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ABSTRACT

Effect-size heterogeneity is a commonly observed phenomenon when aggregating

studies from different ancestries to conduct trans-ethnic meta-analysis. Irrespective

of the sources of heterogeneity, classical meta-analysis approaches cannot appropri-

ately account for the expected between-study heterogeneity. Therefore, to bridge

the methodological gap, in the first two projects, I develop statistical methods for

modeling the heterogeneous effects in trans-ethnic meta-analysis for genome-wide as-

sociation studies (GWASs). In the third project, I extend the methods in trans-ethnic

GWAS meta-analysis to a general statistical framework for modeling heterogeneity

in biomedical studies.

In the first project, I develop a score test for the common variant GWAS trans-

ethnic meta-analysis. To account for the expected genetic effect heterogeneity across

diverse populations, I adopt a modified random effects model from the kernel re-

gression framework, and use the adaptive variance component test to achieve robust

power regardless of the degree of genetic effect heterogeneity. From extensive sim-

ulation studies, I demonstrate that the proposed method has well-calibrated type I

error rates at very stringent significance levels and can improve power over traditional

meta-analysis methods.

In the second project, I extend the common variant meta-analysis approach to

the gene-based rare variant trans-ethnic meta-analysis. I develop a unified score

test which is capable of incorporating different levels of heterogeneous genetic effects

across multiple ancestry groups. I employ a resampling-based copula method to

estimate the asymptotic distribution of the proposed test, which enables efficient

xv



estimation of p-values. I conduct simulation studies to demonstrate that the proposed

approach is well-calibrated at stringent significance levels and improves power over

current approaches under the existence of genetic effect heterogeneity. As a real data

application, I further apply the proposed method to the Type 2 Diabetes Genetic

Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES)

consortia data to explore rare variant associations with several traits.

In the third project, I develop a supremum score test for jointly testing the fixed

and random effects in a generalized linear mixed model (GLMM). The joint testing

framework has many applications in biomedical studies. One example is to use such

tests for ascertaining associations under the existence of heterogeneity in GWAS meta-

analysis; another example is the nonparametric test of spline curves. The supremum

score test first re-parameterizes the fixed effects terms as a product of a scale parame-

ter and a vector of nuisance parameters. With such re-parameterization, the joint test

is equivalent to testing whether the scale parameter is zero. Since the nuisance pa-

rameters are unidentifiable under the null hypothesis, I propose using the supremum

of score test statistics over the nuisance parameters. I employ a resampling-based

copula method to approximate the asymptotic null distribution of the proposed score

test statistic. I first investigate the performance of the method through simulation

studies. Using the Michigan Genomics Initiative (MGI) data, I then demonstrate

its application by assessing whether the genetics effects to Low Density Lipoprotein

Cholesterol (LDL-C) can be modified by age.

xvi



CHAPTER I

Introduction

1.1 Mapping Human Complex Traits

The development of recombinant DNA and other molecular techniques in the 1970s

have profoundly altered the practice of human biology. Since then, new findings in

genetics and molecular biology are emerging at an unprecedented clip. These find-

ings provide new insights into the human genome, and are continuously shaping our

understanding of the genetic basis of health and disease. As of April 2018, the genes

underlying 76% of 6,727 known monogenic Mendelian disorders have been identified

(Amberger et al., 2014). Despite the success in gene mapping of Mendelian disor-

ders, identifying the genetic risks for complex diseases/traits remains a challenging

task, since those disorder/phenotype susceptibilities are usually influenced by genetic

variants in multiple genes, environmental/behavioral factors, as well as their possible

interactions.

In 1996, Risch and Merikangas (Risch and Merikangas, 1996) predicted that as-

sociation studies, which compare the frequency of alleles in a particular variants

between affected and unaffected individuals, can be effective tools for studying com-

plex traits because of their statistical power to detect genes of small effect. However,

such an approach was constrained due to the limited number of polymorphisms that

could be genotyped at that time. For example, the available number of markers was

1



typically in the tens, and the sample size was usually in the hundreds. In the begin-

ning of the 21st century, advances in the genotyping technology and the dramatically

decreased genotyping cost began to facilitate the detection of a large number of poly-

morphisms across the entire human genome. Since then, genome-wide association

studies (GWAS) have led to a plethora of discoveries for various human complex

diseases/traits (MacArthur et al., 2016).

Early GWAS mainly focused on identifying common genetic variants using single

nucleotide polymorphism (SNP) arrays, but the success of these GWAS has been

primarily confined to European populations. The ability to aggregate cohort-specific

summary statistics from multiple studies via meta-analysis techniques has further

promoted more GWAS findings in populations of European descent. However, ac-

cumulating evidence has demonstrated that, for a variety of complex diseases/traits,

there is substantial overlap in trait-associated loci between different ethnicities (Farrer

et al., 1997; Dumitrescu et al., 2011; Carlson et al., 2013). Therefore, it is expected

that the efficiency of complex-trait association studies can be further improved when

populations of non-European descent are analyzed in conjunction with the European

populations via trans-ethnic meta-analysis. However, the classical meta-analysis ap-

proaches – both fixed-effects and random-effects models – are not appropriate for

combining data across race and ethnicity, and quite limited research exists in de-

veloping powerful multi-ethnic GWAS meta-analysis methods for common variants.

Thus, trans-ethnic meta-analysis methods for common variant associations are greatly

needed.

As of April 2018, while GWASs have successfully identified 53,069 unique SNP-

trait associations (MacArthur et al., 2016), most tend to have low to moderate effect

and explain only a fraction of the overall heritability (Manolio et al., 2009). The

fact that array-based GWAS findings have not been able to fully explain the trait

variations led to the widely debated “missing heritability” question after the 1st wave

2



of GWAS. A natural conjecture for the possible explanation to this problem is that the

missing disease heritability is due to rare and low-frequency variants, some with large

effects, which could not be captured in the genotyping array platforms (Frazer et al.,

2009; Eichler et al., 2010). While the array-based GWAS continues to unearth trait-

associated variants, accessibility in terms of cost and technology of next-generation

sequencing has opened up the entire spectrum of genome variations for the analysis

of complex diseases/traits. In 2014, the cost for whole-genome sequencing (WGS)

reached the US$1000 per genome milestone. In contrast to the array-based GWAS,

which focus on SNPs that are in linkage disequilibrium (LD) with the causal variants,

whole-genome sequencing shifts our research interest toward analyzing causal variants

and genes directly. Recent advances in sequencing technology, availability of high-

quality human reference panels, and improvements in genotyping imputation accuracy

have made it possible to comprehensively catalog genetic variation in population

samples. In fact, sequencing studies have successfully identified rare variants that

are involved in complex traits, including prostate cancer (Gudmundsson et al., 2012),

Alzheimer disease (Cruchaga et al., 2014), lipids and coronary artery disease (Peloso

et al., 2014) and many others.

Despite its potential contributions to solving the “missing heritability” problem,

one inevitable challenge for the design and analysis of sequencing-based GWAS is that

rare variant tests are usually underpowered without an exceptionally large sample size

or a sufficient number of rare alleles captured (Bansal et al., 2010). One practical

strategy to improve power is to conduct trans-ethnic meta-analysis, which combines

summary statistics across studies from different ethnicities to increase sample sizes.

However, under the presence of inter-study genetic effect heterogeneity across an-

cestries, existing meta-analysis approaches may be unsatisfactory because they do

not take into consideration that studies from the more closely related ancestries can

be more homogeneous than those that are more distantly related. In order to take
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full advantage of the strengths of multi-ethnic meta-analysis, powerful trans-ethnic

GWAS meta-analysis methods for rare variant associations are greatly needed.

1.2 The Need for Trans-Ethnic Meta-Analysis

Meta-Analysis is a practical tool to aggregate studies that have already been con-

ducted. In ideal situations, meta-analysis can achieve eventually equal power as the

joint analysis (Liu et al., 2014). Besides its ability of increasing sample sizes with-

out the cost of additional genotyping, meta-analysis has several logistic and ethical

advantages over the joint analysis of individual level data. First, meta-analysis only

requires summary statistics from each participating study, which avoids the cumber-

some integration of genotype and phenotype data from different studies, and protects

the privacy of study participants. Second, different studies may require different sets

of covariates, which can be difficult to accommodate in a joint analysis, but can be

easily incorporated at the summary level statistic in meta-analysis.

Initially, GWAS meta-analyses were mostly European-based, and have proved to

be worthwhile in identifying additional complex trait loci (Bustamante et al., 2011).

Recently, GWAS have been undertaken in other ethnic groups including Africans, East

and South Asians and Hispanics (Popejoy and Fullerton, 2016). With the increasing

availability of GWAS from distinct ethnicities, trans-ethnic meta-analysis offers an

exciting opportunity to enrich the association strengths with the further increased

sample sizes and fine mapping through different LD patterns (Li and Keating, 2014).

In fact, trans-ethnic meta-analyses have successfully identified novel loci that are

associated with common oncologic diseases, including breast cancer (Siddiq et al.,

2012) and prostate cancer (Kote-Jarai et al., 2011); metabolic and cardiovascular

diseases/ traits, including high-/low- density lipoprotein (HDL/LDL) levels(Coram

et al., 2013), blood pressure (Franceschini et al., 2013) and coronary artery disease

(Dichgans et al., 2014); immune diseases such as rheumatoid arthritis (RA) (Okada
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et al., 2014) and asthma (Lasky-Su et al., 2012); and many others.

For trans-ethnic GWAS meta-analysis, in addition to its primary objective on dis-

ease/trait locus discoveries, several other goals can be simultaneously accomplished

using the features of trans-ethnic study designs. Firstly, trans-ethnic GWAS meta-

analysis provides an independent replication sample set that can be used to validate

single-population GWAS findings and to eliminate concerns about sub-/cryptic- pop-

ulation stratification in the single GWAS discoveries (Campbell et al., 2005). Those

validated variants can be further used to prioritize loci for secondary replication and

sequencing studies (Cantor et al., 2010). Secondly, in trans-ethnic GWAS meta-

analysis, differences in LD structures across genetically diverse populations is po-

tentially a powerful tool for fine mapping the rare or causal variants that underlie

disease associations (Teo et al., 2010). Despite the promising potential, however, the

between-study genetic effect heterogeneity among different ethnic groups, e.g. un-

equal genetic effect sizes among studies (Wang et al., 2013), presents new challenges

in performing trans-ethnic meta-analysis.

In GWAS meta-analysis of common variants, several reasons can contribute to the

emergence of complex between-study heterogeneity patterns. First, it is highly possi-

ble that the queried SNP is not the underlying causal SNP, but rather is correlated to

the causal SNP through LD. Therefore, due to variations in the LD structures across

ancestry groups, the same high-risk allele may have different patterns of association

with the causal allele among different populations, leading to the observed unequal

genetic effects at the marker alleles. This phenomenon can be particularly relevant

under the common disease – common variants (CD-CV) model (Cargill et al., 1999;

Chakravarti, 1999), in which differential recombination histories can occur due to

the varying age of the mutations in the different populations (Pritchard and Prze-

worski, 2001). Moreover, the presence of hidden stratification in some populations

may produce spurious associations or alter the patterns of true associations, and
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therefore further complicate the between-study heterogeneity (Morton and Collins,

1998; Pritchard and Przeworski, 2001; Thomas and Witte, 2002; Stumpf and Gold-

stein, 2003; Freedman et al., 2004). In addition, the genetic variant of interest may

interact with other environmental, dietary and lifestyle factors. Thus, the difference

in these factors among populations can generate variability in the marginal genetic

effects between studies (Morris, 2011).

For rare variant GWAS meta-analysis, even if the same variant selection crite-

ria are employed, different studies may still present different sets of rare variants,

since rare variants are often population specific. Therefore, the gene-level association

power will likely be unequal among studies, even when effect size across studies is the

same for each variant. The possible gene-environment interaction, which contributes

to heterogeneous genetic effects in common variant GWAS meta-analysis, also adds

to the complex between-study heterogeneity patterns in rare variant meta-analyses.

Irrespective of the sources of genetic heterogeneity, classical GWAS meta-analysis ap-

proaches cannot appropriately account for the expected between-study heterogeneity.

Therefore, to bridge this methodological gap, in the first two projects of this disserta-

tion I present two novel statistical methods for modeling the heterogeneous effects in

genetic association studies – for both common variants and rare variants – to improve

the power of trans-ethnic meta-analysis.

1.3 A General Statistical Framework for Modeling Hetero-

geneity in Biomedical Studies

The key idea in modeling the between-study heterogeneity in GWAS meta-analysis

is to decompose the magnitude of the effect size into two components: a fixed con-

stant which represents the mean effect size over all populations, and a random vari-

able which measures deviation of the study-specific effect from the population mean.
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Consequently, assessing associations in trans-ethnic meta-analysis is essentially a joint

testing of fixed and random effects.

The statistical framework of jointly testing the fixed and random effects has many

applications in the field of biomedical studies. One such example is the likelihood

ratio test proposed by Han and Eskin (2011) for ascertaining association signals un-

der the existence of between-study heterogeneity in GWAS meta-analysis. Another

example is the SKAT-O test proposed by Lee et al. (2012), which optimally com-

bines the burden (Madsen and Browning, 2009) and SKAT (Wu et al., 2011) tests

for assessing the gene-/region-based rare variant association strengths. It can be

shown that an alternative way of deriving the score statistic for SKAT-O is to jointly

test the mean (i.e. the fixed effect) and variance component (i.e. the random ef-

fect) of the regression coefficient of the genetic variant. To assess the age-varying

genetic effect, one can incorporate age (or any non-genetic modifier of interest) into a

non-parametric functional form in the varying coefficient model and reformulate the

problem of testing the varying coefficient into jointly testing the fixed and random

effects in a generalized linear mixed model (GLMM) (Zhang and Lin, 2003; Wang

and Chen, 2012). Last but not least, the joint testing framework can be employed in

the non-parametric test of spline curves in a semi-parametric additive mixed model

(SAMM).

Testing the random effects involves constraints on the variance component param-

eters, in which classical inference with a standard null distribution no longer holds,

because those parameters under the null hypothesis lie on the boundary of the main-

tained hypothesis (Lin, 1997; Andrews, 2001). Although the statistical literature

offers an array of methods for testing the fixed and random effects jointly for Gaus-

sian responses, corresponding methods for non-Gaussian outcomes remain limited. In

response, in my last project, I propose to extend the methods in trans-ethnic GWAS

meta-analysis to a general statistical framework with a score test for the joint testing
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problem in a GLMM.

1.4 Dissertation Outline

In Chapter II, I develop a score test for the common variant associations in trans-

ethnic meta-analysis. To account for the effect-size heterogeneity across diverse popu-

lations, I adopt a modified random effects model from the kernel regression framework.

Specifically, I treat the genetic effect coefficients as random variables and construct

their correlation structure to reflect the level of genetic effect similarities across an-

cestry groups. In addition, I use an adaptive variance component test to achieve

robust power regardless of the degree of genetic effect heterogeneity. Through ana-

lytical approximation of the asymptotic distribution of the proposed test, I achieve

efficient computing time for genome-wide datasets, as the method requires less than

3 hours on a Linux cluster node with 2.80 GHz CPU to analyze one million vari-

ants. Using extensive simulation studies, I demonstrate that the proposed method

has well-calibrated type I error rates at very stringent significance levels and im-

proves power over the traditional meta-analysis methods. Re-analyzing a published

type 2 diabetes GWAS meta-analysis (Mahajan et al., 2014), I successfully identify

one additional SNP which exhibits genetic effect heterogeneity across ethnicities.

In Chapter III, I extend the score test in Chapter 2 to the gene-/region-based

rare variant trans-ethnic meta-analysis in sequencing association studies. The pro-

posed method is capable of not only accounting for the expected heterogeneous ge-

netic effects among studies, but also flexibly modeling varying levels of heterogeneity

according to the relatedness between the populations. The proposed method only

requires sharing of study-specific summary statistics, such as the score statistics for

each variant and the corresponding information matrices which summarize the LD

structures between the variants. I employ a resampling-based copula method to es-

timate the asymptotic null distribution of the proposed test, which enables efficient
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estimation of p-values. I conduct simulation studies to demonstrate that the proposed

approach is well-calibrated at stringent significance levels and improves power over

current approaches under the existence of genetic effect heterogeneity. As a real data

application, I further apply the proposed method to the Type 2 Diabetes Genetic

Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES)

consortia data to explore rare variant associations with several traits.

In Chapter IV, I develop a supremum score test for jointly testing the fixed and

random effects in a generalized linear mixed model (GLMM) for both Gaussian and

non-Gaussian outcomes. The framework of jointly testing the fixed and random effects

has many applications in biomedical studies. One example is to use such tests for as-

certaining associations under the existence of heterogeneity in GWAS meta-analysis;

another example is the nonparametric test of spline curves. Although extensive re-

search has been conducted on testing random effect terms only, little work has been

done for the joint test of fixed and random effects, especially for non-Gaussian out-

comes. Hence, I propose a score test for the joint test in a GLMM to handle both

the Gaussian and non-Gaussian response types, and use analytical derivation as well

as numerical simulation to demonstrate that the proposed score test is asymptoti-

cally equivalent to the corresponding likelihood-ratio test (LRT). The method first

re-parameterizes the fixed effects terms as a product of a scale parameter and a vector

of nuisance parameters. With such re-parameterization, the joint test is equivalent

to testing whether the scale parameter is zero. Since the nuisance parameters are

unidentifiable under the null hypothesis, I propose using the supremum of score test

statistics over the nuisance parameters. I employ a resampling-based copula method

to approximate the asymptotic null distribution of the proposed score test statistic.

I first investigate the performance of the method through simulation studies. Using

the Michigan Genomics Initiative (MGI) data, I then demonstrate its application by

assessing whether the genetics effects to Low Density Lipoprotein Cholesterol (LDL-
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C) can be modified by age. Finally, in Chapter V, I discuss the implications of my

work and propose potential future directions to pursue.
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CHAPTER II

A Novel Random Effect Model for GWAS

Meta-Analysis and its Application to Trans-Ethnic

Meta-Analysis

Abstract

Meta-analysis of trans-ethnic genome-wide association studies (GWAS) has proven

to be a practical and profitable approach for identifying loci that contribute to the

risk of complex diseases. However, the effect-size heterogeneity cannot be easily ac-

commodated through existing fixed-effects and random-effects methods. In response,

we propose a novel random effect model for trans-ethnic meta-analysis with flexi-

ble modeling of the expected genetic effect heterogeneity across diverse populations.

Specifically, we adapt a modified random effect model from the kernel regression

framework, in which genetic effect coefficients are random variables whose correlation

structure reflects the genetic distances across ancestry groups. In addition, we use the

adaptive variance component test to achieve robust power regardless of the degree of

genetic effect heterogeneity. Simulation studies show that our proposed method has

well-calibrated type I error rates at very stringent significance levels and can improve

power over the traditional meta-analysis methods. We re-analyze the published type

2 diabetes GWAS meta-analysis (Mahajan et al., 2014) and successfully identify one
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additional SNP that clearly exhibits genetic effect heterogeneity across different an-

cestry groups. Furthermore, our proposed method provides scalable computing time

for genome-wide datasets, in which an analysis of one million SNPs would require

less than 3 hours on a Linux cluster node with 2.80 GHz CPU to analyze one million

variants.

Keywords: Common variants; Effect-size heterogeneity; GWAS; Kernel regression;

Random effect model; Trans-ethnic meta-analysis.

2.1 Introduction

Although genome-wide association studies (GWAS) have successfully identified

more than 50,000 loci that influence the severity of human health outcomes, those

identified loci account for only a small fraction of the genetic contribution to most

complex diseases and traits (McCarthy et al., 2008; MacArthur et al., 2016). It

has been argued that numerous loci with very small effects can explain additional

disease risk or trait heritability, and the challenge is to find those loci that can be

identified only with very large numbers of samples (Eichler et al., 2010). Since it

can be challenging to design and conduct a single study with tens or hundreds of

thousands of samples, a more practical alternative is to combine studies that have

already been conducted through a meta-analysis (Evangelou and Ioannidis, 2013).

A natural extension of the single-ancestry-based meta-analysis is to include sam-

ples from as many studies as possible, even if they come from genetically disparate

ancestries. With the further enlarged sample size, trans-ethnic meta-analysis is ex-

pected to be more powerful at detecting novel loci without the cost of additional

genotyping (Cooper et al., 2008). In fact, several trans-ethnic meta-analyses have

been performed in the past few years with success in discovering risk alleles across

ancestry groups. For example, five consortia (Mahajan et al., 2014) aggregated pub-
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lished GWAS meta-analyses of type 2 diabetes (T2D) from four ancestry groups and

successfully identified seven new loci with very small effect sizes.

To take full advantage of the profitability of trans-ethnic meta-analysis, improved

statistical methods are required to account for the distinctive ancestral origins among

data. Existing methods for GWAS meta-analysis include the classical fixed-effects

and random-effects methods, as well as the recently introduced new random-effects

method by Han and Eskin (2011) and the Bayesian approach by Morris (2011). The

fixed-effects method (FE) (Hedges and Vevea, 1998) is the most popular approach

for synthesizing single-ancestry GWAS data. It assumes that the true effect of each

risk allele is the same in each data set, and as a result, it has limited power in

the presence of genetic effect heterogeneity (Evangelou and Ioannidis, 2013; Wang

et al., 2013). The random-effects method (RE) was developed explicitly to model

the between-study heterogeneity; however, it implicitly assumes heterogeneity under

the null hypothesis, which causes it to have much lower power than FE (Han and

Eskin, 2011). To relax the conservative assumption of RE, Han and Eskin (2011)

developed a new random-effects model (RE-HE) which achieves higher power than

RE. Morris (2011) developed a trans-ethnic meta-analysis method by means of a

Bayesian partition model (MANTRA). MANTRA accounts for the relatedness of

studies by grouping them into different ethnic clusters. Specifically, studies that are

grouped into the same ethnic cluster share the same underlying genetic effect, while

different ethnic clusters have different underlying genetic effects.

The aforementioned T2D trans-ethnic meta-analysis (Mahajan et al., 2014) was

carried out using the FE method. In addition to identifying novel T2D susceptibil-

ity loci, they analyzed 69 established T2D susceptibility loci using Cochran Q test

(Cochran, 1954) to evaluate their genetic effect heterogeneity. Among the 69 loci, 3

had very strong evidence of the heterogeneity (Cochran Q p-value < 10−3), and 12

had some evidence of the heterogeneity (10−3 ≤ Cochran Q p-value < 0.05). For
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those 15 loci, FE may not be sufficiently powerful to detect the association signals.

To improve power, we develop a new trans-ethnic meta-analysis approach, referred

to as TransMeta, and use it to reanalyze the T2D trans-ethnic meta-data.

As mentioned above, one challenge in trans-ethnic GWAS meta-analysis is to ap-

propriately account for the effect-size heterogeneity. There can be several reasons for

the heterogeneous effect sizes. First, it is highly possible that the queried SNP is not

the underlying causal SNP, but rather is correlated to the causal SNP through linkage

disequilibrium (LD). Variations in the LD structures across ancestry groups can lead

to the observed genetic effect heterogeneity. Second, the environmental risk factors

may differ between ancestry groups. With the possibility of interaction between the

causal variants and the environmental factors, marginal genetic effects may vary be-

tween populations (Morris, 2011). To address the heterogeneity issue, we consider

a modified random effect model based on a kernel machine framework (Liu et al.,

2007). Specifically, we treat the genetic effect coefficients as random variables, with

their correlation structure across ancestry groups reflecting the expected heterogene-

ity (or homogeneity) among ancestry groups. To test for associations, we derive a

data-adaptive variance component test with adaptive selection of the degree of het-

erogeneity. This adaptive test combines models of homogeneous and heterogeneous

genetic effects, and provides robust power regardless of the genetic effect distribution.

We provide details of our proposed method in Section 2.2.

The rest of this chapter is organized as follows: In Section 2.3, we first perform

simulation studies to compare the performance of TransMeta with FE, RE, RE-HE

and MANTRA for meta-analyzing GWAS across genetically diverse populations. We

then illustrate application of TransMeta by reanalyzing the T2D GWAS in Mahajan

et al. (2014). We conclude this chapter with a discussion in Section 2.4. Supplemen-

tary texts, tables and figures are presented in Section 2.5.
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2.2 Methods

2.2.1 Statistical Models for GWAS Meta-Analysis

In this section, we first introduce statistical models of the existing GWAS meta-

analysis methods. Let β̂ = (β̂1, . . . , β̂n)T be the effect-size estimates, such as the log

odds ratios or regression coefficients, in n independent studies. If the sample sizes in

each study are sufficiently large, then

β̂|β ∼MVN(β,Σ), (2.2.1)

where β = (β1, . . . , βn)T , with βi being the true effect size in the ith study; and

Σ = diag(σ2
1, . . . , σ

2
n), with σ2

i being the variance of β̂i.

FE assumes that all the studies share a common effect-size µ (i.e. β1 = · · · =

βn = µ). FE is powerful at detecting genetic effects that are present in most, if not

all, of the studies with homogeneous effect sizes. The RE model assumes that the

true effect size βi for the ith study is generated from a normal distribution with mean

µ and variance τ1,

βi = µ+ ηi, ηi ∼ N(0, τ1). (2.2.2)

RE typically assumes that even under the null hypothesis of no association, βis can

be different across studies, since τ1 is not assumed to be zero under the null hypoth-

esis. Due to this conservative assumption, RE tends to be less powerful at detecting

association signals than FE, although it is proposed to account for the expected

heterogeneity. Han and Eskin (2011) developed a new RE approach (RE-HE) that

assumes no genetic effect heterogeneity under the null hypothesis. Specifically, they

assumed that βis are zero among all the studies under the null hypothesis (i.e. µ = 0

and τ1 = 0), and they allowed varying effect sizes among studies under the alternative

hypothesis. The likelihood ratio test was employed to evaluate the null hypothesis

of µ = 0 and τ1 = 0. Since asymptotic p-values of RE-HE are only accurate when
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the number of studies (n) is very large, they provided tabulated p-values precom-

puted with an assumption of equal sample sizes across studies. In the presence of

between-study effect-size heterogeneity, RE-HE yields higher power than FE.

The aforementioned three frequentist meta-analysis methods can all be summa-

rized under model (2.2.2) with certain assumptions on τ1. With τ1 = 0 under both

the null and the alternative hypotheses, model (2.2.2) is exactly the same as FE.

RE assumes that τ1 is non-zero under both the null and the alternative hypotheses,

and tests whether µ = 0 or not, while accounting for the between-study variance τ1.

RE-HE assumes that τ1 = 0 under the null hypothesis, and tests whether both µ and

τ1 are zero under the alternative hypothesis.

Unlike the frequentist approaches, the Bayesian meta-analysis approach, MANTRA,

assigns studies into ethnic clusters under model (2.2.1). It assumes that studies that

are grouped into the same ethnic cluster share the same underlying genetic effect.

If we fix the number of clusters as one, all the studies are grouped into one ethnic

cluster with homogeneous genetic effects; in this case, MANTRA can be viewed as a

Bayesian implementation of the fixed-effects method. If the number of cluster is fixed

to be the same as the number of studies (n), each study is assigned to be its own

cluster; in this case, MANTRA can be viewed as a Bayesian implementation of the

random-effects method. MANTRA uses the Bayesian partition model to adaptively

determine the number of ethnic clusters and the cluster membership and assesses the

association evidence by means of the Bayes factor.

2.2.2 New Model Framework for GWAS Meta-Analysis

The existing frequentist meta-analysis methods based on (2.2.2) are not optimal

when the effect sizes exhibit certain structures across studies. In multi-ethnic meta-

analysis, for example, the studies can be grouped by their ethnicities. Genetically

similar groups may have more homogeneous genetic effects compared to genetically
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diverse groups. In response, we propose a statistical framework that can accommodate

prior assumptions on genetic effect distributions. Specifically, we adapt the kernel

machine framework (Liu et al., 2007) to flexibly model the genetic effect distributions.

Instead of assuming ηis are i.i.d normal samples, we assume that ηis jointly follow a

mean zero Gaussian process with kernel function τ1K(·, ·), where K(·, ·) is a bivariate

function to represent genetic similarity between two groups. This kernel regression

framework has been successfully applied in many areas of genetic studies, including

rare variant association analysis (Wu et al., 2011) and pathway analysis (Liu et al.,

2007). In Section 2.2.3, we will discuss choices of kernels for trans-ethnic meta-

analysis.

We first propose to extend (2.2.2) to a hierarchical model by modeling µ as a

random variable with distribution N(0, τ2). From this extension, our proposed model

framework can be summarized as

β̂|β ∼ MVN(β,Σ)

β|τ1, τ2 ∼ MVN(0, τ1K + τ211T ), (2.2.3)

where K is an n × n kernel matrix and 1 = (1, · · · , 1)T . We then apply a re-

parameterization τ1 = τ(1− ρ) and τ2 = τρ, where ρ reflects whether genetic effects

are homogeneous (ρ = 1) or heterogeneous (ρ = 0) across ancestry groups, and τ rep-

resents the size of the regression coefficients β. From this re-parameterization, testing

for both µ and τ1 being zero becomes testing for the common variance component τ

being zero. Our final model framework is

β̂|β ∼ MVN(β,Σ)

β|τ ∼ MVN(0, τVρ)

Vρ = (1− ρ)K + ρ11T , 0 ≤ ρ ≤ 1 (2.2.4)

where Vρ is an n × n (scaled) covariance matrix of β. We note that Vρ is a linear

combination of two matrices, 11T and K, with coefficient ρ that determines the degree
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of heterogeneity. ρ = 0 indicates that the covariance structure of βis is the same as

the kernel matrix K, and ρ = 1 indicates that βis are perfectly correlated (and hence

homogeneous).

Our proposed model includes the three frequentist meta-analysis approaches as

special cases. For example, if ρ = 1 (i.e Vρ = 11T ), the model is effectively the

same as FE since all βis should be the same under the alternative hypothesis. We

show in Section 2.2.4 that the variance component score test for τ = 0 with ρ = 1

is exactly the same as the inverse-variance weighted meta-analysis test, the most

popular test for the FE approach. As a result, one of the important features of

our model is that it includes FE regardless of the choice of K. We believe this is

a desirable feature since numerous disease-associated SNPs in various meta-analysis

scenarios including trans-ethnic meta-analysis exhibit homogeneous genetic effects

across studies (Marigorta and Navarro, 2013). RE and RE-HE are equivalent to

testing for τ2 = 0 and τ1 = τ2 = 0 under (2.2.3), respectively, with K = I. This

indicates that RE is equivalent to testing for ρ = 0, and RE-HE is equivalent to

testing for τ = 0 while adaptively selecting ρ under the re-parameterized model

(2.2.4) with K = I.

2.2.3 Choice of the Kernel Matrix K for Trans-Ethnic Meta-Analysis

Suppose the GWAS meta-analysis has B ancestry groups from n studies, based

on this assumption, we propose two choices for the kernel structure K:

Choice 1. Group-wise independent kernel structure:

We consider a simple assumption in which genetic effect sizes are independently

distributed across ancestry groups, but homogeneous within the same ancestry group.
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In particular,

Kij =


1 if study i and j belong to the same ancestry group

0 otherwise

,

where i, j ∈ {1, . . . , n}. In Supplementary Materials Section 2.5.1, we provide the

general form of matrix K under this group-wise independent structure.

Choice 2. Genetic similarity (Fst) kernel structure:

The fixation index (Fst) is a widely used measure of population differentiation

due to genetic structure (Wright, 1949). Fst = 0 indicates there is no allele frequency

differentiation between populations, whereas a large value of Fst indicates that pop-

ulations are genetically very different. Fst has been used as a genetic distance among

populations. For example, MANTRA uses Fst to group studies to ethnic clusters.

