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ABSTRACT

There has been a recent emergence of applications from the domain of machine

learning, data mining, numerical analysis and image processing. These applications

are becoming the primary algorithms driving many important user-facing applications

and becoming pervasive in our daily lives. Due to their increasing usage in both mobile

and datacenter workloads, it is necessary to understand the software and hardware

demands of these applications, and design techniques to match their growing needs.

This dissertation studies the performance bottlenecks that arise when we try to

improve the performance of these applications on current hardware systems. We ob-

serve that most of these applications are data-intensive, i.e., they operate on a large

amount of data. Consequently, these applications put significant pressure on the

memory. Interestingly, we notice that this pressure is not just limited to one memory

structure. Instead, different applications stress different levels of the memory hier-

archy. For example, training Deep Neural Networks (DNN), an emerging machine

learning approach, is currently limited by the size of the GPU main memory. On

the other spectrum, improving DNN inference on CPUs is bottlenecked by Physical

Register File (PRF) bandwidth. Concretely, this dissertation tackles four such mem-

ory bottlenecks for these emerging applications across the memory hierarchy (off-chip

memory, on-chip memory and physical register file), presenting hardware and software

techniques to address these bottlenecks and improve the performance of the emerging

applications.

For on-chip memory, we present two scenarios where emerging applications per-
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form at a sub-optimal performance. First, many applications have a large number of

marginal bits that do not contribute to the application accuracy, wasting unneces-

sary space and transfer costs. We present ACME, an asymmetric compute-memory

paradigm, that removes marginal bits from the memory hierarchy while performing

the computation in full precision. Second, we tackle the contention in shared caches

for these emerging applications that arise in datacenters where multiple applications

can share the same cache capacity. We present ShapeShifter, a runtime system that

continuously monitors the runtime environment, detects changes in the cache avail-

ability and dynamically recompiles the application on the fly to efficiently utilize the

cache capacity.

For physical register file, we observe that DNN inference on CPUs is primarily

limited by the PRF bandwidth. Increasing the number of compute units in CPU

requires increasing the read ports in the PRF. In this case, PRF quickly reaches a

point where latency could no longer be met. To solve this problem, we present LEDL,

locality extensions for deep learning on CPUs, that entails a rearchitected FMA and

PRF design tailored for the heavy data reuse inherent in DNN inference.

Finally, a significant challenge facing both the researchers and industry practi-

tioners is that as the DNNs grow deeper and larger, the DNN training is limited by

the size of the GPU main memory, restricting the size of the networks which GPUs

can train. To tackle this challenge, we first identify the primary contributors to this

heavy memory footprint, finding that the feature maps (intermediate layer outputs)

are the heaviest contributors in training as opposed to the weights in inference. Then,

we present Gist, a runtime system, that uses three efficient data encoding techniques

to reduce the footprint of DNN training.
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CHAPTER I

Introduction

The computing industry is witnessing an emergence of applications from the

domains of machine learning, numerical analysis, data mining and image process-

ing, that act as key processing applications in both mobile and datacenter work-

loads [114, 37, 74]. These applications form the core computation of many important

workloads that have become critical for the computing industry in the last decade.

For example, amongst machine learning algorithms, Deep Neural Networks (DNNs)

have recently emerged as a primary computational component in user-facing applica-

tions that include analyzing text, decoding speech, recognizing images and searching

the web, among others [75, 92, 155, 148, 89, 162, 170, 59, 87, 91]. DNNs are heav-

ily driving the development of intelligent personal assistants (like Apple Siri, Google

Now, Microsoft Cortana etc) and autonomous vehicle driving research [148, 89]. Simi-

larly, social media and social networking service providers like Facebook and Twitter,

and online retail industries like Amazon, analyse the user data and perform data

mining to extract insights, for example, to identify the trends in content sharing or

shopping patterns [50, 134]. As we observe this transformation at the frontier of how

applications work, it is incumbent upon us, as computer engineers, to recognize the

changing nature of applications and to design systems and solutions that can address

the needs of these applications.
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A common characteristics of these applications is that they work on large amount

of data. For example, DNN are trained via iterating over large training dataset.

Similary, the data mining to extract insights also query a large dataset collected over

long period of time. As a result, one of the main processing bottlenecks among these

data-intensive applications is the memory subsystem, where capacity and bandwidth

can be critical factors in determining application performance. These applications

put stress on different levels of the memory subsystem, on both off-chip and on-chip

structures, requiring innovative and alternative computing techniques to match the

increasing pressure on the memory subsystem.

This dissertation studies the characteristics of such emerging applications, investi-

gates their implications on different levels of memory hierarchy, identifying the sources

of performance bottlenecks, and presenting techniques to address those bottlenecks.

In this Chapter, we present the characteristics of these applications, followed by how

they pressurize the memory subsystem and brief overview of the techniques developed

to mitigate such memory bottlenecks.

1.1 Characteristics of Emerging Applications

The emerging applications have three primary characteristics as follows:

1. Data Intensive – The applications process a large amount of data, with

memory footprint sometimes reaching in multiple Gigabytes (GBs). For exam-

ple, training a DNN requires can have working size of tens of GBs easily for

upcoming networks [128]. Similarly, Facebook and Twitter have large amount

of user data to mine before they can extract any useful insights [50, 134].

2. Heavy Data Reuse – Unlike streaming data intensive applications, these

applications have large amount of data reuse, i.e., a data element is reused mul-

tiple times before it can be discarded by an application. Therefore, majority
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of these applications are amenable to cache tiling, a compiler optimization that

restructures the application loop structure into tiles (small subsets of the work-

ing set that fit into the cache), to take advantage of the heavy data reuse and

improve the effectiveness of the cache for the computation [58, 156, 151].

3. Error Tolerance – Some of the most prominent emerging applications in

datacenter and server workloads are driven by models that consume imprecise

and noisy inputs. In addition, the application outputs are also estimates. These

factors make the applications highly error tolerant, i.e, the application accuracy

is retained or suffers little loss even after removing large number of bits from the

input data elements or performing computation with very low precision [136,

16, 51, 78, 95].

1.2 Pressure on Memory Subsystem

As the emerging applications are date-intensive, they put significant stress on

the memory subsystem. We observe that the performance bottlenecks in the memory

subsystem are not limited to a particular memory structure. Instead, the applications

puts stress on different parts of the memory hierarchy for different scenarios. This

section briefly discusses these scenarios and the performance bottlenecks across the

complete memory stack.

1.2.1 On-chip Memory

Error Tolerant Applications. An inherent characteristic of the emerging ap-

plications is the presence of a large number of marginal bits - the bits that do not

contribute significantly to the application accuracy. These bits, though do not affect

application accuracy, waste cache capacity and bandwidth, and energy in transfer-

ring these bits between memory structures. However, due to the limited number of
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available floating-point datatypes and the dramatic HW/SW stack changes needed

to support more flexible floating-point formats, these marginal bits persist, resulting

in wastage of cache space, where many more data elements could be stored if the

marginal bits were removed. Because of the costs associated with moving and storing

the marginal bits, we are not able to effectively utilize cache capacity and bandwidth.

Contention in Shared Caches. As discussed in Section 1.1, many emerging

applications have large amount of data reuse and are amenable to a compiler op-

timization known as cache tiling. As a statically parameterized optimization, cache

tiling requires that the compiler control both the size and shape of the tiles used in the

computation, which is intimately linked to cache size [38, 28, 113]. However, this class

of optimization was conceptualized before the multicore era, which has introduced nu-

merous additional dynamic factors that affect application runtime environment, i.e,

the cache size available to an application changes at runtime due to different sources

of dynamism.

The static assumptions used to aggressively tune the tiling parameters can be

easily broken by sources of post-deployment dynamism. Therefore, a pre-deployment

best tile can result in sub-optimal performance across different runtime environments.

The advent of highly dynamic multicore/multiprocessor environments necessitates

the rethinking of how cache tiling should be applied and deployed for these emerging

applications in commercial and production contexts.

1.2.2 Physical Register File

A key focus of recent work in our community has been on devising increasingly

sophisticated acceleration devices for deep neural network (DNN) computation. Yet,

despite the promise of substantial improvements in performance and energy con-

sumption offered by these approaches, due to the cost and complexity of overhauling

compute infrastructure and programming model, the questions arises as to what can
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be done, if anything, to evolve conventional CPUs to accommodate efficient deep

neural network computation.

In this part of research, we focus on the challenging problem of identifying and

alleviating the performance bottlenecks for convolution layer computation for con-

ventional CPU platforms. By performing a detailed study of a range of convolution

based DNN applications on a modern CPU microarchitecture, we observe that that

designing a physical register file (PRF) capable of feeding computational units is the

primary barrier that prevents the addition of more compute units in the CPU, lim-

iting the performance improvements that can be achieved by CPU on convolution

layers. Therefore, we need to craft a solution that can efficiently utilize the PRF

bandwidth to improve the DNN performance on CPUs.

1.2.3 Off-chip Memory

Modern deep neural networks (DNNs) training process typically relies on GPUs

to train complex hundred-layer deep networks. The DNN training process has large

compute and memory requirements and primarily relies on modern GPUs as the

compute platform. A significant problem facing both researchers and industry prac-

titioners is that, as the networks get deeper and larger, the available GPU main

memory becomes a primary bottleneck, limiting the size of networks it can train and

the amount of input data GPUs can process in parallel [128, 32] (For GPU main

memory, GDDR5/GDDR5X, the first order concern is bandwidth as many GPU ap-

plications are bandwidth-bound. It is hard to get both high bandwidth and high

density DRAM-based memory at low cost [100]). Therefore, DNN training process

requires innovative solutions to fit larger and deeper models in the GPU main memory,

facilitating the machine learning research to train more accurate deeper DNNs.
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1.3 Addressing Memory Bottlenecks

The goal of this dissertation is to alleviate the memory bottlenecks of these emerg-

ing applications. This section gives a brief introduction of the techniques for address-

ing the memory bottlenecks discussed in Section 1.2.

1.3.1 ACME - An Asymmetric Compute-Memory Extension

Applications need different floating point datatypes, as evidenced by the ubiq-

uitous support at the both the architecture and language levels for double, float

and (occasionally) half types. In this research, we argue that the existing space

of 3 options is nowhere near rich enough to capture the needs of application code,

leaving many applications using datatypes that are larger than necessary, along with

the associated costs in moving and storing those datatypes. Thus, these applications

use up unnecessary space in the memory subsystem in terms of cache capacity and

memory bandwidth, resulting in substantial application performance degradation and

unnecessary energy dissipation.

Supporting arbitrary precision floating-point types in both memory and compu-

tation is highly impractical, as it is extremely invasive, requiring major changes to

the functional units, pipeline, datapaths and so forth to support using arbitrary pre-

cision in the compute substrate. Moreover, prior work in cache compression have

been effective at addressing this problem in the integer and fixed-point domains,

but cache compression has been shown to achieve negligible compression ratios for

floating-point data because of the lack of value-level replication in floating-point

data [14, 121, 142, 141, 138]. Thus, this problem remains unaddressed for floating

point datatypes.

The goal of this work is to take advantage of this opportunity, reducing the pres-

sure on the memory subsystem by enabling concise storage – a storage paradigm

where the data elements are stripped of their marginal bits, removing the movement
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and storage costs associated with those bits in the memory subsystem. However,

several challenges emerge in designing an approach that enables concise storage:

1. Flexibility – different applications need different numbers of bits to achieve

satisfactory accuracy. Therefore, the design of a concise storage approach needs

to have the flexibility to capture the wide spectrum of design points required

by different applications and design objectives.

2. Highly Concise Storage – the approach should be able to identify as many

marginal bits as possible, and avoid storing those bits throughout the memory

subsystem while still delivering high-quality computational results.

3. All Memory Levels – techniques focused on a particular level of cache, or

those focused solely on DRAM, only alleviate pressure on part of the mem-

ory subsystem. A better solution should reduce the burden of marginal bits

throughout all levels of memory.

4. Modular – the approach should reuse as much existing compiler, architectural

and micro-architectural infrastructure so that it can be easily built into those

infrastructures. It should also be backward compatible and should have minimal

impact on exact applications.

To address these challenges and enable concise storage throughout the memory

hierarchy, this work motivates and describes ACME, an asymmetric compute-memory

extension for conventional architectures. In ACME, data can be treated asymmet-

rically ; computation is done on conventional 32-bit IEEE 754 single precision [120]

values – while data is stripped of its marginal bits before being used in the memory

hierarchy. ACME includes a simple ISA extension that can be leveraged by the pro-

grammer and compiler, adding two new instruction classes to the ISA to operate on

concise data – load-concise and store-concise – to perform conversions between con-

cise and single precision format via three small additional micro-architectural units.
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The asymmetric approach significantly increases the ability to achieve concise storage

with small precision loss.

1.3.2 ShapeShifter - Continuous Cache Tiling

As discussed in Section 1.2, many emerging applications have heavy data reuse,

making them suitable for the compiler optimization known as cache tiling. However,

the static assumptions used to aggressively tune the tiling parameters can be easily

broken by sources of post-deployment dynamism. We observe substantial perfor-

mance loss in the presence of different sources of dynamism due to the mismatch in

availability of architectural resources compiler assumed at compile time versus actual

availability at runtime. The focus of this research is to develop a dynamic end-to-end

solution that is capable of detecting such opportunities and retiling the application

tiles suited to its current runtime environment.

To design a cache tiling solution that can encompass these numerous factors, two

main challenges emerge:

(i) the solution should be accurate, generating tiles that are customized to take

full advantage of cache and delivering significant performance benefits, and

(ii) monitoring application code for tiling opportunities and rewriting application

code to introduce new tiles must be low-overhead , such that the overhead of

those activities does not outweigh the benefits of the improved tiles.

A key insight of this work is to use a rapidly and dynamically constructed environment-

and application-specific black box model for predicting the performance of a host of

tiling options within the immediate environment. This paper introduces continuous

shape shifting with ShapeShifter, an end-to-end dynamic compilation infrastructure

that enables continuous shape shifting and aggressively rewrites running applications
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in response to runtime dynamism. ShapeShifter uses a lightweight monitoring infras-

tructure to examine the running applications and the runtime environment to look

for opportunities to tile and re-tile the applications in response to changes in the

runtime environment. Upon identifying a suitable tile shape based on the dynami-

cally constructed model, ShapeShifter rewrites and re-tiles the application leveraging

a low-overhead dynamic compilation capability to divert execution into the aggres-

sively tiled code with near-zero overhead.

1.3.3 LEDL - Locality Extensions for Deep Learning

This work focuses on the challenging problem of identifying and alleviating the

performance bottlenecks for convolution layer computation for conventional CPU

platforms. Looking at modern CPU offerings, it is clear that they offer substantially

fewer raw floating point operations per second (FLOPS) than their GPU counterparts.

However, CPUs are an indispensable part of the design of any system, meaning they

are a well understood part of conventional system design practices while offering the

benefit of a seamless, familiar programming model and software stack. Moreover,

CPU designs have a long history of incorporating hardware and ISA support for

specialized domain-specific operations, evidenced by the near-universal support for

cryptography, virtualization, security and multimedia operations in modern CPU

offerings [10, 4, 11, 5, 6]. Thus, alongside designing dual-device acceleration platforms,

it remains an important objective to design CPU hardware that can perform all the

non-accelerable tasks for which CPUs are essential while also serving as an energy-

efficient fabric for convolution layer computation.

Unfortunately, despite the large body of work in our community on accelerating

DNNs [34, 117, 31, 105, 66, 128, 13, 127, 68, 97], there is little understanding in the

literature of the interplay among the factors involved in improving CPU performance

on convolution layers. Simply increasing raw FLOPS by continuing down the path of
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scaling vector widths, such as in the progression from SSE to AVX to AVX2 among

x86 platforms [109, 53], is unlikely to continue for two reasons. First, the AVX2 vector

width of 512 bits spans a full cache line, and thus longer vectors would necessarily

touch multiple cache lines per vector register load, introducing significant performance

penalties or substantial microarchitectural workarounds. Second, leveraging larger

vector widths puts the onus on programmers and compilers to find additional sources

of SIMD parallelism, an extremely difficult task even for current vector widths that

remains an active, open area of research in the compiler community [17, 79, 116].

Thus, it is clear that improving the computational capability of CPUs for convolution

layers requires an alternative approach, yet it remains unclear what that approach is.

In this research, we perform a detailed characterization of the issues involved in

improving CPU performance for convolution layers. We find first that scaling the read

bandwidth of the physical register file (PRF) is one of the key constraints needed to

deliver additional data to increasingly capable compute units. Second, we find that

harnessing increasingly capable compute units requires crafting a solution that spans

both hardware and software to take full advantage of the data reuse present in the

core of the CNN computation. Building on this insight, we design Locality Exten-

sions for Deep Learning (LEDL). LEDL is a technique that spans both hardware

and software, consisting of a novel set of microarchitectural and ISA extensions to

increase the computational capabilities of modern CPUs for CNNs. We present the

design in detail, which in hardware includes a handful of architecturally visible remote

registers that reside within the VFMA units in the CPU and a set of inter-VFMA

links that allow data to be passed between units directly. In software, LEDL’s auto-

matic code generator, ACG, is carefully designed to generate code that is robust to

different microarchitectural implementations while taking full advantage of the reuse

opportunities exhibited by convolution layer computation and aggressive prefetching

mechanisms within modern CPUs.
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1.3.4 Gist - Efficient Data Encoding for DNN training

The availability of large datasets and powerful computing resources has enabled

a new breed of deep neural networks (DNNs) to solve hitherto hard problems such

as image classification, translation, and speech processing [75, 77, 88, 90, 160]. These

DNNs are trained by repeatedly iterating over datasets. This DNN training process

has large compute and memory requirements and primarily relies on modern GPUs as

the compute platform. Unfortunately, as DNN models are getting larger and deeper,

the size of available GPU main memory quickly becomes the primary bottleneck.

Many researchers have recognized this shortcoming and proposed approaches to

reduce the memory footprint of DNN training to train larger and deeper DNNs on

GPUs. However, prior approaches are not able to simultaneously achieve all of the fol-

lowing three desirable properties: (i) provide high memory footprint reduction, (ii) low

performance overhead, and (iii) minimal effect on training accuracy. Most prior works

propose efficient techniques to reduce the memory footprint in DNN inference with an

emphasis on reducing model size (also referred to as weights) [67, 71, 98, 72, 69, 66].

However for DNN training, weights are only a small fraction of total memory foot-

print. In training, intermediate computed values (usually called feature maps) need

to be stored/stashed in the forward training pass so that they can be used later in

the backward pass of training. These feature maps are the primary contributor to the

significant increase in memory footprint in DNN training compared to inference. This

important factor renders prior efforts, that target weights for memory footprint reduc-

tion, ineffective for training. State-of-the-art memory footprint reduction approaches

for training copy data structures back and forth between CPU and GPU memory

but pay a performance cost in doing so [128]. Finally, approaches that explore lower

precision computations for DNN training, primarily in the context of ASICs and

FPGAs, either do not target feature maps (and hence are unable to achieve high

memory footprint reduction) or, when used aggressively, result in reduced training
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accuracy [44, 63, 39].

The key insight of this work is in acknowledging that a feature map typically

has two uses in the computation timeline and that these uses are spread far apart

temporally. Its first use is in the forward pass and second is much later in the backward

pass. Despite these uses being spread far apart, the feature map is still stashed in

single precision format (32-bits) when they are unused between these accesses. We

find that we can store the feature map data with efficient encodings that result in a

much smaller footprint between the two temporal uses. Furthermore, we propose that

if we take layer types and interactions into account, we can enable highly efficient

layer-specific encodings – these opportunities are missed if we limit ourselves to a

layer-agnostic view. Using these key insights, we plan to design two layer-specific

lossless encodings and one lossy encoding that are fast, efficient in reducing memory

footprint, and have minimal effect on training accuracy.

Our first lossless encoding, Binarize, specifically targets ReLU layers followed by

a pooling layer. We observe that the ReLU output, that has to be stashed for its

backward pass, can be encoded using just 1-bit values because ReLU’s backward pass

calculation only needs to know whether ReLU output is zero or non-zero, leading

to 32× compression for these ReLU outputs. Our second lossless encoding, Sparse

Storage and Dense Compute (SSDC), specifically targets ReLU followed by convolu-

tion layer. We observe that ReLU outputs have high sparsity that can be exploited

to reduce memory footprint of stashed ReLU outputs. SSDC facilitates storage in

memory-space efficient sparse format but performs computation in dense format,

retaining the performance benefits of highly optimized cuDNN dense computation,

while achieving high reduction in memory footprint. Finally, in the lossy domain, our

key insight of representing the stashed feature maps in smaller format only between

the two temporal uses lets us be very aggressive with precision reduction without any

loss in accuracy. Our third lossy encoding based on this insight, Delayed Precision
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Reduction (DPR), delays precision reduction to the point where values are not longer

needed in the forward pass, leading to significant bit savings (as small as 8 bits).

Utilizing all these encodings, we present Gist , a runtime system, that specifically

targets feature maps to reduce the training memory footprint. It will perform a

static analysis on the DNN execution graph, identifies the applicable encodings, and

creates a new execution graph with relevant encode and decode functions inserted.

Gist also performs a static liveness analysis on the affected feature maps and newly

generated encoded representations to assist the DNN framework’s memory allocator,

CNTK [145] in our case, to achieve an efficient memory allocation strategy.

1.4 Contributions

The specific contributions of this dissertation are as follows.

1. Asymmetric Compute Memory Extension – This dissertation presents

ACME, a novel asymmetric compute memory paradigm, where the marginal bits

are removed from the memory subsystem while the computation still happens

in full precision. We present the hardware and software techniques to realize

this asymmetric architecture, enabling us to efficiently utilize the cache capacity

and bandwidth.

2. Continuous Loop Tiling – This dissertation presents ShapeShifter, a run-

time system that continuously monitors, detects if an application runtime en-

vironment has changed and requires a new tiling strategy, and dynamically

retiles the application code tailored for the runtime environment. This enables

cache tiling, a hitherto static compiler optimization, to adapt to the current

datacenters having high degree of dynamism in post multi-core era.

3. Rearchitected FMA and PRF design for DNN inference on CPUs –

This dissertation tackles the challenging problem of improving DNN interference
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on CPUs, finding that PRF is the primary bottleneck in increasing the raw

compute capability of CPUs. We present LEDL, a rearchitected FMA design

that exploits the heavy data reuse inherent in DNN computations within and

across the FMA units, along with an Automatic Code Generator (ACG) that

generates the code tailored to the number of compute units available in the

processor.

4. Efficient Encodings to reduce DNN training memory footprint – A

significant challenge facing the researchers and industry practitioners is that, as

the networks grow deeper and larger, the available GPU main memory becomes

a primary bottleneck, limiting the size of DNNs it can train. This dissertation

investigates the data structures that contribute heavily to this memory footprint

and presents Gist , a runtime system that uses three efficient data encodings to

significantly reduce the memory footprint of the primary memory consumers in

DNN training.
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CHAPTER II

Background and Related Work

In this Chapter, we survey the related literature and provide the background to

the topics covered in this dissertation. This includes the current state-of-the-art in

removing marginal bits from the memory, dynamically retiling the applications for the

applications having heavy data reuse, hardware and software techniques for improving

DNN inference performance and reducing memory footprint of DNN training.

2.1 Removing Marginal Bits

One common way to reduce application cache footprint is using cache compression.

The majority of cache compression techniques strives to reduce value replication in the

memory subsystem [14, 142, 141, 121]. However, these cache compression techniques

are limited to integer benchmarks. Prior work shows that floating point data do not

show redundancy to the same degree as integer benchmarks [14, 138]. Our work,

focusing on floating-point data, is orthogonal and can be applied in conjunction with

cache compression.

There have been significant advances in using emerging memory technology as

approximate storage to trade-off storage accuracy for performance and energy sav-

ings [177, 125, 99, 136]. Our approach is different from these works because we focus

on concisely representing the data elements in traditionally designed memory. Dopple-
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ganger maps approximately similar cache lines to one physical cache line, resulting

in increased effective cache size [138]. Load-value approximation approximates the

value of a load on a cache miss [139].

Others have proposed techniques to reduce DRAM energy consumption by adjust-

ing DRAM refresh interval [108, 126, 159]. These techniques are specific to DRAM

and focus on energy savings. These techniques divide DRAM into critical and non-

critical partitions and reduce the refresh interval of non-critical portions to get energy

savings. The refresh interval of critical portion is kept unchanged but the non-critical

refresh interval can be lowered in order to get energy savings. Our work achieves

concise storage throughout the memory hierarchy and reduces DRAM accesses by

fitting more elements in the caches.

Recently, research in the field of machine learning has shown that several neural

networks require very few bits for storing their input parameters [40, 64, 70]. However,

these works are targeted towards deep learning systems. Our work is generic and

presents an end-to-end system, tackling challenges that come when converting these

memory savings into performance improvements.

There has been research to tune the precision level of an application to tradeoff

performance with accuracy. Precimonious [131] and gappa++ [107] provide software

precision tuning algorithms to find suitable data types for an application. However,

these works are limited to float and double data types. There has been exten-

sive research in the programming languages field to support approximate computing

[137, 24, 26, 135, 16, 51]. Our works uses programmer annotations to identify ap-

proximation friendly variables as is done in prior work [135, 52, 169, 168, 26]

2.2 Dynamically Retiling Applications

Prior research in finding the best tile size can be divided into two categories: static

techniques that develop a detailed analytic model for a set of host environments and
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predict a tile [28, 38, 93, 143], and dynamic techniques that use a model to prune the

search space, execute a subset of tiles and choose the one with the least execution

time [167, 163, 30, 47].

Static Techniques. This class of methods take an approach of developing detailed

white box analytic models for the applications and runtime environments. TSS [113]

studies how tiling interacts with several level of caches. Defensive tiling [18] considers

tiling strategy in presence of last-level cache interference, with the goal of reducing

the number of inclusion victim misses. Coleman and McKinley [38] develop a cache

model to find the largest tile that suffers from minimum self-interference misses.

