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maintaining and providing leadership regarding the use of the Michigan Genomics

Initiative data, and Jonas Nielsen, Lars Fritsche and Cristen Willer for preparing the

phenome for the UK Biobank data. Thanks also go to Wei Zhou and Huanhuan Zhu

for their helpful comments and suggestions to improve my research on biobank-based

meta-analysis methods, and to Hyun Min Kang for his help on implementing my

methods on the EPACTS software. All my research works were supported by NIH

Grants R00HL113164 and R01HG008773. My access to the UK Biobank data was

provided under the application number 24460.

I am thankful to my friends in high school and in ISI: Rejaul Karim, Kushal

iii



Kumar Dey, Moumanti Podder, La Krusade, Satyajit Ghosh, Rahul Rahaman, Rid-

dhiman Bhattacharya, Sabyasachi Bera, Abhirup Mondal, Sayar Karmakar, Arkajyoti

Bhattacharya, Arka Bhattacharya, Chinmoy Bhattacharjee, Deepan Basu, Rudradev

Sengupta, Tamal Kumar De, Shrijita Bhattacharya, Avijit Kumar Dutta, Abhishek

Kumar, Sayak Chowdhury, Soudeep Deb, Angshuman Roy, Narayan Bose, Biswarup

Bhattacharya, and many others, for sharing their lives with me and for being there

for me whenever I needed them. Thanks go to my ISI seniors and juniors in Michi-

gan, especially Sayantan Das, Aritra Guha, Diptavo Dutta, Anwesha Bhattacharya,

Debarghya Mukherjee, Moulinath Banerjee and Bhramar Mukherjee for the dinner

parties, late night hangouts, and so many lifelong cherish-able memories made here in

Ann Arbor. I would also like to thank my friends and colleagues in the Biostatistics

department: Jingchunzi Shi, Alan Kwong, Wei Zhou, Yumeng Li, Sheng Qiu, Paul

Imbriano, Jessica Lehrich, Tingting Zhou, Sai Dharmarajan, Tian Gu, Pranav Yajnik

and others, for their helpful suggestions on my research and the fun hangouts we had.

Finally, I would like to express my love and gratitude to my parents, cousins,

grandmothers, uncles and aunts, for their love and support throughout my life, and

to Lal, my friend, philosopher, and guide, for teaching me the expansion of (a+ b)2.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xiv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Addressing the Consistency and Bias Problems of

PCA in High-Dimensional Data . . . . . . . . . . . 3
1.1.2 Addressing the Over-Fitting Problem of PLS in High-

Dimensional Data . . . . . . . . . . . . . . . . . . . 4
1.1.3 Scalable and Accurate Single Variant Test for Unbal-

anced Case-Control GWAS and PheWAS . . . . . . 5
1.1.4 Methods for Meta-Analyzing Multiple Unbalanced

GWASs . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. Asymptotic Properties of Principal Component Analysis and
Shrinkage-Bias Adjustment under the Generalized Spiked Pop-
ulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Generalized Spiked Population Model . . . . . . . . . . . . . 11
2.3 Consistent Estimation of the Generalized Spikes . . . . . . . 13

v



2.4 Consistent Estimators of the Asymptotic Shrinkage in the Pre-
dicted PC Scores . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Angle between Sample and Population Eigenvectors 15
2.4.2 Correlation between Sample and Population PC Scores 16
2.4.3 Asymptotic Shrinkage Factor . . . . . . . . . . . . . 17
2.4.4 Comparison between the Two Different Estimators . 18
2.4.5 Comparison between the Generalized Spiked Popu-

lation (GSP) Model and the Spiked Population (SP)
Model . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.6 Comparison with Ultra High-Dimensional Regime-
Based Results When p/n is Large . . . . . . . . . . 21

2.5 Estimation of the Population Limiting Spectral Distribution . 24
2.5.1 Karoui’s Algorithm . . . . . . . . . . . . . . . . . . 24
2.5.2 Implementing Karoui’s Algorithm When the Number

of Spikes is Known . . . . . . . . . . . . . . . . . . 26
2.5.3 Estimating the Number of Spikes . . . . . . . . . . 27

2.6 Simulation Studies and Real Data Example . . . . . . . . . . 29
2.6.1 Simulation Studies: Compare GSP and SP-Based

Methods . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Simulation Studies: Compare GSP and Ultra High-

Dimensional (UHD) Regime-Based Methods . . . . 32
2.6.3 Application on Hapmap III Data . . . . . . . . . . . 35

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III. Two-Stage PLS Method to Address the Over-Fitting Prob-
lem in Partial Least Squares Regression on High-Dimensional
Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Over-Fitting in High-Dimensional Partial Least Squares . . . 46
3.3 Two-stage PLS (TPLS) Method . . . . . . . . . . . . . . . . 48
3.4 Consistent Estimation of the Variability in Y Explained by X 51

3.4.1 Implications When k∗ is Incorrectly Estimated, or
When k∗ < k . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Adjusting the Shrinkage Bias to Improve Prediction Accuracy 56
3.6 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . 57
3.7 ADNI Data Example . . . . . . . . . . . . . . . . . . . . . . 67
3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

IV. A Fast and Accurate Algorithm to Test for Binary Pheno-
types and Its Application to PheWAS . . . . . . . . . . . . . . 80

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . 83

vi



4.2.1 Logistic Regression Model and Saddlepoint Approx-
imation Method . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Implementation Details and Approaches to Reduce
the Computation Time . . . . . . . . . . . . . . . . 85

4.2.3 Numerical Simulations . . . . . . . . . . . . . . . . 89
4.2.4 Michigan Genomics Initiative (MGI) Data Application 91

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.1 Numerical Simulations . . . . . . . . . . . . . . . . 92
4.3.2 MGI Data Analysis . . . . . . . . . . . . . . . . . . 99

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

V. Robust Meta-Analysis of Biobank-based Genome-wide Asso-
ciation Studies with Unbalanced Binary Phenotypes . . . . . 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Model for Single Study Association Test and Saddle-
point Approximation (SPA) . . . . . . . . . . . . . 110

5.2.2 P Value-Based Meta-Analysis and Normal Distribution-
Based Z-Score Method . . . . . . . . . . . . . . . . 112

5.2.3 CGF Sharing-Based Method . . . . . . . . . . . . . 113
5.2.4 Genotype Count-Based Method . . . . . . . . . . . 115

5.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . 117
5.3.1 Simulation Study 1 : Meta-Analyzing Seven Studies

from the Same Population . . . . . . . . . . . . . . 118
5.3.2 Simulation Study 2 : Trans-Ethnic Meta-Analysis of

Seven Studies . . . . . . . . . . . . . . . . . . . . . 119
5.3.3 Simulation Study 3 : Meta-Analyzing a Balanced

Case-Control Study with Two Larger Unbalanced Stud-
ies . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.1 Type I Error Comparison . . . . . . . . . . . . . . . 122
5.4.2 Power Comparison . . . . . . . . . . . . . . . . . . 125
5.4.3 Computation Times of the Proposed Methods . . . 125

5.5 UK Biobank Data Analysis . . . . . . . . . . . . . . . . . . . 128
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

VI. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

vii



LIST OF FIGURES

Figure

2.1 Example of eigenvalues when the assumptions of the spiked popula-
tion model are satisfied, and when they are violated . . . . . . . . . 9

2.2 Eigenvalue structures in simulation studies comparing GSP-based
and SP-based methods . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Comparison of the relative errors (%) in the convergence results of the
largest sample eigenvalue derived under the GSP and UHD assumptions 34

2.4 Empirical biases (%) in estimating the largest population eigenvalue
for GSP-based and UHD-based methods . . . . . . . . . . . . . . . 36

2.5 Comparison of the estimated shrinkage factors using different meth-
ods on the Hapmap data . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Comparison of the mean-squared error (MSE) of the unadjusted, d-
GSP-adjusted, and SP-adjusted PC scores, with the λ-GSP-adjusted
PC scores using ε = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 PC1 vs PC2 plot of the Hapmap III Utah residents with Northern
and Western European ancestry (CEU) and Toscans in Italy (TSI)
samples based on chromosome 7 . . . . . . . . . . . . . . . . . . . . 40

3.1 Fitted vs observed outcomes for PLS regression with independently
generated outcomes and predictors . . . . . . . . . . . . . . . . . . 45

3.2 Observed R2s for TPLS, PLS, and sparse PLS (SPLS) methods when
the spikes are much larger the non-spikes . . . . . . . . . . . . . . . 61

3.3 Observed R2s for TPLS, PLS, and SPLS methods when the spikes
are moderately large compared to the non-spikes . . . . . . . . . . . 62

viii



3.4 Observed R2s for TPLS, PLS, and SPLS methods when the spikes
are close to the non-spikes . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 mean-squared error of prediction (MSEP) for TPLS, PLS, and SPLS
methods when the spikes are much larger the non-spikes . . . . . . . 64

3.6 MSEP for TPLS, PLS, and SPLS methods when the spikes are mod-
erately large compared to the non-spikes . . . . . . . . . . . . . . . 65

3.7 MSEP for TPLS, PLS, and SPLS methods when the spikes are close
to the non-spikes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Observed R2s for TPLS and traditional PLS methods for different
specifications of the number of components and PCs (for TPLS only) 69

3.9 PLS regression coefficient estimates corresponding to the EF scores
mapped on the brain surface . . . . . . . . . . . . . . . . . . . . . . 71

3.10 PLS regression coefficient estimates corresponding to the EF scores
mapped on the brain surface . . . . . . . . . . . . . . . . . . . . . . 72

3.11 TPLS regression coefficient estimates corresponding to the MEM
scores mapped on the brain surface . . . . . . . . . . . . . . . . . . 73

3.12 TPLS regression coefficient estimates corresponding to the EF scores
mapped on the brain surface . . . . . . . . . . . . . . . . . . . . . . 74

3.13 Observed R2s for TPLS and traditional PLS methods for 50 randomly
selected training sample sets . . . . . . . . . . . . . . . . . . . . . . 76

3.14 MSEP for TPLS and PLS methods for 50 randomly selected training
and test sample sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Histogram of case-control ratios of the 1448 phenotypes in the MGI
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Projected computation times for testing 10 million variants across
1500 phenotypes using different single-variant tests with minor allele
frequencys (MAFs) sampled from the MAF distribution of the MGI
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Type I error comparison between the traditional score test, fastSPA-2
and Firth tests for variants simulated with MAFs sampled from the
MAF distribution of the MGI data . . . . . . . . . . . . . . . . . . 95

ix



4.4 Type I error comparison at different MAFs between the traditional
score test, fastSPA-2 and Firth tests . . . . . . . . . . . . . . . . . . 97

4.5 Empirical power curves for the traditional score, fastSPA-2 and Firth
tests at their empirical α levels . . . . . . . . . . . . . . . . . . . . . 98

4.6 quantile-quantile (QQ) plots for the traditional score, fastSPA-2,
SPA-2 and Firth tests on 5× 106 simulated variants with MAF ran-
domly sampled from the MAF distribution of the MGI data . . . . 100

4.7 Manhattan plots for four different phenotypes from the MGI data
(excluding imputed variants with MAF ≤ 0.001) . . . . . . . . . . . 102

4.8 QQ plots for four different phenotypes from the MGI data . . . . . 103

5.1 Histogram of case-control ratios of the 1688 binary phenotypes in the
UK Biobank interim release data . . . . . . . . . . . . . . . . . . . 108

5.2 Type I error comparison among different meta-analysis methods and
joint analysis, in simulation study 1 . . . . . . . . . . . . . . . . . . 123

5.3 Type I error comparison among different meta-analysis methods and
joint analysis, in simulation study 2 . . . . . . . . . . . . . . . . . . 124

5.4 Type I error comparison among different meta-analysis methods and
joint analysis, in simulation study 3 . . . . . . . . . . . . . . . . . . 126

5.5 Power curves for meta-analysis methods at empirical α levels. . . . . 127

5.6 Projected computation times of our proposed meta-analysis methods. 128

5.7 Meta-analysis QQ plots for Ulcerative Colitis based on the UK Biobank
interim release data . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.8 Meta analysis QQ plots for Psoriasis based on the UK Biobank in-
terim release data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.1 Empirical biases (%) in estimating the shrinkage factor corresponding
to the largest population eigenvalue for GSP-based and UHD-based
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.2 Sample sizes of the test samples that were included in the prediction
error estimation for different values of the thresholding parameter ε 152

B.3 Distribution of the number of markers across different chromosomes 152

x



B.4 Comparison of the mean squared errors (MSE) of the unadjusted, d-
GSP-adjusted, and SP-adjusted PC scores, with the λ-GSP-adjusted
PC scores using different values of the thresholding parameter ε . . 153

E.1 Histogram of MAFs from the MGI data . . . . . . . . . . . . . . . . 161

E.2 Empirical power curves for the traditional score, fastSPA-2 and Firth
tests at the nominal type I error level α = 5× 10−8 . . . . . . . . . 162

E.3 Manhattan plots for four different phenotypes from the MGI data (all
genotyped and imputed variants with minor allele count > 3 included)163

F.1 Example of different spline and normal approximation curves in ap-
proximating the CGF and its derivatives for a study with 2000 sam-
ples and a balanced case-control ratio (1 : 1) . . . . . . . . . . . . . 166

F.2 Example of different spline and normal approximation curves in ap-
proximating the CGF and its derivatives for a study with 2000 sam-
ples and a moderately unbalanced case-control ratio (1 : 9) . . . . . 167

F.3 Example of different spline and normal approximation curves in ap-
proximating the CGF and its derivatives for a study with 2000 sam-
ples and a extremely unbalanced case-control ratio (1 : 49) . . . . . 168

F.4 Comparison of p values from the CGF-Spline method when using the
node-finding algorithm for all variants against the reduced computa-
tion approach using the node finding algorithm only for 100 variants
per MAF group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

I.1 Histogram of MAFs based on the white British ancestry samples from
the UK Biobank interim release data . . . . . . . . . . . . . . . . . 176

I.2 Power curves for different meta-analysis methods at the nominal type
I error level α = 5× 10−8 . . . . . . . . . . . . . . . . . . . . . . . . 179

I.3 QQ plots for our proposed methods when the within-study tests were
performed on the imputed dosages . . . . . . . . . . . . . . . . . . . 180

I.4 QQ plots for the genotype count-based method using numerical sim-
ulations with very strong covariate effects . . . . . . . . . . . . . . . 181

xi



LIST OF TABLES

Table

2.1 Simulation results for GSP-based and SP-based methods . . . . . . 31

3.1 Percentage of training datasets where the number of distant spikes
were estimated to be between five and ten . . . . . . . . . . . . . . 60

4.1 Computation times for various tests when testing 10000 simulated
variants with different MAFs. . . . . . . . . . . . . . . . . . . . . . 94

4.2 Significant SNP-phenotype associations based on fastSPA-2 test on
MGI data and previous findings confirming such associations. . . . . 102

5.1 Genome-wide significant (α = 5× 10−8) SNP-phenotype associations
based on the meta-analysis using the CGF-Spline method . . . . . . 133

B.1 Percentage of simulated datasets where the number of distant spikes
were estimated to be 1, 2, 3 or ≥ 4 . . . . . . . . . . . . . . . . . . . 150

E.1 Estimated inflation factors of the genomic controls at different p value
quantiles based on simulated variants . . . . . . . . . . . . . . . . . 159

E.2 Estimated inflation factor of the genomic controls based on the MGI
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

I.1 Case-control sample sizes for Ulcerative Colitis and Psoriasis . . . . 177

I.2 Estimated inflation factor of the genomic controls at different p value
quantiles for different meta-analysis methods applied on the pheno-
types Ulcerative Colitis and Psoriasis . . . . . . . . . . . . . . . . . 178

xii



LIST OF APPENDICES

Appendix

A. Proof of Theorems 2.1, 2.2, 2.3 and 2.4 . . . . . . . . . . . . . . . . . 140

B. Supplementary Tables and Figures for Chapter II . . . . . . . . . . . . 150

C. Proof of Theorems 3.1 and 3.2 . . . . . . . . . . . . . . . . . . . . . . 154

D. Explanation Behind Using the Covariate-Adjusted Genotypes (G̃) in
the Expression of the Score Statistic . . . . . . . . . . . . . . . . . . . 158

E. Supplementary Tables and Figures for Chapter IV . . . . . . . . . . . 159

F. Finding Optimal Nodes for Hermite Splines . . . . . . . . . . . . . . . 164

G. Simulation Details for Simulation Study 2 (Trans-Ethnic Meta-Analysis)
in Chapter V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

H. UK Biobank Data Description . . . . . . . . . . . . . . . . . . . . . . 174

I. Supplementary Tables and Figures for Chapter V . . . . . . . . . . . . 176

xiii



LIST OF ABBREVIATIONS

AD Alzheimer’s disease

ADNI Alzheimer’s Disease Neuroimaging Initiative

AF allele frequency

AR auto-regressive

CEU Utah residents with Northern and Western European ancestry

CGF cumulant generating function

CPU central processing unit

CV cross-validation

EF executive functioning scores

EHR electronic health records

EMCI early mild cognitive impairment

ESD empirical spectral distribution

GC genotype count-based method

GSP generalized spiked population

GWAS genome-wide association study

HRC Haplotype Reference Consortium

ICD International Classification of Disease

LMCI late mild cognitive impairment

LSD limiting spectral distribution

MAC minor allele count

xiv



MAF minor allele frequency

MEM memory scores

MGI Michigan Genomics Initiative

MHC Major Histocompatibility Complex

MLR multiple linear regression

MRI magnetic resonance imaging

MSE mean-squared error

MSEP mean-squared error of prediction

MTL medial temporal lobe

NIH National Institutes of Health

OLS ordinary least squares

PC principal component

PCA principal component analysis

PheWAS phenome-wide association study

PLS partial least squares

QQ quantile-quantile

RHS right-hand side

SNP single nucleotide polymorphism

SP spiked population

SPA saddlepoint approximation

SPLS sparse PLS

TPLS two-stage PLS

TSI Toscans in Italy

UHD ultra high-dimensional

xv



ABSTRACT

With the development of high-throughput biomedical technologies in recent years,

the size of a typical biological dataset is increasing at a fast pace, especially in the

genomics, proteomics and metabolomics literatures. Typically, these large datasets

contain a huge amount of information on each subject, where the number of subjects

can range from small to often extremely large. The challenges of analyzing these

large datasets are twofold, namely the problem of high-dimensionality, and the heavy

computational burden associated with analyzing them. The goal of this dissertation is

to develop statistical and computational methods to address some of these challenges

in order to provide researchers with analytical tools that are scalable to handle these

large datasets, as well as able to solve the issues arising from high-dimensionality.

In Chapter II, we study the asymptotic behaviors of principal component analy-

sis (PCA) in high-dimensional data under the generalized spiked population model.

We propose a series of methods for the consistent estimation of the population eigen-

values, angles between the sample and population eigenvectors, correlation coeffi-

cients between the sample and population principal component (PC) scores, and the

shrinkage-bias adjustment for the predicted PC scores.

In Chapter III, we investigate the over-fitting problem of partial least squares

(PLS) regression with high-dimensional predictors, which can result in the predicted

and observed outcomes being almost identical, even when the outcome is independent

of the predictor. We further discuss a shrinkage-bias problem similar to the shrinkage-

bias in high-dimensional PCA, and propose a two-stage PLS (TPLS) method that

can address both of these problems.

xvi



In Chapter IV, we focus on the large-scale genome-wide or phenome-wide as-

sociation studies (GWASs or PheWASs) of the electronic health records (EHR) or

biobank-based binary phenotypes. Due to the severe case-control imbalance in most

of the EHR or biobank-based binary phenotypes, the existing methods cannot provide

a scalable and accurate way to analyze them. We develop a computationally efficient

single-variant test, that is ∼ 100 times faster than the state of the art Firth’s test, and

can provide well-calibrated p values even for phenotypes with extremely unbalanced

case-control ratios. Further, our test can adjust for non-genetic covariates, and can

retain similar power as the Firth’s test.

In Chapter V, we show that due to the severe case-control imbalance in most of the

biobank-based binary phenotypes, applying the traditional Z-score-based method to

meta-analyze the association results across multiple biobank-based association stud-

ies, can result in conservative or anti-conservative p values. We propose two alterna-

tive meta-analysis methods that can provide well-calibrated meta-analysis p values,

even when the individual studies are extremely unbalanced in their case-control ratios.

Our first method involves sharing an approximation of the distribution of the score

test statistic from each study using cubic Hermite splines, and the second method

involves sharing the overall genotype counts from each study.

In summary, the purpose of this dissertation is to develop statistical and com-

putational methods that can efficiently utilize the ever-growing nature of modern

biological datasets, and facilitate researchers by addressing some of the problems as-

sociated with the high-dimensionality of the datasets, as well as by reducing the heavy

computational burden of analyzing these large datasets.
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CHAPTER I

Introduction

In recent years, the size of a typical biological dataset has been increasing at a very

fast pace, thanks to the drastic developments in low-cost high-throughput biomedical

technologies. In the field of genomics, the current genotyping and imputation tech-

nologies (Marchini and Howie, 2010; Das et al., 2016) allow for genotyping tens of

millions of variants at a very low cost. Major developments in high-throughput drug

discovery have led to the generation of a vast amount of information at a very low cost

on the transcriptome, proteome, glycome and metabolome (Howbrook et al., 2003; Sun

et al., 2013). Modern functional and anatomical neuroimaging techniques (Monchi

et al., 2008; Williams and Henson, 2018) have allowed efficient and low-cost imaging of

the entire brain in great detail. Recent studies have also been focusing on generating

these large datasets from different sources, and modeling them together. For example,

the availability of genotype data, along with electronic health records (EHR)-based

phenotypes in biobanks (Bycroft et al., 2017; Krokstad et al., 2013), have enabled us

to perform genome-wide association studies (GWASs) in phenome-wide scales (Heb-

bring , 2014; Verma et al., 2018; Fritsche et al., 2018). In the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) study, the collection of genotyping and whole genome

sequencing data along with the neuroimaging data, has enabled us to gather detailed

insight on the influence of the genetic factors on the changes in the human brain at
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the structural, functional and molecular levels, that can eventually lead to the onset

of the Alzheimer’s disease (Saykin et al., 2010; Moon et al., 2015; Shen et al., 2014).

Even though it is becoming easier to gain enormous amount of information at a

relatively lower cost, these large datasets are posing new kinds of challenges to the

research community. Primarily, the challenges are twofold. Firstly, analyzing such

datasets requires addressing the problem of high-dimensionality, as a lot of these

datasets contain huge amounts of information on only a limited number of subjects.

A modern genotyped and imputed dataset can contain the genotypes of ∼ 10–100

million single nucleotide polymorphisms (SNPs), for a comparatively much smaller

number of subjects (∼ 10–500 thousand). The standard statistical techniques can

provide biased estimates (Baik and Silverstein, 2006; Lee et al., 2010) in the such

high-dimensional regimes, where the number of features or covariates (p) is substan-

tially larger than the number of observations (n), since the asymptotic properties of

the estimators are profoundly different from the properties in low dimensional (p fi-

nite, n→∞) settings. Secondly, such large datasets impose enormous computational

burden, and thus developing computationally efficient methods is of utmost impor-

tance. To address some of these problems with large datasets, we first focus on the

issues arising from high-dimensionality in principal component analysis (PCA) and

partial least squares (PLS), two of the most popular dimension reduction techniques

used in high-dimensional biological data. Next, we focus on the problem of compu-

tational scalability in phenome-wide scale GWASs, and develop a single-variant test

to address that.
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1.1 Overview

1.1.1 Addressing the Consistency and Bias Problems of PCA in High-

Dimensional Data

PCA is most commonly used to adjust for population stratification in GWASs

(Price et al., 2006), and to identify overall expression patterns in transcriptome anal-

ysis (Storey et al., 2005). However, unlike in the low-dimensional setting, the sample

eigenvalues and eigenvectors obtained from high-dimensional data are not consistent

estimators of the population eigenvalues and eigenvectors (Baik and Silverstein, 2006;

Paul , 2007; Lee et al., 2010), and the predicted principal component (PC) scores can

be systematically biased towards zero (Lee et al., 2010). In the high-dimensional data

literature, there has been extensive effort to study the convergence of sample eigen-

values, eigenvectors and PC scores (Baik and Silverstein, 2006; Paul , 2007; Lee et al.,

2010) under the spiked population model (Johnstone, 2001), which assumes that all

eigenvalues are equal except for finitely many large ones. Lee et al. (2010) further

proposed a bias-adjustment method for the predicted PC scores under this model.

However, the equality assumption of the smaller eigenvalues in the spiked population

model depends on the independence of the features, which may be violated in many

real world datasets where the features are locally correlated. For example, in GWASs,

nearby single nucleotide polymorphism (SNP) are highly correlated due to linkage dis-

equilibrium. To accommodate such scenarios, we focus our research on the generalized

spiked population model (Bai and Yao, 2012) which generalizes the spiked popula-

tion model by dropping that equality assumption. In Chapter II, we systematically

investigate the asymptotic behaviors of PCA under this model, and derive consistent

estimators of the population eigenvalues, angles between the sample and population

eigenvectors, correlation coefficients between the sample and population PC scores,

and propose a method to adjust for the bias in the predicted PC scores. We demon-
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strate the superior performance of our method by comparing it against the existing

spiked population model-based method through extensive simulation studies and an

application on the HapMap Phase III data (http://hapmap.ncbi.nlm.nih.gov/).

1.1.2 Addressing the Over-Fitting Problem of PLS in High-Dimensional

Data

PLS, a closely related technique to PCA, is mostly used to fit regression models

with high-dimensional predictors, due to its ability to simultaneously perform dimen-

sion reduction and model fitting. For example, in the genomics and transcriptomics

literatures, it is applied to model different clinical outcomes on high-dimensional pre-

dictors such as sequence or gene expression data (Boulesteix and Strimmer , 2007;

Man, 2004; Huang et al., 2005; Clementi et al., 1997). It is also used in the neurology

literature to identify the functional patterns or anatomical regions of the brain that

affect different neurological behaviors, or to model different chemical features based

on information on a large number of metabolites (Rubakhin et al., 2011; Worley and

Powers , 2013) in the metabolomics literature. Even though PLS is an attractive tool

to be applied when the number of predictors is large, or the predictors are correlated

among themselves, it can suffer from an over-fitting problem in high-dimensional

data, where the fitted outcomes become almost identical to the observed outcomes

even when there is no or very little relation between the outcome and the predictors.

This over-fitting problem has also been previously identified by other researchers

(Brereton and Lloyd , 2014; Gromski et al., 2015; Lee et al., 2008; He et al., 2017).

However, no existing method can properly address this problem. In Chapter III,

we first investigate the over-fitting problem, and propose a two-stage PLS (TPLS)

method to address it, using theoretical results developed for high-dimensional PCA.

Like high-dimensional PCA, we further notice a similar problem of biased predicted

scores in high-dimensional PLS, and incorporate proper bias-adjustment procedures

4



in our method. We further evaluate a sparse variable selection-based method for

high-dimensional PLS proposed by Chun and Keleş (2010), and compare it with

our proposed method, in terms of addressing the over-fitting problem and predic-

tion accuracy, using extensive simulated scenarios with various sparsity levels, and

an application on the ADNI data.

1.1.3 Scalable and Accurate Single Variant Test for Unbalanced Case-

Control GWAS and PheWAS

Next, we turn our attention to the computational burden of performing large-scale

GWASs and phenome-wide association studies (PheWASs). Over the past decade,

GWASs have successfully analyzed hundreds of diseases and traits and their asso-

ciations with common genomic variations. Although asymptotic tests (score, Wald,

likelihood ratio) are well-calibrated for a GWAS with binary phenotypes with bal-

anced case-control ratios, it is a great challenge to develop single-variant tests that

are scalable and accurate in the scale of a GWAS, when there are far fewer cases than

controls. The asymptotic tests can provide substantially inflated type I error rates

(Ma et al., 2013) for rare (Minor allele frequency: MAF ≤ 0.01) and low frequency

variants (0.01 < MAF ≤ 0.05) in such situations. On the other hand, the Firth’s test

(Firth, 1993) is well-calibrated and robust for testing rare and low-frequency variants

in unbalanced case-control studies. However, it is not computationally efficient as it

needs to calculate the likelihood under the full model.

While it still remains difficult to analyze a GWAS for a binary phenotype with un-

balanced case-control ratio, the researchers have proposed the PheWAS (Denny et al.,

2010) approach which is of substantially larger scale. PheWAS utilizes the detailed

phenotypic information available from the EHR system in biobanks to construct a

broad spectrum of human phenotypes or phenome, and allows researchers to exploit

the cross-phenotype associations or pleiotropy (Solovieff et al., 2013) phenomenon by
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studying the impact of genetic variations across the phenome. Since genome-wide

scale PheWASs attempts to perform genome-wide association analyses in 1000s of

binary phenotypes, and most of them have unbalanced (case : control = 1 : 5) or

often extremely unbalanced (case : control = 1 : 500) case-control ratios (see Fig-

ures 4.1,5.1), the existing single-variant tests are either not accurate (score test), or

computationally so inefficient (Firth’s test) that it is essentially impractical to apply

them on a PheWAS. In Chapter IV, we propose a computationally efficient and ac-

curate score test-based method (fastSPA) to test for binary phenotypes. Our method

uses the saddlepoint approximation (Daniels , 1954) to provide a better approxima-

tion of the null distribution of the score statistic, than the traditionally used normal

approximation. fastSPA is well-calibrated for controlling type I error rates and can

adjust for other covariates, even for phenotypes with extremely unbalanced case-

control ratios. In addition, it is ∼ 100 times faster than the current gold standard

Firth’s test. For example, the projected computation time to test for 1500 phenotypes

with 1 : 9 case-control ratio and 20000 sample size, across 10 million SNPs, for 20000

samples is ∼ 400 CPU-days for our proposed test, compared to ∼ 117 CPU-years for

Firth’s test.

1.1.4 Methods for Meta-Analyzing Multiple Unbalanced GWASs

As increasing number of association results from genome-wide scale PheWASs in

different biobanks become available, meta-analyzing those association results is the

logical next step to improve the power to detect novel genotype-phenotype associ-

ations. Because the binary phenotypes in biobank-based studies are mostly unbal-

anced in their case-control ratios, very few methods can provide well-calibrated tests

for associations. For example, even though the Firth’s test provides well-calibrated p

values within individual studies, meta-analyzing them using the traditional Z-score-

based method, which converts the individual p values into normal Z-scores and uses
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their weighted sum as the final meta-analysis score, can results in conservative or

anti-conservative type I error rates in such unbalanced scenarios (Ma et al., 2013).

In Chapter V, we show similar behavior of the Z-score-based method when meta-

analyzing fastSPA-based p values. We further propose two meta-analysis strategies

that can efficiently combine association results from these unbalanced GWASs. Our

first method involves sharing an approximation of the distribution of the score test

statistic from each study using cubic Hermite splines, and the second method in-

volves sharing the overall genotype counts from each study. We demonstrate the

performance of our meta-analysis methods in terms of controlling the type I errors

using extensive simulation studies, and an application on the UK Biobank interim

release data (UK Biobank , 2015).
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CHAPTER II

Asymptotic Properties of Principal Component

Analysis and Shrinkage-Bias Adjustment under

the Generalized Spiked Population Model

2.1 Introduction

Principal component analysis (PCA) is a very popular tool for analyzing high-

dimensional biomedical data, where the number of features (p) is often substantially

larger than the number of observations (n). PCA is widely used to adjust for pop-

ulation stratification in genome-wide association studies (Price et al., 2006) and to

identify overall expression patterns in transcriptome analysis (Storey et al., 2005).

However, the asymptotic properties of PCA in high-dimensional data are profoundly

different from the properties in low-dimensional (p finite, n→∞) settings. In high-

dimensional settings, the sample eigenvalues and eigenvectors are not consistent es-

timators of the population eigenvalues and eigenvectors (Johnstone and Lu, 2009;

Paul , 2007), and the predicted principal component (PC) scores based on the sample

eigenvectors can be systematically biased toward zero (Lee et al., 2010).

There has been extensive effort to investigate the asymptotic behaviors of PCA

in high-dimensional settings. To provide a statistical framework for PCA in these

settings, Johnstone (2001) introduced a spiked population model, which assumes that
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all the eigenvalues are equal except for finitely many large ones (called the spikes).