For each cluster, it is assumed that studies share the same genetic effect. We adapt

the strategy of using Fst in constructing the kernel matrix K to incorporate genetic

similarity into modeling the genetic effect similarity. In particular, we set

Kij = 1−
Fst

bb
′

D
, with D = max

b,b
′∈{1,...,B}

{Fst
bb
′ },

where study i and j belong to ancestry group b and b
′

respectively, and Fst
bb
′ is the

pairwise Fst between the corresponding ancestry groups. In Supplementary Materials

Section 2.5.1, we provide the general form of K under this genetic similarity (Fst)

kernel structure. Unlike MANTRA, which adaptively groups studies based on the

prior model of relatedness and observed effect sizes via the Bayesian partition model,

our method constructs the genetic similarity (Fst) kernel using only the genotype data

and fixes it prior to carrying out the data analysis.

2.2.4 Hypothesis Test

Under the proposed model (2.2.4), testing for H0 : β1 = · · · = βn = 0 is the same

as testing for the variance component τ = 0 (i.e. H0 : τ = 0). We first consider a
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situation in which ρ is given before carrying out the test. Following Zhang and Lin

(2003), the score test statistics of the variance component τ with a given ρ is

Sρ = β̂
T

Σ̂−1VρΣ̂
−1β̂ = β̂

T
Σ̂−1[(1− ρ)K + ρ11T ]Σ̂−1β̂, (2.2.5)

where Σ̂ = diag(σ̂2
1, . . . , σ̂

2
n), and σ̂2

i is an estimate of σ2
i . When ρ = 1, the test

statistic Sρ becomes
(∑n

i=1 β̂i/σ̂
2
i

)2

, which is the test statistics of the inverse variance

weighting.

For any given ρ, Sρ asymptotically follows a mixture of χ2 distributions under the

null hypothesis. Specifically, if (λ1, . . . , λn) are the eigenvalues of Σ̂−1/2VρΣ̂
−1/2, the

null distribution of Sρ can be closely approximated by
∑n

j=1 λjχ
2
1,j, where {χ2

1,j} are

independent χ2
1 random variables. Several methods exist to obtain tail probabilities

of the mixture of χ2 distributions. Among them, the method to invert a characteristic

function (Davies, 1980) provides very accurate estimates of tail probabilities and is

widely used in many recently developed genetic association tests (Wu et al., 2011).

We employ this approach to approximate the asymptotic distribution of Sρ when ρ

is given.

In practice, however, we rarely have prior information on which ρ is optimal in

terms of maximizing power. Lee et al. (2012) have studied a similar problem within a

context of rare variant association analysis; they proposed to use the minimum p-value

over a grid of ρ as a test statistics. We adopt the same strategy here. Specifically,

we set the test statistic as T = inf
0≤ρ≤1

pρ, where pρ is the corresponding p-value of Sρ

for the given ρ. T can be obtained by a simple grid search across a range of ρ values:

set a grid 0 ≤ ρ1 ≤ ρ2 ≤ . . . ≤ ρν ≤ 1, then the test statistic becomes

T = min{pρ1 , . . . , pρν},

and the optimal ρ is set as the one whose corresponding p-value (pρ) equals to T . We

observe that a dense grid of ρ does not necessarily improve power (Supplementary

Figure 2.10). Therefore, we suggest using ρ = (0, 0.32, 0.52, 1) for simulations and real
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data analysis. Once the test statistic T is calculated, the next step is to obtain the

corresponding p-value for ascertaining the association evidence. If we had just used

the minimum p-value (which is denoted as our test statistic T ) to assess significance,

we would ignore the multiple comparisons between different pρ values, which would

result in inflated type I error control. Thus, we propose to use numerical integration

to approximate the asymptotic distribution of T , details provided in Supplementary

Materials Section 2.5.2.

2.2.5 Using Z-scores Instead of Effect-size Estimates

In previous sections, we construct our methods based on estimates of effect sizes

and their standard errors. However, Z-score based approaches are also very popular in

GWAS. Z-score based approaches use p-values (pi), sample sizes (ni) and direction of

effects (∆i) to construct Z-scores for each study, and then calculate a weighted sum of

Z-scores to carry out meta-analysis. A major advantage of the Z-score based approach

is that it allows meta-analysis of data when effect size estimates are not available

or measurements of traits are difficult to standardize, ex. tobacco or alcohol use

(Evangelou and Ioannidis, 2013). In this section, we extend TransMeta to incorporate

Z-score based data input.

Given the input summary statistics (pi, ni, ∆i), a signed Z-score is constructed as

Zi = Φ−1(1− pi/2) ∗ sign(∆i) for each study, where Φ(·) is the standard normal dis-

tribution function. For continuous traits, it can be shown that the effect size estimate

β̂i is asymptotically equivalent to Zi/
√
niqi(1− qi) (up to a scalar factor), where qi

is a minor allele frequency (MAF) of the SNP (details provided in Supplementary

Materials Section 2.5.3). For binary traits, the log odds ratio estimate β̂i is asymp-

totically equivalent to Zi/
√
niri(1− ri)qi(1− qi), where ri = ncase,i/ni is a proportion

of case samples (Supplementary Materials Section 2.5.3). If all studies have similar

ratios of cases and controls, the ri(1 − ri) term can thus be ignored. Consequently,
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β̃i = Zi/
√
niqi(1− qi) and its standard error σ̃i = 1/

√
niqi(1− qi) can be used as in-

puts for both continuous and binary traits. To differentiate between the two types of

input summary statistics, if effect size estimates β̂is and the corresponding standard

errors σ̂is are used as input data for our proposed method, we denote it as effect-size

based TransMeta; if transformed Z-scores β̃is and the corresponding standard errors

σ̃is are used as input data for our proposed method, we denote it as Z-score based

TransMeta.

2.3 Results

2.3.1 Simulation Studies

To investigate the performance of TransMeta, we ran a series of simulations with

varying assumptions on genetic effect heterogeneity across multiple ancestry groups.

To generate SNPs with realistic MAF spectrums across different ancestry groups,

we used Phase III of the HapMap Project (HMP3) data (Consortium et al., 2010).

HMP3 consists of approximately 1.6 million SNPs, obtained from 1,184 subjects from

11 populations. We excluded the admixed African American population, combined

the Japanese and Chinese as one population, and used the resulting 9 populations as

seed populations to generate SNP genotypes.

The retrospective binary phenotype Yik of the kth individual in the ith study was

generated using the following logistic regression model

logit Pr(Yik = 1) = β0 + βigik, (2.3.1)

where gik is a genotype of the selected SNP, and βi is a log odds ratio parameter.

The intercept β0 was chosen to have disease prevalence 0.05. In each replication, we

randomly chose a SNP with a MAF of at least 1% in all populations, and generated

SNP genotypes as gik ∼ Binomial(2, qi), where qi denotes the MAF of the selected

SNP. We also used model (2.3.1) to estimate log odds ratio β̂i and its standard error
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Table 2.1: Type-I error rate estimates for TransMeta at different α levels,
with three studies in each ancestry group. Type-I error rate es-
timates at different α levels based on 20 million replicates. Each entry
represents an estimated type I error rate calculated using the proportion
of empirical p-values smaller than the given level α. Three studies are sim-
ulated per ancestry group, and each study had 500 cases and 500 controls.

α = 10−2 10−3 10−4 10−5 10−6

TransMeta.Fst 9.7× 10−3 1.1× 10−3 9.6× 10−5 1.0× 10−5 9.5× 10−7

TransMeta.Indep 9.8× 10−3 0.9× 10−3 7.6× 10−5 5.8× 10−6 4.0× 10−7

σ̂i as the input data. In addition, we recorded ∆i = sign(β̂i), the direction of effect

and the p-value pi for testing H0 : βi = 0. We generated 500 cases and 500 controls

for each of the 9 ancestry groups in triplicate, which resulted in a total of 27 studies

with a total sample size of 13,500 cases and 13,500 controls.

2.3.2 Type I Error Simulations

To estimate type I error rates at stringent α levels, we generated 20 million repli-

cates from model (2.3.1) with βi = 0. Table 2.1 showed that the proposed methods

yields controlled type I error rates at different significance levels under the Fst ker-

nel (denoted as TransMeta.Fst), although slightly conservative under the independent

kernel (denoted as TransMeta.Indep). We also considered a setting where there is only

one study per ancestry group. Each study then had 1500 cases and 1500 controls.

We again used model (2.3.1) with βi = 0 to simulate a total of 100 million replicates,

and observed that empirical type I error rates were well controlled (Table 2.2 in the

Supplementary Materials).

2.3.3 Power Simulations

Recently, Wang et al. (2013) carried out comparisons of trans-ethnic meta-analysis

methods under five different scenarios, which cover a wide range of possible scenarios
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of genetic effect heterogeneity. We adopted these five scenarios to compare perfor-

mances of TransMeta with existing approaches:

(a) ‘Trans-ethnic fixed-effect’, where no heterogeneity exists in genetic effects at the

causal SNP between populations, specifically that, each of the 27 studies carries a

genetic relative risk of 1.12 at the causal SNP.

(b) ‘Out-of-Africa effect’, where each of the 18 studies from the non-African popu-

lations carries a genetic relative risk of 1.08, whereas the 9 studies from the African

populations (LWK, MKK and YRI) present no genetic effects.

(c) ‘Europe and south Asia effect’, where the 12 studies from the European and south

Asian populations (CEU, GIH, MEX and TSI) share the same genetic relative risk of

1.2, whereas the 15 studies from the remaining populations present no genetic effects.

(d) ‘Heterogeneous Out-of-Africa effect’, where the causal variant has genetic effects

only in non-African populations, with the 6 studies from the east Asian populations

(CHB+JPT and CHD) each carrying a genetic relative risk of 1.15 while the Euro-

pean and south Asian populations carry a genetic relative risk of 1.12.

(e) ‘Environment modifying effect’, where the causal variant has a genetic effect only

in the populations living in Europe and USA, with the 9 studies from CHD, CEU

and TSI each carry a genetic relative risk of 1.2.

In all scenarios, causal SNPs had the same direction of associations across ancestry

groups. For each scenario, we generated 2,000 replicates to obtain empirical power.

To perform a fair comparison between the frequentist and Bayesian methods, we

generated 20 million SNPs under the null hypothesis and compute Bayes factors

using MANTRA. We observed that a log10 Bayes factor threshold larger than 5

corresponds to a p-value threshold less than α = 1.8 × 10−6. To find a log10 Bayes

factor threshold corresponding to the genome-wide significance level, we carried out

a simple regression analysis between empirical type I error rates and log10 Bayes

factors, and observed that log10 Bayes factor= 6.34 corresponds to α = 5× 10−8 (see
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Supplementary Materials Section 2.5.5 for details).

Figure 2.1 showed the empirical power of TransMeta as well as existing approaches

(FE, RE, RE-HE and MANTRA) under all five scenarios. It can be seen that Trans-

Meta.Fst yielded the highest or near highest power among the five methods, except

in scenario (e). In scenario (a) where no heterogeneity exists, all five methods per-

formed similarly, with FE having the highest power, as expected. In the remaining

three scenarios with heterogeneous genetic effects that are not due to the environment

modification, TransMeta.Fst outperformed the four existing meta-analysis methods.

Unsurprisingly, RE yielded the lowest power across all five approaches. In scenario (e)

where the genetic effect was influenced by environmental exposures, populations that

shared similar genetic architectures did not necessarily share similar genetic effects.

This violated the assumption of using the Fst to take account of the variability in

genetic effects, and in this case, TransMeta.Indep yielded the highest power.

Figure 2.2 showed the empirical power of the five methods with one integrated

study per ancestry group. The patterns of empirical power in this setting were very

similar to what we observe in Figure 2.1 with three sub-studies per ancestry group,

except for RE-HE, which had slightly higher power than that of TransMeta.Indep.

Since TransMeta.Indep has the identity matrix as the kernel structure (i.e K = I)

under this setting, the similar performance of TransMeta.Indep and RE-HE is not

surprising. Overall, TransMeta.Fst attained similar or higher power over competing

methods except in scenario (e).

The barplots in Figure 2.7 and 2.8 of the Supplementary Materials summarized

the power of the five methods at the more stringent level α = 5 × 10−8; the results

were quantitatively similar to the patterns we observe in Figure 2.1 and 2.2.
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Figure 2.1: Empirical power for TransMeta under different effect-size het-
erogeneity configurations, with three sub-studies in each ances-
try group, and significance level at α = 1.8 × 10−6. Empirical
power for TransMeta and existing methods under the five effect-size sce-
narios. Three studies are simulated per ancestry group, each with 500
cases and 500 controls. The empirical power is obtained based on 2000
replicates with the level of significance defined as a p-value less than
1.8 × 10−6 or as a log10 Bayes factor larger than 5. The five-effect size
scenarios are (a) ‘Trans-ethnic fixed-effect’, where no heterogeneity exists
in allelic effects at the causal SNP between populations; (b) ‘Out-of-
Africa effect’, where only studies from the non-African populations carry
the causal variant; (c) ‘Europe and south Asia effect’, where only studies
from the European and south Asian populations carry the causal variant;
(d) ‘Heterogeneous Out-of-Africa effect’, where the causal variant has ge-
netic effects only in non-African populations, but the effect size in the
east Asian populations is different from that in the European and south
Asian populations; (e) ‘Environment modifying effect’, where the causal
variant has genetic effect only in the populations living in Europe and
USA.
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Figure 2.2: Empirical power for TransMeta under different effect-size het-
erogeneity configurations, with one integrated study in each an-
cestry group, and significance level at α = 1.8 × 10−6. Empirical
power for TransMeta and existing methods under the five effect-size sce-
narios. One integrated study is simulated per ancestry group, each with
1500 cases and 1500 controls. The empirical power is obtained based on
2000 replicates with the level of significance defined as a p-value less than
1.8×10−6 or as a log10 Bayes factor larger than 5. The five effect-size sce-
narios are (a) ‘Trans-ethnic fixed-effect’, where no heterogeneity exists in
allelic effects at the causal SNP between populations; (b) ‘Out-of-Africa
effect’, where only studies from the non-African populations carry the
causal variant; (c) ‘Europe and south Asia effect’, where only studies
from the European and south Asian populations carry the causal variant;
(d) ‘Heterogeneous Out-of-Africa effect’, where the causal variant has ge-
netic effects only in non-African populations, but the effect size in the
east Asian populations is different from that in the European and south
Asian populations; (e) ‘Environment modifying effect’, where the causal
variant has genetic effect only in the populations living in Europe and
USA.
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2.3.4 Comparison Between Effect-size-based and Z-score-based Trans-

Meta

To demonstrate that Z-scores can be used as input summary statistics for Trans-

Meta without loss of efficiency, we compared the power of the effect-size based and

Z-score based TransMeta. Since the proportion of case samples was one (i.e ri = 1)

for all studies, we ignored ri in the transformation. We also considered using only

the transformed Z-scores and sample sizes as the input, which is equivalent to assume

that MAFs of SNPs are the same across all studies. In this case, the transformation

simplifies to β̃i = Zi/
√
ni with standard error s̃ei = 1/

√
ni. We included this setting

because Z-scores are typically obtained without MAFs.

The scatter plot in Figure 2.3 compared the power of the effect-size-based and the

Z-score-based TransMeta under the five scenarios as outlined in Section 2.3.3. The

plot was generated under the settings where we had three sub-studies per ethnic group,

with the level of significance as a p-value less than 1.8×10−6. The power of these two

approaches was nearly identical when we incorporate both sample sizes and MAFs

in the Z-score transformations, and the power of the Z-score based TransMeta was

slightly lower than the effect-size based TransMeta when only sample sizes are used in

the Z-score transformations. For the one integrated study per ancestry group setting,

the results were quantitatively similar to the patterns in Figure 2.3 (Figure 2.9 in the

Supplementary Materials). At the genome-wide significance level, we again observed

similar patterns as in Figure 2.3 and Supplementary Figure 2.9 (data not shown).

2.3.5 Computation Time

TransMeta provides scalable computation time for genome-wide datasets. To ana-

lyze 2,000 SNPs in the power simulations, both TransMeta.Fst and TransMeta.Indep

took 20 seconds on average on a Linux cluster node with 2.80 GHz CPU. To an-

alyze one million SNPs in a genome-wide dataset, TransMeta would require less
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Figure 2.3: Power comparison of the effect-size-based and Z-score-based
TransMeta, with three sub-studies in each ancestry group, and
significance level at α = 1.8× 10−6. Power comparison of the effect-
size-based and Z-score-based TransMeta under the five effect size scenar-
ios. Three studies are simulated per ancestry group, each with 500 cases
and 500 controls. The empirical power is obtained based on 2000 repli-
cates with the level of significance defined as a p-value less than 1.8×10−6.
The left panel is based on TransMeta.Fst and the right panel is based on
TransMeta.Indep. In each plot, the x-axis denotes empirical power of the
the Z-score-based TransMeta and the y-axis denotes empirical power of
effect-size-based TransMeta. The solid dots represent the power of trans-
formed Z-scores using only sample sizes, and the solid squares represent
transformed Z-scores using both sample sizes and MAFs.
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than 3 hours. Among the competing methods, MANTRA was computationally

expensive and took 45 and 95 minutes on average to analyze 2,000 SNPs with 9

and 27 studies, respectively. An R package ‘TransMeta’ has been developed to

implement our proposed method and can be downloaded at the authors’ website

(https://sites.google.com/a/umich.edu/leeshawn/software).

2.3.6 Application to Type 2 Diabetes (T2D) GWAS

Large scale GWAS of T2D have successfully identified many risk-associated loci,

including a landmark meta-analysis on T2D by the DIAGRAM consortium with over

110,000 genotyped individuals (Mahajan et al., 2014). Most of those studies have

applied one or a combination of the classical FE or RE meta-analysis approaches,

with limited use of the more powerful RE-HE or MANTRA methods. In this section,

we re-analyzed the published T2D GWAS meta-analysis (Mahajan et al., 2014), in

which the FE was employed in the trans-ethnic discovery-stage GWAS meta-analysis.

The aggregated data included 69 lead SNPs from the previously established T2D

susceptibility loci, with 26,488 cases and 83,964 controls from four major ancestry

groups of Europeans (12,171 cases and 56,862 controls), east Asians (6,952 cases and

11,865 controls), south Asians (5,561 cases and 14,458 controls), and Mexican and

Mexican-Americans (1,804 cases and 779 controls). Association summary statistics

– such as MAFs, effect size estimates, and standard errors – of the lead 69 SNPs

were available for all four ancestry groups (Supplementary Table 3 of Mahajan et al.

(2014)).

We applied TransMeta to the aggregated data along with the other existing meta-

analysis approaches. Due to the small number of SNPs in the aggregated dataset,

estimates of Fst may be unreliable. Instead, we used the pairwise Fst from HMP3 to

construct the genetic similarity kernel (Table 2.3 in the Supplementary Materials).

Supplementary Tables 2.4 and 2.5 listed p-values (or Bayes factors) of the 69 SNPs
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Figure 2.4: Comparison of p-values of TransMeta.Fst and FE for 69 lead
SNPs in the T2D meta-analysis data. The left panel displays p-
values of SNPs whose TransMeta.Fst ρ is zero; the right panel displays p-
values of SNPs whose TransMeta.Fst ρ is one. In each plot, the x-axis de-
notes − log10(FE p-values), and the y-axis denotes − log10(TransMeta.Fst
p-values).

with selected optimal ρs of TransMeta. Among those 69 SNPs, 37 had optimal ρ < 1

under TransMeta.Fst. Figure 2.4 compares p-values of TransMeta.Fst and FE for

different selected optimal ρs. When the selected optimal ρ = 0, our method yielded

a smaller p-value than FE, which indicated that TransMeta can be more powerful

than FE. When the selected ρ = 1, and hence FE was the optimal test, FE yielded a

smaller p-value than TransMeta, but the difference was minimal.

At the significance level α = 1.8×10−6 or a log10 Bayes factor > 5, TransMeta.Fst,

TransMeta.Indep, FE and RE-HE all identified 31 SNPs, while RE and MANTRA

identified 18 and 28 SNPs, respectively. At the genome-wide significance level of

α = 5×10−8 or a log10 Bayes factor> 6.34, both TransMeta.Fst and TransMeta.Indep

identified 24 SNPs, while FE, RE, RE-HE and MANTRA identified 23, 12, 22 and
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Figure 2.5: Forest plot of the estimated OR and 95 % CI for rs10830963 in
each ancestry group in the T2D meta-analysis data. The associ-
ation signal of rs10830963 is detected by TransMeta only.

19 SNPs respectively.

At the genome-wide significance level, TransMeta was able to identify one more

SNP, rs10830963, with TransMeta.Fst p-value= 2.98 × 10−8 (selected optimal ρ =

0.25) and TransMeta.Indep p-value=3.76× 10−8 (selected optimal ρ = 0.25), respec-

tively. In contrast, p-values of FE, RE and RE-HE were all larger than 10−7, and

MANTRA log10 Bayes factor was 5.6. The SNP rs10830963 is located in Melatonin

receptor 1-B, which belongs to the seven transmembrane G protein-coupled receptor

superfamily, and previous studies have shown that this SNP is associated with fasting

glycemia and T2D (Rönn et al., 2009; Sparsø et al., 2009; Kan et al., 2010; Vlassi

et al., 2012).

Figure 2.5 displayed a forest plot of odds ratios and their corresponding con-

fidence intervals for this SNP (extracted from Supplementary Table 3 in Mahajan

et al. (2014)). The odds ratios of Europeans, south Asians and Mexicans were all

close to 1.1, although the odds ratio for Mexicans was non-significant due to small

sample size. In contrast, the odds ratio in east Asians was close to one. Since east

Asians are genetically more distant than other populations (Table 2.3 in the Supple-

mentary Materials), this result indicated that our approach to modeling genetic effect

heterogeneity using genetic distance can increase power.
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2.4 Discussion

In this chapter, we proposed a novel trans-ethnic meta-analysis framework to

flexibly model the genetic effect heterogeneity across ancestry groups. The frame-

work incorporates the genetic distances to model the genetic effect heterogeneity and

adaptively uses variance component test to achieve robust power. Simulations and the

trans-ethnic T2D GWAS application suggest that our approach can improve power

when genetic effect-size heterogeneity exists.

Since TransMeta.Fst accommodates genetic similarity to model the effect size

similarity, we recommend TransMeta.Fst as the primary test. However, if there is

evidence suggesting that the genetic effects are modified by non-genetic exposures

(such as environmental or lifestyle factors), TransMeta.Indep may be a better choice.

To avoid data fishing, the choice of using TransMeta.Fst or TransMeta.Indep needs

to be made prior to data analysis. For the sequence of ρ values used in the grid

search, we observe that using a dense grid of ρs does not necessarily increase power.

In fact, in Supplementary Figure 2.10 , we employ a denser grid with eleven evenly

spaced points of ρ = (0, 0.1, . . . , 0.9, 1) in the power simulations and observe that

the resulting power is very similar or even identical to the power based on ρ = (0,

0.09, 0.25, 1). So we suggest using ρ = (0, 0.09, 0.25, 1) as the default sequence of ρ

values. We note that it is not required to select ρ from the grid prior to perform the

analysis, since TransMeta automatically selects the optimal ρ, and calculate p-values

while accounting for the selection.

Unlike the I2 statistic (Higgins et al., 2002), which is developed to measure the

extent of heterogeneity, the optimal ρ is set as the value (over a pre-specified grid)

whose score statistic has the smallest p-value among all. As a result, the optimal ρ

should not be interpreted as a measurement of heterogeneity. For example, we count

the number of optimal ρ values in each of the five scenarios in the power simulations

(Table 2.7 in the Supplementary Materials) and observe that in the homogeneous
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effect size scenario, only less than half of the optimal ρ values in TransMeta.Fst are

determined to be 1. (Please recall that ρ equals to 1 models homogeneous effect

sizes; the closer ρ is to 0, the stronger the indication of heterogeneity.) However, the

optimal ρ does provide some insights into the extent of heterogeneity. For example,

in our power simulations, we observe that the I2 statistic tends to decrease as the

optimal ρ increases, as shown in Supplementary Table 2.6. (Please recall that I2 = 0

means homogeneity; and the level of heterogeneity increases as I2 approaches to

1.) In addition, we observe in Supplementary Table 2.7 that when heterogeneity

does exist, such as scenarios (b) - (e) in the power simulations, the majority of the

optimal ρ values in TransMeta.Fst are selected to be 0. Similar trends are observed

in TransMeta.Indep, data not shown.

Our score statistics Sρ is a linear combination of two components, each models

the genetic effect homogeneity and the genetic effect heterogeneity, respectively. As a

result, although TransMeta is designed to tackle heterogeneous effect sizes situations,

it can also handle homogeneity scenarios. In fact, the right panel of Figure 2.4

demonstrates that under genetic effect homogeneity, our approach achieves almost

the same statistical significance as FE.

We note that the empirical power of MANTRA is similar or lower than that of

TransMeta.Fst in scenarios (b)-(d), but is higher in scenario (e)(Figure 2.1 and 2.2).

This occurred because under scenario (e), the genetic distance does not provide

guidance to the genetic effect similarity, which violates the key assumption in both

MANTRA and TransMeta.Fst. Since MANTRA groups studies into clusters data-

adaptively, it is more robust than TransMeta.Fst under this situation. As a result,

MANTRA had higher power than TransMeta.Fst.

RE-HE is equivalent to testing for τ = 0 while adaptively selecting ρ under model

(2.2.4) with K = I. When we have one integrated study per ancestry group, the K

matrix in TransMeta.Indep is exactly equal to I, which makes RE-HE equivalent to
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TransMeta.Indep in terms of testing (although they use different approaches to obtain

p-values). As a result, RE-HE and TransMeta.Indep have similar power in all five

scenarios in Figure 2.2. When we have three studies per ancestry group (Figure 2.1),

RE-HE treats each study as its own cluster. In contrast, TransMeta.Indep groups

studies in the same ancestry. As a result, TransMeta.Indep yields higher power than

RE-HE in nearly all scenarios in Figure 2.1.

Our proposed method is based on the score test which does not require estimating

parameters under the alternative hypothesis. Score test enables fast computation of p-

values, however, it does not provide an estimate for the overall effect size. Estimating

the overall effect size under our proposed model framework may be considered as one

possible direction for future work.

The rapid technological advances in high-throughput sequencing platforms have

made it possible to test for rare variant associations (here defined as alleles with a

frequency less than 1%) to accelerate our knowledge of complex trait genetics. One

of the challenge in the design and analysis of sequencing-based GWAS is that rare

variant tests are usually underpowered without exceptionally large sample size or large

enough number of rare alleles captured (Bansal et al., 2010). A popular strategy to

boost the study power is to combine rare variants based on a gene or a region to bring

a synergy of information (Lee et al., 2013; Tang and Lin, 2014; Liu et al., 2014). In

the next chapter, we will extend the framework of using genetic distance for modeling

the genetic effect heterogeneity to gene/region based rare variant tests in trans-ethnic

meta-analysis.
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2.5 Supplementary Materials

2.5.1 Kernel Matrix K for Trans-Ethnic Meta-Analysis

In Section 2.2.3, we propose two choices of K for trans-ethnic meta-analysis. In

this section, to help better understand the two proposed kernel matrix K, we provide

more details on how to construct those two kernels. Suppose that the first n1 studies

belong to the first ancestry group, followed by another n2 studies belonging to the

second ancestry group, and so on. With B ancestry groups among the n studies, we

have n1 + n2 + . . . + nB = n. Let Ab denote a set of indices for the studies in the

bth ancestry group, b = 1, . . . , B. According to the order of arranging the studies, we

thus have A1 = {1, . . . , n1},A2 = {n1 + 1, . . . , n1 + n2}, . . . ,Ab = {n1 + . . . + nb−1 +

1, . . . , n1 + . . .+nb−1 +nb}. Based on those notations, we propose two choices for K:

Choice 1. Group-wise independent kernel structure

Define each entry of the K matrix as

Kij =


1 if i, j ∈ Ab for some b ∈ {1, . . . , B}

0 otherwise

,
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where i, j ∈ {1, . . . , n}. The K matrix can be written as

K =



1 . . . 1 0 . . . 0 0 . . . 0

...
...

. . .
...

1 . . . 1 0 . . . 0 0 . . . 0

0 . . . 0 1 . . . 1 0 . . . 0

...
...

. . .
...

0 . . . 0 1 . . . 1 0 . . . 0

. . . . . . . . . . . .

0 . . . 0 0 . . . 0 . . . 1 . . . 1

...
...

...
...

0 . . . 0 0 . . . 0 . . . 1 . . . 1



.

2. Genetic similarity (Fst) kernel structure

Define each entry of the K matrix as

Kij = 1−
Fst

bb
′

D
, with D = max

b,b′∈{1,...,B}
{Fst

bb
′ },

where i ∈ Ab for some b ∈ {1, . . . , B}, j ∈ Ab′ for some b
′ ∈ {1, . . . , B}, and Fst

bb
′ is

the pairwise Fst between ancestry group b and b
′
. Since Fst

bb
′ ≤ D, ∀ t and t

′
, as a

consequence, 0 ≤ Kij ≤ 1,∀ i and j. In general, the K matrix under this assumption
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can be written as

K =



1 . . . 1 1− Fst12
D . . . 1− Fst12

D 1− Fst1B
D . . . 1− Fst1B

D

...
...

. . .
...

1 . . . 1 1− Fst12
D . . . 1− Fst12

D 1− Fst1B
D . . . 1− Fst1B

D

1− Fst21
D . . . 1− Fst21

D 1 . . . 1 1− Fst2B
D . . . 1− Fst2B

D

...
...

. . .
...

1− Fst21
D . . . 1− Fst21

D 1 . . . 1 1− Fst2B
D . . . 1− Fst2B

D

. . .
. . .

. . .
. . .

1− FstB1
D . . . 1− FstB1

D 1− FstB2
D . . . 1− FstB2

D 1 . . . 1

...
...

. . .
...

1− FstB1
D . . . 1− FstB1

D 1− FstB2
D . . . 1− FstB2

D 1 . . . 1



.

2.5.2 Derivation of the Asymptotics

After computing the test statistic T , the next step is to obtain the corresponding

p-value for ascertaining the association evidence. If we had just used the minimum

p-value (which is denoted as our test statistic T ) to assess the significance, we would

ignore the multiple comparisons between different pρ values, which then leads to an

inflated type I error control. Thus, we derive the asymptotic distribution of T to

obtain its p-value, details provided as follows:

Recall that the score test statistics can be written as:

Sρ = (1− ρ)β̂
T

Σ̂−1KΣ̂−1β̂ + ρβ̂
T

Σ̂−111T Σ̂−1β̂. (2.5.1)

And for any given ρ, the null distribution of Sρ asypototically follows
n∑
j=1

λjχ
2
1,j, (2.5.2)

where (λ1, . . . , λn) are the eigenvalues of Σ̂−1/2VρΣ̂
−1/2, and {χ2

1,j} are independent

χ2
1 random variables.
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Let u = Σ̂−1/2β̂, Z = Σ̂−1/21 and M = Z(ZTZ)−1ZT , then M is a projection

matrix onto the space spanned by Z. Based on those notations, the first term of the

right side of (2.5.1) can be written as:

(1− ρ)β̂
T

Σ̂−1KΣ̂−1β̂ = (1− ρ)uT Σ̂−1/2KΣ̂−1/2u

= (1− ρ)uT (I−M)Σ̂−1/2KΣ̂−1/2(I−M)u (2.5.3)

+ 2(1− ρ)uT (I−M)Σ̂−1/2KΣ̂−1/2Mu (2.5.4)

+ (1− ρ)uTMΣ̂−1/2KΣ̂−1/2Mu, (2.5.5)

and the second term of the right side of (2.5.1) can be written as:

ρβ̂
T

Σ̂−111T Σ̂−1β̂ = ρuT Σ̂−1/211T Σ̂−1/2u

= ρuTMZZTMu. (2.5.6)

Following the derivation as in Lee et al. (2012), it can be easily shown that (2.5.3) +

(2.5.4) = (1− ρ)κ and (2.5.5) + (2.5.6) = τ(ρ)η0, where

κ = uT (I−M)Σ̂−1/2KΣ̂−1/2(I−M)u

+ 2uT (I−M)Σ̂−1/2KΣ̂−1/2Mu,

τ(ρ) = [a2b(1− ρ) + ρ]/a.

with a = (ZTZ)−1, b = ZT Σ̂−1/2KΣ̂−1/2Z, and η0 = (ZTZ)−1uTZZTu.

