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ABSTRACT  

Wireless communication, sensing, and tracking systems in mine environments are 

essential for protecting miners’ safety and daily operations. The design, deployment, and 

post-event reconfiguration of such systems greatly benefits from electromagnetic (EM) 

frameworks that can statistically analyze and optimize the wireless systems in realistic 

mine environments. This thesis proposes such a framework by developing two fast and 

efficient full-wave EM simulators and coupling them with a modern optimization 

algorithm and an efficient uncertainty quantification (UQ) method to synthesize system 

configurations and produce statistical insights. The first simulator is a fast multipole 

method – fast Fourier transform (FMM-FFT) accelerated surface integral equation (SIE) 

simulator. It relies on Muller and combined fields SIEs to account for scattering from 

mine walls and conductors, respectively. During the iterative solution of the SIE system, 

the computational and memory costs are reduced by using the FMM-FFT scheme. The 

memory costs are further reduced by compressing large data structures via singular value 

and Tucker decomposition. The second simulator is a domain decomposition (DD)-based 

SIE simulator. It first divides the physical domain of a mine tunnel or gallery into 

subdomains and then characterizes EM wave propagation in each subdomain separately. 

Finally, the DD-based SIE simulator assembles the solutions of subdomains and solves 
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an inter-domain system using an efficient subdomain-combining scheme. While the DD-

based SIE simulator is faster and more memory-efficient than the FMM-FFT accelerated 

SIE simulator when characterizing EM wave propagation in electrically large mine 

environments, it does not apply to certain scenarios that the FMM-FFT accelerated SIE 

simulators can handle. The optimization algorithm and UQ method that are coupled with 

the EM simulators are the dividing rectangles (DIRECT) algorithm and the high 

dimensional model representation (HDMR)-enhanced multi-element probabilistic 

collocation (ME-PC) method, respectively. The DIRECT algorithm is a Lipschitzian 

optimization method but does not require the knowledge of the Lipschitz constant. It 

performs a series of moves that explore the behavior of the objective function at a set of 

points in the carefully picked sub-regions of the search space. The HDMR-enhanced ME-

PC method permits the accurate and efficient construction of surrogate models for EM 

observables in high dimensions. The HDMR expansion expresses the observable as finite 

sums of component functions that represent independent and combined contributions of 

random variables to the observable and hence reduces the complexity of UQ by including 

only the most significant component functions to minimize the computational cost of 

building the surrogate model. This research numerically validated and verified the two 

EM simulators and demonstrated the efficiency and applicability of the EM framework 

via its application to optimization and UQ problems in large and realistic mine 

environments. 

 

 



 

 

1 

 

 

CHAPTER 1  
Introduction 

1.1 Background 

In mining operations, wireless sensing, communication, and tracking systems are 

essential for planning and conducting routine mining operations, as well as safeguarding 

miners’ health and planning life-saving actions after catastrophic events [1]. The 2006 

MINER Act [2] requires operators to implement wireless communication systems 

capable of surviving disasters and supporting two-way post-event communication and 

tracking functions. The design and configuration of such systems in mine tunnels and 

galleries greatly benefit from the use of electromagnetic (EM) frameworks that 

incorporate EM simulators to optimization algorithms and uncertainty quantification (UQ) 

methods to provide quantitative data and synthesize system configurations. Ideally, the 

EM simulator should be able to accurately characterize EM propagation in realistic large-

scale mine tunnels with possible internal structures and can be efficiently executed in a 

repetitive manner. The optimization algorithm should be efficient and robust when used 

to improve the performance of a wireless communication system. The UQ method should 

also be able to efficiently and accurately characterize uncertainties in received signal 
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strength due to conductivities, the presence and positions of miners, and communication 

and mining equipment. Since mine environments are electrically very large, the 

optimization algorithm and UQ method incorporated with EM simulators must be able to 

converge rapidly. Hence, the development of novel EM simulators and careful choices of 

optimization algorithms and UQ methods are required for the EM framework to 

efficiently synthesize and statistically analyze practical wireless communication systems 

in realistic mine environments. 

In recent years, various EM simulators based on approximate and full wave 

techniques have been developed and discussed for analyzing EM wave propagation in 

mine environments [1]. Frequently-used approximate techniques in these simulators 

include, but are not limited to, single/multi-mode waveguide models [3, 4], Ray-tracing 

(or ray optics) methods [5-7], and cascaded-impedance methods [8]. Typically, these 

methods involve either simplifying assumptions about the physics (e.g. ray optics 

approximation) or the geometry (e.g. waveguide model) limiting their utility for 

accurately analyzing wireless communication systems inside complex mine environments. 

For example, these methods are usually restricted to certain frequency bands and cannot 

readily account for the presence of wall roughness, unstructured debris, or mine 

equipment and workers. In contrast, simulators based on full-wave techniques normally 

do not require simplifying assumptions about the physics or geometries. Full-wave 

techniques, such as finite-difference-time-domain (FDTD) method [9-12], finite elements 

method and surface integral equation (SIE) methods [13], can account for all the elements 

that affect wave propagations inside a tunnel and thus provide a complete and detailed 

solution for signal transmission information through the mine tunnels or galleries. More 
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concretely, they can model realistic mine environments that have rough walls and are 

occupied with conductors, miners and other objects. That said, given large size of tunnels 

and the high operating frequency, the computational costs for these full-wave simulators 

are prohibitively expensive and could exceed the capacity of existing computers by 

orders of magnitude when it comes to statistical characterization and wireless network 

(re)configurations. As an effort to reduce the computational burden, this research 

developed a fast multipole method – fast Fourier transform (FMM-FFT) accelerated 

surface integral equation (SIE) simulator allowing for analyzing mine tunnels and 

galleries that span more than a thousand meters. This effort is extended further by 

developing a more computational and memory efficient domain decomposition (DD) 

based SIE simulator, resulting another novel EM simulator that can analyze realistic and 

large mine environments. 

Optimization algorithms have been long investigated for the design of wireless 

communication systems. Frequently-used optimization algorithms include stochastic 

algorithms, gradient based algorithms, and direct search algorithms. Stochastic 

algorithms, such as genetic algorithm [14] and particle swarm optimization [15], use 

random variables to search for the optimal value of an objective function. These 

algorithms typically introduce a number of random ‘seeds’ among the whole searching 

space and determine the direction and step size for each seed by taking account of current 

local and/or global best solution. Hence, these algorithms are global optimization 

algorithms. That said, since they introduce random process during optimization, the 

results obtained by such algorithms are not deterministic. Moreover, a relative large 

population of seeds is needed to ensure they can cover the whole searching space and 
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avoid local optimum, which significantly increase the number of objective function 

evaluations. Gradient based methods, such as quasi-Newton method [16] and adjoint 

sensitivity methods [17], require information of the derivatives of objective function to 

determine the searching direction. They oftentimes are very efficient in terms of the 

number of objective function evaluations when the objective function is smooth and 

continuous, but may fail to find the optimum when the derivatives are not available or 

reliable. Due to the highly unpredictable properties of the objective function (e.g. 

discontinuity non-differentiability, and noisy) used in the design of wireless systems and 

the large number of objective function evaluations, the gradient based algorithms and 

stochastic algorithms are oftentimes not applicable to the proposed framework that uses 

full wave EM simulators. On the other hand, the direct search algorithms are well suited 

to finding the optimal placement of wireless devices, since they require only the value of 

the objective function and are efficient in terms of objective function evaluations. Direct 

search algorithms determine the searching directions by directly comparing current and 

past sampling values of objective function. Hence, they are derivative-free and can be 

applied to objective functions that are discontinuous and non-smooth. Direct search 

algorithms can be classified as global or local algorithms. Local direct search algorithms, 

such as Nelder-Mead simplex algorithm [18] and Hooke-Jeeves algorithm [19], are 

efficient in terms of number of objective function evaluations. However, these local 

algorithms can be easily trapped by local optima, which exist even in very simple forms 

of the wireless system optimization problem. In contrast, global direct search algorithms 

can find the global optimum using a reasonable number of objective function evaluations. 

DIRECT (DIviding RECTangles) algorithm [20-22] is a well-known global direct search 
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algorithm. It is a modification of standard Lipschitzian optimization approaches and is 

widely-used in engineering applications. In this thesis, the DIRECT algorithm is adopted 

to incorporate with the simulators for the EM framework.  

On the other hand, the credibility of EM analyses for communication systems in 

mine environments is largely affected by uncertain quantities (random variables) in 

mine’s geometry, locations of miners, mining equipment, etc. This dependency must be 

accurately quantified. The need of UQ is oftentimes met by Monte Carlo (MC) method. 

However, the MC method requires many deterministic simulations to yield accurate 

statistical results. Each of these simulations can take minutes to hours, which makes MC 

method too expensive to incorporate with EM simulators. To reduce the computational 

cost of MC methods, polynomial chaos (PC) [23] and multi-element probabilistic 

collocation (ME-PC) method [24] have been developed. These methods first form a 

polynomial approximation (i.e. surrogate model) of each EM observable as a function of 

the uncertain parameters by probing the EM simulator. Then, the polynomial surrogate 

model is used in lieu of the simulator by a MC method for UQ. Evaluating the 

polynomial requires a relatively small number of computations and hence significant 

computational savings are observed when compared with MC method. That said, in these 

methods, a full polynomial to a prescribed order is constructed and the number of 

simulations required increase exponentially with dimensionality making them of little 

utility even for moderate dimensional problems. To address this limitation, ME-PC 

methods have recently been hybridized with high dimensional model representation 

(HDMR) technique [25]. This technique allows for the generation of a surrogate model in 

a high dimensional random domain by bootstrapping surrogate models generated in low 
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dimensional random domains. It iteratively constructs the HDMR surrogate model by 

only including component functions pertinent to the “most important” random variables, 

and therefore dramatically reduces the cost of surrogate model construction. The 

incorporation of this HDMR technique with the proposed EM simulators can allow for 

more efficient obtaining of the statistics of observables in stochastic EM wave 

propagation scenarios 

1.2 Statement of Purpose 

The purpose of this thesis is to present the EM framework that permits fast and 

efficient stochastic analysis and optimizations of wireless communication networks in 

large and realistic mine environment. The EM framework contains two novel full wave 

EM simulators, an efficient UQ method, and a modern optimization algorithm.  

First, the FMM-FFT accelerated SIE simulator is introduced. It uses Müller and 

combined field integral equations (CFIE) to account for scatterings from the mine 

environments and build well-conditioned system matrix that ensures fast convergence of 

iterative solutions. It leverages singular value and Tucker decompositions to compress the 

large data structure required during the FMM-FFT acceleration procedures. Numerical 

results are presented to show that the compression schemes can boost the FMM-FFT 

accelerated SIE simulator’s performance and the size of the mine environments it can 

analyze is extended to more than 1500 wavelengths. 

Although the FMM-FFT accelerated SIE simulator is computational and memory 

efficient, it is restricted to applications requiring small number of excitations. Hence, the 
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DD based SIE full wave simulator is proposed for efficiently analyzing EM wave 

propagation in electrically large and realistic mine environments when a large number of 

excitations exist. It alleviates the computational burden by dividing the physical domain 

of mine tunnel or gallery into subdomains and characterizes EM wave propagation in 

each subdomain separately. The final solution is obtained by assembling the solutions of 

subdomains and solves an inter-domain system using an efficient subdomain combining 

scheme. The applicability, accuracy, and efficiency of the proposed simulator are 

demonstrated through its application to the EM wave propagation in an arched tunnel, 

rectangular tunnels with rough walls and partial cave-in, and a mine gallery and statistical 

characterization of EM wave propagation in an electrically large rectangular tunnel. 

While the DD based SIE simulator is accurate and efficient in many mine 

environments, it is not ready for certain mine scenarios that contain extended equipment, 

(e.g. rails and cables), and are overkilling when dealing with small or moderate problems. 

Hence, the choice of simulator in the EM framework depends on the specific scenario 

and problem. 

The full wave simulators are then incorporated to the DIRECT optimization 

algorithm to form the optimization part of the EM framework. The objective of the 

optimization is to find optimal placement of the wireless transmitters that maximizes an 

objective function that measures key desirable performance such as signal coverage, 

subject to a given set of fixed receiver locations and certain physical constraints on where 

the transmitters may be placed. The applicability and efficiency of this framework in 

optimization problems are demonstrated via wireless network optimizations or 

reconfigurations in several realistic mine galleries. 
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Furthermore, these two full wave simulators are incorporated to the ME-PC 

enhanced HDMR method to form the UQ part of the EM framework. This HDMR 

method is finely tuned to EM applications by hybridizing the HDMR method with the 

expansion of partial fractions, coefficients of which are obtained by well-known vector 

fitting algorithm. The proposed framework is applied to the UQ of several real-world 

communication systems commonly used in the mine environments, including leaky 

feeder systems, through-the-earth systems, medium frequency radio systems, and 

wireless node-based mesh networks. 

1.3 Organization of Chapters  

The remainder of this thesis is organized as follows. Chapter 2 presents the 

formulation of the FMM-FFT accelerated SIE simulator for analyzing EM propagation 

inside electrically large realistic mine tunnels and galleries. The Muller and CFIE 

formulations, FMM-FFT acceleration scheme, singular value and Tucker decompositions, 

and parallel schemes are detailed in this chapter. The simulator is validated through 

characterization of EM wave propagation in electrically large mine tunnels/galleries 

loaded with conducting cables and mine carts. Chapter 3 describes the proposed DD 

based SIE simulator. The DD approach and its modification to high-loss mine 

environments are introduced. The accuracy and its applicability of the DD based SIE 

simulator is demonstrated via examples in various mine layouts. Its computational cost 

and memory footprint compared to those of FMM-FFT accelerated SIE simulators. In 

Chapter 4, the DIRECT algorithm is detailed. This chapter first introduces the standard 
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Lipschitzian optimization and then modifies it towards the DIRECT algorithm. The 

algorithm is then incorporated with the EM simulators for optimization or reconfiguration 

of wireless communication systems in various mine environments. Chapter 5 introduces 

the HDMR enhanced ME-PC method and applies it to several communication systems 

employed in mine environments. In chapter 6, the DD based SIE simulator is further 

improved by the hierarchical off-diagonal butterfly factorization (HODBF) scheme. This 

chapter presents the detail of HODBF scheme and demonstrates the efficiency of the 

HODBF compressed DD based SIE simulator via electrically very large examples. 

Finally, conclusions, ongoing studies, and list of publications related to this thesis are 

outlined in Chapter 7. 
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CHAPTER 2  
A FMM-FFT Accelerated SIE Simulator for Analyzing EM 

Wave Propagation in Mine Environments Loaded with 

Conductors 

2.1 Chapter Introduction 

Reliable wireless communication, sensing, and tracking systems in underground 

mine environments are critically important to ensure workers’ safety and productivity 

during routine operations and catastrophic events. As mandated by the MINER Act of 

2006 [2], U.S. mine operators are required to install reliable and disaster-proof 

communication systems that support two-way post-event communication and tracking 

functions. The development, operation, and reconfiguration of these systems, as well as 

the mitigation of possible electromagnetic compatibility and interference issues 

associated with their deployment, all benefit from electromagnetic (EM) simulation tools. 

These tools should be capable of analyzing EM wave propagation in mine tunnels and 

galleries that are loaded with conductors (e.g., lighting/power cables, mine carts, mining 

machinery, rails, ventilation systems), occupied by miners, and possibly obstructed by 

cave-in debris. Present simulation techniques for analyzing EM wave propagation in 
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mine environments are either approximate or full-wave in nature. Examples of 

approximate techniques include, but are not limited to, s single/multi-mode waveguide 

models [3, 4], ray-tracing techniques [5-7], and cascaded-impedance methods [8]; For 

other approximate techniques, see [26] and references therein. For other approximate 

techniques, see [1] and references therein. The above-referenced techniques typically 

only apply to EM characterization in restricted frequency bands and do not readily 

account for the presence of conductors and miners, wall roughness (especially when 

comparable to the wavelength), or unstructured debris. Full-wave techniques for 

analyzing EM wave propagation in mine environments include finite difference time 

domain (FDTD) [9-12] and surface integral equation (SIE) methods [13]. In principle, 

these techniques permit faithful modeling of EM wave propagation in real-world mine 

environments. However, in practice, due to their high computational requirements, their 

applicability is limited to the study of EM wave propagation in electrically small or 

moderately sized tunnels even when they are implemented on graphics processing units 

(GPUs) [9]. This chapter presents a fast, full-wave, CPU and memory-efficient 3D SIE 

technique for analyzing EM wave propagation in electrically large and realistically 

loaded mine environments. The technique leverages Muller and combined field SIEs to 

model scattering from mine walls and perfect electrically conducting (PEC) objects 

residing inside mine tunnels and galleries. The naive iterative solution of such SIEs 

requires 
2( )O N  CPU and memory resources. Here N is the number of basis functions 

used to discretize current densities on the mine walls and PEC objects. These 

requirements are prohibitive even when characterizing moderately sized tunnels and 
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galleries. Therefore, the proposed simulator leverages a fast multipole method – fast 

Fourier transform (FMM-FFT) acceleration scheme [27] with 4/3 2/3( log )O N N  CPU and 

memory resources [28] when applied to mine environments of arbitrary layout, and 

( log )O N N  resources when applied to straight long tunnels or mine galleries populated 

with dense posts [27]. When applied to the analysis of EM propagation in mine 

environments, FMM-FFT accelerated SIE simulators tend to be memory- as opposed to 

CPU-limited. The simulators’ memory requirements derive from the requirement to store 

(i) near-field interaction matrices, (ii) matrices that characterize far-field signatures of 

basis functions, and (iii) tensors that hold FFT’ed translation operators on a structured 

grid. The proposed simulator compresses the first two and third data structures via 

singular value decomposition (SVD) and its higher-dimensional counterpart, Tucker 

decomposition [29], respectively. These compression schemes enable the application of 

the FMM-FFT accelerated SIE simulator to the analysis of EM wave propagation in 

much larger and complex mine environments. The chapter’s contributions are two-fold. (i) 

It describes the first-ever application of a fast SIE simulator to the characterization of EM 

wave propagation in electrically large and realistically loaded mine environments. (ii) It 

proposes a scheme, which compresses all large data structures of the FMM-FFT 

accelerated SIE simulator, to reduce its memory requirement and enable its application to 

larger scale problems on memory-bound computer clusters. The accuracy, efficiency, and 

applicability of the proposed simulator are demonstrated via the analysis of EM wave 

propagation in a 600 m-long arched tunnel loaded with conductors, a mine gallery 

consisting of eight rectangular tunnels, and a rectangular tunnel with rough walls.  
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2.2 Formulation 

This section details the Muller and combined field SIEs and their numerical 

solution via the method of moments (MoM). It also elucidates the proposed SVD and 

Tucker-enhanced FMM-FFT acceleration scheme.  

 

Figure 2.1 (a) Generic tunnel geometry for Muller-combined field SIE formulation. (a) 

Original problem. (b) Equivalent exterior problem. (c) Equivalent interior problem. 

2.2.1 SIEs and Their Discretization 

Let dS  denote the walls of a closed mine tunnel or gallery, which is surrounded 

by unbounded lossy ore with permittivity 1  and permeability 1  (medium 1). The tunnel 

or gallery is assumed to be filled by air with permittivity 0  and permeability 0  

(medium 0) [Figure 2.1 (a)]. (Note: the scheme detailed below can be trivially modified 

for tunnels and galleries filled by dust with permittivity different from 0  ) Let pS  
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represent the arbitrarily shaped open or closed surfaces of PEC objects (e.g., mine carts, 

cables, or other equipment) residing inside dS . dS  and pS  are excited by the incident 

EM field { ( ), ( )}i i
E r H r   that is generated by a transmitter’s electric current density ( )iJ r  

(e.g., an electric dipole) residing within dS  [Figure 2.1 (a)]. The interaction of 

{ ( ), ( )}i i
E r H r  with dS  and pS  gives rise to electric and magnetic current densities, 

( )dJ r  and ( )dM r  on dS  and electric current densities ( )pJ r  on pS .  

To compute ( )dJ r , ( )dM r , and ( )pJ r , the surface equivalence principle is 

invoked to construct the exterior and interior problems illustrated in Figure 2.1 (b)-(c). In 

the exterior problem [Figure 2.1 (b)], ( )dJ r  and ( )dM r  radiate in medium 1 and 

generate total and zero electric and magnetic fields exterior and interior to dS , 

respectively. Imposing boundary conditions on the tangential components of electric and 

magnetic fields on dS  yields the following exterior electric field integral equation (EFIE) 

and magnetic field integral equation (MFIE):  

      ,a a

S

G d      X r X r r r r ,  (2.1) 

       2

1 1 1
ˆ ˆ0 0.5d d d d d           n M r J r n J r ,  (2.2) 

dSr . Here, ˆ
dn  is the outward normal to dS , 0.5( )a a a    with {0,1}a  is the wave 

impedance, and the source-field operators  a   and  a   are 

      2
( ) ,a a a

aS

j G d
k




         X r I X r r r r  , (2.3) 
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      ,a a

S

G d      X r X r r r r  , (2.4) 

where the integral in (2.4) is evaluated in principal value sense. Here 

( , ) exp( | |) (4 | |)a aG jk      r r r r r r  is the scalar Green’s function, 0.5( )a a ak    , 

2 f  , f  is the frequency, and r  and r  denote observation and source locations on 

support S , respectively.  

In the interior problem [Figure 2.1 (c)], ( )dJ r  and ( )dM r  radiate alongside 

( )i
J r  and ( )pJ r  in air and generate total and zero electric and magnetic fields interior 

and exterior to dS , respectively. Imposing boundary conditions for tangential electric and 

magnetic fields on dS  and pS  yields the following interior EFIE and MFIE for dS  and 

interior EFIE and MFIE for pS  :  

 
  

 

0

0 0

ˆ ˆ ( ) 0.5 ( ) ( )

ˆ ˆ( ) ( ) ,

i

d d d d

d d d p dS

    

      

n E r M r n M r

n J r n J r r
  (2.5) 

 
  

 

2

0 0

0 0

ˆ ˆ ( ) ( ) 0.5 ( )

ˆ ˆ( ) ( ) ,

i

d d d d

d d d p dS

    

     

n H r n M r J r

n J r n J r r
  (2.6) 

     0 0 0
ˆ ˆ ( ) ( ) ( ) ( ) ,i

p p d d p pS        t E r t M r J r J r r   (2.7) 

 
   

 
0 0 0 0 0

0 0

ˆ ˆ ˆ ( ) ( ) ( )

ˆ0.5 ( ) ( ) ,

i

p p d p d

p p p pS

  



     

     

n H r n M r n J r

J r n J r r
  (2.8) 
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Here ˆ
pn  and ˆ

pt  are the outward pointing unit normal and arbitrary unit vector tangential 

to pS , respectively. Exterior and interior EFIEs for dS  in (2.1) and (2.5) can be linearly 

combined after multiplying them by 1  and 0 , respectively, as 

 
     

   

0 1 0 1 1 0 0

1 1 0 0 0 0

ˆ ˆ ( ) 0.5 ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) .

i

d d d d d

d d d d p

    

  

       

          

n E r M r n M r M r

n J r J r n J r
  (2.9) 

Similarly, exterior and interior MFIEs for dS  can be multiplied by 1  and 0 , 

respectively, and combined as 

 
     

   

01
0 1 0 0 12 2

1 0

1 1 0 0 0 0

ˆ ˆ ( ) ( ) ( ) 0.5 ( )

ˆ ˆ( ) ( ) ( ) .

i

d d d d d

d d d d p


  

 

  

 
        

 

          

n H r n M r M r J r

n J r J r n J r

  (2.10) 

Finally, linearly combining the p  times interior EFIE and (1 )p  times interior MFIE 

for pS  yields  

   

         

   

0 0

0 0 0 0 0

0 0 0

ˆ ˆˆ ( ) 1 ( ) ( )

ˆˆ ˆ1 ( ) ( ) 1 ( )

ˆ ˆ( ) 1 0.5 ( ) ( ) .

i i

p p p p p p d

p p d p p d p p d

p p p p p p p

   

    

  

       

          

             

t E r n H r t M r

n M r t J r n J r

t J r J r n J r

  (2.11) 

Equations (2.9)-(2.11) with 1 1  , 0 0   , 1 1  , 0 0   , and 0 1p   are 

known as Muller-combined field SIE formulation [30] and can be solved simultaneously 

for ( )dM r , ( )dJ r , and ( )pJ r  via the MoM. (Note: In this study, p  is set to 0.2 and 1 
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for closed and open PEC surfaces, respectively.) To this end, ( )dM r , ( )dJ r , and ( )pJ r  

are approximated in terms of Rao-Wilton-Glisson (RWG) basis functions ( )nf r  [31] as  

        
2

1 1

,
d d

d

N N

d n n d n n

n n N

I I
  

  M r f r J r f r   (2.12) 

    
2

2 1

d p

d

N N

p n n

n N

I



 

 J r f r   (2.13) 

where nI , 1, , 2 d pn N N  , are unknown expansion coefficients. Substituting  (2.12) 

and (2.13) into (2.9)-(2.11) and applying Galerkin testing to the resulting equations with 

( )mf r , 1, , 2 d pm N N  , yields the linear system of equations of dimension 

2 d pN N N  : 

 ZI V   (2.14) 

where Z  is the MoM matrix, and I  and V  are vectors of unknown expansion 

coefficients and tested incident EM fields, respectively. The entries of I , nI  , 1, ,n N , 

as well as those of Z  and V  are provided in Section 2.2.2. 