A spiked population covariance matrix is basically a finite rank perturbation of a

scalar multiple of the identity matrix. A typical example of a spiked population with

two spikes is shown in Figure 2.1(a). This two-spike eigenvalue structure arises if

the population consists of three sub-populations which differ among themselves only

through their means, and the features are largely independent with equal variances.

Under this model, convergence of sample eigenvalues, eigenvectors and PC scores have

been extensively studied (Johnstone, 2001; Baik and Silverstein, 2006; Paul , 2007;

Lee et al., 2010).

(a) Example of population eigenvalues under
the spiked population model.

(b) Example of population eigenvalues in
presence of an autoregressive within-group
correlation structure. This clearly violates
the assumptions of the spiked population
model

Figure 2.1: Example of eigenvalues when the assumptions of the spiked population
model are satisfied, and when they are violated.

In many biomedical data, however, the assumption of the equality of non-spiked

eigenvalues can be violated due to the presence of local correlation among features.

In genome-wide association studies, for example, the genetic variants are locally cor-

related due to linkage disequilibrium. In gene-expression data, since genes in the

same pathway are often expressed together, their expression measurements are often

correlated. These local correlations can cause substantial differences in non-spiked
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eigenvalues. To illustrate this phenomenon, we obtained eigenvalues with an autore-

gressive within-group correlation structure rather than the independent structure of

the previous example. Figure 2.1(b) shows that the equality assumption is clearly

violated. Thus, if methods developed under the equality assumption are applied to

these types of data, we will obtain biased results.

The generalized spiked population model (Bai and Yao, 2012) has been proposed

to address this problem. The condition that the non-spikes have to be equal is re-

moved in this generalization. In this model the set of population eigenvalues con-

sists of finitely many large eigenvalues called the generalized spikes, which are well

separated from infinitely many small eigenvalues. Although the generalized spiked

population model has a great potential to provide more accurate inference in high-

dimensional biomedical data, only limited literature is available on the asymptotic

properties of PCA under this model and their application to real data. Bai and Yao

(2012) and Ding (2015) provided results regarding convergence of eigenvalues and

eigenvectors. However, their work remained largely theoretical. Moreover, to the

best of our knowledge, no method has been developed for estimating the correlations

between the sample and population PC scores, and adjusting biases in the predicted

PC scores under the generalized spiked population model.

In this chapter, we systematically investigate the asymptotic behaviors of PCA

under the generalized spiked population model, and develop methods to estimate the

population eigenvalues and adjust for the bias in the predicted PC scores. We first

propose two different approaches to consistently estimate the population eigenval-

ues, the angles between the sample and population eigenvectors, and the correlation

coefficients between the sample and population PC scores. We compare these two

methods and show the asymptotic equivalence of the estimators across them. Finally,

we propose a method to reduce the bias in the predicted PC scores based on the

estimated population eigenvalues.
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2.2 Generalized Spiked Population Model

In order to formally define generalized spiked population model, we require the

concept of spectral distribution. In random matrix literature, it is natural to associate

a probability measure to the set of eigenvalues as the dimension (p) goes to∞. More

explicitly, if a Hermitian matrix Σp has eigenvalues λ1, λ2, . . . , λp, we can define the

empirical spectral distribution (ESD) of Σp to be Hp based on the probability measure

dHp(x) =
1

p

p∑
i=1

δλi(x),

where δλi(x) is unity when x = λi, and otherwise zero. Now, for a sequence {Σp} of

covariance matrices, if the corresponding sequence {Hp} of ESDs converge weakly to

a non-random probability distribution H as p→∞, then we define H as the limiting

spectral distribution (LSD) of the sequence {Σp}.

The generalized spiked population model (Bai and Yao, 2012) is defined as follows.

Suppose, Hp is the ESD corresponding to the population covariance matrix Σp and

it converges weakly to a non-random probability distribution H. Let ΓH be the

support of H and d(x,A) := infy∈A |x− y| be the distance metric from a point x to

a set A. Then the set of eigenvalues of Σp comprises of two subsets of eigenvalues

α1 ≥ α2 ≥ . . . ≥ αm, and βp,1 ≥ βp,2 ≥ . . . ≥ βp,p−m where,

• Generalized spikes: ∃δ > 0 such that d(αi,ΓH) > δ for all 1 ≤ i ≤ m. α1, . . . , αm

are called the generalized spikes.

• Non-spikes: max1≤i≤p−m d(βp,i,ΓH) = εp → 0. βp,1 ≥ . . . ≥ βp,p−m are called

the non-spikes.

It is obvious from the definition that the generalized spikes are measure zero points

of the population LSD. For Johnstone’s spiked population model (Johnstone, 2001),

the population LSD is H = δ{1}, indicating ΓH = {1}. From the definition above, all
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eigenvalues larger than one are spikes. Hence, Johnstone’s spiked population model

is a special case of the generalized spiked population model.

Suppose that the population covariance matrix Σp has eigenvalues λ1 ≥ λ2 ≥

. . . ≥ λp, and the sample covariance matrix Sp = XTX/n has eigenvalues d1 ≥ d2 ≥

. . . ≥ dp, where X is an n × p data matrix. Further, we will assume the following

throughout this chapter:

Assumption 2.1. p→∞, n→∞, p/n→ γ <∞.

Assumption 2.2. The population eigenvalues follow the generalized spiked population

(GSP) model with m generalized spikes. The population ESD Hp converges weakly

to a non-random probability distribution H with support ΓH . Moreover, the sequence

{‖Σp‖} of spectral norms is bounded. We will further assume that all the generalized

spikes are larger than sup ΓH . Therefore, λ1, . . . , λm are the generalized spikes, and

the rest of the eigenvalues are considered as the non-spikes.

Assumption 2.3. The n × p data matrix X = Y Σ
1/2
p where Y is an n × p random

matrix with i.i.d. elements such that E(Yij) = 0, E(|Yij|2) = 1, E(|Yij|4) <∞.

Even though we will develop our estimation methods based on the asymptotic

regime where p/n→ γ <∞, we will discuss the applicability of our methods in ultra

high-dimensional data where p is greatly larger than n in Section 2.4.6.

From the Marc̆enko–Pastur theorem (Marc̆enko and Pastur , 1967), the sample

ESD Fp converges weakly to a non-random probability distribution F with support

ΓF . For α 6∈ ΓH , α 6= 0 and x > 0, we define the following two functions

ψ(α) := α + γα

∫
λdH(λ)

α− λ
, fF (x) :=

x

1 + γ
∫ τdF (τ)

x−τ

. (2.1)

The following result by Bai and Yao (2012) provides the almost sure limits of the

sample eigenvalues corresponding to the population generalized spikes.
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Result 2.1 (Bai and Yao (2012)). Suppose Assumptions 2.1–2.3 hold. Let λk be a

generalized spike of multiplicity one and the corresponding sample eigenvalue is dk.

Moreover, let ψ′ denote the first derivative of the function ψ. Then,

• If ψ′(λk) > 0, then the sample eigenvalue dk converges almost surely to ψ(λk),

i.e.

|dk − ψ(λk)|
a.s.−−→ 0.

• If ψ′(λk) ≤ 0, then let (uk, vk) ⊂ (sup ΓH ,∞) be the maximal interval on which

ψ′ > 0. The sample eigenvalue dk converges almost surely to ψ(w) where w is

a boundary of [uk, vk] that is nearest to λk.

Since ψ′(α) is a strictly increasing function for α > sup ΓH , if a generalized spike

λk is large enough such that ψ′(α) > 0, according to Result 2.1 the corresponding

sample eigenvalue will converge almost surely to ψ(λk). However if the generalized

spike lies close enough, i.e. ψ′(λk) ≤ 0, to the set of non-spikes, then the convergence

of the corresponding sample eigenvalue is given by the second part of the result. We

will denote a generalized spike λk as a “distant spike” if ψ′(λk) > 0, otherwise we will

call it a “close spike”.

2.3 Consistent Estimation of the Generalized Spikes

The following theorem provides two different consistent estimators of the distant

spikes.

Theorem 2.1. Let λk be a distant spike of multiplicity one and the corresponding

sample eigenvalue is dk. If the Assumptions 2.1–2.3 hold, then,

|ψ−1(dk)− λk|
p−→ 0,
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where ψ−1 is the left inverse of ψ. Also,

|fF (dk)− λk|
p−→ 0.

This theorem shows that for any distant spike λk we have two consistent estima-

tors ψ−1(dk) and fF (dk). Notice that the function fF depends only on the sample

LSD which can be approximated by the sample ESD. Thus, fF (dk) can be approx-

imated directly using the sample eigenvalues. More explicitly, fF (dk) can be closely

approximated as

fF (dk) ≈
dk

1 + γ
p−m

∑p
i=m+1

di
dk−di

.

In contrast, the ψ function depends on the population LSD which is unknown.

We can estimate the ψ function using the algorithm described in Section 2.5 and then

find the inverse function ψ−1 using a Newton-Raphson type algorithm.

2.4 Consistent Estimators of the Asymptotic Shrinkage in

the Predicted PC Scores

In this section, we investigate the convergence of sample eigenvectors, PC scores,

and shrinkage factors in predicting the PC scores. Let ei and Ei to be the ith sample

and population eigenvectors, respectively. In addition to Assumptions 2.1–2.3, we

further assume that the distant spikes are of multiplicity one. This assumption is to

restrict the dimension of the corresponding eigenspaces to one, as otherwise the angle

between sample and population eigenvectors, or shrinkage in predicted PC scores

cannot be well defined.
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2.4.1 Angle between Sample and Population Eigenvectors

We first present the following theorem on the convergence of the quadratic forms

of the sample eigenvectors.

Theorem 2.2. Let λk be a distant spike of multiplicity one, and the Assumptions 2.1–

2.3 hold. Consider the following quadratic form

η̂k = sT1 eke
T
k s2,

where s1 and s2 are non-random vectors with uniformly bounded norm for all p. Then,

|η̂k − ηk|
a.s.−−→ 0,

where

ηk =
λkψ

′(λk)

ψ(λk)
sT1EkE

T
k s2

Mestre (2008b) showed similar asymptotic properties of the quadratic forms under

the assumption that the number of spikes increases with the dimension. Theorem 2.2

shows the convergence of the angle between sample and population eigenvectors.

Suppose s1 = s2 = Ek, and then,

η̂k = ET
k eke

T
kEk = 〈ek, Ek〉2 , ηk =

λkψ
′(λk)

ψ(λk)
.

Combining them, we can show

∣∣∣∣〈ek, Ek〉2 − λkψ
′(λk)

ψ(λk)

∣∣∣∣ a.s.−−→ 0. (2.2)

Therefore, {λkψ′(λk)/ψ(λk)}1/2 is a consistent estimator of the cosine of the angle,

i.e. the absolute value of the inner product, between the kth sample and population

eigenvectors. In order to obtain this estimator we first need to estimate the ψ function
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using the algorithm described in Section 2.5.

The following result by Ding (2015) provides another consistent estimator for

the angle between the kth sample and population eigenvectors. The proof of the

asymptotic equivalence of these two estimators is given in Appendix A.

Result 2.2. Let λk be a distant spike of multiplicity one, and dk be the corresponding

sample eigenvalue. Suppose that Assumptions 2.1–2.3 hold. Define,

gF (x) :=

[
1 + γfF (x)

∫
τdF (τ)

(x− τ)2

]−1

.

Then,

|〈ek, Ek〉2 − gF (dk)|
p−→ 0.

Hence gF (dk)
1/2 also works as a consistent estimator of |〈ek, Ek〉|. Since the func-

tion gF depends only on sample LSD, it can be approximated directly using sample

eigenvalues. More explicitly, if there are m spikes in the population, the function gF

can be closely approximated as

gF (dk) ≈

[
1 +

γfF (dk)

p−m

p∑
i=m+1

di
(dk − di)2

]−1

.

The above equation can be used to estimate the angle between the sample and pop-

ulation eigenvectors.

2.4.2 Correlation between Sample and Population PC Scores

The sample and population PC scores are the projections of the data on the

sample and population eigenvectors respectively. The correlation between them can

be perceived as a measure of accuracy of the PCA. The squared correlation can also

be interpreted as the proportion of variance in the population PC scores that can be

explained by corresponding sample PC scores. The following theorem provides the
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consistent estimators of the correlation between the sample and population PC scores

corresponding to a distant spike.

Theorem 2.3. Suppose λk is a distant spike of multiplicity one, dk is the corre-

sponding sample eigenvalue, and the Assumptions 2.1–2.3 hold. Let the normalized

kth population PC score is Pk = XEk/(nλk)
1/2 and the normalized kth sample PC

score is pk = Xek/(ndk)
1/2. Then,

∣∣〈Pk, pk〉2 − ψ′(λk)∣∣ p−→ 0,

and, ∣∣∣∣〈Pk, pk〉2 − dkgF (dk)

fF (dk)

∣∣∣∣ p−→ 0,

where the function gF is as defined in Result 2.2.

Since Pk and pk are normalized random vectors, the absolute value of the inner

product 〈Pk, pk〉 is identical to the absolute value of their correlation coefficient. Since

correlation is scale invariant, this is also the correlation between kth sample and popu-

lation PC scores. Therefore we can consider both ψ′(λk)
1/2 and {dkgF (dk)/fF (dk)}1/2

to be consistent estimators of the correlation between the kth sample and population

PC scores.

2.4.3 Asymptotic Shrinkage Factor

Suppose λk is a distant spike. Let the kth sample PC score for the jth observation

xj be pkj = xTj ek, and the kth predicted PC score for a new observation xnew be qk =

xTnewek. Then the quantity ρk = limp→∞ {E(q2
k)/E(p2

kj)}1/2 describes the asymptotic

shrinkage in the kth predicted PC score for a new observation. As both pkj and qk

are centered, i.e. E(pkj) = E(qk) = 0, ρk represents the limiting ratio of the standard

deviations of the predicted PC scores and the sample PC scores. Therefore, if we

can estimate ρk, then the shrinkage bias in the kth predicted PC scores can be easily
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adjusted by rescaling the predicted scores by the factor ρ−1
k . The following theorem

provides the consistent estimator of the asymptotic shrinkage factor ρk.

Theorem 2.4. Suppose λk is a distant spike of multiplicity one, dk is the correspond-

ing sample eigenvalue, and the Assumptions 2.1–2.3 hold. Let pkj and qk be as defined

above. Then, ∣∣∣∣∣
√

E(q2
k)

E(p2
kj)
− λk
dk

∣∣∣∣∣ p−→ 0.

This is a surprising result in which the asymptotic shrinkage factor is expressed as

a simple ratio of the population and sample eigenvalues. Recall that we already con-

structed the consistent estimators for population eigenvalues in the previous sections.

Using these results, the asymptotic shrinkage factor ρk can be consistently estimated

by λ̂k/dk where λ̂k is any consistent estimator of λk.

2.4.4 Comparison between the Two Different Estimators

For each of the quantities discussed above, we proposed two asymptotically equiv-

alent estimators. In terms of practical applications they have their own advantages

and disadvantages. One of them can be approximated directly based only on the sam-

ple eigenvalues, while the other one requires to estimate the LSD of the population

eigenvalues to obtain the ψ function. For ease of discourse we will call the former “d-

estimator” and the later “λ-estimator”. If the number of spikes is known, estimating

the d-estimator is computationally more efficient than estimating the λ-estimator as

it does not involve estimating the population LSD. However, by estimating the pop-

ulation LSD the λ-estimation procedure can verify whether an estimated eigenvalue

is actually a distant spike by checking if ψ′ > 0. Thus it can be used to estimate the

number of distant spikes when it is unknown (see Section 2.5). On the other hand,

the d-estimation procedure provides no information on the population LSD and thus

cannot distinguish among distant spikes, close spikes and non-spikes. To summarize,
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when the number of spikes is known or we only want to estimate few of the largest

eigenvalues which are known to be distant spikes, then the d-estimation procedure

has the advantage of a faster computation, while the λ-estimation procedure is more

useful when the number of spikes is unknown or the distribution of the non-spikes is

of interest.

2.4.5 Comparison between the Generalized Spiked Population (GSP)

Model and the Spiked Population (SP) Model

As mentioned before, the SP model (Johnstone, 2001) is a special case of the

GSP model. It is easy to verify that when the population eigenvalues follow the SP

model, our consistent estimators for the spiked eigenvalues, the angles between the

eigenvectors, the correlation coefficients between the PC scores and the shrinkage

factors conform to the consistent estimators derived by Baik and Silverstein (2006);

Paul (2007); Lee et al. (2010). For an SP model where all the non-spikes are equal

to one, the LSD H is a degenerate distribution at one, and

ψ(α) = α

(
1 +

γ

α− 1

)
; ψ′(α) = 1− γ

(α− 1)2
.

Now, ψ′(α) > 0 if and only if α > 1 + γ1/2. If α > 1 + γ1/2 and d is the corresponding

sample eigenvalue, then the consistent estimator of α is given by ψ−1(d), and

αψ′(α)

ψ(α)
=

1− γ
(α−1)2

1 + γ
α−1

;
α

ψ(α)
=

α− 1

α + γ − 1
,

which show that all our results match with the results from Lee et al. (2010).

It is of interest to investigate how closely methods developed under the SP model

can approximate the consistent estimators for the distant spikes when the population

eigenvalues actually follow a GSP model. Suppose the population eigenvalues λ1 ≥

λ2 ≥ . . . ≥ λp follow the GSP model with m distant spikes. The sample eigenvalues
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are d1 ≥ d2 ≥ . . . ≥ dp. Let λk be a distant spike with multiplicity one, and the

corresponding sample eigenvalue is dk. Then according to Result 2.1, dk → ψ(λk)

almost surely. From the definition of ψ,

ψ(λk) = λk

(
1 + γ

∫
λdH(λ)

λk − λ

)
= λk + γ

∫
λdH(λ)

1− λ/λk
.

If H is almost degenerate, i.e., the non-spikes are nearly identical, then,

ψ(λk) ≈ λk +
γλ̄

1− λ̄/λk
, (2.3)

where λ̄ =
∫
λdH(λ) is the mean of the population LSD which can be closely ap-

proximated by the mean of the non-spikes. On the other hand, if the spike λk is very

large compared to all the non-spikes such that λ/λk ≈ 0 for any λ ∈ ΓH , then

ψ(λk) ≈ λk + γλ̄. (2.4)

Now, suppose instead of using the GSP assumption, we use the SP assumption

to estimate the distant spikes. We assume that under the SP model the population

covariance matrix is scaled by a factor ζ and the population eigenvalues are β1 ≥

β2 ≥ . . . ≥ βm > ζ = ζ = . . . ζ. If βk is the population eigenvalue corresponding to

dk, then dk → ψ(βk) almost surely where,

ψ(βk) = βk

(
1 + γ

ζ

βk − ζ

)
= βk +

γζ

1− ζ/βk
.

Here ζ is estimated as the mean of the non-spikes as they are all assumed to be equal

to ζ. Notice that this expression is approximately equal to the expression in (2.3)

with βk = λk and ζ = λ̄. Therefore, the asymptotic limit of dk under both the GSP
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and the SP model are approximately equal when the non-spikes are nearly identical.

On the other hand, when the spike βk is very large compared to all the non-spikes

such that ζ/βk ≈ 0, then ψ(βk) ≈ βk + γζ. In this case also, the asymptotic limit

of dk under both the GSP and the SP model are approximately equal with βk = λk

and ζ = λ̄. Therefore if a generalized spike is very far away from the support of the

population LSD, then the estimate of the spike based on an SP model will closely

approximate the estimate based on a GSP model. However the SP model will provide

potentially biased estimates if the non-spikes are not similar and the ratio between

the largest non-spike and the spike of interest is substantially larger than zero.

2.4.6 Comparison with Ultra High-Dimensional Regime-Based Results

When p/n is Large

Our methods are developed under the high-dimensional regime p/n → γ < ∞,

and does not theoretically warrant it to be applied in UHD regime where p/n→∞.

However, often times in real world applications, we only have data with large p and

large n, but the relative rate of their asymptotic divergence is unknown. Therefore, we

do not know whether the true asymptotic regime is high-dimensional (p/n→ γ <∞)

or ultra high-dimensional (p/n → ∞). Suppose that the true asymptotic regime is

high-dimensional with γ finite but large compared to n, and the eigenvalues follow the

GSP model. In such situations, we can either correctly assume the high-dimensional

regime and apply the results discussed in this chapter, or we can falsely assume the

ultra high-dimensional asymptotic regime and employ the theoretical results derived

under this regime (Lee et al., 2014b). In this section, we will investigate whether it

is prudent to assume the UHD regime in such situations. In other words, we will

try to answer how large γ can be considered to be diverging to infinity for practical

applications.

We first show that for large enough γ, the theoretical results based on the falsely
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assumed UHD regime become nearly identical to the results under the correctly as-

sumed GSP (under high-dimensional regime) model. The UHD-based results pre-

sented in Lee et al. (2014b) require weaker conditions for the non-spiked eigenvalues

than those for the spiked population model. Instead of assuming that they are the

same, it assumes certain conditions on the moments of the non-spiked eigenvalues.

Since the population LSD has a finite support and all of its central moments are finite,

the condition on their moments, i.e. condition 2 in Lee et al. (2014b), is satisfied with

an additional assumption that n3/p2 = o(1). Without loss of generality, we assume

that the mean of the non-spikes is unity. Then, under the UHD regime,

d

λ

p−→ γ

λ
+ 1 when λ ≥ O(γ);

d

γ

p−→ 1 when λ = o(γ), (2.5)

where λ and d are a spiked population eigenvalue and its corresponding sample eigen-

value, respectively. Here λ ≥ O(γ) means λ/γ is bounded away from zero, and

λ = o(γ) means λ/γ → 0. They also showed the convergence of sample eigenvectors

and PC scores.

Alternatively, under the GSP model, d→ ψ(λ) when λ is a distance spike. From

Theorem 2.1, a distant spike λ must satisfy

1− γ
∫
x2dH(x)

(λ− x)2
> 0,

where H is the population LSD. Since fλ(x) = x2(λ− x)−2 is a continuous function

for λ > sup ΓH and x ∈ ΓH , where ΓH is the support of H, there exists x∗ ∈

(inf ΓH , sup ΓH) such that
∫
x2(λ− x)−2dH(x) = x∗2 (λ− x∗)−2. Then,

1− γ x∗2

(λ− x∗)2 > 0,

which implies λ > x∗ + x∗
√
γ. Thus, for any λ > x∗ + x∗

√
γ, d/λ−ψ(λ)/λ converges
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to zero.

Now, under the true asymptotic regime (high-dimensional) λ and γ are both finite

and non-zero, and thus λ = O(γ). However, under the falsely assumed UHD regime,

one can further assume λ ≥ O(γ) or λ = o(γ) depending on whether λ is large or

small compared to γ. If one assumes λ ≥ O(γ), then the difference between the

convergence of d/λ from the two models is

ψ(λ)

λ
− γ

λ
− 1 =

γ

λ

(∫
xdH(x)

1− x/λ
− 1

)
. (2.6)

Since γ/λ = O(1) and
∫
x (1− x/λ)−1dH(x) − 1 = O (λ−1) as the mean of the non-

spikes is unity, (2.6) becomes almost identical to zero when λ is sufficiently large.

Now, suppose one assumes λ = o(γ). Let λ ' a + bγk for some finite a, b and

1/2 ≤ k < 1. Then, the difference between our result and the UHD result is

∣∣∣∣ψ(λ)

γ
− 1

∣∣∣∣ =

∣∣∣∣λγ + λ

∫
xdH(x)

λ− x
− 1

∣∣∣∣ = O(γk−1). (2.7)

Thus, in this case also (2.7) becomes almost identical to zero when γ is sufficiently

large. We can also show the similar results for eigenvectors and PC scores.

Although both GSP and UHD eventually provide nearly identical results when γ

is sufficiently large, the GSP model can provide substantially better estimates. The

difference can be large when λ is small compare to γ, i.e k < 1, since the difference in

(2.7) is of the order O
(
γk−1

)
. The difference will be at least as large as O

(
1/
√
γ
)

in

such cases. In simulation studies, we show this numerically. Therefore, in the scenario

where γ is large compared to n, our suggestion would be to use the UHD method

only when we apriori know that the spike is very large compared to γ. Otherwise,

our GSP model based methods will provide better estimates.
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2.5 Estimation of the Population Limiting Spectral Distri-

bution

The λ-estimators rely on ψ, that is a function of the unknown population LSD

H. To use the λ-estimators, it is thus required to estimate H. Using the Stieltjes

transformation and the Marc̆enko–Pastur theorem, El Karoui (2008) developed a

general algorithm to estimate the population LSD from the sample ESD, Fp. We

propose to use Karoui’s method to estimate the population LSD H and then use it

to estimate ψ.

2.5.1 Karoui’s Algorithm

Suppose vFp is the Stieltjes transformation of the set of eigenvalues in the sample

covariance matrix in which

vFp(z) =
1

n

n∑
i=1

1

di − z

for any z ∈ C+,C+ = {x ∈ C, Im(x) > 0}. According to the Marc̆enko–Pastur

theorem (Marc̆enko and Pastur , 1967), when Assumptions 2.1–2.3 hold, vFp con-

verges pointwise almost surely to a non-random limit vF , which uniquely satisfies the

following equation

vF (z) = −
(
z − γ

∫
λdH(λ)

1 + λvF (z)

)−1

.

Karoui’s method first calculates vFp for a grid of values {zj}Jj=1, and then finds Ĥ as

a solution to minimize the following objective function

Ĥ = argH minL

({
1

vFp(zj)
+ zj −

p

n

∫
λdH(λ)

1 + λvFp(zj)

}J
j=1

)
,
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where L is any pre-defined convex loss function. In order to approximate the integral

inside of the loss function, the algorithm discretizes H in the following way,

dH(λ) '
K∑
k=1

wkδtk(λ),

where δtk(λ) = 1 if λ = tk and 0 otherwise,
∑K

k=1wk = 1 with wk > 0 for all k, and

{tk}Kk=1 is a grid of points on the support of H. This is basically approximating H by

a discrete distribution with support {tk}Kk=1. Then the integral is approximated by

∫
λdH(λ)

1 + λvF (z)
'

K∑
k=1

wk
tk

1 + tkvFp(zj)
,

and the minimization problem transforms into,

Ĥ = argH minL

{ 1

vFp(zj)
+ zj −

p

n

K∑
k=1

wk
tk

1 + tkvFp(zj)

}J

j=1

 . (2.8)

El Karoui (2008) has shown the weak convergence of Ĥ to H, i.e Ĥ → H.

Some examples of the convex loss function L can be,

• L∞
(
{ej}Jj=1

)
= maxj max {|Re(ej)|, |Im(ej)|}

• L1

(
{ej}Jj=1

)
=
∑J

j=1 |ej|

• L2

(
{ej}Jj=1

)
=
∑J

j=1 |ej|2

For the convex loss functions described above, the estimation of H in (2.8) reduces to a

convex optimization problem (Boyd and Vandenberghe, 2004). Karoui also provided a

translation of this problem into a linear programming problem when L∞ loss function

is used. Further details can be found in El Karoui (2008).
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2.5.2 Implementing Karoui’s Algorithm When the Number of Spikes is

Known

Since the generalized spikes fall outside the support of the population LSD, Karoui’s

algorithm cannot be directly applied to estimate the spikes. Furthermore, Bai and

Silverstein (1998) showed that the probability of a sample eigenvalue falling outside

the support of the sample LSD will go to zero as p increases, which implies that the

sample eigenvalues corresponding to the population generalized spikes will be mea-

sure zero points in the sample LSD. Since the spikes behave like measure zero points

(or outliers) when we are concerned about estimating the population LSD, we can

exclude the sample eigenvalues corresponding to the population generalized spikes

while calculating vFp and that will lead to a more robust estimation of H. Therefore,

we will apply Karoui’s algorithm in the following way,

1. Suppose the population covariance matrix possesses m generalized spikes. We

exclude the top m sample eigenvalues while calculating vFp ,

vFp(z) =
1

n−m

n∑
i=1

1

di − z
.

2. Apply Karoui’s algorithm to obtain Ĥ. Further, if it is reasonable to assume

that the true population LSD is a continuous or piecewise continuous distribu-

tion function, suitable kernel smoothing algorithm can be used on Ĥ to obtain

a more continuous approximation of H.

3. The quantiles of Ĥ can be considered as the estimators of the non-spikes.

4. Suppose, λ̂m+1, λ̂m+2, . . . , λ̂p are the estimated non-spikes. Then the ψ function

is estimated by,

ψ̂(α) = α +
γα

p−m

p∑
i=m+1

λ̂i

α− λ̂i
.
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Due to the weak convergence Ĥ → H, ψ̂ will also converge to ψ point-wise. Thus,

all the estimates provided in Section 2.3 and 2.4 will still be consistent if we replace

ψ with ψ̂.

2.5.3 Estimating the Number of Spikes

Our application of Karoui’s algorithm to the GSP model depends on the number

of spikes m, which is usually unknown. If we have some knowledge of the underlying

structure of the data, we can use it to estimate m roughly. Suppose we know that the

data are coming from a mixture of K subpopulations, and within each subpopulation

the observations are i.i.d. N(µk,Σ), where µk represents the mean for the kth subpop-

ulation, and Σ is the common within-group population covariance matrix. Then, as

the spikes represent the between group differences, the number of spikes should be the

same as the rank of the between group covariance matrix which is (K − 1). However

in real data, it is often hard to accurately assess the number of such homogeneous

subpopulations. In those cases we can use the following algorithm to estimate m.

1. Start with a reasonable finite upper bound mmax of the number of spikes. The

upper bound can be selected based on prior information on the subpopulations,

or by examining the sample eigenvalues. Set m = mmax.

2. Use Karoui’s algorithm to estimate the population LSD and the non-spikes.

Suppose the estimated non-spikes are λ̂m+1 ≥ λ̂m+2 ≥ . . . ≥ λ̂p, and the ψ

function is estimated by,

ψ̂(α) = α +
γα

p−m

p∑
i=m+1

λ̂i

α− λ̂i
.
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3. Find Sψ > λm+1 using Newton-Raphson algorithm such that

ψ̂′(Sψ) = 1− γ

p−m

p∑
i=m+1

(
λ̂i

Sψ − λ̂i

)2

= 0.

4. Since any distant spike must be larger than Sψ, and ψ̂, ψ̂′ are both continuous

and strictly increasing functions on (Sψ,∞), the equation ψ̂(λ) − dk = 0 has

a root in (Sψ,∞) if and only if ψ̂(Sψ) − dk < 0. Therefore, find the smallest

index i∗ in 1, 2, . . . ,m such that di∗ ≤ ψ̂(Sψ). If all d1, d2, . . . , dm are larger than

ψ̂(Sψ) then stop and select m as the number of distant spikes. Otherwise, set

m = i∗ − 1 and repeat steps 2–4.

Note that the close spikes occur so close to the support of the population LSD that

they cannot be distinguished separately from the non-spikes when the number of

spikes is unknown.

The selection ofmmax is subjective. It can be selected based on the prior knowledge

on the number of subpopulations, or by investigating the sample eigenvalues. In

real data applications, we are usually interested in only a few large eigenvalues. In

such situations, mmax can also be selected to be slightly larger than the number of

eigenvalues we are interested in. As seen from our simulation studies, this spike

selection algorithm can overestimate the number of spikes if the upper bound mmax

is too large or underestimate the number of spikes if there are close spikes present

(Table B.1). However, as long as mmax is finite compared to n and p, the estimation

of the true population distant spikes will still remain consistent.
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2.6 Simulation Studies and Real Data Example

2.6.1 Simulation Studies: Compare GSP and SP-Based Methods

In this section we will present simulation studies of four different scenarios to

compare the performances of the proposed GSP-based methods and the existing SP-

based method proposed by Lee et al. (2010). For each study, we simulated a training

dataset with n = 500 individuals and p = 5000 features. The data were generated

from three subpopulations with sample sizes 100, 150 and 250. For each subpopulation

we first selected a mean vector µi by drawing its elements randomly with replacement

from {−0.3, 0, 0.3}. Then samples in the ith subpopulation were drawn from Np(µi, V )

where V is the AR(1) covariance matrix with variance σ2 and autocorrelation ρ. The

(σ2, ρ) pairs used for the four studies were (4, 0.8), (1, 0.7), (7.5, 0.8) and (4, 0). The

population eigenvalue plots for all the studies are shown in Figure 2.2.