As a result, we have Sρ = (1− ρ)κ+ τ(ρ)η0.

The asymptotic distribution of Sρ can be approximated as (1 − ρ)(
∑m

k=1 λ
′

kηk +

ζ)+τ(ρ)η0, since under the null, each elements of u has mean 0 and variance 1, uT (I−

M)Σ̂−1/2KΣ̂−1/2(I−M)u asymptotically follows
∑m

k=1 λ
′

kηk, where {λ′1, . . . , λ
′
m} are

non-zero eigenvalues of (I−M)Σ̂−1/2KΣ̂−1/2(I−M), ηks are iid χ2
1 random variables,

η0 = (ZTZ)−1uTZZTu asymptotically follows χ2
1 distribution. Furthermore, since M

is a projection matrix, (I−M)u and Mu are asymptotically independent. Therefore,
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ζ = 2uT (I−M)Σ̂−1/2KΣ̂−1/2Mu satisfies the following conditions:

E(ζ) = 0, var(ζ) = 4trace(Σ̂−1/2MΣ̂−1/2KΣ̂−1/2(I−M)Σ̂−1/2K),

corr(η0, ζ) = 0, and corr(u
′
(I−M)Σ̂−1/2KΣ̂−1/2(I−M)u, ζ) = 0

In addition, due to the asymptotic independence between (I−M)u and Mu, it can be

shown that uT (I−M)Σ̂−1/2KΣ̂−1/2(I−M)u and (ZTZ)−1uTZZTu are also asymp-

totically independent. Since the Pearson correlation between κ and η0 is zero, we can

approximate Sρ as the mixture of two independent variables. We can approximate

the distribution of κ by using the moment matching or the characteristic function

inversion method (Davis, 1980) after adjusting for the extra variance term of ζ.

To estimate the distribution of T = min{pρ1 , . . . , pρν}, let qmin(ρ) denote the

(1− T )th percentile of the distribution of Sρ for each ρ in the grid. The p-value of T

can be computed from

1 − P (Sρ1 < qmin(ρ1), . . . , Sρν < qmin(ρν))

= 1 − E[P (κ < min{(qmin(ρi)− τ(ρi)η0)/(1− ρi)})|η0], (2.5.7)

which can be obtained by one-dimensional numerical integration.

To sum up, our proposed method can be implemented through the following algo-

rithm:

Step 1: Set a grid 0 ≤ ρ1 ≤ ρ2 ≤ . . . ≤ ρν ≤ 1.

Step 2: Compute Sρ1 , . . . , Sρν using equation (2.5.1).

Step 3: Compute Z, M, λ
′

ks, τ(ρi),

µS =
m∑
k=1

λ
′

k, σζ = 2

√
trace(Σ̂−1/2MΣ̂−1/2KΣ̂−1/2(I−M)Σ̂−1/2K),

and σS =

√√√√2
m∑
k=1

(λ
′
k)

2 + σ2
ζ .

Step 4: For each ρi, i ∈ {1, . . . , ν}, computer pρi and qmin(ρi) from the mixture of

χ2 distribution in equation (2.5.2), and set T = min{pρ1 , . . . , pρν}.
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Step 5: Numerically integrate F (δ(x)|λ)f(x|χ2
1), where

δ(x) = (min{(qmin(ρi)− τ(ρi)x)/(1− ρi)} − µS)

√
σ2
S − σ2

ζ

σS
+ µS,

f(x|χ2
1) is the density function of χ2

1, and F (δ(x)|λ) is a distribution function of a

mixture of chi-square distribution
∑
λ
′

kχ
2
k. The p-value is computed as

p− value = 1−
∫
F (δ(x)|λ)f(x|χ2

1)dx.

2.5.3 Using Z-scores Instead of Effect-size Estimates

Based on p-values (pi), sample sizes (ni) and direction of effects (∆i), we can

construct a signed Z-score Zi = Φ−1(1 − pi/2) ∗ sign(∆i) for each study, where Φ(·)

is the standard normal distribution function. Now we show how to transform the

Z-scores as input data for our proposed method.

2.5.3.1 Continuous Traits

For continuous traits, the linear regression model can be written as

yik = β0 + βigik + εik,

where yik is a trait value of individual k in study i , gik is a minor allele count,

and εik ∼ N(0, ω2
i ) is the error term. We further denote xik = (1, gik) and Xi =

(xi1, . . . ,xini)
T . Then the estimator of βi follows the normal distribution

β̂i ∼ N(βi, σ
2
i ),

where σ2
i = ω2

i (X
T
i Xi)

−1
2,2 and (XT

i Xi)
−1
2,2 is the (2,2) element of (XT

i Xi)
−1. The two

side p-value is pi = 1− 2Φ(|β̂i/σi|), and thus the Z-score Zi follows N(βi/σi, 1). This

result implies that we can reconstruct β̂i using a Z-score by estimating σ2
i . Since

(XT
i Xi)

−1 =
1

ni
∑ni

k=1 g
2
ik − (

∑ni
k=1 gik)

2

 ∑ni
k=1 g

2
ik −

∑ni
k=1 gik

−
∑ni

k=1 gik ni

 ,
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we then have under the Hardy-Weinberg equilibrium

niω
2
i

ni
∑ni

k=1 g
2
ik − (

∑ni
k=1 gik)

2
≈ ω2

i

ni2qi(1− qi)
,

where qi is a minor allele frequency (MAF) for the corresponding queried SNP. As a

result, under the Hardy-Weinberg equilibrium β̂i is equivalent to
√

ω2
i

ni2qi(1−qi)Zi. With

an additional assumption that the variance of error term (ω2
i ) are the same across

studies, we can use

β̃i = Zi/
√
niqi(1− qi)

and its standard error

σ̃i = 1/
√
niqi(1− qi)

as inputs for our proposed method.

2.5.3.2 Binary Traits

For binary traits, the logistic regression model can be written as

logitPr(yik = 1) = β0 + βigik.

Asymptotically, var(β̂i) = J−1(βi), where J(βi) =
∑ni

k=1 xikx
T
ikµik(1 − µik), and

µik =
exp(βTi xik)

1+exp(β
′

ixik)
. Since

xikx
T
ik =

 1 gik

gik g2
ik

 ,

we then have

J(βi) =

ni∑
k=1

exp(βTi xik)

[1 + exp(βTi xik)]
2

 1 gik

gik g2
ik

 .

If we use ri = ncase,i/ni to denote the proportion of case samples for study i and

assume that its effect size βi is very small, then
exp(βTi xik)

[1+exp(βTi xik)]2
≈ ri(1 − ri) for any
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k ∈ {1, . . . , ni}, and J(βi) reduces to

J(βi) = ri(1− ri)
ni∑
k=1

 1 gik

gik g2
ik

 = ri(1− ri)

 ni
∑
gik∑

gik
∑
g2
ik

 .

The remaining derivations then follow the same calculation as in the continuous traits

case. As a result, for binary traits, the log odds ratio estimate β̂i is asymptotically

equivalent to Zi/
√
niri(1− ri)qi(1− qi). If all studies have similar ratios of cases and

controls, the ri(1− ri) term can be ignored. Consequently,

β̃i = Zi/
√
niqi(1− qi)

and its standard error

σ̃i = 1/
√
niqi(1− qi)

can be used as inputs for both continuous and binary traits.

2.5.4 Prior Density Function for MANTRA

MANTRA uses the Bayesian partition model to adaptively determine the number

of ethnic clusters and the cluster membership and assesses the association evidence

by means of the Bayes factor. We use the same prior density functions as suggested

in Morris (2011) in our simulation studies and data analysis. Specifically, let M0

denote the null model with β = 0, in which there is no association of the variant with

the trait in any population, and M1 denotes the alternative model with β 6= 0, then

the evidence in favor of the alternative model can be assessed by means of the Bayes

43



factor (Kass and Raftery, 1995) given by

∆ =
f(β̂,Σ|M1)

f(β̂,Σ|M0)
,

where f(β̂,Σ|M) ∝
∫
β
f(β̂,Σ|β)f(β|M)∂β,

and f(β̂,Σ|β) =
n∏
i=1

f(β̂i, σ
2
i |βi),

with f(β̂i, σ
2
i |βi) ∝

1

σi
exp{−(β̂i − βi)2

2σ2
i

}.

Suppose the n populations can be allocated toB cluster centers C = {C1, C2, . . . , CB}

with the corresponding cluster allelic effects Ψ = {Ψ1,Ψ2, . . . ,ΨB}. The true effect

size β is determined by the assignment of populations to ethnic clusters under a

Bayesian partition model. The assignment is given by T, where Tib = 1 if the ith

population is allocated to the cluster with center Cb and 0 otherwise. Under such an

assignment, the marginal likelihood can be written as

f(β̂i, σ
2
i |βi) = f(β̂i, σ

2
i |B,C,Ψ) ∝ 1

σi
exp{−(β̂i −

∑B
b=1 TibΨb)

2

2σ2
i

}.

Under the null model M0, the population-specific allelic effect are all zero, and

hence any clustering of populations is irrelevant. Consequently, f(β|M0) = 1 if β = 0,

and 0 otherwise. Under the alternative model M1, population-specific allelic effects

are determined by the Bayesian partition model, in which the prior density of the

number of clusters of populations is given by

f(B) =


1 if B = 1

2n−1

2B(2n−1−1)
otherwise

.

Given B, each population is equally likely, a priori, to be a cluster center, and

the cluster allelic effect have a prior N(µ, θ) distribution, independent of C, where

µ has a prior uniform distribution and θ has a prior exponential distribution with

expectation 1. Combining the components of the prior density function, it follows
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that

f(β|M1) ∝ f(B)(n−B)!
exp{−θ}

θ

B∏
b=1

exp{(Ψb − µ)2

2θ2
}.

2.5.5 Estimation of Bayes Factor Threshold

We carried out 20 million null simulations for MANTRA to find Bayes factor

thresholds corresponding to genome-wide p-value significance levels. Following our

type I error simulations as in Section 2.3, each simulated dataset had 27 studies (9

ancestry groups in triplicate) and each study has 500 cases and 500 controls. We then

applied MANTRA to those 20 million nulls to obtain the Bayes factors, and computed

the empirical type I error rates as the proportion of Bayes factors (out of the 20

million) that were greater than a given Bayes factor threshold. When we set log10

Bayes factor = 5 as a threshold, the empirical type I error rate was 1.8×10−6 with the

exact binomial confidence interval (1.25×10−6, 2.4×10−6). Supplementary Figure 2.6

ploted the obtained empirical type I error rates (illustrated in -log10(empirical type

I error rate) on the vertical axis) and the Bayes factors (illustrated in log10(Bayes’

factor) on the horizontal axis).

Due to our limited computing resources, it would take us months to run MANTRA

on billions of null simulations that are required to find a comparable Bayes factor

threshold to the commonly used genome-wide significance level (α = 5×10−8); there-

fore, we performed a regression analysis between the Bayes factor thresholds and the

empirical type I error rates. We first obtained the empirical type I error rates for a

sequence of Bayes factor thresholds, and then fitted a linear regression model using

-log10(Empirical type I error rate) as a response variable and the log10 Bayes’ factor

threshold as a predictor. The resulting regression intercept and slope were 1.08577

(p-value < 2 × 10−16) and 0.98106 (p-value < 2 × 10−16) respectively. Based on

those regression parameters, we estimated that Bayes factor threshold (on the log10

base) which corresponds to the genome-wide significance level was 6.34. We noted
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that from this linear model, the estimated significance level that corresponds to log10

Bayes factor = 5 was α = 1.0 × 10−6, which was slightly lower than the observed

threshold α = 1.8 × 10−6. We employ both α = 1.8 × 10−6 and 1.0 × 10−6 to the

power simulations and observed that the results were very similar (data not shown).

To sum up, we defined the level of significance as a p-value less than 1.8 × 10−6,

or as a log10 Bayes factor larger than 5. We also employed the significance level as a

p-value less than 5× 10−8 or as a log10 Bayes factor larger than 6.34.

2.5.6 Supplementary Tables and Figures
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Table 2.2: Type-I error rate estimates for TransMeta at different α levels,
with one study in each ancestry group. Type-I error rate estimates
at different α levels based on 100 million replicates. Each entry represents
an estimated type I error rate calculated using the proportion of p-values
smaller than the given level α. One integrated study was simulated per
ancestry group, and each study had 1500 cases and 1500 controls.

α = 10−2 10−3 10−4 10−5 10−6

TransMeta.Fst 1.051× 10−2 1.1× 10−3 1.079× 10−4 1.1× 10−5 1.05× 10−6

TransMeta.Indep 1.008× 10−2 0.9× 10−3 8.589× 10−5 7.4× 10−6 9.0× 10−7

Table 2.3: Pairwise Fst values used for the T2D meta-analysis. The Fst values
were extracted from Supplementary Table 6 of International HapMap 3
Consortium. (2010). Integrating common and rare genetic variation in
diverse human populations. Nature, 467(7311), 52-58.

Ancestry European east Asian south Asian Mexican and
Mexican-American

European 0 0.111 0.035 0.031

east Asian 0.111 0 0.077 0.070

south Asian 0.035 0.077 0 0.035

Mexican and 0.031 0.070 0.035 0
Mexican-American
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Table 2.4: Meta-analysis results for the 24 SNPs with TransMeta.Fst p-
value < 5 × 10−8 from the T2D trans-ethnic meta-analysis data.
P-values and Bayes’ factors of the six meta-analysis methods for the 24
SNPs with TransMeta.Fst p-value < 5 × 10−8 among the 69 SNPs from
the T2D trans-ethnic meta-analysis data. Values in the parenthesis are
the optimal ρ values for our proposed method. Values in the last column
are the I2 statistic for measuring the heterogeneity level.

SNP F.ST (ρ) INDEP(ρ) FE RE RE-HE Bayes I2

rs7903146 6.17e-77 (0.00) 3.59e-84 (0.25) 6.44e-75 2.89e-07 3.55e-76 74.13 0.83
rs10811661 4.42e-27 (1.00) 4.42e-27 (1.00) 1.11e-27 1.28e-24 2.74e-27 25.36 0.10
rs7756992 4.04e-26 (0.25) 3.57e-31 (0.25) 3.39e-26 2.19e-04 1.88e-27 24.87 0.81
rs3802177 6.55e-19 (0.09) 2.10e-19 (0.25) 1.61e-18 1.61e-18 3.39e-18 16.27 0
rs1111875 1.12e-18 (1.00) 1.33e-20 (0.25) 2.80e-19 2.49e-05 3.29e-19 17.12 0.65
rs4402960 5.51e-18 (0.25) 4.22e-18 (0.25) 7.50e-18 1.54e-17 1.55e-17 15.52 0.01
rs163184 4.12e-14 (1.00) 2.63e-14 (0.25) 1.03e-14 4.80e-07 1.64e-14 12.41 0.55
rs9936385 3.32e-12 (0.25) 9.15e-13 (0.25) 9.65e-13 3.01e-10 1.67e-12 10.63 0.11
rs7178572 5.70e-11 (0.25) 4.91e-11 (0.25) 1.47e-11 1.47e-11 2.45e-11 9.35 0

rs5215 1.25e-10 (1.00) 1.07e-10 (0.25) 3.12e-11 8.47e-05 3.24e-11 8.98 0.57
rs12571751 2.19e-10 (1.00) 2.43e-10 (1.00) 2.19e-10 2.19e-10 3.46e-10 8.22 0
rs1801282 3.86e-10 (1.00) 2.89e-10 (0.25) 4.24e-10 4.24e-10 6.41e-10 7.99 0
rs849135 3.88e-10 (0.00) 2.21e-10 (0.25) 1.06e-09 2.84e-03 1.07e-09 7.62 0.53

rs17791513 1.01e-09 (0.00) 1.11e-08 (0.09) 2.42e-08 4.71e-03 1.76e-08 6.60 0.65
rs4430796 1.06e-09 (1.00) 2.59e-09 (1.00) 1.16e-09 1.10e-07 1.71e-09 7.53 0.24
rs4458523 1.72e-09 (1.00) 1.79e-09 (1.00) 1.91e-09 1.91e-09 2.88e-09 7.32 0
rs11257655 2.06e-09 (1.00) 5.31e-09 (1.00) 1.92e-09 8.71e-04 2.22e-09 7.33 0.61
rs2943640 6.52e-09 (1.00) 6.63e-09 (1.00) 7.01e-09 7.01e-09 9.96e-09 6.73 0
rs7612463 8.25e-09 (1.00) 1.7e-08 (0.25) 6.28e-09 6.28e-09 9.21e-09 6.86 0
rs11717195 1.46e-08 (0.25) 3.17e-08 (1.00) 2.26e-08 2.26e-08 3.25e-08 6.20 0
rs4812829 2.09e-08 (0.00) 1.59e-08 (0.25) 4.21e-08 1.42e-04 5.98e-08 6.07 0.4
rs12970134 2.98e-08 (1.00) 4.79e-08 (1.00) 2.48e-08 2.48e-08 3.55e-08 6.06 0
rs10830963 2.98e-08 (0.25) 3.76e-08 (0.25) 1.99e-07 2.91e-03 2.48e-07 5.60 0.50
rs2261181 3.05e-08 (1.00) 7.51e-09 (0.25) 2.34e-08 1.31e-05 3.11e-08 6.24 0.27
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Table 2.5: Table 2.4 continued: Meta-analysis results for the remaining 45
SNPs from the T2D trans-ethnic meta-analysis data. P-values and
Bayes’ factors of the six meta-analysis methods for the remaining 45 SNPs
among the 69 SNPs from the T2D trans-ethnic meta-analysis data.

SNP F.ST (ρ) INDEP(ρ) FE RE RE-HE Bayes I2

rs7845219 6.56e-08 (1.00) 8.63e-08 (1.00) 5.84e-08 5.84e-08 8.57e-08 5.99 0
rs516946 6.57e-08 (0.09) 6.60e-08 (0.25) 1.11e-07 1.11e-07 1.63e-07 5.59 0
rs1552224 1.35e-07 (1.00) 7.71e-08 (0.25) 9.61e-08 2.11e-03 9.68e-08 5.81 0.63
rs17168486 3.86e-07 (1.00) 4.36e-07 (0.09) 3.74e-07 4.38e-03 3.65e-07 5.08 0.58
rs12899811 6.29e-07 (1.00) 1.40e-06 (1.00) 7.42e-07 2.05e-05 1.09e-06 4.74 0.16
rs2028299 6.48e-07 (1.00) 9.0e-07 (1.00) 7.741e-07 2.35e-04 9.09e-07 4.81 0.42
rs1535500 1.45e-06 (0.00) 1.53e-06 (0.25) 5.36e-06 1.13e-02 5.61e-06 4.10 0.52
rs3923113 1.96e-06 (0.25) 2.29e-06 (1.00) 2.31e-06 1.51e-02 5.47e-07 4.62 0.74
rs2796441 1.96e-06 (1.00) 2.43e-06 (1.00) 1.63e-06 1.63e-06 2.39e-06 4.42 0
rs2075423 2.03e-06 (1.00) 2.52e-06 (1.00) 2.17e-06 9.69e-04 3.17e-06 4.34 0.45
rs12427353 3.11e-06 (0.00) 3.13e-06 (0.25) 3.41e-06 3.41e-06 4.17e-06 4.14 0
rs243088 3.49e-06 (1.00) 3.56e-06 (0.25) 3.73e-06 3.73e-06 5.46e-06 4.25 0
rs7163757 4.76e-06 (1.00) 6.51e-06 (1.00) 4.14e-06 4.14e-06 6.04e-06 4.11 0
rs10842994 4.76e-06 (0.25) 6.92e-06 (1.00) 6.75e-06 6.75e-06 9.84e-06 3.93 0
rs8108269 4.98e-06 (1.00) 6.86e-06 (1.00) 4.60e-06 1.97e-03 6.71e-06 3.90 0.43
rs7041847 5.31e-06 (1.00) 7.21e-06 (1.00) 4.03e-06 4.12e-06 5.88e-06 4.20 0
rs11634397 6.29e-06 (0.00) 7.85e-06 (0.25) 1.60e-05 2.58e-03 2.16e-05 3.62 0.31
rs1359790 9.61e-06 (0.25) 2.46e-06 (0.25) 1.08e-05 8.73e-03 1.07e-05 3.60 0.47
rs780094 1.45e-05 (1.00) 1.62e-05 (1.00) 1.29e-05 2.76e-02 5.34e-06 3.81 0.75

rs10203174 3.29e-05 (0.00) 7.11e-06 (0.09) 7.28e-05 1.64e-01 4.99e-05 2.59 0.65
rs7955901 3.11e-05 (0.00) 1.62e-05 (0.00) 1.86e-03 3.68e-01 1.79e-04 2.15 0.76
rs6795735 3.59e-05 (0.00) 1.41e-04 (0.25) 2.00e-04 4.65e-03 2.80e-04 2.60 0.27
rs7593730 3.6e-05 (0.00) 1.13e-05 (0.00) 4.74e-04 1.89e-01 1.34e-04 2.41 0.68
rs7202877 4.32e-05 (0.00) 2.28e-04 (0.09) 5.53e-04 6.23e-02 2.09e-04 2.43 0.72
rs13233731 1.11e-04 (0.00) 1.97e-06 (0.00) 4.08e-03 3.42e-01 1.35e-05 3.90 0.85
rs16861329 2.68e-04 (0.00) 1.46e-05 (0.00) 5.06e-02 6.95e-01 1.01e-04 2.45 0.90
rs11063069 3.33e-04 (0.00) 4.02e-04 (0.25) 9.97e-04 3.87e-02 1.40e-03 1.78 0.25
rs3786897 3.83e-04 (1.00) 3.20e-04 (0.25) 3.34e-04 2.22e-01 1.45e-05 3.84 0.83
rs9470794 3.95e-04 (0.00) 2.61e-04 (0.09) 1.75e-03 3.48e-01 1.53e-03 1.81 0.68
rs6815464 4.39e-04 (0.00) 4.39e-04 (0.00) NA NA NA 2.13 0
rs6878122 5.81e-04 (0.25) 3.23e-04 (0.25) 5.75e-04 1.36e-01 4.64e-05 2.23 0.82
rs1802295 6.97e-04 (0.00) 1.22e-03 (0.25) 1.10e-03 1.56e-01 1.95e-04 1.97 0.81
rs831571 6.84e-04 (1.00) 3.99e-04 (0.25) 5.26e-04 2.10e-01 4.56e-04 2.25 0.73
rs459193 1.06e-03 (1.00) 1.51e-03 (1.00) 8.20e-04 8.20e-04 1.15e-03 1.84 0
rs2334499 1.61e-03 (1.00) 1.64e-03 (0.25) 1.38e-03 1.38e-03 1.93e-03 1.69 0
rs10923931 3.03e-03 (0.00) 1.01e-03 (0.00) 7.10e-03 3.55e-01 8.61e-03 0.95 0.46
rs10401969 3.91e-03 (0.00) 3.35e-03 (0.09) 7.18e-03 1.62e-01 6.19e-03 1.15 0.68
rs6467136 6.72e-02 (0.00) 5.93e-02 (0.00) 2.14e-01 4.63e-01 1.80e-02 0.80 0.76
rs10278336 1.08e-01 (0.00) 1.21e-01 (0.09) 1.11e-01 1.73e-01 1.33e-01 0.11 0.16
rs7403531 1.54e-01 (0.25) 3.78e-02 (0.00) 1.28e-01 7.23e-01 6.81e-02 0.20 0.68
rs6723108 3.49e-01 (1.00) 4.30e-01 (1.00) 3.17e-01 3.17e-01 3.64e-01 -0.21 0
rs17584499 4.98e-01 (0.00) 4.63e-01 (0.00) 5.20e-01 5.62e-01 5.60e-01 -1.18 0.52
rs7560163 5.76e-01 (1.00) 6.06e-01 (1.00) 4.72e-01 4.72e-01 5.08e-01 -0.37 0
rs10886471 5.86e-01 (0.00) 6.45e-01 (0.00) 6.46e-01 6.46e-01 7.05e-01 -0.45 0
rs391300 8.42e-01 (1.00) 8.78e-01 (1.00) 7.40e-01 7.40e-01 7.90e-01 -0.55 0
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Table 2.6: Summary of the computed I2 statistic in the power simulations.
The I2 statistic for each of the 2000 SNPs in the five power comparison
scenarios. In each cell of the table, we first present the median of the
I2 statistic for all the SNPs (out of 2000) whose optimal ρ value from
TransMeta.Fst is as specified at beginning of the row, then we present the
corresponding inter-quartile range (IQR) in the parenthesis.

The optimal ρ value Scenario (a) Scenario (b) Scenario (c) Scenario (d) Scenario (e)

ρ = 0 0.05 (0.28) 0.55 (0.27) 0.69 (0.17) 0.50 (0.29) 0.70 (0.17)
ρ = 0.09 0 (0.17) 0.39 (0.45) 0.65 (0.33) 0.21 (0.45) 0.64 (0.18)
ρ = 0.25 0 (0.11) 0.20 (0.51) 0.36 (0.38) 0.11 (0.36) 0.63 (0.23)
ρ = 1 0 (0.18) 0.03 (0.32) 0.27 (0.36) 0.12 (0.33) 0.53 (0.32)

Overall median (IQR) 0 (0.21) 0.52 (0.33) 0.68 (0.19) 0.45 (0.38) 0.67 (0.20)

Table 2.7: Contingency Table of the selected optimal ρ value from Trans-
Meta.Fst for each of the 2000 SNPs in the five power comparison
scenarios. In each cell of the table, the entry represents the total number
of SNPs (out of 2000) which has the selected optimal ρ value as listed at
the beginning of the row under the scenario specified at the top of the
column.

The optimal ρ value Scenario (a) Scenario (b) Scenario (c) Scenario (d) Scenario (e)

ρ = 0 480 1674 1864 1573 1385
ρ = 0.09 309 136 58 120 109
ρ = 0.25 276 77 36 122 143
ρ = 1 935 113 142 185 363

Total counts 2000 2000 2000 2000 2000
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Figure 2.6: Calibration of the Bayes’ factor to the empirical type I error
rate. The vertical axis measures the empirical type I error rate on a -log10
scale, the horizontal axis measures the Bayes’ factor on a log10 scale. The
blue straight represents the fitted regression line -log10(empirical type I
error rate) = 1.08577 + 0.98106 × log10(Bayes’ factor).
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Figure 2.7: Empirical power for TransMeta under different effect-size het-
erogeneity configurations, with three sub-studies in each ances-
try group, and significance level at α = 5×10−8. Empirical power
for TransMeta and existing methods under the five effect size scenarios.
Three studies are simulated per ancestry group, each with 500 cases and
500 controls. The empirical power is obtained based on 2000 replicates
with the level of significance defined as a p-value less than 5×10−8 or as a
log10 Bayes’ factor larger than 6.34. The five effect size scenarios are (a)
‘Trans-ethnic fixed-effect’, where no heterogeneity exists in allelic effects
at the causal SNP between populations; (b) ‘Out-of-Africa effect’, where
only studies from the non-African populations carry the causal variant;
(c) ‘Europe and south Asia effect’, where only studies from the European
and south Asian populations carry the causal variant; (d) ‘Heterogeneous
Out-of-Africa effect’, where the causal variant has genetic effects only in
non-African populations, but the effect size in the east Asian popula-
tions is different from that in the European and south Asian populations;
(e) ‘Environment modifying effect’, where the causal variant has genetic
effect only in the populations living in Europe and USA.
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Figure 2.8: Empirical power for TransMeta under different effect-size het-
erogeneity configurations, with one integrated study in each an-
cestry group, and significance level at α = 5 × 10−8. Empirical
power for TransMeta and existing methods under the five effect size sce-
narios. One integrated study is simulated per ancestry group, each with
1500 cases and 1500 controls. The empirical power is obtained based on
2000 replicates with the level of significance defined as a p-value less than
5 × 10−8 or as a log10 Bayes’ factor larger than 6.34. The five effect
size scenarios are (a) ‘Trans-ethnic fixed-effect’, where no heterogeneity
exists in allelic effects at the causal SNP between populations; (b) ‘Out-of-
Africa effect’, where only studies from the non-African populations carry
the causal variant; (c) ‘Europe and south Asia effect’, where only studies
from the European and south Asian populations carry the causal variant;
(d) ‘Heterogeneous Out-of-Africa effect’, where the causal variant has ge-
netic effects only in non-African populations, but the effect size in the
east Asian populations is different from that in the European and south
Asian populations; (e) ‘Environment modifying effect’, where the causal
variant has genetic effect only in the populations living in Europe and
USA.

53



Figure 2.9: Power comparison of the effect-size-based and Z-score-based
TransMeta, with one integrated study in each ancestry group,
and significance level at α = 1.8 × 10−6. Power comparison of the
effect-size and Z-score based TransMeta under the five effect size scenar-
ios. One integrated study is simulated per ancestry group, each with
1500 cases and 1500 controls. The empirical power is obtained based
on 2000 replicates with the level of significance defined as a p-value less
than 1.8× 10−6. The left panel is based on TransMeta.Fst and the right
panel is based on TransMeta.Indep. In each plot, the x-axis denotes
empirical power of the Z-score based TransMeta and the y-axis denotes
empirical power of the effect-size based TransMeta. The solid dots repre-
sent the power of transformed Z-scores using only sample sizes, and the
solid squares represent transformed Z-scores using both sample sizes and
MAFs.
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Figure 2.10: Power comparison of TransMeta under a coarse grid v.s. a
dense grid, with three sub-studies in each ancestry group, and
significance level at α = 1.8 × 10−6. Comparison of the empirical
power for TransMeta under the five effect size scenarios, using different
grid searches for ρ . Three studies are simulated per ancestry group, each
with 500 cases and 500 controls. The empirical power is obtained based
on 2000 replicates with the level of significance defined as a p-value less
than 1.8×10−6. The two grids being compared are: ρ = (0, 0.09, 0.25, 1)
v.s ρ = (0, 0.1, 0.2, . . . , 0.8, 0.9, 1). The left panel is based on Trans-
Meta.Fst and the right panel is based on TransMeta.Indep. The five
effect size scenarios are (a) ‘Trans-ethnic fixed-effect’, where no hetero-
geneity exists in allelic effects at the causal SNP between populations;
(b) ‘Out-of-Africa effect’, where only studies from the non-African popu-
lations carry the causal variant; (c) ‘Europe and south Asia effect’, where
only studies from the European and south Asian populations carry the
causal variant; (d) ‘Heterogeneous Out-of-Africa effect’, where the causal
variant has genetic effects only in non-African populations, but the effect
size in the east Asian populations is different from that in the European
and south Asian populations; (e) ‘Environment modifying effect’, where
the causal variant has genetic effect only in the populations living in
Europe and USA.
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CHAPTER III

Trans-Ethnic Meta-Analysis of Rare Variants in

Sequencing Association Studies

Abstract

Trans-ethnic meta-analysis is a powerful tool at detecting novel loci in genetic

association studies. However, under the presence of inter-study genetic effect het-

erogeneity, existing approaches may be unsatisfactory because they do not consider

genetic similarity or dissimilarity among different ancestry groups. In response, we

propose a unified score test under a modified random effects model framework for

rare variants associations. Specifically, we adapt the kernel regression framework to

construct the modified random effects model, and incorporate the genetic similarities

across ancestry groups into modeling the heterogeneity structure of the genetic effect

coefficients. In addition, we use the adaptive variance component test to achieve

robust power regardless of the degree of heterogeneity. A resampling-based cop-

ula method is employed to approximate the asymptotic distribution of the proposed

test, which enables efficient estimation of p-values. Simulation studies show that our

proposed method controls type I error rates at the exome-wide significance level and

improves power over existing approaches under the presence of heterogeneity. We fur-

ther illustrate our method by analyzing the Type 2 Diabetes Genetic Exploration by

Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) consortia data, a
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multiethnic sample of 12,940 individuals which focuses on exome sequence variations.