These models can deliver useful insights about how applications interact with the

runtime environment. However, it is difficult and sometimes intractable for the white

box approaches to accurately model the complex set of factors that impact the choice

of tiling strategy. ShapeShifter differs from these techniques as it creates a model

on-the-fly.

Yuki et al. [172] discuss the limitations of the white box approaches. They use

a neural network to statically predict a tile for an application. However, it is a

completely static technique unable to adapt to changing runtime environment. In

addition, they limit the search to only square tiles to reduce the large training time,

leaving a significant performance opportunity on the table.

Dynamic Techniques. Reactive tiling [151] is a combined static and dynamic

technique that compiles an application with a fixed set of tiling parameters and

inserts mechanisms in the code to switch between this set of tiles at runtime. Reactive

tiling focuses only on the scenarios where the cache is resized during the application

execution as opposed to ShapeShifter that accounts for a wide range of sources of

dynamism. Some prior works mitigate the complexity of searching by resorting to only

square tiles (i.e., all tiling parameters must be equal) [163, 172]. Such limitations are

fundamental as they exclude valuable tiling configuration possibilities. We observed
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that performance difference between the best rectangle tile was 1.11× (up to 1.5×)

faster than best square for our test applications. The ATLAS library generator [163]

executes a wide range of tiles on the target machine and chooses the one with the best

performance. However, the optimized kernels cannot react to sources of dynamism.

2.3 Hardware and Software Techniques for DNN Inference

Accelerators. A significant amount of research has been done on DNN in past

few years [117, 34, 31, 105, 66, 175, 84]. Spatial architectures, having distributed

compute and memory, have been gaining attention as deep learning accelerators. The

Catapult CNN accelerator for FPGAs [117], TPU [84] and Eyeriss [34] are examples

of spatial architectures that use or can be configured as systolic arrays to transfer

partial sums between the distributed compute elements. DianNao and DaDianNao

research present DNN accelerators, focusing on minimizing off-chip as well on-chip

data accesses [31, 33].

Our technique inspired from exploiting the inter-unit reuse of data, have some

similarities with the systolic dataflow model presented in the spatial architecture DNN

research. However, there are substantial differences between the amount of compute

and memory in CPUs as compared to spatial architectures. Distributed compute and

memory helps spatial architectures divide up the work in a coarse-grained manner

where several PEs can compute partial sums for a small subset of inputs in parallel

and then transfer these partial sums between the compute elements. This is not

possible in CPUs, because there is a centralized PRF and the amount of compute is

also limited, preventing coarse-grained division of work. As a result, FMA latency

becomes a critical constraint while passing partial sums between the VFMA units on

CPUs, resulting in low performance for dataflows employing partial sum transfers.

Therefore, instead of passing partial sums, we transfer the input elements between

the compute units while maximizing the partial sum usage at PRF.
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In addition, there has been research in designing general purpose hardware that

can efficiently take advantage of SIMD execution units – Libra [119] and Dyser [56].

These designs, though showing higher flexibility, do not exploit the heavy data reuse

inherent in convolution algorithms. In addition, LEDL is targeted for CPUs, aiming

at low hardware intrusion techniques that can be implemented in CPUs quickly.

Weight Pruning and Precision Reduction. Convolution layers show high op-

portunity of pruning weights, substantially reducing the data footprint and the costs

associated with the data movements. Research efforts have focused on either achiev-

ing this pruning or designing hardware solutions taking advantage of the pruned

datasets [34, 13, 66, 68]. In addition, many DNN applications do not require 32 bits of

precision, further reducing the weight storage requirements. DNNs retain their accu-

racy even after converting the data format to 8/16-bit fixed point format [127, 105, 83].

Many insights from these efforts are orthogonal to our work, resulting in additional

speedups when applied in conjunction with our work.

Software. On software-focused efforts, there have been an increasing number of

efforts in writing aggressively hand-tuned codes for hardware, like Intel MKL and

NNPACK for CPUs, Nvidia CuDNN and Nervana Neon for GPUs [1, 49, 35, 2],

extracting every last ounce of compute packed on the machines. In addition, there

have been efforts to reduce the arithmetic complexity of convolution algorithms [97,

157]. Our code generator stands in a similar category of software efforts with focus

on automatic code generation for a given number of CPU VFMA units, instead of

hand-tuning it for one hardware design point.

2.4 Reducing Memory Footprint for DNN Training

Our work presents a systematic analysis of breakdown of total memory footprint

across different data structures in DNN training, showing that stashed feature maps
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and immediately consumed data structures are the major contributors in modern

DNN frameworks (as opposed to weights in DNN inference). We present layer-specific

lossless encodings, targeting different categories of stashed feature maps, which to our

knowledge has not been proposed before. Our lossy encoding is specifically designed

for DNN training and stands in stark contrast with the prior body of similar work on

DNN inference. Our work presents a unique way of applying precision reduction in

which the data in the forward pass is kept in full FP32 format, while only the data

that is stashed for the backward pass is represented with fewer bits, resulting in more

aggressive bit savings which is unseen in the previous work.

Generic Approaches. vDNN transfers the data between CPU DRAM and GPU

memory using smart prefetching analysis [128]. vDNN enables fitting very large

networks in the GPU memory, but at the expense of (1) performance cost (11% on

average, and up to 25% for Inception, for vDNNall configuration), and (2) energy cost

of using PCIe and GPU DRAM bus constantly for the data transfer, and (3) using

PCIe, which is a shared critical resource in a distributed training [41], potentially

causing performance issues in distributed setting. CDMA, designed on top of vDNN,

leverages sparsity to compress the data sent between CPU and GPU [129]. [32, 62]

presents memory sharing and inplace optimizations that are implemented in MxNet

framework. It also proposes layer re-computation to trade off large memory space with

re-computing fast DNN layers. This work is orthogonal and can achieve additional

speedup with our encodings.

Encodings. Lossy encodings have been studied rigorously in the domain of DNN

inference. These works apply network pruning, quantization, huffman encoding and

precision reduction to reduce the model size (weights) [67, 85, 71, 98, 72, 69]. Many

HW accelerators have been designed employing limited precision and leveraging spar-

sity to reduce computational and memory requirements [66, 31, 34, 118, 86, 147, 46,

127, 158, 13]. However, these techniques do not apply directly for training as weights
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change frequently during the training process, and weights are not a major contributor

to total memory footprint.

Most of the other works for DNN training have looked into the reducing preci-

sion requirements for computation. These works do not focus on reducing memory

footprint and, thus, do not optimize memory for stashed feature maps. For exam-

ple, BUCKWILD! breaks down memory footprint into four categories (DMGC in

the paper), but ignore stashed feature maps, as it does not play significant role in

computational precision study [44]. Similarly, [63, 39, 65] show that 16-bits dynamic

fixed point computation is enough for training small DNNs on CIFAR-10 and do not

focus on primary contributor to memory footprint. We share an observation with this

work that uniform precision reduction results in severe accuracy losses. These works

keep a shadow copy of weights in full precision, which is updated at the end of each

minibatch and then quantized for next minibatch, to keep accuracy in check.
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CHAPTER III

Concise Loads and Stores: The Case for an

Asymmetric Compute-Memory Architecture

One of the main processing bottlenecks among data-intensive applications is the

memory subsystem, where capacity and bandwidth can be critical factors in deter-

mining application performance. Prior work has made this observation, resulting in

a class of techniques focused on the problem of identifying and building systems that

take advantage of replication and redundancy across different data elements in the

memory hierarchy [14, 121, 142, 141, 138].

This work takes a new approach to addressing the problem, focusing on marginal

bits – bits within the data representation that add little extra information among

elements in a data structure while consuming a significant fraction of the memory and

cache resources. Motivating this work is the observation that a number of applications

(1) are tolerant to the removal of marginal bits, where the accuracy of results is

minimally impacted and (2) stand to benefit significantly in performance and energy

when the burden of storing and moving those additional bits is removed.

This opportunity is illustrated in Figure 3.1, which shows the output accuracy

of Kmeans across a spectrum of different input bit counts. Figure 3.1(a) uses the

“precise” 32-bit single-precision format, while (b), (c) and (d) use input elements

represented in 16, 10, and 8 bits, respectively. Note that these experiments simply
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Figure 3.1: Kmeans clustering output when applying a range of different storage
formats. Similar accuracy for 32 (precise), 16 and 10 bits but poor accuracy for
8 bits
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drop input bits; the computation still happens at 32-bit single precision. We observe

that using 16 or 10 bits changes the cluster membership of a few points, but the

results remain almost indistinguishable from the exact results. However, further

reducing the input representation to 8 bits results in incorrect cluster membership for

the majority of points. We have observed a similar trend in numerous applications,

where dropping marginal bits from the input has little impact on application accuracy

but can significantly improve performance. Our further investigation, as we will show

in Section 3.1, provided two more insights – 1) storing data with fewer bits while

performing computation at full precision removes more marginal bits compared to

the approach where fewer bits are used for both memory and compute, and 2) the

remaining bits after removing the marginal bits often do not fit neatly into double,

float or half, or any other representation that is a multiple of 8.

To enable concise storage throughout the memory hierarchy, this work motivates

and describes ACME, an asymmetric compute-memory extension for conventional

architectures. In ACME, data can be treated asymmetrically ; computation is done

on conventional 32-bit IEEE 754 single precision [120] values – while data is stripped of

its marginal bits before being used in the memory hierarchy. ACME includes a simple

ISA extension that can be leveraged by the programmer and compiler, adding two

new instruction classes to the ISA to operate on concise data – load-concise and store-

concise – to perform conversions between concise and single precision format via three

small additional micro-architectural units. The asymmetric approach significantly

increases the ability to achieve concise storage with small precision loss.

This asymmetric approach is flexible, allowing the application programmer and

compiler make clear choices as to how much space is used to store data. The ap-

proach results in highly concise storage, significantly outperforming prior approaches

based on leveraging redundancy across data elements or cache lines. The approach

impacts all memory levels, converting between concise and full-precision formats at

24



the boundary of the memory hierarchy, ensuring that data is stored concisely through-

out the hierarchy. Finally, the approach is backward compatible and reuses existing

hardware, adding three small additional micro-architectural units on top of existing

designs to perform address generation for concise data accesses and to perform format

conversion between concise and native data formats.

We perform an evaluation of ACME on 10 applications covering a range of data-

intensive and compute-intensive applications. We find that the approach is able to

achieve speedups that average 1.3× (up to 1.8×) while losing a maximum of 1%

end-to-end application accuracy.

3.1 Motivation

In this section, we discuss the limitations of prior work in achieving highly concise

storage, and make the case for an asymmetric compute and storage technique.

3.1.1 Limitations of Prior Work

Lossless cache compression techniques [14, 121, 142, 141] focus on removing redun-

dant bits by reducing the incidence of replicated values in last-level caches (LLCs).

These approaches are designed to work with fixed-point and integer programs. How-

ever, cache compression has been shown to achieve negligible compression ratios for

floating-point data because floating-point data lacks the value-level replication that is

often found in integer and fixed-point data [14, 138]. Others have explored extending

the definition of replication to include softer definitions of replication, treating LLC

lines of similar floating point data as replicas [138]. These techniques achieve better

compression for floating-point values than lossless compression techniques. However,

as we show later in Section 5.4, these softer definitions of replication still leave large

numbers of marginal bits in cache. Moreover, the narrow focus of prior work on last-

level cache only partially addresses this problem, leaving all data in place in private

25



caches and DRAM.

In addition, different applications need different numbers of bits to achieve satis-

factory accuracy. Therefore, the design of a concise storage approach needs to have

the flexibility to capture the wide spectrum of design points required by different ap-

plications and design objectives. Current architectural designs that include support

for double, float and (occasionally) half precision floating-point configurations are

of limited applicability, as they do not capture a rich enough range of options and

leave a significant opportunity on the table. Moreover, recent prior work focused

on building approximate storage structures also does not provide sufficient flexibility

because its approximation settings are built into the hardware at design time [138].

To address the limitations of prior techniques, our approach uses custom-precision

floating-point formats. In our approach, each number still has sign, exponent and

mantissa fields, however the number of mantissa and exponent bits are not fixed. This

makes our approach highly flexible, providing a rich spectrum of design points with

different numbers of mantissa and exponent bits to choose from, resulting in a highly

concise storage. Our approach is fundamentally different from previous works [138,

14, 121, 142, 141] as it identifies marginal bits by carefully characterizing the impact

of bits in the data elements, while the previous works apply softer definitions of data

replication across LLC lines, missing the opportunity to remove all the marginal bits.

3.1.2 The Problem with Asymmetry

One might posit that concise storage could be achieved via a system using custom

precision formats that is symmetric in compute and memory, using a concise format

in both memory and compute. However, there are two reasons that make such an

approach impractical.

First, it would be extremely invasive and hardware-intensive, requiring major

changes to the functional units, pipeline, datapaths and so forth to support using
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Figure 3.2: Accuracy comparison between (a) symmetric approximation and (b)
asymmetric approximation for Kmeans, showing that asymmetry achieves same ac-
curacy with significantly fewer bits as compared to symmetric approach

concise data formats throughout.

Second, we have observed in our experiments that a symmetric approach tends

to lose accuracy very quickly as the number of bits in the data format are reduced.

This is illustrated in Figure 4.2(a) and (b), which show the result accuracy of run-

ning Kmeans using symmetric and asymmetric approaches, respectively, for a range

of different exponent and mantissa lengths. The asymmetric approach stores data

concisely throughout the memory hierarchy while performing computation at full

precision. Each plot shows the accuracy of a range of different formats, where darker

colors indicate higher accuracy results. The key observation is that the asymmetric

approach can achieve a particular level of accuracy with far fewer bits. Value sat-

uration causes steep dropoffs in accuracy when reducing the number of bits in the

symmetric approach (e.g., going from 4 to 3 exponent bits in Figure 2a). Such reduc-

tions in the number of bits reduce the range of values supported by the functional

units, frequently leading to saturated intermediate and output values and highly inac-

curate computation. For example, the symmetric approach requires 15 bits to achieve

99% accuracy, while the asymmetric approach requires just 5. This trend holds true

across applications – on average across 10 test applications, we find that the symmet-

ric approach requires 1.7× as many bits as the asymmetric approach to attain 99%
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for the application and produces concise loads and stores for the annotated variables.
b) and c) show execution of these concise loads and stores in hardware.

accuracy.

3.1.3 Bridging the Format Divide

An asymmetric approach has significant benefits over a symmetric approach in

terms of hardware simplicity and accuracy, but there remains one main difficulty to

solve to enable the asymmetric approach – bridging the format divide by converting

between precise and concise data formats at the boundary of the memory hierarchy.

An obvious way to perform these conversions to extract precisely formatted data

from concise data is to leverage existing software mechanisms such as shifts, masks

and other operations. Such an approach would work by loading concise data using

conventional memory operations, then convert and distribute it (potentially across

multiple registers) by shifting, masking and other bit-level operations. The main dif-

ficulty making software conversion approach impractical is that many such operations

may be needed per memory operation, introducing significant amounts of additional

processing overhead to support concise storage.

While such an approach may reduce capacity and bandwidth requirements in

the memory hierarchy, through experimentation (not shown here) we have observed

that it significantly undermines the ability of the approach to improve application

performance on net, often introducing non-negligible slowdowns due to the cost of

converting data every time it is loaded. This suggests that the key to enabling an
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effective approach to leveraging an asymmetric compute-memory approach lies in

efficiently bridging the format divide.

3.2 Overview of ACME

ACME is designed to address these problems. ACME is based on an asymmetric

compute-memory architecture; the data is stored concisely in memory while compu-

tation happens on full precision. ACME reduces pressure on the memory subsystem

exploiting marginal bits to reduce the cost of storing and moving data.

3.2.1 Challenges

However, there are several challenges in converting these savings in memory stor-

age and bandwidth to performance improvements.

Quick Format Conversion. ACME is based on an asymmetric compute and storage

paradigm, resulting in a format divide between compute and memory. Therefore, each

concise load requires conversion from the concise format to the single precision format.

Similarly, each concise store requires conversion from the single precision format to

the concise format to bridge this format divide. These conversions must be fast to

extract maximum performance benefit from the concise storage.

Bit-level Interactions in Byte-addressable Memory. Achieving highly concise

storage requires storing values of arbitrary length in the memory. This gives rise

to situations in which the concise data element might not start at a byte boundary.

Since conventional memory subsystem is byte-addressable, ACME needs to support

certain bit-level interactions in a byte-addressable memory environment.

Choosing Precision. Different applications have varying accuracy requirements,

and thus varying format requirements. Finding a suitable precision requires navi-

gating through a non-trivial search space (23 mantissa * 8 exponent = 184 for each
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variable). Therefore, ACME requires quickly finding the right level of precision for

the application.

3.2.2 Key Components

We introduce these components to address the challenges outlined earlier.

Fast Conversion Units. ACME introduces two small additional units, Concise

to Exact (C2E) and Exact to Concise (E2C), to bridge the format divide between

compute and storage. These units perform format conversions in a single cycle. The

C2E unit converts the concise data element into single precision format before writing

it into the register file. Similarly, the E2C unit converts the data element format from

single precision format to concise format before sending it to memory.

Concise Address Generation Unit. ACME uses a Concise Address Generation

Unit (CAGU) to calculate the memory address of concise data elements. Our ap-

proach keeps the memory byte-addressable. CAGU generates a byte-level memory

address that is closest preceding to the concerned concise data element. It works in

concert with the E2C and C2E to access the memory response at a bit-level granu-

larity.

Format Selection Assistant. ACME employs a Format Selection Assistant (FSA)

to find an appropriate format for an application. For a specified accuracy target,

ACME performs a binary search over the number of exponent and mantissa bits to

quickly identify a suitable precision for each approximated variable.

ISA Support. We propose two ISA extensions in the form of load-concise (ldc) and

store-concise (stc) instructions. These instructions support arbitrary length storage

in the memory hierarchy, leveraging the CAGU, E2C and C2E units to realize the

asymmetric compute and storage architecture.

30



3.3 Design and Implementation

ACME is an end-to-end system that stores data concisely by removing marginal

bits while performing computations at full precision, an approach that improves per-

formance of memory-intensive applications by increasing effective cache size and ef-

fective memory bandwidth. In this section, we describe the details of the ACME

system architecture.

3.3.1 System Architecture

Figure 3.3 illustrates a high level overview of ACME. illustrating the hardware

support (left) and the software support (right).

Hardware Support. Concise loads and stores are supported in the hardware via

the CAGU, E2C and C2E units. For the ldc instruction, as shown in Figure 3.3a,

the processor sends a load request for the memory address generated by CAGU. The

data response is passed through the C2E unit to convert the data element format from

concise to single precision, before writing it into the register file. For stc instructions

(Figure 3.3b), the processor first performs a companion load to find the data contents

at the requested memory address. In parallel to the companion load, the processor

removes marginal bits from the store value using the E2C module, converting the data

element format from single precision to concise. The concise data is then inserted at

the appropriate location in the companion load response, which is later written to

the load-store queue (LSQ).

Software Support. The ACME compiler allows the programmer to annotate those

variables that are amenable to approximation, as is done in prior work [135, 52,

169, 168, 26]. In ACME, these take the form of #pragma directives in order to

ensure the compatibility of ACME-enabled code with NON-ACME compilers. The

ACME compiler takes the annotated application, an accuracy specification and a
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representative input dataset as input and generates an application executable that

uses ldc and stc to enable concise storage. As illustrated in Figure 3.3c, the compiler

generates ldc and stc for the annotated variables with the precision information

(format length) as instructed by FSA. The resulting executable is then profiled and

the accuracy and performance statistics are sent to FSA. FSA uses this information

to decide the format length of the next step of binary search. In addition, the ACME

compiler provides a cmemcpy (concise memcpy) function that uses concise memory

operations to remove marginal bits from the approximated input variables, after the

variables have been initialized.

3.3.2 Hardware Execution

ACME uses ldc/stc instructions to enable precise computation on concise data

elements. These instructions reuse most of the existing processor micro-architecture

with the help of three small additional hardware units - CAGU, C2E and E2C.

3.3.2.1 Execution of Concise Loads

Every load instruction (with or without ACME) has 2 steps as shown in Fig-

ure 3.4 – i) Load address generation, where Address Generation Unit (AGU) calcu-

lates the effective address to be sent to the memory, and ii) Register file writeback,

where the data response from the memory is written back into the register file. ACME

introduces additional hardware units in both of these steps to bring concise data el-
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ements into the processor and convert them to the single precision format.

Load Address Generation. Conventional processors have dedicated functional

units to calculate the effective memory address for loads and stores. These func-

tional units are called Address Generation Units (AGU). By adding dedicated AGUs,

memory instructions do not use integer ALUs for address generation, creating oppor-

tunities for executing more independent integer instructions in parallel. The compiler

encodes the necessary information to perform address generation into the memory in-

structions while generating the application binary. This information is extracted by

the instruction decoder and passed on to the AGUs. For example, in x86, array

traversal uses a base register, index register for the array and the data size of each

element (in bytes). In this case, the AGU performs the following integer arithmetic

operation to generate the effective memory address: (base register) + data size

* index register.

However unlike conventional loads, ACME requires the capability of storing a

data element of any arbitrary length in the memory, breaking the assumption that

data elements are byte-aligned. This gives rise to situations where ACME requires

bit-level access while the memory is byte-addressable. ACME solves this challenge by

introducing the CAGU and C2E unit, allowing bit-level access in the data response

of the concise loads while the caches and memory remain byte-addressable. These

units thus serve as a transparent layer between the processor and the memory where

everything else is byte-addressable by design while ACME has bit-level access in the
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data response.

To accomplish this, the CAGU generates a byte-level memory address and a bit-

offset to completely specify the address of a concise data element. The byte-level

memory address is the closest byte preceding the requested concise data element.

The bit-offset is the number of bits that are present between the above byte-address

and the concise data element location. As shown in Figure 3.4, the CAGU first sends

this byte-level address to the memory. The C2E unit then extracts the relevant bits

from the data response using the bit-offset, converts them into the single precision

format and stores the final 32-bit value into the register file.

Figure 3.5 illustrates the design of the CAGU. The instruction decoder extracts

the precision information (the number of exponent and mantissa bits) from concise

loads and stores to calculate the length of the concise format. CAGU multiplies the

length of the concise format with the index register. Since the maximum length of a

concise data element is 31, the format length can be encoded using 5 bits. Therefore,

the above multiplication requires a 32x5 (for the index register and format length,

respectively) integer multiplication unit. This intermediate value is the number of

bits between the base address and the concise data element. Therefore, masking off

the last 3 bits of this value results in a byte-level memory address which is closest

byte-level memory address preceding the requested concise data element. Moreover,

the least significant 3 bits of the intermediate value form the bit-offset, i.e. the number

of bits to ignore in the memory response to get to the requested data.

While sending the concise load request, the CAGU also sends the bit-offset and

the precision information along with the request. These are required later by the C2E

unit to extract the relevant bits from the data response. If a cache miss happens,

then the bit-offset and the packing information gets stored in the MSHR entries. The

bit-offset requires 3 bits and the packing information requires ⌈log2(8 exponent ×

23 mantissa)⌉ = 8 bits of storage. Therefore, each MSHR entry needs extra 11 bits
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Figure 3.6: Block diagram of Concise to Exact (C2E) unit

of storage.

Note that exact loads also go through AGUs which have their own integer arith-

metic units. Therefore, the CAGU does not add to the critical path of the processor

for non-concise memory operations. We synthesize and report the timing character-

istics of the CAGU in Section 5.4.

Register File Writeback. On receiving a concise load memory response, the C2E

unit extracts the relevant bits using the bit-offset and precision information present

in the memory response. The data is converted to the single precision format and

stored into an intermediate register before being written to the register file. In the

next cycle, ACME performs a lookup on the LSQ to find the destination register and
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Figure 3.7: Execution of concise stores

performs a writeback into the register file.

Since each concise load performs format conversion from concise to single precision,

this conversion has to be fast to provide the maximum performance benefits of concise

storage. We introduce a Concise to Exact (C2E) unit to address this challenge. It

converts the concise data into the single precision format in a single cycle. Figure 3.6

gives a step-by-step walk-through of this conversion process in the C2E unit. The

process can be broken down into 5 steps – a) the C2E unit shifts the data response by

bit-offset to align the relevant bits at the end, b) it masks and shifts this value to get

the sign bit at the right position, c) similar operations are performed to put mantissa

bits at the right position, d) the concise data has a raw (unbiased) exponent. This

raw exponent is extracted, sign-extended and a bias of 127 is added to it to calculate

the final exponent value. This exponent is then shifted and put at the correct position

e) lastly, the C2E unit performs a logical OR operation on the sign, exponent and

mantissa portions to get the final value in the IEEE floating-point format. This final

value is written to an intermediate register.

In the next cycle, an LSQ look up is performed to find the destination register

and the data is written back into the register file. From this point, the data is in

single precision format and the computation happens precisely.

36



3.3.2.2 Execution of Concise Stores

Supporting arbitrary length concise stores in hardware is challenging because

concise stores require partial byte modifications, while memory is typically byte-

addressable. Concise loads solve this problem by reading the memory first and per-

forming bit manipulations later. However, concise stores need to preserve parts of a

byte in memory while modifying another part of the byte.

We solve this problem by performing a companion load to the relevant memory

location alongside every concise store. This data returned by the companion load is

then used to prepare the final store data to be written back to the memory. In our

experiments, we have observed that extra companion loads have minimal performance

impact, as they are greatly outnumbered by concise and conventional loads.

Concise store execution can be broken down into 3 steps as shown in the Fig-

ure 3.7 – a) Performing a companion load, b) removing the marginal bits from the

register value, and c) preparing the store value.

