comparison, support vector machines

(SVMs) and neural networks (NNs) are also used.

5.2.4 Stability Remark

When SVM and NNs are used in place of LI, the closed-loop system is also at best

neutrally stable. As in [32], this is checked with a Poincaré map.

49

Figure 5.3: A graph of three-step optimization. Given xi and xj, the optimization
will find a path xi → xi→ja → xi→jb → xj if exists. Blue dots are specified in the
optimization while green dots and path are generated from the optimization.

5.3 Transition Gait Policy

The speed regulation policy discussed in the last section “teaches” MARLO how

to walk along a steady state, periodic gait. This section proposes an optimization

setup to add the transitions between various periodic gaits into the learning process.

5.3.1 Dataset Generation

Let xi := [q, q̇]>i and xj := [q, q̇]>j be two points in the robot’s state space corre-

sponding to double support. Denote by αxi→xj the control parameters, if they exist,

that effect a transition in one step from xi to xj. When xi = xj, we have a periodic

gait, and we also denote the control parameters by α(viavg), as one of the element in

(5.3), inducing a periodic gait at velocity vavg. The corresponding state is denoted by

x∗(viavg).

To handle a wide range of transitions, we also consider the case where two points

in the state space cannot be joined in one step. Specifically, given two points xi and

50

xj, we also design controllers that effect transitions in three steps1. Optimization is

used to compute two intermediate states xi→ja and xi→jb , and corresponding control

parameters, such that, the robot transitions are

xi → xi→ja → xi→jb → xj. (5.4)

In the language of capture points [12, 94] , xi above is in the 3-step viable-capture

basin of xj. The 3-step transition gaits are computed for

xj = x∗(vjavg), for vjavg ∈ {−0.4,−0.2, 0, 0.2, 0.4} (5.5)

xi ∈ {x∗(viavg) | − 0.6 + vjavg ≤ viavg ≤ 0.6 + vjavg}. (5.6)

When viavg = vjavg, it is noted that αxi→xj = α(viavg), the control parameters for the

periodic gait at speed viavg, given in (5.3). To be clear, each 3-step optimization

provides three controllers that are included in the training set.

In this initial study on supervised learning, the testing set focuses on stepping in

place. The three-step optimization process as in (5.4) is used to compute controllers

given the terminal point xj = x∗(0) (stepping in place) and initial points xi that

has perturbations of stepping in place. These perturbations correspond to the robot

being in double support, in which the support leg angle θ is perturbed ±15 deg, the

support leg angle rate θ̇ is perturbed ±34 deg /s, and the swing leg angle rate q̇sw
LA is

perturbed ±114 deg /s, all independently.

5.3.2 Feature Selection

In the speed regulation policy design, the only changed optimization constraint is

the average speed. This led to a logical choice of the feature being vavg. In contrast,

1The number three is motivated by [131]. In case the transition can be done in two steps,
xi→j
b = xj ; similarly for one step.

51

when optimizing transition gaits, all of the states change. The feature vector could

potentially use the full states, but this may require a large training dataset. Instead,

a small set of features φ = {vavg, θinit, vtgt} is proposed. Inspired from the inverted

pendulum model, these features capture the two crucial underactuated degrees of

freedom as well as the target velocity. Kernel principal component analysis (PCA)

may be used in the future to find a low dimensional representation of the state space

to extract features from.

5.3.3 Training Methods

The transition control policies are trained2 using SVMs and NNs. These policies

are assessed by simulating from the initial states xi in the testing dataset. The

simulation results are compared against the optimized gaits in the testing dataset.

5.3.4 Stability Remark

For periodic gaits, current and desired speed are identical. For transitioning among

periodic gaits, or when rejecting a perturbation, these two speeds are different which

is why we design aperiodic gaits. With the richer feature set {vavg, vtgt}, and with

the richer training set, {periodic, aperiodic}, Poincaré analysis verifies that (local)

exponential stability is recovered.

5.4 Terrain Adaption Policy

This section adds periodic gaits for different terrain heights or slopes to design

a terrain adaption policy. It will enhance the speed tracking performance on sloped

terrain and robustness over uneven terrain.

2Because we are fitting a small set of features to the data when training the policy, we are not
using interpolation. SVMs and NNs are performing regression on the data.

52

Since the MARLO does not have any vision sensors to foresee the terrain, propri-

oceptive sensors are used to measure the positions of the feet in the double support

phase to estimate the terrain profiles.

5.4.1 Dataset Generation

To generate the datasets, a 2D grid of gaits is optimized. The training dataset

includes gaits where vavg ranges [-1.2, 1.2] m/s in 0.2 m/s steps, and h ranges [-0.1,

0.1] m in 0.05 m steps. The testing dataset is designed on the same range but at a

finer grid, 0.1 m/s increments for vavg and 0.02 m increments for h.

5.4.2 Feature Selection

5.4.2.1 Sagittal Terrain Adaption

Since the dataset was generated using varying velocities and step heights, the

empirical choice for the feature vector is φ = {vavg, h}. The controller is designed

using the planar model, thus h is measured as sagittal terrain height.

5.4.2.2 Lateral Terrain Adaption

In the 3D model, the feet height and side width in the double support phase can

be also used to estimate the lateral terrain slope βlateral. This chapter shows the

preliminary use of this feature in the experiments Section 5.6.3. More sophisticated

terrain profile estimation could be used, though the design of control policy remains

the same.

5.4.3 Training Methods

Since the dataset was constructed uniformly on a grid, a bilinear interpolation

can be implemented. More advanced regression methods (SVMs, NNs, etc.) could be

used, but the authors did not pursue them for this control policy. However, a unified

53

control policy, which is described in Section 5.6.4, is fit using a neural network. It

combines terrain adaption with speed regulation and transition gaits

5.5 Simulation

The control policies are evaluated in two ways: comparing the control parameters

with the testing data, and assessing the control performance in simulated planar

walking.

5.5.1 Speed Regulation Policy

The speed regulation policy is generated by three regression methods: πLI , πSVM

and πNN . The elements in α show a strong correlation with the testing data in

Fig. 5.4, where the lowest coefficient of determination R2 is 0.9 and the biggest root

mean square error (RMSE) is 0.5 deg. These 30 elements are 5 sets of Bézier coefficient

that induce qd(t). The biggest RMSE error of qd(t) between the control policies and

optimization is 0.4 deg, where the position tracking error in experiments is 5 deg on

average. The control policies are subsequently evaluated by tracking a target velocity

in Fig. 5.5. The three methods give consistent results indicating that the supervised

learning approach proposed in this chapter is not limited to a certain method. Small

speed tracking error comes from a low-level feedback controller.

5.5.2 Transition Policy

The fitting quality of the transition policy is deteriorated because the features are

extracted from a reduced order model in Section 5.3.2, where the biggest RMSE is

8 deg. More discussion will be included in the next chapter. The control policies

are analyzed by simulating from the three largest initial state perturbations in the

testing dataset {δθ = −15 deg, δθ̇ = 34 deg /s, δq̇swLA = −114 deg /s}, shown in

Fig. 5.6. The three-step optimization gives optimal controllers that converge within

54

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.85

0.9

0.95

1

R
2

Linear Interp

SVMs

NNs

Elements in Control Parameter α
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.1

0.2

0.3

0.4

0.5

RMSE (deg)

Figure 5.4: Fitting quality of each element in control parameters α of the Beziér
polynomial. Because there are five joint trajectories being fitted (torso, stance leg,
stance knee, swing leg and swing knee), and each trajectory uses a fifth order Beziér
polynomial (i.e., 6 coefficient), there are 5x6 = 30 elements.

three steps. The control policy learned from the training set takes at most one more

step to recover.

The transition policy is compared with the speed regulation policy through a

perturbation rejection test. The push force is 200 N in one step (0.35 s), shown in

Fig. 5.7. The transition policy converges back to the target velocity faster and with

less overshoot.

5.5.3 Terrain Policy

Since the training set includes gaits that function correctly for sloped ground,

the terrain adaption policy improves speed regulation on both uphill and downhill

walking. In Fig. 5.8, both the speed regulation policy and terrain adaption policy

55

Time (s)
0 2 4 6 8 10 12

A
v
g
S
p
ee
d
p
er

S
te
p
(m

/s
)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Linear Interp

SVMs

NNs

Target Velocity

Figure 5.5: All three fitting methods show consistent speed tracking performance
indicating the fitting method is not limited to any specific one.

Steps (n)
0 1 2 3 4 5

δ
θ
(d
eg
)

-30

-20

-10

0

10

20

30

(a)

Steps (n)
0 1 2 3 4 5

δ
θ̇
(d
eg
/s
)

-60

-40

-20

0

20

40

60

(b)

Steps (n)
0 1 2 3 4 5

δ
q̇
s
w

L
A
(d
eg
/s
)

-150

-100

-50

0

50

100

150

Optimization

SVMs

NNs

(c)

Figure 5.6: (a) has 15 deg initial error on θ. (b) has 34 deg /s error on θ̇. (c) has
114 deg /s error on qswLA. The transition policy takes at most one more step than the
gaits from optimization to recover from these initial errors.

are applied to walking downhill and uphill. The 10 degree slope is the steepest

that the speed regulation policy can handle, though it gains considerable speed going

downhill. In contrast, the terrain adaption policy maintains roughly the same velocity

throughout.

56

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
v
g
S
p
ee
d
p
er

S
te
p
(m

/s
)

-0.5

0

0.5

1

1.5

2

Speed Policy (LI)

Transition Policy (NNs)

Target Velocity

push 200N

Figure 5.7: After subjecting to a 200N push in one step (0.35 s), the transition policy
has shorter settling time and smaller overshoot than the speed policy.

Forward Distance (m)
0 2 4 6 8 10 12 14 16 18 20

A
v
g
S
p
ee
d
p
er

S
te
p
(m

/s
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Speed Policy (LI)

Terrain Policy (BiLI)

Target Velocity

Flat Downhill Uphill Flat

Figure 5.8: The terrain adaption policy chooses a controller based on the current
velocity and terrain height, which gives a more consistent speed tracking result than
the speed regulation policy. The slope is ±10 deg.

5.6 Experiments and Discussion

For simplicity, the supervised learning policies presented in Sections 5.1 - 5.5

concern the planar model of MARLO. The control polices are augmented with a lateral

57

Table 5.2: Experiment Videos

Number Gait Policy Experiment Link

1 Speed Regulation [32] A Long Walk https://youtu.be/eSllkIptlK0

2 Speed Regulation [32] Light Push https://youtu.be/iOltRR0RqiM

3 Transition Kick MARLO https://youtu.be/YXJQJtcXX4E

4 Sagittal Terrain Walking Down 22 Degree Slope https://youtu.be/gHpXTmyG4mE

5 Sagittal Terrain Random Terrain https://youtu.be/iW9SWPQmYh0

6 Sagittal Terrain Wave Field (First Attempt) https://youtu.be/YErF0cyPI-g

7 Lateral Terrain Practice for the Wave Field https://youtu.be/vEQa1e7lzjQ

8 Lateral Terrain Wave Field (Second Attempt) https://youtu.be/TDFz_0Avc2A

9 A Unified Policy Walking https://youtu.be/xPHMgFiSeu0

10 A Unified Policy Pushing, Random Terrain https://youtu.be/VovWti_wKRU

11 A Unified Policy Walking in the Forest https://youtu.be/uYD99f01aek

controller as in [32, 104] for implementation on the physical 3D robot. Controllers for

speed regulation were presented in [32]. The experiments for this chapter are numbers

3 - 11 in Table 5.2.

5.6.1 Speed Regulation and Transition

To understand the utility of including the transition gaits in the learning sets, a

first control policy is designed using only periodic gaits (see Section 5.2). The asymp-

totic stability of the closed-loop system is assured with a foot placement controller

given in [32, 104]. A second policy is then designed using the same set of periodic gaits

augmented with transitions (see Section 5.3), no extra controller is needed. Transition

gaits represent transient conditions that have been designed to respect the physical

limitations of the robot, and hence the resulting control policy is better able to avoid

foot slippage during transients than the policy built on steady-state (periodic) walk-

ing. This is demonstrated by comparing the light push in Experiment 2 to the much

stronger kick in Experiment 3.

58

https://youtu.be/eSllkIptlK0
https://youtu.be/iOltRR0RqiM
https://youtu.be/YXJQJtcXX4E
https://youtu.be/gHpXTmyG4mE
https://youtu.be/iW9SWPQmYh0
https://youtu.be/YErF0cyPI-g
https://youtu.be/vEQa1e7lzjQ
https://youtu.be/TDFz_0Avc2A
https://youtu.be/xPHMgFiSeu0
https://youtu.be/VovWti_wKRU
https://youtu.be/uYD99f01aek

5.6.2 Sagittal Terrain Adaptation

Experiment 1 uses the speed controller, without transitions, discussed above. At

the end of Experiment 1, MARLO encounters a 7 deg upward slope, slips, and falls.

A new policy is designed that focuses on ground slope changes (see Section 5.4.2.1),

and is used in Experiments 4 and 5. Experiment 4 demonstrates the robot walking

down a long, 22 deg, steep slope. The average walking speed is about 0.2 m/s;

the safety gantry gets stuck at several points, keeping the average speed quite low.

Walking up the slope has not been demonstrated because pushing the gantry up a

steep hill is impossible. Walking down is often more challenging because the robot will

gain speed from gravity. Even though the control policy was designed for constant

slopes, in Experiment 5 the robot is challenged to walk indoors over randomly varying

terrain. In these experiments, the ground slope is estimated by relative foot height

during double support, which is one of the features used in determining the control

policy for the next step. If the terrain changes dramatically over a step, a camera is

needed to preview the terrain and this information must be added to the feature set

during supervised learning.

5.6.3 Lateral Terrain Adaptation

Without a camera, and using only relative foot height information in double sup-

port, it is not possible to distinguish between a slope in the sagittal direction, the

lateral direction, or a combination. Using the same control policy as in Experiments 4

and 5, the robot was taken to the Wave Field on the University of Michigan Campus;

see Experiment 6. The most frequent failure mode was the robot’s swing leg hitting

the ground prematurely because, when moving the leg laterally, it assumed the slope

was zero. A new policy was designed under the assumption the relative changes in

foot height are due to a lateral slope only (in the sagittal direction, the ground is

assumed flat); see Section 5.4.2.2. Experiment 7 tests the control policy indoors and

59

Experiment 8 is performed on the Wave Field. In the latter, the robot is able to make

two complete passes in the troughs between the crests, whereas in Experiment 6, it

never made it more than half way down any one of them.

5.6.4 Unified Policy

Here, the control policy is designed using periodic gaits, transition gaits among a

subset of them, and terrain slope changes in the sagittal direction. In Experiment 9,

MARLO walks outdoors at speeds varying from standing to 0.5 m/s. In Experiment

10, the robot traverses a pile of rubble in the laboratory. When taken to a a section of

woods on the campus in Experiment 11, the robot walks down sloped terrain, covered

with branches, and encounters stumps. After about five minutes, MARLO trips on a

lateral slope because of the same failure mechanism in Experiment 6: when moving

the swing leg laterally, premature impact with the ground occurs.

5.7 Conclusions and Next Steps

Supervised learning was used to design control polices for the complete planar

model of an underactuated 3D bipedal robot. The training and testing sets included

periodic gaits on flat and sloped ground and transition gaits. The control policy

designed with supervised learning increased the robustness of the robot’s gait in com-

parison to previous control solutions that focused on asymptotically stable walking

at a constant speed [20], or a solution built by interpolating controllers from a library

of such gaits.

Part of the enhanced robustness comes from including transient control solutions

in the training set. These provide a means for returning to a target speed after a per-

turbation, while satisfying constraints on peak torque, friction cone and motor speed.

Additional robustness comes from including gaits that functioned correctly on sloped

ground. The supervised learning formulation allowed a collection of behaviors to be

60

addressed in a unified manner, when the feature set was expanded to include initial

states of a reduced-order model, exogenous command signals, and terrain information

gleaned from sensors.

The next chapter will extend the method to address the full 3D dynamic model

of the robot. This was not done here because, when the work was initiated, the fast

optimizer of Ames’s group was not yet available [53]. It will also give the formal

way to design the transient gait and the mathematical theory of using Supervised

Learning to design controller.

61

CHAPTER VI

Formal Method of Machine Learning Control

The previous chapters have established two approaches for gait design based on

the use of multiple trajectories; one based on a library of periodic gaits and a second

method that combined periodic and transient gaits through machine learning. This

chapter provides a formal mathematical framework for the use of machine learning

in controller design. For the sake of simplicity, let’s pretend the model of a bipedal

robot can be captured by an ordinary differential equation,

ẋ = F (x, u), (6.1)

with state variables x ∈ X and control inputs u ∈ U . The design process of this chap-

ter begins with the construction of a periodic solution meeting relevant constraints.

Denote the period by Tp > 0 and the initial condition by ξ∗. The next step is to make

an initial selection of a low-dimensional set, let’s call it Z0 ⊂ X , such that ξ∗ ∈ Z0.

Now begins the real work; we seek to design open-loop trajectories of the full-order

model

(xξ(t), uξ(t)), 0 ≤ t ≤ Tp, ξ ∈ Z0 (6.2)

62

that over the interval [0, Tp], “approach” the periodic solution. Specifically, for some

0 ≤ c < 1, and for each ξ ∈ Z0, we have

ϕξ(Tp) ∈ Z0 and ||ϕξ(Tp)− ξ∗|| ≤ c||ξ − ξ∗||. (6.3)

After designing the trajectories, we seek to construct a low-dimensional subsystem

that realizes them, namely,

ż(t) = G(t, z)

x(t) = H(t, z),

(6.4)

with z ∈ Z ⊂ X , such that (a) for ξ ∈ Z0,

z(0) = ξ ⇒ xξ(t) = H(t, z(t)),

and (b) the periodic motion is a “locally exponentially stable output” of the model.

If this can be done, we would argue that (6.4) is a more desirable target model than

a typical pendulum because the target has been constructed directly from the full-

order model and its “specification”, that is, the constraints imposed when designing

the trajectories. The overall concept is illustrated in Figure 6.1 and 6.2.

To turn this into a viable feedback design process for the original system, we have

to address the following issues:

(i) How to compute the low-dimensional model (6.4) for realistic bipedal robots

and the surface1 Z ⊃ Z0 on which it is defined?

(ii) As with any low-dimensional target model, how to embed it in the full-order

model with stability? In other words, how to design a feedback for the original

system (6.1) that does two things: (a) creates an invariant surface Z in its state

1Z0 only contains the initial conditions for the trajectories. The evolution of the trajectories will
determine Z. The vector field and output map in (6.4) will be computed through a combination of
Supervised Machine Learning and model structure.

63

Machine Learning

Full-order system Tasks

(Periodic walking, Transitioning)

Trajectory
optimization

Input-Output
Linearization

Trajectories

form a low-dimensional surfaceLow-dimensional model

is a state-variable realization

of the trajectories

Controller

stabilizes the full-order system

Figure 6.1: The Supervised Machine Learning approach.

