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ABSTRACT

Firms have encountered an ever-increasing number of supply chain disruptions in the past

decade, triggered by a wide range of natural and man-made causes. Supply chain risk man-

agement is thus an active research area, while the concerning topics mainly focused on the

management at the immediate supplier level. In contrast, anecdotes reveal that shortages can

oftentimes be traced back to the problems at sub-tier suppliers, i.e., tier-2 or more upstream

suppliers. Further, the structure of a supply chain is not exogenously generated. For exam-

ple, lack of incentives may discourage manufacturers from entering a market and create a

highly concentrated industry that could be vulnerable to supply shocks and price manipula-

tion. These two topics, the sub-tier supplier structure and impacts and the entry decisions of

manufacturers are the two main themes of this thesis.

More specifically, this thesis presents empirical results that improve our understanding

of 1) risk propagation from sub-tier suppliers to the connected focal firms and 2) barriers

to entry for manufacturers. The first part of the thesis considers the sub-tier suppliers and

the network structure that connects the supply chain partners. It demonstrates the financial

performance link between firms and their tier-2 suppliers respectively. It also establishes

the intermediary effect of network concentration: when a firm’s tier-1 suppliers share tier-

2 suppliers. The second part of the thesis focuses on the generic pharmaceutical industry

plagued by the high concentration of firms in markets with expired patents. This chapter

studies the key determinants of market entry decisions by generic firms and confirms the

role of manufacturing process and regulatory environment. Policy simulation result shows

the non-monotone relationship between the speed of the government review process and

market concentration level.
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CHAPTER 1

Introduction

In the recent years, firms in multiple industries have experienced a surge of supply chain
discontinuities. As a consequence, many consumer goods have been reported in short supply,
including on-demand electronics and automobiles, as well as medications for treating life-
threatening diseases (Kyodo 2011, Fink Jan 29, 2016).

The supply chain risk management literature has investigated many important factors that
help mitigate supply disruptions. One stream of research analyzes the role of inventory in
protecting firms against supply chain disruptions (see Parlar and Berkin 1991, Parlar 1997,
Qi et al. 2009, for example). Others explore the use of supplier diversification as a viable
strategy to mitigate supply chain risks (see Li et al. 2010, Babich et al. 2007, for example).
Additionally, scholars have also looked into the benefit of flexibility (Tang and Tomlin 2008,
Huchzermeier and Cohen 1996), vertical integration (Braunscheidel and Suresh 2009), and
the level of trust between supply chain partners (Bode et al. 2011) on firms’ supply chain
agility. Sodhi and Chopra (2004) broadly categorize seven types of supply chain risks and
discuss the drivers of each risk category and their mitigation strategies.

The literature is rich in theoretical analyses, whereas empirical work is relatively sparse.
The limited data availability and the restricted data access make it particularly challenging
to conduct empirical studies in this field. Unlike retailers who actively collect information
about their customers, firms rarely collect performance information of suppliers. Even if
firms collect such supplier information, they are not willing to share the propriety data with
outsiders due to, for example, competitive reasons (Ang et al. 2016). Data for this thesis
is acquired from various data sources, including publicly available databases, Freedom of
Information Act data inquiries, and web crawling.

Besides the research methodology, topic-wise, the supply chain risk management liter-
ature mainly targets on the risk management at manufacturers, at immediate suppliers, or
at the interactions between the two supply chain partners. On the contrary, the 2011 Japan
earthquake and tsunami and Thailand flood revealed substantial supply disruption risks orig-
inating from unknown sub-tier suppliers, especially in automotive and high-tech industry
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(Masui and Nishi 2012). In addition, public concerns on the recent unstable drug supply and
high drug prices revealed the market concentration problem in the regulated pharmaceuti-
cal industry, i.e., the insufficient number of generic manufacturers in selected drug products
(GAO 2016b). To address the two practical concerns respectively, this thesis presents empir-
ical efforts towards providing firms and policy makers with new insights on how to maintain
a continuous supply of goods.

Below I give an overview of the thesis and summarize the contributions. Chapter 2 is
a descriptive analysis about the sub-tier supply chain structure. Chapter 3 and 4 contain
findings from two completed research papers.

Tier-2 Sharing in Multi-tier Supply Chains (Chapter 2)
After the Japanese earthquake and the Thailand flood in 2011, firms started to realize

that what they used to think as pyramid shaped supply chain is actually diamond shaped.
That is, even if firms use multi-sourcing strategy to mitigate supplier risks, their suppliers
may choose to source from the same tier-2 suppliers. Those shared tier-2 suppliers then
become the pinch points in the supply chain. In this chapter, using panel data on firm-
level supply chain relationship, we descriptively document the prevalence of tier-2 sharing
across industries. We find that the tier-2 sharing has widespread presence in firms’ multi-tier
supply chains, and the high-tech sector has the highest degree of tier-2 sharing among the
manufacturing industry.

Risky Suppliers or Risky Supply Chains (Chapter 3)
This chapter focuses on the financial risk transmission from sub-tier suppliers to cus-

tomers in the high-tech industry. Motivated by industry findings (Masui and Nishi 2012,
Japan METI 2011), this chapter studies the risks originated from tier-2 suppliers and looks
into the impact of a specific supply network structure: the sharing of a firm’s tier-2 suppliers
by its tier-1 suppliers. We show the causal link between the stock market performances of
remotely connected firms, and we also find that a firm experiences a more negative market
reaction if its disrupted tier-2 supplier is shared by a higher number of tier-1 suppliers. Sur-
prisingly, the magnitude of impact at the focal firm is similar to that at the directly disrupted
tier-2 suppliers. This result underscores the need for firms to monitor sub-tier suppliers,
and implies the potential for firms to prioritize their efforts when managing sub-tier supplier
risks. This chapter is based on a joint work with Jun Li and Ravi Anupindi (Wang et al.
2017).

Manufacturing and Regulatory Barriers to Generic Drug Competition (Chapter 4)
Generic medications typically attract a small number of manufacturers, with more than

half of the generic drugs produced by at most three firms. This insufficient market entry by
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generic manufacturers makes the pharmaceutical supply chain vulnerable to supply shock
and price manipulation. This chapter investigates the determinants of a firm’s entry decision
into generic drug markets. Unlike entry game literature for other industries (e.g., Berry 1992,
Aguirregabiria and Ho 2012), this chapter mainly focuses on the impact of regulatory envi-
ronment because this is the leverage that the government can use to encourage entries from
generic manufacturers. The counterfactual analysis shows a perhaps surprising result. Note
that government approval is required before generic manufacturers can bring drug product to
the market. We find that a shorter time to approval, which implies a reduced opportunity cost,
does not always attract more manufacturers. An explanation for this phenomenon is provided
based on the competition theory: the perceived crowded market deters players from entering.
This result suggests that the government should be more cautious in aggressively reducing
the time to approval, since it does not necessarily translate into the desired more competi-
tive market. This chapter is based on a joint work with Jun Li and Ravi Anupindi entitled
“Manufacturing and Regulatory Barriers to Generic Drug Competition: A Structural Model
Approach”.

Finally, we conclude in Chapter 5 with a brief summary and outline some future research
directions.
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CHAPTER 2

Tier-2 Sharing in Multi-tier Supply Chains

In the past decade firms have encountered an ever-increasing number of supply chain disrup-
tions, triggered by a wide range of natural and man-made causes such as earthquake, flood,
fire, labor protest, financial crisis and political unrest. These events have led to substan-
tial short-term losses (e.g., production delay, increased labor, and supply costs) as well as
long-term losses (e.g., market share erosion and bankruptcy). Among those events, supply
chain disruptions originating from sub-tier suppliers have increasingly caught the attention
of academia and industry, both of which used to focus on the risk management of immediate
tier-1 suppliers. In fact, the annual Supply Chain Resilience Surveys has consistently found
that almost half of the surveyed firms have experienced supply chain disruptions originated
from the sub-tier suppliers, especially from the tier-2 suppliers.

The supply chain disruptions from sub-tier suppliers are problematic, and yet the multi-
tier supply chain structure may amplify the impact of the disruptions and make the situations
even worse. Monthly after the 2011 Japanese tsunami, automakers started to realize the
concentration level in their upper tier supply chain. For example, Renesas Electronics, a
tier-2 semiconductor chip supplier of Toyota, provided customized chips to tens of Toyota’s
tier-1 suppliers (Pollack and Lohr Apr 27, 2011). The overlap in the upper-tier suppliers is
considered one of the causes that lead to the long lasting impact after the disaster, as firms
have no direct control on the higher tiers.

Despite the anecdotes, it remains unclear 1) whether the tier-2 sharing is widely observed
in firms’ supply chains; and 2) whether such a phenomenon is concentrated in selected in-
dustries. To look into these issues, we collect panel data on supplier-customer relationships.

The most commonly used firm-level supplier-customer relationship data source in lit-
erature is Compustat. However, due to the reporting rule, Compustat only identifies those
immediate customers who contribute more than 10 percent of revenues to the focal firm,
while systematically under-sampling major suppliers, especially those small to medium cus-
tomer firms. For this reason, we acquire the supplier-customer relationships from a different
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data source, Factset. Similar to Compustat, Factset is also a longitudinal dataset. It contains
all relationships documented in Compustat and complement the latter with information from
other sources, so the resulting dataset is more comprehensive than Compustat.

Using Factset, we build a longitudinal supply network containing 36,975 firms and
372,392 directional links. From the perspective of a tier-0 firm, a shared tier-2 supplier
gives rise to a network structure that takes the shape of a diamond (Japan METI 2011). To
characterize the diamond shape in supply networks, we define a metric, degree of common-

ality, which is the number of tier-1 suppliers that source from the same tier-2 supplier. Our
results show that on average, each tier-2 supplier provides inputs to 1.3 of the focal firm’s
tier-1 suppliers, and 7.1 percent of tier-2 suppliers are shared by five or more tier-1 suppliers.
The extent of tier-2 sharing also varies across sectors. Within the manufacturing industry,
firms in the high-tech sector has the highest degree of tier-2 sharing.

2.1 Supplier-Customer Relationship Data

We collect relationship information from Factset, a financial information and software com-
pany for investment professionals.1 Factset supplements Compustat, the commonly used
dataset for supply chain management research, with information based on regulatory filings
and company websites. Factset currently comprises supply chain relationships of 23,400
global companies, and reports the start date and the end date for each of these identified
relationships. For each relationship, it also categorizes the relationship type in the following
four buckets: supplier, customer, partner (marketing, licensing, etc.), and competitor. When
available, Factset also specifies percentage of the supplier’s revenue that the customer firm
makes up (% Revenue).

We focus on relationships with type ‘supplier’ or ‘customer’ from 2004 to mid-2015, and
we followed the steps below to clean the relationship data: 1) we removed those relationships
with non-identifiable firm names ; and 2) we removed those relationships that involve gov-
ernment procurement to focus on business between firms. After data cleaning, we ended up
with about 174,333 supply chain relationships across all industries, spanning thirteen years.

We now evaluate the quality of Factset relative to Compustat using valid relationships in
2012 as an example.2 Specifically, we compare supplier coverage of these two data sources
with regard to the number of suppliers identified. In 2012, Factset identified 50,385 supplier-
customer relationships (9,469 firms with supplier information), and Compustat identified

1FactSet Revere dataset, which contains corporate relationships, supply chains, and geographic risk expo-
sure information, is available on the Wharton Research Data Services (WRDS) platform.

2Evaluations using relationships in other years generate consistent conclusions.
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6,351 relationships (4,115 firms with supplier information). Factset both covers more firms
and identifies about four times more suppliers per firm than Compustat. This comparison
demonstrates that Factset has a broader coverage on supply chain relationships compared to
Compustat.

Note that all identified suppliers in Compustat are publicly traded firms3 while Factset
also contains privately held suppliers. The inclusion of the private firms allows us to con-
struct the network metric and study the tier-2 sharing pattern based on the comprehensive
multi-tier supply network. That said, to study the performance dependency between firms
linked through supply chain relationships, we need companies’ financial and operational
characteristics, which are unavailable for privately held firms. If we restrict our attention
to publicly traded firms, there exist other supply chain relationship databasets that are more
comprehensive than Factset, such as the Bloomberg dataset described in Section 3.3.1.

The advantage of the Factset database is that it allows for a panel view of supply chain
including privately held firms with a reasonable amount of data collection effort. Based on
the multi-tier supply chain constructed from Factset, we examine the supply chain structure
over time and construct the network metric that quantifies the degree of tier-2 sharing. In the
next chapter, we use Bloomberg data to study the performance correlation in linked firms,
because Bloomberg provides a broader coverage of supply chain relationships involving only
public traded firms. The collection of Bloomberg data is labor intensive and is performed
completely manually. As a result, we focus on the multi-tier supply chain of one particular
sector instead of the entire economy. We are going to use the results from this chapter to
motivate the choice of sector that we decide to focus on in the further performance analyses.

2.2 Empirical Findings

With the Factset longitudinal supply chain relationships data, we study 1) the heterogeneity
of the extent of tier-2 sharing across different sectors, and 2) the stability of supply chain
with regards to the tier-2 sharing pattern. To characterize the degree of tier-2 sharing, we
first propose a network metric that quantifies the overlaps in a firm’s tier-2 suppliers.

2.2.1 Network Metric

We measure the extent of tier-2 supplier sharing as follows. Consider the simple two-tier
supply network depicted in Figure 2.1, in which Firm 0 has three tier-1 suppliers, labeled A,

3Compustat data is based on the reporting of major customers of U.S. listed firms. Therefore, all the
suppliers inferred from the customer reporting are publicly traded firms in the United States.
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B, and C, and three tier-2 suppliers, labeled X, Y, and Z. Note that supplier Y is shared by all
tier-1 suppliers, whereas suppliers X and Z are not shared. The degree of sharing of a tier-2
supplier is reflected by the number of paths that connect the tier-0 firm to the tier-2 supplier.
In this figure, three paths connect the tier-0 firm to the tier-2 firm Y, yet only one path (each)
connects the tier-0 firm to X and Z. A tier-2 supplier is considered shared if more than one
path links a tier-0 firm to that tier-2 supplier.

Figure 2.1: Illustration of common tier-2 supplier with degree of tier-2 commonality k � 3.

0

A

B

C

X

Y

Z

Tier-0 Tier-1 Tier-2

We now define the pair-wise degree of commonality as the number of paths that link
every pair of tier-0 firm and tier-2 supplier. To obtain an aggregate measure of degree of
commonality for a tier-0 firm, we take the average of the pair-wise degree of commonality
of all pairs of the target tier-0 and its tier-2s. Let matrix A denote the binary customer-
supplier relationship where Aji indicates whether firm j supplies to firm i. The degree of
commonality of firm i can be represented as DCi �

°
jrA

2sji{
°
j 1rA2sji¡0. In Figure 2.1,

the first-order and second-order adjacency matrices are

A �

�
������������

pj,iq 0 A B C X Y Z

0 0 0 0 0 0 0 0

A 1 0 0 0 0 0 0

B 1 0 0 0 0 0 0

C 1 0 0 0 0 0 0

X 0 1 0 0 0 0 0

Y 0 1 1 1 0 0 0

Z 0 0 0 1 0 0 0

�
������������

, and A2 �

�
������������

pj,iq 0 A B C X Y Z

0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0

X 1 0 0 0 0 0 0

Y 3 0 0 0 0 0 0

Z 1 0 0 0 0 0 0

�
������������

(2.1)

respectively. The aggregate degree of commonality of the tier-0 firm can thus be computed
as p1 � 3 � 1q{3 � 1.66, which indicates that an average tier-2 supplier of the focal tier-0
firm is shared by 1.66 tier-1 suppliers. Thus, a degree of commonality equal to 1 indicates
no sharing through tier-1 suppliers, whereas a value greater than 1 indicates the existence of
sharing through the corresponding number of tier-1 suppliers.
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2.2.2 Degree of Tier-2 Sharing by Sectors

We first investigate the extent of tier-2 sharing, measured as the degree of commonality,
for firms in different sectors. Due to the position of industry in the whole economy, the
tier-2 sharing level of firms can be inherently higher for certain sectors. We focus on the
manufacturing industry in this analysis, and within the industry, we compare the degree of
commonality for firms across more refined sector groups. We use the Standard Industrial
Classification (SIC) to identify firms in the manufacturing industry. SIC is a commonly
used classification system that uses four-digit code to represent a firm’s major businesses.
We categorize all firms with SIC Code 2000-3999 as manufacturing firms. The degree of
commonality for all firms in the manufacturing industry is 1.38.

Table 2.1: Tier-2 Sharing Pattern across Manufacturing Sectors in 2012

Sector Degree Pct. of Firms with Pct. of Firms with
of Commonality Tier-2 Sharing¥5 Tier-2 Sharing¥10

Food and Tobacco (SIC 2000 - 2199) 1.29 2.01% 0.36%
Textiles and Lumber (SIC 2200 - 2599) 1.27 1.94% 0%
Paper and Printing (SIC 2600 - 2799) 1.23 3.41% 0%
Chemicals and Petroleum (SIC 2800 - 3099) 1.38 5.20% 1.55%
Stone and Leather (SIC 3100 - 3299) 1.21 1.23% 0%
Primary and Fab. Metals (SIC 3300 - 3499) 1.23 2.72% 0.19%
Industrial Machinery (SIC 3500 - 3599) 1.55 7.65% 2.29%
Electronics (SIC 3600 - 3699) 1.46 6.26% 2.47%
Transportation Equipment (SIC 3700 - 3799) 1.44 8.80% 3.94%
Instruments (SIC 3800 - 3899) 1.34 2.35% 0.39%
Miscellaneous Mfg. (SIC 3900 - 3999) 1.34 3.67% 0.92%

Table 2.1 demonstrates the heterogeneity of tier-2 sharing across different sectors. In the
table, we present the average degree of commonality, the percentage of firms with Tier-2
sharing ¥ 5, and the percentage of firms with Tier-2 sharing ¥ 10. We find that firms in the
industrial machinery sector and the electronics sector have a higher degree of commonality
compared to other manufacturing sectors. On the contrary, firms in the stone and leather
sector, the primary and fabricated metal sector and the paper and printing sector have a lower
degree of commonality. One potential explanation is that the three sectors are relatively
upstream sectors. Tier-2 suppliers of firms in the upstream sectors are more likely to be
commodity raw material providers. With the high interchangeability of commodity products,
it is less likely for tier-1 suppliers to source from the same tier-2 suppliers, and thus the
degree of commonality for firms in those sectors is lower.

Schmidt and Raman (2015) collect the number of announced disruptions, compiled from
the press releases distributed via the PRNewswire and Business Wire from January 1, 1998
until December 31, 2011 (cited in Table 2.2). In general, we find that the sectors with a
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Table 2.2: Disruption Announcements

Sector Num. of Disruption Announcements
(Schmidt and Raman 2015)

Food and Tobacco (SIC 2000 - 2199) 15
Textiles and Lumber (SIC 2200 - 2599) 23
Paper and Printing (SIC 2600 - 2799) 7
Chemicals and Petroleum (SIC 2800 - 3099) 91
Stone and Leather (SIC 3100 - 3299) 3
Primary and Fab. Metals (SIC 3300 - 3499) 39
Industrial Machinery (SIC 3500 - 3599) 27
Electronics (SIC 3600 - 3699) 66
Transportation Equipment (SIC 3700 - 3799) 30
Instruments (SIC 3800 - 3899) 43
Miscellaneous Mfg. (SIC 3900 - 3999) 6

higher degree of commonality (i.e., larger than 1.35) or a higher percentage of firms with
tier-2 sharing (i.e., 5% of the firms have tier-2 suppliers with sharing ¥ 5) also happened to
report a greater number of disruption announcements.

The correlation we observe here suggests that the extent of tier-2 sharing may influence
the disruptions experienced at the focal tier-0 firm. We acknowledge that there are factors
other than the tier-2 sharing pattern that can influence the supply disruptions, such as the
geographical location of the suppliers, the inventory level at facilities, etc. Based on the em-
pirical findings, we further validate the conjecture that the extent of tier-2 sharing influence
the tier-0 firm risk in the next Chapter.

2.2.3 Stability of Supply Chain Structure

With the rapid change in the global economy, it is plausible that not all supplier-customer
relationships persist for long periods of time. We use the Factset longitudinal relationship
data to assess the stability of supplier-customer relationships over time. In particular, we
investigate both 1) the length of each relationship and 2) the value of the sub-tier network
metric, degree of commonality.

We find that the average length of a supply chain relationship in Factset is 1.5 years. This
estimate is smaller than the duration of supplier relationships documented in the industry
reports, potentially due to the following two reasons. Firstly, some supply chain relationships
formed before 2003 and others continue beyond 2015. The length of the relationships thus
got truncated because of the time frame of the dataset. In addition, if firms stop the voluntary
disclosure of some of their sourcing activities, Factset would list the relationships as ended,
since the data center cannot validate the continuation of relationships.
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Figure 2.2: Degree of Commonality for Manufacturing Firms Across Years
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We now examine the stability of the tier-2 sharing pattern. Figure 2.2 shows that the
average degree of commonality for firms in the electronics sector, the instruments sector and
the stone and leather sector from 2004 to 2014.4 Taking the electronics sector as an example,
the value of the degree of commonality ranges from 1.29 to 1.53 across the 10 years and
starts to stay at a relatively stable level since 2010. In the 2010s, the degree of commonality
for electronics firms is around 1.48, implying that an average tier-2 supplier of an electronics
firm provides material inputs to 1.48 tier-1 suppliers of the focal tier-0 manufacturer. The
trend in the degree of commonality over time also holds if we choose to focus on the firms
in other manufacturing sectors. Generally, the extent of tier-2 sharing is high in 2005, and it
decreases to a relatively low level as in 2007-2009. The extent of tier-2 sharing then bounces
back starting from 2010 and stays at this relatively high level in the following years.

2.3 Conclusion and Discussion

Using the longitudinal supplier-customer relationship dataset from Factset, we construct the
multi-tier supply chain, which allows us to examine the extent of tier-2 supplier sharing
across industry sectors. Based on the constructed supply network, we find that tier-2 sharing
is prevalent in the manufacturing industry. In particular, the supply chain for firms in the
industrial machinery sector and the electronics sector contains more tier-2 sharing compared

4We select the three sectors based on their ranking of the degree of commonality in 2012. The electronics
sector is one of the sectors that have the highest degree of commonality, i.e., 1.46 in 2012; the stone and leather
sector is one of the sectors that have the lowest degree of commonality, i.e., 1.21 in 2012; the instrument sectors
has the median level of degree of commonality, i.e., 1.34 in 2012.
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to firms in other manufacturing sectors. On the sector level, we also find that the extent of
tier-2 sharing is positively correlated with the number of supply disruption announcements.

In the next chapter, we test the performance correlation between firms linked through
supplier-customer relationships and study the role of tier-2 sharing in the firms’ performance
dependency. As discussed in Section 2.1, we collect supply chain relationships data for one
sector from Bloomberg due to the data collection limitation and the broader coverage of
relationships between public traded firms.

We choose to focus on the high-tech sector, the electronics sector based on the SIC sys-
tem. Based on our empirical findings using Factset supply chain relationship data, the high-
tech sector is among the top few sectors that have a high degree of tier-2 sharing. According
to Schmidt and Raman (2015), the high-tech sector also has the second largest number of
disruption announcements from 1998 to 2011 among all manufacturing sectors. The large
sample of impactful supply incidents allows us to statistically identify the impact of tier-2
sharing on the firm’s financial performance. In addition, the hyper-competitive nature and
rapid growth rate of the sector make firms more vulnerable to supply risks (Taylor 2002).
The now famous Nokia Ericsson case (Eglin 2003) illustrates how a fire at a supplier’s plant
reshaped the European mobile phone market. Ericsson’s slower response to the disruption,
compared to Nokia, resulted in a loss in sales of approximately $400 million within a quarter
after the disruption. Ericsson lost three percent market share to Nokia only six months after
the incident. Short product life cycle, high demand variability, and aggressive competition
make the high-tech sector a particularly interesting test-bed for the study of supply chain
risks.
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CHAPTER 3

Risky Suppliers or Risky Supply Chains? An
Empirical Analysis of Sub-tier Supply Network
Structure on Firm Risk in the High-Tech Sector

Although past research on supply chain risk management has focused on immediate supply
chain connections, propagation of risks can extend beyond a firm’s direct linkages. The
structure of sub-tier supply network may also aid or prevent such risk propagation. In this
chapter we focus on a specific aspect of sub-tier network structure, the sharing of tier-2
suppliers, and empirically study its prevalence and quantify its impact. Using firm-level
supplier-customer relationship data in the high-tech industry, we find on average 20 percent
of tier-2 suppliers are shared by tier-1 suppliers. We also find tier-0 firm risk is positively
associated with common tier-2 supplier risk. The association is stronger with a higher degree
of commonality. To disentangle the effect of risky supply network structure from risky tier-
2 suppliers, we define two network metrics, viz., diamond ratio and cosine commonality
score. Both metrics evaluate the extent of tier-2 supplier sharing within a firm’s sub-tier
supply network. The diamond ratio is constructed based on the binary supplier-customer
relationships; the cosine commonality score also takes into account the firm’s relative dollar
spending on each of its suppliers. We find that a 10 percent increase in either metric is
associated with around 5 percent increase in tier-0 firm risk. Lastly, using a new source of
risk event data, we find firms experience significantly negative abnormal returns when their
tier-2 suppliers are located in the event impact area, even though they themselves are not.
The magnitude of this impact is much larger when the impacted tier-2 suppliers are heavily
shared, similar to the scale of directly impacted firms, though taking longer to materialize.
Overall our results reveal existence of substantial supply chain risks due to sub-tier supplier
overlapping and highlight the need for firms to increase visibility into their extended supply
network.
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3.1 Introduction

The last decade has amply demonstrated that competitiveness of firms critically depends
on the supply chains they orchestrate; examples include Dell, P&G, Zara, Walmart, and
Toyota (Shining Examples, The Economist). Clearly the numerous players in a firm’s supply
chain are interconnected through the flow of materials and information. This connectivity,
however, also extends to financial performance. For example, it has been suggested that
equity and insolvency risk of supply chain partners represent sources of external risks to
the interested firm (Cohen and Frazzini 2008, Menzly and Ozbas 2010, Hertzel et al. 2008).
While this stream of literature focuses primarily on quantifying the impact of direct supply
chain relationships, it is unclear whether or not the sub-tier suppliers are associated with a
(focal) firm’s financial performance.

The potential impact of sub-tier suppliers has only recently caught the attentions of sup-
ply chain professionals; for example, the 2011 Japan earthquake and tsunami and Thai-
land flood revealed substantial risks originating from previously unknown sub-tier suppli-
ers (Brennan 2011). Not only does the lack of visibility into sub-tier suppliers put firms
at greater risk, but analyzing the extent and impact of such risks also poses a major chal-
lenge for scholars. In this chapter, by constructing the extended supply chain network in the
high-tech industry, we examine the following questions: (1) Is the financial risk of a firm
associated with that of its sub-tier suppliers? (2) Is the financial risk of a firm associated
with its sub-tier supply network structure? (3) Are such associations causal?

On the one hand, sub-tier suppliers may not present a significant risk to a focal firm for
at least two reasons. First, sub-tier suppliers are located farther away in the supply chain.
Hence, the reach of their impact may be limited, perhaps due to risk mitigation efforts taken
by firms along the extended supply chain. Second, in the presence of a large number of
sub-tier suppliers (e.g., hundreds, thousands, or even more), idiosyncratic risks originating
from these sub-tier suppliers may, according to the law of large numbers, cancel out as they
propagate down the supply chain. On the other hand, sub-tier supplier risk could indeed
represent a source of neglected or underestimated risk, for several reasons. First, the fact that
firms do not have direct business relationships with sub-tier suppliers and typically have very
little visibility of them limit their capability to assess the size of the risk and therefore take
direct and effective actions to mitigate it. The annual Supply Chain Resilience Surveys from
2009 to 2016 consistently reveal that most firms do not have full supply chain visibility.1

Second, even with a large number of sub-tier suppliers, the law of large numbers may not

1The annual Supply Chain Resilience Surveys can be retrieved from the Business Continuity
Institute website. http://www.thebci.org/index.php/businesscontinuity/cat_view/
24-supply-chain-continuity/33-supply-chain-continuity/140-bci-resources
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hold due to interdependencies between these suppliers and, as a result, their risks may not
necessarily cancel out. For example, Acemoglu et al. (2012) illustrates that idiosyncratic
shocks of individual firms or sectors can aggregate to systematic fluctuations through the
physical network of input-output linkage.

Not only is it important to know who the sub-tier suppliers are, the structure of the net-
work that binds them together could also be important. For example, when many tier-1
suppliers share a common tier-2 supplier, the supply base potentially has a single-point of
failure. In the real business world, the structure of the sub-tier supply base appears to be a
mystery to many firms. “We thought our supply chain was pyramid shaped, but it turned

out to be barrel-shaped,” said a Toyota Motor Corporation spokesman (Brennan 2011) after
realizing the extensive sub-tier sharing in the firm’s supply chain.