Companion Load. Concise stores perform a companion load using the CAGU as

shown in Figure 3.7a. This is performed to keep track of the bits (other than the

required data element) that need to be preserved at the time of storing in the memory.

Removal of Marginal Bits. In parallel to companion load execution, the reg-

ister value that needs to be written to the memory is stripped of its marginal bits

using the Exact to Concise (E2C) unit. Figure 3.8 gives a step-by-step walk-through

of this process – a) The register value is first rounded. This rounded value is used

to find b) exponent, c) sign and d) mantissa portions separately which are then e)

logically ORed to generate the concise value. Intuitively, these calculations are re-

verse of C2E calculations described earlier. In case the register value is beyond the

range supported by current precision, it is clamped at the format-supported maxi-

mum/minimum value, whichever is closer. For representing value 0, we set all the

bits in the concise format to 1.
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Store Data Preparation. Finally, ACME prepares the store value to be written

back to the memory as shown in Figure 3.7c. ACME first left shifts the concise value

by the bit-offset and brings it to the right position. The data response from the

companion load is masked at the bit-locations that are going to be written by the

concise value. These two values are then logically ORed. This value is then written

to the LSQ. Finally, the value in the LSQ is written to the memory on instruction

commit.

3.3.3 Software Support

ACME provides the flexibility to handle many levels of approximation by adding

concise loads and stores; load-concise (ldc) and store-concise (stc) instructions. The

ACME compiler is responsible for generating these concise loads and stores for the

annotated variables. These instructions support storage of the concise data in memory

with precise computation using the CAGU, E2C and C2E units. In addition, the

compiler adds support for a cmemcpy function to remove marginal bits from the input

dataset in the application code .

ISA extension. We use x86 assembly instruction movl to explain the workings of

the ldc and stc instructions, though the idea can be extended to other ISAs as well.

Consider the following load and store instructions:

movl (%ebx, %esi, 4), %eax ## Load movl %eax, (%ebx, %esi, 4) ## Store

For traversal of an array, these memory operations use i) base address (%ebx in

this example), ii) index register (%esi), and iii) data size (4). Since the base address

and index are not known at the compile time, the memory address calculation (%ebx

+ %esi * 4) happens in the AGU at runtime.

Concise memory operations differ from their exact counterparts in the data size

field. Here, compiler encodes the number of exponent and mantissa bits as instructed

by FSA (23 × 8 = 184 combinations, 8 bits). For example

39



ldc (%ebx, %esi, #E #M), %eax

stc %eax, (%ebx, %esi, #E #M)

In hardware, this precision information is extracted by the instruction decoder

and passed on to the CAGU to perform memory address calculations.

Concise Memcopy Function. ACME requires a mechanism to remove the marginal

bits from the annotated variables. There are several ways to perform this removal –

directly converting the input data into concise format while initializing the approx-

imated variables, or performing removal after the initializations are complete. We

take the latter approach because it enables us to carefully evaluate the impact of

removing marginal bits on the application speedup.

The ACME compiler adds support for a cmemcpy function that can be applied in

the application code just after the variable initializations complete. All the variables

are in IEEE format just after the initialization. The cmemcpy function is a simple

loop that makes a pass over the annotated array, creating an in-place (smaller) concise

copy of the data using concise store operations. In this way, the annotated input data

elements are now stored concisely, fitting more elements in the memory hierarchy. In

Section 5.4, we experimentally show that the overhead of applying cmemcpy is very

small (<1% of application execution time).

3.3.4 Format Selection Assistant

ACME uses highly flexible ISA extensions providing a wide spectrum of precision

configurations to choose from. Different applications have varying precision require-

ments, resulting in different number of marginal bits. ACME requires finding out

this precision requirement for an application at a specified accuracy target. This re-

quires navigating through a search space of precision configurations consisting of 23

mantissa * 8 exponent = 184 options for each annotated variable.

We introduce a Format Selection Assistant (FSA) to help ACME in quickly finding
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this suitable precision level. It takes an application, a set of representative inputs, an

error metric and an error bound (i.e., the maximum error an application can tolerate).

It generates the minimum number of bits (e.g., number of exponent and mantissa bits

for floating point numbers) to represent the input.

Tuning Algorithm. This approach leverages the observation that the accuracy of

an application in asymmetric storage and compute will typically monotonically in-

crease with length of exponent and mantissa bits. This enables us to leverage a greedy

binary-search based approach to reduce the complexity of the accuracy space explo-

ration. The algorithm is greedy because it finds a suitable precision configuration for

the first variable while keeping others exact, then it fixes the precision of first variable

and moves on to the second variable while keeping the others exact, and so on. In

this way, this algorithm finds suitable precision for each variable one-by-one.

We use the intuition that exponent is typically much more important than man-

tissa for mathematical operations. Thus, we explore the exponent values first, using

the maximum number of mantissa bits. For 32-bit IEEE floating point numbers, we

start with 4 bits of exponent with 23 bits of mantissa. Once we determine the number

of exponent bits using binary search, we again perform binary search over the length

of mantissa bits. For each variable, this will require at most ⌈log2(8)⌉+⌈log2(23)⌉ = 8

executions instead of 8 × 23 = 184 executions in exhaustive approach. The Format

Selection Assistant (FSA) can also be configured to apply a single format to all concise

variables in the application, where the search occurs over 1 variable and the formats

of all variables are kept in lockstep throughout the tuning algorithm. This reduces

the search space significantly at the cost of some reduction in data conciseness, a

tradeoff we evaluate in Section 3.4.3.

The final precision configuration at the end of the binary search is used for ap-

proximating the application. In addition to accuracy, this exploration also records

performance of different precision configurations. In case the approximation results
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Figure 3.9: ACME performance benefits. ACME achieves good speedup for memory-
bound applications

in a performance degradation compared to the exact execution, FSA instructs the

compiler to drop the approximation.

3.4 Evaluation

3.4.1 Methodology

Applications. We evaluate ACME across 10 applications. We use matrixMul,

symm and syr2k from PolyBench [58], Kmeans, FuzzyKmeans, inversek2j, fft and

blackscholes from AxBench [52] and hotspot and lu from Rodinia benchmark suite [29].

These floating point applications are at the core of emerging machine learning and

data mining workloads, having a mix of compute-bound and memory-bound applica-

tions and thus presenting a wide spectrum of program characteristics for evaluating

ACME.

Accuracy Measurement. We use average relative error [52, 169, 138] as the error

metric for our applications. Average relative error can be calculated using following
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equation, where vi is the exact value and v∗i is the approximated value.

AverageRelativeError =

[ N
∑

i=1

|vi − v∗i |/vi

]

/N

Performance and Energy Measurement. We evaluate the performance of

ACME on Gem5 simulator [21]. We extend x86 ISA support in Gem5 by adding

load-concise and store-concise instructions. We also add functional and timing mod-

els of ACME hardware components, CAGU, C2E and E2C units. A penalty of one

cycle is added to concise loads and stores to account for conversion latency as detailed

in Section 3.4.5.

Processor
8-wide OoO core, 3.0 GHz
192-entry ROB, 72-entry load queue

Private L1 cache 32 KB, 8-way, 2-cycle, 64 B block
Private L2 cache 256 KB, 8-way, 5-cycle, 64 B block
Shared LLC 2 MB, 16-way, 12-cycle, 64 B block
Main memory 1 GB, 200-cycle latency
L1 prefetcher Tagged prefetcher
L2 and LLC prefetcher Stride prefetcher

Table 3.1: Hardware configuration

Table 5.1 lists the specifications of the relevant hardware components that are con-

figured to model an Intel Haswell processor. The applications are simulated for 5

billion instructions or to completion whichever is sooner. For measuring energy, we

use McPat [103] and CACTI [115] to calculate the static and dynamic energy of core,

caches, DRAM and ACME hardware units.

FSA Testing and Training. We partition the inputs into training and testing sets

for all applications. We use the FSA to identify a suitable precision for the application

on the training set and then used the same precision on the testing set. We found

that the precision obtained from training satisfied the accuracy targets during testing.

Unless otherwise noted, our experiments configure the FSA to use a single format for

all application variables. The impact of using single- and multi-format configurations

is explored in depth in Section 3.4.3.
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Figure 3.10: ACME energy benefits. ACME provides significant energy savings for
memory-bound applications
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Figure 3.11: ACME performance study with varying format length. Smaller length
yields less cache and memory pressure, resulting in higher application speedup
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3.4.2 Performance and Energy Benefits

In this section, we evaluate ACME performance and energy tradeoffs for six accu-

racy targets. For each accuracy target, the number of exponent and mantissa bits is

determined by the FSA. We use this precision configuration to find the speedup and

energy savings compared to the exact execution.

Performance Accuracy Tradeoff. The performance-accuracy tradeoffs are shown

in Figure 3.9. The figure shows the speedup of ACME against exact execution car-

ried out on a non-ACME hardware for six accuracy targets. We observe significant

speedup for applications that can benefit from larger caches. This occurs because

ACME removes marginal bits from the memory subsystem, fitting more data ele-

ments into the lower level of memory closer to the processor. As one might expect,

speedup goes up with looser accuracy constraints. Nevertheless, ACME gets speedup

of 10% while attaining 99.999% accuracy. This is possible because some applications

have large number of marginal bits whose contribution to the application accuracy is

minute. For compute-bound applications, the FSA chooses exact execution, as reduc-

ing the data representation size has minimal impact on performance. For an accuracy

target of 99%, ACME achieves a speedup of 1.8x for matMul, with an average of 1.3x

for the whole application suite.

Energy Accuracy Tradeoff. Figure 3.10 presents the energy-accuracy tradeoffs of

the same experiment. The figure shows the total energy consumed during the ACME

execution compared to exact execution for six accuracy targets. Again, we observe

that memory-bound applications consume lower energy compared to the exact ex-

ecution. There are 2 reasons for this improvement. First, the application finishes

sooner, leading to reduced static energy, and second, ACME reduces the number of

DRAM requests leading to lower dynamic DRAM energy. ACME hardware com-

ponents are small and consume minimal amount of energy. For an accuracy target

of 99%, ACME reduces the energy consumption to 85% energy of the non-ACME
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hardware on average.

Impact of Format Length. We next carry out a detailed performance evaluation

of ACME with varying number of bits. The experimental setup consists of executing

an application with different format lengths (number of bits used to represent a data

element). For a particular format length, we can have different configurations of

exponent and mantissa bits. The graph presents the one with the highest accuracy.

The results of this experiment are presented in Figure 3.11.

ACME is able to achieve significant speedup for all memory-bound applications

with small format lengths. Due to increased effective memory capacity and band-

width, we observe higher speedup for smaller format lengths. These improvements

outweigh the clock-cycle penalty of the C2E unit. With larger format lengths, the

benefit of storing data concisely diminishes and extra clock cycle penalty by C2E

becomes more prominent. For example for application symm, ACME achieves good

speedup for small format lengths that use <16 bits but shows slight performance

degradation for larger format lengths >24 bits.

We also observe that a few of the data points do not follow the speedup trend. For

example, Kmeans at length = 20 and syr2k at length = 16 . This happens because

mapping of data elements to physical cache lines changes with format length. A

particular strided-access pattern for a certain format length can cause relatively more

conflict misses than the adjacent format lengths. We observe abrupt increase in the

number of misses for a certain cache for such format lengths. This is a well-studied

cache effect [130].

Finally, as expected ACME does not improve performance for compute-bound

applications: blackscholes and inversek2j. Blackscholes has minimal performance

degradation because it has good ILP to keep its pipeline busy hiding the cycle penalty

induced by the C2E unit. This is not the case in inversek2j, where the C2E penalty

delays execution of dependent instructions, resulting in higher degradation. However,
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we note that the FSA recommends not using concise types for these applications, and

thus these applications do not slow down when compiled with ACME compiler.

The experiment demonstrates ACME’s ability to improve the memory behavior of

applications resulting in significant speedup and energy improvements for applications

sensitive to cache and memory performance.

3.4.3 Format Selection Assistant

In this section, we show details of FSA-chosen concise format for different accuracy

targets, shown in Figure 6.12. The figure shows the breakdown between the number

of exponent and mantissa bits. We always keep the sign bit in the concise format.

We make 2 key observations from these results. First, the same application has

different number of marginal bits for different accuracy targets. For example, matrix-

Mul needs 8 bits for 90% accuracy but 24 bits for 99.999% accuracy. Second, different

applications have different number of marginal bits for the same accuracy target. For

example, Kmeans achieves 99% accuracy with just 5 bits whereas lu needs all 32 bits

to achieve 99% accuracy. The results effectively demonstrates the need of designing

a flexible approximation approach in order to get the desired accuracy targets.

For compute-bound applications, blackscholes and inverske2j, FSA chooses exact

32-bit representation for all accuracy targets.

Comparison to Oracle. We next compare performance achieved by the FSA

configuration against an oracle system that finds the best precision configuration

for the application by performing an exhaustive search over all the representation

formats. The findings of this experiment are shown in Figure 3.13. For most of the

applications, the accuracy increases and performance decreases with increasing the

number of exponent and mantissa bits. Therefore, the greedy binary-search heuristic

achieves performance close to the oracle in most cases. But as explained previously,

some precision configurations result in relatively more conflict misses which results
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format selector. The FSA achieves > 98% of oracle performance on average
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Figure 3.14: Comparison of speedup between single-format FSA and multi-format
FSA

in sub-optimal performance compared to the oracle. Overall, FSA is able to achieve

> 98% of the optimal speedup for all accuracy targets.

Different Formats Across Variables. The ACME hardware and compiler support

using different formats among the different variables in an application. However, using

different formats increases the complexity of the FSA tuning algorithm and thus

increases compilation time. Here we evaluate the impact on performance of using a

multi-format approach in the FSA. We allow the FSA to select formats among all

applications in both multi-format and single-format modes at a 90% accuracy target,

presenting our findings in Figure 3.14.

We observe that multi-format FSA precision settings provide minimal performance

benefit on most applications. Kmeans, FuzzyKmeans and lu have only one variable

suitable to approximation, and thus do not see any additional performance bene-

fit when using multi-format mode in the FSA. For the compute-bound applications

blackscholes and inversek2j, the FSA chooses exact execution in both multi-format

and single-format mode. For 4 the remaining 5 applications that have multiple vari-

ables and are not compute bound, we observe negligible performance improvements

when using the multi-format FSA. This occurs because, while the working set size
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Figure 3.15: ACME reduces #off-chip memory requests which is a major source of
speedup

may be somewhat improved by using the multi-format FSA, it often fails to reduce

the footprint by enough to fit the application working set into a closer cache level.

The single case where we observe a significant preformance improvement is for symm,

where such a reduction occurs.

3.4.4 Memory Behavior

ACME achieves concise storage by removing the marginal bits throughout the

memory subsystem. This results in an increase in effective capacity and bandwidth,

improving performance. A major source of speedup comes from reduction in LLC

misses. LLC misses are expensive as processor has to wait for DRAM to satisfy the

miss. In this section, we perform experiments to understand how ACME impacts

memory behavior.

LLC Miss Reduction. We compare the LLC Misses for FSA-chosen configura-

tion for six accuracy targets against exact execution, presented in Figure 3.15. As

expected, ACME brings down the number of LLC misses substantially, which is one

of the major causes of performance improvement with ACME. On average, ACME

reduces the number of LLC misses by 85% at an accuracy target of 99%.
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Figure 3.16: LLC misses when varying matrixMul working set size with exact and
ACME execution

Impact of Working Set Size. In this experiment, we perform a detailed study on

matrixMul with varying working set problem sizes. The experimental setup consists

of running exact and ACME version of matrixMul with different problem sizes and

then measuring the effect on IPC and LLC misses. The format length chosen for the

concise storage is 8 bits which enables us to fit 4 times as many elements in memory-

subsystem as compared to exact. The results of this study are shown in Figure 3.16

where the problem size varies from 1 MB to 9 MB.

When the the problem size is less than 2 MB (the size of our LLC), both the exact

and approximate data fits into LLC. Therefore, the number of exact and approximate

LLC misses are similar resulting in similar performance for exact and ACME execu-

tion. However, as the exact problem size goes beyond 2 MB, we start seeing larger

number of exact LLC misses. ACME is still able to fit the data in LLC because it is

using only 8 bits to represent the input elements. It is only for configurations larger

than 8 MB that ACME begins to introduce increasing numbers of LLC misses.
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Figure 3.17: Overhead of cmemcpy function. The function consumes minute portion
of total application execution time

3.4.5 System Overheads

In this section, we discuss the overhead associated with different components of

ACME. Note that all these overheads are already included in other parts of the

evaluation.

Packing Overhead. ACME compiler adds a cmemcpy in the application code to

represent the input elements more concisely. Figure 3.17 shows the portion of appli-

cation execution time spent in cmemcpy function. We see that this overhead is <1%

in all the applications. Our hardware implementation removes the marginal bits by

performing complex conversions quickly in the hardware, resulting in a minimal over-

head. We also implemented a software implementation of store-concise instruction

and used it for the cmemcpy function. However, we observed as much as 10% overhead

with the software implementation, resulting in reduced performance improvements.

Hardware Overhead. In this section, we discuss area, power and frequency num-

bers for the additional hardware components. We implement CAGU, C2E and E2C

unit in Verilog and synthesize it using ARM Artisan IBM SOI 45 nm library. The

area, power and frequency of the C2E unit is 0.0034mm2, 9.41 mW and 2.78 GHz
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Figure 3.18: ACME vs Doppleganger-Ideal; ACME achieves higher concise storage
throughout the memory hierarchy resulting in better application speedup

respectively. Similarly, the numbers are 0.0023mm2, 4.23 mW and 2.78 GHz respec-

tively for the E2C unit, and 0.0044mm2, 12.7 mW and 2.22 GHz respectively for

CAGU. Our baseline is a mainstream core-i7 Haswell processor that operates at a

frequency of 3.0 GHz and consumes 177mm2 of die area. We see that the additional

overhead of ACME units is minimal: 0.0052% area overhead and <0.1% power over-

head. By using technology scaling trends [110] to project the frequency for hardware

components for 22nm, we find that ACME units can operate at the target frequency

of 3 GHz at 22nm. This study shows that additional hardware components are fast

and consume minimal area and power.

3.4.6 Comparison to Prior Work

In this section, we compare ACME against a state-of-the-art approximate com-

puting cache technique; Doppleganger [138]. Doppleganger increases effective LLC

capacity by finding LLC lines that are similar. Approximately similar cache lines are

mapped to single line resulting in increase in effective cache size.

Doppleganger finds approximately similar cache lines by encoding the range and

average of the values present in the cache lines. This encoding takes form of an N-bit

hash map. Two cache lines are treated approximately similar if they produce same

map value. Lower the value of N, higher is the compression ratio at the expense

of higher application error. Doppleganger builds this N-bit hash function into the

hardware at design time, preventing any accuracy knob. Consequently, Doppleganger
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might not be able to satisfy an accuracy target with a N-bit hash function. We create

an idealized version of Doppleganger, Doppleganger-Ideal, where it is not restricted by

a fixed value of N. Instead, it finds the minimum value of this N for each application

and accuracy target separately. This lets us measure the approximate similarity in

the application which is equivalent to the magnitude by which the effective LLC size

is increased. To simulate this effective increase in LLC size for Doppleganger-Ideal,

we increase the actual size of LLC as per the measured similarity without increasing

the cache latency.

The comparison between ACME and Doppleganger-Ideal is presented in Fig-

ure 3.18. Doppleganger-Ideal shows speedup for some applications for 90% and 95%

accuracy but its speedup drops significantly for 99% accuracy. We see that ACME

performs better than Doppleganger-Ideal in all the applications, except inversek2j for

accuracy target of 90%. There are 2 reasons for this performance difference. First,

ACME achieves more concise storage compared to Doppleganger-Ideal. Doppleganger

is limited by finding redundancy across cache blocks. ACME, instead, finds the bits

that marginally contribute to the accuracy and removes them from the data represen-

tation. Second, ACME achieves concise storage throughout the memory hierarchy,

compared to Doppleganger-Ideal which operates only on the LLC.

3.5 Summary

This paper introduces a novel asymmetric compute-memory extension to con-

ventional architectures, ACME, that decouples the format of data in the memory

hierarchy from the format of data in the compute subsystem. ACME significantly

reduces the cost of storing and moving bits throughout the memory hierarchy im-

proving application performance. We add two instructions to the ISA - concise-loads

and concise-stores which are supported in hardware vis three small functional units.

Our results show that ACME achieves 1.3× speedup (up to 1.8×) while maintaining
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99% accuracy, or 1.1× speedup while maintaining 99.999% accuracy, while incurring

negligible area and power overheads; 0.005% area and 0.1% power to a conventional

modern architecture.
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CHAPTER IV

Continuous Shape Shifting: Enabling Loop

Co-optimization via Near-Free Dynamic Code

Rewriting

The class of loop optimizations that reshape the iteration space for cache locality

and reuse are traditionally static compiler optimizations [164, 165, 22, 93]. With

a specification of microarchitectural design and cache topology in a processor, the

computation in an application’s nested loops is restructured with strip mine and

interchange passes into tiles – small subsets of the working set that fit into the cache

– to take advantage of data reuse and improve the effectiveness of the cache for the

computation. As a statically parameterized optimization, tiling requires that the

compiler control both the size and shape of the tiles used in the computation. The

choice of these parameters is intimately linked to the characteristics of architectural

resources available to the application as it runs [38, 28, 113]. However, this class

of optimization was conceptualized before the multicore era, which has introduced

numerous additional dynamic factors that affect application runtime environments.

The advent of highly dynamic multicore/multiprocessor environments necessitates

the rethinking of how cache tiling should be applied and deployed in commercial and

production contexts. The static assumptions used to aggressively tune the tiling
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Figure 4.1: The optimal tiling for one runtime environment can perform poorly in
other environments

parameters can be easily broken by sources of post-deployment dynamism. This

concept is illustrated in Figure 4.1, which compares two tiling approaches. First,

an approach that aggressively tiles for one runtime environment achieves excellent

performance in that environment, but may perform poorly in other environments.

Second an ideal approach that aggressively tiles for each runtime environment. The

figure shows that pre-deployment best tile can result in sub-optimal performance

across different runtime environments.

Although there has been some prior work addressing particular challenges that

arise from dynamism [18, 151, 156], these works use white-box approaches to target

particular sources of inefficiency. Realizing a holistic approach that continuously

adapts to numerous, varied sources of post-deployment dynamism requires a black

box approach and remains an open problem. In particular, three sources of dynamism

must be addressed to realize a loop iteration space specialization that is deployable

in modern commercial and production environments. These sources of dynamism
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include:

1. Co-runner Dynamism. Cloud and datacenter operators routinely co-run ap-

plications to improve server utilization [112, 45, 176] and multi-program work-

loads have become a norm on desktop and mobile platforms [54]. The co-runners

an application faces will vary in number and character.

2. Microarchitectural Flexibility. Processor design has evolved significantly

since the original conceptualization of cache tiling. Now, microarchitectural

parameters may change over the course of an application run. For instance,

cache way-gating [55], processor power capping [43] and cache partitioning [124,

140] may be used to slow, constrain, or shut down architectural resources in

order to limit power consumption or provide performance isolation.

3. Microarchitectural Diversity. Datacenters operators typically house nu-

merous architectural implementations [20, 111, 7], and heterogeneous architec-

tures, for example ARM big.LITTLE, are becoming common because of their

energy efficiency. Moreover, the target platform for commercial off the shelf

(COTS) software is rarely known ahead of deployment, and each platform may

have different cache configurations and microarchitectural implementations.

Each of these sources of dynamism impacts the availability of important architectural

resources to the application, significantly affecting how cache tiling should be aggres-

sively employed. The set of factors impacting the choice of cache tiling parameters

is broad, have complex interactions, and may change many times over the course of

a single application run. Handling this myriad factors therefore demands a novel,

dynamic solution that can quickly and seamlessly change the tile structure to reflect

changes to an application’s runtime environment.

A key insight of this work is to use a rapidly and dynamically constructed environment-

and application-specific black box model for predicting the performance of a host of
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tiling options within the immediate environment. This paper introduces continuous

shape shifting with ShapeShifter, an end-to-end dynamic compilation infrastructure

that enables continuous shape shifting and aggressively rewrites running applications

in response to runtime dynamism. ShapeShifter uses a lightweight monitoring infras-

tructure to examine the running applications and the runtime environment to look

for opportunities to tile and re-tile the applications in response to changes in the

runtime environment. Upon identifying a suitable tile shape based on the dynami-

cally constructed model, ShapeShifter rewrites and re-tiles the application leveraging

a low-overhead dynamic compilation capability to divert execution into the aggres-

sively tiled code with near-zero overhead.

In addition to continuous shape shifting, we propose a co-optimization algorithm

to perform retiling of multiple co-runners simultaneously. It is a challenging problem

to find suitable tile shapes for multiple co-runners because optimizing a tile shape

for a co-runner can change the optimal tile for an already optimized co-runner. We

observed that cache interference often has little to do with tile shape, i.e., different

tile shapes of the same tile size produce similar amount of interference to other co-

runners. This observation can be leveraged to design an approach that quickly finds

suitable tile shapes. This is the first work to consider the effect of this dynamic

interference in the presence of multiple co-runners.

We evaluate ShapeShifter on real systems within a spectrum of runtime environ-

ments spanning several architectural platforms, showing that by aggressively retiling

application tiles, we are able to achieve an average of 10-40% performance improve-

ment (up to 2.4×) over an oracle that aggressively tiles for a single runtime environ-

ment.
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(b) Resized cache
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(c) Different architectural target

Figure 4.2: Suboptimal performance if the application code is not retiled to the
application runtime environment

4.1 Motivation

In this section, we investigate the opportunity available in the presence of a so-

lution that can aggressively re-tile application code in the context of three common

sources of post-deployment dynamism.

