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ABSTRACT

This dissertation studies the development of provably near-optimal real-time pre-

scriptive analytics solutions that are easily implementable in a dynamic business en-

vironment. We consider several stochastic control problems that are motivated by

different applications of the practice of pricing and revenue management. Due to high

dimensionality and the need for real-time decision making, it is computationally pro-

hibitive to characterize the optimal controls for these problems. Therefore, we develop

heuristic controls with simple decision rules that can be deployed in real-time at large

scale, and then show theirs good theoretical and empirical performances. In particular,

the first chapter studies the joint dynamic pricing and order fulfillment problem in the

context of online retail, where a retailer sells multiple products to customers from dif-

ferent locations and fulfills orders through multiple fulfillment centers. The objective

is to maximize the total expected profits, defined as the revenue minus the shipping

cost. We propose heuristics where the real-time computations of pricing and fulfillment

decisions are partially decoupled, and show their good performances compared to rea-

sonable benchmarks. The second chapter studies a dynamic pricing problem where a

firm faces price-sensitive customers arriving stochastically over time. Each customer

consumes one unit of resource for a deterministic amount of time, after which the

resource can be immediately used to serve new customers. We develop two heuristic

controls and show that both are asymptotically optimal in the regime with large de-

mand and supply. We further generalize both of the heuristic controls to the settings

with multiple service types requiring different service times and with advance reser-

vation. Lastly, the third chapter considers a general class of single-product dynamic

viii



pricing problems with inventory constraints, where the price-dependent demand func-

tion is unknown to the firm. We develop nonparametric dynamic pricing algorithms

that do not assume any functional form of the demand model and show that, for one of

the algorithm, its revenue loss compared to a clairvoyant matches the theoretic lower

bound in asymptotic regime. In particular, the proposed algorithms generalize the

classic bisection search method to a constrained setting with noisy observations.
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CHAPTER 1

Introduction

In the past few decades, information and computation technology has fundamentally

changed every operational perspective of the modern business world. These advance-

ments enable firms to control and optimize various instruments that have direct impacts

on firms’ economic outcome at a much granular level in real-time. In particular, the

concept of Revenue Management (RM), which often refers to the applications of ana-

lytics to understand consumer behavior at a micro-economic level and optimize market

performance, has been widely adopted by a broad spectrum of industries, including but

not limited to the airline, car rental, hotel, retail, and on-demand platforms. When

applying RM in practice, the capability of deploying analytics at scale can success-

fully help firms gain competitive advantages, especially when firms operate in a highly

dynamic and delicately engineered market. However, given the complexity of the prob-

lems, it can be quite challenging for firms to maintain scalability while sustaining good

performances. Motivated by these challenges, this dissertation develops and analyzes

several real-time prescriptive analytics solutions that are easily implementable and

have good performances both in theory and in practice. More specifically, the first two

chapters are motivated by real-world problems in online retail and on-demand service

platforms respectively; the third chapter investigates a more fundamental challenge

faced by a price-setting firm facing demand model uncertainty.

The first chapter taps into a fundamental decision-making process of any e-

commerce retailer (e-tailer): at the arrival of an incoming customer from specific de-

mand location, the e-tailer offers a variety of products in stock quoted at competitive

prices and, upon purchase request, ships the requested product from a specific ware-

house in its fulfillment network. Throughout this process, the e-tailer’s profit is directly

affected by pricing and fulfillment decisions. In theory, joint dynamic optimization of

these decisions is the most lucrative option since they are mutually affected by each

other through the balance of demand and supply. Unfortunately, joint dynamic op-

timization is usually computationally challenging in practice, as the scale of either

1



decision can be enormous, and the frequency at which either decision is made can be

high. We propose a class of computationally efficient policies that are guaranteed to

achieve the most of the benefit of joint optimization. The proposed class of policies only

requires solving a relaxed joint optimization problem once before the selling season,

and then decomposes the real-time pricing and fulfillment decisions thereafter. Using

asymptotic analysis, we show that the performance of the proposed policy is very close

to the optimal dynamic policy for problems of practical scales. From a managerial

perspective, the proposed policy has at least two favorable features: first, being able

to separate the real-time computation of pricing and fulfillment decisions allows these

two decisions to be handled by different functions, which is a common reality; second,

the proposed policy is effective even if the prices across different demand locations are

quoted uniformly, which is a desirable pricing practice driven by consumers’ fairness

perception. From the implementation perspective, the proposed policy can be deployed

in real-time at large scale since heavy optimization is required neither by the pricing

decision nor by the fulfillment decision.

The second chapter focuses on the design and analysis of pricing policies for service

systems with reusable resources, where firms manage a fixed amount of resources to

serve customers arriving stochastically over time at a non-stationary price-dependent

rate. The arriving customer requires a service that consumes a certain amount of re-

sources for a deterministic amount of time. The resource is reusable in the sense that it

can be immediately used to serve a new customer upon the completion of the previous

service. The firm’s objective is to maximize the total expected revenue by charging

price dynamically. This problem captures the fundamental operational trade-off faced

by firms providing different types of services. Examples are ubiquitous, ranging from

traditional hotels and car rental companies to the emerging cloud computing and on-

demand service providers. More importantly, the dynamics of a system of reusable

resource differ significantly from those of the canonical dynamic pricing problem since

resources can be “sold” repeatedly throughout the selling season as long as the service

cycles do not overlap. It is not clear from the existing literature what kind of policy

has guaranteed favorable performance. In particular, we provide the first provably

near-optimal policy for the dynamic pricing problem of a service system with reusable

resource. The policy uses the solution to a relaxed optimization problem as a baseline

control and adapts to the realized randomness in real-time according to a novel ad-

justment scheme that only requires simple linear operations. The adjustment scheme

judiciously controls the magnitude of deviation between the realized demand and the

expected demand to achieve the right balance between service level and profitability.

2



Using large deviation analysis, we show that the gap between the revenue generated by

our policy and that of the optimal policy is small for problems of practical scale. All the

results can be generalized to more complex settings with multiple types of resources,

heterogeneous service time requirements, and advance reservation.

In the third chapter, we investigate a fundamental question of dynamic pricing un-

der model uncertainty. In this problem, a firm needs to sequentially choose prices from

a continuous range when the underlying demand function is unknown, and the market

response to any given prices can only be observed with statistical noise. The firm’s

objective is to maximize the total expected profit over a finite selling season under

inventory constraints. To learn the demand function, conducting price experiments at

different price levels is necessary. The critical question is how to do so effectively. More

precisely, at which prices should the firm test and how frequently? A significant chal-

lenge in answering these questions is that experimenting opportunity is limited both

by the finite selling horizon and the capacitated inventory level. Therefore, the firm

needs to carefully balance the tradeoff between learning demand information through

exploration at various price levels, and earning the maximum revenue by exploiting

the market information gathered thus far. Existing methods suggest that, in this sce-

nario, the firm earns higher revenue when it at least knows the functional class of the

demand, yet the consequence of assuming the incorrect class of demand model can

be disastrous. This leaves the firm in a quandary: either it risks model misspecifica-

tion or suffers a worse performance guarantee under weaker demand assumptions. We

address this problem by proposing rate-optimal policies that do not rely on any infor-

mation regarding functional form. We formulate the single product dynamic pricing

and learning problem as a continuous-armed bandit model, which is a classic machine

learning model that explicitly characterizes the exploration-exploitation tradeoff. We

then propose a family of policies that generalize the classic bisection search method

to the setting with stochastic noises and constraints. The policies adaptively learn

whether the resource is going to be depleted or not by the end of the selling horizon,

and generate a sequence of pricing intervals that converges to the optimal static price

with high probability. Under mild assumptions on the demand curve, we show that

the performance of one of our policies is optimal in the sense that its gap from the

optimal pricing policy is minimum when comparing all policies.

3



CHAPTER 2

Joint Dynamic Pricing and Order

Fulfillment for E-commerce Retailers

2.1 Abstract

We consider an e-commerce retailer (e-tailer) who sells a catalog of products to cus-

tomers from different regions during a finite selling season and fulfills orders through

multiple fulfillment centers. The e-tailer faces a Joint Pricing and Fulfillment (JPF)

optimization problem: At the beginning of each period, she needs to jointly decide the

price for each product and also how to fulfill an incoming order (i.e., from which ware-

house to ship the order). The objective of the e-tailer is to maximize her total expected

profits defined as total expected revenues minus total expected shipping costs (all other

costs are fixed in this problem). The exact optimal policy for JPF is difficult to solve;

so, we propose two heuristic controls that have provably good performance compared

to reasonable benchmarks. Our first heuristic control directly uses the solution of a

deterministic approximation of JPF as its control parameters. Our second heuristic

control improves the first one by adaptively adjusting the original control parameters

according to the realized demand. An important feature of the second heuristic control

is that it decouples the real-time pricing and fulfillment decisions, making it easy to

implement. We show theoretically and numerically that the second heuristic control

significantly outperforms the first heuristic control, and is very close to a benchmark

that jointly re-optimizes the full deterministic problem at the beginning of every period.

2.2 Introduction

Driven by the growing population of internet users, the retailing industry has witnessed

a boom in the e-commerce channel during the past decades. According to U.S. Census
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Bureau (2016), for the year of 2015, the sales of e-commerce retail in the United

States grew at an impressive rate of 14.63%, which accounted for 68% of the growth

of the whole retail sector. While the growth statistic is impressive, online retailing has

never been an easy business to run. As pointed out in Rigby (2014), Amazon.com,

whose figure is similar to other e-tailers, has averaged only 1.3% in operating margin

over the past three years; in contrast, the operating margins for department/discount

stores typically run at about 6% to 10%. Despite the razor-thin margin, e-tailers have

to spend heavily in expenditure to meet consumers’ evolving expectations about their

shopping experience. For example, from a logistics perspective, online shopping induces

significantly higher fulfillment cost compared to in-store shopping since there are many

more additional activities (e.g., packing, out-bound shipping, return handling, etc.)

involved with every order made whose costs are not likely to be fully picked up by

consumers (Howland, 2016). All these factors put together highlight the importance

for e-tailers to operate in a way that maximizes their revenues while at the same time

also minimizing their expenditures.

While running an e-commerce business introduces new operational challenges that

do not previously exist compared to its brick-and-mortar counterpart, an e-tailer has

extra flexibilities in responding to the market by being able to change prices frequently

in real-time (Chen, 2014) and reducing outbound shipping cost through tactical order

fulfillment (Agatz et al., 2008). Indeed, powered by a vast amount of data and effi-

cient IT infrastructure, e-tailers nowadays actively adjust their prices according to the

imbalance between supply and demand and other external factors in the market. This

practice, also known as dynamic pricing, has been widely adopted in many industries

including airlines, car rental, hotel, and cruise. The retailing industry is among the

latest entrants, pioneered by Amazon.com, which is reported to adjust its price lists

every ten minutes on average (Shpanya, 2014). As reported in the same article, at

least 22% of retailers, including Sears, Bestbuy, and Walmart, have also chosen to im-

plement automatic pricing solutions in their online channel and improved their gross

margin by 10%.

Aside from the ability to adjust prices in real-time, an e-tailer also has the flexibil-

ity to optimize her fulfillment decisions. However, unlike the pricing decisions that are

executed online and have an immediate impact on the revenue stream, an e-tailer’s ful-

fillment decisions affect the physical distribution of inventories and have an immediate

impact on its operating cost. Among the different parts of an e-tailer’s fulfillment plan,

outbound shipping is often cited as the primary source of cost (Dinlersoz and Li 2006).

For example, Amazon.com spent $11.54 billion in the fiscal year of 2015 on outbound

5



shipping alone (including sortation and delivery center costs); this roughly represents

10% of its net revenue ($107.01 billion) and a 30% increment over its total costs in

2014 ($8.71 billion) (Amazon.com, 2015). Moreover, driven by consumers’ expectation

of cheap delivery (Sides and Hogan, 2015), many retailers now offer appealing shipping

options for online shoppers such as unconditional free shipping (Nordstrom, Zappos),

contingent free shipping (Amazon.com, Jet.com), and free in-store pickup (Macy’s,

Walmart). It should be noted that even when the shipping fee is applied, many e-tailers

simply opt to offer a fixed shipping fee structure regardless of the actual shipping cost

due to different shipment weights, speeds and distances (e.g., Overstock.com charges

$4.95 to most locations in the United States), which means that the remaining costs

are potentially absorbed by the e-tailers themselves. As a consequence, e-tailers are

strongly incentivized to find the cheapest fulfillment plan on every single order, since

every dollar saved goes directly to the bottom line.

Conceptually, the e-tailer’s pricing and fulfillment decisions are closely tied together,

since they both immediately affect the balance between supply and demand. On the

one hand, an e-tailer’s fulfillment strategy affects her pricing decision as the price

that maximizes total revenues does not necessarily maximize total expected profits

(i.e., revenue minus cost); on the other hand, the effectiveness of a fulfilment strategy

heavily depends on the current inventory distribution and forecasted future demands,

which in turn are determined by the pricing decision. This interdependency calls for a

systematic study of joint pricing and fulfillment optimization.

To illustrate the potential benefit of managing pricing and fulfillment decisions

jointly in an e-commerce environment, we describe a simple example. Consider an e-

tailer selling a cast-iron grill pan weighing 7.1 lbs to Midwest and West Coast regions.

Customers from both regions see the same price posted online. For the purpose of

illustration, we assume that the demand is divisible and deterministically determined

by λ(p) = 116 − 2p for both regions. The price is restricted to within the range

of $14.22 and $30.34 (see Camelcamelcamel.com 2016 for a price history of a similar

product at Amazon.com). The e-tailer has a distribution network consisting of two

fulfillment centers (FCs) located at California (CA) and Illinois (IL), which hold CCA

and CIL units of inventory, respectively. Each customer purchases exactly one grill pan,

which is to be shipped immediately from either FC using UPS’ 3-day select service.

Figure 2.1 describes the profit maximization problem faced by the e-tailer, where we

use MI (Michigan) and OR (Oregon) as representatives of the Midwest and West Coast

regions, respectively. Shipping cost data is gathered from UPS (2016).

Suppose that CIL = 60 and CCA = 56, i.e., the inventory level in IL is slightly

6



higher than the inventory level in CA. If the e-tailer manages the pricing decision

separately from fulfillment assignment, she would first solve a revenue maximization

problem: maxp∈[$14.22,$30.34] {p · (116− 2p) + p · (116− 2p) : 2 · (116− 2p) ≤ 60 + 56} .
The optimal solution to this optimization is given by p = $29.00, which results in 58

units of demand from each MI and OR, and yields a total revenue of $29 × 58 × 2 =

$3, 364.00. Next, she needs to decide how to fulfill these orders by solving the follow-

ing cost minimization problem: min
xij≥0
{
∑

i∈{CA,IL}
∑

j∈{MI,OR} cijxij :
∑

i∈{CA,IL} xij =

58,∀j,
∑

j∈{MI,OR} xij ≤ Ci,∀i}. The optimal solution is given by xIL,MI = 58, xIL,OR =

2, xCA,MI = 0, xCA,OR = 56, which yields a total shipping costs of $2, 246.10 and leaves

a net total profit of $3, 364.00− $2, 246.10 = $1, 117.90. Suppose now that the e-tailer

manages the pricing and fulfillment decisions jointly by solving the following profit

maximization problem:

max
p∈[$14.22,$30.34], xij≥0

p(116− 2p) + p(116− 2p)−
∑

i∈{CA,IL}

∑
j∈{MI,OR}

cijxij

s.t.
∑

i∈{CA,IL}

xij = 116− 2p, ∀j,
∑

j∈{MI,OR}

xij ≤ Ci, ∀i.

The optimal solution to the joint optimization is p = $30.34, xIL,MI = xCA,OR =

55.32, xIL,OR = xCA,MI = 0 and the corresponding total net profits is $1, 249.13. This

stands for a 11.74% improvement in total net profits compared to optimizing price and

fulfillment separately. At a closer look, we find that although the increment in price

lowers the total revenues, it also reduces total demands so that we no longer ship on

the IL-OR and CA-MI routes, which have negative profit margins.

The above example shows the effectiveness of joint pricing and fulfillment optimiza-

tion, even when the future demands are known exactly. This benefit is further amplified

Demand: Michigan, MI

Demand: Oregon, OR

𝜆 𝑝 = 116 − 2𝑝

FC: California, CA
𝐶𝐶𝐴 = 56

FC: Illinois, IL
𝐶𝐼𝐿 = 60

𝜆 𝑝 = 116 − 2𝑝

$38.25

$18.00 $41.75

$20.10

Figure 2.1: A 2-FC 2-Demand-Location Example
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by the inventory imbalance across the FC network: if we set CIL = 18 and CCA = 98

in the above example, the net profits under joint optimization can be about twice as

much as that under separate optimization. In reality, even if the initial inventory levels

are carefully chosen, inventory imbalance may still happen within the replenishment

cycle due to demand uncertainties and various operational difficulties (see Acimovic

and Graves 2017 for a detailed identification of the potential causes using real data).

On the other hand, the realized demand for an item may depend not only on its own

price, but also on the price of other products that may either be complements or sub-

stitutes. Since typical e-tailers manage a large number of products, whose inventories

are distributed across a large number of FCs, the task of dynamically optimizing the

pricing and fulfillment decisions jointly becomes highly challenging and it is a priori

not clear whether there is a computationally efficient way to do this. In this paper,

we address this issue. We ask: How should an e-tailer manage the pricing and fulfill-

ment decision for multiple products jointly by utilizing the information regarding the

current inventory distribution and future demand projection in a way that maximizes

total expected profits?

Our results and contributions. We consider a multi-period Joint Pricing and

Fulfillment (JPF) problem where an e-tailer sells multiple products to customers com-

ing from multiple demand locations and demands are fulfilled in real-time through

multiple FCs. The decision variables are the price and fulfillment assignment; the ob-

jective is to maximize total expected profits. To the best of our knowledge, we are

the first in the literature to consider the dynamic version of the JPF problem. This is

surprising given the importance of pricing and fulfillment decisions as tactical levers to

maximize total expected profits in e-tail setting (see Chapter 2.3 for extensive literature

review). Our results and contributions can be summarized as follows:

� We propose a tractable deterministic approximation of JPF. In practice, it is

not always feasible for the e-tailer to price-differentiate customers from different

locations by charging different prices for the same product during the same pe-

riod. This constraint introduces complexities that do not previously appear in

the relevant literature (see discussions in Chapter 2.4 and 2.5). To address this

problem, we propose a novel deterministic relaxation of the original stochastic

control problem where all the random variables are approximated by their ex-

pected values and the pricing decision is approximated by a randomization over

a fixed set of discrete prices. We show that there exists a set of discrete prices

such that the optimal value of the resulting Approximate Linear Program (ALP)
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well approximates that of JPF (in some sense).

� We develop two easy-to-implement heuristic controls using the solution of ALP.

The first heuristic control, Randomized Pricing and Fulfillment Control (RPF),

simply uses the ALP solution to randomly sample the pricing and fulfillment

decisions at each time period. The second heuristic control, which we call Re-

adjust and Re-optimize Pricing and Fulfillment Control (R2PF), refines RPF

by dynamically updating the pricing and fulfillment decisions. To be precise,

using RPF as the base control, at the beginning of every period, R2PF first

adjusts the set of discrete prices over which a new price will be sampled through

a real-time perturbation scheme, and then solves several simple tranportation

LPs for the fulfillment decisions. We show theoretically and numerically that

R2PF significantly improves RPF. Moreover, R2PF achieves a performance that

is very close to a benchmark control that re-optimizes ALP at the beginning

of every period while having a much faster computation time (see Table A.2).

To the best of our knowledge, our work is the first in the literature to study a

combination of a real-time adjustment of some decision variables (i.e., price) and

a re-optimized update of other decision variables (i.e., fulfillment). This idea is

potentially useful for other applications where the number of decision variables

is large and the problem has some structures that can be exploited.

Aside from the methodological contributions discussed above, our work also high-

lights the potential managerial benefit of an effective top-down policy for managing

both demand (via pricing) and supply (via fulfillment). To put it differently, the pur-

pose of the first step in R2PF (i.e., price adjustment) is to maintain balance between

total available inventories at all FCs and total forecasted future demands from all

locations for every product. Moreover, it is done without taking into account total

shipping costs. The second step of R2PF deals with what is left of the first stage: It

takes into account the actual inventory distribution across different FCs and computes

a fulfillment assignment that minimizes total shipping costs. Our results suggest that

these two steps are indispensable in general: Without the aggregate re-balancing in

the first step, the fulfillment optimization in the second step will only be minimizing

shipping cost without maximizing revenue; and, without the fulfillment optimization

in the second step, the aggregate re-balancing in the first step may result in a high

shipping cost, which leads to a lower net profit.

Organization of the paper. The related literature is reviewed in Chapter 2.3. In

Chapter 2.4, we formally formulate the JPF problem and state our modeling assump-
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tions. We propose an approximation scheme and our performance measure in Chapter

2.5. Chapter 2.6 and 2.7 are devoted to the analysis of our heuristic controls. Numeri-

cal simulations are presented in Chapter 2.8. Finally, in Chapter 2.9, we conclude the

paper. The proof of all results and the remaining details of numerical experiments can

be found in Chapter A.

2.3 Literature Review

In terms of topic, the problem studied in this paper is related to three streams of

literature: dynamic pricing, e-commerce fulfillment, and the interaction between pric-

ing and fulfillment-related decisions. In terms of methodology, our work is related to

the study of asymptotic performance of re-optimization-based heuristic control and

real-time control. We discuss them in turn.

Dynamic Pricing. In the revenue management (RM) literature, research on dy-

namic pricing studies how a firm should dynamically change their price to balance

supply and demand during a finite selling season; see Talluri and van Ryzin (2006) and

Özer and Phillips (2012) for comprehensive reviews. Although the idea was popular-

ized by its application in airline ticket pricing, as argued by Boyd and Bilegan (2003),

the classic dynamic pricing model can also cover the revenue maximization problem

in e-commerce. Several works discuss how to design an optimal pricing policy for spe-

cific types of e-tailer’s problems. For example, Netessine et al. (2006) and Aydin and

Ziya (2008) explore the optimal policy for dynamic pricing and packaging when an

e-tailer offers an additional product other than the product requested by consumers

as a bundle; Ferreira et al. (2015a) and Fisher et al. (2015) devise pricing decision

support systems for large e-tailers and illustrate their effectiveness by conducting field

experiments. Compared to the existing models in the RM literature and the papers

cited above, our model shares similarity in the price-induced nature of demand gener-

ation and some related assumptions (see Chapter 2.4). Unlike the existing literature,

though, we jointly consider both the pricing and fulfillment decisions.

E-commerce Fulfillment. The advent of e-commerce has led to substantial re-

search in various aspects of optimizing e-commerce supply chains; see Simchi-Levi et al.

(2004) and Agatz et al. (2008) for comprehensive reviews. The fulfillment part of our

model focuses exclusively on designing an outbound shipping assignment strategy that

helps the e-tailer minimize total shipping costs. This problem was first studied by

Xu et al. (2009); they construct a heuristic control that periodically re-evaluates the
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real-time assignment decisions based on the currently available information, and illus-

trate its effectiveness using numerical experiments. Their objective is to minimize the

number of split shipments. Acimovic and Graves (2014) study a similar problem and

develop a heuristic control that minimizes total shipping costs instead of the number

of split shipments. Using industry data, they show that their approach captures 36%

of the savings on costs induced by the optimal hindsight control. Jasin and Sinha

(2015) consider a multi-item fulfillment cost minimization problem. They first propose

a heuristic control based on the solution of a deterministic relaxation LP and then

show how to improve its performance by carefully constructing a correlated rounding

scheme. Since our focus in this work is on the benefit of joint optimization of pricing

and fulfillment decisions, for the fulfillment part, we simplify the model in Jasin and

Sinha (2015) by requiring that each order consists of exactly one item. However, the

additional layer of the pricing decision, as well as the re-adjusting/re-optimization fea-

ture of our main heuristic control, precludes a direct generalization of the methodology

used in Jasin and Sinha (2015).

Joint pricing and fulfillment-related decisions. There are a few works that

study the interplay between an e-tailer’s pricing decisions and shipping policy (i.e.,

the format and the nominal fee charged on deliveries); see, for example, Leng and

Becerril-Arreola (2010), Becerril-Arreola et al. (2013) and Gümüş et al. (2013). In our

work, we do not explicitly consider the design of shipping policy (the format and the

extra charge for deliveries); instead, we simply assume a certain cost structure and

analyze how to dynamically adjust both the price and fulfillment decisions given the

structure. Closest to ours is Harsha et al. (2016), where a joint pricing and fulfillment

planning problem is considered in the setting of omni-channel retail. Specifically, for

an omni-channel retailer managing both online and physical channels, inventory held

at the brick-and-mortar stores can also be used to fulfill e-commerce demand. There

are, however, two critical features that differentiate their work from ours: First, in

the omni-channel setting, the retailer can charge different prices at different brick-

and-mortar stores and e-commerce channel at the same point in time whereas, in the

pure e-commerce setting, the retailer is restricted to applying only a single price to

customers from all locations at the same point in time. Second, Harsha et al. (2016)

essentially assumes deterministic demand functions, which reduces the problem to a

static optimization problem that can be solved before the selling season. In comparison,

we assume stochastic demands and focus on the design of dynamic control. Thus, our

work complements their work in different dimensions.

Re-optimization-based controls. In the broader dynamic optimization lit-

11



erature where a multi-period stochastic control problem is often intractable, re-

optimization is typically used as a heuristic approach due to its simplicity. A re-

optimization-based heuristic control first approximates the original stochastic control

problem with a simple optimization problem (e.g., an LP) and, as time evolves and un-

certainties are realized, the heuristic re-optimizes the approximate optimization prob-

lem by updating its parameters to the status quo. In the Operations Management

(OM) literature, this idea has been applied to price-based RM (Maglaras and Meissner

2006, Jasin 2014), quantity-based RM (Reiman and Wang 2008, Ciocan and Farias

2012, Jasin and Kumar 2012, 2013), inventory control (Plambeck and Ward 2006, Sec-

omandi 2008, Doğru et al. 2010, Ahn et al. 2015), and vehicle routing (Secomandi

and Margot, 2009). In our setting, the proposed approximate optimization can be

very large in size for a high-quality approximation. Therefore, full-scale frequent re-

optimizations may not be practically feasible. To address this problem, we introduce

a new methodological novelty by decoupling the pricing and fulfillment decisions. For

our main heuristic control, only the fulfillment assignment decisions involve periodic

re-optimization of an LP. The size of this LP is much smaller than the original approx-

imate optimization problem and is decomposable over the products. This makes the

re-optimization part of our heuristic control very time-efficient.

Real-time controls. Generally speaking, a real-time control consists of a simple

decision rule that can be easily computed as a function (e.g., affine) of a baseline

control and realized historical outcomes. Similar to re-optimization-based controls,

a real-time control is often used to deal with an intractable multi-period stochastic

control problem, and has been applied to robust optimization (Ben-Tal et al. 2004,

Bertsimas et al. 2010), portfolio management (Calafiore 2009, Moallemi and Saglam

2012), and dynamic pricing (Atar and Reiman 2012, Jasin 2014, Chen et al. 2015).

It is designed to adapt quickly to the observed uncertainties, especially in the setting

where speed and time-efficiency are of utmost importance. Hence, it is sometimes

preferable to re-optimization-based controls. In our main heuristic control, the pricing

decisions are adjusted according to a simple updating rule akin to the one used in

Jasin (2014) and Chen et al. (2015) (see Chapter 2.7). However, there is an important

difference between our approach and their approach: In both Jasin (2014) and Chen

et al. (2015), the adjustment is made directly to the price of each product whereas, in

ours, the adjustment is made to the set of discrete prices from which the actual price

will be sampled. Thus, our work generalizes the one-point adjustment scheme in the

existing literature to a distribution adjustment scheme.

12



2.4 Problem Formulation

Consider a monopolistic e-tailer selling a catalog of K products to customers in J

locations with sales fulfilled from I FCs. Throughout the paper, we will use [N ] to

denote the set {1, . . . , N} for any N ∈ N+. The selling season is finite and divided

into T ≥ 1 periods. (Although we assume a discrete-time setting in the analysis,

our results can also be applied to a continuous-time setting with Poisson demand.

Indeed, our numerical experiment in Chapter 2.8 is conducted in the continuous-time

setting.) At the beginning of period t, the e-tailer posts the price vector pt = (ptk)

for K products. (We use a boldface letter to denote a vector and its light face with

subscript i to denote its ith entry.) For each location j ∈ [J ], the price vector induces a

demand vectorDt
j(p

t) = (Dt
jk(p

t)) with rate vector λj(p
t) = (λjk(p

t)), where λj(pt) =

E [Dt
j(p

t)]. (For convenience, we assume stationary rate functions. Our results can

also be generalized to the case of non-stationary rates.) Demands across different

periods are assumed to be independent, but can be correlated among different products

within the same period. (In our model, cross-elasticity is the only thing that connects

different products, not the inventory or the fulfillment.) Moreover, as is common in the

literature, we allow at most one customer’s arrival in each period across all demand

locations, i.e.,
∑J

j=1

∑n
k=1 D

t
jk(p

t) ≤ 1. This is without loss of generality since we

can always slice the selling season fine enough so that at most one customer arrives in

each period across all locations. The quantity λjk(p
t) can thus be interpreted as the

purchase probability of product k from demand location j in period t. We will also

use λtot(p) = (
∑J

j=1 λjk(p))Kk=1 to denote the total purchase probability, or aggregate

demand rate over all locations. Our model implicitly assumes that a customer only

purchases at most one product at a time. (The case where customers purchase multiple

products at the same time is challenging to analyze, even from the perspective of

pure fulfillment decisions; see Jasin and Sinha 2015. We leave this for future research

pursuit.)

A common feature of e-commerce retail is that, at a given time t, customers from all

demand locations observe the same price vector pt from the same website. Compared

to brick-and-mortar retailers where prices could be different across different physical

stores, this distinct feature limits the e-tailer’s degree of freedom in controlling demand

intensity from multiple locations. (Technically, the e-tailer can set different prices

to different customers by exploiting their profiles. However, such practice may cause

severe adverse effect since (1) it will lead to customer’s unfair perception, psychological

resistance, negative word-of-mouth, and brand switching (Zhan and Lloyd, 2014), and
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(2) it is commonly considered as unethical if not unlawful (Reid, 2014).) Indeed, this

is also the very feature that makes the analysis of JPF in e-commerce setting more

challenging than in the classic RM setting. (See Chapter 2.5 for more discussions.) For

each location j ∈ [J ], let Rt
j(p

t) := (pt)>Dt
j(p

t) denote the realized revenue in period

t, where (pt)> indicates the transpose of pt. We call rj(p
t) = E [Rt

j(p
t)] the revenue

rate for location j in period t. We use Gf to denote the K × K Jacobian matrix for

any f = (f1, . . . , fK) : RK → RK , i.e., Gf (x) = [(∇f1(x))>; . . . ; (∇fK(x))>] where

∇fk(x) is the gradient of fk at x. Let Ωp := [p`, pu]
K ⊂ RK and Ωλ ⊂ RK denote the

convex and compact sets of feasible prices and demand rates, respectively. (Without

loss of generality, we assume that the domain of prices for all products and demand

rates at all locations are the same.) To facilitate our analysis, we make the following

assumptions on the underlying demand and revenue rate functions for all j ∈ [J ]:

A1. The demand rates λj(p) : Ωp → Ωλ and λtot(p) : Ωp → [0, 1]K are invertible,

twice-differentiable and monotonically decreasing in its individual argument.

A2. The revenue rates rj(p) are continuous and strictly unimodal with interior max-

imizers.

A3. For all p ∈ Ωp, the absolute eigenvalues of Gλtot(p) are bounded from below,

whereas the absolute eigenvalues of ∇2rj(p) are bounded from above.

Assumptions A1 and A2 are standard regularity conditions widely assumed in the

RM literature (see similar assumptions in Gallego and van Ryzin 1997). The first part

of A3 is a natural consequence of the invertibility of the demand function; the second

part of A3 is easily satisfied, especially for a compact pricing decision region. Both

of them have been assumed in the dynamic pricing literature (e.g., Wang et al. 2014,

Chen et al. 2015). It can be easily shown that Assumptions A1 - A3 are satisfied by a

broad class of demand functions such as linear, exponential, power and logit demand

models. Note that we do not assume that the revenue rate is concave when viewed

as a function of demand rate instead of price, which is a critical assumption in most

existing studies on dynamic pricing. Instead, we simply require the revenue function to

be strictly unimodal. As will be discussed in Chapter 2.5, we are able to sidestep the

concavity assumption by a novel deterministic formulation of the original stochastic

problem.

After a customer in location j makes a purchase of product k, the e-tailer chooses

an FC i from which the order should be fulfilled immediately. In this paper, we do not

allow any deliberate delay in shipment for further savings in cost, since it is in itself
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a complex research problem and beyond the scope of this work (see Xu et al. 2009

for further discussions on the same assumption). The shipping cost of product k from

FC i to location j equals cijk ≥ 0. Let X t
ijk ∈ {0, 1} denote the e-tailer’s decision to

fulfill an incoming order for product k from location j in period t using the inventory

available at FC i. We assume that FC i carries Ci = (Cik) � 1 units of initial inventory

before the selling season starts and no replenishment occurs during the selling season.

(We use 1 to denote a column vector with proper dimension whose entries are all ones,

and a � b to denote ai ≥ bi for all i for any vectors a, b with the same dimension).

The assumption on no replenishment opportunity is commonly made in the previous

works on dynamic fulfillment optimization (e.g., Xu et al. 2009, Acimovic and Graves

2014, and Jasin and Sinha 2015). The justifications are as follows: (1) we can interpret

our selling season as the time window between two replenishments and we focus on the

tactical instead of strategic decisions; and, (2) the impact of stockout can be accounted

for as explained shortly.

We define a fictitious FC 0 that has an infinite amount of initial inventory (i.e.,

C0 = +∞ · 1), and shipping costs set by us at c0jk := max{2 maxi∈[I] cijk, pu} for all

j, k. The formulation of FC 0 serves the purpose of a backup facility when certain

product is depleted at all real FCs, and technically guarantees that there is always a

feasible solution to our problem. In practice, the e-tailer may also decide to simply

announce that the product is unavailable when it is depleted at all real FCs; in this

case, the cost of shipping from FC 0 can be interpreted as the cost of lost sales. It

should be noted that our analysis does not depend on the specific cost of shipping

from FC 0. For the purpose of this work, we simply set the cost to be no smaller than

both the maximum revenue of a single product and all the other fulfillment options to

emphasize the undesirability of fulfilling from FC 0.

In addition to having to make the pricing and fulfillment decisions, the e-tailer also

needs to satisfy several constraints. First, any arriving order in period tmust be fulfilled

in the same period (i.e., no backorder or strategically delayed shipment) by a unit of

inventory at a certain FC. Second, the number of orders for any given product that each

FC can fulfill throughout the selling season cannot exceed the initial inventory level

for that product at that FC. The e-tailer’s objective is to maximize her total expected

profits, which is defined as total expected revenues minus total expected fulfillment

15



costs. We can write the optimal control formulation of JPF problem as follows:

J ∗ := max
{pt,π ,Xt,π}∈Π

Eπ
[

T∑
t=1

J∑
j=1

(
pt,π
)>
Dt

j(p
t,π)−

T∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t,π
ijk

]

s.t.
I∑
i=0

X t,π
ijk = Dt

jk

(
pt,π
)
, ∀j, k, t (2.1)

T∑
t=1

J∑
j=1

X t,π
ijk ≤ Cik, ∀i, k (2.2)

pt,π ∈ Ωp, X
t,π
ijk ∈ {0, 1}, ∀i, j, k, t (2.3)

where Π is the set of all non-anticipating controls and the constraints must hold almost

surely. We denote by π∗ the optimal control for JPF.

Remark 2.4.1 In practice, e-tailers may offer different options for delivery speed.

Our modeling framework is sufficiently general to cover this extra layer of complexity.

Specifically, the requests of different shipping options can be modeled as demand nodes

at the same demand location with adjusted cost capturing different nominal fees (e.g.,

{Fast, Oregon, Grill pan} and {Slow, Oregon, Grill pan}). Similarly, different sup-

ply nodes should be added at the same FCs with different shipping costs (e.g., {Fast,

California, Grill pan} and {Slow, California, Grill pan}), and constraints limiting to-

tal consumption from supply nodes representing the same product at the same location

should also be added (e.g., total grill pan fulfilled from California under both Fast and

Slow shipping options cannot exceed the number of grill pans stored in FC California).

All of our results can be easily generalized to the case of multiple shipping options.

2.5 A Deterministic Approximation of JPF

In practice, the magnitude of demand intensity faced by an e-tailer is often high, espe-

cially during holiday and promotion seasons. (According to CNN 2015, Amazon.com

sold 398 items per second during its global shopping event exclusively for Amazon

Prime members on July 15, 2015.) This translates into the need for e-tailers to make

fast real-time pricing and fulfillment decisions. This requirement, together with the

well-known curse of dimensionality of dynamic programming, makes solving JPF opti-

mally practically infeasible.
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In the RM literature where a similar problem is encountered, many researchers turn

their attention to developing heuristic controls that are both easy to implement and

have a provably good performance under well-defined metrics. A popular framework is

to first propose an approximate formulation of the original stochastic control problem,

and then use its optimal solution as a heuristic control. A good approximate formula-

tion usually has three characteristics: (1) its optimal solution is much easier to solve

than that of the original stochastic control; (2) its optimal solution is easily imple-

mented as an intuitive heuristic control that can be viewed as a simple approximation

of the optimal control; and (3) its optimal objective value is not too much smaller than

the optimal value of the original stochastic control problem (since the performance of

the derived heuristic control tends to mimic the objective value of the approximate for-

mulation). In what follows, we first discuss why an approximation scheme commonly

used in the operations literature may not be appropriate for JPF. This motivates us

to propose a novel approximation scheme based on the idea of price randomization.

Classic Certainty Equivalent Approximation. In the broad dynamic opti-

mization literature, Certainty Equivalent (CE) approximation refers to the idea where

random variables in the original stochastic problem are replaced by their expected

values. Under the classic RM models, CE approximation has all the aforementioned

characteristics and has been used to develop several high-performing heuristic controls;

see e.g. Gallego and van Ryzin (1994, 1997), Ciocan and Farias (2012), Jasin (2014).

In the JPF problem, applying the CE principle leads to the following deterministic

formulation, which we call Deterministic JPF (DJPF):

J D := max
{pt,xt}

T∑
t=1

J∑
j=1

rj(p
t)−

T∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
t
ijk

s.t.
I∑
i=0

xtijk = λjk(p
t), ∀j, k, t (2.4)

T∑
t=1

J∑
j=1

xtijk ≤ Cik, ∀i, k (2.5)

pt ∈ Ωp, x
t
ij ∈ [0, 1] (2.6)

Observe that the optimal solution of DJPF can be easily implemented: pt can be

used as the posted price vector in period t and xtijk/λjk(p
t) can be used as the probabil-

ity of fulfilling an order of product k from location j in period t using inventory in FC

i. However, there are two serious drawbacks of the DJPF formulation. First, despite
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being a deterministic optimization problem, DJPF still has non-linear constraints and

a potentially non-concave objective function, which means that it may not be easy

(or time-efficient) to solve (see Table A.2. for a numerical example). Second, if the

demand function is non-linear in price, it is possible that J ∗ > J D and, depending on

the problem parameters, the gap can be quite large. This implies that the performance

of a heuristic control derived directly from the solution of DJPF, as it is intended to

mimic J D, may perform a lot worse than J ∗ (see Chapter 2.8 for numerical exam-

ples that confirms this conjecture). This is in sharp contrast with the standard RM

models, where CE approximation serves as an upper bound of the optimal value of the

original stochastic problem under a general class of non-linear demand functions (see

Remark 2.5.1 for a discussion on the intuition).

Motivated by the preceding discussions, in this paper, we will use an alternative

deterministic formulation based on the idea of price discretization. We will show that

it is possible to construct a deterministic optimization problem whose optimal value

is at most ε > 0 smaller than J ∗ for any value of ε. We will use this alternative

deterministic formulation to construct our heuristic controls. (Note that our approach

in this paper can also be used in combination with DJPF if the e-tailer uses the DJPF

formulation.)