We also generated test datasets for each study with the same settings as the train-

ing datasets. Then we applied our GSP-based methods and the existing SP-based

method to estimate the population spikes, the angles between the sample and pop-

ulation eigenvectors, the correlations between the sample and population PC scores

and the asymptotic shrinkage factors. For all of the studies, we used the upper bound

mmax = 5 to estimate the number of distant spikes using the algorithm described in

Section 2.5.3. We simulated each study 200 times to calculate the empirical biases

and standard errors of the estimates. The results are presented in Table 2.1.

It is clear from Table 2.1 that for Study 1, 2 and 3 our methods reduced the

bias in all the estimates while having similar standard errors as the existing method.

The positive empirical biases in all the SP estimates suggest that the SP method

tends to overestimate all the quantities. In Study 4, since the underlying population

satisfied the SP assumption, all methods provided very similar and almost unbiased

estimates (< 1%). The results also verify that the λ-estimates and d-estimates are
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(a) Study 1. (b) Study 2.

(c) Study 3. (d) Study 4.

Figure 2.2: Eigenvalue structures in simulation studies comparing GSP-based and
SP-based methods.
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Settings Method Eigenvalue Angle Correlation Shrinkage
No. 1 2 1 2 1 2 1 2

1 n = 500
p = 5000
σ2 = 4
ρ = 0.8

SP
5.27
(2.37)

18.27
(3.11)

6.52
(0.32)

34.07
(0.60)

3.83
(0.03)

23.33
(0.08)

5.32
(0.60)

17.88
(1.06)

λ-GSP
0.43
(2.67)

0.95
(5.27)

0.53
(0.77)

3.28
(6.26)

0.33
(0.31)

2.79
(4.69)

0.47
(0.92)

0.58
(3.31)

d-GSP
0.47
(2.67)

0.69
(5.45)

0.47
(0.77)

2.48
(6.70)

0.24
(0.31)

2.11
(5.07)

0.51
(0.92)

0.31
(3.51)

2 n = 500
p = 5000
σ2 = 1
ρ = 0.7

SP
0.10
(0.90)

0.46
(1.27)

0.16
(0.04)

0.44
(0.08)

0.08
(0.001)

0.24
(0.003)

0.18
(0.08)

0.39
(0.16)

λ-GSP
-0.04
(0.90)

0.04
(1.28)

0.01
(0.04)

0.004
(0.10)

0.01
(0.03)

0.01
(0.01)

0.03
(0.08)

-0.03
(0.18)

d-GSP
-0.004
(0.90)

0.10
(1.28)

0.03
(0.04)

0.03
(0.10)

0.004
(0.03)

0.01
(0.01)

0.07
(0.08)

0.03
(0.18)

3 n = 500
p = 5000
σ2 = 7.5
ρ = 0.8

SP
25.68
(2.54)

-
64.06
(0.52)

-
46.50
(0.07)

-
26.41
(0.90)

-

λ-GSP
2.92
(5.7)

-
12.62
(11.90)

-
10.95
(10.13)

-
3.47
(4.20)

-

d-GSP
2.45
(5.74)

-
12.25
(10.52)

-
10.87
(8.58)

-
3.00
(4.24)

-

4 n = 500
p = 5000
σ2 = 4
ρ = 0

SP
0.05
(1.58)

-0.26
(2.35)

0.06
(0.23)

-0.06
(0.53)

0.03
(0.02)

0.05
(0.08)

0.07
(0.43)

-0.22
(0.90)

λ-GSP
0.03
(1.58)

-0.35
(2.35)

0.02
(0.24)

-0.18
(0.54)

0.01
(0.02)

-0.02
(0.09)

0.04
(0.43)

-0.31
(0.91)

d-GSP
0.16
(1.58)

-0.12
(2.35)

0.10
(0.23)

-0.03
(0.53)

0.01
(0.02)

0.02
(0.09)

0.18
(0.42)

-0.08
(0.90)

Table 2.1: Simulation results for GSP-based and SP-based methods. All methods
were applied to estimate the population eigenvalues, cosine of the angles
between sample and population eigenvectors, correlations between sample
and population PC scores, and the asymptotic shrinkage factors. Each cell
has empirical bias (%) with coefficients of variations (%) in parenthesis.
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asymptotically equivalent. The performances of the λ-estimates and the d-estimates

are nearly identical in all the simulation studies.

In Study 1, the ratio of the largest non-spike with the two spikes are 0.29 and

0.48, which are substantially larger than zero. Thus according to the discussion in

Section 2.4 the SP model does not closely approximate the GSP model. The results

support this assertion as the SP model-based estimates are highly biased whereas the

estimates based on our methods have very little empirical bias. On the other hand,

in Study 2 the largest non-spike is very small compared to the smallest spike (ratio

0.08). Thus the estimates based on the SP model closely approximate the estimates

based on the GSP model, and we find very little empirical bias (< 1%) in all of the

SP model-based estimates. In Study 3, even though there were two spikes present,

only the largest population eigenvalue was a distant spike. So we presented only the

estimates corresponding to the largest population eigenvalue. Since the ratio of the

largest non-spike and the largest spike is substantially larger than zero (0.53) in this

study, we observe very high empirical bias in the SP model-based estimates. However,

our methods provided negligible empirical biases even in the presence of a close spike.

We also presented the estimated number of distant spikes in each of the simulation

studies in Table B.1. Note that in some cases our algorithm over-estimates the number

of distant spikes. However, as the over-estimation is only finite, the estimates of the

distant spikes still remain consistent.

2.6.2 Simulation Studies: Compare GSP and Ultra High-Dimensional

(UHD) Regime-Based Methods

In Section 2.4.6 we compared the asymptotic results under the UHD regime and

the results based on the high-dimensional GSP model when p is greatly larger than

n, but p/n is large but finite. We theoretically established that the results from the

two regimes become almost identical when p/n = γ is sufficiently large. However,
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given large but finite γ in the data, the difference can be substantial when the spike

is smaller compared to γ. In this section, we will assess that result by numerically

comparing the GSP and UHD-based estimates for different values of γ. We considered

five different scenarios where the largest population eigenvalue λ = γ, 0.6γ, 60 +

0.1γ, 6
√
γ, 4γ2/3. For the first three scenarios, under the UHD regime, λ/γ can be

assumed to be bounded away from zero, and for the last two, λ/γ → 0 as γ → ∞.

To compare the performances as γ increases, we selected six different values for γ =

100, 200, 500, 1000, 2500, 5000. For each combination of γ and λ, we simulated 200

datasets, each with n = 200 samples from a population with only one spike λ, and

the non-spikes generated from the AR(1) covariance structure with (σ2, ρ) = (1, 0.9).

First, we compare the convergence results of the largest sample eigenvalue d from

Theorem 2.1 and (2.5). For this purpose, we assume the population eigenvalues and

the rate of increment of λ are known, and we compare the relative errors εGSP =

(d− ψ(λ)) /d and εUHD = (d − λ − γ)/d or (d − γ)/d depending on whether λ/γ

is assumed to be bounded away from zero or not. Figure 2.3 shows that for all

combinations of (γ, λ), the GSP-based convergence result (Theorem 2.1) has very

negligible relative errors. On the other hand, the UHD-based convergence result

(2.5) has substantially large relative errors even for γ as large as 5000 in scenarios 3,

4 and 5. For scenarios 1 and 2, since λ increases at a faster rate with γ than in other

scenarios, the relative errors based on the two results converge much faster. However,

for relatively smaller values of γ (100, 200, 500), the differences are substantial even

though γ is large compared to n = 200. This suggests that we need γ to be large in

an absolute sense, and not only in a relative sense compared to n in order to assume

γ →∞ and apply UHD-based results.

Next, we compare the estimates of the spike λ using GSP-based and UHD-based

methods assuming the population eigenvalues and the rate of increment of the pop-

ulation spike λ to be unknown. Among the GSP-based methods we only used the
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(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

(d) Scenario 4. (e) Scenario 5.

Figure 2.3: Comparison of the relative errors (%) in the convergence results of the
largest sample eigenvalue derived under the GSP and UHD assumptions.
The population eigenvalues and the rate of increment of the largest pop-
ulation eigenvalue are assumed to be known.
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d-GSP method for this purpose due to the computational burden associated with ap-

plying the λ-GSP method on such a large number of simulated datasets. One thing

to note here is that the UHD results do not provide any consistent estimators for λ,

as it is assumed to be divergent when λ ≥ O(γ), and the asymptotic properties of the

sample eigenvalues do not depend on λ when λ/γ → 0. Thus, in order to compare

these methods, we estimate λ by λ̂ = d− γ when considering the UHD regime. From

Figure 2.4 we can see that our proposed d-GSP method provides almost negligible

biases for all combinations of (γ, λ), whereas the UHD-based estimates have substan-

tial biases even for γ as large as 5000 in scenarios 3, 4 and 5. For scenario 1 and

2, both methods provide almost unbiased estimates when γ ≥ 1000 and γ ≥ 2000

respectively. Further, we compare the estimated shrinkage factors based on these two

methods in Figure B.1. They also show very similar patterns as the estimated spikes.

2.6.3 Application on Hapmap III Data

For this demonstration we used genetic data from the Hapmap Phase III project

(http://hapmap.ncbi.nlm.nih.gov/). Our sample consisted of unrelated individu-

als sampled from two different populations: a) CEU and b) TSI. We only included

genomic markers that are on chromosome 1-22, have less than 5% missing values, and

those with minor allele frequency more than 0.05. We also excluded 2 samples (both

from CEU) with outlier PC scores (more than six standard deviations away from the

mean PC score corresponding to at least one distant spike). We then mean-centered

and variance-standardized the data for each marker. The final sample consisted of

198 individuals (110 from CEU and 88 from TSI). Total number of markers selected

across chromosome 1-22 was 1389511.

To evaluate the performance of the proposed methods with different p, we per-

formed PCA on each chromosome separately. The number of markers varied from
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(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

(d) Scenario 4. (e) Scenario 5.

Figure 2.4: Empirical biases (%) in estimating the largest population eigenvalue for
GSP-based and UHD-based methods. The population eigenvalues and
the rate of increment of the largest population eigenvalue are assumed to
be unknown.
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19331 (chromosome 21) to 116582 (chromosome 2). The distribution of the number of

markers across different chromosomes are presented in Figure B.3. We first estimated

the number of distant spikes using the algorithm described in Section 2.5.3. We found

no distant spike in chromosome 22 and only one distant spike in chromosome 2. Then

we applied our GSP-based methods, the existing SP-based method (Lee et al., 2010)

and the UHD-based method (Lee et al., 2014b) to estimate the asymptotic shrink-

age factors corresponding to the distant spikes. Figures 2.5(a), 2.5(b) compares the

estimated asymptotic shrinkage factors for the first two PCs across different chromo-

somes. The plots show that for all the chromosomes, λ-GSP and d-GSP methods

provided almost equal estimates while the SP and UHD estimates are larger than

both the GSP estimates. This suggests that the SP method would over-estimate the

shrinkage factors when the population eigenvalues deviate from the assumption that

the non-spiked eigenvalues are the same. Moreover, the UHD method over-estimated

the shrinkage factors even for p/n nearly as large as 600 (chromosome 2).

To investigate whether the proposed shrinkage-bias adjustment can improve the

prediction accuracy, we performed a leave-one-out cross-validation. In each itera-

tion we removed one individual (test sample) and performed PCA on the remaining

individuals (training samples) to predict the PC score of the test sample. For each pre-

dicted PC score, we adjusted the shrinkage-bias using the GSP-based, SP-based and

UHD-based shrinkage factor estimates. One important issue with this cross-validation

is that the exclusion of one individual can substantially change the PC-coordinates,

in which the PC score plots from the training sample-based and complete sample-

based PCA can be substantially different. In order to circumvent this problem, in

each iteration we first rescaled the PC scores based on their corresponding sample

eigenvalues to make the PCs comparable. In addition, we obtained the mean squared

difference of the training sample PC1-2 scores with and without the exclusion of the

test sample (for chromosome 2, only PC1 is used), and excluded the test sample from
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(a) Shrinkage factors for PC1.

(b) Shrinkage factors for PC2.

Figure 2.5: Comparison of the estimated shrinkage factors using different methods on
the Hapmap data.
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the prediction error estimation if the mean squared difference was above a threshold

ε. We used four different values 0.5, 1, 5 and 10 for the threshold parameter ε, and

for each value of ε we calculated the MSE of the unadjusted and adjusted predicted

PC scores of the test samples. The sample sizes of the test samples that were fi-

nally included in the prediction error estimation for different values of ε are shown

in Figure B.2. Figure 2.6 shows the estimated MSEs for ε = 1. It is clear that both

the λ-GSP and d-GSP methods have much smaller MSEs than the SP method. The

UHD-based method had almost identical MSEs as the SP-based method for all the

chromosomes, hence we omitted the UHD-based results in this plot. As expected, the

unadjusted predicted PC scores have substantially larger MSE than all the proposed

adjustments. The plots are very similar for the other values of ε, and they can be

found in Figure B.4.

Figure 2.6: Comparison of the MSE of the unadjusted, d-GSP-adjusted, and SP-
adjusted PC scores, with the λ-GSP-adjusted PC scores using ε = 1. The
ratios of the MSEs are presented for chromosome 1-21. The Y-Axis is
presented in a logarithmic scale.

Figure 2.7 illustrates the shrinkage-bias adjustment for the PC1 and PC2 scores

of an individual based on the markers on chromosome 7. The plot clearly shows
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that the bias-adjusted PC score based on the SP model is still biased towards zero,

whereas the bias-adjusted PC score based on the GSP model is very close to the

original sample PC score. We only showed the d-GSP adjusted score in the plot as

the d-GSP and λ-GSP adjusted scores were almost equal.

Figure 2.7: PC1 vs PC2 plot of the Hapmap III CEU and TSI samples based on
chromosome 7. The predicted PC scores for the illustrative individual,
and its bias-adjusted PC scores are also presented. Since the d-GSP and
the λ-GSP adjusted scores are nearly the same, the λ-GSP adjusted scores
are not presented.
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2.7 Discussion

We investigated the asymptotic properties of PCA under the Generalized Spiked

Population model and derived estimators of the population eigenvalues, the angles

between the sample and population eigenvectors, and the correlation coefficients be-

tween the sample and population PC scores. We also proposed methods to adjust

the shrinkage bias in the predicted PC scores. Further, theoretically and using sim-

ulation studies, we compared our results with the results developed under the ultra

high-dimensional regime (Lee et al., 2014b), and showed that our methods provide

more accurate estimates when p/n → γ is asymptotically finite but large compared

to n in the given data, and the spike of interest is small compared to γ. When the

spike is large compared to γ, both methods provide nearly identical estimates. Since

the proposed methods do not require the equality of the non-spiked eigenvalues, they

can be widely used in high-dimensional biomedical data analysis. We implemented

all our algorithms in the R package hdpca.

We note that Mestre (2008a,b) proposed an asymptotic setting similar to the gen-

eralized spiked population model but with a different assumption on the number of

spikes in which the number of spikes increases with the dimension. Under this as-

sumption, he provided asymptotic properties of sample eigenvalues and eigenvectors.

However, in many biomedical data, the number of spikes is usually finite as the spikes

represent the difference between finitely many underlying subpopulations. Therefore

we believe that the generalized spiked population model is more appropriate in such

cases.

In some special cases, even though the features exhibit strong local correlation,

one can use the spiked population model based methods after some suitable data

manipulation. In genome-wide association studies, SNP pruning (Anderson et al.,

2010) can be used to remove locally correlated SNPs to satisfy the spiked population

model. For example, Lee et al. (2010) reported good performance of the spiked
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population model-based methods with the SNP-pruned Hapmap III dataset. This

approach, however, can lead to a considerable loss of information; the SNP-pruning

in Hapmap III data removed nearly 90% of the SNPs. Since the proposed approach

does not require this additional step, it can use most of the information present in

the data.
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CHAPTER III

Two-Stage PLS Method to Address the

Over-Fitting Problem in Partial Least Squares

Regression on High-Dimensional Predictors

3.1 Introduction

Partial least squares (PLS) is one of the most widely used multivariate statistical

methods for dimension reduction in regression models. Originally developed by Wold

(1966, 1982) to address the econometric path modeling problems in the social sciences

literature, PLS is now widely popular in the field of spectroscopy and chemometrics

(Wold et al., 1984, 2001; de Jong , 1993; Geladi and Kowalski , 1986), and also has

been applied in many biomedical fields including genomics, metabolomics, neurology

etc. (Boulesteix and Strimmer , 2007; Man, 2004; Huang et al., 2005; Clementi et al.,

1997; McIntosh et al., 1996) due to its attractive ability of handling large number of

predictors and modeling multiple outcomes simultaneously. It is especially useful in

problems where the predictors are highly correlated among themselves.

PLS is a closely related technique to principal component analysis (PCA) (Hel-

land , 1990; Stoica and Söderström, 1998). In fact, PLS combines PCA and multiple

linear regression (MLR) methods to simultaneously achieve dimension reduction and

model fitting. Because of this dimension reduction feature of PLS, it is an attractive
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tool to be applied in data with high-dimensional predictors, where the number of pre-

dictors is larger than the sample size. The latent structure model employed by PLS

can also provide a framework for identifying and adjusting for unknown confounders

in regression models. For example, Epstein et al. (2007) proposed a method using

PLS to control for population stratification in genetic association studies.

In models with high-dimensional predictors, however, PLS can suffer from an

over-fitting problem, where the fitted and observed outcomes are almost identical,

even when the outcomes are completely independent of the predictors. To illustrate

this phenomenon, we simulated n = 500 subjects with outcomes Yi ∼ N(0, 1) for

ith subject, and independently simulated p = 10000 covariates Xij ∼ N(0, 1), j =

1, . . . , p for each subject. Then we used PLS with one component to fit this regression

model. The resulting squared correlation (R2) between the fitted outcomes (Ŷ ) and

observed outcomes (Y ) was 0.951 (Figure 3.1), even though Y and X were generated

independently. This can result in falsely inferring that a large proportion of variability

in the outcomes can be explained by the predictors, or falsely attributing a higher

effect of the predictors on the outcomes, when the true effect is substantially lower.

The over-fitting problem has also been observed and discussed by Brereton and Lloyd

(2014); Gromski et al. (2015) with respect to fitting classification models using the

PLS method. Lee et al. (2008); He et al. (2017) also raised concerns regarding the use

of PLS for confounder adjustment, for being prone to over-fitting the model, which

can further result in spurious confounders and loss of power.

Even though the over-fitting problem of PLS has previously been noticed by oth-

ers, to the best of our knowledge, no method has been developed to properly address

this problem. The sparse PLS (SPLS) method (Chun and Keleş , 2010) was previously

proposed for high-dimensional data when the predictors are sparse, i.e, only a small

number of predictors are relevant. The performance of this method, in terms of ad-

dressing the over-fitting problem, also needs to be evaluated under different sparsity
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Figure 3.1: Fitted vs observed outcomes for PLS regression with independently gen-
erated outcomes and predictors.

levels.

In this chapter, we first investigate the reasons behind the over-fitting problem,

and propose a two-stage PLS (TPLS) method to address the problem using the re-

cent developments in the random matrix literature for high-dimensional PCA (Lee

et al. (2010), and Chapter II). Since, PCA and PLS are closely related methods, the

shrinkage phenomenon discussed in Lee et al. (2010) can also affect the prediction per-

formances of our method. We further investigate the effect of shrinkage on PLS, and

incorporate the shrinkage-bias adjustment techniques presented in Lee et al. (2010)

and in Chapter II into our method. We evaluate and compare our proposed method

with the traditional PLS and the SPLS methods under various simulated scenar-

ios, as well as apply the proposed method to the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) data to demonstrate its performance.
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3.2 Over-Fitting in High-Dimensional Partial Least Squares

We consider the linear regression model of Y = XB + G with n independent

samples, p predictors, and q outcomes, where Yn×q = [y1 y2 . . . yq] is the ma-

trix of outcomes, Xn×p = [x1 x2 . . . xp] is the matrix of predictors, Bp×q is the

matrix of coefficients, and Gn×q is the random error matrix. The PLS method esti-

mates the parameters of the linear regression model by assuming the following latent

decompositions,

X = TP T + E

Y = TQT + F,

where T is an n × k matrix of k latent scores, rank(T ) = k, and Pp×k and Qq×k

are the corresponding loading matrices, respectively. En×p and Fn×q are the random

error matrices. The rows of E have mean zero and variance σ2
xIp, and the rows of F

have mean zero and variance σ2
yIq, where Ip and Iq are the identity matrices of order

p and q, respectively. We assume q and k to be finite, and X to be high-dimensional,

p→∞, n→∞, p/n→ γ <∞, γ > 1.

The PLS method estimates the latent scores using T̂ = XW , where the columns

of the Wp×k = [w1 w2 . . . wk] are found by solving the following optimization

problem,

wi = arg max
w

n−2wTXTY Y TXw s.t. wTw = 1,

wTSxxwj = 0, ∀j = 1, . . . , i− 1,

(3.1)

where Sxx = XTX/n. Here, we assumed without loss of generality, that the columns

of X and Y are mean-centered. Then, the columns of Y are regressed on T̂ using

ordinary least squares (OLS) method to obtain Q̂, the estimate for Q. Finally, the

linear regression coefficients are estimated by B̂ = WQ̂T .
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Notice that, TP T is the structural part, or signal part of X which affects the

structural part TQT of the outcome under the model assumptions. Ideally, in each

successive optimization, we want to find the direction w which maximizes the sample

covariances between TP Tw and columns of TQT , i.e, to solve the following optimiza-

tion problem,

wi = arg max
w

n−2wTPT TTQTQT TTP Tw s.t. wTw = 1,

wTSxxwj = 0,∀j = 1, . . . , i− 1.

(3.2)

We first show that under the low-dimensional setting, where p is finite, (3.1) and

(3.2) are asymptotically equivalent optimization problems. We can decompose the

objective function of (3.1) by,

n−2wTXTY Y TXw = n−2wTPT TTQTQT TTP Tw + n−2wTPT TFF TTP Tw

+ n−2wTETY Y TEw + 2n−2wTETY Y TTP Tw

(3.3)

Now, consider the term,

n−2wTETY Y TEw =

q∑
j=1

Cov2(yj, Ew) =

q∑
j=1

(
p∑
i=1

Cov
(
yj, Eiw

(i)
))2

,

where Ei is the ith column of E, and w(i) is the ith element of w. For any non-random

w such that wTw = 1, since E and Y are independent, each Cov
(
yj, Eiw

(i)
) a.s.−−→ 0.

When p is finite, this implies n−2wTETY Y TEw
a.s.−−→ 0. The same observation can

also be made for the term 2n−2wTETY Y TTP Tw. Moreover, since F only has q many

columns, regardless of p, the term n−2wTPT TFF TTP Tw goes to zero almost surely.

Therefore, under the low-dimensional setting, solving (3.1) provides asymptotically
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identical solutions as (3.2).

However, in the high-dimensional setting, the last two terms of (3.3) are not

guaranteed to converge to zero as they include p many sums. Moreover, since the

column-space of X, which is a full row rank matrix of order n × p, will always con-

tain the columns of Y , the canonical correlation between X and Y will always be

unity. Thus, when maximizing n−2wTXTY Y TXw, the PLS method may not max-

imize n−2wTPT TTQTQT TTP Tw, and instead can over-fit the model by increasing

the values of the last two terms of the right-hand side (RHS) of (3.3). For example,

suppose all elements of Q are zeros, which means X and Y are completely unrelated.

Then, because the columns of Y belong to the column space of X (full row rank

matrix), solving (3.1) will result in selecting w-s such that each Xw belongs to the

column space of Y , and after selecting q components, X [w1 . . . wq] will span the

same column space as Y . Obviously, when q = 1, Xw1 will be a scalar multiple of

Y . Thus, when fitting Y on T̂ = XW , the fitted outcomes will be identical to the

observed outcome Y , and the coefficient of determination (R2) in the model will be

unity, which is an obvious case of over-fitting.

3.3 Two-stage PLS (TPLS) Method

First, we note that the over-fitting issue is solved if w is restricted to any fi-

nite dimensional subspace C (S) (column-space of S), where S is a p × m ma-

trix and m is finite. For any wp×1 ∈ C (S), let w = Sγ̃, and ES = Ẽ. Then,

n−1Y TEw = n−1Y T Ẽγ̃ =
(∑m

i=1Cov(y1, Ẽiγ̃i), . . . ,
∑m

i=1 Cov(yq, Ẽiγ̃i)
)

, where Ẽi

is the ith column of Ẽ, and γ̃i is the ith element of γ̃. As Y and Ẽ are indepen-

dent, each sample covariance Cov(yj, Ẽiγ̃i)
a.s.−−→ 0. When m is finite, this implies

n−1Y TEw
a.s.−−→ 0 and the last two terms on the RHS of (3.3) converges almost surely

to zero. On the other hand, if m is not finite, then this convergence is not guaran-

teed, resulting in possible over-fitting of the model. The SPLS method (Chun and
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Keleş , 2010) also addresses the over-fitting issue when sparsity assumptions (as noted

in Chun and Keleş (2010)) are valid, as it also imposes a subspace constraint where

the subspace is spanned by finitely many euclidean basis vectors. However, when the

sparsity assumption is not applicable, the euclidean subspace constraint may not be

optimum, or it may result in over-fitting the model by selecting a large number of

variables.

In order to find the optimum finite-dimensional subspace constraint for solving

the optimization problem (3.2), we introduce the following theorem, that discusses

the nature of the solutions to (3.2),

Theorem 3.1. Let Ũ = [u1 u2 . . . uk], where ui is the eigenvector corresponding

to λi, the ith largest eigenvalue of Σp = n−1PT TTP T , and wi is the ith successive

solution to the optimization problem (3.2). Then, wi ∈ C
(
Ũ
)

.

The proof can be found in Appendix C. Theorem 3.1 shows that any solution

to (3.2) will belong to the subspace C
(
Ũ
)

. Now, Ũ comprises of the first k eigen-

vectors of Σp, which are the same as the first k eigenvectors of Γp = Σp + σ2
xIp, the

population covariance matrix of X. Notice that, Γp follows the spiked population

model as described in Johnstone (2001) with first k eigenvalues as spikes, assuming

the largest eigenvalue of Σp to be bounded. Under the spiked population model in

the high-dimensional setting, even though we cannot consistently estimate the popu-

lation eigenvectors, we can consistently estimate the angles between the sample and

population eigenvectors using theoretical results derived in Lee et al. (2010), and also

in Chapter II as a special case of the generalized spiked population model.

For the convenient use of notations, we denote the eigenvalues of Γp as θ1, . . . , θp

in decreasing order of magnitude; θi = λi + σ2
x for i = 1, . . . , k, and θi = σ2

x for

i = k + 1, . . . , p. Let Sxx/n = V DV T be the eigendecomposition of the sample

covariance matrix, where D is diagonal with eigenvalues d1 ≥ d2 ≥ . . . ≥ dp, and

V = [v1 v2 . . . vp] comprises of the sample eigenvectors. Further, we assume the

49



following,

Assumption 3.1. As we are interested only in the first k eigenvectors of Γp, and the

eigenvectors do not change if we scale all the sample and population eigenvalues by

any non-zero scalar quantity, without loss of generality we assume σ2
x = 1.

Assumption 3.2. The multiplicity of θ1, . . . , θk∗ are all unity, where k∗ is the number

of eigenvalues of Γp larger than 1 +
√
γ.

Then, based on Theorem 2.2 in Chapter II, it can be shown that when θi > 1+
√
γ,

∣∣∣∣〈vi, ui〉2 − θiψ
′(θi)

ψ(θi)

∣∣∣∣ p−→ 0, 〈vi, uj〉2
p−→ 0, j 6= i. (3.4)

where ψ(θ) = θ (1 + γ/(θ − 1)), and ψ′ is the derivative of ψ. Notice that, as per

the terminology defined in Chapter II, the spikes (θ1, . . . , θk∗) larger than 1 +
√
γ are

called the distant spikes, the spikes (θk∗+1, . . . , θk) smaller than 1 +
√
γ are called

the close spikes, and the rest of the population eigenvalues (θk+1, . . . , θp) are called

non-spikes. The following theorem provides the convergence of the angles between

the population eigenvectors corresponding to the spikes and the sample eigenvectors

corresponding to the close spikes and non-spikes.

Theorem 3.2. Let vi be a sample eigenvector such that the corresponding population

eigenvalue, θi ≤ 1 +
√
γ, and the sample eigenvalue di > 0. If γ > 1, then, for all

j = 1, . . . , k,

〈vi, uj〉
p−→ 0.

The proof can be found in Appendix C.

Theorem 3.2 shows that the low-rank sample eigenvectors vis such that i > k∗

and di > 0 are all asymptotically orthogonal to C
(
Ũ
)

. Moreover, the eigenvectors

corresponding to the sample eigenvalues di = 0 does not provide any information as

the sample predictors do not have any variability on those directions. Therefore, we
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propose to remove all low-rank eigenvectors from the universal p-dimensional space,

and restrict w to the remaining subspace, which is spanned by only the first k∗ sample

eigenvectors of Sxx/n. Because Ṽ = [v1 . . . vk∗ ] only has finitely many columns,

our approach will solve the over-fitting problem. This selection of sample eigenvectors

is the best possible, in the sense that, adding finitely many low-rank eigenvectors to

the basis will not improve the estimation, as the additional eigenvectors provide no

information on C
(
Ũ
)

. On the other hand, including infinitely many of them in

the basis can result in over-fitting of the model. This implies, in the two-stage PLS

(TPLS) method, we can first calculate the first k∗ sample principal component (PC)

scores X∗ = XṼ (the first stage). The number of distant spikes k∗ can be estimated

using the algorithm described in Lee et al. (2010) (Section 2.4), or a more general

algorithm described in Chapter II (Section 2.5.3). Then, we solve the optimization

problem,

γ∗i = arg max
γ∗i

n−2γ∗Ti X∗TY Y TX∗γ∗i s.t. γ∗Ti γ∗i = 1,

γ∗Ti Ṽ TSxxṼ γ
∗
j = 0,∀j = 1, . . . , i− 1,

which is equivalent to performing the PLS regression of Y on X∗ (the second stage).

3.4 Consistent Estimation of the Variability in Y Explained

by X

As shown in our simulated example (Figure 3.1), over-fitting a PLS model can

result in falsely inferring that the predictors (X) explain almost all of the variability

in the outcomes (Y ), even when they are independent. To properly understand

how much effect the predictors truly have on the outcomes, it is thus important to

consistently estimate of the maximum proportion of variability (R2) in Y , that can be

explained by X without over-fitting the model. In particular, we need to estimate the
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expected maximum variability in Y (sum of the column-wise variances of the fitted

Ŷ ) that can be explained by X, in the ideal situation where the selection of ws are

constrained to the optimum subspace C
(
Ṽ
)

.

However, Ũ is not known, and in our TPLS method, we are restricting our selection

of w-s to the subspace C
(
Ṽ
)

instead of C
(
Ũ
)

. As C
(
Ṽ
)

is not consistent to C
(
Ũ
)

in the high-dimensional setting, the solution for w will be sub-optimal for (3.2), which

can lead to a loss of variability in Ŷ , compared to the optimal solution. Even though

we cannot obtain the optimal solution to (3.2), in this section, we will derive an

asymptotically unbiased estimate for the expected maximum variability in Y that

can be explained by X, using the theoretical results derived in Lee et al. (2010) and

Chapter II.

Notice that, restricting the PLS directions w-s to the subspace C
(
Ũ
)

is equivalent

to performing a PLS of Y on X̃ = XŨ , and the variability in Ŷ is maximum when all

k components are selected, which is equivalent to performing OLS regressions of the

columns of Y individually on X̃. Similar observation also holds for the PLS regression

of Y on X∗ with k∗ components. Without loss of generality, we assume Y only has

one column (q = 1). We are interested in estimating the expected explained variance

of Y in the following true underlying model,

Y = X̃η̃ + ε̃, (3.5)

using the parameter estimates from the misspecified model,

Y = X∗η∗ + ε∗. (3.6)

η̃, η∗ are the coefficients corresponding to X̃ and X∗, and ε̃, ε∗ are the error terms in

the two models, ε̃ ∼ N(0, σ2
y). If Y has more than one columns, then we can estimate

the explained variance for each column individually and sum them up.
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We first assume that all the spikes of Γp are distant spikes (which implies k∗ = k),

and k∗ is correctly estimated. Let the Assumptions 3.1 and 3.2 hold. Then, according

to Lee et al. (2010), if θi > 1 +
√
γ,

|di − ψ(θi)|
p−→ 0. (3.7)

Without loss of generality, we assume 〈vi, ui〉 is non-negative for all i = 1, . . . , k.

