
Component-Based Aerodynamic Shape Optimization
using Overset Meshes

by

Ney R. Secco

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2018

Doctoral Committee:

Professor Joaquim R. R. A. Martins, Chair
Assistant Professor Jesse S. Capecelatro
Professor Carlos E. S. Cesnik
Associate Professor Karthik Duraisamy

Ney R. Secco

neysecco@umich.edu

ORCID iD: 0000-0001-6799-2452

© Ney R. Secco 2018

To my dear wife, Claudia.

ii

ACKNOWLEDGEMENTS

This work would not be possible without the help of many people that assisted and

inspired me along the way.

First I thank my advisor, Prof. Martins, for giving me opportunity to join the MDO

Lab. His mentorship made me a better researcher and a better person. I learned valuable

lessons that I will take for my entire life.

I also acknowledge Prof. Jesse Capecelatro, Prof. Carlos Cesnik, and Prof. Karthik

Duraisamy for serving as committee members. I appreciate your time considering this

work and providing helpful suggestions.

MDO Lab members were also essential for the accomplishment of this work. Dr. Gae-

tan Kenway’s work was the foundation for what I developed in this thesis. Dr. John Hwang

showed me the first steps on using the MDO Lab codes and also provided helpful discus-

sions. John Jasa helped with the implementation of the pySurf module. I am also grateful

for meeting great friends in the MDO Lab: Anil Yildirim, Charles Mader, David Bur-

dette, Eirikur Johnson, Josh Anibal, Justin Gray, Nicholas Bons, Song Chen, Shamsheer

Chauhan, Sicheng He, and Timothy Brooks.

My wife, Claudia, encouraged me to face the challenge of studying abroad. She also

kept me focused during moments of pressure. I am forever thankful for your patience and

for being always there whenever I needed someone to count on. I thank my family for

being always supportive in every step of my life and for giving me confidence and strength

to overcome difficulties.

blank

iii

I express my gratitude towards Prof. Bento Mattos, my advisor during the undergrad-

uate and Masters course at the Instituto Tecnolgico de Aeronutica (ITA), since he played

a vital role in introducing me to Aircraft Design and MDO. I also thank the Brazilian Air

Force for providing the necessary funding for this work.

iv

TABLE OF CONTENTS

Dedication . ii

ACKNOWLEDGMENTS . iii

List of Figures . vii

List of Tables . xii

List of Abbreviations . xiii

Abstract . xv

Chapter

1 Introduction . 1

1.1 High-fidelity aircraft design optimization 3
1.2 Aerodynamic shape optimization with overset meshes 5
1.3 Geometry and mesh manipulation methods 9
1.4 Aerodynamic shape optimization of junctions 12
1.5 Thesis objectives . 13
1.6 Thesis outline . 14

2 Component-based parametrization . 16

2.1 Collar mesh generation overview . 16
2.2 Intersection computation . 17
2.3 Hyperbolic surface mesh generation . 19
2.4 Automatic differentiation . 20

2.4.1 Projection subroutine . 21
2.4.2 Hyperbolic surface marching . 22
2.4.3 Intersection computation . 23
2.4.4 Tests for derivative validation 25
2.4.5 Gradient verification: CRM case 26

3 Optimization Framework . 28

3.1 Geometry modeler—pyGeo . 30
3.2 Collar mesh generator—pySurf . 31
3.3 Volume mesh generator—pyHyp . 31

v

3.4 Volume mesh deformation—pyWarp . 33
3.5 CFD solver—ADflow . 34
3.6 Optimizer—SNOPT . 36
3.7 Derivative computation throughout the framework 36
3.8 Noise issues in the functions of interest 40

3.8.1 Effects of numerical noise on a univariate optimization problem . 41
3.8.2 Identification of the noise source 42

4 Wing-body junction optimization . 45

4.1 Geometric design variables and constraints 46
4.2 Problem setup . 48
4.3 Baseline configuration studies . 50
4.4 Optimization results . 54
4.5 Summary . 64

5 Strut-braced wing optimization . 65

5.1 Optimization problem definition . 67
5.2 Wing and strut optimization . 71
5.3 Junction optimization according to PADRI 2017 guidelines 76
5.4 Summary . 80

6 Concluding remarks . 81

6.1 Conclusions . 81
6.2 Contributions . 83
6.3 Recommendations for future work . 85

Appendices . 87

Bibliography . 100

vi

LIST OF FIGURES

1.1 Comparison of shock waves (top) and trailing edge separation (bottom) be-
tween the baseline and optimized configurations of the TBW optimization us-
ing multiblock structured meshes. The previous optimization could not com-
pletely remove shocks and separation near junctions. 2

1.2 Skewed cells on the surface mesh (black) and volume mesh (red) of a truss-
braced wing configuration using a patched multiblock mesh. 6

1.3 Hole cutting of a cylinder mesh overlapping a Cartesian background mesh. . . 7
1.4 Collar meshes are necessary to ensure valid cells along intersections. 8

2.1 Steps for generating collar mesh for a wing-fuselage junction. pySurf is re-
sponsible for steps a–c. The mesh extrusion module used in step d (pyHyp) is
covered in Sec. 3.3. 17

2.2 Additional features implemented in the collar marching scheme to improve
mesh quality for CFD analyses. 20

2.3 Representation of a generic subroutine and its corresponding AD versions. . . 20
2.4 Intersection between triangles of two components. 24
2.5 Low-wing configuration shifted to high-wing configuration with automatically

generated collar meshes for the CRM geometry. 27
2.6 Aft view of the CRM wing-body junction. The left figure shows the design

variable definition and the tracking of the trailing edge intersection point. The
figure on the right shows how surface mesh points move as the wing is trans-
lated. The red arrows indicate the AD-computed derivatives for the trailing
edge intersection position (left) and surface mesh points (right) as we ver-
tically translate the wing. The computed gradients for triangulated surface
intersections are smooth and accurate enough for gradient-based optimization. 27

3.1 XDSM of the overall optimization framework. The initialization step gener-
ates the reference volume nodes for the mesh deformation. 30

3.2 Hyperbolic extrusion of the surface meshes into volume meshes for a wing-
body configuration. 32

3.3 Symmetry plane showing the fuselage near field mesh (red) the wing near field
mesh (blue) and the background mesh (black) made by a Cartesian block and
an O-mesh. 33

3.4 Application of the mesh deformation algorithm for a wing deflection case. . . . 33

vii

3.5 Zipper meshes are used to fill the gaps among overlapped meshes for force
integration. They are not employed during the flow solution. 35

3.6 Subset of the framework subroutines required for the computation of CFD
residuals (R) and functions of interest (f). 39

3.7 Derivative backpropagation chain. The modules represented here are the re-
verse counterparts of the modules shown in Fig. 3.6. The plus signs indicate
that the derivative seed should be accumulated from multiple sources. Sub-
scripts ‘w’, ‘f’, ‘c’, and ‘aero’ indicate that quantities refer to wing, fuselage,
collar, and flow conditions, respectively. 39

3.8 Transonic configuration used for wing translation study. The ywing design vari-
able controls the vertical displacement of the wing. 40

3.9 Drag variations due to the vertical translation of the wing of the transonic
airplane configuration of Fig. 3.12. The red arrows represent gradients. We
observe noise at small steps (on the right), but the gradients are still consistent
with the overall trend. 41

3.10 Effects of the CFD mesh refinement on the noise levels for the same wing
translation problem shown in Fig. 3.12. The noise levels are smaller when we
use finer versions of the CFD structured meshes. 41

3.11 Optimization path for the wing translation problem. The plot on the right is a
zoomed-in view showing the last iterations of the optimizer. The optimizer is
trapped in a valley caused by the noise, but it manages to improve the baseline
design. 42

3.12 Transonic configuration used to study wing translation. The design variable
∆xwing controls the horizontal displacement of the wing. 44

3.13 Variations in drag for different horizontal wing positions normalized by the
fuselage diameter (Dfuse). The right plot shows drag variations for small dis-
placements. The noise caused by changes in overset connectivity decreases as
the mesh is refined. 44

4.1 Wing FFD showing the control points (red dots), which are manipulated by
the twist and vertical displacement variables. 46

4.2 Pairs of points used to define thickness constraints. The distance between the
pair of points cannot decrease during the optimization. 47

4.3 Fuselage FFD showing the free control points as blue dots. The other control
points remain fixed to guarantee C1 continuity within the undeformed region. . 47

4.4 Structured surface meshes used for the volume mesh extrusion. The primary
component meshes (wing and fuselage) are shown in black, and the automati-
cally generated collar mesh is shown in red. 50

4.5 Wing-body junction flow patterns predicted by ADflow for the DLR-F6 con-
figuration. The baseline geometry shows separation on the junction trailing
edge (left), while the addition of the FX2B fairing removes it (right). This is
the same trend observed in DPW3. 50

4.6 Effect of grid refinement and turbulence model variant in the recirculation
bubble size. 52

viii

4.7 Drag convergence study for the DLR-F6 configurations. N represents the
number of cell in the CFD mesh. Blue colors refer to the baseline DLR-F6
configurations and red colors refer to the DLR-F6-FX2B configuration. 52

4.8 Effect of refinement of triangulated surface over CFD results. The coarse tri-
angularization is used for optimization. 53

4.9 Fairing-only optimization history. Some normal displacement design variables
went to the lower boundary of 0.04 m. 54

4.10 Optimized fairing for the fairing-only optimization (Problem F). 55
4.11 Wing-body junction flow before and after the fairing optimization (Problem F).

Red regions indicate reversed flow. The redesigned fairing reduces the recir-
culation bubble. 55

4.12 Comparison of lift and drag distributions between the baseline (B) and the
fairing-optimized configuration (F). 56

4.13 Relative computational time of the tasks performed during and optimization
iteration involving an adjoint solution. The average time of the iteration is of
85 seconds. 57

4.14 Progression of the optimized drag value due to the additional active design
variables. Drag decreases as we add more degrees of freedom to the optimization. 57

4.15 Rear views comparing the fairing sizes obtained for different optimizations.
The fairing gets smaller as the optimizer gets more control over the wing prop-
erties. 58

4.16 Contour plot showing the distance that the fuselage surface moved during op-
timization. The fuselage surface moves a relatively large amount when the
optimizer can only control the fairing. 58

4.17 Optimization histories for the F+T and F+T+S problems. The fairing design
variables do not reach the upper bound in either problem. 59

4.18 Comparison between lift and drag distributions for all fairing optimizations.
The inclusion of twist variables (T) allows the optimizer to achieve more effi-
cient lift distributions, which are closer to an elliptical one. 60

4.19 Pressure coefficient slices of all optimized configurations. The optimizer de-
signs wings with smoother pressure distributions as we activate wing shape
variables (S). The shock on the upper wing surface is also removed by the
shape variables. Even though Problems T+S and F+T+S have different de-
sign spaces, they show similar airfoils and pressure distributions since they
converged to practically the same wing design. 61

4.20 Wing-body junction trailing edge after every optimization problem. Red re-
gions indicate reversed flow. The redesigned fairings eliminate the recircu-
lation bubble in all problems. The wing shape variables achieve smoother
chordwise pressure distributions. 62

4.21 Comparison between the optimized configuration with and without fairing de-
sign variables. Optimization without the fairing design variables still shows
trailing edge separation region (red). 62

ix

4.22 Comparison between lift and drag distributions of the twist and shape opti-
mized configurations with (F+T+S) and without (T+S) fairing variables. The
resulting twist and airfoil distributions get progressively more similar as we
move towards the tip. The F+T+S configuration has a smaller drag in this
region as well, which leads to the improvement seen in Fig. 4.14. 63

4.23 Mesh refinement study for baseline (B) and optimized configurations (F and
F+T+S). Dashed lines represent continuum estimates. The optimized design
improvements are still present at finer mesh levels. 63

5.1 Baseline SBW configuration of the PADRI 2017 workshop. Views are not in
the same scale. 67

5.2 Structured surfaces meshes of the primary components of the aircraft. The O-
grids near intersections increase the cell density to facilitate the overset hole
cutting process. 69

5.3 Triangulated surfaces used for intersection detection and collar mesh generation. 69
5.4 FFD boxes of the primary components whose shape will be optimized. The

dots represent the FFD box control points. 70
5.5 Points of the wing (blue) and strut (red) where thickness constraints are en-

forced. The distances between the pair of points cannot go below their initial
value. 71

5.6 Optimization history of the SBW optimization. The drag decreases by 33
counts for the same lift coefficient. 72

5.7 Comparison of shock and pressure distributions between the baseline (left) and
optimized (right) designs. The strut is shown at a different scale. 73

5.8 Separation on the trailing edge of the wing-strut junction before (top) and after
(bottom) the optimization. 73

5.9 Spanwise distribution of lift, drag and twist for the baseline (dashed lines) and
optimized configuration (solid lines). The strut generates downward lift, and
the inboard region of the wing increases its lift distribution to compensate for
that, yielding an overall elliptical lift distribution. 74

5.10 Component-wise lift distribution. The lift is normalized by the CL constraint. . 74
5.11 Cross-sectional slices of the wing and strut and corresponding pressure distri-

butions for the baseline (dashed lines) and optimized (solid lines) configurations. 75
5.12 Cross-sectional slices of the vertical segment of the strut for the baseline (dashed

lines) and optimized (solid lines) configurations. 76
5.13 Optimization history of the SBW optimization for the PADRI 2017 guidelines.

The drag decreases by 14 counts while maintaining the same lift coefficient of
the baseline configuration (red line). 77

5.14 Discrepancies between the CFD surface nodes of the baseline (black) and op-
timized (red) configurations only occur on the lower surface of the wing and
on the strut surface within the specified spanwise range. 78

5.15 Comparison of shock waves between the baseline (left) and optimized (right)
designs for the PADRI optimization case. Shocks still remain outside of the
optimized region. 78

x

5.16 Rear view of the wing-strut intersection showing separation regions (blue).
The optimizer manages to remove the trailing edge separation only within the
spanwise range where the design variables are active. 78

5.17 Comparison among the cross-sectional slices of the wing and strut and cor-
responding pressure distributions for the baseline configuration (red dashed
lines), the fully optimized configuration (red solid lines), and the optimized
configuration for the PADRI guidelines (black). The optimized shape for the
PADRI 2017 case has more twist to compensate the fixed twist angles of the
wing and the remainder of the strut. 79

6.1 Execution order of the MACH framework modules during each optimization
iteration (black lines) and summary of the modifications done to these modules
as part of this thesis (in red). The dashed lines indicate processes that are only
executed in the initialization step of the optimization. 84

6.2 Possible applications for the component-based parametrization technique de-
veloped in this thesis. 86

A.1 Meshes marched with different splay factors. The red line is the baseline curve
for the marching process. 96

A.2 The use of blending factor (ν = 0.5) avoids highly skewed cells where guide
curves are oblique to the intersection line. 98

xi

LIST OF TABLES

4.1 DLR-F6 aerodynamic shape optimization problem. 46
4.2 Identification tags for each optimization problem. 48
4.3 Inputs required by pySurf; these are generated by ICEM CFD using the origi-

nal IGES representation of the DLR-F6 model. 48
4.4 Mesh levels used for drag convergence study. The maximum y+ values are

computed based on the converged CFD results. 51
4.5 Aerodynamic coefficients obtained for each optimization. 57

5.1 Geometric characteristics and flight conditions used for the baseline SBW con-
figuration analysis. 68

5.2 SBW aerodynamic shape optimization problem. 70
5.3 SBW aerodynamic shape optimization problem after PADRI 2017 guidelines. . 77

xii

LIST OF ABBREVIATIONS

AD algorithmic differentiation

ADT alternating digital tree

API application programming interface

ASO aerodynamic shape optimization

BLI boundary layer ingestion

CAD computer aided design

CDGT conceptual design geometry tools

CFD computational fluid dynamics

CRM common research model

DPW3 Third Drag Prediction Workshop

DPW6 Sixth Drag Prediction Workshop

FFD free form deformation

IDW inverse distance weighting

IHC implicit hole cutting

LAPACK linear algebra package

MACH multidisciplinary design optimization of aircraft configurations with high fidelity

NURBS non uniform rational basis splines

OML outer mold line

PADRI Platform for Aircraft Drag Reduction Innovation

PDE partial differential equations

QCR quadratic constitutive relation

xiii

RANS Reynolds-averaged Navier–Stokes

SA Spalart–Allmaras

SNOPT Sparse Nonlinear Optimizer

SBW strut-braced wing

SUGAR Subsonic Ultra-Green Aircraft Research

TBW truss-braced wing

VLM vortex-lattice method

XDSM extended design structure matrix

xiv

ABSTRACT

Advances in computational power allow the increase in the fidelity level of analysis

tools used in conceptual aircraft design and optimization. These tools not only give more

accurate assessments of aircraft efficiency, but also provide insights to improve the perfor-

mance of next-generation aircraft. Aerodynamic shape optimization involves the inclusion

of aerodynamic analysis tools in optimization frameworks to maximize the aerodynamic

efficiency of an aircraft configuration via modifications of its outer mold line.