How sharing of sub-tier suppliers impacts a firm’s risk is also unclear. Sub-tier concen-
tration may increase or decrease the risk to which the focal firm is exposed. On one hand,
common tier-2 suppliers in multiple tier-1s’ subnetworks will create risk inter-dependence
among the tier-1 suppliers. Such interdependence will negatively impact the effectiveness
of firms’ existing risk mitigation strategies. For example, Yang et al. (2012) show that co-
dependence between immediate supplier risks reduces the diversification benefit of dual-
sourcing. Masih-Tehrani et al. (2011) show that in a multi-source supply chain, ignoring
interdependence of supplier risks will lead to buyers’ underestimation of inventory cost and
overestimation of fill rate. On the other hand, sub-tier concentration may reduce other types
of risks. For example, being a common tier-2 supplier implies that it will likely receive high-
volume orders and, more importantly, from a more diversified customer base, which helps
ensure healthy cash flows and business continuity (Balakrishnan et al. 1996). Such volume
of business also permits the supplier to invest in innovation and to achieve a higher level
of efficiency (Galbraith 1968, Kamien and Schwartz 1975). As a result, the focal firm may
benefit from reduced risks from a more concentrated sub-tier supply base.

A major challenge in studying the effect of sub-tier suppliers and that of sub-tier network
structure is the lack of relevant sub-tier supplier data. Previous empirical studies in supply
chain management typically use the sector-level US input-output table of material flows (e.g.,
Cachon et al. 2007, Menzly and Ozbas 2010). The most commonly used firm-level supply-
customer relationship data source is Compustat. Though Compustat offers longitudinal data,
this database systematically under-sampling major suppliers for those small customer firms.
Moreover, Compustat also under-represents international suppliers, because only US listed
firms are required to report their major customers. However, over the past decade, firms
have increasingly relied on global suppliers to take advantage of lower input costs and ge-
ographical skill specialization (Hausman et al. 2005). Due to these reasons, we rely on a
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new data source, Bloomberg, whose new Supply Chain Function maps 35,000 firms with
their suppliers and customers. This data is more comprehensive than Compustat. For S&P
500 high-tech firms, for instance, the total number of suppliers, international and domestic,
identified by Bloomberg is on average seven times larger than that identified by Compustat.

Using Bloomberg, we collect both domestic and international supply chain relationships
and characterize the structure of a global multi-tier supply network for the high-tech sector.
Our choice of the high-tech sector was informed by the presence of a higher frequency of
supply shocks with substantial financial impacts in this sector. Our supply network contains
4,874 firms, including 2,427 high-tech firms, 2,447 non-high-tech suppliers, and 14,866 di-
rectional links. Using this dataset, we study the nature, structure, and influence of tier-2
supplier commonality on the performance of focal (also known as tier-0) firms.

First, we document the prevalence of overlapping sub-tier suppliers in the high-tech sec-
tor. Specifically, we find that on average 20 percent of tier-2 suppliers are shared by two
or more tier-1 suppliers and 2 percent of tier-2 suppliers are shared by at least five tier-1
suppliers.

Next, we quantify the association of the tier-2 supplier risk and the total equity risk of
the tier-0 firm, which is measured as stock return volatility, as in Hendricks and Singhal
(2005b). We also consider idiosyncratic risk to eliminate the effect of systematic risk due
to common risk factors. First, we find a positive yet small association between an average
tier-2 supplier (idiosyncratic and total) risk and tier-0 firm (idiosyncratic and total) risk.
However, the magnitude and the significance of this association increases with the degree
of commonality, measured as the number of tier-1 suppliers who share a tier-2 supplier.
In particular, when a tier-2 supplier is shared by five or more tier-1 suppliers, a 10 percent
increase in tier-2 supplier total risk is associated with 1.66 percent increase in tier-0 firm total
risk. Similar results are observed when we focus on idiosyncratic risk, but with a slightly
smaller magnitude.

Third, we examine whether a tier-0 firm’s risk comes from connectivity with risky tier-2
suppliers, or from having a risky supply network structure that embeds heavy tier-2 sharing.
To characterize the degree to tier-2 commonality, we propose several metrics, viz., diamond
ratio and cosine commonality score, and isolate the effect of sub-tier network structure on
firm risk from the effect of risky sub-tier suppliers. We find that a 10% increase in the
diamond ratio or the cosine commonality score is associated with around 5% (0.35 standard
deviation) increase in a tier-0 firm’s total equity risk, while controlling for average tier-
1 and tier-2 supplier risks, market risk, and various firm-specific financial and operational
characteristics. The effect of tier-2 commonality on a tier-0 firm’s idiosyncratic risk remains
similar, if not stronger.
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Lastly, one should be cautious in interpreting the volatility co-movement as the causal
impact of tier-2 suppliers’ risks on tier-0 firm risk. It can be caused by supply risks propa-
gating downstream, demand risks propagating upstream, or both. To establish the causal link
of risk propagation from tier-2 suppliers to tier-0 firms, we collect exogenous supply shocks
and study the post-event market reactions. Our approach avoids the potential disclosure bias
implicit in the common approach that collects supply chain disruptions through firms’ an-
nouncements (e.g., Hendricks and Singhal 2005b, Schmidt and Raman 2015), because we
collect the original risk incidences, which may or may not have an impact on firms and their
extended supply chains ex-ante. We find that firms with tier-2 suppliers located within close
proximity to a event location experience significantly negative abnormal returns following
the event, even though the firms themselves are not directly impacted. Moreover, the mag-
nitude of the impact is much larger when the impacted tier-2s are heavily shared (by five
or more tier-1 suppliers). This effect is on par with the magnitude when the firm is directly
impacted, but it takes longer to materialize.

In summary, this study represents the first attempt to empirically study the nature and
impact of sub-tier supply network structure on firm risk. Our results offer important insights
for firms and their supply chain managers regarding the existence, importance, and manage-
ment of sub-tier supplier risks. First, our results reveal that risks originating from sub-tier
suppliers do propagate to tier-0 firms, despite being only remotely connected, highlighting
the need for firms to increase visibility into their extended supply network. As reflected by
the 2016 Supply Chain Resilience Survey, 66% of organizations do not have full visibility
of their supply chains and 40% do not even analyze the source of supply chain disruptions,
due to lack of direct business relationship with sub-tier suppliers and tier-1 suppliers’ re-
luctance to disclose information (Grimm 2013). Our results thus reveal a potential source
of unmanaged or poorly managed supply chain risk driven by sub-tier network structure.
Second, even when firms complete sub-tier supply chain mapping, continuously monitor-
ing sub-tier suppliers and updating their risk profiles still involve extensive arduous efforts
from tier-0 firms and their tier-1 suppliers. Our results offer guidance on how to prioritize
such efforts. Specifically, firms should identify critical sub-tier suppliers shared by multi-
ple immediate suppliers, prioritize the monitoring of such suppliers, and manage their risks
more effectively. Lastly, the sub-tier commonality metrics that we propose in this chapter,
i.e., the diamond ratio and cosine commonality score, can be readily applied by firms to en-
hance their existing supply chain risk index, dynamically track changes in sub-tier network
structure, and benchmark themselves against industry standards.
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3.2 Literature Review

Despite the rich theoretical literature in supply chain risk management, empirical research in
this area is relatively sparse. Early empirical research has focused on the impact of disruption
announcements on a firm’s performance, mostly due to lack of relevant supply chain data.
Hendricks and Singhal (2003, 2005a,b) pioneered this line of research by using event stud-
ies to quantify the negative effect of supply chain disruptions on a firm’s stock price. They
measured change in financial performance using abnormal stock returns and return volatility
around the announcement date of a supply chain disruption. Subsequent studies extend this
line of work to analyze how firm characteristics and actions mitigate the impact of disrup-
tion risks. Hendricks et al. (2009) find that greater operational slack and lower geographic
diversification reduces the impact of disruptions. Schmidt and Raman (2015) find that ac-
tions to improve operational efficiency have different impacts on firms facing distinct types
of disruptions. Importantly, this line of research focuses on publicly announced supply chain
disruptions without regard to its sources. Our contribution is to study how a firm’s embed-
ded network structure, especially its sub-tier suppliers, facilitate or prevent the propagation
of risk.

More recently, researchers have found empirical support for shock transmission through
inter-firm and inter-sector linkages. Menzly and Ozbas (2010) show evidence of cross-
predictable returns between economically linked industries. The industry-level supply net-
work is induced from the input-output matrix reported by U.S. Bureau of Labor Statistics.
With more granular firm-level supplier-customer relationship data from Compustat, Cohen
and Frazzini (2008) document the return predictability of principal customers on a supplier
firm. Hertzel et al. (2008) find that a firm’s bankruptcy filing makes its suppliers as well
as its customer and supplier industries experience abnormal returns. Jain et al. (2013) use
transaction-level Import/Export data to build a one-step relationship between US and over-
seas firms and study how a shift to global sourcing affects firm’s inventory investment. Os-
adchiy et al. (2015) demonstrate that a more dispersed customer base is associated with
higher systematic risk (i.e., higher correlation of sales with the state of economy) using both
sector-level input-output tables as well as firm-level supply chain relationship data. Serpa
and Krishnan (2017) demonstrate the productivity spillover from customer firms to supplier
firms via various channels. Bray et al. (2016) work with facility-level automotive supply
chain relationship data and find that larger inter-factory distances decrease the product qual-
ity. This stream of work demonstrates strong correlation between the performances of a firm
and its immediate suppliers and customers, but their scope is limited to the direct business re-
lationships. We contribute to the literature by studying firm’s association with remote tier-2
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suppliers.
Besides the linkage itself, the structure of the supply network also matters to the firm.

The social network literature posits several measures of network structure that have been
used to study risk propagation and its impacts. In particular, the most commonly used ones
are degree centrality (Wu and Birge 2014), eigenvalue centrality (Acemoglu et al. 2012,
Ahern 2013, Wu and Birge 2014) and information centrality (Bellamy et al. 2014). While
commonly used in the social network literature, they characterize the importance of a node
in the global network, but not the sub-network relevant to each specific firm. In particular,
they do not capture how a pair of nodes (i.e., a tier-0 firm and any of its tier-2 suppliers) are
connected locally, for example, via what paths. Therefore, they cannot be used to analyze
the association of tier-0 firm risk with their sup-tier suppliers’ risks. In order to do so, and
informed by the recent initiations of sub-tier supply chain mapping in the industry (Sáenz and
Revilla 2013), we propose new metrics that capture exactly how tier-0 firms and their sub-
tier suppliers are connected. As we will show, these metrics significantly impact how risks
propagate in a firm’s extended supply network, and they can be easily applied by individual
firms for risk monitoring and benchmarking purposes.

3.3 Data

We collected supplier-customer relationship data from a new data source, Bloomberg, a pri-
vately held financial software, data and media company. In this section, we introduce the data
and the procedure we used to construct the sample for analysis. We then summarize the data
sample and evaluate the coverage of supplier information from Bloomerg and compare it to
Compustat, the most commonly used data source for firm-level supply chain relationships.

3.3.1 Supplier-Customer Relationship Data

We obtain information regarding global high-tech firms and their suppliers from Bloomberg,
which established its new database of supplier-customer relationships using multiple sources.
One source, similar to Compustat, relies on the SEC requirement that all US listed firms dis-
close their customers who comprise greater than 10% of annual revenues.2 Bloomberg’s
database supplements the SEC dataset with information that firms disclose in a variety of

2Even though the 10% revenue cutoff ensures the inclusion of major customers, this does not necessarily
imply the inclusion of major suppliers, because the revenue percentage cutoff is no explicitly relate to the cost
percentage cutoff. As we will demonstrate later, Compustat indeed under-represents large suppliers; and given
that the SEC reporting applies only to US listed firms, international suppliers are also under-represented in the
Compustat database.
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Table 3.1: Sample data from Bloomberg.

Name Country Market Cap Sales Surprise % Revenue Relationship Value Account As Type %Cost Source As Of Date

SAMSUNG ELECTRON South Korea 200.78B -0.0123

APPLIED MATERIAL United States 21.74B -0.0404 0.2 435.95M CAPEX 0.0804 *2012A CF 11/15/2012

JEONGMOON INFO South Korea 42.04M N.A. 0.26 1.57M COGS 0.0001 2013C3 CF 11/14/2012

IMARKET KOREA INC South Korea 818.83M -0.0151 0.3012 163.18M SG&A 0.0142 *2013C2 CF 7/26/2013

Notes. This table displays sample of supplier data available on Bloomberg. It lists three of Samsung Electron's suppliers. Note that these suppliers' market capitalizations 
and relationship values are presented in dollars. For each identified relationship, Bloomberg reports the relationship value, % revenue and % cost to the supplier and the 

customer, the data source, and the as of date for the relationship. Specifically, % revenue lists the supplier's revenue the firm makes up and % cost lists the firm's cost that 
supplier represents.

media, such as annual and quarterly reports, conference call transcripts, capital markets pre-
sentations, sell-side conferences, company press releases, company websites, etc. (Daven-
port 2011). Using data gleaned from these sources documented in several languages, the
Bloomberg database offers a comprehensive view of firm-level global supply chain relation-
ships.

The Bloomberg dataset currently comprises supply chain relationships of 35,000 com-
panies, and reports the source and date for each of these identified relationships. For each
relationship, it also categorizes the nature of the product or service accounted for by the cus-
tomer firm in the following four buckets: cost of goods sold (COGS), capital expenditure
on long-term assets (CAPEX), research and development (R&D), and sales, general and ad-
ministrative (SG&A). If available, Bloomberg quantifies the supplier-customer relationship
value in dollars. For each quantified relationship, it also specifies percentage of the customer
firm’s cost that the supplier represents (% Cost) as well as percentage of that supplier’s rev-
enue the customer firm makes up (% Revenue). Table 3.1 lists sample data obtained from
Bloomberg.

3.3.1.1 Data Summary

We retrieve supplier information for publicly traded high-tech firms from Bloomberg ter-
minals. Recall that the database classifies the nature of the supplier relationship into four
categories: COGS, CAPEX, R&D and SG&A. We first exclude relationships other than
COGS, because our study focuses on risk aggregation resulting from repeated business re-
lationships between a customer and its suppliers.3 We then restrict our attention to publicly
traded suppliers because further empirical analysis requires knowledge of financial and op-

3Repeated frequent interactions between customers and suppliers are necessary to allow us to observe the
correlation between firms’ financial risks. We thus focus our attention on supply chain relationships that are
categorized as “COGS.” We believe SG&A relationships are less likely to link two firms’ quarterly risks. For
example, stock return of a facility support supplier such as Microsoft is not likely to affect the customer’s
return. The other two types of supply chain relationships, CAPEX and R&D, are generally buyers’ long-term
investments. With the long duration of the investment, we do not expect to see the association between the
stock performance of supplier and customer in a short time horizon.
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erational characteristics of firms, unavailable for private firms.
We use Global Industry Classification Standard (GICS) to identify firms in the high-tech

sector. GICS is an industry taxonomy developed by Morgan Stanley Capital International
(MSCI) and Standard & Poor’s (S&P) for the global financial community and is available on
Bloomberg terminals. We categorize all firms in the information technology sector (GICS
Code: 45-) as high-tech firms. The definition of GICS code is generally consistent with that
of North American Industry Classification System (NAICS), the commonly used industry
code in US market research.4 We note two-thirds of suppliers of the high-tech firms also
belong to the high-tech sector. In addition, many high-tech firms source from firms in three
other industries, personal appliance (GICS code: 252010), electrical equipment (201040),
and machinery (201060). Therefore, to ensure accuracy and representativeness of our two-
tier supply network, we collect supplier information of firms in these industries as well.

The resulting supply network consists of 4,874 firms, including 2,427 high-tech firms and
2,447 non-high-tech firms who serve as suppliers of high-tech firms, and 14,866 directional
links indicating supplier-customer relationships. The 2,427 high-tech firms account for about
76 percent of the total market capitalization of the sector; the remaining firms tend to be small
international firms. If we focus on quantified relationships, the quantified supply network
consists of 4,253 firms and 13,482 quantified directional links indicating supplier-customer
relationships. We focus on the quantified relationships in the main analyses and conduct
additional analyses based on both quantified and unquantified relationships in the robustness
test (see Section 3.5.3 and Appendix 3.5.3.2 for details).

We now evaluate the quality of Bloomberg data relative to the commonly used supply
chain relationship data source, Compustat. We compare supplier coverage of these two data
sources with regard to the number of suppliers identified and purchase percentage quantified.
To conduct a fair comparison, and because all Compustat relationships are quantified, we
only consider quantified relationships from Bloomberg.

We find that for all S&P500 firms in the high-tech sector, Bloomberg on average identifies
four times more US suppliers and seven times more global suppliers than Compustat, as
illustrated in Table 3.2. On average, Bloomberg identifies 4.26 suppliers for a high-tech firm
in our sample, whereas Compustat identifies only 0.24 suppliers, as shown in Table 3.3. In
terms of percentage purchase, Bloomberg identifies on average 17.6% of purchase cost for
a high-tech firm in our sample, whereas Compustat only identifies 0.45% of purchase. In
order to calculate percentage purchase cost of each customer firm that a supplier represents,

4We also obtain the 8-digit GICS sub-industry code from Compustat North America and Compustat Global
to cross-validate the code we obtain from Bloomberg. 98% of firms have consistent GICS codes. We only label
a firm as a high-tech one if its GICS codes is associated with the information technology sector in both of the
two databases.
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we need to separate labor expense from COGS, following Serpa and Krishnan (2017) as
described in Appendix 3.8.1.

Table 3.2: Suppliers identified by Bloomberg and by Compustat.

Name GICS

Market 

Capitalization 

($Mn)

GVKEY
Ticker 

Symbol

# of Suppliers identified 

in Compustat

# of US Suppliers 

identified in Bloomberg

# of Suppliers identified 

in Bloomberg

Facebook 451010 80,175          170617 FB 3 5 10

eBay Inc. 451010 55,800          114524 EBAY 0 4 5

Yahoo Inc. 451010 23,464          62634 YHOO 2 20 25

53,146          2 10 13

Microsoft Corp. 451030 247,930        12141 MSFT 12 49 93

Oracle Corp. 451030 153,645        12142 ORCL 4 14 19

Salesforce.com 451030 23,036          157855 CRM 0 6 6

141,537        5 23 39

Cisco Systems 452010 105,483        20779 CSCO 20 89 118

QUALCOMM Inc. 452010 102,851        24800 QCOM 3 9 17

Motorola Solutions Inc. 452010 15,248          7585 MSI 10 71 120

74,527          11 56 85

Apple Inc. 452020 442,008        1690 AAPL 10 51 120

EMC Corp. 452020 52,375          12053 EMC 9 17 18

Hewlett-Packard 452020 49,967          5606 HPQ 33 94 187

181,450        17 54 108

Grand Average 67,538          9 36 62

Notes. This table lists the number of suppliers reported in Compustat and Bloomberg databases. We include all suppliers reported in Compustat in 2009 and later. To 

simplify the table, we include the top three (highest market capitalization) SP500 firms that stay in the listed four sub-industries.

Stata Code:

gen customer=lower(cnms)

gen yr=year(datadate)

list gvkey customer yr if strpos(customer, "emc corp") & (yr>=2009)

The significant differences in number of suppliers identified and percentage purchase
quantified demonstrate that Bloomberg is a much more comprehensive source of supplier
information than Compustat. We recognize that, even though Bloomberg is able to substan-
tially increase supply chain visibility, it still mostly represents large and significant suppliers.
Almost inevitably, due to the proprietary nature of such information, information regarding
small and insignificant suppliers will be under-represented. Nevertheless, we believe that
Bloomberg data provides us a unique opportunity to study sub-tier supply networks. In Ap-
pendix 3.5.3.1, we systematically investigate the existence of potential coverage bias and
conduct tests to ensure that our conclusions are not driven by such biases.

3.3.2 Firm Characteristics Data

To analyze the association between a tier-0 firm’s risk with its suppliers’ risks, we also need
to properly control for the effects of firm characteristics on its own risks. We therefore
retrieve quarterly financial and operational data for high-tech firms and their suppliers. The
data include market capitalization, financial leverage, return on assets, book to market ratio,
days in inventory, and inventory growth. We discuss in detail why we focus on this set of
control variables in Section 3.4. Summary statistics of firm characteristics are displayed in
Panel B in Table 3.3. To ensure representativeness of the supply chain relationship data, we
focus our study on the period from 2011 to 2013, because the supply chain relationship data
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Table 3.3: Summary Statistics

Mean Standard Deviation

Variable Overall Between Within # Firms # Obs

Panel A: Supply Chain Relationships

# Suppliers count 4.26 17.02 2,427

# Quantified Suppliers count 4.21 13.02 2,214

COGS Identified % 8.83 15.48 2,214

Purchases Identified % 17.60 31.26 951*

Purchases Identified (US firms) % 22.00 35.32 401*

Panel B: Firm Characteristics

Log Market Capitalization $Mn 5.61 1.99 2.00 0.24 4,089 29,614

Financial Leverage (FL) ratio 0.41 0.23 0.23 0.05 4,107 29,284

Return on Asset (ROA) ratio 2.25 9.63 9.46 4.37 3,809 27,613

Book to Market (BTM) ratio 0.96 0.73 0.72 0.23 4,062 29,563

Days in Inventory (DII) days 81.16 59.99 61.19 14.92 3,383 24,547

Inventory Growth(INGR) % 9.65 36.07 25.34 28.33 3,583 25,652

Notes. The summary statistics are for the firms in the more inclusive unquantified supply network. The summary statistics for the firms in the quantified supply 
network are generally similar. 

* Not all firms have employee data and/or compensation data available.

N

collected are mostly reported during fiscal year 2012 and are verified by Bloomberg as valid
as of 2013 Q4. To verify the stability of supply chain relationships from 2011 to 2013, we
conduct additional analyses using alternative data sources and confirm that our results are
also consistent under a short 2-year study period (see Appendix 3.8.2 for details).

3.4 Empirical Model

In this section, we first propose several metrics to measure the degree of tier-2 commonality.
We then discuss how we measure firm risks. Lastly, we present the empirical model used
to analyze the association of a firm’s risk with its tier-2 suppliers’ risks as well as with the
degree of tier-2 commonality.

3.4.1 Measures of Tier-2 Commonality

We introduce three metrics of tier-2 commonality : 1) diamond ratio and 2) cosine com-
monality score. The first metric is based on the binary customer-supplier relationship, while
the second metric is based on customer-supplier relationship weighted by the percentage of
purchase costs that a supplier represents.

3.4.1.1 Diamond Ratio:

In the previous chapter, we use the degree of commonality to characterize the degree to tier-2
commonality. While degree of commonality is an intuitive measure indicating the number of
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tier-1 suppliers that share a tier-2 supplier, the measure is influenced by the number of tier-1
suppliers that a firm has. That is, a tier-0 firm with more tier-1 suppliers is more likely to
have a higher degree of commonality. This may introduce a bias between the degree of com-
monality and firm size, because a large firm with a higher number of identified immediate
suppliers will tend to have a higher degree of commonality. To address this potential issue
we propose another metric, the diamond ratio.

Let matrix A denote the binary customer-supplier relationship where Aji indicates
whether firm j supplies to firm i. The diamond ratio of firm i is defined as DMDi �

DCi{
°
j 1Aji¡0 �

°
jrA

2sji{p
°
j 1Aji¡0 �

°
j 1rA2sjiq, which normalizes the degree of com-

monality with the size of the tier-1 supply base. Specifically, the diamond ratio of each tier-0
firm is obtained by dividing the degree of commonality by the number of tier-1 suppliers.

Figure 3.1: Illustration of common tier-2 supplier with degree of commonality k � 3.

0

A

B

C

X

Y

Z

Tier-0 Tier-1 Tier-2

Note. You may refer to matrices 2.1 for the first-order and second-order adjacency matrices for this illustration
example.

This metric also has an alternative intuitive interpretation. One can view the diamond
ratio as the number of observed tier-0 to tier-2 paths over the number of all possible paths in
a firm’s supply network. Note that the number of all possible paths is precisely the product of
the number of tier-1 suppliers and the number of tier-2 suppliers. For example, the diamond
ratio of the tier-0 firm in the supply network depicted in Figure 3.1 equals 5{p3� 3q � 0.56.
By definition, the diamond ratio can only take a value between 0 and 1, and a higher value
indicates the presence of more common tier-2 suppliers.

3.4.1.2 Cosine Commonality Score:

Our second measure, the cosine commonality score, considers cost-weighted supplier-
customer relationships. First, we define the cost percentage matrix C where Cji denotes
the percentage of firm i’s purchase cost attributed to supplier j. Note that the binary matrix
A which indicates whether firm j supplies to firm i satisfies Aji � 1Cji¡0. The rows of C
and A are indexed by supplier firms, and the columns are indexed by customer firms. If the
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supplier-customer relationship data are complete, the column sum of C should be 1. Using
matrices C and A, we define the Cosine Commonality Score (CCS) of firm i as

CCSi � median
j�m,Aji�Ami�1

cospC�,j, C�,mq � median
j�m,Aji�Ami�1

xC�,j , C�,my

}C�,j}2 }C�,m}2

where C�,j is the jth column of C, representing firm j’s spending on its own suppliers.
cospC�,j, C�,mq represents the pair-wise cosine similarity between the cost distributions of
tier-1 suppliers j and m. Cosine similarity is a common metric used in the social network
literature describing how similar two vectors are. The value of the cosine similarity between
the spending vectors of any two firms ranges from 0 to 1, where 0 indicates that the two
suppliers have no shared supplier (the spending vectors of the two firms are orthogonal), and
1 indicates that the two suppliers have the exact same supply base: same suppliers and same
spending (the spending vectors of the two firms are identical). For example, if tier-1 supplier
j single sources from firm A while tier-1 supplier m equally sources from firm B and C, the
spending vectors of the two tier-1 suppliers on the union of their supply base {A, B, C} are
[1, 0, 0] and [0, 1/2, 1/2]. In this case, the cosine similarity between the cost distributions
of tier-1 supplier j and m equals zero. If tier-1 supplier j instead sources equally from firm
A and B, the spending vector of j becomes [1/2, 1/2, 0]. Now the cosine similarity between
tier-1 supplier j and m equals to

a
1{2, suggesting the existence and the scale of tier-2

sharing.
After obtaining the cosine similarities, we aggregate the pair-wise measure for a focal

tier-0 firm over all pairs of its tier-1 suppliers. We choose median (rather than mean) among
all the pair-wise cosine similarities because of the high skewness of the distribution of cosine
similarities.5 Similar to the diamond ratio, a higher value of the cosine commonality score
suggests the presence of more tier-2 sharing in the focal tier-0 firm’s supply network.

3.4.2 Risk Measure

3.4.2.1 Firm Risk

We measure firm risks using stock return volatility, often referred to as firm total equity risk,
and use it as one dependent variable. It is measured by the variance of the rate of return of
the firm’s equity over a certain time period. In this study, we use a three-month time window.
We choose to analyze firm risk transmissions at quarterly frequencies to account for potential
delays in market reactions. The total equity risk of firm i in calendar quarter t is defined as,
VOLit � VarpRidq, d P t, where Rid represents daily return on day d. Note that the variance

5The results from using the average cosine similarity as the network metric are similar.
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of equity return has been widely used as a measure of firm total financial risk in previous
research (e.g., May 1995, Guay 1999, Hendricks and Singhal 2005b).

Asset pricing models suggest that a firm’s total equity risk is affected by both system-
atic risks and idiosyncratic risks. Systematic risks refer to risks that cannot be eliminated
by diversification. For example, all equities take on certain levels of market risk that, al-
beit different, are non-diversifiable. Idiosyncratic risk refers to the risk that can be avoided
through a diversified portfolio. For example, the risk of a plant shut-down due to floods can
be mitigated by investing in firms located in non-flood prone regions. An issue with a firm’s
specific supplier is typically considered as the firm’s idiosyncratic risk. We therefore follow
the finance literature and use the Fama-French three factor model (Fama and French 1993) to
separate out idiosyncratic risk from the total risk, and use idiosyncratic risk as an alternative
dependent variable in the subsequent analyses.