When analyzing electrically large mine tunnels and galleries loaded with 

conductors that require large N , the solution of the matrix system in (2.14) cannot be 

obtained using classical algebraic solvers. To mitigate the computational and memory 

requirements of the iterative solution of (2.14), we deploy the SVD and Tucker enhanced 

FMM-FFT scheme described next. 
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2.2.2 Entries of Equation 2.14 

The entries of the unknown expansion coefficient vector I  are simply nI  , 

1, , 2 d pn N N  . The entries of the tested incident field vector V  are 

 

 

0

0

0

ˆ( ), ( ) 1

ˆ( ), ( ) 1 2

ˆ( ), ( ) 2 1

ˆ( ), 1 ( )

d

d

p

p

i

m d dS

i

m d d dS

im

m p p d
S

i

m p p
S

m N

N m N

N m N







 

   

    



   


  


f r n E r

f r n H r

V
f r t E r

f r n H r

  (2.15) 

where ( ), ( ) ( ) ( )
S S

d a r b r a r b r r . The entries of the MoM matrix Z  are    

 
 0 0011 1

ˆ( ), ( ) (0.5 ), (

1 1

( ) ) ( )

,

d d
mn m n d m nS S

d dm N n N

        

   

Z f r f r n f r f r
  (2.16) 

 
 1 1 0 0

ˆ ( ), ( ) ( )

1 , 1 2

d
mn d m n S

d d dm N N n N

      

    

Z n f r f r
  (2.17) 

 
 0 0

ˆ ( ), ( )

1 , 2 1

d
mn d m n S

d dm N N n N

  

    

Z n f r f r
  (2.18) 

 
 01

2 21 0

1 0

ˆ ( ), ( ) ( )

1 2 ,1

d

mn d m n

S

d d dN m N n N



 
     

    

Z n f r f r
  (2.19) 

 
 0 1 1 1 0 0

ˆ( ), ( ) ( ), (0. ) ( )

1 2

5

1

(

, 2

)
d d

mn m n d m nS S

d d d dN m N N n N

       

    





Z f r f r n f r f r
  (2.20) 



 

 

19 

 

 
 0 0

ˆ ( ), ( )

1 2 , 2 1

d
mn d m n S

d d dN m N N n N

  

     

Z n f r f r
  (2.21) 

 
     0 0 0

ˆ ˆ( ), ( ) ( ), 1 ( )

2 1 ,1

p p

mn m p p n p m p n
S S

d dN m N n N

         

    

Z f r t f r n f r f r
  (2.22) 

 
     0 0 0

ˆ ˆ( ), ( ) ( ), 1 ( )

2 1 , 1 2

p p
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2.2.3 SVD and Tucker Enhanced FMM-FFT Algorithm 

2.2.3.1 FMM-FFT Algorithm 

FMM-FFT scheme introduces a hypothetical box enclosing the mesh of d
S  (and 

hence p
S ). This large box is split into xN , yN , and zN  smaller boxes along the x , y , 

and z  directions [Figure 2.2]. The resulting boxes are denoted by B
u  with indices 

( , , )x y zu u uu , 1, ,x xu N , 1, ,y yu N , 1, ,z zu N , and centered at ur  that coincide 

with the points of a uniform 3D grid [Figure 2.2].  
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Figure 2.2 Partitioning a fictitious box enclosing the mesh of an example structure into 

small boxes and tabulating near/far-field pairs of a selected group (2,2,1)B  in FMM-FFT 

scheme. 

All boxes that contain triangle pairs of source/testing basis functions, ( )nf r / ( )mf r , 

are termed “groups” and enclosed by a sphere of radius 
sR . Two groups B

u  and B u  

constitute a near-field pair if the distance between their centers | | | |R     
u u u u u u

R r r  is 

smaller than a prescribed threshold, i.e. sR R u u  (   is selected as 4 in this study); 

otherwise, they form a far-field pair [Figure 2.2]. Interactions between basis functions in 

the same group and near-field pairs are directly computed and stored, resulting in the first 

large data structure mentioned in the introduction. A large portion of this data structure is 
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pertinent to interactions between basis functions in near-field pairs and compressed by 

SVD, as elucidated in the next subsection. The contributions of self and near-field 

interactions to the result of each matrix-vector multiplication required by the iterative 

solution of (2.14) are directly computed. The interactions between basis functions in far-

field pairs are computed by the FMM-FFT algorithm. To this end, first, the far-field 

patterns of source basis functions ˆ( , )pq

a n


P k f  with  

 ˆ ˆ ˆ ˆ ( , ) exp( ( ))( ) ( )

c

pq pq pq pq

a a a a a

S

jk d       u
P k c k r r I k k c r r   (2.25) 

are computed and stored for all directions sin cos , sin sin , cos
pq p q p q p

a
    k̂ ( ) , 

1, , 1ap K  , 1, , 2 1aq K  . Here, p  are the inverse cosine of abscissas of 

th( 1)aK   order Gauss-Legendre quadrature rule, 2 2 1q

a
q K  ( ) , 

2/3 1/3

10 12 1.8(log (1/ )) (2 )s s

a a aK k R k R   is the number of multipoles for medium {0,1}a , 

1  is the number of desired accurate digits in the FMM approximation [32], cS  is the 

support of ( )c r , and u  corresponds to the box containing ( )c r . Since I  is unit dyad and 

ˆ ˆˆ ˆ ˆ ˆpq pq

a a  I k k θθ φφ ,   and   components of far-field patterns are computed  [32]. 

Note that only the far-field patterns of source basis functions discretizing ( )dJ r and 

( )pJ r  are computed and stored for both media and only air (medium 0), respectively; the 

ones pertinent to ( )dM r  can be directly obtained from those related to ( )dJ r  by 

invoking the duality and thereby are not stored. Similarly, the receiving patterns of 

testing functions used to test electric and magnetic fields on d
S , ˆ ˆ( , )pq

a d m

 P k n f , and 
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electric and magnetic fields on 
p

S , ˆ( , )pq

a m


P k f  and ˆ ˆ( , )pq

a p m

 P k n f , are computed and 

stored for both media and only air, respectively. These operations give rise to the second 

large data structure alluded to in the introduction, which is compressed by SVD as 

explained in the next subsection. During matrix-vector multiplication, the far-fields of 

basis functions in each group are summed to construct all groups’ outgoing far-field 

patterns for both media as 

 ˆ ˆ( ) ( , )pq pq

a a n a nn B
cI




u
u

k P k f ,  (2.26) 

1, , 1ap K  , 1, , 2 1aq K  , {0,1}a . Here c  is -1 for far-field patterns of basis 

functions used to discretize ( )pJ r  and 1 otherwise. (Note: far-field patterns of basis 

functions discretizing ( )pJ r  are not computed/stored for medium 1 and not included in 

summation in (2.26) for 1a  .) Next, for each 
pq

a
k̂ , these far-field patterns ˆ( )pq

au k  are 

convolved via FFT with the translation tensor 
~ ˆ( )pq

au u k  to obtain all groups’ incoming 

plane wave spectra ˆ( )pq

au k as   

 1ˆ ˆ ˆ ( ) ( ( ) ( ( )))pq pq pq

a a a



   u u u uk k k .  (2.27) 

Here   is the FFT operator, 
~ˆ ˆ ( ) ( ( ))pq pq

a a   u u u uk k  is the tensor that stores FFT’ed 

translation operator values and  

 
2

~ (2)

2
1

ˆ ˆ ˆ ( ) ( ) (2 1) ( ) ( )
16

aK
pq l pqa a
a l a l a

l

k
j l h k R




  



    u u u u u uk R k   (2.28) 
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where ˆ / R  u u u u u uR R , ( )l   is the Legendre polynomial of degree l  and (2)

lh  denotes 

the spherical Hankel function of the second kind. All ˆ( )pq

au u k  computed and stored for 

all directions constitute the third large data structure mentioned in the introduction and 

can be compressed via Tucker decomposition [29], as explained in the next subsection. In 

practice, the circular convolution in (2.27) for each 
pq

a
k̂  is performed as follows. First, 

ˆ( )pq

au u k  is computed by Fourier transforming 
~ ˆ( )pq

au u k  with indices 

1, ,x x xu N N   , 1, ,y y yu N N   , 1, ,z z zu N N   , ( , , 0x y zu u u    ) and (1,1,1)u . 

Second, ˆ( )pq

au u k  is multiplied with the Fourier transform of ˆ( )pq

au k  with indices 

1, ,x xu N , 1, ,y yu N , 1, ,z zu N , after the dimensions of ˆ( )pq

au k  are increased 

to (2 1) (2 1) (2 1)x y zN N N      by zero padding. After computing all ˆ( )pq

au k , those are 

projected onto the testing basis functions and far-field contributions to the matrix-vector 

multiplication in (2.14) are computed by summing over all directions with quadrature 

weights pq

a  as  

 
1 2 11

0 1 1

ˆ ˆˆ ( , ) ( ), 1
a aK K

pq pq pq

a a d m a d

a p q

w m N
 





  

     uP k n f k   (2.29) 
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 To execute the FMM-FFT algorithm on high-performance parallel computers for 

characterizing large scale mine tunnels/galleries loaded with conductors, a hybrid 

spatial/angular parallelization strategy, which utilizes hybrid message passing 

interface/open multiprocessing (MPI/OpenMP) standards, is deployed. This 

parallelization strategy, described in next section, uniformly partitions the memory and 

computational loads along angular dimension (i.e., plane-wave directions) and spatial 

dimension (i.e., groups) among processors. Such parallelization strategy introduces two 

additional processor-to-processor communications compared to the spatial partitioning 

strategy in [33]. These additional communications require negligible time when non-

blocking MPI operations are used. On the other hand, the hybrid spatial/angular 

parallelization strategy permits scalable workload partitioning of compression of far-field 

patterns, while the spatial parallelization strategy in [33] does not. 

2.2.3.2 Parallel Scheme 

The proposed hybrid spatial/angular parallelization strategy achieves uniform 

memory and computational load partitioning (among pN  processors) during the setup 

stage as follows: Each processor is in charge of computing and storing the matrices that 

hold near-field interactions and basis functions’ far-fields and receiving patterns for 

/g pN N  groups (spatial partitioning), where gN  stands for the total number of groups 

enclosing the basis functions. In addition, each processor is responsible for computing 

and storing the FFT’ed translation operator tensors for 
2

1
( 1)(2 1) /a a pa
K K N


   plane 

wave directions (angular partitioning). No communication among processors is required 
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at this stage. During matrix-vector multiplication stage, the uniform computational load 

partitioning is achieved by the following steps, depicted for an example structure in 

Figure 2.3:  

 

Figure 2.3 Parallelization strategy in FMM-FFT scheme for matrix-vector multiplication 

stage: partitioning of groups and plane wave directions among 4pN   processors for the 

structure composed of 4 and 3 groups along x  and y  directions 

Step 1: Each processor computes the outgoing far-field and receiving patterns of 

the groups (along all directions) that it’s responsible for. Then it sends a set of directions 

of each group’s far-fields to the processor which is in charge of that set of directions. At 

the same time, it receives all remaining groups’ far-fields along a set of directions which 

it’s responsible for. This process can be better explained on the example structure in 

Figure 2.3: Each pair of concentric circles represents one group’s far-field (or receiving) 

patterns; outer and inner circles represent the far-field (or receiving) patterns computed 

for the medium 1 and medium 0 (air), respectively. The angular dimension of each circle 

concerns the angular samples (or directions) of the far-field (or receiving) pattern. The 
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number printed inside/near (and color of) the concentric circles/arcs indicates the ID of 

the processor in charge of the data. For the example structure, each processor computes 

three groups’ far-field patterns along all directions [via (2.25)] and keeps a quarter of this 

data (as 4pN  ) that is pertinent to directions the processor is responsible for. It sends 

the remaining portion of this data to the other processors which are responsible for the 

remaining directions. At the same time, it receives the data from other processor pertinent 

to remaining groups’ far-fields along a set of directions which it’s responsible for. The 

send and receive operations are performed using non-blocking MPI commands. 

Step 2: Each processor has all groups’ outgoing far-field patterns and FFT’ed 

translation operator tensors for a set of directions that it’s responsible for (shown by arcs 

in Figure 2.3). Using this data, each processor performs the translation operation (via 

(2.27)) and obtains incoming plane wave spectra for each direction that it’s in charge of. 

Then it sends each group’s incoming wave spectrum along a set of directions to the 

processor which is in charge of that group. At the same time, it receives the incoming 

wave spectrum along remaining directions from the other processors for each group that 

the processor is responsible for. Again, send and receive operations are performed non-

blocking MPI commands. 

Step 3: Each processor has the incoming plane wave spectra of the groups (along 

all directions) that it is responsible for. Using each group’s incoming plane wave 

spectrum and receiving pattern of the basis function that sits in that group, it computes 

the far-field contribution to the matrix-vector multiplication pertinent to 
thm  basis 

function.  
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As each processor computes and stores near-field interaction matrices of each 

group that it’s in charge of, it also locally computes near-field contribution to the matrix-

vector multiplication pertinent to 
thm  basis function that sits in that group. At the end of 

each matrix-vector multiplication, each processor sums the near- and far-field 

contributions pertinent to all basis functions that sit in groups which the processor is 

responsible for. Then it writes the results to the pertinent entries of a vector with 

dimension N  which is distributed to all processors by all-to-all communication 

(MPI_Allreduce).  

2.2.3.3 SVD and Tucker Decomposition 

To reduce the memory requirement of the SIE simulator leveraging FMM-FFT 

algorithm, large data structures storing the near-field interactions, far-field (and receiving) 

patterns of basis functions, and FFT'ed translation operator tensors are compressed via 

SVD and its higher-dimensional counterpart Tucker decomposition.  

First, the near-field interaction matrices are compressed. Assume that the near-

field interactions between sN  source basis functions in a group B
u  (e.g., (1,1,1)u  in 

Figure 2.2) and tN  testing basis functions in a group B u  (e.g., (2,1,1)u  in Figure 2.2) 

are stored in a matrix Q  with dimensions t sN N , which is a rank deficient block of 

MoM matrix with entries mnZ , m B 
u , n B

u , and can be compressed via truncated 

SVD ( TrSVD( ) ) as 

   *TrSVD Q Q UΣV ,  (2.32) 
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where *  stands for conjugate transpose, U  and V  are truncated unitary matrices with 

dimensions tN r  and sN r , respectively, and Σ  is the diagonal matrix with 

descending r  singular values of Q , i , 1, ,i r  , which are greater than a prescribed 

tolerance 2  times the value of first singular value, i.e. 2 1i   , 1, ,i r  . During setup 

stage, truncated SVD compression is applied to all MoM matrix blocks that stores the 

near-field interactions between groups, but not applied to full rank blocks pertinent to 

self-interactions of groups. During the iterative solution, the reduced representations in 

(2.32) are directly used without restoring the full block Q  to compute the contributions 

of near-field interactions to the matrix vector multiplication.  

Second, the far-field matrices are compressed. Assume that one component (  or 

 ) of far-field (or receiving) pattern of a basis function for a medium {0,1}a  is stored 

in a matrix W  with dimensions ( 1) (2 1)a aK K   , which tabulates the farfield samples 

along elevation and azimuthal directions through its rows and columns, respectively. 

Given the prescribed tolerance 3 , W  can be approximated by its truncated SVD as  

  TrSVDW W   (2.33) 

This operation is applied to   and   components of all basis functions' far-field and 

receiving patterns for both media. The resulting truncated unitary matrices and singular 

values obtained and stored during setup stage are used to restore the far-field and 

receiving patterns one-by-one during the iterative solution.  
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Finally, the FFT’ed translation operator tensors are compressed. The tensor 

storing the FFT’ed translation operator samples for each 
pq

a
k̂ , u u ,  has dimensions 

1 2 3D D D   (2 1) (2 1) (2 1)x y zN N N      and can be compressed via Tucker 

decomposition as [34] 

 1 1 2 2 3 3    u u U U U   (2.34) 

where  is the core tensor with dimensions 1 2 3r r r  , iU , 1, ,3i  , denote the factor 

matrices with dimensions i iD r , 1, ,3i  , and i , 1, ,3i , stands for the i mode 

matrix product of a tensor, which can be performed as explained in [35]. The core tensor 

and factor matrices are obtained via the following procedure: (i) The unfolding matrices 

of u u , iT , 1, ,3i  , are formed. (Note: An example of forming unfolding matrices of 

a tensor is given in Eqn. 2.1. of [35].) (ii) Given the prescribed tolerance 4 3 , the 

truncated SVDs of unfolding matrices, *TrSVD( )i i i iT U Σ V , 1, ,3i  , are obtained. 

The resulting truncated unitary matrices iU , 1, ,3i  , are the factor matrices of (2.34). 

(iii) The core tensor can be obtained via  

 * * *

1 1 2 2 3 3   u u U U U . (2.35) 

The core tensors and factor matrices of FFT’ed translation operator tensors for all 
pq

a
k̂  

directions are obtained during the setup stage and used to restore u u  one pq

a
k̂  at a time 

during the iterative solution stage.  
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Numerical 

Example 

Frequency 

(MHz) 

Polarizatio

n 

Number of 

processors  

Average memory 

required for each 

processor (GB) Time 

(hours) Without 

Compressi

on 

With 

Compressi

on 

Empty 

arched 

tunnel 

455 
Vertical 

32 28.40 14.62 
5.28  

Horizontal 5.33 

915 
Vertical 

45 64.91 36.45 
29.93  

Horizontal 28.82 

Arched 

tunnel 

loaded 

with carts 

455 Vertical 16 20.09 10.58 4.48 

Arched 

tunnel 

loaded 

with strips 

50 Vertical 32 2.28 - 9.37 

Mine 

gallery 

455 
Vertical 

32 21.05 10.60 
4.87 

Horizontal 4.63 

915 
Vertical 

45 46.27 28.89 
23.82 

Horizontal 22.75 

Rectangul

ar tunnel 

with rough 

walls 

455 Vertical 32 30.04 12.73 6.37 

Rectangul

ar tunnel 

with 

smooth 

walls 

455 Vertical  32 28.45 12.28 6.75  

Table 2-1 Specifications of simulation performed by the FMM-FFT accelerated SIE 

simulator for each numerical example. 

2.3 Numerical Results and Discussions 

This section presents numerical examples that demonstrate the accuracy, 

efficiency, and applicability of the proposed FMM-FFT accelerated SIE simulator. In all 

examples below, the FMM box size is half of the wavelength in ore, FMM accuracy is 3 
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digits ( 1 3  ), the solution of the system of equations is achieved using a transpose-free 

quasi-minimal residual  iterative solver [36] with residual error 
610
, and tolerances 2 , 

3 , and 4  for compressing matrices and tensors are 
310
, 

410
, and 

610
, respectively. 

Furthermore, tunnels and galleries are surrounded by ore with permittivity 

1 0 ,1 1 0( )r j       and permeability 1 0  ; ,1r  and 1  are the relative permittivity 

and conductivity of the ore, respectively. All simulations are performed on a cluster of 

dual hexacore X5650 Intel processors with 64 GB RAM, launching one MPI process on 

each core and distributing computational tasks on the 16 cores in each processor via 

OpenMP. The CPU and memory requirements of the proposed solver for all numerical 

examples are tabulated in Table 2-1. 

2.3.1 Arched Tunnel 

First, the proposed simulator is used to analyze EM wave propagation in an 

arched tunnel surrounded by ore with ,1 8.9r   and 1 0.15 S/m   [Figure 2.4 (a)]. A 

transmitting electrically-small electric dipole with unit moment is positioned at 

(0.915,50,1.22) m  and power densities are computed on lines inside the tunnel. Three 

different scenarios are considered: an empty tunnel, a tunnel loaded with mine carts, and 

a tunnel loaded with conducting strips that model a transmission line. 

2.3.1.1 Empty Tunnel 

A 600m long tunnel is excited by either a  z  (vertically) or x  (horizontally) 

oriented dipole operated at 455 MHz  or 915 MHz  (4 cases) [Figure 2.4 (a)]. At the 



 

 

32 

 

lower and higher frequencies, the current densities on the tunnel walls are discretized 

using 15,153,996N   and 58,510,782N   RWG basis functions, respectively. Power 

densities computed on the line connecting (0.915,51,1.22) m  and (0.915,600,1.22) m  

are compared with measured data following normalization to account for 

uncertainties/differences in the excitation mechanism [Figure 2.4 (b)-(e)]. Computed and 

measured power densities are in good agreement, thereby validating the accuracy of the 

simulator. The dynamic range of both the simulator and measurements is approximately 

100 dB and reflected in Figure 2.4 (b), (c), and (e). The magnitude of the electric current 

density on the tunnel walls computed for each orientation of the transmitting dipole and 

frequency is shown in Figure 2.4 (f)-(i). It decays in accordance with the power density 

along the tunnel. It can be seen from Table 2-1 that the proposed compression schemes 

reduce the memory requirements of the simulator by factors of 2 for 455 MHz and 1.8 for 

915 MHz. 
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Figure 2.4 (a) The geometry of an empty 600m-long arched tunnel. The power values on 

receiver points computed by the FMM-FFT-SIE simulator and obtained by measurements 

at 455 MHz for (b) vertical and (c) horizontal polarizations and at 915 MHz for (d) 

vertical and (e) horizontal polarizations. Electric current density on tunnel walls 

computed by the proposed simulator at 455 MHz for (f) vertical and (g) horizontal 

polarizations and at 915 MHz for (h) vertical and (i) horizontal polarizations (in dB scale) 

2.3.1.2 Tunnel Loaded with Mine Carts 

A 200m long tunnel loaded with six PEC mine carts is excited by a z directed 

electric dipole operated at 455 MHz [Figure 2.5 (a)]. The mine carts are centered at 

(0.915,80.25 ( 1) 20,0.55) mj   , 1, ,6j ; their surfaces and wheels are modeled by 

truncated inverted pyramids and circular cylinders, respectively [Figure 2.5 (a)].  
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Figure 2.5 (a) The geometry of 200m-long arched tunnel loaded with six PEC mine carts 

(the lateral wall is removed for illustration). (b) The power values on receiver points in 

empty and loaded tunnels computed by the proposed FMM-FFT-SIE simulator. (c) 

Electric current density on tunnel walls and mine carts computed by the proposed 

simulator (in dB scale). 