When using CFD-based aerodynamic shape optimization, generating high-quality struc-

tured meshes for complex aircraft configurations becomes challenging, especially near

junctions. Furthermore, mesh deformation procedures frequently generate negative volume

cells when applied to these structured meshes during optimization. Complex geometries

can be accurately modeled using overset meshes, whereby multiple high-quality structured

meshes corresponding to different aircraft components overlap to model the complete air-

craft configuration. However, from the standpoint of geometry manipulation, most methods

operate on the entire geometry rather than on separate components, which diminishes the

advantages of overset meshes.

Tracking intersections among multiple components is a key challenge in the implemen-

tation of component-based geometry manipulation methods. The mesh nodes should also

be updated in accordance to the intersection curves.

This thesis addresses this issue by introducing of a geometry module that operates on

individual components and uses triangulated surfaces to automatically compute intersec-

tions during optimization. A modified hyperbolic mesh marching algorithm is used to

xv

regenerate the overset meshes near intersections. The reverse-mode automatic differen-

tiation is used to compute partial derivatives across this geometry module, so that it fits

into an optimization framework that uses a hybrid adjoint method (ADjoint) to efficiently

compute gradients for a large number of design variables. Particularities of the automatic

differentiation of the geometry module are detailed in this thesis.

By using these automatically updated meshes and the corresponding derivatives, the

aerodynamic shape of the DLR-F6 geometry is optimized while allowing changes in the

wing-fuselage intersection. Sixteen design variables control the fuselage shape and 128

design variables determine the wing surface. Under transonic flight conditions, the opti-

mization reduces drag by 16 counts (5%) compared with the baseline design.

This approach is also used to minimize drag of the PADRI 2017 strut-braced wing

benchmark for a fixed lift constraint at transonic flight conditions. The drag of the opti-

mized configuration is 15% lower than the baseline due to reduction of shocks and sep-

aration in the wing-strut junction region. This result is an example where high-fidelity

modeling is required to quantify the benefits of a new aircraft configuration and address

potential issues during the conceptual design.

The methodologies developed in this work give additional flexibility for geometry and

mesh manipulation tools used in aerodynamic shape optimization frameworks. This ex-

tends the applicability of design optimization tools to provide insights to more complex

cases involving multiple components, including unconventional aircraft configurations.

xvi

CHAPTER 1

Introduction

Fuel-burn reduction is one of the main drivers in aircraft design due to environmental and
economical reasons. Improvements in computational power allow designers to increase
the fidelity level of aerodynamic and structural analysis used during aircraft conceptual
design. These tools can be assembled in optimization frameworks to reduce fuel burn and
to increase the profitability of future aircraft designs.

The use of high-fidelity analysis tools is also paramount for the design of uncon-
ventional aircraft configurations. An important feature of these tools is that they simu-
late additional phenomena compared to low-fidelity tools. For instance, the vortex-lattice
method (VLM) cannot capture shock waves nor flow separation [1], while these features
can be quantified in Reynolds-averaged Navier–Stokes (RANS) simulations. The results
of the former can be corrected via regressions based on experiments and historical data for
conceptual design applications. However, the lack of information for unconventional air-
craft prevents the use of this approach for this type of aircraft. In this situation, the use of
high-fidelity analysis poses as a cost-effective solution to gather data with enough accuracy
for conceptual design purposes.

High-fidelity analysis also considers the entire outer-mold line of the airplane instead of
the simplified representations used in low-fidelity tools. For instance, wings are condensed
to a single surface following its mean camber line for the VLM, while the actual wing
shape (upper surface, lower surface, and trailing edge) can be modeled in RANS analysis.
As shapes become more detailed, we need more sophisticated methods to parametrize and
manipulate these shapes.

Multiple examples of Euler- and RANS-based design optimizations are reported in the
literature. These techniques are usually used to optimize relatively simple geometries, such
as airfoils [2–4] or isolated wings [5–8].

For complex configurations, the design variables usually operate on a limited portion
of the geometry [8–10]. For example, Merle et al. [10] optimized a conventional aircraft

1

configuration subject to trim constraints. Even though they simulated the aerodynamics of
the entire aircraft configuration (wing, fuselage, tail, nacelle, and pylon), the shape design
variables only modified the wing. In addition, they had to damp wing shape deformations
near the wing-fuselage intersection to avoid discontinuities in the surface mesh. These
simplifying assumptions limited the space of possible geometries and design variables,
such as the wing mounting angle [9].

Ivaldi et al. [11] optimized a truss-braced wing (TBW) configuration with RANS anal-
ysis. This is a relatively complex configuration due to the presence of interconnected com-
ponents. The limitations of the geometry manipulation tool used in this work prevented the
definition of design variables near junctions. Therefore, the optimized configuration still
showed shock waves and flow separation in these regions (Fig. 1.1).

Figure 1.1: Comparison of shock waves (top) and trailing edge separation (bottom) be-
tween the baseline and optimized configurations of the TBW optimization using multi-
block structured meshes. The previous optimization could not completely remove shocks
and separation near junctions.

The challenges that hindered the optimizations discussed above are twofold: first, the
geometry manipulation tools operated on the entire configuration at once instead of us-
ing component subdivision information to simplify the definition of the design variables.
Second, the optimization frameworks could not track changes in the intersections among
components to appropriately update the meshes used for aerodynamic analysis. Therefore,
the potential of optimization methodologies to gain design insights was not fully explored,
especially regarding junction design and simultaneous optimization of multiple compo-
nents.

This impacts the design optimization of unconventional aircraft designs that rely on ef-
ficient interactions among multiple components. For instance, the aerodynamic efficiency
of the high-aspect ratio wing of a TBW configuration may be hampered by the interfer-
ence drag caused by the additional components. The tail-cone thruster configuration also

2

requires synergy among its components [12–14], since the position of the vertical tail and
the rear fuselage shape interfere on the inlet properties of the rear fan.

This thesis focuses on expanding current geometry and mesh manipulation tools to fa-
cilitate the use of aerodynamic shape optimization (ASO) methodologies for complex con-
figurations. This includes tracking intersections among components within the optimiza-
tion process and updating the meshes for the new shape. This thesis also demonstrates that
these methods can be differentiated and integrated in gradient-based optimization frame-
works.

1.1 High-fidelity aircraft design optimization

Aircraft design is a multidisciplinary problem with a large number of degrees of freedom.
Covering this design space solely based on experimental and flight data would be extremely
expensive. Therefore, aircraft designers resort to computational tools to prospect most of
the design space and narrow down a handful of configurations for posterior design phases,
while experiments are used to complement and verify results from the computational frame-
work [15]. Once the execution of these computational tools are streamlined for automatic
evaluation of multiple aircraft designs, optimization becomes possible.

Optimization algorithms can be classified in two groups: gradient-free and gradient-
based algorithms. Zingg et al. [16] and Yu et al. [17] compare these two approaches for
aerodynamic shape optimization applications. Gradient-free optimization algorithms need
access only to the inputs and outputs of the design functions (objectives and constraints), so
the analysis framework can be used as is, without any additional implementation. Examples
of gradient-free algorithms are genetic algorithms [18], particle swarm optimization [19],
and the Nelder-Mead simplex [20]. However, the number of function evaluations necessary
to converge an optimization problem to a given tolerance dramatically increases with the
number of design variables [21], making this approach unfeasible for cases with expensive
function evaluations and more than few dozen design variables.

Gradient-based optimization algorithms use gradients of the functions of interest to di-
rect the search for the optimum design point [22]. The convergence rate of these algorithms
has a weaker dependence on the number of design variables, making them suitable for op-
timization problems with hundreds of design variables, which is usually the case for ASO
problems. On the other hand, the efficient computation of gradients is not a straightfor-
ward task, and it usually requires additional implementation efforts. Peter and Dwight [23]
provide a detailed review of gradient computation methods applied to ASO.

Finite difference is the simplest method to compute sensitivities since it requires no

3

modification to the analysis code used to compute the functions of interest. However, the
step size for best accuracy is problem-dependent and also bounded by truncation and sub-
tractive cancellation errors [24]. The complex-step method [25] overcomes the subtractive
cancellation issues, thus giving machine-precision-accurate derivatives, but it suffers from
the fact that the number of function evaluations required to compute gradients scales lin-
early with the number of design variables, just like finite difference.

Algorithmic differentiation (AD) is an alternative method to compute gradients in which
the chain rule of derivatives is applied line by line of the analysis code [24], either via oper-
ator overloading or source code transformation. The analysis code can be differentiated in
two modes: the forward AD mode, in which the chain rule products are performed from in-
puts to outputs, and the reverse AD mode, in which the chain rule products are constructed
from outputs to inputs.

Both methods allow the computation of the Jacobian matrix that correlates inputs (de-
sign variables) and outputs (functions of interest) of the analysis code. However, each call
to the forward AD code provides a column of the Jacobian matrix, while a call to the re-
verse AD code provides a row of the Jacobian matrix. Thus, the number of total calls of
the forward AD code to assemble the full Jacobian matrix is equal to the number of design
variables (similarly to finite difference and complex-step), while the total number of calls
for the reverse AD code is equal to the number of functions of interest [26]. Since the num-
ber of design variables in ASO problems is higher than the number of functions of interest,
the reverse AD mode is suitable for efficient gradient computation [23].

The reverse mode AD requires the storage of intermediate values of variables used
throughout the code. For instance, in the case of iterative solvers used in computational
fluid dynamics (CFD), this amounts to storing the flow state variables of every iteration,
leading to prohibitive memory requirements. The discrete adjoint method circumvents this
issue since it allows derivative computations across the CFD module based solely on the
converged flow state variables.

The discrete adjoint equation is a linear system whose elements are partial derivatives
of the CFD residuals and function of interest with respect to the flow state variables. These
partial derivatives can be computed using reverse AD, and only the residual evaluation
function of the CFD solver needs to be differentiated, leaving the iterative methods outside
of the reverse AD chain. This combination of reverse AD and the discrete adjoint method
is called the hybrid adjoint method (or ADjoint) [27]. The implementation of the hybrid
adjoint method will be further discussed in Chapter 3.

Multiple applications of the hybrid adjoint method are present in the literature for dif-
ferent fidelity levels of aerodynamic and structural analysis. Elham and van Tooren [28]

4

use the hybrid adjoint method for a VLM code. Mader et al. [27] describe the hybrid ad-
joint method applied to the Euler equations. Brezillon and Dwight [29] use the adjoint
formulation for a RANS solver, but turbulence model variables were assumed as constants
in the differentiation process since some partial derivatives were computed by hand or with
finite-differences. Lyu et al. [30] include the turbulence model in the AD process to use the
hybrid adjoint method with RANS equations while including turbulence model sensitivity.
Dumont and Méheut [8] show another example of discrete adjoint application to RANS
equations in which they use a time marching scheme to converge the adjoint system.

Burdette [31] demonstrated that an aircraft optimized based on Euler equations and
semi-empirical regressions for viscous drag estimation performs poorly when analyzed
with RANS equations, justifying the efforts in increasing the fidelity level of the analy-
sis code used in aircraft design optimization. This is specially important to obtain more
accurate performance estimates of unconventional aircraft designs, provided there are ap-
propriate tools to represent and manipulate their geometries and meshes while accounting
for CFD requirements.

1.2 Aerodynamic shape optimization with overset meshes

CFD requires the discretization of the flow domain into meshes for aerodynamic analysis.
Meshes can be classified into two main groups: structured meshes and unstructured meshes.

Structured multiblock meshes are more efficient from the computational point of view
since the memory layout already determines the cell connectivity, facilitating the imple-
mentation of logical loops [32]. Multiblock meshes can be easily generated for simple
geometries but are cumbersome for models with multiple complex features. Mesh topol-
ogy restrictions may lead to highly skewed cells, as shown in Fig. 1.2 for the case of a
wing-strut junction of the TBW configuration. Furthermore, mesh deformation procedures
used during the optimization generally reduce mesh quality, severely limiting the range of
possible deformations if the optimization starts with an already low quality mesh. Low
quality meshes are also prone to the generation of negative volume cells during the mesh
deformation process.

The generation of unstructured meshes, on the other hand, is easier to automate even for
complex geometries [33]. Nevertheless, the drawback in computational performance be-
comes significant for ASO applications, as they require a large number of CFD evaluations.
Drag prediction benchmarks for CFD simulations also show that unstructured meshes need
higher resolution (from 2 to 4 times more elements) than an equivalent structured mesh to
achieve the same discretization error [34, 35].

5

Figure 1.2: Skewed cells on the surface mesh (black) and volume mesh (red) of a truss-
braced wing configuration using a patched multiblock mesh.

CFD using overset meshes [36] has the potential to overcome this problem because it
gives more flexibility to the generation of structured meshes. Overset CFD solvers allow
multiple meshes to overlap in space, and on every CFD iteration they interpolate flow state
variables among overlapping meshes.

Complex configurations can be subdivided into components whose meshes can be in-
dependently generated as there are no boundary-matching restrictions. These dedicated
meshes can also be automatically generated by using, for instance, hyperbolic mesh gener-
ation algorithms [37, 38]. In addition to facilitating mesh generation, another advantage of
the overset meshes is that, because they are locally composed of multiple structured blocks,
it retains the advantages of this mesh type, such as high-quality cells and computational ef-
ficiency, while having a globally unstructured arrangement.

The cells of an overset CFD mesh assume different roles based on how their flow state
variables are enforced:

Compute Cells: Active cells that are relevant to the solution as they represent the volume.
The PDEs are enforced on these cells.

Blanked Cells: Non-representative cells that may be inside bodies or overlapped by bet-
ter quality cells. The flow state variables within these cells are not relevant for the
residual computation.

Interpolated (Receiver) Cells: Cells that will interpolate flow state variables from com-
pute cells of other overlapping meshes on every iteration.

The process of classifying cells within these categories is called hole cutting. This can
be done manually, but it is essential to have an automated hole cutting procedure for opti-
mizations with overset meshes since the overlapped regions may change along the design

6

iterations. The implicit hole cutting (IHC) technique [39] is one of such automated ways
of overset connectivity generation. This methodology preserves smaller cells as compute
cells, which are usually close to viscous walls, while larger cells become either interpolate
cells or blanked cells. Figure 1.3 shows an example of IHC for a 2D cylinder mesh.

(a) Overlapping meshes. (b) Hole cutting of the background mesh.

(c) Hole cutting of the near field mesh. (d) Compute cells of both meshes.

Figure 1.3: Hole cutting of a cylinder mesh overlapping a Cartesian background mesh.

Special attention is necessary when modeling intersections with overset meshes. A
valid cell for CFD purposes should be completely inside the flow domain. In other words,
if a cell is partially inside a wall, it cannot be classified as a compute cell.

If two intersecting meshes are arbitrarily overlapped, cells from either mesh may be
invalid at the intersection, since they may be partially inside the walls of the opposing
component (Fig. 1.4). Therefore, an additional overlapping mesh should be introduced

7

specifically at the junction, called collar mesh, to guarantee that the mesh edges represent
the intersection curve after the hole cutting process [40].

(a) Surface meshes of intersecting
components.

(b) Gap caused by the removal of
partially covered cells.

(c) Collar mesh fills the gap with
valid cells.

Figure 1.4: Collar meshes are necessary to ensure valid cells along intersections.

Overset meshes have already been used in ASO applications. Liao and Tsai [41] use
overset meshes for Euler-based optimization of airfoils using the continuous adjoint ap-
proach. Lee and Kim [42] implement the discrete adjoint method for an Euler-based CFD
solver and optimized the wing of a wing-body aircraft configuration using overset meshes.
Lee et al. [43] later extend their methodology to the RANS equations and the k-ω tur-
bulence model to minimize distortion in a boundary layer ingestion (BLI) engine inlet.
Kenway et al. [44] use overset meshes and the hybrid adjoint method to optimize the wing
of the common research model (CRM) aircraft configuration while using RANS analysis
with the Spalart–Allmaras (SA) turbulence model.

The impact of changing overset connectivities during the ASO process is not completely
described in the literature. Dynamic overset meshes have been used for unsteady aero-
dynamic and hydrodynamic simulations with no associated optimizations [45–47]. Con-
versely, the mesh deformation approach used in the optimizations by Lee et al. [43] and
Kenway et al. [44] simultaneously deform all overset meshes, what avoids relative changes
in interpolation stencils. Changes in overset connectivities are inevitable if components are
independently manipulated. In this thesis, the outcomes of variable overset connectivities
on the smoothness of functions of interest and their associated gradients is investigated.