Factor Model To obtain the quarterly idiosyncratic risk, we first regress a firm’s stock
returns on the daily global factors over the three-year horizon. This is similar to the first
step in FamaMacBeth regression (Fama and MacBeth 1973), which is used to determine the
coefficients (βs) of systematic risks that a firm takes on. For each firm i, we regress

Rid � Rf
d � αi � βmi � pMKTd �Rf

dq � βsi � SMBd � βvi � HMLd � εid, (3.1)

where Rid represents the daily stock returns of firm i, Rf
d represents the daily risk-free rate,

MKTd represents the daily global market return factor, SMBd represents the return premium
of small firms over large firms in terms of market capitalization, and HMLd represents the
returns premium of value stocks over growth stocks. We follow the literature and use the
U.S. Treasury bill rate as the daily risk-free rate for firms in all countries (Ang et al. 2009).
MKTd, SMBd, and HMLd are also the same for all the firms, regardless of the firm’s trading
market. The estimated βi � rβmi , β

s
i , β

v
i s gives firm i’s association with the three common

risk factors. The residual εid is firm i’s daily residual return.6 We define a firm’s idiosyncratic
risk, idioVOLit, as the variance of the daily residual returns over a calendar quarter and use

6Besides the Fama-MacBeth regression, finance researchers alternatively measure the idiosyncratic risk
based on a daily rolling factor model. To obtain the residual εid of day d, we first estimate Equation 3.1
using daily returns over the past 90 days prior to day d. At least 20 active trading days in the past quarter
is required to obtain the estimated α̂i and β̂i � rβ̂m

i , β̂
s
i , β̂

v
i s. The residual of day d is then computed as

εid � Rid � Rf
d � α̂i � β̂m

i � pMKTd � Rf
dq � β̂s

i � SMBd � β̂v
i � HMLd. The idea here is for investors to

generate an expectation for the stock’s association with the common risk factors using past data. The residual
εid is then the excess return that cannot be predicted from prior knowledge. In this daily rolling case, the firm’s
idiosyncratic risk is again defined as the variance of εid over a calendar quarter. Note that compared to the
Fama-MacBeth approach, the daily rolling approach leads to noisier measurement of the idiosyncratic risk,
because each εid is derived after estimating Equation 3.1 over a different time period. We thus conduct the
main analyses using Fama-MacBeth idiosyncratic risk. The results based on the daily rolling idiosyncratic risk
are consistent, though with a smaller magnitude and significance.
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calendar quarter instead of fiscal quarter to account for the potential variation of fiscal year
end between businesses and countries. We retrieve daily stock prices (in local currency)
of high-tech firms from the Compustat North America and Compustat Global database and
compute the adjusted stock returns after controlling for dividends and splits. We obtain daily
global factors from the Applied Quantitative Research (2016). The more commonly used
Fama-French factors (Kenneth R. French Data Library 2016) are not available at a daily level
for the global market, only available at monthly level. However, we tested the consistency
of the two data sources for global factors by compounding the daily factors from the AQR
Data Library into monthly factors and comparing these to Fama-French factors. We found
that the two data sources are highly consistent, with a correlation of 0.998 for MKTd, 0.856
for SMBd, and 0.910 for HMLd.

One caveat for applying factor models in the global market: a standard approach for com-
puting these factors has yet to be established. The currently available and most commonly
used factor databases compute global factors based on developed markets only, excluding
data from developing countries. We therefore conduct alternative analyses to allow for in-
clusion of a country-specific market factor when calculating the idiosyncratic risks. Please
refer to discussions in Section 3.5.3 and Appendix 3.5.3.2 for details.

We end up with two risk measures, total equity risk and idiosyncratic risk, associated
with each firm. A firm is included in the subsequent analyses as long as it has at least one
non-missing quarterly risk for the study period.7 We similarly construct the market risks for
each trading market. All risk measures are winsorized at the 1% and the 99% levels.

We perform analyses for both the “local currency” case and the “USD” case. In the
latter scenario, we convert stock prices measured in the local currency to those measured in
US dollars using foreign exchange rates obtained from WRDS FX database. The “USD”
case is considered a better reflection of firm financial risk because the internalized currency
exchange risk is a factor that a firm should take into account when selecting suppliers (Min
1994). In Appendix 3.5.3.3, we conduct robustness checks using the risk measures in local
currency to understand the influence of currency exchange risk in the risk propagation along
the supply network.

3.4.2.2 Supplier Risks

To test the effect of suppliers’ risks on the tier-0 firm’s risk, we aggregate suppliers’ risks
by tier. We first follow Menzly and Ozbas (2010) to create portfolios of supplier firms and
weight each supplier using a normalized cost percentage, from the perspective of a tier-0

7We have alternatively excluded firms that are not actively traded for the entire study period. The results
from using the smaller sample of firms are consistent.
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firm. For example, if a firm has only two identified tier-1 suppliers, and spends an equal
amount between the two to acquire necessary inputs from them, we compute the tier-1 sup-
plier risk as the average of the stock return volatilities of the two suppliers. For a tier-0 firm
i, we let spl VOLit denote tier-1 supplier risk, and t2spl VOLit denote tier-2 supplier risk in
quarter t.

spl VOLit �

°
j Cji � VOLjt°

j Cji
, and t2spl VOLit �

°
j rC

2sji � VOLjt°
j rC

2sji
. (3.2)

Cji represents the percentage of firm i’s cost attributed to supplier j, and
°
j Cji is the

total percentage of purchase percentage of firm i identified. C2 is the squared matrix of C,
where rC2sji �

°
k CjkCki is the percentage of firm i’s cost attributed to its tier-2 supplier

j. In addition to the aggregate risk measures at each tier, we are particularly interested in
risks originating from common tier-2 suppliers. Let comt2spl VOLkit denote risks of those
tier-2 suppliers that are shared by at least k tier-1 suppliers. It can be computed as the
weighted risks of common tier-2 suppliers of firm i in quarter t with at least k degree of
tier-2 commonality.

comt2spl VOLkit �

°
j:rA2sji¥k

rC2sji � VOLjt°
j:rA2sji¥k

rC2sji
. (3.3)

Recall that matrix A is the binary indicator matrix of supplier-customer relationship, namely
Aij � 1Cij¡0. rA2sji is the pair-wise degree of commonality of supplier j in firm i’s supply
network, and rA2sji ¥ k denotes the set of tier-2 suppliers that are shared by at least k tier-1
suppliers.

We similarly define the aggregated suppliers’ idiosyncratic risks, spl idioVOLit,
t2spl idioVOLit, and comt2spl idioVOLkit. Note that purchase percentage may not neces-
sarily represent the importance of the part being supplied, and thus weighting supplier risk
by the normalized cost percentage may not be the correct way to aggregate the supplier risk.
Alternatively, we construct un-weighted supplier risk using the arithmetic mean (instead of
the percent-of-purchase weighted average) and conduct the subsequent analyses based on
this un-weighted supplier risk in Appendix 3.5.3.2.8

8Although the percent of purchase cost may not signify the importance of the supplied part, we still believe
that not all suppliers are equal. We therefore conduct robustness tests using alternative weighting schemes.
Specifically, we compute supplier risks using firm size, measured as the log market capitalization, as weights.
The results are still consistent, suggesting that the weights do not drive the final results we observe.
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3.4.3 Other Independent Variables

Other factors can potentially influence firm risk. Firm size measured by the logarithm of a
firm’s market capitalization, and financial leverage measured by the ratio of book value of
debt to the sum of the book value of debt and the market value of equity, are two impor-
tant determinants of firm equity risk (Ben-Zion and Shalit 1975). Following Schmidt and
Raman (2015), we also include firm profitability as a factor influencing firm risk. Although
return on assets, operating margin, and gross margin are all measures of firm profitability,
we only include return on assets in the regression due to collinearity. Our results are robust
to alternative measures of profitability.

Firm equity risk is also affected by the amount of inventory a firm holds. The supply
chain literature has long studied the role of inventory as a buffer against uncertain supply
and demand (e.g., Ritchken and Tapiero 1986, Chen et al. 2007, Hopp et al. 2008). Using
data from publicly listed US retailers, Alan et al. (2014) find that inventory productivity
can predict future stock returns. Both inventory level (days in inventory) and inventory
growth rate are included in our explanatory variables. Holding everything else constant,
firms with higher inventory levels are better able to buffer supply and demand uncertainties.
Following Hendricks et al. (2009), we use industry-adjusted days in inventory to account
for different levels of normal inventory across sub-industries identified by the 8-digit GICS
code. Inventory growth rate is associated with future firm performance, and hence firm risks;
higher inventory growth rates may either indicate excess supply relative to realized demand
or an expectation of faster growth. Apart from the inventory controls, we also include each
firm’s sales growth rate to account for its association with a firm’s inventory decision (Gaur
and Kesavan 2008). Inventory held by suppliers may actually reduce supply risks faced by
their customers. We therefore also control for tier-1 suppliers’ inventory level by taking the
(un-)weighted average of each supplier’s industry-adjusted days in inventory.

We control for the quarterly volatility of a firm’s trading market. Separating out the
market factor using the Fama-French factor model does not remove the association of a
firm’s return volatility and market return volatility (Herskovic et al. 2016). We obtain index
performances for the ten largest trading markets of the high-tech sector. Firms in our data
are traded in 60 different markets. We estimate a fixed effect using a small trading market
dummy for the firms traded in the other markets — each contains less than 1% of firms in
our sample. Multinational firms do not necessarily trade in countries of their main business
locations, so we create dummy variables for firms’ headquarter locations as well. A firm’s
stock performance can be influenced by the volatility intrinsic to a trading market and the
level of economic uncertainties in the country of operation. The geographic distribution of
firms’ operating locations in our sample is as follows, United States (19%), Japan (18%),
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Taiwan (17%), Mainland China(14%), and South Korea (10%). We group firms operating in
other origins as “other” in our regression analyses. Sub-industry dummies for every 8-digit
GICS code are included as well to control for industry specific risks.

3.4.4 Model Specification

Our dependent variable is firm financial risk, measured as total equity risk, VOLit, or idiosyn-
cratic risk, idioVOLit. Variables of interest are tier-2 supplier risk, common tier-2 supplier
risk, and the measure of sub-tier network structure, diamond ratio (DMD) and cosine com-
monality score (CCS). Other independent variables include market risk (mkt VOLit), tier-1
supplier risk (spl VOLit), and financial and operational characteristics denoted by matrix
Xit. Xit contains firm i’s size, financial leverage, return on asset, book-to-market ratio, days
in inventory, inventory growth rate, and supplier days in inventory in quarter t. Vector Di

contains the headquarter location dummies and the sub-industry dummies based on the 8-
digit GICS code. We follow Engle and Ng (1993) to consider log-volatility and apply the
log-log model here since both our dependent variable and the interested independent vari-
ables are volatility measures. Specifically, we use volit in lowercase to represent the natural
logarithm of VOLit.

volit � α0 � � α1mkt volit � α2spl volit �Xitγ �Diφ� εit

(3.4)

volit � α0 � β1t2spl volit � α1mkt volit � α2spl volit �Xitγ �Diφ� εit

(3.5)

volit � α0 � βk2comt2spl volkit � α1mkt volit � α2spl volit �Xitγ �Diφ� εit

(3.6)

volit � α0 � β3t2spl volit � β4DMDi � α1mkt volit � α2spl volit �Xitγ �Diφ� εit

(3.7)

volit � α0 � β3t2spl volit � β5CCSi � α1mkt volit � α2spl volit �Xitγ �Diφ� εit

(3.8)

Equation 3.4 is the base model excluding variables of interest. Equation 3.5 adds the
tier-2 supplier risk. We anticipate a positive β1, which indicates a positive association be-
tween tier-2 supplier risk and the tier-0 firm’s risk. Equation 3.6 estimates the association of
common tier-2 supplier risk with tier-0 firm risk. We expect βk2 to be positive and increase
as the degree of commonality k increases. Equation 3.7 and 3.8 separate the effect of tier-
2 supplier risk and sub-tier network structure on the tier-0 firm’s risk. We again expect a
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positive coefficient for tier-2 supplier risks, β3. We also anticipate a positive effect of the
diamond ratio (DMD) and cosine commonality score (CCS). That is, we expect a supply
network with a larger overlap among tier-2 suppliers to be associated with higher tier-0 firm
risk. In addition to the direction, we are also interested in the scale of the coefficients.

To focus on the influence of suppliers on firms’ idiosyncratic risk, we regress idioVOLit
against the total equity risk of the tier-1 suppliers, tier-2 suppliers, and the sub-tier network
measures. We also regress idioVOLit against the idiosyncratic risk of suppliers and the sub-
tier network measures to prevent any correlation between firms’ systematic risks being a
factor in the regression analyses. Recall that in the Fama-French three factor model, the
market factor MKTd is the same for all firms regardless of the firm’s trading market. We thus
include the market risk of each trading market in this second stage regression to control for
systematic risks due to additional country-specific market changes that are not controlled in
the three factor model. Note that the Fama-French three factor model has already accounted
for the risk generated by variations in firms’ market capitalization and book-to-market ratio.
Controlling for these variables of firms’ financial and operational characteristics in the sec-
ond stage achieves the objective of isolating the effects of suppliers from those of the firms’
own characteristics.

Three sets of estimates α1, α2, β1, βk2 , β3, β4, and β5 are generated from the following
three scenarios: 1) regressing total equity risk on suppliers’ total equity risks; 2) regress-
ing idiosyncratic risk on suppliers’ total equity risks; and 3) regressing idiosyncratic risk
on suppliers’ idiosyncratic risks. Note that idiosyncratic risks are estimated rather than ob-
served; therefore regression results involving idiosyncratic risk measures are noisier. The
significance level of the latter two sets of estimates will also therefore be lower.

We estimate Equations 3.4, 3.5 and 3.6 using firm fixed effects models to account for
potential unobserved firm characteristics, which can also be correlated with other covariates.
For example, firms with higher supply risks are more likely to use flexible capacity, which in
turn reduces risks. The use of firm fixed effect models eliminates the bias coming from time-
invariant firm characteristics. Following the suggestion of Petersen (2009), we also include
time fixed effects to capture the overall macroeconomic and industry trends and estimate the
standard errors clustered on the firm dimension. To determine the coefficients of sub-tier
network structure measures, namely the diamond ratio and cosine commonality score, fixed
effects models are no longer valid because firm fixed effects will absorb the effect of the
time-invariant sub-tier network structure. Instead, we use a random effects model with time
dummies and estimate firm-clustered standard errors. To further control for the potential
correlation in errors terms across firm dimension, we conduct a sensitivity test based on
the method developed in Driscoll and Kraay (1998). The nonparametric covariance matrix
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estimator developed in the referenced paper adjusts for heteroscedasticity and very general
forms of spatial (panel) and temporal (autocorrelation) dependence. Nevertheless, because
this estimator is based on an asymptotic theory, Hoechle et al. (2007) comments that one
should be cautious when applying this estimator to panels that contain a large cross-section
but only a short time dimension. For this reason, we present the results with the Driscoll and
Kraay standard errors in Appendix 3.5.3.2 rather than in the main text.

3.5 Empirical Results

We first demonstrate the prevalence of common tier-2 suppliers and then show how tier-2
supplier commonality is associated with tier-0 firm risk.

3.5.1 Tier-2 Commonality

Table 3.4 shows summary statistics of all three measures of tier-2 commonality, 1) degree of
commonality, 2) diamond ratio, and 3) cosine commonality score. We find that the median
degree of commonality of all tier-0 high-tech firms is 1.08, suggesting that more than half of
the firms have common tier-2 suppliers in their supply networks.

Table 3.4: Statistics of tier-2 commonality measures.

Degree of Commonality Diamond Ratio Cosine Commonality Score

Mean 1.175 0.318 0.068

Standard Deviation 0.256 0.166 0.152

.25 percentile 1.000 0.179 0.000

Median 1.083 0.323 0.001

.75 percentile 1.246 0.500 0.049

.95 percentile 1.705 0.558 0.432

Notes. Statistics are computed for high-tech firms that have at least two suppliers reported.

Using degree of commonality, we identify tier-2 firms that are heavily shared and also
tier-0 firms whose supply network involves the most tier-2 sharing. Appendix Table 3.21
lists all tier-2 firms who are shared by a large number of tier-1 suppliers, i.e., greater than
or equal to 20, in any tier-0 firm’s network. Most of the heavily shared tier-2 suppliers are
semiconductor companies. Numbers in the final column of the table represent the number
of tier-0 firms that source from these tier-2 suppliers. Our data also indicates that these tier-
2 suppliers are not necessarily immediate suppliers of the associated tier-0 firm, implying
that without sub-tier visibility, firms may not realize that they rely on a particular set of
sub-tier suppliers. For instance, 20 of Dell’s tier-1 suppliers and 24 of HP’s tier-1 suppliers
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source from Stats Chippac Ltd., which does not directly supply any of the S&P500 hardware
manufacturers. Appendix Table 3.22 lists all tier-0 firms whose supply network relies on
these heavily shared tier-2 firms. Most of them are in the Technology Hardware & Equipment
industry group (GICS code: 4520x). The table also indicates that many tier-2 suppliers are
shared in these firms’ supply networks — 35% are shared by at least two tier-1 suppliers,
and more than 10% are shared by at least five tier-1s.

3.5.2 The Association of Tier-2 Commonality with Firm Risk

Table 3.5 provides the estimates of the model that examines the association between the tier-
0 firm risk and tier-2 supplier risk. Column (a) reports the estimates of β1 in Equation 3.5, the
association of tier-2 supplier risk with the tier-0 firm risk. The coefficients are significantly
positive, yet not of large magnitude, in all three scenarios. This coefficient measures the
average effect of tier-2 supplier risk and does not account for the heterogeneity among tier-2
suppliers. Because we are particularly interested in the effects of common tier-2 suppliers,
we then estimate Equation 3.6 for different degrees of commonality, k ¤ 4 and k ¥ 5.9

The estimates are shown in columns (b) and (c). We observe that both the magnitude and
significance of the estimates are higher under higher degree of commonality. Examining
the associations between 1) tier-0 firm idiosyncratic risk and tier-2 supplier total risk and 2)
tier-0 firm idiosyncratic risk and tier-2 supplier idiosyncratic risk, reveals similar increasing
patterns; however, the magnitudes are smaller, and significance levels are slightly lower,
compared to the case with total risks. This is likely because idiosyncratic risks are noisier,
as they are estimated rather than directly observed.

Table 3.5: The Association Between Tier-0 Firm Risk and Tier-2 Supplier Risk

CORRELATION BETWEEN (a) (b) (c)

FIRM RISK Tier-2 shared by Tier-2 shared by

Tier-2 ≤ 4 Tier-1s ≥ 5 Tier-1s

Firm Total Equity Risk and 0.038** 0.036* 0.166***

Supplier Total Equity Risk (0.019) (0.019) (0.041)

Firm Idiosyncratic Risk and 0.031 0.029 0.086**

Supplier Total Equity Risk (0.019) (0.019) (0.041)

Firm Idiosyncratic Risk and 0.052** 0.050** 0.104**

Supplier Idiosyncratic Risk (0.020) (0.020) (0.051)

Notes. Standard errors adjusted for firm clusters are shown in parentheses. To simplify the table, we do not report on other controls. 

*** --- 0.01 level, **--- 0.05 level and *--- 0.1 level.

9We observe similar patterns in the results when using other cutoffs. However, we typically see that the
coefficient of tier-2 suppliers first become statistically significant across all models at p-value� 0.05 when they
are shared by at least 5 tier-1 suppliers. We therefore demonstrate the results using this cutoff.
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To separate the effects of risky sub-tier suppliers and risky sub-tier supply network struc-
ture, we estimate Equation 3.7 using the two proposed measures of tier-2 commonality: dia-
mond ratio and cosine similarity score. In Table 3.6, column (a) through column (c) display
the estimates using the diamond ratio, while column (d) to column (f) report the estimates
using the cosine commonality score. The coefficient of the diamond ratio is significant at
0.01 level, and it suggests that increasing the diamond ratio by one standard deviation results
in a 6.4% or 0.45 standard deviation increase in tier-0 total equity risk. Similar results are
found for the alternative measure, the cosine commonality score. The estimate is significant
at 0.01 level as well, and one standard deviation increase in the cosine commonality score
is associated with 4.6% or 0.32 standard deviation increase in tier-0 total equity risk. The
inclusion or exclusion of tier-2 supplier risk in the model does not change the magnitude
or the significance of the estimates of both sub-tier network measures, suggesting that the
network measure is indeed orthogonal to tier-2 supplier risk.

We then estimate Equation 3.7 using idiosyncratic risks instead of total risks and present
the results in Table 3.6. Columns (b) and (e) demonstrate the results from regressing tier-0
firm idiosyncratic risk on tier-1 and tier-2 total risks, measures of tier-2 commonality and the
same control variables as before. Columns (c) and (f) demonstrate the results from regressing
tier-0 firm idiosyncratic risk on tier-1 and tier-2 idiosyncratic risks for measures of tier-2
commonality and the same control variables as before. In all columns, the coefficients of
diamond ratio and cosine commonality score are significant at a similar magnitude to the
estimates obtained from using the total equity risk.

This set of results indicates that tier-0 firm risk is indeed positively associated with its
tier-2 supplier risk, and more so when its tier-2 suppliers are heavily shared. The network
structure that binds tier-2 suppliers affects tier-0 firm risk directly, regardless of the risk
levels of the tier-2 suppliers themselves. Given firms’ lack of visibility into sub-tier supply
network, our results reveals a potential source of unmanaged or poorly managed supply chain
risk driven by sub-tier network structure.10

3.5.3 Robustness Tests

In this section, we conduct multiple robustness analyses to ensure our results are not driven
by data coverage, model or variable specifications, or alternative explanations.

10The propagation of supply chain risk does not necessarily require market visibility of the sub-tier supply
network. Even if the market is unaware or not fully aware of the supply chain structures, the supply chain risk
might not be an ex-ante priced risk; the market can still react to risk events ex-post, even without knowledge
of the origin of the risk. Lack of visibility may delay market reactions, however (Hendricks and Singhal 2003,
Wu 2015), which is partially why we choose to conduct the analysis at quarterly level.
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Table 3.6: Regression of Firm Risk on Supplier Risk and Sub-tier Supply Network Structure

DEPENDENT VARIABLE: 

(a) (b) (c) (d) (e) (f)

Total Risk Idio Risk Idio Risk Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk 0.036** 0.028 0.049*** 0.036** 0.028 0.049**

(0.018) (0.018) (0.019) (0.018) (0.018) (0.019)

Diamond Ratio 0.635*** 0.752*** 0.758***

(0.157) (0.164) (0.164)

Cosine Commonality Score 0.456** 0.475** 0.486**

(0.202) (0.215) (0.215)

Market Risk 0.402*** 0.323*** 0.323*** 0.402*** 0.323*** 0.323***

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Tier-1 Supplier Risk 0.062*** 0.063*** 0.072*** 0.061*** 0.062*** 0.071***

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Financial and Operational controls Yes Yes Yes Yes Yes Yes

Country, Sub-industry controls Yes Yes Yes Yes Yes Yes

Random Effects Yes Yes Yes Yes Yes Yes

Observations 24,593 24,590 24,590 24,593 24,590 24,590

Number of Firms 2,122 2,122 2,122 2,122 2,122 2,122

Overall R-squared 0.1676 0.1514 0.1511 0.1690 0.1534 0.1531

Notes. Columns (a) and (d) regress total equity risk on suppliers' total equity risks; Columns (b) and (e) regress idiosyncratic risk on suppliers' total equity 

risks; Columns (c) and (f) regress idiosyncratic risk on suppliers' idiosyncratic risks. Standard errors adjusted for firm clusters are shown in parentheses. 

Market risk, tier-1 risk, and industry-adjusted (supplier) days in inventory are included with log transformation. Country and sub-industry dummies are 

included. To simplify the table, we do not report on controls. *** --- 0.01 level, **--- 0.05 level and *--- 0.1 level.

Tier-2 & Diamond Ratio Tier-2 & Cosine Commonality Score

3.5.3.1 Data Coverage Bias

Understanding what types of firms are more (or less) likely to have their supplier informa-
tion identified in the dataset is critical to assessing the impact of potential coverage bias on
the estimation results. In this section, we conduct tests to examine the existence and magni-
tude of potential coverage bias by country of origin, supply chain upstream and downstream
positions (as reflected by sub-industry code), and firm size.

It is reasonable to expect that each firm in the high-tech sector sources from at least
one supplier. We therefore use the percentage of having at least one supplier identified to
evaluate what types of firms are more (or less) likely to have biases in their supplier coverage.
Appendix Table 3.10 demonstrates how this measure varies across sub-industries (8-digit
GICS code) and headquarter locations. In each cell, we report the number of firms and the
percentage of firms with at least one supplier identified.

We find that firms operating in Taiwan as well as firms in the sub-industries of Technol-
ogy, Hardware, Storage & Peripherals and Technology Distributors are more likely to have at
least one supplier identified in the data; that is, these firms are likely to have more complete
supplier information. The results are consistent when we change the cutoff to at least five
identified suppliers, the average number of identified suppliers per high-tech firm (see Ap-
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pendix Table 3.11), except that US firms have the leading percentage of identified suppliers.
These patterns provide the basis for the sub-sample robustness tests to verify that our main
results are not driven by the coverage bias.

We thus test our models on the following subsamples: 1) close-to-market firms — firms
in the sub-industries of Technology, Hardware, Storage & Peripherals and Technology Dis-
tributors ; and 2) Taiwan or US firms.

Appendix Table 3.12 shows the subsample estimates for close-to-market firms and Ap-
pendix Table 3.13 shows the subsample estimates for Taiwan or US firms. Regardless of the
risk measure, the effect of the diamond ratio and cosine commonality score is consistently
estimated across all subsamples, and the estimates are significant in most of the cases. We
note that the effect may vary across different sub-samples (either due to data coverage bias
or heterogeneity), and we conclude that sub-tier network measure, in particular the diamond
ratio, influences tier-0 firm idiosyncratic risk.

3.5.3.2 Model and Variable Specifications

• Measures of idiosyncratic risks. To account for market variations in developing coun-
tries, we conduct the following alternative analysis of the CAPM model using country-
specific market returns. Note that the other two factors, SMB and HML, are not avail-
able for these developing countries. Specifically, we regress

Rid � Rf
d � αi � βmi � pRm

d �Rf
dq � εid

The difference here is that we use Rm
d , the country-specific market returns, which are

computed from daily index prices instead of the daily global market factor. This is the
only factor we control in this regression. We can similarly define a firm i’s idiosyn-
cratic risk as the variance of εid over a calendar quarter. Our conclusions regarding
the effect of tier-2 commonality on firm risk remain unchanged from using this alter-
native measure of idiosyncratic risk. Appendix Table 3.14 demonstrates the detailed
results.11

• Measures of sub-tier commonality. In the main analyses, we consider the quantified
supply chain relationships; however, it is unclear whether the percent of purchase cost
provides additional information on how a supplier influences the customer firm. On

11The daily index prices (in local currency) of the ten largest trading market of high-tech firms, United
States (SPX Index), Japan (NKY Index), Korea (KOSPI Index), Taiwan (TWOTCI Index), Mainland China
(SHASHR Index), France (CAC Index), India (SENSEX Index), Hongkong (HSI Index), United Kingdom
(UKX Index) and Germany (DAX Index), are retrieved from Yahoo Finance.
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the one hand, one may expect a larger supplier, who represents a significant portion
of the customer’s purchase cost, to likely have a larger influence on the customer’s
performance. Partially due to the lack of a better measure to account for component
criticality or the network location of a supplier, cost percentage has been used as a
proxy for supplier significance in theoretical papers that study how economic fluctu-
ations aggregate (Acemoglu et al. 2012) and empirical papers that study relationships
between supplier and customer returns (Menzly and Ozbas 2010). On the other hand,
supply chain problems have routinely been reported to be caused by suppliers who
account for only a small portion of purchase cost yet constitute a major threat when
impacted. For example, consequent to the Japan earthquake and tsunami in 2011,
shortage of components from the shared sub-tier suppliers, like Renesas (chip sup-
plier) and Merck (paint pigment supplier), caused months-long production delays for
automotive manufacturers (Kyodo 2011, Sedgwick 2014). Despite the small cost per-
centage of these components, supply problems at Renesas and Merck propagated to
manufactures owing to the component non-substitutability. Thus, the share of overall
purchase cost may or may not be a major driver of supplier risks. We therefore also
examine the results for the un-quantified supply chain relationships. Consistent results
are obtained as shown in Appendix Table 3.15.

• Measures of firm characteristics. Models in the main analyses control for firm’s finan-
cial and operational characteristic metrics, such as, financial leverage, size (log market
capitalization), book to market ratio, return on assets, days in inventory, and inven-
tory growth. Because the data sample includes both US and international firms, it is
possible that the different accounting standard between countries may endow different
meanings to the same metric. We therefore conduct two robustness checks: 1) esti-
mating the equations without the panel firm-level financial and operational controls;
and 2) estimating the equations using only US listed and US based firms. Results
presented in Appendix Tables 3.16 and 3.17 confirm that variation in the accounting
standard does not drive our main results.