Then, from (3.4) and (3.7),

X̃T X̃/n = ŨT (Sxx/n) Ũ
p−→ Θk

X∗TX∗/n = Ṽ T (Sxx/n) Ṽ = Ṽ TV DV T Ṽ = Dk
p−→ Ψk, and

X̃TX∗/n = ŨT (Sxx/n) Ṽ = ŨTV DV T Ṽ
p−→ [ΘkΨ

′
kΨk]

1/2
,

where Θk is a diagonal matrix with diagonal elements θ1, . . . , θk, Dk is a diago-

nal matrix with diagonal elements d1, . . . , dk, Ψk is a diagonal matrix with diago-

nal elements ψ(θ1), . . . , ψ(θk), and Ψ′k is a diagonal matrix with diagonal elements

ψ′(θ1), . . . , ψ′(θk). The first convergence holds because Sxx/n
p−→ Σp element-wise.

Let P̃X = X̃
(
X̃T X̃

)
X̃T and P ∗X = X∗

(
X∗TX∗

)
X∗T . Then the fitted outcomes

based on models (3.5) and (3.6) are given by Ỹ = P̃XY and Y ∗ = P ∗XY , respectively.

The corresponding explained variances are given by H̃E = n−1Ỹ T (In − Jn/n) Ỹ , and

H∗E = n−1Y ∗T (In − Jn/n)Y ∗, where Jn is the n × n matrix with all elements equal
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to unity. Then, under the true model (3.5),

E
(
H̃E

)
= E

(
n−1Ỹ T (In − Jn/n) Ỹ

)
= E

(
n−1Y T P̃X (In − Jn/n) P̃XY

)
= E

(
n−1Y T P̃XY

)
as X̃TJn = 0

= n−1tr
(
P̃Xσ

2
y

)
+ n−1η̃T X̃T P̃XX̃η̃

= (k/n)σ2
y + n−1η̃T X̃T X̃η̃

p−→ η̃TΘkη̃ as n→∞

E (H∗E) = E
(
n−1Y ∗T (In − Jn/n)Y ∗

)
= E

(
n−1Y TP ∗X (In − Jn/n)P ∗XY

)
= E

(
n−1Y TP ∗XY

)
as X∗TJn = 0

= n−1tr
(
P ∗Xσ

2
y

)
+ n−1η̃T X̃TP ∗XX̃η̃

p−→ η̃TΘkΨ
′
kη̃ as n→∞

This clearly shows that E
(
H̃E

)
< E (H∗E) as ψ′(θi) < 1 for i = 1, . . . , k. Now, let

θ̂i = ψ−1(di) for i = 1, . . . , k (ψ is invertible when θi > 1 +
√
γ). Further, let Θ̂k, Ψ̂k,

and Ψ̂′k denote the diagonal matrices similarly constructed as Θk,Ψk, and Ψ′k, with

θis replaced by θ̂is. Then, Θ̂k
p−→ Θk,Ψ̂k

p−→ Ψk, and Ψ̂′k
p−→ Ψ′k element-wise.

Now, let η̂∗ =
(
X∗TX∗

)−1
X∗TY be the least squares estimator from model (3.6).

Then, E(η̂∗) =
(
X∗TX∗

)−1
X∗T X̃η̃

p−→
(
ΘkΨ

′
kΨ
−1
k

)1/2
η̃ under the true model (3.5).
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Then, η̂ =
(

Θ̂kΨ̂
′
kΨ̂
−1
k

)−1/2

η̂∗ is asymptotically unbiased for η̃, and

E
(
η̂T Θ̂kη̂

)
= E

[
Y TX∗

(
X∗TX∗

)−1
(

Ψ̂−1
k Ψ̂′k

)−1 (
X∗TX∗

)−1
X∗TY

]
= tr

[(
X∗TX∗

)−1
(

Ψ̂−1
k Ψ̂′k

)−1
]

+ η̃T
(
X̃TX∗

)2 (
X∗TX∗

)−2
(

Ψ̂−1
k Ψ̂′k

)−1

η̃

p−→ η̃TΘkη̃ as n→∞.

Therefore, η̂T Θ̂kη̂ is an asymptotically unbiased estimator for E
(
H̃E

)
. Using this

estimator, we can further estimate the proportion of variability (R2) in Y explained

by X in model (3.5) given by R̂2 = η̂T Θ̂kη̂/HT , where HT = n−1Y T (In − Jn/n)Y

denotes the total variance in the observed outcomes.

3.4.1 Implications When k∗ is Incorrectly Estimated, or When k∗ < k

Our previous derivation assumes k = k∗ and k∗ is correctly estimated. However,

this assumption may not always be satisfied in real data. Let the estimate for k∗

be k̂∗, and c = min (k∗, k̂∗). As long as k̂∗ is finite, Θ̂c, Ψ̂c, and Ψ̂′c will remain

consistent to Θc,Ψc, and Ψ′c, respectively. Moreover, from Theorem 3.2, as vTr ui
p−→ 0

for r = k∗ + 1, . . . , p,

X∗T X̃/n
p−→

 ΘcΨ
′
cΨc 0

0 0


k̂∗×k

.
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In the previous matrix notation, zeroes are augmented as required to achieve the

specified matrix dimensions. Then,

η̂ =
(

Θ̂k̂∗Ψ̂
′
k̂∗

Ψ̂−1

k̂∗

)−1/2 (
X∗TX∗

)−1
X∗TY

p−→

 Ic 0

0 0


k̂∗×k

η̃, and

E
(
η̂T Θ̂k̂∗ η̂

)
= E

[
Y TX∗

(
X∗TX∗

)−1
(

Ψ̂−1

k̂∗
Ψ̂′
k̂∗

)−1 (
X∗TX∗

)−1
X∗TY

]
= tr

[(
X∗TX∗

)−1
(

Ψ̂−1

k̂∗
Ψ̂′
k̂∗

)−1
]

+ η̃T
(
X̃TX∗

) (
X∗TX∗

)−2
(

Ψ̂−1

k̂∗
Ψ̂′
k̂∗

)−1 (
X∗T X̃

)
η̃

p−→ η̃T

 Θc 0

0 0


k×k

η̃ as n→∞

Therefore, the asymptotic bias in the estimate η̂T Θ̂k̂∗ η̂ for E
(
H̃E

)
will be−

∑k
i=c+1 θiη̃

2
i ,

where η̃i is the ith element of η̃. When k∗ = k, and k∗ is correctly or over-estimated,

this result implies that η̂T Θ̂k̂∗ η̂ is asymptotically unbiased for E
(
H̃E

)
. However, if

k∗ < k, or k∗ is under-estimated, then η̂T Θ̂k̂∗ η̂ will asymptotically under-estimate

E
(
H̃E

)
.

3.5 Adjusting the Shrinkage Bias to Improve Prediction Ac-

curacy

Lee et al. (2010) showed that in the high-dimensional setting, if the sample eigen-

vectors are used to predict the PC scores of new observations, then the predicted

PC scores are biased towards zero. This shrinkage phenomenon can result in loss of

prediction accuracy in high-dimensional PLS as well, since we are using the sample

PC scores to estimate the regression parameters. As the predicted PC scores of the
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new observations are shrunk towards zero, they need to be shrinkage-adjusted first,

before using them for prediction. The shrinkage adjustment procedure is a direct

applicaton of the following result (Lee et al., 2010),

Result 3.1. If θi > 1 +
√
γ,

√
E
(
z2
new,i

)
E
(
z2
ji

) p−→ ρ(θi) =
θi − 1

θi − 1 + γ
,

where znew,i = xTnewvi, zji = xTj vi, xnew is a new observation coming from the same

distribution as the observations in X, and xj is the jth row of X, for any j = 1, . . . , n.

Then, we can adjust the predicted scores using the predicted shrinkage factor

ρ(θ̂i)s, where θ̂i = ψ−1(di) is the consistent estimator for θi. Then the shrinkage-

adjusted predicted score is given by zadj = znew,i/ρ(θ̂i). Note that, the above result is

assuming that σ2
x = 1. If σ2

x 6= 1, then the shrinkage factors can be estimated using

the algorithm proposed by Lee et al. (2010) (Section 2.4), or using Theorem 2.4 in

Chapter II (under spiked population model, both methods provide almost identical

shrinkage factor estimates, as discussed in Chapter II).

3.6 Numerical Simulations

We performed extensive simulation studies to compare the performance of our

proposed TPLS method with the traditional PLS and SPLS methods, both in terms

of the R2 and mean-squared error of prediction (MSEP). We simulated from the

following model,

Xn×p = TP T + E

Yn×1 = Tg + F,

(3.8)

57



with one outcome, n = 500 samples, and p = 10000 predictors, γ = p/n = 20. We

first generated the rows of Tn×k from N(0,Λ) independently, where k = 10 and Λ

is diagonal with diagonal elements λi = 65 − 5i for i = 1, . . . , k. Then, we con-

sidered three sparsity levels in X: 99% sparse (ns = 10), 90% sparse (ns = 100),

and non-sparse (ns = 1000), and selected P T = (ns)
−1/2

Ik . . . Ik︸ ︷︷ ︸
ns

0 . . . 0︸ ︷︷ ︸
p−ns


accordingly. The elements of E were simulated i.i.d. from N(0, σ2

x). Then, the pop-

ulation eigenvalues of X are given by τi = λi + σ2
x for i ≤ k, and τi = σ2

x for i > k.

To explore different signal-to-noise ratios, we considered three choices for σ2
x = 1, 2, 5.

σ2
x = 1 and σ2

x = 2 implies that compared to the non-spikes, the population spikes of

X are very large or moderately large, respectively. σ2
x = 5 implies the spikes are close

to the non-spikes. In fact, when σ2
x = 5, the last three spikes τ8 = 25, τ9 = 20 and

τ10 = 15 are smaller than σ2
x+σ2

x

√
γ = 27.36. Therefore, in this case, due to the pres-

ence of close spikes, the estimate for R2 given by the method described in Section 3.4,

should underestimate the true R2. Next, to simulate Y , we selected the all elements

of g = (g1, . . . , gk) to be equal to unity, and generated F ∼ N(0, σ2
yIn). We considered

three values of R2 = 0.1, 0.5, and 0.7, and selected σ2
y = [(1−R2)/R2]

(∑k
i=1 λigi

)
accordingly.

We applied the traditional PLS, SPLS and our proposed TPLS method to fit

the simulated data for each choice of sparsity level, σ2
x, and R2. For all methods,

the number of components (and the thresholding parameter for SPLS) were selected

based on 10-fold cross-validation (CV). For the TPLS method, the number of distant

spikes k∗ was estimated using the algorithm proposed by Lee et al. (2010) (Section

2.4). After fitting the model with different methods, we calculated the observed

coefficient of determination R̂2 for each of them. Using the parameter estimates from

the TPLS method, we further calculated the adjusted R2 estimator R̂2
adj by applying

the method described in Section 3.4.

To assess the prediction performances of different methods, we simulated a test
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dataset with n = 500 samples, using the same model as described above, and predicted

the outcomes based on the parameter estimates obtained from different methods.

For TPLS, we recorded both the predicted outcomes with and without the shrinkage

adjustment of the predicted PC scores. Then, we calculated the MSEP for each

method, scaled by the variance of the outcomes in the test dataset.

We simulated 100 training and test datasets for each of the different sparsity

levels, σ2
x, and R2, using the simulation method described above. The box plots for

the observed R2s are presented in Figures 3.2, 3.3, and 3.4. We can see in all of the

scenarios, the traditional PLS provided R2 very close to one even when the true R2

is as small as 0.1, which is a clear indication of over-fitting. Except for the cases with

99% sparsity level, the SPLS method also provided very high R2 regardless of the true

R2. Even for cases with 99% sparsity level, the observed R2s from SPLS were not

stable, in the sense that, they were often as high as one or as low as the true R2. On

the other hand, the TPLS method provided stable observed R2s which were almost

identical to the true R2 when σ2
x = 1 or when R2 = 0.1. When σ2

x = 2, the observed

R2s from the TPLS method were almost identical to the true R2s when R2 = 0.1

or 0.5, and slightly smaller than the true R2 when R2 = 0.7. When σ2
x = 5, due to

the presence of three close spikes, the TPLS method under-fitted the model (as all

sample eigenvectors corresponding to nonzero sample eigenvalues were asymptotically

orthogonal to the population eigenvectors corresponding to the close spikes), and the

observed R2s were moderately smaller than the true R2 for R2 = 0.5 or 0.7. The

averages of the adjusted R2s (denoted by the blue horizontal lines) also followed

similar patterns. The behavior of the adjusted R2s can be explained by k∗, and its

estimate k̂∗. When σ2
x = 1 or 2, k∗ = k = 10, and when σ2

x = 5, k∗ = 7 < k. From

Table 3.1, we can see that k̂∗ = 10 for all of the simulated datasets when σ2
x = 1.

Therefore, the adjusted R2 remained asymptotically unbiased to the true R2 in this

case. When σ2
x = 2, k̂∗ = 10 for 82% of the simulations, and 9 for the rest, which
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resulted in slight under-estimation of R2. For σ2
x = 5, because the condition that

k∗ = k was clearly violated, the adjusted R2 asymptotically under-estimated the true

R2. Therefore, the simulation results overall do not show any indication of over-fitting

in the TPLS method, rather it can under-fit the model in some scenarios, especially

when σ2
x is large and thus some of the population spikes in the predictors are very

close to the non-spikes.

However, this under-fitting in TPLS is still preferable than the over-fitting in

traditional PLS and SPLS methods in terms of prediction accuracy, as shown in the

box plots for the MSEPs (Figures 3.5, 3.6, and 3.7). The TPLS method with the

shrinkage adjustment provided lower median MSEPs than the other methods across

almost all the different scenarios. Only for the case with 99% sparsity, R2 = 0.5

and σ2
x = 5, or the cases with 99% sparsity and R2 = 0.7, SPLS performed the

best. Across all the scenarios, the TPLS method with shrinkage adjustment provided

lower median MSEP than without the shrinkage adjustment, which emphasizes the

importance of the shrinkage adjustment.

Overall, these results suggest that the worst case scenario for our proposed TPLS

method, in terms of under-fitting the model, is when close spikes are present in

the covariance matrix of the predictors. However, even in this worst case scenario,

it shows better prediction performance than the traditional PLS method across all

sparsity levels, and also better than the SPLS method when the sparsity level is not

extremely high.

σ2
x Estimated no. of distant spikes

10 9 8 7 6 5
1 100
2 82 18
5 1.33 50 47.67 1

Table 3.1: Percentage of training datasets where the number of distant spikes were
estimated to be between five and ten.
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Figure 3.2: Observed R2s for TPLS, PLS, and SPLS methods when the spikes are
much larger the non-spikes, i.e, σ2

x = 1. The red horizontal line shows the
true R2, and the blue horizontal line shows the averages of the adjusted
R2 estimates.
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Figure 3.3: Observed R2s for TPLS, PLS, and SPLS methods when the spikes are
moderately large compared to the non-spikes, i.e, σ2

x = 2. The red hor-
izontal line shows the true R2, and the blue horizontal line shows the
averages of the adjusted R2 estimates.
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Figure 3.4: Observed R2s for TPLS, PLS, and SPLS methods when the spikes are
close to the non-spikes, i.e, σ2

x = 5. The red horizontal line shows the
true R2, and the blue horizontal line shows the averages of the adjusted
R2 estimates.

63



Figure 3.5: MSEP for TPLS, PLS, and SPLS methods when the spikes are much
larger the non-spikes, i.e, σ2

x = 1. The MSEPs are scaled by the variance
of the observed outcomes.
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Figure 3.6: MSEP for TPLS, PLS, and SPLS methods when the spikes are moderately
large compared to the non-spikes, i.e, σ2

x = 2. The MSEPs are scaled by
the variance of the observed outcomes.
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Figure 3.7: MSEP for TPLS, PLS, and SPLS methods when the spikes are close to
the non-spikes, i.e, σ2

x = 5. The MSEPs are scaled by the variance of the
observed outcomes.
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3.7 ADNI Data Example

We applied the proposed TPLS method along with the traditional PLS and SPLS

methods on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data to compare

their performances in real world problems. Our goal was to model the monthly decline

rates in composite scores for memory (MEM) and composite scores for executive

functioning (EF) jointly, based on the cortical thickness measurements at baseline

across the brain (Crane et al., 2012; Gibbons et al., 2012). For this purpose, we

used 825 samples with early (EMCI) and late mild cognitive impairment (LMCI)

diagnosed at baseline. We calculated their monthly decline rates in MEM and in EF

scores by subtracting the scores recorded on their last visit, from the scores recorded

at baseline, and dividing them by the durations between their first and last visit.

The rate of decline in MEM and EF scores can help us understand which regions of

the brain surface are associated with the cognitive decline rate, which ultimately can

result in the Alzheimer’s disease (AD).

Pre-processed magnetic resonance imaging (MRI) scans at baseline were down-

loaded from the ADNI data repository (http://www.loni.usc.edu/ADNI/). T1-

weighted brain MRI scans at baseline were acquired using a sagittal 3D MP-RAGE

sequence following the ADNI MRI protocol (Jack et al., 2010; Jack et al., 2008).

MRI scans were processed prior to download as previously described (Jack et al.,

2010, 2008). As detailed in previous studies, FreeSurfer V5.1, a widely employed au-

tomated MRI analysis approach, was used to process MRI scans and extract cortical

thickness determined by automated segmentation and parcellation (Kim et al., 2013;

Nho et al., 2013, 2015). The cortical surface was reconstructed to measure thickness

at each vertex using cognitively normal adult participants. The cortical thickness was

calculated by taking the Euclidean distance between the grey/white boundary and

the grey/cerebrospinal fluid (CSF) boundary at each vertex on the surface (Chung

et al., 2010; Dale et al., 1999; Fischl et al., 1999). Prior to fitting the PLS models,
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we first regressed out the possible confounders (sex, scan type, intracranial volume,

age, education, baseline MEM and EF scores, and an indicator whether they were

diagnosed at the EMCI or LMCI stage) from both the outcomes and the cortical

thickness measurements. We also centered and scaled the cortical thickness measure-

ments so that the standard deviation for measurements on each vertex across all the

samples becomes unity. For the traditional PLS method, we first used 10-fold CV to

select the number of PLS components (selected to be two). Then we fitted the model

with two PLS components and the red point on the right hand panel of Figure 3.8

shows the observed R2 (R̂2 = 0.1605) for that fit. We further investigated the effect

of over-specifying the number of PLS components by varying the number of selected

components from two to 25 and calculating the observed R2 for each of them. The

observed R2s are presented as blue dots in the right-hand panel of Figure 3.8. The

results show that the traditional PLS method does not provide stable observed R2s

and the observed R2s can vary between zero and unity, with the median being close

to unity, which potentially indicates over-fitting. For the TPLS method also, we

first estimated the number of distant spikes (k̂∗ = 19) in the cortical thickness mea-

surements, and selected the number of PLS components (selected to be four) using

10-fold CV. Then we fitted the model using TPLS with 19 PCs and four PLS com-

ponents, and the red point on the left hand panel of Figure 3.8 shows the observed

R2 (R̂2 = 0.0696) for that fit. We also investigated the stability of the TPLS fit,

specifically whether it over-fits if more PC or PLS components are included in the

model, by fitting the model with the number of PCs varying from 19 to 25, and the

number of PLS components varying from four to 25. The resulting observed R2s are

presented on the left-hand panel of Figure 3.8. We also calculated the adjusted R2

estimate using 19 sample PCs, and it is represented by the blue horizontal line in the

plot. The results show that, the observed R2s for TPLS are stable and very close to

the adjusted R2 estimate, R̂2
adj = 0.0758. The SPLS method selected the thresholding
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parameter to be zero through 10-fold CV, which implies that the results from SPLS

are identical to that from the traditional PLS method, and hence those were omitted

from the plot.

Figure 3.8: Observed R2s for TPLS and PLS methods for different specifications of
the number of components and PCs (for TPLS only). Number of PLS
components for traditional PLS varies from 2 to 25, and number of PCs
and PLS components for TPLS varies from 19 to 25, and from 4 to 25,
respectively. The red point on the left hand panel shows the observed
R2 at 19 PCs and 4 PLS components (selected by 10-fold CV). The red
point on the right hand panel shows the observed R2 at 2 PLS components
(selected by 10-fold CV). The blue horizontal line shows the adjusted R2

estimate.

We further mapped the regression coefficients (B̂) on the brain surface for both

PLS and TPLS methods using different number of PLS components. We mapped

B̂s for the PLS method with two PLS components, and for the TPLS method with

69



19 PCs and four PLS components (selected by 10-fold CV as mentioned earlier). In

addition, we mapped B̂s for both methods with 10 and 15 PLS components, in order

to investigate the effect of over-specifying the number of PLS components. Figures 3.9

and 3.10 show that for both the outcomes, PLS with two components provided almost

homogeneous plots with no specific regions clearly highlighted as having an effect

on the outcomes. When used 10 or 15 PLS components, the brain surface maps

became substantially different from the maps using two components. The vertices

with strong effects on the outcomes, were spread across the entire brain surface,

and they did not form any contiguous meaningful region. On the other hand, the

regression coefficient estimates from TPLS (Figures 3.11 and 3.12) remained robust

against the selection of different number of PLS components. The vertices that were

shown to have strong effects on the outcomes, formed contiguous and meaningful

regions on the brain surface. In particular, decreased cortical thickness in the bilateral

frontal, parietal and medial temporal lobes including the entorhinal cortex was shown

to have a hastening effect on the decline rate in the MEM score. The medial temporal

lobe (MTL) including the entorhinal cortex is the first region to show AD-related

neurodegeneration, and the decline rate in memory performance has been shown to

be associated with MTL atrophy rates in people at-risk for AD (Braak and Braak ,

1996; Nho et al., 2012; Fox et al., 1996; Jagust et al., 2006; Rusinek et al., 2003). We

can also see the decline rate in the EF score to be impacted by decreased cortical

thickness in the bilateral temporal, parietal and especially the frontal lobes, which are

known to be important for executive functions. Previous studies have shown strong

associations between executive function deficits and brain atrophy in regions of the

frontal, parietal, and temporal lobes (Nho et al., 2012; Pa et al., 2010; Huey et al.,

2009; Thomann et al., 2008).

To investigate the effects of different methods on the MSEP, we divided the sam-

ples randomly in training and test samples: 413 randomly selected samples were
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Figure 3.9: PLS regression coefficient estimates corresponding to the MEM scores
mapped on the brain surface.
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Figure 3.10: PLS regression coefficient estimates corresponding to the EF scores
mapped on the brain surface.
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Figure 3.11: TPLS regression coefficient estimates corresponding to the MEM scores
mapped on the brain surface.

73



Figure 3.12: TPLS regression coefficient estimates corresponding to the EF scores
mapped on the brain surface.
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considered as training samples, and rest of the 412 samples as test samples. On the

training samples, we applied the traditional PLS method using the number of PLS

components selected via 10-fold CV. To apply the TPLS method, we first calculated

the number of spiked PCs for the cortical thickness measurements, and selected the

the number of PLS components via 10-fold CV. Using the estimated model param-

eters, we predicted the outcomes in the test data, and calculated the MSEPs. We

performed this analysis 50 times using different selection of training and test samples.

In all of the iterations, the SPLS method, similar to the case where all 825 samples

were included in the model, provided identical results as the traditional PLS, and

hence we omitted it from our results. The observed R2s from the training data, and

the MSEPs (scaled by the sum of variances of the columns of Y ) from the test data are

presented in Figures 3.13 and 3.14 respectively. The results suggest that the observed

R2s for the traditional PLS are unstable and are spread out between zero and unity,

even when the number of components are selected by CV. The median observed R2 is

0.3086, which is much larger than the observed R2 resulted from fitting the model on

all 825 samples with number of PLS components selected by 10-fold CV (as discussed

earlier in this section). This emphasizes the unreliability of the observed R2 values

obtained from the traditional PLS method, and the risk of falsely inferring that the

predictors account for a higher proportion of variability in the outcomes, when the

high R2 observation is possibly due to over-fitting. On the other hand, our proposed

TPLS method provides stable observed R2s, and the median observed R2 = 0.0892

is very close to the observed R2 when all of the 825 samples were included, and the

TPLS model is fitted with 19 PCs and four PLS components (selected by 10-fold

CV). We further calculated the adjusted R2 estimates for each selection of training

samples, and the median adjusted R2 estimate (R̂2
adj = 0.095) is represented by the

blue horizontal line in Figure 3.13, which is also very close to the median observed

R2 from TPLS.
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Figure 3.13: Observed R2s for TPLS and PLS methods for 50 randomly selected
training sample sets. Number of PLS components for both methods
were selected using a 10-fold CV. The blue horizontal line shows the
median adjusted R2 estimate using the method described in Section 3.4.
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Figure 3.14 shows that the median MSEPs for our proposed TPLS method (0.8136

without shrinkage adjustment, and 0.8293 with shrinkage adjustment) are lower than

the median MSEP for the traditional PLS method (0.9086), and the spread of MSEPs

is also lower for the TPLS method. Even though the median MSEP is slightly larger

for the shrinkage adjusted TPLS method compared to the shrinkage unadjusted ver-

sion, the observed MSEPs and the spread of the MSEPs are almost identical between

these two versions of TPLS, which indicates that the effect of the shrinkage phe-

nomenon is negligible in this data.

Figure 3.14: MSEP for TPLS and PLS methods for 50 randomly selected training and
test sample sets. The MSEPs are scaled by the sum of the column-wise
variances of the outcomes.

In summary, this ADNI data example shows that the observed R2s from the tra-

ditional PLS, are unreliable, and can vary hugely depending on the number of PLS
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components selected, even when the number of PLS components are selected using

CV. On the other hand, the TPLS method provides stable model fits and observed

R2s across varying choice of number of PCs and number of PLS components. More-

over, TPLS performs better than the traditional PLS method in terms of prediction

accuracy as well.

3.8 Discussion

In this chapter, we proposed a two-stage PLS (TPLS) method to address the

over-fitting and shrinkage problems of PLS in high-dimensional data. Our method is

robust and does not require any sparsity assumption or variable selection. We further

provided a method to calculate the asymptotically unbiased estimator of the propor-

tion of variablity in the outcomes that can be explained by the predictors. Through

numerical simulations and real data applications, we evaluated the performance of the

proposed method, as well as the traditional PLS and the SPLS methods. We showed

that the traditional PLS and SPLS methods over-fit models with high-dimensional

predictors under most of the scenarios, whereas the TPLS method protects against

over-fitting by using a finite-dimensional subspace constraint spanned by the top sam-

ple eigenvectors. TPLS also performs best under most of the scenarios in terms of

prediction accuracy among these methods. Only when the sparsity in the predictors

is extremely high, and the predictors have a high effect on the outcomes, then SPLS

provides more accurate predictions.

We noted that the worst case scenario for TPLS is when some of the population

spikes are close to the non-spikes of the predictors, and those spikes have a high effect

on the outcome. In such situations, TPLS may under-fit the model. However, even

in its worst case scenarios, the prediction accuracy of TPLS is still better than the

traditional PLS method, and except for the scenario with extremely sparse predictors,

it is also better than the SPLS method.
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We would also like to emphasize the unreliability in the traditional PLS estimates

and the observed R2 statistics. Chun and Keleş (2010) showed that the PLS estimates

are not consistent in high-dimensional data. Due to the possibility of over-fitting, the

R2 statistic is also unreliable as seen from the numerical simulations and the ADNI

data example. Therefore, even though PLS is an attractive method to analyze high-

dimensional data, the researchers need to be careful when applying it, or may risk

falsely attributing a higher effect of the predictors on the outcomes when the true

effect might be much smaller.

Finally, we note that, even though our method is developed for linear models,

similar modification of the PLS method can also be made to incorporate categorical

outcomes. In the classification problems, the over-fitting problem has already been

identified by other researchers (Brereton and Lloyd , 2014; Gromski et al., 2015),

and it can also affect the generalized linear model-based PLS methods (Ding and

Gentleman, 2005; Marx , 1996; Bastien et al., 2005). The extension of our method to

the classification and generalized linear models, is left for future research.
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CHAPTER IV

A Fast and Accurate Algorithm to Test for Binary

Phenotypes and Its Application to PheWAS

4.1 Introduction

Over the last decade, genome wide association studies (GWASs) have proved

instrumental to unravelling the genetic complexities of hundreds of diseases and

traits and their associations with common genomic variations. To date, thousands

of GWASs have identified more than 4000 significant loci to be associated with hu-

man diseases and traits (Welter et al., 2014). However, since most GWASs investi-

gate a single disease or trait, they cannot exploit the cross-phenotype associations or

pleiotropy (Solovieff et al., 2013) where a single genetic variant can be associated with

multiple phenotypes. Phenome-wide association study (PheWAS) has been proposed

as an alternative approach to take advantage of the pleiotropy phenomenon by study-

ing the impact of genetic variations across a broad spectrum of human phenotypes or

‘phenome’. It is a complementary approach to GWAS in the sense that while GWAS

attempts to identify phenotype-to-genotype associations, PheWAS uses a genotype-

to-phenotype approach. The first PheWAS (Denny et al., 2010) was published as

a proof-of-principle study, which demonstrated that the PheWAS strategy could be

applied to successfully identify the expected gene-disease associations. Additional
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studies (Denny et al., 2011; Hebbring et al., 2013; Ritchie et al., 2013; Pendergrass

et al., 2013; Shameer et al., 2014) have shown that the PheWAS approach can further

identify novel disease-SNP associations (Hebbring , 2014).

The PheWAS approach depends on the availability of detailed phenotypic in-

formation. Currently, most of the PheWASs are applied to clinical cohorts linked

to electronic health records (EHR) and utilize the International Classification of

Disease (ICD) billing codes to define clinical phenotypes. The ICD codes provide

an intuitive ordering of the phenotypes based on clinical disease and trait classifi-

cations. Since the current genotyping and imputation technologies (Marchini and

Howie, 2010) allow for genotyping tens of millions of variants at very low cost, an

extensive PheWAS can attempt to investigate the genotype-phenotype associations

by performing genome-wide association analyses in thousands of traits. We can in-

terpret the PheWAS result of a single genetic variant by observing its associations

across the phenome. Such a PheWAS is exhaustive in nature and has great potential

to identify novel variants associated with clinical diseases. One of the main challenges

of the PheWAS analysis is that most of the phenotypes are binary phenotypes with

unbalanced (1 : 5) or often extremely unbalanced (1 : 500) case-control ratios (See

Figure 4.1), since the data is collected in cohorts. Although standard asymptotic

tests, such as the Wald, score and likelihood ratio tests, are relatively well calibrated

and asymptotically equivalent (Cox and Hinkley , 1974) for common variants (minor

allele frequency: MAF > 0.05) in balanced case-control studies, they can inflate type

I error for low frequency (0.01 < MAF ≤ 0.05) and rare variants (MAF ≤ 0.01)

in unbalanced case-control studies (Ma et al., 2013). Moreover, since the Wald and

likelihood ratio tests need to calculate the likelihood or the maximum likelihood esti-

mator under the full model, which is computationally expensive, they are not scalable

for the amount of tests that PheWASs attempt. On the other hand, the score test

is computationally efficient as it does not need to calculate the maximum likelihood
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under the full model. However, as mentioned before, it suffers from having highly

inflated type I error rates in unbalanced studies. Ma et al. proposed Firth’s penalized

likelihood ratio test (Firth, 1993) as a solution to control the type I error rates in

such situations. Firth’s test, despite being well calibrated and robust for testing low

frequency and rare variants in unbalanced studies, lacks in computational efficiency

as it also involves calculating the maximum likelihood under the full model. For in-

stance, the projected computation time of the Firth’s test to test 1500 phenotypes

across 10 million SNPs is ∼ 117 CPU-years (2000 cases, 18000 controls). Thus, it is

impractical to apply the Firth’s test for analyzing large PheWAS datasets.

Figure 4.1: Histogram of case-control ratios of the 1448 phenotypes in the MGI data.