Keywords: Effect-size heterogeneity; GWAS; Kernel regression; Random effect

model; Rare variants; Trans-ethnic meta-analysis.

3.1 Introduction

The rapid technological advances in high-throughput sequencing platforms have

made it possible to test for rare variant (here defined as alleles with a frequency

less than 1%) associations to accelerate our knowledge of complex trait genetics.

In rare variant association studies, testing for only a single rare variant is usually

underpowered due to the limited number of study participants carrying the rare allele

and the penalty of multiple testing (Bansal et al., 2010). To enrich the strength of the

rare variant association tests, a commonly used strategy is to group the variants in a

gene or a functional unit to perform the association tests. For example, the burden

test collapses the variants into a burden score and tests its association with the trait

of interest (Madsen and Browning, 2009; Morris and Zeggini, 2010); the variable

threshold test (VT) performs burden tests at each defined minor allele frequency

(MAF) threshold and evaluates the significance for the maximum of these statistics

(Price et al., 2010); the variance component tests, such as sequence kernel association

test (SKAT), account for variants with opposite effects in a gene through tailored

aggregation of individual variant test statistics in a gene (Wu et al., 2011); and the

SKAT-O (Lee et al., 2012) and MiST (Sun et al., 2013) tests take convex combination

of a burden test and a SKAT variance component test to enhance the robustness and

power of the existing approaches.

Since rare variant tests are usually underpowered without an exceptionally large

sample size or a sufficient number of rare alleles captured, a practical strategy to

enlarge the sample size is to aggregate studies through meta-analysis. To date, most
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meta-analyses have been undertaken in a single population, usually of European de-

scent; as a result, most existing meta-analysis methods for rare variant associations

usually assume that the underlying genetic effects are the same across all studies.

Under this homogeneity assumption, Hu et al. (2013) and Liu et al. (2014) proposed

practical rare variants meta-analysis approaches to increase the study power by ag-

gregating summary statistics across studies to increase sample sizes.

Trans-ethnic meta-analysis is a natural extension of the single-ancestry-based

meta-analysis, as it aims to include samples from as many studies as possible, even

if they come from different ancestries. With the further increased sample size, trans-

ethnic meta-analysis is expected to be more powerful at detecting novel loci (Cooper

et al., 2008; Li and Keating, 2014). However, in performing trans-ethnic analysis, one

of the challenges is to properly account for the expected heterogeneity across studies

from different ancestry groups. Heterogeneity can arise due to several reasons. First,

for a gene-level test, different studies may present different sets of rare variants, due

to the fact that rare variants are likely to be population specific and thus may not

exist in all populations. Therefore, the gene-level association strengths will likely be

unequal among studies, even when effect size across studies is the same for each vari-

ant. Second, if environmental risk factors differ among ancestry groups and interact

with the causal variants, it is possible that the marginal genetic effects would vary

between populations (Morris, 2011) due to the gene-environment interaction.

In the presence of between-study heterogeneity in multi-ethnic meta-analysis, tra-

ditional fixed effects meta-analysis approaches, which assume the same genetic effects

among all participating studies, do not account for the expected variability in ge-

netic effects. In response, several researchers have proposed using the random effects

meta-analysis approach, which assumes a different underlying genetic effect for each

population. For example, Lee et al. (2013) developed unified score tests that combine

features of both the burden test and SKAT to incorporate genetic effect heterogene-
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ity; Tang and Lin (2014) derived the random effects version of all commonly used

rare variants association tests – such as the burden test, VT and SKAT – to allow

varying genetic effects among studies.

However, these random effects-based meta-analysis approaches ignore some of the

underlying characteristics of trans-ethnic meta-analysis. Specifically, these methods

only assume varying genetic effects between studies, but do not consider that studies

which share more similar genetic architectures can have more homogeneous genetic

effects than those which consist of very disparate ancestries. In addition, these meth-

ods were developed for unrelated subjects, and thus cannot properly handle the cor-

related/clustered structure when the participating studies contain samples of related

individuals. To avoid the type I error inflation due to failure of handling the corre-

lated structure, a typical strategy is to remove the related individuals for analysis,

which may result in power loss.

To take full advantage of the strengths of multi-ethnic meta-analysis, in this chap-

ter, we propose a unified score test under a modified random effects model framework

for rare variants associations, which can adjust for sample relatedness. The proposed

method is capable not only of accounting for the expected heterogeneous genetic

effects among studies, but also of flexibly modeling varying levels of heterogeneity

due to the difference of genetic architectures between the populations. Specifically,

we adapt the kernel regression framework to construct the modified random effects

model, and incorporate the genetic similarity among ancestry groups into modeling

the heterogeneity structure of the genetic effect coefficients. In addition, we use the

adaptive variance component test to achieve robust power regardless of the degree of

genetic effect heterogeneity. When meta-analyzing family-based studies, to account

for sample relatedness, we incorporate the generalized linear mixed model association

test (GMMAT) developed by Chen et al. (2016) into our score statistic to properly

handle the correlated/clustered structure among samples. We employ a resampling-
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based copula approach to estimate the asymptotic distribution of the proposed test,

which enables time-efficient estimation of p-values.

The rest of this chapter is organized as follows. In Section 3.2, we propose a unified

score test, TransMeta-Rare, under a modified random effects model to conduct rare

variants association tests in trans-ethnic meta-analysis. We then evaluate the size

and power of our proposed method and report results from simulation studies under

different scenarios in Section 3.3. As a real data application, we further apply our

proposed method to the Type 2 Diabetes Genetic Exploration by Next-generation

sequencing in multi-Ethnic Samples (T2D-GENES) consortia data in Section 3.4.

We conclude this chapter with a discussion in Section 3.5. Supplementary texts,

tables and figures are presented in Section 3.6.

3.2 Methods

Suppose one conducts a meta-analysis of K independent studies to investigate the

effects of rare variants on a particular phenotype. In the kth study, a total of mk

SNPs are sequenced in a region for each of the nk subjects. For simplicity, we assume

that all variants are observed in all K studies, so that m = m1 = m2 = . . . = mk. We

also assume that the K studies come from different ancestries. We will relax these

assumptions later. Let yki be the phenotype value of the ith subject in the kth study

(for i = 1, . . . , nk and k = 1, . . . , K); let Gki· = (gki1, . . . , gkim)T be the genotype

vector of m variants in the region, where gkij denotes the number of rare allele the ith

subject carries at the jth SNP in the kth study (gkij ∈ {0, 1, 2}); and let Xki denote

a set of qk covariates including an intercept. For the kth study, to associate the rare

variants in a region to the phenotype, we consider the linear regression model

yki = XT
kiαk + GT

ki·βk· + εki, εki ∼ N(0, σ2
k) (Model: Linear)
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for continuous traits and the logistic regression model

logitP(yki = 1) = XT
kiαk + GT

ki·βk· (Model: Logistic)

for binary traits, where αk = (αk1, . . . , αkqk)
T is the vector of regression coefficients

for the qk covariates; βk· = (βk1, . . . , βkm)T is the vector of regression coefficients

for the m observed SNPs in the region; and εki is an error term with a mean 0 and

variance ε2k. Under both linear and logistic regression models, evaluation of no genetic

associations between variants in the region and the phenotype across the K studies

corresponds to testing the null hypothesis

H0 : β1· = . . . = βK· = 0.

To construct our proposed test TransMeta-Rare, we first present the random ef-

fects model rare variants association test for a single study. We then extend the model

to the meta-analysis framework.

3.2.1 The Random Effects Model for a Single Study

In this section, we summarize the random effects model for rare variants associa-

tion test in a single study. For the kth study, denote Skj =
∑nk

i=1 gkij(yki− µ̂ki)/φ̂k as

the score statistic of the jth variant obtained from a linear regression model (for con-

tinuous traits) or a logistic regression model (for binary traits), where µ̂ki is the esti-

mated mean of yki under either the null linear model yki = XT
kiαk+εki, εki ∼ N(0, σ2

k)

or the null logistic model logitP(yki = 1) = XT
kiαk; φ̂k = σ̂2

k for continuous traits with

σ̂2
k being estimated under the null linear model, and φ̂k = 1 for binary traits.

The random effects model assumes

1

wkj
βkj = µj + ηkj, ηkj ∼ N(0, τ1), (3.2.1)

where µj represents the mean genetic effect of the jth variant, ηkj represents the

deviation of the genetic effect from µj in the kth study. Under this model framework,

the Burden (Madsen and Browning, 2009), SKAT (Wu et al., 2011), and SKAT-O
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(Lee et al., 2012) tests for ascertaining H0 : βk· = 0 in study k can all be summarized

into the following score statistic:

U(ρ) = STk·W
T
k· · R(ρ) ·Wk·Sk·,

where Sk· = (Sk1, Sk2, . . . , Skm)T is the score vector of the m variants in study k,

Wk· = diag{wk1, wk2, . . . , wkm} is a diagonal weighting matrix, and the matrix R(ρ)

models the correlation structure of the effect sizes among the variants. The Burden

test is constructed through testing µj = 0 when fixing τ1 = 0 in the random effects

model in Equation (3.2.1), which corresponds to setting R(ρ) = 1m1Tm, where 1m =

(1, . . . , 1)T is an m×1 vector with all elements being 1. The SKAT test is constructed

through testing τ1 = 0 when fixing µj = 0 in Equation (3.2.1), which corresponds

to setting R(ρ) = Im, the m ×m diagonal matrix. The SKAT-O test is constructed

through jointly testing µj = 0 and τ1 = 0 in Equation (3.2.1), which corresponds to

R(ρ) = ρ1m1Tm + (1 − ρ)Im, a convex combination of the correlation structures for

Burden and SKAT.

3.2.2 The Random Effects Model for Meta-analyzing K Studies

We now extend the random effects model for rare variant association tests in a sin-

gle study into the a meta-analysis over multiple studies. Let β·j = (β1j, β2j, . . . , βKj)
T

denote the vector of regression coefficients for the jth SNP among the K independent

studies, then the random effects model in Equation (3.2.1) can be written as

W−1
·j β·j = µj1K + η·j, η·j ∼MVN(0, τ1IK), (3.2.2)

with j ∈ {1, . . . ,m}, W·j = diag{w1j, w2j, . . . , wKj}, 1K = (1, . . . , 1)TK×1, IK as the

identity matrix with dimension K × K. To account for the expected genetic ef-

fect heterogeneity of common variants in GWAS trans-ethnic meta-analysis, Shi and

Lee (2016) adapted the kernel machine framework to flexibly model the genetic ef-

fect distributions. For a given variant j, instead of treating {ηkj} (k ∈ {1, . . . , K})
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as identically and independently distributed normal samples, they assumed that η·j

follows a mean 0 Gaussian process with kernel function τ1Ψ(·, ·), where Ψ(·, ·) is a

bivariate function representing the genetic similarity between two groups. In addi-

tion, they imposed a hierarchical structure in Equation (3.2.2) by treating µj as a

random variable with distribution N(0, τ2), which is independently distributed with

η·j. We adopt their modeling strategy and extend it to meta-analysis of rare variants

associations in sequencing studies as follow.

Given the hierarchical random effects model

W−1
·j β·j = µj1K + η·j, with η·j ∼MVN(0, τ1Ψ), µj ∼ N(0, τ2), µj ⊥ η·j, (3.2.3)

we first re-parameterize τ1, τ2 as τ1 = τ(1 − ρK) and τ2 = τρK , with τ ≥ 0 and

0 ≤ ρK ≤ 1. τ measures the size of the average genetic effect µj; ρK reflects the

level of heterogeneity among the studies at any given variant. As ρK approaches 1,

the size of the genetic effect β·j is primarily due to the population effect µj, with

negligible contribution from the deviation measurement η·j. Conversely, the closer

ρK approaches 0, the larger degree of variability there is among the deviation {ηkj}

(k = 1, . . . , K), and the population average effect µj becomes minuscule. Under such

re-parameterization, the null hypothesis H0 : β1· = . . . = βK· = 0 corresponds to

testing H0 : µj = 0,η·j = 0 for any j, or equivalently, H0 : τ = 0. Thus, one can

show that the score test statistic for H0 : τ = 0 is

Uτ (ρm, ρK) = vec(S)T ·WT · [RK(ρK)⊗ Rm(ρm)] ·W · vec(S), (3.2.4)

where vec(·) denotes the vectorization function with vec(S) = (ST1·,S
T
2·, · · · ,STK·)T ;

W = diag{W1·,W2·, . . . ,WK·} is a diagonal weighting matrix of the variants across

K studies; Rm(ρm) and RK(ρK) are two kernel matrices with nuisance parameters

ρm ∈ {0, 1} and 0 ≤ ρK ≤ 1; and ⊗ denotes the Kronecker product. In Section 3.6.1

of the Supplementary Materials, we provide detailed derivations of the score statistic

Uτ (ρm, ρK) under different modeling assumptions for the kernels Rm(ρm) and RK(ρK).
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We note that Sk· = (Sk1,Sk2, · · · ,Skm)T , the score vector of all the variants in study

k, can be obtained from

Sk· = GT
k·Σ

−1
k (yk − µ̂k), (3.2.5)

where Gk· = (Gk1·,Gk2·, . . . ,Gknk·)
T is the nk × m genotype matrix in study k;

Σk = φ̂kInk with φ̂k = σ̂2
k for continuous traits (σ̂2

k computed under the null linear

regression model) and φ̂k = 1 for binary traits; yk = (yk1, . . . , yknk)
T is an nk × 1

vector of the observed phenotype values; and µ̂k = (µ̂k1, . . . , µ̂knk) is an nk× 1 vector

of estimated means of yk under the null regression model.

We note that the two kernel matrices Rm(ρm) and RK(ρK) model the between-

variant and between-ancestry heterogeneity respectively. Specifically, Rm(ρm) models

the correlation structure of the average genetic effects {µj} (j = 1, . . . ,m) across the

m variants in the hierarchical random effects model (Equation (3.2.3)); in contrast,

RK(ρK) models the correlation structure of the deviation {ηkj} (k = 1, . . . , K) for

the jth variant across the K studies in Equation (3.2.3). The two kernels provide

us double-flexibility in controlling the dependence of genetic effects. From the test

statistic construction perspective, any positive semi-definite matrix can be used as

Rm(ρm) and RK(ρK). From the modeling perspective, to properly account for re-

lationships of the variants within and across studies, we propose several choices for

Rm(ρm) and RK(ρK) in the following sections.

3.2.2.1 The Kernel Structure RK(ρK)

Following the approaches in SKAT and SKAT-O on modeling the effect sizes of

multiple variants in a single study, here, we adapt the kernel matrix R(ρ) from the

SKAT-O test to construct RK(ρK). Specifically, we propose to use

RK(ρK) = ρK1K1TK + (1− ρK)Ψ, 0 ≤ ρK ≤ 1, (3.2.6)
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where Ψ is a kernel matrix which models the correlation structure of the deviation

{ηkj} for the jth variant across the K studies, and we provide two choices for modeling

Ψ.

Choice 1. Group-wise independent kernel structure:

We first consider a simple scenario in which the deviation measurement η·js for

the genetic effects are independently distributed across ancestry groups. It can be

easily shown that such an assumption is equivalent to assuming Ψ = IK .

Choice 2. Genetic similarity kernel structure:

Rather than assuming independently distributed genetic effect deviations between

studies, an alternative strategy is to consider that studies which share more similar

genetic architectures can have more homogeneous genetic effects than those which

consist of very disparate ancestries. Under this assumption, we propose to use the

proportion of shared variants over all the target gene regions between two ancestry

groups as a measure of their genetic similarity. We then accommodate the genetic

similarity measure in constructing Ψ to model effect size similarity. Specifically, for

two different studies k and k
′

(k, k
′ ∈ {1, · · · , K}), the corresponding element in the

kernel matrix Ψ is calculated as

Ψk,k′ =

∑
Gene

∑
variant∈Gene I(the variant is observed in both study k and k

′
)∑

Gene

∑
variant∈Gene 1

.

The element Ψk,k′ defines an overall measure of genetic similarity between any two

studies based on their proportion of shared variants among all the gene regions of

interest. We propose to use this kernel to model the situation that the studies’ genetic

effects are more homogeneous when their genetic architectures are more similar. In

Sections 3.6.2 and 3.6.3 of the Supplementary Materials, we provide a mock example

to illustrate how to construct the genetic similarity kernel Ψ, and justification that

the proposed kernel structure is positive-definite.
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3.2.2.2 The Kernel Structure Rm(ρm)

To properly model the between-variant correlation structure, we adapt the kernel

structure R(ρ) from the SKAT method. Specifically, we propose to use

Rm(ρm) = ρm1m1Tm + (1− ρm)Im, ρm ∈ {0, 1}. (3.2.7)

It can be easily shown that when setting ρm = 1, the kernel structure is equivalent

to assuming that the average genetic effects µjs are homogeneous with µ1 = µ2 =

. . . = µm ∼ N(0, τ2) in Equation (3.2.3); in contrast, setting ρm = 0 is equivalent to

assuming the µjs are heterogeneous across the m variants with µ1, µ2, . . . , µm
i.i.d∼

N(0, τ2) in Equation (3.2.3).

3.2.3 The Score Test Statistic: TransMeta-Rare

In Section 3.2.2, we proposed a score test statistic for rare variants association

tests in trans-ethnic meta-analysis:

Uτ (ρm, ρK) = vec(S)T ·WT · [RK(ρK)⊗ Rm(ρm)] ·W · vec(S), (3.2.8)

where RK(ρK) = ρK1K1TK + (1− ρK)Ψ, 0 ≤ ρK ≤ 1,

Rm(ρm) = ρm1m1Tm + (1− ρm)Im, ρm ∈ {0, 1}.

The parameters ρm and ρK model different aspects of heterogeneity. ρm models

whether the population average genetic effects among the observed variants are ho-

mogeneous (ρm = 1) or not (ρm = 0); whereas ρK models the degree of heterogeneity

for the deviation measurements by accounting for the genetic similarities between

populations. Specifically, it incorporates the assumption that studies which share

more similar genetic architectures can have more homogeneous genetic effects than

those which consist of very disparate ancestries.

Given ρm and ρK , it can be shown that Uτ (ρm, ρK) asymptotically follows a mix-

ture of chi-square distribution
∑
λlχ

2
l,1 , where χ2

l,1s are independent chi-square ran-

dom variables with one degree of freedom; and the λls are the non-zero eigenvalues
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of Φ
1
2 [RK(ρK)⊗Rm(ρm)]Φ

1
2 , where Φ is the covariance matrix of W · vec(S). For the

kth study, let Gk· = (Gk·1, . . . ,Gk·m) be its nk×m genotype matrix, Xk be its nk×qk

covariate matrix. Under the null linear regression model yki = XT
kiαk + εki or null

logistic regression model logitP(yki = 1) = XT
kiαk, the the study-specific score vector

Sk· = (Sk1, . . . , Skm)T has mean 0 and covariance matrix Φk = GT
k·PkGk·, where Pk =

V−1
k − VkXk(X

T
kV−1

k Xk)
−1XT

kV−1
k is the projection matrix; Vk = Σk = σ̂2

kInk for

continuous traits, and Vk = diag{ 1
µ̂k,1(1−µ̂k,1)

, . . . , 1
µ̂k,nk (1−µ̂k,nk )

} for binary traits, with

µ̂k,i being the estimated mean of yki under the null logistic regression model. And fi-

nally, the covariance matrix Φ has the form Φ = diag{W1·Φ1W1·, . . . ,WK·ΦKWK·}.

In practice, however, we rarely have prior information on which set of (ρm, ρK)

is optimal in terms of maximizing power. Shi and Lee (2016) approached a similar

problem by using the minimum p-value over a grid values of the nuisance parameter

ρ as their test statistic. We adopt the same strategy here and set the test statistic as

TTransMeta-Rare = inf
ρm∈{0,1},0≤ρK≤1

pρm,ρK , (3.2.9)

where pρm,ρK is the p-value of Uτ (ρm, ρK) in Equation (3.2.8) for a given set of

(ρm, ρK). We name the infimum p-value test in Equation (3.2.9) as TransMeta-

Rare, our proposed rare variants association test for trans-ethnic meta-analysis.

TransMeta-Rare can be obtained by a simple grid search over sets of (ρm, ρK)s:

given grid ρm ∈ {0, 1}, 0 ≤ ρK1 ≤ ρK2 ≤ . . . ≤ ρKv ≤ 1, the test statistic is

TTransMeta-Rare = min{pρm=0,ρK=ρK1
, . . . , pρm=0,ρK=ρKv

, pρm=1,ρK=ρK1
, . . . , pρm=1,ρK=ρKv

},

and the optimal (ρm, ρK) set is the one which yields TTransMeta-Rare. We observe that

a dense grid of ρK does not necessarily improve power comparing to a coarse grid.

Therefore, we suggest using ρK = (0, 0.09, 0.25, 1) for simulations and real data anal-

ysis.
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3.2.4 Adjusting for Sample Relatedness

In Section 3.2.2 and Section 3.2.3, we formulate the score vector in Equation (3.2.5)

under the assumption that each of the participating study is population-based with

unrelated subjects. However, when the studies are family-based or contain related

individuals, the score vector in Equation (3.2.5) is no longer appropriate, since it

ignores sample relatedness. As a result, the score test in Equation (3.2.9) may have

inflated type I error rates if the score vector in Equation (3.2.5) were used. To

appropriately model sample relatedness, we use the framework of generalized linear

mixed model to incorporate an additional random effect term to account for the

correlation structure among related individuals (Chen et al., 2013, 2016).

3.2.4.1 Linear Mixed Models (LMM) and Score Statistic

Following Chen et al. (2013), for study k, we consider the following LMM for

continuous traits: Following Chen et al. (2013), for study k, we consider the following

LMM for continuous traits:

yki = XT
kiαk + GT

ki·βk· + bki + εki, (Model: Linear Mixed)

where bk = (bk1, . . . , bknk)
T is an nk× 1 genetic effect vector for the random effects of

familial correlation, and the remaining notations are as defined before. We assume the

genetic effect vector bk is normally distributed with mean 0 and covariance σ2
kGΩk,

where Ωk is twice the kinship matrix of size nk×nk obtained from familial information

only. We assume bk is uncorrelated with the error term εk = (εk1, . . . , εknk)
T , which

models the non-shared environmental effects. In summary,

bk ∼MVN(0, σ2
kGΩk), εk ∼MVN(0, σ2

kInk), and bk ⊥ εk.

Under those assumptions, the score statistic for H0 : βk· = 0 can be obtained as

Sk· = GT
k·Σ

−1
k (yk − µ̂k),

where Σk = σ̂2
kGΩk + σ̂2

kInk , with σ̂2
kG and σ̂2

k estimated from the null LMM yki =
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XT
kiαk + bki+ εki; and µ̂k = (µ̂k1, . . . , µ̂knk)

T is the estimated mean vector of yk under

the null LMM. It can be easily shown that under the null LMM, Sk· has mean 0 and

covariance matrix Φk = GT
k·PkGk·, where Pk = V−1

k −VkXk(X
T
kV−1

k Xk)
−1XT

kV−1
k

is the projection matrix with Vk = Σk = σ̂2
kGΩk + σ̂2

kInk .

3.2.4.2 Logistic Mixed Models and Score Statistic

To adjust for the familial correlation with binary traits, we consider the following

logistic mixed model for study k:

logitP(yki = 1) = XT
kiαk + GT

ki·βk· + bki. (Model: Logistic Mixed)

Following Chen et al. (2016), one can show that the corresponding score statistic for

H0 : βk· = 0 is

Sk· = GT
k·Σ

−1
k (Yk − µ̂k),

where Yk is the “working vector” from the working null LMM Yk = XT
kαk +

bk + εk, εk ∼ MVN(0,W̃−1
k ) with W̃k = diag{µ̂k1(1 − µ̂k1), . . . , µ̂k1(1 − µ̂k1)};

µ̂k = (µ̂k1, . . . , µ̂knk)
T is the estimated mean vector of Yk; and Σk = W̃−1

k + σ̂2
kGΩk,

with σ̂2
kG and W̃k estimated from the working null LMM. Similarly for a contin-

uous trait, the covariance matrix of Sk· is Φk = GT
k·PkGk·, where Pk = V−1

k −

VkXk(X
T
kV−1

k Xk)
−1XT

kV−1
k is the projection matrix with Vk = Σk = σ̂2

kGΩk + W̃k.

With those modified score statistic and the corresponding covariance matrices,

our score test in Equation (3.2.9) now have controlled type I error rates under the

presence of sample relatedness.

3.2.5 Weights and Missing Variants

Proper choice of weights can increase power in rare variant association analysis.

We adopt the flexible beta density function proposed by Wu et al. (2011) as the

pre-specified weights for the variants. Specifically, wkj = Beta(MAFkj, 1, 25) for the
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jth variant in the kth study. This weight function increases the contributions of rare

variants to the score test while keeping decent contributions of variants with MAF

1%− 5%. To compute TransMeta-Rare, we use the ancestry-specific MAFs.

Since rare variants tend to be population specific, if the jth variant is not present

in the kth study, we impose a zero weight on it (wkj = 0), or equivalently, set Skj = 0

and φkj′j = 0 for all j
′ ∈ {1, . . . ,m}, where φkj′j is the (j

′
, j)th element of Φk.

3.2.6 Multiple Studies from the Same Ancestry Group

In trans-ethnic meta-analysis, studies can be naturally grouped based on their

ethnicities. Suppose now the K studies can be grouped into B ancestries and the

bth ancestry contains Kb studies, b ∈ {1, . . . , B}. Without loss of generality, we

assume that the first K1 studies belong to the first ancestry group, followed by the

next K2 studies belonging to the second ancestry group, and so forth. Let K̃0 =

0, K̃b = K1 + K2 + . . . + Kb, for b ∈ {1, . . . , B}. We assume that studies from the

same ancestry group share the same underlying genetic effects, whereas studies from

different ancestry groups have different underlying genetic effects, so that βk· = βk′ ·

if and only if study k and k
′

belong to the same ethnicity. Under these assumptions,

the unified score test in Equation (3.2.4) becomes

Uτ (ρm, ρK) = vec(S̃)T · [RB(ρB)⊗ Rm(ρm)] · vec(S̃), (3.2.10)

where RB(ρB) = ρB1B1TB + (1− ρB)Ψ, 0 ≤ ρB ≤ 1,

Rm(ρm) = ρm1m1Tm + (1− ρm)Im, ρm ∈ {0, 1}.

Here, we define vec(S̃) = (S̃T1··, S̃
T
2··, . . . , S̃

T
B··)

T with S̃b·· = WK̃b−1+1,· · SK̃b−1+1,· +

WK̃b−1+2,· · SK̃b−1+2,· + . . . + WK̃b1 ,·
· SK̃b1 ,· for b ∈ {1, . . . , B}, 1B is a B × 1 vector

with all elements being 1, and and Ψ is a B ×B kernel.

It can be seen that the unified score test in Equation (3.2.10) first collapses the

weighted study-specific score vectors in the same ancestry group and then aggregates
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the collapsed scores with the kernel matrices which account for the between-ancestry

and between-variant relationships. Also notice that Equation (3.2.8) is a special case

of Equation (3.2.10), in which B = K and K1 = K2 = . . . = KB = 1.

3.2.7 Asymptotic Distribution Approximation

In this section, we propose a resampling-based algorithm to approximate the

asymptotic null distribution of TTransMeta−Rare. Denote t as the observed value of

TTransMeta−Rare. The p-value can be obtained as

P (TTransMeta−Rare ≥ t)

= P (min{pρm=0,ρK=ρK1
, . . . , pρm=0,ρK=ρKv

, pρm=1,ρK=ρK1
, . . . , pρm=1,ρK=ρKv

} ≥ t)

= P (pρm=0,ρK=ρK1
≥ t, . . . , pρm=0,ρK=ρKv

≥ t, pρm=1,ρK=ρK1
≥ t, . . . , pρm=1,ρK=ρKv

≥ t).

Since we know the marginal distribution of pρm,ρK for any given (ρm, ρK) follows

a Uniform(0,1) distribution under the null hypothesis, here we adapt a re-sampling

based algorithm to estimate the correlation structure among pρm,ρK s and employ the

copula method to approximate the their joint distribution.

Under the null hypothesis, Φ−
1
2 ·W ·vec(S) approximately follows an uncorrelated

normal distribution MVN(0, ImK), where ImK is an identity matrix with dimension

mK×mK. Therefore, the following resampling-based algorithm can be implemented

to estimate the correlation structure between the Uτ (ρm, ρK)s:

Step 1: Generate n samples, say u, from the multivariate normal distribution

MVN(0, ImK). Here, we use n = 500 for the simulation studies and data application.

Step 2: Calculate the null scores as

U0
τ (ρm, ρK) = uT ·Φ

1
2{[(1− ρK)Ψ + ρK1K1TK ]⊗ [(1− ρm)Im + ρm1m1Tm]}Φ

1
2 · u

for each (ρm, ρK) ∈ {(0, ρK1), . . . , (0, ρKv), . . . , (1, ρK1), . . . , (1, ρKv)}.

Step 3: Calculate the correlation matrix Σ2v×2v of the null score U0
τ (ρm, ρK)s,

where v is the length of the ρK grid.
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Step 4: With the estimated correlation matrix Σ2v×2v, we use the Gaussian copula

to approximate the null joint distribution of the pρm,ρK s, which yields

P (TTransMeta−Rare ≥ t) = 1− FΣ2v×2v(F
−1(1− t), . . . ,F−1(1− t)),

where F−1 is the inverse cumulative distribution function of a standard normal,

FΣ2v×2v is the joint cumulative distribution of a multivariate normal with zero mean

vector and covariance matrix equal to Σ2v×2v.

When calculating the correlation matrix Σ2v×2v in the resampling-based algorithm,

Pearson’s correlation coefficient can yield unreliable estimates due to its strong de-

pendent on the normality and homoscedasticity assumptions (Hauke and Kossowski,

2011). Instead, we use Spearman’s correlation, a non-parametric version of the Pear-

son’s correlation based on ranks of the random variables.

3.2.8 A Backward Elimination Algorithm to Order Relative Contribu-

tions of Participating Studies to Association Strength

After identifying the gene or region that is associated with the phenotype of inter-

est, one important question to answer for further follow-up is to pinpoint those studies

with true association signals. Inspired by the work of Ionita-Laza et al. (2014) for

identifying rare causal variants in sequence-based study, here we present a simple

backward elimination algorithm to iteratively remove relatively less important par-

ticipating studies. We note that although our procedure does not narrow down a

subset of the studies with true associations, it provides us the relative prioritization

of the studies in driving the association strength.

Step 1: Start with a set of k studies StudySetcurrent = {1, 2, . . . , k} and compute

the TransMeta-Rare meta-analysis p-value using the studies that are included in

StudySetcurrent. Denote the p-value as pcurrent.

Step 2: Remove each of the study one at a time from the set StudySetcurrent =

{1, 2, . . . , k} . Denote the resulting set as StudySet−i = {1, 2, . . . , i− 1, i+ 1, . . . , k}
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for i = 1, 2, . . . , k, and compute the corresponding p-value p−i using TransMeta-Rare.

Step 3: Identify the study j that leads to the smallest p-value, in other words,

j = argmin{p−1, p−2, . . . , p−k}. Remove the identified study j from the participating

studies and update StudySetcurrent to StudySet−j.

Step 4: Continue removing the participating studies till only one study is left.

3.3 Simulation Studies

To evaluate the performance of TransMeta-Rare, we ran a series of simulations

with varying assumptions on genetic effect heterogeneity among multiple ancestries.