Figure 6.2: Based on model structure, the system’s state is decomposed into x =
(x1, x2), where the dimension of x1 is much smaller than the dimension of x2. The
surface Z0, shown here as a line, is the set of initial conditions used to build a set of
trajectories that will fill out the surface Z. By construction, this model, if it exists,
will be easy to embed in the robot’s full state space.

64

space with restriction dynamics given by (6.4), thereby encoding the desired

stable walking motion; and (b) solutions of the closed-loop system starting near

the surface asymptotically converge to the surface, thereby realizing the walking

motion in a stable manner in the overall system.

The remainder of the chapter is dedicated to addressing these challenges for a class

of hybrid models and tasks of interest to bipedal locomotion. Section 6.1 develops

the basic ideas in the simpler setting of ordinary differential equations. The results

are of independent interest for tasks such as rising from a sitting position or standing

in place. Trajectory optimization is used to generate the low-dimensional set of open-

loop trajectories (6.2) that includes a metric for attractivity to a periodic solution, a

family of periodic solutions, or transitions among such solutions. Model structure and

Supervised Machine Learning are proposed as a means to extract functions from the

open-loop trajectories to build the low-dimensional model (6.4). Finally, an appeal

is made once again to model structure to embed the low-dimensional model in the

full-order model while guaranteeing local exponential attractivity.

Section 6.2 illustrates the design process on the well-known inverted pendulum on

a cart. This will allow the reader to explore the method on a simple model. Section 6.3

develops the results for hybrid models, preparing the ground for the simulations and

experiments reported in Section 6.4 for the bipedal robot MARLO. All proofs are

given in Appendix C.

6.1 Presentation of Main Ideas

For the class of robot problems of interest to us, optimal gaits can now be com-

puted in minutes [58, 53], but not in tens of milliseconds, which is what would be

required for online use. In the simpler setting of a non-hybrid system, this section

develops our main ideas for mitigating the curse of dimensionality in optimization-

65

based controller design. Section 6.1.2 provides the first example of conditions for a

family of open-loop trajectories of a model from which a realization can be extracted

and its equilibrium will be locally exponentially stable; see also [30, 108]. The process

of building the realization from the trajectories is based on regression, namely Super-

vised Machine Learning. The size of the model that can be treated with these initial

results is limited by both the number of optimizations it takes to create the fam-

ily of open-loop trajectories and the number of features that can be included in the

Supervised Machine Learning. Section 6.1.3 extends the design process to building

reduced-order target model for a high-dimensional model. Importantly, the design

is based on a far smaller set of open-loop trajectories. Sections 6.1.4 and 6.1.5 then

provide conditions for embedding the target model in the full-order model such that

the origin of the full-order model is locally exponentially stable. The proofs of the

results developed in the section are given in Appendix C. The relationship to other

controller design methods is addressed in Appendix D.

In presenting the main ideas, we will deliberately organize them as a design phi-

losophy. We choose to let the user rely on his or her wits to meet our conditions,

rather than muddying the waters with a set of highly technical sufficient conditions

that no one would ever check. We know as well as the readers know that optimization

problems are very tricky: it is easy to paint oneself into a corner that only yields non-

smooth solutions. On the other hand, many problems, such as the examples worked

out in the chapter, seem to have very nicely behaved solutions. We are confident that

we did not cherry-pick the only nice problems and that the readers will find a host of

further interesting examples.

66

6.1.1 Model Assumptions

To keep the connection to stabilizing periodic gaits in bipeds, we consider a peri-

odically time-varying nonlinear system with equilibrium point at the origin,

ẋ = f(t, x, u). (6.5)

The coordinate transformation required for shifting a periodic solution of a nonlinear

model to the origin is provided in [63, pp. 147]. An equilibrium point is treated as

a special case of a periodic orbit where the period can be any number Tp > 0; in

particular, when discussing periodicity, Tp is not required to be a fundamental period.

The ODE (6.5) is assumed to satisfy the following conditions.

A-1 f : [0,∞)×Rn×Rm → Rn is locally Lipschitz continuous in x and u, piecewise

continuous in t, and there exists Tp > 0 such that ∀ (t, x, u) ∈ [0,∞)×Rn×Rm,

f(t+ Tp, x, u) = f(t, x, u).

A-2 f(t, 0, 0) = 0 for all t ≥ 0.

A-3 The user has selected an open ball about the origin, B ⊂ Rn, a positive-definite,

locally Lipschitz-continuous function V : B → R, and constants 0 < α1 ≤ α2

such that, ∀ x ∈ B

α1x
>x ≤ V (x) ≤ α2x

>x.

�

As alluded to above, the reader is encouraged to view the assumptions made

throughout this section as requirements to impose on an open-loop trajectory opti-

mizer. We have found them straightforward to meet when using the optimizers of

[58, 53]. In many cases, the positive-definite function indicated in A-3 comes “for

free” from the optimization problem used to compute trajectories; this is standard in

67

model predictive control [76]. Because the Lyapunov condition in A-4 below can also

be included as a constraint in the trajectory generation process, the user has much

freedom in its selection, even something as simple as the 2-norm squared could be

used.

6.1.2 Extracting a Feedback from Open-loop Trajectories

Two feedback controllers can be constructed from the following solutions of the

model (6.5). The obvious relation to MPC is discussed in the remarks following

Prop. VI.1.

A-4 There is a constant 0 ≤ c < 1, such that, for each initial condition ξ ∈ B, there

exists a continuous input uξ : [0, Tp]→ Rm and a corresponding solution of the

ODE, ϕξ : [0, Tp]→ Rn satisfying ϕξ(Tp) ∈ B, and

V (ϕξ(Tp)) ≤ cV (ξ); (6.6)

moreover, for ξ = 0, uξ(t) ≡ 0. For clarity, solutions are taken in the sense of

equation (C.2) of [63, pp. 657], namely

ϕξ(t) = ξ +

∫ t

0

f(τ, ϕξ(τ), uξ(τ))dτ. (6.7)

�

A Tp-periodic Continuous-Hold (CH) feedback is defined by periodic extension of

uξ(t), namely,

uch(t, ξ) = uξ(t̂), t̂ = t mod Tp. (6.8)

Jumps are allowed at multiples of the period, with continuity taken from the right.

Due to the reset or hold-nature of the above feedback, the stability of solutions of

(6.5) in closed-loop with (6.8) should be studied as a sampled-data system, that is,

68

the solutions should be evaluated at times tk = kTp. We will not analyze its stability,

however, because it will clearly perform poorly in the face of perturbations occurring

between samples, where the system is open loop.

We proceed directly instead to a feedback controller that allows continuous up-

dates in the state variables, and yet, under certain conditions, can be built from

the open-loop trajectories given in Assumption A-4. To understand the feedback

controller, a thought experiment is helpful: Suppose at time t0 = 0 the system’s ini-

tial state value is ξ0, and the continuous-hold feedback (6.8) is being applied. Then

the system is evolving along the trajectory ϕξ0(t). Suppose subsequently at time

0 < td < Tp, an “impulsive disturbance” affects the system, displacing the system’s

state to a value x(td) 6= ϕξ0(td). What input might be applied, given the information

in A-4? If there exists a ξd ∈ B such that x(td) = ϕξd(td), then applying the input

uξd(t) for td ≤ t < Tp will move the system toward the equilibrium in the sense that

V (ϕξd(Tp)) ≤ cV (ξd). The next result builds on this idea; see also [30, 108].

Proposition VI.1. Assume the open-loop system (6.5) satisfies Assumptions A-1 to

A-4. Assume in addition there exists an open set Be ⊃ B and a feedback

µ : [0,∞)×Be → Rm

that is piecewise continuous in t, Tp-periodic, locally Lipschitz continuous in x, and,

such that, for 0 ≤ t < Tp and ξ ∈ B,

µ(t, ϕξ(t)) = uξ(t). (6.9)

Then the origin of the closed-loop system,

ẋ = f cl(t, x) := f(t, x, µ(t, x)), (6.10)

69

Features Labels
tj xj,i = ϕξi(tj) µj,i = uξi(tj)

t0 = 0 x0,1 µ0,1

t0 = 0 x0,2 µ0,2

...
...

...
t0 = 0 x0,M µ0,M

t1 x1,1 µ1,1

...
...

...
t1 x1,M µ1,M

...
...

...
tN = Tp xN,1 µN,1

...
...

...
tN = Tp xN,M µN,M

Table 6.1: Conceptual arrangement of the data in A-4 from which a controller sat-
isfying (6.9) may be determined by “regression”. In practice, not only time must
be discretized, but also the initial conditions ξi ∈ B. This is where the “curse of
dimensionality” rears its ugly head. Placing ten points per dimension leads to 10n

optimizations to compute, which quickly becomes impractical.

is locally exponentially stable, uniformly in t, and the trajectories in A-4 are solutions

of (6.10). Said another way, (6.10) is a realization of the trajectories in A-4. �

Returning to (6.4) in the Introduction, the key point is that when a function

can be found that is compatible with the open-loop trajectories in A-4 in the sense

that the “learning condition ” (6.9) is satisfied, then (6.10) provides an “exponentially

stable realization” of the trajectories; this idea will be extended to a lower-dimensional

system in the next subsection. Secondly, if at time 0 ≤ t ≤ Tp there exists ξ such

that x(t) = ϕξ(t), the value of the “learned function” is being set to

µ(t, x(t)) := uξ(t).

In practice, the trajectories will only be computed for a finite grid of initial conditions

70

ξj, j ∈ J . Hence, (6.9) is an interpolation of the data from the trajectory optimiza-

tions. For x(t) ∈ Be for which there does not exist ξ such that x(t) = ϕξ(t), the

function in (6.9) is an extrapolation of the data. In [30], the fitting of a function to

trajectory data was done in principle in closed form and by hand; here, the fitting

is being done with Supervised Machine Learning. Moreover, the learning algorithms

available today provide easy tools for checking the quality of a fit and hence for

checking how closely a function was found that meets the learning condition (6.9).

Remark VI.2. Because the solutions in A-4 will be computed via a trajectory opti-

mization algorithm, it is useful to understand how the assumptions on µ relate to

requirements on the trajectories.

(i) Suppose Th > Tp and that for ξ ∈ B, uoξ : [0, Th]→ Rm minimizes a cost function

of the form

J(ξ) = min
u

∫ Th

0

L(ϕξ(t), uξ(t))dt+N(ϕξ(Th)) (6.11)

where, as before, ϕξ(t) is the solution of (6.5) with initial condition ξ at t0 = 0,

and suppose furthermore that uξ : [0, Tp]→ Rm is the restriction of uoξ to [0, Tp],

that is,

uξ = uoξ
∣∣
[0,Tp]

.

By the principle of optimality, for 0 ≤ t0 < Tp,

uoξ
∣∣
[t0,Th]

is a minimizer of

J(x0) = min

∫ Th

t0

L(ϕξ(t), uξ(t))dt+N(ϕξ(Th)), (6.12)

where, ϕξ(t) is the solution of (6.5) with initial condition ϕξ(t0) at t0. Hence,

the condition (6.9) can be interpreted as arising from an MPC-style controller

71

Figure 6.3: Principle of Optimality. If the system is initialized at ϕξ(t0) and the cost
function is modified from (6.11) to (6.12), then ϕξ : [t0, Th]→ Rn is optimal.

Figure 6.4: This shows the trajectories crossing one another, which means that the
mapping Ψt : B → Rn in (6.13) is not injective at certain moments of time. In this
case, a feedback function cannot be extracted from the data.

with a shrinking horizon, [t0, Th], for 0 ≤ t0 ≤ Tp and fixed final-time Th.

This control strategy is visualized in Figure 6.3. The condition (6.9) comes

from the shrinking of the optimization horizon; it will be essential in allowing

a judiciously chosen set of open-loop trajectories to be realized with a low-

dimensional state-variable model.

(ii) Supervised Machine Learning will be used to extract the function µ(t, x) in

Prop. VI.1 from the trajectories and control inputs given in A-4 The method is

sketched in Table 6.1. An example is given in Sect. 6.2.

(iii) The local Lipschitz continuity of µ imposes conditions on the solutions given in

A-4. Indeed, for each t ∈ [0, Tp], the mapping

Ψt : B → Rn, by Ψt(ξ) := ϕξ(t) (6.13)

must be injective. This follows by the Gronwall-Bellman inequality [63, pp. 651];

see also [63, Exercise 3.17]. Hence, the optimization problem must be set up

72

so as to avoid the existence of trajectories that cross one another, which can

easily occur as shown in Figure 6.4. For example, if the user selected Th = Tp

and imposed that the origin be attained at Th, that is, dead-beat control, then

a locally Lipschitz continuous µ would not exist.

(iv) Conditions are known under which the value function (6.11) meets the Lyapunov

conditions in A-3 and A-4. Roughly speaking, they require that the terminal

weight N either be replaced with finite-time convergence to the origin or, the

terminal weight be selected as βN(x(Th)), where N(x) is positive definite and

β > 0 is sufficiently large. Hence, in practice, the Lyapunov constraint can be

replaced by careful formulation of the trajectory optimization problem. In our

limited experience, it is never an active constraint.

(v) There is a long history of work in the nonlinear control literature that relates

asymptotic controllability to an equilibrium point and the existence of stabiliz-

ing feedback controllers. The reader is referred to [30, 31, 25, 109] and references

therein. The methods employed are not nearly as constructive as the work in

this chapter.

6.1.3 Building a Reduced-Order Target Model

To begin the construction of a reduced-order target model as in (6.4), we now

assume that the system (6.5) is decomposed in the form

ẋ1 = f1(t, x1, x2)

ẋ2 = f2(t, x1, x2, u),

(6.14)

where x1 ∈ Rn1 and x2 ∈ Rn2 . For clarity of exposition, the input is assumed not

to appear in f1; the changes required to include inputs in f1 are given in Sect. 6.1.5.

Assumptions A-1 through A-3 are assumed to hold for (6.14).

73

Because of how the decomposition will arise in the case of bipeds, we think of

the x1-states as the “weakly actuated part” of the system and the x2-states as the

“strongly actuated part” of the system. With the model expressed in this form, it

is clear that the x2-states are virtual controls for the x1-states. We will continue to

build open-loop trajectories by the full-order model, except now the trajectories will

be computed for a reduced set of initial conditions defined by the x1-subsystem.

Definition 1. An insertion map, γ : Rn1 → Rn2, is a function that preserves the

equilibrium point, namely γ(0) = 0. �

The insertion map specifies initial conditions for x2 as a function of x1; in other

words, it specifies the surface Z0 in the Introduction, just before (6.2).

A-5 There is a constant 0 ≤ c < 1, such that, for each initial condition ξ =

(ξ1, γ(ξ1)) ∈ B, there exists a piecewise continuous input uξ1 : [0, Tp]→ Rm and

a corresponding solution of the ODE, ϕξ1 : [0, Tp]→ Rn satisfying ϕξ1(Tp) ∈ B,

and

V ((ϕ1ξ1(Tp), γ(ϕ1ξ1(Tp))) ≤ cV (ξ1, γ(ξ1)), (6.15)

where the solution of the (n1 + n2)-dimensional model (6.14) has been decom-

posed as

ϕξ1(t) =: (ϕ1ξ1(t), ϕ2ξ1(t)).

�

Proposition VI.3. Assume the open-loop system (6.14) satisfies Assumptions A-1

to A-3 and A-5, and define B1 := {ξ1 ∈ Rn1 | (ξ1, γ(ξ1)) ∈ B}. Assume in addition

there exists an open set Be
1 ⊃ B1 and a function

ν : [0,∞)×Be
1 → Rn2

74

that is piecewise continuous in t, Tp-periodic, locally Lipschitz continuous in x1, and,

such that, for 0 ≤ t < Tp and ξ1 ∈ B1,

ν(t, ϕ1ξ1(t)) = ϕ2ξ1(t). (6.16)

Then the origin of the reduced-order system

ẋ1 = f clred(t, x1) := f1(t, x1, ν(t, x1)), (6.17)

is locally uniformly exponentially stable, and the trajectories in A-5 are solutions of

(6.17). �

Remark VI.4.

(i) Assumption A-5 and Prop. VI.3 represent our first result to mitigate the curse

of dimensionality. Assumption A-5 leads to a greatly reduced training set for

building a realization than A-4 because, in many practical examples, n1 �

(n1 + n2). Proposition VI.3 says that this reduced training set can encode a

stabilization goal that is a feasible action of the full-order model. The next

section embeds the target model (6.17) in the full-order model, completing our

basic plan for mitigating the curse of dimensionality.

(ii) The numerical burden of developing the “training sets” for ν(t, x1) is exponential

in the dimension of x1, at least if a uniform grid is used to sample B1.

(iii) Table 6.2 shows how to extract the function ν(t, x1) from the optimization data.

(iv) The local Lipschitz continuity of ν(t, x1) imposes stronger conditions on the

solutions given in A-5 than those encountered in A-4. This is because the

mapping defined by, for each t ∈ [0, Tp],

Ψ1t : B1 → Rn1 , Ψ1t(ξ1) := ϕ1ξ1(t) (6.18)

75

being injective is stronger than the mapping

Ψt : B1 → Rn, Ψt(ξ1) :=

 ϕ1ξ1(t)

ϕ2ξ1(t)

 (6.19)

being injective. If Ψt is continuously differentiable and full rank, then there

does exist a new choice of x1-coordinates for which the corresponding mapping

Ψ1t is full rank and hence is locally injective. This will be illustrated on the

cart-pendulum model in Sect. 6.2.

(v) Under the assumptions of Prop. VI.3, for each t ∈ [0, Tp), Ψt : B1 → Rn is a

homeomorphism onto its image. It follows that Ψe : [0, Tp)×B1 → Rn+1, by

Ψe(t, ξ1) :=

 t

Ψt(ξ1)

 ,
is also a homeomorphism onto its image. After augmenting the state with

time in the usual manner, the low-dimensional model (6.4) discussed in the

Introduction can be seen as evolving on the surface

ZTp := Ψe([0, Tp)×B1), (6.20)

with the dynamics and output given by

τ̇ = 1

ẋ1 = f1(τ, x1, ν(τ, x1))

x =

 x1

ν(τ, x1)

 .
(6.21)

At this point, the direct relation with trajectories of the original model is only

76

true for 0 ≤ t < Tp.

(vi) In Sect. 6.1.6, we will provide a concrete way to select the insertion map. For

now, we propose an insertion map inspired by backstepping

γ(x1) := Kx1, (6.22)

that the equilibrium of the reduced-order model,

ẋ1 = f1(t, x1, γ(x1)) (6.23)

is stable. Other relations to backstepping are noted in Appendix D.

(vii) Suppose the system (6.14) is time invariant, so that one is stabilizing a trivial

periodic orbit (i.e., an equilibrium). Then Tp > 0 is a free parameter available

to the designer. How to choose it? If the insertion map actually stabilizes the

equilibrium of the reduced-order model (6.23), then in principle, Tp can be taken

to be arbitrarily small, subject to choosing c > 0 and the positive function in

(6.15) properly. Otherwise, if the system is locally asymptotically controllable

to the origin [25], a larger Tp makes it easier to meet the Lyapunov contraction

condition.

6.1.4 Embedding the Target Dynamics in the Original System

Consider the system (6.14) with the assumptions and notation of Prop. VI.3.