• Correlated error terms. The fact that firms are connected through supply chain re-
lationships makes the observations non-independent. In other words, in the econo-
metric model (Equations 3.4 to 3.7’), error terms (εit) are not i.i.d across firm dimen-
sion; rather they can be correlated through supply chain relationships. Typically, the
variance-covariance structure of the error terms does not affect the asymptotic consis-
tency of the estimators; however, it does affect the accuracy of the estimation of stan-
dard errors. To adjust for such possibility, we follow the method developed in Driscoll
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and Kraay (1998) to correct the estimates of standard errors. Driscoll and Kraay devel-
oped a nonparametric covariance matrix estimator that adjusts for heteroscedasticity
and very general forms of spatial (panel) and temporal (autocorrelation) dependence.
This nonparametric technique produces consistent estimates of standard errors with no
restrictions on the size of the time dimension or the size of the cross-sectional dimen-
sion – even if the number of panels is much larger than the number of time periods.
We present the results of using the Driscoll and Kraay standard errors in Appendix
Table 3.18. In most cases, this adjustment leads to smaller standard errors and higher
statistical significance levels. However, the magnitudes of the coefficients of network
measures can be smaller when using pooled OLS (to apply the Driscoll and Kraay
adjustments) instead of a random effects model.

3.5.3.3 Alternative Explanations

• Currency risks. Global sourcing has become an increasingly popular business strategy
in the past decades, due to discrepancy in inputs costs and skill specialization among
countries (Hausman et al. 2005). In our data, on average about 75% of a firm’s sup-
pliers are international suppliers, based on the headquarter locations of the focal firm.
The prevalence of global sourcing indicates that currency exchange rate risk is likely
an important risk that many firms face. Our previous analysis, which converts stock
prices measured in the local currency to those measured in US dollars, internalizes
such risks for firms.

However, one may be concerned about to the extent to which the association that
we observe between firms’ and their suppliers’ risks are driven by currency exchange
rate risks, which are generic to all firms in the local market, and to what extent the
association is actually driven by idiosyncratic risks that are specific to these suppliers.
To tease out the currency exchange rate risk, in this robustness test, we calculate market
risk, firm risk and supplier risk using stock prices measured in local currencies instead
of US dollars. We obtain consistent results as shown in Appendix Table 3.19.

• Tier-1 supplier concentration. Even though a firm typically does not have direct busi-
ness relationships with its tier-2 suppliers, its sourcing decisions may indirectly affect
its sub-tier network structure. For instance, firms whose tier-1 suppliers are located
in geographical proximity are more likely to have common tier-2 suppliers. Similarly,
firms that dual source or multi source are also more likely to have common tier-2 sup-
pliers, because these dual- or multi-sourced tier-1 suppliers conduct similar businesses
and produce similar products. Since the nature of these relationships are unknown to us

37



(e.g., what parts or components are being supplied), we cannot obtain direct measures
of dual or multi-sourcing. However, it is likely that suppliers in the same sub-industry
are more likely to provide substitutable inputs to the focal firm, so the focal firm is
more likely to have shared tier-2 suppliers. If indeed geographical or sub-industry
concentration of tier-1 suppliers is correlated with the degree of tier-2 sharing, and if
that is also correlated with risk exposures of the focal firm, our estimates of the influ-
ence of tier-2 sharing could be biased. Therefore, we test whether the effect of tier-2
supplier commonality can actually be explained away by tier-1 supplier geographical
or sub-industry concentration.

We measure tier-1 geographical or sub-industry concentration using the Herfindahl
index, H �

°N
i�1 p

2
i , where N is the total number of countries of origins (or sub-

industries) that the focal firm sources from, and pi represents the share of the firm’s
tier-1 suppliers in the ith country (or sub-industry). Intuitively, a smaller Herfindahl
index indicates a less concentrated, or in other words, more diversified tier-1 supplier
base. We again estimate our models using both total and idiosyncratic risks. Appendix
Table 3.20 confirms that the measured effects of diamond ratio and cosine similarity
score are both robust after controlling for tier-1 geographic and industry concentration.

3.6 Event Study

In the previous section we demonstrate that a firm’s equity risk is positively associated with
its sub-tier suppliers’ equity risks, and in particular, equity risks of heavily shared sub-tier
suppliers. Building upon these results, this section provides further evidence about the causal
link behind such risk interdependency, using new sources of individual risk event data.

Readers should be cautious about attributing the volatility co-movements documented
in the previous section as the tier-2 suppliers’ causal impact on tier-0 firms. In addition to
supply shocks that propagate downstream, risks from a given node in the network can also
propagate upstream in the form of demand shocks (e.g., Lee et al. 2000, Cachon et al. 2007,
Bray and Mendelson 2012a, Osadchiy et al. 2015). Therefore, without pinpointing the exact
origins of actual risk events, our documented volatility co-movement between tier-2 and tier-
0 firms can be interpreted either as tier-2 suppliers’ risks propagating (via overlapping tier-1
suppliers) down to tier-0 firms, or alternatively as tier-0 customers’ risks propagating (also
via overlapping tier-1 suppliers) back up to tier-2 suppliers, or both.

To address this potential reverse causality issue and establish the causal link on risk prop-
agation from tier-2 to tier-0 firms, we need to not only clearly separate supply shocks from
demand shocks, but also focus on idiosyncratic shocks that are exogenous in nature, i.e.,
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shocks that are not correlated with either unobserved firm-level characteristics, or macroe-
conomic aggregates.

We identify a collection of such idiosyncratic shock events—specifically, geo-tagged,
natural disasters and localized power outages caused by meteorological events—by working
closely with a risk management data solutions provider that provides global risk monitoring
services to many corporate and government clients. We match these risk events to our sample
firms using a geo-matching algorithm, and use event studies to examine the following issues.
Do firms directly impacted by these events subsequently experience negative abnormal re-
turns? More importantly, do firms located outside the events’ impact areas, but whose tier-2
suppliers may be located within the impact areas, also have negative abnormal returns? If so,
does the magnitude of the market reaction vary by the degree of sharedness of the impacted
tier-2s? The subsequent subsections provide details on our methodology, data sources, and
results.

3.6.1 Methodology

For each firm-risk event pair that we capture in our sample, we examine the difference be-
tween the firm’s observed equity return and its expected equity return (according to different
risk models, discussed shortly) over a specified window of time following the event, i.e.,
the “event window.” Following standard finance literature, we compute the expected return
in two steps. We first fit the specified risk model to historical return and risk factor data,
described in detail in Section 3.4.2.1, over an “estimation window” prior to obtaining esti-
mates of the risk factor loadings of each stock. We then compute the daily expected returns
for each day in the event window as the predicted values from the risk model, i.e., expected
returns in the absence of the event. In particular, to ensure robustness of the results, we use
both the one-factor market return model (CAPM) and the Fama-French Three-Factor model
to calculate expected returns, as we did in the previous section. The daily abnormal return is
then calculated as the difference between observed returns and the expected returns during
the event window.

We implement this procedure as follows: For each firm, we define the event’s first an-
nouncement date as Day 0, which may or may not be a trading day. The next trading day
following the event date is Day 1, the trading day preceding the event date is Day �1, and so
forth. We use 200 trading days (i.e., 40 trading weeks) prior to each event as the estimation
window, and, following standard literature such as Brown and Warner (1985), we exclude
the week (i.e., 5 trading days) leading up to the event to avoid overlapping with the actual
event period. That is, the estimation window is defined as [-204, -5]. Sample firms with at
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least 30 non-missing returns in this period are included in our analysis.
To analyze the abnormal returns of firms located in the impact areas, we define two

alternative event windows following Hendricks and Singhal (2003): (1) the first trading day
after the event date, i.e., Day 1, and (2) the event day and the first trading day after the event
date, i.e., Day 0 and Day 1. The two definitions of the event window account for variations
of the actual event time: An event may happen during a trading day, or after the market
closes on a trading day, or during a non-trading day. Next, to analyze the abnormal returns
of firms located outside the impact areas, but with sub-tier suppliers located within, we study
the abnormal return over a longer event window of five trading days (one week) after the
event.

The finance literature usually uses one of two methods to compound the daily abnormal
returns into an event-window abnormal return: the algebraic Cumulative Abnormal Return
(CAR) and the geometric Buy-and-Hold Abnormal Returns (BHAR). CAR is the sum of
the average daily abnormal returns during the event window. BHAR is calculated as the
compounded abnormal returns during the event window. To ensure the robustness of our
results, we use both approaches. Specifically, let T denote the event window. LetRobs

ikt denote
the observed return of firm i on day t following event k, and R̂m

ikt denote the corresponding
predicted return under model m, where m � tCAPM,Fama-French Three-Factor Modelu.
Then the daily abnormal return,ARm

ikt, and aggregated abnormal return over the event period,
CARm

ik and BHARm
ik can be expressed as:

ARm
ikt � Robs

ikt � R̂m
ikt, CAR

m
ik �

¸
tPT

ARm
ikt, BHAR

m
ik �

T¹
t�0

p1 �Robs
iktq �

¹
tPT

p1 � R̂m
iktq

After calculating the abnormal returns, we first verify that the events indeed have signif-
icant negative impacts on the returns of the firms located directly within the impact areas.
We then examine whether this impact extends downstream to customers, and whether the
magnitude of the impact indeed varies with the degree of sharedness of tier-2 suppliers.

3.6.2 Risk Event Data

To acquire the appropriate event data, we work with a third party risk management consul-
tancy, which monitors and analyzes worldwide risk events that (1) threaten critical infras-
tructure, (2) interrupt business continuity or (3) affect safety and security. Being one of the
early providers of risk monitoring and management tools, the company supplies real time
event feeds to numerous Fortune 500 companies and government agencies (e.g., Department
of National Homeland Security). The firm began tracking risks in 2013, which corresponds
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with our sample period.
Although each client would normally receive event feeds filtered by pre-specified crite-

ria, we are able to obtain the unfiltered data, from which we retrieve 296 severe risk events
that occurred in the calendar year of 2013. For each event, we obtain the geocoded loca-
tion, the time when the event started, and the time when the event was resolved, whenever
applicable. These events are classified into 14 categories, including geophysical (e.g., earth-
quakes), transportation (e.g., road closures), infrastructure (e.g., power outage), security (e.g.
protest), labor (e.g., worker strikes), fire (e.g., industrial and resident fire), etc. To ensure the
exogeneity of the events, we will focus on natural disasters as well as events caused by ex-
treme weather conditions. Man-made events can be subject to endogeneity concerns; labor
strikes and factory fires, for example, which may result from poor working conditions or
inferior manufacturing practices, may also correlate with firm performance. We also focus
our attention on those events that lasted multiple days (i.e., three days or longer) because
these events are more likely to cause disruptions to regular business activities. The resulting
sample of 45 events include 12 earthquakes with magnitude over seven and 33 power outages
induced by extreme weather.

To match the event locations to firm locations, we obtained the headquarter location of
each firm in our sample from the Bloomberg database. Ideally, we would also like to ob-
tain facility locations in addition to the headquarter locations. However, to the best of our
knowledge, such data is not currently available, especially for international firms. Many
studies therefore use headquarter locations as a proxy (e.g., Barrot and Sauvagnat 2016),
while noting that the measurement error is likely to bias the estimates against finding any
effect. Moreover, events in our study, such as natural disasters and weather-induced power
outages, that impact headquarter locations would also pose credible threats to business con-
tinuity, even if firms have other production facilities located elsewhere. We geocode the
business addresses using Google API. Among the 4,874 firms in our sample, 3,167 can be
geocoded at higher than zipcode accuracy. To avoid measurement errors when matched with
the event locations, we exclude those companies whose locations can only be coded with a
lower accuracy level. For each event, we define the impact area as within the 10 kilometer
radius (i.e., 6.21 miles) of the geocoded location of the event. The results are consistent when
we vary the definition of the impact area to a 5- or 20-kilometer radius. We identify 86 firms
located in the impact areas of a total of 16 events (a total of 90 firm-event combinations),
and 1,226 firms with tier-2 suppliers located in the impact areas (a total of 3,814 firm-event
combinations). The details of these events are included in Appendix 3.8.5.

A key difference between our approach to identify risk events and those commonly used
in the literature relates to disclosure bias. By construction, events identified through supply
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chain disruption announcements (e.g., Hendricks and Singhal 2003, Schmidt and Raman
2015) includes only those events that resulted in actual business disruptions confirmed by
the announcing firm. By contrast, our data construction procedure avoids such disclosure
bias, because we collect the original risk events, which may or may not have an impact to
the firms and their extended supply chains ex-ante.

3.6.3 Results

We first examine whether our events indeed have significant negative impacts on firms lo-
cated in the impact areas. We compute the event-window CAR and BHAR with both CAPM
and Fama-French Three-Factor models, and report the results in Table 3.7. Our results con-
firm that these risk events lead to significantly negative abnormal returns for firms located
within the impact areas, but do not have any significant effect on the valuation of firms lo-
cated outside the areas. On the first trading day (Day 1) following the event, the average
Three-Factor CAR, for example, is -0.153% (p-value � 0.159) for firms not located in the
impact areas, and -1.618% (p-value � 0.047) for firms in the areas. We obtain similar results
when we extend the event window to both the event day (Day 0) and the first trading day
(Day 1), when we use the CAPM model to estimate returns, and when we use BHAR to
measure the aggregate abnormal returns.12

Table 3.7: Event Study Results: Abnormal Returns for Firms In and Out of Impacted Areas

Cumulative Abnormal Return (CAR) Buy-and-Hold Abnormal Return (BHAR)
Event Window: Day 1 Day 0 + Day 1 Day 1 Day 0 + Day 1
In Impact Areas: No Yes No Yes No Yes No Yes

Three-Factor Model -0.153% -1.62%** -0.186% -2.24%** -0.153% -1.62%** -0.178% -2.30%**
(0.159) (0.047) (0.160) (0.033) (0.159) (0.047) (0.160) (0.030)

One-Factor Model -0.096% -2.36%*** -0.171% -0.176%** -0.096% -2.36%*** -0.146% -0.909%**
(0.331) (0.001) (0.257) (0.032) (0.331) (0.001) (0.444) (0.024)

Note: If an event happens on a non-trading day, the corresponding firm-event combinations do not have the associated abnormal returns
on the event day (Day 0). P-Value of the one-sided t test is included in parentheses and is shown as: * – 0.1 level, ** – 0.05 level, ***
– 0.01 level.

Next, we examine if firms with sub-tier suppliers in the impact area also experience
negative abnormal returns, even though they themselves are not in the area. We report the
abnormal returns of these firms in columns 1-2, and 5-6 of Table 3.8. First, note that firms
whose tier-2 suppliers are not located in the impact area, neither do themselves nor their
immediate suppliers, do not experience significant changes in returns. The average CAR
for the first week following the event is -0.042% (p-value � 0.158). However, for firms
with tier-2 suppliers located in the area, but not themselves nor their immediate suppliers,

12We obtain similar results under matched samples, where firms are matched based on market size, book-
to-market ratio, and previous stock performance.
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the average CAR is much larger in both magnitude and statistical significance, i.e., -0.692%
(p-value � 0.004). Again, the results are also consistent under the CAPM model, and when
using BHAR instead of CAR.

Finally, for firms with sub-tier suppliers in the impact area, we examine whether the
magnitude of the impact varies with the degree of sharedness of sub-tier suppliers in the
area. We separately report the abnormal returns for firms with low (shared by four tier-1
suppliers or less) and high degrees of sharedness (shared by five tier-1 suppliers or more) in
columns 3-4, and 7-8 of Table 3.8. The results indicate that the magnitude of the impact is
even larger when the impacted tier-2 suppliers are heavily shared, with the average CAR of
-2.140% (p-value � 0.039), as opposed to -0.660% (p-value � 0.007) when they are shared
by fewer tier-1 suppliers (four or less).

This set of results highlights that exogenous supply shocks originated from sub-tier sup-
pliers do propagate to tier-0 firms. More importantly, the magnitude of the impact on tier-0
firms is much greater when the impacted sub-tier suppliers are heavily shared, on par with
that when the firm itself is directly impacted, though the effect takes longer to materialize.

Table 3.8: Event Study Results: Abnormal Returns w/ and w/o Tier-2 Suppliers in Impact
Areas

Cumulative Abnormal Return (CAR) Buy-and-Hold Abnormal Return (BHAR)
Tier-2 In Impact Areas: No Yes No Yes
Tier-2 Sharedness: All Low High All Low High

(1) (2) (3) (4) (5) (6) (7) (8)

Three-Factor Model -0.042% -0.692%*** -0.660%*** -2.14%** 0.005% -0.690%*** -0.679%*** -1.15%**
(0.158) (0.004) (0.007) (0.039) (0.159) (0.001) (0.003) (0.048)

One-Factor Model -0.186% -0.967%*** -0.925%*** -2.92%** 0.077% -1.12%*** -1.10%*** -1.81%**
(0.262) (0.001) (0.001) (0.011) (0.293) (0.000) (0.001) (0.013)

Note: Firms are excluded when they themselves or their immediate suppliers are located in the impact areas. The effect window is
one trading week (5 days) following each event. Low sharedness refers to situations when the impacted tier-2 suppliers are shared by
at most four tier-1 suppliers. High sharedness refers to situations when the impacted tier-2 suppliers are shared by five or more tier-1
suppliers. P-Value of the one-sided t test is included in parentheses and is shown as: * – 0.1 level, ** – 0.05 level, *** – 0.01 level.

3.7 Conclusion

Our results provide the first empirical evidence of how the sub-tier network structure is as-
sociated with total and idiosyncratic equity risk of a firm. Using a new global supplier-
customer relationship dataset from Bloomberg, we are able to construct the supply network
of the high-tech sector with substantively expanded coverage of suppliers for both domestic
and international firms. This gives us greater visibility into the multi-tiered supply network
and hence allows us to test the effect of sub-tier network structure on firm risk.

Based on the constructed supply network, we find that tier-2 supplier commonality is
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prevalent in the high-tech sector. On average, 20 percent of tier-2 suppliers are shared by
two or more tier-1 suppliers and 2 percent of tier-2 suppliers are shared by five or more
tier-1 suppliers. Such a network feature has an important implication for risk aggregation
in supply networks. We find a strong positive association between the total equity risk of
shared tier-2 suppliers and that of the tier-0 firm. The association increases when tier-2
suppliers are shared by more tier-1 suppliers. We observe similar results when we focus on
the idiosyncratic risk.

We propose two network measures of tier-2 commonality, the diamond ratio and cosine
commonality score, to isolate the influence of a risky supply network from that of risky
suppliers. We find that 10% increase in the diamond ratio or the cosine commonality score
is associated with 5% or 0.35 standard deviation increase in a tier-0 firm’s total equity risk.

Furthermore, we provide evidence on the causal relationship of tier-2 suppliers’ risks on
the tier-0 firm’s risk using new sources of exogenous risk event data. Following the event,
firms with tier-2 suppliers in the impact area experience significantly negative abnormal
returns, even though they themselves are not located in the area. The magnitude of this
impact is more substantial when the impacted tier-2 suppliers are heavily shared.

Our study highlights the need for firms to increase visibility into their sub-tier supply
network because of the significant supply chain risks they could impose. Furthermore, our
results offer guidance on how to prioritize the efforts of sub-tier supplier risk management.
Given knowledge of sub-tier supply network, firms should identify critical sub-tier suppliers
shared by multiple immediate suppliers, prioritize the monitoring of such suppliers, and
proactively manage the associated risks. Lastly, the sub-tier commonality metrics that we
propose can be readily applied by firms to enhance their existing supply chain risk index,
dynamically track changes in sub-tier network structure, and benchmark themselves against
industry standards.
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3.8 Complementary Material

3.8.1 Bloomberg Data Coverage: Percent of Purchases

Note that COGS includes not only the material purchases but also the direct labor expenses
relating to the production process. Therefore, instead of using the percentage COGS, we
provide a new metric to capture the coverage of Bloomberg data that takes care of the po-
tential bias resulting from the included labor expense. We follow Serpa and Krishnan (2017)
and approximate the labor expense by taking the product of the total number of employees
and the sector-average labor cost. We obtain the total number of employees from Compustat
and annual U.S. employee hourly compensation data by sector for U.S. firms in our sample
from the Bureau of Labor Statistics (BLS). For international firms, such data is not avail-
able. However, the BLS reports hourly compensation of manufacturing employees for 34
countries through the International Labor Comparisons (ILC) program in 2011. Given the
proximity of the program year and the study period of our data, we use this data source to
approximate labor costs for the international firms in our sample. We assume 2,087 annual
working hours amending 5 U.S. Code 5504(b).13

Using these data sources, we obtain estimates for labor costs at the firm level. Labor
represents 17% to 70% of COGS, consistent with typical numbers identified in the literature.
We then obtain an estimate of the firm’s material purchases by subtracting out the labor
expense from a firm’s COGS in the same year. The percentage of purchases by suppliers is
updated as the ratio of the supply chain relationship value over the estimated purchases of
the target firm, whereas the original percent COGS is computed as the ratio of the supply
chain relationship value over the target firm’s total COGS.

The adjusted metric suggests that Bloomberg explains on average 17.6% of a firm’s ma-
terial purchases, about twice of the average percent COGS covered. For U.S. firms, it ex-
plains on average 22% of purchases. For larger firms (measured by market capitalization),
the covered percentage is even higher. For example, our data covers 51.2% of Microsoft’s
purchases, 70.4% of IBM’s purchases, and 75.2% of Qualcomm’s purchases.

We also observe the following regarding approximation of labor costs. First, BLS only
reports international hourly compensation for 34 countries, which covers 80% of the firms in
our data sample. Second, the reported hourly compensation is at a sector-country level and
does not account for the heterogeneity across firms. Third, Compustat only reports the total
number of employees, which include both SG&A and manufacturing employees, whereas
the hourly wage we obtained from BLS represents the average of only manufacturing work-

135 U.S.C. 5504(b) requires the hourly rates of pay for most Federal civilian employees to be computed
using the 2,087-hour divisor from 1985.

45



ers. Finally, for international firms, wage data is only available for an average manufacturing
worker, not necessarily in the high tech sector. According to the U.S. hourly compensa-
tion by sectors, a high-tech worker earns about 50% higher than an average manufacturing
worker. Using manufacturing wage, it is likely that labor costs are under-estimated in our
data. Therefore, the percent of purchases captured could be even higher for those firms.

3.8.2 Selection of Study Period

Bloomberg supply chain relationship data provide a snapshot of existing supplier-customer
relationships. The supply chain relationships are mostly reported for the 2012 fiscal year
and have been continuously updated afterwards based on new sources of information, indi-
cating newly formed relationships or terminations of prior relationships. Specifically, each
supply chain relationship listed on Bloomberg terminal is appended with a status variable
“As of date.” The “As of date” variable represents the most updated disclosure date of the
relationship. Bloomberg only includes a relationship if the relationship is available in the
current year as indicated by “As of date.” Relationships are typically updated four times a
year based on newly filed financial reports and news sources. The “As of date” of the re-
trieved relationship data concentrates in the last quarter of 2012 and the first quarter of 2013,
as many of them are extracted from the companies’ 2012 annual reports. Bloomberg contin-
uously updates the relationship status based on new sources of information such as quarterly
reports following 2012 annual reports, press releases, news items, etc. The relationship data
thus present those that existed in 2012 and likely continued to exist through 2013 Q4 (the
time of the authors’ data collection) based on most updated information.

We use the Compustat longitudinal data to further assess the stability of supply rela-
tionships. Specifically, we investigate how likely is a relationship observed in 2012 to have
existed in 2011, and how likely to have continued to exist in 2013. As described earlier, the
SEC requires a U.S. listed firm to disclose its major customers that comprise more than 10%
of the firm’s revenue. Thirty years of time-series records are available through Compustat;
we focus on the records of recent years because the level of stability of supply chain relation-
ships are likely different now versus in earlier years (e.g., 1980s and 1990s). We thus retrieve
Compustat segment data from 2009 to 2014. We followed the steps below to clean the re-
lationship data: 1) we removed those relationships with non-identifiable customer names,
e.g. “1 customer,” “others”; 2) we unified customer names for firms with multiple common
appellations, e.g. IBM and International Business Machines Corporation; and 3) we stan-
dardized company names, separated name suffixes such as Inc., Corp., and Ltd., and made
the customer name case-insensitive.
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After data cleaning, we end up with about 15,000 supply chain relationships across all
industries, spanning five years. We find the average length of a relationship is 2.8 years,
and around 65% of the relationships last for at least two years. This is an under-estimate
of the average length of these supply chain relationships, because some relationships were
formed before 2009 and others continue beyond 2014. This average length covers relation-
ships across all industries; to focus on the supply chain relationships in the high-tech sector,
we match customer names to firm identifiers (i.e., stock ticker) to identify the sector charac-
terization under which a firm falls. We then focus on those supply chain relationships that
include a customer in the high-tech sector (a comparable dataset to the Bloomberg data we
acquired) and find that 77.0% of the high-tech supply chain relationships continue from 2012
to 2013 while 79.7% of the high-tech relationships in 2012 are inherited from 2011. For this
reason, we consider the supply chain relationships observed in 2012 likely exist in adjacent
years (one prior and one after). The three-year study period also limits the effect of common
movements in firm volatility due to changes in firm size concentration (Kelly et al. 2013). To
be conservative, we also conduct analyses on a two-year study period (2011Q3 to 2013Q2).
All results are consistent as shown in Table 3.9.

Table 3.9: Alternative Study Period

DEPENDENT VARIABLE: 

(a) (b) (c) (d) (e) (f)

Total Risk Idio Risk Idio Risk Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk 0.017 0.004 0.030 0.017 0.004 0.030

(0.020) (0.020) (0.022) (0.020) (0.020) (0.022)

Diamond Ratio 0.443*** 0.555*** 0.560***

(0.159) (0.167) (0.167)

Cosine Commonality Score 0.378** 0.393** 0.409**

(0.186) (0.201) (0.201)

Market Risk 0.368*** 0.298*** 0.298*** 0.368*** 0.298*** 0.298***

(0.014) (0.013) (0.013) (0.014) (0.013) (0.013)

Tier-1 Supplier Risk 0.073*** 0.076*** 0.082*** 0.072*** 0.075*** 0.081***

(0.014) (0.013) (0.013) (0.014) (0.013) (0.013)

Financial and Operational controls Yes Yes Yes Yes Yes Yes

Sub-industry controls Yes Yes Yes Yes Yes Yes

Random Effects Yes Yes Yes Yes Yes Yes

Observations 16,434 16,434 16,432 16,432 16,432 16,432

Number of Firms 2,115 2,115 2,114 2,114 2,114 2,114

Overall R-squared 0.1969 0.1765 0.1760 0.1978 0.1778 0.1774

Tier-2 & Diamond Ratio Tier-2 & Cosine Commonality Score

Notes. Columns (a) and (d) regress total equity risk on suppliers' total equity risks; Columns (b) and (e) regress idiosyncratic risk on suppliers' total equity 

risks; Columns (c) and (f) regress idiosyncratic risk on suppliers' idiosyncratic risks. Standard errors adjusted for firm clusters are shown in parentheses. 

Market risk, tier-1 risk, and industry-adjusted (supplier) days in inventory are included with log transformation. Sub-industry dummies are included. To 

simplify the table, we do not report on controls. *** --- 0.01 level, **--- 0.05 level and *--- 0.1 level.

We acknowledge that no good data source is yet available to directly verify the length
of each supply chain relationship. The stability analysis discussed above is generated using
a different data set, that of the Compustat SEC filings, which captures only a subset of
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relationships found in Bloomberg. As we show in the Data Section, large and significant
suppliers are likely under-represented in the Compustat database compared to the Bloomberg
database. For this reason, the likelihood that a relationship identified in the Bloomberg
database has existed in the adjacent years could be even higher than that estimated using the
Compustat database.

Unstable supply chain relationships may create an attenuation bias. That is, if some rela-
tionships that we identify did not actually last for the three full years, there will be quarters
in which the relationship no longer existed, making it more difficult to identify the associa-
tion of risks between a focal firm and its immediate and sub-tier suppliers. In other words,
the fact that we still find a statistically significant association indicates that the underlying
association could be even stronger.

3.8.3 Result Tables for Robustest Tests

Table 3.10: Percentage of Firms with At Least One Supplier Identified by Headquarter Lo-
cation and Sub-industry Code

45102010 45201020 45202030 45203020 45203030 45301020

IT Consult-

ing & Other 

Services

Communi-

cations 

Equipment

Technology 

Hardware, 

Storage & 

Peripherals

Electronic 

Manufacturing 

Services

Technology 

Distributors

Semicon-

ductors

Other High-

Tech Firms

US 25 60 36 23 19 72 203 438

(0.84) (0.78) (0.81) (0.74) (0.95) (0.86) (0.61) (0.72)

Japan 56 14 26 4 51 14 216 381

(0.82) (0.93) (0.85) (0.50) (0.98) (0.93) (0.78) (0.82)

Korea 13 17 11 2 4 41 124 212

(0.85) (0.65) (0.82) (0.00) (1.00) (0.78) (0.56) (0.65)

China 22 39 19 3 4 35 111 233

(0.77) (0.74) (0.95) (1.00) (1.00) (0.89) (0.66) (0.75)

Taiwan 9 34 89 12 44 169 206 563

(0.78) (0.97) (0.88) (0.92) (0.98) (0.89) (0.79) (0.86)

Other 100 56 37 19 64 81 243 600

(0.70) (0.68) (0.81) (0.47) (0.91) (0.73) (0.60) (0.68)

All Locations 225 220 218 63 186 412 1103 2,427

(0.76) (0.78) (0.85) (0.67) (0.95) (0.84) (0.67) (0.76)

Country\GICS All High-Tech

Notes. The number of firms in the related region and sub-industry is reported in each cell. Underneath, we report the percentage of firms that 

have at least one supplier identified in Bloomberg dataset.

