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ABSTRACT

Teleoperated Unmanned Ground Vehicles (UGVs) have been widely used in ap-

plications when driver safety, mission efficiency or mission cost is a major concern.

One major challenge with teleoperating a UGV is that communication delays can

significantly affect the mobility performance of the vehicle and make teleoperated

driving tasks very challenging especially at high speeds.

In this dissertation, a predictor based framework with predictors in a new form

and a blended architecture are developed to compensate effects of delays through

signal prediction, thereby improving vehicle mobility performance. The novelty of the

framework is that minimal information about the governing equations of the system is

required to compensate delays and, thus, the prediction is robust to modeling errors.

This dissertation first investigates a model-free solution and develops a predictor

that does not require information about the vehicle dynamics or human operators’

motion for prediction. Compared to the existing model-free methods, neither as-

sumptions about the particular way the vehicle moves, nor knowledge about the

noise characteristics that drive the existing predictive filters are needed. Its stability

and performance are studied and a predictor design procedure is presented.

Secondly, a blended architecture is developed to blend the outputs of the model-

free predictor with those of a steering feedforward loop that relies on minimal infor-

mation about vehicle lateral response. Better prediction accuracy is observed based

on open-loop virtual testing with the blended architecture compared to using either

xiii



the model-free predictors or the model-based feedforward loop alone.

The mobility performance of teleoperated vehicles with delays and the predictor

based framework are evaluated in this dissertation with human-in-the-loop experi-

ments using both simulated and physical vehicles in teleoperation mode. Predictor

based framework is shown to provide a statistically significant improvement in vehicle

mobility and drivability in the experiments performed.

xiv



CHAPTER I

Introduction

1.1 Motivation

Unmanned ground vehicles (UGVs) are vehicles operated without on-board drivers

and have been widely used in both military and commercial applications when driver

safety, mission efficiency or mission cost is a major concern. Potential applications

include reconnaissance, surveillance, route clearing, planetary and mine exploration,

and farming and rescue tasks [1, 2]. UGVs span a wide spectrum in their mode of

operation from teleoperated to semi-autonomous and fully autonomous. Teleopera-

tion describes the mode in which the UGV has no intelligence to sense and react to

its environment and a remote human operator controls all actions of the UGV. In the

semi-autonomous mode, the control authority is shared between the human operator

and an autonomy module. In the fully autonomous mode the autonomy module is

responsible for controlling all actions of the UGV. Despite the rapidly developing

technologies of sensors and algorithms for autonomy, UGVs are still far from being

operated in fully autonomous mode under all circumstances and human operators

are involved in the loop to remotely monitor and control the vehicle operation in

situations when UGVs are not capable of completing the mission independently and

reliably. At the moment, majority of the UGVs in the Army are teleoperated, and

enabling high-speed teleoperation of UGVs is critical to the Army [3, 4]. Therefore,
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Figure 1.1: A general paradigm of vehicle teleoperation.

this dissertation focuses on high-speed teleoperated UGVs.

A general paradigm of vehicle teleoperation is shown in Fig. 1.1. The driver station

is physically separated from the remote vehicle and environment. A human operator

at the driver station uses input devices to send through a communication network

control commands to the remote vehicle platform that maneuvers in the environment,

and receives vehicle information via a human-vehicle interface. Vehicle information

usually includes camera views to capture the environment and vehicle states related

to its dynamics. As humans get more than 90% of their perception information via

vision [2], information presented to the operators through the interface is mostly in

the form of visual display.

In teleoperation, reduced situational awareness and the communication delays in

the network are the main challenges that reduce vehicle mobility. The former is caused

by compromised human perception due to the fact that the operator is not physically

in the vehicle, but receives partial information from a remote physical environment

[5]. Improving situational awareness is mainly based on design of interfaces to aid

human perception and is not the scope of this dissertation. Instead, this dissertation

mainly addresses the second challenge, i.e. the communication delays that cause

degradation of vehicle mobility.

More specifically, the round trip delays in the network cause asynchrony between

2



human sending commands to and receiving information from the remote vehicle.

When delays are as small as around 130 ms, human operators can adapt to delays

with practice, predicting the outcome of their control actions fairly accurately and

controlling the vehicle continuously as if there are no delays [6]. However, when delays

are larger than this threshold, they can significantly degrade vehicle mobility and even

destabilize the closed-loop system, mainly due to operator-induced oscillations when

human operators overcompensate for non-negligible errors between their predicted

control outcome and delayed response [7, 8, 9]. Delays make vehicle teleoperation very

challenging especially at high vehicle speeds, as there is less time for human operators

to respond to sudden changes in the environment. For example, in a simulated driving

task, human operators were asked to control the vehicle in a lane while maintaining

a speed of 55 mph and driving performance was found to be significantly degraded

with delays of 170 ms [10].

Therefore, teleoperating vehicles at high speeds under relatively large communi-

cation delays is an important research challenge.

1.2 An Overview of Methods to Address Communication De-

lays

There exist various techniques in the teleoperated vehicle literature to address the

challenge of communication delays. For example, a human operator can switch to a

move-and-wait control strategy to avoid instability in most of the teleoperation tasks,

but this strategy slows down the operation and is error prone [9].

Supervisory control methods rely on various levels of autonomy, so that the op-

erator is only responsible for designating short term objectives and the vehicle au-

tonomously navigates to the objective [11, 12, 13, 14]. With this scheme, delays have

no impact on the vehicle control that is handled at the vehicle locally by the automa-
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tion. Instead, delays negatively affect the performance by reducing the fidelity for the

human operator in monitoring the vehicle and designating the objectives. An event

based communication framework helps to deal with this problem [15, 16, 17]. In this

framework, packet transmission through the communication channel is handled based

on designated events rather than periodically in time. Unless an event is triggered

that initiates a packet transmission (for example, updates in commands or vehicle

response are necessary for the sake of stability and good estimation performance),

driver station and vehicle platform are operated locally relying on simulation of es-

timated vehicle response and levels of autonomy, respectively. Nevertheless, a key

disadvantage remains; namely, supervisory control methods require additional effort

and cost to add the necessary level of autonomy to the vehicle.

The above-mentioned methods aim to reduce the frequency of the human op-

eration and the continuous closed-loop teleoperation is replaced by either discrete

move-and-wait control or high-level decision making that are affected less by delays.

However, doing so either degrades performance or requires additional efforts and

costly modifications on the system.

In contrast, prediction based methods aim to compensate delays to improve the

performance under continuous teleoperation, and they do so through predicting the

vehicle or human operator motions. One well-known approach in this category is the

predictive display. In the predictive display scheme, instantaneous vehicle response

that is likely to result from the current actions of the operator is predicted and

visualized at the driver station, either overlaying onto or replacing the delayed visuals,

to reduce the asynchrony between human’s control actions and the subsequent vehicle

response. As human operators mostly rely on vision in driving [2], predictive display

methods have been evaluated to be very helpful in improving vehicle mobility under

communication delays [14, 18, 19, 20, 21, 22].

As another example, the Smith predictor relies on a linear vehicle model to coun-
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teract the effects of delay and simplify the closed-loop system transfer function, so

that the denominator of the transfer function does not include the delay term, thereby

enabling the achievement of closed-loop stability by designing the controller for the

system without delay [23, 24].

In [25, 26], human operator’s control commands are predicted into the future

before being sent to the remote vehicle to compensate the delays. This prediction is

based on a model or assumption of human motion.

Most of these prediction methods are model-based, requiring, for example, an

accurate full vehicle model or human model to perform the prediction [14, 18, 19,

20, 23, 24, 25]. However, obtaining an accurate model can be difficult, as modeling

all the salient dynamics properly and parameterizing the model correctly can be a

challenge. Thus, these model-based predictions may suffer from low robustness to

modeling errors.

Alternatively, model-free methods can be employed. Being model free, these meth-

ods do not require knowledge of vehicle dynamics or human behavior and are thus

robust to modeling errors, but usually have worse prediction performance than model-

based methods due to lack of incorporation of any domain-specific knowledge. Ex-

amples include predictive display with clothoid prediction of vehicle trajectory [20]

and Taylor-series-expansion based Kalman filter prediction [27, 28]. However, they

either require additional assumptions on vehicle or operator motions, such as con-

stant speed, or an accurate knowledge or estimation of the statistical characteristics

of the noise that drives the filter to estimate the high order derivatives of the delayed

signals. The performance of these model-free methods depends on how realistic these

assumptions are or how accurately the noise statistics can be known.

Other delay compensation approaches from the telerobotics literature can poten-

tially also be applied to teleoperated vehicles for driving tasks, but their performance

in terms of improving vehicle mobility remains to be studied. For example, passivity
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based methods, including the wave variable and scattering transform [29, 30, 31],

PD-like controller [32, 33], and passive controller with energy dissipation [34, 35, 36],

are widely applied in teleoperated manipulation and telesurgery applications, where

haptic feedback is more critical than vision for the operators to complete the missions.

These methods either render the communication channel passive or dissipate energy

to achieve a passive thus stable closed-loop system while improving the performance

under delays. In this context, performance is typically characterized by transparency.

Transparency is defined as the degree of how well human operators feel the environ-

ment when teleoperating compared to when they directly interact with it [37] and

is mostly in the sense of haptics in telerobotics. Although some of these methods

have been applied on small teleoperated mobile robots with virtual force feedback

based on distances to obstacles [38, 39], robot velocities [40, 41], or tire contact force

[42], driving teleoperated vehicles especially at high speeds relies more on vision than

haptic feedback. Therefore, it is unknown how improving haptic transparency helps

with improving vehicle mobility in high-speed vehicle teleoperation with delays [5].

A teleoperated vehicle can also be considered as a distributed hardware-in-the-

loop experiment with two nodes. Networked hardware-in-the-loop literature presents

methods to ensure a high-fidelity integration with no or minimal knowledge about the

system [43, 44, 45, 46, 47], with a focus on the control of communication similar to

the telerobotics literature. However, some of these methods are more suitable in an

experimental setting, where experiments can be repeated under controlled conditions.

Thus, there exists a gap within prediction-based methods. Model-based predic-

tions are accurate when accurate model is available, but may suffer from low robust-

ness to modeling errors, while existing model-free prediction methods have the benefit

of robustness to modeling error, but rely on assumptions that may not always hold or

require knowledge about noise statistics that may not be available with needed accu-

racy. A method does not yet exist that takes both performance and robustness into
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consideration when performing prediction on transmitted signals and compensating

delays to improve mobility for high speed teleoperated UGVs.

1.3 Research Objective and Questions

Given the gap in the literature identified in the previous section, the objective

of this dissertation is to develop a new prediction based framework to compensate

communication delays and robustly improve the performance of vehicle mobility for

high speed teleoperated UGVs. The key novel feature that this framework is desired

to possess is to require minimal information about the governing equations of vehi-

cle dynamics or human motion to benefit from performance robustness to modeling

errors. The motivation for this requirement is to enable a solution that is as plat-

form and operator independent as possible and can thus be readily applied to various

vehicles with minimal tuning.

To meet this objective, two major research questions are studied in this disserta-

tion:

• How much can the mobility metric of completion time and track keeping error

under a track following scenario of a high-speed teleoperated UGV be improved

robustly in a vehicle- and operator-agnostic manner with a model-free predictor

based framework to compensate the delays?

• How much can the mobility metric of completion time and track keeping error

under a track following scenario of a high-speed teleoperated UGV be further

improved using the model-free predictor based framework in combination with

minimal system information to compensate the delays?
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1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter II reviews the back-

ground on vehicle teleoperation in depth and summarizes the prediction-based de-

lay compensation methods in the literature along with their limitations. Chapter

III presents a model-free predictor of new form, along with detailed analysis of its

stability and performance. A general predictor design procedure is also presented.

Chapter IV presents a predictor based framework including a blended prediction ar-

chitecture that relies on minimal information of the vehicle lateral response. The

prediction accuracy is evaluated in open loop. Chapter V and VI evaluate the mobil-

ity performance of teleoperated UGVs with delays and the developed predictor based

framework with simulated and physical vehicles, respectively, based on human-in-the-

loop experiments. Finally, Chapter VII concludes the dissertation with a summary of

contributions in this dissertation and suggests several directions for potential future

research.
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CHAPTER II

Background

In this chapter, background on generic vehicle teleoperation is provided first. A

review of existing prediction based delay compensation methods are addressed, pro-

viding motivation for a new model-free predictor in Chapter III and a blending ar-

chitecture in Chapter IV.

2.1 Vehicle Teleoperation System

The generic paradigm of a teleoperated vehicle is illustrated in Fig. 2.1. The

Driver Station where the human operator is located and the Remote Vehicle are

two geographically separate subsystems that are coupled through a communication

network. While communication delay can be broken down into four components (i.e.,

processing delay, queuing delay, transmission delay, and propagation delay) [48], here

we consider it as a single, pure delay. Delays are considered bilaterally: control delays

τ1(t) from the Driver Station to the Remote Vehicle and sensor delays τ2(t) from the

Remote Vehicle to the Driver Station. Thus, when the Driver Station sends out a

vector of control commands y1(t) (including steering, throttle and brake), it takes a

round trip delay of τRTT (t) = τ1(t) + τ2(t) to receive a vector of vehicle states y2(t)

(usually including heading, location, speed) and camera views Img(t) as a response

from the Remote Vehicle.
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Figure 2.1: In the teleoperated vehicle system, control commands and vehicle in-
formation in terms of states and camera views are communicated with control delays
τ1(t) and sensor delays τ2(t), respectively. A round trip delay of τRTT (t) = τ1(t)+τ2(t)
deteriorates the vehicle mobility and could even destablize the system.

2.2 Communication Delays

The amount of communication delay depends on the communication distance and

type of network. When the distance is on the order of meters to hundreds of me-

ters, subsystems communicate via a local wireless network such as high frequency

radios and WLAN. Vehicles are usually operated at low speeds due to limited range

of communication and delays as small as tens of milliseconds are observed. When

teleoperation over longer distances are needed, as is the case in military operations,

long-distance communication networks are needed. Long-distance communication is

more of a concern, because large delays and jitters cause significant degradation in

vehicle mobility. Potential networks used for long-range vehicle teleoperation include

cellular networks, Internet or satellite networks. The range of delays for these net-

works are summarized as follows. 3G and 4G LTE mobile network has one-way delay

ranging from around 50 ms to spikes of over 1 s [49, 50, 51]. Ultra low latency and

high bandwidth 5G mobile network is under development, and at the Mobile World

Congress 2017 less than 10 ms of one-way delay was reported from an initial test on
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vehicle teleoperation [52]. Delays in wired Internet varies with the distance and the

mean delays could reach around 300 ms between different continents [53]. Wireless

connection via Internet is more subject to jitter compared to wired connection. In the

battlefield where commercial networks are not available, communication is executed

via satellite links and delays are on the order of hundreds of milliseconds [54, 55] for

cross-country teleoperation. Transmission of camera views requires higher bandwidth

than transmission of control and vehicle state signals and delays are expected to be

even larger (beyond 1 s).

Note that for a linear system, one-way delays τ1(t) and τ2(t) have the same effect

on the open-loop system output as a single round trip delay of τRTT (t) = τ1(t) +

τ2(t), because time shifting with delays is a linear transformation. Inspired by this

fact, some researchers simulated τRTT (t) unilaterally in simulation-based experiments

[18, 56]. The directionality of delays (either from the Driver Station to the Remote

Vehicle or from the Remote Vehicle to the Driver Station) was investigated in [57].

Operators felt the vehicle more difficult to control when the delays were simulated

from the Remote Vehicle to the Driver Station (i.e. delays in vision), but no significant

difference in vehicle mobility was observed. Thus, in this dissertation, degradation of

teleoperation performance is mainly discussed based on the magnitude of round trip

delays, while establishment of closed-loop nonlinear system stability is still based on

bilateral one-way delays.

Most research efforts consider delays as predefined constant values. However,

delays are typically varying in the actual world. The relationship of teleoperation

performance between constant delays and varying delays has been studied in various

works [18, 57, 58, 59]. A track following scenario was tested in [18]. Test results indi-

cated worse performance in lane offset with delays varying between 400 ms and 1100

ms than with constant delays of 700 ms. No significant difference between varying and

constant delays was observed for performance of vehicle speed, workload and motion
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sickness. In [58, 59], path following performance among varying delays distribution

with different means and standard deviations were tested and were equated to the

performance with constant delays of larger means. However, more navigation error

and less completion time were observed with constant delays than with varying delays

in [57] and researchers suggested that this discrepancy might be due to overconfidence

in the ability to adapt to constant delays after training, while this confidence was not

gained for the case with varying delays. Given these previous findings, this disser-

tation studies the delay compensation methods against both constant and varying

delays.

In this dissertation, round trip delays between 0.3 s and 1.0 s are considered

based on the delay range of the common networks. This range is also in agreement

with the delay values tested in most human-in-the-loop experiments for teleoperating

high speed UGVs in the literature [6, 10, 18, 21, 22, 60, 61]. Sensor delays τ2(t)

from the Remote Vehicle to the Driver Station are assumed to be larger than control

delays τ1(t) considering that packets of larger size (including the camera views) are

transmitted.

Next, a review of the existing prediction based methods including predictive dis-

play and human operation prediction is presented and their advantages and disad-

vantages are summarized.

2.3 Predictive Display

Predictive display methods are widely used in vehicle teleoperation to reduce the

effect of delays on driving performance. It is first studied by Arnold and Braisted

for planetary rovers [62]. A general scheme is shown in Fig. 2.2, including two parts,

namely, state prediction and image processing. Compared to the general vehicle

teleoperation system in Fig. 2.1, where it takes τRTT (t) for the human operator to

receive the vehicle response corresponding to his/her control commands, vehicle states
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Figure 2.2: The setup of predictive display methods. Vehicle states are predicted
considering the round trip delays and a display based on predicted states is therefore
generated, showing the instantaneous vehicle outcome under the human operator’s
control at the Driver Station.

are predicted to obtain a response as close to the actual response as possible when

considering the round trip delay τRTT (t). Then, delayed camera views are processed

to incorporate the predicted states and a modified display is presented to the human

operator. Since the operator can see the direct vehicle outcome to his/her current

control commands instantaneously, predictive displays are capable of mitigating the

effect of delays on closed-loop teleoperation. For example, in [18], applying predictive

display under mean round trip delays of 700 ms improves vehicle speed by 12% and

lane keeping accuracy by 26% compared to no prediction. In [22], applying predictive

display under constant round trip delays of 500 ms improves vehicle speed by 29%

and reduces path deviation error and heading error by 35% and 42%, respectively,

compared to without predictive display.

Various prediction methods and display methods can be used in the setup of

predictive displays and are summarized as follows.
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2.3.1 Prediction Methods Predicting Vehicle States

This section discusses methods available in the literature that can be implemented

in the block of “State Prediction” in Fig. 2.2 to predict vehicle states. Depending

on whether information about the governing equations of vehicle dynamics or vehicle

parameters is required to perform prediction, prediction methods are classified as

model-free or model-based.

2.3.1.1 Model-Free Prediction

Model-free prediction of vehicle states is mainly based on geometric constraints on

vehicle trajectory and thus is independent of vehicle dynamics or parameters. How-

ever, assumptions on vehicle trajectory are usually posed. In the clothoid prediction,

the vehicle is assumed to be moving in clothoids while keeping its current longitu-

dinal speed and curvature changing rate constant for the next τRTT [20]. Clothoids

are curves with constant curvature change, which are widely used in road design to

ensure a smooth transition between arcs with different radii. It is often used in driver

assistance systems to predict smooth vehicle motions with no lateral jerk [63, 64].

The curvature C0,c and curvature changing rate C1,c of vehicle trajectory is calcu-

lated based on yaw rate ψ̇c and longitudinal speed uc from the vector of received

delayed states at tc:

C0,c =
ψ̇c
uc

C1,c =
C0,c − C0,c−1

uc(tc − tc−1)

(2.1)
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The vehicle heading ψp and position xp, yp for a prediction horizon of τRTT is deter-

mined as below:

ψp = C0,c(ucτRTT ) +
1

2
C1,c(ucτRTT )2

xp =

τRTT∑
τ=0

uc cos(C0,c(ucτ) +
1

2
C1,c(ucτ)2) ∆t

yp =

τRTT∑
τ=0

uc sin(C0,c(ucτ) +
1

2
C1,c(ucτ)2) ∆t

(2.2)

Since there is no closed form for continuously integrating the clothoid curve, xp, yp

are calculated based on numerical integration with fixed time step ∆t. Note that

ψp, xp, yp are with respect to the coordinates of delayed states and represent the

difference between predicted and delayed states, as required by some display methods

to perform image processing. Clothoid prediction relies on the geometric continuity

of vehicle trajectory and is independent of human commands. It is reported in [20]

that its open loop prediction performance degrades with large steering wheel angle

changes in the prediction horizon τRTT .

Other model-free prediction methods use high order derivatives of the signals to

predict the signals into the future. They are more general methods and could be

used to predict any signal including vehicle states. In these methods, Taylor series

expansion of a signal s(t) at time tc up to order N is considered:

s(tc + ∆t) = s(tc) +
N∑
i=1

s(i)(tc)
(∆t)i

i!
+ H.O.T. (2.3)

Because there exists noise in the measurement of high order derivatives or derivatives

are not available from measurements, Kalman filter based algorithms are used to

estimate them [65, 28]. For example, in target tracking applications [27], remote

targets are captured in vision with round trip delay τRTT and there is no direct

information of target’s speed and acceleration. Target motion needs to be predicted
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ahead to compensate the effect of delays. Rewriting Eq. (2.3) in the form of a discrete

state space model yields:

x[i+ 1] =



1 ∆t · · · (∆t)N

N !

1 · · · (∆t)N−1

(N−1)!

. . .
...

1


x[i] +



(∆t)N+1

(N+1)!

(∆t)N

N !

...

∆t


u[i] (2.4)

where x[i] is the state to estimate and includes the derivatives of s(t) at time step

i, i.e., x = [s s(1) · · · s(N)] and u[i] is the high order term in Eq. (2.3) treated

as an unknown input. Applied in radar signal processing [27], u[i] is equivalent

to a stochastic noise w (generally random white noise) to provide a similar effect

of excitation. This implementation is called input whitening. The covariance of

stochastic noise is required based on either accurate characterization of noise or online

statistical learning as in [28]. Kalman filter based prediction is updated with a small

time step and with high order model of Eq. (2.3) for good prediction performance. The

predicted state s(tc + τRTT ) can then be estimated based on recursively propagating

Eq. (2.4) from tc to tc + τRTT . However, implementing this Kalman filter based

approach relies on the assumption that noise statistics can be captured accurately

and requires higher computational load due to the use of a high order model.