An Approximate Linear Program. Our new formulation shares similarities

with DJPF and other CE approximations in the literature, in that it also replaces

all the random variables by their expected values. However, in the new formulation,

the pricing decision is approximated by a randomization over a set of discrete prices

instead of by a singleton. Formally, let Q := (qm)Mm=1 denote a set of M price vectors

(qm ∈ Ωp) and αt = (αt1, . . . , α
t
M) denote a weight vector whose entries are all non-

negative and sum up to one. For a fixed discretization setQ, we can define the following
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Approximate Linear Program (ALP):

J ALP (Q) := max
{αt,xt}

T∑
t=1

J∑
j=1

M∑
m=1

αtmrj(qm)−
T∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
t
ijk

s.t.
I∑
i=0

xtijk =
M∑
m=1

αtmλjk(qm), ∀j, k, t (2.7)

T∑
t=1

J∑
j=1

xtijk ≤ Cik, ∀i, k (2.8)

0 ≤ xtijk ≤ 1, ∀i, j, k, t (2.9)

M∑
m=1

αtm = 1, αtm ≥ 0, ∀m, t (2.10)

There are several nice features about the above ALP formulation. First, since FC 0

has infinite inventory, ALP always has a solution. Similar to DJPF, the solution of ALP

can be easily implemented as an intuitive heuristic control, which is formally studied

in Chapter 2.6. Second, if we include the optimal prices from the solution of DJPF

in Q, then J D ≤ J ALP since the optimal solution to DJPF is also feasible for ALP.

Thus, one can view ALP as a generalization of DJPF that allows the price vector to

be sampled from a multi-point distribution instead of a singleton. The randomization

over different price points brings additional benefit in increasing the expected profit.

Third, since ALP is an LP and demand rates are stationary, there exists a stationary

optimal solution satisfying xtijk = x1
ijk and αtm = α1

m for all t. (Let {xtijk, αtm}Tt=1 denote

a pair of optimal solution of ALP. Define: x̄tijk =
∑T

s=1 x
s
ijk/T and ᾱtm =

∑T
s=1 α

s
m/T .

It is not difficult to check that {x̄tijk, ᾱtm}Tt=1 is also optimal for ALP.) Without loss of

generality, throughout this paper we will be working with a stationary optimal solution

of ALP, which is simply denoted as x∗ := (x∗ijk) and α∗ := (α∗m). We will also assume

that α∗m > 0 for all m ∈ [M ], since if αm = 0 for some m, we can simply delete those

qm from the set Q without affecting any other α∗m and x∗ijk.

Note that the value of J ALP , α∗, and x∗ depend on price discretization Q. We

neglect this dependency for notational simplicity. The following lemma tells us that,

there exists a set of discrete price vectors Q such that ALP approximates JPF well (in

some sense).

Lemma 2.5.1 Assume that assumptions A1 and A2 hold. For any ε > 0, there exists

a discretization Q such that J ∗ − J ALP ≤ ε.

In proving Lemma 2.5.1, we use a specific set of dicrete price vectors that forms
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a uniform grid on Ωp and show that it satisfies the above approximation guarantee.

Formally, we first divide the feasible set [p`, pu] into bmc sub-intervals of equal length

and let Q̄u be the set of mid-points of the resulting sub-intervals. We then define

our uniform grid as Qu = {(p1, . . . , pK) ∈ Ωp : pk ∈ Q̄u ∀k ∈ [K]}. In the proof of

Lemma 2.5.1, we show that to reach an ε-approximation stated in Lemma 2.5.1, the

number of uniform grid points is at most M = mK = O
((

IJKT
ε

)K)
. (If demands are

independent, this number reduces to O
(
IJK2T

ε

)
since we only need to approximate

K univariate functions.) volume of the smallest hyper-cubes sliced by the uniform

grid.) Although this number can be large for problems of practical size, our numerical

experiment suggests that it is not necessary to use too many price points to guarantee a

good approximation (see Chapter 2.8 and our discussions below). Moreover, in practice,

e-tailers often already work with a pre-determined price set (see Chapter 5.2.1.3 in

Talluri and van Ryzin 2006 and Cohen et al. 2017a). In this context, Lemma 2.5.1

can be seen as providing a theoretical justification that this type of approximation

(i.e., using price discretization) provides a good approximation of JPF, at least for

a sufficiently fine discretization. (This is in contrast to DJPF, which can be a very

inaccurate approximation of JPF.) Although our proposed heuristic controls can be

applied with any price discretization Q, in the remaining of this paper we will always

use the set of uniform grids discussed above for consistency.

We want to underscore that, if the number of products is very large, it may not

be possible to solve the corresponding ALP. In practice, this challenge can be resolved

by first segmenting the products into clusters within which demands are strongly cor-

related and then applying our approach to each segment separately. The question of

how to properly disaggregate products into clusters in a way that balances the trade-

off between computational complexity and approximation quality is an important one;

however, it is beyond the scope of this paper and we leave it for future research pursuit.

Remark 2.5.1 In the typical RM literature, under the standard assumptions that de-

mand rate is invertible in price and revenue is concave in demand rate, the CE-type

formulation can be transformed into a concave optimization problem by using demand

rate instead of price as the decision variable. In JPF problem, for any period, the

price vectors observed by customers in all locations are the same, which results in new

non-linear constraints that cannot be easily transformed into deterministic constraints

by standard techniques. If demand rates are linear in prices, then DJPF is indeed a

proper deterministic relaxation of JPF since it can be shown J ∗ ≤ J D. In this case,

we can use DJPF as our deterministic relaxation and the ALP is not needed.
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Performance Measure and Asymptotic Regime. In this paper, we use the

optimal value of ALP as the benchmark to evaluate the theoretical performance of

our heuristic controls. Motivated by the typical large volume of sales faced by e-

tailers, and for the purpose of theoretical performance analysis, we will consider a

sequence of JPFs and ALPs where both the length of selling season and the amount of

initial inventories are scaled proportionally by a factor of θ while keeping all the other

parameters unchanged. More specifically, in the θth problem, the length of selling

season is given by T (θ) = θT and the amount of initial inventories in FC i is given by

Ci(θ) = θCi. Since we only allow at most one new arrival in each period, increasing

the selling season by θ is equivalent to multiplying the number of potential demands

by θ. So, in the prescribed asymptotic setting, we essentially scale both the potential

demands and initial inventories proportionally. Naturally, we shall interpret the scaling

parameter θ as the size of the problem.

For a problem with size θ, let J π(θ) denote the total expected profits collected

under a specific heuristic control π ∈ Π. Similarly, let J ALP (θ) denote the optimal

value of ALP with size θ. We use the loss of heuristic control π, defined as Lπ(θ) :=

J ALP (θ) − J π(θ), as our performance measure. (Again, for notational simplicity, we

neglect the notational dependency of Lπ(θ) on Q.) By definition, the loss of any

control captures the difference in profit between the optimal control and that control.

A control whose loss scales sublinearly in θ is asymptotically optimal. It is noteworthy

that although there is no theoretical guarantee that an asymptotically optimal heuristic

control will also perform well in non-asymptotic settings, existing works in the literature

have found that they tend to also perform sufficiently well, if not extremely well, in

non-asymptotic settings (see e.g. Ciocan and Farias 2012, Jasin 2014). In our case,

we also observe sufficiently good performance for both of our heuristic controls in the

non-asymptotic setting (see Chapter 2.8).

2.6 First Heuristic Control: Randomizing Pricing

and Fulfillment Decisions

In this Chapter, we describe a simple non-adaptive heuristic control and discuss its

asymptotic performance. Let σtk : [J ]→ [I]∪{0} denote the fulfillment assignment for

period t, i.e., σtk(j) = i indicates that we fulfill an order of product k from location j

in period t from FC i. Our first heuristic control directly uses the solution of ALP to

construct a randomized heuristic. Note that, for a fixed set of discrete price vectors
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Q, α∗ and x∗ are the optimal sampling vector and fulfillment vector given by ALP.

The idea behind our first heuristic control is to sample a price vector pt from Qu

according to α∗, and sample the fulfillment assignment σt according to x∗. Let Ct
i

denote the inventory level in FC i at the beginning of period t. We formally define our

first heuristic control below.

Randomized Pricing and Fulfillment Heuristic (RPF)

1. Initialization: Fix a discretization Q and solve ALP to get α∗, x∗.

2. During period t ≥ 1, do:

a. Sample pt = qm with probability P{pt = qm} = α∗m and apply pt.

b. Sample σtk(j) with probability P{σtk(j) = i} = y∗ijk := x∗ijk/
∑I

i=0 x
∗
ijk.

c. If there exists a (j, k) ∈ [J ]× [K] such that Dt
jk = 1, do:

i. If Ct
σtk(j),k

> 0, fulfill the order from FC σtk(j) and update

Ct+1
σtk(j),k

= Ct
σtk(j),k

− 1;

ii. Otherwise, fulfill the order from FC 0.

The following theorem characterizes the performance of the RPF.

Theorem 2.6.1 Let Qu be the uniform price grids discussed in Chapter 2.5. There

exists a constant Ψ1 > 0 independent of θ ≥ 1 such that LRPF (θ) ≤ Ψ1

√
θ.

Two comments are in order. First, it is not difficult to show that J ALP (θ) is an

upper bound for total expected profits under any feasible joint pricing and fulfillment

control that restricts pt ∈ Q for all t and some Q, and that the above bound is tight,

i.e., for some problem instances, there exists a constant Ψ′1 > 0 independent of θ ≥ 1

such that LRPF (θ) ≥ Ψ′1
√
θ (see Remark 2 in Jasin 2014 for an argument for a simple

example where I = J = K = 1). This means that Theorem 2.6.1 completely char-

acterizes the asymptotic performance of RPF. (The constant in Theorem 2.6.1 scales

linearly in I, J and K. However, this is not surprising as J ALP itself also scales linearly

in I, J and K.) Second, although RPF is asymptotically optimal, a heuristic control

that has a stronger performance guarantee than
√
θ is still highly desirable. Since

RPF does not adjust its decisions dynamically depending on the realized observations,

it may lose significant opportunities to boost total profits. The important question is
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how to construct a heuristic control that both significantly improves the performance

guarantee of RPF while maintaining its tractability. One simple idea is to re-optimize

ALP at the beginning of every period by updating its inventory parameters. Unfor-

tunately, this approach may not be feasible in practice since ALP can be very large

(for example, a 5-point discretization for each product for a catalog of ten products

results in 510 ≈ 107 price points). Therefore, we will not focus on the heuristic control

that fully re-optimizes ALP. Instead, in the next Chapter, we will develop a novel re-

adjust-and-re-optimize heuristic control based on the idea of combining real-time price

adjustment with re-optimization of only the fulfillment part of ALP.

Remark 2.6.1 Since RPF samples fulfillment assignment decisions randomly over a

static distribution, it is possible that, at some point of the selling season, the assigned

FC has zero inventory whereas other FCs have positive inventory. In other words, RPF

may randomly deny demand although there is still inventory for the requested product

in some of the FCs. In practice, a simple way to fix this is problem is to re-optimize

the fulfillment part of the ALP (see (2.12) for a formal definition) whenever such event

happens.

2.7 Second Heuristic Control: Re-adjust and Re-

optimize Pricing and Fulfillment Decisions

Our second heuristic control adaptively adjusts the discretization set Q and re-

optimizes the fulfillment vector x in every period. An important feature of this modi-

fication is although both prices and fulfillment probabilities are still decided jointly at

the beginning of the selling season via solving ALP, their updates during the selling

season are done almost separately through a two-stage process. We show in this chap-

ter that, under some conditions, our proposed modification guarantees a significant

improvement over RPF.

We start by introducing a few more notations. For every period t, we let Qt = (qtm)

be the set from which pt is sampled, and xt = (xtijk) be the fulfillment vector. Given

xt, define ytijk := xtijk/
∑I

i=0 x
t
ijk to be the conditional probability of using FC i to

fulfill an order of product k from location j conditioning on the arrival of such order.

Let Ct := (Ct
i ) denote the vector of remaining inventory level at the beginning of

period t. Recall from Chapter 2.4 that X t
ijk is the actual fulfillment decision in period

t. Let ∆Ct
ik :=

∑J
j=1[X t

ijk − ytijk(
∑M

m=1 α
∗
mλjk(q

t
m))] denote the difference between the
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actual consumption of inventory of product k at FC i during period t and the expected

consumption prescribed by the current control parameters (i.e., ytijk and qtm). (We

suppress notational dependencies of ∆Ct
ik on pt and Qt for the sake of brevity.) Let

∆Ct
i = [∆Ct

i1; . . . ; ∆Ct
iK ]>. Define projA(x) := arg miny∈A ||y−x||2 to be the Euclidean

projection function. We are now ready to present our second heuristic control.

Re-adjust and Re-optimize Pricing and Fulfillment Heuristic (R2PF)

1. Initialization: Fix discretization Q and solve ALP to get α∗, x∗.

Define Q1 = Q and x̂1 = x∗.

2. During period t ≥ 1, do:

a. Adjust Price: For each m, calculate qtm satisfying

λtot
(
qtm
)

= proj
[0,1]K

[
λtot(qm)− 1

Mαm

(
I∑
i=0

t−1∑
s=1

∆Cs
i

T − s

)]
. (2.11)

b. Update Fulfillment: Set x̂t+1 equal to the optimal solution of the

following Fulfillment LP (FLP):

FLPt(Qt,Ct) :={
min
xijk≥0

c>x :
I∑
i=0

xijk =
M∑
m=1

α∗mλjk
(
qtm
)
,

J∑
j=1

xijk ≤
Ct
ik

T − t+ 1

}
.(2.12)

c. Sample pt with probability P{pt = qtm} = α∗m and apply pt.

d. Sample σtk(j) with probability P{σtk(j) = i} = ytijk := x̂tijk/
∑I

i=0 x̂
t
ijk.

e. If there exists a (j, k) ∈ [J ]× [K] such that Dt
jk = 1, do:

i. If Ct
σtk(j),k

> 0, fulfill the order from FC σtk(j) and update

Ct+1
σtk(j),k

= Ct
σtk(j),k

− 1;

ii. Otherwise, fulfill the order from FC 0.

Recall that ∆Cs
ik is the error from the expected consumption of product k in FC i

at period s. In designing R2PF, we wish to eliminate as much of these errors as possible

such that, by the end of the selling season, the performance of R2PF is very close to

the deterministic benchmark J ALP . This is accomplished in two steps: (1) We first
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adjust the discretization set Q such that the new aggregate expected demands equal

the original aggregate expected demands given by ALP minus a linear combination of

inventory consumption errors caused by randomness up to period t; (2) we then update

the fulfillment probabilities by re-optimizing the fulfillment part of ALP, which has a

much smaller number of variables compared to the full ALP. In the price adjustment

step, under the uniform pricing constraint, we can only precisely control the aggregate

expected demands (over all locations) for each product. Therefore, at any period s, we

aggregate the incurred consumption error (over all FCs) at the product level and correct

them uniformly throughout the remaining periods—this is the intuition behind the term∑I
i=1 ∆Cs

ik/(T −s). (The uniform error distribution may not be the optimal correction

scheme; however, Jasin (2014) has shown in the context of dynamic pricing that it is

sufficient to guarantee a very strong performance bound.) Thus, the total errors for

product k that needs to be corrected up to period t is given by
∑I

i=0

∑t−1
s=1 ∆Cs

ik/(T−s).
We then perturb Qu to Qt such that the new aggregated expected demands for product

k equals the original one under (α∗,x∗) minus the perturbation term. Mathematically,

we want the following system of equations to hold:

J∑
j=1

M∑
m=1

α∗mλjk
(
qtm
)

=
J∑
j=1

M∑
m=1

α∗mλjk (qm)−
I∑
i=0

t−1∑
s=1

∆Cs
ik

T − s
, ∀k. (2.13)

One can show that any interior solution to (2.11) is also a solution to (2.13). Moreover,

by the invertibility of λtot(·) (Assumption A1), the system in Step 2a always has a

unique solution of Qt. Although we need to perturb potentially all price vectors in Q,

the computation in Step 2a can be done for each price vector in parallel very efficiently

(e.g., using standard gradient-based methods). This decomposability is crucial for the

time-efficiency of R2PF.

We want to emphasize: Although the price adjustment helps balance future de-

mands with remaining inventories, it only does so at the aggregate level across all FCs.

To address the potential inventory imbalance across different FCs caused by the ran-

domness in demand and fulfillment assignment, another layer of optimization is needed.

To do so, given Qt in the price adjustment step, we update the fulfillment vector by

re-optimizing FLPt(Qt,Ct). (For notational brevity, we will often write it as FLPt

whenever the values of Qt and Ct are clear from the context.) FLPt essentially solves

the optimal static fulfillment decisions for the remaining T − t + 1 periods, assuming

that we always sample price from Qt. (The deleted constraints xijk ≤ 1 is redundant,

since xijk ≤
∑M

m=1 α
∗
mλjk(q

t
m) ≤

∑M
m=1 α

∗
m · 1 ≤ 1.) This extra step is crucial for
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making sure that we are also minimizing total shipping costs while maximizing total

revenues.

Before we evaluate the asymptotic performance of R2PF, we need to first introduce a

concept that will be useful for the analysis. Consider the initial transportation problem

faced by the e-tailer, i.e., FLP1. Since we assume that each customer only requests at

most one product, FLP1 can be decomposed into K transportation LPs defined as

FLP1
k(Q,Ck)

:=

{
min
xijk≥0

I∑
i=0

J∑
j=1

cijkxijk :
I∑
i=0

xijk =
M∑
m=1

α∗mλjk(q
1
m),

J∑
j=1

xijk ≤ Cik/T

}
.

We assume without loss of generality that
∑J

j=1 x
∗
ijk = Cik (this is for the simplicity

of the proof; otherwise, we can always define C̃ik :=
∑J

j=1 x
∗
ijk and replace the original

initial inventory Cik with C̃ik without changing anything else). In other words, the

inventory constraints in FLP1
k are all binding. From the study of transportation LP

(e.g., Dantzig and Thapa 2006), we know that there is exactly one redundant constraint

in every FLP1
k. Moreover, if we delete an arbitrary constraint, the remaining constraints

are always linearly independent. Let FLP
1

k be the LP where we delete the inventory

constraint regarding FC 0; since the deleted constraint is redundant, FLP
1

k is equivalent

to FLP1
k. We call a basic solution to FLP1 as DR-degenerate (“DR” is short for de-

redundancy) if and only if the corresponding basic solution to FLP
1

k is degenerate for

some k ∈ [K].

We state a theorem on the performance of R2PF.

Theorem 2.7.1 Let Qu be the uniform price grids discussed in Chapter 2.4. Suppose

that FLP1(Qu,C) has a unique non-DR-degenerate optimal solution. There exists a

constant Ψ2 > 0 independent of θ ≥ 1 such that LR2PF (θ) ≤ Ψ2(1 + log θ).

Some comments are in order. First, since R2PF may use different discretization

sets in different periods, J ALP (θ) is not necessarily an upper bound for J R2PF (θ);

in other words, LR2PF can actually be negative. However, given that the expected

loss of RPF relative to J ALP (θ) is of order
√
θ, the bound in Theorem 2.7.1 is use-

ful because it shows that R2PF guarantees a significant improvement over RPF, at

least asymptotically. (The constant in Theorem 2.7.1 scales linearly in J and K, but

quadratically in I. In practice, due to its high installment cost, the number of FCs

e-tailers own is usually much smaller than the stock level of products. Our numerical

results in Chapter 2.8 show that the impact of I on revenue loss is dominated by the

26



revenue improvement due to using R2PF over RPF.) Second, the non-DR-degeneracy

assumption only applies to the initial FLP1 and is not required for the subsequent

FLPt for all t ≥ 2. Similar conditions have been used in other works that study the

performance of re-optimization-based controls with deterministic relaxation being an

LP, e.g., Jasin and Kumar (2012, 2013), and Ferreira et al. (2015b). Although this

assumption is critical for the tractability of the proof, our numerical results in Chapter

2.8 show that R2PF still performs well even when all FLP
1

k’s are degenerate. Finally,

the fact that R2PF significantly improves RPF is not a trivial result. Although it is

known in the literature that frequent re-optimization has the potential to significantly

improve performance (see Chapter 2.3), it matters what is being re-optimized. In the

case of R2PF, the FLPt takes as its input the perturbed Qt that is chosen almost inde-

pendently of the current inventory distribution and how it would affect total shipping

costs (except the perturbations terms {∆Ct
ik}). It is, thus, not immediately clear that

frequent re-optimizations of the fulfillment LP updated in this manner still yields the

level of improvement that we want. In order to analyze R2PF, we introduce a key con-

cept of balanced FLPt (see Step 1, Chapter A.3), meaning that the aggregate demand

under the current price equals to the aggregate inventory across all the FCs. We show

that joint optimization guarantees that FLPt stays balanced during most of the selling

season. This observation allows us to express the evolution of demand and inventory

consumption levels at all FCs in closed form, which is instrumental to the following

proof.

Remark 2.7.1 Both RPF and R2PF involve frequent randomizations in pricing de-

cision. As discussed in Chapter 2.5, this is critical to help us overcome the difficulty

in JPF caused by the requirement of uniform pricing. In practice, in order to avoid

an adverse impact of randomization, it is recommended that the range of price points

within the discretization set is limited to a reasonable interval. This is crucial for mak-

ing sure that randomization does not result in a scenario where some customers are

charged extreme prices.

2.8 Numerical Experiment

Experiment Setup. We now conduct numerical simulation to illustrate the perfor-

mance of the proposed heuristic controls in comparison to some natural benchmarks.

We choose I = 6, J = 15 and K = 5 (i.e., the e-tailer sells five different products
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to fifteen different demand locations through six FCs) and select our fifteen demand

locations to be the fifteen largest metropolitan statistical areas (MSAs) in the United

States estimated by U.S. Census Bureau (2014a). The logistic network consists of

six FCs selected from the list of the most efficient warehouses (in terms of transit

lead-times) in the United States (Chicago Consulting, 2013) and spans the contiguous

United States.

The demand process is determined by a two-step procedure: we first generate ar-

rivals from all fifteen locations according to independent Poisson processes whose rates

are proportional to total populations of the corresponding MSAs. We then set the

purchase probability of an arriving customer according to an exponential function in

price. The parameters of the purchase probability functions are set such that customers

from locations with higher income are more likely to make a purchase compared to cus-

tomers from locations with lower income. We set the feasible price range to be $100

and $250. The outbound shipping costs are set to be proportional to the distance

between the demand location and the FC. The average shipping cost over all FC-MSA

pair is $9.55. (Since the annual outbound transportation costs as a percentage of net

sales typically varies between 4% to 10%, our choice at least guarantees that the rel-

ative magnitude between revenue and cost is practical; see Tompkins Supply Chain

Consortium 2012.) The costs of the fictitious FC, per Chapter 2.4, are calculated as

c0jk := max{2 maxi∈[I] cijk, pu} = $250 for all j, k. We set the initial inventory levels

to be balanced across FCs, taking into account for the market sizes of MSAs and the

distances between all FC-MSA pairs. The details of parameters configuration can be

found in Chapter A.4.

Implemented Heuristics. We now list all heuristic controls that are tested in the

experiment. For any heuristic control Alg that is motivated by ALP formulation, we

denote by Alg-m the one that uses uniform price grid Qu with size of mK . (We choose

K = 5 and m ∈ {2, 5, 8}, therefore |Qu| ∈ {32, 3125, 32768}.)

� RPF-m: RPF heuristic proposed in Chapter 2.6.

� R2PF-m: R2PF heuristic proposed in Chapter 2.7.

� ALP-Reopt-m: At the beginning of period t, re-optimize ALP by replacing the

inventory parameters Cik from the original ALP with Ct
ik.

� R2PF-Ful-m: R2PF-m without price re-adjustment, i.e., Qt ≡ Qu for all t.

� R2PF-Pr-m: R2PF-m without fulfillment re-optimization, i.e., xt ≡ x∗ for all

t.
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� DJPF-Reopt-k: At the beginning of periods t ∈ {1, bT
k
c, 2 · bT

k
c, . . . , (k − 1) ·

bT
k
c}, re-optimize DJPF by updating the inventory parameters from the original

DJPF from Cik to Ct
ik and apply its solution.

� Sep-Reopt: At the beginning of period t, compute price pt according to

pt := {max
p∈Ω

J∑
j=1

rj(p) : λjk(p) ≤
I∑
i=1

Ct
ik

T − t+ 1
};

then compute the fulfillment vector xt according to

xt :=

{
min

0≤xijk≤1

I∑
i=0

J∑
j=1

cijkxijk :
I∑
i=0

xijk = λjk(p
t),

J∑
j=1

xijk ≤
Ct
ik

T − t+ 1

}
.

Several comments are in order. First, despite its long computation time, ALP-

reopt is a good benchmark for heuristics based on the ALP formulation. (In fact,

ALP-reopt-8 is not implemented since its computation time is too long, see Table

A.2.) Second, implementing Sep-reopt allows us to illustrate the benefit of joint joint

pricing and fulfillment optimization. To do this, we solve for the optimal price pt first by

aggregating the inventory for each product across all FCs, and then solve the FLP under

pt for the fulfillment assignment distribution xt. Since we re-optimize both decisions

at every period, Sep-reopt is in fact a near-optimal heuristic if we are restricted

to separate pricing and fulfillment optimization. Third, we test the performance of

R2PF-Ful-m and R2PF-Pr-m to tease out the benefit of price optimization and

fulfillment optimization, respectively. Lastly, the performance DJPF-Reopt-k can

help us understand empirically whether the ALP formulation is indeed more beneficial

than DJPF in providing a better approximate formulation of the original stochastic

control problem.

All heuristic controls are tested under varying problem scales. For simplicity, we

normalize T to 1. This means that the scaling factor θ is the same as the length of

selling season and can be immediately interpreted as the size of potential market. The

value of θ ranges from 200 to 2,000, which means that the average initial inventory

level for each product in each FC ranges from 3 units to 30 units. Note that this scale

allows us to highlight the performance of our heuristic controls in a non-asymptotic

setting. For each θ, we simulate all heuristic controls for 500 runs to approximate their

total expected profits. To understand the performance of the heuristics beyond the

scenarios prescribed theoretically in previous chapters, we intentionally choose m to
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Figure 2.2: Performance of Heuristics Motivated by ALP θ

be small and the initial FLP to be DR-degenerate.

Results and Observations. We now present representative results of our experi-

ments in Figures 2.2 to 2.5 and Table 2.1. The detailed numerical results can be found

in Table A.1.

Figure 2.2 shows the expected losses of all heuristic controls that uses the solution

to ALP and has a parameter of m = 5. (We group the results according to m since

the benchmark J ALP (θ) depend on the granularity of price discretization.) The upper

and lower bars around each instance form a 95% confidence interval. In Figure 2.2,

the trends of the curves suggest that the expected losses of RPF and R2PF grow

sublinearly in θ, with R2PF growing significantly slower; this empirically validates our

theoretical results in Theorems 2.6.1 and 2.7.1. Also, the loss of R2PF is the second

smallest overall and is comparable to that of ALP-Reopt, which is the smallest (not

surprisingly). This is achieved with a significant reduction in computation time; see

Table A.2 for details. The performances of R2PF-Ful and R2PF-Pr suggest that,

under our choice of parameters, the dynamic fulfillment optimization is more beneficial

than the real-time price adjustment. We show later that this may be caused by the

randomized nature of R2PF-Pr and may not be true in general.

Figure 2.3 compares the expected losses of benchmark heuristics motivated by ALP

and DJPF respectively. It confirms the conjecture that ALP is indeed a better approx-
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Figure 2.3: Performance of Heuristics Motivated by ALP and DJPF with Varying θ

imate formulation than DJPF since it leads to heuristics with better performances. In

particular, we report the performance of the static control under DJPF (i.e. DJPF-

Reopt-1, since DJPF is never re-optimized during the selling season) and another

control that re-optimizes DJPF ten times throughout the selling season. We do not

further increase the re-optimization frequency since frequently re-optimizing DJPF

is very time consuming (see Table A.2) and the improvement in performance is only

marginal. (Numerical results suggest that the loss of DJPF-Reopt-10 is smaller than

that of DJPF-Reopt-1 by around 40%, but further increasing the re-optimization fre-

quency to DJPF-Reopt-20 only brings additional 3% reduction in loss. This is not

surprising. In the classic RM setting, it has also been shown that the marginal benefit

of re-solving decreases as the frequency increases; see Jasin 2014.) In our simulation,

we have J D = 67.96, and J ALP = 69.52 for m = 5. Since DJPF-Reopt and R2PF

tries to mimic the DJPF and ALP formulations respectively, it is not surprising that

R2PF perform significantly better than DJPF-Reopt.

For all heuristic controls, we also test a variant where, whenever the assigned FC for

an incoming demand has no remaining inventory for the requested product, the seller

simply denies that demand without incurring any penalty. All previous observations

still hold in this new setting, which suggests that they are robust with respect to the

change in the value of penalty parameter. To have a better understanding on the
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Profit ($) Revenue ($) Fulfillment Cost ($) Denied Demands #

RPF-5 132561.1 141140.8 8579.7 114.22
R2PF-5 135431.1 145944.6 10513.5 19.04

ALP-Reopt-5 137918.7 146892.6 8973.9 17.82
R2PF-Ful-5 134664.4 146420.7 11756.3 22.84
R2PF-Pr-5 133448.1 142010.8 8562.7 56.06
R2PF-Pr∗-5 134395.2 143932.7 9537.5 29.3

Table 2.1: Detailed Analysis of Performance of Different Heuristics (θ = 2000)

effects of pricing and fulfillment optimization, we calculate the total revenues, total

fulfillment costs, and total denied demands due to stockout (i.e., total lost sales).

Table 2.1 reports a set of results for a specific problem instance. We see that all

the heuristic controls with real-time adjustment significantly decreases the chances of

stock-out. As a result, they are able to satisfy demand from more customers, which

induces higher revenue and higher fulfillment cost. Moreover, compared to the two

heuristic controls that only optimize one set of decision, R2PF guarantees significantly

more earning without sacrificing too much on the fulfillment cost. We also observe

in our simulation that more than 50% of the lost sales under R2PF-Pr happen when

there is still some inventories left in some of the unassigned FCs (see Remark 2.6.1

for a discussion on the same issue for RPF). In contrast, R2PF-Ful does not have this

issue, since re-optimizing FLP guarantees that it only samples fulfillment assignment

over FCs holding positive inventory. To reduce the number of lost sales, we implement

a variant of R2PF-Pr, denoted by R2PF-Pr∗ in Table 2.1, as follows: whenever the

assigned FC has zero inventory for the requested product and there are still some

inventories left at some other FCs, we simply re-sample the fulfillment assignment

decision among the FCs having positive inventory uniformly. Interestingly, this simple

modification significantly reduces the number of denied demands and brings the profit

of R2PF-Pr very close to R2PF-Ful. This example shows that the seller can perhaps

couple R2PF-Pr (or R2PF-Ful) with a simple adjustment in fulfillment (or pricing) to

achieve a better performance. (Although R2PF-Ful appears to perform better than

R2PF-Pr in Table 2.1, it is not clear that R2PF-Ful is necessarily superior than R2PF-

Pr since a simple modification to either of them may bring their total profits very close

to each other.)

Figures 2.4 and 2.5 shows the absolute percentage improvement in total profits for

both RPF and R2PF relative to the profit of Sep-Reopt for m ∈ {2, 5, 8}. From

the plots, it is easy to see that even RPF dominates Sep-Reopt. This illustrates the
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benefit of joint pricing and fulfillment optimization, even if the e-tailer only does it

once before the selling season, with a relatively sparse price discretization. In general,

for both heuristic controls, finer discretization (i.e., larger m) leads to a higher profit

when θ is large enough. However, the marginal benefit of finer discretization decreases

as m increases. In our case, the improvement is large when we increase m from 2 to 5,

and much smaller when we further increase m to 8. This is consistent with the value

of J ALP under varying m; see Figure 2.6. (We can see that J ALP is easily a better

approximation than J D even for sparse discretization.) All of these suggest that the

e-tailer may not need to use too many price discretizations.

m

2 3 4 5 6 7 8 9 10 11 12

66

67

68

69

70

71

66.13

67.78

68.80

69.52

69.99

70.33
70.58

70.78
70.94 71.07

71.18

J ALP

J D

Figure 2.6: Optimal Value of Different Deterministic Formulations

2.9 Closing Remarks

This paper studies the dynamic joint pricing and order fulfillment problem for an e-

commerce retailers. An LP-based approximation scheme is proposed to address the

difficulty caused by the inability to charge different prices to customers from different

regions, and two heuristic controls are analyzed. There are several possible extensions

of our current work. For example, in our model, each order is restricted to contain

exactly one item. In reality, numerous online orders contain multiple items and it is

very common that e-tailers strategically split order fulfillment from different FCs (Jasin

and Sinha, 2015). It would be interesting to see how our method can be generalized

to incorporate this scenario. Another potential direction is to study dynamic pricing

and fulfillment problem in the omnichannel environment, where retailers can either use

online FCs or nearby brick-and-mortar stores to satisfy demand. This may potentially
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complicate the optimization problem. As discussed in Chapter 2.5, it would also be

practically relevant and impactful to develop a way to apply our framework to the

setting with a large number of products. From the technical point of view, we believe

that our analytical framework can certainly be used to address other stochastic opti-

mization problems in the broader OM context where many inter-related decisions have

to be jointly made in real-time.
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CHAPTER 3

Real-time Dynamic Pricing for Revenue

Management with Reusable Resources and

Deterministic Service Time Requirements

3.1 Abstract

We consider the setting of a firm that sells a finite amount of resources to price-sensitive

customers who arrive randomly over time according to a specified non-stationary rate.

Each customer requires a service that consumes one unit of resource for a deterministic

amount of time, and the resource is reusable in the sense that it can be immediately

used to serve a new customer upon the completion of the previous service. The firm’s

objective is to set the price dynamically to maximize its expected total revenues. This

is a fundamental problem faced by many firms in many industries. We formulate this

as an optimal stochastic control problem and develop two heuristic controls based on

the solution of the deterministic relaxation of the original stochastic problem. The

first heuristic control is static since the corresponding price sequence is determined

before the selling horizon starts; the second heuristic control is dynamic, it uses the

first heuristic control as its baseline control and adaptively adjusts the price based on

previous demand realizations. We show that both heuristic controls are asymptotically

optimal in the regime with large demand and large number of resources. Finally, we

consider two important generalizations of the basic model to the setting with multiple

service types requiring different service times and the setting with advance service

bookings.
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3.2 Introduction

Consider a firm managing a fixed amount of resources to satisfy time-varying price-

dependent demand over a finite (selling) horizon. The resources are homogeneous,

which means that customers do not have preference over a specific unit of resource,

and each arriving customer requests a single unit of resource for a consecutive and

deterministic amount of time (i.e., deterministic service time). If a resource is available

at the time of a new arrival, the new customer is immediately admitted into the system

at the current list price and the service is immediately started without delay. (Later in

this paper we will also consider the case with advance service booking where the service

can be started at a fixed future time.) After the service is completed, the corresponding

resource is released and can be directly used to satisfy a new demand (i.e., resource is

reusable). The firm’s objective is to maximize her expected total revenues throughout

the horizon by setting prices dynamically. This is a fundamental problem faced by

many firms in many different industries and the nature of this problem is not exactly

identical to the canonical revenue management problem with stochastic demand and

limited inventory (e.g., the classic model proposed in Gallego and van Ryzin 1997).

(To be precise, although it is mathematically possible to model revenue management

with reusable resources and deterministic service time requirement using the same

modeling approach as in the classic revenue management literature, the scale of the

problem primitives for the applications considered in this paper is different from that

considered in the standard revenue management literature. Hence, a different approach

is needed to properly analyze this model; see Chapter 3.4 for more discussions.) Our

main contribution in this paper is in developing a real-time dynamic pricing control

that is easy to implement and has a provably good performance. We first show how

to do this for a basic setting with one service type and immediate service requirement;

we then show how our idea can be applied to more complicated settings with multiple

service types with heterogenous service time requirements and advance service booking.

We believe that the idea behind our proposed control can be potentially used to develop

more sophisticated dynamic pricing controls for other complicated real-world problems.

Our formulation captures the critical operational trade-offs faced by firms in differ-

ent industries. On the one hand, capacity needs to be sufficiently utilized throughout

the selling horizon since, at any point of time, any unused or idle capacity constitutes

immediate monetary loss; on the other hand, firms may also want to ration the ca-

pacity to anticipate potential peak periods in the future where the system is fused

with incoming demands. The main challenge here is how to properly balance the ca-
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pacity utilization during different service cycles. (The meaning of service cycle will

be explained in Chapter 3.4. Note that, due to the difference in the scale of problem

primitives as noted above, the classic revenue management problem effectively only

has one service cycle as demands are typically modeled to be fulfilled only at the end

of the selling horizon instead of on a rolling horizon basis. This is in contrast to the

setting considered in this paper, which may have a large number of service cycles.)

Although different cycles may appear to be independent of each other, they are con-

nected through the realization of capacity utilization since capacity is finite and the

utilization in one cycle affects the utilization in the subsequent cycle. This calls for

a carefully designed dynamic pricing control to properly manage capacity utilization

across different cycles.

In the queueing literature, a finite capacitated system similar to the one considered

in our work is often termed as a loss system, since an arriving customer is rejected when

the capacity is full (on the contrary, in a delay system model, incoming customers are

allowed to wait in a queue, see Hampshire et al. 2009). Many firms providing virtual

services such as telecommunication, smart grid, and Internet-based service (Voice-

over-IP, wireless data transfer) can be appropriately modeled as loss systems. In all

these examples, pricing decision is important not only because it serves as a marketing

instrument that determines the total revenues collected by the firm, but also as a

control instrument by which the firm continuously manages the utilization level of her

finite resources. There are at least two salient features of the firms’ operation problem

that often complicate the pricing decision: on the demand size, demand rates tend

to change dynamically and is better described as a time-inhomogeneous process (see

Brown et al. 2005 for a statistical study in the setting of call center); on the supply

side, capacity expansion is sometimes a long-term investment decision and the current

capacity is not easily scalable within a short period of time, thus, they must be managed

properly. The effectiveness of dynamic pricing in matching time-varying demand with

limited capacity has been widely recognized and implemented by many firms, e.g.,

mobile service providers in Africa charges rates of voice-call dynamically to alleviate

the burden on their bandwidth during peak periods and stimulate demand during low

period (Economists, 2009); smart grids in United States and Europe experiment with

programs that bill customers’ consumption of electricity on a time-dependent rate (Hu

et al., 2015).

In addition to the two salient features mentioned above, pricing decision is also often

complicated by the fact that, once used, the same resource may continue to be used

during a fixed period of time, and different customers may request to use the resource
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for different length of time (i.e., different service time). One of the emerging business

that fits this feature is cloud computing, where firms deliver on-demand internet-based

computing service to customers. Cloud computing service providers usually have a

fixed amount of computation resources and lease their available resources to customers

who arrive (either on spot or under subscription) randomly with specific request on

usage time and capacity requirements. In the provision of cloud service, researchers and

practitioners have advocated the economic benefit of dynamic pricing strategy for many

cloud service settings. By and large, dynamic pricing has been implemented under the

form of utilization-based pricing (CloudSigma, Jelastic, PiCloud), real-time bidding

(Amazon Elastic Computing Cloud (EC2) Spot), and many others (Al-Roomi et al.,

2013). As arguably the largest cloud computing service provider, Amazon launched

its EC2 Spot service in 2009, whose per-hourly price is determined in real-time by a

Vickrey-style auction. More specifically, after customers submit sealed bids, Amazon

will computes a market clearing price (a.k.a “spot price”). All customers with bid

above spot price win, and pay the lowest winning bid for the service with the requested

features such as duration, memory size, etc. Not too surprisingly, the resulting price

trajectory is often highly non-stationary (Xu and Li, 2013) and, in spite of its flexibility,

the implementation of bidding mechanism has its own flaws. As an example, Cheng

et al. (2016) shows empirically that, for the same type of computing service on Amazon

EC2 Spot platform, network latency causes significant and consistent price difference

between its East and West data center, which clearly opens an arbitrage opportunity.

These problems would not have existed if the firm has a full control over the price

trajectory. The key technical question is how to implement a dynamic pricing in a

way that matches time-varying demand with fixed but reusable resources. This has

motivated many researchers to investigate a proper dynamic pricing control under

various settings where service providers fully control the price (e.g., Xu and Li 2013,

Alzhouri and Agarwal 2015, Arshad et al. 2015).

Other than the examples discussed above, many firms managing physical resources

are also well described by our model, including some classic examples that are well-

known for their adoptions of dynamic pricing such as car rental and hotel reservation.