4.1.1 Opportunity Analysis

The efficacy of a cache tile depends heavily on the runtime environment, as there

are numerous factors in the runtime environment that can impact the availability

of cache and other microarchitectural resources. This study focuses on three such

sources of dynamism – the impact of co-running with other applications, the im-

pact of changing the amount of cache available to the application, and the impact

of microarchitectural diversity. Our baseline is an approach we call StaticBest that

exhaustively runs a large space of tiling parameters to determine the best tiling con-

figuration for a runtime environment that (1) has no-co-running applications, (2) is

for a commodity server processor (AMD Opteron), and (3) for which the application

has full use of the 16-way L2 cache. We evaluate on a host of applications from

Polybench [123].

Co-runner Dynamism. We first evaluate the efficacy of StaticBest when the as-

sumption that the application has no co-runners proves to be untrue (Figure 4.2(a)).

For this comparison, we run the applications again against a cache pressure mi-

crobenchmark while employing each of the tiling parameterizations used to find Stat-
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icBest, then selecting the best performing tiling, which we term AggressiveBest. The

difference in performance between StaticBest to AggressiveBest can be interpreted

as the slowdown resulting from a failure to tailor the tiling approach to its runtime

environment. Figure 4.2(a) illustrates the resulting slowdown, which is over 19% on

average, and up to 41% for syr2k.

Microarchitectural Flexibility. We next evaluate the efficacy of StaticBest when

the assumption that the full L2 cache is available to the application is violated. We

use Bulldozer’s way-locking feature to lock half the ways of the 16-way L2 cache,

effectively reducing the cache size by half. The resulting slowdown if the applica-

tions are not re-tiled to respond to this microarchitectural change is illustrated in

Figure 4.2(b). In this case, up to a 52% slowdown over the optimized tile is observed

for gemm, with an average of 19% across all applications.

Microarchitectural Diversity. Finally, we evaluate the efficacy of the optimized

tile if the assumption that the target architecture is an AMD Bulldozer is violated.

To do this, we find AggressiveBest when running the applications on an Intel Haswell

server and compare the resulting performance to StaticBest on the Haswell server.

Like the previous cases, a significant performance opportunity is left unexploited if

applications are not re-tiled to reflect this different runtime environment. The maxi-

mum resulting slowdown is 37% for seidel-2d and averages 12% across applications.

4.1.2 Limitations of Prior Work

We compare ShapeShifter to the most relevant previous work in Table 1 [151, 18,

156]. Both Defensive Tiling [18] and Dynamic Selection of Tile Sizes [156] do not

retile multiple co-runners simultaneously. It is a necessary and challenging problem

to solve as optimizing the tile for one application can change the best tile for an

already optimized co-runner. ShapeShifter has the capability of retiling multiple

co-running applications. We provide insights as to how tile shape and size affects
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Table 4.1: Comparison between ShapeShifter and prior retiling works

Defensive Reactive Dynamic Shape-

Tiling[18] Tiling[151] Selection[156] Shifter

Retiling multiple co-runners ✓

Rectangular tiles ✓ ✓ ✓

Black-box model approach ✓ ✓ ✓

Compilation flexibility ✓

Real system evaluation ✓ ✓ ✓

Handles co-runner presence ✓ ✓

Handles cache-partioning ✓ ✓

Handles platform changes ✓

the interference between applications. We then present an algorithm built upon that

insight to find suitable tiles for co-runners simultaneously. Reactive tiling [151] strives

to find the best tiling parameters in the presence of cache partitioning. However, it

is evaluated on simulators, which have limited ability to capture industry-standard

proprietary features such as prefetcher designs and cache replacement policies. In

addition, ShapeShifter supports dynamic compilation providing the opportunity to

use wide range of compiler optimizations suitable to the runtime environment.

4.2 System Overview

This section describes the design of ShapeShifter, a dynamic compilation infras-

tructure that takes advantage of the opportunity to aggressively re-tile running ap-

plication code to reflect the runtime environment. We discuss the main challenges in

designing such an infrastructure, and give an overview of how ShapeShifter overcomes

these challenges.

4.2.1 Challenges

Accuracy. Realizing a tiling approach that is universal, capable of identifying the

right tile among a broad range of runtime environments, is a challenging problem. Ex-

isting solutions using detailed cache and memory access pattern models are designed

to focus on a narrow range of the possible runtime environments. Thus, designing a
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Figure 4.3: Dynamic compilation and monitoring infrastructure

new mechanism capable of reasoning about cache tiling and correctly identifying the

most suitable tiling parameters among many runtime environments is necessary for

solving this problem.

Overhead. A dynamic re-tiling system must be left in place continuously throughout

application execution, available to monitor the application and environment, and able

to take steps to exploit re-tiling opportunities as they arise. Having such a capability

that is low overhead is a challenging problem. Classic virtualization-based monitoring

and dynamic compilation infrastructures are ill-suited to this task, as the overhead

introduced by those infrastructures can easily outweigh benefits of the optimizations

themselves.

4.2.2 ShapeShifter System Architecture

ShapeShifter is an end-to-end dynamic system continuously monitoring the run-

ning application and runtime environment and looking for opportunities to re-tile the

application code. The runtime environment can change because of arrival/departure

of co-runners, architectural policy changes and platform changes.

To achieve this dynamic capability, ShapeShifter spawns a runtime thread for

each application as soon as it starts execution, as shown in Figure 4.3. This thread,
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referred to as Companion thread, provides a dynamic compilation capability to its ap-

plication. ShapeShifter continuously looks for tiling opportunities by using a Runtime

Environment monitor. When an opportunity is identified, it triggers a Tile Generator

module that accurately predicts a suitable tile for the current runtime environment.

Finally, ShapeShifter instructs Companion thread to introduce the new tiling strategy

into the application code.

Companion threads, Tile Generator and Runtime Environment Monitor work in

tandem to achieve continuous shape shifting. Here we provide an overview of these

components.

Companion Thread. Companion threads provide Dynamic Compilation infras-

tructure inspired by protean code to introduce re-tiled code into the running applica-

tion [96]. The key difference between protean code and other traditional heavyweight

dynamic compilation infrastructures is that protean code runs asynchronously to the

application, without stalling the application progress. The application continues run-

ning the old code variant and switches to the new code variant only when protean

code has lazily stitched it into the running application. Therefore, protean code incurs

low overhead on the application performance.

Companion threads are woken up only when a tiling opportunity is detected, as

illustrated in Figure 4.3. Because of its minimal interaction with the application, it

provides a low-overhead dynamic compilation solution to achieve continuous shape

shifting.
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Runtime Environment Monitor. One of the key capabilities of ShapeShifter

is to detect opportunities to re-tile running application code. This capability takes

the form of a Runtime Environment Monitor (REM), a lightweight process that oc-

casionally polls the machine state via hardware event monitors and model specific

registers (MSRs). It collects performance and cache statistics counters that are used

to guide tiling decisions. MSRs often expose useful information about microarchitec-

tural state. This information helps in constructing a view of the application runtime

environment. For example, the AMD Bulldozer platform support way-locking in the

L2 cache, and MSRs expose the number of L2 cache ways available at any given time.

By monitoring the relevant machine state, ShapeShifter can detect changes in the

architectural policies at any time.

Tile Generator. Tile Generator is responsible for predicting a suitable tile for the

application current runtime environment. It uses the performance and cache statistics

collected by REM to generate an online black box linear model. Using this model,

ShapeShifter predicts a tile that is optimized for the current runtime conditions. It

instructs the Companion thread to generate the corresponding tiled variant and stitch

it into the application code.

4.3 ShapeShifter Design and Implementation

In this section, we provide description of ShapeShifter runtime system. The dif-

ferent components of ShapeShifter – Companion threads, Tile Generator and Run-

time Environment Monitor – work hand-in-hand to identify and take advantage of

tiling opportunities. Figure 4.4 gives an overview of the ShapeShifter runtime sys-

tem. Whenever REM detects a tiling opportunity, Tile Generator starts constructing

an application- and environment-specific tiling performance model. It instructs the

Companion thread to stitch a handful of different tile parameterization codes into

the application, where each is run for short time. REM collects the performance and
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cache statistics, referred to as Training data, while these tiles execute. This training

data is used by Tile Generator to construct a tiling performance model on the fly.

Tile Generator then selects the tiling with the highest modeled IPC and invokes Com-

panion thread to introduce that tiling into the application. We show in Section 5.4

that this tile generation process is highly accurate, choosing tiling strategies close to

optimal-tiling performance.

We divide the above process into three parts: Online training (§4.3.1), Tile Gen-

eration (§4.3.2), and Monitored execution (§4.3.3). We now describe these three steps

in detail.

4.3.1 Online Training

Online training is triggered when the REM detects a change in the application

runtime environment. In this step, the REM collects training data with the help of

the Tile Generator and Companion threads. This training data is then later used to

develop a tiling performance model. The process can be further broken down into

2 steps. First, finding a suitable tile size for the application and second, collecting

training data.

4.3.1.1 Tile Size Selection

Both tile size and shape are important tile characteristics that impact the perfor-

mance of a tiled loop nest. Tile size defines the working set of the application. A

working set larger than the targeted cache size slows down the application because

some memory requests take longer to finish as they have to go to lower and slower

levels of memory hierarchy. On the other hand, a working set much smaller than the

cache size does not utilize the data reuse efficiently. This step tackles the problem

of finding a suitable tile size for the application, whereas the problem of finding a

suitable tile shape is solved by the black box model described in Section 4.3.2.2.
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On detecting a change in the application runtime environment, the REM reads

in current cache size using software visible registers and MSRs. This information

is passed on to Tile Generator that instructs the Companion thread to generate a

tile variant consuming a certain portion of the available private cache size. Compan-

ion thread executes this tile variant while REM collects the performance and cache

statistics during the tile execution. This process is repeated with reduced tile size

until the private cache miss rate is below a certain threshold (<2% in our case). This

low cache miss rate signifies that the working set of the application now fits in the

cache. This produces a tile variant whose tile size is tuned for the application current

runtime environment.

4.3.1.2 Collection of Training Data

On finding a suitable tile size, ShapeShifter starts collecting training data to help

generate a tiling performance model. In this step, Tile Generator generates a set

of training tiles, Companion threads executes these training tiles one by one for

short duration while REM collects the performance and cache statistics for each tile.

Algorithm 1 provides an overview of this whole process.

Algorithm 1 Online training

1: Input: TileSize

2: Output: TrainingData

3: function GetTrainingData(TileSize)
4: GenTrainingSet(TileSize) ⊲ Tile Generator

5: for (i in 1:size(TrainingSet)) do

6: GenTiledVariant() ⊲ Dynamic Compiler

7: DispatchTileToApp() ⊲ Dynamic Compiler

8: RunTheTile()

9: data = CollectPerfMonData() ⊲ REM

10: TrainingData = TrainingData + data

11: end for

12: return TrainingData

13: end function

Tile Generator first generates a set of training tiles using the tile size identified in
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the previous step but with varying tile shapes. There is a broad range of tile shapes

to choose from. We classify the tile shapes in 3 categories: Broad tiles – tiles with

large number of rows but few columns, Narrow tiles – tiles with few rows but large

number of columns, and Intermediate tiles – tiles that are neither broad not narrow.

As shown in Figure 4.4, Tile Generator chooses only a subset of these tiles to profile

the application. In total, the training set consists of 5 versions of application - 2

broad-tiled, 2 narrow-tiled, 1 intermediate-tiled.

Tile Generator instructs the Companion thread to introduce training set into the

application code. These tiles are then executed one by one while REM collects per-

formance counters during their execution. Specifically, REM collects this information

for each tile in the training set: a) number of retired instructions, and b) number of

execution cycles . This creates a training database which is later used to develop a

tiling performance model.

4.3.2 Tile Generator

The training data is now used to develop a model and identify a suitable tiling

strategy for the application runtime environment. The runtime environment can

change because of various factors like arrival of co-runners, microarchitectural policy

changes and platform changes. Figure 4.5 gives an overview of tile generation. Tile

Generator uses the training data collected by REM and creates an online black box

model for the current application and runtime environment. The black-box model

does not assume any prior knowledge of the application and architecture, and is

completely created on the fly using the training data. Since the model has to capture

only the current application and runtime environment, a relatively simple model can

suffice to achieve high prediction accuracy. This is in contrast to traditional white-box

models that are quite complex because they are designed to handle a wide variety of

cases.
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4.3.2.1 Black-box Development

ShapeShifter uses the online training data to develop a black box model. Our goal

is to generate a model that takes a tile Ti as an input and predicts its correspond-

ing performance IPCi. Tile Generator uses this model to identify a suitable tilting

strategy for the application in its runtime environment.

We first define a tile Ti. It consists of three parameters – t1i , t
2
i , t

3
i as we focus

on widely used three-dimensional tiling [151, 18, 156, 172]. Thus, a tile Ti can be

represented as

Ti =< t1i , t
2
i , t

3
i > (4.1)

The online training data has five training tile parameters and their observed IPC.

Tile Generator develops a linear model between these training tile parameters and

their corresponding IPC. It applies a linear curve fitting method on these five data

points. This model can be formalized in the following manner.

f(Ti) =⇒ IPCi (4.2)

where IPCi is the modeled IPC for the application.

Note that the model is obtained by applying a linear curve fitting method on

just five data points. The overhead of generating a linear model with so few points

is minimal. Also note that this model only captures current application runtime

environment. Therefore this model needs to be updated if a new runtime environment

is encountered.

4.3.2.2 Tile Shape Selection

This step uses the black box model represented by Equation 4.2 and predicts a

suitable tile shape for the application in its current runtime environment. As shown in
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Figure 4.5, Tile Generator applies the black box model on a large span of tile shapes

consisting a mix of broad, narrow and intermediate tiles. Note that ShapeShifter is

not executing these tiles, it is just applying the black box model to predict the IPC of

each of the available tile shapes. The tile with the maximum predicted IPC is chosen

as the tile for further execution. This tile is referred to as TshapeShifter.

Algorithm 2 Tile shape selection

1: Input: TrainingData

2: Input: AvailSet

3: Output: ShapeShifterTile
4: function GetShapeShifterTile(TrainingData)
5: bbModel = GenBBModel(TrainingData)

6: predIPC = Apply(bbModel, AvailSet)

7: ShapeShifterTile = maxIPC(predIPC)

8: return ShapeShifterTile

9: end function

Algorithm 2 gives an overview of this step. This step can be represented in the

following manner

TshapeShifter : IPCshapeShifter = max
i∈avail tiles

f(Ti) (4.3)

Tile Generator invokes Companion thread to create a new version of application

with TshapeShifter parameters. This version is used for execution from now on.

A key point to notice is that the black box model does not have to predict the
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Figure 4.6: REM detects the environment change and wakes up companion threads
to start training phase leading to creation of ShapeShifter tile

IPC of each tile accurately. Even ranking the tiles accurately is more than necessary

for our purpose. Minimally, ShapeShifter should be able to pick up an acceptable

tile when there is a large variation in the IPC of available tile shapes. We show in

Section 5.4 that ShapeShifter black box model is highly accurate. It asserts that a

simple linear model generated online is sufficient to identify suitable tile parameters

across a wide range of runtime environments.

4.3.3 Monitored Execution Phase

REM continuously monitors the runtime environment and triggers online training

in the presence of a tiling opportunity. For detecting changes in architectural policies

and platform, REM periodically polls MSRs and other software visible registers. In

order to detect the presence of a co-runner, ShapeShifter uses a simple technique of

monitoring cache misses. Arrival of a co-runner typically increases cache miss rate.

ShapeShifter assumes the presence of a software/hardware mechanism that provides

an estimate of cache size that should be allocated to each co-runner. In the absence

of such a mechanism, ShapeShifter assumes that the co-runners consumes half of the

available cache capacity.
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Figure 4.7: Interference caused by different tile shapes is similar whereas different tile
sizes exert significantly different amount of cache pressure

In addition, ShapeShifter remembers the tile for a particular application and run-

time environment. If the same runtime environment shows up later, ShapeShifter

uses the stored tile for the application to avoid unnecessary training overhead.

The entire process is shown in Figure 4.6. In the figure, the application is ex-

ecuting on core 0 while companion threads, REM and Tile Generator are running

on core 1. On detecting a change in the runtime environment (event EA), the Tile

Generator starts the training process and instructs Companion thread to generate

the training tiles (tr1-tr5) and stitch them in the application code. The application

runs these training tiles one-by-one while the REM keeps collecting cache and per-

formance statistics for each training tile execution (event EB). After online training

is complete, Tile Generator uses the training data and predicts a suitable tile for the

current runtime environment (event EC). This tile is used for further execution.

In frequently changing environment, REM detects a change while the training is in

process. In that case, ShapeShifter finishes the training and discards REM detection

for a certain duration.
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AMD Bulldozer Intel Haswell Intel Atom

Opteron 6272 Xeon E3-1240v3 Atom 330
16 cores 4 cores 2 cores
2.1 GHz 3.4 GHz 1.6 GHz
48K, 4-way, L1 (private)
2M, 16-way, L2 (shared)
12M, 128-way, L3 (shared)

Individual way-locking on
L2. Experiments use 16
-way/8-way and 4-way
unlocked configurations

32K, 8-way, L1 (private)
256K, 8-way, L2 (private)
8M, 16-way, L3 (shared)

24K, 6-way, L1 (private)
512K, 16-way, L2 (shared)

Table 4.2: Platforms used in the evaluation

4.4 Loop Co-optimization

Applications are often co-run in datacenter operators to improve server utiliza-

tion [112, 45]. Also, executing multiple programs are common on desktop and mobile

platforms [54]. A universal tiling strategy needs to find suitable tile shape and size

for all the co-running applications such that the interference between them is mini-

mized. ShapeShifter provides a capability of capturing this interference and adjust

tiles of multiple co-runners to their corresponding effective cache size. We refer to

this feature as co-optimization.

A major hurdle in achieving effective co-optimization is the search space. Tiling

for one application itself has a huge search space. Adding co-runners makes the prob-

lem intractable. Applying different tiles in one application creates different runtime

environments for the co-running applications, and thus, optimizing tiling for one ap-

plication can change the best tiling strategy for an already optimized application.

This makes tiling for multiple co-runners simultaneously a challenging problem.

An insight that can enable a solution to this problem is that the interference caused

by co-runners is largely a function of their tile size, that is, different tile shapes of the

same size exert similar amount of cache interference. This is illustrated in Figure 4.7.

In this experiment, we take 15 pairs of co-runners and study performance variation

of the first application when (left) only tile shape of the second application is varied

while keeping the tile size same and, (right) tile size of the second application is
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varied. This shows that different tile shapes among a tile size result in similar amount

of interference, while different tile sizes result in much larger performance variation.

This insight gives us a strong foundation to solve the challenging problem of tiling

for multiple co-runners.

Algorithm 3 Co-optimization

1: Input: Apps

2: function Co-Tiling(Apps)
3: Initialize TileSize[Apps]

4: for (app in Apps) do ⊲ Optimize size

5: ToptSize = FindTileSize(app)

6: DynComp(app, ToptSize)

7: TileSize[app] = ToptSize

8: end for

9: for (app in Apps) do

10: Ts = TileSize[app]

11: trainingData = GetTrainingData(Ts) ⊲ Algo 1

12: TshapeShifter = GetShapeShifterTile( trainingData) ⊲ Algo 2

13: DynComp(app, TshapeShifter)

14: end for

15: end function

Algorithm 3 gives an overview of our co-optimization. ShapeShifter first identifies

a suitable tile size for all the co-runners as described in Section 4.3.1.1. We refer to

the tiles after this step as Toptsize, as the tiles have been optimized for size. Since the

interference is dependent heavily on the tile size and does not change significantly

with the tile shape, this step creates a stable runtime environment, whereafter the

cache interference does not change significantly as the tile size changes. Therefore,

ShapeShifter now optimizes the tile shape of all the co-runners one-by-one. Since the

cache interference does not change with tile shapes, optimizing tile shape once for

all the co-runners results in suitable tiling strategies. We observed that additional

optimization on tile shapes resulted in marginal performance improvements. We

evaluate co-optimization in Section 4.5.3.
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Figure 4.8: Actual runtime of applications vs. the runtime modeled by ShapeShifter’s
dynamic Tile Generator

4.5 Evaluation

4.5.1 Methodology

Applications. We evaluate ShapeShifter on the Polybench application suite [123,

82, 15, 104, 150, 101], a collection of linear algebra, stencil computation and data

mining algorithms.

Implementation. We used Polly [61], a polyhedral optimizer tool that is integrated

into LLVM [94] to perform tiling. We integrated Polly with protean code [96] to imple-

ment ShapeShifter. Polly performs cache tiling on LLVM intermediate representation

while protean code provides the dynamic compilation capability.

Hardware Platforms. Our evaluation encompasses three design points with differ-

ent microarchitectural and architectural configurations, as summarized in Table 4.2.

These platforms are an AMD Bulldozer, an Intel Haswell and an Intel Atom. The

AMD Bulldozer allows way-locking on its 16-way L2 cache, preventing a subset of

ways in the cache from being accessed by any application. We consider three con-

figurations of way-locked L2 in our evaluation: completely unlocked (all 16 ways are

active), half locked (8 ways are available) and mostly locked (4 ways are available).

Baselines. Our baseline is the best performing tile on the largest cache across all

the machines. We find this tile by statically running an exhaustive search space on

the largest cache in our experimental setup. We term this baseline as Static Best
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approach to tiling.

4.5.2 Tile Selection Accuracy

This section evaluates the black box modeling technique at the core of the tile

selection algorithm. The goal of the model is to map tiling parameters to perfor-

mance, thus allowing the Tile Generator to choose the tiling strategy with the best

performance of the available tiles. For these experiments, we statically compile and

perform a run of the application with a host of different tiling strategies, measuring

the runtime of each.

The results of this experiment are presented in Figure 4.8, where each plot shows

the modeled vs. actual runtime for a particular benchmark, normalized to the runtime

of the fastest tiling strategy. Inside each plot, the position of a particular point on

the x-axis gives the actual runtime for a single tiling, while its position on the y-axis

gives the modeled runtime from the black box model. As a guide, each plot has a line

at x=y to show where perfect predictions (modeled runtime equals actual runtime)

would reside. Also in each figure is a circled point, showing the tiling strategy chosen

by ShapeShifter’s tiling selection algorithm, along with a line that illustrates the

actual runtime of that point.

Some applications, such as dynprog, result in precise models where the actual

and modeled runtimes track each other closely across tiling parameters. However,

a precise model is far beyond what is necessary to select a high performance tiling.

To make this more clear, we highlight covariance, where the modeled runtime of the

tiling chosen by ShapeShifter is 70% of the actual runtime but the the tiling strategy

is still the fastest from among the available options. Similarly in jacobi-2d, there are

numerous tiling strategies offering similar high performance and ShapeShifter chooses

one from among them. This stresses the idea that our models do not need to predict

absolute performance precisely.
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Figure 4.9: ShapeShifter adjusts the tiling strategy of an application in presence of
diverse co-runners

4.5.3 Dynamism in Co-runners

In the era of multicore processors, the common case is that multiple applications

are run together on a system at the same time. These co-running applications com-

pete for shared resources, which includes caches. In this section, we evaluate how

ShapeShifter adapts to runtime environment in the presence of co-runners. These

experiments are run on the AMD Bulldozer platform, and we measure co-runners’

performance as they run with ShapeShifter. We measure IPC for all the co-running

applications and use it compute weighted speedup.

Stable Co-running Workloads. In this set, we conduct three experiments where

ShapeShifter is used among 1, 2 or 4 applications.

In the first experiment, we evaluate how co-optimization performs if we limit it to

optimize only one co-runner while the other co-runner tile remains unchanged. The

results of this experiment are presented in Figure 4.9, which shows the performance

improvement ShapeShifter-tiled application normalized to Static Best in the presence

of three different co-runners: (1) the bubble, a microbenchmark designed to place

pressure on a specific subset of the cache, which we configure to place pressure on half

the L2 cache (1MB), (2) covariance from polybench, and (3) 1mm from polybench.
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Workload 1 1mm, covariance, gram, lu
Workload 2 jacobi-2d, covariance, correlation, 1mm
Workload 3 correlation, syr2k, syrk, jacobi-2d
Workload 4 gram, lu, jacobi-2d, 1mm
Workload 5 2mm, syr2k, covariance, 1mm
Workload 6 jacobi-2d, 2mm, syrk, correlation
Workload 7 covariance, correlation, 1mm, 2mm
Workload 8 jacobi-2d, 1mm, correlation, covariance
Workload 9 syrk, syr2k, covariance, correlation
Workload 10 1mm, correlation, jacobi-2d, covariance

Table 4.3: Co-runner workloads of 4 applications

These results demonstrate that by re-tiling application code, ShapeShifter is able to

achieve sizable speedups over Static Best, achieving performance improvements of up

to 1.5× (covariance vs. bubble), and an average improvement of 1.1× on average.

In the second and third experiments, we demonstrate the capability of ShapeShifter

co-optimization to accurately select tiling strategies in the presence of two and four

co-running applications. The results of this experiment are present in Figure 4.10.

Co-optimization works by first finding the right tile size for each co-runner, then opti-

mizing each application tile shape one-by-one. The figure shows step-by-step speedup

during this co-optimization process for two and four co-runners across 10 different

workloads (Table 4.3). We observe that ShapeShifter co-optimization achieves per-

formance improvement of up to 1.5× , with an average of 1.2× in both the scenarios.

We also experimented with running ShapeShifter after all applications have been op-

timized once. We observed that the additional benefits were negligible, supporting

the key insight that different tile shapes of same tile size does not have a large effect.

Dynamically Changing Workloads. In this experiment, we evaluate ShapeShifter

co-optimization on a dynamically changing runtime environment that demonstrates

how it adapts to the dynamism. In this experiment, at any given time there are 2

co-runners sharing a cache. These co-runners change with time along with the cache

allocated to them as shown in Figure 6.17(a). ShapeShifter weighted speedup is com-
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Figure 4.10: ShapeShifter co-optimization retiles multiple co-runners resulting in bet-
ter cache usage
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pared against the weighted speedup obtained by running co-runners aggressively tiled

with Static Best strategy.