At least one supplier identified by headquarter locations and sub-industries
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Table 3.11: Percentage of Firms with At Least Five Suppliers Identified by Headquarter
Location and Sub-industry Code

45102010 45201020 45202030 45203020 45203030 45301020

IT Consult-

ing & Other 

Services

Communi-

cations 

Equipment

Technology 

Hardware, 

Storage & 

Peripherals

Electronic 

Manufacturing 

Services

Technology 

Distributors

Semicon-

ductors

Other High-

Tech Firms

US 25 60 36 23 19 72 203 438

(0.20) (0.23) (0.36) (0.22) (0.68) (0.46) (0.14) (0.26)

Japan 56 14 26 4 51 14 216 381

(0.13) (0.14) (0.27) (0.00) (0.43) (0.43) (0.11) (0.18)

Korea 13 17 11 2 4 41 124 212

(0.08) (0.06) (0.09) (0.00) (0.00) (0.10) (0.06) (0.07)

China 22 39 19 3 4 35 111 233

(0.09) (0.10) (0.26) (0.33) (0.25) (0.14) (0.05) (0.10)

Taiwan 9 34 89 12 44 169 206 563

(0.22) (0.15) (0.36) (0.50) (0.41) (0.19) (0.10) (0.21)

Other 100 56 37 19 64 81 243 600

(0.13) (0.14) (0.22) (0.16) (0.34) (0.19) (0.03) (0.13)

All Locations 225 220 218 63 186 412 1103 2,427

(0.13) (0.15) (0.30) (0.24) (0.41) (0.23) (0.09) (0.17)

At least five suppliers identified by headquarter locations and sub-industries

Country\GICS All High-Tech

Notes. The number of firms in the related region and sub-industry is reported in each cell. Underneath, we report the percentage of firms that 

have at least five supplier identified in Bloomberg dataset.

Table 3.12: Subsample tests: Close-to-Market Firms

DEPENDENT VARIABLE: 

(a) (b) (c) (d) (e) (f)

Total Risk Idio Risk Idio Risk Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk 0.024 0.021 0.027 0.027 0.024 0.030

(0.049) (0.048) (0.049) (0.049) (0.048) (0.048)

Diamond Ratio 0.738** 0.838*** 0.840***

(0.288) (0.292) (0.292)

Cosine Commonality Score 0.588 0.566 0.578

(0.387) (0.379) (0.380)

Market Risk 0.396*** 0.328*** 0.332*** 0.397*** 0.329*** 0.333***

(0.030) (0.029) (0.029) (0.030) (0.029) (0.029)

Tier-1 Supplier Risk 0.071** 0.070** 0.067** 0.068** 0.067** 0.065**

(0.031) (0.030) (0.028) (0.031) (0.030) (0.029)

Financial and Operational controls Yes Yes Yes Yes Yes Yes

Country, Sub-industry controls Yes Yes Yes Yes Yes Yes

Random Effects Yes Yes Yes Yes Yes Yes

Observations 4,171 4,169 4,169 4,171 4,169 4,169

Number of Firms 360 360 360 360 360 360

Overall R-squared 0.2219 0.2063 0.2058 0.2252 0.2084 0.2080

Tier-2 & Diamond Ratio Tier-2 & Cosine Commonality Score

Notes. Columns (a) and (d) regress total equity risk on suppliers' total equity risks; Columns (b) and (e) regress idiosyncratic risk on suppliers' total equity 

risks; Columns (c) and (f) regress idiosyncratic risk on suppliers' idiosyncratic risks. Standard errors adjusted for firm clusters are shown in parentheses. 

Market risk, tier-1 risk, and industry-adjusted (supplier) days in inventory are included with log transformation. Country and sub-industry dummies are 

included. To simplify the table, we do not report on controls. *** --- 0.01 level, **--- 0.05 level and *--- 0.1 level.
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Table 3.13: Subsample tests: Taiwan or US Firms

DEPENDENT VARIABLE: 

(a) (b) (c) (d) (e) (f)

Total Risk Idio Risk Idio Risk Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk 0.012 0.007 0.023 0.012 0.006 0.022

(0.028) (0.027) (0.030) (0.028) (0.028) (0.030)

Diamond Ratio 0.632** 0.722*** 0.730***

(0.247) (0.260) (0.260)

Cosine Commonality Score 0.558** 0.571** 0.581**

(0.235) (0.257) (0.257)

Market Risk 0.239*** 0.019 0.022 0.239*** 0.019 0.022

(0.025) (0.025) (0.025) (0.025) (0.025) (0.025)

Tier-1 Supplier Risk 0.034* 0.041** 0.052*** 0.032* 0.040** 0.051***

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

Financial and Operational controls Yes Yes Yes Yes Yes Yes

Country, Sub-industry controls Yes Yes Yes Yes Yes Yes

Random Effects Yes Yes Yes Yes Yes Yes

Observations 10,828 10,828 10,828 10,828 10,828 10,828

Number of Firms 929 929 929 929 929 929

Overall R-squared 0.2116 0.1821 0.1817 0.2137 0.1860 0.1856

Tier-2 & Diamond Ratio Tier-2 & Cosine Commonality Score

Notes. Columns (a) and (d) regress total equity risk on suppliers' total equity risks; Columns (b) and (e) regress idiosyncratic risk on suppliers' total equity 

risks; Columns (c) and (f) regress idiosyncratic risk on suppliers' idiosyncratic risks. Standard errors adjusted for firm clusters are shown in parentheses. 

Market risk, tier-1 risk, and industry-adjusted (supplier) days in inventory are included with log transformation. Country and sub-industry dummies are 

included. To simplify the table, we do not report on controls. *** --- 0.01 level, **--- 0.05 level and *--- 0.1 level.

Table 3.14: Robustness Test: CAPM model using country-specific market returns

DEPENDENT VARIABLE: 

(a) (b) (c) (d) (e) (f)

Total Risk Idio Risk Idio Risk Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk 0.036** 0.035* 0.055*** 0.036** 0.035* 0.055***

(0.018) (0.019) (0.020) (0.018) (0.019) (0.020)

Diamond Ratio 0.635*** 0.892*** 0.898***

(0.157) (0.176) (0.176)

Cosine Commonality Score 0.456** 0.526** 0.528**

(0.202) (0.241) (0.241)

Market Risk 0.402*** 0.304*** 0.307*** 0.402*** 0.304*** 0.307***

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Tier-1 Supplier Risk 0.062*** 0.052*** 0.053*** 0.061*** 0.050*** 0.051***

(0.012) (0.012) (0.011) (0.012) (0.012) (0.011)

Financial and Operational controls Yes Yes Yes Yes Yes Yes

Country, Sub-industry controls Yes Yes Yes Yes Yes Yes

Random Effects Yes Yes Yes Yes Yes Yes

Observations 24,593 22,750 22,750 24,593 22,750 22,750

Number of Firms 2,122 1,960 1,960 2,122 1,960 1,960

Overall R-squared 0.1676 0.1700 0.1700 0.1690 0.1730 0.1730

Tier-2 & Diamond Ratio Tier-2 & Cosine Commonality Score

Notes. Columns (a) and (d) regress total equity risk on suppliers' total equity risks; Columns (b) and (e) regress idiosyncratic risk on suppliers' total equity 

risks; Columns (c) and (f) regress idiosyncratic risk on suppliers' idiosyncratic risks. Standard errors adjusted for firm clusters are shown in parentheses. Note 

that we only collect market returns for firms traded in the ten largest market of the high-tech sector. Therefore, the number of firms with this alternative idio-

syncratic risk measure is 1,960 instead of 2,122. Market risk, tier-1 risk, and industry-adjusted (supplier) days in inventory are included with log transforma-

tion. Country and sub-industry dummies are included. To simplify the table, we do not report on controls. *** --- 0.01 level, **--- 0.05 level and *--- 0.1 

level.
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Table 3.15: Robustness Test: Unquantified Case

DEPENDENT VARIABLE: 

(a) (b) (c)

Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk 0.032* 0.028 0.049**

(0.020) (0.019) (0.021)

Diamond Ratio 0.598*** 0.712*** 0.731***

(0.156) (0.162) (0.163)

Market Risk 0.390*** 0.317*** 0.317***

(0.012) (0.012) (0.012)

Tier-1 Supplier Risk 0.071*** 0.067*** 0.077***

(0.011) (0.011) (0.011)

Financial and Operational controls Yes Yes Yes

Country, Sub-industry controls Yes Yes Yes

Random Effects Yes Yes Yes

Observations 26,841 26,838 26,838

Number of Firms 2,321 2,321 2,321

Overall R-squared 0.1736 0.1610 0.1606

Notes. Columns (a) regresses total equity risk on suppliers' total equity risks; Columns (b) regresses idiosyncratic risk on suppliers' 

total equity risks; Columns (c) regresses idiosyncratic risk on suppliers' idiosyncratic risks. Standard errors adjusted for firm clusters 

are shown in parentheses. Market risk, tier-1 risk, and industry-adjusted (supplier) days in inventory are included with log transforma-

tion. Country and sub-industry dummies are included. To simplify the table, we do not report on controls. *** --- 0.01 level, **--- 

0.05 level and *--- 0.1 level.

Tier-2 & Diamond Ratio

Table 3.16: Robustness Test: Without Panel Financial and Operational Controls

DEPENDENT VARIABLE: 

(a) (b) (c) (d) (e) (f)

Total Risk Idio Risk Idio Risk Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk 0.034* 0.026 0.049*** 0.034* 0.026 0.048***

(0.018) (0.018) (0.019) (0.018) (0.018) (0.019)

Diamond Ratio 0.847*** 1.016*** 1.020***

(0.156) (0.164) (0.164)

Cosine Commonality Score 0.549** 0.587** 0.598***

(0.213) (0.232) (0.232)

Market Risk 0.404*** 0.330*** 0.329*** 0.405*** 0.330*** 0.330***

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Tier-1 Supplier Risk 0.062*** 0.064*** 0.074*** 0.061*** 0.062*** 0.073***

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Financial and Operational controls No No No No No No

Country, Sub-industry controls Yes Yes Yes Yes Yes Yes

Random Effects Yes Yes Yes Yes Yes Yes

Observations 24,593 24,590 24,590 24,593 24,590 24,590

Number of Firms 2,122 2,122 2,122 2,122 2,122 2,122

Overall R-squared 0.1171 0.0850 0.0852 0.1117 0.0765 0.0766

Tier-2 & Diamond Ratio Tier-2 & Cosine Commonality Score

Notes. Columns (a) and (d) regress total equity risk on suppliers' total equity risks; Columns (b) and (e) regress idiosyncratic risk on suppliers' total equity 

risks; Columns (c) and (f) regress idiosyncratic risk on suppliers' idiosyncratic risks. Standard errors adjusted for firm clusters are shown in parentheses. 

Market risk and tier-1 riskare included with log transformation. Country and sub-industry dummies are included. To simplify the table, we do not report on 

controls. *** --- 0.01 level, **--- 0.05 level and *--- 0.1 level.
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Table 3.17: Robustness Test: US Listed and US Based Firms Only

DEPENDENT VARIABLE: 

(a) (b) (c) (d) (e) (f)

Total Risk Idio Risk Idio Risk Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk -0.027 -0.066 -0.041 -0.026 -0.066 -0.041

(0.044) (0.044) (0.051) (0.044) (0.044) (0.051)

Diamond Ratio 1.513*** 1.589*** 1.593***

(0.451) (0.478) (0.477)

Cosine Commonality Score 0.806* 0.779* 0.780*

(0.420) (0.448) (0.447)

Market Risk 0.686*** 0.721*** 0.705*** 0.635*** 0.667*** 0.652***

(0.050) (0.052) (0.058) (0.047) (0.048) (0.054)

Tier-1 Supplier Risk 0.031 0.035 0.033 0.027 0.031 0.028

(0.030) (0.030) (0.031) (0.030) (0.030) (0.030)

Financial and Operational controls Yes Yes Yes Yes Yes Yes

Sub-industry controls Yes Yes Yes Yes Yes Yes

Random Effects Yes Yes Yes Yes Yes Yes

Observations 4,706 4,706 4,706 4,706 4,706 4,706

Number of Firms 405 405 405 405 405 405

Overall R-squared 0.3359 0.3451 0.3450 0.3381 0.3532 0.3530

Tier-2 & Diamond Ratio Tier-2 & Cosine Commonality Score

Notes. Columns (a) and (d) regress total equity risk on suppliers' total equity risks; Columns (b) and (e) regress idiosyncratic risk on suppliers' total equity 

risks; Columns (c) and (f) regress idiosyncratic risk on suppliers' idiosyncratic risks. Standard errors adjusted for firm clusters are shown in parentheses. 

Market risk, tier-1 risk, and industry-adjusted (supplier) days in inventory are included with log transformation. Sub-industry dummies are included. To 

simplify the table, we do not report on controls. *** --- 0.01 level, **--- 0.05 level and *--- 0.1 level.

Table 3.18: Robustness Test: Driscoll and Kraay Standard Errors

DEPENDENT VARIABLE: 

(a) (b) (c) (d) (e) (f)

Total Risk Idio Risk Idio Risk Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk 0.005 -0.003 0.012 0.007 -0.002 0.012

(0.008) (0.008) (0.009) (0.008) (0.008) (0.009)

Diamond Ratio 0.102** 0.127*** 0.127***

(0.034) (0.039) (0.039)

Cosine Commonality Score 0.194*** 0.186*** 0.191***

(0.036) (0.039) (0.038)

Market Risk 0.312*** 0.242*** 0.243*** 0.312*** 0.242*** 0.243***

(0.058) (0.048) (0.047) (0.058) (0.048) (0.047)

Tier-1 Supplier Risk 0.045*** 0.045*** 0.043*** 0.045*** 0.044*** 0.043***

(0.008) (0.007) (0.006) (0.008) (0.007) (0.006)

Financial and Operational controls Yes Yes Yes Yes Yes Yes

Country, Sub-industry controls Yes Yes Yes Yes Yes Yes

Pooled OLS Yes Yes Yes Yes Yes Yes

Observations 24,593 24,590 24,590 24,593 24,590 24,590

Number of Firms 2,122 2,122 2,122 2,122 2,122 2,122

Overall R-squared 0.2145 0.2046 0.2047 0.2150 0.2051 0.2052

Notes. Columns (a) and (d) regress total equity risk on suppliers' total equity risks; Columns (b) and (e) regress idiosyncratic risk on suppliers' total equity 

risks; Columns (c) and (f) regress idiosyncratic risk on suppliers' idiosyncratic risks. Driscoll and Kraay (1998) standard errors are shown in parentheses. 

Market risk, tier-1 risk, and industry-adjusted (supplier) days in inventory are included with log transformation. Country and sub-industry dummies are 

included. To simplify the table, we do not report on controls. *** --- 0.01 level, **--- 0.05 level and *--- 0.1 level.

Tier-2 & Diamond Ratio Tier-2 & Cosine Commonality Score
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Table 3.19: Robustness Test: Local Currency

DEPENDENT VARIABLE: 

(a) (b) (c) (d) (e) (f)

Total Risk Idio Risk Idio Risk Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk 0.043** 0.036** 0.052*** 0.043** 0.035** 0.051***

(0.018) (0.018) (0.019) (0.018) (0.018) (0.019)

Diamond Ratio 0.666*** 0.767*** 0.773***

(0.159) (0.166) (0.166)

Cosine Commonality Score 0.456** 0.470** 0.481**

(0.203) (0.217) (0.217)

Market Risk 0.392*** 0.314*** 0.315*** 0.392*** 0.314*** 0.315***

(0.012) (0.011) (0.011) (0.012) (0.011) (0.011)

Tier-1 Supplier Risk 0.056*** 0.057*** 0.066*** 0.054*** 0.055*** 0.064***

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Financial and Operational controls Yes Yes Yes Yes Yes Yes

Country, Sub-industry controls Yes Yes Yes Yes Yes Yes

Random Effects Yes Yes Yes Yes Yes Yes

Observations 24,593 24,590 24,590 24,593 24,590 24,590

Number of Firms 2,122 2,122 2,122 2,122 2,122 2,122

Overall R-squared 0.1654 0.1520 0.1516 0.1668 0.1542 0.1538

Tier-2 & Diamond Ratio Tier-2 & Cosine Commonality Score

Notes. Columns (a) and (d) regress total equity risk on suppliers' total equity risks; Columns (b) and (e) regress idiosyncratic risk on suppliers' total equity 

risks; Columns (c) and (f) regress idiosyncratic risk on suppliers' idiosyncratic risks. Standard errors adjusted for firm clusters are shown in parentheses. 

Market risk, tier-1 risk, and industry-adjusted (supplier) days in inventory are included with log transformation. Country and sub-industry dummies are 

included. To simplify the table, we do not report on controls. *** --- 0.01 level, **--- 0.05 level and *--- 0.1 level.

Table 3.20: Robustness Test: Tier-1 supplier concentration

DEPENDENT VARIABLE: 

(a) (b) (c) (d) (e) (f)

Total Risk Idio Risk Idio Risk Total Risk Idio Risk Idio Risk

on Total Risk on Total Risk on Idio Risk on Total Risk on Total Risk on Idio Risk

Tier-2 Supplier Risk 0.035* 0.028 0.049** 0.035** 0.028 0.049**

(0.018) (0.018) (0.019) (0.018) (0.018) (0.019)

Diamond Ratio 0.612** 0.717*** 0.725***

(0.244) (0.255) (0.255)

Cosine Commonality Score 0.378* 0.376* 0.387*

(0.202) (0.216) (0.216)

Sub-industry Concentration -0.001 -0.004 -0.011 0.284** 0.336** 0.334**

(0.192) (0.201) (0.202) (0.141) (0.147) (0.148)

Geographic Concentration 0.031 0.049 0.053 0.079 0.113 0.118

(0.112) (0.115) (0.115) (0.110) (0.114) (0.114)

Financial and Operational controls Yes Yes Yes Yes Yes Yes

Country, Sub-industry controls Yes Yes Yes Yes Yes Yes

Random Effects Yes Yes Yes Yes Yes Yes

Observations 24,593 24,590 24,590 24,593 24,590 24,590

Number of Firms 2,122 2,122 2,122 2,122 2,122 2,122

Overall R-squared 0.1687 0.1522 0.1519 0.1696 0.1532 0.1529

Tier-2 & Diamond Ratio Tier-2 & Cosine Commonality Score

Notes. Columns (a) and (d) regress total equity risk on suppliers' total equity risks; Columns (b) and (e) regress idiosyncratic risk on suppliers' total equity 

risks; Columns (c) and (f) regress idiosyncratic risk on suppliers' idiosyncratic risks. Standard errors adjusted for firm clusters are shown in parentheses. 
Market risk, tier-1 risk, and industry-adjusted (supplier) days in inventory are included with log transformation. Country and sub-industry dummies are 

included. To simplify the table, we do not report on controls. *** --- 0.01 level, **--- 0.05 level and *--- 0.1 level.
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3.8.4 Tier-2 Commonality Examples

Table 3.21 lists the tier-2 firms with the highest degree of commonality; these tier-2 firms are
shared by greater than or equal to 20 tier-1 suppliers in a tier-0 firm’s network.

Table 3.21: Tier-2 Suppliers with a High Degree of Tier-2 Commonality

Tier-2 Supplier Name GICS
Headquarter 

Location

# of tier-0 firms that source from the 

listed tier-2 supplier who is shared by at 

least 20 of their tier-1 suppliers

Flextronics International Ltd. 45203020 USA 2

Avago Technologies 45301020 Singapore 2

Microsoft Corporation 45103020 USA 2

Nitto Denko Corporation 15101050 Japan 1

Atmel Corporation 45301020 USA 1

Intel Corporation 45301020 USA 3

LSI Corporation 45301020 USA 2

Qualcomm Inc. 45301020 USA 2

Texas Instruments Inc. 45301020 USA 6

United Microelectronics Corporation 45301020 Taiwan 4

ON Semiconductor 45301020 USA 2

Advanced Semiconductor Engineering Inc. 45301020 Taiwan 8

Taiwan Semiconductor Ltd. 45301020 Taiwan 13

Amkor Technology Inc.  45301010 USA 11

ARM Holdings plc 45301020 Great Britain 11

Broadcom Corporation 45301020 USA 2

STATS ChipPAC Ltd. 45301020 Singapore 5

NXP Semiconductors 45301020 Netherlands 1

Notes . The results are generated from the quantified supply network. Numbers in the final column can only be higher in the un-quantified supply network.

Table 3.22 displays a list of the corresponding tier-0 firms that source from the above
heavily shared tier-2 suppliers. The table also demonstrates that many tier-2 suppliers in
these firms’ supply networks are shared.

Table 3.22: Tier-0 Firms with Common Tier-2 Suppliers

Name GICS
Headquarter 

Location

Market 

Capitalization 

($Mn)

# of tier-2s 

identified

# of tier-2s 

shared by at least 

two tier-1s

# of tier-2s 

shared by at least 

five tier-1s

# of tier-2s shared 

by at least twenty 

tier-1s

Cisco Systems, Inc. 45201020 USA 105,483 523 195 53 3

Dell Inc. 45202030 USA 25,465 847 340 114 6

Hewlett-Packard Company 45202030 USA 49,967 865 357 123 8

LG Electronics Inc. 25201010 South Korea 10,776 799 321 83 4

Apple Inc. 45202030 USA 442,008 889 333 110 3

Samsung Electronics Co., Ltd. 45202030 South Korea 143,504 956 346 105 6

Sony Corporation 25201010 Japan 19,422 816 282 73 2

IBM Corporation 45102010 USA 214,975 853 331 106 1

Lenovo Group Ltd. 45202030 China 8,708 838 333 91 1

WPG Holdings Ltd. 45203030 Taiwan 2,141 652 225 49 3

Avnet, Inc. 45203030 USA 4,799 720 286 88 6

Arrow Electronics Inc. 45203030 USA 4,274 926 366 122 6

Ingram Micro 45203030 USA 2,890 1100 481 198 12

Nokia Corporation 45201020 Finland 18,864 675 225 53 4

Alcatel-Lucent S.A. 45201020 France 6,584 418 150 34 1

Ericsson 45201020 Sweden 36,616 638 188 44 1

Motorola Solutions, Inc. 45201020 USA 15,248 619 190 32 2

Tech Data Corporation 45203030 USA 2,008 1099 435 173 9

Notes . The results are generated from the quantified supply network. The numbers from the un-quantified supply network are similar.
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3.8.5 Event Details

Event ID 1: Energex reports indicated lost power for the majority of customers in the Bris-
bane City Council Area. The power outages were caused by impacts of severe weather from
former Tropical Storm Oswald.

Event ID 2: NStar and National Grid reported lost power to most customers across Mas-
sachusetts. Widespread outages resulting from Winter Storm Nemo lasted for several days
as repairs to infrastructure were made.

Event ID 3: National Grid reported lost power to customers throughout Rhode Island.
Small pockets of outages may have persisted after the power was restored to majority cus-
tomers.

Event ID 4: Hydro One reported lost power to most customers throughout Ontario fol-
lowing an ice and wind storm.

Event ID 5: Dominion Virginia Power reported lost power to the majority of its customers
in the Richmond Metro and Tri-Cities. Earlier in the week over 90,000 customers were
without power after severe weather passed through the region.

Event ID 6: Xcel Energy reports power was lost to the majority of customers in Min-
nesota following severe weather in the previous week. At the height of the outage, approxi-
mately 610,000 customers were without power statewide.

Table 3.23: Event Summary

ID Lat. Long. Date Time Duration Impact Source Cause

1 -27.47 153.02 1/27/2013 6:08 3 days Area-wide Multiple Tropical Storm Oswald
2 42.35 -71.05 2/8/2013 11:51 6 days State-wide Multiple Winter Storm Nemo
3 41.82 -71.41 2/9/2013 2:54 3 days Statewide Multiple Blizzard
4 43.76 -79.41 4/12/2013 11:05 4 days Province-wide Multiple Ice and wind storm
5 37.54 -77.43 6/13/2013 9:49 3 days Area-wide Other Severe weather
6 44.95 -93.2 6/21/2013 12:53 5 days Statewide Multiple Severe weather
7 39.96 -83.00 7/11/2013 1:09 3 days Statewide Multiple Severe thunderstorms
8 42.33 -83.04 7/20/2013 1:57 3 days Area-wide Other Strong storms
9 45.51 -73.55 7/20/2013 3:04 5 days Area-wide Multiple Severe weather
10 36.14 -95.99 7/24/2013 9:51 3 days County-wide Multiple Storms
11 51.51 -0.11 10/28/2013 10:17 4 days Region-wide Multiple St Jude Storm
12 45.50 -73.55 11/1/2013 6:39 3 days Southern Other Strong winds
13 42.33 -83.04 11/18/2013 3:53 4 days Region-wide Other Severe thunderstorms and heavy winds
14 52.23 21.01 12/6/2013 2:58 3 days Nationwide Media Storm Xavier, strong winds & snow
15 32.77 -96.79 12/6/2013 10:38 4 days County-wide Multiple Inclement weather
16 43.65 -79.40 12/22/2013 1:11 8 days City-wide Multiple Freezing rain storm

Note: No high-tech firms in our data sample locates in the impact area of the identified 12 earthquake events. All of the 12 earthquake
events struck far from land.

Event ID 7: Sources reported lost power to the majority of customers in Ohio following
severe thunderstorms that occurred earlier in the week. Sandusky and Tuscarawas counties
were most affected by the outages.

Event ID 8: DTE Energy reported lost power to most customers throughout Detroit’s
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metropolitan area after strong storms swept through the area.
Event ID 9: Hydro-Quabec reported lost power to the majority of customers throughout

the province of Quabec following outages caused by severe weather that hit the area the
previous week. At the height of the storm, an estimated 560,000 customers reportedly lost
electricity.

Event ID 10: AEP reported that approximately 5,164 customers were without power in
Tulsa County following storms that moved through the area.

Event ID 11: UK Power Networks reported lost power to most customers across south-
eastern England following the St Jude Storm. Residual outages may persist in some areas.

Event ID 12: Reports indicated lost power to the majority of customers following service
disruptions caused by strong winds.

Event ID 13: Reports indicated that approximately 275,000 DTE customers were tem-
porarily without power in Southeastern Michigan due to severe thunderstorms and heavy
winds that swept through the area.

Event ID 14: Poland-media reports indicated widespread outages due to strong winds
and snow from winter storm Xavier. At the height of the outages, approximately 300,000
people were without electricity service.

Event ID 15: Oncor reported lost power to the majority of customers throughout Dallas
area, including Tarrant, Collin, Ellis, Kaufman and Hunt counties as a result of inclement
weather. At least 215,000 customers had been without power for several hours in this region
at the height of the outage.

Event ID 16: Toronto Hydro indicated lost power to the majority of its customers across
Toronto following a freezing rain storm the previous week. Outages peaked at more than
522,426 customers across southern Ontario. Residual outages may have persisted.
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CHAPTER 4

Manufacturing and Regulatory Barriers to
Generic Drug Competition: A Structural Model

Approach

Understanding the drivers of market concentration in the generic pharmaceutical industry
is essential to guaranteeing the availability of low-cost generics. In this paper, we develop
a structural model to capture the multiple determinants governing manufacturers’ entry de-
cisions; in particular, we focus on how manufacturing complexity and the regulatory envi-
ronment affect concentration in generic drug markets. We estimate the model using data
collated from six disparate sources. We find that manufacturing complexity, as reflected in
the drug administration route, for example, significantly reduces the likelihood of generics
entry. Moreover, the speed at which generic drug applications are processed by the FDA sig-
nificantly affects the number of firms entering a market. Our policy simulations suggest that
to encourage competition in the generic drug markets, the FDA needs to maintain a moderate
review speed; being either too fast or too slow can be problematic and associated with more
concentrated markets.

4.1 Introduction

The increasing use of low-cost generic drugs offers relief from rising health care costs. The
U.S. Food and Drug Administration (FDA) estimated that generic drugs saved the health care
system about $1.67 trillion over the last decade alone (Gottlieb June 21, 2017). According to
the Association for Accessible Medicines, in 2016 generic drugs accounted for 89% of pre-
scriptions dispensed and 26% of total prescription expenditures (Association for Accessible
Medicines 2017).

Competition among generic drug manufacturers significantly reduces the price of gener-
ics. According to an FDA report on generics competition and drug prices (FDA 2005), a
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generic drug could cost as much as its branded version in the presence of only one generics
manufacturer in the market. A second entrant brings the generic drug’s price down to 52%
of the branded version. The price will further fall to 39% and 21% of the branded version
with four or eight competitors, respectively. However, generic drug markets do not always
attract a large number of manufacturers. Presently, about 10 percent of branded drugs with
expired patents have no generics competition (Department of Health and Human Services
2017). Further, a quarter of the markets have only one generic-version manufacturer, and
about a half of them have at most three generic-version manufacturers.