The current densities on the tunnel walls and mine carts are discretized using 

5,433,360N   RWG basis functions. Power densities computed on the line connecting 

(0.915,51,1.22) m  and (0.915,200,1.22) m  are compared with those in the empty tunnel 

(obtained in scenario A) [Figure 2.5 (b)]. The power density at 184 my  (just after the 

sixth mine cart) is 9 dB below that observed in the empty tunnel. Oscillations in the 

power density graph in the loaded tunnel beyond 81 my , that is just after the first mine 

cart, result from reflections from subsequent carts, as evidenced by plots of the electric 

current density on tunnel walls displayed in Figure 2.5 (c). Again, the proposed 
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compression schemes reduce the solver's memory requirement by a factor of two [Table 

2-1]. 

2.3.1.3 Tunnel Loaded with Conducting Strips 

A 650 m-long tunnel loaded with two PEC strips is excited by a z directed 

electric dipole operated at 50 MHz [Figure 2.6 (a)]. The PEC strips, which are 600 m 

long, infinitesimally thin, 4 cm wide, and separated by 0.3 m, model a transmission line 

placed near the lateral tunnel wall and are centered at (0.17,345,1.07) m  and 

(0.17,345,1.37) m . The current densities on the tunnel walls and conducting strips are 

discretized using 442,044N   RWG basis functions and the simulation is performed 

without FMM-FFT acceleration as the FMM-FFT algorithm is numerically unstable for 

low frequencies [32]. Normalized power densities computed along two lines connecting 

point (0.915,51,1.22) m  to (0.915,645,1.22) m (tunnel center), and point 

(0.17,51,1.22) m  to (0.17,645,1.22) m (middle of strips) are shown in Figure 2.6 (b). A 

standing wave phenomenon can be observed at receiver points near to the wall at 

650 my . The magnitude of the electric current densities induced on tunnel walls and 

conductor strips is shown in Figure 2.6 (c). The current densities induced on the strips 

conform to a bifilar mode [26], allowing the field to travel deep into the tunnel. The 

unloaded tunnel does not support any propagating modes. 
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Figure 2.6 (a) The geometry of 650m-long arched tunnel loaded with two parallel PEC 

strips (the lateral wall is removed for illustration). (b) The power values at receiver points 

on a line in the middle of strips and on a line in the middle of tunnel computed by the 

proposed simulator. (c) Electric current density on tunnel walls and mine carts computed 

by the proposed simulator (in dB scale) (the half of the tunnel is removed to clearly 

observe the currents around strips). 

2.3.2 Mine Gallery 

Next, the proposed simulator is used to analyze EM wave propagation in a mine 

gallery formed by eight rectangular tunnels [Figure 2.7 (a)], four of which extend along 

the x  direction and intersect the remaining four extending along the y  direction [Figure 
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2.7 (a)]. The tunnels are surrounded by ore with ,1 3r   and 1 0.001S/m  . The gallery 

is excited by an electric dipole with unit moment that is centered at (7.5,15.91,1.12) m , 

either z  (vertically) or y  (horizontally) oriented, and operated at either 455 MHz or 

915 MHz (four cases). The current densities on the walls are discretized using 

15,766,560N   and 58,794,816N   RWG basis functions at the lower and higher 

frequencies, respectively. For both polarizations and frequencies,  normalized power 

densities computed at receiver points along four lines in the x-directed tunnels connecting 

(8.5, ,1.12) my  to (81.5, ,1.12) my  with y  set to 15.91, 32.73, 49.55, and 66.37 are 

shown in Figure 2.7 (b)-(e), The observations are followed in order. First, in tunnel 2, 

power densities at receivers with x coordinates less than 15.91 m are always larger than 

those at receivers with x coordinates exceeding 15.91 m [Figure 2.7 (b)-(e)]. Slight or 

no decay is observed for receivers with x coordinates lower than 15.91 m as direct 

coupling from the transmitter to these receiver points occurs through the low-loss ore. 

Second, small or large spikes appear in the power density plots near receivers with 

x coordinates 15.9 m, 32.7 m, 49.5 m, and 66.3 m in tunnels 3 and 4 [Figure 2.7 (b)-(e)]. 

Note that these receivers reside at the intersections of tunnels 3 and 4 and tunnels 5, 6, 7, 

and 8; these spikes result from waves guided by tunnels 5, 6, 7, and 8.  

The electric current densities on gallery walls computed for each frequency and 

polarization are shown in Figure 2.7 (f)-(i); these plots indirectly confirm the above 

power density observations. It can be seen in Table 2-1 that the proposed compression 

schemes reduce the memory requirements of the simulator by factors of 2 at 455 MHz 

and 1.6 at 915 MHz. 
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Figure 2.7 (a) The geometry of a mine gallery formed by eight tunnels. (b) The power 

values at receiver points on lines inside tunnel 1, 2, 3, and 4 computed by the proposed 

FMM-FFT-SIE simulator at 455 MHz for (b) vertical and (c) horizontal polarizations and 

at 915 MHz for (d) vertical and (e) horizontal polarizations. Electric current density on 

tunnel walls computed by the proposed simulator at 455 MHZ for (f) vertical and (g) 

horizontal polarizations and at 915 MHZ for (h) vertical and (i) horizontal polarizations. 

2.3.3 A Rectangular Tunnel with Rough Walls 

Finally, the proposed simulator is used to analyze EM wave propagation in a 

rectangular tunnel with rough walls, excited by a z  (vertically) oriented unit electric 

dipole positioned at (50.0, 0.925, 1.12) m and operated at 455 MHz [Figure 2.8 (a)]. The 

tunnel is surrounded by ore with ,1 3r   and 1 0.001S/m  . Tunnel walls have a random 

profile with 0.1 m root-mean-square (RMS) height and 0.25 m correlation length [37]. 
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The current densities on the tunnel walls are discretized using 13,580,916N   RWG 

basis functions. Results for the tunnel with rough walls are compared to those for the 

corresponding tunnel with smooth walls, and power densities are computed along a line 

connecting (51.0, 0.925, 1.12) m and (200, 0.925, 1.12) [Figure 2.8 (b)]. The power 

density at 175 my  for the tunnel with rough walls is 7.34 dB below that for the tunnel 

with smooth walls. Furthermore, the power densities computed by the proposed simulator 

for the tunnel with smooth walls are compared to those obtained using the multi-modal 

decomposition method of [4] in Figure 2.8 (b). Near-perfect agreement between the two 

results is observed, and validating the accuracy of the proposed simulator. In addition, the 

electric current densities computed on rough and smooth walls are shown in Figure 2.8 (c) 

and (d). Clearly, the decay of the current densities on tunnel walls for both cases 

conforms with the decay of the power densities along the tunnels. The compression 

schemes reduce the solvers’ memory requirements by a factor more than two [Table 2-1]. 
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Figure 2.8 (a) The geometry of 200 m-long rectangular tunnel with rough walls. (b) The 

power values at receiver points on a line in the middle of tunnel computed by the 

proposed simulator for the tunnel with smooth and rough walls and by the multi-modal 

decomposition for the tunnel with smooth walls. Electric current density on (c) rough 

walls and (d) smooth walls of the rectangular tunnel computed by the proposed simulator 

(in dB scale). 

2.4 Chapter Conclusion 

An FMM-FFT accelerated SIE full wave simulator is presented for characterizing 

EM wave propagation in electrically large and loaded mine environments. The full wave 

simulator rapidly solves the Muller-combined field SIE system using a parallel FMM-

FFT acceleration scheme. To reduce the memory requirements, the simulator employs 

SVDs and Tucker decompositions to compress large data structures. Numerical results 

demonstrate the accuracy, efficiency, and applicability of the proposed simulator. 
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CHAPTER 3  
A Domain Decomposition Based Surface Integral Equation 

Simulator for Characterizing Electromagnetic Wave 

Propagation in Mine Environments 

3.1 Chapter Introduction 

The wireless communication, sensing, and tracking systems are essential for 

performing routine mining operations, ensuring miners' safety, and conducting life-saving 

operations after catastrophic events. The design, characterization, and (re-) configuration 

of such systems call for efficient and accurate electromagnetic (EM) simulators capable 

of characterizing EM wave propagation in large-scale and realistic mine environments. 

Existing EM simulators developed for this purpose are either based on approximate 

methods or full wave techniques [1]. The simulators based on approximate methods 

including single/multi-mode waveguide expansion [38, 39], ray-tracing [40-42], and 

cascaded-impedance [8] methods achieve high computational efficiency, but have limited 

applicability: These simulators are typically operated at certain frequency bands and not 

applicable to the analysis of EM wave propagation in complex mine environments with 

rough walls, debris from a cave-in, mining equipments, and cables. In contrast, the 
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simulators based on full-wave techniques including finite difference time domain [43-46] 

and surface integral equation (SIE) [47-50] methods are operated at desired frequency 

bands and permit high-fidelity modeling of realistic mine environments. Nevertheless, 

they require excessive computational resources due to large electrical sizes of 

tunnels/galleries at wireless systems' operating frequencies. To alleviate this 

computational burden, a fast multipole method - fast Fourier transform (FMM-FFT) 

accelerated SIE simulator has been proposed recently [49, 50]. This simulator leverages 

singular value decomposition (SVD) and higher-order SVD based compression schemes 

to attain low memory requirement while rapidly solving SIEs via FMM-FFT scheme. 

Albeit efficient for EM analysis with single excitation, the simulator requires excessive 

computational time when used for EM analyses with many different excitations, which 

require repetitive execution of EM simulator and arise in uncertainty quantification and 

optimum wireless node placement studies [51, 52]. 

In this chapter, a fast, full-wave, and memory-efficient domain decomposition 

(DD) based 3-D SIE simulator is proposed for efficiently analyzing EM wave 

propagation in electrically large and realistic mine environments when single or multiple 

excitations exist. The proposed simulator extends the ideas in our previous work [48] on 

TMz wave propagation in 2-D mine layouts to EM wave propagation in 3-D realistic 

mine environments, but with significant algorithmic enhancements. The proposed 

simulator first divides the physical mine tunnels/galleries into subdomains and defines 

equivalent surfaces between them using Huygens' principle. Then, it obtains reduced 

order representations using equivalent surfaces to characterize EM wave propagation in 

each subdomain separately. The reduced order representations –called scattering 
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matrices– are computed using a fast and efficient butterfly-based direct solver [53] and an 

FMM–FFT scheme [27, 28, 54, 55]. Finally, it constructs and solves an inter-domain 

system accounting for EM interactions between equivalent surfaces. The solution of 

inter-domain system is accelerated by judiciously combining subdomains into larger ones 

via an efficient subdomain combining scheme for electrically large mine environments.  

As explained in detail in this chapter and shown in numerical results section, the 

proposed simulator is far more memory and CPU efficient than the conventional fast 

simulators, such as FMM-FFT accelerated SIE simulators. It significantly outperforms 

the conventional fast simulators especially for the problems involving EM analyses of 

electrically large tunnels/galleries with multiple excitations, encountered in uncertainty 

quantification and optimal wireless node placement studies. This is due to the fact that 

the proposed simulator obtains and solves a reduced system with significantly less 

degrees of freedom compared to those of conventional fast simulators. To do that, it 

performs the analysis in two stages: (i) it computes the scattering matrices (only once) 

during its offline stage and (ii) it updates the right hand side of inter-domain system and 

solves the reduced system for each different excitation during its online stage. For such 

problems involving electrically large tunnels, the subdomain combining scheme is 

applied and the computational cost of the proposed simulator, which peak at stage (ii), 

scale logarithmically with the tunnel length while that of the conventional fast simulators 

scales quasi-linearly. When the subdomain combining scheme is not applied, the 

computational cost of the proposed simulator scale linearly with the tunnel length and is 

still lower than that of conventional fast simulators for electrically large tunnels. 

Furthermore, the memory requirement of the proposed simulator with and without 
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subdomain combining scheme scales logarithmically and remains constant with tunnel 

length, respectively. These unprecedented memory requirements are much smaller than 

that of conventional fast simulators, which scales quasi-linearly.  

It is noteworthy to mention that previously proposed DD based full wave methods 

(see [56] and references therein) leverage the similar ideas proposed here and exploit 

equivalent surfaces to reduce the dimensionality of linear systems pertinent to the 

structures involving high permittivity or discretized with fine meshes [57-63]. However, 

unlike these works relying on closed equivalent surfaces, the proposed simulator 

leverages truncated open equivalent surfaces to reduce the dimensionality of linear 

system by exploiting the small skin-depth feature of lossy mine ore at wireless systems' 

operating frequencies. The applicability, accuracy, and efficiency of the proposed 

simulator are demonstrated through its application to the EM wave propagation in an 

arched tunnel, rectangular tunnels with rough walls and partial cave-in, and a mine 

gallery and statistical characterization of EM wave propagation in an electrically very 

large rectangular tunnel. 

3.2 Formulation 

This section first explains the domain decomposition strategy to split the physical 

domain of mine environment into subdomains and expounds the computation of 

scattering matrices for characterizing EM wave propagation in each subdomain. Then, it 

presents the inter-domain system and its expedient solution via subdomain combining 
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scheme. Finally, it provides the theoretical estimates for the computational cost and 

memory requirement of the proposed simulator. 

3.2.1 Domain Decomposition Strategy 

Consider a straight rectangular mine tunnel which is assumed to be filled by air 

with permittivity 0  and permeability 0   (medium 0) and surrounded by unbounded ore 

with permittivity 1 , permeability 1 , and conductivity   (medium 1) [Figure 3.1 (a)]. 

The tunnel with walls denoted by    [Figure 3.1 (a)] is split into four subdomains (for 

the sake of simplicity and demonstration) denoted by  
i , , , ,i a b c d  [Figure 3.1 (b)]. 

By invoking the Huygens' equivalence principle, equivalent surfaces enclosing each 

subdomain are defined [Figure 3.1 (b)]. The adjacent subdomains and equivalent surfaces 

touch each other as   approaches zero and consequently the union of subdomains 
i , 

, , ,i a b c d  yields the original domain [Figure 3.1 (c)].  

The small skin depth due to the lossy surrounding environment and high operating 

frequencies of wireless communication systems allows limiting each equivalent surface 

to a portion of touching surfaces between adjacent subdomains [Figure 3.1 (d)-(e)]. The 

equivalent electric and magnetic current densities ( )pJ r  and ( )pM r , 1, ,3p   are 

defined on these surfaces in accordance with the outward pointing unit normal of surfaces 

ˆ
pn , 1, ,3p  . These surfaces and the equivalent current densities are used to 

characterize EM wave propagation in each subdomain separately, as explained in the 

following subsection. (Note: the domain decomposition example given in Figure 3.1 and 
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subdomains and equivalent surfaces defined therein are extensively referred to in this 

section (without loss of generality) to avoid heavy generic notation.) 

 

  

 

Figure 3.1 Domain decomposition scheme for a mine tunnel: (a) The original physical 

domain of the tunnel. (b) Decomposition with equivalent surfaces. (c) Overlapping 

equivalent surfaces between subdomains. (d) Truncated equivalent surfaces and 

equivalent currents. (e) 3-D view of the decomposed straight tunnel. 

3.2.2 Scattering Matrix of Individual Subdomains 

EM wave propagation in each subdomain defined in Figure 3.1 (d) is 

characterized by a scattering matrix 
i

Z , { , , , }i a b c d . Consider that ( )pJ r  and ( )pM r , 
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1, ,3p  , on each equivalent surface (in Figure 3.1 (d)) are discretized by 2 pN  Rao-

Wilton-Glisson (RWG) basis functions 
, ( )p jf r  [64] as 

 

2

, , , ,

1 1

( ) ( ),  ( ) ( )
p p

p

N N

p p j p j p p j p j

j j N

I I
  

  J r f r M r f r , (3.1) 

where ,p jI , 1, , 2 pj N , are unknown expansion coefficients of the currents on 
pS , 

1, ,3p  . The scattering matrix 
i

Z  relates the discretized currents defined on 

equivalent surfaces touching to i  to the discretized tested fields (scattered from i ) on 

them. For an example subdomain 
c  in Figure 3.1 (d), this relation is expressed via a 

matrix system as 

 
222 23 2

332 33 3

c c sca

c c sca

    
    

    

IZ Z V

IZ Z V
,  (3.2) 

where the scattering matrix c
Z  is formed by 2 2  scattering submatrices. pI  is the 

vector holding the unknown expansion coefficients of the discretized currents on 
pS , 

{2,3}p . sca

qV  is the vector formed by the vectors of scattered electric fields sca

qE  and 

scattered magnetic fields sca

qH  tested on 
qS , as [ ; ]sca sca sca

q q qV E H , {2,3}q . The 

2 2q pN N  scattering submatrix c

qpZ , , {2,3}q p , maps the currents on pS  to the 

scattered fields on 
qS  by accounting for the wave propagation characteristics of the 

subdomain c . 2 qN  is the number of RWG basis functions used to discretize the 
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currents on qS . It is computed performing the following three steps for all basis functions 

on 
pS :  

Step 1: Generate a unit vector pI  with non-zero entry corresponding to a basis 

function on 
pS  and compute the fields generated via pI  and tested on 

c with RWG 

basis functions. 

Step 2: Obtain the electric and magnetic currents on 
c  induced by the fields 

computed in step 1.  

Step 3: Compute the tested fields on 
qS  generated by the currents obtained in step 

2.  

These three steps are illustrated to obtain an example scattering submatrix 32

c
Z  in 

Figure 3.2 and described in detail as follows: 

Step 1: The current densities ( )pJ r  and ( )pM r  on 
pS  generate the electric and 

magnetic fields on c , ( )c
E r  and ( )cH r , [Figure 3.2 (a)] via  

 1 1( ) ( ) ( )c

p p
         E r J r M r ,  (3.3) 

  2

1 1 1( ) ( ) 1 ( )c

p p          H r J r M r .  (3.4) 

Here 0.5

1 1 1( )   , 
c

r , and the signs of ( )pJ r  and ( )pM r  are positive if they are 

defined on the side of pS  facing to c ; otherwise, they are negative. The integral 

operators   and 


 are defined as  

    2( ) ( ) ( , ) ( )
S

j k G d          F r I r r F r r ,  (3.5) 
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  ( ) ( , ) ( )
S
G d 

    F r r r F r r ,  (3.6) 

where 2 f  , f  is the frequency, ( , ) exp( | |) / (4 | |)G jk       r r r r r r  is the 

Green's function [65] for the medium {0,1}   and 0.5( )k     .  

Step 2: The electric and magnetic fields on 
c , ( )c

E r  and ( )c
H r , (computed in 

step 1) induce the current densities ( )c
J r  and ( )cM r  on c  [Figure 3.2 (b)], which are 

obtained solving  

    0 1 0 1( ) ( ) ( ) ,c c c          E r J r M r   (3.7) 

   0 1
0 1 2 2

0 1

( ) ( ) ( ) ,c c c

 

 
            

 
H r J r M r   (3.8) 

where cr . (3.7) and (3.8) are well-known Poggio-Muller-Chang-Harrington-Wu-Tsai 

(PMCHWT) equations [65] and are solved for ( )c
J r  and ( )c

M r , as detailed below. 

Step 3: The current densities ( )c
J r  and ( )cM r  generate the electric and magnetic 

fields on 
qS , ( )qE r and ( )qH r , [Figure 3.2 (c)] via  

 1 1( ) ( ) ( )c c

q
       E r J r M r , (3.9) 

  2

1 1 1( ) ( ) 1/ ( )c c

q         H r J r M r ,  (3.10) 

where qSr . Discretizing the currents in (3.3), (3.4), and (3.7)-(3.10) (as in (3.1)) 

and Galerkin testing the resulting equations yields 2 2q pN N  scattering submatrix c

qpZ  

that relates currents on 
pS  to fields on 

qS  as  
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 1( )c c c c

qp q p

Z C B A . (3.11) 

Here c

pA , c
B , and c

qC  are the matrices of discretized operators with dimensions 

2 2c pN N , 2 2c cN N , and 2 2q cN N  (obtained in steps 1, 2, and 3), respectively, 

and their entries are provided in Section 3.2.3. 2 cN  is the number of RWG basis 

functions used to discretize the currents on 
c . Inverting 

c
B  in (3.11) via classical direct 

methods is computationally expensive when cN  is large (more than tens/hundreds of 

thousands). To this end, the proposed simulator leverages a butterfly-based direct solver 

for computing the compressed inverse (LU factors) of 
c

B , realizing significant savings 

when compared to conventional direct solvers for inverting 
c

B . Specifically, the solver 

first hierarchically decomposes the discretized PWCHWT impedance matrix 
c

B  and 

compresses its off-diagonal blocks via butterflies [66]. Next, the solver computes a 

compressed LU factorization of 
c

B  via recursively computing sums and products of 

butterfly-compressed partial LU factors as new butterfly representations, which is 

augmented by a fast matrix-vector multiplication-based low-complexity randomized 

butterfly scheme. The details of this solver can be found in [53]. Once 1( )c 
B  is obtained, 

the remaining computationally costly operations to obtain c

qpZ  are the multiplications of 

matrices c

pA  and c

qC  with a vector while computing c

qp pZ I ; such operations are 

accelerated by an FMM-FFT scheme [27, 28, 54, 55]. 
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Figure 3.2 Procedure for computing scattering submatrix 3

23Z . (a) Step 1: coefficient of a 

basis function on 3S  is set to unit and the fields produced by this current are tested on 
c

 . 

(b) Step 2: the currents on 
c

  due to the incident fields obtained in step 1 are solved. (c) 

Step 3: the fields produced by the currents obtained in step 2 are tested on 2S . 

3.2.3 Entries of Equation 3.11 

Let ,   denote standard inner product. Currents ( )c
J r  and ( )c

M r , defined on 

subdomain c , are discretized by 2 cN  RWG basis functions ( )nf r  as 

 
2

1 1

( ) ( ),  ( ) ( )
c c

c

N N
c c c c

n n n n

n n N

I I
  

  J r f r M r f r   (3.12) 

Currents ( )pJ r  and ( )pM r  on pS , {2,3}p  , are discretized by 2 pN  RWG basis 

functions 
, ( )p jf r   as 

 

2

, , , ,

1 1

( ) ( ),  ( ) ( )
p p

p

N N

p p j p j p p j p j

j j N

I I
  

  J r f r M r f r   (3.13) 
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Currents ( )qJ r  and ( )qM r  on qS , {2,3}q   are discretized by 2 qN  RWG basis 

functions 
, ( )q kf r   as 

 

2

, , , ,

1 1

( ) ( ),  ( ) ( )
q q

q

N N

q q k q k q q k q k

k k N

I I
  

  J r f r M r f r   (3.14) 

Note that when p q , the basis functions on pS  are identical to the ones on qS . 

The entries of c

pA , c
B  and c

qC  are  

   1 ,( ), ( ) , 1 ,1
c

c

p n p j c pnj
n N j N


      A f r f r   (3.15) 

   1 ,( ), ( ) , 1 ,1 2
c

c

p n p j c p pnj
n N N j N


       A f r f r   (3.16) 

   1 ,( ), ( ) , 1 2 ,1
c

c

p n p j c c pnj
N n N j N


        A f r f r   (3.17) 

   1 ,

1

1
( ), ( ) , 1 2 ,1 2

c

c

p n p j c c p pnj
N n N N j N




        A f r f r   (3.18) 

    0 1( ), ( ) ( ) , 1 ,1
c

c

m n c cmn
m N n N


     B f r f r   (3.19) 

    0 1( ), ( ) ( ) , 1 ,1 2
c

c

m n c c cmn
m N N n N


      B f r f r   (3.20) 

    0 1( ), ( ) ( ) , 1 2 ,1
c

c

m n c c cmn
N m N n N


       B f r f r   (3.21) 

    0 1

2 2

0 1

( ), ( ) ( ) , 1 2 ,1 2

c

c

m n c c c cmn
N n N N n N

 


       B f r f r   (3.22) 

    , 1( ), ( ) , 1 ,1
q

c

q q k n q cSkn
k N n N    C f r f r   (3.23) 
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    , 1( ), ( ) , 1 ,1 2
q

c

q q k n q c cSkn
k N N n N     C f r f r   (3.24) 

    , 1( ), ( ) , 1 2 ,1
q

c

q q k n q q cSkn
N k N n N      C f r f r   (3.25) 

    1
, 2

1

( ), ( ) , 1 2 ,1 2

q

c

q q k n q q c ckn
S

N k N N n N


      C f r f r   (3.26) 

Here, the c
B  matrix is formed by Galerkin testing. 