The result of this experiment are presented in Figure 6.17(b). We observe that

ShapeShifter continuously adapts to changing runtime environment, finding a suitable

tiling strategy for both the co-runners at different cache allocations. It results in

significant speedup as compared to Static Best tiling strategy.

4.5.4 Microarchitectural Factors

In current systems, the architectural/microarchitectural parameters can change

during the application execution. Here, we evaluate ShapeShifter on cache resizing

and platform changes.

4.5.4.1 Cache Resizing

We begin by exposing applications to diverse situations in which different amount

of cache are available. To conduct this experiment, we configure the way-locking fea-

ture on the AMD Bulldozer to leave either 8 or 4 ways open, then run the application

with ShapeShifter to allow ShapeShifter to realize an aggressive tiling configuration

on that microarchitectural configuration. The results of this experiment are pre-

sented in Figure 4.12, which is again normalized to application performance when the

application is compiled to employ the Static Best tiling configuration.

We see large performance improvements over the Static Best strategy. When 8

ways are available to the application, ShapeShifter achieves performance improve-

ments of 1.2× on average and up to 1.7×. This contrast becomes more stark when

only 4 ways are available to the application, where an even larger gap exists between

the optimal tiling strategies between the 4-way and 16-way configurations. In this

case, ShapeShifter achieves a speedup of 1.4× over Static Best, with a maximum

speedup of 2.4× on gemm.
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Figure 4.13: ShapeShifter shows sizable speedup by retiling for different microarchi-
tectures

4.5.4.2 Microarchitectural Diversity

We next examine how ShapeShifter deals with significant microarchitectural diver-

sity, applying it on applications running on Intel Haswell and Intel Atom platforms.

Re-tiling occurs in ShapeShifter as the application begins execution, arriving at an

aggressive tiling strategy for the specific microarchitecture. As a point of comparison,

we also measure the performance when running applications that are tiled using the

Static Best strategy on the Haswell and Atom.

The results of the experiment are presented in Figure 4.13, phrased as the perfor-

mance improvement achieved by ShapeShifter over Static Best. These results demon-

strate the effectiveness of ShapeShifter at developing aggressive tiling strategies across

multiple microarchitectures, with a performance improvement of up to 1.5× when run-

ning seidel-2d on the Haswell system, an average performance improvement of 1.1×

on Haswell, and a 1.1× average performance improvement on Atom.

4.5.5 Overhead Analysis

We now present the ShapeShifter runtime overhead. Companion threads use a

small amount of compute and memory resources to dynamically compile new versions
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of code. This causes interference to the primary application which can in turn lead

to slowdown. We term this slowdown due to interference as dynamic compilation

overhead. In addition, whenever application is redirected to newly compiled tile,

it suffers an I-cache warmup phase. We refer to this overhead as code redirection

overhead. Finally, there is the online training overhead. In this section, we provide

quantitative analysis of these overheads.

Dynamic compilation. In order to calculate just the dynamic compilation over-

head, we design a stress test experiment where Companion thread continuously gen-

erates new tile variants without redirecting the application to the generated code.

The associated overhead in this case is the worst case dynamic compilation overhead.

Next, we allow application redirection to new tile variants. The difference between the

former and latter experiment quantifies the code redirection overhead. We show these

overheads in Figure 4.14. We observe that even in the stress testing, the overhead is

minimal and less than 1% on average.

In terms of absolute numbers, we found that ShapeShifter takes 136 (336) ms on

average with maximum of 430 (990) ms on Intel haswell (AMD Bulldozer) across our

benchmark suite while the application is running on other core.

Training. As a part of the tile selection algorithm, ShapeShifter runs a handful of

83



●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.75x

1x

1.25x

1.5x

1.75x

2x

2.25x

2.5x

S
p
ee

d
u
p
 v

s.
 S

ta
ti

c 
B

es
t

10 20 30 40 50 60 70 80 90 100

Outermost Loop Iterations

●

●

●1mm

2mm

3mm

adi

correlation

covariance

dynprog

fdtd−2d

floyd

gemm

gram

jacobi−1d

jacobi−2d

lu

seidel−2d

syr2k

syrk

trmm

geomean

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 4.15: Performance benefits of ShapeShifter as a function of the how long the
environment remains stable

diverse tiling strategies for training, which can be less performant than the final tile

chosen. In this section, we weigh the overhead of that training against the benefit ob-

tained by running an optimized tiling strategy. Our experimental setup is to run each

application with ShapeShifter for a number of iterations in a stable environment (the

AMD Bulldozer with 8 ways locked), measuring the performance of the application

over time as the training and the final selected tiles are run.

The results are presented in Figure 4.15, which presents the performance of each

application normalized to the Static Best approach (y-axis) over a number of itera-

tions in the application’s algorithm (x-axis). The results show that the performance

improvement achievable by ShapeShifter depends on the amount of time the appli-

cation stays in a stable environment. For example, immediately after training (5

iterations), the average performance improvement over Static Best across applica-

tions is 1.08×, while after just 20 iterations, substantially higher performance of 1.2×
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is realized.

4.5.6 Comparison to Dynamic Oracle

Our final point of evaluation is to compare the performance achieved by ShapeShifter

across a number of different runtime environments to the performance achievable by

a dynamic oracle approach to tiling. To execute this experiment, we run each ap-

plication in the prescribed environment using each of a large set of tiling strategies.

Afterward, we choose the best-performing tiling strategy from among them and call

this the measured performance of the dynamic oracle.

Figure 4.16 presents the results of this experiment. Across all applications and run-

time environments, ShapeShifter achieves 93% of the dynamic oracle’s performance

on average (no worse than 72%). This demonstrates that ShapeShifter is effective in

finding suitable tiling strategies across different runtime environments.

4.5.7 Comparison with Prior Work

We compare ShapeShifter against reactive tiling in this particular scenario of cache

re-sizing in Figure 4.17. In this experiment, we generate a time schedule of changing

cache sizes where the cache size is chosen randomly between 1x, 1/2x and 1/4x of the

cache size during the application run. We observe that ShapeShifter achieves 10%

speedup against reactive tiling as reactive tiling is limited by the set of tiles available

to it at compile time.
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Figure 4.17: Improvement of ShapeShifter over Reactive tiling on a dynamic schedule
for all applications

4.6 Summary

This paper introduces ShapeShifter, a dynamic compilation strategy that removes

the risks of applying cache tiling by dynamically re-tiling running application code.

ShapeShifter is designed to continuously monitor running applications and their run-

time environments to find tiling opportunities and pinpoint near-optimal tile sizes.

Upon finding such a tiling opportunity, ShapeShifter quickly generates an optimal

tiling code for the application, then that code is seamlessly stitched into the run-

ning application with near-zero overhead. We evaluate ShapeShifter on real systems

amidst three classes of runtime environment changes spanning different co-running

applications, platforms, and dynamically shifting architectural resources. Our evalua-

tion shows that ShapeShifter achieves sizable speedups across applications, averaging

1.1-1.4× across different runtime environments.
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CHAPTER V

Architectural Support for Convolutional Neural

Networks on Modern CPUs

For DNNs based on convolutional layers, GPUs and more specialized accelera-

tors have gained significant traction as the hardware platforms of choice for running

convolution computation [31, 128, 35, 33]. This dual-device acceleration model that

our community has focused on involves adding the GPU or specialized accelerator to

a conventional CPU platform, typically over a loosely-coupled interconnect such as

PCIe, QPI or NVLink [8, 9, 3].

While the dual-device acceleration model offers a compelling set of performance

and energy characteristics, it exposes system designers to two difficult challenges that

pose a barrier to its widespread adoption, as observed in some previous research

efforts [36]:

1. Programming Models – adding a second device to the system adds a second

programming model, which can dramatically increase the difficulty of writing

and maintaining production code. Recent work shows that the programming

models for GPUs and accelerators are non-standard and unfamiliar to many

programmers [144]; it is especially problematic for asynchronous accelerator

programming models that are error prone and difficult to master [19].
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2. Hardware Complexity – including a secondary computational device to fa-

cilitate acceleration introduces substantial additional complexity in system de-

sign, direct hardware purchase costs and maintenance and operational costs [20].

However, CPUs are an indispensable part of the design of any system, meaning

they are a well understood part of conventional system design practices while offering

the benefit of a seamless, familiar programming model and software stack. Moreover,

CPU designs have a long history of incorporating hardware and ISA support for

specialized domain-specific operations, evidenced by the near-universal support for

cryptography, virtualization, security and multimedia operations in modern CPU

offerings [10, 4, 11, 5, 6]. Thus, alongside designing dual-device acceleration platforms,

it remains an important objective to design CPU hardware that can perform all the

non-accelerable tasks for which CPUs are essential while also serving as an energy-

efficient fabric for convolution layer computation.

This paper is the first to undertake a detailed characterization of the issues in-

volved in improving CPU performance for convolution layers. We find first that

scaling the read bandwidth of the physical register file (PRF) is one of the key con-

straints needed to deliver additional data to increasingly capable compute units. Sec-

ond, we find that harnessing increasingly capable compute units requires crafting a

solution that spans both hardware and software to take full advantage of the data

reuse present in the core of the CNN computation. Building on this insight, we de-

sign Locality Extensions for Deep Learning (LEDL). LEDL is a technique that spans

both hardware and software, consisting of a novel set of microarchitectural and ISA

extensions to increase the computational capabilities of modern CPUs for CNNs. We

present the design in detail, which in hardware includes a handful of architecturally

visible remote registers that reside within the VFMA units in the CPU and a set of

inter-VFMA links that allow data to be passed between units directly. In software,

LEDL’s automatic code generator, ACG, is carefully designed to generate code that
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Figure 5.1: SGEMM kernels, on average, contribute to 78% of the total CNN execu-
tion time across 5 state-of-the-art CNNs

is robust to different microarchitectural implementations while taking full advantage

of the reuse opportunities exhibited by convolution layer computation and aggressive

prefetching mechanisms within modern CPUs.

Together, the hardware and software components of LEDL produce a platform

design capable of providing substantial performance and energy improvements to

convolution layer computation on CPUs. When extending an Intel Haswell server

processor design with LEDL, we observe that across 5 state-of-the-art neural networks

we achieve performance improvements that average 2× and energy-delay product

improvements that average 2.7×.

5.1 Motivation

5.1.1 CNN Computation

Machine learning research has been increasingly focused in recent years on convo-

lution neural networks (CNNs), as CNNs have been shown to outperform the alterna-

tives across a number of different machine learning tasks [48, 153]. It is also evident

that convolution layers are becoming more prominent as time goes on, specifically

for tasks like object recognition, video analysis, drug discovery and natural language

processing [75, 92, 155, 148, 89, 162, 170, 59, 87, 91]. These CNN-driven networks are

becoming increasingly larger and deeper. For example, the Alexnet image recognition

network had only 5 convolution layers [92], while the recently released ResNet can
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have hundreds of convolution layers [75].

CNN Characterization. Beyond making up a large number of layers in modern

CNNs, convolution layers consume a large fraction of the computational cycles in the

total execution time, an observation that is in line with similar observations made by

prior work [31, 34, 117].

Convolution layer computation has a number of implementations that have been

explored in the literature and adopted in software packages [1, 35, 49, 97, 157]. We

observe that there are two main classes of implementations that appear in high per-

formance implementations: IM2COL + matrix multiplication (IM2COLMM) and

winograd transform [97]. While each of these different implementations differs in

how broadly applicable they are and in their performance characteristics, the com-

putational kernel underlying all of them is the SGEMM calculation. The impor-

tance of SGEMM for CNN computation is illustrated in Figure 5.1, which shows

the breakdown of time spent across SGEMM kernel and other computations for the

IM2COLMM implementation, showing that a major portion of the time is spent in

SGEMM kernels. We observe similar trend for Winograd algorithm as well. In addi-

tion, this SGEMM computation has also been used as the underlying implementation

of other widely used DNN layers like fully connected and long short term memory

layers [84] (we briefly discuss these layers in Section 5.4.6). Thus, the key to increas-

ing the performance of CNN computation on CPUs is to achieve higher performance

on the SGEMM calculation.

5.1.2 CPU Bottleneck Identification

The current trend of increasing raw computational capability of the CPUs is to

simply scale the vector width of the SIMD units. For example, the Intel x86 SIMD

vector width extensions have increased from 128-bits in SSE to 256-bits in AVX2 to

512-bits in AVX-512. However, the vector width scaling trend is unlikely to continue

90



for two reasons. First, scaling vector width beyond cache line width (512 bits) requires

touching multiple cache lines per vector register load, possibly introducing complex

microarchitectural workarounds to handle multiple variable-latency memory requests.

Second, larger vector widths makes it increasingly difficult for the application devel-

opers or compilers to find SIMD parallelism amenable to such large vector widths,

which is a difficult problem to solve even for current SIMD widths [17, 79, 116]. Due

to these issues with vector width scaling, the only other obvious solution to increase

raw CPU FLOPS is to add additional vector math units.

However, adding more vector math units is not enough to achieve higher CPU

FLOPS. It is equally necessary to supply data to these vector math units every clock

cycle to take advantage of this additional CPU compute. This leads to the question -

which memory-related microarchitectural parameters need to be adjusted to keep vector

units busy?

Bottleneck Analysis. To begin to answer this question, we study five such microar-

chitectural parameters - L1 cache bandwidth, L1 cache size, number of architectural

registers and number of physical registers and Register bandwidth to identify which

memory structure(s) should be focused on. In this study, we increase the number of

vector math units from 2 (Haswell processor baseline) to 4 and measure the impact

of doubling the value of these five parameters in simulation, both in isolation and in

conjunction with each other, on the performance of SGEMM kernel. We present our

findings in Figure 5.2. There are 2 key observations. First, increasing cache band-

width and/or size alone (first 16 bars) does not improve SGEMM performance. The

reason is that SGEMM employs aggressive register tiling, reusing the data in regis-

ters multiple times before going back to caches. Current L1 cache size and bandwidth

are sufficient for this usage. Similarly, current Intel machines have enough physical

registers for this usage. Second, we observe that both the number of architectural

registers and register bandwidth have to be increased simultaneously (the right-
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most eight bars) to achieve substantial speedup. Register bandwidth is necessary to

supply the data to the vector math units every cycle. And, increasing architectural

registers is necessary to achieve higher tile size, reusing data multiple times before

bringing more in from cache.

5.1.3 Challenges

Energy Consumption. Conventional out-of-order cores use Physical Register File

(PRF) for register renaming which helps in extracting more instruction level paral-

lelism. PRF size has been increasing with every new CPU offering, currently set at

168 physical floating-point registers in Haswell processors. This PRF size is large

enough to support SGEMM kernel, given we have enough software-visible architec-

tural registers. Therefore, the deciding parameter to keep vector math units busy is

PRF bandwidth.

To understand the impact of PRF bandwidth, it is necessary to understand how

SGEMM works. All SGEMM kernel operations can be realized using Fused Multiply

Add (FMA) instructions. Fortunately, in recent years CPU vendors have introduced

vector fused multiply add (VFMA) units in the processor that can be leveraged by

SGEMM computation. Each VFMA operation requires 3 vector register reads. There-

fore, adding a VFMA unit requires extra three read ports in the PRF, introducing

several challenges.

Firstly, the energy per access increases rapidly as the number of PRF read ports

increases. Thus, the inclusion of additional read ports to feed a larger number of

vector compute units rapidly increases the energy per PRF read, which can quickly

turn the PRF a major contributor to the energy consumption of the CPU. Secondly,

additional read ports increase the access latency to the PRF, where even a modest

number of read ports can begin to constrain clock rate. For instance, a PRF with 14

read ports at 22nm technology node can meet a 2.4GHz clock rate, while a PRF with
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15 ports cannot.

Therefore, it is clear that PRF reads are expensive and have to be kept to a min-

imum to keep the energy-hungry PRF in check. We observe that SGEMM kernel

has high amount of data reuse, which if exploited wisely can result in significant re-

duction in PRF reads. For example, considering multiplication of matrices A and B,

first element of A is multiplied to every element in the first row of matrix B, provid-

ing opportunity to cut the PRF reads for first element of matrix A. And similarly,

first element of matrix B is multiplied to every element in the first column of ma-

trix A. These opportunities for reuse could, alongside register tiling, be leveraged to

substantially reduce the number of reads to the PRF.

Code Generation. Another challenge is generating code that can efficiently take

advantage of the additional compute in the CPUs. Libraries such as MKL are aggres-

sively tuned to current CPU specifications, and thus these libraries cannot be readily

ported to new hardware configurations having more VFMA units without significant

additional manual labor. Increasing the number of VFMA units requires handling

data movements between the memory, registers and the VFMA units in an effec-

tive manner to keep the VFMA units busy. In addition, this interplay changes with

the number of architectural registers and VFMA units in the processor, requiring

an automatic code generation technique that is robust to different microarchitec-

tural implementations while taking full advantage of reuse opportunities exhibited by

SGEMM calculation.

5.2 Overview

This work focuses on devising a set of solutions to the aforementioned physical

register file (PRF) energy and performance limitations. This section presents a sketch

of the solution components spanning both hardware and software that allow a general

purpose CPU design to overcome those limitations.
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Figure 5.2: Performance impact of doubling five memory-related microarchitectural
parameters, when VFMA units are increased to 4; Arch registers and Reg BW are
the key factors
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Hardware. Our solution, Locality Extensions for Deep Learning (LEDL), takes

advantage of the substantial data reuse opportunities inherent in the SGEMM calcu-

lations to efficiently utilize the scarce PRF bandwidth available on the CPUs. LEDL

centers around two key modifications in the CPU microarchitecture to reduce the bur-

den on PRF. First, we add an architecturally visible register, VFMA remote register,

embedded in each VFMA unit. Second, we add low-cost unidirectional inter-VFMA

links between the VFMA units, that a VFMA unit can use to pass on the data to

the connected VFMA unit. These microarchitectural modifications enable the pro-

grammer to reuse the data multiple times, both within and across the VFMA units,

instead of reading from the PRF every time, effectively reducing the register reads

per cycle while allowing to pack more VFMA units in the CPU.

Software. We introduce Automatic Code Generator (ACG) that automatically

generates code for SGEMM calculations suitable for a given number of architectural

registers and VFMA units, while maximizing the data reuse. ACG leverages two

optimization strategies - Register tiling and Prefetcher-friendly layout transformation

- to keep compute units busy. These optimization parameters depend on the number

of architectural registers and VFMA units. ACG analytically finds a suitable set of

optimization parameters that structure the computation in a manner necessary to

achieve high data reuse not only within the PRF, but also within and across the

VFMA units as facilitated by LEDL microarchitectural additions.

5.3 Design and Implementation

CNN applications have high compute and energy requirements. Improving per-

formance of CNN applications on CPUs requires adding more VFMA units, while

keeping the energy-hungry PRF in check. In this section, we present LEDL hardware

and software implementation details designed to improve CPU energy efficiently for

CNNs.
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5.3.1 Hardware Design

5.3.1.1 Energy-Efficient PRF Usage

LEDL’s goal is to reduce the burden on PRF, while being able to pack more

compute in the CPUs. It utilizes the data reuse inherent in SGEMM calculations to

reduce PRF reads, effectively reducing the PRF bandwidth and energy requirements.

We achieve this energy-efficient usage of PRF by making minor modifications in the

VFMA units.

Figure 6.5 gives an overview of the current state of the PRF and FMA units

and our microarchitectural extensions. Figure 6.5(a) shows the status of current

Intel Haswell processor design having 2 VFMA units connected to the PRF. Each

VFMA unit requires 3 register operands from the PRF and writes 1 register in the

PRF, requiring a total of 6 PRF reads per cycle for Intel Haswell. Figure 6.5(b)

shows a straightforward extension of Intel Haswell architecture, having 4 VFMA units.

This configuration requires PRF bandwidth of 12 register reads per cycle, incurring

significantly high energy cost. SGEMM calculations have high data reuse opportunity

which can be exploited to reduce the number of PRF reads per cycle substantially. To

utilize this data reuse, we extend each VFMA unit to achieve temporal reuse within

and across the VFMA units, as shown in Figure 6.5(c). First, each VFMA unit has an

architecturally visible register, referred to as VFMA remote register capable of reusing

a vector register input locally (at the same unit) across multiple operations. Second,

the VFMA units are connected with unidirectional links, referred to as InterVFMA

links, adding opportunity of inter-unit reuse across VFMAs.

Local Reuse - VFMA Remote Register. To reuse a data value locally, each

VFMA unit is augmented with an architecturally visible register. This register is

different from other architectural registers in that it is coupled with a particular

VFMA unit. It can be written from the caches or from the other registers like other
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architectural registers, but it cannot be written by the VFMA itself. It is used for

storing an input value that can be reused multiple times, which would have otherwise

come from PRF. Localizing the usage of the remote register to its VFMA unit, while

also disallowing the VFMA to update it, results in little hardware overhead. VFMA

remote register adds a capability of reducing the PRF bandwidth requirement by a

maximum of one-third if the application data-reuse is efficiently utilized.

Inter-unit Reuse - InterVFMA links. Further, LEDL exposes inter-unit reuse

capability in VFMA units by connecting them via a unidirectional link, as shown in

Figure 6.5(c). The VFMA unit can obtain one of its operands from the InterVFMA

link, instead of reading it from PRF. These links help in achieving inter-unit reuse,

where an operand can be read just once from the PRF and then can be reused across

VFMA units by using InterVFMA links. When coupled with VFMA remote registers,

this further cuts down the PRF reads by around one-third by reusing the same value

across different VFMA units. Similar to VFMA remote register, InterVFMA links

transfer only the input data and do not support transfer of VFMA output to next

VFMA input.

VFMA Input Ports. To take advantage of local and inter-unit reuse, we modify

VFMA input port design so that it is flexible enough to take inputs from PRF,

its Remote Register and InterVFMA link. Figure 6.5(d) shows the implementation

details of VFMA ports. Typical VFMA unit has 3 input ports and 1 output port.

In current Haswell architecture, each of these input ports is connected to the PRF.

We modify input port 1 to take the input from either Remote register or PRF and

input port 2 to obtain the input from either InterVFMA link or PRF. Input port 3

is kept unmodified, receiving the operand from the PRF. The VFMA output port is

also kept unmodified, writing back the value in the PRF as usual.
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5.3.1.2 Instruction Set Architecture

Here, we describe the ISA extensions required to utilize the microarchitectural

data reuse capabilities exposed by LEDL. We use x86 operations to explain the work-

ings of these ISA extensions, but the ideas can be applied to other ISAs as well.

Remote Register Instructions. VFMA Remote Registers are architecturally vis-

ible registers that can be written by conventional move operations, moving the data

from memory or other architectural registers to the remote registers. From a program-

mer’s perspective, these are new registers that are dedicated to the VFMA units. An

example of move operation from memory to a VFMA remote register(%vfma0reg) is:

vmov 0(%rcx), %vfma0reg

where vmov instruction transfers a vector word from the memory to the VFMA0

Remote Register.

VFMA Instructions. Most of the our ISA extensions are restricted to VFMA

instructions. These extensions provide the select signal for the multiplexers in the

VFMA input ports shown in Figure 6.5(d), resulting in 4 categories of VFMA oper-

ations:

vfma <PRF>, <PRF>, <PRF>

vfma <RR>, <PRF>, <PRF>

vfma <PRF>, <LINK>, <PRF>

vfma <RR>, <LINK>, <PRF>

where <RR>, <LINK> and <PRF> denote that the operand is read from Remote Reg-

ister, InterVFMA link and Physical Register File respectively. Note that the first

category is the class of VFMA operations currently supported in a conventional mi-

croarchitecture, choosing all the operands from PRF.

VFMA and Group ID Tags. To facilitate precise instruction scheduling of VFMA

instructions to take advantage of our design (discussed next in Section 5.3.1.3), we
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VFMA ID 0

a0 a1

b2, b1, b0
c3, c1, c0

           Tags are shown by [VFMA ID tag, Group ID tag]

0 :  Loads for values b0, b1 and b2

1 :  #1 - vfma(a0, b0, c0)[0,0]

2 :  #2 - vfma(a0, b1, c1)[0,1]      #3 - vfma(a1, b0, c2)[1,1]

3 :  Cache miss for b2 - Stalled

4 :  Still waiting for b2 - Stalled

5 :  #4 - vfma(a0, b2, c3)[0,2]      #5 - vfma(a1, b1, c4)[1,2] 

6 :                                                    #6 - vfma(a1, b2, c5)[1,3]

VFMA ID 1

c5, c4, c2

c3, c1, c0
c5, c4, c2

Figure 5.4: Example of leveraging VFMA ID and Group tags for instruction schedul-
ing

add two fields to the VFMA opcode specification. First, each VFMA unit is assigned

a tag that can be specified in each instruction. The instruction scheduler extracts

this tag from the VFMA instruction opcode and then issues the instruction to the

specific VFMA unit as identified by the tag. Second, a Group ID tag provides another

layer of precise scheduling capability by informing the instruction scheduler about

the instructions that should be issued simultaneously. All the VFMA instructions

that have the same Group ID tag must be scheduled simultaneously. This means

that every instruction, in the group of VFMA instructions with same Group ID

tag, must have its operands ready before the whole group can be issued. This can

be seen as introducing a degree of in-orderness to the execution of these groups of

instructions, however we show in Section 5.4.2 that this effect has minimal impact on

the application performance.
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5.3.1.3 Instruction Scheduling

Dynamic Instruction schedulers in CPUs have the responsibility of scheduling

ready-to-issue instructions to the functional units as they become available. In cur-

rent Haswell processors, whenever the dynamic scheduler encounters a ready VFMA

instruction, it schedules it on either of the VFMA units, whichever is available.

However, our extensions pose two challenges in the instruction scheduling - (a)

The VFMA instructions need to be carefully scheduled to the relevant VFMA units.