We propose a score-based single-variant test for binary phenotypes which is well

calibrated for controlling the type I errors and can adjust for covariates even in

extremely unbalanced case-control studies. Moreover, our test is computationally ef-

ficient and scalable to test thousands of phenotypes across millions of SNPs in large

PheWAS datasets. Our proposed test (SPA) is based on the score statistics and
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estimates the null distribution using the saddlepoint approximation (Daniels , 1954;

Barndorff-Nielsen, 1990; Kuonen, 1999) instead of the normal approximation (Feller ,

1945) traditionally used in score tests. We further develop an improvement of our test

(fastSPA) which renders the most computationally challenging steps to be dependant

only on the number of carriers (subjects with at least one minor allele) rather than

the sample size. This improved test can substantially reduce the computation time,

especially for low frequency and rare variants where the number of carriers is very low

compared to the sample size. The projected computation time of our method to test

for 1500 phenotypes across 10 million SNPs is ∼ 400 CPU-days (2000 cases, 18000

controls) which is more than a 100 times improvement over Firth’s test. In addition,

through the extensive simulation studies and analysis of the Michigan Genomics Ini-

tiative (MGI) data, we demonstrate that the proposed approach can control type I

errors and is powerful enough to replicate known association signals.

4.2 Materials and Methods

4.2.1 Logistic Regression Model and Saddlepoint Approximation Method

We consider a case-control study with sample size n. For the ith subject, let

Yi = 1 or 0 denote the case-control status, Xi the k×1 vector of non-genetic covariates

including the intercept, and Gi the number of minor alleles (Gi = 0, 1, 2) of the variant

to test. To relate genotypes to phenotypes, we use the following logistic regression

model,

logit [Pr (Yi = 1|Xi, Gi)] = XT
i β +Giγ (4.1)

for i = 1, 2, . . . , n where β is a k × 1 vector of coefficients of the covariates, and

γ is the genotype log-odds ratio. Under this model, we are interested in testing

for the genetic association by testing the null hypothesis H0 : γ = 0. Let µ̂i be the

estimate of µi = Pr (Yi = 1|Xi), which is a probability to be a case under H0. A score
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statistic for γ from the model (4.1) is given by S =
∑n

i=1 Gi (Yi − µ̂i). Suppose X =(
XT

1 , . . . , X
T
n

)
is the n × k matrix of covariates, G = (G1, . . . , Gn)T is the genotype

vector, W is a diagonal matrix with the ith diagonal element being µ̂i (1− µ̂i), and

G̃ = G − X
(
XTWX

)−1
XTWG is a covariate adjusted genotype vector in which

covariate effects are projected out from the genotypes (details given in Appendix D).

Then S can be written as

S =
n∑
i=1

G̃i (Yi − µ̂i), (4.2)

and the mean and variance of S underH0 are EH0(S) = 0 and VH0(S) =
∑n

i=1 G̃
2
i µ̂i (1− µ̂i),

respectively, where G̃i is the ith element of G̃.

The traditional score test approximates the null distribution using a normal dis-

tribution which depends only on the mean and the variance of the score statistic. The

p value can be obtained by comparing the observed test statistic, s and N (0, VH0(S)).

Normal approximation works well near the mean of the distribution, but performs

very poorly at the tails. The performance is especially poor when the underlying

distribution is highly skewed, such as in unbalanced phenotypes (Ma et al., 2013),

since normal approximation cannot incorporate higher moments such as skewness. In

addition, the convergence rate of normal approximation is O
(
n−1/2

)
(Berry , 1941;

Esseen, 1942, 1956), which is not fast enough for rare variants.

Saddlepoint approximation was introduced by Daniels (1954) as an improvement

over the normal approximation. Contrary to normal approximation, where only the

first two cumulants (mean and variance) are used to approximate the underlying dis-

tribution, saddlepoint approximation uses the entire cumulant generating function.

Jensen (1995) further showed that saddlepoint approximation has a relative error

bound of O
(
n−3/2

)
making it a considerable improvement over the normal approxi-

mation.

To use saddlepoint approximation, we first derive the cumulant generating func-

tion (CGF) of S from the fact that Yi ∼ Bernoulli(µi) under H0. Let µ̂ be an
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n× 1 vector with the ith element being µ̂i. From (4.2), the estimate of the cumulant

generating function of the score statistic S is,

K(t) = log
(
EH0

(
etS
))

=
n∑
i=1

log
(

1− µ̂i + µ̂ie
G̃it
)
− t

n∑
i=1

G̃iµ̂i,

and the estimate of the first and second order derivatives of K are,

K ′(t) =
n∑
i=1

µ̂iG̃i

(1− µ̂i) e−G̃it + µ̂i
−

n∑
i=1

G̃iµ̂i, K ′′(t) =
n∑
i=1

(1− µ̂i) µ̂iG̃2
i e
−G̃it[

(1− µ̂i) e−G̃it + µ̂i
]2

respectively. We note that K,K ′ and K ′′ are plug-in estimates in which we plug in µ̂i

instead of µi. Then, according to the saddlepoint method (Barndorff-Nielsen, 1990;

Kuonen, 1999), the distribution of S at s can be approximated by

Pr(S < s) ≈ F̃ (s) = Φ

{
w +

1

w
log
( v
w

)}
,

where w = sgn
(
t̂
)√

2
(
t̂s−K

(
t̂
))

, v = t̂
√
K ′′
(
t̂
)
, t̂ is the solution to the equation

K ′
(
t̂
)

= s, and Φ is the distribution function of a standard normal distribution.

4.2.2 Implementation Details and Approaches to Reduce the Computa-

tion Time

The saddlepoint approximation method involves finding the root of the saddle-

point equation K ′(t) = s. It is easy to verify that K ′ is strictly increasing as

K ′′(t) > 0 for all −∞ < t < ∞ and s =
∑n

i=1 G̃i (Yi − µ̂i) lies between lim
t→∞

K ′(t) =∑
i:G̃i>0

G̃i −
n∑
i=1

G̃iµ̂i and lim
t→−∞

K ′(t) =
∑

i:G̃i<0

G̃i −
n∑
i=1

G̃iµ̂i. Therefore a unique root

exists, and we can use popular root-finding algorithms (Newton-Raphson (Whittaker

and Robinson, 1967; Press et al., 1992), bisection (Press et al., 1992), secant (Press

et al., 1992), Brent’s method (Brent , 1973)) to efficiently solve this equation. For

our simulation studies and real-data applications we applied a combination of the
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Newton-Raphson and bisection method to solve the saddlepoint equations.

The most computationally demanding step in this saddlepoint approximation

method is calculating the cumulant generating function and its derivatives. Here

we propose several approaches to reduce the computational complexities associated

with these calculations.

4.2.2.1 Faster Calculation of the CGF Using a Partially Normal Approx-

imation Approach

The most computationally intensive step in the saddlepoint method is the calcu-

lation of the cumulant generating function K and its derivatives. In each step of the

root-finding algorithm we need to calculate K,K ′ and K ′′, each of which needs O(n)

computations. Using the fact that many elements of G are zeroes (i.e, homozygous

major genotypes), we propose a fast computation method that speeds up the compu-

tation to O(m), where m is the number of non-zero elements in G. Without loss of

generality we assume that the first m subjects have at least one minor allele each and

rests have homozygous major genotypes. We can then express S as S = S1 +S2 where

S1 =
∑m

i=1 G̃i (Yi − µ̂i) and S2 =
∑n

i=m+1 G̃i (Yi − µ̂i). Let Z =
(
XTWX

)−1
XTWG

and Zl be the lth element of Z. Then we can further express S2 as,

S2 =
n∑

i=m+1

G̃i (Yi − µ̂i) =
n∑

i=m+1

(0−XiZ) (Yi − µ̂i)

= −
n∑

i=m+1

k∑
l=1

XilZl (Yi − µ̂i) = −
k∑
l=1

Zl
n∑

i=m+1

Xil (Yi − µ̂i)

= −
k∑
l=1

ZlS2l

where S2l =
∑n

i=m+1Xil (Yi − µ̂i). Now, if we assume that the non-genetic covari-

ates are relatively balanced in the sample, then the normal distribution should be

a good approximation for the null distribution of each S2l. Since S2 is a weighted

sum of the S2ls, we can also approximate the null distribution of S2 using a nor-

86



mal distribution with mean and the variance under H0 given by EH0 (S2) = 0 and

VH0 (S2) =
∑n

i=m+1 G̃
2
i µ̂i (1− µ̂i). Then, the CGF of S2 can be approximated by,

K2(t) =
1

2
t2VH0 (S2) ,

and the CGF of S = S1 + S2 can be approximated by,

K(t) =
m∑
i=1

log
(

1− µ̂i + µ̂ie
G̃it
)
− t

m∑
i=1

G̃iµ̂i +
1

2
t2VH0 (S2) . (4.3)

In order to calculate the first two terms at the right hand side of (4.3), we will need G̃is

for i = 1, . . . ,m, which can be calculated in O(m) computations since G only has m

many non-zero elements and the quantity X
(
XTWX

)
XTW can be pre-calculated.

Then, the first two terms will require only O(m) computations as both of them sums

over m many elements. Next, the variance VH0 (S2) can be further broken down into,

VH0 (S2) =
n∑

i=m+1

G̃2
i µ̂i (1− µ̂i) =

n∑
i=m+1

(XiZ)2µ̂i (1− µ̂i)

=
n∑
i=1

(XiZ)2µ̂i (1− µ̂i)−
m∑
i=1

(XiZ)2µ̂i (1− µ̂i)

= ZT
(
XTWX

)
Z −

m∑
i=1

(XiZ)2µ̂i (1− µ̂i).

Since XTWX can be pre-calculated and Z is a k × 1 vector, the first term requires

O(k) computations, and the second term requires O(m) computations, which implies

that the calculation of VH0 (S2) requires O(m) calculations assuming k < m, i.e,

the number of non-genetic covariates is smaller than the number of subjects with

at least one minor allele each. Hence, the cumulant generating function K(t) can

be calculated in O(m) computations. Using similar arguments, we can further show

that the derivatives K ′(t) and K ′′(t) can also be calculated in O(m) computations.

Therefore, this partially normal approximation reduces the computational complexity

of our test from O(n) to O(m), which is especially useful for rare variants, where m
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is much smaller than n.

4.2.2.2 Using normal Approximation near the Mean for Faster Compu-

tation

Since the normal approximation behaves well near the mean of the distribution,

we can use it to obtain the p value when the observed score statistic (s) lies close

to the mean (zero). Moreover, saddlepoint approximation can be numerically unsta-

ble very close to the mean of the distribution. Such situations can also be avoided

by using normal approximation near the mean. One possible approach is to use a

fixed threshold in which we apply normal approximation to obtain the p value if the

absolute value of the observed score statistic, |s| < rσ where σ =
√
VH0(S) and r

is a pre-specified value. For example, we used r = 2 in our simulation studies and

real data analyses. For a given level α, this approach does not inflate type I error

rates if r < Φ−1 (1− α/2), where Φ−1 is the inverse function of the standard normal

distribution function, Φ(x).

Alternatively, we can adaptively select the threshold using the error bound of the

normal approximation given by the Berry-Esseen theorem. Suppose we are interested

in controlling the type I error rate at level α. Let Fn(x) be the true distribution

function of the standardized score test statistic S/
√
VH0(S). Then, according to

Berry-Esseen theorem (Berry , 1941; Esseen, 1942, 1956), the maximum error bound

in approximating Fn(x) by Φ(x) is

sup
x∈R
|Fn(x)− Φ(x)| ≤ Bn = C

(
σ2
)−3/2

(
n∑
i=1

ρi

)
(4.4)

where ρi = EH0

[∣∣∣G̃i (Yi − µ̂i)
∣∣∣3] = G̃3

i µ̂i (1− µ̂i) [µ̂2
i + (1− µ̂2

i )], C is a constant. As

of now, the best known estimate for C is 0.56, given by Shevtsova (2010). Suppose

pF and pN are Fn(x) and Φ(x) based p values. From the Berry-Esseen theorem, we
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can show pN ≤ pF + Bn. Suppose q = Bn + α/2 and rα = Φ−1(1− q). Then pN ≥ q

indicates pF ≥ α/2. Therefore, we use rασ as a threshold at level α in which we will

apply normal approximation if |s| < rασ.

4.2.3 Numerical Simulations

To evaluate the computation times, type I error rates and power of the proposed

method, we carried out extensive simulation studies. We considered three differ-

ent case-control ratios: balanced with 10000 cases and 10000 controls, moderately

unbalanced with 2000 cases and 18000 controls, and extremely unbalanced with 40

cases and 19960 controls. For each choice of case-control ratios, the phenotypes were

simulated based on the following logistic model,

logit [Pr (Yi = 1)] = β0 +X1i +X2i + γGi

where the two non-genetic covariatesX1i andX2i were simulated fromX1i ∼ Bernoulli(0.5)

and X2i ∼ N(0, 1). The intercept β0 is chosen to correspond to prevalence 0.01. The

genotype Gis were generated from a Binomial(2, p) distribution where p was the

MAF. The parameter γ represents the genotype log odds-ratio. To estimate compu-

tation times and type I error rates in realistic scenarios, the MAF (p) was randomly

sampled from the MAF distribution in the MGI data. For the computation time

comparisons, we simulated 104 variants with γ = 0. For the type I error compar-

isons, we simulated 109 variants with γ = 0 and recorded the number of rejections

at α = 5 × 10−5 and 5 × 10−8. We also used fixed MAFs to evaluate the effect of

MAFs to computation time and type I error rates. For the power calculations, we

considered two different choices for MAF, p = 0.01 and 0.05, and wide ranges of γ

(Figure 4.5). For each choice of p and γ we generated 5000 variants.

We compared the computation times of seven different tests: traditional score test
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using normal approximation (Score); the saddlepoint approximation based test with

the standard deviation threshold at 0.1 and 2 (SPA-0.1 and SPA-2); the fast saddle-

point approximation based test with the partially normal approximation improvement

and the standard deviation threshold at 0.1 and 2 (fastSPA-0.1 and fastSPA-2); the

fastSPA test with the Berry-Esseen bound threshold at level (fastSPA-BE); and the

Firth’s penalized likelihood test (Firth). Next, we compared the empirical type I

errors and power curves for fastSPA-2, score and Firth tests at level 5× 10−8. Since

performing the Firth test 109 times, which is required to estimate type I error rates at

level 5×10−8, is practically impossible due to the heavy computational burden of the

Firth test, we performed a hybrid approach in which we used the Firth test only when

the fastSPA-2 p values were smaller than 5× 10−3. For the power comparison, since

the score test has extremely inflated type I errors in the unbalanced and extremely

unbalanced case-control scenarios (as shown in Section 4.3), it may not be appropri-

ate to directly compare the power of the score test to the other two tests at the same

nominal α level. In order to provide a more meaningful comparison, we compared

their powers at their empirical α levels where their empirical type I errors become

5× 10−8. The empirical α levels were selected based on the type I error simulations

with variants simulated with MAF randomly sampled from the MAF distribution of

the MGI data. This approach is similar to performing resampling (e.g., permutation)

to control family-wise error rates. We also estimated the powers at the nominal fixed

α = 5× 10−8. In order to compare the p values resulted from different tests, we also

simulated 5× 106 variants with MAFs randomly sampled from the MAF distribution

of the MGI data. We further compared the inflation factors of the genomic controls

at different p value quantiles for fastSPA-2, fastSPA-BE and fastSPA-0.1 in order to

explore the effect of the standard deviation threshold on the inflation factor.
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4.2.4 Michigan Genomics Initiative (MGI) Data Application

To illustrate the performance of the proposed methods in real data application, we

analyzed four selected phenotypes in the MGI data. The main goal of MGI is to create

an institutional repository of genetic data together with rich clinical phenotypes for

a broad portfolio of future medical research. DNA from blood samples of > 20, 000

surgical patients at the University of Michigan Health System was genotyped (with

their informed consent) on the Illumina HumanCoreExome v12.1 array, which is a

combination GWAS plus exome array comprised of > 500, 000 single nucleotide poly-

morphisms. Genotypes of the Haplotype Reference Consortium (HRC) (McCarthy

et al., 2016) (chromosome 1-22: HRC release 1; chromosome X: HRC release 1.1)

were imputed into the phased MGI genotypes (SHAPEIT2 (Delaneau et al., 2013) on

autosomal chromosomes and Eagle2 (Loh et al., 2016) on chromosome X) using Min-

imac3 (Das et al., 2016). Excluding variants with low imputation quality (R2 < 0.3)

resulted in dense mapping at over 39 million quality-imputed genetic markers.

Phenotypes derived from 8,940 ICD-9 billing codes were classified into 1,815 Phe-

WAS disease states of shared disease etiology, of which 1,448 had at least 20 cases.

Standard code translations were used to convert the taxonomy of diagnostic ICD-9

codes into PheWAS code groups (PheWAS code translation table version 1.2 (Car-

roll et al., 2014)). Cases were derived from electronic health records for individuals

with at least 2 encounters with an ICD-9 billing code. This is a typical example

of many large-scale PheWASs that are being conducted in recent days. In order to

compare our proposed fastSPA-2 test with the traditional score test and the current

gold standard Firth test in analyzing such PheWAS data, we performed genome-

wide association analyses for 4 selected traits, Skin Cancer (PheWAS code: 172),

Type-2 diabetes (PheWAS code: 250.2, [MIM: 125853]), Primary Hypercoagulable

state (PheWAS code: 286.81, [MIM: 188055]) and Cystic Fibrosis (PheWAS code:

499, [MIM: 219700]), in 18,267 unrelated individuals of European ancestry, with ad-
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justment for age, sex, and four principal components. Genotyped samples with any

missing covariate information were excluded from analysis. Since imputation quality

is low for very rare variants (McCarthy et al., 2016), we excluded the imputed vari-

ants with MAF < 0.001 in our main analysis, which resulted in 13 million variants.

For the Firth test, we used the hybrid approach used in the type I error simulation

in which the Firth test was performed only when the fastSPA-2 p value was smaller

than 5× 10−3.

4.3 Results

4.3.1 Numerical Simulations

We examine the computation time, type I error control and power of the proposed

fastSPA and two existing approaches, score and Firth tests, across ranges of case-

control imbalance and MAFs.

4.3.1.1 Comparison of Computation Times

The projected computation times for testing 1500 phenotypes across 10 million

variants using different testing methods are presented in Figure 4.2. To obtain com-

putation time under realistic scenarios of the MAF distribution, the MAFs of the

simulated SNPs were randomly sampled from the MAF spectrum of the MGI data

(Figure E.1). The fastSPA-2 test performs 100-300 times faster than the Firth’s test.

In the unbalanced case-control setup of 2000 cases and 18000 controls, for example,

the Firth’s test takes 117 CPU-years whereas fastSPA-2 only takes 1.09 CPU-years

to analyze 10 million SNPs across 1500 phenotypes. This indicates that on a cluster

with 100 CPU cores, the proposed test would require 4 days (without data read-

ing) but the Firth’ test would need more than a year. When we compare fastSPA

and SPA, fastSPA-0.1 performs 4-6 times faster than SPA-0.1 (e.g. 2.90 vs 12.32
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CPU years when case:control = 2000:18000), and fastSPA-2 performs 1.5-2 times

faster than SPA-2 (e.g. 1.09 vs 1.62 CPU years when case:control = 2000:18000).

Expectedly, the computation time for fastSPA-BE is in between the computation

times for fastSPA-2 and fastSPA-0.1. fastSPA-BE performs 1.3-1.8 times faster than

fastSPA-0.1 and 1.6-2.8 times slower than fastSPA-2 (eg. 1.09, 1.86, 2.9 CPU years

for fastSPA-2, fastSPA-BE and fastSPA-0.1 when case:control = 2000:18000).

Figure 4.2: Projected computation times for testing 10 million variants across 1500
phenotypes using different single-variant tests with MAFs sampled from
the MAF distribution of the MGI data. The computation times are based
on testing 10000 simulated variants on an Intel i7 2.70GHz processor, and
then projecting it onto a PheWAS study with 10 million variants and 1500
phenotypes.

We also recorded the computation times for variants with three different fixed

MAFs 0.1, 0.01 and 0.001 in order to assess the effect of MAF on the performance

of the tests. Similar to Figure 4.2, Table 4.1 also shows the superior performance of

fastSPA-2 compared to all other tests. Moreover, while the computation time of SPA

increases with decreasing MAFs, which may be due to the slow convergence caused by

the discrete nature of the underlying distribution, fastSPA requires less computation

time for rarer variants (smaller MAFs) compared to more common variants (larger

MAFs). This demonstrates the potential of the partially normal approximation im-

provement in terms of faster computation of the p values, especially for low-frequency

and rare variants.
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Case:Control MAF Score SPA-0.1 fastSPA-0.1 fastSPA-BE SPA-2 fastSPA-2 Firth

10000:10000 0.1 20 214 75 37 28 23 7251
0.01 19 225 38 35 27 20 6918
0.001 19 242 33 36 30 20 5304

2000:18000 0.1 21 256 84 37 36 24 3940
0.01 20 284 39 36 35 21 4312
0.001 19 326 34 41 40 20 3804

40:19960 0.1 21 376 98 70 38 24 3615
0.01 20 477 42 58 44 21 3598
0.001 20 647 38 51 79 21 3525

Table 4.1: Computation times for various tests when testing 10000 simulated variants
with different MAFs. All computation times are in CPU-seconds on an
Intel i7 2.70GHz processor.

4.3.1.2 Type I Error Comparison

The type I error rates from 109 simulated datasets are presented in Figure 4.3.

Due to the heavy computation burden for testing these extremely large numbers of

datasets, in this comparison, we only considered the traditional score test, fastSPA-2,

and the hybrid version of the Firth test, in which we used the Firth test only when the

fastSPA-2 p values were smaller than 5×10−3. We note that both fastSPA-2 and Firth

tests had well calibrated QQ plots up to 10−6 p values (Figure 4.6), and whenever

fastSPA-2 p values > 5× 10−3, Firth test p values > 4.8× 10−4 (see Section 4.3.1.4),

indicating that the hybrid approach can provide very accurate estimate of the type I

error rates of the Firth test at very stringent α levels.

The traditional score test had greatly inflated type I error rates for moderately

unbalanced and extremely unbalanced case-control ratios, whereas fastSPA-2 can

control the type I error in such situations. At the genome-wide significance level of

α = 5 × 10−8, for example, the empirical type I error rates of the score test were

32 (1.63 × 10−6, when case:control = 2000:18000) and 26600 (1.33 × 10−3, when

case:control = 40:19960) times higher than the nominal α = 5 × 10−8. In contrast,

the fastSPA-2 had empirical type I error rates nearly identical (4.9 × 10−8, when
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Figure 4.3: Type I error comparison between the traditional score test, fastSPA-2
and Firth tests for variants simulated with MAFs sampled from the MAF
distribution of the MGI data. Type I error rates were estimated based
on 109 simulated datasets. From left to right on the x-axis, the plots
consider case:control = 10000:10000 (Balanced), 2000:18000 (Moderately
Unbalanced) and 40:19960 (Extremely Unbalanced), respectively. The
top and the bottom panels show empirical type I error rates at α =
5× 10−5 and 5× 10−8 levels respectively.
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case:control = 2000:18000) or slightly lower (3.5×10−8, when case:control = 40:19960)

than the nominal 5× 10−8. The Firth test also had well controlled type I error rates

in the balanced and moderately unbalanced case-control scenarios (4.7 × 10−8 and

4.9 × 10−8, respectively at α = 5 × 10−8). Interestingly, it shows slight inflation

(7.8×10−8 at α = 5×10−8) in the extremely unbalanced scenario. We also estimated

empirical type I error rates at six different MAFs (Figure 4.4). The score test had

deflated type I error rates for low-frequency and rare variants for the balanced case-

control ratio and inflated and extremely inflated type I error rates for moderately

and severely unbalanced case-control ratios. The fastSPA-2 method had overall well

controlled type I error rates regardless of MAFs and case-control ratios. The Firth

test had either well controlled or slightly conservative type I error rates when the

case-control ratio was balanced or moderately unbalanced. However, when the case

control ratio was extremely unbalanced, the Firth test had inflated type I error rates

especially when the minor allele count was small (eg. 1.33× 10−7 and 1.47× 10−7 for

MAF = 0.0005 and 0.001 respectively at α = 5× 10−8 when case:control=40:19960).

4.3.1.3 Power Comparison

Next, we compared the power curves of fastSPA-2, score and Firth tests. Note that

the Firth test (Firth, 1993) is a current gold standard method. Since the traditional

score test had greatly inflated type I error rates, we compared the empirical powers of

different tests at their test-specific empirical α levels. Figure 4.5 shows power by odds

ratios when the MAF of the variant was 0.05 (top panel) and 0.01 (bottom panel). As

expected, the power is higher when the case-control ratio is balanced. The empirical

powers of fastSPA-2 and the Firth test were nearly identical for all case-control ratios

and MAFs, which suggests that our proposed test does not suffer from any loss in

power compared to the Firth test. The empirical powers of the score test were almost
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Figure 4.4: Type I error comparison at different MAFs between the traditional score
test, fastSPA-2 and Firth tests. The top and bottom panels show empir-
ical type I error rates at α = 5 × 10−5 and 5 × 10−8, respectively. From
left to right, the plots consider case:control = 10000:10000, 2000:18000
and 40:19960, respectively. In each plot x-axis represents MAF with ex-
pected MAC in the parenthesis, and y-axis represents empirical type I
error rates. Empirical type I error rates were estimated based on 109

simulated datasets. 95% confidence intervals at different MAFs are also
presented.

97



identical to those of fastSPA-2 and Firth test for the balanced case-control ratio.

However, the score test showed substantially lower power than the other two tests for

the unbalanced case-control ratios due to the very small empirical α levels, and the

power gap is especially large when the case-control ratio is extremely unbalanced. The

simulation results clearly show that the proposed approach improves power over the

score test when type I error rates were properly controlled. When we used nominal

α = 5× 10−8 level instead of the empirical α levels, score test had higher power than

the other two approaches as expected (Figure E.2), since its type I error rates were

not controlled.

Figure 4.5: Empirical power curves for the traditional score, fastSPA-2 and Firth
tests at their empirical α levels where their empirical type I errors are
equal to 5 × 10−8. Top panel considers MAF = 0.05 and bottom panel
considers MAF = 0.01. From left to right, the plots consider case:control
= 10000:10000, 2000:18000 and 40:19960, respectively. In each plot x-
axis represents genotype odds ratios and y-axis represents the empirical
power. Empirical power was estimated from 5000 simulated datasets.
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4.3.1.4 P Value and Inflation Factor (λ) Comparison

To compare p value distributions of various tests, we generated QQ plots and

calculated the inflation factor (λ) of the genomic control. Figure 4.6 suggests strong

deflation (smaller than expected) in the p values based on the traditional score test

in the moderately unbalanced and extremely unbalanced case-control setups, whereas

fastSPA-2, SPA-2 and Firth tests resulted in well calibrated QQ plots, which suggest

that these methods can control for type I errors. Moreover, the minimum Firth p

value was 4.8 × 10−4 for the variants with fastSPA-2 p value > 5 × 10−3 among all

case-control setups, which justifies our hybrid approach of performing Firth test only

when fastSPA-2 p value < 5× 10−3 in the type I error simulation studies.

None of fastSPA-2, fastSPA-BE and fastSPA-0.1 tests showed any inflation or

deflation in genomic controls (λ) in the balanced and moderately unbalanced case-

control setups (Table E.1). In the extremely unbalanced case-control setup, fastSPA-

2 resulted in greatly deflated inflation factor (λ = 0.48) at the median of p value

(q = 0.5). Interestingly fastSPA-BE and fastSPA-0.1 resulted in inflated λ (both

having λ = 1.83) at q = 0.5, which may be due to the discrete nature of p values.

When λ was measured at p value quantiles q = 0.01 and 0.001, however, all three

tests provided λ very close to unity.

4.3.2 MGI Data Analysis

We applied the traditional score test, Firth test and the fastSPA-2 method to the

MGI data with four phenotypes, Skin Cancer, Type-2 diabetes, Primary Hypercoag-

ulable state, and Cystic Fibrosis, which were selected based on case-control ratios.

Skin Cancer (2359 cases, 15265 controls) and Type-2 diabetes (1987 cases, 14906

controls) were moderately unbalanced, whereas Primary Hypercoagulable state (168

cases, 16401 controls) and Cystic Fibrosis (28 cases, 18212 controls) were extremely

unbalanced phenotypes.
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Figure 4.6: QQ plots for the traditional score, fastSPA-2, SPA-2 and Firth tests
on 5 × 106 simulated variants with MAF randomly sampled from the
MAF distribution of the MGI data. The top, middle and bottom pan-
els show QQ plots in the balanced (case:control = 10000:10000), moder-
ately unbalanced (case:control = 2000:18000) and extremely unbalanced
(case:control = 40:19960) case-control scenarios respectively. In each plot,
x-axis represents −log10 expected p values, and y-axis represents −log10

observed p values.
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The Manhattan plots (Figure 4.7) show that the traditional score test produced a

large number of potentially spurious associations for all of these phenotypes, whereas

all of the significant variants from our proposed test at the genome-wide significant

level of α = 5×10−8 can be verified as truly associated with the phenotypes based on

previous findings (Table 4.2). In the analysis of Skin Cancer, variants in or near IRF4

(MIM: 601900), MC1R (MIM: 155555), RALY (MIM: 614663) and SLC45A2 (MIM:

606202) were significant at and all of these four genes were previously identified (Zhang

et al., 2013; Sulem et al., 2007; Jacobs et al., 2015; Liu et al., 2015; Barrett et al.,

2011; Nan et al., 2009) as associated with pigmentation traits and skin cancers. In

the other traits, variants in TCF7L2 (MIM: 602228), F5 (MIM: 612309) and CFTR

(MIM: 602421) were significantly associated with Type2 diabetes (Scott et al., 2006),

Primary Hypercoagulable State Bertina et al. (1994) and Cystic Fibrosis (Kerem

et al., 1989), respectively, and all of these genes are well known to be associated with

the risk of each disease. The QQ plots (Figure 4.8) also suggest that the p values

based on the traditional score test are much smaller than expected, especially for

low-frequency and rare variants, whereas the p values based on fastSPA-2 closely

follow the uniform distribution. We also observed the Manhattan plots (Figure E.3)

including the imputed variants with MAF < 0.001 in the analysis. The inclusion

of rarer variants resulted in extreme inflation in the number of potentially spurious

associations for the traditional score test. However, our proposed test still produced

none to very few new associations. The Manhattan plots and QQ plots for the Firth

test were almost identical to those of our proposed test.

Further, based on the p values from our proposed test, we obtained the inflation

factor λ of the genomic control at different p value quantiles (q) and different MAF

cut-offs (Table E.2). Only the imputed variants were removed when we used different

MAF cutoffs. The SNPs present on the Illumina HumanCoreExome v12.1 array were

preserved. To evaluate whether using a smaller standard deviation threshold (r)
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Phenotype Location dbSNP ID Nearest Gene Alleles MAF p value Previous Findings

Skin Cancer 6:396321 rs12203592 IRF4 C > T 0.16 6.71× 10−18 }
Zhang et al. (2013); Sulem et al. (2007)
Jacobs et al. (2015); Liu et al. (2015)

16:89986117 rs1805007 MC1R C > T 0.077 1.86× 10−14

20:32538391 rs62211989 RALY G > C 0.075 5.59× 10−13

5:33951693 rs16891982 SLC45A2 C > G 0.038 7× 10−9 Liu et al. (2015); Barrett et al. (2011)
Nan et al. (2009)

Type-2 Diabetes 10:114754071 rs34872471 TCF7L2 T > C 0.29 3.4× 10−11 Scott et al. (2006)

Primary
Hypercoagulable State

1:169519049 rs6025 F5 T > C 0.029 4.9× 10−39 Bertina et al. (1994)

Cystic Fibrosis 7:117299434 rs113827944 CFTR G > A 0.018 3.11× 10−15 Kerem et al. (1989)

Table 4.2: Significant SNP-phenotype associations based on fastSPA-2 test on MGI
data and previous findings confirming such associations.