In addition, the cited ASO applications with overset meshes did not explore the opti-
mization of intersection regions nor the simultaneous optimization of multiple components
of a complex configuration. The main reason is that the geometry and mesh manipulation
methods used in these optimization frameworks could not track changes in the intersection
line to update collar meshes. This thesis proposes solutions to these issues to unlock the po-
tential of overset meshes for optimizations where geometry components may significantly

8

shift relative to each other, such as when optimizing the location of the wing-fuselage inter-
section for a conventional airplane, or when simultaneously modifying components during
an optimization, as discussed in Chapter 2.

1.3 Geometry and mesh manipulation methods

The optimization examples mentioned in Sec. 1.1 and Sec. 1.2 need geometry manipu-
lation and mesh manipulation modules in their framework. The geometry manipulation
module should generate or modify the aircraft surface representation based on geometric
design variables, while the mesh manipulation module receives the updated surface from
the geometry module and then modifies the mesh used for CFD analysis.

There are multiple geometry manipulation methods used in ASO. In this section, tech-
niques based on computer aided design (CAD), conceptual design geometry tools (CDGT),
and free form deformation (FFD) are discussed. The survey by Samareh [48] has a more
thorough review of other geometry manipulation methods.

CAD tools are commonly used during the product development framework in the aerospace
industry. These packages include not only the surface definition, but also the procedu-
ral steps to construct the geometry such as scaling, intersecting, trimming, among others.
Therefore, it would make sense to use the same tool to manipulate geometries during the
optimization process. However, since most CAD tools are commercial software, their in-
tegration into optimization frameworks is not entirely flexible, since it depends on the
application programming interface (API) exposed by the CAD developer. Furthermore,
most CAD packages do not compute the derivatives needed by gradient-based optimizers,
and users do not have access to the source code to generate AD versions [48].

A recently proposed solution is to base the reference geometry on a parametrized CAD
model and use geometry surrogate models to replace the CAD engine in the optimization
framework [49]. Provided the surrogate model is smooth and differentiable, this approach
provides analytical derivatives across the geometry manipulation module. Conversely, a
continuous surrogate model may smooth sharp features of the baseline geometry, such
as trailing edges, leading to an inaccurate representation. In addition, a large number of
training points may be necessary to obtain a valid surrogate for cases with many design
variables and complex geometries. To avoid loss of surface information, the user should
also be careful when selecting which surface features from the CAD model are exposed to
the surrogate model training.

Importing a geometry from a different CAD tool is not a seamless process since CAD
tools may be built over different geometry kernels [50]. This causes discrepancies in the

9

geometry representation due to the different mathematical formulations and tolerances,
especially regarding the definition of intersections curves. Even though B-spline patches
have a parametric description, intersections among B-spline patches do not, and the approx-
imations used to describe the intersection curve are different for each CAD software. This
results in gaps between intersecting components, hindering the use of automated mesh gen-
eration tools [40]. The imported geometry frequently needs to be manually fixed (“healed”)
to get a closed surface, for instance, by recomputing intersection curves and redefining cer-
tain B-spline patches.

Manufacturing requirements are the main drivers for CAD software development, and
these are usually different from mesh generation requirements [51]. For instance, the pres-
ence of singularities in B-spline patches is not an issue for manufacturing purposes, but
this impairs the use of automatic mesh generation tools. Acceptable tolerances for manu-
facturing purposes are usually two orders of magnitude above the height of the initial layer
of wall cells used for RANS analysis. These discrepancies cause issues for a direct inte-
gration between a CAD-based geometry manipulation module and a mesh manipulation
module within an optimization framework.

CDGT are an alternative to quickly generate geometries during the conceptual air-
craft design studies [50]. These tools use analytical surface descriptions, such as B-spline
patches, to build predefined shapes common in aircraft design, such as lifting surfaces and
fuselages. OpenVSP [52] and GeoMACH [53] are examples of such tools.

From a designer’s perspective, the use of predefined shapes facilitate the geometry gen-
eration procedure compared to a full CAD model since the former has more specific inter-
faces suited for conceptual-aircraft-design parameters. It is also easier to ensure that the
overall geometry is composed by closed surfaces since the components are always built
upon these predefined shapes.

Even though some CDGT provide analytical derivatives (such as GeoMACH), their ap-
plication in optimization frameworks can be hindered by the loss of generality regarding the
creation and manipulation of arbitrary shapes. As a consequence, it is challenging to import
externally provided geometries. A parameter fitting process, such as least-squares approx-
imation, is necessary to reconstruct the external geometry using the predefined shapes of
the CDGT [54]. In addition, the definition of design variables may be limited by the fixed
description of the predefined shapes [11].

Another approach to geometry manipulation is by deforming a baseline geometry in-
stead of regenerating the entire geometry for every design point. The FFD is a technique
commonly used in computer graphics for soft object animation [48, 55].

The first step is the generation a box of control points that encompasses the surface

10

that should be manipulated. This FFD box defines a R3 → R3 mapping from physical to
parametric coordinates (u, v, w) within this volume. Then, the physical coordinates of each
surface point inside the FFD box are used in an inverse mapping procedure to compute the
corresponding parametric coordinates.

Once the physical coordinates of the FFD control points are modified, the parametric
coordinates of the embedded surface points are used to recompute their physical coordi-
nates for the deformed configuration. Thus, the position of the FFD control points become
the design variables of the optimization problem.

One important feature of the FFD method is that its is agnostic to the source of the
surface points. It also requires no information regarding connectivities among the surface
points. Therefore, the same FFD can be used to consistently deform multiple representa-
tions of the same component, such as a meshes used for aerodynamic analysis and another
for structural analysis [48].

This also facilitates the use of externally provided geometries [55]. For cases in which
just a CFD mesh is available, the surface points can be directly embedded in the FFD. There
is no need to reverse-engineer a CAD model that fits these mesh points.

Another advantage of the FFD approach for shape optimization is the availability of
analytical derivatives. Most FFD applications use analytically differentiable mappings,
such as trivariate B-splines or non uniform rational basis splines (NURBS), facilitating the
propagation of derivatives across the geometry manipulation module.

Nevertheless, this method operates simultaneously on the entire geometry, thereby ig-
noring valuable information on component subdivision. For instance, in a wing-fuselage
configuration, using FFD to translate the wing is impossible without changing the fuselage
shape embedded in the same FFD block.

Even if the wing and body are embedded in separate FFD blocks, additional nontrivial
steps are required to track changes in intersection curves. Since FFDs manipulate only
surface points, they do not carry any information regarding the surface description itself,
what is necessary for intersection computation.

In this thesis, this issue is circumvented by adding another module, called pySurf, into
the optimization chain that uses triangulated surfaces to recompute intersections during the
optimization cycle. The points of the triangulated surfaces are still manipulated by FFDs,
but pySurf retains the connectivity information to recreate the surface description. This
process is detailed in Chapter 2.

11

1.4 Aerodynamic shape optimization of junctions

Koc et al. [56] show one of the first attempts to optimize junctions of tridimensional aircraft
geometries. They use an Euler-based CFD solver for unstructured meshes to optimize the
wing-pylon junction of the DLR-F6 configuration flying at Mach 0.74. The optimization
modified the pylon cross section and the lower surface of the wing to reduce the peak Mach
number on the wing-pylon junction and reduce drag. They use the surface mesh deforma-
tion procedure developed by Kim and Nakahashi [57]. In this approach, they deform the
pylon mesh and then recompute the wing-pylon intersection line using the surface cells of
the CFD mesh. Once they have the new intersection curve, they use a mesh deformation
algorithm based on spring analogy to update the surface meshes using the new intersection
curve as a boundary condition.

The displaced surface mesh nodes are not necessary on the aircraft outer mold line
(OML), since the displacements are based solely on Hooke’s Law. Therefore, they em-
ploy a surface reconstruction algorithm in which they use the undeformed surface mesh
to define a quadratic approximation of the original surface, and the deformed mesh nodes
are then projected onto this quadratic approximation. A problem arises when the design
variables expose new parts of the pylon, for instance, by moving it downwards with re-
spect to the wing. In this situation, they linearly extrapolate the external edges of the pylon
mesh to compute the intersection curve with the wing. The extrapolated edges tend to show
oscillations among them, and an additional smoothing process is necessary before the in-
tersection computation. Since neither the user nor the design variables have control over
the extrapolated shape, this approach is not appropriate for cases with significant geometric
variation.

Brezillon and Dwight [29] optimized the wing shape and the body shape of the DLR-
F6 as two separate problems using unstructured meshes in a RANS solver. They use FFDs
to displace control points of the CAD representation of the wing and the body. Then a
CAD engine recomputes the wing-body intersection curve and a meshing tool regenerates
the entire CFD mesh (including the volume nodes) based on the new surface configura-
tion. This process is repeated for every design evaluation. Even though they use the adjoint
method to compute sensitivities of the functions of interest with respect to the mesh nodes
(∂f/∂rvol), they use finite-differences to compute sensitivities of the mesh nodes with re-
spect to the FFD design variables (∂rvol/∂X) to complete the chain rule. Consequently, for
n design variables, they would have to regenerate n meshes for each sensitivity evaluation.
Each mesh regeneration process takes on the order of minutes, what makes this method
unfeasible for problems with hundreds of design variables.

12

Xu et al. [58] optimized the junction of the DLR-F6 configuration also using a RANS
solver for unstructured meshes. At the beginning of the optimization, they compute the
parametric coordinates of the surface nodes of the CFD mesh on the B-spline patches that
compose the geometry. Later, they use the control points of the B-spline patch of the body
as design variables to modify the surface shape. Once the B-spline patch is deformed,
they recompute the parametric coordinates of the wing-body intersection nodes for the
deformed shape. This variation in parametric coordinates is propagated to the surface nodes
surrounding the intersection via a inverse distance weighting (IDW) method. Once they
have the deformed position of the surface nodes, they use mesh deformation methods to
displace the volume nodes, thus avoiding the volume mesh regeneration step employed by
Brezillon and Dwight [29]. Nevertheless, derivatives across the intersection computation
and mesh deformation modules are still computed by finite-differences. Although this
method uses mesh deformation rather than mesh regeneration, its cost still scales with the
number of design variables.

Other recent work have studied the feasibility of differentiating CAD software with
AD. Mykhaskiv et al. [59] use the same IDW mesh deformation approach from Xu et al.
[58] described in the previous paragraph, but they include OpenCascade, which is an open
source CAD kernel, to handle the geometry manipulation and intersection computation.
Then they use ADOL-C [60] to differentiate OpenCascade using operator overloading.
This allows the inclusion of the CAD engine directly into the optimization framework. As
an example, they optimize the wing-body junction of the CRM configuration using three
control points as design variables and an Euler-based CFD solver.

The aerospace community is actively pursuing solutions to add more flexibility to the
geometry and mesh manipulation tools used in ASO frameworks, with junction optimiza-
tion being one of the most direct application of these techniques. This thesis contributes to
this line of research by developing techniques to automate the handling of overset meshes,
collar mesh generation, and triangulated surface intersections embedded in a fully differ-
entiable ASO framework.

1.5 Thesis objectives

The main objective of this thesis is to show that component-based parametrization allied to
overset meshes can extend the flexibility of ASO frameworks. The following intermediate
objectives were outlined to achieve this goal:

1. Develop a collar mesh generation module that automatically detects intersection
curves among primary components and use these curves as starting features for the

13

collar mesh generation. This module should be differentiable to be included in the
reverse AD chain of the optimization framework.

2. Implement a component-based geometry manipulation module that allows indepen-
dent parametrization of the aircraft component and embed it in an existing ASO
framework.

3. Address the outcomes of allowing overset connectivity updates in aerodynamic shape
optimization problems, since the independent manipulations of the components leads
to changes in overlapped regions.

4. Demonstrate the capabilities of the framework for aerodynamic shape optimization
of complex configurations in two test cases: the design of the wing-body junction
of a conventional aircraft configuration and the optimization of a strut-braced wing
(SBW) geometry.

1.6 Thesis outline

To achieve the objective stated above, the multidisciplinary design optimization of aircraft
configurations with high fidelity (MACH) optimization framework [61] is expanded by the
addition of the pySurf module, which is dedicated to component-based geometry and mesh
manipulation.

The methodology to allow component-based shape optimization is discussed in Chap-
ter 2, addressing objective 1. This includes the introduction of the pySurf module and its
capabilities for intersection computation and collar mesh generation. The reverse AD is
selectively applied to the subroutines of the pySurf module to obtain an efficient code, and
these details are also discussed in this chapter.

The next step is the inclusion of the pySurf module into the MACH optimization frame-
work to accomplish objective 2. Chapter 3 describes the framework modules and the inter-
actions among them. This chapter also discusses how derivatives are computed within this
framework using AD techniques and the hybrid adjoint method. An univariate optimiza-
tion problem is defined to test the framework and also to address objective 3. This problem
allows us to quantify the noise in the CFD results caused by changes in overset connectivi-
ties and it also shows the relation between mesh refinement and the noise magnitude. This
problem is finally used to verify if the optimizer manages to improve the design despite the
noise in the functions of interest.

14

Next, the optimization framework capabilities is accessed in two ASO problems involv-
ing junction design. Chapter 4 brings an application of the proposed methodology in the
design of the wing-body junction of a conventional aircraft configuration flying at transonic
conditions, while Chapter 5 shows the ASO of a SBW configuration using the optimization
framework. The effectiveness of the methodology in removing shock and flow separation
in junction regions is demonstrated, achieving objective 4 of this thesis. Design insights
obtained by comparing the baseline and optimized designs are also discussed.

Finally, the main results and contributions of this thesis are summarized in Chapter 6.
This chapter also suggests possible future work regarding the improvement of the proposed
methodology and also its application in challenging optimization problems that will benefit
from the new geometry manipulation module.

15

CHAPTER 2

Component-based parametrization

As mentioned in the introduction, our aim is to fully exploit the overset mesh capabilities
by extending the component-based approach used in overset CFD solvers to the geome-
try manipulation module within the optimization framework. Consequently, we also need
to automatically track changes in junctions among these primary components during opti-
mization to properly modify the collar meshes.

Automatically producing a collar mesh between two components is a multifaceted chal-
lenge: We must find the intersection curve, march a surface mesh on the surfaces of both
components, and project the mesh nodes back onto the surfaces during the marching pro-
cess. Furthermore, we need the partial derivatives of the mesh nodes with respect to the
design variables to enable gradient-based aerodynamic shape optimization with the adjoint
method. For this purpose, the entire process of finding the intersection curve and producing
a collar mesh must be differentiated.

We identified and implemented the necessary operations to automatically generate col-
lar meshes for each design evaluation, as explained in Sec. 2.1. Then we use reverse mode
AD to efficiently compute the derivatives of the generated mesh points with respect to the
design variables. The derivative computation procedure is detailed in Sec. 2.4.

2.1 Collar mesh generation overview

To address the difficulty of automatically creating collar meshes, we developed a new ge-
ometry module called pySurf that performs the following sequence of operations:

1. For each primary component, receive triangulated surfaces that represent the full
vehicle geometry. pySurf may either read these surfaces from a file at the beginning
of the optimization or, at optimization runtime, receive updated triangulated surfaces
provided by a separate geometry-manipulation module, such as FFDs.

16

2. Compute the intersections between the triangulated surfaces of the primary compo-
nents.

3. Automatically generate surface collar meshes for the intersections. These meshes
should be structured to be compatible with the CFD solver used in this work.

These operations are represented in steps a–c of Fig. 2.1. A separate module called
pyHyp generates the volume mesh (step d in Fig. 2.1) and is introduced in Sec. 3.3. The
resolution requirements for the triangulated surface are discussed in Chapter 3 and Sec. 4.3.

(a) Triangulated surfaces (b) Intersection computation

(c) Surface mesh marching (d) Volume mesh extrusion

Figure 2.1: Steps for generating collar mesh for a wing-fuselage junction. pySurf is re-
sponsible for steps a–c. The mesh extrusion module used in step d (pyHyp) is covered in
Sec. 3.3.

2.2 Intersection computation

Once pySurf receives the triangulated surfaces, it has to compute intersections among them.
The triangulated surface of a primary component may have tens of thousand elements.

17

Applying triangle-triangle intersection algorithms directly to all possible triangle pairs is
costly. Therefore, the intersection computation in pySurf is performed in three steps to
avoid unnecessary triangle-triangle intersection verification. The first two steps filter which
triangles are likely to intersect by using methods based on Cartesian bounding boxes and
digital tree searches, and we only use the triangle-triangle intersection algorithm in the
third step.