In summary, model-free prediction methods do not need the governing equations

of the vehicle dynamics or its parameters, thus are robust and independent of the

remote vehicle. However, performance of existing methods depends on the validity of

the assumptions on vehicle trajectory or input whitening.

2.3.1.2 Model-Based Prediction

Model-based prediction requires a full vehicle model to capture the dynamics of

the remote vehicle. Various models can be used to represent vehicle dynamics with
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different levels of complexity. One widely used model is the kinematic bicycle model.

The kinematic bicycle model is derived based on geometric constraints, assuming zero

tire slip angle. Thus, there is no lateral tire force and this assumption is reasonable

at low vehicle speeds (e.g., less than 5 m/s) [66]. The equations describing this model

are shown below:

Ẋ = u cos(ψ + β)

Ẏ = u sin(ψ + β)

ψ̇ =
u

lr
sin(β)

u̇ = ax

β = tan−1(
lr

lf + lr
tan(δf ))

(2.5)

where vehicle parameters lf and lr are the distance from the center of the mass of

the vehicle to the front and rear axles, respectively; X, Y , ψ describe the vehicle

center of mass location and heading in the global coordinates; δf is the front wheel

steering angle input; u is the vehicle longitudinal speed and is calculated based on the

acceleration ax. ax can be determined based on propulsion and brake force related to

control inputs of throttle and brake, as well as air drag force.

When lateral dynamics are non-negligible, especially at high vehicle speeds, the

dynamic bicycle model with tire model is commonly applied [66]:

u̇ = vr + ax

v̇ = −ur +
2

m
(Fyf cos δf + Fyr)

ṙ =
2

Izz
(lfFyf − lrFyr)

Ẋ = u cos(ψ)− v sin(ψ)

Ẏ = u sin(ψ) + v cos(ψ)

(2.6)

where r is the yaw rate. Compared to the 2 degrees-of-freedom (DoF) kinematic
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model (including longitudinal and yaw) in Eq. (2.5), an additional DoF in lateral

direction is added and yaw motion is determined based on moments and inertia Izz.

Fyf and Fyr are lateral tire forces generated by a tire model and applied to the vehicle

body frame. Common tire models include the linear tire model assuming constant tire

cornering stiffness Cyf , Cyr [66], the Fiala model that is related to tire-road friction

coefficient [67], and the nonlinear Pacejka model that captures combined longitudinal

and lateral tire slip with an empirical equation known as the Magic Tire Formula

[68].

Once a suitable vehicle model is obtained, prediction of vehicle states can be

implemented in two ways. One is referred to as full prediction in [20], where prediction

starts with delayed vehicle states y2(t) received at tc. The received states are the

outcome of human’s control commands y1(tc − τRTT ) and any updated states since

then are not available yet. While waiting for the delayed states in the feedback loop,

y2(tc) is projected into future by executing the sequence of commands y1(t) (from

tc − τRTT to tc) consecutively on the full vehicle model and the final state of the

model is the predicted state ŷ2(tc) at time tc.

The second way is referred to as continuous prediction in [20]. The difference

against full prediction is that prediction starts with predicted vehicle states calculated

in last prediction, i.e., ŷ2(tc−∆t). Delayed vehicle states are only used to correct the

prediction to avoid potential drifting of the states between the model and the actual

vehicle.

Note that model-based prediction normally outperforms model-free prediction

when an accurate vehicle model is available. However, obtaining an accurate model

can be difficult, as capturing the salient dynamics properly and parameterizing the

model correctly are not trivial tasks. Also, when the actual vehicle to be mod-

eled has a highly nonlinear powertrain, mapping human commands of throttle and

brake to vehicle longitudinal acceleration becomes more challenging. In summary,
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for model-based prediction, obtaining an accurate vehicle model is challenging and

platform-dependent. Robustness may be sacrificed due to modeling errors compared

to model-free prediction.

2.3.2 Display Methods

After a prediction of vehicle states is obtained, the predicted states are passed

to the block of “Image Processing” and are displayed to the human operator in two

main ways: frame display and full display [21].

Frame prediction display overlays the predicted state information onto the delayed

view. The predicted location and heading are transformed to the local coordinates of

delayed states. In [14, 69], predicted vehicle is shown as a point with an arrow showing

the predicted direction. In [19, 21, 70, 71], a rectangular frame is used to represent

the vehicle with width and the vehicle path from delayed position to the frame is also

displayed. In [18], a semi-transparent shadow vehicle represents where the vehicle is

predicted to be. The main advantage of frame display is that the computational load

of overlaying predicted states as visual cue onto the delayed camera view is very low.

Also, the operator can see the relative position/heading change within the duration of

delays to have more insight on the vehicle movement, albeit processing this indirect

information may increase the cognitive workload of the operator.

On the other hand, full prediction display modifies the delayed image from the

camera and projects a camera view as if captured when the vehicle is at its predicted

position with predicted heading. In [22, 72, 73, 74, 75], delayed camera view is

separated into pixels or multiple regions. These pixels or regions are then warped

based on the geometry of camera model and perspective transform calculated between

delayed states and predicted states, and rendered together as the predicted view. In

[55], the camera view of a virtual leading vehicle based on prediction is displayed

to human operators in the simulated environment. As the predicted view is directly
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displayed to the operators, it is similar to the original teleoperated driving setting

without needing operators to become familiar with the additional overlay as in frame

display. However, image rendering process is more difficult to implement and takes

more time to process. Besides, after performing the transformation, the predicted

view may have blank regions due to blind spots or lack of information (especially

when camera needs to be rotated). For a predefined simulated environment, the

above limitations are not issues, because the vehicle can be moved to the predicted

location and camera view displayed is along the predicted heading direction.

A comparison between these two display strategies was performed in [21] and the

conclusion was that with frame display, vehicle mobility and operator workload were

similar to or slightly better than full display at low speeds, but worse at high speeds.

2.4 Prediction of the Human Operator Commands

As predictive display approach aims to predict the response of the vehicle to the

operator’s commands after a round trip delay, it is also conceivable that the operator’s

commands can be predicted into the future and these predicted commands are sent

to the vehicle to alleviate the effect of delays. This section reviews the approaches

to achieve this kind of prediction. When these approaches are implemented to com-

pensate the whole round trip delays, there is no need to alter the display anymore,

which can help reduce the computational load.

While general model-free prediction methods mentioned in Sec. 2.3.1.1 based on

high order derivatives of the signals to predict could also be applied in this case,

most of the methods to predict the operator commands require models to represent

the complicated human driving behavior. In the literature, studying on-board driver’s

acceleration, braking and steering behavior has a long history, and various driver mod-

els without considering the communication delays have been proposed [76]. However,

these models may not be directly applicable to teleoperated driving with delays due
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to significant difference in human operator behavior between teleoperated driving and

on-board driving. When driving with delays, human operators need to estimate the

vehicle outcome under their current control actions more in advance than on-board

driving. With large delays, they tend to overcompensate for non-negligible error

between their estimated control outcome and delayed response, resulting in control

commands with oscillation induced by operators [7, 8, 9].

As far as the author is aware of, there only exists two driver models in the lit-

erature developed to simulate human’s driving behavior under teleoperation with

communication delays [77, 78]. In [77], the driver model is designed for low-speed

small UGVs and is in fact a PD-based controller with previewing. The received vehi-

cle states with delays are projected ahead by an amount of lookahead time. Instant

steering commands are generated using a PD controller based on the lateral error

between the projected vehicle and track’s tangent line. Parameters such as lookahead

time as well as the controller gains are tuned against data of human experiment to

match the teleoperated driving performance. In [78], a cognitive driver model within

the Adaptive Control of ThoughtRational (ACT-R) cognitive architecture can cap-

ture the steering behavior of human drivers and establish the best vehicle mobility

metrics under various speed and delays. A far eyepoint is defined as a point on the

track that is ahead of the vehicle by a time parameter called time headway, simulat-

ing where human drivers are staring at during the teleoperated driving. Generated

steering command is proportional to the direction difference within the coordinate

of camera view between current vehicle heading and the far eyepoint. Parameters of

steering gains and time headway are optimally tuned for different constant vehicle

speeds and various delays and the track keeping performance of the driver model are

comparable to the best performance human drivers can achieve based on human-in-

the-loop experiments. However, these driver models does not generate prediction of

the future human commands for delay compensation.
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Other works consider general applications involving human-machine interaction

rather than only teleoperated driving to predict human operation into the future. A

minimum jerk (MJ) model is well-known to represent the kinematics of human mo-

tions for reaching tasks (i.e., human moving arms from one point to another point)

[79] and has been studied to represent human operation under the scenarios of vehicle

following [80], lane change and obstacle avoidance [81]. The fundamental assumption

is that human tends to generate optimized smooth motions with minimized integra-

tion of square sum of jerk (i.e., third derivative of position) over a certain period of

time [79]. In other words, human motions in position can be described as 5th degree

polynomials. The parameters of a single polynomial can be determined by identifying

the start and end time of a minimum jerk trajectory and solving the constraint of

position, velocity and acceleration at start and end time, respectively. The calculated

polynomial is extrapolated afterwards to provide the predicted human operation in

the future. In [26], MJ model based prediction significantly improved the teleopera-

tion performance compared to without prediction with round trip delays of 100 ms.

However, it is unknown whether the assumption that humans perform minimum jerk

operation still holds under teleoperated driving with large delays.

2.5 Summary of Existing Prediction Based Methods

Prediction based methods in the literature including predictive display and predic-

tion of operator commands are reviewed in this chapter. The former method performs

prediction on vehicle states after receiving the delayed vehicle states in response to

the operator’s command, while the latter method predicts the operator’s commands

into the future and sends the predicted commands to the vehicle. All methods can

be divided into model-based and model-free based on whether governing equations

and parameters of the vehicle or human operator are used in the prediction. Model-

based predictions lead to accurate predictions if accurate models are available, but in
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practice modeling errors always exist and may sacrifice the robustness of model-based

methods. Model-free prediction is robust to modeling error, but generally requires

additional assumptions on the vehicle or operator motions, or on the characteristics

of the noise that is assumed to drive the high order derivatives of the delayed signals.

Performance of these model-free methods depends on how realistic these assumptions

are or how accurately the noise statistics can be known.

Thus, a gap in the literature is identified: A method does not yet exist that

takes both performance and robustness into consideration when performing prediction

on transmitted signals and compensating delays to improve mobility for high speed

teleoperated UGVs. The need for such a method motivates the work described in the

remainder of this dissertation.
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CHAPTER III

A Novel Model-Free Predictor for Delay

Compensation

In this chapter, a novel model-free predictor is developed to compensate delays.

The predictor is model-free in the sense that no information about the dynamic

equations governing human operators and vehicles are required to perform signal

prediction and thus has the generality of predicting any signal including control com-

mands and vehicle states as in the teleoperated vehicle system. Compared to existing

model-free prediction-based methods for delay compensation summarized in II, no

assumptions about the vehicle trajectory or human motion are required, nor any

knowledge or estimation of noise in the high order derivatives of the transmitted sig-

nals. The predictor is also easy to implement and there is only one parameter to tune

for predicting each signal of interest. Analysis of predictor stability and prediction

performance are presented, and a general predictor design procedure is provided as a

guideline to select the predictor parameters to ensure stability as well as pursue good

prediction performance. The work in this chapter is based on publications [82, 83, 84].
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Figure 3.1: Setups of a generic one-way communication from System 1 to System
2 (a) without predictor and (b) with predictor. The novel predictor is placed at the
receiver side to compensate delays and generate prediction of the original signal y(t).

3.1 Predictor Dynamics

A novel predictor is developed in this work to perform prediction on a single signal.

Consider a generic one-way communication from System 1 to System 2 as shown in

Figure 3.1(a). The output of System 1, y(t), is the signal of interest. Without the

predictor, y(t) is transmitted and received at the remote side with delay τ(t) and

y(t − τ(t)) is the input to System 2. The novel predictor is placed at the receiver

side and generates a prediction based on the delayed information, as shown in Figure

3.1(b). Note that one modification is needed to use this predictor: In addition to the

original transmitted signal y(t), its derivative, ẏ(t), as well as the send time stamp

Tsend(t) right before transmission are included in the communication packets. The

reason to include them in the packets is because the predictor developed in this work

requires the information of the derivative of the signal with delays, i.e. ẏ(t−τ(t)), and

the one-way delay value τ(t) to perform the prediction. While the derivatives of some

transmitted signals such as heading and position can be measured and are readily

available to be directly included in the communication packets before transmission,

derivative information can also be estimated through numerical differentiation with

filtering to alleviate potential noise. Note that this estimation can be processed
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either before sending the packets to generate [ẏ(t)]est or after receiving the delayed

packets (including y(t − τ(t))) at the receiver side to generate [ẏ(t − τ(t))]est when

differentiating with respect to previously received packets.

The structure of the predictor is shown in Figure 3.1(b). It is placed at the

receiver side, receiving y(t−τ(t)), ẏ(t−τ(t)) and predicting ŷ(t) to compensate delays

and recover the original signal y(t). The predictor dynamics is a first-order time

delay system and is inspired by a model-free observer designed in [85] for Internet-

distributed hardware-in-the-loop (ID-HIL) applications to alleviate the effect of delays

on distorting the closed-loop dynamics and improve fidelity. In [85], the observer

was developed for the case of constant delays. In this dissertation, the general case

of varying delay τ(t) is considered [83] and the predictor dynamics are derived as

follows.

Denote the predictor state as yp(t) and the predictor output as ŷ(t). Here, ŷ(t) =

yp(t) for a single signal of interest. Define the prediction error e(t) between the original

signal and predictor state as:

e(t) := y(t)− yp(t) (3.1)

A first-order dynamics of e(t) is designed so that e(t) can converge to 0 asymptotically:

ė(t) = −λe(t) (3.2)

where λ is a positive real parameter. Replacing e(t) with (3.1), (3.2) becomes:

ẏ(t)− ẏp(t) = −λ(y(t)− yp(t)) (3.3)

Note that the derivative of the original signal, ẏ(t) is required by the predictor, as

well. However, both y(t) and ẏ(t) are transmitted from the remote site and only their
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delayed signals y(t− τ(t)), ẏ(t− τ(t)) are available. Thus, (3.3) becomes:

ẏp(t) = ẏ(t− τ(t)) + λ[y(t− τ(t))− yp(t)] (3.4)

where the second term on the right hand side now involves a difference between

y(t − τ(t)) and yp(t). That would cause the predictor to track the delayed remote

signal instead of the original y(t) and render the predictor obsolete. Furthermore,

y(t − τ(t)) − yp(t) cannot be meaningfully referred to as the predictor state error

when states from different time instances are compared. Hence, for a more useful and

meaningful definition of error, (3.4) is modified to also delay the predictor state by

the same amount as τ(t), resulting in the following predictor dynamic equation:

ẏp(t) = ẏ(t− τ(t)) + λ[y(t− τ(t))− yp(t− τ(t))] (3.5)

where y(t− τ(t)) and ẏ(t− τ(t)) are inputs with delays, yp(t) is the predictor state,

and ŷ(t) is the predictor output and is the same as the predictor state, i.e. the output

function of the predictor is:

ŷ(t) = yp(t) (3.6)

Note that the one-way delay τ(t) is included in the dynamics to generate the term

of delayed predictor state yp(t−τ(t)). This delay can be determined by synchronizing

the transmitter and receiver side and calculating the difference between the send time

stamps in the packets and the local receive time.

There exists two main benefits of this predictor. First, the predictor is model

free, i.e., no information about the dynamics or parameters of the remote system

(i.e., where the delayed signals originate) is included in (3.5). Compared to other

model-free prediction methods, this predictor does not require assumptions such as

the vehicle moves along clothoids [20] or the signal can be extrapolated using Taylor
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series expansion with estimated noise on high-order derivative terms [28]. The second

benefit is the ease of implementation; the predictor dynamics is a first-order time-

delay system with only one design parameter λ to predict each signal of interest.

Predictor stability and performance depend on the selection of λ.

3.2 Predictor Stability Analysis

In this section, the predictor stability is studied based on the predictor error

dynamics with prediction error e(t) as the state. Ranges of λ to ensure a stable

predictor depending on type of delays and amount of delay are provided.

Replacing (3.1) into (3.5), the following results can be derived:

ė(t) = ẏ(t)− ˙̂y(t)

= ẏ(t)− ẏ(t− τ(t))− λ(y(t− τ(t))− ŷ(t− τ(t)))

= ẏ(t)− ẏ(t− τ(t))− λe(t− τ(t))

(3.7)

Thus, the predictor error dynamics is defined as:

ė(t) = −λe(t− τ(t)) + d(t) (3.8)

where d(t) = ẏ(t)− ẏ(t− τ(t)) is considered as a disturbance input to the predictor

error dynamics. Studying the stability of the predictor through error dynamics is

equivalent to studying the stability of the homogeneous error dynamics with zero

input, i.e. d(t) = 0, that is shown below:

ė(t) = −λe(t− τ(t)) (3.9)

The stability of the first-order delay differential system in the form of (3.9) has

been well addressed in the literature. In the following sections, two methods in the
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Figure 3.2: Stability region of complex λ to ensure asymptotic stability of (3.9).

literature of establishing the theoretical stability ranges for cases of constant and

varying delays respectively are used. The theoretical range in the cases of varying

delays is then tested against the numerical range when simulating the sinusoidal

response of the predictor with actual varying communication delays.

3.2.1 Constant Delay Case

The theoretical range of λ to ensure stability of (3.9) has been given in [86, 87]

and is restated here for completeness. With constant delays τ , the Laplace transform

and thus the characteristic equation of (3.9) is expressed as:

seτs = −λ (3.10)

Denote the complex root of (3.10) as sr = σ + jω and express λ in the form of

λ = b1 + jb2. Mori and Noldus [87] proved that all complex λ to ensure negative real

part of sr and thus asymptotic stability of (3.9) lie in an open hatched region Ω as
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shown in Figure 3.2. Ω is bounded by the following curve:

b1 = ω sin(τω)

b2 = −ω cos(τω)

(3.11)

where −π
2
< τω <

π

2
. This boundary curve represents the values of λ that result in

marginal stability and is determined by replacing s = 0+jω into (3.10) and balancing

the real and imaginary parts on both sides. While any complex value in Ω ensures

stability, the parameter λ in the predictor is defined to be real. In Figure 3.2, positive

real λ = b1 up to
π

2τ
is within Ω.

Therefore, the asymptotic stability of predictor error dynamics (3.8), and thus the

predictor with constant delay τ , is guaranteed if and only if its parameter λ is within

the following range:

0 < λ <
π

2τ
= λmax(τ) (3.12)

where λmax(τ) is the maximum allowable λ and depends on the amount of delay τ .

3.2.2 Varying Delay Case

In the literature, the stability of (3.9) with varying delays τ(t) have been addressed

with various methods. The well known
3

2
stability states that under the assumption

of bounded varying delay, i.e., τ(t) ∈ [0, τmax], if 0 < λτmax <
3

2
, the solution e(t) is

converging and thus (3.9) is asymptotically stable [88, 89]. However, this approach

can be conservative for the purpose of this work, since for the hardware networks

such as a wireless network there exists a small probability that the delay can exhibit

a sharp increase [90], thereby causing a large τmax and thus a λ that is unnecessarily

small. In addition, due to network mobility, packet routing and signal interferences,

communication delays are hard to bound exactly [91, 92].

Alternative methods exist based on the Lyapunov-Krasovskii functional or Lyapunov-
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Razumikhin functions [93, 94, 95, 96, 97]. In these works, a more general retarded

delay differential system in (3.13) is studied and the bounds of parameters a and λ

to ensure stability are mostly determined via linear matrix inequalities (LMIs).

ė(t) = ae(t)− λe(t− τ(t)) (3.13)

When a = 0, the bounds of λ can be used as the stability range of the predictor

error dynamics. However, as far as the author is aware, these methods have a more

conservative bound of the maximum allowable delay than the
3

2
stability bound.

While the above methods consider delays at each time instance as a discrete value

and this value changes continuously to represent varying delays τ(t) as a function of

time, some researchers consider delays to be varying in a deterministic way for analysis

purposes. For example, relating a fast varying discrete delay with a distributed delay,

a comparison system can be used along with a frequency domain method to analyze

and derive the stability criteria [98]. Other researchers consider random delays to

follow a Markov Chain model and prove the stability of linear time delay systems

[99, 100, 101].

In this dissertation, the approach of studying robust stability with random delays

that are modeled by a two-time-scale Markov chain is leveraged [102, 103]. The

theorem is summarized below for completeness and an open-loop test is performed to

verify that the theorem is applicable to the types of networks that are of interest for

this work.

In [103], varying delays τ(t) are modeled as a continuous-time Markov chain of

delays in a finite state space S = {τ1, τ2, · · · , τm} ,m ∈ N. S is chosen based on the

distribution of the potential delays and the desired accuracy. For example, if the

network delays are in the order of tens of ms and vary within 1 s, a suitable selection

can be τk = 10k ∀k ∈ {1, 2, · · · , 100} in ms (m = 100). In practice, one can always
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choose a very large S so that a large or dense range of delay values is covered.

Assume the Markov chain is composed of fast and slow motions. Slow motions

refer to the property that the network is steady most of the time and delay is changing

slowly, while fast motions denote the sudden spikes in the network due to network

traffic or different packet routes and thus delay is highly variable. To reflect these

spikes, a small parameter ε > 0 is introduced so that the Markov chain contains two

time scales, a usual running time t and a stretched time t/ε. The Markov chain is

modeled using the generator:

Qε =
Q

ε
+Q0, (3.14)

where Q
ε

and Q0 represent the fast-varying and slow-varying parts, respectively.

Thus, (3.9) becomes a random switching system among m fixed delay subsystems:

ė(t) = −λe(t− τk) k = 1, 2, · · · ,m. (3.15)

The results are based on the average delay τavg, which is defined with respect to the

stationary measure vk:

τavg = Σm
k=1τkvk (3.16)

Theorem 3.2 in [103] states that if all delay states τ1, τ2, · · · , τm ≥ 1
λ

and 0 < λτavg <

3
2
, then the trivial solution of the homogeneous version of (3.15) is almost surely

asymptotically uniformly stable as ε→ 0, under the required assumption that delay

sequence can be modeled using a two-time-scale Markov Chain.