Figure 4.7: Manhattan plots for four different phenotypes from the MGI data (ex-
cluding imputed variants with MAF ≤ 0.001). From left to right, the
three panels show associations based on the fastSPA-2, Firth, and tradi-
tional score tests, respectively. The red line represents the genome-wide
significance level α = 5× 10−8.
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Figure 4.8: QQ plots for four different phenotypes from the MGI data. From left to
right, the three panels show the QQ plots based on the fastSPA-2, Firth,
and traditional score tests, respectively. The plots are color-coded based
on different MAF categories.
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improves the estimation of λ, we also applied fastSPA with r = 0.1 (i.e fastSPA-0.1),

and fastSPA with the Berry-Esseen bound threshold at level (fastSPA-BE) on these

four phenotypes. When all the variants were included in the analysis, there was slight

inflation (λ = 1.11, type 2 diabetes) or great deflation (λ = 0.12, Cystic fibrosis) at

the median level for fastSPA-2. However, the genomic controls are very close to unity

at q = 0.01 and q = 0.001. If we only consider the variants with MAF > 0.001, then

fastSPA-2 does not show any significant inflation in λ at the median for Skin Cancer,

Type-2 Diabetes, and Primary Hypercoagulable State. Although it shows a deflated

genomic control for Cystic Fibrosis (λ = 0.63) due to the discrete nature of the

underlying distribution. However, if we exclude the rare variants and consider only

the variants with MAF > 0.01, then all four of the phenotypes show λ very close to

unity. Both fastSPA-0.1 and fastSPA-BE show no significant inflation or deflation in

λ at all quantiles and MAF cut-offs, except for Cystic Fibrosis (both having λ = 1.27)

when all the variants are considered and genomic control is measured at the median

level.

4.4 Discussion

In this chapter, we proposed a fast and scalable test to analyze large PheWAS

datasets which is well calibrated even in extremely unbalanced case-control settings.

The method uses computationally efficient saddle point approximation to accurately

calculate p values of score test statistics. We further proposed an improved ver-

sion of our test which substantially reduces the computation time, especially for

low-frequency and rare variants. Our proposed test can also adjust for additional

covariates. Through extensive numerical studies we demonstrated that our test can

perform 100 – 300 times faster than the currently used Firth’s test while retaining

similar power and well controlled type I error rates. MGI data analysis illustrates

that by applying the proposed method to PheWAS, we can identify true association
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signals while controlling for type I error, even for traits with a very small number of

cases and a large number of controls.

Our test calculates p values based on the traditional score test if the score statistics

lie sufficiently close to the mean. Even though normal approximation is accurate near

the mean, those p values may not be well calibrated. In such cases, since the median p

values might come from the traditional score test, we can encounter slightly inflated

or deflated inflation factor at median. When the case control ratio is extremely

unbalanced, this phenomenon is more pronounced. One way to circumvent this issue

is to measure the inflation factor at more extreme quantiles (0.01, 0.001 etc.), or to

exclude rare variants when estimating the inflation factor. Another approach is to

decrease the standard deviation threshold so that the median p values come from

the saddlepoint approximation. In the MGI data analysis, fastSPA-0.1 produced

substantially improved inflation factor estimates than fastSPA-2. However, the use

of threshold 0.1 instead of 2 would increase the computation time ∼ 3 – 4 times. The

Berry-Esseen threshold can be viewed as a compromise between these two thresholds.

If there is no restriction in computational resource, we recommend to use fastSPA-0.1

so that most of the p values are calculated using the saddlepoint approximation. If

computational resource is limited, or researchers want to obtain results quickly, either

a larger threshold (i.e fastSPA-2) or Berry-Esseen bound can be a better choice.

As sequencing costs continue to drop, whole-exome or whole-genome sequencing

will be used for PheWAS to identify rare variants associated with clinical phenotypes

(Collins and Varmus , 2015). In rare variant association analysis, gene or region based

multiple variant tests (Lee et al., 2014a) are commonly used to improve power. When

case-control ratios are unbalanced, popular rare variant tests, including burden tests,

SKAT and SKAT-O, can also have substantially inflated type I error rates. Although

resampling based approaches (Lee et al., 2015) have been developed to address this

problem, the existing methods are not fast enough to be used in PheWAS. One
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possible approach is first to adjust single-variant score statistics using SPA and then

to use the adjusted score statistics to control for the type I error. We left it for future

research.

In summary, we have proposed an accurate and scalable method for PheWAS data

analysis. With the growing effort to build large research cohorts for precision medicine

(Collins and Varmus , 2015), future PheWAS would have hundreds of thousands of

samples and hundreds of millions of variants. Our method will provide a scalable

solution for this large-scale problem and contribute to finding genetic component of

complex traits. All our tests are implemented in the R package SPAtest.
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CHAPTER V

Robust Meta-Analysis of Biobank-based

Genome-wide Association Studies with

Unbalanced Binary Phenotypes

5.1 Introduction

Genome-wide scale phenome-wide association analysis (Hebbring , 2014) is gaining

increasing attention in the human genetics community in the recent years. The avail-

ability of detailed phenotypic information from the electronic health record (EHR)

systems in large biobanks as well as the recent advancements in genotyping and

imputation technologies (Das et al., 2016; Marchini and Howie, 2010) are allowing

researchers to phenotype thousands of traits and genotype tens of millions of vari-

ants in large cohort studies. Several biobank studies, including UK Biobank (Bycroft

et al., 2017), Michigan Genomics Initiative (https://www.michigangenomics.org/)

and Nord-Trøndelag Health Study (Krokstad et al., 2013) currently attempt to test

for associations in all genotype-phenotype pairs, which results in billions of tests.

These large-scale analyses have great potential to find novel genotype-phenotype as-

sociations, which will help uncover underlying molecular mechanism of clinical phe-

notypes.

In a typical phenome-wide association study (PheWAS) in biobanks, most of
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the phenotypes are binary with unbalanced (1 : 5) or often extremely unbalanced

(1 : 500) case-control ratios, which results in performing 1000s of unbalanced case-

control GWASs. For example, ∼ 1400 case-control studies in the UK Biobank interim

release data have more than 100 controls per case (see histogram in Figure 5.1). Un-

der such case-control imbalance, the standard asymptotic tests such as the Wald test,

score test and likelihood ratio test can severely inflate the type I errors resulting in

several spurious associations, especially for the low frequency (0.01 < MAF < 0.05)

and rare (MAF < 0.01) variants (Dey et al., 2017; Ma et al., 2013). To obtain well-

calibrated p values in such situations, Ma et al. (2013) proposed to use the Firth’s

penalized likelihood ratio test (Firth, 1993). Since the Firth’s test is computationally

too expensive to be used for billions of association tests, we developed a fast saddle-

point approximation-based score test, fastSPA (Chapter IV,Dey et al. (2017)), which

is computationally much faster than the Firth’s test.

Figure 5.1: Histogram of case-control ratios of the 1688 binary phenotypes in the UK
Biobank interim release data.

As more and more association results from different biobanks become available,
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meta-analyzing (Evangelou and Ioannidis , 2013) the results from the unbalanced

GWASs is the logical next step to improve the power to detect novel genotype-

phenotype associations. Z-score-based approach, (Cooper et al., 2009) which converts

p values to normal Z-scores for combining multiple study p values, has been a stan-

dard meta-analysis method in GWASs (Evangelou and Ioannidis , 2013). However,

even though p values from fastSPA and Firth’s test are well calibrated in a single

study, combining them through Z-score method can fail to control for type I errors.

Ma et al. (2013) has shown that combining Firth’s test-based p values through Z-score

method can produce conservative or anti-conservative behaviors especially when the

case-control ratio is unbalanced and the variant minor allele count (MAC) is small.

This may be because the study-specific p values have discrete distribution due to

case-control imbalance and small MAC. As shown in our simulation studies, the same

problem also occurs in the meta-analysis using fastSPA-based p values. To facilitate

the meta-analysis of the biobank-based GWASs, we need a robust method to control

for type I errors regardless case-control ratios and MAC.

In this chapter, we first evaluate the performance of the Z-score-based meta-

analysis procedure using the fastSPA test-based p values under extensive simulation

settings and real datasets, and propose two alternative meta-analysis strategies to

obtain well-calibrated meta-analysis p values. The first method involves sharing the

observed within-study score statistics and the cumulant generating functions (CGF)

of those score statistics using a spline-based approach, which will be used to carry out

saddlepoint approximation to obtain the meta-analysis p value. The second method

involves sharing the overall number of homozygous minor and heterozygous genotypes

for each genetic variant, in addition to the case-control sample size and p value shared

in the Z-score-based meta-analysis strategy. The additional information facilitates

approximating the distributions of the study-specific score statistics, which can be

discrete, asymmetric and different from the traditionally used normal distribution.
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Through extensive simulation studies and an analysis of the UK Biobank data, we

show that the proposed methods can control the type I error rates and retain similar

power as a joint analysis as well as being scalable to large-scale PheWASs.

5.2 Methods

5.2.1 Model for Single Study Association Test and Saddlepoint Approx-

imation (SPA)

We consider J case-control studies, where the jth study has sample size nj. Within

each individual study, we follow the regression model and testing procedure described

in (Dey et al., 2017). For the ith subject in the jth study, let Y
(j)
i = 1 or 0 denote the

case-control status, X
(j)
i denote the k × 1 vector of non-genetic covariates (including

the intercept) and G
(j)
i = 0, 1, 2 denote the number of minor alleles of the variant to

be tested. Let β(j) be the k×1 vector of coefficients for the non-genetic covariates and

γ(j) be the genotype log odds ratio. We use the following logistic regression model to

perform association test in the jth study.

logit
[
Pr
(

Y
(j)
i = 1|X(j)

i ,G
(j)
i

)]
= X

(j)T
i β(j) + G

(j)
i γ

(j) (5.1)

Let m̂u
(j)
i be the maximum likelihood estimator of µi = Pr

(
Y

(j)
i = 1|X(j)

i

)
un-

der the null hypothesis H0 : γ(j) = 0. Further, let X(j) =
(
X

(j)T
1 , . . . , X

(j)T
nj

)
be

the nj × k matrix of covariates, G(j) =
(
G

(j)
1 , . . . , G

(j)
nj

)T
be the genotype vector,

W (j) be a diagonal matrix with ith diagonal element µ̂
(j)
i

(
1− µ̂(j)

i

)
, and G̃(j) =

G(j)−X(j)
(
X(j)TW (j)X(j)

)−1
X(j)TW (j)G(j) be the covariate-adjusted genotype vec-

tor. Then, the score statistic for testingH0 : γ(j) = 0 will be S(j) =
∑nj

i=1 G̃
(j)
i

(
Y

(j)
i − µ̂

(j)
i

)
.

To apply the saddlepoint approximation (SPA)-based score test, we first need to cal-

culate the cumulant generating function (CGF) of the score statistic and its first and
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second derivatives given by,

K(j)(t) =

nj∑
i=1

log
(

1− µ̂(j)
i + µ̂

(j)
i eG̃

(j)
i t
)
− t

nj∑
i=1

G̃
(j)
i µ̂i,

K ′(j)(t) =

nj∑
i=1

µ̂
(j)
i G̃

(j)
i(

1− µ̂(j)
i

)
e−G̃

(j)
i t + µ̂

(j)
i

−
nj∑
i=1

G̃
(j)
i µ̂

(j)
i , and

K ′′(j)(t) =

nj∑
i=1

(
1− µ̂(j)

i

)
µ̂

(j)
i G̃

(j)
i

2
e−G̃

(j)
i t[(

1− µ̂(j)
i

)
e−G̃

(j)
i t + µ̂

(j)
i

]2 .

Using the saddlepoint approximation method (Barndorff-Nielsen, 1990; Daniels , 1954),

the distribution function of S(j) at the observed score statistic can be approximated

by,

Pr
(
S(j) < s

)
≈ Φ

{
w +

1

w
log
( v
w

)}
,

where w = sgn(t̂)
√

2
(
t̂s−K(j)

(
t̂
))

, v = t̂
√
K ′′(j)

(
t̂
)
, t̂ is the solution to the equation

K ′(j)
(
t̂
)

= s, and Φ is the standard normal distribution function. The fastSPA

(Dey et al., 2017) test implements a faster version of this saddlepoint approximation

method, which can be applied to obtain the p value p(j). One of the steps implemented

in the fastSPA test is to apply the saddlepoint approximation method only if the score

statistic lies outside a certain standard deviation threshold from the mean. If the score

statistic lies inside the standard deviation threshold, then the fastSPA test uses the

normal approximation to calculate the p values because the normal approximation

behaves well near the mean. In this chapter, we will consider the p values using two

such standard deviation threshold, 2 and 0.1, and will denote the tests by fastSPA –

2 and fastSPA – 0.1, respectively.
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5.2.2 P Value-Based Meta-Analysis and Normal Distribution-Based Z-

Score Method

We first introduce a framework for p value-based meta-analysis. In this frame-

work, the study-specific signed p values
(
p(j)s

)
are inverted to obtain the signed

scores R(j)s using some distributions F (j)s, for j = 1, . . . , J , where the signs are

determined by the directions of associations. We call F (j)s reference distributions.

Then, the meta-analysis score is given by Rmeta =
J∑
j=1

R(j) where each R(j) ∼ F (j)

under the null hypothesis of no association. Traditional Z-score-based meta-analysis

is a special case of this framework, where the reference distributions are normal dis-

tributions with means zero and variances given by the effective sample sizes of the

individual studies. The effective sample size (Han and Eskin, 2011) is calculated

as n∗j = 4nj1nj0/nj, where nj1 and nj0 are the number of cases and controls in the

jth study, respectively. This meta-analysis method first inverts the p values using

a standard normal distribution to obtain the signed Z-scores Z(j) = ±Φ−1
(
p(j)/2

)
,

where the signs depend on the directions of associations. Then, the scores R(j)s are

calculated as R(j) =
√
n∗jZ

(j), for j = 1, . . . , J , and the meta-analysis score is given

by Rmeta =
J∑
j=1

R(j) ∼ N

(
0,

J∑
j=1

n∗j

)
under the null hypothesis. We can test the

null hypothesis of no association between the phenotype and the variant by testing

Zmeta = Rmeta/

√
J∑
j=1

n∗j , which follows N(0, 1) under the null hypothesis.

This meta-analysis strategy can control for type I error rates when each study-

specific p value follows the uniform distribution. When the case-control is unbalanced

and variants are rare, however, each study-specific test statistic S(j) can have a dis-

crete and often very skewed null distribution, which can result in the set of possible

study-specific p values to be discrete, and the two-sided probabilities that constitute

those p values, to be asymmetric. In such situations, although SPA can be applied

to control type I error rates within each individual study, inverting such SPA-based p

values to normally distributed Z-scores might not be appropriate, and can introduce
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systematic biases.

We notice that the best possible reference distribution would be the null distribu-

tion of the score statistic S(j) under model (5.1) (let it be F̃ (j)). In that case, R(j)s

will be the same as S(j)s. Within each individual study, F̃ (j) can be approximated

based on the CGF of the score statistic, using the SPA method. However, it is diffi-

cult to share the CGFs as summary level statistics. In our first method, we propose

a simpler technique to approximate F̃ (j)s using summary level statistics and suggest

sharing S(j)s instead of the p values so that we can directly use R(j) = S(j). This

is equivalent to a p value-based meta-analysis using the approximations of F̃ (j)s as

the reference distributions F (j)s, because R(j)s will closely approximate S(j)s when

F (j)s closely approximate F̃ (j). For the second approach, we suggest sharing the

overall genotype counts from the individual studies to construct our reference distri-

butions. Although our approaches require more information than just the p values,

case-control sample sizes and directions of associations, the additional information is

also summary level information and hence does not need individual level data.

5.2.3 CGF Sharing-Based Method

If studies share the observed score statistic S(j)s and their corresponding CGF

K(j)s under the null distribution, then the meta-analysis score and its CGF can be

calculated as Rmeta =
J∑
i=1

S(j) and Kmeta =
J∑
i=1

K(j), respectively. The saddlepoint

approximation can be applied on Rmeta to obtain the meta-analysis p value. Since it

is difficult to share complicated functions like K(j)s using summary statistics, studies

can only share the functions at some pre-specified node values and reconstruct the

functions at the meta-analysis stage using spline approximations.

Notice that the CGFs and their derivatives K(j), K ′(j), K ′′(j)s are smooth functions

as evident from their algebraic expressions. Therefore, cubic splines (Bartels et al.,

1987; Press et al., 1992) should provide good approximations of these functions. We
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provided some examples of these functions and their spline approximations under

different case-control ratios and allele frequencies in Appendix F (Figures F.1,F.2

and F.3) Further, if we apply cubic splines to approximate one of these functions in

the meta-analysis stage, the other two functions can be obtained through algebraic

or numerical differentiations and integrations. For example, if we obtain the cubic

spline approximation K̂ ′(j) of K ′(j), we can easily calculate the derivative K̂ ′′(j) (t)

and the integral K̂(j) (t) at any t through either algebraic or numerical differentiation

and integration, as K̂ ′(j) is a piece-wise cubic smooth polynomial.

For our purpose, we approximate K ′(j)s using cubic splines because K ′(j), being

involved in the saddlepoint equation, is the most important function of these three.

To obtain more accurate approximation of both K ′(j) and K ′′(j), we use cubic Hermite

splines (Bartels et al., 1987; Kreyszig , 2006) instead of cubic natural splines. Hermite

spline method takes the values of a function (in our case K ′(j)) and its derivative

(in our case K ′′(j)) at some node points, and provides a piece-wise cubic smooth

approximation
(
K̂ ′(j)

)
where both the functional values as well as the derivative

values are preserved at the node points. This means, not only does K̂ ′(j) match with

K ′(j) at the node points, but also the derivative of K̂ ′(j) matches with K ′′(j) at those

node points. Therefore, if an individual study shares the functional values of K ′(j)s

and K ′′(j)s at some pre-specified node points, Hermite spline method can fit both

of these functions simultaneously. On the other hand, cubic natural spline can only

preserve the functional values of the function it approximates. This phenomenon is

illustrated in Figures F.1,F.2 and F.3 using some examples with different case-control

ratios and MAFs. For these illustrations, the K ′ functions were fitted using spline

approximations on seven node points, and K̂ ′′s and K̂s were calculated using algebraic

differentiations and numerical integrations, respectively. Nodes were selected based

on the algorithm we discussed later. The examples show that the cubic natural splines

only fit the K ′ functions at the node points, but the algebraic differentiations of K̂ ′
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functions can result in poor approximations of the K ′′ functions. On the other hand,

the cubic Hermite splines fit both the K ′ and K ′′ functions simultaneously at the

node points.

To calculate the Hermite spline approximations, suppose the values of K ′(j) and

K ′′(j) are provided at the node points t0 < t1 < . . . < tr. Then the Hermite spline

interpolation of K ′(j) between two node points [tk, tk+1] is given by,

K̂ ′(j) (t) = h00(x)K ′(j) (tk) + h10(x) (tk+1 − tk)K ′′(j) (tk) + h01(x)K ′(j) (tk+1)

+h11(x) (tk+1 − tk)K ′′(j) (tk+1) ,

where x = (t− tk) / (tk+1 − tk), and h00, h01, h10, and h11 are the Hermite basis func-

tions, h00 = (1 + 2t) (1− t)2, h10 = t(1− t)2, h01 = t2 (3− 2t), h11 = t2 (t− 1).

Linear extrapolation is applied to obtain the functional values outside the boundaries

t0 and tr, using the slopes at those boundaries. The algorithm that we implemented

in our R package to obtain the optimal set of nodes, is discussed in Appendix F.

Once we obtain K̂ ′(j), we can algebraically differentiate the function to get K̂ ′′(j),

K̂ ′′(j) (t) = dh00(x)
dt

K ′(j) (tk) + dh10(x)
dt

(tk+1 − tk)K ′′(j) (tk) + dh01(x)
dt

K ′(j) (tk+1)

+dh11(x)
dt

(tk+1 − tk)K ′′(j) (tk+1) .

Similarly, an algebraic or numerical integration can be performed to obtain K̂(j).

The constant of integral can be determined using the initial condition K̂(j) (0) = 0.

Then, the CGF of the meta-analysis score and its derivatives can be approximated

by K̂meta =
J∑
j=1

K̂(j), K̂ ′meta =
J∑
j=1

K̂ ′(j), and K̂ ′′meta =
J∑
j=1

K̂ ′′(j).

5.2.4 Genotype Count-Based Method

The aforementioned CGF sharing method requires to share Hermite spline nodes

to construct the CGFs in the meta-analysis stage. But in many situations, this

information would not be available, especially when the meta-analysis is conducted
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using publicly available summary statistics. Here we propose a practical alternative

approach to approximate the CGFs using the genotype counts (number of 0, 1, 2

genotypes) at different markers. Genotype counts are more readily available and

software independent than the information required to be shared in the spline-based

method. For rare variants, where homozygous minor genotypes are usually not present

in the data, or for variants that follow Hardy-Weinberg equilibrium, sharing the minor

allele counts (MAC) will be sufficient, as the genotype counts can be easily calculated

based on the MACs.

Suppose, for the jth study, the genotype counts for the variant to be tested are

mj0,mj1 and mj2 corresponding to the genotypes 0,1 and 2 respectively. Then, we can

construct the genotype vector G(j)∗ of length nj where the first mj2 elements are 2s,

next mj1 elements are 1s, and the rest are 0s. We propose using the null distribution

(let it be F (j)∗) of the score statistic in the following genotype-only model (5.2) as

our reference distribution,

logit
[
Pr
(

Y
(j)
i = 1|G(j)∗

i

)]
= α(j)∗ + G

(j)∗

i γ(j)∗ (5.2)

where G
(j)
i

∗
is the ith elements of G(j)∗, α(j)∗ is the intercept and γ(j)∗ is the genotype

log odds ratio. Intuitively, when the non-genetic covariates are relatively balanced

across cases and controls, the discreteness and asymmetry in the null distribution of

the score statistic mainly depend on the imbalance or the rarity of the phenotype

and the genotype. Therefore, the null distribution of the score statistic under the

genotype-only model can be a reasonable alternative to the traditionally used normal

distribution, as a reference distribution. To apply this method, we first need to

calculate the CGF of the score statistic and its first and second derivatives in the
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genotype-only model (5.2) given by,

K(j)∗(t) =

nj∑
i=1

log
(

1− µ̂(j)∗ + µ̂(j)∗eḠ
(j)∗
i t
)
,

K ′(j)
∗
(t) =

nj∑
i=1

µ̂(j)∗Ḡ
(j)∗

i

(1− µ̂(j)∗) e−Ḡ
(j)∗
i t + µ̂(j)∗

, and

K ′′(j)
∗
(t) =

nj∑
i=1

(
1− µ̂(j)∗

)
µ̂(j)∗Ḡ

(j)∗

i

2
e−Ḡ

(j)∗
i t[

(1− µ̂(j)∗) e−Ḡ
(j)∗
i t + µ̂(j)∗

]2 ,

where Ḡ
(j)∗

i = G
(j)∗

i −Ḡ(j)∗ is the mean-centered genotypes, and µ̂(j)∗ = the proportion

of cases, is the maximum likelihood estimator of µ(j)∗ = Pr
(
Y

(j)
i = 1

)
under the null

hypothesis H∗0 : γ(j)∗ = 0. Based on this CGF, we can approximate the distribution

F (j)∗ and calculate the score R(j) by inverting F (j)∗ at the signed fastSPA p value

±p(j), which is calculated from the model (5.1) with all covariates. Since the signed

p values have one-to-one relationships with the score values, the inversion of ±p(j) to

obtain the score R(j) can be performed using root-finding algorithms such as Newton-

Raphson (Press et al., 1992), Brent (Brent , 1973), bisection (Press et al., 1992) etc. In

our implementation, we applied Brent’s method for this purpose. The meta-analysis

score Rmeta =
J∑
j=1

R(j) will then have the CGF Kmeta =
J∑
j=1

K(j)∗ , and we can apply

the SPA test on Rmeta to obtain the meta-analysis p value.

5.3 Numerical Simulations

We evaluated the type I error rates and empirical powers of the Z-score-based

and proposed methods through extensive simulation studies. We considered three

different simulation study settings. For the first setting, we meta-analyzed seven

studies coming from the same population where the genotypes and the non-genetic

covariates are simulated independently. For the second setting, we considered a meta-

analysis of seven studies where the genotypes and the non-genetic covariates were
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simulated based on the MAF and principal component (PC) scores in different ethnic

groups in the UK Biobank data. In the third setting, we assessed the performance of

the methods when a smaller but balanced case-control study is meta-analyzed along

with a small number of larger but unbalanced biobank-based studies.

5.3.1 Simulation Study 1 : Meta-Analyzing Seven Studies from the Same

Population

Our first simulation study was designed to represent a meta-analysis of multiple

studies from the same population. We considered seven studies with sample sizes

nj = 2000 for all j = 1, . . . , 7. We further considered three case-control ratios:

balanced with the case-control ratio of 1 : 1 within each study, moderately unbalanced

with the case-control ratio of 1 : 9 within each study, and extremely unbalanced with

the case-control ratio of 1 : 49 within each study. For each choice of case-control ratio,

the phenotypes in the jth study were simulated using the following logistic model,

logit
[
Pr
(
Y

(j)
i = 1

)]
= α(j) + 0.5×

(
X

(j)
1 +X

(j)
2

)
+G

(j)
i γ(j), (5.3)

for i = 1, . . . , nj, where X
(j)
1 ∼ N(0, 1) and X

(j)
2 ∼ Bernoulli(0.5) were the non-

genetic covariates, and the genotypes (G
(j)
i s) were generated from a Binomial(2, p)

distribution where p (same across the seven studies) was the minor allele frequency

(MAF). The intercepts (α(j)s) were selected such that the prevalence within each

study would become 0.01. The parameters γ(j)s represent the within-study log-odds

ratios. For the type I error comparisons, all γ(j)s were set to be 0. A wide range of

γ(j) values were used for the power calculations (see Section 5.4).

To compare the type I error rates of different methods under different MAFs, we

considered five different MAFs, p = 0.001, 0.005, 0.01, 0.05, 0.1, and simulated 5× 108

variants for each of the MAFs and the three case-control ratios. We recorded the
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number of rejections at α = 5 × 10−5 and 5 × 10−8 genome-wide significance levels.

We further performed a power comparison with 5000 simulated variants for each of the

three case-control ratios and two choices of the MAF p = 0.01, and 0.05, at different

values of γ(j). As the genome-wide significance threshold for power calculations, we

used both a nominal α = 5 × 10−8, and a type I error adjusted empirical alpha

where the corresponding method has type I error 5× 10−8. The empirical α level was

calculated based on 5× 108 simulated datasets from the simulation setting described

above (seven studies, each with 2000 samples) where the MAFs were sampled from

the MAF spectrum (Figure I.1) of the White British ancestry group (∼ 117K samples)

in the UK Biobank interim release data.

5.3.2 Simulation Study 2 : Trans-Ethnic Meta-Analysis of Seven Studies

Our second simulation study was designed to represent a trans-ethnic meta-

analysis where the MAFs can be different across the studies. We considered seven

studies with sample sizes nj = 2000 for all j = 1, . . . , 6, and n7 = 1500. To sim-

ulate the genotypes and the non-genetic covariates from a realistic meta-analysis

of GWAS, we used genotype data from the UK Biobank interim release data (UK

Biobank , 2015). The first five studies included first four principal component (PC)

scores as covariates and genotypes simulated from the MAF spectrum of the White

ancestry group in the UK Biobank samples. To maintain the correlated nature of the

genotypes and the PC scores, genotypes were simulated using PC scores. We further

added a binary covariate generated from a Bernoulli(0.5) distribution independent

of the PC scores and the genotypes. Covariates and genotypes were simulated in a

similar way for study six and seven based on the South Asian and Black ancestry

groups, respectively. The model to simulate the phenotypes was similar to the one

used in the first simulation study, except for different non-genetic covariates. Detailed

explanation of the simulation procedure is provided in Appendix G.
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In trans-ethnic studies, variants have different MAFs across different ancestry

groups. To calculate the type I error rates for diverse scenarios of MAFs, we first

considered three MAF bins for the alleles of the simulated variants: rare variants with

MAF ≤ 0.01, low frequency variants with 0.01 < MAF ≤ 0.05 and common variants

with MAF > 0.05. We then categorized the simulated variants in four categories

based on their allele frequencies (AF): a) all rare, when the variant has the same

minor rare allele in all seven studies, b) all low frequency, when the variant has

the same low frequency allele in all seven studies, c) all common, when the variant

has the same common allele in all seven studies, and d) different AF, when the

variant falls in different MAF bins in at least two different studies. The different

AF category also includes variants which have different alleles as the minor alleles

in different studies. For each variant category and case-control ratio, we simulated

5× 108 datasets under the null hypothesis and recorded the number of rejections at

the genome-wide significance levels α = 5× 10−5 and 5× 10−8.

5.3.3 Simulation Study 3 : Meta-Analyzing a Balanced Case-Control

Study with Two Larger Unbalanced Studies

We investigated the performance of different meta-analysis strategies when a bal-

anced case-control study, which is smaller in sample size, is meta-analyzed along with

two larger biobank-based unbalanced studies. This simulation study represents the

real world meta-analyses where the researchers collect balanced case-control data on

rare traits/diseases, and attempt to meta-analyse them with association results from

a small number of larger cohort-based studies. To simulate the genotypes, non-genetic

covariates and the phenotypes, we used the same simulation and logistic regression

models as in our first simulation study setting. The sample size for the balanced

case-control study was 2000 with 1000 cases and 1000 controls, and the unbalanced

studies had sample size 10000 each. We considered two case-control ratios for these
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unbalanced studies: moderately unbalanced with case : control = 1 : 9 within each

study, and extremely unbalanced with case : control = 1 : 49 within each study. For

each of the case-control ratio, we compared the type I error rates of different methods

under five different MAFs, p = 0.001, 0.005, 0.01, 0.05, 0.1 based on 5× 108 simulated

variants each.

For the first two simulation settings and the unbalanced studies in the third sim-

ulation setting, the within-study p values were calculated using the traditional score

test (Score), fastSPA test with 2 standard deviations threshold (fastSPA – 2), and

fastSPA test with 0.1 standard deviations threshold (fastSPA – 0.1). Since score test

is relatively well-calibrated for balanced case-control studies, only Score p values were

calculated for the balanced study in the third simulation setting. We then considered

the following meta-analysis methods to compare their type I error rates and empiri-

cal powers: Z-score-based meta-analysis (Z-score), CGF sharing-based meta-analysis

(CGF-Spline), and genotype count sharing-based meta-analysis (GC). Score p val-

ues were meta-analyzed using the Z-score method, fastSPA – 2 and fastSPA – 0.1 p

values were meta-analyzed using the Z-score and GC methods, and the within-study

observed score statistics were meta-analyzed using the CGF-Spline method. For the

balanced case-control study in the third simulation setting, the Z-scores obtained

from the Score p values were used in the GC method, and the corresponding normal

distribution-based CGFs were used in the CGF-Spline method. We also compared

the type I error rates and the empirical powers of a joint analysis (Joint) using the

fastSPA – 2 test on the pooled data as the gold standard.

To assess the scalability of our proposed methods in a realistic GWAS meta-

analysis scenario, we calculated their computation times based on 104 simulated vari-

ants under the null hypothesis in the second simulation setting. We also calculated

the computation time required to prepare the summary information for the CGF

sharing-based meta-analysis method using a single study of 2000 samples and 104
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simulated variants where the PC scores and MAFs were sampled based on the White

ancestry group of the UK Biobank data.

5.4 Results

In this section, we evaluate the performance of the proposed methods against the

Z-score-based meta-analysis based on the numerical simulations described above.

5.4.1 Type I Error Comparison

The type I error comparison based on simulation study 1 (Figure 5.2) clearly

shows that the proposed CGF-Spline and GC methods provided well-controlled type

I error rates across all the MAFs and all the case-control ratios. Expectedly, the

joint analysis also controlled the type I error rates. On the other hand, the Z-score

method resulted in inflated type I error rates in moderately unbalanced and extremely

unbalanced settings, especially for the rarer minor allele frequencies. Interestingly,

the Z-score method with fastSPA-0.1 performed worse than that with fastSPA-2,

although fastSPA-0.1 used the saddlepoint approximation to more variants. This

further verifies our assertion that using normal distributions to invert the study-

specific p values which are possibly discrete, asymmetric and originally calculated

using the saddlepoint approximation, can result in failure to control type I error in

the meta-analysis process. For MAF = 0.001 under the extremely unbalanced setting,

there is conservative behavior shown by the Z-score method when using fastSPA – 0.1

or fastSPA – 2 p values at α = 5× 10−5 level (empirical type I error rates 3.55× 10−6

and 2.76×10−5, respectively). All methods provided well-controlled type I error rates

for the balanced case-control ratio.