Here we describe the steps to compute intersections between two components (for in-
stance, component A and component B), since this process is repeated for every pair of
primary components. First, we compute Cartesian bounding boxes for the two primary
components, then we determine the intersection between these bounding boxes. Next we
flag the triangles from both components that belong to the bounding box intersection re-
gion. This step is relatively quick since we just need to compare maximum and minimum
values of nodal coordinates against the Cartesian box bounds to flag the triangles.

In the second step, we take the flagged triangles of the component that has fewer flagged
triangles (for example, component A) and build an alternating digital tree (ADT) [62] to
minimize the tree complexity. This tree structure groups discrete elements based on their
spatial location so we can efficiently find which pairs of elements are likely to intersect. We
then take the bounding boxes of every flagged triangle of component B and perform ADT
searches to find which flagged triangles from component A are close to it. At the end of
this step, every flagged triangle of component B has a corresponding list of triangles from
component A for the intersection search.

The third step consists of using fast pairwise triangle-triangle intersection algorithms [63]
on the candidate elements given by the ADT searches to identify the two points that deter-
mine intersection line between pair of triangles. We then concatenate the lines given by the
pairwise triangle-triangle intersections to determine the entire intersection curve.

An arbitrary number of primary components can be intersected using this method. Each
pairwise component intersection may have multiple intersection curves that could be se-
lected as possible starting curves for the collar mesh generation detailed in the next section.

We also added features dedicated to manipulating these intersection curves, such as
merging, splitting, and remeshing, so that the user can accurately control the topology and
the number of nodes describing the intersection, since this curve is the starting point for
the hyperbolic surface marching. The number of nodes distributed along the intersection
curve remains the same throughout the optimization to keep the same number of nodes in
the CFD mesh.

18

2.3 Hyperbolic surface mesh generation

Having identified the intersection curves, we can now use hyperbolic mesh-marching algo-
rithms [37] to produce the surface collar meshes. This type of mesh generation algorithm
starts from a baseline curve and then uses a marching scheme to generate the next layer
of the surface mesh. This process is repeated until the desired number of layers and mesh
extension is reached. One advantage of hyperbolic marching schemes over other mesh
generation methods (such as transfinite interpolation [64]) is that they do not require the
outer boundary of the mesh domain to be defined, making the process easier to automate,
especially for collar meshes.

We project every new layer of nodes onto the triangulated surfaces before the generation
of the next layer to ensure consistency with the underlying geometry. For the projection
step, finding the nearest surface triangle by brute force would not be tractable, especially
when we must regenerate the mesh for each optimization iteration. Thus, we use the ADT
algorithm once again to accelerate the search process. The ADT searches provide the
closest surface elements to a given point, then we only need to compare projections on those
filtered elements to find the nearest projection of the node onto the triangulated surface.

We added features to the standard hyperbolic marching scheme to improve control over
the mesh generation, as discussed in Appendix A. For instance, the user can choose to pre-
serve special surface features, such as trailing edge corners, as the surface mesh is marched.
First we create a discrete representation of these curves using line segments. Then, we iden-
tify which node from the baseline curve is closest to the guide curve segments and then we
project this node onto the guide curve. In addition, we locally modify the marching equa-
tions for this node so that it marches in a direction tangent to the guide curve. This process
is repeated for every new layer of the marched mesh.

We also added a feature to preserve the relative node spacings from the baseline curve
throughout the entire mesh. This feature works as follows: After every new layer is gener-
ated, we redistribute the nodes of this new layer using the same relative arc-lengths of the
nodes in the baseline curve. This redistribution is important when generating meshes near
trailing edges, since the artificial dissipation associated with the marching scheme smooths
the node intervals near the trailing edge despite the local high refinement of the baseline
curve. Once the redistributed nodes are computed, we project them to the reference surface
to ensure the consistency between the mesh and the surface representation.

A comparison of meshes generated with and without these geometry-preserving options
is shown in Fig 2.2. In Fig 2.2a, we simply extrude the mesh without considering any
geometric features. In Fig 2.2b, we set the upper and lower edges of the blunt trailing

19

edge as guide curves. This forces the nearest point of the extruded mesh layer to coincide
with the guide curve, which preserves the edge geometry. However, the bunched spacing
at the leading and trailing edges dissipates as we march away from the intersection curve.
Fig 2.2c shows the effect of preserving the relative node spacing, what produces a surface
mesh better suitable for CFD.

(a) Original marching scheme (b) Marching with guide curves (c) Nodal redistribution

Figure 2.2: Additional features implemented in the collar marching scheme to improve
mesh quality for CFD analyses.

2.4 Automatic differentiation

We need to efficiently compute derivatives of the objective and constraints to enable ef-
fective gradient-based aerodynamic shape optimization. We apply the reverse mode AD
throughout the entire analysis chain for this purpose, what we discuss in detail in Sec. 3.7.
Therefore, pySurf also uses the same AD method to internally backpropagate partial deriva-
tives.

Figure 2.3 outlines the notation used in this work to represent AD versions of a generic
subroutine F that receives a vector of inputs X = [x1 x2 . . . xn]T and outputs the vector
Y = [y1 y2 . . . ym]T , without loss of generality, since we always can concatenate multiple
inputs and outputs in a single vector. In this figure, Ḟ represents the forward AD version
of the subroutine F , while F represents the reverse AD version.

FX Y

Original Function

Ḟ
X Y

Ẋ Ẏ

Forward Mode AD

F

X
Y

Y
X

Reverse Mode AD

Figure 2.3: Representation of a generic subroutine and its corresponding AD versions.

20

The forward AD code propagates derivative seeds from inputs (Ẋ) to outputs (Ẏ), while
the reverse AD code propagates derivatives from outputs (Y) to inputs (X). The derivative
seeds can be correlated with the following expressions [65]:

Original Function Forward Mode AD Reverse Mode AD

Y = F (X) Ẏ = J · Ẋ X = JT ·Y
(2.1)

where J is the Jacobian matrix correlating inputs and outputs of the subroutine F :

J =
∂Y

∂X
=

∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn...

...
∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn

. (2.2)

In Sec. 2.2 we mentioned that pySurf has several tools to control the intersection curves,
such as merging multiple curves to create a new one, splitting curves based on sharp corners
or intersections, and redistributing nodes along the curve to refine more important regions.
During forward execution, pySurf stores all the intermediary steps required by the user to
generate the appropriate curve for hyperbolic marching, then it uses the same steps, but in
reverse order, to perform the reverse propagation of derivatives.

The automatically differentiated code for pySurf is generated using the Tapenade AD
tool [65], but we have to selectively alter the differentiation process in each pySurf module
to get an efficient final code. The next sections provide detailed explanation regarding these
exceptions.

2.4.1 Projection subroutine

One of the steps of hyperbolic surface marching routine is the projection of the newly-
generated points back to the reference triangulated surface. The initial step of the projec-
tion algorithm consists of an ADT search to find the triangulated surface elements that are
closest to the point to be projected. Then, we run the point-triangle projection algorithm
on those candidate triangles and take the closest projected point. This point-to-triangle
projection subroutine can be algorithmically described as:

Xproj,nproj = Fproj (X0,XA,XB,XC) , (2.3)

21

where Fproj represents the projection routine, X0 are the Cartesian coordinates of the point
to be projected, XA, XB, and XC are coordinates of the three nodes from the triangle that
will receive the projection, and Xproj is the projected point. We use the same projection
subroutine to also compute the surface normal vector nproj of the triangle, since this vector
is used by the hyperbolic mesh marching subroutine to determine the marching direction.

During the forward execution of the projection code, we store the triangles that receive
the projections, so that we do not have to repeat the ADT searches during the reverse
propagation of derivatives. Therefore, we only need to differentiate the point-to-triangle
projection routine. The reverse-differentiated version of Eq. (2.3) is:

δX0, δXA, δXB, δXC = Fproj

(
X0,XA,XB,XC ,Xproj,nproj,Xproj,nproj

)
, (2.4)

where the bars represents reverse derivative seeds, and the δ represents variations of the
reverse derivative seeds that should be accumulated, since each triangle node may get con-
tributions from multiple projections. That is:

X0 ← X0 + δX0 XA ← XA + δXA

XB ← XB + δXB XC ← XC + δXC

(2.5)

2.4.2 Hyperbolic surface marching

The hyperbolic surface mesh marching generates the surface mesh layer-by-layer. Let Rj−1

be a vector with 3ni elements representing the Cartesian coordinates of the ni nodes of the
layer j − 1 of the surface mesh. The nodal coordinates of the next layer are given by:

Rj = Rj−1 + ∆Rj, (2.6)

where the displacement ∆Rj is obtained via the solution of a linear system defined by
the discretized hyperbolic equations, as introduced in Appendix A:

Kj ·∆Rj = Fj. (2.7)

A dedicated routine computes the matrix Kj and the right-hand side vector Fj based on
the nodal coordinates of the (j − 1)-th layer (Rj−1) and on the normals of the underlying
triangulated surface at the projections of each node (nj−1):

Kj,Fj = Fhyp (Rj−1,nj−1) (2.8)

During the reverse execution of the code, we initially have the derivative seeds of the

22

j-th layer, and we should propagate these seeds to the previous layer and also to the under-
lying triangulated surface.

The linear system of Eq. (2.7) is solved with a LU-factorization algorithm from the
linear algebra package (LAPACK) [66]. In a naive AD approach, we would have to build
a differentiated version of the linear system solver to propagate the derivative seeds from
the solution of the linear system (∆Rj) back to the matrix Kj and the vector Fj . However,
we can use the fact that we know the solution of the linear system from the forward pass to
avoid this. The corresponding reverse algorithm for Eq. (2.7) is [67]:

KT
j · Fj = ∆Rj (2.9a)

Kj = −Fj ·∆RT
j . (2.9b)

First we solve the linear system in Eq. (2.9a) to compute Fj with the same solver used
for Eq. (2.7), then we find Kj with Eq. (2.9b). The advantage of this approach is that we
only use the native routines from LAPACK, without any modification. Once we have the
derivative seeds of the components of the linear system, we can use the reverse version of
Eq. (2.8), which is given by Tapenade:

Rj−1,nj−1 = Fhyp

(
Rj−1,nj−1,Kj,Fj,Kj,Fj

)
(2.10)

This concludes the backpropagation of derivatives from the j-th layer to the (j − 1)-th
layer. We repeat this process until we accumulate derivatives seeds into the intersection
curve, which is the source of the hyperbolic marching.

2.4.3 Intersection computation

During the forward execution of the intersection computation code, we execute all three
steps described in Sec. 2.2. The first two steps use bounding boxes and ADT searches to
identify triangles that likely intersect, but they do not compute the intersection curve per
se. Therefore, these steps are kept outside of the differentiated routines, similar to what
was discussed in Sec. 2.4.1, since we can store the intersecting triangles during the forward
(original) execution of the code.

The execution of the third step of the intersection code gives a line (defined by two
points) for every pair of intersecting triangles. The inputs and outputs of this intersection
routine can be algorithmically described as follows:

Xi1,Xi2 = Fint (Xa1,Xa2,Xa3,Xb1,Xb2,Xb3) , (2.11)

23

where Xi1 and Xi2 represent the Cartesian coordinates of the two points that define the
intersection line, Fint is the intersection routine, Xa1, Xa2, and Xa3 are coordinates of the
three nodes of a triangle from one primary component, and Xb1, Xb2, and Xb3 are nodal
coordinates of a triangle from another primary component. This is the only subroutine
of the pySurf intersection module that is automatically differentiated with Tapenade. The
reverse-differentiated version of Eq. (2.11) can be written as:

δXa1, δXa2, δXa3, δXb1, δXb2, δXb3 =

= Fint
(
Xa1,Xa2,Xa3,Xb1,Xb2,Xb3,Xi1,Xi2,Xi1,Xi2

) (2.12)

Once again the δ indicates increments to the derivative seeds of each triangulated sur-
face node. The derivative seeds of the triangulated surface nodes might get contributions
from both Eq. (2.4) and Eq. (2.12).

The reverse derivative seeds of the intersection points should be erased once they are
used, otherwise they might seed the same triangle nodes twice. Figure 2.4 brings an exam-
ple to illustrate this point. Let triangles ∆ABC and ∆CBD belong to one component, and
triangle ∆EFG belong to another component. The triangles ∆ABC and ∆EFG define the
intersection line IJ , while triangles ∆CBD and ∆EFG define the intersection line JK.
We store these relationships between intersection lines and triangles during the forward
pass, so that we do not need to repeat the intersection search.

Figure 2.4: Intersection between triangles of two components.

The reverse hyperbolic surface mesh marching routine provides derivative seeds for the
intersection points, namely XI , XJ , and XK . When we execute the reverse intersection
routine (F int from Eq. (2.12)) for the intersection line IJ , we propagate derivative seeds

24

from nodes I and J to the nodes of the parent triangles that define this line (in this case
nodes A, B, C, E, F , and G). Then, we need to set XI = 0 and XJ = 0 before the reverse
intersection computation for line JK, otherwise node J would seed derivatives of nodes
B, C, E, F , and G once again, what is incorrect.

2.4.4 Tests for derivative validation

We perform the validation of the differentiated code in two steps: comparison with finite
difference results, and the dot product test [68]. Even tough we only need the reverse AD
version of the code for optimization, we also generate forward AD version for these tests.

The finite-difference test checks consistency between the original subroutine and its
forward AD version. We can locally approximate the generic subroutine introduced of
Fig. 2.3 by:

F (X + hg) ≈ F (X) + J · hg, (2.13)

where g is a generic vector and h is a small step size, according to the design space scale.
If we use the forward AD seeds in Eq. (2.13) (g = Ẋ), we get:

F (X + hẊ)− F (X)

h
≈ J · Ẋ = Ẏ. (2.14)

This equation allows a comparison between finite difference results (on the left side)
and forward AD results (on the right side). This usually allows us to verify derivatives up
to 5 digits, due to subtractive cancellation errors.

Once we use the finite-difference test to compare the forward AD results against the
original subroutine trends, we can check the consistency between the forward AD code
and the reverse AD code with the dot product test. For the generic subroutine introduced
in Fig. 2.3, the dot product test is:

ẊT ·X = ẎT ·Y, (2.15)

which can be derived from Eq. (2.1). Now we first generate a random vector Ẋ and use
the forward AD code to obtain Ẏ. Next, we generate a random vector Y and then compute
the corresponding X with the reverse AD code. Then, we verify if Eq. (2.15) is met to
machine precision to ensure consistency between both AD versions, thus passing the dot
product test.

These two tests ensure that the reverse AD code is consistent with the original subrou-
tine, and we perform this verification for every differentiated module in pySurf.

25

2.4.5 Gradient verification: CRM case

We use pySurf to examine the wing-body intersection curve of the Common Research
Model (CRM) [69] as we move the wing from a low-wing to a high-wing position, as
shown in Fig. 2.5. The wing and fuselage are both triangulated surfaces and we recompute
the intersection curve and collar mesh for each configuration.

Because the process is fully differentiated, we can calculate the gradients of the coordi-
nates of the collar mesh nodes with respect to the design variables. For the CRM example,
we computed the derivative of the trailing edge point Y -coordinate with respect to the ver-
tical position of the wing (Z). We also computed derivatives of the spanwise location of
some collar mesh nodes for this same example. The derivatives obtained for both cases
are plotted in Fig. 2.6 for the CRM wing-fuselage model. Even though the wing and fuse-
lage surfaces are inherently discretized, we found that the computed gradients are indeed
suitable for gradient-based optimization since they locally point in the correct direction.

26

Figure 2.5: Low-wing configuration shifted to high-wing configuration with automatically
generated collar meshes for the CRM geometry.

Figure 2.6: Aft view of the CRM wing-body junction. The left figure shows the design
variable definition and the tracking of the trailing edge intersection point. The figure on
the right shows how surface mesh points move as the wing is translated. The red arrows
indicate the AD-computed derivatives for the trailing edge intersection position (left) and
surface mesh points (right) as we vertically translate the wing. The computed gradients
for triangulated surface intersections are smooth and accurate enough for gradient-based
optimization.

27

CHAPTER 3

Optimization Framework

pySurf on its own is just a geometry module, so it has to be coupled with other analysis
tools and an optimizer to create a fully capable framework for aircraft design optimization.
Because of the high computational cost of each analysis, high-fidelity aircraft design opti-
mization requires a computationally efficient and massively parallelized multidisciplinary
framework. Furthermore, gradient-based optimization is necessary due to the large num-
ber of design variables [17, 21, 23]. Thus, this framework must also be able to compute
first-order derivatives of both objective and constraint functions with respect to each design
variable.