To test the utility of this theorem for the purposes of this work with actual com-

munication delays, network delays were measured between Ann Arbor, USA and

Shanghai, China (AA-SH). Note that delay sequence in this Internet based network

has the representative characteristics as in the common commercial networks such as

wired/wireless communication, where delays are mostly varying around their mean

value and certain spikes in delays are observed due to the instantaneous heavy load
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Figure 3.3: Above is the round-trip delay measurement between Ann Arbor, USA
and Shanghai, China (AA-SH). Below is the generated delay sequence using the two-
time-scale Markov Chain. Mean and standard deviation of the delays between the
measured data and generated delay sequence are close to each other.

within the network traffic. Additional measurement of delays and stability boundary

test are needed for some other representative networks commonly used in for teleop-

erated UGVs, such as Satellite network and cell phone network. Using the ping test

in the Windows command console, packets with size of 1 KB were sent every 0.1 s

and the round trip delays were measured. The upper graph in Figure 3.3 shows the

delay data measured in a 10-minute window. The drop rate is 4.6 % and the mean

delay is 271.2 ms with standard deviation of 14.3 ms.

First, the assumption of using a two-time-scale Markov chain to model network

delays is verified. Because the network delays are measured for a long time, delays

are considered to have reached the stationary measure vk already. The average delay

τavg is calculated based on (3.16). The generator matrix Qε is found via empirical

transition matrices [104]. After checking that a potential Qε exists based on the
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theorems in Section 2 and 3 in [104], Qε is calculated according to

Qε =
(P − I)− (P−I)2

2
+ (P−I)3

3
− (P−I)4

4
+ · · ·

dt
(3.17)

where the transition matrix P is determined based on the sequence of the measured

delays, I is the identity matrix that is of the same size as P , and dt is the time

step between transitions of delays. To ensure that off-diagonal entries of Qε are non-

negative for a proper Markov chain, the negative entries are set to be 0 and the

sum of them are added back to the corresponding diagonal entry to preserve the

property of the generator matrix to have row-sums of 0 [105]. The final generator Qε

is thus determined. The diagonal terms are on the order of 1 and are significantly

greater than the off-diagonal terms. Setting ε = 0.1 and using two constant Markov

generators Q and Q0 with all terms between -1 and 1,
Q

ε
and Q0 can represent the

diagonal and off-diagonal terms in Qε. Thus, the generator Qε to model the random

delay sequence can be expressed in two time scales, as in (3.14).

Using this constant generator matrix Qε, a two-time-scale Markov chain model of

the delay sequence is generated. Let the first delay to be the same as the first delay

measured and initial transition matrix to be P ε(0) = I. Note that P ε(t) is changing

based on the dynamics:

dP ε(t)

dt
= P ε(t) ·Qε (3.18)

The lower graph in Figure 3.3 shows one of the generated delay sequences for the

same amount of time as the measured delays, with time step of 0.1 s. The mean and

standard deviation are 271.1 and 13.5 ms, respectively, which are very close to those

of the measured delays. Figure 3.4 shows the histogram of delay distribution for the

measured and generated delay sequences. The distributions of delays are close to

each other, as well. Thus, the assumption that the random delays follow a two-time-

scale Markov chain model with the generator in (3.14) is found to be suitable for the
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Figure 3.4: Above and below are the histograms of the measured and generated
delay sequences. The distributions of delays are close to each other.

example network that is considered in this work.

Next, the actual stability boundary of the predictor is compared against the the-

orem for four different networks to test the utility of the theoretical results. Recall

the setup with predictor in Figure 3.1(b) and assume that the signal of interest is

sinusoidal with frequency of 0.1 rad, i.e. y(t) = sin(0.1t). Three different networks

along with the AA-SH network mentioned above are employed to capture various

varying delays τ(t). The three network delay data have been collected in [45] and

their histograms are shown in Figure 3.5, with mean round-trip delays ranging from

25.5 ms to 116.2 ms. Based on these measured delays, it is verified using the pro-

cedure described above that the two-time-scale Markov chain assumption is satisfied

and a new delay sequence is generated using the two-time-scale Markov chain model

for each network.

Figure 3.6 shows the stability ranges for the delay sequences generated by the

Markov chains, where the range is characterized by the maximum allowable predictor

parameter value λ to ensure that the predicted output is bounded and stable. For all

four networks, the actual ranges are found numerically via simulation of the predictor.

The theoretical ranges given by the
3

2
stability theorem and the two-time-scale Markov
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chain approach are 0 < λ <
3

2τmax

and 0 < λ <
3

2τavg

, respectively. It is noted

that the two-time-scale Markov chain approach provides a sufficient, yet not very

conservative range of the parameter λ to ensure a stable predictor compared to the

numerical results. The range based on the
3

2
stability theorem is more conservative

than the one from the Markov chain approach, especially when delays vary in a

large range and τmax � τavg, like in the case of AA-BE network. Another potential

benefit of the Markov chain approach could be that if the network is assumed to be

stationary within a certain time window, stability range may change with respect

to the moving average delays τavg(t) instead of the average values of delays in long

history to represent more recent conditions in the network. In fact, this idea of using

predictor stability range with respect to the moving average delay is applied in the

later case study when dealing with a hardware network in Section 3.4.3.

In conclusion, predictor stability with varying delays is established when the net-

work delays meet the assumption that they can be captured with a two-time-scale

Markov chain. Predictor is asymptotically stable under such assumption if its param-
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eter λ is within the following range:

0 < λ <
3

2τavg(t)
= λmax(τ(t)) (3.19)

where λmax(τ)(t) is the maximum allowable λ for varying delays τ(t) and τavg(t) is

the moving average of delays within a period of time.

In summary, the predictor stability criterion is concluded as follows: The predictor

is asymptotically stable when λ is chosen within the following ranges [83]:

0 < λ <
π

2τ
= λmax(τ) for constant delays τ

0 < λ <
3

2τavg(t)
= λmax(τavg(t)) for varying delays τ(t) that can be modeled

in a two-time-scale Markov Chain

(3.20)

Note that when the moving average τavg(t) is the same as the constant delay

value τ , the maximum allowable λ for varying delays is slightly smaller than that for

constant delays. Predictor stability with varying delays is discussed as almost surely
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asymptotically stability.

3.3 Frequency Domain based Performance Analysis

While the range of λ to ensure a stable predictor is established for the cases of both

constant and varying delays, it does not provide any insight into the performance of

the predictor. In this section, a predictor performance analysis for constant delays

is presented in the frequency domain. The predictors are then implemented and

integrated on a simple motor-shaft-torque networked closed-loop system as a case

study to test the predictor performance against the analysis with various λ and also

evaluate the closed-loop performance with the addition of predictors.

With constant delays τ , in Figure 3.1, define the coupling error c(t) between the

original and delayed signal:

c(t) := y(t)− y(t− τ) (3.21)

c(t) quantifies how much disturbance delays cause on the original signal. Recall the

prediction error e(t) = y(t)−yp(t) = y(t)− ŷ(t) defined in (3.1), which represents how

close the prediction is to the original signal. Ideally, e(t) should be zero to completely

eliminate the delay effect. Hence, a good choice of the design parameter λ should not

only guarantee the predictor’s stability, but also minimize e(t) for better prediction

performance. In this work, predictor performance is characterized by the extent to

which the predictor output ŷ(t) is more similar to the original signal y(t) than the

delayed signal y(t − τ). In other words, the relative magnitude of c(t) and e(t) are

compared. A frequency domain analysis is thus performed to study how selection of λ

affects the relationship between c(t) and e(t) over various frequencies of c(t) [106, 82].

The analysis is presented as follows.

With constant delays, the error dynamics in (3.8) can be rewritten in the following
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form:

ė(t) = −λe(t− τ) + ċ(t) (3.22)

The following transfer function from the input c(t) to the output e(t) is then obtained

from (3.22):

E(s)

C(s)
=

s

s+ λe−τs
(3.23)

The gain of the transfer function (3.23) is denoted as M(ω):

M(ω) =
|ω|√

ω2 − 2ωλ sin(τω) + λ2
(3.24)

M(ω) represents the ratio of the prediction error to the coupling error in steady state

at a given frequency ω and depends on λ and τ . When M(ω) < 1, predictor attenuates

the coupling error c(t) and improves performance, whereas when M(ω) > 1, then the

coupling error at that frequency is amplified, which could lead to a bad predictor

performance even if the predictor is stable.

M(ω) for various values of τ and λ are shown in Figure 3.7 and Figure 3.8.

Note that λmax(0.03) refers to the maximum allowable λ for a stable predictor with

delays of 0.03 s. In Figure 3.7, delays are fixed to be 0.03 s and M(ω) with λ

equal to different scales (0.15 - 0.90) of λmax(0.03) are plotted, while in Figure 3.8,

λ = 7.9 = 0.15λmax(0.03) is fixed and M(ω) with delays from 0.03 s to 0.135 s are

compared. All {λ, τ} pairs shown satisfy the stability criterion (3.20). A number of

observations can be made in these figures regarding the performance characteristics of

the predictor. First, Figure 3.7 illustrates that the steady state performance is better

at low frequencies for larger λ values. However, it is not always the case that larger

λ gives better steady state tracking. Namely, within the range of about 30 rad/s to

200 rad/s, small λ values may be a better choice for this example delay value, since

larger λ values lead to an overshoot above 0 dB in the magnitude plot. Furthermore,

at higher frequencies, the predictor is less effective in terms of attenuating the state
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tracking error, since the magnitude remains close to 0 dB regardless of the λ value

chosen, i.e., M(ω) is approximately one for large ω values. Finally, Figure 3.8 shows

that it is more difficult for the proposed predictor to be effective as the delay τ

becomes larger, since the frequency range corresponding to a M(ω) smaller than 0

dB becomes smaller as the delay increases.

Here, a property of the predictor called the predictor bandwidth ωp is introduced

[84]. It is defined as the smallest ω satisfying M(ω) = 1. ωp is related to λ based on

(3.24):

λ = 2ωp sin(τωp) (3.25)

With a given constant delay τ , considering both (3.20) and (3.25) to ensure a stable

predictor, we have 0 < τωp sin(τωp) < π/4. By solving it numerically, ωp is found in

the range:

0 < ωp <
0.959

τ
(3.26)
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Based on expression of (3.25) and (3.26), a larger bandwidth ωp is expected in the

conditions of larger λ and smaller τ . The same trend is observed in Figure 3.7 and

Figure 3.8, where ωp for different pairs of {λ, τ} are marked.

Note that ωp is a critical value to distinguish the trend of predictor steady-state

performance with respect to different frequencies. Specifically, predictor is always

effective in improving performance within the predictor bandwidth, i.e., ω ∈ [0, ωp),

but could significantly worsen the performance when ω is beyond ωp, albeit the pre-

dictor will not have any impact on the performance in the limit as ω → ∞. Thus,

when designing the predictor, ωp is an important property to consider.

In summary, (3.23) establishes the relationship between the steady-state perfor-

mance of the predictor, its design parameter λ, and the time delay τ . Hence, this

analysis is important to understand some fundamental, frequency-domain steady state

performance characteristics of the predictor, e.g. the predictor bandwidth ωp. It is

still unknown, however, how the predictor will perform in transient when introduced
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Figure 3.9: Networked motor-shaft-gear system with bilateral communication delays
τ(t). Coupling signals are the shaft torque Ts and the shaft speed ωs.

into a closed-loop system. This motivates the case study in the next section.

3.4 Case Study

This section presents a case study to demonstrate the performance of predictors

in terms of reducing the negative impact of communication delays on the fidelity of

the networked closed-loop integration of distributed systems [83, 82].

Note that because this model-free predictor does not require information about

the dynamics of the system where the signals originate, it can be integrated with

any linear or nonlinear system in general to perform prediction on signals. Before

implementing predictors on the nonlinear closed-loop vehicle teleoperation system in

Figure 1.1, which requires human operators in the loop, a linear example of networked

motor-shaft-gear system is considered first to provide some insight of the prediction

accuracy of the predictors, as well as their effect on the closed-loop performance.

The example system is shown in Figure 3.9 and contains two distributed subsys-

tems that communicate with each other. In Subsystem 1, an AC motor with voltage

input E drives the output shaft through a gear pair and outputs the shaft torque.
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Subsystem 2 is located remotely from Subsystem 1. It takes the shaft torque Ts as the

input through the network. With a flywheel driven through a gear pair as load, the

output of the subsystem is the rotational shaft speed ωs on the same shaft. Internal

resistance of the motor and rotary bearings on all the shafts are considered, along

with the compliance of the output shaft. Thus, the coupling signals that are com-

municated over the network are the shaft speed, ωs, from Subsystem 2 to Subsystem

1 and the shaft torque, Ts, from Subsystem 1 to Subsystem 2. Assume the one-way

delays τ(t) between Subsystem 1 and Subsystem 2 are the same and are set to be half

of the round-trip delays measured. The networked system without the predictors can

tolerate constant one-way delays τ of up to 175 ms to remain input-output stable.

Lumping all the subsystem parameters together, the dynamics of each subsystem af-

ter simplification are given as:

Subsystem 1:

 ẋ1

ẋ2

 =

 0 500

−0.0055 −0.53


x1

x2

+

 0 −1

0.00026 0


 E
ωs


y1 = Ts = 0.28x1

(3.27)

Subsystem 2:
ẋ3 = −0.1x3 + 0.44Ts

y2 = ωs = 10x3

(3.28)

The Bode plots of Subsystem 1 and Subsystem 2 are shown in Figure 3.10. Both

subsystems act like low-pass filters. The cutoff frequency of Subsystem 1 for external

voltage input E is 2.5 rad/s.

Two predictors developed in this work are added as in Figure 3.9. The dynamic

equations of the two predictors are:
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Subsystem 1 predictor:

ẏp1(t) = ẏ1(t− τ(t)) + λ1 [y1(t− τ(t))− yp1(t− τ(t))]

ŷ1(t) = yp1(t)

(3.29)

Subsystem 2 predictor:

ẏp2(t) = ẏ2(t− τ(t)) + λ2 [y2(t− τ(t))− yp2(t− τ(t))]

ŷ2(t) = yp2(t)

(3.30)

Note that the parameters λ1 and λ2 used in the predictors are selected to be

the same for simplicity. In general, different values within the stability region can be

chosen. The prediction accuracy of the predictor is evaluated by comparing prediction

error e(t) with respect to coupling error c(t).

The closed-loop performance is studied based on the final output of the networked
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system under the same driven voltage input. In this example, the final output is the

difference in angular position between the two ends of the output shaft in Subsystem

1, ∆θ = x1. Three cases are tested: the ideal case without delays, the delayed case

without the predictors, and the predictor case with two predictors to compensate the

delays. Consider the simulation output of the ideal case as the benchmark. Three

metrics are introduced to help with the comparison. The 2-norm of the difference

between the outputs of the delayed and ideal cases is denoted as p0, whereas p is

similarly defined between the predictor and ideal cases. To quantify the closed-loop

performance with predictors compared to the delayed case, a normalized performance

metric pn is used. Mathematically, these metrics are expressed as below:

p0 = ‖Θd −Θi‖2, p = ‖Θp −Θi‖2, pn =
p

p0

(3.31)

where Θ = ∆θ in rad is the output trajectory vector with subscripts i, d, p representing

the ideal, delayed and predictor cases, respectively. Smaller p and pn indicate a

better compensation of the delays by the predictors. When p = pn = 0, the output

of the predictor case is identical to that of the ideal case and the delays are fully

compensated. pn > 1 means that the predictors worsen the fidelity of the networked

integration compared to the delayed case, and pn < 1 means that the predictors

improve the fidelity. Three parts of the simulation results to evaluate the prediction

accuracy of the predictors and closed-loop performance with predictors are shown

below.

3.4.1 Performance versus Input Frequencies

In the first part of the case study, performance is studied when signals of different

frequencies are predicted by the predictors.

Consider one-way constant delays τ = 0.03. From Figure 3.7, the steady-state
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performance is improved when the frequency of c(t) is less than 10 rad/s for all λ in

the stability range and becomes worse when ω is around 30-100 rad/s. Beyond 100

rad/s, there is no improvement or degradation in steady state performance. To verify

the observation, sinusoidal voltage inputs E = 12 sin(ωt) volts with various excitation

frequency ω of interest from 0.5 to 100 rad/s are applied to the Subsystem 1 and the

simulation is run for 30 s at a fixed time step of 0.005 s with zero initial conditions

on all subsystems and predictor states. Different λ values ensuring stable predictors

is tested as well to find out the λ for maximum performance improvement.

At each ω, performance metrics p0 without predictors and pn with predictors

using various λ values are summarized in Table 3.1. λ = 0 corresponds to the case

when predictors are not used and p0 represents how distorted the output signal is

due to delays. Note that p0 is relatively small at low ω = 0.5 rad/s, because delays

do not cause much negative effect for low frequency signals and are very small at

high ω ≥ 10 rad/s, because according to the system Bode plot in Figure 3.10, both

Subsystems act like low pass filters and significantly attenuate the input magnitude

at high frequencies. Despite the small p0, predictors with all λ tested are capable of

improving the closed-loop performance (i.e. pn < 1) for all ω tested.

The level of improvement is similar when dealing with inputs of high ω and low ω.

One explanation is that both subsystems exhibit a low-pass filter type behavior and

attenuate the higher frequency signals. In general, a larger λ value corresponds to

better predictor performance in terms of attenuating the effect of delay as can be seen

by the smaller pn values. Two specific ω values will be discussed further to aid with

the comparison between the frequency-domain analysis of Section 3.3 and prediction

accuracy based on the time-domain simulation results.

When ω is 1.5 rad/s, M(ω) < 1 based on Figure 3.7, and the predictor is expected

to attenuate coupling error c(t). The prediction error e(t) of the signal y2(t) (i.e. shaft

speed ωs) for the Subsystem 2 Predictor is calculated based on simulation results and
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Table 3.1: Performance metrics for different λ values and excitation frequencies over
a simulation time window of 30 s. A smaller metric value indicates better performance.

ω (rad/s) 0.5 1.5 10 30 50 100
p0 λ = 0 0.39 3.63 0.21 0.07 0.04 0.02

pn

λ = 0.15λmax(0.03) 15.7% 19.0% 22.1% 21.8% 21.8% 21.8%
λ = 0.40λmax(0.03) 5.9% 7.2% 8.4% 8.2% 8.2% 8.2%
λ = 0.65λmax(0.03) 3.7% 4.4% 5.1% 5.1% 5.1% 5.0%
λ = 0.90λmax(0.03) 2.6% 3.2% 3.7% 3.7% 9.1% 3.6%

is shown in Figure 3.11 for two λ values. Note that for different λ values, c(t) may

be different, because adding predictors modifies the closed-loop system. Figure 3.11

shows that with the larger λ value, the predictor gives a faster response to reach

steady state, and the magnitude of e(t) is smaller than that of c(t) in steady state,

which is consistent with the frequency-domain analysis in Section 3.3.

However, the same analysis shows that at larger frequencies, the predictors am-

plify c(t) at steady state. For example, When ω is 50 rad/s, all λ values result in

amplification of c(t) and larger λ in this condition causes much more amplification.

The simulation results of e(t) with 0.65λmax(0.03) and 0.90λmax(0.03) shown in Figure

confirm the degradation in prediction accuracy at steady state. With larger λ, signif-

icant amplification of steady state c(t) results in less improvement in the closed-loop

performance (9.1% with larger λ compared to 5.1% with smaller λ). However, the

closed-loop performance is still improved when the predictors with these two λ are

applied. The reason why the predictors are still effective in terms of pn is that pn

captures the transient response, as well. The transient response does not only include

the excitation frequency itself, but also the lower frequencies, where the predictors

are effective.

The outputs from ideal case, delayed case and predictor case with λ = 0.15λmax(0.03)

and λ = 0.90λmax(0.03) are compared in Figure 3.13, when ω is 50 rad/s. The out-

puts in the predictor case are much closer to the output in the ideal case, indicating

that predictors are still capable of improving the closed-loop performance under high
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Figure 3.11: Subsystem 2 predictor performance for ω = 1.5 rad/s
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Figure 3.12: Subsystem 2 predictor performance for ω = 50 rad/s
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Figure 3.13: Output trajectory for ω = 50 rad/s. Predictors are capable of improv-
ing closed-loop performance under high frequency input.

frequency input, despite the amplified prediction errors at steady state.

In conclusion, simulation results in this section validate the predictor performance

analysis in Section 3.3 and show the potential of predictors in improving the closed-

loop performance subject to inputs with various frequencies.

3.4.2 Performance with Simulated Delays

In the second part of the case study, the example system is run using various

simulated constant and varying delays. The closed-loop performance under constant

and varying delays is compared to each other.

3.4.2.1 Constant Delays

Three constant one-way delays τ are tested: 30 ms, 58 ms and 135 ms. For

each delay, based on (3.12), the maximum allowable parameter that ensures a stable

predictor is attained as λmax =
π

2τ
. Then, four λ values are selected as 15%, 40%,
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Table 3.2: Performance metrics with different constant delays

Metrics
Delay One-way Constant Delay τ

30 ms 58 ms 135 ms
p0 (rad) 3.63 7.61 26.31

p (rad)

λ = 0.15λmax(τ) 0.69 2.53 16.23
λ = 0.40λmax(τ) 0.26 0.98 5.46
λ = 0.65λmax(τ) 0.16 0.60 3.32
λ = 0.90λmax(τ) 0.12 0.44 2.38
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Figure 3.14: Comparison of the output trajectory between ideal case and delayed
cases with different delays. Larger delay has worse impact on the system.

65%, 90% of λmax(τ) for the evaluation of both predictors.

In Section 3.4.1, Table 3.1 shows that performance metrics p0 and p are largest for

input frequency of ω = 1.5 rad/s and hence the closed-loop system is most sensitive

to this frequency with presence of delays. Thus, a sinusoidal voltage input, E =

12 sin(1.5t) volts is given as the input to the system in the ideal, delayed and predictor

cases and the simulation is run for 30 s as in Section 3.4.1. The performance metrics

p0 and p defined as above for each delay value and different λ are summarized in Table

3.2. When the delay increases, p0 becomes larger and there exist a larger difference

between the output trajectories of delayed and ideal cases. As shown in Figure 3.14,
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a constant delay of 135 ms significantly distorts the system output, with p0 = 26.31

rad, while p0 is only 7.61 rad with a delay of 58 ms.