Since each Remote Register is local to its VFMA, and Inter FMA links are also

unidirectional, the operations have to be orchestrated in a certain manner and cannot

be scheduled randomly as done by the current dynamic scheduler. (b) In addition,

some of the instructions in this pre-defined sequence might not be ready because one

of their operands might be waiting for a cache miss to get resolved. To address these

challenges, the instruction scheduler takes advantage of the two fields – VFMA ID

tag and Group ID tag – included in the VFMA instruction specification.

Figure 5.4 shows the usage of these two tags, using an instruction sequence oper-

ating on 2 VFMA units connected via InterVFMA links. VFMA remote registers are

already loaded with operands a0 and a1. The sequence of operands that go on the

InterVFMA links is b0, b1 and b2. The third operand, also the output register, comes

from the register file and denoted by ci. The figure shows the instruction sequence

where each instruction has the associated tags in the square brackets [VFMA ID tag,

Group ID tag]. In cycles 1 and 2, the VFMA ID tag directs the scheduling of in-

struction in the corresponding VFMA units. Also Cycle 1 and Cycle 2 have different

Group IDs, forcing the instruction scheduler to follow the sequence. Cycle 3 shows an

event where operand b2 is unavailable due to a cache miss. Since instructions 4 and

5 share the same Group ID tag, even though instruction 5 is ready to be issued, in-

struction scheduler delays its issue until Cycle 5, when instruction 4 operand b2 is also

available. Group ID and VFMA ID tag, therefore, help in achieving precise instruc-
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Figure 5.5: Register tiling steps performed by ACG

1    // The output tile is kept in registers - c0, c11

2    vmov b0, r0; vmov b1, r1; vmov b2, r2; vmov b3, r3 // Load tile B

3

4    vbroadcast a0, r4  // Read element from tile A

5    // Calculate partial sum for the first row of output tile

6    vfma r0, r4, c0; vfma r1, r4, c1; vfma r2, r4, c2; vfma r3, r4, c3

7 

8    // Perform the same compuation for next output rows

9    vbroadcast a2, r4

10  vfma r0, r4, c4; vfma r1, r4, c5; vfma r2, r4, c6; vfma r3, r4, c7

11  vbroadcast a4, r4

12  vfma r0, r4, c8; vfma r1, r4, c9; vfma r2, r4, c10; vfma r3, r4, c11

13  // Repeat line 4-12 for next row of tile B and next colum of tile A (unroll Kt times)

1    // The output tile is kept in registers - c0, c11

2    vmov b0, rr0; vmov b1, rr1; vmov b2, rr2; vmov b3, rr3 // Load tile B

3

4    vbroadcast a0, r4; vbroadcast a2, r5; vbroadcast a4, r6

5

6    // Compute partial sums (Column is VFMA ID tag, row inst have same group ID tag)

7    vfma rr0, r4, c0; 

8    vfma rr0, r5, c4; vfma rr1, Link, c1; 

9    vfma rr0, r6, c8; vfma rr1, Link, c5; vfma rr2, Link, c2;

10                                    vfma rr1, Link, c9; vfma rr2, Link, c6; vfma rr3, Link, c3; 

11                                                                          vfma rr2, Link, c10;vfma rr3, Link, c7;

12                                                                                                                vfma rr3, Link, c11;

13  // Repeat the same steps for next row of tile B and next colum of tile A

(a) (b)

Figure 5.6: Code generation template for the partial sum output tile calculation for
(a) non-LEDL and (b) LEDL hardware

tion scheduling that is necessary to utilize the local and inter-unit reuse capabilities

exposed by LEDL.

5.3.2 Code Generation

Increasing VFMA units in the CPU requires an automatic code generator that can

generate the code as per the availability of hardware resources, while also maximizing

the heavy data reuse exhibited in the SGEMM calculations. Our code generator,

ACG, leverages two optimization strategies - Register Tiling and Prefetcher-friendly

layout transformation - to maximize data reuse and keep VFMA units busy. Using

these optimizations, ACG structures the computation in a manner, where data can

be reused within and across the VFMA units. ACG, then, maps the computation to

LEDL using the ISA extensions described in Section 5.3.1.2.
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5.3.2.1 Register Tiling

SGEMM kernel calls have high data reuse, providing opportunities of achieving

high compute to memory ratio. To take advantage of this reuse, it is necessary to

perform aggressive vector register tiling in the CPUs. We show later in Section 5.4.8

that by utilizing the registers efficiently, we can achieve upto 5× performance im-

provements as compared to a software that underutilizes the registers.

The details of our register tiling approach are illustrated in Figure 5.5, showing the

steps involved in applying register tiling when multiplying input matrices A and B to

produce output matrix C. The tiling is performed for both input and output matrices.

As shown in the figure, the input A tile size if Mt × Kt, and the input B tile size is

Kt × Nt, resulting in an output tile size of Mt × Nt. The output tile holds the partial

sum for the multiplication of A and B input tiles. Structuring SGEMM calculations

in this manner not only exposes data reuse in PRF, but also within and across VFMA

units, where LEDL can be leveraged to achieve better energy characteristics.

We show the details of the partial output calculation for non-LEDL hardware in 1

in Figure 5.5, while the corresponding code template is shown in Figure 6.7(a),where

the tiling parameters – Mt, Nt, Kt – are set at (4,24,2). Firstly, first row of the input

B tile (Nt elements) is read from the memory into the registers (line 2). These values

are reused before moving on to the next row. Now, elements from the first column

of the input tile A are read one-by-one and used to compute the partial sums for the

first row of output (line 4 - line 12). Note that element A is a scalar, which has to be

replicated by vector length (shown as broadcast instruction in line 4), as the same

value is multiplied to each element in each vector of the current row of input tile B.

Once all the elements in the column of A are used, we move to second column of tile

A and second row of tile B. This essentially translates into unrolling the loop by Kt

times.

Once this partial sum calculation finishes, there are several options to choose
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from. We observed that computing an output tile to completion results in the best

performance, as it achieves maximum reuse possible for the output matrix. We achieve

this by moving the tile horizontally in matrix A and vertically in matrix B, shown

in the figure by 2 , resulting in the completion of the output tile of elements Mt ×

Nt. We then move the output tile vertically down shown by 3 . Repeating 1 , 2 and

3 results in the completion of M × Nt output elements. Finally, we move to the

next column, as shown by 4 . Repeating 1 , 2 , 3 and 4 results in the completion

of matrix multiplication.

While the underlying basics for performing register tiling using LEDL features re-

main same, the implementation details change slightly. The corresponding template is

shown in Figure 6.7(b) which can be understood in conjunction with Figure 5.7 show-

ing the values that are used within (local reuse) and the values that are used across

the VFMA units (inter-unit reuse). The row elements of input tile B are brought into

the VFMA remote registers (shown by rr in line 2), reusing these operands locally.

All the column elements of input tile A are read into the registers before the actual

computation starts (line 4). The values of these registers is now passed one by one

to the first VFMA register which then transfers the value to the next units using

InterVFMA links, enabling inter-unit reuse. While hoisting all the input tile reads to

the start increases the register pressure, it results in better performance as it hides

the memory latency to large extent.

Identifying Suitable Tiling Parameters. An objective of our code generation

step is to find suitable tiling parameters that fit the hardware specifications, while also

maximizing the data reuse opportunities. Analyzing the aforementioned template,

we can easily find the relationship between the tiling parameters and the number of

architectural registers. In addition, we can also calculate compute-to-memory-access

ratio (CMAR) which captures data reuse at the PRF. ACG, using these relationships,

generates a software variant by choosing an efficient set of tiling parameters that
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maximizes data reuse while fitting in available architectural register count.

As we can see from the template, for the software that does not use LEDL ca-

pabilities, 1 requires 1 register for input tile A, Nt/V L registers for input tile B

and Mt ∗Nt/V L registers for input tile C, where VL refers to the Vector Length; the

number of floating point elements that can fit into a vector. For compute-to-memory-

access ration (CMAR), the template performs Mt ∗Nt/V L VFMA operations for ev-

ery 1 memory read from input tile A and Nt/V L memory reads from input tile B.

Therefore, the resulting relationship between tiling parameters and register tiling and

CMAR is

Arch Registers = 1 +Nt/V L+Mt ∗Nt/V L (5.1)

CMAR = (Mt ∗Nt/V L)/(1 +Nt/V L) (5.2)

Similarly, the relationships when we leverage LEDL capabilities are

Arch Registers = Mt +Nt/V L+Mt ∗Nt/V L (5.3)

CMAR = (Mt ∗Nt/V L)/(Mt +Nt/V L) (5.4)

Depending on whether the HW supports LEDL, ACG chooses the relevant equa-

tions and picks the tile parameters that has the highest compute-to-memory ratio,

while also fitting inside the available architectural register file size.

5.3.2.2 Prefetcher-friendly Layout Transformation

We observe that for many convolution layers, even after applying aggressive regis-

ter tiling, the generated code variants still have low VFMA utilization, sometimes as

low as 50%. Upon further investigation, we find that CPU is heavily stalled on cache

misses, even though the memory access pattern seems to be predictable for the cache

prefetchers. The reason for this slowdown is that the prefetchers are not allowed to
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prefetch beyond page boundaries. In convolution layers, the matrices are typically

large resulting in stride larger than a page boundary when the the data access pattern

jumps to next row of the matrix.

To solve this issue, before starting any SGEMM computations, ACG performs

a prefetcher-friendly layout transformation on the input matrices A and B, so that

the memory access pattern becomes a continuous back-to-back sequence during the

compute part. The overhead of performing this transformation (in the order of

O(M ∗K+K ∗N)) typically gets amortized because of an order of magnitude higher

number of FMA operations (in the order of O(M∗N∗K)), where the transformed data

is reused multiple times. With this layout transformation, the prefetchers work very

efficiently bringing most of the data in L1 caches before it is actually required, result-

ing in higher compute utilization. ACG uses the tiling parameters to generate the code

for layout transformation. The transformation code is same irrespective of whether

the code is utilizing LEDL reuse features. Figure 5.8 shows this transformation for

input matrices A and B for the example discussed in Section 5.3.2.1. The transforma-

tion can be viewed as flattening the 2-dimension matrix into a 1-dimensional matrix,

such that every next access is located contiguously in this flattened array.

Interleaving Transformation and Compute. To further reduce the cost of layout

transformation, ACG interleaves some portion of compute with the layout transfor-

mation. Since layout transformation typically stalls on the memory, the interleaving

utilizes the unused VFMA units to complete a small portion of SGEMM calculation

in parallel. This technique is particularly useful for the cases where the amount of

computation in the SGEMM computation is smaller, where the impact of hiding the

overhead of the transformation becomes more visible.
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Figure 5.7: Computation and data movement for the LEDL code

5.4 Evaluation

5.4.1 Methodology

Applications. We evaluate our hardware and software mechanisms on 5 state-of-

the-art CNN applications – Alexnet, Overfeat, VGG 16, NiN and ResNet [92, 146,

149, 106, 75]. These are medium to large CNNs, presenting a large variation in

convolution layer shapes and sizes. The number of convolution layers in the five

CNN applications are 5, 5, 13, 12 and 50 respectively. Additionally, we evaluate our

hardware on a variety of other widely used DNN layers like Fully Connected and

Long short-term memory layers (a type of Recurrent layer). The configuration of

these networks is detailed in Section 5.4.6.

Performance and Energy Measurement. We use Snipersim [27] to evaluate

the performance impact of LEDL hardware and software mechanisms. We have aug-

mented the Snipersim infrastructure to simulate the vector instruction extensions

described in Section 5.3.1.2, along with VFMA Remote Register and InterVFMA

link implementations. We took efforts to ensure that Snipersim achieved similar per-

formance statistics in simulation to the characteristics observed on real Haswell pro-

cessors for the Intel MKL and ACG generated software variants. Our experiments use

McPAT infrastructure [103], extended to include the techniques described by Sam et

al. [166], to model energy and area consumption. The energy and area measurements

used throughout the evaluation include core and all three levels of caches.
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Baseline and Hardware Configurations. Our baseline, where not stated other-

wise, is derived from a currently available Intel Haswell server processor design whose

configuration details are described in Table 5.1. Physical floating point registers in

our designs are fixed to 168, similar to the Haswell baseline. We increase the num-

ber of architectural registers to 96, unless otherwise specified. We never observed

structural hazards due to unavailability of physical registers in our experiments.

We study the impact of local and inter-unit reuse by evaluating across three sup-

ported modes of VFMAs:

• NR (No Reuse): The VFMA unit reads all 3 register operands from PRF,

requiring 3 PRF reads per cycle.

• LR (Local Reuse): The VFMA reads one operand from its Remote Register

and other two from the PRF, taking advantage of local reuse, requiring 2 PRF

reads per cycle.

• FR (Full Reuse): The VFMA reads one operand from its Remote Register,

one from its InterVFMA link and one from the PRF, utilizing both local and

inter-unit reuse, requiring 1 PRF read per cycle.

Table 5.2 lists the hardware design points that we use for our evaluation. We

observe that for 2, 3 and 4 VFMAs, the PRF can have enough read ports to support

NR mode. However, 5 and 6 VFMAs require 15 and 18 PRF read ports, at which

point PRF cannot meet the timing constraints. Using VFMAs in LR and FR modes

does not require 18 read ports. Therefore, we use a hybrid design for 5 and 6 VFMAs,

where the number of PRF read ports are kept to 12 (2 per VFMA). Unless otherwise

specified, we use these hardware design points for evaluation.

CNN Implementations. We evaluate the efficiency of our software-hardware

mechanism on two CNN implementations: IM2COL+MatMult (shorthanded as IM2COLMM

going forward) and Winograd. Our evaluation focuses mostly on IM2COLMM, while

we focus on Winograd specifically in Section 5.4.6.
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Figure 5.8: ACG’s Prefetcher-friendly layout transformation

Processor
8-wide OoO core, 2.4 GHz
192-entry ROB, 72-entry load queue

Private L1 cache 32 KB, 8-way, 2-cycle, 64 B block
Private L2 cache 256 KB, 8-way, 5-cycle, 64 B block
Shared LLC 8 MB, 16-way, 12-cycle, 64 B block
Main memory 1 GB, 65 ns latency
L1, L2 and LLC prefetcher Line prefetcher

Table 5.1: Baseline hardware configuration, modeled after an Intel Haswell server
configuration

5.4.2 Performance and Energy Improvements

In this section, we examine the characteristics of LEDL to understand the tradeoffs

the different hardware design points offer in terms of performance and energy usage.

Energy Delay Product. In the first experiment, we use ACG to generate software

for each convolution layer in the CNNs of our application suite. We then measure the

energy consumption of each layer for our hardware designs points and each VFMA

mode. We accumulate the energy for each convolution layer per DNN and measure

the Energy delay product (EDP). The findings of this experiment are presented in

Figure 5.9. The figure shows EDP improvement for the best FMA mode for each

hardware design point, over the Intel Haswell baseline.

We observe that increasing the number of VFMA units results in significant EDP

improvements over the Haswell baseline. LEDL extensions substantially reduce the

number of PRF reads, resulting in average EDP improvements of 2.0×, 2.5× and

2.7× with FR mode on 4, 5 and 6 VFMA units. For lower number of VFMA units

(2 and 3), NR mode achieves better EDP due to better tile characteristics.
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Design point name VFMAs PRF read and write ports
2-VFMA (Baseline) 2 6 read and 2 write
3-VFMA 3 9 read and 3 write
4-VFMA 4 12 read and 4 write
5-VFMA-Hybrid 5 12 read and 5 write (NR not supported)
6-VFMA-Hybrid 6 12 read and 6 write (NR not supported)

Table 5.2: Hardware design points
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Figure 5.9: EDP improvement of increasing the VFMA units for end to end total
convolution runtime.

Performance. Next, we perform the same experiment and measure the performance

of each layer for our hardware designs points and each VFMAmode, giving us the total

convolution runtime. The findings of this experiment are presented in Figure 5.10.

The figure shows the speedup of the best reuse mode for each hardware design point

against the Haswell baseline.

We observe that adding VFMA units results in geometric mean speedup of 1.4×,

1.7× for 3 and 4 VFMA units for NR mode. Further, PRF cannot meet latency

constraints for supporting NR mode when the number of VFMA units are increased

to 5 and 6. Here, LEDL’s reuse capabilities reduce the PRF bandwidth requirements,

resulting in hybrid designs that improve compute capacity, achieving a performance

speedup of 2.0× and 2.1× for FR mode on 5 and 6 VFMA units respectively.
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Figure 5.10: Performance improvements of increasing the VFMA units for end to end
total convolution runtime

5.4.3 Impact of FMA modes

The LEDL-enabled FMA modes – LR and FR – reduce the number of PRF

reads by taking advantage of local and inter-unit reuse, resulting in better energy

consumption characteristics. In this section, we study the energy effect of these

FMA modes by measuring the energy and execution time of each CNN layer in our

application suite, giving us the total EDP of accumulated CNN layer execution. This

experiment is performed for all hardware designs on the 3 VFMA modes. We present

the findings of this experiment in Figures 5.11 and 5.12.

First, we show the impact of FMA modes on 2, 3 and 4 VFMA units in Figure 5.11.

The figure shows EDP improvement of LEDL-enabled LR and FR modes normalized

to the currently-supported NR mode for 2, 3 and 4 VFMA units. We observe that for

2 and 3 VFMA units, the LR and FR reuse modes result in minimal improvement.

This is because the tile characteristics of code variant for LR and FR modes have

higher energy consumption compared to NR mode. In this experiment, we also

observe that PRF power is 10% of the total power at 2 VFMA units, but increases

to 18% for 4 VFMA units. Due to this high increase in PRF power, we observe that

at 4 VFMA units, LEDL starts achieving better EDP characteristics than NR mode.

On average, LR and FR achieve EDP improvements of 8% and 10% for 4 VFMA
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Figure 5.12: LEDL-enabled FMA modes comparison for 5 and 6 VFMA units. NR
mode is not supported as PRF latency constraints cannot be met

units, respectively, compared to NR mode.

However, beyond 4 VFMA units, NR mode is not viable because the PRF latency

constraints could no longer be met. LEDL, on the other hand, relaxes PRF bandwidth

requirements, packing more VFMA units while keeping PRF latency in check. We

therefore compare the EDP characteristics of LEDL-enabled modes on 5 and 6 VFMA

units to 4 VFMA units with NR mode, the best hardware design point currently

supported by NR mode. This comparison in shown in Figure 5.12. We observe that

LEDL-enabled modes result in significant EDP improvements, achieving an EDP

improvement of 1.35× and 1.47× for 6 VFMAs with FR mode.
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5.4.4 Impact of Microarchitectural Parameters

In this section, we study the impact of microarchitectural parameters on the energy

characteristics of different FMA modes on our hardware design points. We perform

the analysis on the conv2 layer of Alexnet (Alexnet’s most time-consuming layer).

In this experiment, we measure EDP for Alexnet conv2 layer for different number

of architectural registers and different hardware design points. The experiment is

conducted for all three VFMA modes. We show the result of this experiment for NR

mode, modeling the baseline Haswell processor configuration, and LR and FR modes,

LEDL enabled modes that reduce the number of PRF reads, in Figure 5.13(a), (b) and

(c) respectively. The figures show EDP improvements for different hardware design

points against a hardware design point having 2 VFMA units and 16 architectural

registers.

VFMA units and VFMA modes. First, we observe that increasing VFMA

units result in significant EDP improvements for 96 architectural registers. But more

importantly, we observe that this increase is limited to 2.4× for 4 VFMA units in NR

mode. Adding any more VFMA units requires extra PRF bandwidth, reaching a point

where PRF latency constraints could no longer be met for NR mode (shown by the

grey box in (a)). LR and FR modes reduce the number of PRF reads, substantially

reducing the PRF bandwidth requirements. This lets us pack more compute units,

extending the number of VFMA units to 5 and 6 for LR and FR modes, increasing

the EDP improvements to 3.5× and 3.7× respectively, as shown in (b) and (c).

Architectural Register Count. Next, we analyze the impact of architectural reg-

ister count. There are three key observations. First, from (a), we observe that current

Intel machines, which have 16 architectural registers, can improve their EDP by 35%

just by increasing the architectural registers to 24. Second, number of architectural

registers limit the EDP improvements when we increase the number of VFMA units

for all VFMA modes. For example, in (a), 4 VFMA units achieve an EDP improve-
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Figure 5.14: LEDL’s EDP improvements on FR mode for the top 5 most time con-
tributing layers of our application suite

ment of 2× at 24 registers, which can be increased to 2.4× at 32 registers. And last,

we observe that FR and LR require larger number of architectural registers for same

number of VFMA units as compared to NR (equations 5.1, 5.3). For example, for 3

VFMA units, NR requires 24 registers but FR requires 32.

5.4.5 Layer-by-Layer Analysis

Different convolution layers within the same network can have different perfor-

mance and compute requirements. In this subsection, we present a layer-by-layer

EDP analysis of our application suite. Due to space limitations we show only the top
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Figure 5.15: Breakdown of runtime in compute and layout transformation time, as
the number of VFMA units are increased (2, 3, 4, 5 and 6 from left to right in each
cluster)

5 layers in each network (ranked by their contribution to execution time).

EDP Analysis. In this experiment, we evaluate layer-by-layer EDP improvement

when the number of VFMA units are increased. The number of architectural reg-

isters are kept fixed at 96. ACG takes the number of architectural registers and

VFMA units as input and generates a code variant that uses FR mode for all the

VFMAs. The findings of this experiment are presented in Figure 5.14, showing the

EDP improvements over the Haswell baseline.

We observe that LEDL reuse features achieve significant EDP improvements when

the number of VFMA units are increased. Alexnet, for example, achieve close to 2.5x

EDP improvement for the top 4 most contributing layers. However we also observe,

that some layers like top 3 layers of VGG do not achieve similar EDP improvements.

This can be attributed to the high layout transformation time for these layers, which

we evaluate next.

Layout Transformation Overhead. To understand the variation of EDP im-

provements across different convolution layers, we investigate the application execu-

tion time breakdown across compute and layout transformation steps. The findings

of this experiment are presented in Figure 5.15, showing the breakdown of layer ex-
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Figure 5.16: LEDL’s EDP improvements on winograd algorithm

ecution time across compute and layout transformation portion when the number of

VFMA units are increased. The runtime is normalized to Haswell baseline.

There are two keys observations from this experiment. First, the compute time

scales down gracefully as more VFMA units are added into the CPU. Second, the data

transformation time remains constant and is not affected by the VFMA units. These

two factors explain the EDP improvement variations observed earlier in Figure 5.14.

VGG 16 layers have large data transformation cost, resulting in smaller EDP im-

provements. Such layers are characterized by small value of M (rows in matrix A)

and large values of K and N (rows and columns, respectively, in matrix B). Therefore,

the compute time, in the order of O(M ∗ N ∗ K), in these layers is comparable to

data layout transformation time, which is in the order of O(M ∗K+N ∗K). Alexnet

and ResNet, on the other hand, have low layout transformation overhead, leading to

higher EDP improvements.

5.4.6 Applicability to Other Algorithms

In this section, we present LEDL EDP analysis to other algorithms and application

domains beyond CNN.

Winograd. First, we apply LEDL on Winograd convolution algorithm, which is
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typically implemented using SGEMM kernel calls to efficiently utilize the hardware re-

sources. We use NNPACK library to extract the SGEMM kernel call parameters [49].

Currently, NNPACK supports Winograd algorithm only for those convolution layers

that have a 3×3 kernel. Therefore, this study covers only those layers that meet this

kernel size constraint.

In this experiment, we evaluate layer-by-layer EDP improvement when the number

of VFMA units are increased, while the VFMA units are configured in FR mode. We

present the results normalized to Haswell baseline in Figure 5.16. We observe that

reusing data and cutting down PRF reads results in significant EDP improvements.

Overall, VGG 16, for example, achieves an EDP improvement of close to 2.2× for 4

VFMA units.

Fully Connected and Recurrent Neural Networks. We next measure LEDL

impact on two other widely used DNN layers - Fully Connected (FC) and Long Short

Term Memory (LSTM) layers (a type of recurrent layer) - that are also implemented

atop SGEMM [84]. Recently, Google released an ASIC, having a fast matrix multipli-

cation unit, to accelerate DNN inference – Tensor Processing Unit [84]. The research

also showed that a subset of their FC and LSTM layers were compute bound on

CPUs (refer to Figure 6 in [84]). Therefore, the extensions offered by LEDL have the

potential to improve energy and performance in these cases as well.

To study the applicability of LEDL on these layers, we evaluate a variety of FC

and LSTM layers from five application domains – FC layer for Parts of Speech [73],

LSTM layer of 200 cells for Language Modelling [173], LSTM layer of 128 cells for

Image Captioning [102], LSTM layer of 500 cells for Sentiment Analysis [161] and

LSTM layer of 1024 cells for Sequence to Sequence encoder [152]. In this experiment,

we measure the EDP improvement for these layers for all hardware design points

and VFMA modes. The findings of this experiment are presented in Figure 5.17,

showing EDP improvement for the best VFMA mode for all hardware design points
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Figure 5.17: LEDL shows good EDP improvements for other widely used DNN layers
– FC and LSTM
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Figure 5.18: Performance of ACG variants against Intel MKL code. Variant register
usage is shown at the top of each bar

normalized to a conventional Intel Haswell baseline.

We observe that increasing VFMA units achieve significant EDP improvement

for 4 out of 5 layers. As we increase the number of VFMAs to 4, FR mode starts

showing better EDP characteristics, resulting in average speedup of 1.7×, 2.0× and

2.3× for 4, 5 and 6 VFMA units. The last application, seq2seq LSTM layer, shows

low EDP improvement because this layer is memory bandwidth bound, resulting in

diminishing improvements for additional VFMA units.
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Figure 5.19: Speedup achieved by different ACG’s optimizations

5.4.7 Area Overhead

Increasing raw computation capacity of a CPU requires adding more VFMA units

as well as increasing the number of read ports in PRF. LEDL, in addition, introduces

additional microarchitectural elements to reduce the PRF read bandwidth require-

ments. However, LEDL microarchitectural additions have minimal area overhead

as VFMA remote register is local to its VFMA and InterVFMA links are also uni-

directional with single link between two VFMAs. Therefore, the two major factors

that govern the area overhead are VFMA units and PRF. We use McPAT to capture

this area overhead for our hardware design points.