Assume there exists a feedback u(t, x1, x2) such that in the coordinates

y := x2 − ν(t, x1), (6.24)

77

Features Labels

tj xj,i1 = ϕ1ξi1
(tj) νj,i = ϕ2ξi1

(tj)

t0 = 0 x0,1
1 ν0,1

t0 = 0 x0,2
1 ν0,2

...
...

...

t0 = 0 x0,M
1 ν0,M

t1 x1,1
1 ν1,1

...
...

...

t1 x1,M
1 ν1,M

...
...

...

tN = Tp xN,11 νN,1

...
...

...

tN = Tp xN,M1 νN,M

Table 6.2: Conceptual arrangement of the data in A-5 from which a controller satis-
fying (6.16) may be determined by “regression”. Since only the x1-component of the
state is sampled, far fewer optimizations are required. The number of time samples
remains the same.

78

the closed-loop system has the form

ẋ1 = f1(t, x1, ν(t, x1) + y)

ẏ = Ay,

(6.25)

with A Hurwitz. Then the surface y ≡ 0 is invariant and the restriction dynamics is

given by (6.17). While ν(t, x1) is Tp-periodic, its limits from the left and the right

are not necessarily equal at Tp, and y in (6.24) inherits this property. Hence, without

further assumptions, it cannot be a solution of the ODE (6.25), in the usual sense

[63, pp. 657], namely

y(t) = y(t0) +

∫ t

t0

Ay(τ)dτ.

In the following, we impose continuity in t on ν(t, x1), and then after the theorem,

analyze what this means in terms of the trajectories coming out of the optimizer.

Theorem VI.5. Assume the open-loop system (6.14) satisfies Assumptions A-1 to

A-3, and A-5, and define B1 := {ξ1 ∈ Rn1 | (ξ1, γ(ξ1)) ∈ B}. Assume in addition

there exists an open set Be
1 ⊃ B1 and a feedback

ν : [0,∞)×Be
1 → Rn2 (6.26)

that is continuous in t, Tp-periodic, locally Lipschitz continuous in x1, and, such that,

for 0 ≤ t < Tp and ξ1 ∈ B1,

ν(t, ϕ1ξ1(t)) = ϕ2ξ1(t). (6.27)

Then any feedback u(t, x1, x2), piecewise continuous in t and locally Lipschitz contin-

uous in x1 and x2 that transforms the system to (6.25), with A Hurwtiz, renders the

origin of (6.25) locally uniformly exponentially stable. Moreover, the surface defined

79

by

Ze := {(t, x1, x2) | (t mod Tp, x1, x2) ∈ ZTp}, (6.28)

is invariant with restriction dynamics given by (6.21). �

Remark VI.6.

(i) In fact, (6.28) is the Isidori-Byrnes [57] Zero Dynamics Manifold and the Zero

Dynamics is given by

τ̇ = 1

ẋ1 = f1(τ, x1, ν(τ, x1)).

The output that is being “zeroed” is

y = x2 − ν(t, x1)

as long as the domain is properly specified.

(ii) If ν in (6.26) is continuous in t, then for all x1 ∈ Be
1, ν(Tp, x1) = ν(0, x1).

How does this relate to the trajectories in the training set used to generate ν?

Because V in (6.15) is positive definite, and V decreases after Tp seconds, there

exists an open ball B2 contained in B1 such that ξ1 ∈ B2 ⇒ ϕ1ξ1(Tp) ∈ B1.

Because ξ̂1 := ϕ1ξ1(Tp) ∈ B1,

ϕ2ξ̂1
(0) = γ(ξ̂1) := γ(ϕ1ξ1(Tp)). (6.29)

From (6.16), because ξ̂1 ∈ B1,

ν(0, ϕ1ξ̂1
(0)) = ϕ2ξ̂1

(0), (6.30)

80

and because ϕ1ξ̂1
(0) = ξ̂1, we have

ν(0, ϕ1ξ̂1
(0)) = ν(0, ξ̂1). (6.31)

From the continuity of ν and using the definition of ξ̂1,

ν(0, ϕ1ξ1(Tp)) = ν(Tp, ϕ1ξ1(Tp)). (6.32)

From (6.16) again,

ν(Tp, ϕ1ξ1(Tp)) = ϕ2ξ1(Tp). (6.33)

Putting these together, the corresponding condition on the trajectories used in

the training set for ν is given in A-6.

A-6 The solutions in A-5 also satisfy

γ(ϕ1ξ1(Tp)) = ϕ2ξ1(Tp). (6.34)

�

Section 6.2 will illustrate these ideas on a simple low-dimensional example to make

it easy for the interested reader to reproduce the results. The true benefits of the

approach will not be clear until Sect. 6.4, where it will be applied to a high-dimensional

hybrid model of a bipedal robot, and subsequently implemented in hardware on the

robot MARLO.

81

6.1.5 Extended Class of Models

We discuss the case with the input appearing in both blocks. To keep the presen-

tation brief and simple, it is supposed that the model has the form

ẋ1 = f1(t, x1, x2, u)

ẋ2 = f2(t, x1, x2, u),

(6.35)

with

x2 =

 x2a

x2b

 and f2 =

 x2a

u

 .
Corollary VI.7. Assume the open-loop system (6.35) satisfies Assumptions A-1 to

A-3, A-5, and A-6, and define B1 := {ξ1 ∈ Rn1 | (ξ1, γ(ξ1)) ∈ B}. Assume in addition

there exists an open set Be
1 ⊃ B1, a function

ν : [0,∞)×Be
1 → Rn2 (6.36)

satisfying the conditions of Theorem VI.5, and a second function

µ : [0,∞)×Be
1 → Rm (6.37)

that is piecewise continuous in t, Tp-periodic, locally Lipschitz continuous in x1, and

such that, for 0 ≤ t < Tp and ξ1 ∈ B1,

µ(t, ϕ1ξ1(t)) = uξ1(t). (6.38)

82

Then for all n2/2 × n2/2 positive definite matrices Kp and Kd, the origin of

ẋ1 = f1(t, x1, x2, u)

ẋ2 = f2(t, x1, x2, u)

u = µ(t, x1)− [Kp Kd]
(
x2 − ν(t, x1)

) (6.39)

is locally exponentially stable, uniformly in t0. Moreover, the surface defined by (6.28)

is invariant with restriction dynamics given by

τ̇ = 1

ẋ1 = f1(t, x1, ν(t, x1), µ(t, x1))

x =

 x1

ν(τ, x1)

 .
(6.40)

�

Remark VI.8.

(i) There is no extra boundary condition, such as A-6, associated with (6.27) be-

cause the term µ arises from the inputs instead of the states of the ODE, as in

the case of ν. In particular, µ can be piecewise continuous in t. The learning

of µ is done the same as for ν in Table 6.2.

(ii) Most systems will require a pre-feedback to arrive at the form (6.35); this must

be taken into account when implementing the feedback indicated in (6.39).

6.1.6 Orbit Library and Design of the Insertion Map

The objective of this section is to provide a systematic means for designing the

insertion map in a way that takes into account the “physics” of a model.

83

Definition 2. An orbit library L is a set of periodic trajectories of the model (6.35)

that are parameterized by the x1-states. We denote the library consisting of the peri-

odic solutions by

L := {ϕξ1 : [0, Tp]→ Rn | ξ1 ∈ B1}, (6.41)

with B1 as A-5. �

Definition 3. An insertion map associated to an orbit library (6.41) is a function

γL : B1 → Rn2 such that

γL(ξ1) := ϕ2ξ1(0). (6.42)

�

One should think of the above insertion map as taking the states of the x1-

coordinates, associating them to periodic orbits of the full model, and then defining

the initial condition of the x2-coordinates (in the trajectory optimization) to be its

value at a point on the associated periodic orbit. Hence, the overall model is being

initialized in a physically meaningful manner. Moreover, the trajectories in A-6 can

now be interpreted as affecting a transition from a family of periodic solutions to a

desired periodic solution in a way that leads to stabilization of the desired periodic

solution, via Theorem VI.5 or Corollary VI.7. The authors have found this to be very

useful on bipedal robots.

6.2 Inverted Pendulum on a Cart

This section will illustrate the controller designs of Section 6.1 on the well-known

inverted pendulum on a cart model. The MATLAB code for the calculations is

available for download in Extension 1. The optimization setup and the learning

method used here are nearly identical to what will be implemented on a bipedal

robot in Section 6.4; the only significant change involves the hybrid aspect of a biped

84

model.

6.2.1 System Model

The system consists of a unit length, uniformly distributed unit-mass pendulum

attached via a revolute joint to a planar unit-mass cart, shown in Figure 6.5. A

driving force is applied on the cart, and there is no torque acting on the revolute joint

of the pendulum. The motion of the cart and the pendulum are free of friction forces.

The configuration variable q := (p, θ) consists of the cart position and the pendulum

angle. The system is written in state variable form as

ẋ1 =

 ṗ

2 sin(θ)θ̇2−3g cos(θ) sin(θ)−4u
3 cos(θ)2−8


ẋ2 =

 θ̇

3 cos(θ) sin(θ)θ̇2−12g sin(θ)−6 cos(θ)u
3 cos(θ)2−8

 ,
(6.43)

where u is the force acting on the cart and the system state x is decomposed into

x1 = (p, ṗ) and x2 = (θ, θ̇).The equilibrium point of the upright pendulum is x∗ = 0

and u∗ = 0. Assumptions A-1 and A-2 are then trivially satisfied.

The overall control objective will be to locally exponentially stabilize a continuum

of periodic motions with a common period Tp = 2 seconds. We first illustrate the

control design method on a trivial periodic orbit corresponding to the pendulum

upright and the cart at the origin.

6.2.2 Stabilizing the Upright Equilibrium While Respecting a Barrier

The presentation follows the basic steps of the design, from learning a full-state

feedback as in Prop. VI.1 to embedding a target model as in Corollary VI.7.

85

Figure 6.5: An inverted pendulum on a cart model is used to illustrate the controller
designs of Sect. 6.1. The objective is to stabilize a continuum of periodic motions,
including a trivial periodic orbit corresponding to the pendulum upright and the cart
at the origin. In part of the analysis, a barrier is imposed.

6.2.2.1 Trajectory Generation and Learning for the Full-Order Model

The set B and positive definite function of A-3 are discussed shortly. For an

initial state ξ ∈ B, the direct collocation algorithms of [58, 53] are used to generate

a trajectory ϕξ(t) and corresponding input uξ(t) over an interval [0, Tp] to meet the

conditions of A-4. To emphasize the ability to handle interesting constraints in the

control design, the cart position is heavily penalized if it moves out of a “safe region”

[−pb, pb], with pb = 2.

The cost function for determining the trajectories is a standard quadratic form

with an additional penalty for the safety region:

J(ξ) = min
u

∫ Th

0

(
||x||2Q + ||u||2R + L(p, pb)

)
dt

L(p, pb) = wp2(ep−pb + e−p−pb).

(6.44)

The weights Q and R are taken as identity matrices and the penalty weight is w =

10. The optimization is subjected to the system dynamics constraints(6.43) and the

terminal constraint x(Th) = 0, with Th = 3Tp = 6 seconds. One could also use a

terminal cost N(x(Th)) in place of the terminal constraint. Even though a terminal

constraint may make the optimization problem infeasible for some initial conditions,

86

Table 6.3: MATLAB Neural Network Fitting Parameters

Hidden neurons 50

Training Ratio 80%

Validation Ratio 20%

Training Algorithm Bayesian Regularization

Max Iteration 4000

we have found it to be quite practical in bipedal robots. As discussed earlier, the cost

function in (6.44) can often used as a Lyapunov function meeting the conditions in

A-4. Here, we do not add this as a constraint to the optimization and will illustrate

the satisfaction of the Lyapunov condition.

The function µ(t, x) in Prop. VI.1 is learned for the ball of initial conditions

B ={−1 ≤ p ≤ 1,−π
6
≤ θ ≤ π

6
,

− 2 ≤ ṗ ≤ 2,−2 ≤ θ̇ ≤ 2},
(6.45)

with samples ξi ∈ B selected from a uniform grid of the state. Five points are used

in each dimension, for a total of 625 input sequence uξi(t) and solutions ϕξi(t). At

each time

tj ∈ {t | j
Tp
40
, j = 0, 1, . . . , 40}, (6.46)

the time-state pair (tj, x
j,i) is a feature and the input uj,i is a label. The complete list

of features and labels is shown in Table. 6.1 in Section 6.1.2. We use the MATLAB

Neural Network Fitting Toolbox to approximate µ. The fitting setup is shown in

Table 6.3. The mean squared error of the validation set is around 10−4.

We show there exists a Lyapunov function

V (x) := x>Px (6.47)

87

Figure 6.6: A slice of the function µ(t, p, ṗ, θ, θ̇), with t = 0, θ = 0 and θ̇ = 0. The
presence of the (soft-penalty) barrier is most evident near p = −2 and ṗ = −3. The
circles are training and validation data. Both interpolation and extrapolation can be
seen in the surface.

as required in A-4 that is built from the cost function in (6.44). The matrix

P =



0.04 −0.11 0.03 −0.03

−0.11 0.94 −0.12 0.18

0.03 −0.12 0.03 −0.03

−0.03 0.18 −0.03 0.04


(6.48)

is from a regression of J(x). The matrix is positive definite. We next find the constant

c in A-4 using the data set to train µ(t, x) that c satisfies

c ≥ max
i

V (ϕξi(Tp))

V (ϕξi(0)
. (6.49)

The maximum ratio over 625 points of ξi is 0.22, then we set c = 0.25. Notice when

ξi is the equilibrium point, V (ϕξi(Tp) = V (ϕξi(0)) = 0, which has to be ignored

when finding c. Figure 6.7 shows that V (ϕξ(kTp)) in the simulation is exponentially

decreased.

88

0 2 4 6 8 10

Time (s)

0

0.05

0.1

0.15

0.2

V
(x
)

Figure 6.7: The plot shows the typical evolution of the optimization-cost function,
confirming that it serves as a Lyapunov function. It is to be noted that V (t) is
only required to monotonically decrease from sample to sample, that is, from kTp to
(k + 1)Tp, with Tp = 2.

6.2.2.2 Comparison of Continuous Hold vs Learned Feedback

Figure 6.8 compares uch in (6.8) and µ in (6.9). The continuous-hold feedback

uch updates the state every Tp = 2 seconds. This type of MPC-style controller is

guaranteed to perform poorly in the face of disturbances occurring within the sample

period. Figure 6.8-(a) shows the continuous-hold controller stabilizing the system

from the initial condition

(p, ṗ, θ, θ̇) = (−1, 0, π/12, 0). (6.50)

Figure 6.8-(b) shows that the learned feedback µ performs identically to uch given the

same initial condition and a perfect model. The difference is obvious when it comes

to disturbance rejection. A constant external force d = 1N is applied to the cart for

t ∈ [11.5, 12]. The continuous-hold feedback uch has to wait till t = 12 to update

the state and respond to the disturbance; on the other hand, the learned feedback µ

updates the state continuously and hence reacts to the disturbance immediately.

89

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

p

ṗ

θ

θ̇

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-20

-15

-10

-5

0

5

10

u

(a) Continuous-hold controller uch

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

p

ṗ

θ

θ̇

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-20

-15

-10

-5

0

5

10

u

(b) Learned feedback µ

Figure 6.8: Comparison of the continuous-hold controller in (a), versus the learned
controller in (b). In both cases, the initial condition is (p, ṗ, θ, θ̇) = (−1, 0, π/12, 0).
A disturbance is applied for t ∈ [11.5, 12] seconds. The classical MPC plot is in an
Appendix-D

90

6.2.2.3 Building a Reduced-Order Target Model

The previous subsection illustrated how feedback is extracted from data via Su-

pervised Machine Learning and will provide a benchmark for later designs. Because

the cart-pendulum system has only four states, the number of trajectories required

for training in the previous subsection was quite manageable, and with random sam-

pling techniques [85], it could be further reduced. Eventually, however, the number

of required optimizations will become untenable. Here we illustrate Prop. VI.3 for a

two-dimensional subsystem of the cart-pendulum system.

Recall that the system state decomposition was already shown in (6.43). The

insertion map used here is inspired by backstepping as in Remark VI.4. Linearizing

the x1-subsystem with u = 0 and selecting x2 as a stabilizing linear feedback yields

γ(x1) =

 0.03 0.1

0 0


 p

ṗ

 . (6.51)

We do not further explore the choice of γ because we will primarily use the orbit

library γL of Definition 3 in the remainder of the chapter, including the bipedal robot

section.

With this insertion map, the trajectories required by A-5 are determined via

optimization with

B1 = {−1 ≤ p ≤ 1,−2 ≤ ṗ ≤ 2}. (6.52)

In anticipation of using the results here in Corollary VI.7, the boundary condition of

A-6 is also imposed.

The set of initial conditions ξj1, j ∈ J now has 25 points instead of 625 points.

The mapping (6.18) is checked to be injective by evaluating the numerical rank of

the x1-features in Table 6.2 via SVD. Just as before, the function ν(t, x1) is obtained

from the data via the MATLAB Neural Network Fitting Toolbox, again with the

91

Figure 6.9: A slice of the function ν(t, p, ṗ), with t = 0. This is the ν associated with
x2 coordinate θ. The circles are training and validation data. The interpolation is
smooth while the extrapolation may be not.

parameters indicated in Table 6.3. The same holds for the function µ(t, x1). An

example of the fitting of ν is shown in Figure 6.9.

The evolution of the target model is shown in the next subsection when a distur-

bance is applied after y = x2 − ν(t, x1) has nearly converged to zero.

6.2.2.4 Embedding the Target Dynamics in the Original System

The learned functions from the reduce-order optimization are now used to stabilize

the full-order system based on Theorem VI.5 and Corollary VI.7. To place the system

in the form (6.35), a pre-feedback is applied

ū :=
3 cos(θ) sin(θ)θ̇2 − 12g sin(θ)− 6 cos(θ)u

3 cos(θ)2 − 8
(6.53)

resulting in

θ̈ = ū.

The original input u can be computed from ū because (6.53) is invertible in the

operational range of interest, namely −π/2 < θ < π/2. While the function µ̄(t, x) of

92

Corollary VI.7 can be recovered from µ(t, x1) and (6.53), it is just as easy to learn it

with the features (tj, x
j,i
1) and label ūj,i. In the full model,

ū = µ̄(t, x1)− [Kp Kd]
(
x2 − ν(t, x1)

)
, (6.54)

with Kp = 50 and Kd = 15.

Figure. 6.10 shows the response of the closed-loop system with the same initial

condition and perturbation of Figure. 6.8. The settling time and disturbance rejection

performance is similar to the full state learned feedback. Figure 6.11 illustrates the

attractiveness of the surface x2 = ν(t, x1) by showing that the output error in (6.24)

of the full-order system decays exponentially to zero. When the disturbance is applied

for 11.5 ≤ t < 12, the output is driven away from zero and then decays back quickly

when the disturbance is removed.

6.2.3 Orbit Library and Transitioning Among Periodic Orbits

The last subsection has gone through the control design process for a trivial peri-

odic orbit where the pendulum is upright, and the cart is at the origin. This subsection

designs a controller for a set of periodic orbits, illustrate an insertion map γL arising

from an orbit library, and shows the possibility of the mapping (6.18) not being in-

jective. To simplify matters, we work directly with the cart-pendulum system after

the pre-feedback (6.53) has been applied.