The normalized performance metrics pn are shown in Figure 3.15. All pn < 1,

indicating that predictors with different λ within the stability region improve the

fidelity of the networked integration compared to the delayed case for all delays.

With a selection of large λ, the output difference can be reduced to less than 10%

of the difference caused by the delays. Figure 3.16 compares the output trajectories

among all three cases when the one-way delay is 135 ms. With λ = 0.90λmax(τ), the

output of the predictor case is very close to that of the ideal case and the predictors

are very effective in terms of reducing the impact of delay.

3.4.2.2 Varying Delays

Similar simulations are run for varying delays. Measurements from three of the

networks (AA-BE, AA-PA, AA-SH) in Section 3.2.2 are used as simulated delay

models. Zero-order hold is applied to the measurements when there is a lack of data

points due to packet dropouts through the network. Assuming that delays are the
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Figure 3.16: Output trajectory comparison among ideal case, delayed case with
delays of 135 ms, and predictor case. Predictor cases with all λ lead to better perfor-
mance compared to delayed case.

Table 3.3: Means and standard deviations of the round-trip delays for the three
networks data

Network AA - BE AA - PA AA - SH

Mean µ (ms) 30.2 58.1 135.6

Standard deviation σ (ms) 14.0 9.3 7.1

same in both directions, the mean and standard deviation of the one-way delay of the

three networks are listed in Table 3.3.

The mean values in Table 3.3 are close to the three constant delays tested be-

fore, respectively. Recalling that the maximum stability range of the varying delay

is smaller than the constant delay with the same mean value (
3

2τavg

and
π

2τavg

, re-

spectively), slightly larger scales of λmax(τavg) are chosen in the varying delay cases to

make the λ values the same as in the constant delay cases. The performance metrics

p0 and p for each delay value are shown in Table 3.4 and the normalized performance

metrics pn are shown in Figure 3.17. Note that with varying delays, predictors still

improve the fidelity of the networked integration when λ is chosen within the stability
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Table 3.4: Performance metrics with different varying delays

Metrics
Delay One-way Varying Delay Mean τavg

30.2 ms 58.1 ms 135.6 ms
p0 (rad) 3.57 7.64 25.91

p (rad)

λ = 0.16λmax(τavg) 0.68 2.53 15.97
λ = 0.42λmax(τavg) 0.26 0.98 5.40
λ = 0.68λmax(τavg) 0.16 0.60 3.29
λ = 0.94λmax(τavg) 0.11 0.44 2.37
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Figure 3.17: Normalized performance metrics pn with different varying delays.
Smaller pn indicates better performance and higher fidelity in networked integra-
tion. For all delays, predictors with different λ improve the performance compared
to the delayed case.

range. The levels of improvement are almost the same as in the constant delay cases

because of two reasons. One reason is that both subsystems behave like low-pass

filters, and the impact of the fast variation of delays on systems with low operating

frequencies is not noticeable. Metrics p0 without prediction tested under both con-

stant and varying delays are very close. The second reason is the predictor dynamics,

which is discussed in detail in the next section.

3.4.2.3 Discussion of Prediction Performance with Varying Delays

The prediction accuracy of Subsystem 2 predictor with varying delays is studied

based on the simulation results using AA-SH network data as an example. Note
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Figure 3.18: There exists fast varying jitters in the coupling error of shaft speed
signal y2(t). Jitters are attenuated by Subsystem 2 predictor and the prediction error
is smooth, resulting in a smooth predictor output without jitters.

that based on Table 3.3, the ratio of standard deviation of delays to the mean is

around 0.05, which is very small and means that most of the delay values at each

time instance is close to the mean delay value and only a few significant spikes are

captured in the data.

Figure 3.18 shows the coupling error c(t) between the shaft speed signal without

and with delays τ(t). Due to variation of delays, packets enclosing unchanged in-

formation during transmission are received at different rates and may not be in the

same order as when packets are sent, resulting in jittered predictor inputs including

delayed signal y(t− τ(t)) and its derivative ẏ(t− τ(t)). Thus, c(t) is not smooth and

has significant spikes such as the ones at 11.3 s and 14.3 s. However, in Figure 3.18,

the fast varying jitters are attenuated by Subsystem 2 predictor and the prediction

error e(t) is smooth. Therefore, a smooth predictor output is expected.

Figure 3.19 shows the comparison of different shaft speed signals among original

y2(t), delayed y2(t − τ(t)), and Subsystem 2 predictor output ŷ(t). Observed from

the zoomed-in view of Figure 3.19, the predictor output ŷ(t) is indeed smooth and

is not affected much by the jitters in the inputs. One potential explanation is the

novel predictor dynamics developed. Recall from the general predictor dynamics that
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y2(t − τ(t)), and Subsystem 2 predictor output ŷ(t). Predictor has the potential of
alleviating the jitters in the delayed signal and generating a smooth prediction ŷ(t).

handles the inputs with varying delays τ(t) in (3.5). The jitters in y(t− τ(t)) have an

effect on determining the predictor state derivative ẏp(t) instead of on yp(t) directly.

Due to the integration action on ẏp(t), ŷ(t) is not very sensitive to the jitters within

the predictor inputs y(t− τ(t)).

In addition, it can be observed that the magnitude of e(t) is much smaller than

that of c(t) in Figure 3.18 and ŷ(t) is very close to the original y(t) without delays

Figure 3.19, both indicating good prediction accuracy using Subsystem 2 predictor

to compensate effect of varying delays on the shaft speed signal. Similar results and

conclusion are found in Subsystem 1 predictor, as well.

Thus, the predictor developed in this work has the potential of alleviating the

jitters in the signal with varying delays and generating a smooth and accurate pre-

diction.

3.4.3 Performance with Hardware Networks

In the final part of this case study, the example system is tested using a real

network. With respect to Figure 3.9, the Subsystem 1 predictor and Subsystem 2

are run on one computer as the Server site, which is located in Alameda, California.

Another computer acts as the Client site, running Subsystem 2 predictor as well as
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Figure 3.20: The histogram of one-way delay measurements (a) from Server to
Client (b) from Client to Server. Round trip delay is 90.3± 9.3 ms.

Subsystem 1, and is located in Ann Arbor, Michigan. Both sites send communication

packets through the Internet via wireless connections. This connection is referred

as the MI-CA network in the following discussion. Packets are sent using the User

Datagram Protocol (UDP) at the rate of 1 ms and the remote site responds whenever

packets are received. In addition to yi(t) (i ∈ {1, 2}) and their derivatives ẏi(t), the

send time stamps of the local site are included in the packets as well. At the beginning

of the simulation, the Network Time Protocol (NTP) [107] is used to synchronize the

clocks of the two computers to the same NTP time server, so that the one-way packet

delay can be calculated based on the difference between the send time and the receive

time. Thus, this simulation with the real network includes the effects of not only

the varying delays, but also distributed simulation, communication frequency, packet

drops, delay measurement errors and clock synchronization errors.

The one-way delay distributions from Server to Client and from Client to Server

in a 30 s period of time are shown in Figure 3.20 and the round trip delay is 90.3±9.3

ms, with a drop rate of 14.6%. Simulating Server site and Client site simultaneously

for 30 s, the performance metric p0 for the delayed case without predictors is 5.04

rad. Including the predictors with λ to be 15%, 40%, 65% and 90% of λmax(τavg(t))
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Figure 3.21: pn with a real MI-CA network. Smaller pn indicates better performance
and higher fidelity in networked integration. Predictors with various λ improve the
performance compared to the delayed case.

based on the 5 s moving average delays τavg(t), the performance metric p is reduced

to 2.80, 1.45, 0.44, 0.43 rad, respectively. pn are shown in Figure 3.21. All pn < 1,

indicating that predictors with various λ all improve performance and system fidelity

over the real network with robustness against the aforementioned effects, such as the

packet drops and delay measurement errors.

3.5 Closed-Loop System Stability with Predictors

Although predictor stability with constant and varying delays have been estab-

lished, it remains unknown how the stability of the closed-loop system is affected by

the predictors.

3.5.1 “Mixed” Passivity and Small Gain Method

To study the closed-loop system stability, a “mixed” passivity and small gain

method [108] is leveraged in this paper. The method blends the passivity theory

and small gain theory together so that a larger range of subsystems capturing the

passivity property or small gain property or both, can be studied. The method is

summarized as follows and is currently limited to study the stability of a linear time

invariant (LTI) closed-loop system with constant delays.
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Figure 3.22: Interconnection of two nonlinear subsystems M1, M2

A pair of causal, bounded, linear (and not necessarily time-invariant) operators

(Γ : L2[0,∞)→ L2[0,∞) and B : L2[0,∞)→ L2[0,∞)) are introduced as weights to

set up the strict “mixed” small gain and passivity property that is defined as [108]:

Definition III.1. If Γ∗Γ + B∗B = I, system Mi : L2 → L2 has a strict “mixed” small

gain and passivity property if there exist constants 0 ≤ εi < 1, ki > 0, li > 0, ηi ≥ 0

such that

−ki‖B(Miei)t‖2 + 2〈B(Miei)t,B(ei)t〉 − li‖B(ei)t‖2

−‖Γ(Miei)t‖2 + εi‖Γ(ei)t‖2 + ηi ≥ 0

(3.32)

for all input ei ∈ L2 and all t ≥ 0, where Miei is the output and the subscript t

represents the signal at instant t.

Note that if Γ = 0, (3.32) indicates Mi with strict input and output passivity and

if B = 0, (3.32) indicates Mi with gain < 1.

Consider an interconnection of two general nonlinear systems M1, M2 in Figure

3.22. Theorem 5 in [108] states that if (3.32) holds for i = {1, 2} and there exist

constants satisfying:

0 ≤ ε1 ≤ 1 0 ≤ ε2 ≤ 1

l1 + k2 ≥ 0 l2 + k1 > 0 k2 > 0 l2 > 0

(3.33)

then u1, u2 ∈ L2[0,∞) ⇒ e1, e2,M1e1,M2e2 ∈ L2[0,∞). In other words, when M1
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and M2 satisfy the “mixed” small gain and passivity property in Definition III.1 (M2

satisfies the strict version of it), the closed-loop system (interconnection of M1 and

M2) is input-output stable.

Note that the above theorem applies to nonlinear, multi-input multi-output and

time varying systems in general. It can be tested based on the measured data of inputs

ei and outputs Miei [109], without necessarily requiring the information of systems

M1 and M2. However, the limitations of the experimental approach are obvious:

no matter how large the amount of data is, they cannot cover the whole input set

{(u1, u2) : u1, u2 ∈ L2[0,∞)} and infinite time horizon in practice.

In special conditions such as LTI systems, the “mixed” property in Definition III.1

is equivalent to the system being passive at low frequencies and having small gain at

high frequencies, when Γ is time invariant with |Γ(jω)| close to 0 at low frequencies

and close to 1 at high frequencies [108, 110]. Thus, Theorem 5 in [108] is leveraged

as follows:

Theorem III.2. If each of the two systems M1,M2 at all frequencies is input and out-

put strictly passive or has gain less than one or satisfies both, then the interconnection

of M1 and M2 is stable.

In other words, with the frequency dependent form of passivity and small gain

property for LTI systems stated as:

• Passivity Property:

Re(Mi(jω)) > 0 for |ω| ∈ [0, ωa) (3.34)

• Small Gain Property:

|M1(jω)| · |M2(jω)| < 1 for |ω| ∈ (ωb,∞) (3.35)
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Figure 3.23: Bode plots of M1 and M2 (a) without predictors (b) with subsystem
2 predictor λ = 0.60λmax(0.2). Predictor extends the frequency bandwidth within
which the system is passive.

if ωa > ωb > 0, the closed-loop system in Figure 3.22 is stable.

In this dissertation, Theorem III.2 with respect to LTI systems is leveraged to

establish the stability of the example LTI motor-shaft-torque networked closed-loop

system with predictors and constant delays shown in Figure 3.9 to start with and

could be applied to teleoperated vehicle system of interest in the future. Without

collecting massive data of the inputs and outputs of each subsystem, the closed-loop

stability is analyzed by relying on the subsystem model information. Theorem III.2

provides some insight into how delays destabilize the system and how predictors can

help with re-establishing the closed-loop stability. The following simulation results

demonstrate how the predictors can stabilize a networked system that is otherwise

unstable due to delays.
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3.5.2 Simulation Results

Note that the example networked system without predictors can tolerate one-way

delays of up to 175 ms to remain input-output stable. A constant delay beyond the

stability limit of the networked system is considered to demonstrate the ability of

the predictor framework to stabilize the system. Consider the one-way delay of 200

ms and Theorem III.2. For the example system in Figure 3.9, combining Subsystem

1, Delay 1 and Subsystem 1 predictor as system M1 and the remaining components

related to Subsystem 2 as system M2, transfer functions M1(s) and M2(s) are defined

as:

M1(s) = GSys1(s)GDelay1(s)GPred1(s)

=
0.28s+ 0.1484

s2 + 0.53s+ 2.75
e−0.2s s+ λ1

s+ λ1e−0.2s

M2(s) = GSys2(s)GDelay2(s)GPred2(s)

=
4.4

s+ 0.1
e−0.2s s+ λ2

s+ λ2e−0.2s

(3.36)

and the closed-loop system aligns with the form in Figure 3.22. In the delayed case

when predictors are not involved, λ1 = λ2 = 0. Bode plots of M1(s) and M2(s)

without predictors are shown in Figure 3.23(a). M1 is passive (i.e., phase is within

(−90◦, 90◦) ) when |ω| ∈ [0, 2.04) and M2 is passive when |ω| ∈ [0, 0.70). The common
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frequency limit in Theorem 1 when M1 and M2 are both passive is ωa = 0.70.

The small gain property is checked by plotting the product of each system gain,

GCL(ω) = |M1(jω)| · |M2(jω)|. In Figure 3.24(a), GCL(ω) < 1 when ω > 1.88 rad/s.

Thus, without predictors, the frequency limit in Theorem 1 when interconnection of

M1 and M2 has gain less than 1 is ωb = 1.88.

Since ωa < ωb, the “mixed” small gain and passivity property does not hold for all

the frequencies, and the closed-loop system is in fact unstable as seen in Figure 3.25.

To stabilize the system, predictors are included to alter ωa and ωb. Note that from

Figure 3.23(a), the frequency range when M2 is passive is very limited compared to

that of M1. Therefore, only Subsystem 2 Predictor is included to demonstrate the

predictor’s capability of stabilizing an unstable closed-loop system in this example.

With λ2 = 0.60λmax(0.2), the updated Bode plots of M1 and M2 are shown in Figure

3.23(b). Subsystem 2 Predictor in M2 significantly extends the frequency bandwidth

for passive M2 to that of M1 and ωa is increased to 2.04. Accordingly, in Figure

3.24(b), the predictor slightly amplifies the system gain and ωb is now 1.95. Note

that in this case, ωa > ωb. Based on Theorem 1, the closed-loop stability is achieved.

Closed-loop simulations are performed next to validate the theorem. As Figure

3.25 shows, the closed-loop system output (marked in thick and solid black) is un-

stable without the predictor. With the predictor involved, when λ2 = 0.60λmax(0.2),

closed-loop system regains stability due to Subsystem 2 Predictor. Furthermore, sys-

tem output in this case is very close to the ideal case without delay. pn = 0.18

is significantly below 1, meaning the networked system fidelity is greatly improved.

The predictor’s capability of re-establishing the closed-loop system stability is thus

demonstrated.

62



-5

-4

-3

-2

-1

0

1

2

3

4

Ideal case

= 200 mst , 0.18
n
p =

0 10 20 30
Time [s]

40 50 60

 
 [
ra

d
]

Q
O

u
tp

u
t 
tr

a
je

c
to

ry

max0.60 (0.2)l l=

Figure 3.25: When the delays make the closed-loop system unstable, predictors
manage to stabilize the system and improve the fidelity as well.

3.6 Saturation and Resetting Scheme

Observed from an example comparison between predictor output and original

signal y(t) without delays in Figure 3.19, there always exists overshoots when y(t)

changes direction. Since only the delayed inputs ẏ(t−τ(t)) and y(t−τ(t)) are available

to the predictor, it cannot recognize the direction changes of y(t) in time and the peak

of yp(t) lags the peak of y(t), thereby generating the overshoot. Overshoots with large

magnitudes could contribute to performance loss in the applications where transient

response is critical. In teleoperated vehicle system, human operators rely on the

predicted vehicle heading, speed and location to generate consequent commands to

control the vehicle, and large overshoots may cause significant errors in the graphical

display of the predicted vehicle heading, which in turn can cause the operators steer

more aggressively and exacerbate the overshoots afterwards.

Thus, the concern of overshoot inspires the development of a saturation and re-

setting scheme in addition to the existing predictor dynamics to improve predictor
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transient performance. To better illustrate the scheme, an example of predicting a

signal of vehicle heading is provided.

The heading signal to be predicted is from a human-in-the-loop experiment [111]

under the teleoperated vehicle system setup as in Figure 2.1, where a human operator

controlled the steering and speed of a simulated vehicle in a track-following scenario,

with constant control delays of 0.3 s and constant sensor delays of 0.6 s. Data was

recorded at the sample rate of 100 Hz for 60 s and includes control commands of

throttle, brake and steering, as well as vehicle states of heading, location and speed.

The undelayed heading y(t) and delayed heading with delays of 0.6 s, i.e. y(t− 0.6),

within a time window between 28 s and 38 s are shown in Figure 3.26. Predictor with a

intuitively selected λ = 0.40λmax(0.6) is implemented and there exists overshoots with

large magnitude and long duration when y(t) changes direction. The saturation and

resetting scheme designed for the predictor in this work includes two stages, namely,

output saturation and state resetting, which are illustrated in detail separately below.

The first stage is predictor output saturation, where the condition of detecting

the overshoot sooner is studied and then the predictor output is saturated to reduce

the magnitude of overshoot.

Let ŷsat(t) be defined as

ŷsat(t) :=
ẏ(t− τ(t))

λ
+ y(t− τ(t)) (3.37)

Comparing the current predictor output ŷ(t) to ŷsat(t), the peak of y(t) can be de-

tected sooner. For example, in Figure 3.26, ŷ(t) = ŷsat(t) at 29.6 s, which detects

the peak 0.4 s sooner than the original predictor, where the peak is detected only

when yp(t − τ(t)) = ŷsat(t) at 30 s, which causes a significant overshoot as the gray

dashed line in Figure 3.26 illustrates. Therefore, at 29.6 s, predictor output ŷ(t) can

be saturated to be no greater than ŷsat(t) to reduce the overshoot. Similarly, ŷsat(t)
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Figure 3.26: Comparison of different heading signals. When applying a saturation
and resetting scheme with the predictor, the overshoot in the transient is reduced and
thus leads to better predictor transient performance.

can be used as a lower limit of ŷ(t) when ẏ(t− τ(t)) < 0. Such saturation is also ap-

plicable when there is no overshoot, because if y(t) is monotonically changing, ŷsat(t)

expands faster than ŷ(t) and the saturation would not be triggered. Therefore, the

predictor dynamics and output function of (3.5) are modified as follows to include

the described output saturation:

ẏp(t) = ẏ(t− τ(t)) + λ[y(t− τ(t))− ŷ(t− τ(t))]

ŷ(t) = fsat(yp(t), ẏ(t− τ(t)))

(3.38)

where fsat(yp(t), ẏ(t− τ(t))) deals with saturation according to

fsat(yp(t), ẏ(t− τ(t))) =


min(yp(t), ŷsat(t)) if ẏ(t− τ(t)) ≥ 0

max(yp(t), ŷsat(t)) if ẏ(t− τ(t)) < 0

(3.39)

and ŷsat(t) is updated using (3.37) at each time instance.

The second stage is predictor state resetting. Note that in the modified form

(3.38), output ŷ(t) and state yp(t) could be different from each other. Predictor state

is reset to the delayed signal input y(t − τ(t)) after the overshoot, so that ŷ(t) and

yp(t) match again, and (3.38) becomes the same as the original form (3.5), for which
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Figure 3.27: There exists oscillation in the predictor output when compensating
large delays of 0.6 s with large λ. Applying the saturation and resetting scheme helps
reduce the oscillation introduced by the predictor.

stability and performance characteristics are well established. In Figure 3.26, between

29.6 s and 30.2 s, ẏ(t− τ(t)) > 0 and ŷ(t) is saturated, i.e. yp(t) ≥ ŷsat(t). At 30.2 s,

ẏ(t− τ(t)) becomes 0 and starts to change sign, indicating a direction change in the

delayed input, and the overshoot is considered to end here. ŷsat(t) = y(t−τ(t)) based

on (3.37) and the predictor state yp(t) is reset back to the delayed input y(t−τ(t)), as

well. Thus, output ŷ(t) and state yp(t) match with each other and a new prediction

is started afterwards. For ẏ(t− τ(t)) < 0, similar resetting occurs after the overshoot

between 32.3 s and 33.6 s.

The state reset condition is generalized as follows: predictor state yp(t) is reset to

be the same as delayed input y(t− τ(t)) when


ẏ(t− τ(t)) changes from (+) to (−) and yp(t) ≥ ŷsat(t)

ẏ(t− τ(t)) changes from (−) to (+) and yp(t) < ŷsat(t)

(3.40)

Both output saturation and state resetting are used together. In Figure 3.26,

where saturations and resets take action are marked using black rectangles and

yellow dots, respectively. Applying the saturation and resetting scheme with λ =

0.40λmax(0.6), the predictor output heading within the time window between 28 s
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and 38 s is closer to y(t) than that without applying this scheme.

Additionally, the saturation and resetting scheme has the benefit of smoothening

the prediction. A larger λ = 0.80λmax(0.6) is selected and the predictor output within

the same window of interest between 28 s and 38 s is shown in Figure 3.27. Unlike

the previous prediction with small λ = 0.40λmax(0.6), there exists significant amount

of oscillation due to the large gain λ in the dynamics. The same saturation and

resetting scheme is applied on this predictor, and black rectangular windows and

yellow dots represent when the saturation stages and resetting stages are happening,

respectively. Predictor output saturation to ŷsat(t) occurs for majority of the time.