Similar observation follows for simulation study 2. The type I error comparison

(Figure 5.3) suggests that our proposed methods showed no sign of type I error

inflation across different MAFs and case-control ratios, whereas the Z-score method
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Figure 5.2: Type I error comparison among different meta-analysis methods and joint
analysis, in simulation study 1. Joint represents the joint analysis with
the pooled data. The top and the bottom panels show empirical type I
error rates at genome-wide significance levels α = 5× 10−5 and 5× 10−8,
respectively. From left to right, the plots consider the within-study case-
control ratios 1 : 1, 1 : 9 and 1 : 49, respectively. In each plot, the X-axis
represents MAFs with expected MACs in parenthesis, and the Y-axis
(in logarithmic scale) represents the empirical type I error rates. 95%
confidence intervals at different MAFs are also presented.
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resulted in inflated type I error rates for the moderately unbalanced and extremely

unbalanced settings, especially for the all rare, all low frequency and different MAF

categories. Z-score method using Score p values had the maximum inflation across

all categories.

Figure 5.3: Type I error comparison among different meta-analysis methods and joint
analysis, in simulation study 2. Joint represents the joint analysis with
the pooled data. The top and the bottom panels show empirical type I
error rates at genome-wide significance levels α = 5× 10−5 and 5× 10−8,
respectively. From left to right, the plots consider the within-study case-
control ratios 1 : 1, 1 : 9 and 1 : 49, respectively. In each plot, the X-axis
represents different MAF groups: Rare (variant is rare in all studies),
Low frequency (variant is low frequency in all studies), Common (variant
is common in all studies) and Different AF (variant is in different allele
frequency group in at least two different studies). The Y-axis (in loga-
rithmic scale) represents the empirical type I error rates. 95% confidence
intervals at different MAFs are also presented.

In simulation study 3, we also have similar results (Figure 5.4) for our proposed

methods. However, the Z-score method using the fastSPA – 0.1 or fastSPA – 2 p

values showed no sign of significant type I error inflation in the extremely unbalanced
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case-control setting, and only slight inflation in the moderately unbalanced setting.

The maximum empirical type I error for the Z-score-based meta-analysis with fastSPA

p values was 8.01 × 10−8 (1.6 times the nominal α = 5 × 10−8), observed at MAF

= 0.005 in the moderately unbalanced setting. This suggests that the Z-score-based

method can be adequate for controlling the type I error rates when only a small

number of biobank-based studies are included in the meta-analysis. However, as seen

from the other two simulation studies, the Z-score method may fail to control type I

error rates when large number of unbalanced studies are involved.

5.4.2 Power Comparison

Next, we compare the empirical powers of different meta-analysis strategies along-

with the joint analysis as the gold standard under the first simulation setting. Because

the Z-score-based meta-analysis method provided inflated type I error rates as seen

in the type I error comparisons, we used empirical α levels calculated from type I

error simulations for each method where the empirical type I error rate becomes

5 × 10−8. The power curves (Figure 5.5) show that the Z-score method has slightly

lower power (lowest when using score test p values) in the moderately and extremely

unbalanced case-control ratios. Our proposed methods provide very similar power to

the joint analysis, and all methods provide similar power in the balanced case-control

setting. When nominal α = 5× 10−8 level was used (Figure I.2), the Z-score method

expectedly showed higher powers in the unbalanced settings since it is not calibrated

for its type I errors.

5.4.3 Computation Times of the Proposed Methods

Figure 5.6 shows the projected computation times of our proposed methods for

meta-analyzing 10 million variants across seven studies at different case-control ratios.

The results suggest that both methods are scalable for GWASs, with the longest
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Figure 5.4: Type I error comparison among different meta-analysis methods and joint
analysis, in simulation study 3. Joint represents the joint analysis with
the pooled data. The top and the bottom panels show empirical type I
error rates at genome-wide significance levels α = 5× 10−5 and 5× 10−8,
respectively. The left and right panels consider the within-study case-
control ratios 1 : 9 and 1 : 49, respectively for the unbalanced studies. In
each plot, the X-axis represents MAFs with expected MACs in parenthe-
sis, and the Y-axis (in logarithmic scale) represents the empirical type I
error rates. 95% confidence intervals at different MAFs are also presented.
The empirical type I error rates were almost identical between ZScore –
fastSPA – 2 and ZScore – fastSPA – 0.1, and between GC – fastSPA – 2
and GC – fastSPA – 0.1, and hence the lines are sometimes overlapped
in this plot.
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Figure 5.5: Power curves for the Z-score, CGF-Spline and Genotype Count (GC)
methods. Top panel considers MAF = 0.01 and bottom panel considers
MAF = 0.05. From left to right, the plots consider case-control ratios
1 : 1, 1 : 9 and 1 : 49, respectively. In each plot the X-axis represents
genotype odds ratios and the Y-axis represents the empirical power. Em-
pirical power was estimated from 5000 simulated datasets at their type I
error adjusted empirical α levels where their empirical type I errors are
equal to 5× 10−8.
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observed computation time of 59.4 CPU-hours for the GC method using fastSPA –

0.1 p values in the balanced case-control setting. The GC method, when using the

fastSPA – 2 p values, shows similar computation times as the CGF-Spline method

(3 — 5 CPU-hours). We note that the GC method does not require any additional

computation within the individual studies whereas the CGF-Spline method involves a

node-finding step within each study. We calculated the additional computation time

required within each study to prepare the summary information for the CGF-Spline

method. The projected additional computation times for preparing the summary

information of 10 million variants in a single study of 2000 samples were 4.1 CPU-

hours for case-control ratio 1 : 1, 4.3 CPU-hours for case-control ratio 1 : 9, and 4.4

CPU-hours for case-control ratio 1:49.

Figure 5.6: Projected computation times of our proposed methods for meta-analyzing
seven studies at 10 million variants as described in simulation study 2.
The computation times are based on a meta-analysis of 10000 simulated
variants on an Intel i7 2.70GHz processor, and then projecting it onto 10
million variants.

5.5 UK Biobank Data Analysis

We demonstrated the performance of our proposed methods by analyzing two

phenotypes based on the UK Biobank interim release data (UK Biobank , 2015). The

UK Biobank (Bycroft et al., 2017) contains detailed phenotypic information based

on electronic health records for ∼ 500K individuals in the United Kingdom. In the
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interim release (May 2015), information on ∼ 150K individuals were released to the

public. Details about the data and pre-processing are provided in Appendix H. A

histogram of the case-control ratios (Figure 5.1) of different binary phenotypes shows

that the ratios are heavily skewed towards zero, which means the binary phenotypes

are mostly unbalanced.

To compare our proposed methods with the Z-score-based meta-analysis method,

we analyzed two phenotypes, Ulcerative Colitis (PheWAS code: 555.2, case : control =

1 : 100), and Psoriasis (PheWAS code: 696.4, case : control = 1 : 165) based on

117,513 unrelated samples from the White British ancestry group of the interim re-

lease data. The samples were then divided into 22 groups based on the assessment

center where they first consented to be included in the biobank. We selected 19 cen-

ters (Table I.1) with at least 5 cases for each of the two phenotypes, and treated

these centers as our individual studies to perform association analyses of the pheno-

types on the autosomal variants within each of them. For the within-study associa-

tion analyses, we applied Score, fastSPA – 2 and fastSPA – 0.1 tests, adjusting for

age, sex, and first four principal components. Individuals which had phenotype or

at least one covariate information missing, were removed from the analysis of that

corresponding phenotype. We only applied the within-study tests for variants with

within-study MAC at least three. Because the genotype count-based meta-analysis

requires the overall genotype counts, we applied our within-study tests on the best

called genotypes instead of dosages in the imputed data. We then meta-analyzed the

results using the Z-score-based meta-analysis (Z-score), CGF sharing-based meta-

analysis (CGF-Spline), and genotype count sharing-based meta-analysis (GC). The

meta-analysis methods were only applied for variants that were tested in at least two

different studies, and the overall MACs were at least ten. For each phenotype, ∼ 29

million variants were meta-analyzed.

The quantile-quantile (QQ) plots presented in Figure 5.7 and Figure 5.8 show that
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the meta-analysis p values from our proposed methods closely follow the uniform

distribution, whereas those from the Z-score method are either much smaller (Z-

score method using Score or fastSPA – 0.1 p values) or larger (Z-score method using

fastSPA – 2 p values) than expected for rare variants (MAF < 0.01). This suggests

conservative behavior of the Z-score method when using the fastSPA – 2 p values, and

extremely anti-conservative behavior when using fastSPA – 0.1 or Score p values. On

the other hands, both the CGF-Spline and GC methods improve the accuracy of the

meta-analysis p values and provide well-calibrated QQ plots. We also presented the

genomic control inflation factors (λ) of different meta-analysis strategies in Table I.2.

For Ulcerative Colitis, all our proposed methods showed no inflation or deflation in

the genomic controls at p value quantiles q = 0.01 and 0.001, whereas the Z-score

method showed severely inflated inflation factors when using the Score (eg. λ = 1.33

at q = 0.01) and fastSPA – 0.1 (eg. λ = 3.18 at q = 0.01) p values and deflated

inflation factors when using the fastSPA – 2 (eg. λ = 0.82 at q = 0.01) p values

at those p value quantiles. This result further supports the observations made from

the QQ plots. When considering the inflation factors at the median p value quantile

(q = 0.5), the CGF-Spline (λ = 0.74) and GC method using fastSPA – 2 p values

(λ = 0.68) showed deflated inflation factors, and GC method using fastSPA – 0.1 p

values (λ = 1.40) showed inflated inflation factor. This is expected, since the fastSPA

p values near the median are not calculated using the saddlepoint approximation

as discussed in Chapter IV. In that paper, they also found inflated genomic control

factors for fastSPA – 0.1 and deflated genomic control factors for fastSPA – 2 p values

at the median level for extremely unbalanced case-control ratios. The inflation factors

showed similar patterns for Psoriasis. However, at p value quantile q = 0.001, the GC

method using fastSPA – 2 p values (λ = 1.09), and the CGF-Spline method showed

slightly larger than expected inflation factors (λ = 1.10). This might be due to the

presence of the Major Histocompatibility Complex (MHC) in the 6p21 region which
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contains a large number of polymorphic variants and it is a known associated region

for Psoriasis (Stuart et al., 2015). After excluding the MHC region from the inflation

factor calculation, the inflation factors became very close to unity.

Figure 5.7: Meta-analysis QQ plots for Ulcerative Colitis based on the UK Biobank
interim release data. QQ plots using the Z-score method are provided
in the left panel, and the QQ plots using our proposed methods are pro-
vided on the right panel. Known associated loci in the MHC region were
removed from the QQ plots. The plots are color-coded based on different
MAF categories.
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Figure 5.8: Meta analysis QQ plots for Psoriasis based on the UK Biobank interim
release data. QQ plots using the Z-score method are provided in the left
panel, and the QQ plots using our proposed methods are provided on
the right panel. Known associated loci in the MHC region were removed
from the QQ plots. The plots are color-coded based on different MAF
categories.

The top genome-wide significant SNPs in different regions, identified by the CGF-

Spline method, are listed in Table 5.1. For the genotype count method, the top

significant SNPs were identical and the corresponding p values were very similar, and
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hence those are omitted from the table.

Phenotype Location dbSNP ID Nearest Gene Alleles MAF p value Previous Findings

Ulcerative
Colitis

6:32433654 rs9268944 HLA-DRA C>T 0.42 7.49× 10−12 Anderson et al. (2011)

Psoriasis 6:31251924 rs12189871 HLA-C C>T 0.09 9.72× 10−53 Stuart et al. (2015)
15:50785016 rs148783236 USP8 A>G 0.12 1.68× 10−47 Verma et al. (2018)
22:21190325 rs549956609 PI4KA G>A 0.0009 6.72× 10−9 Potentially novel
5:158826357 rs918519 IL12B G>A 0.23 5.48× 10−9 Stuart et al. (2015)
22:50110828 rs560106765 BRD1 A>C 0.0014 1.46× 10−8 Potentially novel

Table 5.1: Genome-wide significant (α = 5×10−8) SNP-phenotype associations based
on the meta-analysis using the CGF-Spline method. The SNPs which are
also significant at the corresponding Bonferroni correction level, are shown
using their dbSNP ID in bold font. The Bonferroni correction levels were
1.78× 10−9 for Ulcerative Colitis, and 1.72× 10−9 for Psoriasis.

To assess the performance of our methods with genotype dosage data, we further

performed our within-study tests to calculate the p values, scores and spline-based

summary statistics using the dosage data, and then meta-analyzed the results using

our proposed methods. For the GC method, we calculated the within-study p values

based on the dosages, but constructed the genotype-only model using genotype counts

of the best-called genotypes. The resulting QQ plots (Figure I.3) showed no sign of

inflation or deflation for our methods, which suggests that the methods are robust

for the analysis of dosage data.

5.6 Discussion

We evaluated the performance of the traditional Z-score-based meta-analysis strat-

egy to combine association results from multiple unbalanced genome-wide association

studies, and proposed two alternative strategies that can provide well-calibrated meta-

analysis p values, even when the case-control ratios are extremely unbalanced and the

minor allele counts are small. Through extensive numerical studies and an applica-

tion on the UK Biobank data, we showed that the Z-score-based method can result in

conservative or anti-conservative behavior in the meta-analysis p values, whereas our
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proposed methods provided well-controlled type I error rates. The proposed methods

also showed similar empirical powers as a joint analysis on the pooled data.

When the effect sizes are not available, such as in the case of the saddlepoint

approximation-based test, it is widely popular to use the Z-score-based meta-analysis

approach and combine the individual p values into a meta-analysis p value. In our

third simulation setting, we showed that the Z-score-based approach can still be

appropriate when only a small number of biobank-based studies with unbalance phe-

notypes are included in the meta-analysis. However, we will suggest the researchers

to be cautious when using the Z-score-based approach, as including more such unbal-

anced studies can result in a loss of calibration in the meta-analysis p values. When

effect size estimates are available, for example when using the Firth’s bias-corrected

likelihood ratio test (Firth, 1993), the inverse variance-weighted method is another

popular meta-analysis approach used by the researchers. However, Ma et al. (2013)

showed that the inverse variance-weighted meta-analysis method using the Firth’s

bias-corrected effect size estimates also results in type I error inflation when meta-

analyzing several unbalanced studies.

In this chapter, we assumed that the individual studies do not have genetically

related samples. In presence of related samples, the SAIGE test (Zhou et al., 2018)

can properly account for the sample relatedness and provide accurate p values in single

studies with unbalanced case-control ratios. As the SAIGE p values are calculated

using the saddlepoint approximation method based on the score statistic and its CGF,

the spline-based meta-analysis method can still be applicable for combining multiple

studies that are analyzed using SAIGE. However, the genotype count-based method

may not be appropriate in such scenarios as the genotype-only model does not contain

any information about the sample relatedness. The applicability of our methods in

studies containing genetically related samples, is left for future research.

Comparing the two proposed methods, the spline-based method (CGF-Spline)
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does not require any assumption on the effect of the non-genetic covariates since

it reconstructs spline approximations of the null distributions of the score statistics

and uses them to calculate the meta-analysis p values. Thus, it is more suitable

to be applied regardless of the covariate effects. On the other hand, the genotype

count-based method (GC) assumes relatively balanced non-genetic covariates with

low covariate effects. However, the numerical simulations with very strong covariate

effects (Figure I.4) also showed no sign of type I error inflation or deflation for this

method. Another difference between the proposed methods is in their applicability

on imputed dosage data. As the GC method requires the overall genotype counts

to construct the genotype-only model, it is more suitable to be applied when the

within-study analyses are performed on the best-called genotypes instead of dosages.

The CGF-spline method is robust in this aspect as it can utilize the CGFs of the test

statistics regardless of whether they were calculated from genotype or dosage data.

However, in our UK Biobank data analysis example (Figure I.3), both our proposed

methods showed no sign of inflation or deflation of type I errors, even when the

within-study tests were performed on dosage data. Therefore, for practical application

purposes, the genotype count-based method can be used to obtain accurate meta-

analysis p values. One advantage of the genotype count-based method is that it

is software-independent, and requires information which are more readily available

compared to the spline-based method.

The proposed meta-analysis methods can be hybridized based on the availability

of the summary level information. For example, suppose one study only provides the

p value and direction of association, a second study additionally provides the genotype

counts or minor allele count (if it is a rare variant), and a third study provides the

score statistic and spline-based information. Then, a hybrid meta-analysis approach

will be to use a normal reference distribution for the p value from the first study, and

a reference distribution based on the genotype-only model for the p value from the
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second study to calculate the converted scores and their corresponding CGFs. The

CGF of the score statistic in the third study can be reconstructed based on spline

approximation. Then, the final meta-analysis score will be the sum of those individual

scores, and the corresponding CGF will be the sum of those individual CGFs. The

meta-analysis p value can then be obtained using the saddlepoint approximation

method. We implemented this hybrid meta-analysis approach along with all our

proposed methods and the Z-score-based method in our R package SPAtest (available

on CRAN).
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CHAPTER VI

Conclusion

In this dissertation, we addressed some of the most challenging problems of ana-

lyzing large-scale biological datasets. To address the theoretical challenges due to the

high dimensionality of the data, we discussed the asymptotic behaviors of PCA and

PLS in high-dimensional regimes. In Chapter II, we derived consistent estimators of

the population eigenvalues, angles between the sample and population eigenvectors,

correlations between the sample and population PC scores, and developed meth-

ods to adjust the bias in the predicted PC scores. In Chapter III, we developed a

two-stage PLS method to address the over-fitting and shrinkage problems of PLS

regression in models with high-dimensional predictors. Next, we focused on some of

the computational and methodological challenges of analyzing large-scale GWASs and

PheWASs. In Chapter IV, we proposed a fast and accurate single-variant test, that is

scalable to be applied for testing millions of variants across thousands of phenotypes

in a typical EHR-based PheWAS. Our proposed test, fastSPA, is robust to handle

extreme case-control imbalances and rare allele counts. We further developed two ro-

bust meta-analysis methods to efficiently and accurately combine association results

from unbalanced case-control studies across multiple biobanks, in Chapter V. Our re-

search in the high-dimensional methods provides the researchers with statistical tools

for data visualization, confounder adjustment, and proper interpretation, modeling
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and prediction in high-dimensional regimes. On the other hand, the methods devel-

oped for large-scale GWASs and PheWASs facilitates the researchers in the discovery

of novel genotype-phenotype associations at a genome-wide or phenome-wide level,

in reasonable computation time.

In this era of data explosion, the problems of high-dimensionality and computa-

tional scalability are extremely relevant, and the future generation of methodological

research needs to focus on these problems. We dealt with some of these problems

in this dissertation, but the scope for future research is vast in this domain. For

example, in high-dimensional methods, other asymptotic regimes such as the ultra

high-dimensional regime (Lee et al., 2014b) and others (Jung and Marron, 2009) need

to be explored. In unbalanced case-control GWASs, scalable gene-based tests, and

adjusting for within-study sample relatedness in meta-analysis methods, are also im-

portant and immediate future research directions. The problems are certainly not

limited to the ones mentioned here. As we keep on generating increasingly large

amounts of data, new kinds of problems will emerge, and new kinds of solutions

will be required. The goal is not to get overwhelmed by data, and this dissertation

provided an important stepping stone towards that goal.
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APPENDIX A

Proof of Theorems 2.1, 2.2, 2.3 and 2.4

Proof of Theorem 2.1. The first part of the proof follows directly from Result 2.1

along with the fact that on the domain of the distant spikes, the ψ function is strictly

increasing, and hence is left invertible. Since ψ′′(α) > 0 for any α > sup ΓH , ψ′(α)

is a strictly increasing function for α > sup ΓH . Let Sψ > sup ΓH be a solution for

ψ′(α) = 0. Then for any α > sup ΓH , ψ′(α) > 0 if and only if α > Sψ. Therefore the

interval (Sψ,∞) is the domain of the distance spikes, and ψ is a strictly increasing

function on this interval. The second part follows from Lemma 1.2.

Proof of Theorem 2.2. The proof closely follows the proof of Theorem 2 in Mestre

(2008a). However, contrary to Mestre (2008a), we do not assume that the population

LSD contains the generalized spikes. Thus, some of the derivation steps and results

are substantially different from Mestre (2008a). We start the derivation by first noting

that the quadratic forms η̂k can be expressed as contour integrals of a special class of

Stieltjes transforms of the sample covariance matrix. Let us define,

m̂p(z) := sT1 (Sp − zIp)−1 s2 =

p∑
j=1

sT1 eje
T
j s2

dj − z
; ∀z ∈ C+
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where s1 and s2 are non-random vectors with uniformly bounded norms. Girko (1996)

and Mestre (2006) showed that under the assumption that the population LSD con-

tains the generalized spikes,

|m̂p(z)−mp(z)| a.s.−−→ 0; ∀z ∈ C+ (A.1)

where

mp(z) = sT1 [w(z)Σp − zIp]−1 s2 =

p∑
j=1

sT1EjE
T
j s2

w(z)λj − z
.

The function w(z) is defined as w(z) = 1−γ−γzbF (z) where bF (z) =
∫

(τ − z)−1dF (τ)

is the Stieltjes transform of the sample LSD. It is easy to check, by the same argu-

ments provided in Mestre (2006), that the result still holds when the generalized

spikes are considered lying outside the support of the population LSD. The func-

tions m̂p,mp and bF can be extended to C− = {z ∈ C : Im(z) < 0} by defining

m̂p(z) = m̂∗p(z
∗),mp(z) = m∗p(z

∗) and bF (z) = b∗F (z∗) for z ∈ C− where z∗ is the com-

plex conjugate of z. With this definition, |m̂p(z)−mp(z)| a.s.−−→ 0 even when z ∈ C−.

Now η̂k can be expressed as an integral of m̂p,

η̂k =
1

2πi

∮
∂R̂−y (k)

m̂p(z)dz,

where i =
√
−1, y > 0 and ∂R̂−y (k) is the negatively (clockwise) oriented boundary

of the rectangle R̂y(k) = {z ∈ C : â1 ≤ Re(z) ≤ â2, |Im(z)| ≤ y}. â1 and â2 can be

arbitrarily chosen provided that R̂y(k) contains only the sample eigenvalue dk and no

other sample eigenvalue. Then the following lemma gives the almost sure limit of η̂k.

Lemma 1.1. ∣∣∣∣∣∣∣
1

2πi

∮
∂R̂−y (k)

m̂p(z)dz − 1

2πi

∮
∂R−y (k)

mp(z)dz

∣∣∣∣∣∣∣ a.s.−−→ 0,
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where y > 0 and ∂R−y (k) is the negatively (clockwise) oriented boundary of the rectan-

gle Ry(k) = {z ∈ C : a1 ≤ Re(z) ≤ a2, |Im(z)| ≤ y}. a1 and a2 can be arbitrarily cho-

sen so that ψ(λk) ∈ [a1, a2] and [a1, a2] ⊂ ψ (Sψ,∞) where Sψ > sup ΓH , ψ
′(Sψ) = 0.

ψ (Sψ,∞) denotes the image of the interval (Sψ,∞) under ψ.

Lemma 1.1 implies

∣∣∣∣∣∣∣η̂k −
p∑
j=1

 1

2πi

∮
∂R−y (k)

dz

w(z)λj − z

 sT1EjE
T
j s2

∣∣∣∣∣∣∣ a.s.−−→ 0. (A.2)

Now we need to evaluate the integral in (A.2) in order to get the almost sure limit of

the random variable η̂k. First, we extend the ψ function to Ry(k) as follows,

ψ(z) := z

(
1 + γ

∫
λdH(λ)

z − λ

)
, ∀z ∈ Ry(k).

According to Marc̆enko and Pastur (1967), for all z ∈ C+, bF (z) = b is the unique

solution to the following equation

b =

∫
dH(λ)

λ(1− γ − γzb)− z
(A.3)

in the set {b ∈ C : γb− (1− γ)/z ∈ C+}. It is easy to see that bF also satisfies (A.3)

when z ∈ C−. Now we formally define the fF function introduced in (2.1),

fF (z) :=
z

w(z)
=

z

1− γ − γzbF (z)
, ∀z ∈ C \ R. (A.4)

Then bF can be expressed in terms of fF as,

bF (z) =
(1− γ)fF (z)− z

γzfF (z)
.
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By replacing b with [(1− γ)f − z] /γzf in (A.3),

f

(
1 + γ

∫
λdH(λ)

f − λ

)
= z. (A.5)

It is easy to see that bF is a solution to (A.3) if and only if fF is a solution to (A.5).

Therefore, for all z ∈ C+ (similarly for z ∈ C−), fF (z) = f is the unique solution to

(A.5) on C+ (respectively, C−). This implies ψ (fF (z)) = z for all z ∈ Ry(k) \ [a1, a2].

Now we focus on the case when z ∈ R\{0}. According to Silverstein and Choi

(1995), we can extend bF to R\{0} by defining bF (z) = limy→0+ bF (z + iy) for any

z ∈ R\{0}. The definition of fF can also be extended in a similar fashion. In

Lemma 1.2 we have shown that fF is the inverse function of ψ on (Sψ,∞), and there

exists Mf > sup ΓF for which ψ (Sψ,∞) = (Mf ,∞). Thus, [a1, a2] ⊂ ψ (Sψ,∞)

implies ψ (fF (z)) = z for all z ∈ Ry(k). Furthermore, the function ψ is continuous

and differentiable on Ry(k), and the derivative is given by,

ψ′(z) = 1− γ
∫ (

λ

z − λ

)2

dH(λ).

Then the integral in (A.2) can be expressed in terms of ψ and fF as follows,

1

2πi

∮
∂R−y (k)

dz

w(z)λj − z
=

1

2πi

∮
∂R−y (k)

dz
z

fF (z)
λj − z

=
1

2πi

∮
∂R−y (k)

1

λj − fF (z)
.
fF (z)

ψ (fF (z))
dz.

(A.6)

The integrand in the final expression is holomorphic on R−y (k) when j 6= k and

possesses a simple pole ψ(λk) when j = k. Therefore, when j 6= k the integral in
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(A.6) is zero. When j = k, applying the residue theorem on the final integral,

1

2πi

∮
∂R−y (k)

dz

w(z)λk − z
= lim

z→ψ(λk)

ψ(λk)− z
λk − fF (z)

.
fF (z)

ψ (fF (z))

= lim
z→ψ(λk)

ψ(λk)− ψ (fF (z))

λk − fF (z)
.
fF (z)

ψ (fF (z))

=
λkψ

′(λk)

ψ(λk)
.

This implies,

1

2πi

∮
∂R−y (k)

dz

w(z)λj − z
=


λkψ

′(λk)
ψ(λk)

j = k

0 j 6= k

and the proof is complete.

Proof of Lemma 1.1. First, we show that â1, â2, a1, a2 can be chosen satisfying

â1 → a1 and â2 → a2. This is possible due to the fact that dk
a.s.−−→ ψ(λk) and

ψ(λk) ⊂ ψ (Sψ,∞) = (Mf ,∞) where Mf > sup ΓF . Therefore, we can choose a

neighborhood [a1, a2] around ψ(λk) so that [a1, a2] ⊂ (Mf ,∞). Moreover, as Mf is

bounded away from the support of the sample LSD F and dk
a.s.−−→ ψ(λk), we can

select a neighborhood [â1, â2] around dk which does not contain any other eigenvalue

for which â1 → a1, â2 → a2. Then,

∣∣∣∣∣∣∣
1

2πi

∮
∂R̂−y (k)

m̂p(z)dz − 1

2πi

∮
∂R−y (k)

mp(z)dz

∣∣∣∣∣∣∣
≤ 1

2π

{
sup

z∈∂R̂−y (k)∪∂R+
y (k)

|m̂p(z)|

}
(|â1 − a1)|+ |â2 − a2)|)

+
1

2π

∮
∂R−y (k)

|m̂p(z)dz −mp(z)| |dz|. (A.7)
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From Cauchy-Schwartz inequality, we can obtain the following upper bound for m̂p,

|m̂p(z)| ≤ ‖s1‖‖s2‖
d
(
z,ΓFp

) ,
where d

(
z,ΓFp

)
= infy∈ΓFp

|z − y|. Since Fp → F point-wise and [a1, a2] is bounded

away from ΓF , d
(
z,ΓFp

)
is bounded away from zero with probability one for large

enough p and n. Therefore |m̂p(z)| is finite for z ∈ Ry(k) with probability one for

large enough p and n. Moreover, since [â1, â2] → [a1, a2], the interval [â1, â2] will

eventually be bounded away from ΓF . Thus, eventually the upper bound for |m̂p(z)|

will also be finite for z ∈ R̂y(k). Therefore, the first term on the right hand side of

(A.7) will go to zero as â1 → a1, â2 → a2.

Now, as m̂p(z) and mp(z) are holomorphic functions on the compact set ∂R−y (k),

sup
z∈∂R−y (k)

|m̂p(z)−mp(z)| <∞.

Also from (A.1), |m̂p(z)−mp(z)| a.s.−−→ 0 point-wise for all z ∈ C \ R. Therefore, by

dominated convergence theorem the second term on the right hand side of (A.7) also

converges to zero almost surely.

We can show the asymptotic equivalence of the limits derived in Theorem 2.2 and

Result 2.2 as a direct application of the following lemma.

Lemma 1.2. Suppose Assumptions 2.1–2.3 hold. If λk is a distant spike with multi-

plicity one, and dk is the corresponding sample eigenvalue, then

fF (dk)
p−→ λk;

dkgF (dk)

fF (dk)

p−→ ψ′(λk).

Proof. We have already established in the proof of Theorem 2.2 that for all z ∈ C+

(similarly for z ∈ C−), fF (z) = f is the unique solution to (A.5) on C+ (respec-

tively, C−). When z is restricted to C \ R, using (A.4) and the fact that bF (z) =
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∫
(τ − z)−1dF (τ) we can write,

fF (z) =
z

1 + γ
∫ τdF (τ)

z−τ

.

Now suppose z = x ∈ R \ {0}. Then both equations (A.3) and (A.5) will have

multiple roots (both real and complex valued depending on x and H). If we look at

(A.5) closely, we can see for real valued x it can be represented as ψ(f(x)) = x, where

the ψ function is as defined in (2.1). As we have seen in the proof of Theorem 2.1,

ψ is strictly increasing in the interval (Sψ,∞) where Sψ > sup ΓH and ψ′(Sψ) = 0.

Therefore, any real-valued solution f of ψ(f(x)) = x in (Sψ,∞) has to be the inverse

of ψ, which is unique due to the strict monotonicity of ψ on (Sψ,∞). Now suppose

ΓF is the support of the sample LSD F . We will show that there exists Mf > sup ΓF

such that for any x > Mf , the function fF is real-valued and it is a solution to (A.5)

in the interval (Sψ,∞). Thus it is also the unique such solution and the inverse of

the ψ function in (Sψ,∞).

Let x ∈ R, x > sup ΓF and z = x+ iy ∈ C+. Now, as z ∈ C+, fF (z) is the unique

solution to (A.5) in C+. Therefore, if we express fF (z) as u(z) + iv(z), then v(z) > 0.

Also, the imaginary part of (A.5) can be written as

v(z)

[
1− γ

∫
λ2dH(λ)

{u(z)− λ}2 + v(z)2

]
= y.

Both v(z) and y being positive implies that

1− γ
∫

λ2dH(λ)

{u(z)− λ}2 + v(z)2
> 0. (A.8)

Due to the continuity of fF on the set {z ∈ C+ : z = x+ iy, x > sup ΓF},

fF (x) = lim
y→0+

x+ iy

1 + γ
∫ τdF (τ)

x+iy−τ

=
x

1 + γ
∫ τdF (τ)

x−τ

,
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which is real-valued. Thus u(z) → fF (x) and v(z) → 0 as y → 0+. Therefore as

y → 0+, the inequality (A.8) becomes

1− γ
∫

λ2dH(λ)

{fF (x)− λ}2
> 0,

which implies ψ′ (fF (x)) > 0.

We can see that fF (x) attains zero at sup ΓF and it is strictly and unboundedly

increasing for x > sup ΓF . This ensures the existence of a threshold MF > sup ΓF

such that the function fF maps the interval (MF ,∞) to (Sψ,∞). Therefore, fF and ψ

are both strictly increasing, continuous and bijective mappings between the intervals

(MF ,∞) and (Sψ,∞). Since fF (z) is the unique solution to (A.5) in C+ when z ∈ C+,

fF is also a solution to (A.5) in (Sψ,∞) when x > MF due to the continuity of the

left hand side of (A.5) on the set {f ∈ C+ : f = u+iv, u > Sψ}, which further implies

that fF is the inverse function of ψ on (Sψ,∞).