(Due to the reusable nature of their resources, both car rental and hotel reservation are

more properly modeled using the framework of revenue management with reusable re-

sources and deterministic service time requirements instead of using the classic revenue

management framework motivated by airline application.) Moreover, our model can

also be used to address the demand-supply matching problem faced by many emerg-

ing so-called on-demand service firms. These firms usually control a finite number of
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resources and offer them to be consumed by customers who book services (either in

advance or on the spot) through internet or smartphone. Industries that have seen

the booming of on-demand service providers include vehicle rental (Zipcar, Citi-Bike),

logistic (Project44), food delivery (Instacar, Sprig), car parking (Luxe), and beauty

service (StyleSeat) (Bensinger, 2015). One prevalent feature in many on-demand ser-

vice firms is that demand is characterized by both a specified service type and an

intended usage time, including the starting and ending times of the service. Moreover,

since customers mostly interact with the firm using digital platforms, existing digital

user interfaces often enable the firm to effortlessly manage demand by dynamically

changing prices. Indeed, some firms have already used dynamic pricing on a daily

basis. For example, Project44 provides dynamic pricing solutions to third-party logis-

tics company owning their own trucks and facilities (Project44, 2015); Tock provides

ticketing systems to high-end restaurants where reservation of seats are dynamically

priced (Businessweek, 2015); Sprig uses its own employees to deliver fresh made meals

to customers at a delivery fee that changes dynamically (Chamlee, 2016). Other firms

that have not yet deployed dynamic pricing have also acknowledged its advantage:

According to Robin Chase, the founder of Zipcar, utilizing data to correctly and dy-

namically set the price on car-sharing platform can largely increase the efficiency and

sustainability of the deployment of city services (GreenBiz, 2014). Thus, although not

every firms under the banner of on-demand economy is currently using dynamic pric-

ing, given its simplicity and good performance, we believe that our proposed real-time

dynamic pricing control can provide a useful guidance on how to do real-time dynamic

pricing when the firm finally needs it.

We want to re-emphasize that eventually different business models may have differ-

ent complexities that require separate customized dynamic pricing solutions. In this

paper, we simply focus on a simple model that captures the most fundamental aspects

of dynamic pricing with reusable resources and deterministic service time requirements.

We hope that our result can be used to design more sophisticated algorithms to be used

in all of the aforementioned examples.

Our results and contributions. In this paper, we consider a multi-period dy-

namic pricing problem faced by a revenue-maximizing firm with finite reusable re-

sources and deterministic service time requirements. Our analysis and results are

summarized below:

1. We first consider a basic model where all customers have the same deterministic

service time requirements, there is no delay in service fulfillment, and demand
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rate as a function of time and price is non-stationary. We propose a deterministic

relaxation of the optimal control formulation, and show that its objective value

serves as an upper bound for the optimal expected total revenues under the

original stochastic control problem. This allows us to evaluate the performance

of any feasible pricing control by its average regret, defined as the average (over

T periods) difference between the optimal value of the deterministic formulation

and the expected total revenues collected under the prescribed control.

2. Our first heuristic control, which we call Deterministic Price Control (DPC),

applies price pt in period t in such a way that that the expected demand in

period t equals the computed deterministic demand rate under the deterministic

formulation minus a constant. The constant serves as a buffer on random error,

for the purpose of hedging against uncertainty. The size of this buffer needs

to be carefully chosen: It needs to be large enough such that the resource is

not depleted too often; yet, it cannot be too large otherwise the total revenues

collected by the firm will deviate too far from the optimal one. We obtain a

general bound on the average regret of DPC under arbitrary problem parameters

and show that, under an optimal choice of buffer size, the average regret of DPC

converges to zero at a rate of Õ(n−
1
2 ), where n is the size of the problem (i.e.,

the size of potential demand during a service cycle, which is to be defined later,

and capacity are both of order n).

3. One drawback of DPC is that the price pt to be applied during period t is already

determined at the beginning of the selling horizon and it does not take into

account to the realized demand observations during periods 1 to t − 1. This

suggests a room of improvement and motivates our second heuristic control, which

we call Deterministic Price Control with Batch Adjustment (DPC-Batch). DPC-

Batch divides the selling horizon into batches of the same size. At each period,

in addition to making sure that we have the buffer as in the case of DPC, we

also set the price in such a way that the cumulatively demand errors (i.e., from

expected demands) during the previous batch is uniformly corrected by the new

demands in the current batch. We obtain a general bound for the average regret

of DPC-Batch under arbitrary problem parameters and show that, under an

optimal choice of buffer size and batch size, the average regret of DPC-Batch

is of order Õ(n−
2
3 ), which significantly improves the performance of DPC. We

conduct several numerical experiments that validate our theoretical findings.

4. Finally, we consider two extensions of the basic model to include two important
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features often found in practice, namely heterogeneous service time requirements

(where different service type may require different service time) and advance

service booking (where different service type may be started at different time

in the future). We focus our analysis on the generalization of DPC-Batch. For

the sake of clarity how the analysis of our basic model can be extended to a

more general model, we treat these two extensions as separate instances instead

of one. Under properly chosen problem parameters, we show that the average

regret of the generalized DPC-Batch for each of these extensions is still of the

order Õ(n−
2
3 ).

Organization of the paper. The related literature is reviewed in Chapter 3.3. In

Chapter 3.4, we formulate the basic model of dynamic pricing with reusable resource,

and discuss our performance measure. We propose and analyze a static heuristic control

(DPC) and its dynamic improvement (DPC-Batch) in Chapter 3.5 and 3.6, respectively.

The performance of both DPC and DPC-Batch are tested in simple numerical experi-

ments in Chapter 3.7. Chapter 3.8 and 3.9 discuss two extensions of the basic model

that allow heterogeneous service time requirements and advance booking. Finally, in

Chapter 10, we conclude the paper. The proof of some of the results and the details

of the numerical experiments can be found in Appendix B.

3.3 Literature Review

Broadly speaking, our work is related to the extensive literature on dynamic pricing

and revenue management, queueing and service operations, and on-demand service

platforms. In terms of methodology, our work is related to the study of asymptotic

performance of heuristic controls with real-time adjustment. We discuss them in turn.

Dynamic pricing and revenue management. Given the space limit, we will

not attempt to discuss all the related literature but only highlight the most relevant

works (interested readers are referred to the extensive surveys by Bitran and Caldentey

2003, Talluri and van Ryzin 2006 and Özer and Phillips 2012.) Instead, we discuss in

details two papers that are most closely related to our work, both are motivated by the

revenue management problem in cloud computing setting. Xu and Li (2013) study the

dynampic pricing problem of a cloud service provider that leases resources to customers

with exponential service time and price-dependent Poisson arrival. They obtain some

structural properties for the capacitated system under stationary demand and also for
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the uncapacitated system under non-stationary demand. However, no dynamic pricing

heuristic control is proposed and the optimal price is still time-consuming to compute,

especially when demand is non-stationary. Our work complements their work: We

explicitly address the capacitated system with non-stationary demand and determin-

istic service time requirement, and focus on developing an easy-to-implement heuristic

control instead of studying the properties of the optimal solution. Borgs et al. (2014)

study a similar problem under non-stationary demand with limited time-varying ca-

pacity and customers’ strategic waiting. In their model, demands are assumed to be

deterministic and the price trajectory for the whole season is announced at the begin-

ning of the horizon. They show that the resulting optimization problem is non-convex

and propose a dynamic programming-based algorithm that can be run in polynomial

time. The key difference between our model and theirs is on the stochasticity of de-

mand and customer’s strategic waiting: In our model, demand is random and, thus,

an adaptive heuristic control is needed to guarantee a near-optimal revenue. (In many

service settings, especially for the on-demand platform, uncertainty in demand per-

vasively exists and introduces a significant difficulty in control design.) Unlike their

model, we do not explicitly consider customer waiting behavior in our current work.

Although customers’ waiting is an important issue and needs to be properly taken into

account when designing a dynamic pricing control, proposing a provably good heuristic

control under a combination of stochastic demand, limited inventory, and customers’

waiting is a notoriously difficult problem even in the traditional revenue management

setting (see e.g., Liu and Cooper 2015, Chen et al. 2017b and Chen and Farias 2018

for recent progress) and in the reusable resource setting (Chen and Shi, 2018). Thus,

we leave this for future research pursuit.

Queueing and service operations. As explained in the previous chapter, our

model is similar to the loss system in the queueing literature. Pricing decision in such

model has been studied extensively under various setting (e.g., Lanning et al. 1999,

Courcoubetis et al. 2001 and Maglaras and Zeevi 2005). Most of these papers pro-

pose heuristic controls based on a fluid approximation of the original stochastic control

problem under the assumption of stationary arrival and exponential service time. An

exception to this is Hampshire et al. (2009), where demand follows a non-homogeneous

Poisson process and the firm has to satisfy a Quality-of-Service constraints which re-

quires the blocking probability to be bounded. They develop a dynamic pricing control

using deterministic optimal control theory and show numerically that this control per-

forms better than static or myopic pricing control; however, no theoretical performance

guarantee is provided of their proposed control. Another major stream of literature
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studies the property of the optimal admission control of loss system, including Miller

(1969), Kelly (1991), Altman et al. (2001), Örmeci et al. (2001), Savin et al. (2005),

Gans and Savin (2007), Papier and Thonemann (2010) and Jain et al. (2015). Yet, none

of them consider the design of practical and provably-good heuristic controls. There

are two exceptions: Levi and Radovanovic (2010) propose a heuristic control based

on a knapsack-type linear program and show the asymptotic optimality their proposed

control under a general service time distribution, and Chen et al. (2017c) generalize this

heuristic control to the setting with advance booking and provide an asymptotic upper

bound on the blocking probability. However, both Levi and Radovanovic (2010) and

Chen et al. (2017c) assume stationary demand and do not consider dynamic pricing.

Aside from the literature on loss model, dynamic pricing has also been studied in

the literature on delay model. From the modeling perspective, researchers that study

optimal dynamic pricing control either assume that customers are sensitive to price

only but not delay (e.g., Low 1974, Paschalidis and Tsitsiklis 2000, Yoon and Lewis

2004, Maglaras 2006) or customers are sensitive to both price and delay (e.g., Chen

and Frank 2001, and Ata and Shneorson 2006, Afèche and Ata 2013). Several papers

study asymptotically optimal dynamic pricing controls: Çelik and Maglaras (2008)

and Ata and Olsen (2009, 2013) study a revenue maximizing control when the firm dy-

namically quotes lead-times; Besbes and Maglaras (2009) study dynamic pricing where

the market size varies stochastically over time; assuming observable queue length and

stochastic customer valuation, Kim and Randhawa (2018) propose a heuristic control

that continuously refines the baseline control given by a fluid approximation, and show

(somewhat surprisingly) that the average regret is on the order of Õ(n−
2
3 ). (To the best

of our knowledge, Kim and Randhawa (2018) is the only work in the queueing litera-

ture that shows dynamic pricing can achieve an average regret with order smaller than

the more typical Õ(n−1/2).) Aside from not permitting customers to wait, our model

is different from the above cited works adopting asymptotic analysis in two aspects:

(1) We assume that the service time is deterministic (earlier works assume that it is

exponentially distributed) and the demand function can vary over time (earlier works

assume a stationary willingness-to-pay distribution), and (2) we also consider an exten-

sion with advance service booking. The appropriateness of using either a deterministic

service time or exponentially distributed service time is dictated by the application

context. In this paper, we choose to work with deterministic service time because, in

most of the applications that we are considering, service process is not memoryless (as

would have been implied by an exponentially distributed service time). Thus, our work

complements existing works in the queueing literature by developing a near-optimal
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dynamic pricing control that can be applied in the setting of non-stationary demand,

deterministic service time requirements, and advance service booking. Moreover, we

also complement the result of Kim and Randhawa (2018) by showing that the Õ(n−2/3)

bound is also achievable in our setting.

On-demand service platform. Our paper is also connected to the growing liter-

ature on the operational problems faced by firms providing various types of on-demand

services. Most of the existing works focus on a specific industry and, henceforth, deal

with more complicated models than ours. (Per our discussions in Chapter 3.2, our

objective in this paper is to focus on the most fundamental aspects of revenue man-

agement with reusable resources and deterministic service time requirements instead

of addressing a particular problem instance with all its complexities.) One line of

research in this literature studies the logistic optimization problems for vehicle/bike

sharing platforms (e.g., Raviv and Kolka 2013, Shu et al. 2013, Schuijbroek et al. 2017,

O’Mahony 2015 and Kaspi et al. 2016). Existing works that study pricing decisions

are Pfrommer et al. (2014) and Waserhole (2014). They both consider a network of

shared mobility system and view price as an incentive to direct customers to allocate

resources in a way that inventory balancing is properly maintained throughout the net-

work. Different heuristic controls are proposed based on certainty equivalent principle

and are tested using numerical experiments. In contrast to our work, Pfrommer et al.

(2014) and Waserhole (2014) use platform’s expected cost of repositioning vehicle as

the objective. Another stream of literature studies the optimization of dynamic deliv-

ery fee for the attended home delivery firms, e.g., Campbell and Savelsbergh (2006),

Asdemir et al. (2009), Klein et al. (2015). The key trade-off addressed in these works is

how to use price to incentivize customers to allocate their demands to different delivery

time slots such that the profit (delivery fee minus the cost associated with service type

and time slots) is maximized. Moreover, their systems are capacitated in the sense

that the delivery capacity within each time slots is fixed and known. In comparison to

our model, this modeling framework embraces less uncertainty since, in our model, the

available capacity at any time depends dynamically on the past demand realizations.

Real-time control. In the broader dynamic optimization literature where a multi-

period stochastic control problem is often difficult (if not impossible) to solve optimally,

researchers often resort to simple heuristic controls. A specific type of heuristic con-

trol, called real-time control, calculates the decision at the current period as a simple

(e.g., affine) function of a baseline control and the historical information. Driven by its

practicality (as the name suggests, a real-time control adaptively adjusts the control on

the fly and does not require heavy re-optimizations) and good performance, real-time
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control has been investigated in various fields, including robust optimization (Ben-Tal

et al. 2004, Bertsimas et al. 2010), portfolio management (Calafiore 2009, Moallemi

and Saglam 2012), and revenue management (Atar and Reiman 2012, Chen and Farias

2013 Golrezaei et al. 2014, Chen et al. 2015, Lei et al. 2017). Closest to our paper are

Jasin (2014) and Chen et al. (2015). They both consider the discrete-time version of

the canonical dynamic pricing problem studied in Gallego and van Ryzin (1997), and

propose real-time price controls with provable performance guarantees. As discussed

in Chapter 3.4.2, in theory, our problem can also be formulated using the same frame-

work as in Gallego and van Ryzin (1997); however, the reusability of resource in our

setting introduces a non-trivial subtlety that prohibits a simple adoption of the heuris-

tic controls proposed in Jasin (2014) and Chen et al. (2015) into our setting. (In fact,

we show numerically in Chapter 3.7 that a simple adoption of this heuristic control

performs very poorly.) Thus, our work complements existing works in the literature of

real-time control by proposing a different real-time price control that is appropriate for

the setting of revenue management with reusable resources and deterministic service

time requirements.

3.4 Basic Model

In this chapter, we first discuss the setting and primitive of our basic model. Next, we

discuss the stochastic and deterministic formulations of our dynamic pricing problem.

Finally, we discuss our performance measure.

3.4.1 The Setting

We consider a discrete-time model with T periods and C units of resource. (Although

we assume a discrete-time model, our results also hold for a continuous-time model

with Poisson arrivals.) For our basic model, we assume that the firm only sells one

service (or product) type where each request requires one unit of resource and n units

of service time (or n periods). For example, if n = 1, then the service started in period

1 is completed at the end of period 1 and the resource used to fulfill this service is

immediately available to fulfill a new request in period 2. Demand rate, as a function

of price, in period t is given by λt(pt), and the corresponding revenue rate is given by

rt(pt) = pt · λt(pt). Let Dt(pt) denote the realized demand in period t under price pt.

By definition, we have E[Dt(pt)] = λt(pt) and E[pt · Dt(pt)] = rt(pt). It is typically
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assumed in the literature that demand rate is invertible in price (see Assumption

A1 below). Thus, by abuse of notation, we will also write Dt(λt) = Dt(pt(λt)) and

rt(pt) = pt · λt(pt) = λt · pt(λt) = rt(λt) to denote the direct dependency of realized

demand and revenue rate on demand rate instead of on price (we use pt(·) to denote the

inverse of λt(·)). We assume that demands across different periods are independent,

but demand rate as a function of time may be non-stationary. As is typical in the

revenue management literature (see e.g. Jasin 2014), we further assume that at most

one request arrives during each period. (Thus, λt(pt) can be interpreted as the arrival

probability of a new request in period t under price pt.) This is without loss of generality

since our analysis can also be applied to the setting where multiple requests arrive in

each period. Let Ωp and Ωλ denote the convex feasible set of price and demand rate,

respectively. (For simplicity, we assume the same feasible sets in all periods.) Below,

we state some standard regularity conditions on λt(·) and rt(·):

A1. λt(pt) : Ωp → Ωλ is bounded, twice differentiable, and invertible.

A2. There exists a “turn-off” price p̄ such that pkt → p̄ implies λt(p
k
t )→ 0 for all t.

A3. For all t, λkt → 0 implies λkt · pt(λkt )→ 0 for all feasible sequences {λkt }∞k=1.

A4. rt(λt) is bounded, strictly concave, and has a finite maximizer λ∗t ∈ Ωλ.

The above assumptions are sufficiently general and are immediately satisfied by

most commonly demand functions including linear, exponential, power, and logit. The

existence of a turn-off price p̄ allows the firm to effectively turn off demand whenever

needed (e.g., when no resource is currently available). It should be noted that although

the theoretical turn-off price can be infinite (e.g., for exponential demand function with

λt(pt) = a · e−pt), since real-world price is never infinite, we can assume without loss

of generality that p̄ < ∞. (To be precise, we can pick a sufficiently large p̄ such that

both λt(p̄) and rt(p̄) are very small. The exact value of p̄ does not affect our analysis.)

3.4.2 The Stochastic and Deterministic Formulations of Dy-

namic Pricing Problem

The dynamics of our pricing problem are as follows. First, a new request arrives at

the beginning of period t with probability λt(pt). If a unit of resource is available, the

service is immediately started (i.e., no waiting is allowed) and, once a service is started
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in period t, it will be completed at the end of period t + n − 1. The corresponding

resource is then immediately available for a new service in period t+n. No intervention

or cancellation is allowed, i.e., neither the firm nor the customer can stop the service

before it is completed. Since we assume at most one request arrives in each period, at

most one service is completed at the end of any period.

Let Π denote the set of all non-anticipating controls (i.e, the control that decides

the price at the beginning of period t using only the accumulated information up to,

and including, the end of period t − 1), and let pπt denote the price to be applied

during period t under policy π ∈ Π. The optimal stochastic control formulation of our

dynamic pricing problem is given below:

OPT : J∗ =

max
π∈Π

E

[
T∑
t=1

rt(p
π
t )

]
:

t∑
s=max{1, t−n+1}

Ds(p
π
s ) ≤ C for all t ≤ T


where the constraints must hold almost surely, or with probability one. To understand

the intuition behind the above constraints, note that the number of units of resource

available at the beginning of period t is given by C−
∑t−1

s=max{1, t−n+1}Ds(p
π
s ). Here, we

only need to consider total demands in the previous n−1 periods because any resource

being used in period s < max{1, t− n+ 1} must already complete its assigned service

and is either at an idle state at the beginning of period t or currently being used to

satisfy a new request arriving in period s ∈ [max{1, t− n+ 1}, t− 1], where by abuse

of notation we use [t1, t2] to denote {t1, t1 + 1, . . . , t2}. For a new service to be started

in period t, we must satisfy capacity constraint Dt(p
π
t ) ≤ C −

∑t−1
s=max{1, t−n+1}Ds(p

π
s ),

or equivalently
∑t

s=max{1, t−n+1}Ds(p
π
s ) ≤ C. This explains our constraints in OPT.

The exact stochastic formulation OPT is in general difficult to solve due to the

famous “curse of dimensionality” of Dynamic Programming (DP). Our focus in this

paper is on the construction of near-optimal heuristic controls using the solution of

a deterministic analogue of OPT. We define a deterministic optimization DET as

follows:

DET : JD =

max
pt∈Ωp

T∑
t=1

rt(pt) :
t∑

s=max{1, t−n+1}

λs(ps) ≤ C for all t ≤ T

 .

The above formulation is sometimes called a fluid model in the literature (e.g., Atar

and Reiman 2012). Since demand is invertible in price (by Assumption A1), we can

also re-write DET using demand rates as the immediate decision variables instead of
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prices as follows:

DET : JD =

max
λt∈Ωλ

T∑
t=1

rt(λt) :
t∑

s=max{1, t−n+1}

λs ≤ C for all t ≤ T

 .

One of the benefit of the above re-formulation is that the constraints are now linear

in the decision variables and the objective is strongly concave by Assumption A4; so,

DET can be efficiently solved using an off-the-shelf convex optimization solver. Note

that the constraints in DET can be more compactly written as Aλ ≤ e · C, where λ

is a column vector of demand rates, e is a column vector of ones with an appropriate

length, and A is an appropriate constant matrix. Although this compact formulation is

similar to the canonical deterministic formulation in the standard revenue management

literature (e.g., Gallego and van Ryzin 1997), it is important to note that the size of

matrix A in our setting scales with T whereas the size of matrix A in the standard

literature is independent of T . This seemingly minor difference has an important, non-

trivial, consequence in heuristic design. This is the reason why a different approach is

needed to properly analyze the general revenue management with reusable resources

and deterministic service time requirements.

Let pD := (pDt )Tt=1 denote the optimal solution of DET, and let λD := (λDt )Tt=1

denote the corresponding optimal demand rates (i.e., λDt = λt(p
D
t ) for all t). Unlike

in the standard revenue management setting where the optimal deterministic price is

static (i.e., pDt = pD1 for all t) when demand rates are stationary (see e.g. Gallego

and van Ryzin 1997), the optimal solution of DET is not necessarily static even when

demand rates are stationary (except for a special case T is a constant multiplicand of

n). Below, we state additional assumptions on λD and the derivatives of revenue rate

and price as functions of demand rate. There exist positive constants ϕL , ϕU , and Ψ

such that:

A5. [λDt − ϕL, λDt + ϕU ] ⊆ Ωλ for all t.

A6. |r′t(λ)|, |r′′t (λ)|, and |p′t(λ)| are bounded by Ψ on [λDt − ϕL, λDt + ϕU ] for all t.

The above assumptions are sufficiently general. Assumption A5 corresponds to the

case where, at least in a deterministic world, the prices in all periods are neither too

low that they collectively induce too many demands nor too high that they collectively

induce too few demands. (This reflects what we find in most real-world settings as

typical prices are neither extremely low nor outrageously high.) On another note, this
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assumption is also easily satisfied when λ∗t lies in an interior of Ωλ for all t, which

is not at all uncommon given the strong concavity of rt(·) as a function of λt. The

boundedness of the derivatives of the revenue and price functions in an interior of Ωλ

as stated in Assumption A6 are also quite natural and easily satisfied by many demand

functions including linear, exponential, power, and logit. Note that we only require

that these derivatives are bounded in a certain compact subset of Ωλ instead of the

whole Ωλ. The later is too restrictive and is not possible even for the case of power

demand function λt(pt) = a · p−bt since r′t(λt)→∞ as λt → 0.

The following lemma tells us that JD is an upper bound of J∗. This result is

analogous to a standard result in the revenue management literature (e.g., Gallego and

van Ryzin 1997), and its proof utilizes a simple argument using Jensen’s inequality.

We state it here for the sake of completeness.

Lemma 3.4.1 J∗ ≤ JD.

One of the benefit of Lemma 3.4.1 is that it allows us to use JD as a proxy for J∗.

This is particularly useful for the purpose of evaluating the performance of different

heuristic controls since J∗ is not practically computable. We discuss this next.

3.4.3 Performance Measure and Asymptotic Regime

Let Rπ denote the total revenues collected under policy π throughout T periods. We

are interested in measuring the average expected total losses, or average regret, of a

given control with respect to the optimal control. However, since the optimal control

is not computable as mentioned above, we will use the deterministic upper bound as

a proxy. We thus defined the average regret of a non-anticipating control π ∈ Π as

follows:

AvReg(π) =
JD − E[Rπ]

T
.

Intuitively, since the expected total revenues throughout T periods under the op-

timal control scales linearly with T , the above definition of average regret captures

the order of relative regret with respect to the optimal control. In this paper, we are

particularly interested in the case where n is large and C = Θ(n). This can be in-

terpreted as the setting where total potential demands during a service cycle is large

and we have just enough resources to satisfy the demands in one cycle. (For complete-

ness, in Remarks 1 and 3 in Chapter 3.5 and 3.6, we also discuss what happens when
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C = o(n); this can be interpreted as the setting where either resources are very scarce

or the length of service time is very long. The remaining case where we have a lot more

resources than what we need to satisfy demands in one service cycle, i.e., n = O(C),

is less interesting as it reduces our dynamic pricing problem into an unconstrained

problem and we can simply apply pt = pt(λ
∗
t ) for all t.) This is not uncommon and is

motivated by many practical applications discussed in Chapter 3.2. As the size of n can

be very large (i.e., at least hundreds or thousands), we focus in constructing heuristic

controls that are near-optimal in the so-called asymptotic regime. We would like to

note that the setting where n is large and C = Θ(n) is also similar to the standard

asymptotic setting in the queueing literature (e.g., Kim and Randhawa 2018) where

both the demand and service rates are scaled by the same large constant.

We say that a control π ∈ Π is asymptotically optimal if JD−E[Rπ ]
T

→ 0 as n→∞ for

a suitable value of T , which may also scale with n. In this paper, we prove that both

DPC and DPC-Batch are asymptotically optimal. However, as n increases, the average

regret of DPC-Batch converges to 0 faster than the average regret of DPC. (For our

basic model, the convergence rate of DPC-Batch is approximately n−2/3 whereas the

convergence rate of DPC is approximately n−1/2.) For ease of exposition, throughout

the remaining of the paper, we will always assume that T
n
∈ Z+.

3.5 Deterministic Price Control

In this chapter, we first introduce a simple heuristic control called Deterministic Price

Control (DPC) and then we analyze its performance.

3.5.1 Control Description and Statement of Result

Let Ct denote the number of units of resource available at the beginning of period t

before the firm sets a new price pt. The formal definition of DPC is given below.

Deterministic Price Control with Parameter ε (DPC(ε))

Step 1. Solve DET and get λD.

Step 2. At the beginning of each t, do:

a. If Ct ≥ 1, set pt = p̂Dt where
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λt(p̂
D
t ) = λDt −

ε

n
;

b. Otherwise, set pt = p̄.

Note that DPC is parameterized by ε > 0, and ε needs to be chosen such that

λDt − ε
n
∈ Ωλ (otherwise, the second step in DPC(ε) is not well-defined). Since the

targeted demand rate in period t under DPC(ε) is λt = λDt − ε
n
, the total targeted

average demands in n consecutive periods (i.e., one service cycle) is at most C − ε,

which means that we are essentially holding back ε units of resource. We do this for

the purpose of hedging against uncertainty: If total realized demands in the previous

n periods turn out to be higher than expected, then we still have an extra ε units

of resource that can be immediately used to satisfy demand. (From a theoretical

perspective, having a positive ε is useful in making the analysis of DPC more tractable,

though it may not be necessary for the actual implementation. In Chapter 3.7, we

numerically test what happens when we set ε = 0.) The following theorem tells us the

performance of DPC.

Theorem 3.5.1 There exists a constant M1 > 0 such that for all T , C, n, and ε ∈
[1, nϕL],

AvReg(DPC) ≤ M1 ·
[
ε

n
+
T

n
· exp

{
− (ε− 1)2

36 min{C − ε, n}

}]
. (3.1)

In particular, if C = a · n for some a > 0, then using ε = 1 + 6
√
b · n · log n for

some b > 0 yields

AvReg(DPC) = O

(√
b · log n

n
+

T

n1+ b
max{1,a}

)
. (3.2)

The first bound in Theorem 3.5.1 is very general; it highlights the impact of T , n,

C, and ε ∈ [1, nϕL] on performance. As for the second bound, as long as T grows at

a polynomial rate in n (i.e., T can be very large, especially when n is large), we can

always pick a proper b to make sure that the term T

n
1+ b

max{1,a}
in the second bound in

Theorem 3.5.1 is of order 1
n
. Thus, for all practical purposes, the average regret of DPC

when C = Θ(n) is of order
√

logn
n

. Note that we only need to have a buffer of order
√
n · log n. Since the magnitude of cumulative demand randomness in n consecutive
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periods is of order
√
n, this means that we only need to buffer a little bit more (i.e., by

a factor of
√

log n) to guarantee an asymptotically optimal performance under DPC.

Remark 1 (The Case of Scarce Resource). Although we have focused our

discussions in Theorem 3.5.1 on the case C = Θ(n), the first bound in Theorem 3.5.1

also holds when C = o(n). Suppose that demand rates are stationary and T
n
∈ Z+. It

is not difficult to show in this case that the optimal deterministic solution is static, i.e.,

λDt = C
n

for all t. Suppose that C = nγ for some γ ∈ (0, 1) and let ϕL = ϕU = 1
2n1−γ .

Then, using ε = 1 + 6
√
b · nγ · log n for some b > 0 yields an average regret of order

O

(√
b·logn
n2−γ + T

n1+b

)
. If γ is close to 0 (but not exactly 0), then the average regret of

DPC is practically of order
√

logn
n

. This means that DPC has a better performance in

the setting of scarce resource. However, there is a caveat: If C = Θ(1) (e.g., C = 1),

then the argument breaks down and the average regret of DPC is of order min
{

1, T
n

}
(i.e., the performance of DPC can be very poor). This is the setting of an extremely

scarce resource and a different type of heuristic control seems to be needed to address

this case. Since our focus in the paper is on the case C = Θ(n), we leave this for future

research pursuit. (See also Remark 3 at the end of Chapter 3.6.)

3.5.2 Proof of Theorem 3.5.1

The proof of Theorem 3.5.1 can be separated into two steps. In the first step, we

construct a high-probability event G, and show that, on the set G, we always have

Ct ≥ 1 and pt = p̂Dt for all t. In the second step, we bound the total revenue losses

under DPC(ε).

Step 1

We start with the first step. Let ∆t(p̂
D
t ) = Dt(p̂

D
t ) − λt(p̂Dt ) (i.e., ∆t(p̂

D
t ) is the error

from the expected demand in period t under price p̂Dt ). For notational brevity, we will

simply write λt = λt(p̂
D
t ) and ∆t = ∆t(p̂

D
t ). For some positive δ = o(n), whose exact

value is to be determined later, define a sequence of events {Ak(ε, δ)} as follows:

Ak(ε, δ) =

max
t≤kn

∣∣∣∣∣∣
t∑

s=(k−1)n+1

∆s

∣∣∣∣∣∣ < δ

 for all k = 1, . . . , T
n

. (3.3)

We now analyze P(Ak(ε, δ)). Note that, for all r > 0, we can bound:
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P

max
t≤kn

∣∣∣∣∣∣
t∑

s=(k−1)n+1

∆s

∣∣∣∣∣∣ ≥ δ


≤

E
[
exp

{
r
∣∣∣∑kn

s=(k−1)n+1 ∆s

∣∣∣}]
exp{rδ}

≤
E
[
exp

{
r
∑kn

s=(k−1)n+1 ∆s

}]
+ E

[
exp

{
−r
∑kn

s=(k−1)n+1 ∆s

}]
exp{rδ}

,

where the first inequality follows from a sub-Martingale inequality (see e.g. Williams

1991) and the last inequality holds because e|x| ≤ ex + e−x for all x. Since Dt(λt) is

a Bernoulli random variable with success probability λt, by the Moment Generating

Function of Bernoulli random variable,

E

exp

r
kn∑

s=(k−1)n+1

∆s


 =

kn∏
s=(k−1)n+1

E [exp{r∆s}]

=
kn∏

s=(k−1)n+1

[er · λt + 1− λt] · e−rλt ≤
kn∏

s=(k−1)n+1

e(er−1)λt · e−rλt .

Now, for all |x| ≤ 1, it holds that ex − 1 − x ≤ x2. Moreover,
∑kn

t=(k−1)n+1 λt =(∑kn
t=(k−1)n+1 λ

D
t

)
− ε ≤ min{C − ε, n} (because at most one new request arrives in

each period). So, we can bound:

E

exp

r
kn∑

s=(k−1)n+1

∆s


 ≤ exp{r2 min{C − ε, n}} for all r ∈ [0, 1].

Note that similar arguments can also be applied to E
[
exp

{
−r
∑kn

s=(k−1)n+1 ∆s

}]
.

Putting all things together, for r ∈ [0, 1], we have:

P(Āk(ε, δ)) ≤ 2 · exp{r2 min{C − ε, n} − rδ} for all k = 1, . . . , T
n

. (3.4)

Define G(ε, δ) := ∩T/nk=1Ak(ε, δ). (Per our discussions above, G(ε, δ) is our high-

probability event.) By the sub-additive property of probability,

P(G(ε, δ)) ≥ 1− 2T

n
exp{r2 min{C − ε, n} − rδ}. (3.5)
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We make an important observation— on the set G(ε, δ), we always have:

t+n−1∑
s=t

Ds(p̂
D
s ) =

t+n−1∑
s=t

(
λDs −

ε

n
+ ∆s

)
≤ C − ε+ 3δ for all t+ n− 1 ≤ T . (3.6)

To see why, note that for any pair (t1, t2) with t1 ∈ [(k − 1)n + 1, kn] and t2 ∈
[kn + 1, (k + 1)n] for some k ∈ {1, . . . , T

n
}, we have:

∣∣∑t2
s=t1

∆s

∣∣ ≤ ∣∣∣∑kn
s=t1

∆s

∣∣∣ +∣∣∑t2
s=kn+1 ∆s

∣∣ ≤ 2δ + δ = 3δ, where the last inequality follows from the definition of

δ in (3.3). This observation has an important implication: If we set δ = ε−1
3

, then we

always have Ct ≥ 1 and pt = p̂Dt for all t on the set G(ε, δ). For the remaining of the

proof, we will therefore assume that δ = ε−1
3

.

Step 2

We are now ready to bound the expected regret of DPC(ε). Let {pt} be the price

sequence under DPC(ε) and let ru = maxt maxλt∈Ωλ rt(λt). Note that

JD − E[RDPC(ε)] = JD − E

[
T∑
t=1

rt(pt)

]

≤ JD − E

[(
T∑
t=1

rt(p̂
D
t )

)
· 1{G(ε, δ)}

]

= JD − E

[
T∑
t=1

rt(p̂
D
t )

]
+ E

[(
T∑
t=1

rt(p̃
D
t )

)
· 1{Ḡ(ε, δ)}

]

≤
T∑
t=1

[
rt(λ

D
t )− rt

(
λDt −

ε

n

)]
+ ruT ·P(Ḡ(ε, δ))

≤ TΨ · ε
n

+ ruT ·P(Ḡ(ε, δ)).

where the last inequality follows by the fact that ε ∈ [1, nϕL] (which implies λDt − ε
n
∈

[λDt − ϕL, λDt + ϕU ]) and by Assumption A6. Together with the bound in (3.5) and

Assumption A6, we have for all r ∈ [0, 1]:

JD − E[RDPC(ε)]

T
≤ 1

T
·
[
TΨε

n
+ ruT ·P(Ḡ(ε, δ))

]
≤ Ψε

n
+

2ruT

n
· exp{r2 min{C − ε, n} − rδ}

Taking r = δ
2 min{C−ε, n} and substituting δ = ε−1

3
yields:
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JD − E[RDPC(ε)]

T
≤ M1 ·

[
ε

n
+
T

n
· exp

{
− (ε− 1)2

36 min{C − ε, n}

}]
(3.7)

for some M1 > 0 independent of T , C, n, and ε ∈ [1, nϕL]. This completes the proof.

�

3.6 Deterministic Price Control with

Periodic Batch Adjustments

We now discuss an improvement of DPC with periodic batch adjustments. We first

provide a description of our heuristic control and then we analyze its performance.

3.6.1 Control Description and Statement of Result

Let m be a positive integer such that n
m
∈ Z+. (This is only exposition clarity and

does not affect the key result of our analysis; we discuss this in more detail in Remark

2 at the end of this subsection.) The idea behind our periodic adjustments is to slice

the interval [1, T ] into T
m

batches, each of length m periods, and then to adjust the

prices in each batch in such a way that the cumulative errors in the previous batch is

corrected in the current batch. To be precise, let {Ti}T/mi=1 denote a partition of [1, T ],

where Ti = [(i − 1)m + 1, im] for all i ≥ 1. For convenience, we assume that T0 = ∅.
Define ∆t(pt) = Dt(pt)− λt(pt) (i.e., ∆t(pt) is the error from expected demand during

period t under price pt), where for notational brevity we will simply write ∆t = ∆t(pt).

The complete definition of DPC with periodic batch adjustment (DPC-Batch) is given

below.

DPC-Batch with Parameters m and ε (DPC-Batch(m, ε))

Step 1. Solve DET and get λD.

Step 2. At the beginning of each t, if t ∈ Ti, do:

a. Compute p̂Dt according to

λt(p̂
D
t ) = λDt −

ε

n
− 1

m

∑
s∈Ti−1

∆s;

b. If Ct ≥ 1 and λDt − ε
n
− 1

m

∑
s∈Ti−1

∆s ∈ Ωλ, set pt = p̂Dt ;
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Otherwise, set pt = p̄.

Unlike the original DPC in Chapter 3.5, DPC-Batch is parameterized by two pa-

rameters m and ε. The value of these parameters must be carefully chosen. If m

is too small, the price adjustment scheme under DPC-Batch may not have sufficient

corrective power for re-balancing total demands in the current batch (e.g., cumulative

errors in the previous batch may have the same order of magnitude as total potential

demands in the current batch); if, on the other hand, m is too large, we already incur

a lot of loss in the previous batch that is not recoverable by the adjustment in the

current batch. The following theorem tells us the performance of DPC-Batch.

Theorem 3.6.1 Suppose that ε ∈
[
1, min

{
n,m, n · 1+4m·min{ϕL,ϕU}

4m+n

}]
. There exists a

constant M2 > 0 such that for all T , C, n, m, and ε we have

AvReg(DPC-Batch) ≤ M2 ·
[
ε

n
+

1

m
+

T

m
· exp

{
− (ε− 1)2

64 min{C − ε, m}

}]
. (3.8)

In particular, if C = a · n for some a > 0, then using ε = 1 + 8
√
b · nc · log n and

m = dnce for some b > 0 and c ∈
(

log logn
logn

, 1
)

yields

AvReg(DPC-Batch) = O

(√
b · log n

n1− c
2

+
1

nc
+

T

nc+
b

max{1,a}

)
. (3.9)

Similar to bound (3.2) in Theorem 3.5.1, as long as T grows polynomially in n,

we can always pick a proper b such that the term T

n
c+ b

max{1,a}
is of order 1

n
. Thus, the

performance of DPC-Batch when C = Θ(n) is largely affected by the choice of c. If c is

too large (i.e., close to 1), then the bound is again of order
√

logn
n

as in Theorem 3.5.1

(i.e., we do not get any benefit from batch adjustments); if, on the other hand, c is

too small (i.e., close to 0), then the bound is of order 1. This means that, under

our proposed periodic batch adjustment scheme, the length of each batch m should

neither be too small nor too large for the most effective adjustment. Ignoring the

logarithmic term in (3.9), the optimal bound is achieved when c = 2/3, which yields

an average regret of order
√

logn
n2/3 . This is a significant improvement over the bound in

Theorem 3.5.1.

Remark 2 (The Case n
m
6∈ Z+). In the proof of Theorem 3.6.1, we assume that n

is divisible by m for some m > 1. If, however, such m does not exist (i.e., n is a prime
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number), we only need to make a minor change in the definition of a batch. Formally,

let Ti = [(i− 1)m+ 1, im] for all i = 1, . . . , b T
m
c − 1, and Tb T

m
c = [(b T

m
c − 1)m+ 1, T ].

Note that each of the first b T
m
c− 1 batches still has the same length m, but the length

of the last batch is between m and 2m. With these new batches, the definition of p̂Dt

in Step 2 part a is re-defined as:

λt(p̂
D
t ) = λDt −

ε

n
− 1

|Ti|
∑
s∈Ti−1

∆s.

Following the same arguments as in the proof of Theorem 3.6.1 (in Chapter 3.6.2), it is

not difficult to check that the statement in Theorem 3.6.1 still holds under this minor

alteration.