Multiple factors may drive generics manufacturers’ market entry decisions. One of these
factors is manufacturing complexity. Although brand-drug manufacturers have established
reliable manufacturing processes for their product, won through years of experience, a gener-
ics manufacturer who is producing a drug for the first time will need to develop a safe and
efficient production process. For example, all penicillin manufacturers need to establish a
comprehensive quality control strategy to prevent cross-contamination, and such require-
ments include separate production facilities and equipments, separate air handling systems
and testing for traces of penicillin where possible exposure exists. Such requirements can
often be more demanding for generics manufacturers because they often run production lines
of different chemical substances in parallel to keep the production costs low, but which also
increases the risk of cross-contamination.

Besides manufacturing complexity, the FDA also plays an important role in determining
the generics market structure. To obtain an approval to produce generic drugs, manufacturers
are required to submit Abbreviated New Drug Applications (ANDAs) and demonstrate to the
FDA that the generic products are safe and effective. As more branded drugs have become
off-patent over the past decade, the number of generics applications submitted to the FDA
has risen substantially. With limited funding and staff, the FDA struggled to review the influx
of ANDAs in a timely manner. As of October 1, 2012, nearly 2,300 generic drug applications
were in the queue awaiting an FDA decision.

To address this problem, FDA initiated the Generic Drug User Fee Amendments of 2012
(GDUFA), a five-year act aimed to speed up the ANDA review process. The act enabled the
FDA to recruit more staff and keep up with its workload. As a result, the accumulated ANDA
review backlog was mostly eliminated in 2016 (Woodcock 2016). The act has also been ex-
tended for another five years to continue speeding up the ANDA review process (Brennan
Sept 26, 2016). The briefer turnaround time enables manufacturers to enter a new gener-
ics market earlier. It also enables manufacturers to generate revenue from the investment
quicker, which effectively increases the manufacturer’s payoff. However, from the perspec-
tive of a single firm, a faster FDA also increases the likelihood of entry by its competitors.
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Figure 4.1: Number of Pending Applications Over 180
Days
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The firm may be deterred from entering if it anticipates aggressive price competition. The
two countervailing effects of a speedy review process imply that the relationship between
ANDA review time and entry is not obvious.

In this paper, we examine the following questions: (1) What are the key determinants of
a generics manufacturer’s entry decision? and (2) Would a shorter review time necessarily
lead to more competitive generics markets?

To answer these questions, we develop a structural model that explicitly captures a firm’s
decision in a simultaneous entry game. Like all other entry models, the existence of multiple
equilibria is the key challenge to identification. To simplify the model and enable identifica-
tion, many studies assume firms are symmetric, which allows them to link firms’ equilibrium
entry decisions to the number of entrants. However, such simplification fails to accommo-
date heterogeneous competitive effects, which is often the case in industries where firms vary
significantly in size, specialty, and experience. In generic drug markets, in particular, manu-
facturers vary by size (e.g., the three largest manufacturers each captures 10% market share
while the other manufacturers capture 4% of the market share at most, Statista 2015) and
specialization (e.g., Fresenius Kabi focuses on providing medications dispensed via injec-
tion while Perrigo is a leading producer of extended tropical drugs). To study heterogeneity
across manufacturers without making equilibria selection assumptions, we adopt the bound
approach proposed in Ciliberto and Tamer (2009). This approach allows us to capture a
general form of heterogeneity, albeit at the price of identification complexity: our structural
model is not point-identified. In addition, applying this partial identification bound approach
requires a non-parametric estimation of the empirical probabilities, which can be challenging
when there are a large number of characteristics under consideration. We adopt the random
forest approach to estimate such probabilities with sparse models (Breiman 2001).

Another major challenge in studying entry decisions in the generic pharmaceutical indus-
try is the lack of a unified database. To understand the determinants of a firm’s decision to
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enter a particular market, one needs to gather data on market conditions, drug forms, product
costs, firms’ manufacturing capability and specialization. For lack of comprehensive data,
few comprehensive studies analyze the entry decisions of generic drug makers. Existing
studies either use much older data or analyze only a handful of markets. For example, Mor-
ton (1999) focuses on the entry decisions of generic drug manufacturers in 1984 to 1994,
Olson and Wendling (2013) studies the oral solid drug medications only, and Kong (2016)
considers the top 100 drug markets by sales with at least one generics entrant.

In this paper, we overcome the data challenge by gleaning information from six disparate
sources to collate a dataset for generic drug entries from 2002 to 2014. In particular, we
acquired data from the Annual Editions of the Orange Book, the Clinformatics Data Mart, the
National Drug Code (NDC) Directory, the DrugBank database, the FDA inspection database,
and the FDA report on Implementation of the Generic Drug User Fee Amendments of 2012
(Woodcock 2016). The data period is selected to avoid industry-wide merger waves and
to correspond with the period of drastic changes in the ANDA review time. Our dataset
characterizes all 802 generic small-molecule markets during this time frame.1

To interpret the results from the simultaneous entry model, we evaluate the magnitude
of each factor’s impact based on its relative effect compared to that of the market size, mea-
sured as the log-scaled total prescription charge of the reference branded drug in the year
before patent expiration. We find that those drugs administered parenterally (e.g., drugs
administered via injection) require a double-sized market to attract the same number of man-
ufacturers, because of the more stringent sterile requirement for manufacturing. Besides,
ANDA backlogs significantly affect market outcome. The benefit of entering a double-sized
market can be offset by an increase in the number of ANDA backlogs at the FDA by 500
applications.

Based on our structural model, we conduct a policy experiment to estimate the effect of
regulatory barriers on the level of competition in generic drug markets. Using two perfor-
mance metrics – the average number of generic entrants and the percentage of markets with
zero or one entrant – we find that increase in ANDA backlogs significantly reduces the level
of market competition. The average number of generics entrants drops by around 5% when
the ANDA backlog increases from 50 cases (the actual queue length in the early 2000s) to
2,300 cases (the actual queue length in 2012). Interestingly, we find a non-monotone rela-
tionship between the percentage of markets with at most one entrant and the length of ANDA
approval queue. The fraction of limited-entry markets first decreases and then increases with

1There are altogether 12 generic biological markets whose patents expired between 2002 and 2014. We
exclude them from the main analysis due to the small number of markets and the different manufacturing
requirements involved.

60



the size of the ANDA review backlog. This is because, on one hand, when the FDA only
have a few ANDAs to review, medium-sized firms may choose not to enter a market when
they perceive a high probability of entry from larger manufacturers, resulting in more mo-
nopolistic generics markets. On the other, when the backlog continues to accumulate, all
firms will find entering a market less attractive, regardless of the competitors’ decisions.

To sum up, our research demonstrates that manufacturing complexity and the length of
the ANDA approval queue significantly affect the level of competition in generic drug mar-
kets. The policy simulation results reveal that the FDA should continuously monitor its
ANDA review process and control the review time at a moderate speed to ensure sufficient
competition in the generic markets. While a long review time reduces the number of ap-
proved manufacturers in the market, too short a review time may discourage entries from
medium-sized manufacturers for fear of intense post-entry competition with market leaders.

4.2 Literature Review

Previous research regarding the generic pharmaceutical industry has looked at the efficiency
of generic entry. Early research focused on the markets with branded drugs that expired
post the Hatch-Waxman Act and found that a large number of generic entrants results in
competitive generic prices (see Grabowski and Vernon 1992 and Frank and Salkever 1997,
for example). More recently, Olson and Wendling (2013) estimate the causal effect of the
second and third generic competitors on reducing the generic prices.2 Generic entries reduce
prices; however, factors that affect the manufacturers’ generic entry decisions and the role of
these factors in their entry decisions are not well known.

A stream of literature in the generic pharmaceutical industry has studied the impact of
several supply and demand characteristics on a manufacturer’s entry decision. Using a pro-
bit model, Morton (1999) shows that larger branded markets, markets to address chronic
diseases, and markets in which firms have prior experience attract more generic entries.
Two subsequent studies incorporate competitor effects into the entry decision and formulate
an oligopoly game amongst manufacturers using dynamic structural models. Gallant et al.
(2010) focus on the oral solid drug markets and document the spillover effect of a firm’s past
entry decisions on its future entry cost. Unlike Gallant et al. (2010) who take the generic rev-
enue as exogenously given, Ching (2010) explicitly models the price evolution of branded
markets and their generic counterparts to study the strategic interaction between these two

2Generic manufacturers are allowed to challenge the patent(s) of a innovator drug before the patent expira-
tion date. If the generic manufacturer(s) managed to repeal the patent(s), a 180-day patent challenge exclusivity
will be granted to the generic manufacturer(s).
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types of markets. A recent paper by Kong (2016) examines the effect of competitor entry
using a static discrete game and finds that each additional competitor on average reduces a
firm’s entry probability by 10 percent. Importantly, mainly due to identification issues, these
studies that consider competitor effects treat firms as homogeneous entities. We contribute
to the literature by modeling market and firm heterogeneity (i.e., market-specific profitability
and firm-specific ANDA preparation cost and production cost) as well as the heterogeneous
competitor effects. Our work is also more comprehensive in terms of the number of markets
studied and the inclusion of manufacturing complexity metrics.

To the best of our knowledge, Ching (2010) is the only other study that looks at the role
of the application review process in generic entry decisions. However, the author does not
include any metric for the review time in the model; instead, the author conducts the policy
experiment by directly increasing the entry probabilities of firms. In our study, we consider
many more markets than Ching (2010). We also retrieve the number of ANDA backlogs
from a FDA report and use it as a proxy of the speed of the ANDA review process. This
metric allows us to link the application review time with a firm’s entry decision and enables
us to assess the magnitude of the impact of this important policy factor.3

The effect of waiting on the decision to join a queue has been studied in the operations
literature. Deacon and Sonstelie (1985) and Png and Reitman (1994) both empirically study
the effect of waiting time on the demand at gas stations. Using a structural model, Allon et al.
(2011) estimate the cost that customers attribute to their waiting time and show that a fast-
food chain can significantly increase its market share by reducing the customer waiting time.
When the queue length is visible to the customers, Lu et al. (2013) find that the abandonment
decision of customers mostly depends on the number of people waiting in the queue. When
the queue length is not visible, delay announcements help customers form the estimated
waiting time. Yu et al. (2016) demonstrate how delay announcements at the call center
affect customers’ perceived per-unit waiting cost. Recent papers in the literature have also
documented the heterogeneity in customer’s waiting sensitivity (see Akşin et al. 2013 and Lu
et al. 2013, for example). We contribute to this line of work by relating the effect of queue
length in a competitive setting, where manufacturers compete after waiting in a queue.

Methodologically, our paper builds on the literature on structural estimation of entry
games. In an entry game model, multiple firms make entry decisions simultaneously, and
the profit each firm obtains depends on other players’ decisions. This type of model has
been widely adopted in economic literature (Reiss and Spiller 1989, Bresnahan and Reiss
1990, Bresnahan and Reiss 1991, Berry 1992, Berry et al. 2006, Ciliberto and Tamer 2009,

3If the capacity did not change significantly, the ANDA review time is proportional to the number of
backlogs.
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and Aguirregabiria and Ho 2012). To account for heterogeneous competitive effects and
to accommodate the existence of multiple equilibria, we adopt a similar estimation strategy
as in Ciliberto and Tamer (2009), where moment inequalities are used for identification, as
opposed to using moment equations. Our approach, however, diverges from theirs in two
aspects. First, instead of contracting medium-sized firms’ decisions into a binary decision,
our model is more flexible and explicitly derives the equilibrium number of medium-sized
entrants. Second, we apply the random forest method to estimate the empirical conditional
choice probabilities (Breiman 2001). This method allows us to better estimate probabilities
with non-parametric sparse models.

Our work also contributes to the growing literature on the use of structural estimation in
operations management literature to identify underlying drivers of operational efficiency in
various business settings and conduct policy simulations to improve the system. This liter-
ature studies pricing strategy under strategic consumer behavior (Li et al. 2014, Moon et al.
2017), effect of service quality on customer demand (Guajardo et al. 2015, Mani et al. 2015),
geographic expansion strategy of retail stores (Zheng 2016), bidder behavior in auctions and
contests (Olivares et al. 2012, Kim et al. 2014, Jiang et al. 2016), supply chain bullwhip
effects (Bray and Mendelson 2012b, Bray and Mendelson 2015), and scheduling decisions
in the operating room (Olivares et al. 2008).

4.3 Background of the Generic Drug Industry

This section provides background information of the generic pharmaceutical industry. We
first present an overview of the industry and discuss its competitive landscape. We then
discuss the key issues in generic drug manufacturing, and the process and requirements for
manufacturers to obtain an ANDA approval.

4.3.1 Overview

Prescription medications comprise over 10% ($324.6 billion) of the United States’ health
care spending in 2015 (CMS 2015). Over the past decade, there has been an overall de-
clining trend in the price of generic drugs and a corresponding, steady increase in their
use (GAO 2016a). Since 2003, prescription drug spending growth has considerably slowed
down, thanks largely to the increasing use of the relatively low-cost generic medications
(Liberman and Roebuck 2010). The savings from prescribing generics has increased from
$85 billion in 2007 to $253 billion in 2016 (Association for Accessible Medicines 2017).
The Association for Accessible Medicines report also documented that nearly half of the
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cost savings from prescribing generics goes directly to patients.
In the United States today there are approximately two thousand drugs with generic ver-

sions. The generics industry started its boom period after the Drug Price Competition and
Patent Term Restoration Act of 1984, often referred to as the Waxman-Hatch Act, under
which generic pharmaceutical manufacturers were no longer required to repeat the costly
clinical studies the innovators had already conducted. Manufacturers could submit Abbrevi-
ated New Drug Applications (ANDAs) to the FDA for marketing generic drugs in the United
States. Apart from quality and safety requirements, as long as a manufacturer scientifically
proves to the FDA that the generic version is bioequivalent to the reference brand-name
drug (FDA 2017a), it would obtain an approval for production. Once the FDA approved
the ANDA and the patent and exclusivity on the branded version had expired, the generics
manufacturer could bring the product to market.

4.3.2 Competitive Landscape

Thirty percent of the country’s generic pharmaceutical market is served by three manufactur-
ers (i.e., Teva, Mylan and Sandoz), each accounting for around 10% of the generics market
share in the U.S. Following these three market leaders, there are also a handful of medium-
sized generics manufacturers that capture between 1% and 4% of the total market share
(Statista 2015). There also exist about one hundred small players in the industry.

Regardless of the relatively large number of potential market players, the generic drug
market is fairly concentrated according to the observations in the FDA’s Orange Book.
Among those markets with generic versions available, a quarter lists only one generic al-
ternative. About half of those markets have no more than three generic alternatives (i.e., by
three separate manufacturers). Surprisingly, there are also hundreds of drug products with
an expired patent but have zero generics alternative (FDA 2017b).

The high market concentration in the generic drug market keeps prices of generics high,
obviously hurting the patients. The small number of generics manufacturers also makes the
generic pharmaceutical supply chain less resilient to demand or supply shocks, which may
in the future lead to the price instability or drug shortage.

In the past several years, hundreds of generic drugs experienced a price increase of at
least 100 percent within a year. Some of the drug prices increased ten-fold within a year. For
example, the price of Piroxicam, an anti-inflammatory drug used to treat rheumatoid arthritis,
increased from $0.09 per capsule to $1.94 per capsule (more than a 2,000 percent increase)
from 2010 to 2011 (GAO 2016a). These extraordinary price increases mostly happen in less
popular drugs that are marketed by a small number of manufacturers.
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Starting from the mid-2000s, the United States has also seen an increasing number of
generic drug shortages, which has led to rationing in treatment (Fink Jan 29, 2016), delays
in care, and an increasing number of medication errors (McLaughlin et al. 2013). The new
drug shortages in 2011 alone shot up to 270, with a record high of 430 cumulative active drug
shortages. Focusing on the sterile injectable anti-infective and cardiovascular drugs, the 2016
U.S. Government Accountability Office report on drug shortages found that a small number
of generics manufacturers is one of the factors that led to shortages of these drugs (GAO
2016b). With one or only a few manufacturers, supply disruptions such as manufacturing
quality and production issues are more likely to lead to drug shortages (Kim and Morton
2015).

4.3.3 Manufacturing of Generic Drugs

While generics manufacturers are no longer required to conduct costly clinical trials to es-
tablish efficacy and safety, they must ensure that the drug is manufactured under the same
quality standards as the brand-name drug. All drug manufacturers are required to conform to
the Current Good Manufacturing Practices (CGMP). The CGMP cover all aspects of phar-
maceutical production and are designed to minimize risks involved in the manufacturing
process. Specifically, the regulations aim to minimize risks of product contamination, incor-
rect labeling, and incorrect dosage of active ingredients (WHO 2002). In the United States,
Section 21 of the Code of Federal Regulations (CFR) summarizes the regulations pertaining
to pharmaceutical products.

For example, to minimize potential product contamination, generics manufacturers need
to satisfy certain sterile requirements. These requirements can vary substantially for drugs
with different active ingredients and drugs administrated through different routes. Drugs
administered via parenteral routes (e.g., injection) are more difficult to produce than those
administered via enteral routes (e.g., solid pills). Producing parenteral drugs requires sterile
formulation and demands that the products should not introduce contaminants into the human
body because injected drugs bypass some of the body’s natural defenses and can therefore
pose particular risks to human health (Perspective Press 2016). Generics manufacturers are
also required to document manufacturing processes and ensure data integrity to pass quality
inspections conducted by the FDA. All records required under the CGMP are subject to
inspection (FDA 2016).

Given all these requirements, safe manufacturing of generic drugs is not an easy task,
and it is not uncommon for generics manufacturers to fail the FDA quality inspection. For
instance, recent quality issues have been reported in Lupin (Edney Nov 14, 2017) and Dr.
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Reddy’s Laboratories (Tremblay Aug 4, 2017). Manufacturers are required to take remedial
efforts to address quality-control issues before they can resume production.

4.3.4 ANDAs and the Role of the FDA

While the Waxman-Hatch Act significantly lowered the entry barrier for generics manufac-
turers, the cost of filing an ANDA is still non-trivial. Generics manufacturers need to fulfill
requirements in the ANDA’s six areas: chemistry, manufacturing, testing, labeling, inspec-
tions, and bioequivalence. To show that the generic products are bioequivalent to the refer-
ence branded products alone, manufacturers need to acquire the reference product, produce
the generic alternatives on-site, and recruit and conduct pharmacokinetic crossover studies
on human subjects, all of which are costly and time-consuming. The cost of preparing an
ANDA is estimated to range from 2 to 5 million dollars (Berndt and Newhouse 2012).

With more generics applications submitted to the FDA in the past decade, the administra-
tion was unable to keep up with the pace of demand. As a result, by 2010, significant delays
afflicted the ANDA review process. In 2003, the average approval time for a generic drug
was 20 months (Meadows 2003). The time-to-approval jumped to 31 months in 2011 and
continued to rise to 42 months in 2014 (Ebert Aug 20, 2016). Such a long wait time raises the
opportunity cost vis-à-vis compromised sales, creating a burden for generics manufacturers.
The long backlog of unapproved ANDAs have also been blamed in part for high drug prices
(Kaplan Dec 29, 2015).

In response to the long review time4 and the resulting backlog, the FDA initiated the
GDUFA in 2012 to speed up the review of ANDAs. To further ensure the timeliness of
ANDA review, the administration has extended the act for another five years and also recently
took steps to speed up approvals for markets with limited or no competition (Brennan June
27, 2017).

4.4 Data

We retrieve information from six disparate data sources. In this section, we first introduce
these data sources. We then define the drug market and discuss why we choose to focus our
study on competition among initial entrants. Lastly, we present how we construct and define
the variables to be included in the empirical model.

4We refer to the review time as the total delay at the FDA, including both the processing time and the wait
time.
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4.4.1 Data Sources

To study the effect of each of the market entry determinants, we obtain data from the follow-
ing sources:

(1) Annual editions of the Orange Book (also known as Approved Drug Products with Ther-

apeutic Equivalence Evaluations) from 2000 to 2016;

(2) Clinformatics Data Mart;

(3) National Drug Code (NDC) Directory;

(4) DrugBank database (Version 5.0);

(5) FDA Inspections database;

(6) Implementation of the Generic Drug User Fee Amendments of 2012 (Woodcock 2016).

The Orange Book is used to identify drug markets that are subject to potential generics
entries. Clinformatics Data Mart is used to construct proxies for market profitability. We link
these two databases using the National Drug Code from the National Drug Code Directory.
The DrugBank database is used to obtain characteristics of drug products such as molar mass
and indications of the active ingredient. The FDA Inspection database and the FDA report
on Implementation of the Generic Drug User Fee Amendments are used to construct proxies
for manufacturing quality and the ANDA backlog, respectively.

We obtain patent data, exclusivity data, and approved drug products data from annual
editions of the Orange Book. The Orange Book is published by the FDA and identifies the
complete set of branded innovator products and generic products approved by the admin-
istration. We use patent and exclusivity expiration dates associated with the branded drug
applications to identify generics entry opportunities. Each approved product in the Orange
Book with application type “A” corresponds to a generics-related application. For these ob-
servations, the FDA provides the applicant name, the approval date, the reference branded
product, as well as characteristics of the drug product, including number of active ingredi-
ents, route of administration, and strength. Based on its past approval history, we are also
able to construct a firm’s experience with the ingredient and the firm’s experience with the
route.

To measure market size, we obtain the annual prescription charge and quantity for the
reference branded drugs from Clinformatics Data Mart, provided by Optum, Inc. The orig-
inal data source of the Clinformatics Data Mart comes from a national US private health
insurer. We cross validate the data with data from the Centers for Medicare & Medicaid
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Services (CMS) and Drugs.com.5 According to the Drug Listing Act of 1972, drug products
are required to be identified and reported using a universal product identifier, the National
Drug Code (NDC). At the level of the nine-digit NDC, we retrieve the annual total claim
counts and total charges from Clinformatics for 2001 through 2015. The nine-digit NDC can
be used to uniquely identify a drug product. We rely on the NDC Directory to merge the
Clinformatics data with the Orange Book.6

In order to better assess market profitability and production difficulty of each drug prod-
uct, we obtain additional characteristics of the drugs from the DrugBank database. This
database provides extensive biochemical and pharmacological information about drugs mar-
keted in different countries (Law et al. 2013). Ayvaz et al. (2015) map all other drug
databases to the DrugBank database to study the overlaps between various data sources, due
to the DrugBank database’s broad inclusion. This latest version of the DrugBank database
(Version 5.0) contains 2,021 FDA-approved small-molecule drugs, 233 FDA-approved bio-
logical drugs, 94 nutraceuticals and over 6,000 experimental drugs (DrugBank 2017). For
each identified active ingredient, the DrugBank database provides the molecule type (small-
molecule ingredient or biological protein), the molar mass, the structured indications ex-
tracted from the FDA drug labels and scientific publications, as well as the therapeutic class
of the active ingredients, which is indicated using the Anatomical Therapeutic Chemical
(ATC) classification code.

To obtain a proxy for manufacturing quality, we obtain facility inspection records since
October 1, 1999 from the FDA Inspections database through a Freedom of Information Act
(FOIA) request. We focus on inspections that received final classifications. An inspection
classification reflects the compliance status of the manufacturer site at the time of the in-
spection. The conclusions are reported as Official Action Indicated (OAI), Voluntary Action
Indicated (VAI), or No Action Indicated (NAI). FDA concludes an inspection with OAI if
significant objectionable conditions or practices were found and the firm must take regu-
latory action to address the issues. Contrarily, a VAI classification indicates that the FDA
revealed objectionable conditions, but the issues were not significant enough to warrant reg-

5We are unable to disclose the name or the market share of the insurer due to a non-disclosure agreement
with the data provider. However, we cross validate it with CMS’s Part B and Part D data as well as the top
100 drug list from Drugs.com. We do not directly use the Part B National Summary Data File from CMS
because there are only a limited number of branded drug products covered under the Medicare Part B program.
The majority of the prescription drugs are covered under the Part D program; whereas the longitudinal annual
revenue and quantity data for the drug products covered in the Part D program is not available. The top-
100 drug list (2003 – 2013 by sales amount and by sales units), available from Drugs.com, is compiled from
QuintilesIMS, a company that provides proprietary data on the total sales and volumes of drug products. We
find that the two data sources are consistent for those best-selling drugs.

6We retrieve the NDC for the branded drugs no longer marketed in the United States from past NDC data
available at http://www.nber.org/data/national-drug-code-data-ndc.html.
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ulatory actions; whereas an NAI classification indicates that the FDA found no objectionable
conditions.7 Besides the final classification, inspection records also provide us with the list
of the Code of Federal Regulations (CFRs) a facility violates.

To study the impact of an ANDA backlog on a firm’s entry decision, we obtain the annual
number of pending generics applications since 2000 from the FDA report on Implementation
of the Generic Drug User Fee Amendments of 2012 (GDUFA) (Woodcock and Wosinska
2013). After the implementation of the GDUFA, more detailed ANDA submission informa-
tion and progress became available since 2015; however, this level of information was not
documented by the FDA and thus not available via FOIA request.

4.4.2 Definition of Drug Markets

Since the Orange Book does not provide a history of patents expired before its published
date, we retrieve the earlier patent data by combining the patent expiration dates documented
in the annual Orange Book from 2000 to 2016. It is worth noticing that the patent expiration
date for a certain drug may change over time. The date may be revised to an earlier date
if generics manufacturers successfully repeal the innovator’s patent; the date may also be
revised to a later date if the innovator receives a patent extension. Therefore, whenever there
is a conflict in the patent expiration date, we always keep the most updated one.

We define a drug market as a potential generic drug market to enter when the patent
of the branded version expires. In particular, we focus on patents with expiration dates
during the period from 2002 to 2014. We exclude markets with patent expiration dates
before 2002 due to lack of data on market and firm characteristics. We do not include drugs
with expiration dates after 2014 for the following reason. The U.S. generic drug industry
experienced dramatic change with multiple large consolidations since late 2012 (Torreya
Partners 2016). For example, Watson acquired Actavis in November 2012 and became the
third largest generics company in the U.S. market, which was then acquired by Teva in 2015.
Recall that the average review time of an ANDA application for a generics market open in
2014 was 42 months (Ebert Aug 20, 2016). In other words, for a generics manufacturer
to ensure that its product enters the market as soon as a patent expires, it must submit its
application at least 3 years before the expiration date. Therefore, by studying the markets
with patent expiry no later than 2014, we focus on ANDAs filed before 2012 and thus limit
the impact of the mergers and acquisitions on our study. This data exclusion also minimizes
the influence of the implementation of GDUFA, the 2013 FDA act that reduced the average

7Inspections - Background, retrieved on July 10, 2017 from the FDA website, https:
//www.fda.gov/downloads/AboutFDA/Transparency/PublicDisclosure/
GlossaryofAcronymsandAbbreviations/UCM212061.pdf.
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review time of generic applications.
The most recent 37th edition of the Orange Book contains all approved ANDAs in the

United States before 2017. Each observation is a unique combination of active ingredient,
route of administration, strength, type, and the applicant. We filter the drug type and focus
on prescription drugs. We omit over-the-counter (OTC) medications since most OTC drugs
do not require FDA approvals to produce.

We define a potential generics market at the level of a combination of active ingredient
and route of administration. Most of the previous studies on generic drug market define a
market at the level of its active ingredient (Ching 2010, Kong 2016) but not route of admin-
istration. We choose to include the route of administration in the definition because of the
variations in the production cost aforementioned in Section 4.3 and because manufacturers
are required to submit an ANDA for each route of administration separately. We do not fur-
ther separate the market based on the strength because most of the manufacturers enter the
markets with same ingredient and route but different strengths at the same time.

4.4.3 Competition among Initial Entrants

We identify the entry time of a manufacturer by the FDA approval date, also available in the
Orange Book. Even though manufacturers are allowed to submit ANDAs at any time, the
applications submitted by generics manufacturers can only be approved after the patent of
the branded version has expired. In other words, the ANDA approval date is the first day
that a manufacturer is allowed to market its product to the public. As most of the firms start
selling products immediately after their ANDAs get approved, we use the approval dates as
market entry dates.

For each potential generics market, we choose to focus on the initial entries, i.e., we
focus on those manufacturers with ANDA approval dates within the first two years after the
patent expiry date.8 We choose to focus on this period for the following reasons. Generics
manufacturers change their competitive behavior based on the stage of the product cycle.
Specifically, manufacturers behave quite differently in the initial stage when generics prices
continue to fall down and in the latter stage when those prices are relatively stable at a low
level. We only focus on and model the entry decisions for firms that choose to compete in
the generic’s early product life. The length of the generic’s early product life is estimated
to be around two years (Fein 2012). During this time, prices generally drop significantly as
manufacturers compete for market share (Emanuel Aug 6, 2011).