The area measurement is performed assuming a traditional CPU server, having

8 CPU cores, each having private L1 and L2 caches and sharing a LLC, whose pa-

rameters are listed in Table 5.1. We observe that the additional area for 3-VFMA,

4-VFMA, 5-VFMA and 6-VFMA-Hybrid design is 4%, 8%, 11% and 15% respec-

tively. Most of this increase is because of the additional VFMA units. For example,

14% area (compared to total of 15%) for 6 VFMA-hybrid design point is just because

of additional VFMA units. Pollack’s Rule states that performance increase due to

microarchitectural advances are roughly proportional to the square root of increase

in complexity, where complexity refers to the area [23]. We observe that LEDL leads
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to significant performance and energy improvements, that greatly outstrip the typical

Pollack’s Rule tradeoff.

5.4.8 Code Generator Efficacy

ACG is designed to generate codes that can take advantage of additional VFMA

units, while also maximizing the local and inter-unit reuse. In this section, we evaluate

the efficacy of the ACG, both on real hardware and simulation.

ACG Software Variants. In this experiment, we show the inner workings of

ACG for Alexnet Conv2 layer on real Intel Haswell machines. Instead of choosing

a particular set of tile parameters, we use ACG to sweep the tiling parameters over

a small range to generate many software variants and measure their performance on

real hardware. The results of this experiment are presented in Figure 5.18. The figure

shows variants’ performance against Intel MKL, an aggressively tuned code for Intel

Haswell machines. The register usage of each software variant is presented at the top

of its bar.

There are two key observations from the figure. First, to achieve the high per-

formance, the SW variant has to efficiently utilize the register storage. Current Intel

Haswell processor has 16 architectural registers. The figure shows that the highest

performing variant utilizes all of these registers. Second, ACG achieves close to Intel

MKL performance, which is an aggressively hand-tuned library.

ACG Optimization Breakdown. ACG uses Register tiling, Prefetcher-friendly

layout transformation and Interleaving to achieve high performance on CPUs. In this

experiment, we analyze the importance of each of these optimizations on Intel Haswell

processor across the top 5 most contributing layers for each network in our application

suite. The performance speedup of the optimizations is presented in Figure 5.19.

We start with an aggressively Cache-tiled code, that performs cache tiling across

L1, L2 and L3 caches. We observe this code performs poorly, leading to heavy un-
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Figure 5.20: VFMA utilization achieved by ACG including and excluding the layout
transformation overhead. ACG generated code achieves high VFMA utilization

der utilization of CPU resources. We then apply Register tiling to our software,

leading to huge performance improvement for several convolution layers. Next, we

apply the prefetcher-friendly layout transformation. This optimization makes accesses

prefetcher friendly, again leading to substantial performance improvements. Finally,

we apply Interleaving between compute and transformation, reducing transforma-

tion cost by overlapping it with some compute portion, leading to small additional

performance improvements.

FMA Utilization. Finally, we study ACG performance when the number of FMA

units are increased. In this experiment, we analyze the VFMA utilization for the

top 5 most contributing layers for each of our network. We increase the number

of VFMA units and instruct ACG to generate software using the FR mode of the

VFMAs. We present VFMA utilizations of this experiment with and without the

transformation overhead in Figure 5.20 (a) and (b) respectively. We observe that

ACG efficiently utilizes the compute for majority of Alexnet, Overfeat and ResNet

CNN layers. However, top three layers of VGG 16 have low utilization. To investigate

this low VFMA utilization, we exclude the transformation overhead and measure the
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VFMA utilizations. The findings, presented in part (b), show that ACG achieves

high VFMA utilization in SGEMM compute portion.

5.5 Summary

In this work, we focus on identifying and alleviating the microarchitectural bot-

tlenecks that prevent us from improving CPU performance on CNN computations.

Our study shows that designing a PRF capable of feeding computational units is the

primary barrier on achieving higher CPU FLOPS. We present Locality Extensions for

Deep Learning (LEDL) , a novel, minimally intrusive set of microarchitectural and

ISA extensions that address this problem, along with an automatic code generator

needed to take advantage of our design. Our detailed evaluation shows that applying

these extensions allows packing more compute in the CPUs, and can achieve a 2×

performance improvement and a 2.7× energy-delay product improvement compared

to Haswell processors.
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CHAPTER VI

Gist: Efficient Data Encoding for Deep Neural

Network Training

The availability of large datasets and powerful computing resources has enabled

a new breed of deep neural networks (DNNs) to solve hitherto hard problems such

as image classification, translation, and speech processing [75, 77, 88, 90, 160]. These

DNNs are trained by repeatedly iterating over datasets. The DNN training process

has large compute and memory requirements and primarily relies on modern GPUs as

the compute platform. Unfortunately, as DNN models are getting larger and deeper,

the size of available GPU main memory quickly becomes the primary bottleneck1,

thus limiting the size of the DNNs that a GPU can support [128, 129]. Modern

DNNs are already facing this issue, prompting researchers to develop memory-efficient

implementations of the networks [122].

Many researchers have recognized this shortcoming and proposed approaches to

reduce the memory footprint of DNN training. However, prior approaches are not

able to simultaneously achieve all of the following three desirable properties: (i)

provide high memory footprint reduction, (ii) low performance overhead, and (iii)

minimal effect on training accuracy. Most prior works propose efficient techniques

1For GPU main memory (GDDR5/GDDR5X) the first order concern is bandwidth as many
GPU applications are bandwidth-bound. It is hard to get both high bandwidth and high density
DRAM-based memory at low cost [100].
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to reduce the memory footprint in DNN inference with an emphasis on reducing

model size (also referred to as weights) [67, 71, 98, 72, 69, 66]. However for DNN

training, weights are only a small fraction of total memory footprint. In training,

intermediate computed values (usually called feature maps) need to be stored/stashed

in the forward pass so that they can be used later in the backward pass. These feature

maps are the primary contributor to the significant increase in memory footprint in

DNN training compared to inference. This important factor renders prior efforts,

that target weights for memory footprint reduction, ineffective for training. State-of-

the-art memory footprint reduction approaches for training transfer data structures

back and forth between CPU and GPU memory but pay a performance cost in doing

so [128]. Finally, approaches that explore lower precision computations for DNN

training, primarily in the context of ASICs and FPGAs, either do not target feature

maps (and thus unable to achieve high memory footprint reduction) or, when used

aggressively, result in reduced training accuracy [44, 63, 39].

The key insight of this work is in acknowledging that a feature map typically

has two uses in the computation timeline and that these uses are spread far apart

temporally. Its first use is in the forward pass and second is much later in the backward

pass. Despite these uses being spread far apart, the feature map is still stashed in

single precision format (32-bits) when they are unused between these accesses. We

find that we can store the feature map data with efficient encodings that result in a

much smaller footprint between the two temporal uses. Furthermore, we propose that

if we take layer types and interactions into account, we can enable highly efficient

layer-specific encodings – these opportunities are missed if we limit ourselves to a

layer-agnostic view. Using these key insights, we design two layer-specific lossless

encodings and one lossy encoding that are fast, efficient in reducing memory footprint,

and have minimal effect on training accuracy.

Our first lossless encoding, Binarize, specifically targets ReLU layers followed by
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a pooling layer. Upon careful examination of ReLU’s backward pass calculation, we

observe that the ReLU output, that has to be stashed for the backward pass, can be

encoded using just 1-bit values, leading to 32× compression for the ReLU outputs.

Our second lossless encoding, Sparse Storage and Dense Compute (SSDC), that specif-

ically targets ReLU followed by convolution layer, is based on the observation that

ReLU outputs have high sparsity. SSDC facilitates storage in memory-space efficient

sparse format but performs computation in dense format, retaining the performance

benefits of highly optimized cuDNN dense computation, while exploiting sparsity to

achieve high reduction in memory footprint. Finally, in the lossy domain, our key

insight of representing the stashed feature maps in smaller format only between the

two temporal uses enables us to be very aggressive with precision reduction without

any loss in accuracy. This lossy encoding, Delayed Precision Reduction (DPR), de-

lays precision reduction to the point where values are no longer needed in the forward

pass and achieves significant bit savings (as small as 8 bits).

Utilizing all these encodings, we present ACME that specifically targets feature

maps to reduce the training memory footprint. It performs a static analysis on the

DNN execution graph, identifies the applicable encodings, and creates a new execution

graph with relevant encode and decode functions inserted. ACME also performs a

static liveness analysis on the affected feature maps and newly generated encoded

representations to assist the DNN framework’s memory allocator, CNTK [145] in our

case, to achieve an efficient memory allocation strategy.

This paper makes the following contributions:

• Systematic Memory Breakdown Analysis. We perform a systematic memory

footprint analysis, revealing that feature maps are the major memory consumers in

the DNN training process. We also make a new observation that the feature maps

have high data redundancy and can be stored in much more efficient formats between

their forward and backward use.
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• Layer-specific Lossless Encodings. We present two layer-specific encodings –

(1) Binarize that achieves 32× compression for ReLU outputs for layer combination

of ReLU followed by Pool, and (2) Sparse Storage and Dense Compute that exploits

high sparsity exhibited in ReLU outputs for ReLU followed by convolution layers.

• Aggressive Lossy Encoding. We present DPR, that applies precision reduction

only for the backward use of the feature maps – values in the forward pass are kept

in full precision – leading to aggressive bit savings without affecting accuracy.

• Footprint Reduction on a Real System. We observe that ACME reduces the

memory footprint by 2× across 5 state-of-the-art image classification DNNs, with an

average of 1.8× with only 4% performance overhead. By reducing memory footprint,

ACME can fit larger minibatches in the GPU memory, improving GPU utilization

and speeding up the training for very deep networks, e.g., a speedup of 22% for

Resnet-1202. We also show that further optimizations to existing DNN libraries

and memory allocation can result in even larger memory footprint reductions (upto

4.1×).

6.1 Motivation

DNNs typically consist of an input and output layer with multiple hidden layers

in between. Recently, convolution neural networks (CNNs), a class of DNNs, have

been shown to achieve significantly better accuracy compared to previous state-of-

the-art algorithms for image classification [92, 149, 154, 75, 106]. CNNs have been

growing deeper with every iteration, consisting of few convolution layers at the start

(AlexNet) to having hundreds of convolution layers in recent ones (Inception).
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6.1.1 Training vs. Inference

DNNs have two distinct modes of operation: (i) training, when a model is trained

based on a set of inputs (training set) and a corresponding set of expected outputs,

and (ii) inference, when an already trained network is used to generate predictions

for new inputs.

For this paper, we focus on two main differences between training and inference.

First, training consists of two phases: forward and backward passes [132, 42]; inference

only involves a forward pass. The goal of the backward pass in DNN training is to

backpropagate error and find weight error gradients that can be applied to the weights

to steer the parameters in the right direction. Training is performed in batches of

input images, commonly known as a minibatch [25]. Training on minibatches as

opposed to training on an image-by-image basis has been shown to achieve better

accuracy and better hardware utilization [57, 73, 41].

Second, in inference the major part of storage overhead comes from weights. These

weights are fixed after training, and hence many different optimizations can be applied

to reduce their storage requirements [66, 13, 67, 31]. In contrast, training has many

distinct data structures, e.g., weights that change over the course of training, weight

gradients, feature maps (intermediate layer outputs) that need to be stashed in the

forward pass for use in the backward pass, and backward gradient maps.

6.1.1.1 Why Memory Can Be a Problem in Training?

To understand the memory requirements of GPU-based training, we study the

breakdown of memory footprint on five state-of-the-art CNNs in CNTK. While using

FPGAs [174] and ASICs [84, 80] is also possible, most of these designs are either

proprietary or in a relatively early development stages. Hence, we conduct our study

on a modern GPU (Maxwell GTX Titan X in our case). However, our approaches

are applicable to optimized hardware as well (Section 6.4.8).
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Figure 6.1: Breakdown of memory footprint in DNN training amongst different data
structures

Figure 6.1 shows the breakdown of total memory footprint across different data

structures. Feature maps are the intermediate layer outputs that are passed on as an

input to the following layer. Gradient maps are the intermediate gradients generated

in the backward pass and passed as an input to the previous layer. In CNNs, not

every feature map has to be saved for the backward pass. We thus distinguish stashed

feature maps (generated in forward and used in both forward and backward passes)

from immediately consumed feature maps (generated in forward pass and consumed

immediately in forward) and gradient maps (generated in backward pass and con-

sumed immediately). Stashed feature maps are required in the backward pass and

thus stored for a long time in a minibatch processing. In contrast, immediately con-

sumed feature maps and gradient maps can be discarded as soon as they are used.

Finally, workspace is cuDNN’s intra-layer storage to support layer computations [35].

cuDNN provides a choice between memory-optimal and performance-optimal imple-

mentations, translating to tradeoff between algorithm performance and workspace

storage requirements. In this work, we choose its memory-optimal implementation as

an optimized baseline.

We draw two major conclusions from this figure. First, larger (deeper) DNNs

consume large amount of memory even with relatively small minibatch sizes (64).
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VGG16 and Inception can only fit in our GPU memory if the minibatch size is 64

and start exceeding the 12 GB GPU memory limit at higher minibatch size. Higher

minibatch size is desirable as it leads to better GPU utilization [57]. Second, training

memory footprint tends to be dominated primarily by stashed feature maps, followed

by immediately consumed data structures. For example, in VGG16, 83% of memory

is consumed by stashed feature maps and immediately consumed data; this number

grows to 97% for Inception. This result stands in stark contrast to inference where

feature maps don’t need to be stashed and memory consumption is dominated by

weights. We conclude that the stashed feature maps and immediately consumed

data structures (in that order of importance) are key for optimizing GPU memory

consumption in CNN training.

6.1.2 Limitations of Prior Work

In this paper, we develop techniques to reduce the DNN training memory foot-

print. Here, we briefly describe the limitations of existing approaches.

Prefetch and Swap-out. One potential approach is to move parts of the working

set between CPU and GPU memory using PCIe links and smart prefetching anal-

ysis [128]. However, this approach still suffers from significant overheads of data

transfer with respect to power/energy and their inability to completely mask the per-

formance cost of swapping data in and out of GPU memory (upto 27% for Inception).
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In addition, it uses a shared resource, PCIe links, that is of critical importance in

distributed DNN training [41].

Reducing Minibatch Size. While reducing minibatch size is effective at reducing

the memory footprint during training, it adversely affects the runtime of the training

process because smaller minibatches lead to GPU underutilization [57]. This perfor-

mance hit can be recovered by using more GPUs, where each GPU works on a smaller

minibatch. But this is also an inefficient solution as GPU machines are both costly

and power hungry, and might also result in sub-linear scaling due to stragglers and

transfer across workers [41].

Recompute. Instead of a saving the output of a large layer, prior work has consid-

ered recomputing the output of a layer’s forward pass again in the backward pass [32].

Unfortunately, we observe that the largest layers are usually the ones that also take

the longest to recompute, that can cause significant performance overhead. Yet, this

technique is still applicable for some specific layers (like batch normalization) and can

be used in conjunction with our work.

6.2 Gist: Key Ideas

In this work, we design techniques to reduce DNN training memory footprint by

focusing on the primary contributors – feature maps. We find that a feature map

typically has two uses in the computation timeline and these uses are spread far

apart temporally, as shown in Figure 6.2. Its first use is in the forward pass and the

second use is much later in the backward pass. In the baseline, the data is stashed

in single precision (FP32) even though these uses are far apart. In our approach, we

represent the data in much smaller encoded format in the temporal gap and decode

it just before it is needed again in the backward pass; the forward use still gets the

data in FP32 format, but the memory space is relinquished as soon as the forward
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use is complete. This results in an efficient memory sharing strategy (Section 6.3.3),

reducing total memory footprint.

Target data structures Footprint Reduction Technique Type

ReLU-Pool feature map Binarize Lossless
ReLU-Conv feature map Sparse Storage and Dense Compute Lossless
Other feature map Delayed Precision Reduction Lossy
Immediately consumed Inplace computation Lossless

Table 6.1: Summary of ACME techniques

Our second key insight is that taking layer types and interactions into account

opens up opportunities of designing highly aggressive encoding schemes, which were

earlier hidden due to the layer agnostic nature of prior work. In this section, we first

identify such opportunities that let us design two lossless and one lossy encodings

specifically targeted to reduce memory footprint of stashed feature maps. Next, we

observe that inplace computations can reduce the size of immediately consumed data

structures. Table 6.1 shows a brief outline of our techniques and their target data
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structures.

6.2.1 Opportunities For Lossless Encodings

In lossless encoding domain, we target ReLU activation functions which are heavily

used in all major CNNs targeted for vision-related tasks [75, 160, 60, 90]. In these

CNNs, the convolution layers are typically followed by ReLU activations. This group

of a Conv-ReLU pair is either followed by the same group or by a pool layer, resulting

in many ReLU-Conv and ReLU-Pool layer pairs. Consequently, we observe that ReLU

feature maps form a major fraction of total memory footprint.

This is shown in Figure 6.3 which zooms in on the stashed feature maps (in Fig-

ure 6.1) and analyze their breakdown across different CNN layers, with an emphasis

on three different categories: (i) ReLU outputs followed by a Pool layer (ReLU-Pool),

(ii) ReLU/Pool outputs followed by a conv layer (ReLU-Conv), and (iii) remaining

stashed feature maps (Others). We observe that significant portion of memory foot-

print is attributed to ReLU outputs (Pool outputs have very low contribution). For

example, VGG16 has 40% and 49% of the stashed feature maps for ReLU-Pool and

ReLU-Conv respectively (89% total used for ReLU outputs).

We make two key observations for these ReLU outputs that let us store the stashed

feature map with much fewer bits. First, when carefully examining the backward pass

computation of ReLU layer, we observe that ReLU outputs for ReLU-Pool combina-

tion can be stored in just 1-bit. Second, we observe that ReLU outputs typically have

high sparsity that can be exploited to encode the feature map in much smaller sparse

format. Next, we expand on these opportunities.

ReLU-Pool. Typically, in a backward pass calculation, a layer uses its stashed input

feature map (X), stashed output feature map (Y) and output gradient map (dY) to

calculate input gradient map (dX), as shown in Figure 6.4(a). However, every layer

does not require all this data for the backward pass. Upon further investigation,
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we discover that although feature maps are stashed with the same precision across

layer types, it is mostly for convenience, not out of computation necessity. We show

backward pass calculation for ReLU in Figure 6.4(b). It only requires Y and dY

to calculate dX. Moreover, an element of dY is passed to dX, only if corresponding

element in Y is positive, else dX is set to 0. With this observation in mind, it is natural

to consider replacing Y with 1-bit values. Unfortunately, it is not always possible,

because the next layer might require its stashed input feature map X (ReLU output in

this case) for the backward pass calculation. However, upon further examination, we

observe that in the case of ReLU-Pool, the pool backward pass does not require the

actual values of ReLU output as shown in Figure 6.4(c) (described in more details

in Section 6.3.1), resulting in significant encoding opportunities. This observation

becomes the basis of our first lossless encoding, called Binarize.

ReLU-Conv. Binarize is not applicable to ReLU-Conv pair, because convolution

requires its stashed input feature map for the backward pass calculation (as shown in

Figure 6.4(d)). However, upon careful data analysis, we observe that ReLU outputs

have high sparsity (large number of zeroes) induced by the ReLU calculations in

the forward pass. For example, for VGG16, we observe high sparsity, going even

over 80%, for all the ReLU outputs, motivating us to apply sparse compression and

computation for these feature maps. However, switching both compute and memory

to sparse domain results in significant performance degradation [171, 76]. Building

on this observation, we present Sparse Storage and Dense Compute (SSDC) encoding

that stores the data in Compressed Sparse Row (CSR) encoding format while keeping

the computation on dense format.

6.2.2 Opportunities For Lossy Encodings

For lossy encoding, we investigate precision reduction as it is amenable to GPU

architecture compared to prior offline approaches like quantization and huffman en-
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coding [67]. We make two observations that let us achieve aggressive bit savings

without any loss in accuracy.

Non-Uniform Precision Reduction. We observe that uniform precision reduc-

tion to even 16 bits, where all the data structures are represented in 16 bits, leads to

severe accuracy losses. We observe that if, instead, we restrict the precision reduction

to only gradient maps, then the training accuracy is not affected. Note that, although

this type of selective precision reduction has been studied in a recent work [44], it

does not study the effect of reducing precision in stashed feature maps.

Delayed Precision Reduction. But more importantly, we find that the way the

precision reduction is applied in training should be significantly changed. Currently,

the conventional wisdom [44, 63, 39, 65] is to apply precision reduction right after the

value is generated by a particular layer. This design choice leads to the situation when

the error generated by the precision reduction is injected directly into the next layer

and is then propagated (potentially increasing in magnitude) over all future layers

in the forward pass. In our work, we observe that it is better to separate the two

uses of every output layer in the forward and backward pass (as previously shown in

Figure 6.2). The first immediate use (by the next layer) significantly benefits from the

more precise (usually FP32) representation, keeping forward pass error-free. While

the second use, much later in the backward pass, can tolerate lower precision. This

separation, implemented in our Delayed Precision Reduction encoding, push the bit

lengths to very small value like 8 bits for multiple DNNs (unseen in prior work).

6.2.3 Opportunities For Inplace Computation

Next, we shift our focus from stashed feature maps to immediately consumed data

structures. We observe that a good portion of immediately consumed data can be

removed by performing inplace computation. As discussed in a previous work [32],

this optimization is applicable for the layers (specifically ReLU) that have a read-once
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and write-once property between each element of input and output. In the absence of

inplace optimization, convolution output shows up in immediately consumed category.

With inplace computation, the memory space for convolution is reused by ReLU,

reducing immediately consumed memory footprint.

6.3 Design and Implementation

Based on the observations in the previous section, we present the design of our

system ACME. Figure 6.5 shows our system architecture. Typically, DNN frameworks

like CNTK [145] and TensorFlow [12] represent DNNs as a series of computational

steps via a directed execution graph. ACME’s Schedule Builder takes the original

execution graph, identifies the edges where new encodings/decodings are needed, and

creates a new execution graph with encode/decode functions inserted.

In isolation, encoded representations only add to the memory footprint. To solve

this problem, we utilize the CNTK memory allocator that uses the lifetimes of var-

ious data structures to find an efficient static memory sharing strategy. Schedule

Builder performs liveness analysis, infers the lifetime of affected stashed feature maps

and encoded representations, and presents them to the CNTK memory allocator for

optimization. ACME encodings reduce the lifetime of FP32 stashed feature maps,

opening up more opportunities for memory sharing, and thus reducing the total mem-

ory footprint. In this section, we present the details of ACME encodings and design

of ACME’s Schedule Builder and its interaction with CNTK memory allocator.
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6.3.1 Encodings

We present a generic view of encodings in Figure 6.6, illustrating the difference

between baseline and ACME encodings in terms of new data structures and changes

in backward pass calculations (shown in blue color). For baseline, backward pass

calculation is a function of intermediate feature map (Y1 in the figure) along with

other data structures. ACME introduces two new data structures – E, the Encoded

intermediate feature map in the forward pass, and D, the decoded intermediate feature

map in the backward pass. These new data structures change the backward pass

calculation, which are now dependent on D instead of Y1. We now present the details

of encodings.

Lossless Encoding - Binarize. As discussed in Section 6.2, we observe that for

ReLU-Pool layer combination, ReLU output can be encoded much more efficiently,

because (i) the backward pass of ReLU only needs to know if the stashed feature map

is positive (1 bit), and (ii) the pool layer backward pass can be optimized so that it

does not need ReLU outputs.

CNNs typically use MaxPool layer to subsample the input matrix. MaxPool’s

forward pass slides a window of a specific size over the input matrix X, finds the

maximum value in this window, and passes it on to the output Y. For the backward

pass, it passes on dY to that location of dX in the window, from where the maximum

value of X was chosen in the forward pass. In baseline CNTK implementation, the

MaxPool layer stashes both input and output feature maps for the backward pass

to find the location of maximum values. We instead, create a mapping from Y to

X in the forward pass that keeps track of these locations (Y ToXmap in Figure 6.4

(b)). We use this mapping in the MaxPool backward pass calculation, removing the

dependence on its input and output stashed feature maps.

With this optimization, Binarize encoding lets us achieve significant reduction

in memory footprint for ReLU-Pool layer combination. Binarize adds two encoded
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Gist data structures

Figure 6.6: ACME encodings

feature maps. First, a 1-bit data structure that replaces the ReLU feature map,

storing information whether the stashed feature map value was positive. Second, for

Pool layer, Binarize stores a Y to X mapping of location of maximum values. This

data structure has as many elements as the Pool output (typically, one-fourth or

one-ninth of preceding ReLU output), where each element is stored in 4 bits (the

largest sliding window in our application suite is 3 × 3). Therefore, these encoded

data structures result in a compression of close to 16× (32× for ReLU output and

8× for MaxPool output) for ReLU-Pool stashed feature maps.

Tying back to Figure 6.6, both encode and decode functions are implemented

within ReLU and pool layers using CUDA. Pool and ReLU backward pass have been

updated to perform computation on the encoded data structures itself. We observe

small performance improvements with Binarize encoding, because Binarize encod-

ing significantly increases effective memory bandwidth for ReLU layers, improving

memory-bandwidth bound ReLU backward pass computation.

Lossless Encoding - Sparse Storage and Dense Compute. As discussed in

Section 6.1, other set of ReLU layers – ReLU-Conv, exhibit high amount of sparsity

induced by ReLU calculations, making it suitable to store these feature maps in sparse

format. We also observe high sparsity for a few Pool-Conv layer combinations if the
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preceding ReLU layer has high sparsity. SSDC encoding is applicable to both layer

combinations.