6.2.3.1 Orbit Library

For Tp = 2 seconds, define a set of periodic motions of the cart by

p(t) = p0 +
ṗ0

π
sin(πt),

93

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

p

ṗ

θ

θ̇

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-20

-15

-10

-5

0

5

10

u

Figure 6.10: Response of the reduced-order model (6.40). The states of the model
are p and ṗ, while θ and θ̇ are outputs. The initial condition and disturbance are as
in Figure 6.8.

for (p0, ṗ0) ∈ B1 in (6.52). The trajectory for p(t) fixes the acceleration of the cart,

which in turn gives trajectories for θ(t), θ̇(t), and u(t). Moreover, imposing −π/2 <

θ < π/2 selects among the two possible solutions for the model. These considerations

define an orbit library L, with solutions indexed by (p0, ṗ0). Denote the set of initial

conditions of the orbit library as (ξL1 , ξ
L
2). Recalling Definition 3, an insertion map

associated to the orbit library is

γL(ξL1) = ξL2 .

94

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.5

0

0.5

1 y element 1

y element 2

Figure 6.11: Showing the convergence of the output error in (6.24). Comparing this
figure with Figure 6.10 shows that the system converges to the zero dynamics surface
more quickly than it converges to the periodic orbit. The disturbance initially drives
the system away from the surface.

To make it more explicit, for this example, we use linear regression to find γL : R2 →

R2 as  θ0

θ̇0

 =

 0 0

0 0.5911


 p0

ṗ0

 . (6.55)

Remark VI.9. The reader may be wondering why we bring up the orbit library as

a means of computing a new insertion function, especially when the ‘backstepping-

inspired’ insertion map worked so well? The point is that for a robot, where the

dimension of x2 may be twenty, one has no idea how to design a ‘backstepping-

inspired’ insertion map, whereas the concept of an orbit library extends naturally as

will be seen later in the chapter.

6.2.3.2 Loss and Recovery of Injectivity

Using the new insertion function (6.55), trajectory generation is performed exactly

as in Sect. 6.2.2, with x1 and x2 as given in (6.43). The mapping (6.18) is checked

not to be injective. Indeed, for t ' 1.8, the cart trajectories pass through a one-

95

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

0

2

4

6

8

σ1

σ2

σ̃1

σ̃2

Figure 6.12: The singular values of the matrix formed by the sampled trajectories
versus time the insertion function is given by (6.55). The solid lines are for (p(t), ṗ(t)),
with ∆t = 0.05, while the dashed lines are for (p(t) − θ(t), ṗ(t) − θ̇(t)) for the same
time samples. For the choice of the insertion function arising from backstepping in
(6.51), the minimum value of σ2 was 0.58.

dimensional surface as shown in Figures 6.12 and 6.13, while the mapping (6.19)

remains injective. Hence, one expects the existence of a set of coordinates in which

the design can proceed. It can be checked that the new coordinates2

x̃1 = (p− θ, ṗ− θ̇)

are “full rank” as shown in Figure 6.12. It is not necessary to redo the optimization

because the new coordinates correspond to a new B̃1 and a new insertion map, γ̃L, and

these are not explicitly required in the computation of ν and µ. The important thing

is the feature set for the Supervised Machine Learning is now indexed by (tj, x̃
j,i
1)

rather than (tj, x
j,i
1).

2Almost any linear combination of x1 and x2 works because it takes rows from the bottom of
(6.19) and adds them to the top rows, making (6.18) full rank, and hence locally injective. There is
nothing magic about our choice.

96

-2

0

2
p

-2 0 2

ṗ

t = 0
-2

0

2

p

-2 0 2

ṗ

t = 0.95

-2

0

2

p

-2 0 2

ṗ

t = 1.7
-2

0

2

p
-2 0 2

ṗ

t = 2

Figure 6.13: Another perspective on the information in Figure 6.12. The initial
conditions are taken from a grid, as can be seen at t = 0. At subsequent times, the
grid is transformed into a parallelogram at t = 0.95 and a line at t = 1.7, where the
mapping Ψ1t : B1 → Rn1 in (6.18) loses rank. We have not yet observed this problem
in the case of bipedal robots.

6.2.3.3 Transitioning Between Periodic Orbits

Next, we use the library insertion map γL and the new state x̃1 to design a

controller for transitioning between periodic orbits; this is analogous to transitioning

between walking gaits of various speeds or direction for a bipedal robot. The cost

function used in A-5 is modified to include the target orbit A := (p0, ṗ0) ∈ B1, per

(6.56) to

J(ξ1, A) = min
u

∫ Th

0

(
||x− ϕA||2Q + ||u− uA||2R

)
dt (6.56)

subject to x(Th) = ϕA(Tp) and x(0) = (ξ1, γL(ξ1)). The boundary condition A-6 is

also applied as γL(x1(Tp)) = x2(Tp). Here, the target trajectory and its corresponding

input are denoted as ϕA(t) and uA(t). To simplify the problem, the cost function

97

excludes the barrier penalty L(p, pb) in (6.44). The set B1 is still given by (6.52).

With this choice of the insertion map, the boundary condition A-6 means that each

cycle in the transition moves the cart-pendulum from one periodic orbit to the next;

this is because (ϕ1ξ1(Tp), γL(ϕ1ξ1(Tp)) is an initial condition for a periodic solution of

the model. Denote the family of solutions to the optimization problem by

x̃i,j,k1 := ϕAk

1ξi1
(tj)− ϕAk

2ξi1
(tj)

νi,j,k := ϕAk

2ξi1
(tj)

µ̄i,j,k := ūAk

ξi
(tj).

(6.57)

The feature set for the Supervised Machine Learning is taken as (tj, x̃
i,j,k
1 , Ak) and

the labels are (νi,j,k, µ̄i,j,k). Figure 6.14 shows a orbit transition

(−1, 0.5)→ (0, 0)→ (0, 1.2) (6.58)

of the target orbit (p0, ṗ0) at t = 20 and t = 40. A constant external force d = 20N

is applied to the cart for t ∈ [69.5, 70].

Remark VI.10.

(i) Orbit transition from set B1 to a target orbit A can also be reviewed as rejecting

state disturbances in B1. The distance from a state in B1 to A is not necessarily

“small”, indicating the region of attraction for this controller could be “large”.

(ii) There may exist two orbits Am and An in B1 for which a transition cannot be

achieved over [0, Th]. However, one may think of transitions in B1 as a graph

so that if there exists an orbit Ak such that

Am → Ak → An

is possible, then the orbits are connected.

98

0 20 40 60 80 100
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

p

0 20 40 60 80 100

Time (s)

-2
-1.5
-1

-0.5
0

0.5
1

1.5
2

ṗ

Figure 6.14: Plots of p(t) (top) and ṗ(t) (bottom) as the closed-loop system transitions
from one periodic orbit to another, as given in (6.58), with a disturbance applied for
t ∈ [69.5, 70].

(iii) If the target orbit is modified at multiples of Tp, there are no jumps in ν; this is

because the orbit-library insertion map transitions the system from one periodic

orbit to another as shown in Figure 6.15.

6.3 Hybrid Model and Control

This section describes an extension of the control policy developed in Sect. 6.1 to

systems with impulse effects [50, 125, 15], a special class of hybrid models that arises

in bipedal robots. The control goals for the hybrid system corresponds to stabilizing

periodic walking gaits for various speeds, and to transitioning among these gaits. The

99

0 20 40 60 80 100

Time (s)

-0.5

-0.25

0

0.25

0.5

y element 1

Figure 6.15: This shows that there is no jump in the output when the transition
point takes place at a multiple of Tp. The jump corresponds to the disturbance in
Figure 6.14. Only the first component of (6.24) is shown as the other component is
the derivative of this one.

robot should also be able to reject a range of force perturbations.

6.3.1 Hybrid Model

We consider a hybrid system with one continuous-time phase as follows

Σ :

 ẋ = f(x, u) x− /∈ S

x+ = ∆(x−) x− ∈ S,
(6.59)

in which x ∈ X and X ⊂ Rn denote the vector of state variables and n-dimensional

state manifold, respectively. The continuous-time control input is represented by

u ∈ U , where U ⊂ Rm is an open set of admissible control values. In addition,

f : X × U → TX is assumed to be continuously differentiable (C1) so that a

Poincaré map can be computed later when checking stability. For each u ∈ U , f(·, u)

is a vector field in TX , the tangent bundle of the state manifold X .

The switching hypersurface S is an (n− 1)-dimensional manifold

S := {x ∈ X | p(x) = 0} , (6.60)

on which the state solutions are allowed to undergo a sudden jump according to the

re-initialization rule x+ = ∆(x−). Here, p : X → R is a C1-switching function which

100

satisfies ∂p
∂x

(x) 6= 0 for all x ∈ S. Moreover, ∆ : X → X denotes the C1 reset map.

x−(t) := limτ↗t x(τ) and x+(t) := limτ↘t x(τ) represent the left and right limits of

the state trajectory x(t), respectively. As in [122], the solution of the hybrid system

(6.59) is assumed to be right continuous. In particular, it is constructed by piecing

together the flow of ẋ = f(x, u) such that the discrete transition takes place when this

flow intersects the switching hypersurface S. The new initial condition for ẋ = f(x, u)

is then determined by the reset map x+ = ∆(x−).

6.3.2 Setting up the Optimization Problem

We now start the translation of the Assumptions A-1 to A-6 to the hybrid setting

for the purpose of designing a feedback controller to locally exponentially stabilize a

periodic solution. For bipedal robots, mid-step is a good time to make adjustments

to the gait: (a) impact transients have had a chance to settle out; (b) the swing

foot is safely away from the ground; and (c) there is still adequate time to steer the

swing leg to a favorable configuration for impact. Hence, we will use mid-step of the

periodic orbit understudy for setting the beginning and end of the trajectories that

we compute via optimization.

The hybrid model (6.59) is assumed to satisfy the following conditions.

H-1 f : X × U → TX and the reset map ∆X → S are Lipschitz continuous. This

will allow the stability analysis tools of [4] to be applied later on.

H-2 There exists Tp > 0, x∗m ∈ Rn, a piecewise continuous input u∗ : [0, Tp] → U

and a solution ϕ∗(t) of (6.59) satisfying:

a) ϕ∗+(0) = x∗m;

b) ϕ∗−(Tp/2) ∈ S, (swing foot touches the ground);

c) ∀ t 6= Tp/2, ϕ
∗(t) 6∈ S, (does so only once); and

d) ϕ∗−(Tp) = x∗m (periodicity).

101

It is noted that by the definition of S, the periodic solution is transversal to S,

namely d
dt
p(ϕ∗−(Tp/2)) < 0. And yes, the motion is being “clocked” with the

middle of the step.

�

The point x∗m is the midpoint of the periodic trajectory, as measured by time. The

controller we build will start from mid-stance, follow the Lagrangian model, undergo

impact, and then once again evolve according to the Lagrangian model. To formulate

the trajectory designs and the closed-loop system, we need to split the continuous

phase of the model (6.59) into part-(i), after mid-stance, and part-(ii), the first half

of the ensuing stance phase.

Σi :



τ̇ = 1,

ẋ = f(x, u), x− /∈ S

τ+ = τ−

x+ = ∆(x−), x− ∈ S

Σii :



τ̇ = 1, τ− < Tp

ẋ = f(x, u),

τ+ = 0 τ− = Tp

x+ = x−.

(6.61)

The guard condition on the phase-i depends only on the state x, whereas the guard

condition on the phase-ii depends only on “time” as measured by τ .

H-3 The user has selected an open ball B ⊂ Rn about x∗m, a positive-definite, locally

Lipschitz-continuous function V : B → R, and constants 0 < α1 ≤ α2 such

102

that, V (x∗m) = 0 and ∀ x ∈ B,

α1(x− x∗m)>(x− x∗m) ≤

V (x) ≤ α2(x− x∗m)>(x− x∗m).

H-4 There is a constant 0 ≤ c < 1, such that, for each initial condition ξ ∈ B,

there exists a piecewise continuous input uξ : [0, Tp]→ Rm and a corresponding

solution ϕξ : [0, Tp]→ Rn of the hybrid model (6.61) satisfying

a) ϕ+
ξ (0) = ξ,

b) ϕ−ξ (Tp/2) ∈ S,

c) ∀ t 6= Tp/2, ϕξ(t) 6∈ S,

d) ϕ+
ξ (TP) ∈ B and there is exponential convergence toward the periodic

orbit, namely,

V (ϕ+
ξ (TP)) ≤ cV (ξ), (6.62)

and

e) ξ = x∗m ⇒ uξ = u∗.

�

Proposition VI.11. Assume the open-loop hybrid model (6.59) satisfies Assumptions

H-1 to H-4. Assume in addition there exist open sets Be
i and Be

ii that contain B, a

δ > 0, and two feedbacks

µi : [0, Tp/2 + δ]×Be
i → Rm

µii : [Tp/2 − δ, Tp]×Be
ii → Rm

that are piecewise continuous in t, locally Lipschitz continuous in x, and, such that,

103

for 0 ≤ t < Tp and ξ ∈ B,

µi(t, ϕξ(t)) = uξ(t), 0 ≤ t < Tp/2

µii(t, ϕξ(t)) = uξ(t),
Tp/2 ≤ t < Tp.

(6.63)

Then ϕ∗ : [0, Tp]→ Rn is a locally exponentially stable periodic solution of the closed-

loop system

Σcu
i :



τ̇ = 1,

ẋ = f(x, µi(τ, x)), x− /∈ S

τ+ = τ−

x+ = ∆(x−), x− ∈ S

Σcu
ii :



τ̇ = 1, τ− < Tp

ẋ = f(x, µii(τ, x)),

τ+ = 0 τ− = Tp

x+ = x−.

(6.64)

�

6.3.3 Generalized Hybrid Zero Dynamics

Following Appendix-B, assume now that the continuous phase of the hybrid model

has been decomposed as

ẋ1 = f1(x1, x2, u)

ẋ2 = f2(x1, x2, u),

(6.65)

with

x2 =

 x2a

x2b

 and f2 =

 x2b

u

 .

104

Let γ : Rn1 → Rn2 be a locally Lipschitz continuous insertion function that preserves

the periodic orbit, namely, writing x∗m =: (x∗1m;x∗2m), it follows that γ(x∗1m) = x∗2m.

H-5 There is a constant 0 ≤ c < 1, such that, for each initial condition ξ =

(ξ1, γ(ξ1)) ∈ B, there exists a continuous input uξ1 : [0, Tp] → Rm and a corre-

sponding solution ϕξ1 : [0, Tp]→ Rn of the hybrid model (6.61) satisfying,

a) ϕ+
ξ1

(0) = (ξ1; γ(ξ1)),

b) ϕ−ξ1(
Tp/2) ∈ S,

c) ∀ t 6= Tp/2, ϕξ1(t) 6∈ S,

d) ϕ+
ξ (TP) ∈ B and there is exponential convergence toward the periodic

orbit, namely,

V ((ϕ+
1ξ1

(Tp), γ(ϕ+
1ξ1

(Tp))) ≤ cV (ξ1, γ(ξ1)), (6.66)

and

e) (ξ1, γ(ξ1)) = x∗m ⇒ uξ1 = u∗.

where a solution of the (n1+n2)-dimensional model (6.65) has been decomposed

as ϕξ1(t) =: (ϕ1ξ1(t), ϕ2ξ1(t)).

�

The following result generalizes the hybrid zero dynamics defined in [122, 80, 125].

Even in the case of one degree of underactuation, one is able to achieve exponential

stability with this method for gaits that could not be rendered stable with the previous

formulation of virtual constraints. See Appendix D for an example. More important

that this fact, however, the new formulation allows a systematic approach to robot

models with more than one degree of underactuation. This is illustrated in Sect. 6.4.

105

Proposition VI.12. Assume the open-loop hybrid system (6.59) with f given by

(6.65) satisfies Hypotheses H-1 to H-3 and H-5, and define B1 := {ξ1 ∈ Rn1 | (ξ1, γ(ξ1)) ∈

B}. Assume in addition there exist open sets Be
1.i and Be

1.ii that contain B1, a δ > 0,

and two feedbacks

νi : [0, Tp/2 + δ]×Be
1.i → Rn1

νii : [Tp/2 − δ, Tp]×Be
1.ii → Rn1

and

µi : [0, Tp/2 + δ]×Be
1.i → Rm

µii : [Tp/2 − δ, Tp]×Be
1.ii → Rm

that are piecewise continuous in t, locally Lipschitz continuous in x, and, such that,

for 0 ≤ t < Tp and ξ ∈ B,

νi(t, ϕ1ξ1(t)) = ϕ2ξ1(t), 0 ≤ t < Tp/2

νii(t, ϕ1ξ1(t)) = ϕ2ξ1(t),
Tp/2 ≤ t < Tp

(6.67)

and

µi(t, ϕ1ξ1(t)) = uξ1(t), 0 ≤ t < Tp/2

µii(t, ϕ1ξ1(t)) = uξ1(t),
Tp/2 ≤ t < Tp.

(6.68)

Then x∗1 : [0, Tp] → Rn1 is a locally exponentially stable periodic solution of the

106

reduced-order hybrid system

Σi :



τ̇ = 1,

ẋ1 = f1(x1, νi(τ, x1), µi(τ, x1)),

when

 x−1

νi(τ
−, x−1)

 /∈ S

τ+ = τ−,

x+
1 = ∆1(x−1 , νi(τ

−, x−1)),

when

 x−1

νi(τ
−, x−1)

 ∈ S

Σii :



τ̇ = 1, τ− < Tp

ẋ1 = f(x, νii(τ, x1), µii(τ, x1)),

τ+ = 0, τ− = Tp

x+ = x−.

(6.69)

�

Remark VI.13.

(i) In principle, τ ∗ : [0, Tp]→ R needs to be defined to complete the periodic orbit,

but clearly, the trivial solution, τ ∗(t) = t, is the only possibility.

(ii) As in the non-hybrid case, using the trajectories in H-5, define

Ψt : B1 → Rn, Ψt(ξ1) :=

 ϕ1ξ1(t)

ϕ2ξ1(t)

 (6.70)

107

and Ψe : [0, Tp)×B1 → Rn+1 by

Ψe(τ, ξ1) :=

 τ

Ψτ (ξ1)

 . (6.71)

By H-5-b), ∀ ξ1 ∈ B1, Ψ−e (Tp/2, ξ1) ∈ S. Hence, the loss of dimension is in the

τ -component, and therefore

dim
(
Ψ−e (Tp/2, B1) ∩ S

)
= dim(B1).

(iii) The Generalized Hybrid Zero Dynamics Manifold (G-HZD) is therefore3

Ze := Ψe([0, Tp), B1), (6.72)

which has two components,

Ze,i := Ψe([0,
Tp/2), B1)

and

Ze,ii := Ψe([
Tp/2, Tp),Ψ

−
e (Tp/2, B1) ∩ S).

(iv) The corresponding restriction dynamics is given by (6.69), which is then the

G-HZD.