3.2.4 Inter-domain System 

The scattering matrices computed to characterize the EM wave propagation in 

each subdomain are used to form the inter-domain system of equations that accounts for 

the interactions between equivalent surfaces. The interactions between equivalent 

surfaces that are not attached to the same subdomain are not included in inter-domain 

system since those are negligible due to the highly lossy background. The interactions 

between equivalent surfaces attached to the same subdomain are included in inter-domain 

system by carefully accounting for the impressed sources in subdomains and induced 

currents on equivalent surfaces and by imposing the boundary conditions on the 

equivalent surfaces, as detailed below. 
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Figure 3.3 (a) Separation of subdomains a  and b . (b) The incident fields on 1S  . Red 

dash line represents the fields due to sources in a ; blue dash line represents the fields 

radiated by currents on 1S   and scattered by a . (c) The incident fields on 1S  . Red dash 

line represents the fields due to sources in b ; blue dash line represents the fields 

radiated by currents on 1S   and scattered by b ; green dash line represents the fields 

radiated by currents on 2S  and scattered by b . 

Consider the equivalent surface 
1S  (in Figure 3.1 (d)) attached to a  and b  

[Figure 3.3]. This equivalent surface interacts with itself and 2S . To illustrate its self-

interaction, 
1S  is duplicated as 

1S   and 
1S   [Figure 3.3 (a)]. While the self-interaction of 

1S  is represented as the interaction between 
1S   and 

1S  , the interaction between 
1S  and 

2S  is replaced by the interaction between 
1S   and 2S  [Figure 3.3 (a)]. Note that 

1S   does 

not interact with 2S  since they are not attached to the same subdomain. Furthermore, the 

vectors holding the unknown expansion coefficients of the currents on 
1S   and 

1S   are 

denoted by 1


I  and 1


I , respectively. To obtain 1


I , the fields impinging to the 

1S   should 
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be determined. In fact, these are (i) the incident fields generated by possible impressed 

sources in a  and (ii) the fields generated by the currents on 
1S  , which travel 

throughout a , impinge to the 
1S  , and thereby are characterized by scattering submatrix 

11

a
Z . By taking into account these incident fields, the currents on 

1S   are obtained by 

solving the PMCHWT equations for 
1S  , which reads 

 1 1 1, 11 1

inc a

a

  D I V Z I   (3.27) 

where 1,

inc

aV  is the tested incident fields on 
1S   due to impressed sources in a  and 1D  is 

the discretized PMCHWT matrix for 
1S (see [65] for details). Similarly, the currents on 

1S   are obtained by accounting for the incident fields due to impressed sources in b  and 

the fields generated by the currents on 
1S   and 2S , which travel throughout b , impinge 

to the 
1S  , and thereby are characterized by scattering submatrices 11

b
Z  and 12

b
Z , 

respectively [Figure 3.3 (c)]. By considering these incident fields, the currents on 
1S   are 

obtained via 

 1 1 1, 11 1 12 2

inc b b

b

   D I V Z I Z I   (3.28) 

where 1,

inc

bV  is the tested incident fields on 
1S   due to impressed sources in b . Since 

1S   

and 
1S   coincide, currents on both surfaces equal to each other ( 1 1 1

  I I I ). Denoting 

11 11 1

a a Z Z D , 11 11 1

b b Z Z D , and summing (3.27) and (3.28) yield the inter-domain 

equation for 
1S   
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  11 11 1 12 2 1

a b b inc  Z Z I Z I V   (3.29) 

where 1 1, 1,

inc inc inc

a b V V V . By extending the above procedure to all other equivalent 

surfaces, the inter-domain system for the example tunnel in Fig.1 is obtained as  

 

11 11 12 1 1

2 221 22 22 23

3 3
32 33 33

0

,

0

a b b inc

incb b c c

inc
c c d

    
    

    
        

Z Z Z I V

I VZ Z Z Z

I VZ Z Z

  (3.30) 

where [ ; ]inc inc inc

p p pV E H , 1, ,3p  , is the vector of incident electric and magnetic fields 

on 
pS  due to impressed sources in the subdomains touching 

pS . It is zero if all 

subdomains touching to 
pS  are (impressed) source-free. Similar equations can be easily 

derived for tunnels and galleries with more subdomains attached to more than two 

equivalent surfaces. Once the inter-domain system (3.30) is solved, the currents on each 

equivalent surface are used to compute the currents on i  (and hence fields anywhere 

inside i ) via steps 1 and 2 of the procedures to obtain scattering matrix. For example, 

the current coefficients b
I  on b  (in Figure 3.1 (d)) are computed as 

 1 1

1 1 2 2( ) ( )b b b b b  I B A I B A I .  (3.31) 

In case one subdomain contains impressed sources, the incident fields generated by 

impressed sources should be accounted for while computing the currents pertinent to that 

subdomain. 

When the repetitive execution of an EM simulator for many different excitations 

is required for uncertainty quantification or optimum wireless node placement studies, the 
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proposed DD based SIE simulator only updates the right hand side of (3.30) and re-solves 

the inter-domain system for new excitations during the online stage of the simulator. Note 

that the scattering matrices of individual subdomains are computed only once and stored 

during the offline stage of the simulator. Furthermore, many mine tunnels or galleries 

have repeated geometric features and therefore it is reasonable to assume that many 

subdomains of mine tunnels and galleries are identical. Therefore, the scattering matrices 

for all subdomains decomposing a large mine environment can be obtained by 

characterizing only a few different subdomains. 

3.2.5 Subdomain Combining Scheme 

When the electrically large mine tunnels and galleries are divided into hundreds 

of subdomains, solving the inter-domain system could be computationally expensive. To 

this end, an efficient scheme that combines the adjacent identical subdomains and 

alleviates this computational burden is proposed here.  

Consider two adjacent subdomains 
b  and 

c  (in Figure 3.1 (d)) with associated 

equivalent surfaces pS , 1, ,3p  . As derived in (3.2), the relations between currents 

and fields on these equivalent surfaces are expressed via scattering matrices of these 

subdomains as  

 

11 12 1 1

2 221 22 22 23

3 332 33

0

0

b b sca

scab b c c

scac c

     
     

     
     

    

Z Z I V

I VZ Z Z Z

I VZ Z

  (3.32) 
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By comparing (3.30) and (3.32), one can found that 2 2

sca incV V . Hence, when there is no 

source inside these subdomains, i.e. 2 0sca V , 
2I  can be eliminated from (3.32). The 

resulting equation is 

 11 13 1 1

31 33 3 3

new new sca

new new sca

     
     

     

Z Z I V

Z Z I V
  (3.33) 

where 

  
1

11 11 12 22 22 21

new b b b c b


  Z Z Z Z Z Z   (3.34) 

  
1

13 12 22 22 23

new b b c c


  Z Z Z Z Z   (3.35) 

  
1

31 32 22 22 21

new c b c b


  Z Z Z Z Z   (3.36) 

  
1

33 33 32 22 22 23

new c c b c c


  Z Z Z Z Z Z   (3.37) 

Note that (3.33) characterizes the wave propagation between 
1S  and 

3S . It 

implies that the two subdomains are combined and treated as one while 
11

new
Z , 

13

new
Z , 

31

new
Z , 

and 
33

new
Z  are new scattering submatrices of the scattering matrix 

new
Z  for the combined 

subdomain. A reduced inter-domain system of equations can then be formed using new
Z  

as 

 
11 11 13 1 1

3 331 33 33

a new new inc

incnew new d

     
     

      

Z Z Z I V

I VZ Z Z
  (3.38) 
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where 11 11 1

new new Z Z D  and 33 33 3

new new Z Z D . The matrix system in (3.38) is 

apparently smaller than that in (3.30). After 
1I  and 

3I  are solved, 
2I  can be computed 

via  

    
1

2 22 22 21 1 23 3

b c b c


   I Z Z Z I Z I   (3.39) 

Repeating this procedure permits merging any number of source-free subdomains into 

one subdomain and reduce the dimensionality of the inter-domain system of equation. 

The reduced inter-domain system is oftentimes small enough to be directly inverted via 

direct methods regardless of the tunnel’s length. When most of the subdomains are 

source-free and identical, the subdomain combination operation can be performed in a 

recursive manner and consequently the computational cost of subdomain combining 

scheme scales logarithmically with the number of subdomains. It is noteworthy to 

mention that, in case the impressed sources reside in the same subdomain while 

performing the analyses with different excitations, the subdomain combining procedure is 

executed only once for solving all different excitations. 

3.2.6 Cost Analysis 

The computational cost and memory requirement of offline and online stages of 

the proposed DD based SIE simulator are analyzed as follows. 

3.2.6.1 Computing Scattering Matrix of a Subdomain (Offline Stage) 

 The computation of a scattering submatrix i

qpZ  for a subdomain 
i , ( , , ,i a b c d  

in Figure 3.1 (d)) requires multiplication of 2 pN  unit vectors with 1( )i i i

q p


C B A . In steps 
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1 and 3, the matrix-vector multiplications are computed via the FMM-FFT acceleration 

scheme with maximum ( log )i iO N N  computational and memory resources for one 

multiplication [28], given that 2 iN  is the number of basis functions used to discretize 

currents on 
i . In step 2, inversion of i

B  and its multiplication with vectors from step 1 

are performed via the butterfly-based direct solver, which requires 1.5( log )i iO N N  and 

2( log )i iO N N  computational and memory resources for computing the inverse and 

( log )i iO N N  computational resources for multiplying 1( )i 
B with the vectors [53]. By 

summing these estimates for three steps and considering that 1.5

p i iN N N  in general, 

the total computational cost subU  and memory requirement subM  for computing one 

scattering matrix scale as  

 ( log )sub p i iU O N N N   (3.40) 

 ( log )sub i iM O N N   (3.41) 

3.2.6.2 Solving Inter-Domain System (Online Stage)  

When the subdomain combining scheme is used, the inter-domain system is 

solved in two phases: combining the subdomains and solving the reduced inter-domain 

system.  

In the first phase, combining a pair of subdomains calls for one matrix inversion 

and four matrix-matrix multiplications, requiring 3( )pO N  and 2( )pO N  computational and 

memory resources, respectively. Since most of the subdomains are identical, subdomains 
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are combined in a recursive manner and abovementioned operations are repeated log subN  

times, where subN  is the number of subdomains. Therefore, the computational cost and 

memory requirement of the first phase scale as 3( log )p subO N N  and 2( log )p subO N N .  

In the second phase, the reduced inter-domain system is formed using a small 

number of equivalent surfaces regardless of subN  and solved by a classical direct method. 

In case that a direct method is not applicable due to dimensionality of the reduced inter-

domain system, an iterative solver [36] is used for inversion. Hence, the computational 

cost and memory requirement of the second phase scale as maximum 3( )pO N  and 2( )pO N , 

respectively. To this end, the total computational cost intU  and memory requirement intM  

of solving inter-domain system with subdomain combining scheme are 

 3

int ( log )p subU O N N ,  (3.42) 

 2

int ( log )p subM O N N .  (3.43) 

It is clear in (3.42) and (3.43) that the computational cost and memory 

requirement scale logarithmically with the tunnel length. When the subdomain combining 

scheme is not used, the sparse inter-domain system of size p sur p surN N N N  is solved via 

an iterative solver [36], where surN  is the number of equivalent surfaces. Note that the 

interactions between equivalent surfaces touching to the same subdomains are only 

included in inter-domain system and the number of scattering submatrices pertinent to 

each equivalent surface is bounded by a small constant. Therefore, the computational cost 
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and memory requirement of solving inter-domain systems without subdomain combining 

scheme are 

 2

int ( )p surU O N N   (3.44) 

 2

int ( )p surM O N N   (3.45) 

where surN  is the number of equivalent surfaces attached to non-identical subdomains. 

Due to the repeated features of mine layouts, surN  is oftentimes a small number and does 

not depend on subN  or surN . Therefore, intM  scales with 2( )pO N  for many mine layouts 

and remains constant with increasing tunnel length. Note that solving the inter-domain 

system with subdomain combining scheme requires more memory resources than solving 

inter-domain system without it. On the other hand, solution with subdomain combining 

scheme is much faster than the solution without it, given that pN  is oftentimes a small 

number (due to the small electrical size of tunnel’s cross sections) and iterative solvers 

generally have a large leading constant. The estimates of computational cost and memory 

requirements provided in (3.42) - (3.45) are numerically validated in numerical results. 

For electrically large mine environments, pN  and iN  (as well as surN  and subN ) 

are insignificant compared to the number of basis functions needed to discretize the 

currents on the walls of whole mine tunnels or galleries. Therefore, the proposed 

simulator (even without subdomain combining scheme) is much faster and more memory 

efficient compared to conventional fast full-wave EM simulators with quasi-linear 

complexity, as numerically proven in numerical results. Moreover, when the simulator is 

executed repetitively for different excitations, only the inter-domain system needs to be 
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re-solved, leading to even more saving on the computational resources, as shown in the 

numerical results. 

3.3 Numerical results and Discussions 

This section first demonstrates the accuracy, efficiency, and applicability of the 

proposed DD based SIE simulator via its application to the EM wave characterization in 

various types of mine tunnels and gallery and statistical characterization of EM wave 

propagation in an electrically large mine tunnel. Then, it compares the computational cost 

and memory requirement of the proposed simulator with those of an FMM-FFT 

accelerated SIE (FMM-FFT-SIE) simulator. In all examples below, mine tunnels has air 

inside and are surrounded by ore with relative permittivity 8.9r  , relative permeability 

1r  , and conductivity 0.15 S/m  , where 
r , 

r ,   are related to 1  and 1  via 

1 0r    and 1 0 r j      . The mine tunnels are excited by an infinitesimal 

electric dipole with unit moment. The electric field values obtained by the proposed 

simulator and other methods are normalized to their maxima and converted to power 

values which are expressed in logarithmic units. The proposed simulator was 

implemented using hybrid message passing interface/open multiprocessing 

(MPI/OpenMP) standards and executed on a cluster of dual hexacore X5650 Intel 

processors located at the Center for Advanced Computing, University of Michigan, Ann 

Arbor, MI, USA. 
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3.3.1 Straight Tunnels 

To show both the accuracy and applicability of the proposed simulator, it is 

applied to characterization of EM wave propagation in three different straight tunnels: a 

600 m - long empty arched tunnel, a 200 m - long empty rectangular tunnel with rough 

walls, and a 400 m - long rectangular tunnel with a partial cave-in. Specifications of the 

simulations performed for each scenario are listed in Table 3-1. The dipole is positioned 

at (50.2, 0.915, 1.22) m in the arched tunnel scenario and at (50.2, 0.925, 1.12) m in all 

rectangular tunnel scenarios. 

3.3.1.1 Empty Arched Tunnel 

A 600 m - long arched tunnel is excited by a z  (vertically) or y  (horizontally) 

oriented dipole at 455 MHz or 915 MHz (4 cases) [Figure 3.4 (a)]. In this scenario, the 

tunnel is decomposed into 200 identical 3 m - long subdomains for analysis at 455 MHz 

and 240 identical 2.5 - m long subdomains for analysis at 915 MHz; only one scattering 

matrix is computed for each frequency. At lower and higher frequencies, subdomains are 

discretized using 50,202 and 172,038 RWG basis functions, while the equivalent surfaces 

are discretized using 12,958 and 44,910 RWG basis functions, respectively. Power values 

on a line connecting (51.2, 0.915, 1.22) m and (600, 0.915, 1.22) m computed by the 

proposed simulator are compared with the measurement data in [67, 68] after applying 

the normalizations accounting for different excitation mechanism [Figure 3.4 (b)-(e)]. 

Power values computed by the proposed DD based SIE simulator are in good agreement 

with the measurement data, demonstrating the accuracy of the simulator. The dynamic 
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ranges of the simulator and measurements are around 120 dB and 100 dB, respectively, 

and are reflected in Figure 3.4 (b), (c), and (e). 
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Figure 3.4 (a) The geometry of a 600 m - long arched tunnel. The power values computed 

by the proposed simulator are compared to measurement data for (b) vertically and (c) 

horizontally oriented dipole at 455 MHz, and for (d) vertically and (e) horizontally 

oriented dipole at 915 MHz.  

3.3.1.2 Empty Rectangular Tunnel with Rough Walls 

A 201 m  - long rectangular tunnel with rough walls is excited by a zdirected 

dipole at 455 MHz [Figure 3.5 (a)]. The tunnel is decomposed into 67 subdomains with 

length of 3 m. The subdomains and equivalent surfaces are discretized using 45,648 and 

10,952 RWG basis functions, respectively. Tunnel walls are formed by rough surfaces 

with root mean square height of 0.1 m and correlation length of 0.5 m [69]. Five 

subdomains generated by distinct random profiles are randomly cascaded to form the 

tunnel. Therefore, only five scattering matrices are computed. The power values on a line 

connecting (51.0, 0.925, 1.12) m to (200, 0.925, 1.12) m (tunnel center) are computed by 

the proposed simulator [Figure 3.5 (b)]. The computed values are compared to those 

obtained by the proposed simulator and the multi-modal decomposition [39] for the same 

tunnel but with the smooth walls [Figure 3.5 (b)]. Apparently, the decay of power values 

in the tunnel with rough walls is faster than that in the tunnel with smooth walls. The 

power value at 175 mx  in the tunnel with rough walls is 6.03 dB below that in the 
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tunnel with smooth walls. Furthermore, the results obtained by the proposed simulator 

and multi-modal decomposition for the tunnel with smooth walls show perfect agreement 

and further validate the accuracy of the proposed simulator. It's noteworthy to mention 

the inter-domain systems for the analyses of the tunnels with smooth and rough walls are 

solved by the subdomain combining scheme and an iterative solver [36], respectively. It's 

clear in Table 3-1 that the solution with subdomain combining scheme requires less 

computational time but more memory compared to solution with iterative solver. 

 

 

Figure 3.5 (a) The geometry of a 201 m - long rectangular tunnel with rough walls. (b) 

The power values in the center of tunnel with rough and smooth walls computed by the 

proposed simulator are compared with those obtained by multi-modal decomposition for 

tunnel with smooth walls. 
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Figure 3.6 (a) The geometry of a 400m-long rectangular tunnel with a partial cave-in. (b) 

The power values on a line in the middle of the tunnel computed by the proposed 

simulator for the tunnel with cave-in and by multi-mode decomposition method for the 

empty tunnel. 

3.3.1.3 Rectangular Tunnel with Cave-in 

A 400 m - long rectangular tunnel with a partial cave-in is excited by a 

z directed dipole at 915 MHz [Figure 3.6 (a)]. The tunnel is decomposed into 159 

identical 2.5 m - long empty subdomains and one 2.5 m - long subdomain housing the 

cave-in; two scattering matrices for the empty subdomains and the subdomain with the 

cave-in are computed. The partial cave-in is modeled by a trapezoidal prism with a 1.1 m 

- tall half cylinder on top, which is centered at (201.3, 0.925, 0.9) m [Figure 3.6 (a)]. 
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Empty subdomains, the subdomain with cave-in, and the equivalent surfaces are 

discretized using 141,792; 197,238; and 34,836 RWG basis functions, respectively. The 

power values on a line connecting (51.0, 0.925, 1.12) m and (400, 0.925, 1.12) m 

computed by the proposed simulator are compared with those obtained by multi-modal 

decomposition for the empty tunnel [Figure 3.6 (b)]. The power values before the cave-in 

computed by both methods are in good agreement, validating the accuracy of the 

proposed simulator one more time. Due to obstruction of the cave-in, the power value at 

203 mx  (just after the cave-in) is 30 dB  below that observed in the empty tunnel. 

Standing-wave phenomenon resulting from the reflections from the cave-in and end wall 

is observed just before 200 mx and 400 mx , respectively. 

3.3.2 Mine Gallery 

The proposed simulator is used to characterize EM wave propagation in a mine 

gallery formed by twelve 87.1 m - long rectangular tunnels [Figure 3.7 (a)]. Six of these 

tunnels are extended along x -direction and intersect with the remaining six tunnels 

extended along y -direction. The gallery is excited by a zdirected dipole operated at 

915 MHz and positioned at (11.425,0.925,1.12) m  (in the intersection of tunnel 1 with 

tunnel 7) [Figure 3.7 (a)]. The gallery is decomposed into 336 identical 2.5 m - long 

straight subdomains and 36 identical cross-shaped subdomains used to model the 

intersections of tunnels [Figure 3.7 (a)]. Consequently, two scattering matrices for 

straight and cross-shaped subdomains are computed. The straight subdomain, cross-

shaped subdomain, equivalent surfaces are discretized using 141,792; 199,356; and 

34,836 RWG basis functions, respectively. The power values are computed via the 
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proposed simulator at receiver points on xy plane at 1.12 mz   [Figure 3.7 (b)] and along 

six lines residing in x-extended tunnels and connecting (12.425, ,1.12) my  to 

(87.1, ,1.12) my  with 0.925 ( 1) 12.85y j    , 1,...,6j   [Figure 3.7 (c)]. Apparently, 

the power values on the line-of-sight receiver points (in tunnels 1 and 7) are significantly 

higher than those on the remaining receiver points [Figure 3.7 (b)]. Small spikes appear at 

the intersections of tunnels 2-6 with tunnels 8-12 due to constructive interference of 

guided waves [Figure 3.7 (c)]. Simulation specifications are provided in Table 3-1. 

 

 
Figure 3.7 (a) The geometry of the mine gallery and the cross-shaped subdomain. Power 

values computed by the proposed simulator at receiver points located (b) on plane 
1.12z  m and (c) on lines aligned in the centers of tunnels 1-6 
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Numerical 

Example 

Frequenc

y 

(MHz) 

Number 

of 

processor

s 

Stage 1: Computing 

scattering matrices 

(offline stage) 

Stage 2: Solving inter-

domain system (online 

stage) 

Time 

(hours) 

Average 

memory per 

processor 

(GB) 

Time 

(hours) 

Average 

memory per 

processor 

(GB) 

Empty 

arched 

tunnel 

455 16 3.24 2.46 1.18 7.81 

915 32 21.62 4.04 12.45 46.96 

Rectangula

r tunnel 

with rough 

walls 

455 16 17.21 2.32 1.27 2.79 

Rectangula

r tunnel 

with 

smooth 

walls 

455 16 2.88 2.25 0.72 5.02 

Rectangula

r tunnel 

with cave-

in 

915 32 38.14 4.64 8.93 25.43 

Mine 

gallery 
915 32 62.65 5.05 18.47 13.88 

Table 3-1 Specifications of the Simulations Performed by the Proposed Simulator for 

Numerical Examples in Sections 3.3.1 and 3.3.2 

3.3.3 Stochastic Characterization 

Next, the proposed simulator is used to statistically characterize EM wave 

propagation in a 390 m - long rectangular mine tunnel at 455 MHz [Figure 3.8 (a)]. The 

tunnel is decomposed into 130 identical 3 m - long subdomains. The subdomains and 

equivalent surfaces are discretized using 45,648 and 10,952 RWG basis functions, 

respectively. The tunnel is excited by a z directed dipole positioned in the first 

subdomain at ( , , )x y zd d d , where xd , yd , and zd  are random variables uniformly 
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distributed in the ranges [1.0, 2.0] m, [0.8, 1.05] m, and [1.0, 1.24] m, respectively. The 

power values on a line connecting (51, 0.925, 1.12) m and (120, 0.925, 1.12) m are 

computed by the proposed simulator at 40 random points selected by traditional Monte 

Carlo method [69]. The power values obtained at random realizations as well as mean 

and standard deviation of the power along the tunnel are presented in Figure 3.8 (b)-(c). 