The MACH framework [61] was developed with these needs in mind. This frame-
work uses Fortran and C++ routines wrapped in a Python interface to perform efficient
high-fidelity aerostructural optimization. Specifically for this work, we only use mod-
ules relevant to ASO, which include a geometry modeler (pyGeo), volume mesh generator
(pyHyp), volume mesh deformation module (pyWarp), aerodynamic solver (ADflow), opti-
mizer (SNOPT), and the newly added pySurf module as the collar mesh generator. These
modules are described in detail in the following sections.

To use this framework, the user should provide the following for each primary compo-
nent:

Structured surface mesh with the desired resolution for CFD analysis. This surface mesh
is used to generate the volume mesh by the hyperbolic extrusion module (pyHyp).
The mesh should be refined near intersections to facilitate the overset hole cutting
process.

Triangulated (unstructured) surface mesh, which is used as the reference for intersec-
tion computation and collar mesh generation by pySurf. This triangulated mesh
should be finer than the structured surface mesh in order to appropriately represent
high-curvature regions (such as leading edges) for the collar mesh generation pro-
cess.

28

Free-form deformation (FFD) box, which envelops the surfaces described above and whose
control points give the necessary shape control resolution for the design optimization.

Here we should clarify why we need two descriptions—one structured and the other
unstructured—for each primary component. The structured meshes of the primary compo-
nents have the surface resolution required by the CFD solver, which is already an approxi-
mate description of the underlying continuous surface representation. pySurf cannot use the
same resolution to march new hyperbolic surface meshes for the collars because this would
cause an additional loss of information compared to the original continuous representation.
Therefore, the user also needs to provide another surface representation, finer than the sur-
face meshes used by the CFD solver, so that the hyperbolic marching algorithm has access
to a relatively more accurate surface description compared to the structured meshes.

Because this finer triangulated surface mesh is not actually used by the CFD solver,
it can be unstructured, making it is easier to generate and refine in critical regions, such
as high-curvature areas. The use of a heavily refined triangulated surface mainly impacts
the setup time of the optimization due to the large number of Newton searches required
to embed all surface points into the FFDs. The increase in computational time of the
subsequent optimization steps is much less noticeable because of the linear nature of the
FFD method and its derivatives.

The use of triangulated surfaces for automatic mesh generation is recognized as a pos-
sible practice for automatic mesh generation [40, 70] because most geometry manipulation
packages can output files with this representation. Furthermore, discrete representations
are less susceptible to geometry interpretation problems, such as discrepancies in the rep-
resentation of intersection curves caused by the use of different geometry kernels [50].

The overall computational framework arrangement is shown in the extended design
structure matrix (XDSM) [71] diagram of Fig. 3.1. Elements with the (0) superscript refer
to the baseline configuration, while the ∗ superscript denotes optimized values. Stacked
elements indicate that the given data or module should be defined for each aircraft compo-
nent and collar mesh. This figure also highlights how the volume mesh generation process
is only used at the initialization step, and then replaced by the mesh deformation module
during the optimization.

Further details regarding the framework are also given by Kenway et al. [61], and this
framework has been used in several aerodynamic [7, 9, 72, 73] and aerostructural [31, 74,
75] design optimization studies. The framework modules are described in the next sections,
including the details of how they use the three sets of inputs.

29

X
(0)
tria X

(0)
surf DV

(0)
geo , α(0)

X
(0)
tria, X

(0)
surf

X
(0)
FFD

0:
pySurf 1 : X

(0)
collar

1:
pyHyp 5 : X

(0)
vol

DV ∗
geo, α

∗ 2, 8→3:
Optimization

3 : DVgeo 6 : α

3:
pyGeo

4 : Xtria 5 : Xsurf 7 : t

4:
pySurf

5 : Xcollar

5:
pyWarp

6 : Xvol

6:
ADflow

7 : CL, CD

8 : f, g
7:

Functions

Legend:
Xtria: triangulated mesh nodes
Xsurf : surface mesh nodes
XFFD: FFD nodes
Xcollar: collar mesh nodes
Xvol: volume mesh nodes
DVgeo: geometric design variables
α: angle of attack
t: OML thicknesses
CL: Lift coefficient
CD: Drag coefficient
f : objective function
g: contraint functions

Initialization
step

Figure 3.1: XDSM of the overall optimization framework. The initialization step generates
the reference volume nodes for the mesh deformation.

3.1 Geometry modeler—pyGeo

pyGeo is a Python module capable of manipulating geometries with the FFD approach [55].
This module complements pySurf by handling the primary component geometries, whereas
pySurf focuses on intersections and collar meshes. pyGeo uses structured hexahedral boxes
of control points (which we call FFD boxes) surrounding the geometry we want to manip-
ulate to define a tri-variate B-spline mapping in the space. We then use a Newton search
to determine the parametric coordinates of the structured surface mesh nodes within their
corresponding B-spline boxes. We repeat the same process for the triangulated surface
nodes so that both surface representations are parametrized in the same B-spline mapping
and thus get consistent displacements.

Once we modify the position of the FFD control points, we use the parametric represen-
tation to recover the physical coordinates of the embedded surface nodes for the deformed
configuration. Therefore, the positions of the FFD control points are the primary aero-
dynamic shape variables of the problem: moving a node from the FFD box deforms the
embedded surface. The updated triangulated surfaces are used by the pySurf module to
regenerate surface collar meshes, while the updated structured surface meshes are used by
the mesh deformation module (pyWarp) to update the volume nodes.

The FFD deformation process of each component is independent because we use sepa-

30

rate overset meshes, triangulated surfaces, and FFD boxes. This gives the designer and the
optimizer the freedom to control components’ variations individually.

The FFD method does not generate a new geometry by itself. It parametrizes changes

to a baseline geometry instead, and this allows the optimization framework to be agnostic
with respect to geometry generation tools. Furthermore, the B-spline mapping is easily
differentiable [48], which allows for efficient computation of the derivatives of the surface
node positions with respect to control point positions.

pyGeo can also measure the thicknesses of the embedded components by embedding
pairs of points and tracking their distances during the optimization. This allows us to define
thickness constraints to prevent unfeasible designs from the structural point of view, as we
discuss in Sec. 5.1.

3.2 Collar mesh generator—pySurf

pySurf, which is the module developed in the present work, produces collar meshes be-
tween intersected geometry components as described in Chapter 2. pySurf uses the un-
structured surface meshes that are updated by pyGeo’s FFDs throughout the optimization
to compute intersections among primary components.

Prior to the optimization, the automatically generated surface collar mesh is used by
the volume mesh generation module (pyHyp) to generate the baseline collar volume mesh,
as shown in Fig. 3.1. During the optimization, on the other hand, the mesh deformation
module (pyWarp) uses the updated position of the collar mesh surface nodes to deform the
cells of the volume mesh.

3.3 Volume mesh generator—pyHyp

The previous modules operate on surface meshes; however, we need volume meshes for
CFD analysis. We use a hyperbolic mesh marching scheme [38] to extrude structured
surface meshes into volume meshes.

This mesh generation method is applied to the structured surface meshes of each pri-
mary component and collars (Figure 3.2). This step is done once at the beginning of the
optimization to get the baseline volume meshes, as indicated by the initialization step of
Fig. 3.1. These meshes are subsequently deformed by the mesh deformation module (py-
Warp) throughout the optimization, since this is computationally less expensive than regen-
erating new volume meshes at each design point. Therefore, there is no need to differentiate
the pyHyp module, as discussed in Sec. 3.7.

31

(a) Initial surface meshes. (b) Extruded near-field meshes.

Figure 3.2: Hyperbolic extrusion of the surface meshes into volume meshes for a wing-
body configuration.

The same advantages of hyperbolic mesh generation over other methods previously
discussed for surface meshes in Sec. 2.3 apply here, especially those regarding the degree
of automation and robustness. The main user-defined parameters are the height of the initial
layer of cells and the extrusion distance. The initial marching distance is chosen to yield a
y+ value of 1.0 for a friction velocity estimated using turbulent flat plate regressions. The
selected marching distance should allow a reasonable amount of overlap between the collar
mesh and the primary component meshes, and it is usually from 1 to 3 mean aerodynamic
chords. Additionally, cells within the collar mesh should be smaller than the cells in the
primary component meshes so the collar cells are preserved during the overset hole cutting
process. We usually achieve this by using an initial cell height for the collar meshes equal
to 95% of the cell height of the primary components. We apply the overset interpolation
boundary condition at the external surface of these meshes.

After the extrusion of all surface meshes, pyHyp uses the bounding box of these near-
field volume meshes to create a background mesh that reaches an appropriate distance
for the far-field boundary conditions. The background mesh is generated in two steps.
First, we compute the bounding box defined by the near-field meshes and fill this box with
Cartesian cells based on an user-provided cell size. Second, we use hyperbolic extrusion
once again to march the exposed surface of this Cartesian block to the far-field distance.
This distance is usually around 100 mean aerodynamic chords, as recommended by the
Third Drag Prediction Workshop (DPW3) [76]. Figure 3.3 shows the symmetry plane of
an overset mesh of a wing-body configuration in which we can see the O-grid topology of
the background mesh.

32

Figure 3.3: Symmetry plane showing the fuselage near field mesh (red) the wing near field
mesh (blue) and the background mesh (black) made by a Cartesian block and an O-mesh.

3.4 Volume mesh deformation—pyWarp

Within the optimization loop, we use pyWarp to deform the initial volume meshes based
on the updated component surfaces. pyGeo provides surface node updates for the primary
components based on the FFD deformations, whereas pySurf provides updated surface
nodes for the collar meshes based on the recomputed intersections, as indicated in Fig. 3.1.
Then, pyWarp propagates the deformations of the surface nodes to the volume nodes using
an explicit interpolation algorithm [77] (as shown in Fig. 3.4).

(a) Baseline wing. (b) Deflected wing with deformed mesh.

Figure 3.4: Application of the mesh deformation algorithm for a wing deflection case.

Given a baseline surface mesh and its corresponding deformed configuration, we can
compute displacements and surface normal rotations for each surface node. Each surface

33

node defines a displacement field in the volume based on its own displacements and rota-
tions. The displacement of each volume node is computed as a weighted average of the
displacements predicted by the displacement fields of the surface nodes at the undeformed
volume node location. The weights of the averaging process decay with the distance be-
tween the volume node and the corresponding surface node.

This mesh deformation procedure is applied in a component-wise manner, so that each
overset mesh is deformed based only on its own wall surfaces. For instance, the wing
surface nodes only affect the deformation of the wing volume mesh nodes, the fuselage
surface nodes only deform the fuselage volume mesh nodes, and the collar surface nodes
only deform the collar volume mesh nodes. This allows for relative motion between pri-
mary components. In other words, if the wing is translated with respect to the fuselage, the
movement of the wing volume mesh nodes is not influenced by the fixed position of the
fuselage surface nodes. The background mesh remains fixed throughout the optimization
because it has no associated surface.

The component-based deformation methodology applied to overset meshes can be ad-
vantageous in geometries with oblique junction angles between two distinct components,
such as the wing-strut junction of the SBW configuration. Volume cells in the gap be-
tween these components do not have opposing surfaces driving their displacements, as in
the multiblock mesh case, thereby allowing for additional freedom of movement. Further-
more, the overset mesh cells in the junction regions are of higher quality than a patched
multiblock mesh, which allows the former to tolerate a wider range of deformations before
the mesh becomes invalid for CFD analyses.

pyWarp is also automatically differentiated by using Tapenade in reverse AD mode
so it can compute the derivatives of volume node positions with respect to surface node
movements.

3.5 CFD solver—ADflow

Once volume meshes are generated and deformed to reflect the changes in geometry, we
use a CFD solver to perform aerodynamic analysis on the new configuration and to obtain
lift and drag coefficients. These coefficients are then used by the objective and constraint
functions of the optimization problem.

The aerodynamic solver used in this work is a newly implemented version of SUmb [27,
78] called ADflow [44]. It is capable of solving Euler, laminar Navier–Stokes, or RANS
equations in multiblock structured overset meshes in a parallelized fashion using a second-
order cell-centered finite volume formulation. The inviscid fluxes are discretized with

34

artificially dissipated central-differencing [79], whereas the viscous fluxes use standard
central-differencing.

ADflow initially solves steady problems by using time-marching schemes (such as the
diagonalized diagonal dominant alternating direction implicit scheme [80] or the multistage
explicit Runge–Kutta scheme [81]) to approach the basin of attraction. It then switches to a
Newton–Krylov algorithm to converge to the steady solution [82]. The switching criterion
is defined as the point when the time residuals drop below a user-specified threshold.

This CFD solver uses implicit hole cutting [39, 83] to determine which cells should
be blanked, interpolated, or actually computed, as explained in Sec. 1.2. We use trilinear
interpolation in the dual mesh to compute the interpolated cell values. In other words, each
interpolated cell will compute its value by interpolating the flow state on a stencil of eight
cells from an overlapping mesh.

Once the flow converges, zipper meshes are used to fill the surface gaps among surface
compute cells, yielding a watertight surface for the integration of the aerodynamic forces
and moments [84] (Fig. 3.5). In this work, we update the overset connectivities and zipper
meshes at each optimization iteration. Further details regarding the overset implementation
in ADflow are presented by Kenway et al. [44].

Figure 3.5: Zipper meshes are used to fill the gaps among overlapped meshes for force
integration. They are not employed during the flow solution.

ADflow’s drag predictions were previously evaluated in the Sixth Drag Prediction Work-
shop (DPW6) [85]. One important conclusion from DPW6 was that the standard Spalart–
Allmaras (SA) turbulence model [86] could overestimate the size of separation bubbles in
wing-fuselage junctions [87], and that this could be mitigated by applying modifications to

35

the turbulence model, such as the rotation correction (R) [88], and the quadratic constitu-
tive relation (QCR) [89]. Therefore, we use the SA-R-QCR2000 turbulence model for all
simulations in this work, as discussed in Sec. 4.3.

ADflow computes the sensitivities of the aerodynamic forces and moments with respect
to the nodal coordinates with the hybrid adjoint approach [27, 30], in which we use Tape-
nade’s reverse mode AD to compute the partial derivatives in the discrete adjoint equations,
as explained in Sec. 3.7.

The derivatives currently computed by ADflow assume frozen overset interpolation
weights. In other words, the linearized code does not consider how changes in mesh coor-
dinates affect the overset interpolation weights. The interpolation expression is linear with
respect to the flow state variables of the donor cells, and this part is properly linearized in
the reverse AD code. However, finding the interpolation weights with respect to the mesh
coordinates involves an iterative Newton search, since this requires a solution of a nonlinear
system. Therefore, the computation of the partial derivatives of interpolation weights with
respect to nodal coordinates using reverse AD requires additional considerations that are
under development in ADflow. This discrepancy in the reverse AD code becomes less sig-
nificant as the overset mesh is refined because flow state variations within the interpolation
stencils become smaller.

3.6 Optimizer—SNOPT

We use Sparse Nonlinear Optimizer (SNOPT) [90], which is a gradient-based optimizer
that implements the sequential quadratic programming method. The user must provide
functions of interest and their gradients. SNOPT can handle large-scale nonlinear opti-
mization problems with thousands of constraints and design variables, making it suitable
for aerodynamic shape and aerostructural optimizations [9, 44, 61, 75].

3.7 Derivative computation throughout the framework

ASO problems usually involves a number of design variables that is much greater than the
number of functions of interest. The adjoint method is an efficient way to compute deriva-
tives [23, 26, 27] in this scenario. However, a significant effort is required to implement this
method because it needs partial derivatives of the residual equations and other quantities
used in the CFD code.

Let f = f(X,W) be a function of interest for the optimization problem (such as drag
coefficient). This function depends on the design variables X and the flow state variables

36

W. The flow state variables are obtained from the solution of the discretized flow equa-
tions: R(X,W) = 0. The total derivative of the function f with respect to the design
variables is:

df

dX
=
∂f

∂X
−ψT · ∂R

∂X
, (3.1)

where the adjoint variables ψ can be obtained by solving the discrete adjoint system:[
∂R

∂W

]T
·ψ =

[
∂f

∂W

]T
. (3.2)

Our optimization framework uses a hybrid-adjoint approach [27], where the partial deriva-
tives in Eqs. (3.1) and (3.2) are computed using the reverse-mode AD of Tapenade.

In order to use the hybrid adjoint method, it is useful to cast the optimization modules
from Fig. 3.1 in a different manner. We only need to gather the subroutines that relevant
for the direct computation of the flow solver residuals (R) and the function of interest (f),
since we only want to compute partial derivatives of these quantities. This means that
we can leave the iterative methods for flow solution and the ADT searches used in the
intersection code outside of the reverse chain.