We generated 10,000 haplotypes of length 250kb under a calibrated coalescent model

using Cosi2 (Shlyakhter et al., 2014) to mimic LD patterns and MAFs observed in

the European (EU), African-American (AA), Asian (AS) and African (AF) popula-

tions. For each simulated data set, we randomly selected a 3kb sub-region to generate

causal variants and test for association strengths between the selected sub-region and

phenotypes. We only keep rare variants with MAFs < 1%. To assess type I error rate

calibration and power estimation, we conducted meta-analysis of four studies with

either equal or different sample sizes. Specifically, we considered an equal sample size

scenario with 2,000 subjects from each of the EU, AA, AS and AF populations (8,000

samples in total), and an unequal sample sizes scenario with 2,000 subjects from

each of the AA, AS and AF populations and 6,000 subjects from the EU population

(12,000 samples in total).

For population-based studies, we generated the phenotypes according to the lin-

ear regression model (Model: Linear) for continuous traits and the logistic regres-

sion model (Model: Logistic) for binary traits. We set the covariates Xki as a vec-

tor of length 2, in which the first covariate was generated from a standard normal

distribution and the second covariate was generated from a Bernoulli distribution

with 0.5 probability of success. The associated regression coefficient αk was set as
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αk = (0.5, 0.5)T . The Gki· genotype vector contains genotypes of all causal variants

and βk· is the regression coefficient vector of genetic effects for the causal variants.

For continuous traits, we generated the random error εkis from a standard normal

distribution. For binary traits, we set the prevalence rate to be 0.05 when there is no

genetic effect and there is a balanced case-control ratio in each of the four studies.

For family-based studies, we generated the phenotypes from the linear mixed

model (Model: Linear Mixed) for continuous traits and the logistic mixed model

(Model: Logistic Mixed) for binary traits. We assumed each family has 10 members

with a pedigree10 structure (Figure 3.1). Consequently, for the equal sample size sce-

nario, each of the four populations contained 200 families; in contrast, for the unequal

sample size scenario, EU contained 600 families, whereas the remaining three popula-

tions each contained 200 families. To generate the genotypes for the family members,

we carried out gene-dropping simulations (Abecasis et al., 2002) using the selected

sequences from Cosi2 as founder haplotypes which propagate through the pedigree10

structure. The random effect term bki which accounts for the correlation structure

among related individuals was generated from a standard normal distribution; the

remaining model specifications were the same as in the population-based studies.

3.3.1 Type I Error Rates

We evaluated type I error rates of the proposed method by generating 2.5 ×

107 datasets under the null model of no associations. To reduce the computational

burden, we first generated 50,000 sets of genotypes for randomly selected sub-regions

from the coalescent model, and then generated 500 phenotype sets for each of the

genotype data sets. We evaluated the type I error rate at various nominal levels α

from 10−3, 10−4, 10−5, to 2.5 × 10−6, where α = 2.5 × 10−6 corresponds to exome-

wide studies of 20,000 genes. The empirical type I error rate was estimated as the

proportion of p-values that are less than the nominal level α. Results of TransMeta-
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Figure 3.1: Pedigree of families, each with 10 members, in the family-based
simulation studies.

Rare were presented in Table 3.1a and Table 3.1b for the equal sample size and

unequal sample size scenarios, respectively. For both continuous and dichotomous

phenotypes, regardless of the kernel used, the proposed method yielded controlled

type I error rates under both the population-based and family-based study designs.

3.3.2 Power Comparisons

For power simulations, to allow the possibility of rare variants having large effects,

we modeled the genetic regression coefficient β in the linear model and logistic model

as β = c| log10(MAF )|. We considered several possible configurations of the genetic

effect heterogeneity to compare performances of TransMeta-Rare with existing meta-

analysis approaches. In the first scenario, we simulated a homogenous genetic effect

case by assuming that the causal variants were observed in all four ancestry groups.

In the second scenario, we mimiced a heterogeneous genetic effect case which assumed

that the causal variants were only present in the African-American and African popu-
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(a) Type I error rates of TransMeta-Rare at different α levels based on 2.5 × 107 simulations.
Data are generated under the equal sample size scenario with 2,000 subjects from each of the
EU, AA, AS and AF populations. The ‘Genetic Similarity’ and ‘Indep’ categories refer to the
two kernel choices we provide for Ψ in Section 3.2.2.1.

Data Type Size α
Population-based Family-based

Genetic Indep Genetic Indep
Similarity Similarity

Gaussian

10−3 9.79× 10−4 9.99× 10−4 9.86× 10−4 9.96× 10−4

10−4 1.02× 10−4 1.03× 10−4 9.75× 10−5 9.84× 10−5

10−5 1.06× 10−5 1.12× 10−5 1.09× 10−5 1.10× 10−5

2.5× 10−6 2.83× 10−6 2.84× 10−6 2.85× 10−6 2.88× 10−6

Binary

10−3 9.85× 10−4 1.01× 10−3 9.88× 10−4 9.87× 10−4

10−4 1.03× 10−5 1.03× 10−5 9.84× 10−5 9.90× 10−5

10−5 1.00× 10−5 1.02× 10−5 1.06× 10−5 1.07× 10−5

2.5× 10−6 2.12× 10−6 2.12× 10−6 2.58× 10−6 2.67× 10−6

(b) Type I error rates at different α levels based on 2.5× 107 simulations. Data are generated
under the unequal sample size scenario with 2,000 subjects from each of the AA, AS and AF
populations and 6,000 subjects from the EU population. The ‘Genetic Similarity’ and ‘Indep’
categories refer to the two kernel choices we provide for Ψ in Section 3.2.2.1.

Data Type Size α
Population-based Family-based

Genetic Indep Genetic Indep
Similarity Similarity

Gaussian

10−3 9.87× 10−4 9.86× 10−4 1.03× 10−3 1.14× 10−3

10−4 9.82× 10−5 9.93× 10−5 1.09× 10−4 1.14× 10−4

10−5 1.10× 10−5 1.13× 10−5 1.15× 10−5 1.16× 10−5

2.5× 10−6 2.73× 10−6 2.81× 10−6 2.86× 10−6 2.84× 10−6

Binary

10−3 9.75× 10−4 9.84× 10−4 9.74× 10−4 9.75× 10−3

10−4 9.87× 10−5 9.94× 10−5 9.98× 10−5 1.09× 10−4

10−5 9.96× 10−6 9.97× 10−6 1.05× 10−5 1.03× 10−5

2.5× 10−6 2.04× 10−6 2.05× 10−6 2.56× 10−6 2.65× 10−6

Table 3.1: Type I error rates of TransMeta-Rare at different α levels based
on 2.5 × 107 simulations.
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lations. In the third scenario, we generated another heterogeneous genetic effect case

by assuming that the causal variants were only present in the Asian population. In

each setting, we assumed either all causal variants were risk increasing or 80% are risk

increasing and the remaining 20% were risk decreasing. We illustrated in Figure 3.2

the pool of candidate SNPs where the causal variants can be drawn from for each of

those three scenarios. We assumed a spectrum of varying percentages of the causal

rare variants. At any given percentage of causal variants, the expected genetic varia-

tions were assumed as 0.005 and 0.05 for the continuous and binary traits respectively.

We calculated the constant c in the regression coefficient β as the one that yields the

desired variation level (i.e. 0.005 for continuous traits and 0.05 for binary traits).

In Table 3.7 of Supplementary Materials, we summarized the percentages of causal

variants and the corresponding c values in each of the three effect size heterogeneity

scenarios.

Figure 3.2: Venn diagrams to illustrate causal variants selections. The pool
of candidate SNPs from which the causal variants are drawn from. Each
circle in each Venn diagram represents the observed variants in a pop-
ulation, and the area colored in blue represents the pool of candidate
SNPs where the causal variants can be drawn from for each of these three
scenarios.

We ran 1,000 replicates to evaluate the power at the exome-wide significance level

α = 2.5×10−6. The plots in Figure 3.3 and Figure 3.4 summarized the empirical power

of TransMeta-Rare as well as the competing methods for continuous traits and binary
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traits respectively, under the setting where all causal variants were risk increasing

and the sample sizes were the same among the four ancestries with population-based

studies. For the 80% risk increasing causal variants configuration, we summarized the

results in Figure 3.5 and Figure 3.6 for continuous traits and binary traits respectively,

in which the four populations had the same sample size with unrelated individuals.

Figure 3.3 to 3.6 showed that the performance of TransMeta-Rare varied de-

pending on the genetic effect heterogeneity level and the percentage of causal vari-

ants. Under all scenarios, TransMeta-Rare with the genetic similarity kernel consis-

tently achieved comparable or higher power than the group-wise independent ker-

nel. We note that when the meta-analysis consists of one study per ancestry group,

TransMeta-Rare with the group-wise independent kernel (Ψ = IK) is equivalent to

RE-VC-O, the random-effect version of SKAT-O developed by Tang and Lin (2014).

Although the two approaches have equivalent test statistics, RE-VC-O uses an adap-

tive Monte Carlo procedure to approximate the asymptotic distribution, which can

be computationally expensive when estimating the tail probabilities.

In the first scenario where the underlying genetic effects were homogeneous across

ancestries, TransMeta-Rare achieved comparable results to the most powerful com-

peting test Hom-MetaSKAT-O by Lee et al. (2013), which assumes homogeneous

genetic effects. In the two scenarios which assumed heterogeneous genetic effects

across studies, TransMeta-Rare, especially with the genetic similarity kernel, outper-

formed the existing methods across different percentages of the causal variants. In

addition, the power gain in Scenario 3 was generally higher than in Scenario 2, which

was in line with the underlying genetic structures among the four group, as sum-

marized in Table 3.2 for the genetic similarity kernel used in the simulation studies.

Those values indicated that the genetic structure of Asians was very different from

the remaining groups; African Americans and Africans were genetically more closely

related; Europeans and African Americans had moderate genetic similarity compare
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Figure 3.3: Power comparison results for the continuous traits under different hetero-
geneity configurations, with population-based study design, equal sample
size and all the causal variants being trait increasing. The empirical powers
were evaluated at α = 2.5×10−6 for the three scenarios. TransMeta.Genetic-Similarity
and TransMeta.Indep refers to our proposed method TransMeta-Rare with the two ker-
nel choices we provide for Ψ ; Hom-MetaSKAT-O and Het-MetaSKAT-O refer to the
methods proposed by Lee et al. (2013); RE-VC-O refers to the method proposed by
Tang and Lin (2014). For Scenario 2 and Scenario 3, the first line on the X-axis denotes
the percentage of causal variants that are drawn from the designated populations as
illustrated in Figure 3.2; while the second line on the X-axis denotes the corresponding
average percentage of causal variants among the total number of variants from the four
populations.

79



Figure 3.4: Power comparison results for the binary traits under different heterogene-
ity configurations, with population-based study design, equal sample size
and all the causal variants being trait increasing. The empirical powers were
evaluated at α = 2.5×10−6 for the three scenarios. TransMeta.Genetic-Similarity and
TransMeta.Indep refer to our proposed method TransMeta-Rare with the two kernel
choices we provide for Ψ ; Hom-MetaSKAT-O and Het-MetaSKAT-O refer to the
methods proposed by Lee et al. (2013); RE-VC-O refers to the method proposed by
Tang and Lin (2014). For Scenario 2 and Scenario 3, the first line on the X-axis denotes
the percentage of causal variants that are drawn from the designated populations as
illustrated in Figure 3.2; while the second line on the X-axis denotes the corresponding
average percentage of causal variants among the total number of variants from the four
populations.
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Figure 3.5: Power comparison results for the continuous traits under different hetero-
geneity configurations, with population-based study design, equal sample
size and 80% of the causal variants being trait increasing. The empirical
powers were evaluated at α = 2.5× 10−6 for the three scenarios. TransMeta.Genetic-
Similarity and TransMeta.Indep refer to our proposed method TransMeta-Rare with
the two kernel choices we provide for Ψ; Hom-MetaSKAT-O and Het-MetaSKAT-O
refer to the methods proposed by Lee et al. (2013); RE-VC-O refers to the method
proposed by Tang and Lin (2014). For Scenario 2 and Scenario 3, the first line on the
X-axis denotes the percentage of causal variants that are drawn from the designated
populations as illustrated in Figure 3.2; while the second line on the X-axis denotes
the corresponding average percentage of causal variants among the total number of
variants from the four populations.
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Figure 3.6: Power comparison results for the binary traits under different heterogeneity
configurations, with population-based study design, equal sample size and
80% of the causal variants being trait increasing. The empirical powers were
evaluated at α = 2.5 × 10−6 for the three scenarios. TransMeta.Genetic-Similarity
and TransMeta.Indep refer to our proposed method TransMeta-Rare with the two
kernel choices we provide for Ψ; Hom-MetaSKAT-O and Het-MetaSKAT-O refer to
the methods proposed by Lee et al. (2013); RE-VC-O refers to the method proposed by
Tang and Lin (2014). For Scenario 2 and Scenario 3, the first line on the X-axis denotes
the percentage of causal variants that are drawn from the designated populations as
illustrated in Figure 3.2; while the second line on the X-axis denotes the corresponding
average percentage of causal variants among the total number of variants from the four
populations.
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to other groups. As a result, when such a genetic similarity kernel was used, the ef-

fect size heterogeneity in Scenario 3 is more consistent with the presumption of using

the genetic similarity kernel for modeling the effect size heterogeneity. In contrast,

although Scenario 2 assumed the genetic effect similarity between African Americans

and Africans according to the similarity between their genetic architectures, it ignored

the moderate genetic similarity level between African Americans and Europeans by

assuming no causal variants in the European group. Consequently, we observed less

power gain of TransMeta-Rare over other approaches in Scenario 2 than in Scenario

3.

Table 3.2: The genetic similarity kernel Ψ for simulation studies.

Ancestry European African American Asian African

European 1

African American 0.108 1

Asian 0.020 0.002 1

African 0.024 0.352 0.010 1

We summarized the power comparison results for the family-based studies and/or

unequal sample size scenarios in Figure 3.10 to Figure 3.21 in Section 3.6.4 of the

Supplementary Materials. We observed that the patterns in these supplementary

figures were very similar to the results shown in Figure 3.3 to Figure 3.6. In addition,

we conducted more simulations with three participating studies in each of the four

groups. Figure 3.7 summarized the empirical power of TransMeta-Rare as well as the

competing methods for continuous traits with three sub-studies per ancestry group,

under the setting where all causal variants were risk increasing and sample sizes were

the same among the four ancestries in the population-based studies. We observed

that the performances had very similar patterns with the single study per ancestry
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group case in Figure 3.3, except that TransMeta-Rare.Indep yielded higher power

than RE-VE-O. This is because rather than collapsing studies within each ancestry,

RE-VC-O treated the 12 studies as if they all came from different ancestries, yielding

less power than the other approaches. In addition, we observed that the power gain of

TransMeta-Rare over existing approaches was even higher in the two heterogeneous

configurations. The results for binary traits, family-based studies and unequal sample

size scenarios were very similar to the single study per ancestry group case (data not

shown).

3.3.3 Computing Time

TransMeta-Rare provides scalable computation time for gene/region-based rare

variants meta-analyses. To analyze 1,000 genes/regions in the power simulations,

TransMeta-Rare took 50 minutes on average on a Linux cluster node with 2.80 GHz

CPU. To analyze 20,000 genes in a genome-wide dataset, TransMeta-Rare would

require less than 17 hours. An R package ‘TransMeta-Rare’ has been developed to

implement our proposed method and can be downloaded at the authors’ website

(https://www.leelabsg.org/).

3.4 Data Application

The Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-

Ethnic Samples (T2D-GENES) consortia focused on sequencing variations that are

attributable to T2D risk. T2D-GENES assembled data from a multi-ethnic sample

of 12,940 unrelated individuals drawn from 5 ancestry groups: 2,350 cases and 2,168

controls of European origin; 1,012 cases and 1,152 controls of East Asian origin;

1,087 cases and 1,112 controls of South Asian origin; 1,016 cases and 9,22 controls of

Hispanic origin and 1,009 cases and 1,016 controls of African American origin. The

sequenced DNA samples identified 3.04 million variants, with an 82X mean coverage
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Figure 3.7: Power comparison results for the continuous traits under different het-
erogeneity configurations, with population-based study design, three sub-
studies per ancestry group, equal sample size and all the causal variants
being trait increasing. The empirical powers were evaluated at α = 2.5 × 10−6

for the three scenarios. TransMeta.Genetic-Similarity and TransMeta-Indep refer to
our proposed method TransMeta-Rare with the two kernel choices we provide for Ψ;
Hom-MetaSKAT-O and Het-MetaSKAT-O refer to the methods proposed by Lee et al.
(2013); RE-VC-O refers to the method proposed by Tang and Lin (2014). For Sce-
nario 2 and Scenario 3, the first line on the X-axis denotes the percentage of causal
variants that are drawn from the designated populations as illustrated in Figure 3.2;
while the second line on the X-axis denotes the corresponding average percentage of
causal variants among the total number of variants from the four populations.
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across the coding sequence of 18,281 genes.

We applied our proposed method to the T2D-GENES data for multi-ethnic rare

variants association analysis. The phenotypes being considered included both the bi-

nary trait T2D and the continuous trait BMI. To investigate the associations between

rare variants and phenotypes of interest, we employed the variant list (‘mask’) defined

in Fuchsberger et al. (2016) based on MAFs and functional annotations for the genes.

The mask was comprised of variants that were predicted to be protein-truncating

and protein-altering variants with MAF < 1% that were predicted to be deleterious

by at least one of the five annotation prediction algorithms: Polyphen2-HumDiv,

PolyPhen2-HumVar, LRT, Mutation Taster, and SIFT.

In each of the five ancestry groups, to obtain the summary statistics such as the

score test statistic and associated information matrix, we first carried out the logis-

tic regression model in (Model: Logistic) for T2D and the linear regression model

(Model: Linear) for BMI. We then meta-analyzed the five groups using TransMeta-

Rare as well as other existing gene-level meta-analysis methods. For the dichotomous

phenotype T2D, the adjusting covariates used in each ancestry-specific logistic re-

gression model included age, gender, BMI and principal components calculated from

the sequencing data. The principal components were included in the model to ac-

count for potential population stratification. We adjusted for the top four principal

components in each of the ancestry groups. For the continuous trait BMI, we applied

inverse normal transformation to BMI in order for the transformed responses to more

closely approximate the Gaussian distribution.

The QQ plots in Figure 3.8a and Figure 3.8b displayed the TransMeta-Rare p-

values with the genetic similarity kernel for both T2D and BMI, while the genetic

similarity kernel used in the data analysis were summarized in Table 3.4. The QQ

plots showed that TransMeta-Rare had controlled type I error rate for both T2D and

BMI. In addition, the protein coding gene PLCD1 (Phospholipase C Delta 1) achieved
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the exome-wide significance level for its association with BMI. We presented the meta-

analysis p-values for this gene as well as its characteristic in Table 3.3a and Table 3.3b

respectively, and the Venn Diagram in Figure 3.9 summarized the number of shared

variants among the five populations for this gene. PLCD1 encodes a member of the

phospholipase C family, while phospholipases are a group of enzymes that hydrolyze

phospholipids into fatty acids and other lipophilic molecules (Hu, 2011). Previous

studies have shown that PLCD1 is involved in obesity. For example, the GTEx Data

portal has identified the Adipose tissue specific gene expression for PLCD1, where

increase in the number and size of adipocytes is viewed as a hallmark of obesity

(www.gtexportal.org/home/eqtls/byGene?geneId=PLCD1&tissueName=All); and Hi-

rata et al. (2011) have experimented on PLCD1 knockout mice and observed pro-

tection from diet-induced obesity and higher metabolic rate among those PLCD1

knockout mice through thermogenesis and adipogenesis regulation.

(a) The meta-analysis p-values of gene PLCD1 for its association with BMI.

TransMeta-Rare. TransMeta-Rare.
Hom-MetaSKAT-O Het-MetaSKAT-O

Genetic Similarity Indep

5.67× 10−7 6.06× 10−7 5.87× 10−7 7.78× 10−7

(b) Characteristics of gene PLCD1.

Gene Band Start (bp) End (bp) Size
] of SNPs

EA SA EUR HIS AA

PLCD1 3p22.2 38,049,337 38,065,843 16,570 17 22 21 16 24

Table 3.3: Analysis results and characteristics of gene PLCD1.

We applied the backward elimination algorithm to the PLCD1 gene to investigate

the relative contributions of the five studies in driving the association signal. The

elimination results was summarized in Table 3.5. When we removed each of the five
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(a) QQ plots of TransMeta-Rare with the genetic similarity kernel for T2D.

(b) QQ plot of TransMeta-Rare with the genetic similarity kernel for BMI.

Figure 3.8: QQ plot of TransMeta-Rare with the genetic similarity kernel
for T2D and BMI. QQ-plots of -log10 p-values of TransMeta-Rare with
the genetic similarity kernel. A total of 18,281 genes are tested for their
associations with T2D (top panel) and BMI (bottom panel) in the T2D-
GENENS data.
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Figure 3.9: Venn Diagram for the number of shared SNPs in gene PLCD1
among the five ancestry groups.

Table 3.4: The genetic similarity kernel Ψ for T2D-GENES data.

Ancestry East-Asian South-Asian European Hispanic African-American

East-Asian 1

South-Asian 0.101 1

European 0.119 0.138 1

Hispanic 0.095 0.111 0.163 1

African-American 0.097 0.105 0.153 0.151 1
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populations one at a time and computed TransMeta-Rare based on the remaining

four populations, we observed that the association strength improves the most when

SA was eliminated, with the p-value decreased from 5.67× 10−7 to 1.50× 10−7. This

suggested that among the five groups, SA had the least contribution to the association

signal. After removing SA, HIS was the next study to be eliminated, which indicated

that HIS had the next lowest contribution after SA. Further carrying out the proposed

algorithm, we next removed EA and EUR in order. In other words, AA remained as

the last study in the elimination sequence, suggesting that it had the strongest driving

signal for the association between PLCD1 and BMI. This was in agreement with

the single study SKAT-O results (Table 3.8 in Supplementary Materials). We also

applied TransMeta-Rare to each of the 72 variants in PLCD1 to conduct the single-

variant meta-analysis over the five populations (results summarized in Table 3.9, 3.10

and 3.11 in the Supplementary Materials). It can be seen from those tables that

none of the single-marker meta-analysis p-values achieved genome-wide significance,

which suggested that multiple variants were associated with BMI. We noted that

SNP rs116413856, which yielded the smallest single-variant meta-analysis p-value,

was an AA-specific variant. This result was in line with our backward elimination

order, which suggested that AA was the strongest driver of the association signal for

PLCD1.

3.5 Discussion

We have proposed a statistical framework, TransMeta-Rare, for meta-analyzing

rare variant association tests in multi-ethnic samples. TransMeta-Rare incorpo-

rates the kernel regression framework to provide double-flexibility in modeling both

between-ancestry and between-variant genetic effect heterogeneity. In addition, it uses

the adaptive variance component test to achieve robust power regardless of degree

of heterogeneity. To enable efficient approximation of the asymptotic distribution of
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Table 3.5: The backward elimination sequence for gene PLCD1.

Removed Population
p-value

Note

Genetic Similarity Indep

- 5.67× 10−7 6.06× 10−7 TransMeta-Rare p-value
based on 5 populations

SA 1.50× 10−7 3.42× 10−7 TransMeta-Rare p-value
based on EA, EUR, HIS and AA

HIS 1.14× 10−6 2.48× 10−6 TransMeta-Rare p-value
based on EA, EUR and AA

EA 8.69× 10−9 3.63× 10−8 TransMeta-Rare p-value
based on EUR and AA

EUR 8.15× 10−5 8.15× 10−5 SKAT-O p-value
based on AA

the proposed method, we employed a resampling-based copula approach to estimate

the p-values analytically.

In contrast to joint analysis, which requires sharing of individual-level data, the

proposed gene-/region-based multi-marker test is based on study-specific summary

statistics for each target region. Specifically, it only requires sharing of the single

variant score statistics and the between-variant information matrix which accounts

for the LD structure of the gene regions.

TransMeta-Rare can be viewed as a multi-marker extension of the modified single-

variant random-effect model proposed by Shi and Lee (2016). The difference is that

instead of taking the regression coefficients as input data, the rare variant association

test is based on score statistics of multiple variants. There are several advantages

of using score statistics instead of the regression coefficients for rare variants. First,

estimation of the regression coefficients for rare variants in sequencing studies tends to

be unstable with large variances, which would make the meta-analysis results unstable

if the regression coefficients and the associated variance estimates are used as input

data. Second, since rare variants tend to be population-specific, for those variants

that are only present in some but not all studies, one can easily modify the summary
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statistics input by setting the score statistics as 0 for those unobserved variants in a

given study.

Shi and Lee (2016) have shown that for a single variant meta-analysis, in the

presence of genetic effect heterogeneity, the modified random effect framework can

increase power over the traditional fixed-effect as well as the random-effect models,

when heterogeneity is properly modeled. Our simulation results are consistent in this

regard in multi-variant settings.

One important feature of TransMeta-Rare is that it allows for flexible modeling of

the varying levels of genetic effect heterogeneity across studies, and the power simula-

tions confirm that the proposed method can improve power over existing approaches

when the genetic effect heterogeneity is properly modeled. Although TransMeta-Rare

was developed to account for heterogeneous genetic effects across studies, our simu-

lations demonstrate that when genetic effects are homogeneous across ancestries, the

proposed method yields comparable results to those tests which assume homogeneous

genetic effects. The T2D-GENES application suggests that TransMeta-Rare works

well in practice.

The genetic similarity kernel Ψ is proposed to account for the situation where

studies which share more similar genetic architectures can have more homogeneous

genetic effects than those which consist of very disparate ancestries. The power

simulations demonstrate that when such an underlying assumption is in line with the

sources of genetic effect heterogeneity, using the genetic similarity kernel can achieve

power gain over the other methods. We recommend using the genetic similarity kernel

as the primary choice when fitting TransMeta-Rare. However, if there is evidence

suggesting that the genetic effects are modified by non-genetic exposures such as

environmental or lifestyle factors, then the group-wise independence kernel may be a

better choice under such situations. To avoid data fishing, the choice regarding which

kernel structure to use should be determined prior to the data analysis.
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3.6 Supplementary Materials

3.6.1 Derivation of the Score Test Statistics

(Model:Linear) and (Model:Logistic) can be summarized as the following gener-

alized linear model with a canonical link function h(·):

h[E(yki)] = XT
kiαk + GT

ki·βk·, (3.6.1)

where h(·) is an identity function for the continuous traits and a logistic function for

the binary traits. Based on Equation (3.6.1), the regression model over the K studies

can be written as:

h[E(y1)]

h[E(y2)]

...

h[E(yK)]


=



X1 0 · · · 0

0 X2 · · · 0

...
...

...
...

0 0 · · · XK





α1

α2

...

αK



+



G1 0 · · · 0

0 G2 · · · 0

...
...

...
...

0 0 · · · GK





β1·

β2·
...

βK·


, (3.6.2)

and evaluation of no genetic associations between variants in the region and the

phenotype across the K studies corresponds to testing the null hypothesis

H0 : β1· = . . . = βK· = 0.

We assume that the regression coefficients β·js for any given variant j (j ∈ {1, . . . ,m})

across the K studies are random variable which follow the modified random effects

model

W−1
·j β·j = µj1K + η·j, η·j ∼ N(0, τ1Ψ), (3.6.3)

where µj represents the average genetic effect of the jth variant over the K studies,

and η·j represents the deviation of the genetic effect from µj across the K studies.
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3.6.1.1 Meta-Analysis Assuming Homogeneous Average Genetic Effects

of the Variants

If the average genetic effects µjs are homogenous among the m variants, the mod-

ified random effects model (Equation (3.6.3)) under this assumption can be written

as

W−1
·j β·j = µj1K + η·j, η·j ∼MVN(0, τ1Ψ) for j ∈ {1, . . . ,m},

µ1 = µ2 = . . . = µm ∼ N(0, τ2), µj ⊥ η·j (Model: Hom)

We reparameterize τ1, τ2 as τ1 = τ(1 − ρK) and τ2 = τρK , with τ ≥ 0 and 0 ≤

ρK ≤ 1. τ measures the size of the average genetic effect µj, and ρK reflects the

level of heterogeneity among the studies at any given variant. As ρK approaches 1,

the size of the genetic effect β·j is primarily due to the population effect µj, with

negligible contribution from the deviation measurement η·j. Conversely, the closer

ρK approaches 0, the larger degree of variability there is among the deviation ηkjs

(k = 1, . . . , K), and the population average effect µj becomes minuscule. From this

reparameterization, testing the null hypothesis of no genetic associations between any

variant in the region and the phenotype corresponds to testing H0 : µj = 0,η·j =

0 for any j, or equivalently, H0 : τ = 0.

Under (Model: Hom), the meta-analysis score test for H0 : τ = 0 for a given ρK

is

Uτ (ρK) = vec(S)TWT · [(1− ρK)Ψ⊗ 1m1Tm + ρK1K1TK ⊗ 1m1Tm] ·Wvec(S),(3.6.4)

where W = diag{W1·,W2·, . . . ,WK·} is a diagonal weighting matrix of the variants

across K studies; vec(S) is a vector of aggregated study-specific scores, and vec(·)

denotes the vectorization function with vec(S) = (ST1·,S
T
2·, · · · ,STK·)T , while Sk· =

(Sk1, . . . , Skm)T is the score vector of the m variants in the kth study and Skj is

the individual score test statistic for testing the marginal effect of the jth marker

(H0 : βkj = 0) under the study-specific linear or logistic regression model for the kth
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study.

3.6.1.2 Meta-Analysis Assuming Heterogeneous Average Genetic Effects

of the Variants

If the average genetic effects µjs are heterogeneous among the m variants, the

modified random effects model under this assumption can be written as

W−1
·j β·j = µj1K + η·j, η·j ∼MVN(0, τ1Ψ) for j ∈ {1, . . . ,m},

µ1, µ2, . . . , µm
iid∼ N(0, τ2), µj ⊥ η·j (Model: Het)

Applying the same reparameterization τ1 = τ(1 − ρK) and τ2 = τρK as in Sec-

tion 3.6.1.1, testing the null hypothesis of no rare variant associations is again equiv-

alent to testing H0 : τ = 0.

Under (Model: Het), the meta-analysis score test for H0 : τ = 0 for a given ρK

becomes

Uτ (ρK) = vec(S)T ·WT · [(1− ρK)Ψ⊗ Im + ρK1K1TK ⊗ Im] ·W · vec(S), (3.6.5)

where Im is an identity matrix with dimension m, vec(S) and W have the same

definitions as in Section 3.6.1.1.

3.6.1.3 The Unified Score Statistics

It can be easily seen that the derived statistics in (3.6.4) and (3.6.5) are special

cases of the following unified score test

Uτ (ρm, ρK) = vec(S)T ·WT · [RK(ρK)⊗ Rm(ρm)] ·W · vec(S), (3.6.6)

where RK(ρK) = ρK1K1TK + (1− ρK)Ψ, 0 ≤ ρK ≤ 1,

Rm(ρm) = ρm1m1Tm + (1− ρm)Im, ρm ∈ {0, 1}.

Specifically, the unified score statistics in Equation (3.6.6) reduces to the homogeneous

test in Equation (3.6.4) and the heterogeneous test in Equation (3.6.5) by setting

ρm = 1 and 0 respectively.
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Table 3.6: A mock example to demonstrate how to construct the genetic
similarity kernel Ψ.

Gene SNP
Study 1 Study 2 SNP present ] SNPs Total ] SNPs
MAF MAF in both present in in a gene

studies or not both studies

Gene1
rs001 0.001 0 0

1 3rs002 0.002 0.003 1
rs003 0 0.004 0

Gene2

rs004 0.005 0.006 1

2 4
rs005 0.007 0 0
rs006 0 0.008 0
rs007 0.009 0.009 1

3.6.2 Construction of the Genetic Similarity Kernel Ψ

In this section, we provide a mock example to illustrate how to construct the

genetic similarity kernel Ψ. Recall, given two different studies k and k
′

(k, k
′ ∈

{1, · · · , K}), the corresponding element in the kernel matrix Ψ can be computed as

Ψk,k′ =

∑
Gene

∑
variant∈Gene I(the variant is observed in both study k and k

′
)∑

Gene

∑
variant∈Gene 1

,

where the numerator measures the number of variants that are present in both studies

over all the targeted genes, and the denominator simply measures the total number

of variants that are included among all the targeted genes.