3Modulo Tp is not required here because τ is reset at Tp, whereas in the non-hybrid case, it was
required in (6.28).

108

6.3.4 Stabilizing the Original Model

We can now obtain and explain the controller we use on bipeds. Similar to

Sect. 6.1.5, assume the continuous phase of the hybrid model has the form

ẋ1 = f1(x1, x2, u1)

ẋ2 = f2(x1, x2, u2),

(6.73)

with

x2 =

 x2a

x2b

 and f2 =

 x2b

u2

 ,
and u = (u1, u2). The reason to split the input and not allow the u2-component to

enter the x1-dynamics will be clear shortly. We allow the u1-component to be empty.

H-6 The solutions in H-5 also satisfy

γ(ϕ1ξ1(Tp)) = ϕ2ξ1(Tp). (6.74)

�

Theorem VI.14. Assume the open-loop hybrid system (6.59) with f given by (6.73)

satisfies Hypotheses H-1 to H-3, H-5 and H-6. Define B1 := {ξ1 ∈ Rn1 | (ξ1, γ(ξ1)) ∈

B}. Assume in addition there exist open sets Be
1.i and Be

1.ii that contain B1, a δ > 0,

and feedbacks

νi : [0, Tp/2 + δ]×Be
1.i → Rn1

νii : [Tp/2 − δ, Tp]×Be
1.ii → Rn1

109

and

µi : [0, Tp/2 + δ]×Be
1.i → Rm

µii : [Tp/2 − δ, Tp]×Be
1.ii → Rm

that are piecewise continuous in t, locally Lipschitz continuous in x, and, such that,

for 0 ≤ t < Tp and ξ1 ∈ B1,

νi(t, ϕ1ξ1(t)) = ϕ2ξ1(t), 0 ≤ t < Tp/2

νii(t, ϕ1ξ1(t)) = ϕ2ξ1(t),
Tp/2 ≤ t < Tp

(6.75)

and

µi(t, ϕ1ξ1(t)) = uξ1(t), 0 ≤ t < Tp/2

µii(t, ϕ1ξ1(t)) = uξ1(t),
Tp/2 ≤ t < Tp.

(6.76)

Then for all n2

2
× n2

2
positive definite matrices Kp and Kd, ∃ ε∗ > 0, such that

∀ 0 < ε ≤ ε∗, x∗ : [0, Tp] → Rn1+n2 is a locally exponentially stable periodic solution

110

of the closed-loop hybrid system

Σi :



τ̇ = 1

ẋ = f(x1, x2, u1, u2) x− /∈ S

u1 = µ1i(τ, x1)

u2 = µ2i(τ, x1)−
[
Kp

ε2
Kd

ε

] (
x2 − νi(τ, x1)

)
τ+ = τ−

x+ = ∆(x−), x− ∈ S

Σii :



τ̇ = 1 τ− < Tp

ẋ = f(x1, x2, u1, u2)

u1 = µ1ii(τ, x1)

u2 = µ2ii(τ, x1)−
[
Kp

ε2
Kd

ε

] (
x2 − νii(τ, x1)

)
τ+ = 0 τ− = Tp

x+ = x−.

(6.77)

Moreover, the closed-loop system possesses a G-HZD and it is given by (6.69).

Remark VI.15. The control was split so that the high-gain part of the feedback does

not directly enter the states of the zero dynamics, namely x1. This allows the system

to conform with existing theorems [4] for establishing the exponential stability of

the periodic orbit — in the full-order hybrid model — on the basis of its stability

in the zero dynamics, (6.69). Isolating the action of the high-gain controller to the

x2-dynamics was not necessary in the case of ODEs.

111

6.4 Bipedal Walking Gaits

This section applies the Generalized Hybrid Zero Dynamics (G-HZD) developed

in Section 6.3 to the bipedal robot MARLO. The control laws developed here will

illustrate stepping in place, walking forward and backward, and transitions among

such gaits. The work illustrates a theoretically sound method for gait design that

unifies and significantly extends many of our previous results. The first control designs

will rely on the optimization package in [58], which can only handle a planar model of

the robot. For these designs, lateral stability is achieved via a heuristic foot placement

policy. Since March of 2017, we have had access to the trajectory optimization package

[53], which easily handles the full 3D model of the robot. Figure 6.16 summarizes our

control design process.

6.4.1 MARLO Model Update

The robot is described in detail in [97]. For the planar model, the configuration

variables are joint angles and one absolute coordinate. The angle θ, the absolute

stance leg angle, is unactuated because the feet are passive. Hence, we define

x1 =

θ
θ̇

 .
For the purposes of controller design, the regulated quantities are

qa = (qx, qsw,LA, qst,KA, qsw,KA),

that is, the torso, stance knee, swing leg, and swing knee angle, and hence

x2 =

qa
q̇a

 .

112

In the simulation and control design, we constrain the stance foot to remain in contact

with the ground with no foot slip. In the experiments, we estimate the ground reaction

forces through the deflection of the leaf springs to decide whether to control the torso

angle or the stance leg angle qst,LA, as in [104]. The model decomposition is done as

in Appendix B.

6.4.2 Design of Planar Periodic Gaits and Transition Trajectories via

Optimization

For robots, an orbit library is called a gait library. We first design a gait library

L := {v̄ | − 0.8 ≤ v̄ ≤ 0.8} (6.78)

consisting of periodic gaits for various average walking speeds satisfying H-2. In

this example, we reuse the gaits described in [33], where each gait has period Tp = 0.4,

and the cost function is

J =

∫ Tp/2

−Tp/2

||u(t)||2dt. (6.79)

Denote the trajectory of the periodic gait and the corresponding input as ϕv̄(t) and

uv̄(t), respectively, and the midpoint of the periodic trajectory as xv̄m. The insertion

function is built from the gait library and is denoted γL.

For a given periodic orbit in L, we define

Bv̄
1 = {ξ1 := (θ, θ̇) | − π

12
≤ |θ − θv̄m| ≤

π

12
,

−0.8 ≤ |θ̇ − θ̇v̄m| ≤ 0.8},
(6.80)

a sliding window4 about the target speed v̄. For ξ1 ∈ Bv̄
1 , trajectories are generated

4Because the legs are 1 m long, average walking speed and angular rate at the middle of the step
are nearly the same.

113

Step 1: Generate periodic gaits

Step 2: Design transient gaits between periodic gaits; here,
we are showing three-step transitions. Similar to MPC, only
the first step of the transition is retained for the learning set.
From this set of trajectories, Supervised Machine Learning
is used to extract the controller

Step 3: The hollow dot is the target periodic gait. It can be
reached in three steps, though the learned controller re-plans
at each step to reach the target in three additional steps,
leading to exponential convergence.

Figure 6.16: This can be thought of as an alternative representation of Figure 1.3
when the surface Z0 is built from periodic solutions of the full-order model. The light
dots represent transient trajectories while the other dots (solid or hollow) are periodic
orbits.

114

Table 6.4: Optimization Constraints

Motor Toque |u| < 5 Nm

Step Duration T = 0.4 s

Friction Cone µ < 0.6

Impact Impulse Fe < 15 Ns

Vertical Ground Reaction Force > 300 N

Mid-step Swing Foot Clearance > 0.15 m

as in H-5 using optimization with cost function

J(ξ1, v̄) =
6∑

k=1

∫ k
Tp
2

(k−1)
Tp
2

(
||x− ϕv̄||2Q + ||u− uv̄||2R

)
dt (6.81)

for a horizon of length Th = 3Tp. The optimization is performed subject to the hybrid

dynamics describing MARLO, the physical constraints shown in Table. 6.4, and the

terminal constraint x(3Tp) = ϕv̄(Tp). So that the trajectories can be used to stabilize

the full-order model, the boundary constraints in H-6 is also imposed. The resulting

trajectory and input for the given v̄ and selected ξ1 are denoted ϕv̄ξ1(t) and uv̄ξ1(t),

respectively.

Remark VI.16. The initial condition set Bv̄
1 is related to the notion of 3-step capture

region defined in [67, 131]. In our experience, three-steps is a reasonable balance

between planning horizon and computational burden.

6.4.3 Controller Design via Machine Learning

The gait library (6.78) is assumed to be discretized by 5 evenly spaced average

speeds v̄k, each ξi1 =: (θi, θ̇i) is drawn from a uniformly spaced gird of 25 points, and

time interval [0, Tp] is evenly sampled into 21 points, tj. The combined training and

115

validation data set is therefore denoted by

xi,j,k1 := ϕv̄k
1ξi1

(tj)

νi,j,k := ϕv̄k
2ξi1

(tj)

µi,j,k := uv̄k
ξi

(tj).

(6.82)

Any infeasible optimization problems5 are removed from the data set before processing

it by Supervised Machine Learning.

We next learn the functions in Theorem VI.14. The features are (tj, x
i,j,k
1 , v̄k) and

the labels are (νi,j,k, µi,j,k) and the data base is split at t = Tp/2 so that the functions

νi(t, x1, v̄)

νii(t, x1, v̄)

µi(t, x1, v̄)

µii(t, x1, v̄)

are learned individually. Part of the fitting is shown in Figure 6.17. These functions

are enough to construct the G-HZD in (6.69). To complete the control design as in

(6.77), the feedback gains Kp, Kd and ε must be selected. While in principle these

last gains may have to vary with v̄, for MARLO, we have found that a single set of

gains6 suffices. The transition among different target speeds are shown in Figure 6.18.

6.4.4 Example Performance Analysis

6.4.4.1 Stability Analysis

We know that the periodic orbits in the full-order model should be locally expo-

nentially stable by the results in Sect. 6.3. We formally verify this by numerically

5 For example, due to torque limits, there is no solution for v̄ = 0.8 and ξ1 = (θv̄m+π/12, 0.8+ θ̇v̄m).
6They essentially correspond the low-level PD gains which are straightforward to tune on

MARLO. In simulation, Kp = 800, Kd = 40 and ε = 1

116

Figure 6.17: The fitting results of the Supervised Machine Learning. The features
θ = θv̄m and v̄ = 0 are fixed at constant values, while τ ∈ [0, 0.2] is from mid-step to
ground contact. The plots show four of the components in νi(t, x1, v̄).

0 2 4 6 8 10 12

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

S
p
ee
d
(m

/s
)

Average

Instant

Target

Figure 6.18: The target speed v̄ changes from 0.3 m/s to −0.5 m/s and to 0 m/s. The
gait transition takes less than five steps to reach the target speed. The error between
target and average speed is small.

117

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

v̄ (m/s)

0

0.1

0.2

0.3

0.4

0.5

T
h
e
L
ar
ge
st

E
ig
en
va
lu
e

Figure 6.19: The largest eigenvalue of the Poincaré map is given for some target
speeds. This indicates the target speed in the gait library (6.78) is exponentially
stable.

evaluating the Jacobian of the Poincaré map for twenty evenly-spaced points in the

interval −0.8 ≤ v̄ ≤ 0.8. The magnitude of the largest eigenvalue is shown in Fig-

ure 6.19, which proves local exponential stability for each fixed target speed v̄. Note

that only five of these points were in the training data. The learned feedback functions

have provided stable gaits for a continuum of target speeds.

The stability of the overall closed-loop system is further illustrated by applying

force perturbations, which is a more “realistic” test. We apply a longitudinal force

on the hip at 1.2 seconds for 0.8 second (i.e., 2Tp) and examine the time to recover

the nominal gait. For the stepping-in-place gait v̄ = 0, the largest force from which

the robot can recover without violating the physical constraints is 150 N. Figure 6.20

shows the resulting longitudinal velocity of the robot. The peak speed is approxi-

mately 1.5 m/s, which is beyond the maximum training speed of 0.8 m/s. The speed

is once again less than 0.05 m/s within five steps. The convergence rate is relatively

fast given that the optimizer uses a horizon of three steps.

118

0 2 4 6 8

Time (s)

-0.5

0

0.5

1

1.5

2

S
p
ee
d
(m

/s
)

Average

Instant

Target

Figure 6.20: A perturbation is applied from 1.2 seconds to 2 seconds in a magnitude
of 150 N. The maximum speed is larger than the maximum speed (0.8 m/s) in the
training set. The extrapolation may be the cause of the speed oscillation. Even
though, the speed convergence near the target speed in less than five steps.

6.4.4.2 Interpretation of the posture changes employed by the controller

We now provide some physical intuition for how the controller coordinates the

links to achieve stability. In fact, we evaluate ν(Tp/2, x1) with x1 = (π/12, θ̇), −0.8 ≤

θ̇ ≤ 0.8. Figures 6.21 and 6.22 show the changes in the swing leg angle and the

stance knee angle at touchdown. The swing leg is seen to obey an approximately

linear relationship with respect to velocity, just as in the foot placement controllers

in [94, 36] designed on the basis of an inverted pendulum model or a linear inverted

pendulum model, viz

∆qsw,LA = K1∆v,

and the scalar K1 is constant. Denote the regressed linear fit in Figure 6.21 by K∗1 . We

add ±10% to K∗1 and compare the resulting foot placement strategies in Figure 6.23.

It is seen that with the smaller gain the velocity takes longer to settle whereas with

the larger gain, there is overshoot.

The learned controller is more than just providing foot placement. Figure 6.22 also

119

-1 -0.5 0 0.5 1

∆v (m/s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

∆
q s

w
,L
A
(r
ad

)

Figure 6.21: Change in swing leg angle vs change in velocity. One part of the learned-
optimal strategy is a standard linear leg-angle adjustment policy as in [94, 36].

-1 -0.5 0 0.5 1

∆v (m/s)

-0.05

0

0.05

0.1

0.15

∆
q s

t,
K
A
(r
ad

)

Figure 6.22: Change in stance knee angle vs change in velocity. This is not part of
the standard recommendations in [94, 36].

shows a quadratic relationship for knee angle versus velocity just before touchdown,

viz

∆qst,KA = K2(∆v)2.

As the velocity moves away from zero in either direction, the stance knee angle in-

creases. Perhaps this is to lower the center of mass and to make it easier for the swing

120

1 2 3 4 5 6 7 8 9 10

Steps (N)

-0.2

0

0.2

0.4

0.6

0.8

A
ve
ra
ge

S
p
ee
d
(m

/s
)

90%K
∗

1

K
∗

1

110%K
∗

1

Figure 6.23: When the effective linear policy from the learned-optimal strategy is
modified by ±10%, the convergence to the nominal speed of zero either slows down
or overshoots.

Figure 6.24: Stick figure showing the coordinated action of torso angle, knee bend,
and leg angle provided by the learned-three-step optimization.

foot to touch the ground. Furthermore, in addition to changing the swing leg angle,

the learned controller also straightens the swing knee angle, thereby extending the

foot further out. Finally, it also leans the torso backward, keeping the center of mass

over the stance toe, as shown in Figure 6.24. These adjustments are all coordinated

by the optimization and automatically extracted from the transition trajectories by

the supervised learning. Unlike a classical foot placement controller that adjusts only

swing leg angle, the learned controller uses the many degrees of freedom of the robot

to achieve better performance.

121

6.5 Experiments on a 3D Bipedal Robot

This section extends the learning controller of the last section to the full-3D model

of MARLO. Hence, both the sagittal and lateral planes of the robot are included, while

yaw rotations are assumed to be small due to the foot. This control design will allow

the physical 3D-robot to walk and step in place. The 3D-controller design will mostly

follow the process of the planar example that was illustrated through simulations,

though some modifications have been made during the experimental implementation

to deal with model uncertainty, impact model uncertainty, and signal noise; these will

be clearly explained and justified.

6.5.1 Update 3D-MARLO Configuration

We update the generalized coordinates in Figure 3.2 to describe the 3D robot. Let

(px, py) denote the sagittal and lateral position of the center of mass, and be (vx, vy)

be the corresponding velocities. We define

x1 =



px

py

vx

vy


as the “weakly actuated” states. The regulated angles are qa = (qy, qx, qsw,3, qsw,LA, qst,KA, qsw,KA),

that is, the torso roll and pitch, swing hip, swing leg, stance knee and swing knee

angles, and hence the “strongly actuated” states are

x2 =

qa
q̇a

 .

122

We note that the coordinates (x1, x2) describe the robot dynamics in (6.65), or (B.6)

after a coordinate change.

6.5.2 Optimization

We first use optimization, with a cost function as in (6.79), to build a periodic

gait library

L := {(v̄x, v̄y) | − 0.6 ≤ v̄x ≤ 0.6,

−0.4 ≤ v̄y ≤ 0.4},
(6.83)

as a grid in two-dimensional Cartesian space; i.e., longitudinal and lateral speed of

the robot. The gaits are designed, without loss of generality, such that the associated

2D-Cartesian positions (px, py) are equal to the origin at a nominal point in each of

the gaits. The insertion function associated to the gait library is constructed using

linear regression as in the pendulum model (6.55) and in the planar biped examples;

specifically,

x2 = γL(x1) = a0 + a1x1, (6.84)

where a0 and a1 are constant vectors. A linear fitting is good enough for 3D MARLO.

While one could do a more sophisticated fit, the maximum root-mean-square-error

(RMSE) for all joints is less than 1 degree, and for all joint velocities it is less than

4 degrees per second, even with the linear fit. In part, this is a benefit of using the

middle of the gait for building the controller.

The next step is to design transition trajectories from periodic orbits in the library

L to a target periodic orbit. In this chapter, we will only illustrate the target orbit as

the stepping-in-place gait, that is, (v̄∗x, v̄
∗
y) = 0. Further details are not given because

they follow the planar example of the last section. One can also refer to work in [33]

for the design of transition gaits for different ground slopes.

We perform three-step trajectory optimizations as in (6.81) and denote the collec-

tion of transition trajectories to the target speed of zero as ϕL→0. The orbit library is

123

evenly sampled per v̄x = {−0.6,−0.4,−0.2, . . . , 0.6} and v̄x = {−0.4,−0.3,−0.2, . . . , 0.4},

so that the total number of transition trajectories ϕiL→0 is 63. The time interval

[0, 0.4] is evenly sampled into 21 points, tj.

6.5.3 Machine Learning

For the 3D robot, we illustrate a different philosophy in building the feature set.

Recall that in the planar examples, we included time and all of x1-coordinates in the

feature vector. Here, we ill select the feature vector as simply time and the velocity

coordinates, namely,

(t, vx, vy),

and leave out the Cartesian positions (px, py). There are several reasons for this:

1. The impact map in the hybrid model (6.61) resets the Cartesian position vari-

ables to a constant, assumed to the origin. Hence, these variables do not need

to be stabilized.

2. On the robot MARLO, we are placing the torso sagittal and roll angles in the

x2-coordinates, and hence if these are kept upright, the position of the center

of mass does not provide significant additional information.

3. It keeps the dimension of the feature set as low as possible, which allows a

smaller training data set.

On 3D MARLO, the labels are taken as

ν = ϕ2,L→0,

which represents the x2-coordinates of the optimized trajectories. The control input

µ is not learned because, as in previous experiments [48, 33] on this robot, we use PD

124

control

uPD = [Kp, Kd]
(
x2 − ν(t, vx, vy)

)
(6.85)

to regulate the joint angles, without a feedforward term. The feedforward torque is

not applied because of uncertainty in the model. Specifically, the model does not

include the motor drive friction, which consumes about 20% of the torque in nominal

operation (stepping in place and walking), nor does the model include backlash or

compliance in the harmonic drives. Finally, the leaf springs in Figure 3.2 are excluded

from the model; they deflect about 5 degrees when supporting the robot’s weight.