Figure 3.6 shows such arrangement for the modules used in this work. If we apply the
reverse AD method to each module and reorganize them in the reverse order, we get the
chain shown in Figure 3.7. The backpropagation of derivatives starts at the last code of the
analysis chain, which is the CFD solver.

For given derivative seeds of the CFD residuals (R) and function of interest (f), ADflow
uses reverse AD versions of its subroutines to obtain derivative seeds for three parameter
sets: flow state variables (W), volume mesh nodes (rvol), and flow condition design vari-
ables (Xaero), such as angle of attack. Lyu et al. [30] give specific details on differentiating
the RANS equations in ADflow.

The volume mesh derivative seeds (rvol) are split based on their corresponding compo-
nents (such as wing, fuselage, and collar), and then transformed into surface node deriva-
tives (rsurf) by pyWarp. Next, pySurf receives the derivatives of the collar surface mesh
points and executes its own reverse-mode AD to backpropagate the derivative information
to the triangulated surface nodes (rtria).

Then, pyGeo accumulates the derivatives coming from the triangulated surfaces (given
by pySurf) and from the structured surface meshes (given by pyWarp) of each primary
component. Finally, pyGeo uses the FFD mapping to backpropagate derivatives to the FFD
control points, which are translated into derivatives with respect to design variables (Xw

for wing design variables and Xf for fuselage design variables).

37

The derivative seeds of the geometric design variables of the wing and fuselage, (Xw

and Xf), are then concatenated with the flow condition design variables (Xaero) to yield the
derivative seeds of the complete design variable vector (X), closing the reverse AD prop-
agation. pyHyp is not included in Fig. 3.7 because it is only used during the initialization
step, not during the optimization itself.

We now explain how to use the chain of Fig. 3.7 to solve Eqs. (3.1) and (3.2). According
to Eq. (2.1), the reverse derivative seeds from Fig. 3.7 are related as follows:

W =

[
∂R

∂W

]T
·R +

[
∂f

∂W

]T
· f, (3.3a)

X =

[
∂R

∂X

]T
·R +

[
∂f

∂X

]T
· f. (3.3b)

If we feed the reverse AD chain with R = 0 and f = 1, then the resulting W will
be the right-hand side of Eq. (3.2). Now, if we use R = g and f = 0, then W will
be the matrix-vector product of the left-hand side of Eq. (3.2) for an arbitrary vector g.
Therefore, we can use matrix-free linear system solvers to solve Eq. (3.2) and obtain ψ. In
this work we use the generalized minimal residual method (GMRES) [91] implementation
in PETSc [92–94] to solve the linear system. Finally, if we apply R = −ψ and f = 1 to
the reverse AD chain, we get, according to Eqs. (3.1) and (3.3b), X = [df/dX]T , which is
the total derivative of the function of interest required by the optimizer.

This procedure must be applied for every function of interest to assemble and solve the
corresponding adjoint systems. Because we use reverse AD throughout the entire analysis
chain, the cost of computing derivatives scales with the number of functions of interest and
not with the number of design variables.

38

Residual
evaluation

Function
evaluation

ADflow

R

frvolWing
deformation

Fuselage
deformation

Collar
deformation

pyWarp

rvol,w

rvol,f

rvol,c

Collar
marching

Intersection

pySurf

rsurf,c

rint

Wing
FFD

Fuselage
FFD

pyGeo
rsurf,w

rsurf,f

rtria,w

rtria,f

Xw

Xf

Xaero

X

W

Legend:
R: CFD residuals
f : function of interest
W: flow state variables
rvol: volume mesh nodes
rsurf: surface mesh nodes
rint: intersection curve nodes
rtria: triangulated surface nodes
X: design variables

Figure 3.6: Subset of the framework subroutines required for the computation of CFD
residuals (R) and functions of interest (f).

Residual
evaluation

Function
evaluation

ADflow

R

f

+

+

+

rvol Wing
deformation

Fuselage
deformation

Collar
deformation

pyWarp

rvol,w

rvol,f

rvol,c

Collar
marching

Intersection

pySurf

rsurf,c

rint

+

+

Wing
FFD

Fuselage
FFD

pyGeo
rsurf,w

rsurf,f

rtria,w

rtria,f

Xw

Xf

Xaero

X

W

Figure 3.7: Derivative backpropagation chain. The modules represented here are the re-
verse counterparts of the modules shown in Fig. 3.6. The plus signs indicate that the deriva-
tive seed should be accumulated from multiple sources. Subscripts ‘w’, ‘f’, ‘c’, and ‘aero’
indicate that quantities refer to wing, fuselage, collar, and flow conditions, respectively.

39

3.8 Noise issues in the functions of interest

We integrated pySurf into the framework and now seek to verify the overall consistency of
the derivatives. We propose a simple case to verify the accuracy of the computed deriva-
tives in a transonic flow application. We generate a simple geometry consisting of a tapered,
swept wing based on that of a Boeing 717 and a cylindrical fuselage, which is then sim-
ulated in transonic flow conditions (Mach 0.8). We define a single design variable to the
geometry: the wing vertical position with respect to the fuselage (Fig. 3.8). We generate
the surface meshes of the primary components in ICEMCFD. The fuselage mesh remains
fixed while the wing mesh is vertically translated according to the design variable value.
The fuselage-wing intersection curve and the collar mesh are automatically generated by
pySurf for each design point.

Then, we run flow simulations and derivative computations for a range of wing posi-
tions; the results are shown in Fig. 3.9. The derivatives are consistent with the overall trend
of the function. However, the function shows noisy patterns with amplitudes of hundredths
of drag counts for small displacements (right side of Fig. 3.9).

We ran a similar design variable sweep with a finer version of the structured meshes.
Figure 3.10 shows that the noise level is smaller for finer meshes. This indicates that the
noise is neither associated with the physics of the model nor with the triangulated surface
discretization, since they remained the same for both cases.

The drag coefficient curve shown in Fig. 3.9 suggests that there is a minimum around
ywing = 0.5 m. Thus, we use this same test case to verify the effects of the noise on
optimization problems in the next section.

Figure 3.8: Transonic configuration used for wing translation study. The ywing design
variable controls the vertical displacement of the wing.

40

22
8.

75

22
8.

80

22
8.

85

22
8.

90

22
8.

95

CD [counts]

−0.015

−0.005

0.005

0.015

y w
in
g

[m
]

0.05 counts

Figure 3.9: Drag variations due to the vertical translation of the wing of the transonic
airplane configuration of Fig. 3.12. The red arrows represent gradients. We observe noise
at small steps (on the right), but the gradients are still consistent with the overall trend.

228.75 228.80 228.85 228.90 228.95

CD [counts]

−0.01

0.00

0.01

y w
in
g

[m
]

0.8 Mi mesh

219.40 219.45 219.50 219.55

CD [counts]

6.7 Mi mesh

0.05 counts
0.05 counts

Figure 3.10: Effects of the CFD mesh refinement on the noise levels for the same wing
translation problem shown in Fig. 3.12. The noise levels are smaller when we use finer
versions of the CFD structured meshes.

3.8.1 Effects of numerical noise on a univariate optimization problem

We study the effects of the noise on a univariate optimization problem before moving to
a more complex case. Here we use the same transonic configuration introduced in the
previous section. The coarse CFD mesh (0.8 million cells) is used for the optimization so
that the noise effect becomes more evident. We control the vertical position of the wing
relative to the fuselage to minimize drag for a fixed angle of attack.

Figure 3.11 shows the optimization progress. The optimizer gets trapped in a valley
generated by the noise when it reaches the shallow design space surrounding a potential

41

optimum, where it halts due to numerical difficulties caused by inconsistencies between
the gradient and the actual trend of the function.

Noise becomes an issue in regions of the design space where the gradients are small,
such as near the optimum, since the relative error between the gradient and the actual trend
of the noisy function becomes significant. The function variation predicted by gradient
gets smaller as we approach the optimum point, where the gradient magnitude should be
zero (assuming an unconstrained problem). At some point, the noise amplitude exceeds
the variations predicted by the gradient. Therefore, even though the gradient indicates the
descent direction for the function, the noise may actually increase the function value in
that direction. This inconsistent trend traps the optimizer in the noise ravines shown in
Fig. 3.11.

The optimization still improves the baseline design and converges towards the expected
optimum. This indicates that the noise only becomes an issue at the later steps of the
optimization, when the optimizer is only making small changes to narrow the optimum
point. At this stage, most of the optimization benefits have already been achieved. This
gives us confidence to employ the same methodology to more complex cases, as we show
in Chapter 4 and Chapter 5.

226.0 228.0 230.0 232.0 234.0

CD [counts]

−0.4

−0.2

0.0

0.2

0.4

0.6

y w
in

g
[m

]

CD(ywing)

Optimizer path

dCD

dywing

Start

226.20 226.25 226.30 226.35 226.40

CD [counts]

0.46

0.51

0.55

0.60

y w
in

g
[m

]

End

Figure 3.11: Optimization path for the wing translation problem. The plot on the right is a
zoomed-in view showing the last iterations of the optimizer. The optimizer is trapped in a
valley caused by the noise, but it manages to improve the baseline design.

3.8.2 Identification of the noise source

We showed that the functions of interest obtained from the CFD evaluations contain noise.
However, the results from Sec. 2.4.5 suggest that no significant noise appears in the mesh
point coordinates due to the mesh regeneration based on triangulated surfaces. Therefore,

42

we suspect that the noise originates from changes in the overset connectivity.
To clarify this point, we create another test case in which the regeneration of collar

meshes with triangulated surfaces is not necessary. We take the same wing-body geometry
introduced in Sec. 3.8 and define a different design variable for the geometry: the longitu-
dinal wing position with respect to the fuselage (∆xwing shown in Fig. 3.12). The fuselage
mesh remains fixed while the wing mesh is horizontally translated according to the value
of the design variable.

This time, the intersection line retains the same shape because the wing is translated
in the longitudinal direction along the cylindrical fuselage. Therefore, there is no need to
regenerate the collar mesh using the triangulated surfaces, though the effects of changes in
overset connectivity remain. The overset mesh used for the analysis has only 0.3 million
cells so that the effects of changes in connectivity become more evident.

We next run flow simulations for a range of wing positions; the results are shown in
Fig. 3.13. The function shows noisy patterns with amplitudes on the order of tenths of drag
counts for small wing displacements (see right side of Fig. 3.13). The noise drops to the
order of hundredths of drag counts if the mesh is refined to 1.3 million cells because the
interpolation layers become thinner. Therefore, we conclude that the main contribution to
the noise comes from changes in overset connectivity.

One possible way to solve this problem is by switching to a frozen overset connectivity
approach near the end of the optimization. However, this would also require the simulta-
neous deformation of all overset meshes in order to keep the relative position of the CFD
cells, which in its turn prevents the use of the component-based parametrization since all
components have to be deformed all at once. Therefore, this methodology only supports
small deformations, and it would only be suitable for the latter stages of the optimization.

43

Figure 3.12: Transonic configuration used to study wing translation. The design variable
∆xwing controls the horizontal displacement of the wing.

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

∆xwing/Dfuse

−1.0

0.0

1.0

2.0

3.0

4.0

∆
C
D

[c
ou

nt
s]

1.3M cells

0.3M cells

−0.02 −0.01 0.00 0.01 0.02

∆xwing/Dfuse

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
C
D

[c
ou

nt
s]

1.3M cells

0.3M cells

Figure 3.13: Variations in drag for different horizontal wing positions normalized by the
fuselage diameter (Dfuse). The right plot shows drag variations for small displacements.
The noise caused by changes in overset connectivity decreases as the mesh is refined.

44

CHAPTER 4

Wing-body junction optimization

In this chapter, we demonstrate the capabilities of the pySurf module by optimizing the
shape of the wing-body junction of a conventional aircraft configuration. We choose the
DLR-F6 wing-body configuration [95] since this model was extensively used for drag pre-
diction benchmarks [76, 96] and also as a baseline for aerodynamic shape optimization
problems [29, 41, 97].

The baseline DLR-F6 configuration shows a separation bubble at the trailing edge of
the wing-body junction atCL = 0.5 [96], which makes this problem particularly interesting
for wing-body junction optimizations, as discussed in Sec. 1.4. A fairing was designed for
the DPW3 to remove the recirculation region and improve drag convergence studies [98],
and this configuration is named DLR-F6-FX2B.

The wing-body separation bubble seen on the DLR-F6 configuration served as motiva-
tion to use the MACH framework, now with the pySurf module, to perform aerodynamic
shape optimization of the DLR-F6 wing-body junction starting from its original geome-
try. Differently from the previous cited approaches, our tool uses the reverse AD chain
throughout the entire framework for efficient derivative computation. Furthermore, the
component-based parametrization approach also allows the simultaneous optimization of
the wing and the junction.

Since pySurf enables independent manipulation of the wing and fuselage, we define
four major groups of design variables: angle of attack, wing twist, wing shape, and fuselage
shape variables. We conduct a series of optimizations using combinations of these groups
to investigate the effects of each design variable in the overall improvement of the design.
The objective of all optimizations described here is the minimization of drag coefficient
(CD) at CL = 0.5, M = 0.75, and Re = 5× 106, following the same standards as DPW3.
Table 4.1 shows a summary of the overall optimization problem.

45

Table 4.1: DLR-F6 aerodynamic shape optimization problem.
Variable/function Description Quantity

Minimize CD Drag coefficient

with respect to α Angle of attack 1
nfuse Normal displacement of fuselage FFD control points 16
τwing Wing section twist 8
zwing Vertical displacement of wing FFD control points 128

Total design variables 153

subject to CL = 0.5 Lift constraint 1
t/tinit ≥ 0.99 Wing thickness constraint 100
∆zwing,TE,upper = −∆zwing,TE,lower Fixed trailing edge 8
∆zwing,LE,upper = −∆zwing,LE,lower Fixed leading edge 8
0.00 m ≤ nfuse ≤ 0.04 m Variable bounds 16

Total constraints 133

4.1 Geometric design variables and constraints

The geometric design variables affect the position of the FFD control points. The wing FFD
is composed of a volumetric block with 8 spanwise by 8 chordwise by 2 vertical nodes
(Fig. 4.1). The 8 wing twist variables (τwing) apply uniform rotations to each chordwise
section of FFD control points. This rotation of each section is centered around its quarter-
chord position. The 128 wing shape variables (zwing) move each control point of the FFD
in the vertical direction to modify the airfoil shape.

To avoid shear twist, control points on either side of the leading and trailing edges are
constrained to move equal amounts but in opposite directions. This ensures that the airfoil
chordline is affected only by twist variables and not by shape variables [99].

Because this is a purely aerodynamic shape optimization problem, we also need to
enforce thickness constraints to obtain a realistic design. In this case we define a grid of
10 × 10 points over the wing planform (Fig. 4.2) and then require the thickness at these
points to remain at or above 99% of the baseline thicknesses.

Figure 4.1: Wing FFD showing the control points (red dots), which are manipulated by the
twist and vertical displacement variables.

46

Figure 4.2: Pairs of points used to define thickness constraints. The distance between the
pair of points cannot decrease during the optimization.

The fuselage FFD consists of a block of 8 × 6 × 2 nodes that encompasses the region
around the wing intersection (Fig. 4.3). The nodes in the outer two layers of the FFD are
fixed to guarantee C1 continuity with the undeformed part of the fuselage [100], which
leaves a total of 16 free control points. These control points are only allowed to move in
a direction normal to the fuselage surface and away from its center, thereby preserving its
original volume.

Figure 4.3: Fuselage FFD showing the free control points as blue dots. The other control
points remain fixed to guarantee C1 continuity within the undeformed region.

To better understand this design optimization problem, we progressively increase the
problem complexity by introducing groups of design variables until we reach the desired
formulation expressed in Table 4.1. The sequence of five optimization problems is listed in
Table 4.2.

47

Table 4.2: Identification tags for each optimization problem.

Tag Active design variables Description
B α CL matching for the baseline configuration
F α, nfuse Fairing optimization
F+T α, nfuse, τwing Fairing and wing twist optimization
F+T+S α, nfuse, τwing, zwing Fairing, wing twist, and wing shape optimization
T α, τwing Wing twist optimization
T+S α, τwing, zwing Wing twist and shape optimization

4.2 Problem setup

To set up the analysis and optimization cycle in the MACH framework, we must provide tri-
angulated surfaces, structured surface meshes, and FFD boxes for all primary components.
We therefore import the IGES files of the DLR-F6 configuration in ICEM CFD [101] to
generate these inputs, which are listed in Table 4.3. The wing structured surface mesh has
127,488 quadrilaterals, and the fuselage structured surface mesh has 105,344 quadrilater-
als. The triangulated surface representation of the wing has 9,948 elements, whereas the
fuselage triangulated mesh has 19,902 elements, making a total of 29,850 triangles, which
are mainly concentrated in the region of the wing-fuselage intersection. The wing and fuse-
lage triangulated surfaces are also refined in the high-curvature regions (such as the leading
edge), where we expect the collar mesh to grow.