Since ŷsat(t) is updated based on (3.37), ŷsat(t) is very close to delayed input signal

y(t− τ(t)) with large λ. Thus, the final predictor output may not completely match

with undelayed signal, but at least is smooth in transient and does not have much

additional oscillation introduced by the predictor.

In summary, applying the saturation and resetting scheme with the original pre-

dictor helps reduce the overshoot and oscillation in the predictor output, thereby

improving transient performance. However, one drawback is that the final output

with the scheme is more sensitive to the potential noise or jitter in the delayed in-

puts, because the conditions that triggers output saturation and state resetting highly

depend on the sign of ẏ(t− τ(t)).

3.7 Predictor Design Procedure

Predictors have been proven helpful in compensating constant and varying delays

by generating signal prediction and potentially improving closed-loop system perfor-

mance based on results of the case study in Section 3.4. In this section, a general

predictor design procedure that systematically selects its only parameter λ to predict

any signal originating from any system is provided to achieve a good performance

metric and ensure predictor stability. Note that the procedure is developed for con-

67



stant delay case and could potentially be used as a reference for the varying delay

case, when considering the moving average of varying delays. The design procedure

has three major steps.

Step 1: Estimate τ , Range of ωp, and ωc

The first step is to determine or estimate the one-way delay τ to compensate, range of

predictor bandwidth ωp, and coupling error bandwidth ωc that contains the dominant

frequencies of c(t).

The delay τ can be measured by calculating the difference between the send and

receipt time stamps of the packets that are exchanged between the two systems con-

nected via the communication network. To that end, methods such as the network

time protocol [107] can be leveraged to synchronize the clocks on both sides.

The predictor bandwidth ωp depends on values of τ and λ, i.e. λ = 2ωp sin(τωp)

in (3.25). With a knowledge of delay τ , the maximum ωp is
0.959

τ
shown in (3.26)

and larger λ leads to larger ωp.

The coupling error bandwidth ωc can be estimated based on analyzing the power

spectral density (PSD) of coupling error c(t). This requires some representative data

of the signal to predict and calculation of c(t) between undelayed and delayed signal

with known delays. PSD is performed on c(t), and ωc is determined based on the fre-

quency range where majority of the signal power is distributed. For example, ωc can

be considered as the frequency when the integrated power of the signal spectrum up

to that frequency reaches 99% of the total signal power within the Nyquist frequency

of c(t).

Step 2: Identify a range of λ based on Stability and Steady State Per-

formance

The second step is to identify a range of λ based on the relationship between ωc
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and ωp, while considering the predictor stability and steady state performance.

If ωc is small, it is possible to select a λ based on (3.25) and (3.26) such that

ωp ≥ ωc and predictor is effective for all the dominant frequencies of c(t).

For the case when ωp < ωc, two strategies are conceived. The first one is to

delay the internal predictor state yp(t) in (3.5) by a less amount τp than the actual

measurement of delay value, τ . With this strategy, although a lag of at least τ − τp

would still remain in the predictor output compared to the undelayed signal, smaller

delay value leads to larger ωp and there is higher chance to select a λ such that

ωp ≥ ωc. Therefore, predictor performance is effective in improving steady state

performance while compensating partial delays in the signal.

The second strategy is to use the full amount of the actual delay τ in the predictor

dynamics (3.5), but selecting a small λ to reduce significant amplification of c(t) for

ω > ωp based on plots of M(ω). Using such strategy, transient performance may be

worse due to smaller λ, but the generated predictor output will match the undelayed

signal without a constant lag when signal is close to reach the steady state.

Note that there is no apparent preference between these two strategies, as one

may outperform the other when predicting a certain signal and could be visa versa

for predicting another signals. The decision of which strategy to apply again relies

on the relative magnitude between potential ωp and ωc.

Step 3: Select λ based on Transient Performance

In the final step, given a suitable range of λ that ensures predictor stability and

improves steady state performance, λ is selected by further considering the transient

performance of the predictor.

Larger λ usually results in a faster transient, but exhibits oscillations if λ is se-

lected to be too large. Also, the overshoots when there exists direction changes in

the signal are also larger with larger λ. To reduce the overshoot in the transient, a
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saturation and resetting scheme presented in Section 3.6 is available, but may be sen-

sitive to noise or jitter in the predictor input of delayed signal derivatives. Applying

the saturation and resetting scheme is thus a design decision to make, as well.

Summary of Predictor Design Procedure

For each transmitted signal to predict, the procedure of designing the predictor is

summarized as follows:

1. Estimate one-way delays τ , range of predictor bandwidth ωp, and coupling error

bandwidth ωc.

2. Choose a range for λ based on the magnitude M(ω) in terms of predictor steady

state performance, such that the predictor bandwidth ωp > ωc. If no λ within

the predictor stability range (3.20) is found, apply either Strategy 1 or Strategy

2.

3. Determine λ according to the transient performance of the predictor. Apply the

optional saturation and resetting scheme to reduce overshoots in the transients.

This predictor design procedure is used in the later sections to design predictors to

predict the control commands and/or vehicle states in a teleoperated vehicle system.

In Section 4.2, a detailed example of showing the design procedure and decision

making in the process of selecting λ is illustrated to help understand the procedure.
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CHAPTER IV

A Predictor Based Framework with Blended

Prediction Architecture

In this chapter, a novel predictor based framework is developed for the teleop-

erated vehicle system to aim for improving vehicle mobility with robustness. The

framework allows bilateral prediction on control commands and vehicle states and

includes a blended prediction architecture to provide prediction of vehicle heading

while emphasizing both the prediction accuracy and robustness. The framework with

the blended prediction architecture is introduced first and the enclosed details are

then illustrated. An open-loop test is performed in simulation to evaluate the vehi-

cle heading prediction accuracy with blended architecture compared to using either

the model-free predictors or model-based feedforward branch alone. The work in this

chapter is based on publication [84].

4.1 Structure of a Novel Predictor Based Framework

In Chap II, a gap is concluded for the existing prediction based methods for delay

compensation. In short, model-based prediction may sacrifice robustness to modeling

errors, while the accuracy of model-free prediction depends on how representative

either the assumptions about the particular way the vehicle moves, or knowledge
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Figure 4.1: A novel prediction based framework to compensate delays.

about the noise characteristics that drive the existing predictive filters. To fill in

the gap, this dissertation develops a novel predictor based framework with a blended

prediction architecture for both the prediction accuracy and robustness to modeling

errors.

The framework is shown in Figure 4.1. The transmitted signals are shown as

vectors in bold fonts. Bilateral predictions on control commands y1(t) and vehicle

states y2(t) are performed. Bilateral predictions are expected to be more beneficial

in practice, since prediction in each way deals with less amount of delay (τ1(t) or

τ2(t)) than the round trip delay τRTT(t). One modification is needed compared to the

generic teleoperated vehicle system setup in Figure 2.1: In addition to the original

transmitted signals y1(t) and y2(t), their derivatives, ẏi(t) (i ∈ {1, 2}), as well as

the send time stamp right before transmission are included in the communication

packets. The reason to include them in packets is because the model-free predictor

developed in this work requires the information of the signal derivatives with delays,

i.e. ẏi(t− τi(t)), and one-way delay value τi(t) to perform prediction.

The framework with bilateral prediction is designed to leverage minimal informa-
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tion about the existing system (i.e. human operator or vehicle dynamics) to improve

performance of vehicle mobility with robustness. In the direction from Driver Sta-

tion to Vehicle Platform, a model-free driver predictor is placed at the vehicle side

to generate prediction of control commands ŷ1(t). The details of the predictor is ex-

plained in Chapter III. In the direction from Vehicle Platform to Driver Station, the

control command sequences y1(t) and received vehicle states and states derivatives

with sensor delays (i.e. y2(t− τ2(t)), ẏ2(t− τ2(t))) are available at the driver station

side and a blended architecture is first proposed to generate prediction of vehicle

states ŷ2(t). Note that transmitted vehicle states required for teleoperated driving

include vehicle position and heading to provide the information of vehicle movement

in the environment, as well as vehicle longitudinal speed that is displayed to human

operators and thus controlled by them using throttle and brake pedals. The delayed

camera view is then altered to show the predicted states yp(t) containing position,

heading and speed in form of vision by leveraging existing image processing methods

and displayed to the human operation for closed-loop teleoperated driving.

The blended architecture is shown in Figure 4.2. It is at the Driver Station and is

composed of a feedback branch, a feedforward branch and a linear blending between the

outputs of both branches for vehicle heading prediction. Compared to the structure

of vehicle states prediction in the predictive display approach or human operation

prediction or a mixture of both for bilaterally prediction, where either model-based

or model-free prediction method is used, the main feature of the proposed blended

architecture is to combine both a model-based feedforward branch and a model-free

feedback branch for the sake of improving prediction accuracy with robustness.

Within the feedback branch (FB), a model-free Vehicle Predictor based on the

same dynamics and analysis as the Driver Predictor is employed, receiving the de-

layed vehicle states and state derivatives as inputs and generating predicted output

vectors ŷ2(t). ŷ2(t) contains predicted 2D positions Xp(t) and Yp(t), predicted lon-
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gitudinal speed up(t) and feedback heading ψFB(t). Since predictions are performed

based on the vehicle states that are the feedback outputs from the remote vehicle

platform, the branch is named as feedback branch. Note that this branch can gener-

ate prediction of all the vehicle states. When implemented with the model-free Driver

Predictor in predicting control commands, the framework is completely model free in

the sense that no knowledge about the governing equations of the vehicle platform or

human operator is required to perform the predictions of all transmitted signals and

there exists no robustness issue to modeling errors compared to model-based predic-

tion. Besides, no assumptions about the vehicle trajectory or human motion and no

knowledge or estimation of noise in the high order derivatives of the transmitted sig-

nals are required compared to existing model-free prediction methods. However, the

limitation of the model-free predictor developed in this dissertation is that their pre-

diction accuracy may not be comparable to the model-based methods when accurate
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models are available, due to limited predictor bandwidth to predict high frequency

components of the signals under large delays.

Thus, a model-based feedforward branch as well as the linear blending are devel-

oped to help further improve prediction accuracy of vehicle heading, by incorporating

minimal information of vehicle steering dynamics while preserving as much robust-

ness as possible. The reason of adding the blending for heading prediction only is

that early experiments showed that human operators were affected more by the asyn-

chrony between steering and monitoring the subsequent vehicle heading than by the

asynchrony between controlling and monitoring vehicle longitudinal speed [18, 111].

Within the feedforward branch (FF), there exists a steering feedforward loop where

feedforward heading ψFF (t) is generated based on the human operators current steer-

ing command δ(t). A steering model that represents the lateral dynamics of the

vehicle platform is needed to map the steering to heading; hence this model-based

branch may suffer from low robustness to modeling errors.

Given that each branch has its own advantages and limitations, and recognizing

the potential that the two branches can synergistically complement each other, their

outputs of heading ψFF (t) and ψFB(t) are linearly combined as follows to create a

blended architecture:

ψb(t) = (1− α(t))ψFF (t) + α(t)ψFB(t) (4.1)

where ψb(t) is the resulting blended predicted heading and α(t) is a blending weight

between 0 and 1. Blending ψFF (t) and ψFB(t) provides the flexibility for maximiz-

ing the heading prediction accuracy in different conditions. For example, when the

steering model does not have very high fidelity, α(t) can be chosen to be closer to

1 so that the prediction is less sensitive to modeling errors that resides in the feed-

forward branch. On the contrary, when predictor has limited bandwidth to predict a
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heading signal of high frequencies under large delays, α(t) can be chosen to be closer

to 0, so that the heading prediction depends less on the Vehicle Predictor output.

Details of the model-free predictors in feedback branch and the model-based steering

feedforward loop are explained, respectively, preparing an open-loop test to evaluate

the heading prediction accuracy using the blended architecture.

4.2 Predictor Design

Both the Driver Predictor and Vehicle Predictor in Figure 4.1 and Figure 4.2

have the same form as introduced in Chapter III and each signal in the input vector

yi(t) (i ∈ {1, 2}) to either predictor is predicted independently. Thus, predictor

parameter λ to predict each signal is selected individually based on the predictor

design procedure in Section 3.7. In this section, an example of predicting the signal of

vehicle heading using the Vehicle Predictor is illustrated to show the design procedure

in detail. Note that based on the blended architecture in Figure 4.2, the predictor

heading output from the Vehicle Predictor is the output of the feedback branch and

would be the feedback heading ψFB(t) that contributes to the linear blending.

The heading signal to predict comes from the same data used in Section 3.6.

There exists constant delays of 0.6 s in the signals as the inputs of the Vehicle Pre-

dictor. The coupling error c(t) between undelayed heading ψu(t) and delayed heading

ψd(t) = ψ(t − 0.6) is shown in Figure 4.3. A coupling error on the order of 5 deg
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corresponds to the difference between the actual undelayed heading of the remote

vehicle and delayed heading perceived by human, causing a significant degradation

in teleoperation performance: Track keeping error and steering control effort are in-

creased by 76% and 18% respectively when compared to the metrics based on the

same operator’s data in the case without any delay (i.e. zero coupling error).

Define a metric (∆ψ)0 as the 2-norm of coupling error for a total length of 60 s:

(∆ψ)0 := ‖ψd(t)− ψu(t)‖2 (4.2)

(∆ψ)0 = 8.88 rad/s, which quantifies how much delays of 0.6 s distorts ψu(t). (∆ψ)0

is also considered as the baseline without prediction and is compared to the metric

(∆ψ)b calculated based on the predictor output in (4.3) in this section.

With known delays τ = 0.6, according to the design procedure, the first step is to

determine bandwidth of the calculated c(t) and range of ωp. Since the data recorded

and hence calculated c(t) are in 100 Hz, the power spectral density of c(t) based on

a rectangular window for ω up to its Nyquist frequency of 50 Hz is shown in Figure

4.4, with the zoomed-in view on the right between 0 and 2 Hz. Note that majority of

the signal power is distributed at low frequencies and the frequency band occupying

99% of the total integrated power of the spectrum is between 0.005 Hz and 0.296 Hz.
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Thus, ωc is estimated to be 0.296 Hz. Based on (3.26), the maximum ωp is 1.60 rad

(0.255 Hz) for delays of 0.6 s and predictor is always effective in attenuating c(t).

In the second step, a range of λ to ensure predictor stability and consider good

steady state predictor performance is identified. Since even the maximum ωp cannot

cover all ω ∈ [0, ωc), either Strategy 1 or Strategy 2 is applied to determine λ.

In Strategy 1, predictor can be designed to compensate partial delay τp = 0.3 s and

the ratio between e(t) and c(t), i.e. M(ω) =

∣∣∣∣e(t)c(t)

∣∣∣∣, with various λ smaller than the

maximum value λmax(0.3) for a stable predictor is plotted in Figure 4.5(a), along with

the highlighted frequency range within ωc of 0.296 Hz. Note that when λ is greater

than 0.40λmax(0.3), ωp > ωc is achieved. Thus, for Strategy 1, λ is lower-limited by

0.40λmax(0.3) in this step.

On the contrary, in Strategy 2, the actual amount of delays (τ = 0.6) is compen-

sated in full. M(ω) with various λ smaller than the maximum value λmax(0.6) for

a stable predictor is plotted in Figure 4.5(b). Using this strategy, λ is suggested to

be less than 0.40λmax(0.6) so that for ω ∈ [0, ωc), a balance in steady state perfor-
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mance between attenuating c(t) when ω < ωp and amplifying c(t) less when ω > ωp

is achieved.

In the final step, predictors under various settings based on different λ specified in

the second step and whether to include saturation and resetting scheme are simulated

for the same heading signal input. Define a prediction accuracy metric (∆ψ)FB as

the 2-norm of the prediction errors between undelayed heading ψu(t) and predictor

heading output ψFB(t) for a total length of 60 s:

(∆ψ)FB := ‖ψFB(t)− ψu(t)‖2 (4.3)

(∆ψ)FB under different predictor settings are listed in Table 4.1. A smaller metric

indicates more accurate prediction. Compared to without predictor ((∆ψ)FB = 8.88

rad), predictors in all the settings generate outputs that are closer to the undelayed

heading. Generally, larger λ leads to more accurate prediction. Applying saturation

and resetting scheme helps reduce the overshoot in transient and also improves ac-

curacy, except when λ = 0.90λmax(0.3) using Strategy 1. The reason of worse metric

using saturation and resetting scheme for λ = 0.90λmax(0.3) is that with large λ, the

predictor output after including the saturation resetting scheme is mostly saturated

to a signal that is smooth but deviates from undelayed heading more at steady state.

Using Strategy 1, the predictor with λ = 0.90λmax(0.3) has the smallest metric

of 4.70 rad; Using Strategy 2, the predictor with λ = 0.40λmax(0.6) and saturation

and resetting scheme has the smallest metric of 4.02 rad, with a deduction of 55%

compared to that without predictor. However, the best tuned predictor settings un-

der both strategies are considered rather than preferring Strategy 2 over Strategy 1

due to the smaller metric. It is because in the proposed prediction framework, the

feedback heading ψFB(t) from the Vehicle Predictor will be blended with the feedfor-

ward heading ψFF (t) and the resulting blended heading ψb(t) is the final predicted
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Table 4.1: Prediction accuracy metric (∆ψ)FB with various predictor settings com-
pared to the baseline accuracy (∆ψ)0

Without Predictor (∆ψ)0 = 8.88 rad

Predictor settings (∆ψ)FB (rad)

With λ = 0.40λmax(0.3) 5.11

Predictor λ = 0.40λmax(0.3), with Sat. & Reset. 5.03

(Strategy 1) λ = 0.90λmax(0.3) 4.70

λ = 0.90λmax(0.3), with Sat. & Reset. 5.84

With λ = 0.15λmax(0.6) 7.46

Predictor λ = 0.15λmax(0.6), with Sat. & Reset. 5.70

(Strategy 2) λ = 0.40λmax(0.6) 5.56

λ = 0.40λmax(0.6), with Sat. & Reset. 4.02

output. Prediction accuracy under different predictor design strategies and blending

configurations remains to be studied.

4.3 Feedforward Branch

In this section, a model-based feedforward branch is illustrated.

The feedforward branch is model based in the sense that it relies on a steering

model to represent the remote vehicle lateral dynamics. The steering model is used to

map the operator’s steering command δ(t) directly to a vehicle heading at the Driver

Station that is directly available. Since this branch does not wait for the vehicle

heading transmitted from the remote side controlled by sequence of steering δ(t), this

branch borrows the terminology of feedforward and the heading output of the branch

is called feedforward heading ψFF (t). A modeling method that requires minimal

knowledge about the governing equation of the vehicle is employed in this work to

align with the motivation of developing a delay compensation method with minimal

system information to benefit from performance robustness to modeling errors.

The vehicle platform generating the heading signal is a full-size notional High

Mobility Multipurpose Wheeled Vehicle (HMMWV) model with 14 DoF vehicle dy-
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namics and Pacejka tire model developed in [112], and the powertrain model in [44]

that combines a 6L V8 diesel engine map, a drivetrain model and an automatic trans-

mission model. This vehicle platform is used for all the following simulation results

in Chapter IV and V. A potential steering model to capture the yaw dynamics can

be represented by a second-order transfer function [113], with input of steering angle

δ(t) and output of yaw rate r(t):

GST(s) =
r(s)

δ(s)
=

K(1 + s/d)

(1 + s/a1)(1 + s/a2)
(4.4)

where the parameters K, d, a1, a2 are all positive numbers and are functions of vehicle

longitudinal speed u along with constant vehicle parameters, such as yaw moment of

inertia, vehicle mass, cornering stiffness and vehicle dimensions. Note that this model

is deduced based on a bicycle model assuming small steering angles and constant

tire cornering stiffness. However, due to vertical load transfer on tires and large

steering angles for the vehicle platform of interest with high DoF and nonlinear tire

models, K, d, a1, a2 may vary with different steering angle magnitudes. One way

to establish (4.4) is to estimate or measure all the vehicle parameters needed, but

obtaining accurate parameters could be difficult, especially when dealing with actual

vehicles with their complicated dynamics. Instead, the modeling method used in this

paper is to estimate K, d, a1, a2 directly through matching the frequency response of

(4.4) with the vehicle platform. Specifically, sinusoidal steering angle profiles with

amplitude A and frequency ω, i.e. δ(t) = A sin(ωt), are applied to the vehicle at

constant longitudinal speed u and the yaw rate outputs r(t) are recorded. When the

vehicle reaches steady state, the gain and phase for the frequency response of (4.4) at

the given frequency are then calculated as the ratio in magnitude and shift between

the adjacent peaks of δ(t) and r(t). The vehicle is simulated for various A and u, with

A ranging from 0.02 rad to 0.10 rad with an increment of 0.02 rad, and u ranging
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Figure 4.6: Gains and phases of the frequency response of (4.4) (a) with same u
and different A (b) with same A and different u. The fitted steering model matches
with collected data points well for each pair of {A, u}.

between 5 mph to 50 mph with an increment of 5 mph. For each pair of {A, u}, the

data points of gain and phase from frequency of 0.1 rad/s to 100 rad/s are collected.

Figure 4.6 shows the data points of gain and phase with different A and u. In Figure

4.6(a), with the same u of 30 mph, data points of phase are very close with A of 0.02

rad and 0.10 rad, but gains differ especially at low frequencies. In Figure 4.6(b), with

the same A of 0.02 rad, higher u results in larger gains.

Steering model parameters are determined using the robust Least Absolute Resid-

uals (LAR) method with MATLAB r Curve Fitting Toolbox TM [114]. Starting with

the condition of A = 0.02 rad for each u, data points of gain are fitted to the gain

function of (4.4) between ω of 0.1 rad/s and 100 rad/s to obtain K, d, a1, a2:

Gain = |GST(jω)| = K

√
1 + (ω/d)2

(1 + (ω/a1)2)(1 + (ω/a2)2)
(4.5)
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With larger A, both a1 and a2 are constrained to be the same as the values obtained

when A = 0.02 rad and the remaining two parameters K and d are refitted only

to avoid the unnecessary changes of all the parameters for different A when the

vehicle speed remains constant. In Figure 4.6, the steering model is fitted well to

the data collected using the simulated vehicle platform and thus it can be used to

at least represent the steady state lateral dynamics of a 14 DoF vehicle over the low

frequencies. The fitted parameters are stored as a 2D lookup table for pairs of {A, u}.