Since the impact happens at Tp/2 = 0.2, the functions

νi(t, vx, vy)

νii(t, vx, vy)

are learned individually.

6.5.4 Experimental Implementation

Another difference between the model and the physical robot occurs in the ve-

locity signal. Due to spring deflection, impacts, and joint compliance, the estimated

Cartesian velocities (vx, vy) are noisy even if each of the individual joint angular ve-

locity signals is relatively “clean”. We thus use a strong7 first-order filter to clean

up the Cartesian velocity signals (vx, vy) appearing in ν(t, vx, vy), the reference for

low-level PD controllers (6.85).

The filtered signal, shown in Figure 6.25, is relatively clean, but causes phase lag.

Moreover, the energy loss at impact is less on the robot than in the design model

because the springs store energy at impact release it throughout a step. This two

factors lead the learned controller to generate overshoot in the Cartesian velocities.

7The time constant is 0.2 second.

125

0 2 4 6 8

-1

0

1

S
ag
it
ta
l
V
el
o
ci
ty

(m
/s
)

0 2 4 6 8

Time (s)

-1

0

1

L
at
er
al

V
el
o
ci
ty

(m
/s
)

Instantaneous Filtered Offline Filtered

Figure 6.25: A perturbation is applied from 1.2 seconds to 2 seconds in a magnitude
of 150 N. The maximum speed is larger than the maximum speed (0.8 m/s) in the
training set. The extrapolation may be the cause of the speed oscillation. Even
though, the speed convergence near the target speed in less than five steps.

We mitigate the overshoot by introducing a speed-damping term on the torque of the

swing leg and the swing hip,

usw,LAd = Nx,d(vx − vkx)

usw,3d = Nx,d(vy − vky),

(6.86)

which is the same term used in [104]. The overall torque is

u = uPD + ud. (6.87)

126

6.5.5 Results

The learned controller for stabilizing the stepping-in-place gait was implemented

on MARLO. The nominal Cartesian velocities are thus zero. Forces were applied in

the sagittal and lateral directions, or a mix of the two, by the experimenter applying

a push or a kick to the robot. The amount of force has not been estimated, but the

reader can judge of his-or-herself based on the experiment video (see also Extension 4).

In the first experiment, five successive kicks were applied to MARLO in the for-

ward (sagittal) direction. MARLO consistently recovered from the disturbances. The

peak speed varied from 0.8 to 1 m/s, as shown in Figure 6.26. A harder kick was

not applied since the training set only includes speed up to 0.6 m/s. After reaching

the peak speed, MARLO slowed down to 0.1 m/s in less than 5 seconds. The robot

acted as an underdamped spring-load system. This may be caused by the leg springs

in the physical which compressed and unloaded on the second step, while the model

did not include this effect. We have added the damping term in (6.86) to mitigate

the overshoot effect. A larger derivative gain will further reduce the overshoot, but

will so increase the settling time. Still, the speed slowed down to 0.1 m/s in less than

5 seconds. The leg motor torque is shown in Figure 6.26. The torque bound (5 Nm)

was reached when robot moved around the peak speed. This could explain why the

optimization can only find the solution of transition gait from 0.6 m/s to zero.

The second experiment was to push MARLO in the lateral direction. Because of

the parallelogram shape of the legs, one foot cannot place across the other, which

limits the available range of foot placement. Plus the weaker motor on the hip, the

lateral stability of MARLO is weaker than the sagittal direction. The push drove the

lateral speed to 0.6 m/s, which is higher than the training speed 0.4 m/s. The push

was applied on both left and right sides, shown in Figure 6.28. The hip motor torque

is shown in Figure 6.29. The torque bound is 3 Nm.

Random direction pushes and kicks were included in the last part of the experiment

127

video. We applied force to move MARLO backward and to turn around.

0 2 4 6 8 10

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1
S
ag
it
ta
l
V
el
o
ci
ty

(m
/s
) Filtered

Target

Figure 6.26: An example of the velocity response for a kick in the forward (sagittal)
direction. The perturbation is applied at around 1 second driving the robot to peak
speed of 0.9 m/s.

0 2 4 6 8 10

Time (s)

-6

-4

-2

0

2

4

6

8

L
eg

T
or
q
u
e
(N

m
)

u1R u2R u1L u2L

Figure 6.27: The leg torques are applied before a 1:50 gear transmission. The torques
(u1R, u2R, u2L, u2L) are associate with the leg joints (q1R, q2R, q1L, q2L) in the robot
configuration, Figure 3.2.

128

0 5 10 15 20

Time (s)

-0.4

-0.2

0

0.2

0.4

0.6

L
at
er
al

V
el
o
ci
ty

(m
/s
)

Filtered
Target

Figure 6.28: An example of the velocity response for multiple pushes in the lateral
direction. The positive sign is the right direction whereas the negative is the left.

0 5 10 15 20

Time (s)

-4

-2

0

2

4

H
ip

T
or
q
u
e
(N

m
)

u3R u3L

Figure 6.29: The hip torques are applied before a 1:27.5 gear-belt drive. The positive
torque is to move leg inward whereas the positive torque is to move leg outward.

129

CHAPTER VII

Discussion and Conclusion

7.1 Strategy

This thesis is building on the recent revolution in open-loop trajectory optimiza-

tion. It is now possible to compute in minutes gaits that used to take us hours or

more. Armed with a set of open-loop trajectories, the question we posed was, how to

turn them into a feedback controller? Our strategy was to attempt to build a surface

from the trajectories and to induce a vector field on that surface that had desirable

properties, such as (1) it contained a periodic solution of the model that met impor-

tant physical constraints; (2) trajectories on the surface, by design, converged to the

periodic solution; and (3), we could find a feedback controller for the complete model

of the system that would render this surface exponentially attractive.

We have used Supervised Machine Learning as a “universal” function approxima-

tion, in other words, glorified regression. The functions we sought were implicitly

contained in the data, and to our knowledge, closed-form solutions seem unlikely to

exist. Hence, they had to be computed numerically in one fashion or another, and we

believe an important contribution of the thesis is to show how the functions needed

to build a feedback controller can be extracted from a set of trajectories over a fixed

time interval.

130

7.2 Curse of Dimensionality

The method we use to build a vector field from open-loop trajectories works, at

least in principle, in large dimensions. Even with the large strides made in optimiza-

tion, high-dimensional state spaces are still the bottleneck, at least with our approach.

Hence, it was important to find a structural property in our robot models that would

allow us to focus the optimization effort on a low-dimensional portion of the system.

We chose to exploit the local input-output linearizability of the actuators associated

with knees and hips for example and put into the “weakly-actuated category” things

like the global orientation of the body and possibly ankle joints. This allowed us

to build trajectories of the full-model parameterized by initial conditions of a small

subsystem, without making any approximations. In the end, we do build the control

law for the full model around a low-dimensional model, just as advocates of pendulum

models do, however, and this is important, all of the solutions of our low-dimensional

model are feasible solutions of the robot itself and they meet whatever constraints

were included in the design of the trajectories.

7.3 Original HZD vs G-HZD

Once one understands how the G-HZD tool works, it’s hard to believe how much

the previous method could accomplish with a single optimization. The work presented

in [125] uses a single optimization to design the periodic orbit. And that is it. For

robots with one degree of underactuation and for which a “mechanical phase variable”

can be found, that is a strictly monotonically increasing generalized coordinate along

the periodic orbit, the basic HZD result in [125] shows how to build an invariant

surface, relate stability of the periodic orbit in the surface to a physical property of the

periodic orbit1, and how to render the surface exponentially attractive. G-HZD can

1The velocity of the robots center of mass should point downward at the end of the step.

131

handle more than one degree of underactuation. As in [100, 101, 65], G-HZD includes

“time” as a monotonically increasing generalized coordinate. What makes it quite

distinct from these references is that the equivalent of “G-HZD virtual constraints”,

the function ν(t, x1), depends on time and the full state of the zero dynamics, thereby

enriching the set of possible closed-loop behaviors.

With the previous work on HZD and its extensions in [20, 51, 48], we were unable

to handle challenging terrain such as the Michigan Wave Field . This motivated

the introduction of a family of periodic orbits in [32] and a first attempt at including

transitions among the periodic orbits in [33] as a means of building in stability. While

this latter thesis also used Supervised Machine Learning to design a feedback function,

it also made some false steps relying on analogies with model predictive control that

were not supported by deeper analysis. The present thesis is our attempt to provide

a consistent design framework. An attractive feature of the original HZD approach

is that it has an easily verifiable set of sufficient conditions for its many results. We

hope in some future paper, a similarly clean analytical framework will be developed

for G-HZD.

7.4 Stability Mechanism

Not only do the new results handle higher degrees of underactuation but even

in the case of one degree of under actuation, the way stability is achieved is quite

different in G-HZD vs. HZD. As discussed in the Introduction, with G-HZD, one

does not have to count on the impacts to create stability. More general stability

mechanisms, such as foot placement, or as shown in Figure 6.22, lowering the center

of mass, naturally arise.

132

7.5 Future Work

We see this thesis as a first cut in developing a happy marriage among trajectory

optimization, machine learning, and geometric nonlinear control. We hope the re-

sults in the thesis can be reinforced with easy-to-check sufficient conditions for our

many assumptions. Beyond these technical considerations, we also see several other

directions. The recent work in [28] may provide a geometric formulation for building

the invariant surface, which would also clarify the choice of coordinates for making

the mapping Ψ in (6.19) and its projection to be full rank. We believe the feedback

linearization assumption on the “strongly actuated” part of the dynamics can be

weakened considerably. Replacing the terminal condition in the optimization with a

terminal penalty is another direction that needs to be investigated.

In a broader picture, a general motivation of legged robots is to travel through

rough terrain. However, on flat ground and roadways, wheeled vehicles are obviously

more energy efficient than legged robots. On the other hand, humanoid robots are

specially made to mimic human motions so that they can work in human infrastruc-

ture and use tools designed for humans. Letting Cassie drive a Segway (Figure 7.1)

conceptually merges the two ideas in one experiment, which is challenging in theory

and experiment, and fun to watch. Based on preliminary bench tests on Cassie, it

should be able to drive the Segway at 10 miles per hour (4.5 m/s), faster than the

robot’s maximum possible running speed. Cassie should also be able to drive the Seg-

way on both longitudinal and lateral slopes to show a reliable driving skill. Lastly,

Cassie should be able to make the Segway turn by shifting its knee sideways to push

the knee support. The preliminary result is shown in Extension 5

133

Figure 7.1: Cassie with a Segway. Cassie should drive the Segway miniPro as a human
to move forward and backward, over flat ground and slopes, make turns and stop.

134

APPENDICES

135

APPENDIX A

Index to Multimedia Extensions

Table A.1: Table of Multimedia

Extension Type Description

1 Code Inverted pendulum example

2 Video 2D Design to 3D Implementation

3 Video Long Walk

4 Video 3D robot experiments

5 Video Cassie on a Segway

136

https://www.dropbox.com/s/mr6ctpkzho688fe/Pendulum-on-a-cartMATLABcode.zip?dl=0
https://youtu.be/ofMaxs09YQY
https://www.youtube.com/watch?v=eSllkIptlK0
https://youtu.be/3gGEH9qaXXM
https://www.youtube.com/watch?v=ugEu0hzC8Xg

APPENDIX B

Normal Forms for Mechanical Models

Consider a standard mechanical model

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu

and let

Ω(q, q̇) := C(q, q̇)q̇ +G(q).

We suppose the system is underactuated, that is, there are fewer independent actuators

than generalized coordinates. In fact, we suppose there exists a partition of the

coordinates in which the model takes the form

D11(q)q̈1 +D12(q)q̈2 + Ω1(q, q̇) = 0

D21(q)q̈1 +D22(q)q̈2 + Ω2(q, q̇) = B2u,

(B.1)

with B2 square and invertible. Because D(q) is positive definite, by the Shur Com-

plement Lemma, D11(q), D22(q), and

D̄(q) := D22(q)−D21(q)D−1
11 (q)D12(q) (B.2)

137

are all positive definite as well.

Following [113], define

Jnorm(q) := D−1
11 (q)D12(q)

Ω̄1(q, q̇) := −D−1
11 (q)Ω1(q, q̇)

Ω̄2(q, q̇) := Ω2(q, q̇)−D21(q)D−1
11 (q)Ω1(q, q̇),

(B.3)

Then the (regular) feedback

u = B−1
2 (q)

(
D̄(q)v + Ω̄2(q, q̇)

)
, (B.4)

results in the Spong normal form:

q̈1 = Ω̄1(q, q̇)− Jnorm(q)v,

q̈2 = v.

(B.5)

Defining x1 = (q1, q̇1), x2a = q2, and ẋ2b = q̇2, it follows that the model can be

expressed as

ẋ1 = f1(x1, x2, v)

ẋ2a = x2b

ẋ2b = v.

(B.6)

An alternative form is developed in [125, pp. 62], which uses the conjugate mo-

menta that arises from Lagrange’s equations. It has the advantage that the input

only appears in the second row of the model. Define

σ1 := D11(q)q̇1 +D12(q)q̇2 (B.7)

Ḋ(q, q̇) :=
d

dt
D(q) (B.8)

138

Then the model can also be written as

q̇1 = D−1
11 (q) [σ1 −D12(q)q̇2]

σ̇1 = κ1(q, σ1, q̇2)

q̈2 = v

(B.9)

where

κ1(q, σ1, q̇2) :=
(
Ḋ11(q, q̇)q̇1 + Ḋ12(q, q̇)q̇2−

Ω1(q, q̇)
)∣∣∣ q̇1=D−1

11 (q)[σ1−D12(q)q̇2].

(B.10)

With x2 defined as above and x1 := (q1, σ1), the model takes the form

ẋ1 = f1(x1, x2)

ẋ2a = x2b

ẋ2b = v.

(B.11)

Various authors prefer one of (B.6) and (B.11) to the other; both are useful.

139

APPENDIX C

Proofs

C.1 Proof of Proposition VI.1

The proof is most easily done using the method of Poincaré sections [89]. By

A-1 and the assumption on ucu, the closed-loop system (6.10) has period Tp > 0 and

the origin is an equilibrium point. Due to the time-varying nature of the closed-loop

system, we make time a state variable, and because the system is Tp-periodic, we add

in a time-based reset map



τ̇ = 1, τ− < Tp

ẋ = f cu(τ, x) := f(τ, x, ucu(τ, x)),

τ+ = 0 τ− = Tp

x+ = x−.

(C.1)

The notation τ−, τ+, x− and x+ is explained in Section 6.3. Because the state reset

map is trivial, namely x+ = x−, the solutions of (6.10) and (C.1) are identical. Define

140

a Poincaré section by

Sn := {(τ, x) ∈ Rn+1 | τ = Tp, x ∈ B}, (C.2)

which is an n-dimensional hypersurface in the state space of the model. Then, by

construction of the closed-loop system, for ξ ∈ Sn, the Poincaré map P : Sn → Sn is

given by

P (ξ) = ϕξ(Tp). (C.3)

Indeed, for ξ ∈ B,

ϕξ(t) = ξ +

∫ t

0

f(ϕξ(s), uξ(s))ds

= ξ +

∫ t

0

f(ϕξ(s), u
cu(s, ϕξ(s))ds,

due to (6.9). By A-4, ξ∗ = 0 is a fixed point of the Poincaré map. Also by A-4, P is

a contraction because for each ξ ∈ B, V ◦ P (ξ) ≤ cV (ξ), and hence by induction,

V ◦ P k(ξ) ≤ ckV (ξ),

and by A-3,

||P k(ξ)||2 ≤ ck
α2

α1

||ξ||2 −−−→
k→∞

0,

proving local exponential stability of the fixed point. The uniformity in t0 follows

from periodicity. �

C.2 Proof of Proposition VI.3

Without loss generality, we assume that B1cu is bounded so that its closure is

compact. Then there exists L, a Lipschitz constant, such that

||γ(x1)||2 ≤ L||x1||2

141

for all x1 ∈ B1cu. Define V1 : B1 → R by V1(x1) := V (x1, γ(x1)). It follows that

α1x
>
1 x1 ≤ V1(x1) ≤ α2(1 + L2)x>1 x1,

and hence V1 is positive definite, with quadratic lower and upper bounds. From

(6.15),

V1(ϕ1ξ1(Tp)) ≤ cV1(ξ1).

From here, the proof of Prop. VI.1 can be repeated and the result follows. �

C.3 Proof of Theorem. VI.5

From the hypotheses of the Theorem and Prop. VI.3, the closed-loop system (6.25)

is a cascade of two locally exponentially systems, namely, the second row of (6.25) and

the reduced-order system (6.17). By standard results, the overall system is locally

exponentially stable. By [118, Thm. 43, Section 5.1, pp. 143], because the system is

periodically time-varying, the stability is uniform in t0.

�

C.4 Proof of Corollary. VI.7

Defining y as in (6.24) results in the closed-loop system having the form

ẋ1 = f1(t, x1, ν(t, x1) + y, µ(t, x1)− [Kp Kd]y)

ẏ = Ay,

(C.4)

with A Hurwitz. Hence, the proof of Theorem VI.5 can be repeated and we are done.

142

�

C.5 Proof of Proposition VI.11

The proof is very similar to that of Prop. VI.1. Define a Poincaré section by

Sn := {(τ, x) ∈ Rn+1 | τ = Tp, x ∈ B}, (C.5)

which is an n-dimensional hypersurface in the state space of the model. Then, by

construction of the closed-loop system, for ξ ∈ Sn, the Poincaré map P : Sn → Sn is

given by

P (ξ) = ϕξ(Tp). (C.6)

By H-4, ξ∗ := x∗m is a fixed point of the Poincaré map. Also by H-4, P is a contraction

because for each ξ ∈ B, V ◦ P (ξ) ≤ cV (ξ), and hence by induction,

V ◦ P k(ξ) ≤ ckV (ξ),

and by H-3,

||P k(ξ)||2 ≤ ck
α2

α1

||ξ − ξ∗||2 −−−→
k→∞

0,

proving local exponential stability of the fixed point. Because the closed-loop system

is locally Lipschitz continuous, local exponential stability of the fixed point implies

exponential attractivity of the orbit

O := {(τ, ϕξ∗(τ) | 0 ≤ τ < Tp}.

Because τ(t) = t, we have local exponential stability of the periodic solution. �

C.6 Proof of Proposition VI.12

Without loss generality, we assume that B1cu is bounded so that its closure is

143

compact. Then there exists L, a Lipschitz constant, such that

||γ(x1 − x∗1)||2 ≤ L||x1 − x∗1||2

for all x1 ∈ B1cu. Define V1 : B1 → R by V1(x1) := V (x1, γ(x1)). It follows that

α1(x1 − x∗1)>(x1 − x∗1) ≤ V1(x1) ≤

α2(1 + L2)(x1 − x∗1)>(x1 − x∗1),

and hence V1 is positive definite, with quadratic lower and upper bounds. From

(6.15),

V1(ϕ1ξ1(Tp)) ≤ cV1(ξ1).