Table 4.3: Inputs required by pySurf; these are generated by ICEM CFD using the original
IGES representation of the DLR-F6 model.

Triangulated surfaces Structured surface meshes FFD blocks

Wing

Fuselage

48

While generating the triangulated surface, we also create line segments to outline im-
portant features of the geometry, such as the two corners of the blunt trailing edge. We
project the marched collar mesh nodes to the line segments to ensure that the correspond-
ing features are represented in the CFD mesh, as explained in Sec. 2.3.

In the next step, we use pySurf to perform the following operations on the triangulated
surfaces to generate the collar mesh:

1. Compute the intersection between the wing and fuselage triangulated surfaces.

2. Split the intersection curve at the wing leading edge and at the trailing edge corners;
this splits the intersection curve into three segments: upper skin, lower skin, and
blunt trailing edge.

3. For each of these segments, create node distributions that are appropriate for CFD
analysis (for instance, with refined leading and trailing edges).

4. Merge the three remeshed curve segments back into a single curve.

5. Use the merged curve as a starting feature for the hyperbolic surface mesh marching
on the wing and on the fuselage to generate the collar mesh.

The execution of these steps generates the collar mesh shown in Fig. 4.4. These oper-
ations are repeated on every optimization iteration to regenerate the collar meshes. pySurf
also saves the order of these operations to execute them in the reversed order during the
reverse propagation of derivatives. The collar mesh generation parameters are manually
adjusted so that the cells from overlapped meshes have similar sizes at the boundaries.

In the initialization step of the optimization, we use pyHyp to automatically extrude the
surface meshes into near-field volume meshes. The hyperbolic extrusion parameters, such
as initial cell height and growth ratios, follow the DPW3 guidelines for the coarse mesh
level. We enforce slightly smaller values of these parameters (95%) for the collar mesh
to ensure that its cells have higher priority of preservation during the implicit hole cutting
process. The near field meshes are extruded up to 2.5 times the mean aerodynamic chord
of the model.

The background mesh, which extends the domain to the far-field, is generated with the
two steps discussed in Sec. 3.3: The background mesh reaches 100 mean aerodynamic
chords, which is the far-field distance specified by DPW3. The complete overset mesh has
1.1 million cells. Figure 3.3 displays the symmetry plane of the overset meshes. Now that
we have a volume mesh, we can proceed to the aerodynamic analysis.

49

Figure 4.4: Structured surface meshes used for the volume mesh extrusion. The primary
component meshes (wing and fuselage) are shown in black, and the automatically generated
collar mesh is shown in red.

4.3 Baseline configuration studies

We run preliminary aerodynamic analysis on the baseline configuration to compare results
with the DPW3 data set. This allows us to verify if the flow solution procedure is consistent
with other CFD codes and wind tunnel measurements.

We use the procedure described in the previous section to generate meshes for both the
baseline DLR-F6 configuration and the one with the FX2B fairing, since both configura-
tions were studied in DPW3. The mesh topology and number of cells is the same for both
geometries. ADflow simulations show the same trends reported in DPW3: the baseline
version shows separation on the wing-body junction trailing edge, while the FX2B fairing
removes it (Fig. 4.5).

Figure 4.5: Wing-body junction flow patterns predicted by ADflow for the DLR-F6 config-
uration. The baseline geometry shows separation on the junction trailing edge (left), while
the addition of the FX2B fairing removes it (right). This is the same trend observed in
DPW3.

50

One important conclusion from previous drag prediction workshops was that the stan-
dard Spalart–Allmaras (SA) turbulence model [86] could overestimate the size of separa-
tion bubbles in wing-body junctions compared to wind tunnel measurements [85, 87, 102].
This effect could be mitigated by applying modifications to the turbulence model, such
as the rotation correction [88], and the quadratic constitutive relation (QCR) [89]. The
anisotropy in the normal turbulent stress introduced by these corrections generates sec-
ondary flow features at the wing-body junction corner that accelerate the flow and reduce
the boundary layer thickness in this region, thus delaying flow separation at the junction
trailing edge [87, 102]. Therefore, we modified the turbulence model in ADflow to take
these corrections into account.

We generate three mesh levels for a grid refinement study (Table 4.4). We compare
the effects of grid refinement for the standard SA model and also for the modified version
with rotation correction and QCR relation (SA-R-QCR2000). The separation bubble of
the baseline configuration obtained from different mesh levels and turbulence models is
shown in Fig. 4.6. The standard SA model predicts a larger separation bubble as the grid
is refined, while the bubble size has small variations due to grid refinement for the SA-R-
QCR2000 model. The latter yields better agreement with experimental data and better drag
convergence characteristics, as seen in the DPW6 [85].

Table 4.4: Mesh levels used for drag convergence study. The maximum y+ values are
computed based on the converged CFD results.

Level Number of cells (million) max y+

Coarse 1.1 1.4
Medium 3.0 1.1
Fine 8.8 0.6

Figure 4.7 shows the drag coefficients obtained for different mesh levels and turbulence
models along with the extrapolated values for the infinitely refined mesh (N−2/3 = 0). The
results of the baseline configuration obtained with standard SA model (DLR-F6 SA curve
in Fig. 4.7) show a change in slope caused by the unphysical growth of the separation
bubble after the mesh refinement. Conversely, the QCR model curves do not show the
same change in slope, since the bubble growth is contained by the modified turbulence
model. The same applies to the DLR-F6-FX2B problem because the separation bubble is
negligible in all mesh levels due to the fairing.

51

Figure 4.6: Effect of grid refinement and turbulence model variant in the recirculation
bubble size.

0.0 2.0 4.0 6.0 8.0 10.0

N−2/3 (10−5)

260.0

270.0

280.0

290.0

C
D

[c
ou

nt
s]

DLR-F6 SA ADflow

DLR-F6 SA-R-QCR ADflow

FX2B SA ADflow

FX2B SA-R-QCR ADflow

DLR-F6 DPW3 (µ± 1.0σ)

FX2B DPW3 (µ± 1.0σ)

DLR-F6 NTF

FX2B NTF

Figure 4.7: Drag convergence study for the DLR-F6 configurations. N represents the
number of cell in the CFD mesh. Blue colors refer to the baseline DLR-F6 configurations
and red colors refer to the DLR-F6-FX2B configuration.

52

Figure 4.7 also compares ADflow results against the average values from DPW3 [76]
and experimental data from the National Transonic Facility (NTF) [103]. The shaded area
represents the uncertainty in the wind tunnel measurements. ADflow predictions are within
one standard deviation from the average values reported in DPW3. The drag coefficient
for the infinitely refined mesh predicted by ADflow with SA-R-QCR2000 for the baseline
configuration is 9.4 counts lower than the wind tunnel measurement. On the other hand,
ADflow predicts a reduction of 3.1 drag counts due to the addition of the fairing, while the
drag reduction measured in wind tunnel tests is of 2.4 counts. This difference of 0.7 drag
counts between the experimental and computational results corresponds to 0.2% of the total
drag value measured in the wind tunnel. This indicates that the relative variations predicted
by the numerical tools used in this work have enough accuracy for practical applications,
and is thus suitable for optimization purposes.

We also addressed the effect of the triangulated surface refinement on the CFD results.
Refining the triangulated surface from 29 thousand to 1.3 million triangles for the collar
mesh generation causes an average displacement of 0.02 mm for the CFD mesh nodes at
the wing-fuselage intersection line and a variation of 0.05 drag counts for the aerodynamic
analysis of the baseline configuration, as shown in Fig. 4.8. Therefore, the optimization
results obtained with the former triangulated surface fall within analysis and manufacturing
tolerances.

All optimization cases to be shown in the next sections use the SA-R-QCR2000 tur-
bulence model. In addition, we use the coarse mesh level (1.1 million cells) and to limit
the computational cost of each CFD solution. We also use the coarse triangulated surface
representation (29 thousand cells) to reduce the pre-processing cost of the optimization.

Figure 4.8: Effect of refinement of triangulated surface over CFD results. The coarse
triangularization is used for optimization.

53

4.4 Optimization results

We first optimize the DLR-F6 configuration just with respect to the fuselage shape variables
(Problem F in Table 4.2). All other design variables presented in Table 4.1 are fixed in this
case. Figure 4.9 shows the convergence of the optimization problem, and we achieve a
reduction of approximately 5 drag counts. Figure 4.10 shows details of the optimized
fairing. The designed fairing completely eliminates the recirculation regions, as shown in
Fig. 4.11.

Figure 4.9 also shows that some design variables reach the prescribed bounds. The
fairing extends even more if we relax these bounds, but excessive stretching leads to mesh
warping and overset hole cutting problems. The explanation for this behavior is that since
the optimizer does not have the freedom to modify the wing geometry, it is (inefficiently)
using the fairing to change the wing lift distribution. The fairing gets bigger to unload
the inboard region of the wing and shift the lift distribution towards the tip, as shown in
Fig. 4.12.

284.7

287.3

290.0

C
D

[c
ou

nt
s]

flow solution

flow and adjoint solution

0.495

0.500

C
L

0 5 10 15 20 25 30 35

Iterations

0.00

0.02

0.04

n
fu

se
[m

]

Figure 4.9: Fairing-only optimization history. Some normal displacement design variables
went to the lower boundary of 0.04 m.

54

Figure 4.10: Optimized fairing for the fairing-only optimization (Problem F).

Figure 4.11: Wing-body junction flow before and after the fairing optimization (Prob-
lem F). Red regions indicate reversed flow. The redesigned fairing reduces the recirculation
bubble.

55

0.0

1.0

2.0

N
or

m
al

iz
ed

L
if

t
[1
/m

]

B F

E

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Span

0.0

10.0

20.0
N

or
m

al
iz

ed
D

ra
g

[1
/m

]

B

F

Figure 4.12: Comparison of lift and drag distributions between the baseline (B) and the
fairing-optimized configuration (F).

Next, we solve the additional optimization problems listed in Table 4.2 to investigate
the effect of adding the other design variable groups. Some relevant performance figures
regarding these optimizations, such as optimality and wall time, are listed in Table 4.5. All
cases are executed with 192 processors distributed among 4 Intel Xeon Skylake Nodes.

Figure 4.13 shows the relative computational time of the tasks performed on each opti-
mization iteration that includes an adjoint solution. The geometry and mesh manipulation
task has a small impact to the overall time of the iteration due to the use of efficient inter-
section detection, collar mesh generation, and mesh warping algorithms.

No optimization from Table 4.5 reaches the desired reduction in optimality of 1.0×10−5

since they terminate due to numerical difficulties caused by the noise in the functions of
interest. This follows the same trend observed in the univariate optimization discussed in
Sec. 3.8.1. Nevertheless, the optimizer still achieves drag reduction in every case.

The summary of the drag coefficients obtained for each optimized configuration is
shown in Table 4.5 and Fig. 4.14. These results indicate that adding design variables tends
to reduce the drag. The full optimization (F+T+S) achieves a 16 drag count (5%) improve-
ment compared to the baseline configuration.

56

Table 4.5: Aerodynamic coefficients obtained for each optimization.

Problem CL
CD

(counts)
CD reduction

(%)
Initial

optimality
Final

optimality
Wall time
(minutes)

B 0.4999 290.65 0.0 - - 1
F 0.5000 285.31 1.8 1.9× 10−3 2.4× 10−5 32
F+T 0.5000 277.80 4.4 1.6× 10−2 3.8× 10−4 68
F+T+S 0.4999 274.81 5.4 1.3× 10−2 3.1× 10−3 96
T 0.5000 279.53 3.8 1.5× 10−2 3.6× 10−5 71
T+S 0.5000 276.54 4.8 6.9× 10−3 8.9× 10−4 80

Flow solution

36%
Geometry and mesh

manipulation
2%

CL adjoint solution 31%

CD adjoint solution

31%

Figure 4.13: Relative computational time of the tasks performed during and optimization
iteration involving an adjoint solution. The average time of the iteration is of 85 seconds.

0 1 2 3

Number of active design variable groups

277.0

280.0

283.0

286.0

289.0

292.0

C
D

[c
ou

nt
s]

B

F

F + T

F + T + S

T

T + S

5 counts

13 counts
16 counts

B : Baseline

F : Fairing optimization

T : Twist optimization

S : Wing shape optimization

Figure 4.14: Progression of the optimized drag value due to the additional active design
variables. Drag decreases as we add more degrees of freedom to the optimization.

57

Figure 4.15: Rear views comparing the fairing sizes obtained for different optimizations.
The fairing gets smaller as the optimizer gets more control over the wing properties.

Figure 4.16: Contour plot showing the distance that the fuselage surface moved during
optimization. The fuselage surface moves a relatively large amount when the optimizer
can only control the fairing.

58

Figure 4.15 shows how the optimized fairing geometry changes due to the addition of
wing twist design variables and wing shape design variables. The fuselage deformation
maps of Fig. 4.16 show that the optimizer adds two distinct bumps, one near the leading
edge to decrease the suction peak gradient and other near the trailing edge to prevent recir-
culated flow. The fairing size progressively reduces as we include more degrees of freedom
in the optimization, and the fairing design variables do not reach the prescribed bounds
anymore, as shown in Fig. 4.17. Since the optimizer has additional degrees of freedom to
tailor the wing, the fairing design variables only make local adjustments to the wing-body
junction flow pattern, what requires smaller deformations.

We observe similar behavior for twist variables. Figure 4.17 shows that the magnitude
of twist variation also decreases when we activate shape design variables.

280.0

290.0

C
D

[c
ou

nt
s] flow solution

flow and adjoint solution

0.48

0.49

0.50

C
L

0.000

0.025

0.050

n
fu

se
[m

]

0 8 16 24 32 40 48 56

Iterations

−5.0

−1.0

3.0

τ w
in

g
[d

eg
]

(a) Fairing and twist optimization (F+T).

280.0

290.0

C
D

[c
ou

nt
s]

0.48

0.49

0.50

C
L

0.000

0.025

0.050

n
fu

se
[m

]

0 15 30 45 60 75 90

Iterations

−5.0

−1.0

3.0

τ w
in

g
[d

eg
]

(b) Fairing, twist and shape optimization (F+T+S).

Figure 4.17: Optimization histories for the F+T and F+T+S problems. The fairing design
variables do not reach the upper bound in either problem.

Figure 4.18 shows the lift and drag distributions for the different optimized configura-
tions. The inclusion of twist variables allows the optimizer to reach a more elliptical lift
distribution to reduce induced drag. In addition, optimizations with twist variables reduce
the fuselage contribution to the overall lift and transferred this load to the wing, where lift
can be generated more efficiently.

59

0.0

1.0

2.0

N
or

m
al

iz
ed

L
if

t
[1
/m

]

B F
F + T

F + T + SE

0.0

10.0

20.0

N
or

m
al

iz
ed

D
ra

g
[1
/m

]

B

F
F + T F + T + S

B : Baseline

F : Fairing optimization

T : Twist optimization

S : Wing shape optimization

E : Elliptical

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Span

−3.0

0.0

3.0

6.0

T
w

is
t

[d
eg

] B
F

F + T
F + T + S

19% span

37% span

56% span

74% span

93% span

Figure 4.18: Comparison between lift and drag distributions for all fairing optimizations.
The inclusion of twist variables (T) allows the optimizer to achieve more efficient lift dis-
tributions, which are closer to an elliptical one.

The shape variables control the airfoil camber, which allows the optimizer to reach
the desired lift distribution more efficiently than using twist alone. This is because shape
variables can further improve the airfoil aerodynamic efficiency (L/D) while still attaining
an elliptical lift distribution. The wing cross sections shown in Fig. 4.18 indicate that the
airfoils of the optimization with active shape variables (F+T+S) have increased the camber
since both the upper and lower surfaces are above their original position.

The introduction of wing shape design variables also removes shocks and results in
designs with smoother lift distributions since the optimizer can fine-tune the thickness and
camber along the wing (see Fig. 4.19). Smoother pressure distributions have smaller pres-
sure gradients that prevent accelerated boundary layer growth, thus reducing drag.