8The main conclusions of the paper are consistent when we use either a one-year or a three-year initial
period.
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As a result, generics firms always prefer to enter a new market as early as they can. With
an initial period of 24 months, we capture most of the market entries resulting from generics
manufacturers who choose to compete in the initial stage.

During this initial stage, manufacturers’ entry decisions are considered to be simultane-
ous. Because manufacturers do not reveal their entry plans due to strategic business consid-
erations (Morton 1999), and because the FDA does not reveal information about the received
applications, manufacturers do not observe or react to their competitors’ decisions within this
period of time. Therefore, their entry decisions can be considered simultaneous rather than
sequential.

The total number of market entry opportunities from 2002 to 2014 is 814, including 802
chemical markets and 12 biological markets. In this study, we focus on the 802 generic
drug markets with chemically manufactured active ingredients for the reasons outlined in
Section 4.3.9

4.4.4 Variable Definitions

In the following, we discuss in detail how we construct the variables which will be used in
our empirical analysis.

4.4.4.1 Measures of Market Characteristics

We include several attributes that affect the market profitability and the production cost for
all manufacturers.

1) Market size: We follow Morton (1999) and use the total prescription charges of
branded products one year before patent expiry as a proxy for the revenue of the branded
drug market, i.e., the potential market size of the generic products.10 Even though market
size is an important predictor of the level of competition, there is still significant variation
left to be explained. To illustrate this point, we classify the drug markets into three cate-
gories in Table 4.1 according their sizes: small (i.e., less than the 33.3 percentile), medium,
and large (i.e., greater than the 66.7 percentile), and summarize the distribution of the num-
ber of entrants in each category. We see that larger markets tend to attract more entrants in
general. However, a significant portion (about 9 percent) of large markets fail to attract any

9Our results are robust with the inclusion of the biological markets. A dummy variable is included to
identify the biological markets.

10Besides volume, price of the branded drug may also affect manufacturers’ entry decisions (Lee et al.
2016). We thus consider an alternative specification where we include both the prescription count and the
average charge per prescription in the year before patent expiry. Results from using this alternative specification
are consistent.
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Table 4.1: Distribution of the Number of Entrants by Total Prescription Charge

Large Medium Small Total

Markets with 0 entrants 9.16% 23.22% 57.25% 29.55%
Markets with 1 entrant 26.37% 40.82% 23.28% 30.17%
Markets with 2 entrants 16.85% 16.10% 9.92% 14.34%
Markets with 3 entrants 11.36% 10.86% 3.82% 9.48%
Markets with 4 entrants 9.16% 3.75% 2.29% 5.74%
Markets with 5 entrants 5.86% 1.50% 1.91% 4.36%
Markets with ¥ 6 entrants 21.24% 3.75% 1.53% 6.36%

generics manufacturer and sometimes (about 5 percent) small markets can attract more than
three generics manufacturers.

2) Chronic drug: We construct the chronic drug indicator from the structured indications
of the active ingredients. In medical terminology, an indication refers to the use of a drug
for treating a particular disease. For example, anti-inflammatory is an indication of ibupro-
fen. Based on the chronic disease list retrieved from the New York State Department of
Health, we first identify the structured indications that treat chronic diseases, such as arthri-
tis, asthma, cancer, diabetes and coronary artery disease. We then label a drug market as
chronic if the active ingredient used in the drug is indicated to treat chronic diseases.

3) Substitutability: We consider a drug to be a substitute for another drug if the two
medications have the same structured indication. Most of the drug products are listed with
multiple indications. We calculate the number of substitutes for each of the drug’s listed
indications and take the minimum as the substitutability of the drug. We consider the min-
imum because the exclusivity of a drug, even for just one indication, demonstrates that the
drug is hardly substitutable.11 For example, naloxone is used to treat types of severe pains,
opioid dependence and opioid overdose. There are several other painkillers on the market;
however, naloxone is the only drug to treat opioid overdose, and we thus consider naloxone
as non-substitutable (or have very low substitutability compared to other drugs).

4) Route: According to the Pharmacy Technician Perspective Press (2016), we catego-
rize the route of administration into several groups: (1) topical route; (2) enteral route (in-
cluding pill, oral liquid, extended-release pill, and delayed-release pill); and (3) parenteral
route (including injection, ophthalmic solution, and otolaryngology solution). We specifi-
cally include a dummy indicator for drug products administered parenterally to account for
the heterogeneity in the sterile requirements as discussed earlier in Section 4.3.

5) Finally, we also consider the number of active ingredients and the molar mass of the

11Our estimation results are also robust from using the average number of substitutes of the drug’s listed
indications.
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ingredient in the analyses, as they affect the manufacturing complexity of a generic drug.

4.4.4.2 Measures of Firm Characteristics

We now consider firm-drug specific attributes that affect entry or production costs of a firm
in a drug market.

1) Firm i’s experience in the therapeutic class: A manufacturer’s prior production expe-
rience may affect which markets it is likely to enter. For example, a firm’s prior experience in
a therapeutic class increases its likelihood of entering a drug market within that same class
again (Morton 1999, Lee et al. 2016). To construct the firm’s experience in a therapeutic
class, we assign the four-digit Anatomical Therapeutic Chemical (ATC) code to each active
ingredient.12 For a manufacturer i and a drug market m, we count the number of drug prod-
ucts in the same therapeutic class as drug m that have been approved for production by the
manufacturer i in the past ten years prior to drug m’s patent expiry date. If drug m is asso-
ciated with one therapeutic class, we use this count as firm i’s experience in the therapeutic
class. If the drug is associated with multiple therapeutic classes, we take the average count
over all related therapeutic classes.

2) Firm i’s Herfindahl index over therapeutic classes: While some firms specialize in
certain therapeutic classes, others have broad portfolios. We measure a firm’s therapeutic
concentration using the Herfindahl index (Morton 1999), Hi �

°Ci

c�1 p
2
ic, where pic repre-

sents the fraction of drug products produced by firm i that are in therapeutic class c, and
Ci denotes the set of therapeutic classes that firm i produces. To construct this measure,
we again consider all drugs approved for production in the past ten years prior to the patent
expiry date of the drug market under consideration. Intuitively, a higher Herfindahl index
indicates a more concentrated therapeutic base.

We also follow Morton (1999) to construct two additional count variables indicating the
following:

3) Firm i’s experience in the same active ingredient, and
4) Firm i’s experience in the same route of administration.13

12The most detailed seven-digit ATC code uniquely identifies the active ingredient. We choose the four-digit
ATC code to balance the accuracy and the inclusion for our definition of the therapeutic class. A four-digit ATC
code provides three levels of classifications. At the first level, the ATC code identifies the anatomical group,
i.e., the system the drug targets (e.g., cardiovascular system, nervous system); at the second level, the ATC code
identifies the therapeutic group, i.e., the disease the drug treats (e.g., cardiac therapy, vasoprotective drugs); at
the third level, the ATC code identifies the pharmacological group, i.e., the medical effect the drug has (e.g.,
antiarrhythmic drugs, cardiac stimulants).

13Besides counting the number of drug products administered via the same route, we also construct an
alternative zero-one indicator of whether firms have prior experience in the route. Our estimation results are
robust from using this alternative measure.
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Firms with prior experience in the same active ingredient typically incur lower costs of
finding certified active ingredient suppliers. Firms with prior experience in the same route of
administration are already familiar with the corresponding sterile requirements and the use
of related equipment, and therefore incur lower fixed and variable production costs.

Besides a firm’s prior experience, a firm’s manufacturing quality and prior approval his-
tory may also affect the firm’s likelihood of entering a market.

5) Firm i’s manufacturing quality: We use the outcomes of the FDA inspections during
the ANDA review period as a proxy for firm i’s manufacturing quality. Specifically, we
consider inspections conducted within two years before the patent expiry date of the generic
market m. We compute the total number of citations a firm received during the two-year
period as the indicator for the firm’s manufacturing quality.14 We obtain a reasonable proxy
for manufacturing quality since the pre-approval inspection usually happens during the later
stage of the ANDA review process. A higher citation count implies a lower quality at the
firm’s manufacturing facilities.

6) Lastly, we control for firm i’s recent ANDA approvals in the two years prior to the
patent expiry date of the market under consideration to account for potential serial correla-
tions in firms’ manufacturing and financial conditions.

4.4.4.3 Regulatory Environment Measure

We use the annual count of ANDAs that were pending for over 180 days as a proxy of the
ANDA approval delays at FDA. The backlog of pending ANDAs creates delays in market
entry, which leads to slower return on investment and compromised sales opportunities. In
particular, we assign the annual backlog count two years before the patent expiry date to each
drug market. Note that the number of pending applications might be an endogenous variable,
as manufacturers’ entry decisions may inversely affect the queue length. First, we would like
to point out that we use the ANDA queue length two years prior to the expiration date, that is,
the queue length around the time of ANDA submission, which is only affected by previous
entry decisions. This alleviates the endogeneity concern. However, since submission time
could vary by firms and markets, the queue length may not be an accurate measure of what
a firm actually faces when it submits an ANDA. Moreover, serial correlations in firm-level
profitability may also introduce a correlation between firms’ past and future entry decisions.

14We compute the number of Official Action Indicated (OAI) classifications a firm received after inspections
during the two-year period and use it as a alternative quality measure. The result from using OAI counts
generates the same insight. We present the result with the citation count in the main analyses because it offers
more variation in the quality metric. We also weight the total number of citations by the number of inspections
as another alternative quality measure. The estimation result from using the weighted citation counts produces
similar implication.
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To ensure the robustness of our results and conclusions, we further adopt an instrumental
variable strategy when estimating the effect of ANDA queue length. Specifically, with a
relatively stable FDA staff level during our study period (Woodcock 2016), the number of
backlogged applications is primarily driven by an increasing number of expiring patents
over the years. Since these patents were typically established twenty years ago, the number
of expiring patents in a year can be considered exogenous. Consequently, we use the total
number of patent expiries in the adjacent three-year time window, year t to t � 2, as an
instrument for the ANDA queue length in year t.

4.5 Model and Estimation

In this section, we first describe the model framework. We then discuss the equilibrium
strategies of the entry game and introduce the identification and estimation methods. Lastly,
we address the computational problem by reducing the dimensionality of manufacturers’
decision space.

4.5.1 Framework

Let N denote the number of pharmaceutical manufacturers and M denote the number of
generic drug markets. As discussed earlier, a drug market is considered a potential generics
market to enter when the patent of the brand-name drug expires. We focus on the initial
entries, i.e., for each generics market, we focus on the manufacturers with ANDA approval
dates within the first two years after the branded version went off-patent.

In each potential generics market, manufacturers play an entry game of complete infor-
mation. All N manufacturers simultaneously decide whether to enter a market. Post-entry
payoffs are determined by characteristics of the market (e.g., market size, chronic vs. acute
disease, drug complexity) and characteristics of firms (e.g., specialty, prior experience, man-
ufacturing quality). We index manufacturers by i and drug markets by m, and let yim be
the binary indicator of “manufacturer i enters the generics market m”. Let ym � tyimuN�1,
a vector of zeros and ones, denote the decision vector of the game. A manufacturer who
chooses to enter i.e., yim � 1, receives a payoff of value πimpymq. The payoff of not entering
is normalized to zero.

Note that the payoff of entering a market depends not only on a firm’s profitability while
operating in the market, but also the cost the firm incurs in getting approved by the FDA.
Since the FDA does not make information available on firms that have submitted ANDAs
but were not approved, we are unable to model the application stage and approval stage
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separately. However, our model accounts for market and firm characteristics that affect both
production costs and application costs.

Following Ciliberto and Tamer (2009), we specify manufacturer i’s payoff in market
m as a linear function of market- and firm-specific characteristics as well as the regulatory
environment.

πimpymq � α0 � α1 �Dm � β1 �Xim � γ � Pt �
¸
j�i

δj � yjm � sm � sim, (4.1)

where matrix Dm denotes market characteristics, and matrix Xim denotes firm i’s character-
istics in market m. Note that firm characteristics are market-specific, as a firm’s experience
varies when we consider markets of different therapeutic classes, active ingredients and ad-
ministrative routes. Vector Pt is the regulatory environment in the year t when market m
opens to generics manufacturers. Lastly, sm and sim are the unobserved shocks to payoff.
Market-specific shock sm represents unobserved market heterogeneity. Firm-market-specific
shock sim represents the idiosyncratic shock to the payoff for firm i in market m. In partic-
ular, we assume sim � N p0, ρ2q and normalize the variance of the market-specific shock
such that sm � N p0, 1q.

The parameter set θ � pα0, α
1, β1, γ, ρ, tδj : j � 1, � � � , Nuq is to be estimated:

α0 is the constant term in the firm’s payoff, α1 is a vector of parameters that measures how
market characteristics affect payoff, β1 is a vector of parameters that measures how a firm ’s
own characteristics affects its payoff, γ measures the impact of the regulatory environment
on firm’s entry decision, and ρ is the standard deviation of the firm-market-specific shock
mentioned above. tδj : j � 1, � � � , Nu measures the effect of competitors’ entries on a
firm’s payoff.

The inclusion of asymmetric competitive effort enables us to capture heterogeneity across
firms. This is particularly important in the pharmaceutical industry because even the top ten
generics manufacturers are fairly different in terms of market share and distribution privi-
leges (Statista 2015). Most of the entry game models in the literature consider homogeneous
competitors, because allowing asymmetric competitive efforts leads to multiple equilibria
and cause identification problems in the empirical inference stage. We discuss estimation
and identification in detail in Section 4.5.3.

4.5.2 Equilibrium Strategies

Without loss of generality, we normalize the value from the outside option to be zero. Con-
sequently, in equilibrium, a manufacturer will enter a market if and only if the post-entry
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payoff is non-negative; we can thus model the entry decisions to market m as

yim � 1rπimpymq ¥ 0s

� 1rα0 � α1 �Dm � β1 �Xim � γ � Pt �
¸
j�i

δj � yjm � sm � sim ¥ 0s, for i � 1, � � � , N.

(4.2)

Any vector ym that satisfies the above binary simultaneous equations is a pure-strategy Nash
equilibrium of the game. We rule out mixed strategy equilibria following the literature (Bres-
nahan and Reiss 1990, Berry 1992, Ciliberto and Tamer 2009). Despite this, the above game
has multiple pure-strategy equilibria even with the simplest model specification. To illustrate
this point, consider a model with just two firms, and their entry decisions are described by
the following equations. For simplicity, we omit market- and firm-specific variables in this
example.

y1m � 1rπ1mpymq ¥ 0s � 1r1 � y2m � ε1m ¥ 0s,

y2m � 1rπ2mpymq ¥ 0s � 1r1 � y1m � ε2m ¥ 0s. (4.3)

One can easily show that py1m, y2mq � p1, 0q and p0, 1q are both pure-strategy equilibria to
this model when ε1m, ε2m � r�1, 0q; that is, one firm enters but the other does not. The exis-
tence of multiple equilibria results in an incomplete econometric structure. The multiplicity
implies that the relationship between the entry decisions and the exogenous variables is a
many-to-one mapping rather than a one-to-one mapping. This poses significant challenges
to model identification and empirical inferences.

To address the challenge of multiple equilibria, three solutions have been proposed in the
literature. The first solution transforms the problem of predicting the exact equilibrium, who
enters and who does not, to predicting the equilibrium number of entrants instead (Bresnahan
and Reiss 1991). For example, in Equation (4.3), exactly one firm will enter the market in
the equilibrium when ε1m, ε2m � r�1, 0q, even though the entering firm could be either
firm. Berry (1992) shows the uniqueness of the equilibrium number of entrants under mild
conditions with regard to the payoff function. Uniqueness is an attractive property; however,
in this model, competitors can only affect a firm’s payoff through the equilibrium number of
entrants and no heterogeneous competitive effects are allowed. Since one of the objectives
of our study is to capture heterogeneous competitive effects in the generic pharmaceutical
industry, this approach is not desirable.

The second solution proposed in the literature defines a selection rule that chooses a par-
ticular equilibrium when facing multiplicity (Bjorn et al. 1984, Bajari et al. 2010). However,
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the choice of the selection rule can be arbitrary and often imposes strong assumptions on the
model.

The last solution – the solution we adopt – is proposed by Ciliberto and Tamer (2009).
They implement a bound approach that partially identifies the model, i.e., the model is set-
identified but not point-identified. The identified set, however, will shrink to a point estimate
under certain distributional conditions of the observables. Even when the model is not point-
identified, one can still make inferences based on the partially identified parameter sets. This
method captures heterogeneous competition effects and does not impose arbitrary selection
rule on multiple equilibria. In the next section, we discuss how this method is applied to our
setting. In particular, we will discuss how we adapt the model and the estimation method
such that (1) we can account for a much larger number of firms’ entry strategies than Ciliberto
and Tamer (2009), and (2) overcome the challenge of dimensionality when estimating the
model.

4.5.3 Identification and Estimation

To address the issue of asymmetric firms and multiple equilibria, we adopt a bound approach
first proposed by Ciliberto and Tamer (2009). We denote Prps|Imq as the conditional choice
probability (CCP) that we observe s as the equilibrium entry strategy conditional on the
exogenous market- and firm-specific characteristics and the regulatory environment measure,
contained in Im.

We denote the total unobserved shock to firm i’s payoff in market m as εim, the sum
of sm and sim, and denote εm � tεimu as the vector of unobservables in market m. Under
Equation (4.2), the conditional probability of observing s as the equilibrium can be written
as

Prps|Imq �

»
Prps|εm, ImqdF pεmq

�

»
Rupθ,Imq

1 dF pεmq �

»
Rmpθ,Imq

Prps|εm, ImqdF pεmq, (4.4)

whereRupθ, Imq denotes the region of the unobserved εm within which the entry game admits
s as the unique equilibrium conditional on Im at parameter θ, Rmpθ, Imq denotes the region
of εm within which s is one of the multiple equilibria conditional on Im at parameter θ,
and Prps|εm, Imq is the probability that s will be selected as the equilibrium when there are
multiple equilibria.

As discussed earlier, the merit of the bound approach is that it does not impose an a-

priori selection rule. Instead, it derives bounds of Prps|Imq by taking advantage of the fact
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that Prps|εm, Imq is a well-defined probability function, and thus only takes a value between
zero and one. In our model, the strategy vector s can take 2N different values. To see how
we derive bounds of Prps|Imq, let us denote tsku as the set of all potential strategies, i.e.,
all potential values that the decision vector ym can take. The value of each sk is one of the
2N permutations of a N � 1 binary vector, representing all possible combinations of the N
firms’ entry decisions.

Let us also define

lpθ, Imq �

»
Rupθ,Imq

dF and upθ, Imq �

»
Rupθ,Imq

dF �

»
Rmpθ,Imq

dF. (4.5)

We can now obtain the upper and lower bounds on the conditional choice probabilities in the
following vectorized format:

Lpθ, Imq �

�
���
l1pθ, Imq

...
l2

N
pθ, Imq

�
���

loooooooooooooomoooooooooooooon
lower bound on conditional probability

¤

�
���

Prps1|Imq
...

Prps2
N
|Imq

�
���

looooooomooooooon
empirical conditional probability

¤

�
���
u1pθ, Imq

...
u2

N
pθ, Imq

�
��� � Upθ, Imq

looooooooooooooomooooooooooooooon
upper bound on conditional probability

(4.6)

Specifically, the lower bound lkpθ, Imq indicates the probability that we observe the strategy
vector sk as the unique equilibrium of the game, and the upper bound ukpθ, Imq represents
the probability of observing sk either as the unique equilibrium or as one of the multiple
equilibria. Inequality (4.6) represents the conditional moment inequity for our empirical
estimation. The identification approach is to find the set of parameters such that the empirical
conditional probability of observing strategy sk in the equilibrium is admitted within in the
range generated by the lower and upper bounds given the set of parameters.

We estimate the model in two steps:
Step 1. Estimate the conditional choice probabilities, tPrpsk|Imq : k � 1, � � � , 2Nu.
These probabilities can be estimated through a multinomial logit model that regresses the

observed entry decision vector sk on the exogenous variables, i.e., the market, firm charac-
teristics and the ANDA backlog contained in Im in our setting. An alternative method is to
partition the exogenous variables and then nonparametrically estimate the CCPs by counting
the fraction of observations conditional on the given realizations of the exogenous variables.
We adopt the latter approach because it does not impose a distribution. As a result, this non-
parametric approach can accommodate more complex interactions between the exogenous
variables.

In order to construct the nonparametric estimator, Ciliberto and Tamer (2009) group the
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exogenous variables into bins based on their quantiles. In our setting, because we include a
relatively large number of exogenous variables in the model, if we follow their approach, we
are going to create more market groups than the number of observed markets. We thus con-
sider an alternative approach and partition the drug markets using the random forest method.
Intuitively, the random forest algorithm bootstraps the original market data (Breiman 1996)
and fits a classification tree for each bootstrapped data set using a random subset of exoge-
nous variables (Ho 1998).

The classification tree works by recursively partitioning the sample based on the value
of the exogenous variables. Specifically, in each step, the algorithm searches for a variable
in Im and a split point p to partition the markets in a group into two exclusive subgroups G1

and G2 such that the within-group sum-of-squared error is minimized:

2N¸
k�1

� ¸
mPG1

pskm � sskG1q
2 �

¸
mPG2

pskm � sskG2q
2

�
,

where sskGi
is the average probability of observing sk as the equilibrium for markets in the

subgroup Gi. Intuitively, the classification tree groups markets in a way such that the proba-
bility of observing a particular equilibrium is similar for markets within each subgroup.

We derive the final estimation result of the random forest method by averaging over the
result of each classification tree. The merit of this approach is that it allows us to more
efficiently partition the exogenous variables based on their effects on the outcome variables,
i.e., manufacturers’ entry decision. In Section 4.9.1, we compare the prediction performance
of various methods.

Once we obtain the estimation of CCPs following the random forest method, we substi-
tute them in the optimization problem described in the next step.

Step 2. Find the parameter set Θ that minimizes the violation of the moment inequality
conditions specified in Inequality (4.6).

Because the two bounds Lpθ, Imq and Upθ, Imq cannot be derived analytically, we cal-
culate them numerically through simulations. Specifically, we simulate the market-specific
and firm-specific unobservables R times for every market. Given a parameter vector θ and
a realization of the unobservables, we compute every firm i’s payoff function in market m
and verify whether sk is an equilibrium strategy according to the requirements in Inequali-
ties (4.2). Among the R rounds of simulations for market m, if a strategy sk is observed as
the unique equilibrium for lk rounds and observed as one of the multiple equilibria for uk

rounds, the simulated lower and upper bounds on the probability of observing sk in market
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m can be computed as

l̂kpθ, Imq �
lk

R
and ûkpθ, Imq �

plk � ukq

R
, k � 1, � � � , 2N . (4.7)

We can now estimate the parameter Θ by minimizing the sum of the squares of violations
in Inequality (4.6). In other words, we minimize the incidences that the empirical CCPs
derived in Step 1 fall outside the simulated bounds. Let us denote the estimated empirical
CCPs as p̂psk|Imq. The objective function of the optimization problem is

min
θ
V pθq �

¸
m

2N¸
k�1

��
p̂psk|Imq � l̂kpθ, Imq

�
2 �

�
ûkpθ, Imq � p̂psk|Imq

�
2
�
, (4.8)

where paq � a�1ra 0s. The objective function calculates the total violations over all potential
strategies and all markets. Due to the complexity of the objective function, the minimization
problem is usually not point-identified. In general, the model gives an identified set Θ such
that tθ P Θ | V pθq � V parg min

θ
V pθqqu.

Even though the model is not point-identified, our model is likely to generate a small
identified set of parameters. Tamer (2003) derives the sufficient conditions for point identi-
fying such models. Specifically, it requires wide supports of some firm-specific characteris-
tics Xim. We illustrate the identification idea in the following example. Consider the binary
simultaneous equations:

y1m � 1rπ1mpymq ¥ 0s � 1rα0 � α �Dm � β �X1m � δ2 � y2m � ε1m ¥ 0s,

y2m � 1rπ2mpymq ¥ 0s � 1rα0 � α �Dm � β �X2m � δ1 � y1m � ε2m ¥ 0s. (4.9)

Denote x1m as one of Firm 1’s characteristics. Without loss of generality, we consider the
scenario where the corresponding parameter of x1m, β1, is positive. Consider the case when
x1m has a wide support on R. When we drive x1m to �8, Firm 1 will never enter the
market m regardless of Firm 2’s entry decision. Mathematically, the empirical probability of
observing no firms entering the market equals to just the probability Firm 2 does not enter:

p̂pp0, 0q|Imq
x1mÑ�8
ÝÝÝÝÝÝÑ Prpy2m � 0|Imq � Prpα0 � α �Dm � β �X2m � ε2m ¥ 0q.

This equation allows us to estimate the parameters related to Firm 2 from the reduced form
regression model and guarantees point identification. Intuitively, the existence of variables
with wide support helps isolate a manufacturer’s entry decision from its competitors’ and
thus solves the identification problem resulting from interdependent firm decisions. It is un-

81



fortunate that one can rarely find variables with such wide support; however, the idea behind
this sufficient condition sheds lights on how the variations in the firm-specific characteristics
reduce the size of the identified parameter sets. As we will show later, in our setting, there
exist multiple firm characteristics that retain the desired variation property.

To conduct inference of this partially identified moment inequality model, we use the
subsampling method discussed in Chernozhukov et al. (2007) to construct the 95% confi-
dence regions. The constructed contour region contains the true parameter set Θ with 95%
probability. As a result, all estimation results are reported as intervals instead of point esti-
mates.

4.5.4 Reducing the Dimensionality of the Decision Space

There are more than hundred generics manufacturers in the United States. From a computa-
tional point of view, it is extremely challenging to estimate a model that explicitly character-
izes every manufacturer’s entry decision. The size of the potential strategy set tsku equals
2N and grows exponentially in the number of firms N . We cannot obtain a reliable estimate
of the empirical probability of observing each strategy vector with 802 generic drug markets.

To reduce the size of the decision space, we need to make simplifying assumptions. A
typical solution to this challenge is to consolidate multiple firms’ decisions into one decision.
For example, when studying airlines’ entry decisions, Ciliberto and Tamer (2009) consider
all medium-sized carriers’ entry decisions as one decision, and all low-cost carriers’ entry
decisions as one decision as well. Instead of predicting which medium-sized (or low-cost)
carrier enters the market, they define entry by medium-sized (or low-cost) carriers as at least
one medium-sized (or low-cost) carrier entering the market. They justify this approach by
noting that in most markets, there is either zero or one medium-sized (or low-cost) carrier in
the market.

We do not think this is a valid approach for the generic pharmaceutical industry. In this
industry, there are multiple large generics manufacturers each capturing at least 10% of the
market share, whereas there are also dozens of medium manufacturers each capturing at least
1% of the market share (Statista 2015). A drug market can still be considered a competitive
market if multiple medium manufacturers are present. In our dataset, around 30% of the
generic drug markets attract at least two medium entrants and around 18% of the markets
attract at least three medium entrants. Therefore, we would like our model to be able to
capture the number of medium firms in a market.

We now introduce the modified model that incorporates the number of medium entrants.
We individually characterize the entry decision of the three largest generics manufacturers,
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Table 4.2: Top Twenty Manufacturers by the Number of Approvals in 802 Generic Drug
Markets

Firm Name No. of Generics Approvals Firm Name No. of Generics Approvals

Mylan 178 Lupin 50
Teva Pharmaceutical 169 Taro Pharmaceutical 45
Sandoz 129 Zydus Pharmaceuticals 40
Apotex 112 Fresenius Kabi 39
West Ward Pharmaceuticals 97 Impax Laboratories 33
Sun Pharmaceutical 94 Perrigo 32
Dr. Reddy’s Laboratories 80 Par Pharmaceutical 31
Aurobindo Pharma 74 Hospira 30
Actavis 69 Glenmark Pharmaceuticals 28
Watson Pharmaceuticals 66 Amneal Pharmaceuticals 25

i.e., Teva, Mylan and Sandoz. These are the three firms that have the highest number of
generics approvals in our database. They are also the three largest firms by market share. In
2015, they together captured 40% of the U.S. market with the fourth-largest firm capturing
only 4% of the market (Statista 2015).

We consider a generics manufacturer to be a medium-sized manufacturer if it has at least
25 generics approvals in the Orange Book and it captures at least 1% of the total U.S. generics
market in 2015. This gives us seventeen medium-sized firms in the database. We will focus
on the entry decisions by the three largest firms as well as these seventeen medium firms.
These twenty firms participate in 85% of the markets where we observe generic entrants in
our data. We do not lose generality of the results by excluding remaining small firms from
the analysis. We obtain similar results if we include a binary decision variable capturing the
decision of the remaining small firms (see Section 4.9.2).