We consider a mock example where the meta-analysis consists of two studies and

we are interested in the associations of two target genes with a trait. We construct

the genetic similarity kernel Ψ based on the observed MAFs of the two target genes

in the two studies (Table 3.6).

The 5th column in Table 3.6 (denoted as “SNP present in both studies or not”)

measures whether each variant in the gene is observed in both studies (positive MAFs

in both studies) or not (at least one study has MAF = 0). The 6th column (denoted as

“] SNPs present in both studies”) sums up the number of variants that are observed
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in both studies in each of the defined gene. The very last column (denoted as “Total

] SNPs in a gene”) simply counts the number of variants that are listed in each of

the gene. Since we assume the meta-analysis only consists of two studies, the kernel

matrix Ψ is of dimension 2 × 2, with the diagonal elements always be 1 (since it

measures the % of shared variants over all target genes between a study and itself),

and the off-diagonal element calculated as Ψ1,2 = Ψ2,1 = (1 + 2)/(3 + 4) = 3/7. So

we obtain the kernel matrix as

Ψ =

 1 3/7

3/7 1

 .

3.6.3 Positive Definite Matrix Ψ under the Genetic Similarity Kernel

In this section, we demonstrate that the proposed genetic similarity kernel Ψ is a

positive definite matrix. We assume that the meta-analysis consists of K studies from

K ancestries, and the total number of variants defined among all the genes/regions of

interest is M , where M =
∑

Gene

∑
variant∈Gene 1. For the kth study, k ∈ {1, . . . , K},

let zk be a column vector of length M where each element has value either 0 or 1

which indicates whether the ith variant (i ∈ {1, . . . ,M}) is observed in the kth study

or not. Let Z = (z1, z2, . . . , zK) be the M ×K matrix whose columns are collections

of those zk column vectors. Based on these notations, it can be easily shown that the

genetic similarity kernel Ψ can be constructed as

Ψ =
1

M
[ZTZ +D], (3.6.7)

where D is a K×K diagonal matrix such that the diagonal elements of ZTZ+D are

all equal to M . Let v be a non-zero column vector of length K, we now show that

ZTZ +D is a positive definite matrix.

(1). D is a zero matrix

D is a zero matrix iff the M variants are observed in all K studies. In this case,
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Ψ reduces to Ψ = 1
M
ZTZ, with all elements in Z being 1. As a result,

vT (ZTZ)v = (Zv)T (Zv) = ||Zv||2 > 0,

since in this case at least one element in Zv has non-zero values. Consequently,

Ψ = 1
M
ZTZ is positive definite.

(2). D is a diagonal matrix with at least one non-zero entry

If D has at least one non-zero entry, then vTDv ≥ 0 and vT (ZTZ)v = ||Zv||2 ≥ 0

would both hold. Furthermore, due to the constraint that the diagonal elements in

ZTZ + D all have to equal to M , when vTDv = 0, we should have vT (ZTZ)v > 0,

and vice versa. Consequently, vT (ZTZ +D)v > 0 for any non-zero column vector v.

The above two cases thus suggest that Ψ = 1
M

(ZTZ +D) is positive definite.

3.6.4 Supplementary Tables and Figures

Table 3.7: The percentages of causal variants and the corresponding c values
in each of the three effect size heterogeneity scenarios.

Data Type Scenario
% of Causal Variants

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Continuous
Scenario 1 0.467 0.324 0.263 0.228 - - - - - -
Scenario 2 0.714 0.474 0.379 0.326 0.292 0.264 0.243 0.227 0.217 0.203
Scenario 3 1.154 0.827 0.665 0.577 0.519 0.469 0.431 0.403 0.379 0.364

Binary
Scenario 1 1.477 1.026 0.833 0.719 - - - - - -
Scenario 2 2.258 1.499 1.197 1.032 0.925 0.835 0.768 0.717 0.673 0.643
Scenario 3 3.648 2.615 2.102 1.826 1.641 1.482 1.362 1.276 1.200 1.150

Table 3.8: The single study multi-variant SKAT-O p-values for gene
PLCD1.

EA SA EUR HIS AA

1.99× 10−2 2.35× 10−1 1.55× 10−1 7.03× 10−2 8.15× 10−5
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Figure 3.10: Power comparison results for the continuous traits under different het-
erogeneity configurations, with population-based study design, unequal
sample size and all the causal variants being trait increasing. The empirical
powers were evaluated at α = 2.5×10−6 for the three scenarios. TransMeta.Genetic-
Similarity and TransMeta.Indep refer to our proposed method TransMeta-Rare with
the two kernel choices we provide for Ψ; Hom-MetaSKAT-O and Het-MetaSKAT-O
refer to the methods proposed by Lee et al. (2013); RE-VC-O refers to the method
proposed by Tang and Lin (2014). For Scenario 2 and Scenario 3, the first line on the
X-axis denotes the percentage of causal variants that are drawn from the designated
populations as illustrated in Figure 3.2; while the second line on the X-axis denotes
the corresponding average percentage of causal variants among the total number of
variants from the four populations.
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Figure 3.11: Power comparison results for the binary traits under different hetero-
geneity configurations, with population-based study design, unequal sam-
ple size and all the causal variants being trait increasing. The empirical
powers were evaluated at α = 2.5×10−6 for the three scenarios. TransMeta.Genetic-
Similarity and TransMeta.Indep refer to our proposed method TransMeta-Rare with
the two kernel choices we provide for Ψ; Hom-MetaSKAT-O and Het-MetaSKAT-O
refer to the methods proposed by Lee et al. (2013); RE-VC-O refers to the method
proposed by Tang and Lin (2014). For Scenario 2 and Scenario 3, the first line on the
X-axis denotes the percentage of causal variants that are drawn from the designated
populations as illustrated in Figure 3.2; while the second line on the X-axis denotes
the corresponding average percentage of causal variants among the total number of
variants from the four populations.
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Figure 3.12: Power comparison results for the continuous traits under different hetero-
geneity configurations, with population-based study design, unequal sam-
ple size and 80% of the causal variants being trait increasing. The empirical
powers were evaluated at α = 2.5×10−6 for the three scenarios. TransMeta.Genetic-
Similarity and TransMeta.Indep refer to our proposed method TransMeta-Rare with
the two kernel choices we provide for Ψ; Hom-MetaSKAT-O and Het-MetaSKAT-O
refer to the methods proposed by Lee et al. (2013); RE-VC-O refers to the method
proposed by Tang and Lin (2014). For Scenario 2 and Scenario 3, the first line on the
X-axis denotes the percentage of causal variants that are drawn from the designated
populations as illustrated in Figure 3.2; while the second line on the X-axis denotes
the corresponding average percentage of causal variants among the total number of
variants from the four populations.
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Figure 3.13: Power comparison results for the binary traits under different heterogene-
ity configurations, with population-based study design, unequal sample
size and 80% of the causal variants being trait increasing. The empirical
powers were evaluated at α = 2.5×10−6 for the three scenarios. TransMeta.Genetic-
Similarity and TransMeta.Indep refer to our proposed method TransMeta-Rare with
the two kernel choices we provide for Ψ; Hom-MetaSKAT-O and Het-MetaSKAT-O
refer to the methods proposed by Lee et al. (2013); RE-VC-O refers to the method
proposed by Tang and Lin (2014). For Scenario 2 and Scenario 3, the first line on the
X-axis denotes the percentage of causal variants that are drawn from the designated
populations as illustrated in Figure 3.2; while the second line on the X-axis denotes
the corresponding average percentage of causal variants among the total number of
variants from the four populations.
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Figure 3.14: Power comparison results for the continuous traits under different hetero-
geneity configurations, with family-based study design, equal sample size
and all the causal variants being trait increasing. The empirical powers were
evaluated at α = 2.5 × 10−6 for the three scenarios. TransMeta.Genetic-Similarity
and TransMeta.Indep refer to our proposed method TransMeta-Rare with the two
kernel choices we provide for Ψ; Hom-MetaSKAT-O and Het-MetaSKAT-O refer to
the methods proposed by Lee et al. (2013). For Scenario 2 and Scenario 3, the first
line on the X-axis denotes the percentage of causal variants that are drawn from
the designated populations as illustrated in Figure 3.2; while the second line on the
X-axis denotes the corresponding average percentage of causal variants among the
total number of variants from the four populations.
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Figure 3.15: Power comparison results for the binary traits under different hetero-
geneity configurations, with family-based study design, equal sample size
and all the causal variants being trait increasing. The empirical powers were
evaluated at α = 2.5 × 10−6 for the three scenarios. TransMeta.Genetic-Similarity
and TransMeta.Indep refer to our proposed method TransMeta-Rare with the two
kernel choices we provide for Ψ. For Scenario 2 and Scenario 3, the first line on the
X-axis denotes the percentage of causal variants that are drawn from the designated
populations as illustrated in Figure 3.2; while the second line on the X-axis denotes
the corresponding average percentage of causal variants among the total number of
variants from the four populations.
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Figure 3.16: Power comparison results for the continuous traits under different het-
erogeneity configurations, with family-based study design, equal sample
size and 80% of the causal variants being trait increasing. The empirical
powers were evaluated at α = 2.5×10−6 for the three scenarios. TransMeta.Genetic-
Similarity and TransMeta.Indep refer to our proposed method TransMeta-Rare with
the two kernel choices we provide for Ψ; Hom-MetaSKAT-O and Het-MetaSKAT-O
refer to the methods proposed by Lee et al. (2013). For Scenario 2 and Scenario 3,
the first line on the X-axis denotes the percentage of causal variants that are drawn
from the designated populations as illustrated in Figure 3.2; while the second line on
the X-axis denotes the corresponding average percentage of causal variants among
the total number of variants from the four populations.
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Figure 3.17: Power comparison results for the binary traits under different heterogene-
ity configurations, with family-based study design, equal sample size and
80% of the causal variants being trait increasing. The empirical powers were
evaluated at α = 2.5 × 10−6 for the three scenarios. TransMeta.Genetic-Similarity
and TransMeta.Indep refer to our proposed method TransMeta-Rare with the two
kernel choices we provide for Ψ. For Scenario 2 and Scenario 3, the first line on the
X-axis denotes the percentage of causal variants that are drawn from the designated
populations as illustrated in Figure 3.2; while the second line on the X-axis denotes
the corresponding average percentage of causal variants among the total number of
variants from the four populations.
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Figure 3.18: Power comparison results for the continuous traits under different het-
erogeneity configurations, with family-based study design, unequal sam-
ple size and all the causal variants being trait increasing. The empirical
powers were evaluated at α = 2.5×10−6 for the three scenarios. TransMeta.Genetic-
Similarity and TransMeta.Indep refer to our proposed method TransMeta-Rare with
the two kernel choices we provide for Ψ; Hom-MetaSKAT-O and Het-MetaSKAT-O
refer to the methods proposed by Lee et al. (2013). For Scenario 2 and Scenario 3,
the first line on the X-axis denotes the percentage of causal variants that are drawn
from the designated populations as illustrated in Figure 3.2; while the second line on
the X-axis denotes the corresponding average percentage of causal variants among
the total number of variants from the four populations.
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Figure 3.19: Power comparison results for the binary traits under different heterogene-
ity configurations, with family-based study design, unequal sample size
and all the causal variants being trait increasing. The empirical powers were
evaluated at α = 2.5 × 10−6 for the three scenarios. TransMeta.Genetic-Similarity
and TransMeta.Indep refer to our proposed method TransMeta-Rare with the two
kernel choices we provide for Ψ. For Scenario 2 and Scenario 3, the first line on the
X-axis denotes the percentage of causal variants that are drawn from the designated
populations as illustrated in Figure 3.2; while the second line on the X-axis denotes
the corresponding average percentage of causal variants among the total number of
variants from the four populations.
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Figure 3.20: Power comparison results for the continuous traits under different hetero-
geneity configurations, with Family-based study design, unequal sample
size and 80% of the causal variants being trait increasing. The empirical
powers were evaluated at α = 2.5×10−6 for the three scenarios. TransMeta.Genetic-
Similarity and TransMeta.Indep refer to our proposed method TransMeta-Rare with
the two kernel choices we provide for Ψ; Hom-MetaSKAT-O and Het-MetaSKAT-O
refer to the methods proposed by Lee et al. (2013). For Scenario 2 and Scenario 3,
the first line on the X-axis denotes the percentage of causal variants that are drawn
from the designated populations as illustrated in Figure 3.2; while the second line on
the X-axis denotes the corresponding average percentage of causal variants among
the total number of variants from the four populations.
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Figure 3.21: Power comparison results for the binary traits under different hetero-
geneity configurations, with family-based study design, unequal sample
size and 80% of the causal variants being trait increasing. The empirical
powers were evaluated at α = 2.5×10−6 for the three scenarios. TransMeta.Genetic-
Similarity and TransMeta.Indep refer to our proposed method TransMeta-Rare with
the two kernel choices we provide for Ψ. For Scenario 2 and Scenario 3, the first
line on the X-axis denotes the percentage of causal variants that are drawn from
the designated populations as illustrated in Figure 3.2; while the second line on the
X-axis denotes the corresponding average percentage of causal variants among the
total number of variants from the four populations.
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Table 3.9: Meta-analysis p-value from TransMeta-Rare for each of the vari-
ant that is included in PLCD1. The variants are sorted with an
increasing order of the p-values. The ‘Genetic Similarity’ and ‘Indep’ cat-
egories refer to the two kernel choices we provide for Ψ in Section 3.2.2.1.

SNP ID
MAF (×10−3) p-value

EA SA EUR HIS AA
Genetic Indep

Similarity

rs116413867 0 0 0 0 2.97 4.83× 10−3 4.83× 10−3

var 3 38052863 0 0.23 0 0 0 1.19× 10−2 1.19× 10−2

var 3 38049748 0.69 0 0 0 0 1.35× 10−2 1.35× 10−2

rs141932732 1.62 2.05 1.78 1.09 10.20 1.41× 10−2 1.39× 10−2

var 3 38050599 0 0 0.77 0 0 3.44× 10−2 3.44× 10−2

var 3 38051432 0 0 0.22 0 0 5.90× 10−2 5.90× 10−2

var 3 38050895 0 0.23 0 0 0 7.63× 10−2 7.63× 10−2

rs142059541 0 0 0 0.27 0.25 7.63× 10−2 7.73× 10−2

var 3 38052047 0 0 0 3.26 0 0.12 0.12
var 3 38061760 0 0.23 0 0 0 0.12 0.12
rs78426951 0.23 0 2.89 1.63 0.99 0.15 0.15
rs115366708 0 0 0 0 1.98 0.15 0.15
var 3 38051233 0 0 0 0 0.74 0.17 0.17
var 3 38052764 0 0 0.11 0 0 0.17 0.17
var 3 38051263 0 0.23 0.11 0 0 0.17 0.17
var 3 38051630 0 0 0.11 0 0 0.22 0.22
var 3 338052849 0.23 0 0 0 0 0.22 0.22
var 3 38051475 0 0 0 0.54 0.25 0.24 0.24
var 3 38051293 0 4.10 0 0 0 0.24 0.24
var 3 38049848 2.32 0 0 0 0 0.24 0.24
var 3 38053121 0 0.23 0 0 0 0.27 0.27
var 3 38050885 0 0 0 0.54 0 0.30 0.30
var 3 38051537 0 0 0.11 0.27 0 0.32 0.32
var 3 38051657 0 0 0 0 0.25 0.32 0.32
var 3 38049598 0 0 0.11 0 0 0.33 0.33
var 3 38053082 0.23 0 0 0 0 0.37 0.37
var 3 38051543 0 0.23 0 0 0 0.37 0.37
var 3 38053165 0.23 0 0 0 0 0.37 0.37
var 3 38049533 0.46 1.37 0 0 0 0.38 0.38
var 3 38049337 0 0 0 0 0.25 0.39 0.39
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Table 3.10: Table 3.9 Continued. Meta-analysis p-value from TransMeta-
Rare on each of the variant that is included in PLCD1. The
variants are sorted with an increasing order of the p-values. The ‘Ge-
netic Similarity’ and ‘Indep’ categories refer to the two kernel choices we
provide for Ψ in Section 3.2.2.1.

SNP ID
MAF (×10−3) p-value

EA SA EUR HIS AA
Genetic Indep

Similarity

var 3 38058126 0 0.68 0.44 0.54 0.49 0.40 0.38
rs139342994 0 0 0.88 0 0 0.44 0.44
var 3 38050620 0.46 0 0 0 0 0.45 0.45
var 3 38049798 0 0.23 0 0 0 0.48 0.48
var 3 38049588 0 0 0.11 0 0 0.49 0.49
var 3 38050635 0 0.23 0 0.27 0.25 0.51 0.51
var 3 38050789 0.23 0 0 0 0 0.52 0.52
var 3 38058127 0 0.23 0.44 0.54 0.49 0.53 0.53
rs143961610 0 0 0 0 2.72 0.59 0.59
var 3 38057997 0 0.23 0 0 0 0.61 0.61
var 3 38058097 0 0.23 0 0 0.25 0.63 0.62
var 3 38049974 0 0 0.11 0 0 0.63 0.63
var 3 38049550 0 0 0 0 0.25 0.65 0.65
var 3 38049969 0.46 0 0 0 0 0.70 0.70
var 3 38052906 0 0 0 0 0.25 0.73 0.73
rs150106099 0 0 0.11 0.27 0 0.73 0.73
var 3 38050628 0 0 0.23 0 0 0.73 0.73
var 3 38052809 0 0 0 0 0.25 0.73 0.73
var 3 38052791 0 0 0 0 0.25 0.73 0.73
var 3 38053061 0 0 0.56 0 0 0.74 0.74
var 3 38049998 0 0 0.11 0 0 0.77 0.77
var 3 38049604 0 0.23 0 0 0 0.77 0.77
var 3 38061700 0.23 0 0 0 0 0.77 0.77
var 3 38050089 0 0 0.11 0 0 0.78 0.78
var 3 38050002 0 0 0 0.27 0 0.78 0.78
var 3 38051526 0 0 0.11 0 0 0.78 0.78
var 3 38065835 0.23 0 0 0 0 0.83 0.83
rs146357368 0 0.11 0 0 0.25 0.83 0.83
var 3 38051447 0.69 0 0.11 0 0 0.83 0.83
var 3 38052933 0 0.910 0 0 0 0.85 0.85
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Table 3.11: Table 3.9 Continued. Meta-analysis p-value from TransMeta-
Rare on each of the variant that is included in PLCD1. The
variants are sorted with an increasing order of the p-values. The ‘Ge-
netic Similarity’ and ‘Indep’ categories refer to the two kernel choices we
provide for Ψ in Section 3.2.2.1.

SNP ID
MAF (×10−3) p-value

EA SA EUR HIS AA
Genetic Indep

Similarity

var 3 38049534 0 0.23 0 0 0 0.87 0.87
var 3 38049999 0 0.23 0 0 0 0.87 0.87
var 3 38051675 0 0 0 0.28 0 0.89 0.89
var 3 38051746 0 0 0.11 0 0 0.89 0.89
var 3 38049574 0 0 0 0 0.25 0.89 0.89
var 3 38049589 0.23 0 0 0 0 0.880 0.90
rs150791261 0 0 0 0.28 0.25 0.92 0.90
var 3 38052830 0.23 0 0 0.27 0 0.93 0.93
var 3 38053066 0 0 0 0.27 0.25 0.94 0.94
var 3 38053120 0 0 0 0 0.25 0.96 0.96
var 3 38052711 0.23 0 0 0 0.25 0.96 0.96
rs139755577 0 0.23 0 0 0 0.96 0.96
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CHAPTER IV

A Score Test for Jointly Testing the Fixed and

Random Effects in Generalized Linear Mixed

Models

Abstract

The framework of jointly testing the fixed and random effects has many appli-

cations in biomedical studies. One example is to use such tests for ascertaining

associations when there exists heterogeneity in meta-analyzing genome-wide associ-

ation studies (GWAS); another example is the nonparametric test of spline curves.

Although extensive research has been conducted on testing random effect terms only,

little work has been done for the joint test of fixed and random effects, especially for

non-Gaussian outcomes. Here, we propose a score test for the joint test in Generalized

Linear Mixed Models (GLMMs). Our method first re-parameterizes the fixed effects

terms as a product of a scale parameter and a vector of nuisance parameters. With

such re-parameterization, the joint test is equivalent to testing whether the scale pa-

rameter is zero. Since the nuisance parameters are hidden under the null hypothesis,

we propose using the supremum of score test statistics over the nuisance parameters.

We employ a resampling-based copula method to approximate the asymptotic null

distribution of the proposed score test statistic. We investigate performances of our
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method through simulation studies and demonstrate its application to the Michigan

Genomics Initiative (MGI) data.

Keywords: Joint testing; Fixed and Random effects; Generalized Linear Mixed

Model (GLMM); Score test.

4.1 Introduction

We consider the problem of testing fixed and random effects jointly in a general-

ized linear mixed model (GLMM). Such a unified testing framework is applicable in

many different scenarios, for example assessing the significance of a functional form

in a semi-parametric additive mixed model (SAMM); testing an unspecified varying

coefficient in a varying-coefficient model; and meta-analyzing heterogeneous effects

in genetic association studies. Testing the random effects involves constraints on the

variance component parameters, in which classical inference with a standard null dis-

tribution no longer holds, because those parameters under the null hypothesis lie on

the boundary of the maintained hypothesis (Lin, 1997; Andrews, 2001). As a result,

appropriate test statistics need to be developed, with carefully derived corresponding

null distributions.

For the linear mixed model (LMM), Self and Liang (1987), Liang and Self (1996)

and Stram and Lee (1994) showed that when the data can be divided into independent

and identically distributed (i.i.d) subvectors, the asymptotic null distribution for the

likelihood ratio test (LRT) of the one-sided variance component is a 50:50 mixture

of χ2 distributions. Crainiceanu and Ruppert (2004) and Crainiceanu et al. (2005)

considered the LRT for testing both the fixed and random effects jointly under a

more general situation, in which the data cannot be divided into i.i.d subvectors.

They showed that if the conventional 50:50 mixture of χ2 is used as the asymptotic

null distribution under such a situation, the LRT can yield very conservative results.
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In response, they derived the exact null distribution of the (restricted) LRT through

spectral decomposition.

For inference of the joint testing in an LMM with Gaussian outcomes and (mul-

tiple) nuisance variance components, an exact distribution of the (R)LRT through

spectral decomposition cannot be easily obtained. To address this problem, Greven

et al. (2008) and Scheipl et al. (2008) employed a pseudo-likelihood ratio test approach

to approximate the null distribution of the (R)LRT. First, they substituted the nui-

sance parameters by their consistent estimators to obtain the corresponding best

linear unbiased predictors (BLUPs). Next, they constructed the pseudo-outcomes by

subtracting the BLUPs from the responses, and applied the theories developed by

Crainiceanu and Ruppert (2004) to the reduced model to derive the null distribution

of the (R)LRT. Through extensive simulation studies, Scheipl et al. (2008) demon-

strated that the pseudo-likelihood approach yields controlled type I error rates and

equivalent power to bootstrap-based tests, but can be overly conservative when the

nuisance variance component is very small and the covariates of the random effects

are highly correlated. Wang and Chen (2012) proposed a generalized F-test to con-

duct the joint test under the setting of an LMM for Gaussian responses with multiple

nuisance variance components. Through spectral decomposition of the residual sum

of squares, a computationally efficient algorithm was derived to compute the null

distribution of the proposed test statistic.

Although the statistical literature thus far offers an array of methods for testing

the fixed and random effects jointly for Gaussian responses, corresponding methods

for non-Gaussian outcomes remain limited. In fact, to the best of our knowledge, no

systematic research exists addressing the joint testing problem with respect to both

the Gaussian and non-Gaussian outcomes under the presence of nuisance variance

components. To bridge this methodological gap, we propose a score test for the

joint testing problem in the GLMM with or without the presence of nuisance random
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effects. Our score test approach can handle both the Gaussian and non-Gaussian

response types, and is asymptotically equivalent to the corresponding LRT.

The rest of this chapter is organized as follows: In Section 4.2, we introduce several

motivating examples of the joint testing problem followed by the general modeling

framework. In Section 4.3, we propose a score test for the joint testing problem. In

Section 4.4, we evaluate the performance of our proposed method and report results

from simulation studies under diverse scenarios. We apply our score test to the

Michigan Genomics Initiative (MGI) data in Section 4.5 and conclude this chapter

with a discussion in Section 4.6. Supplementary texts, tables and figures are presented

in Section 4.7.

4.2 Motivating Examples and Statistical Model

In this section, we first introduce several examples to illustrate the motivations

for our joint testing problem, and then we present the model for our proposed score

test.

4.2.1 Motivating Examples

Example 1 Testing the significance of a functional form in a SAMM.

Consider modeling clustered data in a SAMM:

g(µij) = f(tij) + sTijα+ zTijbi, i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}, (4.2.1)

where g(·) is a link function; µij is the conditional mean of the outcome with given

bi for the jth observation in the ith cluster; f(tij) is a smooth function relating

the scalar covariate tij to the outcome; sijs are vectors of fixed effects covariates

with coefficients α; zijs are vectors of random effects covariates with cluster specific

coefficients bi, bi ∼ N(0, D0(θ)) with nuisance variance component vector θ. Suppose

we are interested in testing the significance of the regression function f(t); that is,
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H0 : f(t) = 0.

Zhang and Lin (2003) proposed a mixed model representation of the smoothing

spline estimator for f(t). Under such a representation, the hth order smoothing

spline estimator for f(t) can be written as f = Xβ+Ua, where f is the vector of f(t)

evaluated at all observed tij values, i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}; β = (β1, . . . , βh)
T

is a vector of coefficients associated with the polynomial bases; and a ∼ N(0, τΣ)

with a non-negative scalar τ and a given scaled covariance matrix Σ. Specifications

of X,β,U,Σ and τ can be found in Supplementary Materials Section 4.7.1. Now,

the SAMM (4.2.1) can be written as the following matrix form:

g(µ) = Xβ + Sα+ Ua + Zb, (4.2.2)

where µ = (µ11, . . . , µ1n1 , . . . , µm1, . . . , µmnm); S is the fixed effects design matrix

with the ith row si = (si1, . . . , sini)
T ; Z = diag(z1, . . . , zm) is the random effects

design matrix with zi = (zi1, . . . , zini)
T ; and b = (bT1 , . . . ,b

T
m)T ∼ N(0,D(θ)) with

D(θ) = diag(D0(θ), . . . , D0(θ)).

Under the working GLMM (4.2.2), the significance of f(t) can be assessed through:

H0 : β = (β1, . . . ,βh)
T = 0, a = 0,

or equivalently, H0 : β = (β1, . . . ,βh)
T = 0, τ = 0.

Example 2 Testing an unspecified varying coefficient in a varying-coefficient model.

The varying coefficient model is a natural extension to the classical parametric re-

gression model, allowing the coefficient to vary smoothly over the covariates. Consider

the following model with a varying coefficient:

g(µij) = β(tij)gij + sTijα+ zTijbi, i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}, (4.2.3)

where β(tij) is a smooth functional coefficient describing the relationship between

the covariate gij and the outcome, and the remaining of the model specifications is

as defined in Equation (4.2.1). As in the parametric regression model, it is often of

interest to assess the effect of gij on yij, that is, to evaluate whether the coefficient
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β(·) = 0. Applying the working GLMM representation by Zhang and Lin (2003) again

to the functional coefficient β(·), we can reformulate the varying coefficient model

(4.2.3) to a mixed model as represented in Equation (4.2.2), in which we effectively

transform the question of evaluating the effect of β(·) into the joint testing of fixed

effects β = (β1, . . . ,βh)
T = 0 and random effects a = 0 (or equivalently τ = 0).

Example 3 Meta-analysis of heterogeneous effects in association studies.

Meta-analysis is a practical approach to aggregate studies that have already

been conducted in order to boost power to identify association signals. Let β̂ =

(β̂1, . . . , β̂n)T be the effect-size estimates from n independent studies. Assume that

β̂|β ∼MVN(β,Σ), with the true effect size vector denoted as β = (β1, . . . , βn)T and

covariance matrix Σ. To account for the situation where effect sizes among the studies

are significantly different from each other, one modeling strategy is to allow the true

effects across studies to vary around the overall mean, i.e. βi = µ+ ηi, ηi ∼ N(0, τ),

where the fixed scalar µ represents the overall mean, and the random effect ηi de-

notes the study-specific deviation. Consequently, testing for the association signal is

equivalent to jointly testing the fixed effect µ and random effects ηis; that is, the null

hypothesis now becomes H0 : µ = 0, τ = 0 (Han and Eskin, 2011). Han and Es-

kin (2011) proposed using the likelihood ratio framework to conduct such hypothesis

testing and provided pre-tabulated p-values to accurately approximate the statistical

significance.

Example 4 Testing rare-variants associations in sequencing studies.

The recent advance in sequencing technologies have prompted significant research

on developing statistical methods for testing associations between rare variants and

complex traits. Lee et al. (2012) proposed a unified score test approach, named SKAT-

O, to optimally combine the burden test and the sequence kernel association test

(SKAT). The regression model for SKAT-O is g(µi) = XT
i α+GT

i β, where µi denotes

the mean of phenotype yi of the ith subject, Xi is a vector of adjusting covariates
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with coefficients α, and Gi is a genotype matrix with regression coefficients β for the

genetic variants. SKAT-O was originally constructed as a weighted average of SKAT

and the burden test, but an alternative view for deriving SKAT-O is to assume that

the regression coefficient βj of each genetic variant j independently follows βj =

ωjβc, βc ∼ N(µ, τ). Under such an alternative modeling strategy, the SKAT-O test

statistic can be derived for testing the null hypothesis H0 : µ = 0, τ = 0.

4.2.2 Statistical Model

The above motivating examples can all be viewed as applications of jointly testing

fixed and random effects in a GLMM with or without the presence of nuisance random

effects. In summary, the goal is to test H0 : β = 0, τ = 0 in the GLMM

g(µ) = Xβ + Sα+ Ua + Zb, a ∼ N(0, τΣ), b ∼ N(0,D(θ)); (4.2.4)

where g(·) is a known link function; µ = (µ11, . . . , µ1n1 , . . . , µm1, . . . , µmnm) is the

vectorized conditional mean µij of the outcome variable yij for the jth observation

in the ith cluster (i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}); S and Z are the design matrices

for the fixed and random effects, respectively, to be adjusted for; X and U are the

design matrices of interest for the fixed and random effects, respectively, to be tested

for; and τ,Σ, and D(θ) have the same specifications as in Section 4.2 Example

1. We assume that conditional on the unobserved random effects vectors a and

b, the outcome yijs are independent with means E(yij|a,b) = µij and variances

var(yij|a,b) = V (µij) = φζ−1
ij ν(µij), where φ is a scale parameter, ζij is a prior

weight, and ν(·) is a variance function.

Although we construct our framework with respect to the longitudinal/clustered

data structure, the setting is also adaptive to cross sectional data under the null

hypothesis, in which case j = 1 for every i ∈ {1, . . . ,m} and Zb will be eliminated

from model (4.2.4).
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4.3 Methods

4.3.1 The Score Test for Gaussian Responses

We first consider the scenario where the responses yijs follow a Gaussian distri-

bution with the identity link function. In this case, the model can be written as

y = Xβ + Sα+ Ua + Zb + ε, (4.3.1)

with ε ∼ N(0, σ2In) for n =
∑m

i=1 ni. Here we propose a score test for our goal

H0 : β = 0, a = 0. First we re-parameterize the fixed effects parameters of interest

with an unknown nuisance parameter vector γ scaled by the variance component τ ,

i.e. let β = τγ. Under this re-parameterization, jointly testing β = 0 and a = 0 is

equivalent to testing τ = 0 alone, and the mixed model becomes

y = τXγ + Sα+ Ua + Zb + ε. (4.3.2)

Let ν = (αT ,θT , σ2)T and V = ZD(θ)ZT + σ2In. Denote l(τ,ν,γ; y) the log-

likelihood function of model parameters (τ,ν,γ) under the LMM in Equation (4.3.2).