Remark 3 (The Case of Scarce Resource). Continuing our discussions in

Remark 1 at the end of Chapter 3.5, if C = nγ for some γ ∈ (0, 1), then using ε = 1 +

8
√
b · nmin{γ,c} · log n yields an average regret of order O

(
√

logn

n1−min{γ,c}
2

+ 1
nc

+ T
nb+min{γ,c}

)
.

Note that if γ is close to 0 (but not 0), we can choose c close to 1 and the average

regret of DPC-Batch is practically of order
√

logn
n

, which is about the same order as

the average regret of DPC. This means that, when resource is very scarce, periodic

adjustment may not have a significant impact in improving performance.

3.6.2 Proof of Theorem 3.6.1

The proof of Theorem 3.6.1 follows similar arguments as the proof of Theorem 3.5.1.

We still proceed in two steps: In the first step, we construct a high-probability event

G and show that, on the set G, we always have Ct ≥ 1 and pt = p̂Dt for all t. In the

second step, we bound the total revenue losses under DPC-Batch(m, ε).

Step 1

We start with the first step. For some positive δ = o(m), whose exact value is to be

determined later, define a sequence of events {Ai(ε, δ)} as follows:

Ai(ε, δ) =

max
t≤im

∣∣∣∣∣∣
t∑

s=(i−1)m+1

∆s

∣∣∣∣∣∣ < δ

 for all i ≤ T
m

. (3.10)
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Analogous to (3.4) in Chapter 3.5.2, it can be shown that for all i ≤ T
m

and r ∈ [0, 1],

P(Āi(ε, δ)) ≤ 2 · exp{r2 min{C − ε,m} − rδ}. (3.11)

Now, define G(ε, δ) = ∩T/mi=1 Ai(ε, δ). By the sub-additivity property of probability,

P(G(ε, δ)) ≥ 1− 2T

m
exp{r2 min{C − ε,m} − rδ}. (3.12)

We make some important observations. First, on the set G(ε, δ), we always have:∣∣ ε
n

+ 1
m

∑
s∈Ti ∆s

∣∣ ≤ ε
n

+ δ
m

for all i. This means that, as long as the parameters ε, δ, and

m are chosen such that ε
n

+ δ
m
≤ min{ϕL, ϕU}, the condition λDt − ε

n
− 1
m

∑
s∈Ti−1

∆s ∈ Ωλ

in Step 2 part a in the definition of DPC-Batch is always satisfied. For the remaining

of the proof, we will therefore assume that ε
n

+ δ
m
≤ min{ϕL, ϕU}. Now, suppose that

t ∈ Tj1 and t + n − 1 ∈ Tj2 , where j1 < j2 and t + n − 1 ≤ T . We can write the total

demands during [t, t+ n− 1] as follows:

t+n−1∑
s=t

Ds(p̂
D
s )

=
∑

s≥t,s∈Tj1

Ds(p̂
D
s ) +

j2−1∑
j=j1+1

∑
s∈Tj

Ds(p̂
D
s ) +

∑
s≤t+n−1, s∈Tj2

Ds(p̂
D
s )

=
∑

s≥t,s∈Tj1

λDs − ε

n
− 1

m

∑
l∈Tj1−1

∆l + ∆s


+

j2−1∑
j=j1+1

∑
s∈Tj

λDs − ε

n
− 1

m

∑
l∈Tj−1

∆l + ∆s


+

∑
s≤t+n−1, s∈Tj2

λDs − ε

n
− 1

m

∑
l∈Tj2−1

∆l + ∆s


=

t+n−1∑
s=t

λDs − ε − 1

m

∑
s≥t,s∈Tj1

∑
l∈Tj1−1

∆l −
∑

s<t,s∈Tj1

∆s

+

 ∑
s∈Tj2−1

∆s −
1

m

∑
s≤t+n−1, s∈Tj2

∑
s∈Tj2−1

∆s

+
∑

s≤t+n−1, s∈Tj2

∆s.
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Since Tj contains m periods for all j, on the set G(ε, δ), we can bound:∣∣∣∣∣∣ 1

m

∑
s≥t,s∈Tj1

∑
l∈Tj1−1

∆l

∣∣∣∣∣∣ ≤ δ,

∣∣∣∣∣∣
∑

s<t,s∈Tj1−1

∆s

∣∣∣∣∣∣ ≤ δ,

∣∣∣∣∣∣
∑

s≤t+n−1, s∈Tj2

∆s

∣∣∣∣∣∣ ≤ δ

and

∣∣∣∣∣∣
∑

s∈Tj2−1

∆s −
1

m

∑
s≤t+n−1, s∈Tj2

∑
s∈Tj2−1

∆s

∣∣∣∣∣∣ ≤ δ.

Putting the above four bounds together, on the set G(ε, δ), we have:

t+n−1∑
s=t

Ds(p̂
D
s ) ≤ C − ε+ 4δ for all t+ n− 1 ≤ T . (3.13)

It is worth noting that although (3.13) is similar to (3.6) in the proof of The-

orem 3.5.1, the term δ in (3.6) represents a bound on cumulative errors during n

periods whereas the term δ in (3.13) represents a bound on cumulative errors during

m < n periods (i.e., the δ in (3.13) is potentially much smaller than the δ in (3.6),

which highlights the potential improvement due to batch adjustments).

Let δ = ε−1
4

. Given this and the assumption that ε
n

+ δ
m
≤ min{ϕL, ϕU}, it is

not difficult to see that the following always hold on G(ε, δ): Ct ≥ 1 and λDt − ε
n
−

1
m

∑
s∈Ti−1

∆s ∈ Ωλ for all i and t ∈ Ti. As a consequence, we also have pt = p̂Dt for all

t.

Step 2

We are now ready to bound the expected regret of DPC-Batch(m, ε). Let {pt} be the

price sequence under DPC-Batch(m, ε). Note that

E[RDPC−Batch(m,ε)] = E

[
T∑
t=1

rt(pt)

]
≥ E

[(
T∑
t=1

rt(p̂
D
t )

)
· 1{G(ε, δ)}

]

= E

[
T∑
t=1

rt(p̂
D
t )

]
− E

[(
T∑
t=1

rt(p̂
D
t )

)
· 1{Ḡ(ε, δ)}

]
.

The second expectation after the last equality above can be bounded by ruT ·
P(Ḡ(ε, δ)) where ru = maxt maxλt∈Ωλ rt(λt). As for the first expectation, suppose that

t ∈ Ti for some i ≥ 2. By Taylor’s expansion and Assumption A6, we can bound

rt(p̂
D
t ) = rt

(
λDt − ε

n
− 1

m

∑
s∈Ti−1

∆s

)
≥ rt(λ

D
t ) − r′t(λ

D
t ) ·

(
ε
n

+ 1
m

∑
s∈Ti−1

∆s

)
− Ψ ·(

ε
n

+ 1
m

∑
s∈Ti−1

∆s

)2

. Taking expectation and applying Assumption A6 one more time
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yield E
[
rt(p̂

D
t )
]
≥ rt(λ

D
t ) − Ψε

n
− Ψ ·

(
2ε2

n2 + 2
m

)
, where the inequality follows because

(x+y)2 ≤ 2x2+2y2 for all (x, y) and E

[(∑
s∈Ti−1

∆s

)2
]
≤ m (by definition, {∆s}s∈Ti−1

are independent zero-mean random variables and |∆s| ≤ 1).

Putting the bounds together, for all r ∈ [0, 1], we have:

JD − E[RDPC−Batch(m,ε)]

T

≤ 1

T
·
[
TΨε

n
+ TΨ ·

(
2ε2

n2
+

2

m

)
+ ruT · P (Ḡ(ε, δ))

]
≤ Ψε

n
+

2Ψε2

n2
+

2Ψ

m
+

2ruT

m
· exp{r2 min{C − ε,m} − rδ}.

Taking r = δ
2 min{C−ε,m} and substituting δ = ε−1

4
yields:

AvReg(DPC −Batch) ≤M2 ·
[
ε

n
+

1

m
+

T

m
· exp

{
− (ε− 1)2

64 min{C − ε, m}

}]

for some M2 > 0 independent of T , C, n, m, and

ε ∈
[
1, min

{
n,m, n · 1 + 4m ·min{ϕL, ϕU}

4m+ n

}]
(Note that δ = ε−1

4
and ε ≤ n+4mn·min{ϕL,ϕU}

4m+n
implies ε

n
+ δ

m
≤ min{ϕL, ϕU}; 1 < ε < m

ensures that r = δ
2 min{C−ε,m} = ε−1

8 min{C−ε,m} ∈ (0, 1).) To get bound (3.9), we further

require c > log logn
logn

to ensure r ∈ (0, 1). This completes the proof. �

3.7 Numerical Experiments

We now conduct simple numerical experiments to illustrate the performance of the

proposed heuristic controls under different problem parameters. For simplicity, we

assume that the demand function (i.e., purchasing probability) is stationary over time,

and is exponentially decreasing in price, i.e., λ(p) = exp
(
λ0 − p

p0

)
. We use λ0 = 0.8

and p0 = 100. The length of selling horizon T and resource capacity C are both

set to be linear in n, and we vary n from 1, 000 to 8, 000. Specifically, we choose

C = 0.7 ·n and T = 5 ·n (i.e., n = 1, 000 corresponds to the problem instance with 700

units of resources and length of selling horizon equals 5,000 periods). The resulting

deterministic problem has a stationary optimal solution λDt ≡ λD = 0.7, with optimal
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objective value JD = 80.97.

Table 3.1 summarizes the heuristic controls tested in all experiments. Several com-

ments are in order regarding the implementation details. First, we implement DPC-

0 to identify the impact of injecting a buffer for deterministic control. Second, in

DPCB-ε, if T/m /∈ Z+, we simply set the last period to be of size T mod m (given the

discussions in Remark 2 in Chapter 3.6, this should not affect the performance of DPC-

Batch by much). Third, LRC-k refers to a simple adoption of the self-adjusting control

proposed in Jasin (2014), where we simply re-start the control at every k periods by

setting the cumulative error to be zero (see Chapter B.4 for a detailed description).

Fourth, for any combination of parameters, we simulate all the heuristic controls with

300 Monte Carlo runs to approximate their expected total revenues. Lastly, for DPC-ε

and DPCB-ε, we simply use a grid-search method to find the optimal ε (between 0

and 1, with an increment of 0.01).

Table 3.1: Summary Description of All Heuristic Controls

Label Description

DPC-0 DPC(ε) with ε = 0 (defined in Chapter 3.5.1)
DPC-ε DPC(ε) (defined in Chapter 3.5.1)

DPCB-ε DPC-Batch(m, ε) with m = dn2/3e (defined in Chapter 3.6.1)
LRC-k Linear rate control with re-starting at every k periods

(see Section 4 in Jasin 2014)

Simulation results. Figures 3.1 and 3.1 show the expected total regrets of the

first three heuristic controls, where the y-axis is the scaled total expected revenue

loss JD−Jπ√
n

. We do not plot the regret of LRC-k since it performs much worse than

any of the other three heuristic controls under any k, but we report the complete

numerical results in Appendix B.4. As expected, DPC-Batch dominates DPC, which

in turn dominates DPC-0. Moreover, a closer look on the average regret confirms the

asymptotic optimality of all three heuristic controls. The relatively poor performance

(in fact, may not even be asymptotically optimal) of LRC suggests that a heuristic

control that performs well in the setting of canonical revenue management cannot be

directly adopted to the setting of revenue management with reusable resources and

deterministic service time requirements. This reinforces our point in Chapter 3.2 that

the setting considered in our work, though may appear identical, is not exactly the

same as the setting in the standard revenue management literature.
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Figure 3.1: Expected Average Regret with Varying n

System scale n
1000 2000 3000 4000 5000 6000 7000 8000

S
ca
le
d
ex
p
ec
te
d
lo
ss

J
D
−
J
π

√
n

10

15

20

25

30

35

40

45
DPC-0
DPC-ϵ

System scale n
1000 2000 3000 4000 5000 6000 7000 8000

S
ca
le
d
ex
p
ec
te
d
lo
ss

J
D
−
J
π

√
n

10

11

12

13

14

15

16

17

18

19

20
DPC-ϵ
DPCB-ϵ

3.8 Extension to Multiple Service Types with Het-

erogeneous Service Time Requirements

In this chapter, we discuss a generalization of the basic model in Chapter 3.4 that

allows different service types with heterogeneous service time requirements. We first

discuss the setting of the problem and then provide a generalization of DPC-Batch.

3.8.1 The Setting

The firm sells K ≥ 1 service (or product) types where a request of service type k

requires one unit of resource and nk units of service time (or nk periods). For ease of

exposition, we will assume that T
nk
∈ Z+ for all k = 1, . . . , K. Moreover, without loss of

generality, we also assume that the service types are labeled in such a way that 1 ≤ n1 ≤
n2 ≤ · · · ≤ nK . The dynamics of the problems are as follows: At the beginning of period

t, the firm sets the prices for all service types, denoted by a vector pt := (pt,1, . . . , pt,K) ∈
Ωp. (Unless otherwise noted, all vectors are to be understood as column vectors.) For

period t, a price vector pt induces a demand vector Dt(pt) = (Dt,1(pt), . . . , Dt,K(pt))

with rate vector λt(pt) := (λt,1(pt), . . . , λt,K(pt)), where λt(pt) = E [Dt(pt)]. The

corresponding revenue rate is given by rt(pt) = E[p>t Dt(pt)] = p>t λt(pt). By the

invertibility assumption (see below), we will also use Dt(λt) = Dt(pt(λt)) and rt(λt) =

λ>t pt(λt) to denote the realized demand vector and revenue rate as a function of

demand rates, respectively. As in the basic model, we assume that demands across
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different periods are independent but demands over different service types within the

same period may be correlated and demand rates as functions of time may be non-

stationary. We assume at most one request arrives in each period, i.e.,
∑K

k=1 Dt,k(pt) ≤
1 (this is without loss of generality). Let Ωp = ⊗Kk=1Ωp,k and Ωλ = ⊗Kk=1Ωλ,k denote the

convex feasible set for price vector and demand rate vector, respectively. The following

regularity conditions are the generalization of Assumptions A1-A4 in Chapter 3.4 to

the multiple service types setting:

MA1. λt(pt) : Ωp → Ωλ is bounded, twice differentiable and invertible.

MA2. For each k, there exists a “turn-off” price p̄k such that pvk,t → p̄k implies λt,k(p
v
t )→

0.

MA3. λvt → 0 implies rt(λ
k
t )→ 0 for any feasible sequence {λvt }∞v=1.

MA4. rt(λt) is bounded, strictly jointly concave, and has a finite maximizer λ∗t ∈ Ωλ.

The optimal stochastic control formulation of our dynamic pricing problem is given

by:

OPT-M : J∗M =

max
π∈Π

E

[
T∑
t=1

rt(p
π
t )

]
:

K∑
k=1

t∑
s=max{1, t−nk+1}

Ds,k(p
π
s ) ≤ C ∀t


where the constraints must hold almost surely (or with probability one) and Π is the

set of all non-anticipating controls. Using demand rate vector as the decision variable,

the deterministic relaxation of OPT-M is given by:

DET-M : JDM =

max
λt∈Ωλ

T∑
t=1

rt(λt) :
K∑
k=1

t∑
s=max{1, t−nk+1}

λs,k ≤ C ∀t


As in Lemma 1, it is not difficult to show that JDM is an upper bound of J∗M .

Therefore, the average regret defined in Chapter 3.4 can still be used as a proper

performance measure. Let λD := (λDt )Tt=1 denote the optimal solution of DET-M, and

let pD := (pDt )Tt=1 denote the corresponding optimal price vectors (i.e., pDt = pt(λ
D
t )).

Let e be a vector of ones, with a proper dimension. Similar to Assumptions A5-A6,

we assume that there exist positive constants ϕL , ϕU , and Ψ such that the following

two conditions hold for all t:
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MA5. [λDt − ϕLe, λDt + ϕUe] ⊆ Ωλ.

MA6. ||∇rt(λ)||∞ and ||∇2rt(λ)||2 are bounded from above by Ψ on [λDt −ϕL, λDt +ϕU ].

We are now ready to present the generalization of DPC-Batch in the setting with

multiple service types and heterogeneous service time requirements.

3.8.2 A Generalized DPC-Batch and Its Performance

Let m = (m1, . . . ,mK) be a sequence of positive integers such that nk
mk
∈ Z+ for all k.

(As in Chapter 3.6.1, the existence of such sequence is assumed for ease of exposition

and does not affect our result. If a proper mk satisfying nk
mk
∈ Z+ does not exist,

then we can slightly modify our batch definition as in Remark 2 at the end of Chapter

3.6.1.) For each service type k, we slice the selling horizon into T
mk

batches, each of

length mk periods. Let Tk,i = [(i− 1)mk + 1, imk] denote the ith batch for service type

k. The key idea behind our generalized DPC-Batch is to manage the demand rate for

each service type somewhat independently of the other service types. To be precise,

the demand rates in each batch are adjusted in such a way that the cumulative errors

for a given service type in the previous batch are corrected by the demands of the same

service type in the current batch. (This does not mean that the controls are completely

decoupled since demands over different service types are still connected through their

prices, which means that the corresponding prices adjustments need to be computed

jointly.) Let ∆t := (∆t,k)
K
k=1 = (Dt,k(pt)−λt,k(pt))Kk=1 denote the vector of errors from

expected demands in period t under price vector pt (we suppress the dependency of

∆t on pt). Also, let ε = (ε1, . . . , εK) be a sequence of real-valued constants denoting

the size of buffer for each service type, and define ik(t) such that t ∈ Tk,ik(t) for all t

and k. The complete definition of our generalized DPC-Batch with multiple service

types and heterogeneous service time requirements is given below.

DPC-Batch with Parameters m and ε (DPC-Batch(m, ε))

Step 1. Solve DET-M and get λD.

Step 2. At the beginning of each t, do:

a. Compute p̂Dt according to

λt,k(p̂
D
t ) = λDt,k −

εk
nk
− 1

mk

∑
s∈Tk,ik(t)−1

∆s,k for all k;
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b. If Ct ≥ 1 and λDt,k −
εk
nk
− 1

mk

∑
s∈Tk,ik(t)−1

∆s,k ∈ Ωk,λ, set pt = p̂Dt ;

Otherwise, set pt = p̄.

Note that the price vector p̂Dt in Step 2 part a is well-defined by the invertibility

assumption in MA1. Let CD
k := max1≤t≤T

∑t
s=max{1, t−nk+1} λ

D
s,k denote the maximum

amount of resource used by service type k in the deterministic model. The follow-

ing theorem tells us the performance of DPC-Batch with heterogeneous service time

requests; we defer its proof to the Appendix B.3.

Theorem 3.8.1 Suppose that 0 < n1 ≤ · · · ≤ nK ≤ 1. There exists a constant

M3 > 0 such that for all T , C, mk, εk ∈ nk ·
[

1
Kn1

, min
{

1, 1
K
· 1+4Kmk·min{ϕL,ϕU}

4mk+n1

}]
,

and n1 ≥ 1
K min{ϕL,ϕU}

we have

AvReg(DPC-Batch)

≤ M3 ·
K∑
k=1

[
εk
nk

+
1

mk

+
T

mk

· exp

{
− (Kn1εk − nk)2

64K2n2
k min{CD

k − εk, mk}

}]
. (3.14)

In particular, if nk = αk · n and CD
k = βk · n for some 0 < α1 ≤ · · · ≤ αK and

βk > 0 for all k, then using εk = αk
Kα1

(1 + 8
√
b · nc · log n) and mk = dnce for all k, for

some b > 0 and c ∈ [0, 1), yields

AvReg(DPC-Batch) = O

(√
b · nc · log n

n
+

1

nc
+

T

n
c+ b

max{1,maxk{βk}}

)
. (3.15)

Two comments are in order. First, under a proper choice of b, setting c = 2/3 in

(3.15) yields an average regret of order
√

logn
n2/3 . This is the same order as the optimal

bound as in Theorem 3.6.1 (with c = 2/3). Second, although the second bound in

Theorem 3.8.1 only focuses on the case where CD
k = Θ(nk) = Θ(n) for all k, the first

bound in Theorem 3.8.1 holds in great generality. For example, if nk = Θ(nαk) and

CD
k = βk · nk for some αk, βk > 0, we can use εk = nk

Kn1

(
1 + 8K

√
b · nckk · log nk

)
and

mk = dnckk e for some ck > 0 for all k, for some b > 0, and the bound in Theorem 3.8.1

becomes

AvReg(DPC-Batch) =
K∑
k=1

O

√b · nckk · log nk
n1

+
1

nckk
+

T

n
ck+ b

max{1,βk}
k

 .
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Ignoring the logarithmic term in the bound above, an optimal ck can be calculated

by setting n
3
2
ck

k = n1, or equivalently ck = 2
3
· logn1

lognk
:= c∗k. Note that the number

of batches in one service cycle for service type k under ck = c∗k is approximately

n
1−c∗k
k = n

2
3

( 1
c∗
k
−1)

1 . Since the power term on n1 is decreasing in c∗k for all c∗k ∈ (0, 1) and

a larger nk implies a smaller c∗k, the service type with a longer service time requires a

larger batch size and a more frequent price adjustments during one service cycle than

the service type with a shorter service time. Overall, the average regret of DPC-Batch

for the above scenario under c∗k is of order
√

logn1

n
2/3
1

.

3.9 Extension to Advance Service Bookings with

Homogeneous Service Time Requirements

In this chapter, we consider a generalization of the basic model in Chapter 3.4 to the

setting with advance service booking or scheduling. We first discuss the setting of the

problem and then we provide a generalization of DPC-Batch.

3.9.1 The Setting

Similar to the basic model, the firm sells only a single service type where each request

requires a single unit of resource and n units of service time. However, unlike in the

basic model where a customer arriving in period t immediately starts her service in

period t, she can now choose to start her service at time t + `, where ` ∈ [0, L].

(For simplicity, we will call a request whose service starts ` periods later as type-

` request; this should not be confused with the meaning of “type” in the previous

chapter.) The firm controls the arrival rates of all types of requests by setting a

price vector pt = (pt,0, . . . , pt,L), where pt,` is the price of a type-` request booked

in period t (note that pt,0 is the price of service that starts immediately in period

t). Demand rates in period t is denoted by λt(pt) := (λt,0(pt), . . . , λt,L(pt)). Let

Dt(pt) = (Dt,1(pt), . . . , Dt,L(pt)) denote the realized requests in period t (by definition,

E[Dt(pt)] = λt(pt)). By the invertibility assumption (see below), we can write the

corresponding revenue rate as rt(pt) := p>t λt(pt) = λ>t pt(λt) = rt(λt). As in the

basic model, we assume that demands across different periods are independent, though

demands over different request types within the same period may be correlated, and

at most one request arrives in each period, i.e.,
∑L

`=0Dt,`(pt) ≤ 1. Let Ωp = ⊗L`=0Ωp,`

and Ωλ = ⊗L`=0Ωλ,` denote the convex feasible set for price vector and demand rate
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vector, respectively. As in Chapter 3.4, we assume that MA1-MA4 hold. (Although

the definition of service, or request, types in Chapter 3.8 and 3.9 are different, from

the point of view of abstraction, the demand and revenue functions in Chapter 3.8 and

3.9 are essentially a multi-product variant of the functions in Chapter 3.4.)

The optimal stochastic control formulation of our dynamic pricing problem is given

by:

OPT-A : J∗A =

max
π∈Π

E

[
T∑
t=1

rt(p
π
t )

]
:

L∑
`=0

t−∑̀
s=max{1, t−n−`+1}

Ds,`(p
π
s ) ≤ C ∀t


where the constraints must hold almost surely (or with probability one) and Π is the

set of all non-anticipating controls. Using demand rate vector as the decision variable,

the deterministic relaxation of OPT-A is given by:

DET-A : JDA =

max
λt∈Ωλ

T∑
t=1

rt(λt) :
L∑
`=0

t−∑̀
s=max{1, t−n−`+1}

λs,` ≤ C ∀t


Let λD := (λDt )Tt=1 denote the optimal solution of DET-A, and let pD :=

(pt(λ
D
t ))Tt=1 denote the corresponding price vectors. As in Chapter 3.8, we assume

that MA 5 and MA 6 also hold for all t.

Lastly, we define our performance measure in the setting with advance booking as

follows:

AvReg(π) =
JDA − E[Rπ]

T · (L+ 1)
.

In the same spirit with Lemma 1, it is not difficult to show that J∗A ≤ JDA . However,

unlike in the basic model in Chapter 3.4 where the expected total revenues under the

optimal policy throughout T periods only scales linearly with T , the expected total

revenues in the advance booking setting may scale linearly with T · (L+ 1), especially

when T is large and the demand rate function λt,`(·) has the same order of magnitude

for all t and ` (i.e., at any period t, we have the same intensity among customers who

are requesting to start their service at period t + ` where ` = 0, 1, . . . , L), because

we are essentially collecting revenues from about n · (L + 1) customers instead of n

during each service cycle. This explains why we divide the expected total regrets with

T · (L+ 1) instead of T in the above. We can alternatively interpret this as the average

expected revenue loss per customer.
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3.9.2 A Generalized DPC-Batch and Its Performance

Let {Ti}T/mi=1 denote a partition of [1, T ], where Ti = [(i − 1)m + 1, im] for all i ≥ 1.

The key idea behind our generalized DPC-Batch with advance service booking is to

correct the cumulative errors of type-` request in the previous batch with the demands

of type-` request in the current batch. Let ∆t := (∆t,`)
L
`=0 = (Dt,`(pt) − λt,`(pt))L`=0

denote the vector of errors from expected demands in period t under price vector pt,

where we suppress the dependency of ∆t on pt. For each t, let i`(t) be such that

max{t − `, 1} ∈ Ti`(t). The complete definition of DPC-Batch with advance service

booking is given below.

DPC-Batch with Parameters m and ε (DPC-Batch(m, ε))

Step 1. Solve DET-A and get λD.

Step 2. At the beginning of each t ≥ 1, do:

a. Compute p̂Dt according to

λt,`(p̂
D
t ) = λDt,` −

ε

n(L+ 1)
− 1

m

∑
s∈Ti`(t)−1

∆s,` for all `;

b. If Ct ≥ 1 and λDt,` − ε
n(L+1)

− 1
m

∑
s∈Ti`(t)−1

∆s,` ∈ Ωλ,`, set pt = p̂Dt ;

Otherwise, set pt = p̄.

The following theorem tells us the performance of DPC-Batch with advance service

booking; we defer its proof to Appendix B.2.

Theorem 3.9.1 The following two bounds hold for all C, L, n and m:

1. If L ≤ n and ε ∈
[
1,min

{
n(L+ 1),m(L+ 1), n · 1+m(L+1) min{ϕL,ϕU}

8m+n

}]
, there

exists a constant M4 > 0 such that

AvReg(DPC-Batch)

≤ M4 ·
[

ε

n(L+ 1)
+

1

m
+
T

m
· exp

{
− (ε− 1)2

256(L+ 1)2 min{C − ε, m}

}]
. (3.16)

2. If L > n and ε ∈ (L+1)·
[
2,min

{
n,m, 4mnmin{ϕL,ϕU}+2

4m+n

}]
, there exists a constant
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M ′
4 > 0 such that

AvReg(DPC-Batch)

≤ M ′
4 ·
[

ε

n(L+ 1)
+

1

m
+

T

m
· exp

{
− (ε− 2(L+ 1)/n)2

64(L+ 1)2 min{C − ε, m}

}]
. (3.17)

In particular, if C = a · nL, L = nd, m = dnce for some a > 0, d ≥ 0 and

c ∈
(

log logn
logn

, 1
)

, we can bound the average regret of DPC-Batch as follows:

1. For d ≤ 1, using ε = 1 + 16
√
b · n2d+c · log n for some b > 0 in bound (3.16)

yields

AvReg(DPC-Batch) = O

(√
b log n

n1− c
2

+
1

nc
+

T

nc+
b

max{1,a}

)
. (3.18)

2. For d > 1, using ε = 2 · L+1
n

+ 8
√
b · n2d+c · log n for some b > 0 in bound (3.17)

yields

AvReg(DPC-Batch) = O

(√
b · log n

n1− c
2

+
1

nc
+

T

nc+
b

max{1,a}

)
. (3.19)

The two general bounds in Theorem 3.9.1 (i.e., (3.16) and (3.17)) are proved in a

very similar manner under different requirements on ε and the relative magnitude of n

and L. Together, they are the analogue of (3.8) in Theore 3.6.1 and holds for general

problem parameters C, m, and n. Under slightly different choice of ε, the optimal

order of (3.18) and (3.19) are both achieved when c = 2/3, which yields an average

regret of order
√

logn
n2/3 . Hence, Theorem 3.9.1 tells us DPC-Batch can be generalized to

the setting with advance service bookings without worsening the performance.

3.10 Closing Remarks

In this paper, we address the dynamic pricing problem with reusable resources and de-

terministic service time requirements. Given the complexity of solving the stochastic

control optimally, we focus on designing provably-good heuristic controls and evaluate

their performances in the asymptotic regime. We also extend our result to the set-

ting with heterogeneous service time requirements and advance booking length. Given

its simplicity and generality, we believe that our heuristic controls can be tailored to
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address practical dynamic pricing problems faced by firms from various industries.

Methodologically, our asymptotic analysis also shed lights on the difference between

revenue management with reusable resources and deterministic service time require-

ments and the canonical revenue management problems. Many possible extensions are

not addressed in this paper. For example, it is interesting to see how our analytical

framework can be generalized to the setting with stochastic service time. Another

potential future direction is to analyze the “network” version of our model, where re-

sources can move dynamically between nodes, which is the setting of many on-demand

ride sharing models such as UBER and Lyft.
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CHAPTER 4

Near-Optimal Bisection Search for

Nonparametric Dynamic Pricing with

Inventory Constraint

4.1 Abstract

We consider a single-product revenue management problem with an inventory con-

straint and unknown, noisy, demand function. The objective of the firm is to dynam-

ically adjust the prices to maximize total expected revenue. We restrict our scope to

the nonparametric approach where we only assume some common regularity conditions

on the demand function instead of a specific functional form. We propose a family of

novel pricing heuristics that successfully balance the tradeoff between exploration and

exploitation. The idea is to generalize the classic bisection search method to a problem

that is affected both by stochastic noise and an inventory constraint. Our algorithm

extends the bisection method to produce a sequence of pricing intervals that converge

to the optimal static price with high probability. Using regret (the relative revenue loss

compared to the optimal dynamic pricing solution for a clairvoyant) as the performance

metric, we show that one of our heuristics exactly matches the theoretical asymptotic

lower bound that has been previously shown to hold for any feasible pricing heuristic.

Although the results are presented in the context of revenue management problems,

our analysis of the bisection technique for stochastic optimization with learning can be

potentially applied to other application areas.

4.2 Introduction

Dynamic pricing has became a common practice in many firms nowadays. It plays a

central role in the revenue optimization of many industries including airlines, hotels, car
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rentals, and retails (Talluri and van Ryzin 2006, Özer and Phillips 2012). In the typical

dynamic pricing problem, firms adaptively adjust their prices in response to market

demand and try to maximize their expected revenue. The success of this approach

relies heavily on the firms’ knowledge about the relationship between market demand

and the posted price, which is characterized by a demand function. Although in reality

firms may not know the exact demand function, firms can still dynamically price their

products through a combination of active learning (e.g., price experimentation) and

dynamic optimization. The challenge, however, is obvious: Given the limited time

window of opportunity and the limited on-hand inventory, firms have to balance the

effort spent on probing the true demand function (exploration) and generating near-

optimal revenue (exploitation).

The literature on dynamic pricing with demand learning can be broadly divided

into two categories: parametric and nonparametric models. (See den Boer 2015 for a

recent overview of the field.) In the parametric model, it is assumed that the firms

know the functional form of the underlying demand function (e.g., linear, exponential,

logit, etc.). The key challenges in such setting are to estimate the unknown demand

parameters and to develop a price optimization scheme utilizing this estimate. Some

popular estimation procedures that have been studied in the literature include Bayesian

method (Araman and Caldentey 2009; Farias and van Roy 2010; Harrison et al. 2012),

Maximum Likelihood estimation (Broder and Rusmevichientong 2012; den Boer 2014;

den Boer and Zwart 2013; den Boer and Zwart 2015), and Least Squares approach

(Keskin and Zeevi 2014). In contrast to parametric model, nonparametric model does

not assume that the firms know the functional form of the demand function; instead, it

only assumes a certain set of mild regularity conditions such as the decreasing property

of demand as a function of price, the boundedness of the first and second derivatives

of the demand function, and the unimodality of the revenue function. In such setting,

the firms’ tasks are further complicated by the fact that there is no explicit function

to optimize.

Current literature suggests that parametric approaches outperform nonparametric

approaches for general class of demand function, at least asymptotically. Given that

parametric approach assumes a precise knowledge of the functional form of the un-

derlying demand function, this observation is hardly surprising. Let θ > 0 denote the

relative size of the problem (i.e., the amount of initial inventory). A common way

to evaluate the performance of a heuristic is to quantify the relationship between θ

and the regret, which is the revenue loss compared to the optimal dynamic pricing

policy for a clairvoyant (we will define it formally in Chapter 4.3). It is know that
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the information-theoretic lower bound on the regret is Ω(
√
θ) (see e.g. Wang et al.

(2014)). Under the parametric model, this lower bound has been repeatedly shown

to be tight under different scenarios using different heuristics; see e.g. Keskin and

Zeevi (2014), den Boer and Zwart (2013), and Broder and Rusmevichientong (2012) in

the setting without inventory constraints and Chen et al. (2017a) in the setting with

inventory constraints. Under the nonparametric demand model, Wang et al. (2014)

proposed a heuristic whose regret is on the order of O(
√
θ log4.5 θ) for a fairly general

class of demand function. Under tighter regularity conditions (e.g. smoothness of

demand function), Chen et al. (2018) proposed a heuristic whose regret matches the

lower bound. Therefore, under mild regularity conditions on the demand functions,

there is a performance gap between the parametric approaches and the nonparametric

approaches, at least asymptotically.

The question is whether a parametric approach is always applicable in practice.

To illustrate, suppose that the underlying demand function is actually a logit func-

tion. What will happen if we mistakenly assume a linear function instead of a logit

function when estimating the demand parameters? As shown in Besbes and Zeevi

(2015), although model mis-specification is not always detrimental, it can lead to sub-

optimal prices, which yield a large loss in revenue. It remains an open research prob-

lem whether there is a way to make parametric approach more robust with respect to

model mis-specification for a general class of demand function. This leaves the firms in

a quandary of having to choose between a parametric approach, with the risk of model

mis-specification, or a nonparametric approach, with a weaker performance guarantee.

The purpose of this paper is to address this issue. In particular, we will consider a non-

parametric approach and study a scheme that will be shown to match the theoretical

performance guarantee of the best known parametric approaches.

The proposed heuristics and their performances. Under uncertainty in de-

mand information, a good pricing policy must balance the tradeoff between demand

learning (exploration) and revenue maximization (exploitation) while also successfully

dealing with the dynamics caused by stochastic demands and inventory constraints.

Our heuristics achieve these objectives by generating a sequence of shrinking inter-

vals that converge to the optimal static price calculated via a deterministic relaxation

of the original dynamic pricing problem. More specifically, we generalize the stan-

dard bisection search algorithm to stochastic and constrained setting. (Our heuristics

actually generalize the trisection search. However, for consistency with the existing

optimization literature, we will simply call it a bisection instead of a trisection.) We

use empirical mean of the observed demands as an estimate of the true demand rate
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to shrink the intervals accordingly. The sampling frequencies are chosen carefully: If

they are too low, the resulting estimates are not very accurate; if, on the other hand,

they are too high, we spend too much time on the sub-optimal prices, which incurs a

large revenue loss.

For the single-product dynamic pricing problem, the implementation of our heuris-

tics can be essentially divided into two phases: the exploration phase and the exploita-

tion phase. Since it is known in this setting that the optimal static price can be written

as the maximum of the unconstrained maximizer and the clearance price (see Gallego

and van Ryzin 1994), the purpose of the exploration phase is to determine the identity

of the optimal static price via bisection search. We show that it is possible to distin-

guish this identity quickly with a very high probability. During the exploitation phase,

we apply another bisection search to more efficiently shrink the intervals according to

the identity of the optimal price. We show that, if the heuristic uses bisection search

methods in both phases, then the asymptotic regret is O(
√
θ log θ). This is already very

close to the Ω(
√
θ) lower bound, and dominates the performance of the best known

nonparametric scheme for single-product problem in Wang et al. (2014) under mild de-

mand assumptions. It turns out that it is possible to remove the logarithm dependency

in the upper bound completely: If we use Stochastic Approximation algorithms (i.e.,

Kiefer-Wolfowitz and Robbins-Monro, see Broadie et al. 2011) during the exploitation

phase instead of another bisection search, then the resulting revenue loss is exactly

Θ(
√
θ). Therefore, we have provided an asymptotically optimal nonparametric pricing

heuristic for the setting of a single-product problem with inventory constraint.

Related literature. Apart from the standard parametric and nonparametric ap-

proaches, there are also works in the literature that consider robust optimization ap-

proach. Lim and Shanthikumar (2007) study a robust formulation of the classic single-

product pricing problem where nature adversarially chooses the distribution governing

the demand realization. They use a conservative max-min formulation that does not

involve real-time demand learning and bears no closed form solution in general. Eren

and Maglaras (2010) also study the robust setting and use a competitive ratio for-

mulation. However, they only deal with the setting without inventory constraint and

assume deterministic demand. Perakis and Roels (2010) adopt both the maximin and

minimax formulation. Their focus is on deriving structural insights instead of prov-

ing a performance bound. As has been noted in Cohen et al. (2017b), the robust

optimization literature mainly focuses on static problems and the previously realized

uncertainty is not utilized to adjust the pricing decision; this may result in a rather

conservative pricing decision. Cohen et al. (2017b) try to bridge the gap between ro-
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bust approach and data-driven optimization by proposing algorithms that utilize the

realized demands and converges to the optimal robust solution. However, there is no

theoretical guarantee on the convergence rate of their algorithm. Rusmevichientong

et al. (2006) also adopt a data-driven approach. They provide a bound on the number

of samples required to guarantee a near-optimal revenue if one uses the empirical opti-

mal price under general consumer choice model. Their approach is restricted to static

setting, i.e., the pricing decision does not depend on the previously realized demand

uncertainties. Therefore, there is no trade-off between revenue earning and demand

learning.

On the technical side, our work is also related to three other streams of literature.

The first one is the continuum-armed bandit literature (e.g., Agrawal 1995; Auer et al.

2007; Cope 2009; and Kleinberg 2004, Badanidiyuru et al. 2013). While there are some

high-level connections between our approach and the bandit approach, our problems

is fundamentally different from theirs because (i) there exists an inventory constraint,

and (ii) the feasible pricing region is continuous. Another stream of related literature

is the study of bisection search. Despite its long history and broad prevalence, there

is little work that studies its generalization into stochastic setting. To the best of

our knowledge, Waeber et al. 2013 is the only work that attempts to generalize the

deterministic bisection search into a stochastic setting. However, the scope of their

application is restricted to a root-finding problem. Thus, compared to the existing

studies on bisection search method, our work is the only one that combines the challenge

of stochastic setting and constrained optimization. These distinctions do not allow any

direct comparison to the existing literature. Finally, our work is also related to the

Online Convex Optimization (OCO) literature (see Cesa-Bianchi and Lugosi 2006 for a

review). OCO considers a setting where at each time period, after a decision has been

made, nature choose a cost function adversarially. The performance of a given policy

is then compared to the policy that uses the best static action in hindsight. Although

there are some similarities in the problem formulation, the vast majority of the OCO

literature restricts its scope to convex cost functions and unconstrained setting; this

clearly differentiates our work from OCO.

Remainder of this paper. The remainder of the paper is organized as follows.

In Chapter 4.3, we introduce the problem formulation. In Chapter 4.4 and 4.5, we

discuss our heuristics and prove their asymptotic bounds. Chapter 4.6. summarizes

the paper and potential future research directions. Unless otherwise noted, the details

of the proofs can be found in the Appendix.
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4.3 Problem Formulation

In this chapter, we first describe the problem setting and discuss general modeling

assumptions. We then introduce the deterministic analog of the original stochastic

pricing problem and discuss our performance metric.

4.3.1 Model setting

We consider a monopolist selling a single product with C units of initial inventory.