From here, the proof of Prop. VI.11 can be repeated and the result follows. �

C.7 Proof of Theorem. VI.14

The Poincaré section is defined as in (C.5). References [50] and [125, Chap. 4]

show how to reduce the stability analysis of a hybrid model with two continuous

phases to that of an equivalent hybrid system with a single continuous phase. We

build the equivalent hybrid system with the continuous phase from Σii and a reset

map ∆eq that captures the flow of Σi, viz



τ̇ = 1 τ− < Tp

ẋ = f(x1, x2, u1, u2)

u1 = µ1ii(τ, x1)

u2 = µ2ii(τ, x1)−
[
Kp

ε2
Kd

ε

] (
x2 − νii(τ, x1)

)
 τ

x


+

= ∆eq(τ
−, x−), τ− = Tp

(C.7)

144

With this construction and Prop. VI.12, the zero dynamics manifold is

Z := {(τ, x1, x2) | x2 = νii(τ, x1)},

and the restricted Poincaré map ρ : Se∩Z → Se∩Z has x∗1 as a locally exponentially

stable fixed point. The equivalent hybrid system (C.7) therefore satisfies all the

hypotheses of [4, Thm. 2], and hence the periodic orbit

O := {(τ, ϕξ∗1 (τ) | 0 ≤ τ < Tp}

is locally exponentially stable. �

145

APPENDIX D

Relation to Backstepping, Zero Dynamics, and

Immersion and Invariance

For definiteness, consider a standard Lagrangian dynamical model where q ∈ Rn

is a set of generalized coordinates and u ∈ Rm is a vector of torques,

D(q)q̈ +H(q, q̇) = B(q). (D.1)

Assume the system is underactuated, that is, n > m, and that the coordinates have

been decomposed as

q :=

q1

q2

 , (D.2)

in which the model takes the form

D11(q)q̈1 +D12(q)q̈2 +H1(q, q̇) = 0

D21(q)q̈1 +D22(q)q̈2 +H2(q, q̇) = B2(q)u.

(D.3)

with B2(q) square and full rank. References [114, 103, 126] show that there is a

146

regular feedback that places the system in the form

ẋ1 = f1(x1, q2, q̇2)

q̈2 = v,
(D.4)

with

x1 :=

q1

σ1

 and σ1 := D11(q)q̇1 +D12(q)q̇2,

the generalized momentum conjugate to q1.

D.1 Backstepping

To begin the backstepping process in (D.4), one needs a feedback

q2

q̇2

 =

νa(x1)

νb(x1)


that renders the origin of the reduced-order system

ẋ1 = f1(x1, νa(x1), νb(x1)) (D.5)

locally exponentially stable with a known Lyapunov function. However, to pull this

feedback through the double integrator, it must be true that νb(x1) = d
dt
νa(x1), that

is

νb(x1) =

[
∂

∂x1

νa(x1)

]
f1(x1, νa(x1), νb(x1)). (D.6)

Backstepping does not provide any systematic means to meet the required integra-

147

bility condition. Of course, if the system has the form

ẋ1 = f1(x1, q2)

q̈2 = v,
(D.7)

then there is no integrability constraint and backstepping can be done, assuming one

is clever enough to find a feedback q2 = νa(x1) that renders the origin of

ẋ1 = f1(x1, νa(x1))

locally exponentially stable. The solution we presented in Sect. 6.1.4 uses trajec-

tory optimization to automatically build a feedback that satisfies the integrability

condition (D.6) and provides for local exponential stability. Moreover, bounds on in-

puts and other constraints can potentially be included in the trajectory optimization

process, whereas they are challenging to incorporate into backstepping.

D.2 Zero Dynamics

The method of Hybrid Zero Dynamics as developed in [126] exploits the structure

of f1 in (D.5), namely

d

dt

q1

σ1

 =

 q̇1

f1b(q1, q̇1, q2, q̇2)


and

q̇1 = D−1
11 (q) [σ1 −D12(q)q̇2] ,

to solve for a solution of the formq2

q̇2

 =

 hd(q1)(
∂
∂q1
hd(q1)

)
q̇1

 ,
148

so that the integrability condition (D.6) is automatically met. When the computa-

tional method in [58, 53] does produce a solution, it does not come with a Lyapunov

function and hence input-output linearization is often used to “pull” the virtual con-

straints back through the double integrators. Moreover, conditions for the virtual

constraints q2 = hd(q1) to stabilize (a hybrid version of) (D.5) are only known when

q1 is a scalar. The solution we have given in Sect. 6.3 works for vector valued q1,

hence for models with more than one degree of underactuation. Moreover, even for

one degree of underactuation, it provides a more general solution to the boundary

value problem in that it naturally produces solutions of the form hd(t, q1, q̇1), that is,

the controller depends in a non-trivial way on the full state of the x1-subsystem.

D.3 Immersion and Invariance

The method of immersion and invariance (I&I) presented in [11, 62, 119] is more

general than backstepping and can provide alternative cascade realizations to the

simple one used in (6.25). However, I&I still requires a target system to be provided,

such as, (6.17), which is what our method is constructing. In other words, once

a feedback satisfying Prop. VI.3 has been constructed, I&I can be used to build

alternatives to the feedback used in Thm. VI.5, but it will not replace the design of

the reduced-order model.

D.4 Standard MPC

Figure D.1 shows the standard MPC with Zero-Order-Hold (ZOH) condition,

uzoh(t, ξ) = uξ(0), t ∈ [0, Tp). (D.8)

We would like to implement this controller to the high dimensional system. However,

it does not scale well. The learned feedback µ(t, x) shows the similar performance

as the classic MPC. Sect. 6.1.3 illustrates how to apply it to a reduced-order model

149

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

p

ṗ

θ

θ̇

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-20

-15

-10

-5

0

5

10

u

Figure D.1: A classic MPC controller is applied to the same system as in Figure 6.8

while embedding it to the full-order model. In this sense, the curse of dimensionality

has been mitigated.

150

BIBLIOGRAPHY

151

BIBLIOGRAPHY

[1] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforce-
ment learning to aerobatic helicopter flight. In Advances in neural information
processing systems, pages 1–8, 2007.

[2] N. Aghasadeghi, H. Zhao, L. J. Hargrove, A. D. Ames, E. J. Perreault, and
T. Bretl. Learning impedance controller parameters for lower-limb prosthe-
ses. In Intelligent robots and systems (IROS), 2013 IEEE/RSJ international
conference on, pages 4268–4274. IEEE, 2013.

[3] A. Agrawal, O. Harib, A. Hereid, S. Finet, M. Masselin, L. Praly, A. D. Ames,
K. Sreenath, and J. W. Grizzle. First steps towards translating HZD control of
bipedal robots to decentralized control of exoskeletons. IEEE Access, 5:9919–
9934, 2017.

[4] A. Ames, K. Galloway, J. W. Grizzle, and K. Sreeenath. Rapidly exponen-
tially stabilizing control Lyapunov functions and hybrid zero dynamics. IEEE
Transactions on Automatic Control, 59(4):876–891, 2014.

[5] A. D. Ames. Human-inspired control of bipedal walking robots. IEEE Trans-
actions on Automatic Control, 59(5):1115–1130, May 2014.

[6] A. D. Ames. Human-inspired control of bipedal walking robots. Automatic
Control, IEEE Transactions on, 59(5):1115–1130, 2014.

[7] A. D. Ames, E. A. Cousineau, and M. J. Powell. Dynamically stable bipedal
robotic walking with NAO via human-inspired hybrid zero dynamics. In Pro-
ceedings of the 15th ACM international conference on Hybrid Systems: Com-
putation and Control, pages 135–144. ACM, 2012.

[8] A. D. Ames, E. A. Cousineau, and M. J. Powell. Dynamically stable robotic
walking with NAO via human-inspired hybrid zero dynamics. In Hybrid Sys-
tems, Computation and Control (HSCC), Philadelphia, April 2012.

[9] A. D. Ames, R. D. Gregg, and M. W. Spong. A geometric approach to three-
dimensional hipped bipedal robotic walking. In 45th Conference on Decision
and Control, San Diego, CA, 2007.

152

[10] S. Apostolopoulos, M. Leibold, and M. Buss. Settling time reduction for un-
deractuated walking robots. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 6402–6408. IEEE, 2015.

[11] A. Astolfi and R. Ortega. Immersion and invariance: a new tool for stabilization
and adaptive control of nonlinear systems. IEEE Transactions on Automatic
Control, 48(4):590 – 606, April 2003.

[12] J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N. Seube. Impulse dif-
ferential inclusions: a viability approach to hybrid systems. IEEE Transactions
on Automatic Control, 47(1):2–20, 2002.

[13] C. Azevedo, P. Poignet, and B. Espiau. Moving horizon control for biped robots
without reference trajectory. In Robotics and Automation, 2002. Proceedings.
ICRA ’02. IEEE International Conference on, volume 3, pages 2762–2767, 2002.

[14] C. Azevedo, P. Poignet, and B. Espiau. Artificial locomotion control: from
human to robots. Robotics and Autonomous Systems, 47(4):203–223, 2004.

[15] D. Bainov and P. Simeonov. Systems with Impulse Effects : Stability, Theory
and Applications. Ellis Horwood Limited, Chichester, 1989.

[16] P. A. Bhounsule, J. Cortell, A. Grewal, B. Hendriksen, J. D. Karssen, C. Paul,
and A. Ruina. Low-bandwidth reflex-based control for lower power walking: 65
km on a single battery charge. The International Journal of Robotics Research,
33(10):1305–1321, 2014.

[17] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 [cs.CV], 2016.

[18] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 144–152. ACM, 1992.

[19] Boston Dynamics. Atlas, The Next Generation. https: // www. youtube.

com/ watch? v= rVlhMGQgDkY , April 2016.

[20] B. G. Buss, K. A. Hamed, B. A. Griffin, and J. W. Grizzle. Experimental
results for 3D bipedal robot walking based on systematic optimization of virtual
constraints. In American control conference, 2016.

[21] B. G. Buss, K. A. Hamed, B. A. Griffin, and J. W. Grizzle. Experimental
results for 3D bipedal robot walking based on systematic optimization of virtual
constraints. In submitted to American Control Conference, Boston, MA, June
2016.

153

https://www.youtube.com/watch?v=rVlhMGQgDkY
https://www.youtube.com/watch?v=rVlhMGQgDkY

[22] B. G. Buss, A. Ramezani, K. Akbari Hamed, B. A. Griffin, K. S. Galloway, and
J. W. Grizzle. Preliminary walking experiments with underactuated 3D bipedal
robot marlo. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, pages 2529–2536. IEEE, 2014.

[23] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt,
C. Canudas, and J. W. Grizzle. RABBIT: a testbed for advanced control theory.
IEEE Control Systems Magazine, 23(5):57–79, Oct. 2003.

[24] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt,
C. Canudas-De-Wit, and J. W. Grizzle. Rabbit: a testbed for advanced control
theory. IEEE Control Systems, 23(5):57–79, Oct 2003.

[25] F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, and A. I. Subbotin. Asymptotic
controllability implies feedback stabilization. IEEE Transactions on Automatic
Control, 42(10):1394–1407, 1997.

[26] S. H. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal robots
based on passive-dynamic walkers. Science, 307:1082–85, 2005.

[27] S. H. Collins, M. Wisse, and A. Ruina. A three-dimensional passive-dynamic
walking robot with two legs and knees. International Journal of Robotics Re-
search, 20(7):607–615, July 2001.

[28] L. Consolini, A. Costalunga, and M. Maggiore. A coordinate-free theory of vir-
tual holonomic constraints. arXiv preprint arXiv:1709.07726 [math.OC], 2016.

[29] L. Consolini, A. Costalunga, and M. Maggiore. Synthesis of safe controller via
supervised learning for truck lateral control. arXiv preprint arXiv:1712.05506
[cs.SY]], 2018.

[30] J.-M. Coron. On the stabilization of controllable and observable systems by an
output feedback law. Mathematics of Control, Signals, and Systems (MCSS),
7(3):187–216, 1994.

[31] J.-M. Coron, L. Praly, and A. Teel. Feedback stabilization of nonlinear systems:
Sufficient conditions and lyapunov and input-output techniques. In Trends in
control, pages 293–348. Springer, 1995.

[32] X. Da, O. Harib, R. Hartley, B. Griffin, and J. W. Grizzle. From 2D design of
underactuated bipedal gaits to 3D implementation: Walking with speed track-
ing. IEEE Access, 4:3469–3478, 2016.

[33] X. Da, R. Hartley, and J. W. Grizzle. Supervised learning for stabilizing under-
actuated bipedal robot locomotion, with outdoor experiments on the wave field.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 3476–3483, May 2017.

154

[34] H. Demuth and M. Beale. Neural network toolbox for use with MATLAB. Cite-
seer, 1993.

[35] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking
deep reinforcement learning for continuous control. In International Conference
on Machine Learning, pages 1329–1338, 2016.

[36] E. R. Dunn and R. D. Howe. Foot placement and velocity control in smooth
bipedal walking. In Robotics and Automation, 1996. Proceedings., 1996 IEEE
International Conference on, volume 1, pages 578–583. IEEE, 1996.

[37] Dynamic Robotics Laboratory. ATRIAS: An Agile and Efficient Bipedal Robot.
https: // www. youtube. com/ watch? v= YFEJvb8iM7A , April 2015.

[38] Dynamic Robotics Laboratory. ATRIAS Robot: First 3D Test. https: //

www. youtube. com/ watch? v= vq4Xq4eSCv8 , Feb 2015.

[39] K. R. Embry, D. J. Villarreal, and R. D. Gregg. A unified parameterization of
human gait across ambulation modes. In Submit to: International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016.

[40] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov. An
integrated system for real-time model predictive control of humanoid robots.
In 2013 13th IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids), pages 292–299, Oct 2013.

[41] S. Faraji, S. Pouya, C. G. Atkeson, and A. J. Ijspeert. Versatile and robust 3D
walking with a simulated humanoid robot (Atlas): a model predictive control
approach. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 1943–1950. IEEE, 2014.

[42] R. Full and D. Koditschek. Templates and anchors: Neuromechanical hypothe-
ses of legged locomotion on land. Journal of Experimental Biology, 202:3325–
3332, December 1999.

[43] A. Goswami, B. Espiau, and A. Keramane. Limit cycles in a passive compass
gait biped and passivity-mimicking control laws. Autonomous Robots, 4(3):273–
86, 1997.

[44] R. D. Gregg. Controlled reduction of a five-link 3D biped with unactuated yaw.
In Decision and Control and European Control Conference (CDC-ECC), 2011
50th IEEE Conference on, pages 669–674. IEEE, 2011.

[45] R. D. Gregg, T. Lenzi, L. J. Hargrove, and J. W. Sensinger. Virtual constraint
control of a powered prosthetic leg: From simulation to experiments with trans-
femoral amputees. IEEE Transactions on Robotics, 2014.

155

https://www.youtube.com/watch?v=YFEJvb8iM7A
https://www.youtube.com/watch?v=vq4Xq4eSCv8
https://www.youtube.com/watch?v=vq4Xq4eSCv8

[46] R. D. Gregg and L. Righetti. Controlled reduction with unactuated cyclic vari-
ables: Application to 3d bipedal walking with passive yaw rotation. Automatic
Control, IEEE Transactions on, 58(10):2679–2685, 2013.

[47] R. D. Gregg, E. J. Rouse, L. J. Hargrove, and J. W. Sensinger. Evidence for
a time-invariant phase variable in human ankle control. PloS one, 9(2):e89163,
2014.

[48] B. Griffin and J. Grizzle. Nonholonomic virtual constraints and gait optimiza-
tion for robust walking control. The International Journal of Robotics Research,
page 0278364917708249, 2016.

[49] J. Grizzle, J. Hurst, B. Morris, H.-W. Park, and K. Sreenath. MABEL, a new
robotic bipedal walker and runner. In American Control Conference, 2009.
ACC ’09., pages 2030–2036, 2009.

[50] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames. Models, feed-
back control, and open problems of 3D bipedal robotic walking. Automatica,
50(8):1955–1988, 2014.

[51] K. A. Hamed, B. G. Buss, and J. W. Grizzle. Exponentially stabilizing
continuous-time controllers for periodic orbits of hybrid systems: Application
to bipedal locomotion with ground height variations. The International Journal
of Robotics Research, 35(8):977–999, 2016.

[52] O. Harib, A. Hereid, A. Agrawal, T. Gurriet, S. Finet, G. Boeris, A. Duburcq,
M. E. Mungai, M. Masselin, A. D. Ames, K. Sreenath, and J. Grizzle. Feedback
control of an exoskeleton for paraplegics: Toward robustly stable hands-free
dynamic walking. arXiv preprint arXiv:1802.08322 [cs.RO], 2018.

[53] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames. 3D dynamic
walking with underactuated humanoid robots: A direct collocation framework
for optimizing hybrid zero dynamics. In IEEE International Conference on
Robotics and Automation (ICRA), 2016.

[54] A. Hereid, S. Kolathaya, and A. D. Ames. Online hybrid zero dynamics optimal
gait generation using legendre pseudospectral optimization. In To appear in:
IEEE Conference on Decision and Control (CDC). IEEE, 2016.

[55] A. Hereid, S. Kolathaya, M. S. Jones, J. Van Why, J. W. Hurst, and A. D.
Ames. Dynamic multi-domain bipedal walking with ATRIAS through SLIP
based human-inspired control. In Proceedings of the 17th International Confer-
ence on Hybrid Systems: Computation and Control, HSCC ’14, pages 263–272,
New York, NY, USA, 2014. ACM.

[56] K. Hosoda, T. Takuma, and M. Ishikawa. Design and control of a 3D biped
robot actuated by antagonistic pairs of pneumatic muscles. In Proceedings of
International Symposium on Adaptive Motion in Animals and Machines, 2005.

156

[57] A. Isidori. Nonlinear Control Systems. Springer-Verlag, Berlin, third edition,
1995.

[58] M. S. Jones. Optimal control of an underactuated bipedal robot. Master’s
thesis, Oregon State University, ScholarsArchive@OSU, June 2014.

[59] S. Kajita and K. Tani. Study of dynamic biped locomotion on rugged terrain-
theory and basic experiment. In Advanced Robotics, 1991.’Robots in Unstruc-
tured Environments’, 91 ICAR., Fifth International Conference on, pages 741–
746. IEEE, 1991.

[60] S. Kajita, T. Yamaura, and A. Kobayashi. Dynamic walking control of biped
robot along a potential energy conserving orbit. IEEE Transactions on Robotics
and Automation, 8(4):431–437, August 1992.

[61] K. Kaneko, F. Kanehiro, M. Morisawa, K. Akachi, G. Miyamori, A. Hayashi,
and N. Kanehira. Humanoid robot HRP-4 – humanoid robotics platform with
lightweight and slim body. In Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pages 4400–4407. IEEE, 2011.

[62] D. Karagiannis, A. Astolfi, and R. Ortega. Nonlinear stabilization via system
immersion and manifold invariance: survey and new results. Multiscale Model-
ing & Simulation, 3(4):801–817, 2005.