It can be easily shown that given γ, the score statistic for testing H0 : τ = 0 is

Uτ (ν̂;γ) =
∂l(τ,ν ,γ ;y)

∂τ

∣∣∣∣
τ=0,ν=ν̂

= −1
2
tr(V̂−1UΣUT ) + 1

2
yTPT V̂−1UΣUT V̂−1Py + yTPT V̂−1Xγ,

where P = In − S(ST V̂−1S)−1ST V̂−1, and V̂ = ZD(θ̂)ZT + σ̂2In. Uτ (ν̂;γ) has the

nuisance parameter γ that is hidden under the null hypothesis. Several researchers

have proposed methods for removing the unidentifiable nuisance parameters under

the null. For example, Davies (1987) suggested using the supremum of a test statistic

over all possible values of the nuisance parameter space. Similarly, Zhu et al. (2006)

used the supremum of the score statistic to assess the homogeneity in a GLMM.

Inspired by these works, we propose using the following test statistic T , which is the
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supremum of the standardized score Uτ (ν̂;γ):

T = sup
γ

Uτ (ν̂;γ)− E(Uτ (ν̂;γ))√
VAR(Uτ (ν̂;γ))

, (4.3.3)

where E(Uτ (ν̂;γ)) =
1

2
tr(P̃UΣUT P̃V̂)− 1

2
tr(V̂−1UΣUT ) for a given value of γ,

and VAR(Uτ (ν̂;γ)) =
1

2
tr[(P̃UΣUT P̃V̂)2] + γTXT P̃V̂P̃Xγ,with P̃ = V̂−1P.

In Supplementary Materials Section 4.7.4, we show that the proposed test statistic

in Equation (4.3.3) is asymptotically equivalent to the LRT.

Since it is difficult to explore the entire space of γ to obtain the supremum in

Equation (4.3.3), an alternative way to solve this is to view the test statistic T as an

optimization problem:

Maximize Uτ (ν̂;γ)− E(Uτ (ν̂;γ)) subject to VAR(Uτ (ν̂;γ)) = c, where c is a constant.

From this perspective, Lagrange multipliers can be applied to solve for γ, which

results in

γ̂ = η(XT P̃X)−1XT P̃y, (4.3.4)

where η is a non-negative scalar representing the strength of γ (see Supplementary

Materials Section 4.7.2 for derivation details). Notice that all quantities in Equation

(4.3.4) are known except for η, thus, determining the vector γ is essentially reduced

to determining the scalar η. Plug in (4.3.4) to the score statistic Uτ (ν̂;γ), we now

obtain

Uτ (ν̂;γ = γ̂) = ηQ1 +Q2 −
1

2
tr(V̂−1UΣUT ) (4.3.5)

where Q1 = yT P̃TX(XT P̃X)−1XT P̃y, Q2 =
1

2
yT P̃TUΣUT P̃y.

Plugging in (4.3.5) to (4.3.3), we obtain T = sup
η≥0

ηQ1+Q2−E{ηQ1+Q2}√
VAR({ηQ1+Q2})

, where the

supremum is reduced from searching the vector space of γ to the scalar space of η.
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Re-parameterize η as η = ρ(1− ρ)−1, 0 ≤ ρ ≤ 1, we then obtain:

T = sup
0≤ρ≤1

ρQ1 + (1− ρ)Q2 − Eρ√
Vρ

, with Eρ = ρ · rank(X) +
1− ρ

2
tr(UΣUT P̃), (4.3.6)

and Vρ = 2ρ2 · rank(X) +
(1− ρ)2

2
tr[(UΣUT P̃)2] + 2ρ(1− ρ)tr[X(XT P̃X)−1XT P̃UΣUT P̃].

Equation (4.3.6) is the final form of our proposed score test for assessing H0 : β =

0, a = 0. It shows that T is a weighted sum of two quadratic forms, in which Q1

represents the fixed effects and Q2 represents the random effects. In fact, Q1 is a score

test statistic for β when τ = 0, and Q2 is a score test statistic for τ when β = 0.

The value of T can now be obtained by a simple grid search across a range of ρs: set

a grid of B points as 0 = ρ1 ≤ · · · ≤ ρB = 1, then an approximated value of the test

statistic can be computed as

T̂ = max
ρ=ρ1,...ρB

Sρ − Eρ√
Vρ

, where Sρ = ρQ1 + (1− ρ)Q2. (4.3.7)

We observe that a dense grid of ρ does not necessarily improve power over a coarse

grid. Therefore, we suggest using ρ = (0, 0.25, 0.5, 0.75, 1) for simulations and real

data analysis.

4.3.2 The Score Test for Non-Gaussian Responses

In this section, we extend the score test proposed in Section 4.3.1 for non-Gaussian

responses. For general response types, we assume that conditional on (xij, sij,uij, zij)

and (ai,bi), yij follows a distribution in the exponential family, and we consider

any canonical link function. As in the Gaussian responses case, we apply the re-

parameterization β = τγ. Let ∆ and W denote the n×n diagonal matrix which has

elements

δij = g′(µij), wij =
[
V (µi) {g′(µij)}2

]−1

,

respectively, where µij = E(yij|ai,bi) and g(µij) = τxTijγ + sTijα + uTijai + zTijbi.

Following (Zhang and Lin, 2003), it can be shown that given the nuisance parameter
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vector γ, the score statistic of τ evaluated at τ = 0 is:

Uτ ≈
1

2
E{(y − µb)T∆WUΣUTW∆(y − µb)− tr(WUΣUT )− (y − µb)T∆WXγ}

(4.3.8)

where ν = (αT ,θT )T and µb satisfies the null GLMM

g(µb) = Sα+ Zb. (4.3.9)

Denote the working vector as Y = Sα+ ∆(y−µ) under the null GLMM (4.3.9).

One can show that using the Laplace method, the score statistic in (4.3.8) can be

approximated as

Uτ ≈ −
1

2
tr(P̃UΣUT ) +

1

2
(Y − Sα̂)T V̂−1UΣUT V̂−1(Y − Sα̂) + (Y − Sα̂)T V̂−1Xγ

(4.3.10)

where α̂ is the BLUP-type estimate of α; θ̂ is the REML estimate of θ; V̂ =

ZD(θ̂)ZT + Ŵ−1; and P̃ = V̂−1P = V̂−1 − V̂−1S(ST V̂−1S)−1ST V̂−1, as defined

in the Gaussian responses case.

Notice that equation (4.3.10) corresponds to the score statistic of τ evaluated at

τ = 0 under the working linear mixed model Y = τXβ + Sα + Ua + Zb + ε, with

a ∼ N(0, τΣ),b ∼ N(0,D(θ)), and ε ∼ N(0,W−1). Consequently, by replacing y

in Section 4.3.1 with the working vector Y, we can apply the results in Section 4.3.1

to carry out the score test for non-Gaussian responses.

4.3.3 Assess Statistical Significance of the Test

In this section, we outline a resampling-based copula method (Xianglin Li, Xian-

glin Li) to approximate the asymptotic null distribution of the proposed score test.

Denote t as the observed value of the score test T̂ , and the statistical significance for

t can be obtained from

P (T̂ ≥ t) = P ( max
ρ=ρ1,...ρB

Sρ − Eρ√
Vρ

≥ t)

= 1− P (Fρ1(Sρ1) ≤ Fρ1(
√
Vρ1 · t+ Eρ1), . . . , FρB(SρB) ≤ FρB(

√
VρB · t+ EρB)),
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where Fρi(·) is the cumulative distribution function of Sρi . For any given ρ, it can

be shown that the marginal distribution of Sρ asymptotically follows a mixture of

chi-square distribution
∑
λlχ

2
l,1, where λls are the non-zero eigenvalues of

ρP̂V−
1
2 X(XT P̃X)−1XTV−

1
2 P̂ +

1

2
(1− ρ)P̂TV−

1
2 UΣUTV−

1
2 P̂,

with P̂ = I − V−
1
2 S(STV−1S)−1STV−

1
2 ; and χ2

l,1s are chi-square distributions with

one degree of freedom (see details in Supplementary Materials Section 4.7.3). As a

result, the value of Fρ(
√
Vρ · t + Eρ) can be easily obtained for any given ρ value by

using Davies’ method (Davies, 1980) to invert a characteristic function. We also notice

that under the null hypothesis, V−
1
2 y approximately follows a multivariate normal

distribution N(0, In), where In is an identity matrix with dimension n×n. Therefore,

we propose the following resampling-based copula algorithm to approximate the null

joint distribution of (Fρ1(Sρ1), Fρ2(Sρ2), . . . , FρB(SρB)):

Step 1: Generate n0 samples, say u, from the standard normal distribution N(0, In).

We use n0 = 500 in our simulation studies and data application.

Step 2: For each ρ ∈ {ρ1, . . . , ρB}, calculate the null scores as

S0
ρ = uT · [ρP̂V−

1
2 X(XT P̃X)−1XTV−

1
2 P̂ +

1

2
(1− ρ)P̂TV−

1
2 UΣUTV−

1
2 P̂] · u.

Step 3: Calculate the correlation matrix ΣB×B of the generated null score S0
ρs among

any pair of ρ values, where B is the length of the (ρ1, . . . , ρB) grid.

Step 4: With the estimated null correlation structure ΣB×B, we next use the Gaussian

copula to approximate the null joint distribution of (Fρ1(Sρ1), Fρ2(Sρ2), . . . , FρB(SρB)),

which yields

P (T̂ ≥ t) = 1−ΦΣB×B(Φ−1(1−Fρ1(
√
Vρ1 ·t+Eρ1)), . . . ,Φ−1(1−FρB(

√
VρB ·t+EρB))),

where 1 − Fρ(
√
Vρ · t + Eρ) is the p-value of Sρ obtained from Davies’ method, for

any given ρ value; Φ−1 is the inverse cumulative distribution function of a standard

normal (consequently, Φ−1(1−Fρ(
√
Vρ ·t+Eρ)) is the normal z value from the p-value

of Sρ); and ΦΣB×B is the joint cumulative distribution of a multivariate normal with
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zero mean vector and correlation matrix equal to ΣB×B.

It should be noted that when calculating the correlation matrix ΣB×B, Pearson’s

correlation coefficient can yield unreliable estimates due to its strong dependent on the

normality and homoscedasticity assumptions (Hauke and Kossowski, 2011). Instead,

we use Spearman’s correlation, a non-parametric version of the Pearson’s correlation

based on ranks of the random variables.

4.4 Simulation Studies

In this section, we conducted a series of simulation studies to evaluate the size

and power of our method with different types of responses under diverse scenarios.

We compared the power of our score test with other existing approaches for Gaus-

sian outcomes only, since to our knowledge, no solutions other than our method are

available for non-Gaussian outcomes.

4.4.1 Scenario 1 - Non-parametric Regression Tests in Cross Sectional

Studies

One key assumption in linear models is that the conditional mean of the response

variable depends on the covariates parametrically. For data with complex covariate

effects, such strong parametric assumption may not be appropriate. Thus, it is of

substantial interest to test whether a predictor is related to the outcome in a flexible

nonparametric fashion. We first performed such tests in cross sectional studies with

no nuisance random effects under the null. Consider the regression equation g(µi) =

fd(ti), where the link function g(·) is the identity function for Gaussian responses and

logit function for binary/binomial responses, fd(·) is an arbitrary smooth function.

Our goal was to test whether fd(·) is a constant value, i.e. whether H0 : fd(t) is a
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constant function in t. We considered two different forms of fd(·) :

(a) fd(t) = 0.5 + 0.25 · d · t · exp(2− 2 · t), d ∈ {0, 0.75, 1, 1.25}(4.4.1)

and (b) fd(t) = 1 + 0.05 · d · t+ 0.1 · cos(d · π · t), d ∈ {0, 2, 2.5, 3}.

The functions fd(t) against t for different values of d were plotted in Figure 4.1, in

which the parameter d controls the level of the effect size: d = 0 corresponds to

the null hypothesis that fd(t) is a constant function in t; when d 6= 0, the larger d

becomes, the further away fd(t) deviates from being constant in t.

Figure 4.1: Functions fd(t) used in the simulation studies for the non-
parametric regression tests. The upper and lower panel correspond
to the first and second smooth functions defined in Equation (4.4.1) re-
spectively.

Each simulated dataset was composed of sample size n = 500, with one hundred

equally spaced points in the quintuple for ti in [0,2]. For Gaussian responses, the

residual term εi was generated from a N(0, 0.652) . We adapted Zhang and Lin

(2003)’s mixed-model formulation of the natural smoothing spline estimator for the

nonparametric function fd(·). To ensure the desired flexibility, we considered different
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orders for the smoothing spline, namely, the linear, quadratic and cubic smoothing

splines. As discussed in Example 1 of Section 4.2.1, this smoothing spline estimator of

fd(·) reformulates the regression model into a GLMM. Consequently, testing whether

fd(·) is a constant value is equivalent to jointly testing the fixed and random effects

in the mixed model.

We first evaluated the empirical type I error rate of our proposed score test at

the 5% nominal level. Results of the obtained empirical type I error rates based

on 5000 simulations were presented in Table 4.1. Across various smoothing spline

representations for fd(·), our proposed score test behaved satisfactorily for both the

Gaussian and non-Gaussian responses. The likelihood ratio test with the exact finite

sample distribution developed by Crainiceanu and Ruppert (2004) also had controlled

nominal levels for Gaussian outcomes. As expected, approximating the asymptotic

distribution of the LRT using the 50:50 mixture χ2 distribution resulted in conserva-

tive type I error rates.

Table 4.1: Empirical sizes of the constancy test for Gaussian and non-
Gaussian responses based on 5000 simulation runs for non-
parametric regression test in cross sectional studies. LRT refers to
the likelihood ratio test with exact finite sample distribution developed by
Crainiceanu and Ruppert (2004); Mixture χ2 refers to the likelihood ratio
test with an approximated 50:50 mixture χ2 asymptotic distribution.

Data Type Test Size

Linear Quadratic Cubic

ScoreTest 0.052 0.051 0.050
Gaussian LRT 0.049 0.052 0.051

Mixture χ2 0.032 0.034 0.036

Binary ScoreTest 0.051 0.049 0.051

Binomial (N=6) ScoreTest 0.052 0.048 0.051

To compare the power of the various tests, we then simulated data under the
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alternative hypothesis with positive values for d. The barplots in Figure 4.2 sum-

marized the power comparisons for Gaussian responses. From the barplot, it can be

seen that for both smooth functions in (4.4.1), the power of our score test was very

similar or slightly better than that of the LRT by Crainiceanu and Ruppert (2004).

As expected, the power of the 50:50 mixture χ2 approach had the lowest power. The

power of all the tests increased as the effect size measure, d, increases. When fixing

d, we observed different trends of the power across different orders of the spline esti-

mator of fd(·). With a fixed d value for the smooth function (a) in Equation (4.4.1),

we observed that the power for all tests tends to increase as the order of splines in-

creases. In contrast, for the functional form (b) in Equation (4.4.1), we observed that

the power tends to decrease as the order of splines increases. The diverging results

may look contradictory at first glance, but are justifiable. For functional (a) (Fig-

ure 4.1), the addition of quadratic and cubic spline terms to the linear spline helped

better approximate the shape of the functional; as a result, inclusion of higher orders

of spline bases contributed to power gain. In contrast, for functional (b), although

the linear spline basis was capable of capturing the linear trend in the functional, the

quadratic and cubic spline bases did not contribute to approximating the periodic

cosine component in the functional; in this case, incorporation of the higher order

bases resulted in lower power than using the linear spline basis alone.

In Figure 4.3, we display the results of the power simulation for our score test

with respect to binary and binomial responses.

4.4.2 Scenario 2 - Non-parametric Regression Tests in Longitudinal

Studies

The next scenario we considered is testing the significance of a regression function

in longitudinal studies with a nuisance random effect under the null hypothesis. The

regression equation was then modeled as g(µij) = fd(tij) + bi, where the link function
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(a) Cross sectional studies, Exponential functional

(b) Cross sectional studies, Cosine functional

Figure 4.2: Power of the constancy test for Gaussian responses based on 5000
simulations in cross sectional studies. The upper and lower panel corre-
spond to the functional form (a), (b) defined in Equation (4.4.1), respectively.
LRT refers to the likelihood ratio test with the exact finite sample distribu-
tion developed by Crainiceanu and Ruppert (2004); Mixture χ2 refers to the
likelihood ratio test with an approximated 50:50 mixture χ2 asymptotic distri-
bution. 130



Figure 4.3: Power of the constancy test for binary and binomial responses
based on 5000 simulations in cross sectional studies. The left and
right panel correspond to the functional form (a), (b) defined in Equation
(4.4.1) respectively.
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g(·) and regression function fd(·) were the same as defined in Section 4.4.1. Each

simulated dataset still contained 500 observations, but with 100 clusters of size ni = 5.

We generated equally spaced values for t in [0,2] through tij = [trun{(i+ 4)/5}/50] +

0.4(j − 1) (i = 1, . . . , 100 and j = 1, . . . , 5), where trun(·) denoted a truncation

operator with trunc(x) = bxc for x ∈ R+, and the random intercept bi followed

N(0, 0.52).

To evaluate the empirical type I error rate and power of our proposed score test,

we simulated 5000 datasets. Results of the empirical type I error rate at the 5%

nominal level were summarized in Table 4.2. Similar to the cross sectional setting in

Scenario 1, our proposed score test yielded well controlled type I error rates for both

Gaussian and non-Gaussian responses under this longitudinal setting. The pseudo

likelihood ratio test approach developed by Greven et al. (2008) and generalized F-

test proposed by Wang and Chen (2012) also behaved satisfactorily for Gaussian

outcomes. Unsurprisingly, the approximated 50:50 mixture χ2 distribution for the

LRT still yielded a conservative type I error rate.

The barplots in Figure 4.4 summarized the power comparisons for Gaussian re-

sponses. Similar to the cross sectional setting in Scenario 1, the power of our score

test was very similar or slightly better than the pseudo-LRT by Greven et al. (2008)

and the generalized F-test by Wang and Chen (2012), with the power of the 50:50

mixture χ2 approach yielding the least powerful results among all. As the effect size

measure d increased, the power of all tests increased as expected. For a fixed d value,

regardless of the test used, the power improved as the spline representation more

closely approximates the underlying functional form. Results of the power simulation

for our score test with respect to binary and binomial responses were presented in

Figure 4.5. The power of the score test increased quickly as we increase the binomial

denominator from 1 (i.e. binary responses) to 6.
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(a) Longitudinal studies, Exponential functional

(b) Longitudinal studies, Cosine functional

Figure 4.4: Power of the constancy test for Gaussian responses based on 5000
simulations in longitudinal studies. The upper and lower panel correspond
to the functional form (a), (b) defined in Equation (4.4.1) respectively. F-test
refers to the generalized F-test proposed by Wang and Chen (2012); Pseudo-
LRT refers to the pseudo likelihood ratio test approach developed by Greven
et al. (2008); Mixture χ2refers to the likelihood ratio test with an approximated
50:50 mixture χ2 asymptotic distribution.133



Figure 4.5: Power of the constancy test for Binary and Binomial responses
based on 5000 simulations in longitudinal studies. The left and
right panel correspond to the functional form (a), (b) defined in Equation
(4.4.1) respectively.

134



Table 4.2: Empirical sizes of the constancy test for Gaussian and non-
Gaussian responses based on 5000 simulation runs for non-
parametric regression tests in longitudinal studies. Pseudo-LRT
refers to the pseudo likelihood ratio test approach developed by Greven
et al. (2008); F-test refers to the generalized F-test proposed by Wang
and Chen (2012); Mixture χ2refers to the likelihood ratio test with an
approximated 50:50 mixture χ2 asymptotic distribution.

Data Type Test Size

Linear Quadratic Cubic

ScoreTest 0.049 0.051 0.050
Gaussian F-test 0.048 0.051 0.052

pseudo-LRT 0.049 0.051 0.051
Mixture χ2 0.033 0.036 0.038

Binary ScoreTest 0.047 0.046 0.048

Binomial (N=6) ScoreTest 0.051 0.052 0.051

4.4.3 Scenario 3 - Meta-analysis on Heterogeneous Effect-sizes

As outlined in Example 3 of Section 4.2.1, another application of the joint testing

framework is to assess the heterogeneous genetic effects in meta-analysis. We carried

out simulations to evaluate the performance of our proposed score test to existing

meta-analysis approaches. The power comparison showed that under the existence

of between-study heterogeneity, our method achieved very similar power to the LRT-

based approach, which was developed to explicitly model the heterogeneity (Han

and Eskin, 2011). Details of the simulation and comparison result can be found in

Supplementary Materials Section 4.7.5.1.

4.5 Data Application

Genome-wide association studies (GWAS) have identified more than 200 genetic

variants that influence blood lipid levels, such as the Low Density Lipoprotein Choles-
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terol (LDL-C) (Teslovich et al., 2010; Waterworth et al., 2010; Willer et al., 2013;

Surakka et al., 2015; Spracklen et al., 2017). For these variants, an important ques-

tion is whether their genetic effects vary with age. Knowing whether the variants

act during very early life, childhood or in adulthood would improve our understand-

ing of the genetics of lipid markers of cardiovascular disease. In addition, it would

help explain the proportion of lipid heritability that are attributable to gene-age in-

teraction. Previous evidence has shown that certain polymorphisms on LDL-C, a

quantitative blood lipid marker, is age-dependent (Giolo et al., 2010; Shirts et al.,

2011; Dumitrescu et al., 2011; Simino et al., 2014).

To illustrate performance of the proposed method in real data, we use the Michi-

gan Genomics Initiative (MGI) data to investigate whether genetic effects to LDL-C

can be modified by age. Launched in 2012, MGI was a biorepository effort to create

a longitudinal cohort of participants in Michigan Medicine. It enrolled participants

undergoing anesthesia prior to a surgery or diagnostic procedure, creating a patient

community with genome-wide data, electronic health information, and permission

for follow-up and re-contact in future studies. To date, more than 50,000 partici-

pants have been recruited through Michigan Medicine health system while awaiting

diagnostic or interventional procedures either during a preoperative visit prior to

the procedure or on the day of procedure that required anesthesia. Opt-in written

informed consent was obtained. In addition to coded biosamples and protected se-

cure health information, participants understood that all Electronic Health Records

(EHRs), claims, and national data sources linkable to the participant may be incor-

porated into the MGI databank. Each participant donated a blood sample for genetic

analysis, underwent baseline vital signs and a comprehensive history and physical, and

completed validated self-report measures of pain, mood and function, including NIH

Patient Reported Outcomes Measurement Information System (PROMIS) measures.

Data were collected according to Declaration of Helsinki principles. Study partici-
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pants provided written informed consent, and protocols were reviewed and approved

by local ethics committees (IRB ID HUM00099605) (Fritsche et al., 2018).

MGI genotyped the participants using the Illumina Human CoreExome v.12.1 ar-

ray, which is a combined genotyping plus exome array of > 500,000 targeted SNPs.

The phased MGI genotypes (SHAPEIT2 on autosomal chromosomes and Eagle2 on

chromosome X) were then imputed using Minimac3 with the Haplotype Reference

Consortium (chromosomes 1-22: HRC release; chromosome X: HRC release 1.1).

After excluding variants with low imputation quality (R2 < 0.3), over 39 million

quality-imputed genetic markers were obtained from the imputation. Since the im-

putation quality is low for very rare variants, we further filtered out the imputed

variants with MAF < 0.001, which resulted in around 13 million variants in our data

analysis. For methodology illustration purpose, we retrieved the first LDL-C lab mea-

surement from participants’ longitudinal EHRs and used it as the response variable.

Genotyped samples with missing LDL-C information are excluded from the analysis,

which results in 11,016 subjects with complete LDL-C and genotype information.

For those 11,016 unrelated European participants, we first performed the main

effect association analysis to relate the genetic variants to LDL-C. We assumed an

additive genetic model for the variant and applied an inverse normal transformation

to LDL-C, since the transformed variable more closely approximated the Gaussian

distribution. Specifically, we used the following linear regression model to conduct

the main effect association analysis:

yi = STi α+Giβ0 + εi, for i = 1, 2, . . . , 11016, (4.5.1)

where yi is the inverse-normal-transformed LDL-C level for the ith subject; Si is a

vector of adjusting covariates including gender, age, age-squared and four principal

components; Gi denotes the number of minor alleles (Gi = 0, 1, 2) of the variant to be

tested. Among the 13 million variants tested for main genetic effect association, four

reached the genome-wide significance level (i.e. p-value of β0 is less than 5×10−8), and
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three of those four SNPs have been identified by previous GWAS for their associations

with LDL-C (Willer et al., 2013; Surakka et al., 2015; Spracklen et al., 2017). Table 4.3

listed the genetic information and association signals for those significant SNPs.

Table 4.3: SNPs with significant main effect associations with LDL-C in
the MGI data. The main p-value refers to the hypothesis testing for
H0 : β0 = 0 in Equation (4.5.1); the interaction p-value refers to the
hypothesis testing for H0 : β(age) = 0 in Equation (4.5.2); and the optimal
ρ is the ρ value which yields the maximum score test value for our proposed
test statistic in Section 4.3, Equation (4.3.6).

dbSNP ID Position Allele MAF Nearest Main Interaction Optimal
Gene P-Value P-Value ρ

rs646776 1: 109,818,530 C > T 0.19 CELSR2 7.823× 10−12 0.054 1
rs76681713 16: 72,333,346 T > C 0.13 PMFBP1 1.771× 10−9 0.401 0
rs6511720 19: 11,202,306 G > T 0.1 LDLR 2.124× 10−9 0.792 0
rs7412 19: 45,412,079 C > T 0.062 APOE 2.617× 10−45 3.642× 10−4 0.75

Among those 4 significant SNPs, we further incorporated age into a varying co-

efficient model (4.5.2) to investigate the possible age-dependent genetic effects on

LDL-C. Specifically,

yi = STi α +Giβ0 + β(agei)Gi + εi fori = 1, 2, . . . , 11016, (4.5.2)

where β(agei) is an unspecified varying coefficient with respect to age. We note that

here the functional β(age) should not include an intercept term, since the main genetic

effect has already been accounted for in the Giβ0 part of the model. Testing for the

age-dependent genetic effect on LDL-C is equivalent to assessing H0 : β(age) = 0 in

Equation (4.5.2). We modeled the unspecified functional β(age) using a quadratic

smoothing spline estimator; the technique of mixed model representation for the

smoothing spline estimator effectively transformed the hypothesis testing of H0 :

β(age) = 0 into the problem of joint testing the fixed and random effects as outlined

in Section 4.2.1, Example 2.

Then we employed our proposed score test to assess for H0 : β(age) = 0 under
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its LMM representation. After using Bonferroni correction for multiple testing, the

resulting p-values suggested that the genetic effects for rs7412 appear to vary with

respect to age (Table 4.3). For rs7412, we also illustrated in Figure 4.6 the effect

of age on the LDL-C, with respect to different minor allele count values for this

SNPs. Regression curves were imposed to summarize the effect of age on the trait.

From Figure 4.6, it can observed that the variant has a stronger effect on LDL-C

in adulthood (before age 55), and that the effect tends to attenuate in older adults

(after age 55).

Figure 4.6: Scatter plot of inverse-normal-transformed LDL-C v.s. age from
the MGI data. Values of inverse-normal-transformed LDL-C measure-
ments plotted as a function of age in years. Separate regression curves are
fitted to the data for the number of minor alleles (G = 0 in blue line v.s.
G = 1 or 2 in red line), which suggests stronger genetic effect on LDL-C
in adulthood (before age 55), and attenuated effect in older adults (after
age 55).

This data application demonstrates that our proposed method can be a useful tool

for obtaining empirical evidence of whether the genetic effect on a phenotype is being
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modified by risk factors such as age. In addition, it confirms earlier findings that

the genotype-associated differences in LDL cholesterol can be age-dependent (Giolo

et al., 2010; Shirts et al., 2011; Dumitrescu et al., 2011; Simino et al., 2014)

4.6 Discussions

In this chapter, we developed a score test for jointly testing the fixed and random

effects in a GLMM. We address the following four issues in the construction of the

score test statistic: (a) a convenient re-parameterization which reformulates the joint

testing problem into testing the variance component alone; (b) the conversion of non-

Gaussian outcomes into pseudo-Gaussian outcomes through Laplace approximation;

(c) the asymptotic equivalence of the score test to the LRT for joint testing; (d) the

p-value calculation from the asymptotic distribution of the score test. An R package

‘JointScoreTest’ has been developed to implement our proposed method and can be

downloaded at the website https://sites.google.com/a/umich.edu/leeshawn/software.

The key idea is to re-parameterize the fixed effects parameter into the product

of the random effects variance component and a nuisance parameter vector; such

re-parameterization reformulates the null hypothesis into testing the variance com-

ponent alone. The nuisance parameter is unidentifiable under the null, to remove the

unknown nuisance parameter, we propose a test using the supremum of the standard-

ized score statistic over the unknown parameter space. By applying the method of

Lagrange multipliers, we reduce the test statistic from searching over the entire un-

constrained vector space into a constrained scalar space, which makes the test statistic

easily obtainable. For non-Gaussian responses, to avoid the high-dimensional inte-

gration, we employ the Laplace approximation to reform the outcomes into pseudo-

Gaussian responses and re-apply the Gaussian responses derivations to construct the

test statistic accordingly. Besides its capability of handling both Gaussian and non-

Gaussian responses, we show that the asymptotic null distribution of our score test
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is equivalent to the LRT.

Unlike the LRT and F-test, which require calculating the maximum likelihood

estimator under both the null and alternative hypothesis, the score test only requires

calculating the maximum likelihood under the null, which makes it computationally

less expensive given many tests. Our proposed score test does not have a standard

asymptotic distribution, we hence approximate the asymptotic null distribution using

a computationally efficient resampling-based copula method. The copula approxima-

tion provides scalable computing time, which makes it feasible to conduct the joint

testing in large scale experiments. In our power simulations, to run 5000 iterations,

our score test takes 1.11 hours on average on a Linux cluster node with 2.80 GHz

CPU.

We suggest using a coarse grid ρ = (0, 0.25, 0.5, 0.75, 1) for simulations and real

data analysis. In fact, in the three simulation scenarios, we also use a dense grid of ρ

with 50 equally spaced points from 0 to 1, and observe that the dense grid does not

meaningfully increase power (data not shown).

In both the simulation studies and data application, we reformulate the problem

into the joint testing framework by representing the SAMM and varying-coefficient

model as a working GLMM. Although we focus on using the penalized natural smooth-

ing spline estimator to represent the SAMM and varying-coefficient model, the results

are not limited to such a representation. Other types of basis functions such as trun-

cated polynomials and B-splines can also be employed. When assessing whether a

functional form holds constant value or not, we observe some power differences de-

pending on the order of the natural spline estimator for the nonparametric function.

In practice, when the true underlying model is unknown, our method does not provide

a guideline on how to choose the appropriate order of natural splines to avoid power

loss. We have left this for future research.
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4.7 Supplementary Materials

4.7.1 Mixed-effect Representation of the Natural Spline Estimator for

the Non-parametric Function

To model data with clustered structures, Zhang and Lin (2003) proposed using

the semiparametric additive mixed model (SAMM), which allows a predictor to be

associated with the outcome through a nonparametric function. In this section, we

summarize how to construct the mixed-effect representation of the natural spline

estimator for the nonparametric function.