The selling horizon is discrete and divided into T periods. Without loss of generality,

we assume that at most one customer arrives during each period. At the beginning

of period t, the firm first posts the price pt and in turn induces a stochastic demand

Dt(pt) with a stationary rate λ(pt) = E[Dt(pt)]. Note that, since at most one customer

arrives during each period, the term λ(pt) can be interpreted as the probability of

a purchase request during period t given pt. Demands across different periods are

assumed to be independent. Let r(p) = pλ(p) denote the revenue rate and pu its

unique maximizer. Also, let Ωp and Ωλ denote the convex set of feasible prices and

demand rates, respectively. We make the following assumptions on the underlying

demand and revenue rate functions:

A1. The function λ(·) : Ωp → Ωλ is invertible and twice-differentiable. Moreover, λ(p)

is strictly decreasing in p, i.e., there exists a constant L > 0 such that |λ′(p)| ≥ L.

We will use p(·) : Ωλ → Ωp to denote the inverse of λ(·).

A2. The function r(p) is strictly unimodal. In addition, r(λ) := p(λ)λ is strictly

concave in λ. (By abuse of notation, we will often write r(λ) instead of r(p) to

denote the direct dependency of revenue on demand rate instead of price.)

A3. λ(p) and p(λ) are Lipschitz continuous with a factor K > 0, i.e., ∀p, p′ ∈
Ωp, |λ(p)− λ(p′)| ≤ K|p− p′|, and ∀λ, λ′ ∈ Ωλ, |p(λ)− p(λ′)| ≤ K|λ− λ′|.

A4. There exists a “shut-off” price p∞ such that if {pk} is any price sequence satisfying

pk → p∞, then we have λ(pk)→ 0.

A5. There exist positive constants ML < MU such that 0 > −ML ≥ r′′(λ) ≥ −MU

and ML|p− pu| ≤ |r′(p)| ≤MU |p− pu|.
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Assumptions A1-A4, together with the first part of A5, are quite natural and have

been repeatedly used in the literature (cf. Besbes and Zeevi 2009, Wang et al. 2014).

In particular, the existence of shut-off price allows the firm to effectively shut down

the demand whenever desired. The second part of A5 is needed only for the anal-

ysis of Stochastic Approximation algorithms in Chapter 4.4.3. (They are standard

assumptions in the Stochastic Approximation literature, e.g., Broadie et al. 2011.)

4.3.2 The stochastic and deterministic pricing problems

We say that a pricing policy π := (pπt : 0 ≤ t ≤ T ) is non-anticipating if the decision

pπt at the beginning of period t only depends on past prices {pπs : 0 ≤ s < t} and past

demand observations {Ds(p
π
s ) : 0 ≤ s < t}. Furthermore, we also say that a pricing

policy π is admissible if pπt ∈ Ωp for all t and π is non-anticipating. Let Π denote the

set of all admissible pricing policies. The stochastic formulation of the dynamic pricing

problem is given by

J∗ = max
π∈Π

E

[
T∑
t=1

pπt ·Dt(p
π
t )

]
such that

T∑
t=1

Dt(p
π
t ) ≤ C a.s. (4.1)

The deterministic analog of the above pricing problem is

JD = max
pt∈Ωp

T∑
t=1

r(pt) such that
T∑
t=1

λ(pt) ≤ C. (4.2)

By assumption A1, the above deterministic problem can also be written as

JD = max
λt∈Ωλ

T∑
t=1

r(λt) such that
T∑
t=1

λt ≤ C. (4.3)

Let {pDt } denote the unique optimal solution of (4.2); correspondingly, we also define

λDt := λ(pDt ). (λDt and pDt are uniquely determined since (4.3) is a concave optimization

problem with linear constraint.) Since the demand function is time-homogeneous, it

can be shown that pDt = pD for all t (see Gallego and van Ryzin 1994 for proof). Thus,

the optimal deterministic price is static. For analytical tractability, we will assume

that both pD and pu lie in a proper interior of Ωp. We state this assumption formally

below.

A6. There exists 0 < p < p̄ such that such that pD, pu ∈ [p, p̄] ⊂ Ωp.
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4.3.3 Performance metric and asymptotic setting

Let Jπ denote the expected revenue earned under pricing policy π. It is known that JD

is an upper bound for the expected revenue under any admissible policy, i.e., JD ≥ Jπ

for all π ∈ Π (see Gallego and van Ryzin 1994 for proof, we omit the details). Thus,

following the convention in the literature, as our performance metric, we will define

the revenue loss of an admissible policy π as Rπ = JD − Jπ. Since it is typical for

revenue management firms to sell a large inventory during a selling season, following the

standard setting in the literature, in this paper we will consider a sequence of increasing

problems where we scale both the size of the initial inventory level and the number of

selling periods by a factor of θ > 0. To be precise, the θth problem is parameterized

by (Cθ, Tθ) = (θC, θT ). Let JDθ denote the optimal value of the deterministic problem

(4.2) with scaling factor θ (it is not difficult to see that JDθ = θJD) and let Jπθ denote

the expected revenue under policy π for a problem with scaling factor θ. (Throughout

this paper, the subscript θ will be consistently used as a reference to the problem with

scaling factor θ.) Our objective is to study the asymptotic behavior of Rπ
θ = JDθ − Jπθ

as θ grows large. The scaling parameter θ can be interpreted as the size of the potential

market, which is often large in the application of dynamic pricing. Ideally, we would

expect that a good policy will have an expected revenue loss which grows relatively

slowly with respect to θ. Notationwise, we will use f(θ) = O(g(θ)) to mean that

f(θ) ≤M1g(θ) for some constant M1 > 0 and for all large n. Likewise, f(θ) = Θ(g(θ))

means that there exist constants 0 < M2 < M3 such that M2g(θ) ≤ f(θ) ≤M3g(θ) for

large enough n and f(θ) = Ω(g(θ)) means that there exists a constant M4 > 0 such

that f(θ) ≥ M4g(θ) for all large n. For notational simplicity, whenever there is no

confusion, we will often suppress the dependency on θ.

4.4 Main Results

In this chapter, we first introduce a generalization of the standard bisection search

heuristic to a stochastic and constrained problem. We then discuss two improvements

of the basic bisection heuristic to further reduce the asymptotic revenue loss bound.

(The proofs of these results can be found in Chapter 4.5.)

4.4.1 Preliminary ideas

The departure point for the construction of our heuristics is a structural property of

the optimal solution of the deterministic problem (4.2). It is known (e.g., Gallego
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and van Ryzin 1994) that the optimal deterministic policy is a static price control

where the firms apply the same price pD = max{pu, pc} until stock-out, where pc =

argminp∈Ωp |λ(p)− C/T |. For analytical tractability, we will assume that λ(p̄) < C/T ,

which implies pc = p (C/T ). (This is the original static price control in Gallego and van

Ryzin 1994 and can be easily satisfied, for example, if the feasible set Ωp is sufficiently

large.) Intuitively, the static control prescribes that the firms apply the unconstrained

optimal price if inventory is abundant, and the clearance price if inventory is scarce. If

the firm knows pD and applies it to the stochastic pricing problem until the inventory

is depleted, then it incurs a revenue loss of order O(
√
θ) (Gallego and van Ryzin 1994

). Jasin (2014) show that this bound cannot be improved in general, i.e., the revenue

loss of static price policy is Θ(
√
θ). Motivated by the good performance of static price

policy in the case where pD is known, one fruitful idea that has been exploited in the

literature (e.g., Besbes and Zeevi 2009; Wang et al. 2014) is to design an algorithm

whose resulting price sequence converges to pD in the long run. In this paper, we will

follow the same strategy and try to efficiently estimate pD.

4.4.2 First Heuristic: Generalized Bisection Search

The key idea behind our first heuristic is to generalize the classical bisection search

into a stochastic setting with constraint. Before presenting the complete algorithm for

our heuristic, we first define a price experimentation subroutine that will be repeatedly

used throughout the paper. We parametrize the subroutine with I ⊂ [p, p̄] and N ∈ R,

where I denotes the sampling price range and N denotes the sampling frequency.

Bisection Sampling Subroutine. BiSamp(I,N)

a. Divide I into 3 intervals of equal length.

Let S := {pl, l = 1, 2, 3, 4} be the resulting endpoints of each interval.

b. For each l, apply pl for N consecutive periods.

c. Compute the empirical mean rates

r̂(pl) =
total revenue received by applying pl

N
and

λ̂(pl) =
total demand received by applyingpl

N
, for l = 1, 2, 3, 4.
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Note that r̂(·) denotes the empirical revenue rate and λ̂(·) denotes the empirical

demand rate. The complete algorithm for our first heuristic is given below.

Bisection Dynamic Pricing Algorithm (BDPA).

Step 1: Initialization

Define p
1

= p, p̄1 = p̄ and I1 = [p
1
, p̄1] to be the starting interval.

Step 2: Shrinking the Interval

For k = 1, ..., τθ, do:

a. Execute BiSamp(Ik, Nk,θ) as long as the inventory level is still positive.

If the inventory is depleted, then apply p∞ until time Tθ.

b. If r̂(pk,2) < r̂(pk,3), then define p
k+1

= pk,2, p̄k+1 = pk,4;

If r̂(pk,2) ≥ r̂(pk,3) and λ̂(pk,3) < C/T −∆k,θ, then define p
k+1

= pk,1, p̄k+1 =

pk,3;

If r̂(pk,2) ≥ r̂(pk,3) and λ̂(pk,3) > C/T + ∆k,θ, then define p
k+1

= pk,2, p̄k+1 =

pk,4;

If r̂(pk,2) ≥ r̂(pk,3) and |λ̂(pk,3) − C/T | ≤ ∆k,θ, then define p
k+1

= pk,2,

p̄k+1 = pk,4;

c. Define the price range for the next iteration Ik+1 = [p
k+1

, p̄k+1].

Step 3: Applying Near-Optimal Static Price

Apply p̂Dθ = 1
2
(p
τθ+1

+ p̄τθ+1) until the end of selling horizon.

Apply p∞ if inventory is depleted.

The above algorithm is defined by three groups of parameters: τθ, which is the total

number of rounds of bisection search performed; ∆k,θ, which serves as the tolerance

level for stochastic error and will be elaborated in Chapter 4.5; and Nk,θ, which denotes

the sampling frequency. The value of these parameters must be carefully chosen. For

example, if Nk,θ is too large, we would be spending too much time on sampling sub-

optimal prices instead of converging to the optimal static price. If, on the other hand,

Nk,θ is too small, we may not be able to accurately estimate the revenues and demand

rates at different prices, which may lead to mis-identification of the optimal static

price. If ∆k,θ is too large, we will not be able to know with a high enough probability
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whether certain price violates the capacity constraint; if ∆k,θ is too small, we will need

to increase the sampling frequencies accordingly. Below, we provide an explicit choice

of parameters that will be used in our analysis:

Nk,θ =

⌈(
3

2

)4k

log2 Tθ

⌉
, ∆k,θ =

(
2

3

)2k

log−1/4 Tθ, and

τθ = sup

{
n ∈ N : 4 ·

n∑
k=1

Nk,θ ≤ Tθ

}
,

where dxe = inf{y ≥ x : y ∈ N}. We make two observations: First, we define τθ to be

the maximum number of full-rounds bisection search until the end of the selling season.

Since the intervals generated by BDPA keep shrinking to the optimal static price with

a high probability, such choice potentially has the smallest revenue loss. Second, the

sampling frequencies Nk,θ are increasing in k, whereas the error tolerances ∆k,θ are

decreasing in k. The reasoning behind these choices are intuitive: As the price interval

shrinks, the revenue difference at two different prices within the interval decreases and

yet the magnitude of stochastic noise does not change. Thus, more samples are needed

to guarantee a more accurate estimate of the revenue rate, and smaller error tolerances

are required. We state our first result below.

Theorem 4.4.1 Under the aforementioned choice of parameters, we have:

RBDPA
θ = O

(
θ3/4 log1/2 θ

)
.

It is noteworthy that the performance guarantee in Theorem 4.4.1 is of the same

order as the performance of nonparametric algorithm in Besbes and Zeevi (2009).

This result, however, is not very satisfactory as there is still a big gap between the

upper bound on the revenue loss and the theoretical lower bound of Ω(
√
θ). The

reason behind this relatively poor performance is that BDPA tries to estimate pu and

pc simultaneously and utilize the fact that pD is the maximum of the two prices to

estimate pD. However, if we know the true identity of pD, the original pricing problem

can be simplified into either a unconstrained optimization problem (when pD = pu) or

a root-finding problem (when pD = pc). Both problems can be solved in more loss-

efficient manners than the original pricing problem. This enlightens us to first explore

the identity of pD, then exploit this identity using a more loss-efficient algorithm. The

following two subsections are devoted to expanding this idea and achieving a better

performance.
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Figure 4.1: Deterministic Demand
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Figure 4.2: Stochastic Demand

Remark 4.4.1 The iterative procedure in Step 2 helps us to shrink the size of price

range while at the same time making sure that the new interval still contains the optimal

static price. The key idea is to distinguish which of the three intervals does not contain

pu (or pc) through revenue (or demand) rates comparison. To understand the reasoning

behind the four scenarios in Step 2b, suppose that demand is deterministic and pD ∈ Ik
for some k ≥ 1. (In this case, the Bisection Sampling Routine gives us the true

demand and revenue rate, i.e., r̂(p) = r(p), λ̂(p) = λ(p).) Now, if r(pk,2) < r(pk,3), by

unimodality of r(·) we know that pu ≥ pk,2. Then we know that pD = max{pu, pc} ≥ pk,2

and can safely delete [pk,1, pk,2) for the next round. This explains the intuition behind

the first scenario. As for the second scenario, if r(pk,2) ≥ r(pk,3), then pu ≤ pk,3.

Moreover, if λ(pk,3) < C/T − ∆k,θ, then pc ≤ pk,3 (because λ(·) is decreasing). This

implies that pD ≤ pk,3 and, thus, we can safely delete [pk,3, pk,4) for the next round. If,

on the other hand, λ(pk,3) ≥ C/T −∆k,θ, then for a sufficiently small ∆k,θ, p
c belongs

to a small region near pk,3 such that pc ≥ pk,2. Then we know pD = max{pu, pc} ≥ pk,2

and can safely delete [pk,1, pk,2) for the next round. This explains the intuition behind

the third and fourth scenarios. If the demand observations are stochastic, as long as the

empirical mean rates (r̂(·) and λ̂(·)) are close enough to the true rates (r(·) and λ(·)),

we can infer the true order relationships with high probability. As an example, Figure

4.1 to 4.4 illustrate the intuition behind scenario 3. The black boxes in Figure 4.2 and

4.4 denote the ranges where λ̂(·) and r̂(·) fall with high probability, while Figure 4.1 and

4.3 show their respective deterministic counterparts. If Nk and ∆k are well-chosen, the

upper blue dotted line in Figure 4.2 will not cross the third box, and we can thus make

correct prediction of the position of pc. Also, in Figure 4.4, the prediction of the order

relationship between r(pk,2) and r(pk,3) is correct as long as the middle two boxes do not

overlap along the vertical axis. As a consequence, the shrinking strategy in stochastic

setting (Figure 4.4) is the same with those in deterministic setting (Figure 4.3).
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Figure 4.3: Deterministic Revenue
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Figure 4.4: Stochastic Revenue

4.4.3 Second Heuristic: Double Bisection Search

It is important to note that, if pu 6= pc, then the functional behavior of r(p) around

pu and pc are different. To be precise, r(p) is approximately quadratic around pu and

is approximately linear around pc. This suggests that an efficient algorithm must take

into account the distinction between pu and pc. Broadly speaking, our heuristics can

be divided into two phases: (1) an exploration phase, during which we try to identify

whether the optimal static price is pu or pc, and (2) an exploitation phase, during which

we implement a more efficient search algorithm exploiting the identity of the optimal

static price. For the exploration phase, we will use the generalized bisection search in

BDPA. For the exploitation phase, we will use more efficient bisection search method

depending on the identity of pD distinguished by the exploration phase. The algorithm

will accordingly generate a sequence of shrinking intervals that contain the optimal

static price with a very high probability.

Double-Bisection Dynamic Pricing Algorithm (D-BDPA).

Step 1-2: Same as BDPA

Step 3: Identifying the Optimal Price

If λ̂(p
τθ+1

) < C/T −∆τθ,θ, go to Step 4a; else, go to Step 4b.

Step 4a: Converge to pu when pD = pu > pc.

Define Iu1 = [pu
1
, p̄u1 ] = Iτθ+1. For k = 1, ..., τuθ , do:

a. Execute BiSamp(Iuk , N
u
k,θ).
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b. If r̂(puk,2) < r̂(puk,3), then define pu
k+1

= puk,2, p̄uk+1 = puk,4; else define pu
k+1

=

puk,1, p̄uk+1 = puk,3.

c. Define the price range for next iteration as Iuk+1 = [pu
k+1

, p̄uk+1].

Apply p̂Dθ = 1
2

(
pu
τuθ +1

+ p̄uτuθ +1

)
. If inventory is depleted, then apply p∞.

Step 4b: Converge to pc when pD = pc ≥ pu.

Define Ic1 = [pc
1
, p̄c1] = Iτθ+1. For k = 1, ..., τ cθ , do:

a. Execute BiSamp(Ick, N
c
k,θ).

b. If λ̂(pck,2) > C/T + ∆c
k,θ, define pc

k+1
= pck,2, p̄ck+1 = pck,4;

else, define pc
k+1

= pck,1, p̄ck+1 = pck,3.

c. Define price range of next iteration Ick+1 = [pc
k+1

, p̄ck+1].

Apply p̂Dθ = 1
2
(pc
τcθ+1

+ p̄cτcθ+1). If inventory is depleted, then apply p∞.

We introduce some more parameters: τuθ , and τ cθ , which are the numbers of rounds

of bisection search performed during exploitation phase (Step 4), respectively; ∆c
k,θ,

which serve as the tolerance level for stochastic error; and N c
k,θ and Nu

k,θ, which denote

the sampling frequencies. As for the old parameters, we use the same Nk,θ and ∆k,θ,

but different τθ, since now the exploration phase only lasts for a few periods. Below,

we provide an explicit choice of parameters which will be used in our analysis:

N c
k,θ =

⌈(
3

2

)2k

log2 Tθ

⌉
, Nu

k,θ =

⌈(
3

2

)4k

log3 Tθ

⌉
, ∆c

k,θ =

(
2

3

)k
log−3/8 Tθ,

τθ = sup

{
n ∈ N : 4 ·

n∑
k=1

Nk,θ ≤ log3 Tθ

}
,

τuθ = sup

{
n ∈ N : 4 ·

n∑
k=1

Nu
k,θ ≤ Tθ − 4 ·

n∑
k=1

Nk,θ

}
,

τ cθ = sup

{
n ∈ N : 4 ·

n∑
k=1

N c
k,θ ≤ Tθ − 4 ·

n∑
k=1

Nk,θ

}
,

85



We make several observations here. First, we set τθ such that the length of the

exploration phase does not exceed log3 Tθ, which is relatively short for large θ. This

means that only a small number of price experimentations are needed to correctly

identify (with a very high probability) whether pD = pu or pD = pc. Secondly, the

definitions of τuθ and τ cθ follow from the fact that, during the exploration phase, we try

to perform as many full-rounds of bisection search as possible until the end of the selling

season. Thirdly, the sampling frequencies (Nu
k,θ, N

c
k,θ) and tolerance of error (∆c

k,θ) are

different in exploitation phase comparing with those parameters in exploration phase

Nk,θ. These along with different shrinking strategy provide better performance. We

state our result regarding the performance of D-BDPA below.

Theorem 4.4.2 Under the aforementioned choice of parameters, we have:

RD−BDPA
θ = O

(√
θ log θ

)
.

Theorem 4.4.2 tells us that D-BDPA is asymptotically optimal. Moreover, its per-

formance guarantee dominates the performance guarantee of any existing nonparamet-

ric algorithm in the literature, including the O(
√
θ log4.5 θ) of Wang et al. (2014), and

is very close to the known theoretical lower bound of Ω(
√
θ). In the next subsection

we will show that if we replace the bisection search during the exploitation phase with

Stochastic Approximation algorithm, then we can exactly match the lower bound.

4.4.4 Third Heuristic: Combining Bisection Search with

Stochastic Approximation

Stochastic Approximation refers to a class of iterative stochastic optimization algo-

rithms. We refer to Kushner and Yin (2003) for a comprehensive review. Broadly

speaking, stochastic approximation algorithms can be divided into two different types:

those that who try to solve a root-finding problem and those who try to stochas-

tically estimate the maximum of a unimodal function. In this work, we consider

the first and prototypical algorithms of this kind, i.e. Robbins-Monro (Robbins

and Monro 1951) and Kiefer-Wolfowitz algorithms (Kiefer and Wolfowitz 1952). Let

Rt(pt) = pt · Dt(pt) denotes the realized revenue during period t under pt, and define

PX(x) = arg miny∈X ||y − x|| to be the geometric projection function. The complete

description of the combined bisection search and Stochastic Approximation algorithm

is given below.
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SA-Bisection Dynamic Pricing Algorithm (SA-BDPA).

Steps 1 - 3: Same as D-BDPA

Step 4a: Converge to pu when pu > pc. (Kiefer-Wolfowitz Scheme)

Let pu1 = p
τθ+1

. For k = 1, ..., τuθ , do:

a. Sample the revenue rate at price puk + cuk at period 4
∑τθ

k=1Nk + 2k − 1, and

puk − cuk
at period 4

∑τθ
k=1Nk + 2k respectively; if inventory is depleted, apply p∞.

b. Update the price according to

puk+1 = PIτθ+1

[
puk + auk

Rk(p
u
k + cuk)−Rk(p

u
k − cuk)

cuk

]
.

Step 4b: Converge to pc when pc ≥ pu. (Robbins-Monro Scheme)

Let pc1 = p
τθ+1

. For k = 1, ..., τ cθ , do:

a. Sample the revenue rate at price pck for one period; if inventory is depleted,

apply p∞.

b. Update the price according to

pck+1 = PIτθ+1

[
pck + ack

(
C

T
−Dk(p

c
k)

)]
.

Note that SA-BDPA is parameterized by τθ, ∆k,θ, Nk,θ, a
u
k , a

c
k, and cuk . (The auk , a

c
k,

and cuk are standard parameters in Stochastic Approximation algorithm, see Broadie

et al. (2011).) We state a theorem.

Theorem 4.4.3 Under the same choice of τθ, ∆k,θ, and Nk,θ as in Theorem 4.4.1 and

a proper choice of auk, ack, and cuk, we have:

RSA−BDPA
θ = O

(√
θ
)
. (4.4)

It is noteworthy that Besbes and Zeevi (2009) also discuss a potential application
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of SA algorithms in their work. Specifically, they propose to apply the two types of

SA schemes consecutively during the exploration phase to estimate pu and pc. At

the end of the exploration phase, they propose that we choose the maximum of the

two estimates and apply it during the remaining selling season until stock-out. The

difference between their proposal and ours is obvious: They intend to use SA as an

exploration algorithm while we use it as an exploitation algorithm. They conjecture

that the revenue loss of their proposed SA-based dynamic pricing heuristic would be

O(θ2/3), which is worse than ours.

4.5 Proof of Results

This chapter contains the proof of Theorem 4.4.2 and 4.4.3. We start by providing an

outline of the proof in Chapter 4.5.1. The remaining details of the proof can be found

in Chapter 4.5.2 - Chapter 4.5.7 and in the Appendix at the end of this paper. As for

the proof of Theorem 4.4.1, since it is very similar with proof of Theorem 4.4.2, we

only discuss the outline briefly in Chapter 4.5.1.

4.5.1 Outline of the Proofs and Key Lemmas

We first discuss the outline of the proofs. For analytical convenience, we will consider a

slightly modified pricing policy called Modified D-BDPA (MD-BDPA) and Modified SA-

BDPA (MSA-BDPA), respectively, which operate exactly as D-BDPA and SA-BDPA

with the exception that it does not apply p∞ when the seller runs out of inventory.

Under MD-BDPA and MSA-BDPA, any excess demand beyond the available inventory

can be outsourced at a unit price of 2p̄. Since pt < 2p̄ for all pt ∈ [p, p̄], obviously,

we have JMD−BDPA ≤ JD−BDPA and JMSA−BDPA ≤ JSA−BDPA. Thus, in order to

bound J∗ − JD−BDPA and J∗ − JSA−BDPA, it suffices that we compute a bound for

each J∗−JMD−BDPA and J∗−JMSA−BDPA. The outline of the proof of Theorems 4.4.2

and 4.4.3 is as follows:

1. Bounding the Probability of Converging to pD in Step 2

We compute a lower bound for the probability that the optimal deterministic price

pD lies in Ik for all k in Step 2. This is critical to ensure that the final interval in the

exploration phase contains pD with a high probability. Define E1 := ∩τθ+1
k=1 {pD ∈ Ik}.

We state a lemma.
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Lemma 4.5.1 Under the choice of parameters given in Chapter 4.5.2, there exists a

constant C1 > 0 independent of θ ≥ 1 such that P (E1) ≥ 1− C1
(log log θ)2

θ
.

The proof of Lemma 4.5.1 can be found in Chapter 4.5.2. It is not difficult to show

that, after τθ rounds of bisection search in Step 2, the length of the remaining feasible

price interval is of order log−1/4 θ (see Chapter 4.4.2). So, Lemma 4.5.1 tells us that,

by the end of the exploration phase, we are already sufficiently “close” to the optimal

price (not close enough for us to ignore the exploitation phase and simply apply fixed

price throughout the remaining selling horizon as in Besbes and Zeevi (2009), but close

enough for us to distinguish the identity of the optimal price).

2. Bounding the Probability of Distinguishing the Identity of pD in Step 3

Once we guarantee that pD ∈ Iτθ+1 with a high probability, we also need to guar-

antee that the action in Step 3 correctly distinguishes the identity of the optimal

deterministic price with a high probability. If pD = pu > pc, then we expect that

the empirical demand rate at a point close to pD will be much smaller than C/T .

Similarly, if pD = pc ≥ pu, the empirical demand rate at a point close to pD will

be very close to C/T . Define E2 := {λ̂(p
τθ+1

) < C/T − ∆τθ,θ} if pu > pc and

E2 := {λ̂(p
τθ+1

) ≥ C/T −∆τθ,θ} otherwise. We state our second lemma.

Lemma 4.5.2 Under the choice of parameters given in Chapter 4.4.2, there exists a

constant C2 > 0 independent of θ ≥ 1 such that P (E1 ∩ E2) ≥ 1− C2
(log log θ)2

θ
.

The proof of Lemma 4.5.2 can be found in Chapter 4.5.3.

3. Bounding the Revenue Loss in Step 4

After we know the identity of pD, we can then properly bound the revenue loss

incurred during the exploitation phase. Note that, by definition of τθ, the total revenue

loss incurred during the exploration phase is only O(log3 θ). So, all that matters is the

revenue loss incurred during the exploitation phase. In particular, by definition of

π ∈ {MD-BDPA, MSA-BDPA}, we can write:

Jπθ = E

[
Tθ∑
t=1

ptDt(pt)

]
− 2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+
 .

(Above, we suppress the notational dependency on π.) The bulk of the arguments

in the rest of the analysis are in showing that
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E

[
Tθ∑
t=1

ptDt(pt)

]
= r(pD)Tθ −O(

√
θ log θ) (for Theorem 4.4.2)

E

[
Tθ∑
t=1

ptDt(pt)

]
= r(pD)Tθ −O(

√
θ) (for Theorem 4.4.3)

E

( Tθ∑
t=1

Dt(pt)− Cθ

)+
 = O(

√
θ) (for Theorems 4.4.2 and 4.4.3),

which completes the proof. We now briefly explain how D-BDPA achieves this order

of performance. (See Chapter 4.5.4 and Chapter 4.5.5 for the parts regarding The-

orem 4.4.2. We defer the proof of Theorem 4.4.3 in appendix since there are some

similarities.) Assuming that the sequence of price intervals produced by D-BDPA con-

verges to pD, which happens with high probability. Since the exploration phase is

relatively short, we can simply lower bound the collected revenue by zero. Now for

the exploitation phase, notice that if pu is the optimal static price, the revenue func-

tion is relatively “flat” near pu in the sense that it is approximately quadratic (see

Lemma 4.5.3(i)). Hence, to correctly distinguish the order relationship of the demand

rates at two different prices, we need to sample more, i.e. Nu
k,θ = Θ((3

2
)4k log2 θ).

On the other hand, the convergence of revenue rate around pu can be shown to be

quadratic (see Lemma 4.5.3(iii)). Now, assume without loss of generality that the sell-

ing season ends at the last period of the (τuθ )th round of bisection search. Notice that

|Iuk | = Θ
((

2
3

)2k
log−1/4 θ

)
(see Chapter 4.5.4) and contains pD with high probability,

the revenue loss during Step 4a is on the order of

O

 τuθ∑
k=1

(
2

3

)2k

Nu
k,θ

 = O

 τuθ∑
k=1

(
3

2

)2k

log3/2 θ


= O

((
3

2

)2τuθ

log3/2 θ

)
= O(

√
θ log θ),

where the last inequality follows from Lemma 4.5.4. Now, if pc is the optimal static

price, the demand function is relatively “steep” near pc in the sense that it is approx-

imately linear (see Lemma 4.5.3(ii)). And accordingly we sample less frequently i.e.
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N c
k,θ = Θ((3

2
)2k log2 θ). However, the convergence of revenue rate around pc can be

shown to be linear (see Lemma 4.5.3(iii)), which is slower comparing with the case

that pD = pu. Again, notice that |Ick| = Θ
((

2
3

)2k
log−1/4 θ

)
(see Chapter 4.5.4) and

contains pD with high probability, the revenue loss during Step 4b is on the order of

O

 τcθ∑
k=1

(
2

3

)k
N c
k,θ

 = O

 τcθ∑
k=1

(
3

2

)k
log7/4 θ


= O

((
3

2

)τcθ
log7/4 θ

)
= O

(√
θ log θ

)
,

where the last inequality follows from Lemma 4.5.4.

Building upon the intuition, we briefly explain the intuition behind the order of

the performance guarantee of BDPA. Notice that BDPA executes bisection search

without distinguishing the identity of pD. As a consequence, it has to sample with

higher frequency (Nk,θ = Nu
k,θ > Nk,θ, since r(p) is flat around pu) without knowing

if the revenue convergence rate is quadratic (pD = pu) or linear (pD = pc). Then, if

the optimal price is pc, BDPA will clearly suffer from oversampling. Quantitatively

speaking, the revenue loss of BDPA is of the order of

O

τBDPAθ∑
k=1

Nk,θ

(
2

3

)k = O

τBDPAθ∑
k=1

(
3

2

)3k

log2 θ


O

((
3

2

)3τBDPAθ

log2 θ

)
= O

(
θ3/4 log1/2 θ

)
,

where τBDPAθ = sup {n ∈ N : 4
∑n

k=1 Nk,θ ≤ Tθ} is the rounds of bisection search per-

formed in BDPA and satisfies (3/2)τ
BDPA
θ = Θ(θ1/4 log−1/2 θ).

Below, we state two lemmas that will be repeatedly used in the proof.

Lemma 4.5.3 (i) There exists a constant Ku > 0 such that for all pa, pb ∈ [p, p̄], if

pu > pa > pb (or pb > pa > pu), then r(pa)− r(pb) ≥ Ku(pa − pb)2.

(ii) For any pa, pb ∈ [p, p̄], we have |λ(pa) − λ(pb)| ≥ L|pa − pb| for some positive

constant L.

(iii) For any p ∈ [p, p̄], we have r(pu) − r(p) ≤ MuK2

2
(pu − p)2 and r(pc) − r(p) ≤

(1 + 2Kp̄)|pc − p|.
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Lemma 4.5.4 The following identities hold: τθ = Θ(log log θ), τuθ = Θ(log θ), and

τ cθ = Θ(log θ). Moreover,(
3

2

)τθ
= Θ

(
log1/4 θ

)
,

(
3

2

)4τuθ

= Θ

(
θ

log3 θ

)
, and

(
3

2

)2τcθ

= Θ

(
θ

log2 θ

)
.

The first two parts of the first lemma tells us the “distinctiveness” of the revenue

and demand function. They will provide useful guidelines for the choice of sampling

frequencies. The third part of the first lemma provides upper bounds on the revenue

loss depending on the identity of pD. The second lemma quantifies the exact order of

τθ, τ
u
θ , and τ cθ .

4.5.2 Proof of Lemma 4.5.1

By De Morgan’s law and sub-additivity of probability measure, we have

P
(
Ē1

)
= P (∪τθ+1

k=1 {p
D /∈ Ik}) ≤

τθ+1∑
k=1

P (pD /∈ Ik),

where Ē is the complement of E. For k > 1, we can bound:

P (pD /∈ Ik)

= P (pD /∈ Ik|pD ∈ Ik−1)P (pD ∈ Ik−1) + P (pD /∈ Ik|pD /∈ Ik−1)P (pD /∈ Ik−1)

≤ P (pD /∈ Ik, pD ∈ Ik−1) + P (pD /∈ Ik−1)

≤ · · ·

≤
k−1∑
j=1

P (pD /∈ Ij+1, p
D ∈ Ij)

where the last inequality follows from P (pD /∈ I1) = 0. Substituting them back into

the bound for P (Ē1) and using the fact that P (pD 6∈ I1) = 0, we get:

P
(
Ā1

)
≤

τθ+1∑
k=2

k−1∑
j=1

P (pD /∈ Ij+1, p
D ∈ Ij) =

τθ∑
k=1

(τθ − k + 1)P (pD /∈ Ik+1, p
D ∈ Ik).

We will now proceed to bound the term P (pD /∈ Ik+1, p
D ∈ Ik) for k = 1, ..., τθ.
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Define five groups of events B1
k, ..., B

5
k as follows:

B1
k = {r̂(pk,2) < r̂(pk,3), pu < pk,2},

B2
k = {r̂(pk,2) ≥ r̂(pk,3), pu > pk,3},

B3
k = {λ̂(pk,3) < C/T −∆k,θ, p

c > pk,3},

B4
k = {λ̂(pk,3) > C/T + ∆k,θ, p

c < pk,3},

B5
k = {|λ̂(pk,3)− C/T | ≤ ∆k,θ, p

c < pk,2}.

We claim that:

P (pD /∈ Ik+1, p
D ∈ Ik) ≤

5∑
l=1

P (Bl
k), ∀k (4.5)

To prove this, first, note that, per the description of our algorithm, there are four

different cases in Step 2(b) that we can enter in round k. So, we can bound:

P
(
pD /∈ Ik+1, p

D ∈ Ik
)

≤ P
{
r̂(pk,2) < r̂(pk,3), pD /∈ Ik+1, p

D ∈ Ik
}

+P
{
r̂(pk,2) ≥ r̂(pk,3) , λ̂(pk,3) < C/T −∆k,θ, p

D /∈ Ik+1, p
D ∈ Ik

}
+P

{
r̂(pk,2) ≥ r̂(pk,3), λ̂(pk,3) > C/T + ∆k,θ, p

D /∈ Ik+1, p
D ∈ Ik

}
+P

{
r̂(pk,2) ≥ r̂(pk,3), |λ̂(pk,3)− C/T | ≤ ∆k,θ, p

D /∈ Ik+1, p
D ∈ Ik

}
.

Now, if pD = pu > pc, we have:

P {r̂(pk,2) < r̂(pk,3), pu /∈ Ik+1, p
u ∈ Ik}

= P {r̂(pk,2) < r̂(pk,3), pu ∈ [pk,1, pk,2), pu ∈ Ik}

≤ P {r̂(pk,2) < r̂(pk,3), pu < pk,2, p
u ∈ Ik}

≤ P
(
B1
k

)
;

P
{
r̂(pk,2) ≥ r̂(pk,3), λ̂(pk,3) < C/T −∆k,θ, p

u /∈ Ik+1, p
u ∈ Ik

}
≤ P {r̂(pk,2) ≥ r̂(pk,3), pu ∈ (pk,3, pk,4], pu ∈ Ik}

≤ P
(
B2
k

)
;
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P
{
r̂(pk,2) ≥ r̂(pk,3), λ̂(pk,3) > C/T + ∆k,θ, p

u /∈ Ik+1, p
u ∈ Ik

}
= P

{
r̂(pk,2) ≥ r̂(pk,3), λ̂(pk,3) > C/T + ∆k,θ, p

u ∈ [pk,1, pk,2), pu ∈ Ik
}

≤ P
{
r̂(pk,2) ≥ r̂(pk,3), λ̂(pk,3) > C/T + ∆k,θ, p

u < pk,2

}
≤ P

{
λ̂(pk,3) > C/T + ∆k,θ, p

c < pk,2

}
(because pD = pu > pc)

≤ P
(
B4
k

)
;

P
{
r̂(pk,2) ≥ r̂(pk,3), |λ̂(pk,3)− C/T | ≤ ∆k,θ, p

u /∈ Ik+1, p
u ∈ Ik

}
= P

{
r̂(pk,2) ≥ r̂(pk,3), |λ̂(pk,3)− C/T | ≤ ∆k,θ, p

u ∈ [pk,1, pk,2), pu ∈ Ik
}

≤ P
{
|λ̂(pk,3)− C/T | ≤ ∆k,θ, p

c < pk,2

}
(because pD = pu > pc)

≤ P
(
B5
k

)
.

If, on the other hand, pD = pc ≥ pu, we have:

P {r̂(pk,2) < r̂(pk,3), pc /∈ Ik+1, p
c ∈ Ik}

= P {r̂(pk,2) < r̂(pk,3), pc ∈ [pk,1, pk,2), pc ∈ Ik}

≤ P {r̂(pk,2) < r̂(pk,3), pc < pk,2}

≤ P {r̂(pk,2) < r̂(pk,3), pu < pk,2} (because pD = pc ≥ pu)

= P
(
B1
k

)
.

P
{
r̂(pk,2) ≥ r̂(pk,3), λ̂(pk,3) < C/T −∆k,θ, p

c /∈ Ik+1, p
c ∈ Ik

}
≤ P

{
λ̂(pk,3) < C/T −∆k,θ, p

c ∈ (pk,3, pk,4], pc ∈ Ik
}

≤ P
(
B3
k

)
.

P
{
r̂(pk,2) ≥ r̂(pk,3), λ̂(pk,3) > C/T + ∆k,θ, p

c /∈ Ik+1, p
c ∈ Ik

}
= P

{
r̂(pk,2) ≥ r̂(pk,3), λ̂(pk,3) > C/T + ∆k,θ, p

c ∈ [pk,1, pk,2), pc ∈ Ik
}

≤ P
{
λ̂(pk,3) > C/T + ∆k,θ, p

c < pk,2

}
= P

(
B4
k

)
.
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P
{
r̂(pk,2) ≥ r̂(pk,3), |λ̂(pk,3)− C/T | ≤ ∆k,θ, p

c /∈ Ik+1, p
c ∈ Ik

}
= P

{
r̂(pk,2) ≥ r̂(pk,3), |λ̂(pk,3)− C/T | ≤ ∆k,θ, p

c ∈ [pk,1, pk,2), pc ∈ Ik
}

≤ P
{
|λ̂(pk,3)− C/T | ≤ ∆k,θ, p

c < pk,2

}
= P

(
B5
k

)
.

Thus, in either case (i.e., pD = pu > pc or pD = pc ≥ pu), the bound in (4.5) holds.

Put this together with our earlier bound for P
(
Ā1

)
, we get:

P
(
Ā1

)
≤

τθ∑
k=1

(τθ − k + 1)

[
5∑
l=1

P (Bl
k)

]
.

To complete the proof of Lemma 4.5.1, it suffices that we compute a bound for

P (Bl
k) for k = 1, ..., τθ, l = 1, ..., 5, which is our remaining focus.

Upper bound for P(B1
k) and P(B2

k)

The probabilities P (B1
k) and P (B2

k) can be bounded in a similar manner. So, we

will only show how to bound P (B1
k). Fix k ∈ {1, ..., τθ}. Note that pu < pk,2 < pk,3

on Bk
1 . Then by Lemma 4.5.3 part (ii), on B1

k, r(pk,2) − r(pk,3) ≥ Ku(pk,3 − pk,2)2 =

Ku(
|I|
3

)2(2
3
)2(k−1). Since |r̂(pk,l)− r(pk,l)| < 1

4
Ku(

|I|
3

)2(2
3
)2(k−1) for l ∈ {2, 3} implies

r̂(pk,2)− r̂(pk,3) = (r(pk,2)− r(pk,3)) + (r̂(pk,2)− r(pk,2))− (r̂(pk,3)− r(pk,3))

≥ (r(pk,2)− r(pk,3))− |r̂(pk,2)− r(pk,2)| − |r̂(pk,3)− r(pk,3)|

> Ku

(
|I|
3

)2(
2

3

)2(k−1)

− 2

4
Ku

(
|I|
3

)2(
2

3

)2(k−1)

> 0,

by Hoeffding’s inequality (Hoeffding 1963), we can bound

P (B1
k) ≤ P

(
|r̂(pk,l)− r(pk,l)| ≥

1

4
Ku

(
|I|
3

)2(
2

3

)2(k−1)

for some l ∈ {2, 3}

)

≤
3∑
l=2

P

(
|r̂(pk,l)− r(pk,l)| ≥

1

4
Ku

(
|I|
3

)2(
2

3

)2(k−1)
)

≤ 4 exp

−2
Nk,θ

1
42
K2
u

(
|I|
3

)4 (
2
3

)4(k−1)

p̄2

 .