The efficiency of the proposed simulator for stochastic characterization (or uncertainty 

quantification) studies can be demonstrated by comparing the computational time 

required by the proposed simulator with that required by an FMM-FFT-SIE simulator, 

which uses the whole physical domain of tunnel for the analysis [54]. While the FMM-

FFT-SIE simulator requires 0.3 hours for computing near-field matrices and far-field 

patterns (offline stage) and 76 hours for iteratively solving 40 random realizations (online 

stage), the proposed simulator requires 2.88 hours for obtaining the scattering matrices 

(offline stage) and 6.3 hours for solving the inter-domain system for 40 random 

realizations (online stage). (Note: After obtaining scattering matrices, only the RHS of 

the inter-domain system is changed and solution of inter-domain system is obtained for 

each random realization.) Therefore, the proposed simulator is more than eight and 

twelve times faster than the FMM-FFT-SIE simulator overall and at online stages, 

respectively, demonstrating the efficiency of the proposed simulator in the applications 

requiring repetitive execution of EM simulator with different excitations. It's important to 

note that the proposed simulator requires 5.52 GB memory on each processor, which is 

around 3.6 times less than that required by FMM-FFT-SIE simulator, 20.25 GB; all 

simulations are executed on 16 processors. 
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Figure 3.8 (a) The geometry of the rectangular mine tunnel. (b) Mean and (c) standard 

deviation of the power on receiver points.  

3.3.4 Performance Comparison 

Here, first, the theoretical estimates of the computational cost and memory 

requirement of the proposed simulator (provided in Section II.E) are numerically 

validated. Then, the efficiency of the proposed simulator is demonstrated by comparing 

its computational cost and memory requirement with those of the FMM-FFT-SIE 

simulator. To this end, an empty rectangular tunnel with cross section 1.85 2.24 m  

(width and height) and variable length is considered. The tunnel is excited by a 
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zdirected dipole positioned at (1.5, 0.925, 1.12) m and operated at 455 MHz and 915 

MHz. For the analysis at 455 MHz and 915 MHz, the tunnel length is varied from 100 m 

to 900 m and from 200 m to 660 m, respectively, before the tunnel is decomposed into 3 

m - long and 2.5 m - long empty subdomains, as exactly done in Sections 3.3.1.2 and 

3.3.1.3, respectively. The simulations for the lower and higher frequencies are performed 

using 16 and 32 processors, respectively. 

3.3.4.1 Complexities of Solving Inter-Domain System 

The computational cost and memory requirement of computing scattering 

matrices scale with those of FMM-FFT and butterfly schemes, which are well-studied in 

the literature [28, 53] and thereby not analyzed here. On the other hand, the 

computational cost and memory requirement of solving inter-domain system scale 

differently with increasing tunnel size when subdomain combining scheme is used and 

not used, as described in Section II.E and numerically validated in Figure 3.9 (a)-(d). For 

the analyses at both frequencies, computational costs of solving inter-domain system with 

and without subdomain combining scheme scale logarithmically and linearly with 

increasing tunnel length, respectively, [Figure 3.9 (a)-(b)]. The memory requirements of 

solutions with and without subdomain combining scheme scale logarithmically and 

remain constant with increasing tunnel size, respectively [Figure 3.9 (c)-(d)]. Needless to 

say, the proposed subdomain combining scheme allows expedient solution of inter-

domain system in exchange of increasing memory requirement. 
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Figure 3.9 Computational time and memory requirement of solving inter-domain system 

with and without subdomain combining scheme: Computational time for the analysis at 

(a) 455 MHz and (b) 915 MHz and memory requirement for the analysis at (c) 455 MHz 

and (d) 915 MHz. 
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3.3.4.2 Comparison of DD Based SIE Simulator and FMM-FFT Accelerated SIE 

Simulator 

The computational cost and memory requirement of both simulators with 

increasing tunnel size are investigated for both frequencies [Figure 3.10 (a)-(d)]. In 

Figure 3.10 (a)-(b), computational cost of the FMM-FFT-SIE simulator and the proposed 

simulator with and without subdomain combining scheme increase quasi-linearly, 

linearly, and logarithmically with increasing tunnel size, respectively. The proposed 

scheme with and without subdomain combining scheme outperforms the FMM-FFT-SIE 

simulator when the tunnel size is larger than 400 m and 650 m at 455 MHz, respectively, 

and 500 m and 560 m at 915 MHz, respectively. Note that the computational speed-up 

achieved by the proposed simulator increases with increasing tunnel size. For all tunnels 

considered here, the memory requirement of the proposed simulator without subdomain 

combining scheme, which is constant with increasing tunnel length, is much less than (at 

least one order of magnitude) that of the FMM-FFT-SIE simulator, which scale quasi-

linearly with increasing tunnel length [Figure 3.10 (c)-(d)]. The memory requirement of 

the proposed simulator with subdomain combining scheme, which scale logarithmically 

with increasing tunnel length, is less than that of the FMM-FFT-SIE simulator for the 

analysis of all tunnels at 455 MHz and for the analysis of tunnels larger than 300 m at 

915 MHz. Note that the memory saving achieved by the proposed simulator compared to 

memory requirement of FMM-FFT-SIE simulator increases with increasing tunnel length. 
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Figure 3.10 Comparison of FMM-FFT-SIE simulator and the proposed simulator with 

and without subdomain combining scheme: CPU time at (a) 455 MHz and (b) 915 MHz. 

Memory requirements at (c) 455 MHz and (d) 915 MHz. 
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3.4 Chapter Conclusion 

A DD based SIE full wave simulator was presented for characterizing EM wave 

propagation in electrically large mine environments. The proposed simulator alleviates 

the computational burden of full-wave EM analysis for such environments by first 

dividing the physical domain of mine tunnel/gallery into subdomains. Then, it 

characterizes EM wave propagation in each subdomain separately using scattering 

matrices, which are obtained by butterfly-based direct solver and an FMM-FFT scheme. 

Finally, it obtains an inter-domain system by assembling scattering matrices and solves 

the system using a fast subdomain combining scheme. The proposed simulator is faster 

and memory efficient compared to conventional fast SIE simulators; while its 

computational and memory costs scale logarithmically with tunnel length, those of 

conventional fast SIE simulators scale quasi-linearly. The numerical results clearly 

showed the applicability, accuracy, and efficiency of the proposed DD based SIE 

simulator. Currently, the proposed simulator is extensively being used as a research tool 

to characterize wireless channels and predict radio coverage in mine tunnels/galleries. 

Wireless system designers and operators can greatly benefit from the proposed simulator 

while optimally deploying or re-configuring the nodes of wireless sensing, 

communication, or tracking systems in mine environments during routine operations or 

an emergency when the mine is partially obstructed by debris from a cave-in.  
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CHAPTER 4  
Optimization and Reconfiguration of Wireless Communication 

Systems in Mine Environments 

4.1 Chapter Introduction 

The design of wireless communication systems in mine environments greatly 

benefits from tools capable of synthesizing wireless network configurations, and rapidly 

reconfiguring networks in response to changing operating conditions and catastrophic 

events. These synthesizing problems in mine environments have been studied in decades 

and many tools hybridizing electromagnetic (EM) simulator and optimization algorithm 

have been proposed (see [1] and references therein). Most of the tools leverage 

approximate techniques, such as multi-mode waveguide models [39], ray-tracing 

technique [40, 41], and cascaded impedance [8] methods, for EM characterization inside 

mine environments. However, approximate techniques have drawbacks that limits their 

utility for accurately analyzing wireless communication systems inside complex mine 

environments [1, 70]. For example, these methods are usually restricted to certain 

frequency bands and cannot readily account for the presence of wall roughness, 

unstructured debris, or mine equipment and workers. In contrast, full wave simulators are 
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capable of accurately accounting for the presence of miners, mining equipment, as well 

as roughness on the tunnel walls, but can be hardly used for network optimization 

problems because full wave simulators oftentimes become prohibitively expensive when 

repetitive characterizations of electrically large environments are required. On the other 

hand, the choice of optimization algorithm is important for ensuring the efficiency and 

robustness of the optimization. Therefore, the design of a wireless network synthesis tool 

for mine environments requires the careful matching of a complementary EM simulator 

and optimization algorithm, and endowing the latter with an objective function that 

provides good performance measure of network configurations.  

In this chapter, an efficient optimization framework that addresses the above-

mentioned challenges is proposed. The framework combines a DIRECT (Dividing 

RECTangles) global optimization algorithm [20-22] and the DD based SIE simulator that 

provides path loss estimates in realistically modeled mine environments. As detailed in 

previous chapter, the DD based SIE simulator divides the mine tunnels or galleries into 

subdomains and computes wave input-output relationships for each of them. It next 

characterizes the global system comprising wave propagation information of all 

subdomains by enforcing field continuity across subdomain boundaries. When repetitive 

execution with different excitations is required by the optimization engine, the simulator 

only re-solves the inter-domain system during each execution and hence is very efficient 

for optimization purposes. The DIRECT algorithm was purposed by Jones et al. in 1993 

[22] as an effective approach to solve global optimization problems with simple 

constraints. DIRECT algorithm is a kind of Lipschitzian optimization method but does 

not require the knowledge of the Lipschitz constant. It is comprised of a series of moves 
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that explore the behavior of the objective function at a set of points in the carefully 

picked sub-regions of the whole searching space. The high computational complexity 

underlying in the Lipschitzian optimization methods for high dimensional problems is 

reduced by this center-point sampling strategy. The objective functions endowed to the 

optimization framework are adopted from the work by Sherali et al. [71], which proposed 

a minisum and a minimax objective function, comprising the average and maximum of 

the weighted path loss measured at receivers, respectively. A penalty term applies to the 

objective function if the maximum tolerated path loss is violated at certain receivers. A 

convex combination of the two objective functions is used if an overall measure of 

performance is needed. The proposed framework is applied to the optimum placement of 

nodes in partial mesh wireless networks operated at 455 MHz and 915 MHZ inside 

electrically large mine tunnels and galleries. The signal coverage throughout the mine 

gallery before and after the optimization are demonstrated in the numerical results. 

4.2 Problem Formulation 

The optimization framework is designed to improve (ideally, optimize) the 

desired properties of a wireless network in mine environments via adjusting a set of 

parameters that influence the performance of the network. Signal coverage might be the 

most important property of a wireless network in mine environments, but other properties, 

such as the cost of equipment and maintenance, are also considered in practice and 

literature [72, 73]. On the other hand, parameters that one can adjust in a network 

optimization problem typically include the positions of transmitters and receivers, the 
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topology of the wireless network, and so on [74, 75]. To demonstrate the efficiency and 

applicability of the proposed optimization framework, the problem considered in this 

chapter is to optimize the positions of transmitters, given a set of fixed receivers, to 

obtain the desired qualities of network coverage. The proposed framework may also be 

applicable to other considerations of wireless network optimization problems. 

In general, it is not necessary to pursue the exact global optimal positions of 

transmitters for this wireless network optimization problem [72]. One reason is that there 

is no point to distinguish very small difference of the desired coverage property, since the 

EM simulator is eventually an approximate tool (although it is an accurate approximate). 

Meanwhile, there are oftentimes multiple sets of transmitter positions that produce almost 

the same optimal coverage inside a mine environment, especially when they are close to 

the optimum. For example, if a transmitter reaches an optimal position that achieves line-

of-sight connections with some receivers, there will be no significant difference in the 

coverage quality when the transmitter moves 10 cm away from the optimal position, as 

long as the line-of-sight connections are maintained. Hence, the aim of the optimization 

is to find a good approximation that lies within a certain range of the optimal positions. 

4.3 Optimization Algorithm 

The DIRECT optimization algorithm is a modification of standard Lipschitzian 

optimization approaches and is widely-used in engineering applications. Examples of its 

application include optimization of indoor antenna placement [75], design of energy 

system [76], design of civil transportation system [77]. Other applications of the DIRECT 
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algorithm are referred to [21] and references therein. Lipschitzian optimization 

approaches are designed to find the globally minimum (or maximum) of a real-valued 

objective function with bound constraints, which is considered 

 * *( ) min ( )
D

f f f


 
x

x x ,  (4.1) 

 1 2 1 2 1 2( ) ( ) , ,f f L D    x x x x x x ,  (4.2) 

where    , : , 1,...,n

k k kD x l x u k n     l u  and L  is the Lipschitz constant. The 

DIRECT algorithm is designed to overcome several shortcomings of standard 

Lipschitzian optimization approaches, such as the Shubert’s algorithm [78]. Hence, this 

section begins with a review of one dimensional Shubert’s algorithm and a discussion on 

its shortcomings. It next modifies the Shubert’s algorithm to the DIRECT algorithm and 

extends it to higher dimensions. 

4.3.1 Shubert’s Algorithm 

Shubert’s algorithm assumes the Lipschitzian is known, which introduces a lower 

bound on the function in any closed interval whose boundary points are evaluated. Let x  

be in the region [ , ]a b , ( )f x  must satisfy 

 ( ) ( ) ( )f x f a L x a   ,  (4.3) 

 ( ) ( ) ( )f x f b L x b   . (4.4) 

The right-hand sides (RHS) of (4.3) and (4.4) correspond to the two lines with slopes L  

and L , which lie below ( )f x  [Figure 4.1 (a)]. The lower bound of ( )f x  is then 
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computed at the point of intersection for the two lines. The point of intersection and the 

lower bound of region [ , ]a b  are defined by ( , )I a b  and ( , )B a b  as 

  ( , ) ( ) 2 ( ) ( ) (2 )I a b a b f a f b L    ,  (4.5) 

  ( , ) ( ) ( ) 2 ( )B a b f a f b L b a    .  (4.6) 

The function evaluated at 1 ( , )x I a b  is the first estimate of the minimum of ( )f x . The 

algorithm next divides the region to two sub-regions,  1,a x  and  1,x b , obtains new 

intersection points 2 1( , )x I a x  and 3 1( , )x I x b , and computes 1( , )B a x  and 1( , )B x b  

[Figure 4.1 (b)]. It then continues by dividing the sub-region with lower B-value and 

repeat the above process until a prescribed condition is satisfied (e.g. lower bound of a 

region is within a prescribed tolerance of current minimum). The final estimate of 

minimum is the function value computed at intersection point of the region that has 

lowest B-value.  

There are several drawbacks with Shubert’s algorithm. First, this algorithm is 

computationally expensive in higher dimensions since it needs to evaluate function 

values at all vertices of the searching space during an iteration, leading to 2n  function 

evaluations for a n-dimension problem [20]. Second, the Lipschitz constant oftentimes is 

not available or cannot be reasonably estimated. Furthermore, the objective functions 

adopted in many engineering applications may not be Lipschitz continuous. Even if one 

is able to estimate the Lipschitz constant, it is generally quite high (to ensure it can upper-

bound the rate of change of the objective function) and leads to slow convergence [22]. 
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Figure 4.1 (a) Initialize a lower bound for ( )f x . (b) Dividing regions. 

4.3.2 DIRECT Algorithm 

To alleviate above problems, DIRECT algorithm was proposed by Jones, et. al in 

1993 [22]. It has two major modifications to the standard Lipschitzian optimization. First, 

instead of sampling the vertices of a searching space, it samples at the midpoints, thereby 

permitting the algorithm to apply for high dimensions. Second, it does not require the 

knowledge of Lipschitz constant and the objective function to be Lipschitz continuous. It 

uses the function value at the center of a region in the searching space and the region’s 

size to determine if it should be divided into sub-regions during an iteration. 

4.3.2.1 Initialization 

Without losing generality, let the domain of the problem be a unit hyper-cube, i.e. 

  : 0 1, 1,...,n

kD x x k n     .  (4.7) 

The domain of any problem can be easily transformed into a unit hyper-cube. During the 

initialization phase of the algorithm, it first evaluates the objective function at center of 

the hyper-cube and points  1 1 3 kc e , 1,...,k n , and computes  
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  1 1min ( (1 3) ), ( (1 3) ) , 1,...,k k kv f f k n   c e c e   (4.8) 

where 1c  is the center of the space and ke  is the unit vector in the kth dimension. Next, 

the algorithm divides the hyper-cube. The division begins by dividing the whole region 

into thirds along the dimension with smallest kv , and continues by dividing the central 

sub-region (the one resulted from previous division and containing 1c ), along the 

dimension with the next smallest kv , until all dimensions are divided. Figure 4.2 

illustrates this procedure for an example two-dimension objective function (Note: this 

objective function is also used as example in later part). To this end, the initialization 

phase is finished and the algorithm begins its iteration to find and divide the “potentially 

optimal” regions, which potentially contain the minimum of the objective function. 

 

Figure 4.2 (a) Divide the searching domain into three sub-regions along the dimension 

with smallest kv . (b) Divide the central sub-region along the dimension with second 

smallest kv  and finish initialization. Sampling points are represented by black dots and 

the value of objective function at sampling points are shown below the dots. 
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4.3.2.2 Iteration 

Let 0   be a positive constant and minf  be the current minimum. Denote I  be 

the set of indices of all current regions. A region j  is defined to be potentially optimal if 

there exists some 0L   such that [22] 

 ( ) ( ) , ,j j i if Ld f Ld i I and    c c   (4.9) 

 min min( ) ,j jf Ld f f  c   (4.10) 

where ic  and id  are the center and a measure of size of region i , respectively. Various 

definitions of id  are used in the literature [20, 79]. Here, id  is defined as the distance 

from ic  to the vertices of region i . Note that the same definition applies to those with 

subscript j .The graphical interpretation of the first condition is shown in Figure 4.3 (a). 

When (4.9) is satisfied, a line with slope L  passing ( )jf c  must intercept the vertical axis 

at ( )j jf Ldc , which is lower than all the other vertical intercepts of the line with the 

same slope but passing other points. Hence, the first condition requires the potentially 

optimal regions to be on the bottom of the convex hull of the points [Figure 4.3 (b)]. The 

second condition requires that ( )j jf Ldc  exceeds the current best solution by a 

nontrivial value, which prevents the algorithm from pursuing extremely small 

improvements. As demonstrated in [22], the choice of   between 21 10  and 71 10  has 

only a negligible effect on the performance.  

The definition of potentially optimal regions does not provide a practical way to 

identify if a region j  is potentially optimal. Hence, an interpretation of the definition is 
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given to help the identification [21]. Let 1 { : }i jI i I d d   , 2 { : }i jI i I d d   , and 

3 { : }i jI i I d d   . Region j  is potentially optimal if  

 3( ) ( ),j if f i I  c c ,  (4.11) 

 
21

( ) ( ) ( ) ( )
max min

j i i j

i Ii I
j i i j

f f f f

d d d d

 


 

c c c c
,  (4.12) 

and 

 
2

min

min

min min

( ) ( ) ( )
min , 0

j j i j

i I
i j

f f d f f
f

f f d d




 
  



c c c
,  (4.13) 

or  

 
2

min

( ) ( )
( ) min , 0

i j

j j
i I

i j

f f
f d f

d d


 



c c
c .  (4.14) 

The proof of this interpretation is provided in [21]. Eqs (4.11) - (4.14) can be easily 

implemented into computer codes. 

 

Figure 4.3 (a) First condition of potentially optimal regions. (b) Set of potentially optimal 

regions. Dot represents the value of objective function evaluated at the center of each 

region. 
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After potentially optimal regions are identified, the algorithm proceeds to divide 

these regions along their longest dimension(s). If a region is a hyper-cube (i.e. all 

dimensions have the same length), the division is done along all dimensions via the 

procedures in the initialization phase. The dividing strategy contains the following three 

steps: 

Step 1: Identify the set iU  that contains all dimensions of the maximum side 

length for the potentially optimal region i .  

Step 2: Evaluate the objective function at points i i kc e  and compute 

 min ( ), ( )k i i k i i kv f f   c e c e  for all ik U . Here, ic  and i  are the center and one-

third of the maximum side length of the region i , respectively. ke  is the unit vector in the 

kth dimension.  

Step 3: Divide region i  into thirds along the dimension with smallest value of kv , 

and continue the division for the central sub-region (the one resulted from the previous 

division and containing ic ) in the dimension with next smallest kv  until it is repeated for 

all the dimensions in iU . 

As demonstrated in [22], this strategy ensures that the regions to be divided will 

shrink on all dimensions. Once the division of all potentially optimal regions are done, an 

iteration of the algorithm is completed. Figure 4.4 illustrates first two iterations for the 

example two-dimension objective function. Note that the initialization is done in the 

example given in Figure 4.2. 
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Figure 4.4 First two iterations of the DIRECT algorithm for the example objective 

function: (a) iteration 1 and (b) iteration 2. Red dots represent the center of potentially 

optimal regions 

4.3.2.3 Termination Criterion, Algorithm, and Discussion 

When the global minimum of the objective function is unknown, frequent choices 

of the termination criterion include the number of iteration or objective function 

evaluation, size of the smallest regions, and the convergence rate of objective function 

[80]. Since the aim of the optimization is to find an approximation that lies within a 

certain range of the optimal positions, the size of smallest regions is chosen as the 
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termination criterion, i.e., the algorithm stops when the size of smallest region reaches a 

prescribed threshold. To this end, the DIRECT algorithm is given below. 

DIRECT Algorithm 

1: Normalize the problem domain to a unit hyper-cube.  

2: Set 0i  , compute 1( )f c , set min 1( )f f c , and divide the hyper-cube  

3: while size of smallest regions > threshold, do  

4:   Identify all potentially optimal regions 

5:   Evaluates objective function at points required to divide the 

potentially optimal regions 

6:   Divide all potentially optimal regions, update minf , 1i i  . 

7: end while 

Table 4-1 DIRECT Algorithm 

The DIRECT algorithm is a direct search method. It does not require any 

knowledge of objective function gradient. Instead, it evaluates function at sampling 

points over the searching domain and uses the information obtained from the sampling to 

decide the searching direction. Hence, it is well-used in engineering applications, where 

the value of objective function is obtained from numerical simulation and the gradient is 

unavailable or unreliable. On the other hand, the DIRECT algorithm will converge to 

global optimum, while many other direct search methods, such as Nelder-Mead algorithm 

[18] and Hooke-Jeeves pattern search method [19], are only guaranteed to converge to 
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local optimum. Hence, it can avoid local traps and provide better performance when there 

are many local optimums in the problem. 

The main weakness of the DIRECT algorithm is the slow convergence rate [77]. 

It can quickly find region(s) containing the optima but will slowly converge to it. That 

said, this burden is alleviated in the application of wireless network optimizations. As 

discussed in Section 4.2, the exact optimal positions of transmitters are not necessarily 

needed, but good approximations close to the optimal positions are enough. Since the 

DIRECT algorithm can quickly locate regions containing the optimum, the points it 

samples will likely to be close to the optimum and a good set of approximations can be 

quickly obtained. 