The first part of this lemma is proved as a corollary to Result 2.1 as ψ−1 = fF on

the domain of distant spikes, i.e. (Sψ,∞). For the second part we first need to derive

the expression of f ′F , and then derive the expression of ψ′ in terms of fF and F .

f ′F (x) =
f(x)

x
[1 + γvF (x)] ; vF (x) =

∫
τdF (τ)

(x− τ)2 .

For a distant spike λk, using the expression of f ′F we get,

λkψ
′(λk)

ψ(λk)
=

λk
ψ(λk)f ′F (ψ(λk))

=
1

1 + γfF (ψ(λk))
∫ τdF (τ)

[ψ(λk)−τ ]2

= gF (ψ(λk)) .

As ψ(λk) > Mf , gF is continuous at ψ(λ). Since dk
p−→ ψ(λk),

gF (dk)
p−→ gF (ψ(λk)) =

λkψ
′(λk)

ψ(λk)
;

dkgF (dk)

fF (dk)

p−→ ψ′(λk).

147



Proof of Theorem 2.3.

〈Pk, pk〉2 =
1

n2λkdk
〈XEk, Xek〉2 =

1

λkdk

(
ET
k

XTX

n
ek

)2

=
1

λkdk

[
ET
k

(
p∑
i=1

dieie
T
i

)
ek

]2

=
dk
λk
〈ek, Ek〉2 .

Using the limits derived in Theorem 2.2 and Result 2.1,

∣∣∣∣dkλk 〈ek, Ek〉2 − ψ′(λk)
∣∣∣∣ p−→ 0.

Using Lemma 1.2, ∣∣∣∣dkλk 〈ek, Ek〉2 − dkgF (dk)

fF (dk)

∣∣∣∣ p−→ 0.

Proof of Theorem 2.4. We show that the denominator E
(
p2
kj

)
converges to ψ(λk)

and the numerator E (q2
k) converges to λ2

k/ψ(λk). The proof will be complete using

the fact that dk
p−→ ψ(λk).

The denominator,

E
(
p2
kj

)
=

1

n
E

(
n∑
i=1

p2
ki

)
=

1

n
E

(
n∑
i=1

(xTi ek)
2

)

= E

(
eTk
XTX

n
ek

)
= E

[
eTk

(
p∑
i=1

dieie
T
i

)
ek

]
= E(dk)→ ψ(λk).

The numerator,

E
(
q2
k

)
= E

[
(xTnewek)

2
]

= E
[
E(xTnewek)

2|ek
]

= E
[
V ar(xTnewek)|ek

]
= E

[
eTkΣpek

]
.

Now, using the notations in the proof of Theorem 2.2 and Lemma 1.2, we have
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bF (z) =
∫

(τ − z)−1dF (τ) as the Stieltjes transform of the sample LSD and the

function fF defined as fF (z) = z [1− γ − γzbF (z)]−1. Therefore,

bF (z) =
(1− γ)fF (z)− z

γzfF (z)
.

The functions bF and fF can be extended to the real axis by defining the extensions as

shown in the proof of Lemma 1.2. Thus, for the sample eigenvalue dk corresponding

to the distant spike λk we have

bF (dk) =
(1− γ)fF (dk)− dk

γdkfF (dk)
.

According to Theorem 4 in Ledoit and Péché (2010), the limit of eTkΣpek is given by

dk [1− γ − γdkbF (dk)]
−2. Replacing the expression of bF (dk) in this limit, we get

∣∣∣∣eTkΣpek −
f 2
F (dk)

dk

∣∣∣∣ p−→ 0.

Using Result 2.1 and Lemma 1.2 we have f 2
F (dk)/dk

p−→ λ2
k/ψ(λk). Therefore, the

limit of the numerator is given by,

E(q2
k) = E

[
eTkΣpek

]
→ λ2

k

ψ(λk)
.
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APPENDIX B

Supplementary Tables and Figures for Chapter II

Settings Estimated no. of distant spikes
No. n p σ2 ρ 1 2 3 ≥ 4
1 500 5000 4 0.8 0 38.5 38.5 23
2 500 5000 1 0.7 0 69.5 26.5 4
3 500 5000 7.5 0.8 47.5 39 10 3.5
4 500 5000 4 0 0 94 6 0

Table B.1: Percentage of simulated datasets where the number of distant spikes were
estimated to be 1, 2, 3 or ≥ 4.
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(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

(d) Scenario 4. (e) Scenario 5.

Figure B.1: Empirical biases (%) in estimating the shrinkage factor corresponding to
the largest population eigenvalue for GSP-based and UHD-based meth-
ods. The population eigenvalues and the rate of increment of the largest
population eigenvalue are assumed to be unknown.
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Figure B.2: Sample sizes of the test samples that were included in the prediction error
estimation for different values of the thresholding parameter ε

Figure B.3: Distribution of the number of markers across different chromosomes.
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Figure B.4: Comparison of the mean squared errors (MSE) of the unadjusted, d-
GSP-adjusted, and SP-adjusted PC scores, with the λ-GSP-adjusted PC
scores using different values of the thresholding parameter ε. The ratios
of the MSEs are presented for chromosome 1-21. The Y-Axis is presented
in a logarithmic scale.
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APPENDIX C

Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Let Σp = UΛUT be the eigen-decomposition of Σp. As

rank(T ) = k, the first k eigenvalues λ1, . . . , λk of Σp will be non-zero, and the

rest will be zero. Let QT = P TR (such R exists as rank(P T ) = k), UTR =

A = [a1 a2 . . . aq]. Further, for any p × 1 orthonormal vector w, assume

γ = (γ1, . . . , γp) = UTw. wTw = 1 if and only if γTγ = 1. Then,

n−2wTPT TTQTQT TTP Tw = wTΣpRR
TΣpw

= γUTΣpUAA
TUTΣpUγ

= γΛAATΛγ

=

q∑
j=1

(
aTj Λγ

)2

=

q∑
j=1

(
k∑
l=1

λlajlγl

)2

Therefore, w = wi maximizes n−2wTPT TY Y TTP Tw with constraints wTw = 1 and

wTSxxwj = 0 for j = 1, . . . , i−1, if and only if γ = UTwi maximizes
∑q

j=1

(∑k
i=l λlajlγl

)2

with constraints γTγ = 1 and γTUTSxxwj = 0 for all j = 1, . . . , i − 1. The proof is

complete by noting that any γ (with the aforementioned constraints) which maximizes
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∑q
j=1

(∑k
l=1 λlajlγl

)2

must have all γk+1 = . . . = γp = 0 as the objective function

does not involve those elements.

Proof of Theorem 3.2. It is easy to verify that the eigenvalues and angles between

the sample and population eigenvectors are rotation invariant. Therefore, without loss

of generality, we assume that the population covariance matrix is diagonal, i.e., the

population eigenvectors u1, . . . , up are the p-dimensional euclidean basis vectors.

Now, if 1 < θi ≤ 1 +
√
γ, i.e., the eigenvalue θi is a close spike, then the proof

is given as a part of the proof for Lemma 2 in Lee et al. (2010). If we partition the

sample eigenvector vi as (vAi, vBi), where A represents the first k coordinates, and

B represents the rest. If we define Ri = ||vBi||, then Lee et al. (2010) showed that

Ri
p−→ 0 for 1 < θi ≤ 1 +

√
γ. As Ri =

√∑k
j=1 〈vi, uj〉

2, each individual 〈vi, uj〉
p−→ 0.

Next, we consider the case when θi = 1 and di > 0, i.e., the eigenvalue θi is a

non-spike. To prove this, we use the theoretical results in Ledoit and Péché (2010),

specifically Theorem 3. Following the definitions given in Ledoit and Péché (2010),

we define the following function in our notation,

Φp(d, λ) =
1

p

p∑
r=1

p∑
j=1

〈vr, uj〉2 1d≥di(d)× 1λ≥λj(λ) ∀d, λ ∈ R (C.1)

Ledoit and Péché (2010) showed that Φp satisfies the properties of a bivariate distri-

bution function. We assume the sample ESD and LSD to be Fp and F respectively,

and population ESD and LSD to be Hp and H respectively. Notice that, for spiked

population models, H is a degenerate distribution at unity. We further define the

Stieltjes transform of F to be b, and b̃(d) = limz∈C+→d b(z). Then,

Φ(d, 1) =
1

p

p∑
r=1

p∑
j=k+1

〈vr, uj〉2 1d≥di(d),
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which implies,

p∑
j=k+1

〈vi, uj〉2 = lim
h→0

Φp(di + h, 1)− Φp(di − h, 1)

Fp(di + h)− Fp(di − h)
.

Therefore, as p→∞,

p∑
j=k+1

〈vi, uj〉2
a.s.−−→ lim

h→0

Φ(di + h, 1)− Φ(di − h, 1)

F (di + h)− F (di − h)

=
∂Φ(d, 1)

∂F (d)
|d=di

= φ(di, 1),

where Φ and φ are given by Theorem 3 in Ledoit and Péché (2010). When γ > 1,

Φp(d, λ)
a.s.−−→ Φ(d, λ) at all points of continuity of Φ, where Φ(d, λ) =

∫ d
−∞

∫ λ
−∞ φ(δ, l)dH(l)dF (δ),

and

φ(δ, l) =
γδl

(pl − δ)2 + q2l2
, if δ > 0,

p and q are the real and imaginary parts of 1 − γ − γδb̃(δ), respectively. Therefore,

if we show that φ(di, 1) = 1, then the proof is complete, as
∑k

j=1 〈vi, uj〉
2 = 1 −∑p

j=k+1 〈vi, uj〉
2 a.s.−−→ 0.

Now, from the Marc̆enko–Pastur theorem (Marc̆enko and Pastur , 1967),

b(z) =

∫
dH(λ)

λ(1− γ − γzb(z))− z

=
1

1− γ − γzb(z)− z
.

(C.2)

Let us assume z = di + is and b(z) = x+ iy where x, y, s ∈ R. Then, solving (C.2),

x

x2 + y2
= 1− γ − γdix+ γsy − di

y

x2 + y2
= γsx+ γdiy + s.
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Letting s→ 0,

x

x2 + y2
→ 1− γ − γdix− di

y

x2 + y2
→ γdiy =⇒ x2 + y2 =

1

γdi
.

Solving for x and y, we get,

x→ 1− γ − di
2γdi

y →
√

4γdi − (1− γ − di)2

2γdi
.

Therefore, p and q, the real and imaginary parts of 1− γ − γdib̃(di) are given by,

p =
1− γ + di

2

q =

√
4γdi − (1− γ − di)2

2
.

Finally, replacing p and q into the expression for φ,

φ(di, 1) =
γdi

(p− di)2 + q2

= 1

and the proof is complete.
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APPENDIX D

Explanation Behind Using the Covariate-Adjusted

Genotypes (G̃) in the Expression of the Score

Statistic

We first note that S = G̃T (Y − µ̂) = GT (Y − µ̂) since µ̂ is the maximum like-

lihood estimator of µ under the null model and XT (Y − µ̂) = 0. Now, the score

function and the observed information matrix under the null model are given by,

U0 =

 XT (Y − µ̂)

GT (Y − µ̂)

 =

 0

S

 , I0 =

 XTWX XTWG

GTWX GTWG

 .
Therefore, the variance of S under H0 is given by,

VH0 (S) = GTWG−GTWX
(
XTWX

)−1
XTWG = GTWG̃ = G̃TWG̃.

So, even though the two expressions of S are algebraically equivalent, the variance

can be expressed as a weighted sum of µ̂i (1− µ̂i)s where the eights are given by G̃is.

Therefore, we used G̃ instead of G to express the score statistic.
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APPENDIX E

Supplementary Tables and Figures for Chapter IV

Genomic Control at qth p value quantile
Case:Control Test q = 0.5 (Median) q = 0.01 q = 0.01
10000:10000 fastSPA-2 1 1 1

fastSPA-BE 1 1 1
fastSPA-0.1 1 1 1

2000:18000 fastSPA-2 1.01 1 1
fastSPA-BE 1 1 1
fastSPA-0.1 1 1 1

40:19960 fastSPA-2 0.48 0.99 0.99
fastSPA-BE 1.83 0.99 0.99
fastSPA-0.1 1.83 0.99 0.99

Table E.1: Estimated inflation factors of the genomic controls at different p value
quantiles for the fastSPA-2, fastSPA-BE and fastSPA-0.1 tests applied on
5× 106 simulated variants. The significance level for the fastSPA-BE test
was selected to be α = 5×10−8. MAFs of variants were randomly sampled
from the MAF distribution of the MGI data.
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Genomic Control at qth p value quantile
Phenotype Test MAF cutoff q = 0.5 (Median) q = 0.01 q = 0.001

Skin Cancer fastSPA-2 All variants 1.11 1.02 1.03
> 0.001 1.02 1.02 1.04
> 0.01 1.01 1.03 1.05

fastSPA-BE All variants 1.02 1.02 1.03
> 0.001 1.02 1.02 1.04
> 0.01 1.01 1.03 1.05

fastSPA-0.1 All variants 1.01 1.02 1.03
> 0.001 1.01 1.02 1.04
> 0.01 1.01 1.03 1.05

Type-2 Diabetes fastSPA-2 All variants 1.11 1.02 1.01
> 0.001 1.02 1.02 1.02
> 0.01 1.03 1.02 1.02

fastSPA-BE All variants 1.00 1.02 1.01
> 0.001 1.02 1.02 1.02
> 0.01 1.02 1.02 1.02

fastSPA-0.1 All variants 1.00 1.02 1.01
> 0.001 1.02 1.02 1.02
> 0.01 1.02 1.02 1.02

Primary
Hypercoagulable State

fastSPA-2 All variants 0.37 1.02 0.98
> 0.001 1.03 0.99 1.01
> 0.01 1.00 1.00 1.02

fastSPA-BE All variants 1.04 1.02 0.98
> 0.001 0.96 0.99 1.01
> 0.01 1.02 1.00 1.02

fastSPA-0.1 All variants 1.04 1.02 0.98
> 0.001 0.96 0.99 1.01
> 0.01 1.01 1.00 1.02

Cystic Fibrosis fastSPA-2 All variants 0.12 0.99 1.01
> 0.001 0.62 0.98 0.98
> 0.01 1.07 0.99 0.98

fastSPA-BE All variants 1.27 1.00 1.01
> 0.001 0.93 0.98 0.98
> 0.01 1.07 0.99 0.98

fastSPA-0.1 All variants 1.27 1.00 1.01
> 0.001 0.94 0.98 0.98
> 0.01 1.07 0.99 0.98

Table E.2: Estimated inflation factor of the genomic controls at different p value
quantiles and different MAF cut-offs for the fastSPA-2, fastSPA-BE and
fastSPA-0.1 tests applied on four different phenotypes from the MGI data.
The genome-wide significance level for the fastSPA-BE test was selected
to be α = 5 × 10−8. Only the imputed variants were removed when we
used different MAF cutoffs. The SNPs present on the Illumina Human-
CoreExome v12.1 array were preserved.
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Figure E.1: Histogram of MAFs from the MGI data.
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Figure E.2: Empirical power curves for the traditional score, fastSPA-2 and Firth
tests at the nominal type I error level α = 5 × 10−8 based on 5000
simulated datasets. Top panel considers MAF = 0.05 and bottom panel
considers MAF = 0.01. From left to right, the plots consider case:control
= 10000:10000, 2000:18000 and 40:19960, respectively. In each plot x-
axis represents genotype odds ratios and y-axis represents the empirical
power.
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Figure E.3: Manhattan plots for four different phenotypes from the MGI data (all
genotyped and imputed variants with minor allele count > 3 included).
From left to right, the three panels show associations based on the
fastSPA-2, Firth, and traditional score tests. The red line represents
the genome-wide significance level α = 5× 10−8.
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APPENDIX F

Finding Optimal Nodes for Hermite Splines

Within each study, we need to obtain the node points at which we will share

the functional values of K ′(j) and K ′′(j), the first and second derivatives of the CGF

of the score statistic in the jth study under the null hypothesis. These node points

can be calculated using any standard optimization algorithm (Nelder-mead (Nelder

and Mead , 1965), variable metric (Nocedal and Wright , 2006), conjugate gradient

(Fletcher and Reeves , 1964), coordinate descent (Wright , 2015) etc.). As Hermite

splines provide local control of the spline approximation, i.e, perturbation of one

node does not change the whole interpolating curve, it only changes the cubic pieces

adjacent to that node, the coordinate descent algorithm can be applied for finding

the optimal nodes. In the R package we implemented a coordinate descent algorithm

tailored to our specific problem to find the optimal nodes. The software also allows

the nodes to vary between different studies. By default, we use seven nodes in our

software, one of which is kept fixed at zero since the values K(j)(0) = K ′(j)(0) = 0

are known, and we share the value of K ′′(j)(0) which is the variance of score statistic

within the jth study. To find the remaining six nodes, we use the following loss

function,

L(t, u˜) = w(t)
∣∣∣K ′(j)(t)− K̂ ′(j)u˜ (t)

∣∣∣ ,
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where K̂
′(j)
u˜ (t) is the spline approximation of K ′(j) given the set of nodes u˜. The

weights w(t) are selected to be diminishing with larger absolute values of t as those

values correspond to almost flatter or linear parts of the K ′(j) function (see Fig-

ures F.1, F.2 and F.3). In simulations and real data analyses, we use the weights

w(t) = min
{

1, |t|−1/3
}

, and approximate the total loss R(u˜) by summing the loss

function L(t, u˜) over a grid of values of t. Then, to obtain the optimal set of nodes,

we minimize the total loss using a coordinate descent algorithm where the nodes are

treated as coordinates with the coordinate corresponding to the node at zero being

fixed.

The calculation of total loss R(u˜) requires to evaluate the K ′(j) function over a

grid of t values, which involves O(nj) (or O(mj) when using the faster approximation)

computations, where nj is the sample size, and mj is the number of minor allele

carriers for the jth study. Therefore, calculating optimal nodes for all of the variants

can be computationally expensive. Since µ
(j)
i s remain the same across all variants for

the jth study, the K ′(j) function depends mainly on the MAF of the variant. To reduce

the computation time, we group variants by their MAFs and obtain optimal nodes

for each group. We first divide the MAF range (0, 0.5] into 100 equal length bins, and

randomly sample 100 variants within each bin. Then we compute the optimal nodes

for those 100 selected variants, and use their coordinate-wise average of the nodes as

fixed nodes for all the variants in that bin. In our real data application, we compared

the p values when optimal nodes were calculated for all the variants, with p values

when optimal nodes were calculated based only on 100 variants for each MAF bin

to show that this reduced computation approach can still provide accurate p values.

Figure F.4 shows that the p values from the two node-finding strategies were almost

identical.
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Figure F.1: Example of different spline and normal approximation curves in approxi-
mating the CGF and its derivatives for a study with 2000 samples and a
balanced case-control ratio (1 : 1). The top and bottom panels represent
variants with MAF = 0.05 and 0.01, respectively. From left to right, the
plots show the curves of the CGF (K), its first derivative (K ′), and its
second derivative (K ′′). For the Hermite and natural spline approxima-
tions, seven optimal nodes (including a node at zero) were selected using
the coordinate-descent algorithm described in Chapter V. The optimal
nodes are represented by the diamond-shaped dots.
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Figure F.2: Example of different spline and normal approximation curves in approx-
imating the CGF and its derivatives for a study with 2000 samples and
a moderately unbalanced case-control ratio (1 : 9). The top and bottom
panels represent variants with MAF = 0.05 and 0.01, respectively. From
left to right, the plots show the curves of the CGF (K), its first derivative
(K ′), and its second derivative (K ′′). For the Hermite and natural spline
approximations, seven optimal nodes (including a node at zero) were se-
lected using the coordinate-descent algorithm described in Chapter V.
The optimal nodes are represented by the diamond-shaped dots.
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Figure F.3: Example of different spline and normal approximation curves in approx-
imating the CGF and its derivatives for a study with 2000 samples and
a extremely unbalanced case-control ratio (1 : 49). The top and bottom
panels represent variants with MAF = 0.05 and 0.01, respectively. From
left to right, the plots show the curves of the CGF (K), its first derivative
(K ′), and its second derivative (K ′′). For the Hermite and natural spline
approximations, seven optimal nodes (including a node at zero) were se-
lected using the coordinate-descent algorithm described in Chapter V.
The optimal nodes are represented by the diamond-shaped dots.
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Figure F.4: Comparison of p values from the CGF-Spline method when using the
node-finding algorithm for all variants against the reduced computation
approach using the node finding algorithm only for 100 variants per MAF
group. The left and right plots consider the phenotypes Ulcerative Colitis
and Psoriasis, respectively from the UK Biobank interim release data.
The X-axis represents the -log10 p values for the CGF-Spline method
when optimal nodes were calculated for all of the variants, and the Y-
axis represents the − log10 p values for the CGF-Spline method when
optimal nodes were only calculated for 100 variants for each of the 100
MAF groups.
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APPENDIX G

Simulation Details for Simulation Study 2

(Trans-Ethnic Meta-Analysis) in Chapter V

First, we selected 15000 samples of White ancestry (from a total of ∼ 140K

unrelated samples) of the UK Biobank interim release data without replacement, and

divided them in five groups of 3000 samples each. The samples with South Asian

(2179 unrelated samples) and Black ancestry (1788 unrelated samples) in the data

were placed into two groups of their own. Since this simulation is for imitating real

data scenarios, and not real data analysis itself, we used the self-reported ancestries

for this purpose. Within each of the seven groups, we performed principal component

analysis to calculate the PC scores.

Phenotype Simulation

We simulated the phenotypes using the logistic regression model,

logit
[
Pr
(
Y

(j)
i = 1

)]
= α(j) + 0.5×

5∑
k=1

X
(j)
ki +G

(j)
i γ(j), (G.1)

for i = 1, . . . , nj, where G
(j)
i is the genotype, X

(j)
ki s for k = 1, . . . , 4 are the four PC

scores for the ith subject in the jth group, and X
(j)
5i ∼ Bernoulli(0.5). To simulate the
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phenotypes under the null hypothesis of no association, γ(j) was set to be zero. To

simulate the phenotypes from different case-control imbalance settings, we selected

α(j) s corresponding to the prevalence of 0.4, 0.1 and 0.05, respectively for the case-

control ratios of 1 : 1, 1 : 9 and 1 : 49. For the five groups with White ancestry

samples, and the group with South Asian ancestry samples, we selected 2000 samples

from each group, and from the Black ancestry group we selected 1500 samples, to

match the case-control ratio. We denoted these seven sets of selected samples as the

seven studies as mentioned in Chapter V.

Genotype Simulation

Within each study, the genotypes were simulated using G
(j)
i ∼ Binomial

(
2, µ̂

(j)
i

)
,

where µ̂
(j)
i is the fitted probability of success for the ith subject in the jth study under

the binomial regression model,

η
(j)
i = α

(j)
1 +

4∑
k=1

X
(j)
ki β

(j)
1k .

η
(j)
i = exp

(
µ

(j)
i

)
/
[
1 + exp

(
µ

(j)
i

)]
, where the genotypes G

(j)
i ∼ Binomial

(
2, µ

(j)
i

)
.

To estimate the coefficients α
(j)
1 and β

(j)
1k for k = 1, . . . , 4, we regressed the genotypes

on the PC scores within each group for variants which have MAF at least 0.001 in all

groups. Instead of directly using binomial regression, we first applied linear regression

and then converted the linear regression coefficients to binomial regression coefficients,

because linear regression is computationally much faster than binomial regression. To

convert the linear regression coefficients to binomial regression coefficients, we used

a method similar to the one described by Pirinen et al. (2013). In that paper, the

authors described the method to estimate the logistic regression coefficients (with

Bernoulli outcomes) using linear regression coefficients. In our case, the genotypes are

assumed to follow binomial distributions instead of Bernoulli distributions typically
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assumed in logistic regression models. However, since the canonical link function for

both Bernoulli and binomial outcomes are the same (logistic link function), a simple

modification of this method will serve our purpose. To apply our modified method,

we first express the linear regression model as

G
(j)
i = α

(j)
0 +X

(j)
i β

(j)
0 + ε

(j)
i ,

and the binomial regression model as

η
(j)
i = α

(j)
1 +X

(j)
i β

(j)
1 , (G.2)

where X
(j)
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1i , . . . , X
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4i

)T
, β
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04
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, β
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(
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14

)
and

ε
(j)
i is the error term for the linear regression model. We want to estimate the logistic

regression coefficients α
(j)
1 and β

(j)
1 using the linear regression coefficient estimates

α̂
(j)
0 and β̂

(j)
0 . Then, under the binomial regression model (G.2) the Taylor series

expansion of E
(
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i

)
around the mean is given by,
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Assuming the effects in log-odds scale to be small such that
(
X

(j)
i β

(j)
1

)2

≈ 0, the first

order approximation of E
(
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is given by,
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This expression is of the same form as in the expression of E
(
G

(j)
i

)
in the linear

regression model,

E
(
G

(j)
i

)
= α

(j)
0 +X

(j)
i β

(j)
0 (G.4)

Comparing (G.3) and (G.4), we get the relationship between the logistic and linear

regression coefficients given by,

α
(j)
0 = 2

eα
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1

1 + eα
(j)
1

, β
(j)
0 = 2

eα
(j)
1[

1 + eα
(j)
1

]2β
(j)
1 .

Therefore, the logistic regression coefficient estimates α̂
(j)
1 , β̂

(j)
1 can be calculated from

the linear regression estimates α̂
(j)
0 , β̂

(j)
0 using the formulae,
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) .
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APPENDIX H

UK Biobank Data Description

Interim Release Data

The individuals were genotyped based on UK BiLEVE Axiom array (Wain et al.,

2015) (807,411 markers, ∼ 50K individuals genotyped) and UK Biobank Axiom array

(The UK Biobank Array Design Group, 2014) (825,927 markers, ∼ 100K individu-

als genotyped) by Affymetrix, and then genotypes were imputed using a combined

reference panel of UK10K (The UK10K Consortium et al., 2015) and 1000 Genomes

Phase 3 (The 1000 Genomes Project Consortium et al., 2015) panels. The final geno-

type data contained 784,256 directly genotyped and ∼ 72 million imputed autosomal

markers.

Data Pre-Processing

PheWAS codes (https://phewascatalog.org/phecodes) were used to denote

the phenotypes. The White British samples were inferred using both self-reported in-

formation and genetic similarity, then the related samples were removed using KING
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(Manichaikul et al., 2010; UK Biobank , 2015) The principal components were cal-

culated based on the samples within each study using the fastPCA (Galinsky et al.,

2016a,b; Price et al., 2006) method. In the documentation of the UK Biobank interim

release (UK Biobank , 2015), it was mentioned that 65 genotyped autosomal markers

have significantly different allele frequencies in the UK BiLEVE and the UK Biobank

Axiom arrays, 27 of which were included in phasing and imputation. We removed

those 65 genotyped markers as well as any imputed markers within 10Kb neighbour-

hood of those 27 markers used for phasing and imputation, from our analysis.
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APPENDIX I

Supplementary Tables and Figures for Chapter V

Figure I.1: Histogram of MAFs based on the white British ancestry samples from the
UK Biobank interim release data.
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Center
Ulcerative Colitis (555.2) Psoriasis (696.4)
Case Control Total Case Control Total

Manchester 32 2250 2282 23 2953 2976
Oxford 27 2589 2616 12 2992 3004
Cardiff 35 3660 3695 21 4116 4137
Glasgow 53 3463 3516 28 4496 4524
Edinburgh 28 3755 3783 15 4034 4049
Stoke 38 4187 4225 29 4738 4767
Reading 52 5815 5867 20 6666 6686
Bury 70 5891 5961 41 6947 6988
Newcastle 84 7234 7318 78 8581 8659
Leeds 96 8907 9003 72 10220 10292
Bristol 72 8883 8955 60 10047 10107
Barts 24 1630 1654 5 1905 1910
Nottingham 75 6759 6834 56 7759 7815
Sheffield 54 6225 6279 39 7229 7268
Liverpool 63 6468 6531 74 7464 7538
Middlesborough 49 4255 4304 20 4977 4997
Hounslow 32 4278 4310 18 4814 4832
Croydon 37 4020 4057 14 4666 4680
Birmingham 29 4480 4509 32 4939 4971
*Swansea 3 460 463 1 535 536
*Wrexham 2 169 171 1 191 192
*Stockport 0 64 64 0 82 82

Table I.1: Case-control sample sizes for Ulcerative Colitis and Psoriasis, across differ-
ent assessment centers based on the unrelated samples from UK Biobank
interim release data with white British ancestry. Swansea, Wrexham and
Stockport were excluded from the analysis as those centers had less than
five cases each, for each of the phenotypes.
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Genomic control at the qth p value quantile
Phenotype Method p value q = 0.5 (Median) q = 0.001 q = 0.001

Ulcerative
Colitis

Z-Score
Score 0.82 1.33 2.03
fastSPA - 0.1 6.63 3.18 2.18
fastSPA - 2 0.68 0.82 0.92

GC
fastSPA - 0.1 1.40 0.96 1.00
fastSPA -2 0.85 1.01 1.03

CGF-Spline N/A 0.74 1.00 1.02

Psoriasis

Z-Score
Score 0.71 1.54 2.51
fastSPA - 0.1 9.14 3.53 2.41
fastSPA - 2 0.58 0.80 0.98

GC
fastSPA - 0.1 1.92 0.93 1.05
fastSPA -2 0.73 1.01 1.09

CGF-Spline N/A 0.64 1.04 1.10

Psoriasis
(MHC region
excluded)

Z-Score
Score 0.71 1.51 2.36
fastSPA - 0.1 9.14 3.52 2.4
fastSPA - 2 0.58 0.78 0.88

GC
fastSPA - 0.1 1.91 0.91 0.97
fastSPA -2 0.73 1.00 1.02

CGF-Spline N/A 0.64 1.02 1.03

Table I.2: Estimated inflation factor of the genomic controls at different p value quan-
tiles for different meta-analysis methods applied on the phenotypes Ulcer-
ative Colitis and Psoriasis, from the UK Biobank interim release data. For
Psoriasis, inflation factors were also calculated excluding the MHC region.

178



Figure I.2: Power curves for different meta-analysis methods at the nominal type I
error level α = 5 × 10−8 based on 5000 simulated datasets. Top panel
considers MAF = 0.01 and bottom panel considers MAF = 0.05. From
left to right, the plots consider case-control ratios 1 : 1, 1 : 9 and 1 : 49,
respectively. In each plot the X-axis represents genotype odds ratios and
the Y-axis represents the empirical power.
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Figure I.3: QQ plots for our proposed methods when the within-study tests were
performed on the imputed dosages from the UK Biobank interim release
data. The left panel corresponds to Ulcerative Colitis, and the right panel
corresponds to Psoriasis. Known associated loci in the MHC region were
removed from the QQ plots. The plots are color-coded based on different
MAF categories. To apply the GC method, genotype counts were calcu-
lated based on the best-called genotypes. We also calculated the genotype
counts from MAFs using the Hardy-Weinberg equilibrium, and by round-
ing the dosage values to the nearest integer. In both situations, the QQ
plots for the GC method were almost identical to the ones presented here,
and hence were omitted.
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Figure I.4: QQ plots for the genotype count-based method using numerical simula-
tions with very strong covariate effects. The simulation setting is identical
to the simulation study 1 discussed in the main manuscript, except the
log-odds ratios of the non-genetic covariates are set at 1.5 instead of 0.5.
P values were obtained from 10 million simulated datasets with MAFs se-
lected randomly from the MAF spectrum (Figure I.1) of the white British
ancestry samples from the UK Biobank interim release data.
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Wold, S., M. Sjöström, and L. Eriksson (2001), Pls-regression: a basic tool of chemo-
metrics, Chemometrics and Intelligent Laboratory Systems, 58 (2), 109–130, doi:
https://doi.org/10.1016/S0169-7439(01)00155-1.

Worley, B., and R. Powers (2013), Multivariate analysis in metabolomics, Curr.
Metabolomics, 1 (1), doi:10.2174/2213235X11301010092.

Wright, S. J. (2015), Coordinate descent algorithms, Mathematical Programming,
151 (1), 3–34, doi:10.1007/s10107-015-0892-3.

Zhang, M., et al. (2013), Genome-wide association studies identify several new loci
associated with pigmentation traits and skin cancer risk in european americans,
Human molecular genetics, 22 (14), 2948–2959, doi:10.1093/hmg/ddt142.

Zhou, W., et al. (2018), Efficiently controlling for case-control imbalance and sample
relatedness in large-scale genetic association studies, Nature Genetics (In Press).

193