By definition, Nk,θ = Θ(
(

3
2

)4k
log2 θ). So, for all sufficiently large θ, P (B1

k) ≤ 4
θ
.
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The same bound also holds for P (B2
k).

Upper bound for P(B3
k) and P(B4

k)

The probabilities P (B3
k) and P (B4

k) can be bounded in a similar manner. So, we

will only show how to bound P (B3
k). Note that pc > pk,3 implies λ(pk,3) > C/T . So,

P (B3
k) ≤ P

(
λ̂(pk,3) < C/T −∆k,θ , λ(pk,3) > C/T

)
≤ P

(
λ̂(pk,3)− λ(pk,3) < −∆k,θ

)
≤ P

(
|λ̂(pk,3)− λ(pk,3)| > ∆k,θ

)
.

Again, by Hoeffding’s inequality, since ∆k,θ = Θ((2
3
)2k log−1/4 θ) and Nk,θ =

Θ(
(

3
2

)4k
log2 θ), for all large θ, we have P (|λ̂(pk,3) − λ(pk,3)| ≥ ∆k,θ) ≤

2 exp(−2Nk,θ∆
2
k,θ) ≤ 2

θ
. The same bound also holds for P (B4

k).

Upper bound for P(B5
k)

By the decreasing property of demand function, pc < pk,2 implies λ(pk,2) ≤ C/T .

By Lemma 4.5.3 part (i), λ(pk,2)− λ(pk,3) ≥ L|pk,2 − pk,3| = L |I|
3

(2
3
)k−1. So, on B5

k,

λ(pk,3)− λ̂(pk,3) ≤ λ(pk,2)− L |I|
3

(
2

3

)k−1

−
(
C

T
−∆k,θ

)
≤ C

T
− L |I|

3

(
2

3

)k−1

−
(
C

T
−∆k,θ

)
≤ −1

2
L
|I|
3

(
2

3

)k−1

,

where the last inequality follows because, by definition, ∆k,θ ≤ 1
2
L |I|

3

(
2
3

)k−1
for all

sufficiently large θ. Now, by similar arguments as above,

P (B5
k) ≤ P

(
λ(pk,3)− λ̂(pk,3) < −1

2
L
|I|
3

(
2

3

)k−1
)

≤ P

(
|λ̂(pk,3)− λ(pk,3)| > 1

2
L
|I|
3

(
2

3

)k−1
)

≤ 2 exp

−2Nk

[
1

2
L
|I|
3

(
2

3

)k−1
]2
 ≤ 2

θ
(for all sufficiently large θ) .
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Put all the bounds together, we have

P
(
Ē1

)
≤

τθ∑
k=1

(τθ − k + 1)

[
5∑
l=1

P (Bl
k)

]
≤ τθ(τθ + 1)

2
· 4

θ
· 5 =

10τθ(τθ + 1)

θ
.

Since τθ = Θ(log log θ) (see Lemma 4.5.4), we conclude that there exists a constant

C1 such that

P (E1) = 1− P
(
Ē1

)
≥ 1− C1

(log log θ)2

θ
. �

4.5.3 Proof of Lemma 4.5.2

The proof is similar to that of Lemma 4.5.1. We will analyze the two cases (i.e.,

pD = pu > pc and pD = pc ≥ pu) separately.

Case 1: pD = pc ≥ pu

If pu ≤ pc, then the optimal deterministic price pD equals pc. On E1, we know that

pc = pD ∈ [p
τθ+1

, p̄τθ+1]. This implies λ(p
τθ+1

) ≥ λ(pc) = C/T . So, we can bound:

1− P (E1 ∩ E2) = 1− P (E1) + P (E1)− P (E1 ∩ E2)

= P
(
Ē1

)
+ P

(
E1 ∩ Ē2

)
≤ P

(
Ē1

)
+ P

(
pc ∈ [p

τθ+1
, p̄τθ+1], λ̂(p

τθ+1
) < C/T −∆τθ,θ

)
≤ P

(
Ē1

)
+ P

(
λ(p

τθ+1
) ≥ C/T, λ̂(p

τθ+1
) < C/T −∆τθ,θ

)
≤ P

(
Ē1

)
+ P

(
λ̂(p

τθ+1
)− λ(p

τθ+1
) < −∆τθ,θ

)
≤ P

(
Ē1

)
+ P

(
|λ̂(p

τθ+1
)− λ(p

τθ+1
)| > ∆τθ,θ

)
≤ P

(
Ē1

)
+ 2 exp

(
−2Nτθ,θ ∆2

τθ,θ

)
(by Hoeffding’s inequality)

≤ C1
(log log θ)2

θ
+

2

θ
(by Lemma 4.5.1),

where the last inequality holds for all sufficiently large θ.

Case 2: pD = pu > pc

If pu > pc, then pD = pu and λ(pu) < λ(pc) = C/T . By definition of τθ, |Iτθ+1|
and ∆τθ,θ decrease to zero as θ → ∞. Since we always have pu = pD ∈ [p

τθ+1
, p̄τθ+1]

on E1, it must also hold for all sufficiently large θ on E1 that pc < p
τθ+1

< pu,

λ(p
τθ+1

) − λ(pu) ≤ (λ(pc) − λ(pu))/4, and ∆τθ,θ ≤ (λ(pc) − λ(pu))/4. Arguing as in

case 1, for all large θ, we can bound:
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1− P (E1 ∩ E2)

= P
(
Ē1

)
+ P

(
E1 ∩ Ē2

)
≤ P

(
Ē1

)
+ P

(
max

{
∆τθ,θ, λ(p

τθ+1
)− λ(pu)

}
≤ λ(pc)− λ(pu)

4
,

λ̂(p
τθ+1

) ≥ C

T
−∆τθ,θ

)
≤ P

(
Ē1

)
+ P

(
max

{
∆τθ,θ, λ(p

τθ+1
)− λ(pu)

}
≤ λ(pc)− λ(pu)

4
,

λ̂(p
τθ+1

) ≥ λ(pc)−∆τθ,θ

)
≤ P

(
Ē1

)
+ P

(
λ̂(p

τθ+1
)− λ(p

τθ+1
) ≥ λ(pc)− λ(pu)

2

)
≤ C1

(log log θ)2

θ
+

1

θ
,

where the last inequality follows by Lemma 4.5.1 and Hoeffding’s inequality (for suffi-

ciently large θ).

Put the bounds from case 1 and case 2 together, we conclude that there exists a

constant C2 > 0 independent of θ ≥ 1 such that P (E1 ∩ E2) ≥ 1− C2
(log log θ)2

θ
. �

4.5.4 Bounding the Revenue Loss of D-BDPA Upon Entering

Step 4a

Since pD = pu > pc, for all sufficiently large θ, the following two conditions must hold:

(i) pc /∈ Iu1 and (ii) r(p) is strictly concave in Iu1 = Iτθ+1. The first condition holds

because pu is strictly larger than pc and the interval Iτθ+1 can be arbitrarily small for

large θ. The second condition follows from the fact that r(p) is locally strictly concave

in the neighborhood of pu (see Lemma 4.5.3 part (i)).

Let Eu := ∩τ
u
θ
k=1{pu ∈ Iuk }. The following lemma is analogous to Lemma 4.5.1.

Lemma 4.5.5 There exists a constant C3 > 0 such that P (E1∩E2∩Eu) ≥ 1−C3
(log θ)2

θ
.

We defer the proof of Lemma 4.5.5 to the appendix. Per our discussions in Chapter

4.5.1, the net revenue of MD-BDPA is the direct revenue minus the penalty, i.e.,

JMD−BDPA
θ = E

[
Tθ∑
t=1

ptDt(pt)

]
− 2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+
 .
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We will now proceed to bound the two expectations separately.

Step 1: Lower Bound for Direct Revenue Collected by MD-BDPA

We claim that there exists a constant C̃1 > 0 such that

E

[
Tθ∑
t=1

ptDt(pt)

]
≥ r(pu)Tθ − C̃1

√
θ log θ.

We focus our analysis on the sample path in E1∩E2∩Eu. Define T̃ uθ,1 =
∑τθ

k=1 4Nk,θ

and T̃ uθ,2 =
∑τθ

k=1 4Nk,θ +
∑τuθ

k=1 4Nu
k,θ. The collected revenue can be lower bounded by

two components as follows:

E

[
Tθ∑
t=1

ptDt(pt)

]

≥ E

 T̃uθ,2∑
t=1+T̃uθ,1

ptDt(pt)1{E1 ∩ E2 ∩ Eu}


≥ E

 τuθ∑
k=1

4∑
l=1

Nu
k,θ r̂(p

u
k,l)1{E1 ∩ E2 ∩ Eu}


+E

[(
Tθ − T̃ uθ,2

)
r̂(p̂D)1{E1 ∩ E2 ∩ Eu}

]
. (4.6)

For the first term, note that

E

 τuθ∑
k=1

4∑
l=1

Nu
k,θ r̂(p

u
k,l)

∣∣∣∣∣∣ E1 ∩ E2 ∩ Eu

 =

τuθ∑
k=1

4∑
l=1

Nu
k,θ E

[
r(puk,l)| E1 ∩ E2 ∩ Eu

]
.

Since on event E1 ∩ E2 ∩ Eu, |puk,l − pu| ≤ |Iu1 |(2
3
)k−1, then by Lemma 4.5.3(iii) we

know that r(puk,l) ≥ r(pu)− 9MUK
2

8
|Iu1 |2

(
2
3

)2k
. Put this together with Lemma 4.5.5 and
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the fact that
∑τuθ

k=1 4Nu
k,θ ≥ T̃ uθ,2 − log3 Tθ, we have

τuθ∑
k=1

4∑
l=1

Nu
k,θE

[
r(puk,l)|E1 ∩ E2 ∩ Eu

]
P (E1 ∩ E2 ∩ Eu)

≥

 τuθ∑
k=1

4Nu
k,θ

(
r(pu)− 9MUK

2

8
|Iu1 |2

(
2

3

)2k
)(1− C3

(log θ)2

θ

)

≥ r(pu)
(
T̃ uθ,2 − log3 Tθ

)
− C3 p̄

log2 θ

θ

 τuθ∑
k=1

4Nu
k,θ


−9MUK

2

8
|Iu1 |2

 τuθ∑
k=1

4Nu
k,θ

(
2

3

)2k


≥ r(pu)T̃ uθ,2 − p̄ log3 Tθ − C3p̄T log2 θ − 81

10
MUK

2|Iu1 |2 log3 Tθ

(
3

2

)2(τuθ +1)

≥ r(pu)T̃ uθ,2 −Θ(
√
θ log θ),

where the last inequality follows because |Iu1 | = Θ(log−1/4 θ) and
(

3
2

)4τuθ = Θ
(

θ
log3 θ

)
(see Lemma 4.5.4).

As for the second term in the RHS of (4.6), by the same arguments as above,

E
[(
Tθ − T̃ uθ,2

)
r̂(p̂D)1{E1 ∩ E2 ∩ Eu}

]
≥
(
Tθ − T̃ uθ,2

)(
r(pu)− 9MUK

2

8
|Iu1 |2

(
2

3

)2τuθ
)(

1− C3
(log θ)2

θ

)
≥ r(pu)

(
Tθ − T̃ uθ,2

)
− C3 p̄ T log2 θ − 9MUK

2

8
|Iu1 |2 Tθ

(
2

3

)2τuθ

≥ r(pu)
(
Tθ − T̃ uθ,2

)
−Θ(

√
θ log θ),

where the last inequality follows because |Iu1 | = Θ(log−1/4 θ) and
(

3
2

)4τuθ = Θ
(

θ
log3 θ

)
.

Put the bounds for the two terms together proves our initial claim.

Step 2: Upper Bound for Total Penalty Incurred by Capacity Violation

We claim that there exists a constant C̃2 > 0 such that

2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+
 ≤ C̃2

√
θ.
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We first analyze the sample path on E1 ∩ E2 ∩ Eu. We know that

E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2 ∩ Eu}


≤ E

( Tθ∑
t=1

Dt(pt)− λ(pt)

)+

1{E1 ∩ E2 ∩ Eu}


+ E

( Tθ∑
t=1

λ(pt)− Cθ

)+

1{E1 ∩ E2 ∩ Eu}


≤ E

( Tθ∑
t=1

Dt(pt)− λ(pt)

)+
+ E


 T̃uθ,1∑

t=1

λ(pt)− T̃ uθ,1
C

T

+

1{E1 ∩ E2 ∩ Eu}


+ E

 τuθ∑
k=1

4∑
l=1

Nu
k,θλ(puk,l)−

(
T̃ uθ,2 − T̃ uθ,1

) C
T

+

1{E1 ∩ E2 ∩ Eu}


+ E


 Tθ∑
t=T̃uθ,2+1

λ(pt)−
(
Tθ − T̃ uθ,2

) C
T


+

1{E1 ∩ E2 ∩ Eu}


≤ E

( Tθ∑
t=1

Dt(pt)− λ(pt)

)+
+ T̃ uθ,1

+ E

 τuθ∑
k=1

4∑
l=1

Nu
k,θ

(
λ(puk,l)−

C

T

)+

1{E1 ∩ E2 ∩ Eu}


+ E


 Tθ∑
t=T̃uθ,2+1

λ(pt)−
(
Tθ − T̃ uθ,2

) C
T


+

1{E1 ∩ E2 ∩ Eu}


≤ E

( Tθ∑
t=1

Dt(pt)− λ(pt)

)+
+ log3 Tθ

+

τuθ∑
k=1

4∑
l=1

Nu
k,θ E

[(
λ(puk,l)−

C

T

)+

1{E1 ∩ E2 ∩ Eu}

]

+ E

[(
Tθ − T̃ uθ,2

)(
λ
(
p̂D
)
− C

T

)+

1{E1 ∩ E2 ∩ Eu}

]
,

where the first and second inequalities follow from Jensen’s Inequality; the third in-

101



equality follows from the boundedness of demand observation and the definition of

T̃ uθ,1, T̃ uθ,2; the last inequality follows from Jensen’s Inequality and the definition of τθ.

Basically, we break the capacity violation into four parts: stochastic randomness, and

the capacity violation during Step 2, during bisection search in Step 4 and applying

p̂D in Step 4.

By Cauchy-Schwarz’s inequality and the boundedness of demand observation, the

first term can be easily bounded as follows:

E

( Tθ∑
t=1

D(pt)− λ(pt)

)+
 ≤

E

( Tθ∑
t=1

D(pt)− λ(pt)

)2


1/2

=

{
Tθ∑
t=1

E
[
(D(pt)− λ(pt))

2]}1/2

≤
√
Tθ.

As for the third term, since pu > pc, which implies λ(pu) < λ(pc) = C/T , and

pc /∈ Iuk for all k (for all large θ), we always have λ(puk,l) < λ(pc) = C/T . So, (λ(puk,l)−
C/T )+ = 0 for all k and l. Similarly, since p̂D ∈ Iuτuθ +1, we have λ(p̂D) < C/T for all

large θ. So, the last term also equals to 0. Put the bounds together we have:

E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2 ∩ Eu}

 = O(
√
θ).

Thus, the total penalty for capacity violation satisfies

2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+


= 2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2 ∩ Eu}


+ 2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2 ∩ Eu}


≤ 2p̄ O

(√
θ
)

+ 2p̄ TθP
(
E1 ∩ E2 ∩ Eu

)
= O(

√
θ),

where the last inequality follows the boundedness of demand observation.

102



Finally, combining our results from Steps 1 and 2 above we conclude that

JMD−BDPA
θ ≥ r(pu)Tθ − C̃1

√
θ log θ − C̃2

√
θ = r(pu)Tθ −O(

√
θ log θ). �

4.5.5 Bounding the Revenue Loss of D-BDPA Upon Entering

Step 4b

The proof is similar to those in Chapter 4.5.2. Let Ec = ∩τ
c
θ
k=1{pc ∈ Ick}. The following

lemma is the analog of Lemma 4.5.5.

Lemma 4.5.6 There exists a constant C4 > 0 such that P
(
E1 ∩ E2 ∩ Ec

)
≥ 1 −

C4
(log θ)2

θ
.

We defer the proof of Lemma 4.5.6 to the appendix. We again consider MD-BDPA.

The net revenue generated by MD-BDPA is given by:

JMD−BDPA
θ ≥ E

[
Tθ∑
t=1

ptDt(pt)

]
− 2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+
 .

Step 1: Lower Bound for Direct Revenue Collected by MD-BDPA

We claim that there exists a constant C̃3 > 0 such that

E

[
Tθ∑
t=1

ptDt(pt)

]
≥ r(pc)Tθ − C̃3

√
θ log θ.

The proof is similar to Step 1 in Chapter 4.5.1. We break up the revenue on the

sample path of E1 ∩ E2 ∩ Ec into two parts:

E

[
Tθ∑
t=1

ptDt(pt)

]
≥ E

 τcθ∑
k=1

4∑
l=1

N c
k,θ r̂(p

c
k,l)1{E1 ∩ E2 ∩ Ec}


+ E

[(
Tθ − T̃ cθ,2

)
r̂(p̂D)1{E1 ∩ E2 ∩ Ec}

]
, (4.7)

where T̃ cθ,1 =
∑τθ

k=1 4Nk,θ and T̃ cθ,2 =
∑τθ

k=1 4Nk,θ +
∑τcθ

k=1 4N c
k,θ. For the first term, note
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that

E

 τcθ∑
k=1

4∑
l=1

N c
k,θr̂(p

c
k,l)

∣∣∣∣∣∣E1 ∩ E2 ∩ Ec

 =

τcθ∑
k=1

4∑
l=1

N c
k,θ E

[
r(pck,l)

∣∣E1 ∩ E2 ∩ Ec
]
.

Since on E1 ∩ E2 ∩ Ec, |pck,l − pc| ≤ 3|Ic1 |
2

(2
3
)k, by Lemma 4.5.3(iii) we know that

r(pc)− r(pck,l) ≤ 3
2
(1 + 2Kp̄)|Ic1|

(
2
3

)k
. Put this together with Lemma 4.5.6 and the fact

that
∑τcθ

k=1

∑4
l=1 N

c
k,θ ≥ T̃ cθ,2 − log3 Tθ we have

τcθ∑
k=1

4∑
l=1

N c
k,θ E

[
r(pck,l)

∣∣E1 ∩ E2 ∩ Ec
]
P (E1 ∩ E2 ∩ Ec)

≥
τcθ∑
k=1

4N c
k,θ

[
r(pc)− 3

2
(1 + 2Kp̄)|Ic1|

(
2

3

)k][
1− C4

log2 θ

θ

]

≥ r(pc)(T̃ cθ,2 − log3 Tθ)− p̄ C4
log2 θ

θ

 τcθ∑
k=1

4N c
k,θ


− 3

2
(1 + 2Kp̄)|Ic1|

 τcθ∑
k=1

4N c
k,θ

(
2

3

)k
≥ r(pc)T̃ cθ,2 − p̄ log3 Tθ − p̄TC4 log2 θ − 18(Kp̄+ 1)|Ic1| log2 Tθ

(
3

2

)τcθ
= r(pc)T̃ cθ,2 −O(

√
θ log θ),

where the last inequality follows since |Ic1| = Θ(log−1/4 θ) and
(

3
2

)2τcθ = Θ
(

θ
log2 θ

)
, or

equivalently
(

3
2

)τcθ = Θ
( √

θ
log θ

)
. (See Lemma 4.5.4)

As for the second term in the RHS of (4.7), by the same argument as above,

E
[(
Tθ − T̃ cθ,2

)
r̂(p̂D)1{E1 ∩ E2 ∩ Ec}

]
≥
(
Tθ − T̃ cθ,2

)[
r(pc)− 3

2
(1 + 2Kp̄)|Ic1|

(
2

3

)τcθ](
1− C4

log2 θ

θ

)
≥ r(pc)

(
Tθ − T̃ cθ,2

)
− C4 p̄ T log2 θ − 3

2
(1 + 2Kp̄)|Ic1| Tθ

(
2

3

)τcθ
≥ r(pc)

(
Tθ − T̃ uθ,2

)
−O(

√
θ log θ),

where the last inequality follows since |Ic1| = Θ(log−1/4 θ) and
(

3
2

)2τc
= Θ

(
θ

log2 θ

)
. Put
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the bounds for the two terms in together proves the initial claim.

Step 2: Upper Bound for Total Penalty Incurred by Capacity Violation

We claim that there exists a constant C̃4 > 0 such that

2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+
 ≤ C̃4

√
θ log θ. (4.8)

We first analyze the sample path on E1∩E2∩Ec. We break the amount of capacity

violation into several different parts. Following the same arguments as in Step 2 in

Chapter 4.5.2,

E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2 ∩ Ec}


≤ E

( Tθ∑
t=1

Dt(pt)− λ(pt)

)+


+ log3 Tθ +

τcθ∑
k=1

4∑
l=1

N c
k,θ E

[(
λ(pck,l)−

C

T

)+

1{E1 ∩ E2 ∩ Ec}

]

+ E

[(
Tθ − T̃ cθ,2

)(
λ
(
p̂D
)
− C

T

)+

1{E1 ∩ E2 ∩ Ec}

]
.

By Cauchy-Schwarz’s inequality again, the first term can be upper bounded by
√
Tθ.

Then since for the sample paths on event E1 ∩ E2 ∩ Ec, |λ(pck,l)− λ(pc)| ≤ 3
2
K|Ic1|(2

3
)k

for all k and l and λ(pc) = C/T , we can bound

E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2 ∩ Ec}


≤
√
Tθ + log3 Tθ +

τcθ∑
k=1

4 ·N c
k,θ ·

3

2
K|Ic1|

(
2

3

)k
+
(
Tθ − T̃ cθ,2

)
· 3

2
K|Ic1|

(
2

3

)τcθ
≤
√
Tθ + log3 Tθ + 18K|Ic1|

(
3

2

)τcθ
log2 Tθ +

3

2
KTθ|Ic1|

(
2

3

)τcθ
= O(

√
θ log θ),

where the last inequality the same argument as in Step 1 above.
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Then, the total penalty for capacity violation satisfies

2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+


= 2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2 ∩ Ec}


+ 2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2 ∩ Ec}


≤ O

(√
θ log θ

)
+ 2p̄ TθP (E1 ∩ E2 ∩ Ec) = O(

√
θ log θ).

Finally, combining our results from Step 1 and 2 above we have

JMD−BDPA
θ ≥ r(pu)Tθ − C̃3

√
θ log θ − C̃4

√
θ log θ = r(pc)Tθ −O(

√
θ log θ). �

4.6 Closing Remarks

This paper presents a scheme of nonparametric dynamic pricing with demand learning.

Our scheme generalizes the classical bisection search algorithm into a stochastic setting

with a constraint. We show that the performance of one of our heuristics exactly

matches the theoretical lower bound for any feasible pricing policy. Thus, we have

closed the gap (in asymptotic sense) between the performance of parametric approach

and nonparametric approach for the single product problem.

There are several possible extensions of this work. One important direction is a

generalization to the multiproduct setting. Although we have focused our analysis

in the paper only on the single product setting, it is an open question whether our

bisection search heuristic can also be applied to multiproduct problem. There are at

least two challenges for such an extension: First, it is not immediately clear how to do

bisection in high dimensional spaces. To the best of our knowledge, there is no existing

literature on applying bisection search to multidimensional constrained optimization

problem, even in the deterministic setting. Second, in multiproduct setting, nonpara-

metric approach might suffer from curse of dimensionality, since it has to estimate a

multidimensional function. In fact, the order of the revenue loss of the best known

nonparametric scheme for multiproduct setting depends on the number of products in

a non-trivial way (cf. Besbes and Zeevi 2012). It is curious to see whether applying bi-
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section search algorithm to multiproduct setting can reduce the curse of dimensionality

on revenue loss.

Additionally, throughout the paper, we have assumed that the demand function

is stationary, i.e., it does not vary with time. In reality however, this assumption

might not hold, which suggests that a good pricing heuristic should ideally take into

account this possibility in its learning algorithm. The challenge, however, is obvious.

For dynamic pricing with non-stationary demand, it is no longer true that the optimal

solution to the deterministic problem is static pricing. This limits the ability to exploit

the structure of the optimal solution, as we did in this paper. Actually, all of the

works in non-stationary setting (Besbes et al. 2015, Keskin and Zeevi 2016a) consider

only the problem without inventory constraint. Moreover, it is not clear how one can

generalize the bisection search heuristic to non-stationary setting. Obviously this is an

important research topic; we leave this as future research project.
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CHAPTER 5

Conclusion

This dissertation studies the design and analysis of real-time heuristic controls in three

different settings. The problems we studied and the solution approaches we adopted

share some similarity. From the modeling perspective, the investigated problems can

all be formulated as dynamic controls for which characterizing optimal policies are

computationally infeasible. From the technical perspective, the parameters of the pro-

posed heuristics can all be viewed as the sum of some baseline parameters (which are

given by some approximated optimization problems) and some adjustment parameters

(which are computed adaptively according to the realized randomness). One contribu-

tion of this thesis to the broader dynamic optimization literature is that it illustrates

the usefulness of the types of heuristic controls as mentioned above, in terms of its

simplicity and effectiveness. This observation further motivates us to consider other

dynamic optimization problems arise in related settings. We elaborate the potential

future research directions here.

Firstly, there are many potential research questions in the area of online retail

that have similar flavor with the first chapter, where decisions that are closely related

to each other is better made jointly. One direct question is how to incorporate the

assortment decision, or more broadly, the decision of how the products are displayed

on the online retailer’s website (see Aouad and Segev 2015 and Gallego et al. 2016

for the optimization of product display decisions). Another operational decision that

directly affects the balance between demand and supply is the inventory decision. In

the setting of online retail setting, the inventory level at each FC are usually made

according to a two-step procedure: the retailer first decides on how many units of

products to source from her supplier, and then decide on how to allocate the products

into her network of FCs. It is important to characterize a near-optimal policy that

decides on these decisions together with the pricing and fulfillment decision. Given

the complexity of the corresponding dynamic optimization problems, developing real-

time heuristic controls will be particularly useful. Moreover, recent advancement on
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the design of asymptotically optimal inventory policies shed lights on the potential

usefulness on this type of controls; see e.g. Reiman and Wang (2015), Goldberg et al.

(2016),Xin and Goldberg (2016) and Wei et al. (2018).

Secondly, although the revenue management problem of reusable resources that

we considered in chapter 2 already captures a wide range of applications, there are

numerous other applications where resources are also reusable in nature but more

complex models need to be proposed to fully characterize the problem dynamics. One

potential model is where customer specifies a time window during which she wants

to enjoy the service, which has applications for the on-demand delivery firms. The

key modeling difference here is that, given the flexibility in the timing of demand

fulfillment, the firm also need to make scheduling decisions which dictate the orders

by which different requests are served. Another related direction is the two-sided

market, where the supply is consist of self-scheduling agents; see e.g. the growing

literature studying the pricing and matching problems in the two-side market setting

(e.g. Banerjee et al. 2015, Bimpikis et al. 2016, Zhou 2017, Afèche et al. 2018, Ma

et al. 2018). This direction introduces uncertainty in terms of the capacity level, and

therefore calls for additional effort in designing appropriate controls.

Lastly, there are many open research questions in the field of dynamic pricing with

demand learning. In particular, there are two extensions that have draw a lot of

attentions: incorporating the non-stationarity of the arrival process (e.g. Besbes et al.

2015 and Keskin and Zeevi 2016b), and how to efficiently utilize customer’s feature

information (e.g. Cohen et al. 2016, Javanmard and Nazerzadeh 2016, and Ban and

Keskin 2017). A major un-answered question in both of the extensions is what happens

if there is inventory constraints present. Moreover, in the setting of online retail and

advertisement industry, practitioners and researcher has been studying the design of

efficient learning mechanism for a long time, which leads to many celebrated models;

e.g. recommender system, clickthrough attribution model, etc. How to incorporate

pricing decision while respecting firm’s operational constraint is certainly an interesting

question to answer.
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APPENDIX A

Appendix to Chapter 2

A.1 Proof of Lemma 2.5.1

In what follows, we will only show the existence of a proper set Q under the single-

product setting; the argument can be easily extended to the multiple-product setting.

Let F t : Ωp → [0, 1] denote the CDF for pricing decision during period t under the

optimal control π∗. Also, let r̄tj and λ̄tj denote the expected revenue and demand rate

from location j during period t under π∗ (since we only consider the single-product

setting, there is no need to use subscript k), i.e.,

r̄tj := Eπ∗ [Rt
j(p

t)] =

∫
Ωp

rj(p) dF
t(p) and λ̄tj := Eπ∗ [Dt

j(p
t)] =

∫
Ωp

λj(p) dF
t(p).

To prove Lemma 2.5.1, we first show that there exist weight vectors {αt} such that,

for the uniform grid Qu defined in Chapter 2.5 and some sufficiently small εr, ελ > 0,

the following hold:∣∣∣∣∣r̄tj −
M∑
m=1

αtmrj(q
u
m)

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ωp

pλj(p) dF
t(p)−

M∑
m=1

αmrj(q
u
m)

∣∣∣∣∣ ≤ εr ∀j, t, (A.1)∣∣∣∣∣λ̄tj −
M∑
m=1

αtmλj(q
u
m)

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ωp

λj(p) dF
t(p)−

M∑
m=1

αtmλj(q
u
m)

∣∣∣∣∣ ≤ ελ ∀j, t, (A.2)

M∑
m=1

αtm = 1, αtm ≥ 0, ∀m, t. (A.3)

Define a uniform partition of the interval Ωp as

Ωp = ∪Mm=1Pm :=
[
∪M−1
m=1 [p` + (m− 1) ∆q, p` +m∆q)

]
∪ [pu −∆q, pu]

where ∆q := (pu − p`)/M is the length of the sub-intervals. Then the uniform price
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grid can be defined as Qu := (p` + (m − 1/2)∆q)
M
m=1. Consider a choice of weight

vector αtm =
∫
Pm dF

t(p). Note that (A.3) is satisfied immediately by definition. We

now show that the combination of Qu and αt defined above satisfy (A.1) and (A.2).

By definition, for all j ∈ [J ], we have∣∣∣∣∣λ̄tj −
M∑
m=1

αtmλj(q
u
m)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ωp

λj(p) dF
t(p)−

M∑
m=1

αtmλj(q
u
m)

∣∣∣∣∣ =

∣∣∣∣∣
M∑
m=1

∫
Pm

(λj(p)− λj(qum)) dF t(p)

∣∣∣∣∣
≤

M∑
m=1

∫
Pm
|λj(p)− λj(qum)| dF t(p) ≤ λu∆q.

where the first inequality follows from triangular inequality and the last inequality

follows from Assumption A1 together with λu := maxj∈[J ],p∈Ωp |λ′j(p)|. By similar

argument, since |r′j(p)| ≤ |λj(p) + pλ′j(p)| ≤ 1 + puλu for all p ∈ Ωp, it is not difficult

to show that (A.1) is satisfied for εr = (1 + puλu)∆q.

We now show that the choices ofQu and αt above guarantees a good approximation.

The fulfillment LP under the uniform discretization we construct is as follows:

FCA := min
{0≤xtij≤1}

{
T∑
t=1

I∑
i=0

J∑
j=1

cijx
t
ij :

I∑
i=0

xtij =
M∑
m=1

αtmλj(q
u
m),

T∑
t=1

J∑
j=1

xtij ≤ Ci

}
.

On the other hand, the CDF of the fulfillment assignment under π∗ can be solve by

the following LP:

FCO := min
{0≤xtij≤1}

{
T∑
t=1

I∑
i=0

J∑
j=1

cijx
t
ij :

I∑
i=0

xtij = λ̄tj,

T∑
t=1

J∑
j=1

xtij ≤ Ci

}
.

The only difference between FCA and FCO is on the RHS of fulfillment constraint.

Note that both FCA and FCO have stationary optimal solution. Then given (A.2) and

the perturbation theory of the optimal objective value of LP (see e.g. Theorem 10.5

in Schrijver 1998), FCA − FCO ≤ IJTλu∆q. So the approximation error is bounded
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as follows:

J ∗ − J ALP

≤

[
T∑
t=1

J∑
j=1

r̄tj − FCO

]
−

[
T∑
t=1

J∑
j=1

M∑
m=1

αtmrj(q
u
m)− FCA

]

≤
T∑
t=1

J∑
j=1

∣∣∣∣∣r̄tj −
M∑
m=1

αtmrj(q
u
m)

∣∣∣∣∣+
(
FCA − FCO

)
≤ [JT (1 + puλu) + IJTλu] ∆q ≤

(pu − p`)JT [1 + λu(pu + I)]

M
.

The proof is concluded by letting M = d(pu − p`)JT [1 + λu(pu + I)] /εe. For

general K, the number of discrete prices required to reach an error of ε is at most

d[(pu − p`)JT (1 +KΦ1(pu + IK))]K /εKe, Φ1 = max
p∈Ωp, j∈[J ], k,`∈[K]

|∂λjk(p)/∂p`| > 0 (it

is finite by Assumption A1) �

A.2 Proof of Theorem 2.6.1

Let Qu be uniform grid defined in Chapter 2.5. Without loss of generality, we assume

that T = 1. We consider a variant of RPF (V-RPF) defined as follow: during period t,

fulfill the order from location j according to σtk(j) regardless of the availability of the

corresponding FC; if the FC runs out of inventory, the retailer incurs a penalty cost of

c̄ := 2 · max
j∈[J ],k[K]

c0jk. In other words, V-RPF incurs the same revenue as RPF, yet no

smaller fulfillment cost. Consequently, the loss can be bounded as follows:

J ALP (θ)− J RPF (θ)

≤ J ALP (θ)− J V−RPF (θ)

= E

[
θ∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)−

θ∑
t=1

J∑
j=1

(pt)>Dt
j(p

t)

]

+ c̄ E

 I∑
i=1

K∑
k=1

(
θ∑
t=1

J∑
j=1

X t
ijk − Cik(θ)

)+


+ E

[
θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk −

θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk

]

112



= E

[
θ∑
t=1

J∑
j=1

∆Rt
j

]
+ c̄ E

 I∑
i=0

K∑
k=1

+

(
θ∑
t=1

J∑
j=1

X t
ijk − Cik(θ)

)+


+ E

[
θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijk∆X
t
ijk

]
,

where ∆Rt
j :=

∑M
m=1 α

∗
mrj(q

∗
m)− (pt)>Dt

j(p
t), and ∆X t

ijk := X t
ijk−x∗ijk. By definition

of RPF, E [∆Rt
j] = E [∆X t

ijk] = 0. As for the last term, by triangular inequality,

E

 I∑
i=0

K∑
k=1

(
θ∑
t=1

J∑
j=1

X t
ijk − Cik(θ)

)+


≤ E

 I∑
i=0

K∑
k=1

(
θ∑
t=1

J∑
j=1

X t
ijk − θ

J∑
j=1

x∗ijk

)+
+ E

 I∑
i=0

K∑
k=1

(
θ

J∑
j=1

x∗ijk − Ci(θ)

)+


≤
I∑
i=0

J∑
j=1

K∑
k=1

E

( θ∑
t=1

X t
ijk − x∗ijk

)+
+ 0

≤
I∑
i=0

J∑
j=1

K∑
k=1

[
Var

(
θ∑
t=1

∆X t
ijk

)]1/2

= O
(√

θ
)
,

where the second inequality follows from the inventory constraint in ALP, the last

inequality follows because ∆X t
ijk’s are independent and bounded from above by Dt

jk ≤
1. This completes the proof. �

A.3 Proof of Theorem 2.7.1

Let T = 1. Per our discussion in Chapter 2.7, we can assume
∑J

j=1 x
∗
ijk = Cik without

loss of generality. Let Ct
i (θ) be the on-hand inventory level in FC i at the beginning

of period t for a problem with size θ. By definition, we have C1
i (θ) = θCi. Fix θ > 0.

We divide our proof into several steps.

Step 1

In this step, we state and prove two key observations that are useful in help-

ing us to express the evolution of pricing and fulfillment decisions over time. We

call an FLPt(Qt,Ct) to be “balanced” if it satisfies (i)
∑J

j=1

∑M
m=1 α

∗
mλjk(q

t
m) =
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∑I
i=0 C

t
ik/(T − t + 1) for all k, and (ii) Ct

ik > 0 for all i, k. We make our first ob-

servation regarding the solution of a balanced FLPt.

Observation A.1. The optimal solution xt to a non-DR-degenerate balanced

FLPt(Qt,Ct) has the following property: For every k ∈ [K], there are exactly I + J

strictly positive components in (xtijk)i∈{0}∪[I],j∈[J ], with the other components equal to

zero. Moreover, the inventory constraints are all binding.

Proof. Note that FLPt(Qt,Ct) is separable over k, so solving FLPt(Qt,Ct) is

equivalent to solving K sub-problems defined below:

FLPt
k(Qt, Ct

k) :={
min
xijk≥0

I∑
i=0

J∑
j=1

cijkxijk :
I∑
i=0

xijk =
M∑
m=1

α∗mλjk(q
t
m),

J∑
j=1

xijk ≤
Ct
ik

T − t+ 1

}
.

Since FLPt(Qt,Ct) is balanced, all the inventory constraints in FLPt
k(Qt,Ct

k) must be

binding. Since FLPt(Qt,Ct) is non-DR-degenerate and separable over k, FLPt
k(Qt,Ct

k)

is also non-degenerate for each k. Thus, Observation A.1 follows directly from the

standard result on transportation LP (see Corollary 7.2 in Dantzig and Thapa 2006).

�

Let xk = (xijk)i∈{0}∪[I],j∈[J ] and ck = (cijk)i∈{0}∪[I],j∈[J ]. Given our assumptions in

the statement of Theorem 2.7.1 and at the beginning of this chapter, FLP1(Qu,C) is

non-DR-degenerate and balanced. Thus, for all k, FLP1
k(Qu,Ck) are non-degenerate

and has I + J non-zero components in x∗k (since there are I + J + 1 constraints with

exactly one redundant). Let Ak and Vk denote the coefficient matrix and the RHS of

inventory constraints in FLP1
k. Let Āk be the matrix where we delete the (J + 1)th row

from Ak, i.e., the row corresponding to the inventory constraint on FC 0, and V̄k be

the vector where we delete C0k/θ from Vk. This constraint is redundant, since any xk

satisfying the system of equations Ākxk = V̄k automatically satisfies
∑J

j=1 x
t
0jk = C0k/θ

(the deleted constraint). Since the deleted constraint is redundant, FLP1
k is equivalent

to
{

min c>k xk : Ākxk = V̄k, x � 0
}

; moreover, by Lemma 7.1 in Dantzig and Thapa

(2006), Āk has linearly independent rows. Let Bk = {(i, j) : 0 < x∗ijk < 1} and

Nk = {(i, j) : x∗ijk = 0} be the indices of the optimal basic and non-basic variables

respectively. Without loss of generality, we assume that Āk is written as [Bk, Nk] where

Bk and Nk are the sub-matrices of Āk corresponding to the basic and non-basic indices

in Bk and Nk respectively. Following the same decomposition, the optimal solution

can be represented as x∗k = [x∗k,B,x
∗
k,N ], where x∗k,B = B−1

k V̄k and x∗k,N = 0 (the
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invertibility of Bk is proved in Theorem 7.6 in Dantzig and Thapa 2006). Thus, the

unique optimal solution to FLP1 can be accordingly written as x∗ = [x∗B;x∗N ], where

x∗B = (x∗k,B)Kk=1, x∗N = (x∗k,N)Kk=1. Note that if we define B = diag(B1, . . . , BK) as a

block diagonal matrix with (Bk)
K
k=1 as its main diagonal blocks and zero matrices as

off-diagonal blocks, and V̄ = [V̄1; . . . ; V̄K ], we can write x∗B = B−1V̄ . Let V t
k be the

RHS of FLPt
k and V̄ t

k be the vector where we delete Ct
0k/(θ − s) from V k

t . Define

δV t
k :=

( M∑
m=1

α∗mλjk(q
t
m)−

M∑
m=1

α∗mλjk(q
u
m)

)J

j=1

,

(
−

t−1∑
s=1

∆Cs
ik/(θ − s)

)I

i=0


and let δV̄ t

k be the vector where we delete −
∑t−1

s=1 ∆Cs
0k/(θ− s) from δV t

k . Let δV̄ t =

(δV̄ t
k )Kk=1. Following the same decomposition, we will also write c = [cB; cN ]. Per our

definition in Chapter 2.4, λtot(p) is the aggregated purchase probability given a price

vector p ∈ Ωp. We make our second observation below:

Observation A.2. At period t, as long as the following conditions hold:

J∑
j=1

λj(q
t
m) = λ̂tm := λtot(qum)− 1

Mα∗m

(
I∑
i=0

t−1∑
s=1

∆Cs
i

T − s

)
∈ [0, 1]K , (A.4)

Ct
ik(θ) = Ĉt

ik(θ) := (θ − t+ 1)

[
Cik −

t−1∑
s=1

∆Cs
ik

θ − s

]
≥ 0, (A.5)

x∗k,B +B−1
k

(
δV̄ t

k

)
� 0, (A.6)

then the unique optimal solution to FLPt is given by xtk,B = x∗k,B + B−1
k

(
δV̄ t

k

)
and

xtk,N = 0 for all k.