4.4 Objective Function 

The quality of an optimization depends on the measure of the desired properties, 

which is represented by the objective function. The idea of objective functions considered 

here is to locate the transmitters such that the allocation provides the optimal average 

coverage or the optimal worst coverage, or a convex combination of them. Based on this 

idea, the objective functions are mathematically defined as [71] 

  1

1

1
max{0, }

m

i i i i i

i

f w p u p s
m 

   ,  (4.15) 

   2 1,...,max max{0, }i m i i i i if w p u p s   ,  (4.16) 



 

 

96 

 

where 1f  is a minisum function and 2f  is a minimax function. m  and n  are the total 

number of receivers/access points and transmitters, respectively. The path loss function is 

 1,..., ,mini j n i jp g , where ,i jg  is the path loss at the thi  receiver due to the thj  node. 

iw , iu  and is  are the weight, penalty factor, and maximum tolerated path loss prescribed 

for the thi  receiver, respectively. The minisum function is the weighted average of all 

path losses at the different receiver positions, and a penalty term is added if a maximum 

path loss threshold is violated. The minimax function is the weighted path loss 

experienced by the worst served receiver. The choice of 1f  or 2f  depends on the specific 

optimization scenario and requirements. When an overall measure of coverage quality is 

required, a convex combination of 1f  and 2f  is used, which is defined as 

 1 2(1 )cf f f      (4.17) 

where   is the combination parameter. The convex combination parameter can be 

adjusted based on the path loss profiles obtained during optimization. 

4.5 Numerical Results 

This section demonstrates the efficiency and applicability of the proposed 

optimization framework via its application to transmitter placement problems in 

electrically large mine galleries. In all examples below, mine tunnels has air inside and 

are surrounded by ore with relative permittivity 8.9r  , relative permeability 1r  , and 

conductivity 0.15 S/m  , where 
r , 

r ,   are related to 1  and 1  via 1 0r    and 
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1 0 r j      . The smallest region size threshold for terminating the optimization 

algorithm is set as 0.05 m. The combination parameter   for cf  is 0.5 for all examples. 

The transmitters are modeled by infinitesimal electric dipole with unit moment. The 

power values obtained by the proposed simulator and other methods are normalized to 

their maxima and converted to power values which are expressed in logarithmic units. 

The optimization algorithm was serially implemented in MATLAB [81] and incorporated 

with the DD based SIE simulator that was parallelly executed on a cluster of dual 

hexacore X5650 Intel processors located at the Center for Advanced Computing, 

University of Michigan, Ann Arbor, MI, USA.  

4.5.1 Two Connected Tunnels 

The proposed framework is used to optimize 915 MHz wireless networks inside a 

mine gallery formed by two 71.05 m - long tunnels, which extend along x  and connect 

each other via three 11 m - long branches extending along y  [Figure 4.5 (a)]. It is first 

used to optimize a two-transmitter network with respect to average and worst coverage, 

measured by 1f  and 2f , respectively. Next, the proposed framework is used to optimize a 

three-transmitter network and reconfigure the optimized network after a catastrophic 

event, both respect to the overall coverage measured by cf . Six access points are placed 

inside the mine gallery [Figure 4.5 (b)]. Three of which are placed 2 meters before the 

end of tunnel. The remaining three access points are placed at the center of each branch 

that connects two tunnels.  Average CPU time of one distinct simulation for this mine 

gallery is approximately 3 hours. 
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4.5.1.1 Two-Transmitter Network 

The positions of transmitter 1 and 2 are 1( ,0.925,1.12)x  m and 2( ,13.775,1.12)x  

m, respectively, where 1 [20,70]x   and 2 [30,80]x   are variables to be determined 

[Figure 4.5 (b)]. Since the two-transmitter network cannot achieve LOS connections with 

all access points, the optimization results are different for two objective functions. When 

the framework is used to optimize the average coverage, it converged to 1 41.32x   and 

2 55.00x   after 83 objective function evaluations and reduced the value of objective 

function from 50.43 to 26.10. On the other hand, when the framework is used to optimize 

the worst coverage, it took 115 objective function evaluations to converge to 1 41.44x   

and 2 60.65x   and reduced the value of objective function from 60.43 to 49.12. The 

power values are computed on the xy  plane at 1.12z   m [Figure 4.5 (c)(d)]. While the 

framework sought to reasonably achieve LOS connections with as many access points as 

possible for an optimal average coverage, it had to lose a LOS connection to improve the 

worst coverage.  
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Figure 4.5 (a) Geometry of the two connected tunnels. (b) Two-transmitter network and 

access points on plane 1.12z   m. Power values computed on plane 1.12z   m for 

optimization of (c) average coverage and (d) worst coverage (scale: dB). 

4.5.1.2 Three-Transmitter Network 

The positions of transmitter 1, 2, and 3 are 1( ,0.925,1.12)x , 2( ,13.775,1.12)x , and 

3( ,0.925,1.12)x , respectively, where 1 [20,50]x  , 2 [30,80]x  , and 3 [51,71]x   are to be 

determined with respect to the overall coverage measured by cf  [Figure 4.6 (a)]. The 

results are 1 41.33x  , 2 54.20x  , and 3 67.83x  . The optimization is terminated after 

157 objective function evaluations and reduces the value of objective function by from 

54.08 to 21.15. The power values are computed on the xy  plane at 1.12z   m [Figure 

4.6 (b)]. It can be observed that all access points have LOS connection with transmitters. 
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Next, the proposed framework is used to reconfigure the optimized three-

transmitter network after a catastrophic event. A cave-in appeared in branch 2 and 

blocked the signal from transmitting [Figure 4.6 (c)]. Hence, the access point in branch 2 

lost LOS connection with transmitters and the value of objective function is increased to 

39.07. To perform the reconfiguration, the positions of transmitter 1, 2, and 3 are reset as 

1( ,0.925,1.12)x , 2( ,13.775,1.12)x , and 3( ,0.925,1.12)x , respectively, where 1 [20,50]x  , 

2 [30,80]x  , and 3 [51,71]x   are variables to be reconfigured [Figure 4.6 (c)]. The 

reconfiguration process took 151 objective function evaluations to converge and reduce 

the value of objective function from 39.07 to 22.13. The reconfigured positions of 

transmitter 1, 2, and 3 are (41.42, 0.925, 1.12), (66.91, 13.775, 1.12), and (54.64, 0.925, 

1.12), respectively. The power values of the reconfigured network are computed on the 

xy  plane at 1.12z   m [Figure 4.6 (d)]. Apparently, the LOS connection between 

access point in branch 2 and transmitters is resumed. 
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Figure 4.6 (a) Three-transmitter network and access points on plane 1.12z   m. (b) 

Power values computed on plane 1.12z   m for optimization of overall coverage (scale: 

dB). (c) Optimized network and the cave-in. (d) Power values computed on plane 

1.12z   m after reconfiguration (scale: dB) 

4.5.2 4 by 4 Mine Gallery 

The proposed EM framework is used to optimize a four-transmitter network 

inside a mine gallery formed by eight tunnels. Four of which are extended along x -

direction and intersect with the remaining four tunnels extended along y -direction. The 

specifications of this mine gallery are shown in Figure 4.7 (a). The wireless network 

includes four transmitters that are operated at 455 MHz and placed inside the tunnels 

extended along x -direction. The positions of transmitter 1, 2, 3 and 4 are 1( ,0.925,1.12)x  

m, 2( ,13.775,1.12)x  m, 3( , 26.625,1.12)x  m, and 4( ,39.475,1.12)x m, respectively 

[Figure 4.7 (b)]. The variables 1x , 2x , 3x , and 4x  are to be determined in the ranges [20, 

60] m, [30, 60] m, [30, 80] m, and [42, 80] m, respectively, with respect to the overall 

coverage measured by cf . Eight access points are placed in the mine gallery [Figure 4.7 
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(b)]. Seven of which are placed 2 m before the ends of the tunnels and the remaining one 

is placed at the center of tunnel 7. The optimization is terminated after 221 objective 

function evaluations and reduces the value of objective function from 53.12 to 27.20. The 

optimized results are 1 31.11x  , 2 45.10x  , 3 56.85x  , and 4 70.44x  . The power 

values are computed on the xy  plane at 1.12z   m [Figure 4.7 (c)]. Apparently, all 

access points obtain LOS connection with transmitters. It should be noted that the 

optimization results avoided many local optima. For example, one can move transmitter 2 

to the intersection of tunnel 2 and 7 and transmitter 3 to the intersection of tunnel 3 and 6, 

while the LOS connections between access points and transmitters are maintained. 

However, it is not the global best solution as the value of objective function is 29.23 for 

this placement. Average CPU time of one distinct simulation is approximately 1.2 hours. 

Next, the proposed framework is used to reconfigure the optimized the network 

after a catastrophic event. Two cave-ins appeared in tunnel 6 and 7 and blocked the LOS 

connection between access points in those tunnels with transmitters. During 

reconfiguration, the variables 1x , 2x , 3x , and 4x  are reset as and to be determined in the 

ranges [20, 60] m, [30, 60] m, [30, 80] m, and [42, 80] m, respectively [Figure 4.7 (d)]. 

The reconfiguration process took 255 objective function evaluations to converge and 

reduce the value of objective function from 42.87 to 32.21. After reconfiguration, the 

positions of transmitter 1, 2, 3 and 4 are (43.95, 0.925, 1.12), (32.11, 13.775, 1.12), 

(57.20, 26.625, 1.12), and (70.38, 39.475, 1.12) respectively. The power values of the 

reconfigured network are computed on the xy  plane at 1.12z   m [Figure 4.7 (e)]. Note 

that the access point in tunnel 7 did not have a LOS connection with any transmitter. 
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Hence, the reconfigured network is compared to a manually configured network that 

provides LOS connection with all access points. The positions of transmitters and power 

values on xy  plane of the manually configured network are shown in Figure 4.7 (f). 

While all access points have LOS connections, it is observed that the points in tunnel 5 

and tunnel 3 are not served very well as they are too far from the transmitters. The value 

of objective function under this configuration is 40.25, which is a lot higher than the one 

provided with the reconfigured network (32.21), demonstrating the effectiveness of the 

optimization framework. 
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Figure 4.7 (a) Geometry of the 4 by 4 mine gallery. (b) Transmitters and access points on 

plane 1.12z   m. (c) Power values of the optimized network computed on plane 1.12z   

m (scale: dB). (d) Optimized network and the cave-in. (e) Power values computed on 

plane 1.12z   m after reconfiguration (scale: dB) (f) Power values of the manually 

configured network computed on plane 1.12z   m (scale: dB) 

4.5.3 Mine Gallery with Serrated Tunnel 

The proposed EM framework is used to optimize a four-transmitter network 

inside a mine gallery formed by three tunnels. Two of which are extended along x -

direction and intersect with the remaining serrated tunnel. The specifications of this mine 

gallery are shown in Figure 4.8 (a). The wireless network in the gallery includes four 

transmitters that are operated at 455 MHz. The positions of transmitter 1, 2, 3 and 4 are 

1( ,0.925,1.12)x  m, 2( ,0.925,1.12)x  m, 3( ,32.22,1.12)x  m, and 4 4( ( ), ,1.12)x y y  m, 

respectively [Figure 4.8 (b)]. The variables 1x , 2x , 3x , and 4y  are to be determined in the 

ranges [10, 45] m, [75, 100] m, [80, 101] m, and [-13, 30] m, respectively, with respect to 

the overall coverage. Note that 4( )x y  is a function that keeps the position of transmitter 4 

in the middle of the cross-section of serrated tunnel 3. Seven access points are placed in 

the mine galley and positioned at (5, 0.925, 1.12) m, (50, 0.925, 1.12) m, (70, 32.22, 1.12) 

m, (108.45, -12.78, 1.12) m, (110.0, 16.57, 1.12) m, (76, 32.22, 1.12) m, and (108.45, 
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45.93, 1.12) m [Figure 4.8 (b)]. The EM framework converged after 231 objective 

function evaluations. The optimized position of transmitter 1-4 are (24.95, 0.925, 1.12) m, 

(75.16, 0.925, 1.12) m, (100.16, 32.22, 1.12) m, and (107.6, -11.31, 1.12) m, respectively. 

The power values computed at z=1.12 plane is shown in Figure 4.8 (c). Average CPU 

time of one distinct simulation is approximately 0.8 hours. Apparently, all access points 

are well-served by the network. 

 

 

Figure 4.8 (a) Geometry of the mine gallery with serrated tunnel. (b) Transmitters and 

access points on plane 1.12z   m. (c) Power values of the optimized network computed 

on plane 1.12z   m (scale: dB). 
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4.6 Chapter Conclusion 

In this chapter, we developed an optimization framework for network 

(re)configuration in mine environments. It leverages the DIRECT optimization algorithm 

and the DD based SIE full-wave EM simulator to obtain optimal allocation of the 

wireless transmitters in mine environments. Simulation results show that the proposed 

framework is efficient and able to obtain reasonable allocations. 
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CHAPTER 5  
Uncertainty Quantification of Communication Systems in 

Mine Environments 

5.1 Chapter Introduction  

In the mine environments, the EM wave propagations are largely affected by the 

uncertainties in the mine’s geometry, loaded equipment, and electronic devices. 

Examples of these uncertainties (i.e. random variables) include the polarization and 

position of transmitters and receivers, the moving of miners and mining carts, the 

roughness of tunnel walls, etc. In practice, these uncertainties can strongly affect the 

critical information obtained by the computational tools used for analyzing 

communication systems and even plague the reliability of such tools. Therefore, during 

an analysis of communication systems in mine environments, the uncertainties should be 

accurately and efficiently quantified to enhance the credibility of the analysis conducted 

by computational tools. To do that, a numerically rigorous EM simulator and an efficient 

uncertainty quantification (UQ) method must be incorporated together. In general, UQ 

methods can generate the desired statistics for observables (e.g. currents or voltages 

received by communication devices) using surrogate models constructed via a finite 
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number of deterministic executions of the EM simulator. Hence, the EM simulator 

leveraged in a satisfied EM-UQ framework should be able to obtain accurate wave 

propagation information accounting for all geometrical details and mining equipment 

inside a mine tunnel or gallery, while the UQ scheme should be able to obtain the 

statistics efficiently to minimize the cost of execution of the computationally expensive 

EM simulator.  

Quantification of uncertainties in EM analysis is most frequently performed via 

Monte Carlo (MC) methods. Classical MC methods require the evaluation of observables 

using EM simulators for many deterministic realizations of the system and its excitation, 

which are sampled as random variables with known/assumed probability density function 

(PDF). Although classic MC methods can be simply implemented with EM simulators to 

provide the statistical moments and PDFs of the observables, they often converge quite 

slowly and require a large number of deterministic EM simulations to yield reliable 

statistical data. This slow convergence limits the applicability of classic MC methods to 

the uncertainty quantifications of EM phenomena in complex and large-scale mine 

environments, for which each deterministic simulation requires significant CPU resources. 

To reduce the cost of classic MC methods, the methods use generalized polynomial chaos 

(gPC) expansions to generate surrogate models of observables have been applied within 

the EM society. Among these gPC methods, the multi-element probabilistic collocation 

(ME-PC) method [24] is highly efficient and accurate for surrogate model generation of 

EM observables that vary rapidly and/or are discontinuous functions of random variables, 

since it effectively tailors the collocation/integration points used for polynomial 

approximations to the behavior of observables. That said, its applicability is limited to the 
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moderate-dimensional random domains as the number of subdomains resulting from 

adaptive refinement and the number of collocation points in each subdomain become 

excessively large as the dimension increases. To remedy this issue, an HDMR extension 

[25] to the ME-PC method is leveraged to permit the accurate and efficient construction 

of surrogate models for EM observables in high dimensions. 

In the chapter, we propose a computational framework that leverages the novel 

fast full wave EM simulators (described in previous chapters) in concert with modern 

high dimensional model representation (HDMR) method [25, 82] to produce qualitative 

insights and actionable quantitative data pertinent to the design, deployment, and post-

event reconfiguration of mine communication and tracking systems. The HDMR method 

reduces the cost of the surrogate model construction by iteratively including only the 

component functions pertinent to the “most important” random variables. The component 

functions, which are approximated by the multi-element probabilistic collocation (ME-

PC) method [25], can represent either individual or combined contributions of random 

variables to the observables. The observable values at collocation/integration points 

chosen by the ME-PC method are computed using the FMM-FFT accelerated EM 

simulator. The new framework can apply to large mine environments comprised of 

tunnels, tunnel junctions, and galleries.  

This chapter is organized as follows: it first describes the HDMR method that is 

used as the UQ tools in the framework. Next, four major communication systems 

installed in mine environments are introduced (leaky feeder system, through-the-earth 

system, medium frequency radio system, and wireless node-based mesh network). UQ 

examples for each system are analyzed with our EM-UQ framework. 
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5.2 HDMR Method 

HDMR-generated surrogate models enable the efficient and accurate stochastic 

characterization of electronic systems subject to uncertainties in mine environments. 

Once the HDMR method successfully converges and constructs the surrogate model, the 

MC simulations will be performed on the surrogate model (instead of the EM simulator) 

and the statistics of desired observables can be efficiently obtained. 

5.2.1 Formulation of HDMR 

Let 
1 2[ , ,..., ]dofN

x x xx   denote a random vector defined over a domain D . Each 

element in x  is a random variable that has a known PDF and parameterizes an uncertain 

quantity in the mine environments. The HDMR expansion approximates an unknown 

function V (x), which represents an observable in mine communication systems, in terms 

of component functions as 

    V V


 u

u

u

x x   (5.1) 

where  1,..., dofN   is the general set of random variable indices, u  is a subset of  , i.e. 

 u , and u  denotes the cardinality of subset u . 
u

x  is a u -dimensional random 

vector and  V u

u x  represents the component functions defined over D. For example, for 

 u ,     0V V V

 u

u x x  is the zeroth-order component function which is constant 

over D; for {1}u ,    1

1V Vu

u x x  is the first-order component function that represents 

the individual contribution of 1x  to  V x . The HDMR construction can be better 
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described by an example. Assume that 3dofN   and  1,2,3  , all possible subsets of  , 

u  and all component functions  V u

u x  corresponding to these possible subsets are given 

in Table 5-1. 

Subset, u   V u

u x   u  

  
0V  1 

{1}   1

1V x  1 

{2}   2

2V x  1 

{3}   3

3V x  1 

{1,2}   1 2

12 ,V x x  2 

{1,3}   1 3

13 ,V x x  2 

{2,3}   2 3

23 ,V x x  2 

{1,2,3}   1 2 3

123 , ,V x x x  3 

Table 5-1 The correspondence between subsets of {1,2,3}   and the component 

functions used to build HDMR expansion and the cardinalities of subsets. 

For this example, one can construct the HDMR expansion in (5.1) using the 

component functions given in Table 5-1 as  

 
         

     

1 2 3 1 2

0 1 2 3 12

1 3 2 3 1 2 3

13 23 123

,

, , , , .

V V V x V x V x V x x

V x x V x x V x x x

    

  

x
  (5.2) 

The advantage of such construction can be illustrated by selecting an observable that 

consists of a constant term and monomials such as        
2 2 2

1 2 31V x x x   x , (Note: the 

indices (or superscripts) of random variables are written inside parentheses while their 

powers are intentionally left outside to avoid confusion). The component functions 0V , 

 1
1V x ,  2

2V x , and  3
3V x  are needed to approximate  V x  while the remaining 
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component functions in (5.2) are redundant. In many practical communication systems, 

like in this example, the behavior of observables can be efficiently approximated by 

including only the low-order component functions. This fact renders the HDMR 

expansions highly suitable for surrogate model generation of  V x  that is in high-

dimensional random domains but can be approximated by surrogate models constructed 

in low dimensional domains. 

5.2.2 Definition and Selection of Component Functions in HDMR 

The component functions are expressed in terms of observable values on cuts 

passing through a reference point x , i.e. 

                    
\

V V V




 u

u u v

u v
x x x

v u

x x x                                     (5.3) 

where \ u
x x x  indicates that the random variables with indices that do not belong to 

subset u are set to the corresponding values at reference point x . The reference point in 

this study is select as the mass center of D, i.e., 

 1 1 1,..., ( ) / 2,..., ( ) / 2dof dof dofN N N
x x a b a b      
   

x . (5.4) 

The choice of reference point is not unique, it may also be selected as the centroid of SG 

integration rule [83], as a random point at which the observable value is closest to the 

global mean [84], or as a random point determined due to the prescribed weights of 

dimensions [85]. For the example given above, the component functions obtained are 

given as follows: 
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 

   

   

   

       

       

       

         

0

1 1 2 3

1 0

2 1 2 3

2 0

3 1 2 3

3 0

1 2 1 2 3 1 2

12 0 1 2

1 3 1 2 3 1 3

13 0 1 3

2 3 1 2 3 2 3

23 0 2 3

1 2 3 1 2 3 1 2 3

123 0 1 2 3

12

, , ;

, , ;

, , ;

, , , ;

, , , ;

, , , ;

, , , ,

V V

V x V x x x V

V x V x x x V

V x V x x x V

V x x V x x x V V x V x

V x x V x x x V V x V x

V x x V x x x V V x V x

V x x x V x x x V V x V x V x

V x



 

 

 

   

   

   

    



x

     1 2 1 3 2 3

13 23, , , ;x V x x V x x 

  (5.5) 

To iteratively select the component functions that significantly contribute to 

observable, the weight associated with the first-order functions are defined as 

 0( ) ; 1E V V    
u

u u x u .  (5.6) 

Here, ( )E V  
u

u
x  is the means of first-order component functions. In case 0V  is 

zero, the weight is set to ( )E V  
u

u
x . A component function is assumed to be significant 

when its associated weight is larger than a prescribed value 1 . During the iterations with 

the second-order component functions, only those involving the significant first-order 

component functions are computed and are added to the second-level HDMR expansion 

only if their associated weights are larger than the prescribed value. This scheme is then 

repeated for all levels. Note that the weights of component functions at higher levels are 

defined as 

 
1

( ) ( ) ; 1E V E V
 

       u v

u u vv u
x x u   (5.7) 
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An additional stopping criterion is the decay rate of relative difference    

between observable means computed at two consecutive levels, which is defined as 

 
1 1

( ) ( ) ( )E V E V E V
    

             v v v

v v vv u v u v u
x x x .  (5.8) 

If this relative difference is smaller than a prescribed tolerance 2 , the HDMR is assumed 

to have converged. To provide additional accuracy for the surrogate model, the 

component functions identified as insignificant are also included in the final HDMR 

expansion that construct the surrogate model of ( )V x . 

5.2.3 Integrating HDMR with ME-PC Method 

To recursively obtain the component functions, the observable value on reference 

point x  (for 0u ) is computed and the observable values on lines (for 1u ), planes 

(for 2u  ), and hyperplanes (for 3u ) passing through x  are interpolated using the 

ME-PC method. To do that, the component function  V v
x  are approximated using pth-

order local gPC expansion as  

  
\\

0

( )
pN

v v

m m

m

V v




 vv

v

x x xx x x
x P x   (5.9) 

where v

mv  and ( )v

mP x  denotes the local gPC coefficients and |v|-variate local orthogonal 

Legendre polynomial basis functions (defined over the domain of  
\

V
 v

v

x x x
x ). The local 

gPC coefficients v

mv  are obtained by evaluating a |v|-variate integral. During the ME-PC’s 

construction of expansion coefficients, an adaptive refinement process is performed and 
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the refinement parameters are also computed separately for all component functions. The 

final approximation of ( )V x  is to sum up the ME-PC approximations of all component 

functions. To this end, the ME-PC enhanced HDMR method is introduced. Further 

information about this method can be referred to [25, 82]. 

5.3 Uncertainty Quantification of Communication Systems 

 The EM-UQ framework leverages the above-described ME-PC enhanced HDMR 

method to approximate observables (and thereby, their statistics) over the “random 

domain” of variables that parameterize the uncertainties existing inside mine tunnels or 

galleries. The deterministic full-wave EM simulators are used by the UQ method to 

compute observables for various mine configurations represented by selected collocation 

points in the random domain. Subsequently, the framework constructs compact 

multivariate polynomial surrogate models that accurately approximate the observables 

and are computationally cheap to evaluate. Finally, the surrogate models are used in lieu 

of the computationally expensive EM simulator to extract pertinent statistics via MC 

simulations performed on the surrogate model.  