For a given steering angle magnitude A and vehicle speed u within the fitting

range, yaw rate is estimated using the steering model (4.4) with parameters in the

lookup table, K(A, u), d(A, u), a1(u), a2(u). Instead of implementing another model

to capture the vehicle’s longitudinal speed u without delays in the feedforward branch,

the predicted up(t) from the Vehicle Predictor outputs is utilized. Thus, the steering

feedforward branch is coupled with the speed prediction as shown in Figure 4.2. The

feedforward heading ψFF (t) is then determined by integrating the yaw rate output of

the steering model and is expressed in the form of ψFF (t) = ψFF (t, up(t), δ(t)).

4.4 Open-Loop Evaluation of Heading Prediction Accuracy

An open-loop test is performed in simulation to evaluate the heading prediction ac-

curacy of the proposed blended architecture in the predictor-based framework (Figure

4.1), compared to using either the model-free predictors or feedforward branch alone.

The test setup is shown in Figure 4.7. There exist control delays of 0.3 s and

sensor delays of 0.6 s. Control commands y1(t) including throttle Th(t), brake Br(t)

and steering δ(t) from the same data used in Section 4.2 are the inputs to the whole

system and the output of interest is the blended vehicle heading ψb(t). ψu(t) and

ψd(t) represent the undelayed and delayed heading, respectively. Prediction accuracy

is evaluated by comparing predicted ψb(t) to the baseline of ψu(t) and a metric of

quantifying the accuracy, (∆ψ)b, is calculated as the L2 norm of the heading errors
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between ψb(t) and ψu(t):

(∆ψ)b := ‖ψb(t)− ψu(t)‖2 (4.6)

Smaller (∆ψ)b indicates better heading prediction accuracy.

Note that the Driver Predictor irrelevant to heading prediction is not included

and only the prediction of heading as well as speed in the Vehicle Predictor within

the blended architecture are of interest in this test. λ values for predictor heading

ψFB(t) and predictor speed up(t) are selected based on the procedure described in

Section 3.7 and listed in Table 4.2. Note that two kinds of Vehicle Predictor are

tested and are referred as Predictor I and II, respectively. They have the same λ for

speed prediction, but different λ for heading prediction that correspond to the ones

with the best prediction accuracy highlighted in Table 4.1 (i.e., λ = 0.90λmax(0.3),

and λ = 0.40λmax(0.6), with Sat. & Reset.). Two different configurations of blending

the outputs from the feedforward branch and feedback branch are proposed and listed

in Table 4.2, when dealing with Predictor I or Predictor II and are explained next.

In Configuration I, feedback branch includes Predictor I designed using Strategy
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Table 4.2: Two configurations that blend feedforward branch and feedback branch
to predict vehicle heading

Blending Configuration I

Feedforward branch ψFF (t) = ψFF (t, up(t), δ(t))

Feedback branch Vehicle Predictor I

Signal Strategy Parameter λ Sat. & Reset.

ψFB(t) Strategy 1 0.90λmax(0.3) No

up(t) Strategy 2 0.10λmax(0.6) Yes

Blending Configuration II

Feedforward branch ψ′FF (t) = ψFF (t, up(t), δ(t− 0.3))

Feedback branch Vehicle Predictor II

Signal Strategy Parameter λ Sat. & Reset.

ψFB(t) Strategy 2 0.40λmax(0.6) Yes

up(t) Strategy 2 0.10λmax(0.6) Yes

1. Recall from Section 4.2 that Predictor I using Strategy 1 is effective in compen-

sating partial delays of around 0.3 s and there remains a lag of around 0.3 s at best

compared to ψu(t). Also note that the feedforward heading ψFF (t) represents the

undelayed heading ψu(t) with a time lead equal to the control delay of 0.3 s, because

it is calculated at the Driver Station locally without going through the Vehicle Plat-

form and therefore not experiencing the 0.3 s control delay that the actual steering

command experiences. Thus, in Configuration I, blending the predictor output with

a residual 0.3 s delay with the feedforward heading ψFF (t, up(t), δ(t)) that has a time

lead of 0.3 s directly is potentially beneficial to generate a blended heading close to

ψu(t).

In Configuration II, Predictor II using Strategy 2 in the feedback branch aims to

compensate all the sensor delays of 0.6 s and there is no residual lag to ψu(t). In

this case, steering input δ(t) to the steering model is delayed by the same amount

0.3 s as the control delays to generate a postponed feedforward heading ψ′FF (t) =

ψFF (t, up(t), δ(t−0.3)) so that both branch outputs ψFB(t) and ψ′FF (t) are the heading

prediction at the same instance as ψu(t).
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Figure 4.8: Prediction accuracy metric (∆ψ)b with various α. Compared to without
prediction ((∆ψ)0 = 8.88 rad), blended headings with α = 0.6 using blending config-
uration I and with α = 0.3 using blending configuration II have the best prediction
accuracy of (∆ψ)b = 1.31 rad and (∆ψ)b = 1.30 rad, respectively.

The system in Figure 4.7 is simulated for 60 s with the blended architecture using

these two Blending Configurations for different constant blending weights α ranging

from 0 to 1 with an increment of 0.1. (∆ψ)b values with various α and the two

blending configurations based on different predictor design strategies are summarized

in Figure 4.8. Recall from Table 4.1 that without prediction, (∆ψ)0 norm of errors

between the data ψu(t) and ψd(t) is 8.88 rad. When α = 1, ψb(t) is the predicted

output of the well designed predictor as in the example in Section 4.2, hence the

corresponding metrics (∆ψ)b are the same as (∆ψ)FB reported in Table 4.1. When

α = 0, ψb(t) is either ψFF (t) or ψ′FF (t) based on corresponding configurations. For

all α, (∆ψ)b is always smaller than (∆ψ)0, indicating improved accuracy using the

blended architecture to predict heading. Minimum (∆ψ)b and thus best prediction

accuracy is achieved when α = 0.6 for Blending Configuration I ((∆ψ)b = 1.31 rad)

and α = 0.3 for Blending Configuration II ((∆ψ)b = 1.30 rad), both resulting in a

85% improvement compared to without prediction. It is noteworthy that although

(∆ψ)b using the postponed heading only is as low as 1.85 rad, the blended heading

can reduce the metric (∆ψ)b even further down to 1.30 rad. Thus, blending can offer
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Figure 4.9: The open-loop output of the blended heading ψb(t) with α = 0.6 is very
close to undelayed heading ψu(t), indicating better prediction accuracy compared to
that of either feedforward heading ψFF (t) or feedback heading ψFB(t) alone.

a more robust improved heading prediction accuracy.

Figure 4.9 shows the comparison of different heading signals based on blending

configuration I. The delayed heading without prediction, ψd(t), has a consistent delay

of 0.6 s. Based on the curve ψFB(t), the predictor is effective in compensating delays

partially for around 0.3 s. The green dashed line is the feedforward heading ψFF (t)

and has, as mentioned earlier, a lead time of 0.3 s due to not being exposed to the

control delay, leading to a (∆ψ)FF for α = 0 as large as 6.16 rad. The blended

predicted heading with α = 0.6 is very close to ψu(t) and outperforms both using

ψFF (t) or ψFB(t) alone.

In summary, this open-loop test shows that the blended architecture can achieve

a more accurate prediction of vehicle heading than using either the model-based

feedforward branch or the model-free feedback branch alone.

87



CHAPTER V

Simulation Based Human-In-the-Loop Test

In this chapter, the effectiveness of the developed predictor based framework is

evaluated through human-in-the-loop experiments in a simulation platform. The test

scenario is that human drivers control a simulated vehicle in a virtual environment

in order to complete a virtual track following teleoperated driving task. How much

the predictor based framework can improve the performance of vehicle mobility and

drivability under large round trip delays are presented. The work in this chapter is

based on publications [111, 115].

5.1 Simulation Platform

To evaluate the predictor based framework experimentally, a real-time human-

in-the-loop simulation platform has been developed in MATLAB r Simulink r to

emulate a teleoperated vehicle system as shown in Figure 5.1.

5.1.1 Vehicle Platform

At the vehicle side, a typical military truck, namely, a notional High Mobility

Multipurpose Wheeled Vehicle (HMMWV), is chosen as the vehicle platform and

simulated using a model developed in [112, 44], capturing the 14 DoF vehicle dynam-

ics, tire forces and powertrain dynamics. Note that this model is the same as the one
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Figure 5.1: Human-in-the-loop simulation platform with predictor based framework.
The vehicle model is a 14 DoF model of a typical military truck. By means of
a steering wheel and set of pedals, a human can control the throttle, brake and
steering to drive the vehicle. Control and sensor delays can be specified independently.
The prediction framework and blended prediction architecture can be activated or
deactivated.
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used in Section 4.3 to fit a steering model. The vehicle is animated in the virtual

environment using the MATLABr Simulinkr 3D Animation ToolboxTM [116] and

moved around by specifying its global position and heading direction. A camera with

horizontal field of view (FOV) of 55 deg and vertical FOV of 33 deg is placed above

the driver’s seat within the vehicle to provide the first-person camera view. Note that

in this simulated environment, the camera view is not transmitted as video frames in

the simulation platform. Instead, it is directly available from the virtual environment

by changing the position and heading of the vehicle (i.e. where the camera is located)

based on provided states.

5.1.2 Driver Station

The driver station contains a monitor updating a driving interface at 20 fps, along

with a set of Logitech G27 steering wheel and pedals for lateral and longitudinal

control of the vehicle. Figure 5.2 shows the driving interface with a resolution of

1420x800 pixels (aspect ratio of 16:9), in which the vehicle speed is overlayed on

the camera view. The camera is zoomed and the environment is visible through the

vehicle windshield at the driver’s side. A hook on the vehicle hood is shown as a

reference of vehicle’s center, i.e., if the hook aligns with the closest centerline strip

and the vehicle is driven in a straight line, the vehicle center is on the centerline.

The physical steering wheel and pedals are connected as a joystick to the computer

that runs the simulation platform. A Simulink r block named “Joystick Input”

captures the encoder reading of the steering wheel and positions of throttle and brake

pedals, and the steering angle as well as throttle and brake commands are generated

by scaling these readings.
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Figure 5.2: The driving interface displays the camera view and current vehicle
speed. A hook on the vehicle hood is considered as a reference of the vehicle’s center.

5.1.3 Platform Capability

In the closed-loop simulation, the human uses the physical steering wheel and

pedals to control vehicle’s heading and speed based on the visual feedback. Thus, the

loop in the teleoperated vehicle system is closed by the human driver as a controller.

The signals transmitted between the Driver side and the Vehicle side are control com-

mands (including steering, throttle and brake) and vehicle states (including heading

angle, global position and vehicle speed). The derivative of the signals and the send

time are also included in the packets for transmission, allowing the predictors to per-

form prediction. While the derivative of all the vehicle states are directly available

within the simulated vehicle model, numerical differentiations are performed on the

control commands, since only the signal measurements are available. Also, due to

the observation that in a majority of normal driving scenarios the steering commands

generated by a human do not exceed a frequency of 1 Hz [117, 118], a low pass filter

with cutoff frequency of 1 Hz is implemented on the steering signals. Throttle and

brake signal are saturated between 0 and 1 to generate feasible commands for vehicle

powertrain dynamics.

Note that this simulation platform is not set for distributed simulation, meaning
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that both the Driver side and Vehicle side are simulated in the same Simulink file

on one computer and signals are transmitted directly without a communication net-

work. Thus, virtual delays (either constant or varying delays) are optionally added to

simulate the situation of a teleoperated vehicle system with some delays of interest.

Virtual delays can be added in two ways, either as a predefined time sequence or as a

random process. Delays in either direction between the Driver side and Vehicle side,

i.e. control delays τ1(t) and sensor delays τ2(t), can be specified independently.

The simulation platform also has the general option to activate or deactivate the

predictor based framework without any structure change. When λ in the Driver

Predictor and Vehicle Predictor is set to zero, there will be no prediction of control

commands and vehicle states using model-free predictors. Also, α can be specified

as different values to generate different blended heading of interest: when α = 1,

blended heading completely relies on the predictor outputs and thus the predictor

based framework is model-free to preserve robustness to modeling error. When α ∈

(0, 1), blended heading is a linear combination of outputs from the Vehicle Predictor

and steering feedforward loop and could improve prediction performance of vehicle

heading even more than the former case of using Vehicle Predictor only (α = 1)

(referring to the open loop test result in Chapter IV).

5.2 Experiment Design

Using the simulation platform described above, human-in-the-loop experiments

were performed. In this section, details of the experiment design are presented.

5.2.1 Simulated delays

Recall in Chapter II that a round trip delay of interest is between 0.3 s and 1.0

s so that human drivers can control the vehicle with pure teleoperation and delays

will significantly affect the vehicle mobility. In this experiment, a round trip delay of
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around 0.9 s is tested. Specifically, the delay is distributed in two ways with control

delays of around 0.3 s and sensor delays of around 0.6 s based on the assumption that

sensor delays are larger than control delays.

For the constant delay case, transmitted signals in two directions (from Driver

to Vehicle and from Vehicle to Driver) are consistently delayed by 0.3 s and 0.6 s,

respectively.

For the varying delay case, two varying delay sequences with mean delay values

matching the value of 0.3 s and 0.6 s of the constant delay case are generated based

on the actual network data collected in [46] between Ann Arbor (AA), Michigan and

Palo Alto (PA), California. Note that the same set of data has been used in this work

in Section 3.2.2 and the histogram of round trip measurement of this AA-PA network

is shown in Figure 3.5. Assuming delays in both ways are the same, Figure 5.3 shows

the histogram of one-way delays. The mean and standard deviation are 0.058 s and

0.006 s. There exist several observations about the shape of the histogram, mostly

due to the fact that large delay values are measured when there exist frequent spikes

with large magnitude. First, unlike a normal distribution in a symmetric bell shape,

the histogram is right-skewed. Second, consider the region where data is far from

its mean value as the tail. The tail is heavy (i.e., 2.3% data are not within the

range of three standard deviation from mean compared to 0.3% in standard normal

distribution) and long (i.e., distributed up to 0.108 s). The right-skewness and heavy

long tail observed in the histogram are expected for network data and match with

the observations in [119].

A delay model is implemented to represent the one-way delays of AA-PA network

for the purpose of generating additional delay sequences with similar characteristics

to the measured data. One group of approaches of generating a delay model considers

network delay as a random process and delays are captured based on Markov chain

[120, 121] or autoregression and moving average (ARMA) models [122] and their
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extensions. The transitions of delay values in successive time are included in these

models. Another group of approaches assumes that the random variable of discrete

delay value at each time instance, denoted as τ , follows an independently and iden-

tically distributed (IID) distribution. Potential distributions to fit network delays in

the literature include, but are not limited to, Pareto, gamma, lognormal, and Weibull

distributions [119, 123, 124, 125, 126]. In terms of tail shape, it is discussed in [127]

that Pareto distribution generally has the heaviest tail among all four and follows the

lognormal distribution with moderate tail; Weibull distribution has a short tail when

the magnitude of the peak is large (like the high relative probability in the histogram

in Figure 5.3). However, the actual tail shape depends on the fitted parameter and

it is hard to pick out the distribution that could lead to best fitting.

Given that, a Generalized Extreme Value (GEV) distribution is used to fit the

data in this work. It provides the flexibility to control the shape and size of the tails

using single shape parameter ξ. When ξ > 0, a heavy tailed distribution such as

Pareto can be represented and has a lower bound based on the extreme value theory.

When ξ < 0, GEV distribution has a short tail and is similar to reverse Weibull

distribution with an upper bound. When ξ = 0, it can express gamma and lognormal

distributions. Denote τ as the random variable of delay and define the standardized

τ0 as
τ − µ
σ

, where µ and σ are the location and scale parameters, respectively. Its

probability density function is [128]:

fξ 6=0,µ,σ =
1

σ
(1 + ξτ0)−1−1/ξ exp(−(1 + ξtd0)−1/ξ) with 1 + ξτ0 > 0

fξ=0,µ,σ =
1

σ
e−τ0 exp(− exp(−τ0))

(5.1)

Also, based on the extreme value theory, the bound of the random variable, τbound, is

determined based on τ0 =
τ − µ
σ

:

τbound = µ− σ

ξ
(5.2)
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Table 5.1: Simulated control and sensor delays generated by the fitted GEV models.
The means are 0.288 s and 0.632 s, respectively.

Fitted GEV
Mean (s)

Standard

ξ µ σ deviation (s)

Control delays 0.475 0.278 0.0007 0.288 0.024

Sensor delays 0.386 0.617 0.0014 0.632 0.037

which is the lower bound of delays when ξ > 0 and upper bound when ξ < 0.

Parameters of the GEV distribution are determined based on maximum likelihood

fitting, and the resultant delay model for one-way delays of the AA-PA network is

denoted as GEV(ξ, µ, σ), with parameters ξ = 0.707, µ = 0.0546, σ = 0.0012. Note

that ξ > 0, which confirms the observation of heavy long tail. In Figure 5.3, delay

model GEV(0.707, 0.0546, 0.0012) fits the histogram well. However, the mean value

is only 0.058 s. To match with the values of 0.3 s and 0.6 s in the constant delay

case, 5 and 11 independent randomly generated sequences using the delay model

GEV(0.707, 0.0546, 0.0012) are summed, respectively. The summed delay sequences

are analogous to the delays measured when packets are transmitted in TCP and

bounced back and forth for multiple times before marked as received at the other

side in the AA-PA network. Similarly, the histograms of summed sequences are fitted

using GEV distributions. Then new sets of delay sequences are randomly generated

based on the fitted distributions for 150 s and are used as the simulated control and

sensor delays in the tests, as shown in Figure 5.4. They also meet the assumption that

delays can be modeled using a two-time-scale Markov Chain and thus the predictor

stability with varying delay is established based on λ values in (3.20). The fitted

parameters of GEV distributions as well as means and standard deviations of the

simulated delays are listed in Table 5.1. Shape parameters of both models are greater

than 0, indicating the existence of heavy tail in the simulated control and sensor delays

sequence. The mean control and sensor delays are 0.288 s and 0.632 s, respectively,

and thus for the varying delay case the round trip delays have a mean of 0.92 s.
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Table 5.2: Different predictor settings to predict individual signal of interest

c(t) Predictor Settings

Predicted
Signal

Measured
Delay τm [s]

ωc
[rad/s]

Predicted
Delay τp [s]

λ [s−1]
ωp

[rad/s]
Sat. &
Reset.

Throttle

0.3

11.5 0.3 0.30λmax(τp) 1.65 No

Brake 19.4 (Strategy 2) 0.30λmax(τp) 1.65 No

Steering 5.37 0.10λmax(τp) 0.94 Yes

Speed

0.6

3.35

0.40λmax(τp) 1.92

Yes

Global X 1.88 0.3 No

Global Y 1.30 (Strategy 1) No

Heading 1.86 Yes

5.2.2 Parameters in the Predictor Based Framework

Parameters in the predictor based framework to be designed include λ values in

both Driver Predictor and Vehicle Predictor to predict each of the transmitted signals,

and the blending weight α when combining the model-based feedforward branch and

model-free feedback branch together.

All the λ values were selected based on the design procedure in Section 3.7 and

are listed in Table 5.2. As mentioned in the procedure, some representative data is

needed to estimate the coupling error of the signal to be predicted. In this experi-

ment, preliminary data were collected from an expert human driver who has years of

experience with teleoperated driving using the developed simulation platform under

large delays. For each of the seven transmitted signals listed in Table 5.2, c(t) be-

tween the undelayed and delayed signals was calculated and power spectral density

of c(t) was performed. The coupling error bandwidth was estimated by integrating

the signal power over the frequency until 90% of the total signal power was reached.

The bandwidth ωc listed in the table is the average estimated value based on three

sets of data from the same driver.

Note that ωc for control commands of throttle, brake and steering are of large
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magnitude and it is unlikely that the predictor bandwidth ωp can cover all the fre-

quencies up to ωc. Thus, smaller λ were designed based on Strategy 2 (compensating

same amount of delay as measured). Saturation and resetting scheme was included

to aid with steering prediction, but including it for throttle and brake prediction was

not critical, because these two commands were already saturated between 0 and 1

inherently.

On the contrary, ωc for the vehicle states of speed, position and heading is rela-

tively small due to the fact that the vehicle model with 14 DoF dynamics acts like

interconnection of multiple low-pass filters. Partial delays of 0.3 s were compensated

with λ selected for a large enough ωp > ωc. Since frequent direction changes in vehicle

speed and heading were expected, saturation and resetting scheme was applied when

predicting these two signals.

Finally, in the blended architecture, α was set to be 0.5 to blend the heading

from the Vehicle Predictor output and the feedforward heading from the the steering

feedforward loop with equal weighting as a first step, because there exists no direct

evidence indicating that a tuning for best open-loop performance would also result in

the best closed-loop performance.

5.2.3 Test Details

A track was generated in the virtual environment as shown in Figure 5.5. The

track (in gray) is 810 meters long and 10 meters wide with a dashed white centerline.

Shoulders of 6 meters width (in dark green) are located on either side of the track.

At each turn, a safe speed was priorly determined as the maximum speed when the

vehicle model can successfully be driven on the centerline without causing any tire

lift-off and the value is shown on a traffic sign indicating the speed limits before each

turn. Trees at the turns and other landmarks such as mountains, houses, cornfields

and water served as visual cues to aid operators on speed and distance assessment.
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Figure 5.5: Designated track, vehicle and landmarks in the virtual environment.

The task for the human drivers was to control the vehicle to complete the track

(by passing the endline of the track) as fast as possible and stay as close to the track’s

centerline as possible. Three performance metrics were considered as the dependent

variables: track completion time, track keeping error and steering control effort. Track

completion time captured how fast the vehicle was driven. Track keeping error was

calculated by the area between the trajectory of the vehicle and track’s centerline,

indicating how close the vehicle followed the centerline. These two metrics reflected

the longitudinal and lateral performance of the vehicle, respectively. Smaller metrics

indicated better mobility. Steering control effort was determined by integrating the

steering angle with respect to time and normalizing the integral with respect to the

track completion time. This metric aimed to capture the drivability of the vehicle.