Proof. Under condition (A.4), FLPt is balanced. This is so because, for all k,

J∑
j=1

M∑
m=1

α∗mλjk(q
t
m) =

J∑
j=1

M∑
m=1

α∗mλjk(q
u
m)−

I∑
i=0

t∑
s=1

∆Cs
ik

T − s

=
I∑
i=0

Cik −
I∑
i=0

t−1∑
s=1

∆Cs
ik

θ − s
=

I∑
i=0

Ct
ik(θ)

θ − t+ 1
,

where the second equality follows from our assumption in the beginning of this chap-

ter, and the last equality follows from the definition of ∆Ct
ik. As a result, for all

k, the inventory constraints in FLPt
k are all binding. Notice that condition (A.4)

and (A.5) implies that V t
k = Vk + δV t

k � 0, and thus FLPt
k is equivalent to

115



{
minxtk

c>k xtk : Ākx
t
k = V̄k + δV̄ t

k , xtk � 0
}

. The feasibility of the proposed optimal

solution can be directly verified under condition (A.6); its optimality follows from

Karush-Kuhn-Tucker (KKT) conditions; and its uniqueness follows from the invert-

ibility of Bk. �

Step 2

Define x̂t := (x̂tB,xN) = (x∗B + B−1
(
δV̄ t

)
,0). Let φx = mink∈[K] min(i,j)∈Bk x

∗
ijk > 0

(by non-degeneracy assumption); Φ1 = max
p∈Ωp, j∈[J ], k,`∈[K]

|∂λjk(p)/∂p`| > 0 (it is finite

by Assumption A1); Φ2 = maxk∈[K] ||B−1
k ||∞ > 0 (it is also finite by the invertibility

of Bk); φλ := max{x > 0 : λtot(qum) + x · 1 ∈ [0, 1]K , ∀m} > 0 (by Assumption A1

and the fact that qum lies in the interior of Ωp); and v > 0 denote the smallest absolute

eigenvalue of Gλtot (by Assumption A3). Without loss of generality, α∗ � 0 since we

can delete any α∗m with zero value without changing anything else. We state a lemma.

Lemma A.3.1 Suppose that λtot(qsm) = λ̂sm ∈ [0, 1]K, xs = x̂s � 0 and Cs
i (θ) =

Ĉs
i (θ) � 0 for all s < t. Then λtot(qtm) = λ̂tm, xt = x̂t and Ct

i (θ) = Ĉt
i (θ) hold if the

following two conditions hold at time t

(†) :

∣∣∣∣∣
I∑
i=1

t−1∑
s=1

∆Cs
ik

θ − s

∣∣∣∣∣ ≤ min

{
φx
Φ2

(
1 +

KΦ1

v

)−1

, φλM · min
m∈[M ]

α∗m

}
, ∀k,

(††) :

∣∣∣∣∣
t−1∑
s=1

∆Cs
ik

θ − s

∣∣∣∣∣ ≤ Cik, ∀i, k,

Proof. We proceed by induction. The base case (t = 1) is verified directly by

definition. Now, consider t > 1. Assume the identity holds for s ≤ t − 1. Given

condition (†) and the definition of φλ, it is not difficult to show that λ̂tm ∈ [0, 1]K . Since

λtot(qtm) is simply the projection of λ̂tm onto [0, 1]K (see Step 2a), λtot(qtm) = λ̂tm.

We now show that Ct
ik(θ) = Ĉt

ik(θ). Suppose that, in Step 2c of R2PF, we sample

mt for some mt ∈ [M ]. Remember that, in period t − 1, the probability of using

FC i to fulfill the request of product k from location j conditioned on Djk = 1 is

yt−1
ijk = xt−1

ijk /
∑I

i=0 x
t−1
ijk . Moreover, since conditions (A.4) - (A.6) are implied for all

s ≤ t by the inductive assumption, by Observation A.2, the inventory constraints in
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FLPt−1 are binding. So, the remaining inventory at the beginning of period t satisfies:

Ct
ik(θ) = Ct−1

ik (θ)−
J∑
j=1

X t−1
ijk = Ct−1

ik (θ)−
J∑
j=1

yt−1
ijk

(
M∑
m=1

α∗mλjk(q
t−1
m )

)
−∆Ct−1

ik

= Ct−1
ik (θ)−

J∑
j=1

xt−1
ijk −∆Ct−1

ik = Ct−1
ik (θ)− Ct−1

ik (θ)

θ − t+ 2
−∆Ct−1

ik

= (θ − t+ 2− 1)

[
Cik(θ)−

t−2∑
s=1

∆Cs
ik

θ − s

]
−∆Ct−1

ik = Ĉt
ik(θ),

where the second equality follows from the definition of ∆Ct
ik; the third equality follows

from the fulfillment constraint in FLPt; the fourth constraint follows since the inventory

constraints in FLPt−1 are binding; and, the fifth constraints follows from the inductive

assumption.

At last, to show that xt = x̂t, by Observation A.2, it suffices to show conditions

(A.4) - (A.6) are satisfied for period t. Condition (A.4) is implied by λtot(qtm) = λ̂tm.

Since condition (††) implies Ĉt
ik(θ) ≥ 0, and we have shown that Ct

ik(θ) = Ĉt
ik(θ), condi-

tion (A.5) is satisfied. To check condition (A.6), define δqtm = qtm−qum. By Assumption

A1 and Mean Value Theorem, δqtm = [Gλtot(ξtm)]
−1
(∑I

i=0

∑t−1
s=1 ∆Cs

i /(θ − s)
)
/(Mα∗m)

for some ξtm ∈ Ωp. By Mean Value Theorem again, there exist ζtmk ∈ Ωp such that∣∣∣∣∣
M∑
m=1

α∗m
[
λjk(q

t
m)− λjk(qum)

]∣∣∣∣∣
=

∣∣∣∣∣
M∑
m=1

(∇λjk(ζtmk))
>

[Gλtot(ξtm)]
−1

M

(
I∑
i=0

t−1∑
s=1

∆Cs
i

θ − s

)∣∣∣∣∣
≤ KΦ1

v
max
k∈[K]

∣∣∣∣∣
I∑
i=0

t−1∑
s=1

∆Cs
ik

θ − s

∣∣∣∣∣
where the inequality holds by Assumption A3 and the definition of Φ1. So,

∣∣∣∣B−1
k

(
δV̄ t

k

)∣∣∣∣
∞ ≤

∣∣∣∣B−1
k

∣∣∣∣ · ∣∣∣∣δV̄ t
k

∣∣∣∣ ≤ Φ2 ·
(

1 +
KΦ1

v

)
max
k∈[K]

∣∣∣∣∣
I∑
i=0

t−1∑
s=1

∆Cs
ik

θ − s

∣∣∣∣∣ ≤ φx,

where the last inequality follows from condition (†). This implies condition (A.6). �

Step 3

In this step, we show that the conditions in Lemma A.3.1 hold for the majority

of the selling season. Define a stopping time τ(θ) to be the first t such that either
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(†) or (††) is violated. According to Lemma A.3.1, for any period before τ(θ), we

can explicitly characterize the evolution of price, fulfillment assignment, and inventory

consumption. The following lemma provides a lower bound on the length of τ(θ).

Lemma A.3.2 There exists a constant Ψ3 > 0 independent of θ such that E [θ−τ(θ)] ≤
Ψ3(1 + log θ).

Proof. Define τ1(θ) and τ2(θ) to be the first period t such that conditions (†) and

(††) are violated, respectively. By definition τ(θ) = mini∈{1,2} τi(θ). We only bound

τ1(θ), since τ2(θ) can be bounded using a similar argument. Let Γk denote the RHS of

the inequality in condition (†) in Lemma A.3.1. The sequence{
Stk =

I∑
i=0

∆Ct−1
ik

θ − (t− 1)
+

I∑
i=0

∆Ct−2
ik

θ − (t− 2)
+ · · ·+

I∑
i=0

∆C1
ik

θ − 1

}
t≤θ

is a Martingle with respect to the natural filtration {Ht}, where Ht is the history of all

information up to the beginning of period t. This implies that the sequence {|Stk|}t≤θ is

a sub-Martingle. By Doob’s submartingle inequality (see for example Williams 1991)

and union bound,

P(τ1(θ) ≤ t) ≤ P (|Ssk| ≥ Γk for some s ≤ t, k ∈ [K])

≤
K∑
k=1

P
(

max
s≤t
|Ssk| ≥ Γk

)

≤
K∑
k=1

E [(Stk)
2
]

Γ2
k

.

Note that ∆Cs
ik and ∆Ct

jk are independent for all s 6= t and i, j ∈ {0} ∪ I. So,

E[
(
Stk
)2

] = E

( t−1∑
s=1

I∑
i=0

∆Cs
ik

θ − s

)2
 =

t−1∑
s=1

E
[(∑I

i=0 ∆Cs
ik

)2
]

(θ − s)2

=
t−1∑
s=1

∑
i,j∈{0}∪[I] E

[
∆Cs

ik∆C
s
jk

]
(θ − s)2

= O

(
1

θ − t

)
,

where the last inequality follows from the boundedness of E
[
∆Cs

ik∆C
s
jk

]
. The proof is

complete by noting that E [θ − τ1(θ)] =
∑θ

t=2 P(τ1(θ) ≤ t) = 1 +
∑θ−1

t=2 O
(

1
θ−t

)
=

O(log θ). �

118



Step 4

We now bound the loss of R2PF. First, note that we can decouple the loss into two

terms as follows:

J ALP (θ)− J R2PF (θ)

= E

[
θ∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)−

θ∑
t=1

J∑
j=1

(pt)>Dt
j(p

t)

]

+ E

[
θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk −

θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk

]
.

The two terms on the RHS of the equation above are the loss in revenue and the

loss in fulfillment cost of R2PF, respectively. We start with providing an upper bound

for the loss in revenue:

E

[
θ∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)−

θ∑
t=1

J∑
j=1

(pt)>Dt
j(p

t)

]

≤ E

τ(θ)−1∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
u
m)−

τ(θ)−1∑
t=1

J∑
j=1

Rt
j(p

t)


+ E

 θ∑
t=τ(θ)

J∑
j=1

M∑
m=1

α∗mrj(q
u
m)


= E

τ(θ)−1∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
u
m)−

τ(θ)−1∑
t=1

J∑
j=1

Rt
j(p

t)


+ E

[
(θ − τ(θ) + 1)

J∑
j=1

M∑
m=1

α∗mrj(q
u
m)

]

≤ E

τ(θ)−1∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
u
m)−

τ(θ)−1∑
t=1

J∑
j=1

Rt
j(p

t)


+ Kpu(1 + Ψ3 + Ψ3 log θ), (A.7)

where the last inequality follows from Lemma A.3.2, the boundedness of price, and the

assumption of at most one arrival per period. Let ∆̂t
j =

∑M
m=1 α

∗
mrj(q

t
m)−(pt)>Dj(p

t).

Define rtot(p) =
∑J

j=1 rj(p) = p>λtot(p). By Assumption A1, there exists an inverse of

λtot(p), which we will denote as p(λtot) : [0, 1]K → Ωp. With slight abuse of notation,

we will use rtot(λtot) = (p(λtot))>λtot to denote total revenue rate as a function of
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aggregate demand. Let λ∗m = λtot(qum), λtm = λtot(qtm), and εt =
∑I

i=0

∑t−1
s=1 ∆Cs

i /(θ−
s). For t ≤ τ(θ), we know that λtm = λ∗m − εt/(Mα∗m). By Taylor’s expansion at λ∗m,

we have

rtot(qtm) = rtot(λtm)

= rtot(λ∗m)− (∇rtot(λ∗m))>εtm
Mα∗m

+
(εt)>∇2rtot(ηt)εt

2M2(α∗m)2

= rtot(qum)− (∇rtot(λ∗m))>εtm
Mα∗m

+
(εt)>∇2rtot (ηt) εt

2M2(α∗m)2

for some ηtm ∈ [0, 1]K ∈ Ωp. So, the first term in (A.7) can be bounded as follows:

E

τ(θ)−1∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
u
m)−

τ(θ)−1∑
t=1

J∑
j=1

Rt
j(p

t)


= E

τ(θ)−1∑
t=1

M∑
m=1

α∗mr
tot(qum)−

τ(θ)−1∑
t=1

M∑
m=1

α∗mr
tot(qtm)


+ E

τ(θ)−1∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
t
m)−

τ(θ)−1∑
t=1

J∑
j=1

(pt)>Dj(p
t)


≤ E

τ(θ)−1∑
t=2

M∑
m=1

(∇rtot(λ∗m))>εt

M

− E

τ(θ)−1∑
t=2

M∑
m=1

(εt)>∇2rtot (ηtm) εt

2M2 minm∈[M ] α∗m


+ E

τ(θ)∑
t=1

J∑
j=1

∆̂t
j

+Kpu, (A.8)

where the last inequality holds because E [∆̂
τ(θ)
j ] ≤ Kpu. Note that {

∑t
s=1

∑J
j=1 ∆̂s

j}t≤θ
is a Martingale with respect to {Ht}t≤θ and τ(θ) is bounded. So, by stopping time the-

orem (Williams, 1991), E [
∑τ(θ)

t=1

∑J
j=1 ∆̂t

j] = 0. We are left to bound the first two terms

in (A.8). Note that E [
∑τ(θ)−1

t=2 εt] = E [
∑τ(θ)

t=2 ε
t]− E [

∑θ
t=τ(θ) ε

t] = −E [
∑θ

t=τ(θ) ε
t]. By

stopping time theorem again, E[ετ(θ)] = 0, and E[εt] = 0 for all t > τ(θ). Conse-

quently, E[
∑τ(θ)−1

t=2

∑M
m=1(∇rtot(λ∗m))>εt] = (

∑M
m=1∇rtot(λ∗m))>E[

∑τ(θ)−1
t=2 εt] = 0. As

for the second term in (A.8), let Φ3 > 0 be the largest absolute eigenvalue of ∇2rtot.

120



By Assumption A3, Φ3 is finite. We thus have

E

τ(θ)−1∑
t=2

M∑
m=1

(εt)>∇2rtot
(
ηtm
)
εt

 ≤ Φ3 E

τ(θ)−1∑
t=2

K∑
k=1

(
I∑
i=1

t−1∑
s=1

∆Cs
ik

θ − s

)2


≤ Φ3

θ∑
t=2

K∑
k=1

∑
1≤s,v≤t−1

E
[(∑I

i=1 ∆Cs
ik

)2 (∑I
i=1 ∆Cv

ik

)2
]

(θ − s)(θ − v)

= Φ3

θ∑
t=2

K∑
k=1

t−1∑
s=1

E
[(∑I

i=1 ∆Cs
ik

)2
]

(θ − s)2

= O(log θ).

At last we bound the loss of fulfillment cost. By Lemma A.3.1, for t < τ(θ),

xt = [x∗B +B−1δV̄ t; 0]. By definition, c̄ is larger than all unit shipping costs. So,

E

[
θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk −

θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk

]

≤ E

τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk −

τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk


+ E

 θ∑
t=τ(θ)

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk


≤ E

τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk −

τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk


+ c̄IJKE[θ − τ(θ) + 1]

≤ E

τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk −

τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk


+ c̄IJK(1 + Ψ3 + Ψ3 log θ). (A.9)

We are left to bound the first term in (A.9). Let ∆xtijk = X t
ijk − xtijk. Since xt = x̂t
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for all t < τ(θ), we have:

E

τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

K∑
k=1

cijkX
t
ijk −

τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

K∑
k=1

cijkx
∗
ijk


= E

τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

K∑
k=1

cijk
(
xtijk − x∗ijk

)+ E

τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

K∑
k=1

cij∆x
t
ijk


= E

τ(θ)−1∑
t=1

c>BB
−1
(
δV̄ t

)+ E

τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

K∑
k=1

cijk∆x
t
ijk


≤ c̄(I + J)K||B−1||1E

τ(θ)−1∑
t=1

J∑
j=1

K∑
k=1

M∑
m=1

α∗m
(
λjk(q

t
m)− λjk(qum)

)
−c̄(I + J)K||B−1||1E

τ(θ)−1∑
t=1

I∑
i=0

K∑
k=1

t∑
s=1

∆Cs
ik

θ − s


+c̄E

τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

K∑
k=1

∆xtijk


= −2c̄(I + J)K||B−1||1E

τ(θ)−1∑
t=1

I∑
i=0

K∑
k=1

t∑
s=1

∆Cs
ik

θ − s

+ c̄E

τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

K∑
k=1

∆xtijk


where the second inequality follows from the definition of δV̄ t, the second equality

follows from the definition of τ(θ) and Lemma A.3.1. Note that {
∑t

s=1 ∆xsijk}t≤θ is

Martingale with respect to the filtration {Ht}t≤θ. Following a similar argument as

in bounding the revenue loss, it is not difficult to see that the terms after the above

equation can be bounded by a constant independent of θ. �

A.4 Remaining Details of Numerical Experiment

The Poisson process that models the arrival from location j has rate γj = pois-rate×
mkt-sharej, where pois-rate∈ (0, 1] is the total arrival rate and mkt-sharej is the

conditional probability that this arrival comes from region j. We set pois-rate to be

0.9 and mkt-sharej to be the ratio between the total population in the jth largest MSA

and the total population of all fifteen MSA. A customer arriving from location j makes

a purchase with probability exp(Aj +Bjp). The parameters of purchasing probabilities

are chosen as follows: We first set “baseline” demand parameters A1 and B1. For all
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j ≥ 2, we then set Aj = income1
incomej

×A1 and Bj = income1
incomej

×B1, where incomej represents

the medium household income of the jth largest MSA, as reported in U.S. Census

Bureau (2014b). Since we want exp(Aj + Bjp) ≤ 1 for all p ∈ Ωp, we set Aj’s to be

vectors with negative components, and Bj’s to be diagonally dominated matrices with

negative diagonal components. The baseline parameters shown below are generated to

satisfy these constraints. The absolute magnitude of their entries depends on the price

range, which, in our setting, depends on the shipping cost.

A1 =


−1.0071

−1.2603

−1.3228

−1.5005

−1.4810

 , B1 =


−9.5 1.1 1.1 1.1 1.7

1.9 −10.5 2.0 1.4 1.0

1.1 1.6 −11.5 2.0 1.9

2.0 2.0 1.5 −12.6 2.0

1.6 2.0 1.8 2.0 −12.1

× 10−3

The transportation cost is calculated using the cost equation estimated in Section

EC.3 in Jasin and Sinha (2015) assuming that each product weighs exactly one pound.

To be precise, cijk = c̄k · (9.182 + 0.000541 · dij), where dij is the distance in miles

from FC i to demand location j, and c̄k is uniformly distributed in [0.9, 1.1]. We set

the inventory levels of the FCs to minimize the likelihood that we use FCs that are

far away from the demand location even under a myopic fulfillment policy; this is to

prevent the separate optimization heuristic from performing too bad. To do so, we

first match between FCs and MSAs such that (1) each FC serves five MSA, (2) each

MSA is served by 2 FCs, and (3) the total mileage between all the assigned FC-MSA

pairs is minimized. We then approximate an average purchase quantity from MSA

j by λ̂j = pois-rate × mkt-sharej × 0.9. (The factor 0.9 means that the initial

inventory levels are set to be slightly below the expected total arrivals; this reflects the

common reality where firm stocks neither too low such that the induced demand has

to be really scarce, nor too high as if there is no inventory constraint at all.) Each of

the two FCs serving MSAj fulfill a portion of the λ̂j, where the portion is decided by a

random number drawn uniformly from [0.4, 0.6]. (Our results are robust with respect

to perturbation in the numbers 0.9, 0.4, and 0.6.) The total initial inventory at each of

the FC is then calculated as the sum of all the demand portions from the five MSAs it

serves. At last, we distribute the initial inventory at each of the FC uniformly across all

of the products. As a result, the initial inventory level is C1k = 0.0337, C2k = 0.0218,

C3k = 0.0217, C4k = 0.0276 C5k = 0.0196 and C6k = 0.0196 for all k = 1, . . . , 5.

The fictitious FC is set to hold abundant initial inventories so that they will never be
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depleted. For a specific θ, we always round down θCik.

Table A.1 reports the expected profits of all the heuristics implemented in Chapter

2.8. The coefficient of variations are consistently small (less than 0.5% for all instances);

due to the space constraint, we will not report them in the paper.

Table A.2 reports the running time of a single simulation for several different heuris-

tics when θ = 2000. The computation time for the last two heuristics is very long,

therefore it is not feasible to implement them in practice. All simulations were imple-

mented on a desktop computer with 3.40GHz Intel Core i7-3770 CPU and 8 GB of

RAM.
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θ RPFC-2 R2PF-2 R2PF-Ful-2 R2PF-Pr-2 ALP-Reopt-2

200 9430.3 11188.2 10685.9 9573.5 11082.3
400 21637.1 24584.6 23772.8 22762.9 24509.0
600 34556.3 38487.0 37361.6 35861.0 38445.3
800 47128.5 51096.7 50420.3 49233.1 51269.1
1000 59421.7 63915.5 63231.5 61764.5 64106.5
1300 78355.8 83891.0 83296.8 81244.5 84184.8
1600 97707.0 104095.7 103189.5 101556.2 104209.7
2000 123868.1 130583.3 129244.4 127404.6 131023.8

θ RPF-5 R2PF-5 R2PF-Ful-5 R2PF-Pr-5 ALP-Reopt-5

200 8654.1 11174.6 10243.5 9625.1 10875.5
400 21301.9 24704.3 23913.0 23170.0 25219.7
600 34326.4 38675.3 38190.4 36447.4 39409.5
800 47354.4 52239.4 51661.2 50155.6 53119.2
1000 60013.1 66210.0 64542.2 63859.5 66763.0
1300 80807.3 86832.0 85417.4 83893.7 88029.6
1600 100438.0 107811.5 106475.0 104595.7 108747.1
2000 127255.7 136083.0 134312.8 131924.8 136999.7

θ RPF-8 R2PF-8 R2PF-Ful-8 R2PF-Pr-8

200 8452.7 10944.4 10293.8 9095.4
400 20844.2 25130.5 24415.4 21773.3
600 34442.5 39717.1 38684.6 35845.4
800 47555.6 53663.8 52378.8 49914.0
1000 60280.1 66685.4 65582.1 63264.4
1300 80988.6 87803.4 86609.7 84359.5
1600 100663.0 109225.9 108053.1 105571.4
2000 128223.2 137391.0 135841.8 132286.8

θ Sep-reopt DJPF-Reopt-1 DJPF-Reopt-10

200 6029.6 8409.3 11402.7
400 14857.1 20535.8 23762.8
600 24084.7 32610.1 35771.6
800 32596.9 44457.0 49576.2
1000 40625.2 57977.1 61993.9
1300 53726.0 77196.4 81677.3
1600 66782.8 96125.3 101167.5
2000 84005.0 122814.6 128769.5

Table A.1: Expected Profit of Different Heuristics with Varying θ
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R2PFC-2 R2PF-5 R2PF-8 DJPF-Reopt-θ

14.98 23.12 23.69 58376.24

ALP-Reopt-2 ALP-Reopt-5 ALP-Reopt-8

26.98 992.87 10814.08

Table A.2: Typical Running Time (in seconds) for a Single Simulation for Selected
Heuristics
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APPENDIX B

Appendix to Chapter 3

B.1 Proof of Lemma 3.4.1

Consider any admissible control π ∈ Π. Per our notations above, π essentially cor-

responds to the demand rate sequence {λπt }Tt=1. By definition, the sequence {λπt }Tt=1

satisfies the capacity constraints in DET. Moreover, we know from Assumption A4 and

Jensen’s inequality that

E

[
T∑
t=1

r(λπt )

]
=

T∑
t=1

E [pt(λ
π
t ) ·Dt(λ

π
t )] =

T∑
t=1

E [E [pt(λ
π
t ) ·Dt(λ

π
t )|Ht]]

=
T∑
t=1

E [r(λπt )] ≤
T∑
t=1

r (E [λπt ]) .

Therefore, we conclude that J∗ = Jπ
∗ ≤ JD. �

B.2 Proof of Theorem 3.8.1

The proof of Theorem 3.8.1 follows similar arguments as in the proofs of Theorems

3.5.1 and 3.6.1. We still proceed in two steps: In the first step, we construct a high-

probability event G, and show that, on the set G, we always have Ct ≥ 1 and pt = p̂Dt

for all t. In the second step, we bound the total revenue losses under DPC-Batch(m, ε).

Step 1

We start with the first step. For some δk = o(mk), whose value is to be determined

later, define a sequence of events {Ak,i(εk, δk)} as follows:
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Ak,i(εk, δk) =

max
t≤imk

∣∣∣∣∣∣
t∑

s=(i−1)mk+1

∆s,k

∣∣∣∣∣∣ < δk

 ∀i, k (B.1)

Analogous to (3.4), it can be shown that

P
(
Āk,i(εk, δk)

)
≤ 2 · exp{r2

k min{CD
k − εk,mk} − rkδk} ∀rk ∈ [0, 1]. (B.2)

Define G(ε, δ) = ∩Kk=1 ∩
T/mk
i=1 Ai,k(εk, δk), where δ = (δ1, . . . , δK). By the sub-

additivity property of probability, we have:

P(G(ε, δ)) ≥ 1− 2T
K∑
k=1

exp{r2
k min{CD

k − εk,mk} − rkδk}
mk

. (B.3)

Now, we make some observations. First, on the set G(ε, δ), we always have:∣∣∣ εknk + 1
mk

∑
s∈Tk,i ∆s,k

∣∣∣ ≤ εk
nk

+ δk
m

for all i and k. This means that, as long as the

parameters εk, δk, and mk are chosen such that εk
nk

+ δk
mk
≤ min{ϕL, ϕU}, the con-

dition λDt,k −
εk
nk
− 1

mk

∑
s∈Tk,ik(t)

∆s,k ∈ Ωλ,k in Step 2 part a of DPC-Batch is al-

ways satisfied for all t. For the remaining of the proof, we will therefore assume that
εk
nk

+ δk
mk
≤ min{ϕL, ϕU}. Now, suppose that t ∈ Tk,ik and max{1, t − nk + 1} ∈ Tk,jk ,

where t ∈ [n1, T ]. We can write the total resource consumption by the end of period t

as follows:

K∑
k=1

t∑
s=max{1, t−nk+1}

Ds,k(p̂
D
s )

=
K∑
k=1

 ∑
s≥max{1,t−nk+1}

s∈Tk,jk

Ds,k(p̂
D
s ) +

ik−1∑
j=jk+1

∑
s∈Tk,j

Ds,k(p̂
D
s ) +

∑
s≤t, s∈Tk,ik

Ds,k(p̂
D
s )
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=
K∑
k=1

∑
s≥max{1,t−nk+1}

s∈Tk,jk

λDs,k − εk
nk
− 1

mk

∑
l∈Tk,jk−1

∆l,k + ∆s,k



+
K∑
k=1

ik−1∑
j=jk+1

∑
s∈Tk,j

λDs,k − εk
nk
− 1

mk

∑
l∈Tk,j−1

∆l,k + ∆s,k


+

K∑
k=1

∑
s≤t, s∈Tk,ik

λDs,k − εk
nk
− 1

mk

∑
l∈Tk,ik−1

∆l,k + ∆s,k


≤

K∑
k=1

t∑
s=max{1, t−nk+1}

λDs,k −
K∑
k=1

n1

nk
εk

−
K∑
k=1

(
jk ·mk −max{1, t− nk + 1}

mk

)
·

 ∑
s∈Tk,jk−1

∆s,k


+

K∑
k=1

(
1− t− (ik − 1)mk

mk

)
·

 ∑
s∈Tk,ik−1

∆s,k


+

K∑
k=1

∑
s≤t, s∈Tk,ik

∆s,k −
K∑
k=1

∑
s<max{1, t−nk+1}

s∈Tk,jk

∆s,k

≤ C −
K∑
k=1

n1

nk
εk +

K∑
k=1

∣∣∣∣∣∣
∑

s∈Tk,jk−1

∆s,k

∣∣∣∣∣∣ +
K∑
k=1

∣∣∣∣∣∣∣∣
∑

s<max{1, t−nk+1}
s∈Tk,jk

∆s,k

∣∣∣∣∣∣∣∣
+

K∑
k=1

∣∣∣∣∣∣
∑

s∈Tk,ik−1

∆s,k

∣∣∣∣∣∣ +
K∑
k=1

∣∣∣∣∣∣
∑

s≤t,s∈Tk,ik

∆s,k

∣∣∣∣∣∣
where the last inequality follows by the definition of ik and jk. On the set G(ε, δ), for

each k, each of the terms with | · | above is at most δk. So, we can bound:

K∑
k=1

t∑
s=max{1, t−nk+1}

Ds,k(p̂
D
s ) ≤ C −

K∑
k=1

(
n1

nk
εk − 4δk

)
∀t ∈ [n1, T ]. (B.4)

(For t < n1, we can bound the total resource consumption by the end of period t

with the total resource consumption by the end of period n1. So, the above bound

also holds.) Note that (B.4) is the analogue of (3.13) in the proof of Theorem 3.6.1.

An immediate choice of δ that guarantees our resource will never run out on the
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set G(ε, δ) is therefore δk = n1εk
4nk
− 1

4K
. Given this and the assumption εk

nk
+ δk

mk
≤

min{ϕL, ϕU}, we conclude that the following always hold on G(ε, δ): (i) Ct ≥ 1 and

(ii) λDt,k −
εk
nk
− 1

mk

∑
s∈Tk,ik(t)−1

∆s,k ∈ Ωk,λ for all t. Consequently, pt = p̂Dt for all t.

Step 2

We now ready bound the average regret of DPC-Batch(m, ε). Let {pt} be the sequence

of price vector under DPC-Batch(m, ε). As in Step 2 in the proof of Theorem 3.6.1,

we have:

E[RDPC−Batch(m,ε)] ≥ E

[
T∑
t=1

rt(p̂
D
t )

]
− E

[(
T∑
t=1

rt(p̂
D
t )

)
· 1{Ḡ(ε, δ)}

]
.

The second expectation after the last equality above can be bounded by ruT ·
P(Ḡ(ε, δ)) where ru = maxt maxλt∈Ωλ rt(λt). As for the first expectation, by Taylor’s

expansion and Assumption MA6, we can bound:

E[rt(p̂
D
t )]

= E

rt
λDt,1 − ε1

n1

− 1

m1

∑
s∈T1,i1(t)−1

∆s,1, · · · , λDt,K −
εK
nK
− 1

mK

∑
s∈TK,iK (t)−1

∆s,K


≥ rt

(
λDt
)
−Ψ

K∑
k=1

εk
nk
−Ψ ·

K∑
k=1

E

 εk
nk

+
1

mk

∑
s∈Tk,ik(t)−1

∆s,k

2
≥ rt

(
λDt
)
−Ψ

K∑
k=1

(
εk
nk

+
2ε2k
n2
k

+
2

mk

)

where the first inequality follows from Assumption MA6; the last inequality follows

because (x+ y)2 ≤ 2x2 + 2y2 for all (x, y) and E

[(∑
s∈Tk,ik(t)−1

∆s,k

)2
]
≤ mk. Putting

the bounds together, for all rk ∈ [0, 1], we have:

JDM − E[RDPC−Batch(m,ε)]

T

≤ 1

T
·

[
TΨ

K∑
k=1

(
εk
nk

+
2ε2k
n2
k

+
2

mk

)
+ ruT ·P(Ḡ(ε, δ))

]

≤
K∑
k=1

(
Ψεk
nk

+
2Ψε2k
n2
k

+
2Ψ

mk

+
2ruT

mk

· exp{r2
k min{CD

k − εk,mk} − rkδk}
)
.
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Taking rk = δk
2 min{CDk −εk,mk}

and substituting δk = n1εk
4nk
− 1

4K
yields:

JDM − E[RDPC−Batch(m,ε)]

T

≤ M3 ·
K∑
k=1

[
εk
nk

+
1

mk

+
T

mk

· exp

{
− (Kn1εk − nk)2

64K2n2
k min{CD

k − ε, mk}

}]

for some M3 > 0 independent of T , C, mk, n1 ≥ 1
K min{ϕL,ϕU}

, and

εk ∈ nk ·
[

1

Kn1

, min

{
1,

1

K
· 1 + 4Kmk ·min{ϕL, ϕU}

4mk + n1

}]
(Note: εk ≥ nk

Kn1
is needed to guarantee that δk = n1εk

4nk
− 1

4K
≥ 0 and n1 ≥ 1

K min{ϕL,ϕU}

is needed to guarantee that 1
Kn1
≤ 1

K
· 1+4Kmk·min{ϕL,ϕU}

4mk+n1
.) �

B.3 Proof of Theorem 3.9.1

In this section, we prove the two bounds presented in (3.16) and (3.17). The proofs

of these bounds are similar, and follow similar arguments as in the proof of Theo-

rems 3.6.1. In what follows, we first show (3.16) in two steps: In the first step, we

construct a high-probability event G, and show that, on the set G, we always have

Ct ≥ 1 and pt = p̂Dt for all t. In the second step, we bound the total revenue losses

under DPC-Batch(m, ε) followed by a brief discussion on a crucial observation for de-

riving the bound in (3.18). Finally, we will comment on which parts of the proof of

(3.16) need to be modified to show (3.17).

Proof of (3.16): Step 1

For some δ = o(m) whose exact value is to be determined later, define {Ai,`(ε,δ)} as

follows:

Ai,`(ε, δ) =

max
t≤im

∣∣∣∣∣∣
t∑

s=(i−1)m+1

∆s,`

∣∣∣∣∣∣ < δ

 ∀i, `. (B.5)

Analogous to (3.4), it can be shown that

P
(
Āi,`(ε, δ)

)
≤ 2 · exp{r2 min{C − ε,m} − rδ} ∀r ∈ [0, 1]. (B.6)
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Define G(ε, δ) = ∩L`=0∩
T/m
i=1 Ai,`(ε, δ). By the sub-additivity property of probability,

P(G(ε, δ)) ≥ 1− 2T (L+ 1)

m
exp{r2 min{C − ε,m} − rδ}. (B.7)

Note that, on the set G(ε, δ), we always have:
∣∣∣ ε
n(L+1)

+ 1
m

∑
s∈Ti ∆s,`

∣∣∣ ≤ ε
n(L+1)

+ δ
m

for all i and `. This means that, as long as the parameters ε, δ, and m are chosen

such that ε
n(L+1)

+ δ
m
≤ min{ϕL, ϕU}, the condition λDt,` − ε

n(L+1)
− 1

m

∑
s∈Ti ∆s,` ∈ Ωλ,`

in Step 2 part a of DPC-Batch is always satisfied for all i. For the remaining of the

proof, we will therefore assume that ε
n(L+1)

+ δ
m
≤ min{ϕL, ϕU}. Now, suppose that

t − ` ∈ Ti` (if t − ` ≤ 0, then we set i` = 0) and max{1, t − ` − n + 1} ∈ Tj` , where

n ≤ t ≤ T . (For t < n, we can bound total resource consumption by the end of period

t with the total resource consumption by the end of period n.) We can bound total

consumption of resource by the end of period t as follows:

L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s )

=
L∑
`=0

 ∑
s≥max{1,t−`−n+1}

s∈Tj`

Ds,`(p̂
D
s ) +

i`−1∑
j=j`+1

∑
s∈Tj

Ds,`(p̂
D
s ) +

∑
s≤t−`, s∈Ti`

Ds,`(p̂
D
s )


=

L∑
`=0

∑
s≥max{1,t−`−n+1}

s∈Tj`

λDs,` − ε

n(L+ 1)
− 1

m

∑
v∈Tj`−1

∆v,` + ∆s,`



+
L∑
`=0

i`−1∑
j=j`+1

∑
s∈Tj

λDs,` − ε

n(L+ 1)
− 1

m

∑
v∈Tj−1

∆v,` + ∆s,`


+

L∑
`=0

∑
s≤t, s∈Ti`

λDs,` − ε

n(L+ 1)
− 1

m

∑
v∈Ti`−1

∆v,` + ∆s,`
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=
L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

λDs,` −
L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

ε

n(L+ 1)

−
L∑
`=0

(
j` ·m−max{1, t− `− n+ 1}

m

)
·

 ∑
s∈Tj`−1

∆s,`


+

L∑
`=0

(
1− t− `− (i` − 1)m

m

)
·

 ∑
s∈Ti`−1

∆s,`


−

L∑
`=0

∑
s<max{1, t−`−n+1},

s∈Tj`

∆s,` +
L∑
`=0

∑
s≤t−`,s∈Ti`

∆s,`

≤ C −
∑n

s=max{1,n−L} s

n(L+ 1)
· ε +

L∑
`=0

∣∣∣∣∣∣
∑
s∈Tj`

∆s,`

∣∣∣∣∣∣ +
L∑
`=0

∣∣∣∣∣∣∣∣
∑

s<max{1, t−`−n+1}
s∈Tj`

∆s,`

∣∣∣∣∣∣∣∣
+

L∑
`=0

∣∣∣∣∣∣
∑

s∈Ti`−1

∆s,`

∣∣∣∣∣∣ +
L∑
`=0

∣∣∣∣∣∣
∑

s≤t,s∈Ti`

∆s,`

∣∣∣∣∣∣ . (B.8)

where the inequality follows from the definition of i`, j`, and the fact that

L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

1 ≥
n∑

s=max{1,n−L}

s for all t ≥ n.

Note that L ≤ n implies

n∑
s=max{1,n−L}

s =
n∑

s=n−L

s =
n(n+ 1)

2
− (n− L)(n− L− 1)

2

=
(2n− L)(L+ 1)

2
≥ n(L+ 1)

2
.

Moreover, on the set G(ε, δ), the terms with | · | in (B.8) are all bounded by δ.

Thus, we have

L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s ) ≤ C − 1

2
· ε+ 4(L+ 1)δ for all t ≥ n . (B.9)
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(B.9) is the analogue of (3.13) in the proof of Theorem 3.6.1. An immediate choice

of δ that guarantees our resource will never run out on the set G(ε, δ) is therefore

δ = ε−1
8(L+1)

. Given this and the assumption ε
n(L+1)

+ δ
m
≤ min{ϕL, ϕU}, we conclude that

the following always hold on G(ε, δ): (i) Ct ≥ 1 and (ii) λDt,`− ε
n(L+1)

− 1
m

∑
s∈Ti`(t)−1

∆s,` ∈
Ωλ,`. Consequently, we have pt = p̂Dt for all t.

Proof of (3.16): Step 2

We now ready to bound the average regret of DPC-Batch(m, ε). Let {pt} be the price

sequence under DPC-Batch(m, ε). By the same argument as in Step 2 of the proof of

Theorem 3.6.1, we have

E[RDPC−Batch(m,ε)] ≥ E

[
T∑
t=1

rt(p̂
D
t )

]
− E

[(
T∑
t=1

rt(p̂
D
t )

)
· 1{Ḡ(ε, δ)}

]
.

The second expectation after the last equality above can be bounded by ruT ·
P(Ḡ(ε, δ)) where ru = maxt maxλt∈Ωλ rt(λt). As for the first expectation, by Taylor’s

expansion and Assumption MA6, we can bound

E[rt(p̂
D
t )]

≥ rt(λ
D
t )−Ψ

ε

n
−Ψ ·

L∑
`=0

E

 ε

n(L+ 1)
+

1

m

∑
s∈Ti`(t)−1

∆s,`

2
≥ rt(λ

D
t )−Ψ

[
ε

n
+

2ε2

n2(L+ 1)
+

2(L+ 1)

m

]
where the first inequality follows from Assumption MA6; the last inequality follows

because (x+ y)2 ≤ 2x2 + 2y2 for all (x, y) and E

[(∑
s∈Ti`−1

∆s,`

)2
]
≤ m for all `.