The following four sections present the application of proposed EM-UQ 

framework to four commonly-used communication systems in mine environments: leaky 

feeder systems, TTE systems, medium frequency (MF) systems, and wireless node-based 

mesh networks. For each system, an UQ examples are presented. In all examples, the 

threshold 1  for determining significant component functions and 2  for determining the 
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convergence of HDMR are set as 
210
 and 

1610
, respectively. The tolerance of ME-PC 

refining tolerance (see its definition in [24]) is set as 
110
. 

5.3.1 Leaky Feeder System 

Reliable communication is essential for underground mines and tunnels for safety 

and productivity reasons. This communication system is needed to distribute video and 

audio information within the complex tunnel networks. To achieve this, the leaky feeder 

system is often used as transmission medium in underground mines and tunnels [Figure 

5.1]. The leaky feeder is dual functional; it not only transmits radio signal as a cable but 

also radiates the signal along its length via carefully designed slots. The leaky feeder 

system is almost noise free and has enough bandwidth to support multiple radio signals 

carrying voice and text simultaneously. The leaky feeder system is also able to transfer 

electricity to power up amplifiers and active wireless nodes.  

There are many previous works on the leaky feeder system. Fan et al. [86] studied 

the radiation characteristics of leaky co-axial cable field and compared it with the 

characteristics of the helical antenna. Feng et al. [87] theoretically analyze the radiating 

modes of leaky coaxial cable fields. However, these techniques rely on simplified 

assumptions and/or approximations that limit their applications. In contrast, full-wave 

methods does not suffer from these limitations. In [88], Wang et al. used the finite-

difference time-domain (FDTD) method to calculate the electric field distribution in the 

slot cut in the outer conductor of the coaxial cable. They then obtained the radiation fields 

from the slots via the equivalent magnetic current and the dyadic Green’s function. That 
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said, FDTD is computationally expensive for long tunnels with cables and its focus is to 

compute the coupling loss of a cable rather than the fields distribution inside the tunnel.  

 

Figure 5.1 An examples of leaky feeder system. The two miners can communicate with 

each other if they are within the range of the leaky feeder cable. 

In this section, our proposed EM-UQ framework is used to analyze leaky feeder 

systems inside mine tunnels or galleries. In all examples considered here, the cable is 

operated at radiating mode and the signal strength decay inside the cable is modeled by 

the diffuse model given in [89]. In the diffuse model, a cable element of length h  is 

represented as a point source radiating the power Ph  in appropriate polarization. The 

radiating power per unit length is  

 2 /10( 8)(4 ) 10 exp( 2 )L

feedP D x P     .  (5.10) 

Here, D  is the reference distance between the axis of a long diffuse radiator and a half-

wave dipole that is parallel to the axis.   is the attenuation constant in Np m . L  is the 

standard coupling loss of a leaky coax. D  is usually 20 ft.;   and L  can be easily found 
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in commercial leaky cable manuals. In all examples,   and L  are chosen as 0.0152 and 

65.0, respectively. x  is the distance between the radiating point and the feeding point.  

In the real environment, there are many uncertainties affecting the performance of 

a leaky feeder system. For example, the cable installed on the wall of a tunnel may be 

affected by mine geometry and may not keep unmoved all along the tunnel. Hence, the 

actual location of the cable and the amplifier on it may be different than planned. In this 

example, the uncertainty of the cable’s position and an amplifier’s position is quantified 

via the proposed EM-UQ framework. As shown in Figure 5.2, a leaky feeder system 

installed in a 650-meter long tunnel is analyzed. The width and height of the tunnel is 

1.85 meters and 2.24 meters, respectively. The relative permittivity r , permeability r  

and conductivity   of the surrounding ore are 8.9, 1.0, and 0.15, respectively. The leaky 

cable is 640 meters long and extends from (5, , )l ly z  m to  (645, , )l ly z  m, where ly  and 

lz  are the random variables uniformly distributed in [0.6, 1.25] m and [1.90, 2.10] m. The 

amplifier is installed near the center of the leaky cable and positioned at ( , , )a l lx y z  m, 

where ax  is a random variable uniformly distributed in [290, 310] m.  

 

Figure 5.2 Geometry of a straight tunnel and a leaky cable installed with an amplifier 
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Two receivers are positioned inside the tunnel. Receiver 1 is chosen at (300, 0.925, 

1.12) and receiver 2 is at (640, 0.925, 1.12), i.e., one is near the center of the tunnel and 

the other is near the end. The observables are the received power strength at the two 

receivers. Table 5-2 presents these observables’ averages and standard deviations 

computed by the proposed EM-UQ framework. It can be observed that the power strength 

at receiver 1 has much larger standard deviation than that at receiver 2. This is expected 

as the amplifier is placed around receiver 1. In addition, the PDF of power values 

received at the two receivers are obtained by performing 5000-point MC simulations on 

the HDMR constructed surrogate model [Figure 5.3 (a)-(b)]. 

Statistics Observables Proposed Framework 

Mean (dB) Power Strength at Receiver 1 -6.97 

Power Strength at Receiver 2 -30.39 

Standard Deviation (dB) Power Strength at Receiver 1 3.83 

Power Strength at Receiver 2 1.96 

Number of Simulations  61 

Table 5-2 Statistics and number of deterministic simulations obtained by the proposed 

EM-UQ framework. 

 

Figure 5.3 PDF of power values received at (a) receiver 1 and (b) receiver 2. 
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5.3.2 Through-the-Earth System 

The Mine Improvement and New Emergency Response Act of 2006 (MINER Act) 

requires that every underground mine in the U.S. should be equipped with an emergency 

response plan. The plan must include a two-way wireless post-accident communication 

system between underground and surface, which is used to electronically track and 

communicate with underground workers. In an emergency, conventional communication 

systems may be interrupted or disabled if communication infrastructures are damaged and 

the backup communication between rescuers at the surface and miners underground 

becomes particularly important in such situation. One way to establish the post-accident 

communication is to directly communicate from surface to the underground mines 

[Figure 5.4 (a)]. Although previous researches showed that the TTE transmission between 

surface and underground is difficult to establish, recent advances in this technology have 

led to better communication capability and offer new possibilities for TTE 

communication. Typically, signals at frequencies below 10 kHz can penetrate the earth 

and offer promising capabilities to establish through-the-earth (TTE) connections. Hence, 

current TTE communications tested in mine environments use large loop antennas 

operating at ultra-low frequency to send/receive signal through the earth. A major 

advantage of the TTE communications is that it requires much less underground and 

surface infrastructure than higher frequency mine communication systems in post-

accident situation. 

In an emergency, the configuration of a TTE communication system may be 

affected or damaged by the accident. For example, an earthquake or an explosion inside 

mine tunnels would change the position and orientation of communication devices, which 
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lead to uncertainties in the system. Oftentimes these uncertainties would have influences 

on the signal transmission path and the connection quality. To enhance the reliability and 

functionality of a TTE communication system, these uncertainties must be accurately 

quantified. In this example, the uncertainties in the transmitter’s location and polarization 

are quantified via the proposed EM-UQ framework. 

 

(a)                                                                       (b) 

Figure 5.4 (a) TTE communication system. (b) UQ example of the TTE system. 

The UQ example characterizes a TTE system in a mine gallery located 200 m 

underground is analyzed [Figure 5.4 (b)]. The gallery is filled with air and surrounded by 

homogeneous lossy dielectric whose relative permittivity is 3.0, relative permeability is 

1.0 and conductivity is 0.01. The gallery occupies horizontally a 62.5 m by 62.5 m area 

and the cross section of each tunnel is 2.5 m by 2.5 m. A magnetic dipole, which is used 

to model the transmitting loop antenna at 5000 Hz, locates at ( , , )x y z  and is oriented 

towards ( , )  .  Variables , , ,x y z  , and   are uniformly distributed in the region [-0.5, 

0.5] m, [-0.5, 0.5] m, [-200.5, -199.5] m, [0, 10] degree and [0, 360] degree, respectively. 

The observables are the real and imaginary part the current flowing on the port of 
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receiving loop antenna, which is modeled by a PEC loop strip with 20 cm width. The 

load is conjugate matching. Table 5-3 presents these observables’ averages and standard 

deviations computed by both direct Monte Carlo (MC) methods and the proposed 

EM+UQ framework. Additionally, probability density functions of these observables are 

estimated via 5000-point MC simulation performed on the HDMR constructed surrogate 

model and compared with those directly obtained via MC simulations [Figure 5.5 (a)-(b)]. 

Apparently, the proposed EM-UQ framework can provide accurate averages and 

standard deviations for the real and imaginary part of port current. Subsequently, the 

surrogate models for characterizing the real and imaginary part of port current are used to 

characterize the magnitude and phase of port current, which are what really interested in 

practice. The means and standard deviations are compared with direct MC simulations 

[Table 5-4]. The PDFs of the magnitude and phase are present [Figure 5.5 (c)-(d)]. Again, 

the statistics of both methods match very well to each other. 

Statistics Observables Direct MC Proposed framework 

Mean Real part of currents 4.0919e-07  4.2060e-07  

Imaginary part of currents -7.3388e-7 -7.3966e-07  

Standard 

deviation 

Real part of currents 5.1608e-06  5.1542e-06  

Imaginary part of currents 2.5636e-06  2.6385e-06  

Number of 

simulations 

Real part of currents 5000 329 

Imaginary part of currents 5000 679 

Table 5-3 Comparison of statistics and number of deterministic simulations obtained via 

direct MC method and the proposed framework for real and imaginary part of port 

current. 
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Statistics Observables Direct MC Proposed framework 

Mean Magnitude of currents 4.14 uA 4.12 uA 

Phase of currents 8.26 degrees 7.76 degrees 

Standard 

deviation 

Magnitude of currents 4.10 uA 4.16 uA 

Phase of currents 110.2 degrees 111.35 degrees 

Table 5-4 Comparison of statistics and number of deterministic simulations obtained via 

direct MC method and the proposed framework for magnitude and phase of port current. 

 

 

Figure 5.5 PDF of (a) the real part and (b) the imaginary part of port current. PDF of (c) 

magnitude and (d) phase of port current. 

5.3.3 Medium Frequency Radio System 

Medium frequency (MF) communications systems operate in the 300 kHz to 3 

MHz band. It was developed as radio signals in the VHF (30 MHz to 300 MHz) and UHF 

band (300 MHz to 3 GHz) are restricted to line-of-sight coverage, and coverage cannot 

be provided around sharp corners and through rock falls. MF radio waves, in contrast, 
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can propagate through complex geometries as they are parasitically coupled to nearby 

existing metallic conductors within the mine environments [Figure 5.6]. These 

conductors, for example, can be existing mine telephone wire, rails, water pipes, or leaky 

feeder cables. Among them, solid copper twisted-pair phone wire and leaky feeder cable 

can serve as excellent conductors for propagation of MF signals because they are 

distributed continuously throughout the whole mine tunnels or galleries. In other words, 

the conductors inside mine tunnels act as part of a transmission line to transport the MF 

signal. They also act as distributed antennas and can receive and transmit MF signals. 

The MF systems are generally considered to be a secondary communications system 

because the hand-held device of a MF radio system is significantly bigger and heavier 

than a typical hand-held UHF or VHF radio and can hardly be carried by miners all the 

time [90]. That said, MF systems are useful as a secondary system for providing alternate 

survivable communications paths from a working section to the surface. For example, in 

an emergency event, MF communication would still be possible through conductors in 

existing boreholes extended from the surface to the mining sites.  

 

Figure 5.6 A simple medium frequency communication system. 
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Figure 5.7 (a) Geometry of a 450-meter arched tunnel and the parallel strips modeling 

conductors. (b) Mean and some random realizations of power values along a line in 

center of the tunnel. (c) Standard deviation of power values along a line in the center of 

the tunnel (d) PDF of the power values at a selected receiver.  

In order to determine what factors can affect the behavior of MF propagation in 

coal mines, extensive numerical and analytical modeling is required. The proposed full-

wave EM-UQ framework is used to analyze the MF systems illustrated in Fig. This 

statistical analysis is performed in a 450-meter long arched tunnel with two parallel PEC 

strips modeling a transmission line inside the tunnel [Figure 5.7 (a)]. These strips, which 

are 400-m long, infinitesimally thin, 6 cm wide, and separated by 0.6 m, model a 

transmission line placed near the lateral tunnel wall and are centered at (0.17, 245, 0.87) 

m and (0.17, 245, 1.47) m. The full wave simulation is performed without FMM-FFT 

acceleration as the FMM-FFT algorithm is numerically unstable for low frequencies. The 

electric dipole used to model the transmitter is oriented in ( ,0)  direction and operated at 

3 MHz and located at ( ,50, )x z , where  , x  and z  are the random variable uniformly 
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distributed in the range [0, 90], [0.875, 0.945] and [1.0, 1.44], respectively. Mean and 

standard deviation are obtained by the EM-UQ framework for the power values 

computed along a line connecting point (0.915, 51, 1.22) m to (0.915, 350, 1.22) m 

[Figure 5.7 (b)-(c)]. Finally, the PDF of the power values at point (0.915, 320, 1.22) m 

are computed and presented [Figure 5.7 (d)]. 41 deterministic simulations are required in 

this example. 

5.3.4 Wireless Node-Based Mesh Network 

Wireless mesh network systems typically operate at 0.5-6 GHz. It uses small 

distributed transceivers called nodes to wirelessly transmit and receive signals. Mesh 

network systems have attracted considerable interest from the mining community. In 

contrast to a conventional leaky feeder analog UHF or VHF radio system where all the 

mobile radios may hear the messages in broadcast fashion, the mesh systems enable 

person-to-person information exchange such as calling and text messaging. Moreover, 

node-based communication systems are quite flexible. It can use any of the available 

network topologies to obtain best signal coverage within interested area and can also 

increase the system survivability by building redundant routes in a wireless network. In a 

wireless mesh network, transceivers can transmit, receive, act as a signal repeater, and 

route traffic to other devices within their RF range. A simple wireless mesh network is 

illustrated in Figure 5.8. During the communication, a mobile device, such as a hand-held 

radio, can access the network if it is within the service range of a fixed-position node. 

When a miner talks or sends a text message using his handset, a link is established with a 

nearby node. Using wireless links between nodes, the network transmits the miner’s 
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information to the desired destination, either inside or outside the mine. For example, the 

orange dash line indicates the propagation of the signal between nodes and finally to the 

hand-held radio receiver. The topologies of this kind of network include line, bus, tree, 

ring, star, partial and full mesh. However, due to the complex layouts of mine 

environments, it is not practical to link the nodes into structured topologies, such as ring 

or line, or link each node to every other node to form a full mesh. Hence, partial mesh 

network is most commonly used in mines. In this section, the proposed EM-UQ 

framework will be used to analyze the partial mesh wireless systems. 

 

Figure 5.8 Cutaway view of mine with a wireless mesh node-based communications 

system 

In the UQ example, the proposed EM-UQ is used to characterize the wave 

propagation of a wireless network in a mine gallery formed by six tunnels. In this gallery, 

three rectangular tunnels are extended along xdirection and are intersected with the 

other three tunnels extended along y direction [Figure 5.9 (a)]. The height, width and 

length of these rectangular tunnels are 2.24 m, 1.85 m, and 45.55 m. The wireless 
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network is formed by four nodes operated at 900 MHz (IEEE 802.15.4 specification), 

each of which is modeled by a vertically place dipole with unit moment [Figure 5.9 (b)]. 

The positions of the three nodes are set as variables and listed in Table 5-5. The 

observables are the signal power received by two receivers located at (45.0, 0.925, 1.12)  m 

and (32.775, 10.925, 1.12)  m, respectively. Table 5-6 present these observables’ averages 

and standard deviations computed by the proposed EM-UQ framework. Additionally, 

probability density functions of the observables are estimated via 5000-point MC 

simulation performed on the surrogate model constructed by our UQ framework [Figure 

5.10 (a)-(b)]. A total of 61 simulations are required by the framework to build the 

surrogate model. 

 

Figure 5.9 (a) Geometry of the mine gallery. (b) Approximate node locations and access 

points. 

 Location Variable Distribution 

Node 1 1( , 0.925, 1.12)x   1x   U(15.425, 16.425)  

Node 2 2(32.775, , 1.12)y  2y   U(34.125, 35.125)  

Node 3 3( , 17.775, 1.12)x  3x   U(49.225, 50.225)  
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Table 5-5 Variables defined in the location of nodes. U  stands for uniform distribution. 

Access Point No. Statistics Results by Proposed Framework 

1 Mean 42.10 dB 

Standard Deviation 1.71 

2 Mean 40.08 dB 

Standard Deviation 1.66 

Table 5-6 Comparison of statistics and number of deterministic simulations obtained via 

the proposed framework. 

 

Figure 5.10 The probability density functions for power densities at (a) access point 1 and 

(b) access point 2. 
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5.4 Chapter Conclusion 

The EM-UQ framework leveraging a ME-PC enhanced HDMR method in 

conjunction with proposed full-wave EM simulators tailored for statistically 

characterizing EM wave propagation in mine tunnels was presented. The technique yields 

PDFs of receiver field strengths accounting for uncertainty in mine layout and 

composition and can aid in to assess network reliability during normal operations. The 

framework allows for modeling of complete mines involving complex galleries and mile-

long tunnels through the full-wave simulators and permits fast and faithful statistics 

analysis via the UQ tool. The simulations results demonstrated that the framework can 

successfully solve UQ problems for communications systems in mine environments. 
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CHAPTER 6  
Compression of Scattering Matrices in Domain Decomposition 

Based Surface Integral Equation Simulator via Hierarchically 

Off-Diagonal Butterfly Factorization 

6.1 Chapter Introduction 

The design, (re)configuration, and EMC certification of wireless communication 

systems in underground mines call for powerful simulators capable of analyzing 

electromagnetic (EM) wave propagation in electrically large and complex mine tunnels 

and galleries. Full-wave EM simulators are a perfect fit for this task since they permit 

high-fidelity modeling of realistic mine environments and can be operated at desired 

frequencies. That said, full-wave EM simulators require enormous computational 

resources when used in EM analyses with multiple excitations, which arise in uncertainty 

quantifications and communication network optimizations. To reduce their costs, a 

memory and CPU efficient, full-wave, domain decomposition (DD)-based surface 

integral equation (SIE) simulator was proposed by Sheng et al [52, 70]. This simulator 

first divides mine tunnels or galleries into subdomains and defines equivalent surfaces for 

each subdomain using Huygens principle. Next, it proceeds to the offline stage that 
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computes scattering matrices to characterize EM wave propagation in each subdomain 

separately. Finally, it comes to the online stage to construct and solve a global inter-

domain system that accounts for EM interactions between subdomains and has 

significantly less degrees of freedom compared to those of conventional fast simulators. 

When used for EM analyses with multiple excitations, the DD based SIE simulator 

oftentimes is significantly faster than conventional full-wave simulators since it only 

needs to update the right-hand side of the reduced inter-domain system and solve the 

reduced system for each different excitation during its online stage.  

Unfortunately, the above simulator remains slow when applied to tunnels and 

galleries with electrically large cross sections, a situation that often arises when analyzing 

high frequency communication systems. The principal culprit is the high computational 

complexity of operations involving full scattering matrices. Indeed, the naïve solution of 

inter-domain systems requires 
2( )p surO N N  and 

2( )pO N  computational and memory 

resources, respectively; here pN  is the number of basis functions used to discretize one 

equivalent surface and surN  is the number of equivalent surfaces. To alleviate the 

computational burden, the hierarchically off-diagonal butterfly factorization (HODBF) 

technique [91] is used to compress the scattering matrices and reduce the computational 

and memory requirements of iteratively solving inter-domain system to 

1.25 2( log )p p surO N N N  and 
1.25 2( log )p pO N N , respectively. The idea of the HODBF 

technique is to hierarchically compress the off-diagonal blocks of a scattering matrix 

using a fast and efficient butterfly scheme [53, 66] that exploits the hierarchical low rank 

nature of those off-diagonal blocks to construct their multilevel sparse decompositions. 



 

 

133 

 

The compressed scattering matrices are constructed via a randomized scheme [91] 

requiring only “black box” matrix-vector multiplications of scattering matrices with 

structured random vectors. The accuracy, efficiency and applicability of the proposed 

HODBF enhanced DD based SIE simulator are demonstrated via characterization of EM 

wave propagation in various electrically large mine tunnels and galleries. 

6.2 Scattering Matrices in DD Based SIE Simulator 

The scattering matrices in DD based SIE simulator characterize the relation 

between input currents and output fields on the equivalent surface. Consider a tunnel that 

is surrounded by ore and split into four subdomains [Figure 6.1 (a)]. For subdomain b  

with two attached equivalent surfaces 1S  and 2S  [Figure 6.1 (b)], the scattering matrix 

b
Z  of b  is defined as [70] 

 
111 12 1

221 22 2

,
b b sca

b

b b sca

    
     

    

IZ Z V
Z I

IZ Z V
  (6.1) 

where the scattering matrix b
Z  is formed by 2 2  scattering submatrices. pI  is the 

vector holding the unknown expansion coefficients of the RWG basis function 

discretized currents on pS , {1,2}p . sca

qV  is the vector formed by the vectors of 

scattering electric fields sca

qE  and scattering magnetic fields sca

qH  tested on 
qS , as 

[ ; ]sca sca sca

q q qV E H , {1,2}q . The scattering submatrix b

qpZ , , {1, 2}q p , maps the 
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currents on pS  to the scattered fields on qS  by accounting for the wave propagation 

characteristics of b . 

   

Figure 6.1 (a) A tunnel surrounded by ore. (b) subdomains and associated equivalent 

surfaces 

By obtaining the scattering matrices for all subdomains of this tunnel, the inter-

domain system that accounts for the interaction between subdomains can be formed as 

[70] 

 

11 11 12 1 1

21 22 22 23 2 2

32 33 33 3 3

0

0

a b b inc

b b c c inc

c c d inc

     
    

     
         

Z Z Z I V

Z Z Z Z I V

Z Z Z I V

,  (6.2) 

where inc

pV  is the vector of tested incident electric and magnetic fields on 
pS  due to 

impressed sources in the subdomains touching to 
pS . Note that only equivalent surfaces 

touching the same subdomain can interact due to the highly lossy background. The inter-

domain system is solved to obtain the unknown coefficients of the currents on 
pS , 

1,...,3p  , which are then used to compute the currents on i , ,...,i a d , and hence 

fields anywhere inside the tunnel.  

To iteratively solve the inter-domain system, one must perform a number of matrix-

vector multiplications on the scattering matrices in (6.2). The computational and memory 



 

 

135 

 

complexity of these operations involving full scattering matrices scales as 2( )pO N , where 

pN  is the number of basis functions used to discretize one equivalent surface. When it 

comes to tunnels and galleries with electrically large cross sections, this computational 

cost becomes high and can greatly slow down the solution of inter-domain system. 

6.3 Compression of Scattering Matrices 

To alleviate the computational burden, the HODBF method is proposed to 

compress the scattering matrices and reduce the computational and memory requirements. 

The HODBF matrices, as one class of the hierarchical matrices, are used as data-sparse 

approximations of dense matrices [92]. In this section, the scattering matrix in Eq. are 

compressed into the HODBF structure with the butterfly compressed off-diagonal blocks. 

To do so, the scheme first hierarchically bisects the two equivalent surfaces into several 

levels according to a specific partition strategy. Next, it uses a randomized scheme to 

obtain the butterfly factorization for the off-diagonal blocks of the scattering matrix. 