The smaller the steering control effort was, the easier human drivers controlled the

vehicle. These three metrics are referred to as Time, Error and Effort, respectively,

in the following contents.
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Two independent variables that could affect the dependent variables were studied:

delay type and prediction method. Delay type could be chosen from {CD,VD},

where CD and VD refer to the constant delay case and varying delay case in the

form of simulated sequences, respectively, as determined in Section 5.2.1. Prediction

method was among {NoPred,Pred,PredBlend}, where NoPred represented the

case with non-zero delays, but without activating predictors and blended architecture.

The only difference between method of Pred and PredBlend was the α value. For

Pred, α = 1 so that only the two model-free predictors were included in the closed-

loop system, whereas for PredBlend, α = 0.5 and a resultant blended heading

prediction was generated with the predictors in addition to the feedforward branch.

Thus, the experiment was a 2 (delay type with two levels) x 3 (prediction method

with three levels) within-subjects factorial design. The goal of the experiment was

to study how delay type and prediction method affected the performance of vehicle

mobility and drivability in teleoperated vehicles operated at high speed.

Seven scenarios with three repetitions in each scenario were tested. The seven

scenarios included a NoDelay scenario with zero delays used as the baseline perfor-

mance of human drivers to handle this track-following teleoperated driving task, as

well as the six scenarios with non-zero delays that are configured using combinations

of delay type and prediction method. Thus, each subject performed a total of 21 runs.

The order of the runs was randomized in an evenly distributed manner to reduce the

learning factor of subjects on a single scenario. Specifically, no single scenario was

tested twice in a row and there does not exist a situation when one scenario was

tested two times more than another scenario.

5.2.4 Test Procedure

Test subjects were recruited through flyers and campus activity announcements

at the University of Michigan. They were paid ten dollars for participating in and
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completing the experiment. At the start of each user test, subjects filled out an

informed consent form and answered some basic background questions about their

age, proficiency of driving a vehicle in the real world, and proficiency of driving in a

virtual environment with gaming steering wheel and pedals. The whole test process

lasted no more than 2 hours and was divided into a training session (1 hour) and a

testing session (45 minutes).

Recall that large delays could make teleoperated driving at high speed very chal-

lenging. Therefore, the training session was necessary to help subjects adapt to large

delays and drive in different test scenarios. In the training session, subjects were

verbally instructed first on the test details including the track-following driving task,

three performance metrics, as well as seven scenarios to test. Subjects were informed

that even though both metrics of completion time and track keeping error were stud-

ied and of equal importance, controlling the vehicle to stay on the track was the

priority of the task and potentially reducing vehicle speed in exchange of ensuring it

was encouraged. However, it was also mentioned to the subjects that when driven

too slow, the run may not be counted as valid in the following testing session, because

the experiment was to test vehicle mobility when the vehicle was operated at high

speed. The remaining time in the training session was left for subjects to adapt to

the teleoperated driving setup and practice all seven test scenarios one by one. The

current scenario to practice was visually displayed on the driving interface and the

three performance metrics were calculated each time the subjects completed the driv-

ing task to monitor their performance under training. A scenario would be practiced

until metrics between the successive three trials indicated consistent performance and

subjects were confident about driving in such scenario. Subjects also could ask for

more time to be distributed on the scenarios which they were not familiar with.

In the testing session, each subject was asked to complete a total of 21 valid runs

with randomized order. The run was considered as valid if none of the following
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conditions were observed:

1. Vehicle was off track for more than 5 s or did not pass the endline of the track.

2. Two vehicle tire lift-offs were detected in the model.

3. Average vehicle speed was less than 25 mph.

The 25 mph speed bound was determined based on the driving data of the Beta

Test. A human driver went through the training session and became well-trained

to generate replicates of test run data with consistent performance. In the most

challenging scenarios with varying delay and without prediction (i.e. VD x NoPred),

the expert driver was able to complete the task within 60 s and stay on the track

all the time. The resultant average vehicle speed was around 30 mph. A 5 mph

reduction compared to the Beta Test was allowed and therefore 25 mph was set to be

the lowest qualifying average speed. A run with average speed lower than it meant

that subjects did not push the vehicle dynamics to the limit to complete the driving

task in this run.

After all test runs were completed, subjects were thanked for their participation

and dismissed.

5.3 Analysis Methods

2-way repeated measures analyses of variances (RM-ANOVA) were used to study

the influence of the two independent variables of delay type and prediction method

on each of the dependent variables, i.e. performance metric Time, Error and Effort.

Data was analysized using the software Minitab 17. Applying RM-ANOVA requires

that data meet two assumptions: normality and sphericity. For each metric, normality

was checked using the Anderson-Darling test and sphericity was checked by comparing

variances across the six test conditions of (delay type) x (prediction method). Data
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runs whose metrics were not within three standard deviations from the mean of the

data worth further investigation and potential processing such as performing log scale

transformation on data.

Two null hypotheses for each metric was tested using an F test based on Type III

sums of squares:

1. There does not exist a significant difference in performance metrics when dif-

ferent prediction methods are applied to compensate delays.

2. There does not exist a significant difference in performance metrics between the

constant and varying delays used for testing.

If the F test provided evidence (p¡0.05) that at least one mean is different from the

rest, Fisher’s least significant difference (LSD) method was used to identify the groups

with pairwise mean differences that were significant (p¡0.05).

5.4 Results

The experiments were approved by the University of Michigan Health Sciences

and Behavioral Sciences Institutional Review Board (UM IRB #HUM00112376). A

total of 22 test subjects participated in the experiments. 2 of them were observed

to still struggle with completing the driving task especially in the conditions without

any prediction after 1 hour of training session. The background information collected

revealed that they reported to have only 1-6 months of experience on driving vehicles

in the real world and no experience of driving virtual vehicles at all. Another subject

did not push the vehicle to its limits and the calculated metrics were far from those of

the rest subjects’ data. Besides, data of these three subjects violated the normality

test and were considered as outliers. Therefore, they are not included in the analysis.

The remaining 19 subjects had an average age of 22.7 years with standard devia-

tion of 2.6 years. Majority of them were familiar with doing daily driving in the real
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Figure 5.6: Comparison of three performance metrics with different delay types and
prediction methods.

world: 18 subjects reported to own driver licenses and 15 of them had more than 2

years of experience to drive the vehicles. However, only 6 subjects were familiar with

driving in the virtual environment such as playing racing games. In terms of the sit-

uation most similar to this experiment, where human drove the vehicle in simulated

environment using steering wheel and pedals, only 3 of them has prior experience.

Given the general lack of experience among the test subjects on driving in the used

test setup, the importance of training session was emphasized again to help them

adapt to the test setup and get used to scenarios especially when large round trip

delays of around 0.9 s were added into the system.

The experimental results based on 19 subjects’ data are shown in Figure 5.6. Each

bar shows the mean and the standard error of mean of all 19 subjects’ data in terms of

the three performance metrics (Time,Error,Effort) under each of the seven scenarios.

Smaller metrics indicate better performance. Bar of NoDelay is considered as the
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Table 5.3: Mean values of metrics under different scenarios with delays.

Delay type CD VD

No
Delay

Prediction
method

NoPred Pred
Pred-
Blend

NoPred Pred
Pred-
Blend

60.1 Time [s] 63.4 62.9 61.9 63.9 63.3 62.0

627 Error [m2] 1357 1098 936 1358 1145 988

1.81 Effort [deg·m] 2.18 1.95 1.92 2.18 1.96 1.93

baseline of performance metrics. Bars using the same prediction method are grouped

along the horizontal axis. NoPred, Pred and PredBlend represent the scenario

with delays, but without any prediction, with predictors only to perform prediction,

and with predictors and blended architecture applied, respectively. Delay type CD

and VD stands for the constant and varying bilateral delays. The mean values

of metrics under different scenarios are reported in Table 5.3. It is observed that

metrics in scenario NoPred without any prediction are much worse than the baseline

NoDelay and applying prediction methods of Pred or PredBlend helps reduce all

three metrics compared to NoPred. The following RM-ANOVA results investigate

further whether the difference in means among different scenarios are statistically

significant.

RM-ANOVA indicated a significant difference in all three metrics among differ-

ent prediction methods. F-value and p-value for metrics of Time, Error, Effort are

(F=15.54, p≈ 0), (F=91.51, p≈ 0), and (F=169.69, p≈ 0) respectively. Pairwise

comparison results are shown in Figure 5.6, where the asterisk means that there ex-

ists significant difference in mean pairwise, while “ns” means that the difference in

mean is not significant enough compared to the inherent variation in the data.

In terms of the effect of delay type, F-value and p-value for metrics of Time,Error

and Effort in the RM-ANOVA results are (F=1.40, p=0.237), (F=1.90, p=0.169) and

(F=0.23, p=0.628), respectively. All p-values are greater than 0.05 and hypothesis

of existence of no significant difference between constant and varying delays tested
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Table 5.4: The level of improvement in performance metrics with Pred or Pred-
Blend, compared to NoPred. ”ns” means that no statistically significant improve-
ment is observed in this experiment.

Delay type CD VD

Prediction method Pred PredBlend Pred PredBlend

Track completion time 15% (ns) 46% 17% (ns) 52%

Track keeping error 36% 58% 29% 51%

Steering control effort 62% 70% 59% 67%

cannot be rejected with 95% confidence level.

Define the level of improvement LoI as:

LoI =
|rp − rd|
|rnd − rd|

(5.3)

where r is the mean of calculated metrics based on all 19 subjects’ data in different

scenarios, with subscripts p, d, nd representing the scenarios using prediction method

of Pred or PredBlend, without prediction NoPred, and no delays NoDelay, re-

spectively. The levels of improvement for three metrics are shown in Table 5.4. Com-

pared to NoPred, metrics of Error and Effort are improved significantly by 36% and

62%, respectively with constant delays in scenario Pred. With PredBlend, met-

rics of Time, Error and Effort are all improved significantly by 46%, 58% and 70%,

respectively. Comparing the two prediction methods developed in this work, vehicle

mobility in terms of track completion time and track keeping error are improved more

using PredBlend than PredBlend by 31% and 22%, respectively, and drivability

in terms of steering control effort is improved more by 8% in constant delays. The

level of improvement with varying delays are similar.
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5.5 Discussion

In this experiment, a round trip delay of around 0.9 s is tested. Note that delays

of this magnitude are very large and significantly degrade the closed-loop driving per-

formance even when the test subjects practiced and trained for 1 hour. The metrics

are slightly larger under varying delays than constant delays, but the difference is

not significant. One possible reason is the delay distribution of the varying delays

sequences used in the experiment (Figure 5.4). Note that the sequences are gener-

ated based on the measurements of an actual network and are therefore realistic to

represent actual network connection, e.g. capturing the heavy tail property in delay

distribution. Frequent sudden spikes in the sequences are corresponding to large delay

values that do not last for a long duration, thus it is unknown how much effect these

spikes would cause on the system. Therefore, with small and fast variations around

the mean value, varying delay sequences used in this experiment have an effect similar

constant delays in terms of influencing the closed-loop performance. Also, the ratio

between standard deviation (σ) and mean (µ) of delays, denoted as
σ

µ
, are less than

0.1, which is relatively small compared to the ratio in other teleoperated driving ex-

periments [18, 59] reporting detectable performance difference between constant and

varying delays. For example, in [77, 59], simulated varying delays were generated as

a minimum delay plus a one-side zero mean normal distribution and
σ

µ
used for their

experiment were from 0.3 to 0.67. In [18], delays were generated by summing multiple

sine waves and vary between 0.4 s and 1.1 s with a mean of 0.7 ms. Such delays were

distributed more evenly in the range and potentially had larger
σ

µ
than 0.1.

Implementing predictor based framework that is developed for delay compensa-

tion helps improve the vehicle mobility and drivability significantly compared to the

case without prediction (i.e., when framework is not activated). Note that using two

model-free predictors only in scenario Pred, metrics of Error and Effort are already

improved significantly. This prediction does not rely on any dynamic equations or
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parameters about the vehicle or human operator and therefore provides robust perfor-

mance. In scenario PredBlend, a blended architecture is activated in the predictor

based framework to help improve the prediction accuracy of vehicle heading, and all

three performance metrics are improved even more than those when using predictors

only. However, minimal information about the vehicle lateral response is leveraged

to implement the model-based feedforward branch in the blended architecture, which

makes the predictor based framework no longer model-free. Modeling error may affect

the performance and robustness may be sacrificed using PredBlend.
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CHAPTER VI

Field Demonstration and Testing

In this chapter, the developed predictor based framework is implemented on a

Mini Baja vehicle platform and preliminary evaluation results are shown.

6.1 Vehicle Platform and Driver Station

Figure 6.1 shows the vehicle teleoperation system used to implement and test

the predictor based framework. It is composed of a Driver Station and a Mini Baja

vehicle platform that are geographically separated and communicate through radios.

Driver Station contains an operating steering wheel for the human operators to

generate steering commands, two Arduino MEGA 2560 microcontrollers, an HPr

Z220 Workstation computer (Intelr processor i7-3770, 3.40 GHz) with a monitor to

display a driving interface.

The Vehicle Platform is a Mini Baja vehicle originally designed by the student

members in the 2008 Michigan Baja Racing team. It was modified by Prof. Brent

Gillespie’s group to allow the teleoperated steering control capability [129]. It has a

305cc Griggs Stration engine and the maximum speed is around 10 m/s. A modified

Logitechr MOMOr steering wheel with an encoder and a motor controller is mounted

on the vehicle and acts as the following steering wheel allowing remote control. A

high-performance GPS-aided Inertial Navigation System (INS) (VectorNav VN-300)
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Figure 6.1: Vehicle teleoperation system is composed of a driver station and a Mini
Baja vehicle platform with teleoperated steering control capability.

[130] can provide the instantaneous vehicle states up to 400 Hz. Two Arduino MEGA

2560 microcontrollers and one Raspberry Pi 3 Model B+ microcomputer are used as

the computing and processing units. A Raspberry Pi Camera Module with Fisheye

Lens [131] is also mounted on the vehicle to provide a first-person view for teleoperated

driving.

There exist two different communication links between Vehicle Platform and

Driver Station. The first link is referred to as the data link and contains a pair

of 2.4 GHz nRF24L01 transmitter and receiver modules. It is used to transmit sig-

nals such as steering commands and packet send time, which do not require large

communication bandwidth, from Driver Station to Vehicle Platform. The second link

is referred to as the video link and transmits video including the camera view and

vehicle states at high frequency of around 5.8 GHz. A Boscam TS351 transmitter

and RC805 receiver are placed at the Vehicle Platform and Driver Station, respec-
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Figure 6.2: One-way prediction of steering commands from Driver Station to Vehicle
Platform.

tively, with clover-leaf antennas to enhance the intensity of radio communication and

reduce interference from surrounding environment. Considering delays in bilateral

communications, bilateral predictions are implemented respectively when applying

the predictor based framework to compensate delays and are explained in detail in

the following sections.

6.2 Steering Command Prediction

The diagram of predicting vehicle steering is shown in Figure 6.2. At the Driver

Station (i.e. transmitter side in this prediction), a steering wheel is operated by a

human and its steering angle is measured by an encoder (US Digital optical encoder

E3-2048-984-IE-H-D-B) as the undelayed steering command θu. An Arduino board

is used for processing to receive θu and the system time of the computer as Driver

Station’s absolute time reference T0,DS, and pass them to another Arduino board for

communication. The send time is determined as an addition of T0,DS to the Arduino
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local clock starting when T0,DS is first received. The packets including θu and Tsend

are transmitted at a rate of around 100 Hz.

At the Vehicle Platform (i.e. receiver side), from kth received packet, one-way

control delay τ1[k] is first measured based on the difference between send and receive

time. The receive time Trecv is calculated in the same way as Tsend except that the

Vehicle Platform time reference is the GPS clock information parsed in Raspberry

Pi. Note that synchronization of the system time between Driver Station side and

Vehicle Platform side are required for an accurate delay calculation. To achieve that, a

fixed time difference between these two sides is measured priorly to convert between

absolute time of both sides, assuming the system time does not drift significantly

within the couple of minutes that last for a single test run.

A model-free Driver Predictor developed in Chapter III is implemented in a dis-

crete way in an Arduino for processing at the Vehicle Platform side, relying on esti-

mated one-way delay τ1[k], delayed steering command θd[k] and delayed steering rate

θ̇d[k] to generate corresponding predicted steering command θ̂[k]. The derivative is

estimated based on numerical differentiation:

θ̇d[k] =
θd[k]− θd[k − 1]

Tsend[k]− Tsend[k − 1]
(6.1)

where Tsend[k] is the send time of the kth packet and the same notation holds for

k − 1, k + 1, etc, as well. Both θd[k] and θ̇d[k] are stored in an input buffer.

The predictor dynamics implemented in a digital system like Arduino is in the

form of a discrete difference equation:

θp[k + 1] = θp[k] + (Trecv[k + 1]− Trecv[k])(θ̇d[k] + λ(θd[k]− θ̂interp[k])) (6.2)

where ·[k] refers to the corresponding signal for kth arrived packet, θd and θ̇d are the

delayed predictor inputs, θp is the predictor state, θ̂ is the predictor output, and θ̂d
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is the retarded predictor output delayed by measured τ1. Note that the receive time

Trecv, θp and θ̂ are stored in a buffer so that θ̂interp[k] can be obtained based on the

interpolation between two past predictor outputs θ̂[m] and θ̂[n] in the buffer, where

m,n ≤ k and the corresponding send time Trecv[m] and Trecv[n] satisfy:

Trecv[m] < Trecv[k]− τ1[k] ≤ Trecv[n] (6.3)

Similarly, the predictor output equation is also expressed in discrete form. In the

original predictor form, θ̂[k] = θp[k]. Applying saturation and resetting scheme as in

Section 3.6, the output equation becomes:

θ̂[k] = fsat(θp[k], θ̇d[k]) (6.4)

where fsat(θp[k], θ̇d[k]) deals with saturation according to

fsat(θp[k], θ̇d[k]) =


min(θp[k], θ̂sat[k]) if θ̇d[k] ≥ 0

max(θp[k], θ̂sat[k]) if θ̇d[k] < 0

(6.5)

and θ̂sat[k] =
θ̇d[k]

λ
+ θd[k]. Also, the predictor state θp[k] is reset to be the same as

the delayed steering command θd[k] when


θ̇d[k] changes from (+) to (−) and θp[k] ≥ θ̂sat[k]

θ̇d[k] changes from (−) to (+) and θp[k] < θ̂sat[k]

(6.6)

The predictor parameter λ is selected based on the design procedure developed in

Section 3.7.

Finally, a proportional controller is designed in the Processing Arduino, aiming to

generate a Pulse Width Modulation (PWM) control signal VPWM that drives the fol-
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Figure 6.3: One-way prediction of vehicle states and camera view from Vehicle
Platform to Driver Station.

lowing steering wheel on the vehicle to reach the same rotary position as the operating

steering wheel controlled by human operators at the Driver Station. The control law

is shown below:

VPWM = ks(θ̂ − θ) (6.7)

where θ is the current steering wheel angle, θ̂ is the predicted reference angle to follow

using Driver Predictor, and proportional gain ks =
0.1 ∗ 20000

π
. VPWM is saturated

between −230 and 230 to control the DC motor voltage that drives the following

steering wheel.

6.3 Vehicle State and Camera View Prediction

The diagram of predicting vehicle states and generating predicted camera view is

shown in Figure 6.3. At the Vehicle Platform (i.e. transmitter side in this predic-

tion), vehicle states of heading, global position and longitudinal speed are measured

through the VectorNav sensor. Two GPS receivers with antennas are placed along
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the centerline of the vehicle and separated by 1.12 m, providing individual position

information at 5Hz in the coordinates of both Earth-Centered, Earth-Fixed (ECEF)

and Latitude, Longitude, Altitude (LLA) coordinate frames. One of the benefits of

a dual GPS is that vehicle heading can be estimated very accurately and the esti-

mation is more accurate as the distance between the two GPS receivers increases.

An Extended Kalman Filter is embedded in the INS, estimating all the abovemen-

tioned vehicle states based on combined measurement from the dual GPS and IMU

sensors. Note that the states of global positions are converted into the coordinates

of East-North-Up (ENU) (i.e. x in east direction and y in north direction) based

on measurements X, Y, Z in ECEF coordinates, latitude φ and longitude γ in the

following way [132]:

x
y

 =

 − sin γr cos γr 0

− sinφr cos γr − sinφr cos γr cosφr



X −Xr

Y − Yr

Z − Zr

 (6.8)

where subscript r is related to the reference position. The reference position is deter-

mined when the following two conditions are met for the first time:

1. The status of the GPS receivers indicates that they detect and track more than

5 satellites simultaneously.

2. Vehicle speed is greater than some negligible value like 0.5 m/s, so that vehicle

states are estimated in a moving vehicle base mode.

To avoid the need for synchronizing the camera view and the corresponding vehicle

states when each frame of camera view is captured, up-to-date vehicle states are

displayed alongside the camera view in the same video frame for transmission. A

vehicle response interface is thus implemented and displayed in full screen in the

Raspberry Pi with a Python script to overlay the state information onto the camera
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view. An example frame of the interface is shown in Figure 6.4 and is divided into a

text region and a camera view region.

The camera view region contains a first person view with resolution of 700x525

pixels (aspect ratio 4:3) captured from a Raspberry Pi Camera Module with a hori-

zontal field of view adjusted to be 126 degrees. Using Python Picamera Library, the

camera view is previewed in 25 Hz.

The starting horizontal and vertical edge of the text region is determined by

identifying the first character filled with all black. Each character is displayed in a

monospaced Courier New font and occupies a box of 10x12 pixels. From left to right,

information of vehicle response shown in the frame are the frame number fn, GPS

time tr, and all the vehicle states of heading ψ, global X and Y position x, y and vehicle

longitudinal speed u. Their position and width are formatted in a deterministic way

for the purpose of text recognition. Texts are updated in 25 Hz, as well, to synchronize

the associated vehicle states with the camera view. The vehicle response interface is

encoded in PAL at 25 Hz and transmitted to the Driver Station with a 5.8 GHz video

link.