Putting the bounds together, for all r ∈ [0, 1], we have:

JDA − E[RDPC−Batch(m,ε)]

T (L+ 1)

≤ 1

T (L+ 1)
·
[
TΨ

(
ε

n
+

2ε2

n2(L+ 1)
+

2(L+ 1)

m

)
+ ruT ·P(Ḡ(ε, δ))

]
≤ Ψε

n(L+ 1)
+

2Ψε2

n2(L+ 1)2
+

2Ψ

m
+

2ruT

m
exp{r2 min{C − ε,m} − rδ}.

Taking r = δ
2 min{C−ε,m} and substituting δ = ε−1

8(L+1)
yield:
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JDA − E[RDPC−Batch(m,ε)]

T (L+ 1)

≤ M4

[
ε

n(L+ 1)
+

1

m
+

T

m
· exp

{
− (ε− 1)2

256(L+ 1)2 min{C − ε, m}

}]

for some M4 > 0 for all ε ∈
[
1,min

{
n(L+ 1),m(L+ 1), n · 8m(L+1) min{ϕL,ϕU}+1

8m+n

}]
,

T , C, m, and L < n. (Note that ε ≤ min
{
m(L+ 1), n · 8m(L+1) min{ϕL,ϕU}+1

8m+n

}
and

δ = ε−1
8(L+1)

imply ε
n(L+1)

+ δ
m
≤ min{ϕL, ϕU} and r ∈ (0, 1).)

Proof of (3.17)

We now prove the bound for the case L > n. The major difference between the

proof of (3.16) and (3.17) lies in the way we bound the total resource consumption in

(B.8). We first discuss why this is important in dealing with large L. On the RHS

of (B.8), the negative term after C is an upper bound for negative total buffers in

DPC-Batch (i.e., the term − ε
n(L+1)

in the definition of λt,`(p̂
D
t )) and the remaining

four positive terms is an upper bound for total random errors. If L > n, the term∑n
s=max{1,n−L} s

n(L+1)
in (B.8) equals

∑n
s=1 s

n(L+1)
= n+1

2(L+1)
and the bound in (B.9) becomes

L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s ) ≤ C − n+ 1

2(L+ 1)
· ε+ 4(L+ 1)δ.

Since ε ≤ n(L + 1) (otherwise p̂Dt is not well-defined), the size of ε is at most on

the order of n2. Per our argument in Step 1 in the proof of (3.16), δ represents an

upper bound of the total errors of m Bernoulli random variables (for some m), which

means that δ = Ω(1). But then, 4(L + 1)δ is Ω(L) and we cannot always guarantee

C − n+1
2(L+1)

· ε + 4(L + 1)δ ≤ C for all large L > n2 (i.e., we may not be able to find

a feasible ε ≤ n(L + 1) such that − n+1
2(L+1)

· ε + 4(L + 1)δ ≤ 0). This calls for a more

careful analysis on the bound of total resource consumption.

Note that, assuming we never apply p̄ up to and including period t −
` ≥ 0, total resource consumption of type-` request by the end of period t is∑t−`

s=max{1, t−`−n+1}Ds,`(p̂
D
s ). We divide our analysis into three cases: n ≤ t ≤ L + 1,

L+1 < t ≤ n+L, and t > n+L. (For t < n, we can bound total resource consumption

by the end of period t with the total resource consumption by the end of period n.)

When n ≤ t ≤ L + 1, all type-` requests with ` ≥ t have not consumed any resource
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yet. For 0 ≤ ` < t, following similar arguments as in (B.8), we have

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s ) ≤


∑t−`

s=t−`−n+1 λ
D
s,` − n

n(L+1)
· ε+ 4δ if 0 ≤ ` < t− n∑t−`

s=1 λ
D
s,` − t−`

n(L+1)
· ε+ 2δ if t− n ≤ ` < t

When L+ 1 < t ≤ n+L, all type-` requests (for all ` ∈ {0, 1, . . . , L}) have already

consumed some of the resources. Following similar arguments as in (B.8), we have

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s ) ≤


∑t−`

s=t−`−n+1 λ
D
s,` − n

n(L+1)
· ε+ 4δ if 0 ≤ ` < t− n∑t−`

s=1 λ
D
s,` − t−`

n(L+1)
· ε+ 2δ if t− n ≤ ` ≤ L

At last, when t > n+ L, following similar arguments as in (B.8), we have

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s ) ≤

t−∑̀
s=t−`−n+1

λDs,` −
n

n(L+ 1)
· ε+ 4δ.

Given all the above bounds, the total resource consumption by the end of period

t ≥ n can be bounded as follows:

L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s )

≤



C − 2t−n+1
2(L+1)

· ε + 2 · (2t− n+ 1) · δ if n ≤ t ≤ L+ 1

C − n(L+1)− (L−t+n)(L−t+n+1)
2

n(L+1)
· ε + 2 · (t+ L− n+ 2) · δ

if L+ 1 < t ≤ n+ L

C − ε + 4(L+ 1)δ if n+ L < t ≤ T

We claim that, if we set δ = ε
4(L+1)

− 1
2n

and ε ≥ 2(L+1), total resource consumption

by the end of period t ≥ n is at most C−1. To see this, when n ≤ t ≤ L+1, substituting

δ = ε
4(L+1)

− 1
2n

yields

2t− n+ 1

2(L+ 1)
· ε − 2 · (2t− n+ 1) · δ = 2 · (2t− n+ 1)

(
ε

4(L+ 1)
− δ
)

2t− n+ 1

n
≥ 1.
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When L+ 1 < t ≤ n+ L, substituting δ = ε
4(L+1)

− 1
2n

yields

n(L+ 1)− (L−t+n)(L−t+n+1)
2

n(L+ 1)
· ε − 2 · (t+ L− n+ 2) · δ

= ε − 4(L+ 1)δ +
(L− t+ n)

2n(L+ 1)
[4n(L+ 1)δ − (L− t+ n+ 1) · ε]

=
2(L+ 1)

n
+

(L− t+ n)

2n(L+ 1)
[(t− L− 1)ε − 2(L+ 1)]

≥ 2(L+ 1)

n
+

(L− t+ n)(t− L− 2)

n
≥ 1

where the last inequality holds since t > L+ 1, ε > 2(L+ 1). Finally, when t > n+ L,

substituting δ = ε
4(L+1)

− 1
2n

yields ε − 4(L+ 1)δ = 2 · L+1
n

> 1.

Now, plug the choice of δ into (B.7) and substituting r = δ
2 min{C−ε,m} , we can bound

P(G(ε, δ)) ≥ 1− 2T (L+ 1)

m
exp

{
− (ε− 2(L+ 1)/n)2

64(L+ 1)2 min{C − ε, m}

}
.

The remaining arguments are the same as in Step 2 of the proof of (3.17). Note

that ε ∈ (L+ 1) ·
[
2,min

{
n,m, 4mnmin{ϕL,ϕU}+2

4m+n

}]
ensures ε

n(L+1)
+ δ

m
≤ min{ϕL, ϕU}

and r ∈ (0, 1). �
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B.4 Remaining Details of Numerical Experiment

We first give a detailed definition of LRC-k. Similar with DPC-Batch, we slice the

selling horizon into batches, each of which is of size k (except for the last one), i.e.

Ti = [(i− 1) · k + 1,min{i · k, T}], for all i = 1, . . . , dT/ke. LRC-k is defined as follows

Linear Rate Control with Batch Restarting (LRC-k)

Step 1. Solve DET and get λD.

Step 2. At the beginning of each t, if t ∈ Ti, do:

a. If Ct ≥ 1 and λDt − 1
m

∑
s∈Ti,s<t ∆s/[Ti − (s − (i − 1) · k)] ∈ Ωλ,

set pt = p̂Dt where

λt(p̂
D
t ) = λDt −

1

m

∑
s∈Ti , s<t

∆s

Ti − (s− (i− 1) · k)
;

b. Otherwise, set pt = p̄.

At last, we provide the numerical results of experiment 1 in Table B.1. We only

show the results LRC-n, since, compared to the other heuristics, LRC-k is similarly

worse as LRC-n for any k.

Table B.1: Expected Regret of Different Heuristics with Varying n

n
DPC-0 DPC-ε

Regret Std AvgReg(%) Runtime (ms) Regret Std AvgReg(%) Runtime (ms) Opt. ε

500 824 0.68 2.03 0.5 420 1.27 1.04 0.5 0.29
1000 1182 0.67 1.46 1.1 580 1.26 0.72 0.9 0.32
2000 1672 0.65 1.03 2.1 773 1.18 0.48 2.0 0.26
3000 2080 0.66 0.86 3.2 955 1.20 0.39 3.0 0.26
4000 2398 0.65 0.74 4.2 1089 1.14 0.34 4.0 0.27
5000 2708 0.67 0.67 5.1 1226 1.12 0.30 4.8 0.29
6000 2983 0.66 0.61 6.4 1342 1.17 0.28 5.7 0.31
7000 3228 0.73 0.57 7.3 1433 1.27 0.25 6.4 0.31
8000 3406 0.70 0.53 8.4 1522 1.27 0.23 7.5 0.28

n

LRC-n DPCB-ε

Regret Std AvgReg(%) Runtime (ms) Regret Std AvgReg(%) Runtime (ms) Opt. ε

500 13662 8.8 33.75 19.34 390 1.27 0.96 4.4 0.17
1000 28971 15.6 35.78 39.04 461 1.26 0.57 9.5 0.17
2000 60868 25.3 37.59 75.51 542 1.18 0.33 17.5 0.16
3000 91693 31.6 37.75 119.82 660 1.20 0.27 25.7 0.17
4000 123529 36.5 38.14 157.39 751 1.14 0.23 35.4 0.15
5000 156829 44.3 38.74 197.40 816 1.12 0.20 42.8 0.13
6000 183936 42.3 37.86 236.34 874 1.17 0.18 54.2 0.15
7000 222871 53.9 39.32 277.82 879 1.27 0.16 62.3 0.14
8000 248279 49.8 38.33 328.38 919 1.27 0.14 70.1 0.13

138



APPENDIX C

Appendix to Chapter 4

C.1 Proof of Theorem 4.4.3

C.1.1 Bounding the Revenue Loss in SA-BDPA Upon Enter-

ing Step 4a

Following the same arguments as in the proof of Theorem 4.4.2, we know that

JMSA−BDPA
θ ≥ E

 τuθ∑
k=1

[Rk(p
u
k + cuk) +Rk(p

u
k − cuk)] 1 {E1 ∩ E2}


−2p̄ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+
 (C.1)

where τuθ :=
⌊
Tθ−4

∑τ
k=1Nk

2

⌋
and E1 and E2 are as defined in Lemma 4.5.1 and

Lemma 4.5.2, respectively.

We start with bounding the first term, which is the direct revenue incurred by

MSA-DPA. Note that, for all p, we have r(pu)− r(p) ≤ MUK
2

2
(pu − p)2. So,
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E

 τuθ∑
k=1

[Rk(p
u
k + cuk) +Rk(p

u
k − cuk)] 1 {E1 ∩ E2}


≥

τuθ∑
k=1

E [r(puk + cuk)1 {E1 ∩ E2}] +

τuθ∑
k=1

E [r(puk − cuk)1 {E1 ∩ E2}]

≥
τuθ∑
k=1

E
[
r(pu)− MUK

2

2
(pu − puk − cuk)21 {E1 ∩ E2}

]

+

τuθ∑
k=1

E
[
r(pu)− MUK

2

2
(pu − puk + cuk)

21 {E1 ∩ E2}
]

≥ 2 τuθ r(p
u)− 2MUK

2

 τuθ∑
k=1

E
[
(pu − puk)21 {E1 ∩ E2}

]
+ (cuk)

2


≥ r(pu)Tθ − p̄ (2 + log3 Tθ)− 2MUK

2

 τuθ∑
k=1

E
[
(pu − puk)21 {E1 ∩ E2}

]
+ (cuk)

2

 ,
where the last inequality follows because, by definition of τθ and τuθ , we have 2τuθ ≥
Tθ − 4

∑τθ
k=1Nk,θ − 2. As for the second term in (C.1), which is the total penalty

incurred by capacity violation, similar to the arguments in Step 2 in section 4.2, for

sample paths on E1 ∩ E2, we can bound

E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2}


≤ E

( Tθ∑
t=1

Dt(pt)− λ(pt)

)+


+E


4

∑τθ
k=1Nk,θ∑
t=1

λ(pt)− 4

τθ∑
k=1

Nk,θ
C

T

+

1{E1 ∩ E2}


+E

 Tθ∑
t=4

∑τθ
k=1Nk,θ+1

λ(pt)−

(
Tθ − 4

τθ∑
k=1

Nk,θ

)
C

T

+

1{E1 ∩ E2}


≤

√
Tθ + log3 Tθ + 0 = O(

√
θ),

where the third inequality follows from Cauchy-Schwarz inequality, the definition of τθ,
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and the fact that pc is to the left of Iuk for all k.

Then, the total penalty for capacity violation satisfies

E

( Tθ∑
t=1

Dt(pt)− Cθ

)+


= E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2}

+ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2}


≤ O(

√
θ) + TθP (E1 ∩ E2) = O(

√
θ).

Finally, combining the bounds for the two terms in (C.1), we get

JMSA−BDPA
θ

≥ r(pu)Tθ − 2MUK
2

 τuθ∑
k=1

E
[
(pu − puk)21 {E1 ∩ E2}

]
+ (cuk)

2

−O(
√
θ).

Applying the standard result in Stochastic Approximation (e.g. Proposition 1 in

Broadie et al. 2011), there exists positive constants Cu
a and Cu

c such that if auk = Ca/k

and cuk = Cc/k
1/4 we have E[(pu − puk)21 {E1 ∩ E2}] ≤ Cu/

√
k, for all k ≥ 1, where

Cu > 0 is also a constant. Substitute this into the above bound, we get

JMSA−BDPA
θ ≥ r(pu)Tθ − 2MUK

2

τuθ∑
k=1

(
Cu√
k

+
C2
c√
k

)
−O(

√
θ)

≥ r(pu)Tθ − 2MUK
2(Cu + C2

c )
√
τuθ −O(

√
θ)

≥ r(pu)Tθ −O(
√
θ). �

C.1.2 Bounding the Revenue Loss in SA-BDPA Upon Enter-

ing for Step 4b

Following the same arguments as in Step 1 in section 4.2, we know that

JMSA−BDPA
θ ≥ E

 τcθ∑
k=1

Rk(p
c
k)1 {E1 ∩ E2}

− 2p̄E

( Tθ∑
t=1

Dt(pt)− Cθ

)+
 (C.2)

where τ cθ := Tθ − 4
∑τθ

k=1Nk,θ. For the first term in (C.2), note that r(pc) − r(pck) ≤
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(1 +Kp̄)|pc − pck|. So, we can bound

E

 τcθ∑
k=1

Rk(p
c
k)1 {E1 ∩ E2}


=

τcθ∑
k=1

E [r(pck)1 {E1 ∩ E2}]

≥
τcθ∑
k=1

E [{r(pc)− (1 +Kp̄)|pc − pck|} 1 {E1 ∩ E2}]

≥ r(pc)Tθ − p̄ log3 Tθ − (1 +Kp̄)

τcθ∑
k=1

E [|pc − pck|1 {E1 ∩ E2}]

≥ r(pc)Tθ − p̄ log3 Tθ − (1 +Kp̄)

τcθ∑
k=1

√
E
[
(pck − pc)

2 1{E1 ∩ E2}
]
,

where the second inequality follows by definition of τ cθ and the last inequality follows

from Jensen’s inequality. As for the second term in (C.2), following the same arguments

as in Step 2 in section 4.2, we know that for the sample paths on E1 ∩ E2,

E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2}


≤ E

( Tθ∑
t=1

Dt(pt)− λ(pt)

)+


+E


4

∑τθ
k=1Nk,θ∑
t=1

λ(pt)− 4

τθ∑
k=1

Nk,θ
C

T

+

1{E1 ∩ E2}


+E

 Tθ∑
t=4

∑τθ
k=1Nk,θ+1

λ(pt)−

(
Tθ − 4

τθ∑
k=1

Nk,θ

)
C

T

+

1{E1 ∩ E2}


≤ ≤

√
Tθ + log3 Tθ +

τcθ∑
k=1

E

[(
λ(pck)−

C

T

)+

1{E1 ∩ E2}

]

≤ O(
√
θ) +

τcθ∑
k=1

√
E
[
(λk(pck)− λ(pc))2 1{E1 ∩ E2}

]
≤ O(

√
θ) +K

τcθ∑
k=1

√
E
[
(pck − pc)

2 1{E1 ∩ E2}
]
.
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Thus, the total penalty for capacity violation satisfies

E

( Tθ∑
t=1

Dt(pt)− Cθ

)+


= E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2}

+ E

( Tθ∑
t=1

Dt(pt)− Cθ

)+

1{E1 ∩ E2}


≤ O(

√
θ) + K

τcθ∑
k=1

√
E
[
(pck − pc)

2 1{E1 ∩ E2}
]

+ 2p̄ TθP (E1 ∩ E2)

= O(
√
θ) +K

τcθ∑
k=1

√
E
[
(pck − pc)

2 1{E1 ∩ E2}
]
.

Combining the results above we get

JMSA−BDPA
θ ≥ r(pc)Tθ −O(

√
θ)− (1 + 3Kp̄)

τcθ∑
k=1

√
E
[
(pck − pc)

2 1{E1 ∩ E2}
]
.

Applying the established convergence result for Robbins-Monro type of Stochastic

Approximation, by Theorem 1 in the electronic companion in Broadie et al. 2011,

we know that there exists positive constant Cc
a such that when ack = Cc

a/k, we have

E[(pck − pc)
2 1{E1 ∩ E2}] ≤ Cc/k, for all k ≥ 1, where Cc > 0 is also a constant.

Substitute this back into the previous bound, we have

JMSA−BDPA
θ ≥ r(pc)Tθ −Θ(

√
θ)− (1 + 3Kp̄)

τcθ∑
k=1

√
Cc/k

≥ r(pc)Tθ −Θ(
√
θ)− (1 + 3Kp̄)

√
Ccτ cθ = r(pc)Tθ −Θ(

√
θ). �

C.2 Proof of Key Lemmas in Chapter 4.5

C.2.1 Proof of Lemma 4.5.3

(i) We assume without loss of generality that pb > pa > pu. Let λa = λ(pa), λb = λ(pb),

and we have λb < λa < λu since demand is decreasing in price. Now, by Assumption
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A5, we know that (see Boyd and Vandenberghe 2004)

r(pa)− r(pb) = r(λa)− r(λb) ≥
Ml

2
(λb − λa)2 − r′(λa)(λb − λa)

≥ MlL
2

2
(pb − pa)2 − r′(λa)(λb − λa)

≥ MlL
2

2
(pb − pa)2,

where the first inequality follows from Assumption A5x, second inequality follows from

Lemma 4.5.3 part (ii), and the third inequality follows from Assumption A2. Setting

Ku = MlL
2

2
completes the proof of part (i).

(ii) Follows directly from Assumption A1.

(iii) Let us denote λ = λ(p). Notice that r(λ) is strictly concave in λ, by Taylor’s

expansion, there exists ξ ∈ [λ, λu] (or possibly [λu, λ)) such that

r(p) = r(λ) = r(λu) + r′(λu)(λ− λu) +
r′′(ξ)

2
(λ− λu)2

≥ r(pu)− MU

2
(λ− λu)2 ≥ r(λu)− MUK

2

2
(p− pu)2,

where the first and the second inequalities follow by Assumptions A2 and A4, respec-

tively.

As for the second part, we know that

r(pc)− r(p) = r(pc)− (pc + p− pc)[λ(pc) + λ(p)− λ(pc)]

= λ(pc)(pc − p) + p (λ(pc)− λ(p))− (p− pc)(λ(p)− λ(pc))

≤ |pc − p|+Kp̄ |pc − p|+K|pc − p|2

≤ (1 + 2Kp̄)|pc − p|,

where the first inequality follows from the boundedness of demand and price and As-

sumption A3. �

C.2.2 Proof of Lemma 4.5.4

We start with τθ. Define:

t1 =

⌈
1

4
log3/2

(
1

6
log Tθ + 1

)⌉
− 3 and t2 =

⌈
1

4
log3/2

(
65

324
log Tθ + 1

)⌉
+ 1.
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Note that t1 < t2 when θ is large and they are both Θ(log log θ). Moreover, we also

have

4 ·
t2∑
k=1

Nk,θ ≥ 4

t2∑
k=1

(
3

2

)4k

log2 Tθ =
324

65

[(
3

2

)4t2

− 1

]
log2 Tθ > log3 Tθ and

4 ·
t1+1∑
k=1

Nk,θ <

[
4

t1+1∑
k=1

(
3

2

)4k

log2 Tθ

]
+ 4t1 <

(
3

2

)4(t1+2)

log2 Tθ + 4t1

≤ 1

6
log3 Tθ + log2 Tθ + Θ(log log Tθ) < log3 Tθ (for all large θ).

Since
∑t

k=1Nk,θ is increasing in t, we must have t1 < τθ < t2. We conclude that

τθ = Θ(log log θ) and (2/3)τθ = Θ(log−1/4 θ). We now calculate the order of τuθ . Define:

tu1 =

⌈
1

4
log3/2

(
65Tθ

648 log3 Tθ
+ 1

)⌉
− 1 and tu2 =

⌈
1

4
log3/2

(
65Tθ

162 log3 Tθ
+ 1

)⌉
.

By definition of τuθ and Nu
k,θ, for all large enough θ, we have

4

tu1∑
k=1

Nu
k,θ ≤ 4

tu1∑
k=1

[(
3

2

)4k

log3 Tθ + 1

]
≤ 4tu1 +

324

65

[(
3

2

)4tu1

− 1

]
log3 Tθ

≤ 1

2
Tθ + Θ

(
log

(
Tθ

log3 Tθ

))
≤ Tθ − log3 Tθ ≤ Tθ − 4

τθ∑
k=1

Nk,θ and

4

tu2∑
k=1

Nu
k,θ ≥ 4

tu2∑
k=1

[(
3

2

)4k

log3 Tθ − 1

]
≥ 324

65
log3 Tθ

[(
3

2

)4tu2

− 1

]
− 4tu2

≥ 2Tθ −Θ

(
log

(
Tθ

log3 Tθ

))
≥ Tθ − 4

τθ∑
k=1

Nk,θ,

which implies that tu1 ≤ τuθ ≤ tu2 . Since tu1 and tu2 are both Θ(log θ), we conclude that

τuθ = Θ(log θ). Moreover, (2/3)4τuθ = Θ(θ−1 log3 θ). Finally, we calculate τ cθ . Define:

tc1 =

⌈
1

2
log3/2

(
5Tθ

72 log2 Tθ
+ 1

)⌉
− 1 and tc2 =

⌈
1

2
log3/2

(
5Tθ

18 log2 Tθ
+ 1

)⌉
.
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By definition of τ cθ and N c
k,θ, for all large enough θ, we have

4

tc1∑
k=1

N c
k,θ ≤ 4

tc1∑
k=1

[(
3

2

)2k

log2 Tθ + 1

]
≤ 4tc1 +

36

5

[(
3

2

)2tc1

− 1

]
log2 Tθ

≤ 1

2
Tθ + Θ

(
log

(
Tθ

log2 Tθ

))
≤ Tθ − log3 Tθ ≤ Tθ − 4

τθ∑
k=1

Nk,θ and

4

tc2∑
k=1

N c
k,θ ≥ 4

tc2∑
k=1

[(
3

2

)2k

log2 Tθ − 1

]
≥ 36

5

[(
3

2

)2tc2

− 1

]
log2 Tθ − 4τ cθ

≥ 2Tθ −Θ

(
log

(
Tθ

log2 Tθ

))
≥ Tθ − 4

τθ∑
k=1

Nk,θ

which implies tc1 ≤ τ cθ ≤ tc2. Since tc1 and tc2 are both Θ(log θ), we conclude that

τ c = Θ(log θ). Moreover, (2/3)2τcθ = Θ(θ−1 log2 θ). This completes the proof. �

C.2.3 Proof of Lemma 4.5.5

By the same arguments as in the proof of Lemma 4.5.1, P
(
Ēu|E1 ∩ E2

)
≤
∑τuθ

k=1(τuθ −
k + 1)P (pu /∈ Iuk+1, p

u ∈ Iuk ). So, we can bound

P
(
E1 ∩ E2 ∩ Eu

)
≤ P

(
E1 ∩ E2

)
+ P (E1 ∩ E2 ∩ Ēu)

≤ P
(
E1 ∩ E2

)
+

τuθ∑
k=1

(τuθ − k + 1)P (pu /∈ Iuk+1, p
u ∈ Iuk ).

The remaining task then is to bound the term P (pu /∈ Iuk+1, p
u ∈ Iuk ) for k =

1, ..., τuθ . Define:

Bu
k,1 = {r̂(puk,2) < r̂(puk,3), pu < puk,2} and Bu

k,2 = {r̂(puk,2) ≥ r̂(puk,3), pu > puk,3}.
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Observe that, for all k, we have

P (pu /∈ Iuk+1, p
u ∈ Iuk ) ≤ P

(
r̂(puk,2) < r̂(puk,3), pu /∈ Iuk+1, p

u ∈ Iuk
)

+P
(
r̂(puk,2) ≥ r̂(puk,3), pu /∈ Iuk+1, p

u ∈ Iuk
)

= P (r̂(puk,2) < r̂(puk,3), pu ∈ [puk,1, p
u
k,2), pu ∈ Iuk )

+P (r̂(puk,2) ≥ r̂(puk,3), pu ∈ (puk,3, p
u
k,4], pu ∈ Iuk )

≤ P (r̂(puk,2) < r̂(puk,3), pu < puk,2, p
u ∈ Iuk )

+P (r̂(puk,2) ≥ r̂(puk,3), pu > puk,3, p
u ∈ Iuk )

≤ P
(
Bu
k,1

)
+ P

(
Bu
k,2

)
.

By Lemma 4.5.3 part (i), we have

r(puk,2)− r(puk,3) ≥ Ku(p
u
k,2 − puk,3)2 = Ku

|Iu1 |2

9

(
2

3

)2(k−1)

=
1

4
Ku|Iu1 |2

(
2

3

)2k

.

Arguing as in the proof of Lemma 4.5.1, if |r̂(pk,l)− r(pk,l)| < 1
8
Ku|Iu1 |2(2

3
)2k for all

k and l ∈ {2, 3}, then we can correctly predict whether r(puk,2) ≥ r(puk,3) or r(puk,2) <

r(puk,3). (This guarantees that the deleted segment does not contain pu.) So, applying

Hoeffding’s inequality together with the facts that r̂(pk,l) < p̄ and |Iu1 | = |I|
(

2
3

)τθ =

Θ(log−1/4 θ) (see Lemma 4.5.4), we can bound P (Bu
k,l) as follows:

P (Bu
k,l) ≤ P

(
|r̂(pk,j)− r(pk,j)| ≥

1

8
Ku|Iu1 |2

(
2

3

)2k

for some j ∈ {2, 3}

)

≤
3∑
j=2

P

(
|r̂(pk,j)− r(pk,j)| ≥

1

8
Ku|Iu1 |2

(
2

3

)2k
)

≤ 4 · exp

(
−2

Nu
k,θ [1

8
Ku |Iu1 |2

(
2
3

)2k
]2

p̄2

)
≤ 4 · exp(− log θ) =

4

θ
, for l = 1, 2 and sufficiently large θ.

Since it can be shown that τuθ = Θ(log θ), put the above bounds together with

our earlier bound for P
(
E1 ∩ E2 ∩ Eu

)
and P

(
E1 ∩ E2

)
(from Lemma 4.5.2), we
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conclude that

P
(
E1 ∩ E2 ∩ Eu

)
≤ P

(
E1 ∩ E2

)
+

τuθ∑
k=1

(τuθ − k + 1)
2∑
l=1

P (Bu
k,l)

= Θ

(
log2 θ

θ

)
. �

C.2.4 Proof of Lemma 4.5.6

Define two events:

Bc
k,1 = {λ̂(pck,2) > C/T + ∆c

k,θ, p
c < pck,2} and

Bc
k,2 = {λ̂(pck,2) ≤ C/T + ∆c

k,θ, p
c > pck,3}.

By similar arguments as in the proof of Lemma 4.5.5, we know that P (Ēc |E1 ∩
E2) ≤

∑τcθ
k=1(τ cθ − k + 1)

[∑2
l=1 P (Bc

k,l)
]
. For event Bc

k,1, note that pc < pck,2 implies

λ(pck,2) < C/T . So,

P (Bc
k,1) ≤ P

(
λ̂(pck,2) > C/T + ∆c

k,θ , λ(pck,2) < C/T
)

≤ P
(
λ̂(pck,3)− λ(pck,3) > ∆c

k,θ

)
.

Since N c
k,θ = Θ(

(
3
2

)2k
log2 θ) and ∆c

k,θ = Θ(
(

2
3

)k
log−3/8 θ), by Hoeffding’s inequality,

P (Bc
k,1) ≤ P

(
λ̂(pck,2)− λ(pck,2) > ∆c

k,θ

)
≤ exp

(
−2N c

k,θ(∆
c
k,θ)

2
)
≤ exp(− log θ) =

1

θ
.

As for event Bc
k,2, note that pc > pck,3 implies λ(pck,3) > C/T . By Lemma 4.5.3 part

(ii), λ(pck,2) − λ(pck,3) ≥ L · |pck,2 − pck,3| = L
|Ic1 |
3

(2
3
)k−1. So, for the sample path in Bc

k,2,

we have:

λ(pck,2)− λ̂(pck,2) ≥ λ(pck,3) + L
|Ic1|
3

(
2

3

)k−1

−
(
C

T
+ ∆c

k,θ

)
>

C

T
+ L
|Ic1|
3

(
2

3

)k−1

−
(
C

T
+ ∆c

k,θ

)
= L

|Ic1|
3

(
2

3

)k−1

−∆c
k,θ >

1

2
L
|Ic1|
3

(
2

3

)k−1

where the last inequality follows because |I1
c | = |I|

(
2
3

)τθ = Θ(log−1/4 θ) and so ∆c
k,θ <
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1
2
L
|Ic1 |
3

(
2
3

)k−1
for all large θ. By similar argument as above,

P (Bc
k,2) ≤ P

(
λ(pck,2)− λ̂(pck,2) >

1

2
L
|Ic1|
3

(
2

3

)k−1
)

≤ exp

(
−2

N c
k,θ [1

2
L
|Ic1 |
3

(
2
3

)k−1
]2

p̄2

)
≤ exp(− log θ) =

1

θ
.

Since it can be shown that τ cθ = Θ(log θ), put the above bounds together with

our earlier bound for P
(
E1 ∩ E2 ∩ Ec

)
and P

(
E1 ∩ E2

)
(from Lemma 4.5.2), we

conclude that

P
(
E1 ∩ E2 ∩ Ec

)
≤ P

(
E1 ∩ E2

)
+

τcθ∑
k=1

(τ cθ − k + 1)
2∑
l=1

P (Bc
k,l)

= Θ

(
log2 θ

θ

)
. �

149



BIBLIOGRAPHY

J Acimovic and SC Graves. Making better fulfillment decisions on the fly in an online
retail environment. M&SOM, 17(1):34–51, 2014.

J Acimovic and SC Graves. Mitigating spillover in online retailing via replenishment.
M & SOM, 19(3):419–436, 2017.
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Ö Özer and R Phillips. The Oxford handbook of pricing management. Oxford University
Press, 2012.

F Papier and UW Thonemann. Capacity rationing in stochastic rental systems with
advance demand information. Oper. Res., 58(2):274–288, 2010.

IC Paschalidis and JN Tsitsiklis. Congestion-dependent pricing of network services.
IEEE ACM Trans. Network, 8(2):171–184, 2000.

G Perakis and G Roels. Robust controls for network revenue management. M&SOM,
12(1):56–76, 2010.

J Pfrommer, J Warrington, G Schildbach, and M Morari. Dynamic vehicle redistri-
bution and online price incentives in shared mobility systems. IEEE Trans. Intelli.
Transp., 15(4):1567–1578, 2014.

EL Plambeck and AR Ward. Optimal control of a high-volume assemble-to-order
system. Math. of Oper. Res., 31(3):453–477, 2006.

Project44. Project44 introduces dynamic pricing technology to freight industry. http:
//goo.gl/Ayk2mG, 2015.

T Raviv and O Kolka. Optimal inventory management of a bike-sharing station. IIE
Trans., 45(10):1077–1093, 2013.

B Reid. Avoiding everyday antitrust law violations. http://huff.to/2a9Ingj, 2014.

MI Reiman and Q Wang. An asymptotically optimal policy for a quantity-based
network revenue management problem. Math. of Oper. Res., 33(2):257–282, 2008.

MI Reiman and Q Wang. Asymptotically optimal inventory control for assemble-to-
order systems with identical lead times. Oper. Res., 63(3):716–732, 2015.

D Rigby. Online shopping isnt as profitable as you think. https://hbr.org/2014/

08/online-shopping-isnt-as-profitable-as-you-think, 2014.

H Robbins and S Monro. A stochastic approximation method. Ann. Math. Statist.,
pages 400–407, 1951.

P Rusmevichientong, B van Roy, and PW Glynn. A nonparametric approach to mul-
tiproduct pricing. Oper. Res., 54(1):82–98, 2006.

158

http://goo.gl/Ayk2mG
http://goo.gl/Ayk2mG
http://huff.to/2a9Ingj
https://hbr.org/2014/08/online-shopping-isnt-as-profitable-as-you-think
https://hbr.org/2014/08/online-shopping-isnt-as-profitable-as-you-think


SV Savin, MA Cohen, N Gans, and Z Katalan. Capacity management in rental busi-
nesses with two customer bases. Oper. Res., 53(4):617–631, 2005.

A Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

J Schuijbroek, RC Hampshire, and WJ Van Hoeve. Inventory rebalancing and vehicle
routing in bike sharing systems. Eur. J. Oper. Res., 257(3):992–1004, 2017.

N Secomandi. An analysis of the control-algorithm re-solving issue in inventory and
revenue management. M&SOM, 10(3):468–483, 2008.

N Secomandi and F Margot. Reoptimization approaches for the vehicle-routing problem
with stochastic demands. Oper. Res., 57(1):214–230, 2009.

A Shpanya. Why dynamic pricing is a must for
ecommerce retailers. https://econsultancy.com/blog/

65327-why-dynamic-pricing-is-a-must-for-ecommerce-retailers/, 2014.

J Shu, MC Chou, Q Liu, CP Teo, and IL Wang. Models for effective deployment and
redistribution of bicycles within public bicycle-sharing systems. Oper. Res., 61(6):
1346–1359, 2013.

R Sides and HK Hogan. Deloitte’s 2015 holiday survey: Embracing retail disrup-
tion. https://www2.deloitte.com/tr/en/pages/consumer-business/articles/
holiday-retail-sales-consumer-survey.html, 2015.

D Simchi-Levi, SD Wu, and ZJM Shen. Handbook of quantitative supply chain analysis:
Modeling in the e-business era, volume 74. Springer, 2004.

KT Talluri and GJ van Ryzin. The theory and practice of revenue management, vol-
ume 68. Springer, 2006.

Tompkins Supply Chain Consortium. Supply chain metrics: Data for you to
compare against. https://www.supplychainconsortium.com/Report/GetReport/
Supply-Chain-Metrics, 2012.

UPS. 2016 UPS rate and service guide. https://www.ups.com/media/en/daily_

rates.pdf, 2016.

U.S. Census Bureau. Annual estimates of the resident population: April 1,
2010 to july 1, 2014 - United States - metropolitan and micropolitan statisti-
cal area. https://factfinder.census.gov/faces/tableservices/jsf/pages/

productview.xhtml?src=bkmk, 2014a.

U.S. Census Bureau. Income and poverty in the United States: 2014.
https://www.census.gov/content/dam/Census/library/publications/2015/

demo/p60-252.pdf, 2014b.

U.S. Census Bureau. Latest quarterly e-commerce report. https://www.census.gov/
retail/mrts/www/data/pdf/ec_current.pdf, 2016.

159

https://econsultancy.com/blog/65327-why-dynamic-pricing-is-a-must-for-ecommerce-retailers/
https://econsultancy.com/blog/65327-why-dynamic-pricing-is-a-must-for-ecommerce-retailers/
https://www2.deloitte.com/tr/en/pages/consumer-business/articles/holiday-retail-sales-consumer-survey.html
https://www2.deloitte.com/tr/en/pages/consumer-business/articles/holiday-retail-sales-consumer-survey.html
https://www.supplychainconsortium.com/Report/GetReport/Supply-Chain-Metrics
https://www.supplychainconsortium.com/Report/GetReport/Supply-Chain-Metrics
https://www.ups.com/media/en/daily_rates.pdf
https://www.ups.com/media/en/daily_rates.pdf
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk
https://www.census.gov/content/dam/Census/library/publications/2015/demo/p60-252.pdf
https://www.census.gov/content/dam/Census/library/publications/2015/demo/p60-252.pdf
https://www.census.gov/retail/mrts/www/data/pdf/ec_current.pdf
https://www.census.gov/retail/mrts/www/data/pdf/ec_current.pdf


R Waeber, PI Frazier, and SG Henderson. Bisection search with noisy responses. SIAM
J. Control Optim., 51(3):2261–2279, 2013.

Z Wang, S Deng, and Y Ye. Close the gaps: A learning-while-doing algorithm for
single-product revenue management problems. Oper. Res., 62(2):318–331, 2014.

A Waserhole. Vehicle sharing systems pricing optimization. PhD thesis, Université de
Grenoble, 2014.

L Wei, S Jasin, and L Xin. Asymptotic optimality of order-up-to control for stochastic
inventory systems with sequential probabilistic service level constraints. Working
paper, 2018.

D Williams. Probability with martingales. Cambridge university press, 1991.

L Xin and DA Goldberg. Optimality gap of constant-order policies decays exponentially
in the lead time for lost sales models. Oper. Res., 64(6):1556–1565, 2016.

H Xu and B Li. Dynamic cloud pricing for revenue maximization. IEEE T. Cloud
Comp., 1(2):158–171, 2013.

PJ Xu, R Allgor, and SC Graves. Benefits of reevaluating real-time order fulfillment
decisions. M&SOM, 11(2):340–355, 2009.

S Yoon and ME Lewis. Optimal pricing and admission control in a queueing system
with periodically varying parameters. Queueing Syst., 47(3):177–199, 2004.

L Zhan and AE Lloyd. Customers asymmetrical responses to variable pricing. J.
Revenue Pricing Management, 13(3):183–198, 2014.

Y Zhou. Pricing and Matching in the Sharing Economy. PhD thesis, 2017.

160


	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Joint Dynamic Pricing and Order Fulfillment for E-commerce Retailers
	Abstract
	Introduction
	Literature Review
	Problem Formulation
	A Deterministic Approximation of JPF
	First Heuristic Control: Randomizing Pricing and Fulfillment Decisions
	Second Heuristic Control: Re-adjust and Re-optimize Pricing and Fulfillment Decisions
	Numerical Experiment
	Closing Remarks

	Real-time Dynamic Pricing for Revenue Management with Reusable Resources and Deterministic Service Time Requirements
	Abstract
	Introduction
	Literature Review
	Basic Model
	Deterministic Price Control
	Deterministic Price Control with Periodic Batch Adjustments
	Numerical Experiments
	Extension to Multiple Service Types with Heterogeneous Service Time Requirements
	Extension to Advance Service Bookings with Homogeneous Service Time Requirements
	Closing Remarks

	Near-Optimal Bisection Search for Nonparametric Dynamic Pricing with Inventory Constraint
	Abstract
	Introduction
	Problem Formulation
	Main Results 
	Proof of Results
	Closing Remarks

	Conclusion
	Appendices
	Appendix to Chapter 2
	Proof of Lemma 2.5.1
	Proof of Theorem 2.6.1
	Proof of Theorem 2.7.1
	Remaining Details of Numerical Experiment

	Appendix to Chapter 3
	Proof of Lemma 3.4.1
	Proof of Theorem 3.8.1
	Proof of Theorem 3.9.1
	Remaining Details of Numerical Experiment

	Appendix to Chapter 4
	Proof of Theorem 4.4.3
	Proof of Key Lemmas in Chapter 4.5

	Bibliography