Denote yij as the response variable for the jth observation in the ith cluster; sij’s

as the p × 1 vectors of fixed effects covariates with coefficients α; zij’s as the q × 1

vectors of random effects covaraites with cluster specific coefficients bi; and bi ∼

N(0, D0(θ)) with nuisance variance component vector θ. Assume that conditional

on the unobserved random effects vectors bi, the outcome yijs are independent with

means E(yij|bi) = µij and variances var(yij|bi) = V (µij) = φζ−1
ij ν(µij), where φ is

a scale parameter, ζij is a prior weight and ν(·) is a variance function. Under those

assumptions, the conditional mean µij in a SAMM takes the form

g(µij) = f(tij) + sTijα+ zTijbi, (4.7.1)

where g(·) is a known link function, and f(t) is an arbitrary smooth function relating

the scalar covariate t to the outcome. In addition, it is assumed that there exists

a positive integer h such that f(t) has absolutely continuous derivatives up to the

order h − 1, and the area under the absolute function of f(t)’s hth order derivative

is bounded.

It can be shown that f(t) can be estimated as a natural spline of order h. Here, we

consider the smoothing spline representation of the natural spline estimator. Without

lost of generality, we assume that tijs are all bounded in [0, 1], and there are r distinct

values of tij with 0 < t01 < . . . < t0r < 1. Denote {φk(t) = tk−1/(k−1)!}hk=1 as the basis
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for the polynomial space of order h−1, and R(t, t0l ) =
∫ 1

0
(t0l −u)h−1

+ (t−u)h−1
+ du/[(h−

1)!]2, where (t−u)+ = t−u if t ≥ u and 0 otherwise. The hth order smoothing spline

estimator for f(t) can be written as

f(t) =
h∑
k=1

βkφk(t) +
r∑
l=1

alR(t, t0l ), (4.7.2)

or equivalently in the matrix form

f(t) = Xβ + Ua, (4.7.3)

where t = (t11, . . . , t1n1 , . . . , tm1, . . . , tmnm)T , β = (β1, . . . , βh)
T , a = (a1, . . . , ar)

T ∼
N(0, τΣ), and X = NT, U = NΣ−1 with

N =



I(t11 = t01) I(t11 = t02) · · · I(t11 = t0r)

...
...

...
...

I(t1n1 = t01) I(t1n1 = t02) · · · I(t1n1 = t0r)

...
...

...
...

I(tmn1
= t01) I(tmn1

= t02) · · · I(tmn1
= t0r)

...
...

...
...

I(tmnm
= t01) I(tmnm

= t02) · · · I(tmnm
= t0r)


n×r

,

T =



φ1(t01) φ2(t01) · · · φh(t01)

φ1(t02) φ2(t02) · · · φh(t02)

...
...

...
...

φ1(t0r) φ2(t0r) · · · φh(t0r)


r×r

, Σ =



R(t01, t
0
1) R(t01, t

0
2) · · · R(t01, t

0
r)

R(t02, t
0
1) R(t02, t

0
2) · · · R(t02, t

0
r)

...
...

...
...

R(t0r, t
0
1) R(t0r, t

0
2) · · · R(t0r, t

0
r)


r×r

.

Under the mixed-effect representation of f(t), the SAMM in (4.7.1) can be repre-

sented in the following working generalized linear mixed model (GLMM):

g(µ) = Xβ + Sα+ Ua + Zb, (4.7.4)

a ∼ N(0, τΣ), b ∼ N(0,D(θ)),

where µ = (µ11, . . . , µ1n1 , . . . , µm1, . . . , µmnm) is the vectorized conditional mean val-

ues; in which µij represents the conditional mean value for the outcome variable

yij (i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}, n =
∑m

i=1 ni); S is the fixed effects design matrix
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with the ith row block being si = (si1, . . . , sini)
T ; and Z = diag{z1, . . . , zm} is the ran-

dom effects design matrix with zi = (zi1, . . . , zini)
T , b = (bT1 , . . . ,b

T
m)T ∼ N(0,D(θ)),

and D(θ) = diag(D0(θ), . . . , D0(θ)).

4.7.2 Using Lagrange Multipliers to Determine the Form of γ

The proposed test statistic,

T = sup
γ

Uτ (ν̂)− E(Uτ (ν̂))√
V AR(Uτ (ν̂))

= sup
γ

−1
2 tr[V̂

−1PUΣUT ] + yTPT V̂−1UΣUT + yTPT V̂−1Xγ√
1
2 tr[(V̂

−1PUΣU)2] + γTXT P̃V̂P̃Xγ
, (4.7.5)

requires searching over the entire space of γ in order to obtain the supremum. The

searching would be very challenging when the dimension of γ is high. An alternative

way to solve this problem is to view the test as follows:

Maximize Uτ (ν̂)− E(Uτ (ν̂)) subject to V AR(Uτ (ν̂)) = c, where c is a constant.

From this point of view, Lagrange multipliers can be applied to find the form of γ:

Let ∆(γ, λ) = −1

2
tr[V̂−1PUΣUT ] + yTPT V̂−1UΣUT + yTPT V̂−1Xγ

− λ{1

2
tr[(V̂−1PUΣU)2] + γTXT P̃V̂P̃Xγ − c}

⇒ ∂∆

∂γ
= yTPT V̂−1X− 2λγTXT P̃V̂P̃X = 0

and
∂∆

∂γ
= −{1

2
tr[(V̂−1PUΣU)2] + γTXT P̃V̂P̃Xγ − c} = 0

⇒ γ = η(XT P̃X)−1XT P̃y,

where η is a non-negative scalar representing the strength of γ.
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4.7.3 Asymptotic Distribution of Sρ

Recall, for a given ρ, Sρ can be written as:

Sρ = ρyT P̃TX(XT P̃X)−1XT P̃y +
1− ρ

2
yT P̃TUΣUT P̃y

= yT P̃T {ρX(XT P̃X)−1XT +
1− ρ

2
UΣUT }P̃y,

where P̃ = V− 1
2 P̂V− 1

2 with P̂ = I−V− 1
2 S(STV−1S)−1STV− 1

2 .

Thus, Sρ = yT (V− 1
2 P̂V− 1

2 )T {ρX(XT P̃X)−1XT +
1− ρ

2
UΣUT }(V− 1

2 P̂V− 1
2 )y

= (V− 1
2 y)T {ρP̂V− 1

2 X(XT P̃X)−1XTV− 1
2 P̂ +

1− ρ
2

P̂V− 1
2 UΣUTV− 1

2 P̂}(V− 1
2 y).

Under the null hypothesis, V−
1
2 y approximately follows a multivariate normal distri-

bution MVN(0, In), where In is an identity matrix with dimension n. Consequently,

Sρ asymptotically follows a mixture of chi-square distribution
∑
λlχ

2
l,1, where χ2

l,1s

are chi-square distributions with one degree of freedom; and λls are the non-zero

eigenvalues of ρP̂V−
1
2 X(XT P̃X)−1XTV−

1
2 P̂ + 1

2
(1− ρ)P̂TV−

1
2 UΣUTV−

1
2 P̂.

4.7.4 Asymptotic Equivalency of the Score Test to the Likelihood Ratio

Test

In this section, we adopt the asymptotic properties from Zhu and Zhang (2006)

to establish the asymptotic equivalence of our proposed score test statistic to the

corresponding LRT for the joint testing of fixed and random effects in a GLMM.

We demonstrate the equivalence for Gaussian outcomes, and the conclusions for non-

Gaussian responses will follow naturally using the same working linear mixed model

and Laplace approximation techniques as in the test statistic derivation for non-

Gaussian outcomes.

Recall, for Gaussian outcomes, our mixed model can be written as

y = τXγ + Sα+ Ua + Zb + ε, (4.7.6)

where a ∼ N(0, τΣ), b ∼ N(0,D(θ)), ε ∼ N(0, σ2In),
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and our goal is to test H0 : τ = 0. Denote ν = (αT ,θT , σ2)T with true value

ν∗ = (αT∗ ,θ
T
∗ , σ

2
∗)
T . We assume that ν∗ is an interior point of the parameter space Ξ

and the length of vector α and θ is q1 × 1 and q2 × 1 respectively. Denote ξ = (τ,ν)

with true value ξ∗, and the corresponding log-likelihood function as LN(ξ|γ). Define

ξ̂ as the maximum likelihood estimate of ξ under H0. One can easily see that ξ̂

does not depend on γ under H0, since LN(ξ|γ) is independent of γ when τ = 0.

Define ξ̃(γ) as the maximum likelihood estimate of ξ for any γ ∈ Γ under H1. The

log-likelihood function for ξ can be written as :

∂LN(ξ|γ)

∂ξ
= Uξ,N(γ|ξ) =

 Uτ,N(γ|ξ)

Uν ,N(γ|ξ)

 ,

with score Uξ,N(γ) = Uξ,N(γ|ξ)|ξ=ξ∗
=

 Uτ,N(γ)

Uν ,N(γ)

 ,

and information matrix Jξ,N(γ) = −E{∂2LN(ξ|γ)/∂ξ∂ξT}|ξ=ξ∗
.

In order to establish the asymptotic properties, Zhu and Zhang (2006) required that

the following regularity conditions to be satisfied.

Assumption S.1 supγ∈Γ ‖ ξ̃(γ)− ξ∗ ‖→ 0 and ‖ ξ̂ − ξ∗ ‖→ 0 in probability.

Assumption S.2 Assume that

Op(1) = LN(ξ|γ) = LN(ξ∗|γ)+
√
N(ξ−ξ∗)TUξ,N(γ)−N

2
(ξ−ξ∗)TJξ,N(γ)(ξ−ξ∗)T+op(1)

holds uniformly for all
√
N ‖ ξ−ξ∗ ‖≤ c0, where c0 is any positive scalar. In addition,

supγ∈Γ ‖ Uξ,N(ξ|γ) ‖= Op(1), and c2 ≥ supγ∈Γ µmin[Jξ,N(γ)] ≥ infγ∈Γ[Jξ,N(γ)] ≥

4c2
1 holds almost surely for some fixed c1 and c2, where µmax and µmin represents the

minimum and maximum eigenvalue of a matrix.

Assumption S.3 (Uξ,N(·), Jξ,N(·))⇒ (Uξ(·), Jξ(·)), where ⇒ denotes weak con-

vergence of a stochastic process under the uniform metric, (Uξ(·), Jξ(·)) has bounded

continuous sample paths with probability one. Moreover, the (q1+q2+1)×(q1+q2+1)

matrix Jξ(·) is symmetric and ∞ > supγ∈Γ µmax[Jξ(γ)] ≥ infγ∈Γ µmin[Jξ(γ)] > 0
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holds almost surely.

In addition to those assumptions, we define the following notations in order to

facilitate the asymptotic properties:

Uξ(γ) =

 Uτ (γ)

Uν(γ)

 , Jξ(γ) =

 Jττ (γ) Jτν(γ)

Jντ (γ) Jνν(γ)

 ,

zξ,N (γ) = J−1

ξ,N
(γ)Uξ,N (γ) =

 zτ,N (γ)

zν ,N (γ)

 , zξ(γ) = J−1

ξ
(γ)Uξ(γ) =

 zτ (γ)

zν(γ)

 ,

and e1 = (1, 0, . . . , 0)T ∈ Rq1+q2+1.

Under the assumptions S.1 - S.3, Zhu and Zhang (2006) established the following

theorems for the asymptotic null distribution of LRT as well as the score test statistic

for testing H0 : τ = 0 against H1.

Theorem S.1 Suppose assumptions S.1 - S.3 hold. Then, under the null hypothesis,

the asymptotic null distribution of LRT is

sup
γ∈Γ

[LN(ξ̃(γ))|γ]− LN(ξ̂)⇒ 0.5 sup
γ∈Γ

zτ (γ)2/(eT1 J
−1

ξ
(γ)e1).

Theorem S.2 Suppose assumptions S.1 - S.3 hold. Then the score statistic Ss for

testing H0 against H1 has the following asymptotic null distribution:

Ss = sup
γ∈Γ
{UT

ξ,N(γ|ξ̂)J−1

ξ,N
(γ|ξ̂)Uξ,N(γ|ξ̂)} = sup

γ∈Γ
{ zτ (γ)√

eT1 J
−1

ξ
(γ)e1

}2 + op(1). (4.7.7)

Together, Theorem S.1 and S.2 establish the asymptotic equivalence of LRT and score

test statistic Ss. We now show that our score statistic T defined in Equation (4.3.3)

has the same form as Ss in (4.7.7). Consequently, its asymptotic equivalence with the

corresponding LRT would follow naturally from Theorem S.1 and S.2.

The log-likelihood under the LMM (4.7.6) is

l(ξ) = −N
2π
− 1

2
log|τUΣUT + ZD(θ)ZT + σ2I|

− 1

2
(y − τXγ − Sα)T (τUΣUT + ZD(θ)ZT + σ2I)−1(y − τXγ − Sα).
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It can be shown that

Uξ,N(γ|ξ̂) =



∂LN (ξ|γ)

∂τ
|τ=0,ν=ν̂

∂LN (ξ|γ)

∂α |τ=0,ν=ν̂

∂LN (ξ|γ)

∂θ
|τ=0,ν=ν̂

∂LN (ξ|γ)

∂σ2 |τ=0,ν=ν̂


=



Uτ,N(γ|τ = 0,ν = ν̂)

0p1×1

0p2×1

0


,

where Uτ,N(γ|τ = 0,ν = ν̂) = −1
2
tr[V̂−1UΣUT ] + yTPT V̂−1UΣUT V̂−1Py +

yTPT V̂−1Xγ. And Jττ,N(γ|τ = 0,ν = ν̂) = 1
2
tr[(V̂−1UΣU)2] + γTXT P̃V̂P̃Xγ,

with V̂ = ZDZT + σ̂2I, P = I− S(ST V̂−1S)ST V̂−1, and P̃ = V̂−1P. Plug in these

values into equation (4.7.7), we obtain

Ss = sup
γ∈Γ

Uξ,N (γ|ξ̂)TJξ,N (γ|ξ̂)−1Uξ,N (γ|ξ̂)

= sup
γ∈Γ
{
√
Uτ,N (γ|τ = 0,ν = ν̂) · J−1

ττ,N (γ|τ = 0,ν = ν̂) · Uτ,N (γ|τ = 0,ν = ν̂)}2

= sup
γ∈Γ
{
−1

2 tr[V̂
−1UΣUT ] + yTPT V̂−1UΣUT V̂−1Py + yTPT V̂−1Xγ√

1
2 tr[(V̂

−1UΣU)2] + γTXT P̃V̂P̃Xγ
}2. (4.7.8)

To account for the fact that ν = (αT ,θT , σ2)T is estimated by its MLE ν̂ =

(α̂T , θ̂
T
, σ̂2)T , Zhang and Lin (2003) proposed to use a bias-corrected score statistic

SR for Ss, in which inverse of the marginal covariance matrix V̂ −1 = (ZDZT + σ̂2I)−1

for the response y is replaced by the projection matrix P̃ = V̂−1P. Applying this

bias-corrected version to the score statistic in (4.7.8), we obtain

SR = sup
γ∈Γ
{
−1

2
tr[V̂−1PUΣUT ] + yTPT V̂−1UΣUT + yTPT V̂−1Xγ√

1
2
tr[(V̂−1PUΣU)2] + γTXT P̃V̂P̃Xγ

}2,

which is just the square of our proposed score statistic T in Equation (4.3.3).

148



4.7.5 Additional Simulations

4.7.5.1 Scenario 3 - Meta-analysis on heterogeneous effect-sizes

Meta-analysis is a practical and effective tool for combining multiple association

studies into a single aggregate analysis in order to identify association signals with

small effect sizes. To account for the effect size heterogeneity across studies, several

approaches have been proposed under the framework of jointly testing the fixed and

random effects in an LMM. For example, the random-effects meta-analysis method

(RE) is developed to explicitly model the heterogeneity; however, it implicitly as-

sumes heterogeneity under the null hypothesis, which causes power loss. To relax the

conservative assumption of RE, Han and Eskin (2011) proposed a new random-effects

method (RE-HE) under the LMM to appropriately model the expected heterogeneity

between different studies. Specification of the model set-up is as outlined in Example

3 in Section 4.2.1. RE-HE tests the null hypothesis H0 : µ = 0 and τ = 0 using

the likelihood ratio test approach and assesses the strength of association signals

based on pre-tabulated p-values. When heterogeneity exists, Han and Eskin (2011)

demonstrated in their simulation studies that RE-HE achieves higher statistical power

than RE and the traditional fixed-effects meta-analysis method (FE), which assumes

constant effect-size across all studies.

In order to generate a realistic spectrum of the effect-size estimates and the corre-

sponding standard errors, we adapted the neoadjuvant chemotherapy meta-analysis

data from the Neoadjuvant Chemotherapy for Cervical Cancer Meta-analysis Collab-

oration (for Locally Advanced Cervical Cancer Meta-analysis Collaboration et al.,

2003). The meta-analysis contained data from 11 trials to compare neoadjuvant

chemotherapy followed by radical radiotherapy versus the same radiotherapy alone.

The forest plot in the left panel of Supplementary Figure 4.7 summarized the log

hazard ratios of the neoadjuvant chemotherapy and the associated 95% CIs from the
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Figure 4.7: Meta-analysis simulation results. Left panel: Forest plot of the log
hazard ratios and 95% CIs of the neoadjuvant chemotherapy from the
11 trials in the Neoadjuvant Chemotherapy for Cervical Cancer Meta-
analysis Collaboration (2003). Right panel: Empirical power for score
test and existing methods for the meta-analysis simulations.

11 trials. The forest plot showed varying effect sizes among the trials, which indicates

the possible existence of between-study heterogeneity.

Under the Cox proportional hazard model, the time-independent hazard rate for

subject k with explanatory variable Zk has the form λ(Zk) = λ0 exp{βZk}, where

λ0 denotes the hazard function of the radical radiotherapy; β denotes the effect size

for neoadjuvant chemotherapy; Zk is an indicator variable with value 1 if subject k

receives neoadjuvant chemotherapy followed by radical radiotherapy, and value 0 if

the subject only receives the radiotherapy. Re-arranging the Cox proportional hazard
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model, we have:

log(hazard ratio of the neoadjuvant therapy) = log{λ(Zk = 1)

λ0

}

= β · (Zk = 1),

which suggests that the log hazard ratio can be linked to the neoadjuvant chemother-

apy assignment via a linear model. Thus, we propose to simulate β̂, the effect-size

estimates of the log hazard ratio through the following approach:

Step 1: For the ith trial, generate εij ∼ N(0, σ2
i ), where i = 1, . . . , 11; j = 1, . . . , ni;

σ2
i is the listed variance value in the left panel of Figure 1 (on Page 2478) in the

Neoadjuvant Chemotherapy for Cervical Cancer Meta-analysis Collaboration (2003)

; and ni is the total sample size of the ith trial.

Step 2: For the ith trial, denote ni1 and ni2 as the number of participants with

and without the neoadjuvant therapy respectively, and Zij as the treatment group

indicator for each of the jth participant in the ith trial. Under those notations, we

have Zij = 1 for j = 1, . . . , ni1 and Zij = 0 for j = 1 + ni1, . . . , ni1 + ni2. Obtain

yij = βiZij + εij for j = 1, . . . , ni1, where value of βi is equal to the log hazard ratio

as summarized in the forest plot of Supplementary Figure 4.7. Here, we consider yij

as an observed log hazard ratio.

Step 3: Regress yij on Zij to obtain the simulated log hazard ratio β̂i and the

associated standard error for the ith trial.

Step 4: Repeat Steps 1 to 3 for each i ∈ {1, . . . , 11}.

Following the above outlined steps, we carried out 5000 simulations and perform

meta-analysis using FE, RE, RE-HE and our score test . The right panel in Supple-

mentary Figure 4.7 summarized the power comparison results. The barplot showed

that our score test yields very similar but slightly higher power to the LRT-based

RE-HE; unsurprisingly, FE and RE were less powerful at identifying the association

signal due to the expected between-study heterogeneity.
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CHAPTER V

Summary and Discussion

5.1 Summary

The first two projects in this dissertation ware motivated by the observation that

the efficiency of genetic association studies – whether by genotyping or by sequencing

– depends critically on sample size (Chatterjee et al., 2013). Trans-ethnic meta-

analyses are increasingly being used to boost study power by enlarging the total

sample size. In addition to the improved power of disease/trait locus discovery in

trans-ethnic studies, differences in LD levels across genetically diverse populations

are potentially a powerful tool for fine mapping the rare or causal variants that

underlie disease associations (Kichaev and Pasaniuc, 2015). Despite the promising

potential, however, the between-study genetic effect heterogeneity among different

ethnic groups presents challenges in performing trans-ethnic meta-analysis. Since

traditional GWAS meta-analysis approaches do not appropriately account for the

expected between-study heterogeneity, in this dissertation, I have proposed two novel

statistical methods for modeling the effect-size heterogeneity in genetic association

studies.

In Chapter II, I developed a score test to detect the common variant associations

in trans-ethnic meta-analysis. To account for the expected genetic effect heterogene-

ity across diverse populations, I adapted a modified random effects model from the
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kernel regression framework. I specifically constructed the correlation structure for

the genetic effect coefficients to reflect the level of genetic effect similarities across

ancestry groups. Through analytical approximation of the asymptotic distribution of

the proposed test, I achieved efficient computing time for genome-wide datasets.

In Chapter III, I extended the score test in Chapter II to the gene- or region-

based rare variant trans-ethnic meta-analysis in sequencing association studies. The

proposed method again uses the kernel regression framework to construct the modified

random effects model, and incorporates the genetic similarities across ancestry groups

into modeling the heterogeneity structure of the genetic effect coefficients. To enable

efficient estimation of p-values, I employed a resampling-based copula method to

estimate the asymptotic null distribution of the proposed test.

The last project in this dissertation was motivated by the problem of testing an

unspecified varying-coefficient for assessing the possible modification of non-genetic

factors on the effect of genetic variants. I generalized the problem into a framework

of jointly testing the fixed and random effects in a GLMM, so that such a unified

framework is applicable in many different scenarios in biomedical studies. To the

best of my knowledge, it is the only systematic research which addresses the joint

testing problem with respect to both the Gaussian and non-Gaussian outcomes under

the presence of nuisance variance components. More specifically, in Chapter IV, I

developed a supremum score test for jointly testing the fixed and random effects

in a generalized linear mixed model (GLMM) for both Gaussian and non-Gaussian

outcomes. The modified random effect model (RE-HE) by Han and Eskin (2011) and

the gene-based rare variant association test (SKAT-O) by Lee et al. (2012) can both

be viewed as special cases of this general framework of jointly testing the fixed and

random effects. The proposed method can also be employed in the nonparametric

test of spline curves as well as in assessing the significance of the varying-coefficient

component in the varying-coefficient model. In terms of its application in genetic
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association studies, one can use the test to investigate whether the genetics effects to

any disease/trait of interest can be modified by confounders such as age.

5.2 Future Plans

The parallel advancement of DNA array platform, high-throughput sequencing

technology and genotyping imputation accuracy has opened a new era of genomics

and molecular biology. Availability of the high throughput data at relatively low cost

enables large-scale biobanks to genotype or sequence hundreds of thousands of partic-

ipants. For example, the HUNT study includes large total population-based cohorts,

covering 125,000 Norwegian participants (Krokstad et al., 2012); the UK Biobank

project is a large prospective cohort study of 500,000 participants from across the

United Kingdom (Bycroft et al., 2017); the National Heart, Lung and Blood Institute

(NHLBI) launched their TOPMed (Trans-Omics for Precision Medicine) program has

collected over 120,000 individual genomes for its WGS project (Lung et al., 2016). In

these biobank data, in addition to genotyping/sequencing the participants’ genomes,

either carefully designed surveys or electronic health records (EHRs) together with

the International Classification of Disease (ICD) billing codes are employed to obtain

participants’ phenotypic data and health-related information.

Despite the available rich variety of genotypic, phenotypic and health-related in-

formation in those biobanks, computing summary statistics from each of the enor-

mously large-scale GWAS to conduct trans-ethnic meta-analysis poses new statistical

and computational challenges. For example, given that most of the biobank data

are based on cohort study designs, one challenge of using EHR-derived phenotypes

is that most of them are dichotomized with imbalanced (< 1:10) or extremely imbal-

anced (<1:100) case-control ratios. Standard asymptotic tests (such as the score test)

for assessing the rare variant associations typically approximate the asymptotic null

distribution using a Gaussian density. However, under the imbalanced case-control
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ratio, the normal approximation will yield highly inflated type-I error rates, since

the underlying distribution is highly skewed and thus cannot be well-captured by the

symmetric Gaussian density. In addition, those large-scale cohort studies tend to

have a diverse mixture of family structures and/or contain samples with both famil-

ial and unrelated individuals. Consequently, methods that can accommodate familial

and cryptic relatedness are needed. Unfortunately, there exist few approaches which

can handle the sample relatedness and/or type-I error inflation due to imbalanced

case-control ratio. Efficient algorithms are needed to retain the computing time for

hundreds of millions of variants on hundreds of thousands of samples in a scalable

fashion.

The SAIGE method, developed by Zhou et al. (2017), is currently the only avail-

able mixed model approach which is practical for large-scale phenome-wide associ-

ation studies (PheWAS) while controlling for case-control imbalance and correcting

for sample relatedness. It uses the saddlepoint approximation (SPA) to calibrate the

distribution of score statistics, and utilizes optimization strategies such as the pre-

conditioned conjugate gradient (PCG) approach to reduce the computational burden

and memory cost. As a next step, I will seek to incorporate the SPA and optimization

strategies used in the SAIGE method into my trans-ethnic meta-analysis approaches,

to further boost the study power by taking advantages of data from the ever larger

cohorts, additional phenotypes and wider ethnic groups.

5.3 Closing Remarks and Perspective

Over the last decade, multi-ethnic studies have proved instrumental to unraveling

the genetic complexities of disease risks In particular, trans-ethnic meta-analysis are

increasingly being used for locus replication and discovery, as well as fine-mapping of

causal variants associated with complex diseases. One key advantage of using trans-

ethnic meta-analysis is to boost study power by leveraging LD structure and the
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underlying differential genetic architecture across disparate ancestral human genomes.

Based upon this concept, central to my thesis research is the goal of maximize study

power for locus discoveries when there is significant inter-study heterogeneity.

In the past few years, in response to the criticisms of the limited utility of

GWAS-findings, the genomics community has gradually shifted its focus to causal

or functional variant identifications. The widely available and economically feasi-

ble re-sequencing technologies have made it possible to conduct locus fine-mapping

through trans-ethnic GWASs. By including populations with more diverse haplo-

types, such as the African population, trans-ethnic GWASs can help pinpoint the

causal or functional variants of interest and identify candidate gene mutations. Find-

ings from several global genomics consortia have demonstrated that trans-ethnic fine-

mapping studies can identify functional gene mutations as well as increase the total

variance explained by the identified loci (Galarneau et al., 2010; Sanna et al., 2011;

Franceschini et al., 2012; Wu et al., 2013; Liu et al., 2014; Saunders et al., 2014).

New findings from trans-ethnic studies will enrich our understanding of the ge-

netic basis of complex diseases/traits. Although it is not a simple task to interpret

GWAS findings, given that most GWAS signals are either in the intronic or intergenic

non-coding regions of the genome, integration of multiple “omics” resources, such as

epigenetic features, eQTLs, tissue-specific transcript expressions, chromatin confor-

mation can help advance the identification of functional or mechanistic variations in

the post-GWAS era. The continued expansion of GWAS, and its integration with

other efforts capturing the molecular function of the human genome, will be a critical

asset for the study of gene coding and regulatory mechanisms and how they con-

tribute to complex diseases/traits. Disentangling the mechanism by which genotype

influences phenotype will ultimately lead to the identification of important biological

pathways and presentation of suitable targets for drug development and reposition-

ing of known therapeutics. Continuing steps toward filling the knowledge gap will
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bring us closer to elucidating disease etiology and offer opportunities of innovative

preventative and therapeutic strategies in precision medicine.
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Surakka, I., Horikoshi, M., Mägi, R., Sarin, A.-P., Mahajan, A., Lagou, V., Marullo,
L., Ferreira, T., Miraglio, B., Timonen, S., et al. (2015). The impact of low-
frequency and rare variants on lipid levels. Nature genetics 47, 589.

Tang, Z.-Z. and Lin, D.-Y. (2014). Meta-analysis of sequencing studies with hetero-
geneous genetic associations. Genetic epidemiology 38, 389–401.

Teo, Y.-Y., Small, K. S., and Kwiatkowski, D. P. (2010). Methodological challenges
of genome-wide association analysis in africa. Nature Reviews Genetics 11, 149.

Teslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C., Stylianou, I. M.,
Koseki, M., Pirruccello, J. P., Ripatti, S., Chasman, D. I., Willer, C. J., et al.
(2010). Biological, clinical and population relevance of 95 loci for blood lipids.
Nature 466, 707–713.

Thomas, D. C. and Witte, J. S. (2002). Point: population stratification: a problem
for case-control studies of candidate-gene associations? Cancer Epidemiology and
Prevention Biomarkers 11, 505–512.

Vlassi, M., Gazouli, M., Paltoglou, G., Christopoulos, P., Florentin, L., Kassi, G., and
Mastorakos, G. (2012). The rs10830963 variant of melatonin receptor mtnr1b is as-
sociated with increased risk for gestational diabetes mellitus in a greek population.
Hormones (Athens) 11, 70–6.

Wang, X., Chua, H.-X., Chen, P., Ong, R. T.-H., Sim, X., Zhang, W., Takeuchi, F.,
Liu, X., Khor, C.-C., Tay, W.-T., et al. (2013). Comparing methods for performing
trans-ethnic meta-analysis of genome-wide association studies. Human molecular
genetics page ddt064.

Wang, Y. and Chen, H. (2012). On testing an unspecified function through a linear
mixed effects model with multiple variance components. Biometrics 68, 1113–1125.

Waterworth, D. M., Ricketts, S. L., Song, K., Chen, L., Zhao, J. H., Ripatti, S.,
Aulchenko, Y. S., Zhang, W., Yuan, X., Lim, N., et al. (2010). Genetic variants
influencing circulating lipid levels and risk of coronary artery disease. Arterioscle-
rosis, thrombosis, and vascular biology 30, 2264–2276.

167



Willer, C. J., Schmidt, E. M., Sengupta, S., Peloso, G. M., Gustafsson, S., Kanoni,
S., Ganna, A., Chen, J., Buchkovich, M. L., Mora, S., et al. (2013). Discovery and
refinement of loci associated with lipid levels. Nature genetics 45, 1274.

Wright, S. (1949). The genetical structure of populations. Annals of eugenics 15,
323–354.

Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. (2011). Rare-variant
association testing for sequencing data with the sequence kernel association test.
The American Journal of Human Genetics 89, 82–93.

Wu, Y., Waite, L. L., Jackson, A. U., Sheu, W. H., Buyske, S., Absher, D., Arnett,
D. K., Boerwinkle, E., Bonnycastle, L. L., Carty, C. L., et al. (2013). Trans-ethnic
fine-mapping of lipid loci identifies population-specific signals and allelic hetero-
geneity that increases the trait variance explained. PLoS genetics 9, e1003379.

Xianglin Li, D. Gaussian copula model. Encyclopedia of Quantitative Finance .

Zhang, D. and Lin, X. (2003). Hypothesis testing in semiparametric additive mixed
models. Biostatistics 4, 57–74.

Zhou, W., Nielsen, J. B., Fritsche, L. G., Dey, R., Elvestad, M. B., Wolford, B. N.,
LeFaive, J., VandeHaar, P., Gifford, A., Bastarache, L. A., et al. (2017). Efficiently
controlling for case-control imbalance and sample relatedness in large-scale genetic
association studies. bioRxiv page 212357.

Zhu, H., Zhang, H., et al. (2006). Generalized score test of homogeneity for mixed
effects models. The Annals of Statistics 34, 1545–1569.

168