Note that speed u is also displayed to an on-board driver on a LCD. There are

two reasons to include the on-board driver. First, the vehicle currently does not have

the functionality of changing speed in the way of drive-by-wire. Thus, the on-board

driver is responsible for pressing throttle and brake pedals to accelerate/decelerate

the vehicle and maintain constant vehicle speed in the experiments shown in Section

6.4, but vehicle steering is still controlled remotely by the human operator at the

Driver Station. The second reason is safety, as the on-board driver can intervene and

perform an emergency maneuver if needed.
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Text region

Camera view

 region

Figure 6.4: The vehicle response interface is composed of a text region with vehicle
states and system time, and a camera view region.
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Figure 6.5: Difference between clear texts and unclear texts. Unclear text regions
are marked with a rectangular box.

6.3.1 Vehicle State Recognition

The transmitted vehicle response interface is captured in the computer at the

Driver Station, using a USB video capture adapter [133]. Vehicle states in the text

region are recognized in Visual Studio 2015. The ground truth pixel values in gray

scale from 0-255 of all the necessary characters (i.e. number 0 to 9, ‘+’ and ‘-’) are

saved a priori. Therefore, recognizing each character in the text region can be achieved

by comparing it to all the saved ground truth characters and counting Simpixel, the

total number of pixels with similar colors (i.e. difference of pixel values less than a

threshold). The character is thus detected as a certain number or sign with maximum

Simpixel.

After recognition, texts are considered to be clear when each character in the texts

can be detected and mapped to one single ground truth character. However, when

the transmitted vehicle response interface is captured between two frames, the text

region is a combination of adjacent frames and the text sometimes is considered to be

unclear. An example of clear and unclear texts including frame number fn and GPS

time tr are shown in Figure 6.5. tr is shown in the format from hour to minute and

to second with resolution of 1 ms. In the second line classified as unclear texts, fn

seems to be between 7470 and 7471, while tr is likely to transition from 14:45:15.669

to 14:45:15.709. In such case, two most likely characters are detected and the exact

detection is determined based on the coupling between fn and tr. Since fn and tr

are updated in 25 Hz in each frame, increasing fn by 1 corresponds to an increase in
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tr by 40 ms. Thus, fn and tr form specific combinations, i.e. {7469, 14:45:15.629},

{7470, 14:45:15.669} and {7471, 14:45:15.709}. The combinations with smallest fn

but greater than the previous recognized frame number are determined so that always

the latest packets are captured and used for prediction. Vehicle states ψ, x, y, u are

recognized in the same way as introduced above and these delayed states are stored

in a predictor input buffer.

6.3.2 Vehicle State Prediction and Predicted Camera View

Considering the robustness of text recognition, any sudden change in fn, tr and

vehicle states are corrected (by recognizing with different thresholds) or considered as

dropped. Also, the vehicle states are filtered by a low-pass filter with cutoff frequency

of 1 Hz to attenuate the high frequency noise when performing estimation of the

derivatives of the vehicle states. Based on delayed states and state derivatives, each

vehicle state is predicted in the Vehicle Predictor individually based on the same form

as the Driver Predictor in (6.2), with design options of selecting λ and whether to

include saturation and resetting scheme as in (6.5) and (6.6). The benefit of model-

free predictors are highlighted when dealing with a physical vehicle instead of a known

simulated vehicle model: no information about the vehicle dynamics, powertrain or

tire characteristics are required for prediction of vehicle states.

What human operators rely on to drive the vehicle through teleoperation is the

camera view. However, camera views included in the frames of the vehicle response

interface are delayed. A predicted display algorithm developed in [22] is leveraged

in this work. The algorithm performs perspective transformation to predict what a

camera would see from a predicted location given the delayed camera view. Predicted

states are converted into the local coordinates specified by the delayed states and the

difference in positions and heading direction, dx, dy, dh are determined. Thus, if the

vehicle states predicted by the Vehicle Predictor are close to the undelayed states,
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(a) Delayed view with              s0.5t = (b) Predicted view

Obstacle

cones
Obstacle

cones

Figure 6.6: Comparison between delayed and predicted camera view.

the predicted camera view displayed to the human operators is similar to the camera

view transmitted without delays. An example comparison between (a) delayed camera

view and (b) predicted camera view with dx, dy, dh displayed on the view is shown

in Figure 6.6. With dy = 1.25 m> 0 in the example frame, predicted camera view

captures the environment in a position 1.25 m farther than seen from the delayed

view. As an example, the two obstacle cones look bigger and closer to the vehicle,

and this distance to the vehicle is closer to that in the actual environment, when there

is no delay in the camera view.

6.4 Preliminary Results of Closed-Loop Experiments

In this section, preliminary results of closed-loop teleoperation experiments are

presented to mainly show the potential of the model-free predictors implemented

on actual hardware and vehicle platform to compensate delays and improve vehicle

mobility and drivability.

In this preliminary closed-loop experiment, only the one-way communication in

the data link when the steering commands are transmitted from Driver Station to
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Figure 6.7: Comparison among vehicle trajectories of ideal, delayed and predicted
cases in a double lane change scenario.

Vehicle Platform was used, and a human operator controlled the vehicle in direct line

of sight.

A double lane change scenario (with half of the total maneuver length compared to

the standard one [134]) has been tested. Locations of the obstacle cones and the start

and end line are shown in Figure 6.7. Three runs are performed by one human driver

on three test cases: ideal case without any delays, delayed case with varying delays

(mean around 0.5 s), and predicted case with the same amount of delays but with a

Driver Predictor (λ = 0.4λmax(τavg = 0.5) with saturation and resetting scheme). The

vehicle speed is maintained at around 2 m/s by an on-board driver. Vehicle mobility

in the aspect of vehicle’s lateral performance, including the vehicle trajectory and

steering control effort, are studied.

The vehicle trajectories of these three cases are also shown in Figure 6.7. The

trajectory of the ideal case is very similar to a standard double lane change maneuver

and is considered as the baseline of teleoperated driving performance. The trajectory

in the delayed case shows deviations from the baseline, as well as frequent changes

in the vehicle heading. These frequent changes occur, because with delays there

exists asynchrony between the human sending steering commands and noticing the

corresponding change in the angle of vehicle tires, causing the human operator to

oversteer and then compensate the steering by themselves. Compared to the delayed

121



0 2 4 6 8 10 12

Time [s]

14 16
-450

-360

-270

-180

-90

0

90

180

270

360

450

Ideal case,

avg| |d =

Delayed case, 

Predictor case, 

avg| |d =

avg| |d =

103°

114 °

152° [
d

e
g

]
d

Figure 6.8: Comparison among vehicle steering wheel angle δ of ideal, delayed and
predicted cases in a double lane change scenario.

case, the trajectory in the predictor case is closer to that in the ideal case and also

has fewer changes in the vehicle heading.

Figure 6.8 shows the time history of the angles of the following steering wheel δ

on the vehicle among the three cases. Note that there exists small oscillations in the

delayed case due to packets arriving with varying delays, and the predictor helps to

reduce these oscillations as reported in Section 3.4.2.3. Steering control effort |δavg|

is calculated as the average magnitude of the angle of the following steering wheel

on the vehicle. |δavg| for ideal, delayed and predicted cases are 103 deg, 152 deg

and 114 deg, respectively. The Driver Predictor helps with reducing steering control

effort under delays. Note that in Figure 6.8, the length of the steering angle profiles

represents the completion time in each of three cases. It seems that the completion

time in the predictor case is less than that in the delayed case, however there is no

direct evidence indicating that vehicle mobility in terms of longitudinal performance

of completion time is improved with the predictor, because in the scenario, an on-

board driver instead of the human operator at the Driver Station is maintaining the

constant speed, which may vary from case to case.

Thus, preliminary results tested in the field show that adding a model-free Driver

Predictor to predict steering commands appears to improve the mobility and driv-

ability in the aspect of lateral performance of the vehicle, i.e. a smoother vehicle

trajectory and less steering control effort compared to without prediction.
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6.5 Current Issues and Future Work

When conducting the tests, issues due to the existing hardware and algorithm

are identified as below. Some potential ideas as the future work are also provided to

address these issues.

6.5.1 Video Transmission Quality

Currently, there exists a limitation on quality of video transmission and capturing.

Note that the 5.8 GHz video link is commonly used on Unmanned Aerial Vehicles

(UAVs) to send real time first person view on UAVs back to the ground station

and can be applied to transmit camera view of the ground vehicles in this work,

as well. However, the limitation is that there exists much more interference in the

environment on the ground than up in the air with clear line-of-sight, due to more

objects as the obstacles. As an example, the video link used in this work with 200

mW transmission power can transmit steady and clear image frames up to several

kilometers with clear line-of-sight for UAV applications, but when tested with the

Mini Baja Vehicle, the image frames start to be distorted and may even not be

received successfully (drop during communication) when the transmission distance is

larger than 20 meters. This is because radio signals transmitted in the high frequency

of 5.8 GHz have weak penetration through objects. Also, sometimes the frames are

blurred or blocked by the vertical scanning line when using the video capture adapter

to capture the frame in PAL format. There may exist around 5% false recognition

rate in the current algorithm when dealing with these blurry frames. The distorted

or blurry frames therefore add difficulty in recognizing the text regions correctly for

state prediction.

Potential improvements on video transmission quality include:

1. Using multiple antennas to receive video frames. Unidirectional antennas can
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be used along with existing omnidirectional antennas on the vehicle to provide

extended range and more consistent signal transmission quality. The energy

of radio wave is concentrated using unidirectional antennas and high signal

strength and thus good transmission quality can be achieved in the specified

direction where antennas point toward. Omnidirectional antennas such linear

whip and circular polarized (CP) antennas transmit and receive signal evenly

in all directions. Linear whip antennas transmit radio wave in one plane and

best reception is achieved when the antennas of both the transmitter and the

receiver align in the same plane. CP antennas, on the contrary, transmit the

radio wave with circular planes, formed by a combination of two orthogonal

planes. Therefore, signals can be received regardless of the directions that

antennas point towards. Also, multi-path signals (due to bouncing between

surfaces in the environment) could be rejected. But their gains are reduced by

3 dB due to energy split into two directions, and this leads to smaller range

compared to linear antennas. Thus, the received video quality can be improved

when the 5.8 GHz receiver is attached to both an unidirectional antenna and a

CP antenna.

2. Using video link with lower transmission frequency. Video link with lower trans-

mission frequency such as 1.2 GHz is also feasible to transmit analog video

frames. Transmitting in 1.2 GHz has the benefit of enhancing the penetration

capability through objects, which seems critical to the actual close-to-ground

environment where the vehicle is moving in with many objects as obstacles. On

the other hand, potential drawbacks include sacrificing the transmission band-

width and interference by the frequency band of 2.4 GHz (which is the resonate

frequency of 1.2 GHz).

3. Testing in a completely open space, where there is not many objects like build-
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ings or trees as obstacles

Also, an alternative solution can be to transmit the information in the text region

in a separate channel in addition to being included in the video frame, which would

avoid the issues associated with recognizing all vehicle states from time to time from

inconsistent video frames. Vehicle states can be transmitted in bytes at a faster and

reliable way and saved in a buffer. Recognition would only be done on either the

frame number or GPS time to pair with the history values stored in the buffer and

the vehicle states synchronized to the received camera view would thus be directly

available. This way prediction performance would be less affected by the unreliable

video link.

6.5.2 Vehicle Speed Control

Currently, the speed control of the Mini Baja vehicle is not drive-by-wire. An

on-board driver is necessary to accelerate or decelerate the vehicle with throttle and

brake pedals. To make the vehicle have full teleoperation capability, i.e. with speed

and steering remotely controlled, additional actuators and controllers need to be

implemented so that human operators at the Driver Station can provide either direct

commands of throttle and brake, or a reference speed for the vehicle speed controller

to follow.

6.5.3 Steering Haptic Feedback

No haptic force feedback has been implemented yet on the operating steering

wheel. Without it, human operators cannot feel the vehicle response when the steering

wheel is mechanically linked to the tires that contact the ground. This increases the

difficulty in teleoperated driving. Haptic feedback can be achieved by transmitting

the following steering wheel angle on the vehicle back to the Driver Station using

the 2.4 GHz data link as in [129] so that a virtual haptic torque can be added to the
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operating steering wheel to provide some haptic response to help teleoperated driving.

However, due to additions of send time information required by the predictors, more

time are spent on transmitting signals of steering angles and send time between the

Arduino for processing and the Arduino for communication, as well as transmitting

them through the data link. The motor control is operated up to around 64 Hz, which

is relatively slower than a suggested frequency of over 100 Hz when the current motor

setup is capable of providing a smooth haptic torque without causing noticeable jerk

in the steering wheel. If vehicle states are included in the transmission as proposed

in Section 6.5.1, the frequency would be even lower.

In addition, it remains an open research question to generate such haptic torque

when significant communication delays in the data link (such as an additional virtual

network delay of 0.5 s in Section 6.4) are considered.
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CHAPTER VII

Conclusions and Future Work

7.1 Dissertation Summary

Teleoperated Unmanned Ground Vehicles (UGVs) have been widely used in ap-

plications when driver safety, mission efficiency or mission cost is a major concern.

One major challenge with teleoperating a UGV is that communication delays can

significantly affect the mobility performance of the vehicle and make teleoperated

driving tasks very challenging especially at high speeds.

In this dissertation, a predictor based framework with predictors of a new form and

a blended prediction architecture is developed to compensate effects of delays through

signal prediction, thereby improving vehicle mobility performance. The novelty of the

framework is that minimal information about the governing equations of the system

is required in prediction to benefit from performance robustness to modeling errors.

This dissertation first investigates a model-free prediction solution and develops a

predictor that does not require information about the vehicle dynamics or human op-

erators’ motion for prediction, as presented in Chapter III. Compared to the existing

model-free methods, neither assumptions about the particular way the vehicle moves,

nor knowledge about the noise characteristics that drive the existing predictive filters

are needed. Its stability and performance are studied and a predictor design proce-

dure is presented. A saturation and resetting scheme is developed to further improve
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the predictor transient performance. Also, predictor can potentially help stabilize the

unstable closed-loop system.

Secondly, in Chapter IV, a blended prediction architecture is developed to blend

the outputs of the model-free predictor with those of a steering feedforward loop that

relies on minimal information about vehicle lateral response. Better prediction perfor-

mance is observed based on open-loop tests with the blended architecture compared

to using either the model-free predictors or the model-based feedforward loop alone.

The mobility performance of teleoperated vehicles with delays and the predictor

based framework are evaluated in this dissertation in Chapter V and Chapter VI with

human-in-the-loop experiments using simulated and physical vehicles, respectively in

teleoperation mode. Predictor based framework is proven to be beneficial in sta-

tistically significantly improving vehicle mobility and drivability in the experiments

performed.

7.2 Conclusions and Original Contributions

Based on the simulation based experiments under a track following scenario, the

predictor-based framework with two model-free predictors implemented on high-speed

teleoperated UGVs with large round trip delays of 0.9 s can improve the mobility met-

ric of track keeping error by 33% and drivability metric of steering control effort by

61% compared to without predictors to compensate delays. Minimal information

about the vehicle lateral response is included in the developed blended prediction

architecture to improve prediction accuracy of vehicle heading, at the potential cost

of robustness due to the addition of system information. The framework with pre-

dictors and the blended architecture results in a larger improvement in both mobility

and drivability of the vehicle: track completion time, track keeping error and steer-

ing control effort are improved by 48%, 55%, and 69% compared to no prediction.

Preliminary results of the field test under a double lane change maneuver show that
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predictors appear to improve the vehicle lateral performance as well as the drivability

under delays.

This dissertation makes the following original contributions to the literature.

1. A novel model-free predictor is developed to predict signals and compensate

communication delays (Chapter III). It is completely model-free in the sense

that no information about the governing equations of any component in the

system is used in the prediction. Also, in contrast to other model-free prediction

methods, no assumptions about the system dynamics or knowledge about the

noise characteristics that drive the existing predictive filters are required. The

development of this framework entails the following contributions.

With constant delays,

1.1. predictor performance in steady state [82] and transient [83] is analyzed.

A saturation and resetting scheme is developed to improve transient per-

formance with modifications on the predictor dynamics [111, 84].

1.2. a design procedure to select predictor parameters is developed [84].

1.3. closed-loop stability is studied based on LTI system [83].

With varying delays,

1.1. predictor stability with varying delays is established [83].

1.2. performance robustness of the predictor to varying delays and network

effects are evaluated and initial results for closed-loop stability are provided

based on a general networked system [83].

2. A predictor based framework is developed for teleoperated vehicles to improve

their mobility performance under large delays. (Chapter IV, V, VI)

2.1. A blended prediction architecture is developed to blend the predictions

from a model-based feedforward branch with the predictions from a model-
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free feedback branch for better prediction accuracy of vehicle heading and

robustness to modeling error [84].

2.2. The predictor based framework is evaluated based on human-in-the-loop

experiments in a simulated environment [111, 115] and real world using a

teleoperated vehicle.

7.3 List of Publications

The following list provides the papers published associated to these contributions

and work present in this dissertation:

1. [83] Y. Zheng, M.J. Brudnak, P. Jayakumar, J.L. Stein, and T. Ersal. A

Predictor Based Framework for Delay Compensation In Networked Closed-Loop

Systems. IEEE/ASME Trans. Mechatronics (In review), 2018.

2. [84] Y. Zheng, M.J. Brudnak, P. Jayakumar, J.L. Stein, and T. Ersal. A De-

lay Compensation Framework for Predicting Heading in Teleoperated Ground

Vehicles. IEEE/ASME Trans. Mechatronics (In submission), 2018.

3. [115] Y. Zheng, M.J. Brudnak, P. Jayakumar, J.L. Stein, and T. Ersal. Human-

in-the-loop Experimental evaluation of a Predictor Based Framework for Tele-

operated Unmanned Ground Vehicles. In preparation, 2018.

4. [111] Y. Zheng, M.J. Brudnak, P. Jayakumar, J.L. Stein, and T. Ersal. An

Experimental Evaluation of a Model-Free Predictor Framework in Teleoperated

Vehicles. IFAC-PapersOnLine, 49(10):157-164, 2016.

5. [106] X. Ge, Y. Zheng, M.J. Brudnak, P. Jayakumar, J.L. Stein, and T. Er-

sal. Performance analysis of a model-free predictor for delay compensation in

networked systems. IFAC-PapersOnLine, 48(12):434439, 2015.
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6. [82] X. Ge, Y. Zheng, M.J. Brudnak, P. Jayakumar, J.L. Stein, and T. Er-

sal. Analysis of a Model-Free Predictor for Delay Compensation in Networked

Systems. Time Delay Systems, pages 201215, 2017.

7.4 Future Work

The following subsections describe several areas of future work.

7.4.1 Compensating Visual Delays for Semi-Autonomous UGVs

For UGVs operated in semi-autonomous mode, communication delays remain as

one of the challenges that could affect the vehicle mobility performance. For human

operators, while controlling vehicle may be affected less by delays with the assis-

tance of automation, the fidelity of monitoring the vehicle response is reduced with

delays. Thus, the methods developed in this work can potentially be applied on

semi-autonomous UGVs to compensate visual delays. Specifically, the model-free

predictors can be implemented to predict the vehicle states for the purpose of gen-

erating predicted camera view. Some of the preliminary results are given below and

inspire for future development.

A haptic shared control scheme developed in [129, 135] was used to test the pre-

dictors’ utility in the semi-autonomous scheme. This haptic shared control scheme al-

lows both human and automation to cooperate on performing control actions (shared

control) all the time using motorized steering wheels to establish the haptic communi-

cation between human and automation. Haptic shared control scheme without visual

delays and with delays of 0.6 s was tested in a simulation based human-in-the-loop

experiment using the motorized steering wheel setup from Prof. Brent Gillespie’s

HaptiX lab and a model predictive control automation algorithm based on [136]. The

test scenario was that human and automation cooperated based on this haptic scheme

to control a vehicle in constant speed to follow the centerline of the track while avoid-
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ing obstacles. The setup for prediction was similar to that in Chapter V: A Vehicle

Predictor was added at the Driver Station, predicting the vehicle states of position

and heading, and then the camera view associated to the predicted vehicle position

in the virtual environment was displayed to the operators.

6 human test drivers’ data indicated that applying the Vehicle Predictor with 0.6 s

of visual delays helped significantly with reducing the performance metric of average

track keeping error by 63% and metric of average steering control effort by 70%

[137, 138]. Thus, predictors developed in this work show potential in compensating

visual communication delays when human operators monitor the response of a semi-

autonomous UGVs. Future research could focus on compensating the delays when the

control actions generated by the automation on-board are transmitted to the Driver

Station for haptic communication between human and automation.

7.4.2 Theoretical Development of Predictors

The predictor developed in this work is most effective for low-frequency signal

inputs. Predictor dynamics can be further studied to increase the predictor bandwidth

with modified structure while still preserving the model-free property.

Additionally, it is an open research question whether predictor parameters λ and

blending weight α in the blended architecture can be adaptively tuned during closed-

loop teleoperated driving. Predictor performance is frequency-dependent and there

exist tradeoffs in λ when discussing predictor’s steady state and transient perfor-

mance. Adaptive λ corresponding to frequency of the signal to predict is worth

studying. In the blended architecture, α can also be adaptive to maximize the robust

prediction accuracy of vehicle heading.

The predictor stability has been addressed and preliminary results have shown

the benefit of predictors in terms of stabilizing an LTI closed-loop system. For tele-

operated vehicle system with nonlinear vehicle platforms and human operators in the
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loop, its closed-loop stability remains to be studied. Wave variable transformation

in the telerobotics literature can be leveraged to passify the communication chan-

nels regardless of delays. Then the closed-loop teleoperated vehicle system stability

can be established with robustness to delays if the passivity of each sub component

in the system (i.e. human operators to do teleoperated driving with delays, vehicle

platform, predictors with blended architecture) can also be guaranteed. Accordingly,

performance loss due to establishment of robust closed-loop stability remains to be

investigated.

7.4.3 Field Test With Mini Baja Vehicle

The field test results show that the developed model-free predictor is promising

to improve vehicle mobility (lateral performance alone) and drivability of the Mini

Baja vehicle operated in teleoperation under delays. However, the field test is not

completed due to time and hardware limitations listed in Section 6.5. Future work

involves improving the quality of video transmission, potentially implementing the

blended architecture to predict vehicle heading with accuracy and robustness, and

performing human-in-the-loop closed-loop experiments with bilateral delays and pre-

dictions on transmitted control commands and vehicle response.
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