6.3.1 Partition Strategy 

The defining characteristics of HODBF matrices is that the off-diagonal blocks 

representing interactions between two non-intersecting subscatterers can be efficiently 

compressed. Hence, the partition strategy proceeds as follows. In the first level, the two 

equivalent surfaces are separated since they only have far-field interactions. In the second 

level, the tunnel interfaces and the rest of the surfaces are separated. The other levels then 

hierarchically divide the geometry into two halves until the finest-level blocks contain 
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only (1)O  basis functions. The strategy is illustrated via an example of 6-level partition 

of the two equivalent surfaces [Figure 6.2].  

 

Figure 6.2 An example of 6-level partition of two equivalent surfaces 

6.3.2 HODBF Structure 

The HODBF matrix is better illustrated using an example. A 2-level HODBF 

structure of the scattering matrix can be written as [92] 

 

2 2

1 1,2 1

1,22 21 1
2,1 21 1,2

1 1 2 2
2,1 2 3 3,41

2,1 2 2

4,3 4

  
  

    
    

    
  
  

K K
K

K KK K
Z

K K K K
K

K K

.  (6.3) 

Let l

iK  represent the i th diagonal blocks at l -level and ,

l

i jK  represent the off-diagonal 

blocks that are to be compressed, a L -level HODBF matrix is the one with its i th 

diagonal blocks at l -level written as 
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1 1

2 1 2 1,2

1 1

2 ,2 1 2

l l

i i il

i l l

i i i

 

 

 



 
  
 

K K
K

K K
,  (6.4) 

where 0,..., 1l L   and 1,..., 2li  . The pictorial representation of a 2-level hierarchical 

matrix structure is shown in Figure 6.3. 

 

Figure 6.3 2-level HODBF matrix structure. Blue area represents off-diagonal blocks to 

be compressed via butterfly factorization, while orange area represents full matrix blocks. 

The off-diagonal blocks of the scattering matrix may be compressed via either 

low-rank algorithms or butterfly algorithm. However, the computational and memory 

complexities of low-rank algorithms can deteriorate to ( log )O N N 
 ( 1.5,  1   ) 

and ( log )O N N
 ( 1.5  ) for applying the LR-compressed blocks to matrix-vector 

multiplications since the scattering matrices in DD based SIE simulator represent EM 

interactions on electrically large objects [53, 91]. In contrast, the butterfly scheme can 

exploit the hierarchical low-rank nature of the off-diagonal blocks in high frequency 

regime and efficiently apply the multilevel sparse decompositions of these blocks to 

matrix-vector multiplications in 
1.25 2( log )O N N  computational and memory 

complexities [91]. 
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Figure 6.4 Pictorial illustration of butterfly factorization: (a) level-0 factorization, (b) 

level-1 factorization, (c) level-2 factorization, and (d) 2-level butterfly factorization. 
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To illustrate the butterfly factorization of an off-diagonal block, consider a l -level 

m n  block 
1,2

lP K  with 2l

pm n N   as an example. Let {1,..., }C n  be the column 

index set and {1,..., }R m  be the row index set. C  and R  are recursively bisected into a 

binary tree structure with V L l   butterfly levels (in practice, however, the number of 

butterfly levels are adjusted according to empirical knowledge of ranks at each HODBF 

level). At level {0,..., }v V , there are 2v
 column index subsets 

v

jC , 1,..., 2vj  , and row 

index subsets v

iR , 1,..., 2vi  , of approximate size 2vn  and 2vm , respectively. Let 

, ,v V v
i j

v

i j R C P P  be the submatrix of P  corresponding to v

iR  and 
V v

jC 
, the butterfly 

factorization of P  can be constructed by applying low-rank decomposition to ,

v

i jP  (after 

the level 0, it is reduced-order representation of ,

v

i jP ). The low-rank decomposition is not 

necessarily unique and can be constructed via interpolative decomposition [93], adaptive 

cross approximation [66, 94], and so on. Denoting the maximum rank for all submatrices 

,

v

i jP  as k , the butterfly factorization of P  is described level by level in what follows [53, 

91] (As an example, a 2-level butterfly factorization of a block is shown in Figure 6.4). 

At level 0, the submatrices 
0

1, jP , 1,..., 2Vj  , are decomposed as 
0 0 0

1, 1, 1,j j jP U B , 

where 
0

1, jU  is of size m k  and 
0

1, jB  is of size 2Vk n . Note that the subscripts and 

superscript of ,

v

i jU  and ,

v

i jB  are only for numbering and do not necessarily relate to v

iR  

and 
v

jC . The resulting factorization of P  is [Figure 6.4 (a)] 

 
0 0P U B ,  (6.5) 
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where 0 0 0

1,1 1,2V
 
 

U U U  and 0 0 0

1,1 1,2
( , ..., )VdiagB B B .  

At level 1, the submatrices 
0

1, jU , 1,..., 2Vj  , are first row-wise bisected as 

0 1 1

1, 1, 2,( ; )j j jU U U , 1,..., 2Vj  . Next, 
1

,i jU  are column-wise paired as 

1 1 1

, ,2 1 ,2( , )i j i j i jN U U , 1, 2i  , 11,..., 2Vj  . Here, ( ; )   and ( , )   denote the column and 

row concatenation, respectively. The new submatrices 
1

,i jN  are then factorized as 

1 1 1

, , ,i j i j i jN U B , 1, 2i  , 11,..., 2Vj  , where 
1

,i jU  are of size 2m k  and 
1

,i jB  are of size 

2k k . At this level, the factorization of P  becomes [Figure 6.4 (b)] 

 1 1 0P U B B  , (6.6) 

where 1 1 1

1 2( , )diagU U U  and 1

1 1 1

,1 ,2Vi i i 
 
 

U U U . 1 1 1

1 2( ; )B B B  and 

1

1 1 1

,1 ,2
( ,..., )Vi i i

diag B B B . 

At level 2,...,v V , the method proceeds in a similar manner. It first row-wise 

bisects submatrices 
1

,

v

i j


U  as 2 1, 2 ,( ; )v v

i j i jU U , 
11,..., 2V vj    and column-wise pairs them to 

form new submatrices as , ,2 1 ,2( , )v v v

i j i j i jN U U , 1,.., 2vi  , 1,..., 2V vj  . Then it factorize 

,

v

i jN  as , , ,

v v v

i j i j i jN U B , 1,.., 2vi  , 1,..., 2V vj  , where ,

v

i jU  are of size 2vm k  and ,

v

i jB  

are of size 2k k . Finally, the butterfly factorization for the block P  is (level-2 structure 

is shown as an example in Figure 6.4 (c)). 

 
1 0V VP U B B B ,  (6.7) 
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where 1,1 2 ,1
( , , )V

V V VdiagU U U . 1 2 2 1 2
(( ; ), , ( ; ))v v

v v v v vdiag


B B B B B  and 

,1 ,2
( ,..., )V v

v v v

i i i
diag B B B , 0,...,v V . Figure 6.4 (d) shows the pictorial representation of 

a 2-level butterfly factorization. 

6.3.3 Randomized Scheme 

As demonstrated in previous literature [91], it is computationally expensive to 

obtain the HODBF structure for a scattering matrix by directly compressing its full 

matrix since its entries are computed via matrix-vector multiplications. In this section, a 

fast scheme that relies on multiplications of the scattering matrix and random vectors is 

used to construct its HODBF structure and alleviate the computational burden. 

A repeatedly used algorithm in the construction of HODBF is the randomized 

butterfly scheme that constructs butterfly factorization for a matrix. For the m n  block 

P  with butterfly rank k , the algorithm to construct its V  level butterfly factorization is 

described as follows [53, 91]: 

Step 1: Generate an auxiliary butterfly-factorized matrix T  such that  

 
1 0V VT L R R R .  (6.8) 

The matrix 
V

L  and 
v

R , 1,...,v V , respectively, have the same dimension and structure 

as V
U  and 

v
B , 1,...,v V , in (6.7) and their entries are filled with independent and 

identically distributed (i.i.d) standard Gaussian random variables. Let 2cv V     with 

    rounding downwards. 
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Step 2: For 0,..., cv v ; For 1,..., 2vi  ; Generate a k m  structured matrix 1G  

whose columns are i.i.d Gaussian random variables if they belong to ,

v

i jR  (or ,

v

i jB ), 

1,..., 2V vj  , and zero otherwise. Compute '

oQ  as 

 ' 0 1

1 ( ) ( )T v T

o

Q G P R R ,  (6.9) 

and compute ' ' ( )v T

i oQ Q R . Note that '

1o Q G P  when 0v  . Next, extract a k k  

submatrix iQ  and a 2k k  submatrix oQ  from entries in '

iQ  and '

oQ  that belong to ,

v

i jR , 

and compute ,

v

i jB  as 
†

,

v

i j i oB Q Q , where †  stands for the pseudoinverse and 

1,..., 2V vj  .  

Step 3: For 1,..., 1cv V v   ; For 1,..., 2V vi  ; Generate a n k  structured 

matrix 2G  whose columns are i.i.d Gaussian random variables if they belong to ,

v

i jR  (or 

,

v

i jB ) , 1,..., 2V vj   and zero otherwise. Compute '

oQ  as 

 
' 1

2( ) ( )v T V T

o

Q R L PG .  (6.10) 

In addition, compute ' 0

2
cv

i Q B B G  when 1cv v   and ' '( )v T

i oQ R Q  otherwise. 

Note that '

2o Q PG  and '

2

V

o Q L PG  when 1v V   and v V , respectively. Next, 

extract a k k  submatrix iQ  and a 2k k  submatrix oQ  from entries in '

iQ  and '

oQ  that 

belong to 
v

iR , and compute 
v

iB  as †v

i o iB Q Q  ( or ,1

V

iU  when 1v V  ), where †  stands 

for the pseudoinverse and 1,..., 2V vj  .  
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Upon completion of above three steps, the butterfly factorization of block 

1 0V VP U B B B  is constructed. The HODBF structure of a scattering matrix can then 

be constructed by repeatedly using this randomized butterfly algorithm for all the off-

diagonal blocks. For example, to obtain the butterfly factorization for the block 
1

1,2K , we 

simply multiply the scattering matrix with the random vectors required by the 

randomized butterfly scheme. This can be done by performing: 

 

1 1 1
1 1,2 1,2 1

1 1 1
12,1 2 2 1

0    
     

    

K K K I
ZI

IK K K I
, and  (6.11) 

  
1 1

1 1,2 1 1

2 2 1 2 1,21 1

2,1 2

0T
 

     
 

K K
I Z I I K I K

K K
,  (6.12) 

where 1I  and 2I  are random vectors used in the randomized butterfly algorithm (such as 

2G  and 1G ). By extracting the parts related to 
1

1,2K  in right-hand sides of (6.11) and 

(6.12), we can obtain the information (matrix-vector multiplication results) required by 

the randomized butterfly algorithm and consequently obtain the butterfly factorization for 

1

1,2K . Other off-diagonal blocks in the scattering matrix can be compressed using the 

similar procedure. More details are referred to [95]. 

6.3.4 Cost Analysis 

The CPU and memory complexities to construct the butterfly factorization for the 

off-diagonal blocks and apply the factorization to matrix-vector multiplication depend on 

the butterfly rank k . For the off-diagonal blocks that represents only far-field interactions, 
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k  is approximately constant. Based on this assumption, previous literature [53, 91, 96] 

proved that the CPU and memory requirements for constructing the butterfly 

factorizations of such blocks are 1.5( log )O n n  and ( log )O n n , while applying the 

factorization to matrix-vector multiplications requires 2( log )O n n  CPU and memory 

resources. That said, in the HODBF structure, the butterfly rank will increase as the off-

diagonal blocks hold near-field interactions (except the first level). Generally, the 

butterfly rank k  is dominated by the ranks of the submatrices at the center level / 2V , 

which actually represent the interaction between a group of 
0.5( )O n  observers and a 

group of 
0.5( )O n  sources on the surface. Although the ranks for well-separated or corner-

sharing pairs are approximately constant (up to a logarithmic factor), the ranks for edge-

sharing pairs scale as 
0.25( )O n  as there are 

0.25( )O n  sources and observers have near-field 

interactions. Hence, the CPU and memory complexities for obtaining the butterfly 

factorization for the off-diagonal blocks in HODBF structure are 
1.75( log )O n n  and 

1.25( log )O n n , respectively, while 
1.25 2( log )O n n  CPU and memory resources are required 

to apply the compressed blocks to matrix-vector multiplications. As a result, the overall 

computational and memory requirements for applying HODBF compressed scattering 

matrix to matrix-vector multiplications are  
1.25 2( log )p pO N N . 

6.4 Numerical Results 

This section first demonstrates the efficiency of the proposed HODBF enhanced 

DD based SIE simulator via comparing the computational cost and memory requirement 
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of the enhanced simulator with those of the original DD simulator computing full 

scattering matrices. It next demonstrates the accuracy and applicability of the enhanced 

simulator via characterization of wave propagation in various mine tunnels. In all 

examples below, mine tunnels has air inside and are surrounded by ore with relative 

permittivity 8.9r  , relative permeability 1r  , and conductivity 0.15 S/m  , where 

r , 
r ,   are related to 1  and 1  via 1 0r    and 1 0 r j      . The mine 

tunnels are excited by an infinitesimal electric dipole with unit moment. The power 

values obtained by the proposed simulator and other methods are normalized to their 

maxima and are expressed in logarithmic units. The proposed simulator was implemented 

using hybrid message passing interface/open multiprocessing (MPI/OpenMP) standards 

and executed on a cluster of dual hexacore X5650 Intel processors located at the Center 

for Advanced Computing, University of Michigan, Ann Arbor, MI, USA. 

6.4.1 Performance Comparison 

To compare the performance of the enhanced and original DD simulator, the 

wave propagation inside a rectangular straight tunnel is characterized. Hence, the 

scattering matrices compressed by HODLR method are obtained via characterization of a 

subdomain with two equivalent surfaces. In all simulations below, the tunnel is 

decomposed into 11 identical subdomains and a TFQMR iterative solver [36] is used to 

solve the inter-domain system. Both the full scattering matrices and HODLR compressed 

scattering matrices are used to construct the inter-domain systems. The average CPU time 

per iteration and the memory requirement for each iterative solution are measured for 

comparing the computational and memory complexities.  
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First, the cross section of the tunnel is set as 1.85 m   2.24 m. The size of 

scattering matrix is varied by fixing the cross section of the tunnel but varying the 

frequency. The sizes of scattering matrices are 3720   3720, 10268   10268, 21904   

21904, and 33072   33072, obtained at 150 MHz, 300 MHz, 455 MHz, and 600 MHz, 

respectively. Memory requirement and average CPU time per iteration are compared 

between the enhanced and original simulator [Figure 6.5 (a)-(b)]. Apparently, HODBF 

method reduced the computational and memory requirements of iterative solutions of the 

inter-domain system. 

 

 

Figure 6.5 Comparison of (a) memory and (b) average CPU time per iteration for 

different frequencies. 
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Second, the size of scattering matrix is varied by fixing the frequency but varying 

the size of tunnel’s cross section. The sizes of scattering matrices are 13252   13252, 

21904   21904, 30720   30720, and 47592   47592, obtained with cross section’s size 

of 1.48 m   1.79 m, 1.85 m   2.24 m, 2.22 m   2.69 m, and 2.78 m   3.36 m 

respectively. Memory requirement and average CPU time per iteration are compared 

between the enhanced and original simulator [Figure 6.6 (a)-(b)]. Again, HODBF method 

reduced the computational and memory requirements when solving the inter-domain 

system. 

 

 

Figure 6.6 Comparison of (a) memory and (b) average CPU time per iteration for 

different sizes of cross section. 
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6.4.2 Wave Propagation in Tunnels 

In this section, the accuracy and applicability of the proposed HODBF 

enhancement of DD based SIE simulator is demonstrated via characterization of EM 

wave propagations in straight rectangular and arched tunnels. In all scenarios, the 

threshold of the TFQMR iterative solver is 
61 10  [36]. 

6.4.2.1 Rectangular Tunnels 

A 450 m - long rectangular tunnel is excited by a z  (vertically) oriented dipole 

at 455 MHz or 600 MHz [Figure 6.7 (a)]. In this scenario, the tunnel is decomposed into 

150 identical 3 m - long subdomains for analysis at 455 MHz and 180 identical 2.5 - m 

long subdomains for analysis at 600 MHz; only one scattering matrix is computed for 

each frequency. At lower and higher frequencies, subdomains are discretized using 45648 

and 66048 RWG basis functions, while the equivalent surfaces are discretized using 

10952 and 33072 RWG basis functions, respectively. Power values on a line connecting 

(51.2, 0.915, 1.22) m and (450, 0.915, 1.22) m computed by the proposed simulator are 

compared with the multi-modal decomposition [39] after applying the normalizations 

accounting for different excitation mechanism [Figure 6.7 (b)-(c)]. Power values 

computed by the HODBF enhanced DD based SIE simulator are in good agreement with 

the multi-modal decomposition results, demonstrating the accuracy of the proposed 

simulator. The dynamic ranges of the simulator are around 110 dB and are reflected in 

Figure 6.7 (b) and (c). 
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Figure 6.7 (a) Geometry of a 450-m rectangular tunnel. Power values computed by the 

enhanced DD simulator and multi-modal decomposition at (b) 455 MHz and (c) 600 

MHz. 

6.4.2.2 Arched Tunnels 

A 600 m - long arched tunnel is excited by a z  (vertically) oriented dipole at 

455 MHz [Figure 6.8 (a)]. In this scenario, the tunnel is decomposed into 200 identical 3 

m - long subdomains for analysis and only one scattering matrix is computed for each 
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frequency. Subdomains are discretized using 50202 RWG basis functions, while the 

equivalent surfaces are discretized using 12958 RWG basis functions. Power values on a 

line connecting (51.2, 0.915, 1.22) m and (600, 0.915, 1.22) m computed by the proposed 

simulator are compared with the measurement data [67, 68] after applying the 

normalizations accounting for different excitation mechanism [Figure 6.8 (b)]. Power 

values computed by the enhanced DD based SIE simulator are in good agreement with 

the measurement data, again demonstrating the accuracy of the simulator. The dynamic 

ranges of the simulator are around 120 dB and are reflected in Figure 6.8 (b). 

 

 

Figure 6.8 (a) Geometry of a 600-m arched tunnel. (b) Power values computed by the 

enhanced DD simulator and obtained from measurement data. 
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6.5 Chapter Conclusion 

A HODBF method is proposed to compress the scattering matrices in the DD 

based SIE simulator in a hierarchically butterfly compressed format and reduce the CPU 

and memory requirements for the iterative solution of inter-domain system solved by the 

DD simulator. Numerical results demonstrate that the proposed HODBF enhancement of 

the DD simulator achieves significant improvement over its predecessors for 

characterizing EM wave propagations in mine tunnels with electrically large cross 

sections. 
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CHAPTER 7  
Conclusions 

7.1 Summary 

This thesis presents an EM framework that can efficiently and accurately perform 

optimizations and uncertainty quantifications for communication systems in realistic and 

electrically large mine environments. 

First, a fast FMM-FFT-SIE simulator for analyzing EM wave propagation in 

electrically large and realistically loaded mine environments is presented. The simulator 

leverages Muller and combined field SIEs to model scattering from mine walls and 

perfect electrically conducting (PEC) objects residing inside mine tunnels and galleries. 

A FMM-FFT acceleration scheme is used to accelerate the computation. It also uses 

singular value and Tucker decomposition to reduce the memory requirements of the 

simulator. 

Second, a DD based SIE simulator tailored for efficiently analyzing EM wave 

propagation in large mine environments with multiple excitations is presented. It 

alleviates the computational burden of full wave EM simulators by dividing the mine 

tunnels or galleries into subdomains that are characterized separately and constructing an 
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inter-domain system assembling the solutions of subdomains. The inter-domain system 

can be efficiently solved by judiciously combining subdomains. The simulator can be 

more than 10 times faster than traditional EM simulators such as FMM-FFT-SIE 

simulator when used to solve problems with multiple excitations. 

Third, a DIRECT optimization algorithm is presented and incorporated with the 

DD based SIE simulator for efficient optimization and/or reconfiguration of wireless 

communication networks in mine environments. The DIRECT algorithm is a modified 

version of Lipschitzian optimization methods and is efficient for wireless network 

optimizations. Numerical results demonstrated that the optimization framework can 

efficiently and reasonably place transmitters in a mine environment. 

Next, a HDMR-MEPC uncertainty quantification scheme is presented and 

incorporated with the two EM simulators in previous chapters. The HDMR-MEPC 

scheme permits the accurate and efficient construction of surrogate models for EM 

observables in high dimensions. Numerical results demonstrated the efficiency and 

accuracy of the UQ framework. 

Finally, a HODBF matrix compression scheme is applied to the DD based SIE 

simulator for rapid mathematical operations of the scattering matrix computed for each 

subdomain. HODBF scheme can efficiently and accurately compress the scattering 

matrix and reduce the computational complexity of matrix-vector multiplications.  
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7.2 Future Work 

The current HODBF scheme is serially implemented and hence unable to 

compress very large scattering matrices that are inevitable when analyzing EM problems 

in high frequencies. Hence, the HODBF scheme will be parallelized and incorporated 

with the DD based SIE simulator to characterize EM wave propagations for high-

frequency wireless communication systems (such as WLAN systems) in large mine 

environments. On the other hand, the current HODBF method only achieves 

1.25 2( log )p pO N N  CPU and memory complexities when applying the HODBF compressed 

scattering matrices to matrix vector multiplications. It can be further reduced to 

2( log )p pO N N  by using other hierarchical matrix structures, or the butterfly plus scheme. 

The implementation of the butterfly plus scheme to the HODBF structure will be 

investigated. Other applications of the two efficient EM simulators are also being 

researched. 

7.3 Contributions 

The following journal papers and conference papers/abstracts related to the work 

presented in this thesis are either published, submitted, or currently being prepared. 

7.3.1 Journal Papers 

[1] W. Sheng, A. C. Yucel, Yang Liu, Han Guo, and E. Michielssen, “A Domain 

Decomposition based Surface Integral Equation Simulator for Characterizing EM Wave 

Propagation in Mine Environments”, in preparation 
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[2] W. Sheng, A. C. Yucel, Yang Liu, Han Guo, and E. Michielssen, 

“Optimization of Wireless Communication Network in Mine Environments Using Full 

Wave EM Simulator”, in preparation 

[3] A. C. Yücel, W. Sheng, C. Zhou, Y. Liu, H. Bağcı, and E. Michielssen, "An 

FMM-FFT Accelerated SIE Simulator for Analyzing EM Wave Propagation in Mine 

Environments Loaded with Conductors," IEEE J. Multiscale Multiphys. Comput. Tech., 

under review. 

7.3.2 Conference Papers 

[1] W. Sheng, A. C. Yucel, and E. Michielssen, “Optimization of Wireless 

Network Configurations in Mine Environments,” in Proc CNC-USNC/URSI National 

Radio Sci. Meet., 2016  

[2] W. Sheng, A. C. Yucel, and E. Michielssen, “A Domain Decomposition based 

Surface Integral Equation Solver for Characterizing Electromagnetic Wave Propagation 

in Mine Environments”, in Proc. IEEE Int. Symp. Antennas Propagat., 2016. 

[3] L. J. Gomez, W. Sheng, A. C. Yucel, and E. Michielssen, “Fast Statistical 

Characterization of Rough Surface Scattering via Tensor Train Decompositions”, in Proc 

CNC-USNC/URSI National Radio Sci. Meet., 2016 

[4] W. Sheng, Han Guo, Yang Liu, A. C. Yucel, and E. Michielssen, “A 

Butterfly-Based Domain Decomposition SIE Simulator for EM Analysis of Wireless 

Communication Systems in Mine Environments”, in Proc CNC-USNC/URSI National 

Radio Sci. Meet., 2017 
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[5] W. Sheng, A. C. Yucel, and E. Michielssen, “Tucker Compressed Muller-SIE 

for EM Analysis of Mine Communication Systems,” in Proc CNC-USNC/URSI National 

Radio Sci. Meet., 2017 
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