With twenty firms at hand, there still can be 220 equilibria. To further simplify the model,
we assume that the medium manufacturers are symmetric and we capture the total number
of medium entrants in equilibrium. This assumption largely reduces the dimension of the
decision space. With this assumption, every medium manufacturer who chooses to enter the
market receives the same payoff. We can now rewrite the manufacturer i’s payoff in market
m as

πimpym, nmq �

$''''''&
''''''%

αi0 � α1i �Dm � β1 �Xim � γi � Pt �
°
j�i δj � yjm � δ4 � nm � sm � sim,

i, j P t1, 2, 3u,

αi0 � α1i �Dm � β1 � sXim � γi � Pt �
°
j�i δj � yjm � δi � pnm � 1q � sm

�sim, i � 4.

(4.10)

Following the assumption that medium firms are symmetric, the medium firm characteristics
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sXim denotes the average firm characteristics in marketm across all medium firms. Similar to
Ciliberto and Tamer (2009), we collapse the decision of the medium firms; however, instead
of using a binary indicator, we allow the decision variable to take values of zero, one, two,
three and above. Due to computational difficulties, we are not able to capture every possible
value in terms of the number of medium firm entrants. We therefore treat three or more
manufacturers present in the market as one case.15 In other words, we predict whether zero,
one, two, or more medium manufacturers are present in the market. This simplification
further reduces the dimension of the decision space while preserving a moderate level of
flexibility in characterizing market concentration levels.

For computational reasons, we do not allow full flexibility in the parameters. Specifically,
we allow heterogeneous competitive effects tδju. We also allow the estimator of regulatory
environment control (γi) as well as the constant term (αi0) to vary between the top three
large firms and the remaining medium firms. We incorporate the heterogeneous impact of
ANDA queues on firms’ payoff function for the following reasons. Recall that a longer
ANDA review queue affects a firm’s expected payoff through the increasing opportunity
cost. Firstly, larger firms are likely to have more alternative investment options. For example,
instead of investing in the generic application, larger firms can seek acquisition opportunities
and start generating revenue as soon as they take over the target firm. In addition, because
larger firms have higher production capacity, higher pricing power, and more distribution
channels, delayed ANDA approval means more compromised sales opportunity and lost
revenue.

In this modified model, the equilibrium vector for the game becomes pym, nmq, where
ym is a three-by-one vector that represents the three large manufacturers’ entry decisions,
and nm is a numerical value ranging from zero to three that indicates the number of medium
entrants. In total, there are altogether 32 possible values. Under this model, a firm’s payoff
from entry is not only affected by the presence of each of the three major firms, but also by
the number of medium-sized firms, nm.

4.6 Estimation Results

In this section, we first provide model-free evidence of market and firm heterogeneity. We
then show the estimates of the empirical conditional choice probabilities derived from the
random forest method. Lastly, we present the parameter estimates of the entry model and
discuss how one should interpret the estimates.

15In our data, only 8.97% of generics markets attract more than three medium manufacturers in the initial
stage.
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4.6.1 Market-Level and Firm-Level Heterogeneity

Table 4.3 reports summary statistics of market and firm characteristics. Among the 802
generic drug markets, 191 drug products are used to treat chronic diseases and 315 drugs are
dispensed parenterally. We find that the total prescription charge of the reference branded
drug varies significantly across drug markets. Each drug product on average has 2.62 sub-
stitutes, and around two-thirds of the drug products are the only product in at least one of
their structured indications. The majority of the drug products (87%) contain only one active
ingredient, while the molecule size of the contained active ingredient also varies across drug
products.

Among all firm-market combinations, there are 927 cases (5.8%) when a firm has prior
experience in manufacturing the same ingredient. It is more common for a firm to have
experience in producing drugs in the same therapeutic class (36%) or with the same route of
administration (about 60% of the cases). In more than half of the cases, firms did not have
citation records on file, whereas some firms experienced significant quality-control problems
in the two-year period. We also observe that both the product diversity and the recently
approved applications vary across firms.

Table 4.3: Summary Statistics

Variable Mean St. Dev. Min 1st Quartile Median 3rd Quartile Max

Panel A: Market Characteristics

Total Prescription Charge ($Mn) 13.98 31.9 0.001 0.34 2.47 11.49 365.61
No. Substitutes 2.62 7.14 0 0 0 2 56
No. Active Ingredients 1.17 0.56 1 1 1 1 8
Molar Mass (g/mol) 363.3 211.5 6.94 256.1 325.6 412.8 2,933.5

Panel B: Firm Characteristics

Experience in Therapeutic Class 0.72 1.71 0 0 0 1 35
HHI over Therapeutic Classes: 654 895 0 316 478 680 10000
Experience in Route 10.12 15.12 0 0 2 15 85
Experience in Ingredient 0.04 0.24 0 0 0 0 3
No. of Citations 4.03 7.05 0 0 0 5 46
Recent ANDA Approvals 14.08 12.97 0 4 11 21 77

:Note. The HHI index over therapeutic classes is rescaled to a fraction in the estimation stage.

4.6.2 Parameter Estimates

Table 4.4 provides the estimates of the entry model. Column (a) reports the estimation results
from using the observed ANDA queue length, while Column (b) reports the estimation re-
sults from using the instrument variable method. Recall that our model is only set-identified
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but not point-identified.16 Therefore, for each parameter, we show the 95% confidence in-
terval rather than a point estimate and its standard error. The results presented in the two
columns are consistent both in terms of magnitude and statistical significance.

Table 4.4: Model Estimates

(a) (b)
Heterogeneous Competitive Heterogeneous Competitive

Effects Effects with IV on Backlog

Market Characteristics
Total Prescription Charge (logarithm) [0.074, 0.120]** [0.059, 0.132]**
Chronic Diseases [0.059, 0.176]** [0.054, 0.225]**
No. Substitutes [-0.011, 0.002]* [-0.012, 0.001]*
Parenteral Route [-0.177, 0.010]* [-0.220, 0.031]*
No. Active Ingredients [-0.075, -0.012]** [-0.064, -0.011]**
Molar Mass (100g/mol) [-0.037, 0.013] [-0.037, 0.026]

Firm Characteristics
Experience in Therapeutic Class [0.003, 0.019]** [0.002, 0.021]**
HHI over Therapeutic Classes [-0.590, 0.036]* [-0.733, -0.064]**
Experience in Route [0.001, 0.006]** [0.002, 0.008]**
Experience in Ingredient [0.015, 0.117]** [0.019, 0.122]**
No. Citations (tens) [-0.005, -0.001]** [-0.005, -0.001]**
Recent ANDA approvals [-0.007, 0.001]* [-0.006, 0.000]*

Regulatory Environment
No. ANDA backlogs (thousands)

Large Firm [-0.214, -0.038]** [-0.178, 0.022]*
Medium Firm [-0.110, -0.030]** [-0.129, -0.034]**

Competitive Effect
Teva on Other Firms [-0.967, -0.699]** [-1.121, -0.904]**
Mylan on Other Firms [-0.757, -0.458]** [-0.733, -0.495]**
Sandoz on Other Firms [-0.574, -0.374]** [-0.654, -0.451]**
Medium Firm on Other Firms [-0.391, -0.268]** [-0.310, -0.208]**

Constant
Large Firm [-0.466, -0.065]** [-0.555, 0.091]*
Medium Firm [-0.459, -0.009]** [-0.405, 0.440]

St. Dev. of Firm-Market Shock (ρ) [0.013, 0.052]** [0.013, 0.050]**

Model Performance
Objective Function Value 69.34 69.02
Correctly Predicted Equilibrium Outcome: 0.2120 0.2057

:Note. If the model predicts multiple entry outcomes, we conclude that the model achieves a correct prediction as long as the
observed market entry outcome is one of the predicted equilibria. ** — 0.05 level, * — 0.1 level

As shown in Table 4.4, the total prescription charge of the reference branded drug, the
proxy of generic market size, is a significant indicator of how profitable the generic drug
market will be. Drugs used to treat chronic diseases are more profitable than those used to
treat acute diseases. This is likely because demand for chronic medications are more stable.
We also find medications with fewer substitutes to be associated with a slightly higher payoff,
though not significant at the 95% level.

Apart from the market profitability, our estimation results also suggest that production
complexity significantly deters manufacturers from entering the market. This is because the

16Point-identified models generate a best point estimate of the parameters of interest. Set-identified models
(models that allows for partial identification) make fewer assumptions but can only generate bounds on the
parameters of interest.
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complexity in the manufacturing process increases the production cost and thus results in
a lower payoff. We find that drugs administered parenterally is generally less attractive to
manufacturers compared to drugs administered via other routes due to the more stringent
sterile requirements. The other two metrics of production complexity, the number of active
ingredients contained in the drug product and the molar mass of the active ingredients, are
also negatively associated with the payoff of manufacturers.

Besides the market characteristics, firm characteristics also affect a firm’s payoff in a
market. Results in Table 4.4 show that firms prefer to enter those generic markets where they
have prior experience. A manufacturer’s payoff is significantly higher if the firm has man-
ufactured drugs with the same active ingredient (r0.015, 0.117s), or with the same adminis-
tration route (r0.001, 0.006s), or in the same therapeutic class (r0.003, 0.019s). Comparably,
the experience in the ingredient is the most valuable experience, whereas the experience in
the administration route is the least valuable one. This is likely because experience in the
ingredient is a more specific experience than in others. Firms in general are also rewarded
for holding a diverse portfolio of therapeutic classes, as a higher Herfindahl Index (a more
concentrated product portfolio) is associated with lower payoffs. This is likely because a
more diversified product portfolio signals higher production capability and generates more
stable incomes.

The estimation results demonstrate that a manufacturer’s likelihood of entering a market
is negatively associated with the number of inspection citations it receives around the ANDA
review period. With a higher number of citations, a manufacturer is less likely to be approved
for production by the FDA or has to incur higher costs in order to be approved. We also find
that the firm’s recent ANDA approvals is negatively associated with its likelihood of entering
a market, likely because of capacity constraints, though this effect is small.

Lastly, we find that ANDA queue length, measured by the number of ANDAs pending
for over 180 days, has a significantly negative impact on the likelihood of a manufacturer
entering a market. The magnitude of the association also varies between manufacturers.
Specifically, the association is twice as large for the three large firms compared to the av-
erage medium firms, i.e., r�0.214,�0.038s for large firms compared to r�0.110,�0.030s

for medium firms. This result suggests that these industry giants are more influenced by the
ANDA delays than their medium-sized competitors. This is likely because delays in ANDA
approval lead to more compromised sales and lost revenues for these large firms or because
they have more options elsewhere.

We also find evidence of heterogeneous competitive effects from the estimation results.
The competitive effect from Teva’s entry, which is estimated to be r�0.967,�0.699s, is
significantly larger than that from an average medium manufacturer, which is estimated to
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be r�0.391,�0.268s. The differences in the competitive effects are sufficiently large to lead
to multiple equilibrium numbers of firms, necessitating the incorporation of heterogeneous
competitive effects.

To better understand the magnitude of the measured effects, we calculate the size of each
effect relative to that of market size. In particular, medications used to treat acute diseases
need a market three times as large as the market for medications used to treat chronic diseases
in order to attract the same number of generic drug manufacturers. Drugs administered
parenterally demand a double-sized market to secure the same level of competition as those
drugs administered through other routes. If the ANDA queue length were increased by 500
cases, a market would need to increase its size by 43.6% to make it attractive for a medium-
sized firm to enter, or double its size for a large firm to enter. We find that the competitive
effects are of the largest scale. A thirty-fold increase in market size is needed to compensate
for the entry from a medium competitor. And a nearly hundredfold increase in the market
size is needed to offset the impact of the entry of a large firm like Sandoz.

4.7 Policy Simulations

The rationalization of having generic drugs on the markets is to offer patients accessibility
to low-cost medications; however, due to lack of competition, relatively high generic drug
prices are observed in a significant proportion of the generic drug markets (e.g., see FDA
2005 and Dave et al. 2017). In order to achieve the goal of lowering pharmaceutical costs,
the FDA has taken several actions to increase competition in the generic pharmaceutical
industry, such as the GDUFA program implemented in 2012 which significantly reduced the
ANDA backlog by the end of 2016.

In this analysis, in particular, we empirically test the influence of the ANDA queue on
the competition level in the U.S. generics markets. More specifically, we want to understand
whether the FDA’s effort to shorten the wait time always increases the number of entries in
generics markets. The policy experiment is performed on all 802 markets in the study period.
In addition, we also look into the future and conduct another set of policy simulation on 141
future generics markets, whose patent will expire between 2018 and 2022.

We simulate the entry game with ANDA queues of different lengths and compare the
market concentration level with the following two metrics: (1) the average number of gener-
ics entrants across markets, and (2) the percentage of markets with at most one generics
entrant. We define a market with at most one generics manufacturer as a market with limited
entry. We focus on these limited-entry markets for the following reasons. According to an
FDA report on generics competition and drug prices FDA (2005), generic drug prices can be
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almost as high as that of branded drugs when there is only one manufacturer in the market.
The price of generic drugs continues to fall when there are more manufacturers entering the
market, where the largest price drop happens after the second entry into the market. It is thus
important to reduce the number of markets with limited entry. Our focus is also consistent
with recent FDA efforts in prioritizing reviews of drugs that have little or no competition
(Brennan June 27, 2017).

Figure 4.2: The Average Numer of Generics Entrants per Market under Different Levels of
ANDA Queue Length

(a) Markets in Study Period: 2002-2014
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(b) Future Markets: 2018-2022

The Number of Pending ANDAs
0 500 1000 1500 2000 2500 3000

T
he

 N
um

be
r 

of
 G

en
er

ic
 E

nt
ra

nt
s 

pe
r 

M
ar

ke
t

(A
ve

ra
ge

 a
cr

os
s 

S
im

ul
at

io
ns

)

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

Note. The 95% confidence interval error bars are included for simulated average at each level of ANDA queue
length.

At each level of ANDA queue length, we solve the entry games using numerical methods
and obtain the equilibrium number of entrants. We again take the average number of entrants
if multiple equilibria exist. We simulate the entry game with 5,000 draws of market-specific
and firm-market-specific shocks and report the average value of the two concentration met-
rics across the simulations. The error bars are also generated to indicate the statistical sig-
nificance.

We first look at how the average number of generics entrants per market changes with
the number of pending applications. By allowing firms to enter the market earlier, a shorter
ANDA queue directly increases manufacturers’ probability of entering. At the same time,
a shorter queue also increases competitors’ likelihood of entering and thus indirectly deters
a firm from entering a market. We can see in Figure 4.2 that the mean entrants per market
follows a monotonic decreasing trend. For the generics markets in our study period, the
count of average entrant decreases by a total of 4.4% (from 1.924 entrants to 1.838 entrants)
when we increase the ANDA queue length from 50 (the actual number in the early 2000s) to
2,300 (the actual number of 2012). For future generics markets, the reduction is 6.6% level
(from 1.664 entrants to 1.553 entrants).
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Figure 4.3: The Fraction of Generic Markets with At Most One Entrant under Different
Levels of ANDA Backlogs

(a) All Markets in Study Period: 2002-2014
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(b) All Future Markets: 2018-2022
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(c) All Parenteral Markets in Study Period: 2002-
2014
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(d) All Future Parenteral Markets: 2018-2022
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Note. The 95% confidence interval error bars are included for simulated average at each level of ANDA
backlogs.
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Even though the average number of entrants per market is larger with a shorter ANDA
queue, the percentage of markets with limited entry may actually be higher with a shorter
queue. In Figure 4.3, we observe a non-monotone relationship between the ANDA queue
length and the percentage of markets with limited entry. In particular, the fraction of mar-
kets with at most one entrant is the lowest with moderate ANDA queue length at around
500. Specifically, for those generics markets with patent expires between 2002 to 2014, the
percentage of limited-entry markets decreases by 3% (or 1.2 percentage points) when we
reduce the ANDA queue length from 2,300 to 500. This reduction can be translated into
approximately 10 more markets (1.2 percent of 802 markets) to have at least two generic
entrants. Our experiments also show a discrepancy in the market outcome across different
type of drug markets. Those markets with drugs dispensed parenterally are more likely to
become limited-entry markets. The non-monotonic impact of the ANDA review time is also
more salient on this market segment.

A longer or shorter ANDA queue will both increase the number of limited-entry markets.
To understand why a short ANDA queue may actually hurt competition, recall that based
on our estimates, a large manufacturer benefits from a shorter queue more than a medium
manufacturer does. Therefore, a very short queue significantly increases the probability of
a large manufacturer entering a market, making it unattractive for a medium firm. Likely
due to the additional production cost, this competition effect appears to be stronger on those
parenteral drug markets.

The results of the policy simulation suggest that ANDA backlog has a reasonably large
impact on the competition level in the market for generic drugs. The FDA should avoid
having a very long ANDA queue, which can significantly dampen the level of competition
in terms of both the average number of entrants per market and the percentage of markets
with limited entry. To do so, the FDA should carefully monitor the number of drug mar-
kets coming off-patent and plan ahead of time regarding their staff and funding level. That
said, maintaining a very short ANDA queue is both costly and undesirable for the purpose
of minimizing the number of markets with limited entry. Therefore, the more cost-efficient
and effective approach for the administration is to maintain the queue length at a moderate
level. Alternatively, the FDA may also consider establishing separate queues for generics
applications with different manufacturing complexity level. There is a trade-off for priori-
tizing the review of a subset of ANDAs. For example, if the FDA prioritizes the process of
parenterally dispensed drugs, the queue length of this market segment is reduced and thus the
proportion of limited-entry markets can be brought down. However, the prioritization also
means that less resources are available for other types of drug markets. The overall impact of
such a strategy on market structure depends on the relative time involved in reviewing differ-
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ent kinds of generics applications. According to the FDA, this strategy may help balance the
level of competition across markets and reduce the total number of limited-entry markets.

4.8 Conclusions

To deal with the rising health care costs and to guarantee the accessibility of low-cost gener-
ics, it is important to understand how this industry behaves. However, few studies have
comprehensively analyzed the factors that lead to concentration in generic drug markets,
partially due to lack of a unified database. In this paper, we collect data from six different
sources and analyze a host of factors that may have impacted the level of competition in
more than 800 drug markets that were opened for generics manufacturers between 2002 and
2014.

We develop a static entry game model to capture the factors governing manufacturers’
entry decisions and estimate the impact of each factor using the data we have collected.
Besides market size and firm’s prior experience in similar drugs (drugs in the same thera-
peutic class, with the same active ingredient, or administered through the same route), we
find that product difficulty significantly affects the level of competition in a drug market.
For example, due to more stringent sterile requirements in the production process, drugs
dispensed parenterally need a double-sized market in order to attract the same number of
entrants. Moreover, we also find that delays in ANDA approvals can significantly dampen
competition in generic drug markets. An increase in ANDA queue length by 500 applica-
tions requires a market to be twice as large to ensure the same level of competition. This
effect is particularly concerning because all markets that are open for generics competition
at the time will be impacted by delays in the ANDA approval process.

Our policy simulation results show that the excessive delays in the ANDA review process
was one of the causes that led to the high concentration level in the generics markets. In order
to achieve the goal of increasing generics competition and lowering pharmaceutical costs, the
FDA should plan ahead based on the number of drugs coming off-patent. The administration
should also maintain the time-to-approval at a moderate level to minimize the number of
markets with no or limited generics entry.
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4.9 Complementary Material

4.9.1 Estimation of Conditional Choice Probabilities

As described in Section 4.5.3, we calculate the empirical conditional choice probabilities
in the first step using the random forest algorithm. Within each bootstrapped data, we can
obtain CCP estimates of each possible market entry equilibrium for every generic market.
The final estimates of the CCPs are obtained by taking the average among the 100 estimated
CCPs derived from the bootstrapped data sets.

Figure 4.4: Comparison of Prediction Performance
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We now compare the perdiction performance using different estimation methods. The
first alternate method is the variable discretization method described in Ciliberto and Tamer
(2009). This method partitions the markets based on the quantiles of exogenous variables.
We partition the markets based on the market characteristics and stop further partitions when
the markets within each group is smaller than 20. The second alternate method is classifica-
tion tree method. Besides using the common CP criteria as the stopping rule, we also require
a minimum leaf size of 20 to avoid over-fitting and make the results comparable between var-
ious methods. The final alternate method is random forest algorithm. This algorithm is an
advanced version of the classification tree method. Specifically, to construct the prediction
using the random forest method, we consider 100 bagged classification trees.

We now examine the in-sample and out-sample prediction accuracy, i.e., the probabil-
ity that the methods correctly predict the market structure. Because the classification tree
method is likely to over-fit the data sample, we anticipate that the method to have a relatively
high in-sample accuracy but a low out-sample accuracy. This is indeed what we see in Fig-
ure 4.4. The two tree-based methods outperform the discretization method in the in-sample
prediction performance, whereas the classification tree method perform the worst in terms
of the out-sample predication performance.
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We find that among the three methods, the random forest algorithm, due to its bagging
procedure and random feature selection, generates the highest level of both in-sample (0.459)
and out-sample (0.335) accuracy. We thus estimate the empirical CCPs using the random
forest algorithm in the main analyses given its relatively better performance. Our estimation
result of the structural model is also robust from using the variable discretization method in
the first estimation step.

4.9.2 Robustness Tests: Model Specification

In this section, we conduct a robustness analysis to ensure that our estimation results are not
driven by the model specification. We focus on the entry decision of the 20 largest generics
manufacturers in the main analysis for computational reasons. We now extend the model by
incorporating the entry decision of the remaining small firms; however, unlike including the
number of medium firms, we only include a binary variable ysm that captures whether there
exist other small manufacturers. In our database, 79.3% of the drug markets attract either
zero or one small firms. The choice of including the binary decision variable guarantees the
computational efficiency while managing to keep the model representative.

We do not construct firm characteristics for small manufacturers because there are con-
stantly small firms entering and leaving the generic pharmaceutical industries. Instead, we
focus on how the other factors, i.e., the market characteristics, the regulatory environment,
and the competitive effects, determine the entries from those small players.

We now rewrite the manufacturer i’s payoff in market m as

πimpym, nm, y
s
mq � αi0 � α1i �Dm � β1 �Xim � γi � Pt �

¸
j�i

δj � yjm � δ4 � nm � δ5 � y
s
m

�sm � sim, i, j P t1, 2, 3u,

πimpym, nm, y
s
mq � αi0 � α1i �Dm � β1 � sXim � γi � Pt �

3̧

j�1

δj � yjm � δi � pnm � 1q

�δ5 � y
s
m � sm � sim, i � 4,

πimpym, nm, y
s
mq � αi0 � α1i �Dm � γi � Pt �

3̧

j�1

δj � yjm � δi � nm � sm � sim, i � 5.

(4.11)

Besides the heterogeneous competitive effects tδju, we also allow the estimator of reg-
ulatory environment control (γi) as well as the constant term (αi0) to vary between the top
three large firms, the seventeen medium firms, and the remaining small firms. We incorporate
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the heterogeneous effect of ANDA queues length for the reasons discussed in Section 4.5.4.

Table 4.5: Robustness Test: Model Estimates

(a) (b)
Main Model Eq. 4.10 Extended Model Eq. 4.11

Market Characteristics
Total Prescription Charge (logarithm) [0.074, 0.120]** [0.089, 0.127]**
Chronic Diseases [0.059, 0.176]** [0.027, 0.344]**
No. Substitutes [-0.011, 0.002]* [-0.006, 0.003]
Parenteral Route [-0.177, 0.010]* [-0.220, 0.023]*
No. Active Ingredients [-0.075, -0.012]** [-0.068, 0.025]
Molar Mass (100g/mol) [-0.037, 0.013] [-0.036, 0.003]*

Firm Characteristics
Experience in Therapeutic Class [0.003, 0.019]** [-0.003, 0.034]*
HHI over Therapeutic Classes [-0.590, 0.036]* [-0.372, 0.037]
Experience in Route [0.001, 0.006]** [0.000, 0.006]**
Experience in Ingredient [0.015, 0.117]** [-0.049, 0.148]
No. Citations (tens) [-0.005, -0.001]** [-0.023, 0.005]
Recent ANDA approvals [-0.007, 0.001]* [-0.003, 0.002]

Regulatory Environment
No. ANDA backlogs (thousands)

Large Firm [-0.214, -0.038]** [-0.235, -0.006]**
Medium Firm [-0.110, -0.030]** [-0.153, -0.007]**
Small Firm [-0.216, -0.045]**

Competitive Effect
Teva on Other Firms [-0.967, -0.699]** [-1.032, -0.468]**
Mylan on Other Firms [-0.757, -0.458]** [-0.723, -0.381]**
Sandoz on Other Firms [-0.574, -0.374]** [-0.687, -0.355]**
Medium Firm on Other Firms [-0.391, -0.268]** [-0.431, -0.167]**
Small Firm on Other Firms [-0.527, -0.128]**

Constant
Large Firm [-0.466, -0.065]** [-0.649, -0.139]**
Medium Firm [-0.459, -0.009]** [-0.550, -0.052]**
Small Firm [-0.345, 0.098]

St. Dev. of Firm-Market Shock (ρ) [0.013, 0.052]** [-0.037, 0.101]

Model Performance
Objective Function Value 69.34 49.72

In this extended model, the equilibrium vector for the game becomes pym, nm, ysmq, where
ym is a three-by-one vector that represents the entry decisions of the market leadersm Teva,
Mylan, and Sandoz, nm is a numerical value ranging from zero to three that indicates the
number of medium players, and ysm is a binary variable that stands for the entry decision of
small manufacturers.

Table 4.5 provide the estimates of the entry model. For ease of comparison, we append
in Column (a) the original estimation results in the main analysis. Column (b) reports the
estimation results after including the entry decision of small firms. With the consistent es-
timates between the two columns, we conclude that our results are robust from using this
extended model.
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CHAPTER 5

Conclusion

We motivated this theses to better understand the role of supply chain structure on disrup-
tions. This thesis attempts to find empirical evidences of direct and intermediary effects of
supply chain structures. In particular, we have looked at two types of supply chain structures:

1. Chapters 2 and 3 investigated the commonly cited phenomena of tier-2 supplier shar-
ing; showed that it is prevalent for firms to have common tier-2 suppliers in their
multi-tier supply networks; and found that those shared tier-2 suppliers impose the
focal tier-0 firm with higher financial risk. Findings in the two chapters underscore
the necessity for firms to look beyond their direct tier-1 suppliers and suggests that
firms prioritize their efforts, based on the level of such concentration, when managing
sub-tier supplier risks.

2. Chapter 4 looked at the limited entry problem in the generic pharmaceutical indus-
try, identified the key determinants of market entry decisions, and illustrated the non-
monotonic relationship between the firm’s entry decision and the backlog of generic
applications at the government regulatory agency. Though overall a shorter time to
approval encourages more generics entries, quicker approvals may sometimes deter
manufacturers from entering if firms perceive an increasing probability of competi-
tors’ entry. We show that it is essential for the government to continuously monitor the
review process and prioritize the markets with a high risk of limited market entry.

We now briefly discuss the limitations of this thesis and outline related future research.
In Chapter 3, we established that the extent of tier-2 sharing influences tier-0 firm financial
risk. A natural question to ask is whether we can find similar results for firm operational
risk. In order to look into the operational performance, however, we need to build a facility-
level supply network that documents the material flows between firms’ production sites.
We collaborate with a large automaker to gain access to their extended multi-tier supply
relationship data. We find that tier-2 sharing phenomenon is also prevalent at the facility
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level, and the degree of tier-2 sharing is heterogeneous across supplier locations and the
nature of the commodity sourced. Using the tier-1 supplier’s delay in delivery as the key
operational performance metric, we find that tier-2 sharing affects delays when disruptions
occur, but it does not impact delays in routine performance.

In Chapter 4, we examined the market entry decisions of generic manufacturers. This
serves as a starting point to achieve the ultimate goal: to uncover the root cause(s) of the per-
sistent drug shortage and price hikes in the generic pharmaceutical industry. A next step is to
look into other drivers of the drug supply problem, such as the manufacturing quality issue
and the concentration in active pharmaceutical ingredient (API) producers. Apart from the
limited market entry, manufacturing quality problem is suspected to be another main driver
of the unstable drug supply. In an ongoing work, we specifically focus on the impact of qual-
ity inspections. Conditioned on the citations manufacturers received, our analysis reveals a
significant correlation between the tone of government warning letters and the number of
future drug shortages. We found that those drug products manufactured by firms receiving
a more stringent warning letter are more likely to experience shortages. It is likely the case
that manufacturers opted for taking remediation efforts and halted the production lines when
they perceived more stringent quality requirements. To further elaborate on the relationship
between quality problem and production decision, we plan to construct a dynamic model
that identifies the factors influencing manufacturers’ production decisions. Disruptions in
supply of generic drugs to end consumers could also occur due to decisions made by down-
stream supply chain players like distributors and retailers. We investigate these issues for
the pharmaceutical supply chain in China. Specifically, we have set up a field experiment
that leverages the ordering behavior of retailer managers to focus on improving the supply
continuity at the retailer level.
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