However, switching to sparse computation on GPUs shows performance improve-

ments only when the sparsity is very high (> 97.5%), which is typically not the case

in CNNs [171, 76]. To tackle this problem, we present Sparse Storage and Dense

Compute (SSDC) encoding, that isolates computation and storage, facilitating stor-

age of data in sparse format and computation in dense (FP32) format. SSDC stores

the data in sparse format for the majority of its life time, and converts the data back

into dense format only before it is actually required for computation. This achieves

significant memory footprint reduction, while retaining the performance benefits of

highly optimized cuDNN library.

For choosing a suitable sparse format, we compare 3 commonly used formats -

ELL, Hybrid and Compressed Sparse Row (CSR). We observe that CSR achieves low-

est format-conversion latency among these options, achieving the best compression-

performance overhead tradeoff. This format stores all the non-zero values, along with

a meta array that holds the column indices of the non-zero values in each row. (There

is an extra meta array which is very small in size, and, thus omitted for the rest of the

discussion). Most DNN frameworks store data structures in an n-dimensional matrix,

which can always be collapsed into two dimensions. We take these 2D matrices and

convert them into a CSR format.

We use Nvidia cuSPARSE library to perform the encodings/decodings, listed in

Figure 6.6. However, the original implementation stores each index as a 4-byte value,

resulting in no improvement with compression if the sparsity is below 50%. This is

due to cuSPARSE conservative assumption that the number of elements in a row of

the matrix can be high, allotting 4 bytes for every column index. We perform Narrow

Value Optimization, where we reshape the 2D matrix and restrict the number of

columns to 256, requiring only 1 byte per column index. This reduces the minimal
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sparsity requirement for compression to be effective from 50% to 20%, resulting in

both wider applicability and higher compression ratios.

Lossy Encoding - Delayed Precision Reduction. ACME’s third encoding uses

precision reduction to exploit CNN error tolerance to reduce memory footprint of

remaining stashed feature maps. Similar to SSDC encoding, we isolate the storage

from computation. The computation still happens in FP32 format while the data is

stored with lower precision for most of its lifetime. Though backward pass imple-

mentation can be modified to work directly on precision-reduced values, we convert

back to FP32 because cuDNN is closed-sourced library. Nevertheless, we discuss the

impact of such optimization on compression ratio in Section 6.4.8.

Our usage of precision reduction differs significantly from the previous research

that applies it immediately after computation finishes. We delay the precision reduc-

tion until the feature map has been consumed in the forward pass, thus naming it

Delayed Precision Reduction (DPR). This lets us achieve more aggressive precision

reduction on GPUs. DPR is applicable to any layer combination. We also apply it

over SSDC encoding, compressing the non-zero values array in the CSR format. We

do not touch the meta array in CSR format and Binarize encoded data structures as

these affect control, and thus are not suitable for lossy encoding.

Figure 6.6 lists the encode and decode functions for DPR encoding. We use three

smaller representations of 16, 10 and 8 bits, packing 2, 3 and 4 values, respectively,

into 4 bytes. For packing 3 values into 4 bytes, 10 bits is the largest length possible (9

bits leave 5 bits unused, 11 bits requires one extra bit). For 16 bits, we use IEEE half

precision floating point format (1 sign, 5 exponent and 10 mantissa bits), referred

to as FP16. For 8-bits (FP8), we choose 1 bit for sign, 4 for exponent and 3 for

mantissa, and for 10-bits (FP10), we use 1 sign, 5 exponent and 4 mantissa bits. In

FP10, three 10-bit values are stored in a 4-byte space, rendering 2-bits useless. We

ignore denormalized numbers as they have negligible effect on CNNs accuracy. We
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use round-to-nearest rounding strategy for these conversions. The value is clamped at

maximum/minimum value if the FP32 value is larger/smaller than the range of the

smaller format. We write CUDA implementations to perform these conversions. Since

conversions can happen in parallel, DPR results in minimal performance overhead.

6.3.2 Schedule Builder

In ACME, the values in the forward pass are in FP32 format (for both lossless

and lossy encodings) while only the data that is required for the backward pass is

stored in an encoded format. However, since the feature maps are still generated

in original FP32 format in the forward pass before they are encoded, without any

further optimization, the encodings will result in increased memory footprint. This

gives rise to the question that how does ACME leads to memory footprint reduction.

This task is handled by ACME’s Schedule Builder that has two responsibilities.

First, identifying the applicable layer encodings from the CNTK execution graph,

performing a static analysis to distinguish between forward and backward use of a

feature map, and inserting the encode and decode functions in the execution graph,

thus creating a new execution graph that is used at runtime. And, second, performing

a static liveness analysis for the affected stashed feature maps and newly generated en-

coded/decoded representations, and pass it on to the CNTK static memory allocator

that finds an efficient memory allocation strategy (Section 6.3.3).

Figure 6.2 illustrates the liveness analysis performed by the Schedule Builder.

The figure shows the two uses of a feature map that are temporally far apart in the

computation timeline – one in the forward pass and one much later in the backward

pass. In the baseline, the lifetime of this feature map is very long and it is stored in

FP32 format for this whole duration. ACME breaks this lifetime into three regions –

FP32 format that is live only for the immediate forward use, encoded (much smaller)

format that is live for the long temporal gap between the two uses, and FP32 format
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for the decoded value that is live only for the immediate backward use. The figure

also shows the points at which Schedule Builder inserts encode and decode functions.

6.3.3 CNTK Memory Allocator

Schedule Builder passes this liveness analysis to the CNTK static memory alloca-

tor that finds an efficient strategy to allocate the memory. CNTK, similar to other

deep learning frameworks, performs static memory allocation. The other alternative,

dynamic allocation, results in a lower footprint but at the expense of many expensive

cudaMalloc calls for each minibatch, resulting in performance overhead. Neverthe-

less, we discuss the impact of dynamic memory allocation on compression ratio in

Section 6.4.8.

The key idea employed in the CNTKmemory allocator ismemory sharing. It takes

lifetimes of different data structures and their sizes as input, and finds an efficient

memory sharing strategy. The memory allocator create groups of data structures

whose lifetimes do not overlap and thus can share the same memory space. Therefore,

the size of this group is the largest size of the member within the group, as opposed

to the sum of size of the members in the group. To come up with an efficient strategy,

it first sorts the data structures on the basis of size, and then forms these groups,

so that large data structures can share the same memory space. At the end of

this process, memory allocator have multiple groups which are either dominated by

feature maps that are stored for the backward pass or by immediately consumed

feature maps or gradient maps. ACME encodings, by reducing the lifetime of FP32

stashed feature map, create higher opportunities of memory sharing, resulting in lower

memory footprint.

Example - Putting it all together. We present an example in Figure 6.7 to

illustrate the interactions between static memory manager and ACME encodings.

The example shows life-times of five variables (X, A, B, C and D). In part (a), we
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show the output of CNTK memory allocator for the baseline. Memory allocator

forms 2 groups, resulting in total size of 18 MB, 10 for stashed feature map (X)

and 8 for immediately consumed. In part (b), we apply SSDC encoding, which

breaks the lifetime of original X into three separate timelines. In this case, CNTK

memory allocator again forms two groups, however the total size is reduced to 12,

2 for (encoded) stashed feature map and 10 for immediately consumed. As shown

in the figure, ACME encodings convert the original FP32 stashed feature maps into

immediately consumed data, and the encoded (and much smaller) data structure is now

stashed for the backward pass. This might increase the total immediately consumed

data (8 to 10 MB here), but reduces the stashed feature map significantly (10 to 2

MB), resulting in overall reduction in memory footprint (18 to 12 MB).

6.4 Evaluation

6.4.1 Methodology

Infrastructure. We evaluate ACME memory reduction capabilities on Microsoft

CNTK deep learning framework. We implement ACME encodings, inplace opti-

mization, Schedule Builder, and make necessary changes in CNTK static memory

allocator. The evaluation is performed on an Nvidia Maxwell GTX Titan X [81] card

with 12 GB of GDDR5 memory using cuDNN v6.0.

Applications. We evaluate ACME on 6 state-of-the-art image classification CNNs:

AlexNet [92], NiN [106], Overfeat [146], VGG16 [149], Inception [154] and Resnet [75],

using ImageNet training dataset [133]. These CNNs present a wide range of layer

shapes and sizes, while also capturing the evolution of CNNs in past few years.

Baselines. Our first baseline, referred to as CNTK baseline, is CNTK original

static memory allocation strategy, without any of our optimizations. In Section 6.1,

we show that stashed feature maps and immediately consumed data structures are
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Figure 6.7: Example illustrating the interaction between ACME encodings and CNTK
static memory allocator

the major contributors to the total memory footprint, hence CNTK baseline consists

of only these two data structures. It does not include weights, weight gradients, and

workspace (also in line with previous work on DNN training [128, 129]).

We also use a second baseline to study the effect of different encodings in isolation.

This baseline, referred to as investigation baseline, is modified CNTK baseline where

memory sharing is not allowed for stashed feature maps. Other data structures are

shared exactly the same way as in the CNTK baseline. This baseline allows us to

study the impact of our encodings on different data structures in isolation. For end-

to-end memory reduction numbers, we still use CNTK baseline.

For performance overhead evaluation, we use memory-optimized cuDNN config-

uration as the focus of our work is memory footprint reduction. Memory-optimized

cuDNN presents an optimized baseline for comparison. Note that CNTK baseline and

investigation baseline have the same performance as they do not affect computation.

Comparison Metric. We use Memory Footprint Ratio (MFR) to evaluate the

efficacy of ACME on reducing the memory footprint. MFR is described as follows.

MFR =
Memory Footprint of Baseline

Memory Footprint after encoding
(6.1)
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Figure 6.8: Evaluation of memory footprint reduction - ACME cuts down total mem-
ory footprint significantly

6.4.2 Gist’s Memory Footprint Reduction

ACME is designed to tackle the increasing memory footprint in DNN training. In

this section, we evaluate ACME’s efficacy from this aspect. In our experiment we,

first, apply all lossless optimizations – Binarize, SSDC and inplace – and measure

the total memory footprint (stashed feature maps and immediately consumed data

structures). Then, we apply ACME’s lossy encoding – DPR – on top of lossless opti-

mizations and measure additional reduction in memory footprint. For lossy encoding,

we choose the smallest floating point representation that does not affect the training

accuracy (detailed in Section 6.4.4.1). The findings of this experiment are presented

in Figure 6.8.

Figure 6.8 shows the Memory Footprint Ratio (MFR) achieved by Lossless and

Lossy optimizations when compared to CNTK Baseline. We observe that the lossless

optimizations result in a MFR of more than 1.5× for AlexNet and VGG16 (1.4×

on average). DPR, on top of lossless, further reduces the total memory footprint,

achieving MFR of upto 2× for AlexNet, with an average of 1.8×. This experiment

shows that ACME optimizations result in significant memory footprint reductions,

making it possible to fit a network that can be twice as large (deep) compared to the

current state-of-the-art.
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Figure 6.9: Performance overhead of ACME encodings. ACME results in minimal
performance overhead

Performance Overhead. Next, we measure the performance overhead introduced

by ACME encodings. We run the same experiment again, measuring the execution

time of processing a minibatch, averaged over 5 minutes of training time (hundreds of

minibatches). The findings of this experiment are presented in Figure 6.9. The figure

shows the performance degradation for Lossless and Lossy encodings, with error bars

capturing the performance variation. We observe minimal performance degradation

across CNNs, resulting in an average 3% degradation for lossless and 4% for lossy and

lossless optimizations combined, with a maximum overhead of 7% for VGG16 when

both lossy and lossless optimizations are applied. This shows that ACME achieves

significant MFR with minimal performance overhead.

6.4.3 Lossless Encodings

In this section, we evaluate the impact of lossless techniques on memory footprint

and performance.

6.4.3.1 Impact on Memory Footprint

In this experiment, we apply ACME lossless encodings – Binarize and SSDC – in

isolation and evaluate how they affect the memory consumed by stashed feature maps
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Figure 6.10: Impact of ACME lossless techniques (S - SSDC, B - Binarize, I - Inplace)
on memory footprint of different data structures. Total MFR for each configuration
is present at the top of each bar

and immediately consumed data structures. Then, we study the same effect when

both encodings are applied together. Finally, we evaluate inplace optimization, that

targets the immediately consumed data structures. The findings of this experiment

are presented in Figure 6.10.

We perform this study on the investigation baseline, where stashed feature maps

are not allowed in memory sharing, allowing us to study the impact of encodings

in isolation. When an encoding is applied, the stashed feature map is converted

to an immediately consumed data structure (possibly increasing its footprint), and

this much smaller encoded data structure is now stashed for the backward pass, as

discussed in Section 6.3.2. The figure shows this effect by breaking down the total

memory footprint into 4 regions: ReLU/Pool-Conv (suitable for SSDC), ReLU-Pool

(Binarize), other feature maps (untouched in this experiment as they are suitable for

DPR), and immediately consumed.

The first bar shows the breakdown across these categories for the baseline. Then,

we apply SSDC encoding, that reduces ReLU/Pool-Conv footprint significantly and

slightly increases the immediately consumed memory footprint. For example, for
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Figure 6.12: Impact of DPR Encoding on network accuracy. Smallest representation,
with no accuracy loss, for AlexNet and Overfeat is FP8, for Inception is FP10 and
for VGG16 is FP16; DPR achieves aggressive bit savings.

AlexNet, it results in the total MFR of 1.06×. Similarly, the third bar is for Binarize

encoding, targeting ReLU-Pool category, resulting in MFR of 1.26×. Then, we apply

both these encodings together, shown in the fourth bar, resulting in total of 1.35×

MFR. Finally, we apply inplace optimization that targets immediately consumed data

structure, further increasing the MFR to 1.56×. These techniques result in different

footprint reduction for CNNs, as the proportion changes across different categories.

Note that Figure 6.10 only shows the total MFR, however ACME encodings reduce

memory consumption of different categories to a different extent. We show this effect

in Figure 6.11, presenting MFR for different optimizations on their target data struc-

tures. We observe that, as expected, Binarize results in significant memory savings,

reaching close to 16× MFR (32× for ReLU output and at least 8× for pool output).

Reduction for SSDC varies significantly across CNNs, providing upto 7× MFR for

Overfeat. Finally, inplace optimization results in upto 1.4× MFR for AlexNet. In-

place optimization does not always reduce the total memory footprint, because the
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affected immediately consumed data structure might not be a heavy hitter in the

memory groups formed by CNTK memory allocator (Section 6.3.3).

6.4.3.2 Impact on Performance

To evaluate the performance overhead of lossless techniques, we run the previous

experiment and measure the performance overhead. We observe that Binarize, in-

stead of showing performance degradation, results in small performance improvement.

This is because ReLU backward pass calculations are memory bandwidth bound and

Binarize encoding increases effective memory bandwidth by representing the data in

1-bit format. We observe that SSDC encoding results in small performance overhead

– upto 4% on average. The combination of two lossless encodings result in slightly

better performance than just SSDC encoding alone, because of the better performing

Binarize encoding. And, finally, inplace optimization has no effect on performance as

it does not incur any encoding or decoding overhead.

6.4.4 Lossy Encodings

In this section, we study the impact of lossy encodings on accuracy, memory

footprint, and performance.

6.4.4.1 Impact on Accuracy

First, we study the effect of applying precision reduction on the training accuracy.

In this experiment, we, first, train the network in FP32 precision (shown as Baseline-

FP32 ). Second, in line with previous research [63, 39, 65], we represent all the

data structures throughout the network in FP16 format and then train the network

(shown as All-FP16 ). Finally, we train the network using FP16, FP10 and FP8 DPR

encodings (shown as ACME-FP* ). The computation is still performed with FP32

precision. The values are converted back to FP32 format just before the computation.
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Figure 6.13: Impact of DPR encodings. Total MFR is present at the top and MFR
achieved on the stashed feature maps is present at the bottom of each bar. Lowest
precision for VGG16 with no loss in accuracy is FP16.

The findings of this experiment are shown in Figure 6.12.

There are two key observations from this figure. First, representing all data struc-

tures in 16 bits leads to severe accuracy losses. This is because precision reduction

is applied immediately after each layer output is computed, propagating the error in

the forward pass and resulting in severe accuracy losses. Second, applying precision

reduction only for the backward use of stashed feature maps, as done in DPR, can

result in aggressive bit savings (as low as 8 bits for AlexNet and Overfeat). For Incep-

tion, we observe that when FP8 is applied, the network stops training, but FP10 has

enough precision to result in no accuracy losses. VGG16 needs highest precision, and

does not train with representation smaller than FP16, showing that the minimum

acceptable precision is network dependent.

6.4.4.2 Impact on Footprint Reduction

In this section, we evaluate how much MFR this efficient representations achieve.

The experiment involves running DPR FP16 and the next smallest representation

(FP10/FP8) that has no accuracy losses, and measuring the total memory footprint.
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Figure 6.14: SSDC sensitivity to Sparsity (15 epochs, VGG16)

The findings of this experiment are presented in Figure 6.13, showing the MFR against

investigation baseline.

DPR encoding converts the stashed feature maps into immediately consumed data

and stashes the encoded feature map for the backward pass. To see this effect, we

break the total memory consumption into stashed feature maps and immediately

consumed. When DPR encoding uses FP16, the stashed feature maps are compressed

2×, with some increase in immediately consumed footprint, resulting in the total MFR

of 1.18× for AlexNet as an example. FP8 further cuts down the memory footprint,

resulting in MFR of 4× for stashed feature maps and a total of 1.48× MFR for

AlexNet. As shown previously, FP8 does not result in similar accuracy as FP32 for

VGG16, and thus we omit results for FP8 for VGG16.

6.4.4.3 Performance Overhead

Next, we evaluate the performance overhead of DPR encoding. For this study,

we run the last experiment again and measure the execution time of a minibatch

processing, averaged over 5 minutes of training. We observe that DPR encoding,

being very parallel, has minimal performance overhead, with an average of 1%.
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Figure 6.15: Performance comparison of ACME against naive swapping and vDNN

6.4.5 Sensitivity Study

Most of the ACME encodings result in fixed MFR, as they are agnostic to data

values. However, SSDC encoding depends on the sparsity of data structure that

changes during the training. In this section, we perform a sensitivity study for SSDC

encoding on VGG16. The experiment involves applying the SSDC encoding, training

the network for 15 epochs, while recording the achieved compression ratio for the

applicable feature maps after every 1000th minibatch. The findings of this experiment

are presented in Figure 6.14.

This figure shows the MFR achieved for each applicable layer (each block is a

single layer) over time. We observe significant MFR across all layers, varying across

the layers, and also across time within a single layer. The MFR is typically much

larger than 1, except only for a small duration of first few minibatches (close to 200)

of the first epoch (one epoch for VGG16 has 20K minibatches). This happens because

at the start of the training, the network weights are initialized randomly. It takes few

minibatches for weights to change and for sparsity to come into effect.
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6.4.6 Comparison with Prior Work

Another way to reduce the memory footprint is to swap the parts of working set

between the CPU and GPU memory using PCIe links. In this section, we compare

Gist’s performance with such approaches. vDNN, the most relevant prior work to

Gist, is built upon this approach and uses a prefetching analysis to find suitable over-

lap between the data transfer and computation time [128]. We implement vDNN in

CNTK and present the comparison in Figure 6.15, showing the performance overhead

of naive swapping (no prefetching), vDNN and ACME against CNTK baseline.

We observe that naive swapping results in heavy performance loss, averaging 30%,

because there is no overlap between kernel execution and data transfer. vDNN im-

proves this performance by performing prefetching analysis. However, vDNN still

has high overhead as the data transfer time cannot be completely hidden, resulting

in an average slowdown of 15%, with a maximum of 27% for Inception. By keeping

the data within GPU, ACME is not limited by the PCIe bandwidth and observes an

average slowdown of only 4% (upto 7%).

6.4.7 Impact on Machine Learning Trend

A look at past ImageNet challenge winners show that networks are getting deeper

over time [133]. Thus, training them incurs a higher memory footprint potentially

exceeding the limited size of GPU DRAM (16 GB for the most expensive card). This

means that to train deeper networks one has to use smaller minibatch sizes that fit

in GPU memory, resulting in underutilized hardware and high training time. Next,

in the context of training deep networks with small minibatch sizes, we show how

ACME allows for faster training by enabling the use of larger minibatch sizes.

We use Resnet [75], the winner of 2015 ImageNet challenge, for this study. Resnet

presents a highly composable structure, enabling us to vary the depth of the network

and project this trend of deeper networks. The original Resnet paper evaluates the
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Figure 6.16: ACME enables training deeper networks with larger minibatch, achieving
better performance. The largest minibatch that fits in the GPU memory is present
at the bottom of the bar

accuracy to the maximum depth of 1202 layers [75]. In line with the paper, we

vary the number of layers to 509, 851 and 1202. We present the findings of this

experiment in Figure 6.16, showing the speedup achieved by the largest minibatch

that fits with ACME compared to the largest minibatch that fits with CNTK Baseline.

We observe that by enabling larger minibatches, ACME increases GPU utilization and

improves training time, for e.g., a speedup of 22% for Resnet-1202. In general, due to

better utilization of GPU resources with larger minibatch sizes, Gist’s performance

improvements positively correlate with the existing machine learning trend of deeper

modern networks.

6.4.8 Discussion – Memory Allocation

Deep learning frameworks typically perform static memory allocation on GPUs

to avoid expensive cudaMalloc calls while processing a minibatch. However, there

are ongoing efforts to accelerate training on FPGAs [174] and ASICs [84, 80]. In

such scenarios, dynamic memory allocation can be a preferable choice if the mem-

ory allocation is itself implemented in hardware and results in minimal performance

overhead. The question then arises, in the presence of such optimized hardware, how

much footprint reduction does dynamic memory allocation achieve, and what is the
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impact of the ACME encodings when memory is allocated dynamically.

Second, for DPR encodings, we decode the data back into FP32 format, because

cuDNN library requires data to be in the FP32 format. This requires an extra memory

block (though only for immediate usage) for the decoded FP32 representation. We

believe that most of this decoding can be pulled inside cuDNN implementation, which

can either execute directly on the encoded data, or decode only the data that is

required in near future, for example, the data required for the near-future tile in a

tiled matrix multiplication. Such optimized software can remove the need of decoded

data structure, potentially resulting in higher MFR.

In this section, we discuss the impact of such optimized hardware and software on

MFR. For dynamic memory allocation, we modify the liveness analysis module from

CNTK and simulate dynamic memory management, allocating a region only when

it is required and relinquishing it as soon as it is dead. We find the peak memory

consumed in this scheme and compare it against static memory allocation. Similarly,

for optimized software, we modify the liveness analysis module to remove the decoded

FP32 values and reallocate the memory. We present the findings in Figure 6.17.

The figure shows the achieved MFR for dynamic memory allocation, ACME en-

codings in presence of dynamic allocation, and optimized software with ACME en-
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codings and dynamic allocation, against CNTK baseline. There are three key ob-

servations from this graph. First, dynamic memory allocation results in good MFR,

going over 1.5× for Overfeat, with an average of 1.2× across all CNNs. Second,

ACME encodings are still applicable in the presence of dynamic memory allocation.

We observe that ACME lossless and lossy encodings achieve MFR of 1.7× and 2.6×

respectively. Finally, optimized software can further cut down the memory footprint,

resulting in a MFR of upto 4.1× for AlexNet against CNTK baseline, with an average

of 2.9× across all CNNs.

6.5 Summary

In this paper, we investigate approaches to reduce the memory footprint of DNN

training, enabling training of deeper DNNs on GPUs. We present, ACME, that em-

ploys two layer-specific lossless and one aggressive lossy encoding schemes, targeting

the primary contributor to total memory footprint (feature maps). A common ap-

proach in our encodings is to store an encoded representation of feature maps and

decode this data in the backward pass; the full-fidelity feature maps are used in the

forward pass and relinquished immediately. ACME reduces the memory footprint by

2× across 5 state-of-the-art image classification DNNs, with an average of 1.8× with

only 4% performance overhead and no effect on training accuracy.
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CHAPTER VII

Conclusion

Emerging applications are data intensive, operating on a large amount of data,

putting high pressure on the memory subsystem. In this thesis, we find that the

pressure is not restricted to one memory structure. The pressure can be present at

any level in the memory hierarchy - off-chip memory, on-chip memory or physical

register file. This dissertation addresses four such memory bottlenecks spread across

the memory hierarchy, reducing memory pressure for the emerging applications.

First, we find that the physical register file bandwidth is the primary bottleneck

in improving the performance of CPUs on DNNs. To solve this problem, we present

LEDL, locality extensions for deep learning on CPUs, that entails a rearchitected

FMA and PRF design tailored for the heavy data reuse inherent in DNN inference.

Second, we observe that many floating-point applications have a large number of

marginal bits that do not contribute to the application accuracy, wasting unneces-

sary space and transfer costs. To remove these marginal bits from the memory, we

present ACME, an asymmetric compute-memory paradigm, that stores data in con-

cise format in the memory while keeping the computation in full precision. Third,

we find that static compiler optimizations like cache tiling, that are intimately linked

to the resource availability, need rethinking in post multi-core era, where resource

availability can change at runtime. To adapt the cache tiling to the runtime, we
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present ShapeShifter that continuously monitors the runtime environment, detects

changes in the cache availability and dynamically retiles the application on the fly to

efficiently utilize the cache capacity, with minimal performance overhead. Lastly, we

find that the GPU DRAM size is the primary bottleneck that limits DNN training

as the DNNs get deeper and larger. To address this problem, we perform a detailed

breakdown of the DNN training memory footprint and present Gist , a runtime sys-

tem, that uses three efficient data encoding techniques to reduce the footprint of the

heaviest contributors in DNN training.
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