[63] H. K. Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ, third
edition, 2002.

[64] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz,
and N. Mansard. Whole-body model-predictive control applied to the HRP-2
humanoid. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ Inter-
national Conference on, pages 3346–3351. IEEE, 2015.

[65] S. Kolathaya and A. D. Ames. Parameter to state stability of control lyapunov
functions for hybrid system models of robots. Nonlinear Analysis: Hybrid Sys-
tems, 25:174–191, 2017.

[66] F. H. Kong, A. M. Boudali, and I. R. Manchester. Phase-indexed ilc for control
of underactuated walking robots. In Control Applications (CCA), 2015 IEEE
Conference on, pages 1467–1472. IEEE, 2015.

[67] T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt. Capturability-
based analysis and control of legged locomotion, Part 1: Theory and application
to three simple gait models. The International Journal of Robotics Research,
31(9):1094–1113, July 2012.

[68] M. Krause, J. Englsberger, P.-B. Wieber, and C. Ott. Stabilization of the
capture point dynamics for bipedal walking based on model predictive control.
IFAC Proceedings Volumes, 45(22):165–171, 2012.

157

[69] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,
T. Koolen, P. Marion, and R. Tedrake. Optimization-based locomotion plan-
ning, estimation, and control design for the atlas humanoid robot. Autonomous
Robots, 40(3):429–455, 2016.

[70] A. D. Kuo. Stabilization of lateral motion in passive dynamic walking. Inter-
national Journal of Robotics Research, 18(9):917–930, 1999.

[71] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[72] C. Liu, C. G. Atkeson, and J. Su. Biped walking control using a trajectory
library. Robotica, 31(02):311–322, 2013.

[73] I. R. Manchester and J. Umenberger. Real-time planning with primitives for
dynamic walking over uneven terrain. In Robotics and Automation (ICRA),
2014 IEEE International Conference on, pages 4639–4646. IEEE, 2014.

[74] A. E. Martin, D. C. Post, and J. P. Schmiedeler. Design and experimental
implementation of a hybrid zero dynamics-based controller for planar bipeds
with curved feet. The International Journal of Robotics Research, 33(7):988–
1005, 2014.

[75] A. E. Martin, D. C. Post, and J. P. Schmiedeler. Design and experimental
implementation of a hybrid zero dynamics-based controller for planar bipeds
with curved feet. The International Journal of Robotics Research, 33(7):988–
1005, 2014.

[76] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36(6):789–814,
2000.

[77] T. McGeer. Passive dynamic walking. International Journal of Robotics Re-
search, 9(2):62–82, Apr. 1990.

[78] T. McGeer. Passive walking with knees. In Proc. of the 1990 IEEE Inter-
national Conference on Robotics and Automation, Cincinnati, OH, volume 3,
pages 1640–1645, May 1990.

[79] I. Mordatch, K. Lowrey, and E. Todorov. Ensemble-CIO: Full-body dynamic
motion planning that transfers to physical humanoids. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 5307–
5314. IEEE, 2015.

[80] B. Morris and J. W. Grizzle. Hybrid invariant manifolds in systems with im-
pulse effects with application to periodic locomotion in bipedal robots. IEEE
Transactions on Automatic Control, 54(8):1751–1764, August 2009.

158

[81] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and
E. Liang. Autonomous inverted helicopter flight via reinforcement learning. In
Experimental Robotics IX, pages 363–372. Springer, 2006.

[82] Q. Nguyen, A. Agrawal, X. Da, W. C. Martin, H. Geyer, J. W. Grizzle, and
K. Sreenath. Dynamic walking on randomly-varying discrete terrain with one-
step preview. In Robotics: Science and Systems (RSS), 2017.

[83] Q. Nguyen, X. Da, J. W. Grizzle, and K. Sreenath. Dynamic walking on step-
ping stones with gait library and control barrier. In Workshop on Algorithimic
Foundations of Robotics (WAFR), 2016.

[84] Y. Ogura, H. Aikawa, K. Shimomura, A. Morishima, H.-o. Lim, and A. Takan-
ishi. Development of a new humanoid robot WABIAN-2. In Robotics and Au-
tomation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on, pages 76–81. IEEE, 2006.

[85] T. Parisini and R. Zoppoli. A receding-horizon regulator for nonlinear systems
and a neural approximation. Automatica, 31(10):1443–1451, 1995.

[86] H. Park, A. Ramezani, and J. W. Grizzle. A finite-state machine for accom-
modating unexpected large ground height variations in bipedal robot walking.
IEEE Transactions on Robotics, 29(29):331–345, 2013.

[87] H.-W. Park, K. Sreenath, J. W. Hurst, and J. W. Grizzle. Identification of a
bipedal robot with a compliant drivetrain. IEEE Control Systems Magazine,
31(2):63 –88, april 2011.

[88] I. Park, J. Kim, J. Lee, and J. Oh. Mechanical design of humanoid robot
platform KHR-3 (KAIST Humanoid Robot 3: HUBO). In Proc. 5th IEEE—
RAS Int. Conf. Humanoid Robots, pages 321–326, 2005.

[89] T. S. Parker and L. O. Chua. Practical Numerical Algorithms for Chaotic
Systems. Springer-Verlag, New York, NY, 1989.

[90] F. Pfeiffer, K. Loffler, and M. Gienger. The concept of jogging Johnnie. In
IEEE International Conference on Robotics and Automation, Washington, DC,
May 2002.

[91] M. J. Powell, A. Hereid, and A. D. Ames. Speed regulation in 3D robotic
walking through motion transitions between human-inspired partial hybrid zero
dynamics. In Robotics and Automation (ICRA), 2013 IEEE International Con-
ference on, pages 4803–4810. IEEE, 2013.

[92] J. Pratt, J. Carff, S. Drakunov, and A. Goswami. Capture Point: A Step toward
Humanoid Push Recovery. 2006 6th IEEE-RAS International Conference on
Humanoid Robots, 2006.

159

[93] J. Pratt, T. Koolen, T. de Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson,
and P. Neuhaus. Capturability-based analysis and control of legged locomo-
tion, Part 2: Application to M2V2, a lower-body humanoid. The International
Journal of Robotics Research, 31(10):1117–1133, Aug. 2012.

[94] J. Pratt and R. Tedrake. Velocity-based stability margins for fast bipedal walk-
ing. In M. Diehl and K. Mombaur, editors, Fast Motions in Biomechanics and
Robotics, volume 340 of Lecture Notes in Control and Information Sciences,
pages 299–324. Springer Berlin Heidelberg, 2006.

[95] M. H. Raibert. Legged robots. Communications of the ACM, 29(6):499–514,
1986.

[96] M. H. Raibert. Legged robots that balance. MIT Press, Mass., 1986.

[97] A. Ramezani, J. W. Hurst, K. Akbari Hamed, and J. W. Grizzle. Performance
Analysis and Feedback Control of ATRIAS, A Three-Dimensional Bipedal
Robot. Journal of Dynamic Systems, Measurement, and Control, 136(2), 2014.

[98] H. Razavi, A. M. Bloch, C. Chevallereau, and J. W. Grizzle. Symmetry in
3D legged locomotion: A new method for designing stable periodic gaits. Au-
tonomous Robots, 2017.

[99] H. Razavi, A. M. Bloch, C. Christine, and J. W. Grizzle. Restricted discrete
invariance and self-synchronization for stable walking of bipedal robots. In
Proceedings of the American Control Conference, July 2015.

[100] J. Reher, E. A. Cousineau, A. Hereid, C. M. Hubicki, and A. D. Ames. Realiz-
ing dynamic and efficient bipedal locomotion on the humanoid robot DURUS.
In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 1794–1801, May 2016.

[101] J. P. Reher, A. Hereid, S. Kolathaya, C. M. Hubicki, and A. D. Ames. Al-
gorithmic foundations of realizing multi-contact locomotion on the humanoid
robot DURUS. In The International Workshop on the Algorithmic Foundations
of Robotics (WAFR), 2016.

[102] D. Renjewski, A. Sprowitz, A. Peekema, M. Jones, and J. Hurst. Exciting
engineered passive dynamics in a bipedal robot. Robotics, IEEE Transactions
on, 31(5):1244–1251, 2015.

[103] M. Reyhanoglu, A. van der Schaft, N. McClamroch, and I. Kolmanovsky. Dy-
namics and control of a class of underactuated mechanical systems. IEEE
Transactions on Automatic Control, 44(9):1663–1671, 1999.

[104] S. Rezazadeh, C. Hubicki, M. Jones, A. Peekema, J. Van Why, A. Abate, and
J. W. Hurst. Spring-mass walking with ATRIAS in 3D: Robust gait control
spanning zero to 4.3 kph on a heavily underactuated bipedal robot. ASME
Dynamic Systems and Control Conference (DSCC), page 23, 2015.

160

[105] C. O. Saglam and K. Byl. Meshing hybrid zero dynamics for rough terrain
walking. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 5718–5725. IEEE, 2015.

[106] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fu-
jimura. The intelligent ASIMO: system overview and integration. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
2478–83, Lausanne, Switzerland, 2002.

[107] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[108] B. Schürmann and M. Althoff. Convex interpolation control with formal guar-
antees for disturbed and constrained nonlinear systems. In Proceedings of the
20th International Conference on Hybrid Systems: Computation and Control,
pages 121–130. ACM, 2017.

[109] H. Shim and A. R. Teel. Asymptotic controllability and observability imply
semiglobal practical asymptotic stabilizability by sampled-data output feed-
back. Automatica, 39(3):441–454, 2003.

[110] R. W. Sinnet and A. D. Ames. 2D bipedal walking with knees and feet: A
hybrid control approach. In 48th IEEE Conference on Decision and Control,
Shanghai, P.R. China, 2009.

[111] R. W. Sinnet and A. D. Ames. 3D bipedal walking with knees and feet: A
hybrid geometric approach. In 48th IEEE Conference on Decision and Control,
Shanghai, P.R. China, 2009.

[112] E. D. Sontag. Mathematical control theory: deterministic finite dimensional
systems, volume 6. Springer Science & Business Media, 2013.

[113] M. W. Spong. Partial feedback linearization of underactuated mechanical sys-
tems. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, Munich, Germany, pages 314–321, September 1994.

[114] M. W. Spong. Energy based control of a class of underactuated mechanical
systems. In Proc. of IFAC World Congress, San Francisco, CA, pages 431–435,
1996.

[115] K. Sreenath, H. Park, and J. W. Grizzle. Design and experimental implemen-
tation of a compliant hybrid zero dynamics controller with active force control
for running on MABEL. In IEEE International Conference on Robotics and
Automation, ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota, USA, pages
51–56, 2012.

161

[116] K. Sreenath, H. Park, I. Poulakakis, and J. Grizzle. A compliant hybrid zero
dynamics controller for stable, efficient and fast bipedal walking on MABEL.
International Journal of Robotics Research, 30(9):1170–1193, 2011.

[117] K. Sreenath, H.-W. Park, I. Poulakakis, and J. Grizzle. Embedding active force
control within the compliant hybrid zero dynamics to achieve stable, fast run-
ning on MABEL. The International Journal of Robotics Research, 32(3):324–
345, 2013.

[118] M. Vidyasagar. Nonlinear systems analysis. SIAM, 2002.

[119] L. Wang, F. Forni, R. Ortega, Z. Liu, and H. Su. Immersion and invariance
stabilization of nonlinear systems via virtual and horizontal contraction. IEEE
Transactions on Automatic Control, 62(8):4017–4022, 2017.

[120] T. Wang and C. Chevallereau. Stability analysis and time-varying walking
control for an under-actuated planar biped robot. Robotics and Autonomous
Systems, 59(6):444 – 456, 2011.

[121] P. M. Wensing and D. Orin. 3D-slip steering for high-speed humanoid turns.
In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 4008–4013. IEEE, 2014.

[122] E. Westervelt, J. W. Grizzle, and D. Koditschek. Hybrid zero dynamics of
planar biped walkers. IEEE Transactions on Automatic Control, 48(1):42–56,
January 2003.

[123] E. R. Westervelt, G. Buche, and J. W. Grizzle. Experimental validation of a
framework for the design of controllers that induce stable walking in planar
bipeds. International Journal of Robotics Research, 23(6):559–82, 2004.

[124] E. R. Westervelt, J. W. Grizzle, and C. Canudas. Switching and PI control
of walking motions of planar biped walkers. IEEE Transactions on Automatic
Control, 48(2):308–12, Feb. 2003.

[125] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. Choi, and B. Morris. Feed-
back Control of Dynamic Bipedal Robot Locomotion. Control and Automation.
CRC Press, Boca Raton, FL, June 2007.

[126] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek. Zero dynamics of planar
biped walkers with one degree of under actuation. In IFAC World Congress,
Barcelona, Spain, July 2002.

[127] M. Wisse. Three additions to passive dynamic walking: actuation, an upper
body, and 3D stability. International Journal of Humanoid Robotics, 2(04):459–
478, 2005.

[128] M. Wisse, A. L. Schwab, and R. v. Linde. A 3D passive dynamic biped with
yaw and roll compensation. Robotica, 19(03):275–284, 2001.

162

[129] A. Wu and H. Geyer. The 3-D spring–mass model reveals a time-based dead-
beat control for highly robust running and steering in uncertain environments.
Robotics, IEEE Transactions on, 29(5):1114–1124, 2013.

[130] J. Yamaguchi, E. Soga, S. Inoue, and A. Takanishi. Development of a bipedal
humanoid robot-control method of whole body cooperative dynamic biped walk-
ing. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International
Conference on, volume 1, pages 368–374. IEEE, 1999.

[131] P. Zaytsev, S. J. Hasaneini, and A. Ruina. Two steps is enough: No need to
plan far ahead for walking balance. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 6295–6300, May 2015.

[132] H. Zhao, J. Horn, J. Reher, V. Paredes, and A. D. Ames. A hybrid systems and
optimization-based control approach to realizing multi-contact locomotion on
transfemoral prostheses. In IEEE Conference on Decision and Control (CDC),
pages 1607–1612, Dec 2015.

163

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	 I. Introduction
	1.1 Motivation
	1.2 Starting Point
	1.2.1 Basic HZD: Strengths and Weaknesses
	1.2.2 Bilinear Matrix Inequalities for Local Exponential Stability
	1.2.3 Robust Optimization of Orbits

	1.3 Main Ideas of This Dissertation
	1.4 Contributions
	1.4.1 Contribution to HZD
	1.4.2 Contribution to Machine Learning
	1.4.3 Broader Impacts

	1.5 Overview of Thesis

	 II. Literature Overview
	2.1 Reduced Order Model
	2.2 Online Optimization
	2.3 Gait Library
	2.4 Supervised Learning and Reinforcement Learning
	2.5 Hybrid Zero Dynamics

	 III. Robot Model
	3.1 Robot Description
	3.2 Yaw Reduction via Foot Design

	 IV. Gait Library of Periodic Orbits
	4.1 Background
	4.2 Contributions and Organization of This Chapter
	4.3 2D Gait Design and Stabilization
	4.3.1 Gait Design Using Virtual Constraints
	4.3.2 Gait Library and Locally Stabilizing Feedback Controller
	4.3.3 Longitudinal Speed Regulation
	4.3.4 Unifying The Timing Variable or Phase Used for Control

	4.4 Lateral Control for Straight-line Walking
	4.5 Model-based Analysis and Simulation
	4.5.1 Local Exponential Stability in 2D and 3D
	4.5.2 Parameter Update based on Longitudinal Speed

	4.6 Experimental Results
	4.6.1 Partial Controller
	4.6.2 Complete Controller of Figure 4.1

	4.7 Discussion and Conclusions

	 V. Intuitive Method of Machine Learning Control
	5.1 Control Policy Overview
	5.1.1 Control Policy
	5.1.2 Dataset Generation Through Optimization
	5.1.3 Machine Learning Methods
	5.1.3.1 Linear Interpolation
	5.1.3.2 Support Vector Machines
	5.1.3.3 Neural Networks

	5.1.4 Training and Testing

	5.2 Speed Regulation Policy
	5.2.1 Dataset Generation
	5.2.2 Feature Selection
	5.2.3 Training Methods
	5.2.4 Stability Remark

	5.3 Transition Gait Policy
	5.3.1 Dataset Generation
	5.3.2 Feature Selection
	5.3.3 Training Methods
	5.3.4 Stability Remark

	5.4 Terrain Adaption Policy
	5.4.1 Dataset Generation
	5.4.2 Feature Selection
	5.4.2.1 Sagittal Terrain Adaption
	5.4.2.2 Lateral Terrain Adaption

	5.4.3 Training Methods

	5.5 Simulation
	5.5.1 Speed Regulation Policy
	5.5.2 Transition Policy
	5.5.3 Terrain Policy

	5.6 Experiments and Discussion
	5.6.1 Speed Regulation and Transition
	5.6.2 Sagittal Terrain Adaptation
	5.6.3 Lateral Terrain Adaptation
	5.6.4 Unified Policy

	5.7 Conclusions and Next Steps

	 VI. Formal Method of Machine Learning Control
	6.1 Presentation of Main Ideas
	6.1.1 Model Assumptions
	6.1.2 Extracting a Feedback from Open-loop Trajectories
	6.1.3 Building a Reduced-Order Target Model
	6.1.4 Embedding the Target Dynamics in the Original System
	6.1.5 Extended Class of Models
	6.1.6 Orbit Library and Design of the Insertion Map

	6.2 Inverted Pendulum on a Cart
	6.2.1 System Model
	6.2.2 Stabilizing the Upright Equilibrium While Respecting a Barrier
	6.2.2.1 Trajectory Generation and Learning for the Full-Order Model
	6.2.2.2 Comparison of Continuous Hold vs Learned Feedback
	6.2.2.3 Building a Reduced-Order Target Model
	6.2.2.4 Embedding the Target Dynamics in the Original System

	6.2.3 Orbit Library and Transitioning Among Periodic Orbits
	6.2.3.1 Orbit Library
	6.2.3.2 Loss and Recovery of Injectivity
	6.2.3.3 Transitioning Between Periodic Orbits

	6.3 Hybrid Model and Control
	6.3.1 Hybrid Model
	6.3.2 Setting up the Optimization Problem
	6.3.3 Generalized Hybrid Zero Dynamics
	6.3.4 Stabilizing the Original Model

	6.4 Bipedal Walking Gaits
	6.4.1 MARLO Model Update
	6.4.2 Design of Planar Periodic Gaits and Transition Trajectories via Optimization
	6.4.3 Controller Design via Machine Learning
	6.4.4 Example Performance Analysis
	6.4.4.1 Stability Analysis
	6.4.4.2 Interpretation of the posture changes employed by the controller

	6.5 Experiments on a 3D Bipedal Robot
	6.5.1 Update 3D-MARLO Configuration
	6.5.2 Optimization
	6.5.3 Machine Learning
	6.5.4 Experimental Implementation
	6.5.5 Results

	 VII. Discussion and Conclusion
	7.1 Strategy
	7.2 Curse of Dimensionality
	7.3 Original HZD vs G-HZD
	7.4 Stability Mechanism
	7.5 Future Work

	APPENDICES
	BIBLIOGRAPHY