The fairing design variables effectively remove the separated region of the junction
trailing edge in all optimization problems in which they are active, as seen in Fig. 4.20.
Wing twist and shape optimization without the fairing design variables might still show
minor separated regions (see Fig. 4.21). In fact, the main differences between drag distri-
butions for the T+S and the F+T+S configurations shown in Fig. 4.22 are located around
the junction region. Problems T+S and F+T+S converge to practically the same wing ge-

60

Figure 4.19: Pressure coefficient slices of all optimized configurations. The optimizer
designs wings with smoother pressure distributions as we activate wing shape variables
(S). The shock on the upper wing surface is also removed by the shape variables. Even
though Problems T+S and F+T+S have different design spaces, they show similar airfoils
and pressure distributions since they converged to practically the same wing design.

ometry. Figure 4.22 indicates that the wing twist distribution and the airfoil sections of
the optimized configurations are similar, except in the vicinities of the wing-body junction,
where the effects of the fairing design variables are noticeable. This may be an indication
of the convexity of the wing optimization problem, because we get similar wing shapes
despite having different design spaces for each problem.

Finally, we show that the drag reduction of the optimized configurations is still present
at finer mesh levels. Figure 4.23 plots the mesh convergence study for the optimized con-
figurations and for the baseline configuration. The simultaneous wing and fairing design
(case F+T+S) reduces drag by 16 counts (5%) at the coarsest mesh level, while the contin-
uum estimates indicate that the optimized configuration reduces drag by 11 counts (4%).
The relative ranking of the configurations in terms of drag remains the same for all mesh
levels.

61

Figure 4.20: Wing-body junction trailing edge after every optimization problem. Red re-
gions indicate reversed flow. The redesigned fairings eliminate the recirculation bubble in
all problems. The wing shape variables achieve smoother chordwise pressure distributions.

Figure 4.21: Comparison between the optimized configuration with and without fairing
design variables. Optimization without the fairing design variables still shows trailing edge
separation region (red).

62

0.0

1.0

2.0
N

or
m

al
iz

ed
L

if
t

[1
/m

]

B

F + T + S

T + S

E

0.0

10.0

20.0

N
or

m
al

iz
ed

D
ra

g
[1
/m

]

B

F + T + S

T + S

B : Baseline

F : Fairing optimization

T : Twist optimization

S : Wing shape optimization

E : Elliptical

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Span

−3.0

0.0

3.0

6.0

T
w

is
t

[d
eg

] B

F + T + S
T + S

19% span

37% span

56% span

74% span

93% span

Figure 4.22: Comparison between lift and drag distributions of the twist and shape op-
timized configurations with (F+T+S) and without (T+S) fairing variables. The resulting
twist and airfoil distributions get progressively more similar as we move towards the tip.
The F+T+S configuration has a smaller drag in this region as well, which leads to the
improvement seen in Fig. 4.14.

0.0 2.0 4.0 6.0 8.0 10.0

Number of cells−2/3 (10−5)

260.0

270.0

280.0

290.0

C
D

[c
ou

nt
s]

F

F+T+S

B
1.1M cells

3.0M cells

8.8M cells

Figure 4.23: Mesh refinement study for baseline (B) and optimized configurations (F and
F+T+S). Dashed lines represent continuum estimates. The optimized design improvements
are still present at finer mesh levels.

63

4.5 Summary

In this chapter we used pySurf to perform the aerodynamic shape optimization of the wing-
body junction of the DLR-F6 configuration. We demonstrate that independent component
manipulation and automatic collar mesh generation can be integrated in gradient-based
optimization tasks.

We show that a fairing-alone optimization might try to solve issues from the overall con-
figuration, which is unproductive. Adding wing design variables provides more options for
the optimizer to solve these issues, leaving the task of locally adjusting the wing-fuselage
junction flow to the fairing design variables, as originally intended. Therefore, we conclude
that one should include as many variables as possible to avoid this issue. When all variables
are active, the optimizer reduces drag by 16 counts (i.e., 5%) compared with the baseline
design.

64

CHAPTER 5

Strut-braced wing optimization

One approach to decrease aircraft fuel burn is the reduction of induced drag through longer
wing spans. However, when aerostructural trade-offs are considered, there is a limit to
the span that can be achieved before drag reduction is overwhelmed by structural weight
increase [74, 104]. The SBW configuration addresses this issue by adding a strut to alleviate
the bending moment in the main wing. The additional strut allows the wing to have a longer
span, lowering induced drag [105]. The strut also enables the reduction of the main wing
thickness-to-chord ratio, thus decreasing structural weight and wave drag. Despite these
benefits, the wing-strut junction increases interference drag; thus, the feasibility of this
type of aircraft depends heavily on the synergy between the wing and the strut, as well as
on the careful design of the junctions.

The TBW is a variant of the SBW configuration in which the main wing has additional
supporting elements besides the strut, called juries [106]. The juries are used to stabilize
buckling modes of the wing and strut [107]. However, the additional junctions and the
blockage effect of the juries in the wing-strut gap result in even more complex trade-offs
between aerodynamics and structures.

The Hurel–Dubois HD-34, built in the 1950’s and primarily used for aerial photography,
was one of the first TBW airplanes to be successfully flown [108]. Since then, multiple
studies have been conducted to verify the feasibility of this configuration for commercial
transport, motivated by the desire to reduce fuel burn. For instance, a study conducted by
NASA in 1980 concluded that the SBW configuration would have a lower fuel consumption
when compared to conventional configurations, though the loss in productivity due to lower
cruise speeds and increase in costs associated with the wing size and complexity could
hinder the practicality of this configuration [109].

Despite these concerns, studies of SBWs and TBWs continued as new analysis and de-
sign tools became available. Efforts in the late 1990’s and early 2000’s assessed the feasi-
bility of the SBW in a commercial transport mission profile using multidisciplinary tools in-
volving aerodynamics, structures, propulsion, and stability considerations [110, 111]. The

65

complexity of the multidisciplinary environment often forced the use of medium-fidelity
and semi-empirical aerodynamics, such as discrete vortex method for induced drag [112],
Korn equation for wave drag, and skin-friction coefficients for parasite drag to obtain a
tractable optimization problem. In some efforts, the interference drag associated with junc-
tions was estimated via surrogate models [113, 114] for conceptual design of SBW and
TBW configurations [105]. These models were often non-ideal as the computational cost
associated with the surrogate model generation could limit the number of design parameters
and their bounds.

More recently, NASA and Boeing have conducted analyses of the TBW configuration
using both wind tunnel tests and CFD simulations as part of the Subsonic Ultra-Green Air-
craft Research (SUGAR) project [107]. One TBW configuration may even be included in
the next-generation of NASA X-planes to verify its potential for fuel burn reduction [115].

This increasing interest and investment in these configurations justifies efforts to in-
crease the fidelity of models used in SBW and TBW analyses to understand in more detail
the aerodynamic and structural interaction among the aircraft components and to correctly
quantify the potential performance gains. For instance, Carrier et al. [108] used a Reynolds-
averaged Navier–Stokes (RANS) solver to compute aerodynamic loads on the main wing
which were then coupled with a finite-element model to compute structural deformation.
Gagnon and Zingg [116, 117] performed Euler-based aerodynamic shape optimization of
a SBW considering both the main wing and strut.

In a previous study, we conducted a RANS-based ASO of a TBW in the transonic
regime by using shape and twist design variables [11]. Though this study offered insights
into the performance of TBW configurations, it was limited in several respects that have
since been addressed.

Firstly, it utilized a structured multiblock mesh for computational fluid dynamics (CFD)
analyses that prevented changes in the wing-strut junction geometry due to complications in
deforming the mesh near the concave regions of the junctions without generating negative
volume cells. We have since extended our CFD solver to handle overset meshes [44],
facilitating the generation and manipulation of meshes for this type of configuration.

Secondly, our previous TBW optimization was limited by characteristics of our geom-
etry manipulation module. The previous geometry manipulation method operated on the
entire geometry, rather than on individual components. Therefore, it was not possible to
implement independent sets of design variables for each component. For instance, if we
changed the spanwise wing-strut intersection position, the lower surface of the wing would
be moved as well, causing unwanted compression and extension of surface cells on the
wing CFD mesh. We recently developed a component-based geometry manipulation mod-

66

ule that allows the strut to freely move with respect to the wing, avoiding the prior geometry
limitations [118].

In this chapter we perform RANS-based aerodynamic shape optimization of a SBW
in the transonic regime using overset meshes and component-based geometry manipula-
tion to allow wing-strut junction shape design. We use the baseline SBW geometry and
flow conditions from the Platform for Aircraft Drag Reduction Innovation (PADRI) 2017
workshop [119]. This geometry, shown in Fig. 5.1, consists of three primary components:
fuselage, wing, and strut. The fuselage geometry and the wing-fuselage junction is kept
unchanged in this work. Table 5.1 shows the main dimensions of each component and the
flow condition used for aerodynamic analysis.

The RANS analyses provide a more accurate quantification of the drag reductions that
are possible for the SBW, thus improving upon Euler-based studies [116, 117, 120] and
complementing previous low-fidelity multidisciplinary design optimization estimates [105,
106, 110, 111, 121].

We address two design optimization cases in this work. First, we optimize the shape of
the entire wing and strut. Then, we just optimize the vicinities of the wing-strut junction,
following the guidelines established by the PADRI 2017 workshop. This allows us to
compare the drag reduction of an ad-hoc fix to the junction against the drag reduction
achieved by the entire redesign of the wing and strut.

Figure 5.1: Baseline SBW configuration of the PADRI 2017 workshop. Views are not in
the same scale.

5.1 Optimization problem definition

The optimization objective in this work is to minimize the drag of the SBW for a given
Mach number, lift coefficient, and wing planform. In other words, the span and chord of
the wing and strut remain fixed, while the optimizer can change airfoil shapes and spanwise
twist distributions. For the first design optimization, we allow changes over the whole wing
and strut, including the wing-strut junction region. The second design optimization follows

67

Table 5.1: Geometric characteristics and flight conditions used for the baseline SBW con-
figuration analysis.

Wing Strut Fuselage

Planform area [m2] 161 Planform area [m2] 28.9 Length [m] 41.7
Span [m] 55.6 Span [m] 33.4 Diameter [m] 4.3
Mean aerodynamic chord [m] 3.264 Mean aerodynamic chord [m] 0.865
Aspect ratio 19.2 Aspect ratio 38.6
Taper ratio 0.256 Taper ratio 1.00
1/4 Chord sweep [deg] 15.0 1/4 Chord sweep [deg] 10.9
Dihedral [deg] -4.0 Dihedral [deg] 10.2

Flight Condition

Mach 0.72
α [deg] 1.0
Altitude [ft] 30,000

the PADRI 2017 guidelines, which only allows changes nearby the wing-strut junction.
This second case is detailed in Sec. 5.3.

We start with the baseline IGES description of the SBW provided in the PADRI 2017
website [119] to create structured surface meshes (Fig. 5.2) and triangulated surface meshes
(Fig. 5.3) for each primary component using ICEMCFD. We then embed both surface
meshes of each component into their corresponding FFD boxes (Fig. 5.4) to allow pyGeo
to manipulate their shape. The fuselage has no associated FFD since its geometry remains
fixed for this optimization. Regardless, we still require the fuselage triangulated surface
for collar mesh generation. The shape variables consist of hundreds of control points dis-
tributed over the FFD boxes. This leads to the general formulation of the optimization
problem in Table 5.2.

The wing FFD is comprised of two layers of 16 chordwise by 20 spanwise control
points, with one layer for the upper surface and one for the lower. These control points
move vertically to change the underlying wing surface shape. Control points within the
same chordwise station can also be simultaneously rotated around the quarter-chord to
change the local twist. Wing twist is controlled in 10 spanwise locations along the FFD
and the intermediate twist values are interpolated between these locations. To avoid shear
twist, the pairs of control points on the leading and trailing edges must move equal dis-
tances in opposing directions. This requirement is enforced by the leading and trailing
edge constraints listed in Table 5.2.

68

Figure 5.2: Structured surfaces meshes of the primary components of the aircraft. The
O-grids near intersections increase the cell density to facilitate the overset hole cutting
process.

Figure 5.3: Triangulated surfaces used for intersection detection and collar mesh genera-
tion.

69

Figure 5.4: FFD boxes of the primary components whose shape will be optimized. The
dots represent the FFD box control points.

Table 5.2: SBW aerodynamic shape optimization problem.
Variable/function Description Quantity

minimize CD Drag coefficient

with respect to −1.0 ≤ α ≤ 3.0 Angle of attack [deg] 1
−5.0 ≤ τwing ≤ 5.0 Wing sections twist [deg] 10
−0.05 ≤ ∆zwing ≤ 0.05 Vertical displacement of wing FFD control points [m] 640
−10.0 ≤ τstrut ≤ 5.0 Strut sections twist [deg] 11
−0.06 ≤ ∆nstrut ≤ 0.06 Normal displacement of strut FFD control points [m] 242

Total design variables 904

subject to CL = 0.4058 Lift constraint (baseline at α = 1.0 deg) 1
t/tinit,wing ≥ 0.999 Wing thickness constraint 60
∆zwing,TE,upper = −∆zwing,TE,lower Wing fixed trailing edge constraint 20
∆zwing,LE,upper = −∆zwing,LE,lower Wing fixed leading edge constraint 20
t/tinit,strut ≥ 0.999 Strut thickness constraint 84
∆nstrut,TE,upper = −∆nstrut,TE,lower Strut fixed trailing edge constraint 11
∆nstrut,LE,upper = −∆nstrut,LE,lower Strut fixed leading edge constraint 11

Total constraints 213

The strut has control points defined for both the upper and lower surfaces, similar to the
wing. The control points of each surface are distributed in a mesh of 11 chordwise by 11
spanwise control points. Each control point can be independently moved in the direction
normal to the strut surface to change the thickness and camber distribution along the strut.
In addition, 11 twist variables are defined for the strut sections (one for each chordwise
section). We also enforce constraints on the leading and trailing edge control points to

70

avoid shear twist of the strut sections. The aircraft angle of attack is an additional design
variable to allow the optimizer to match the lift constraint.

Since structural analyses are not conducted during optimization, it is necessary to en-
force artificial constraints to take structural considerations into account and to avoid unreal-
istically thin airfoil designs. For this optimization, we compute thicknesses in 144 locations
along the wing and the strut, as shown in Fig. 5.5. The thicknesses at these points cannot
go below their corresponding initial value.

Figure 5.5: Points of the wing (blue) and strut (red) where thickness constraints are en-
forced. The distances between the pair of points cannot go below their initial value.

TheCL constraint ensures that the optimized configuration generates the same lift as the
baseline configuration at 1.0 degree of angle of attack. Preliminary aerodynamic analysis
of the baseline configuration with ADflow shows that the lift coefficient value for this
condition is CL = 0.4058.

5.2 Wing and strut optimization

In this first optimization problem, we modify the entire extent of the strut and wing. The
optimization takes 27 hours using 1088 threads distributed among 16 Intel Xeon Phi 7250
KNL nodes. The optimizer requires 69 CFD simulations and 40 adjoint solutions to arrive
at the final result. The optimization history (Fig. 5.6) shows that the drag coefficient is
reduced by 14.7%, while maintaining the lift coefficient of the initial configuration. The
assumption of frozen interpolation weights in the reverse AD code does not compromise
the optimization since the optimizer takes several unit steps, as indicated by the consecutive
flow and adjoint evaluations in Fig. 5.6.

The optimality conditions are not satisfied to the specified tolerance, since the optimizer
stops prematurely due to inconsistencies in the gradient caused by noise in the functions of
interest. This effect only becomes significant near the optimum, where variations caused
by the noise exceed the shallow slopes of the underlying function. Nevertheless, the design

71

200.0

210.0

220.0

230.0

C
D

[c
ou

nt
s]

flow solution

flow and adjoint solution

0 10 20 30 40 50 60 70

CFD Solutions

0.401

0.403

0.405

0.407

C
L

Figure 5.6: Optimization history of the SBW optimization. The drag decreases by 33
counts for the same lift coefficient.

already has significantly improved at this point of the optimization. Furthermore, during
the final iterations we only see minor changes to the geometry and the drag value decreases
by thousandths of drag counts between iterations. Therefore, the shape can be considered
optimal for practical purposes.

The optimizer reduces the drag by improving the spanwise lift distribution, eliminating
shock waves, and reducing the amount of separated flow. These correspond in turn to a
reduction in induced drag, wave drag, and viscous drag, respectively.

The baseline configuration shows a shock wave near the wing-strut intersection region
that is eliminated in the optimized design (see Fig. 5.7). The optimized shape reduces the
flow acceleration in the gap between the two components by decreasing the strut incidence
angle. Consequently, there is a pressure increase over the facing surfaces of the wing
and the strut when compared to the baseline configuration (also shown in Fig. 5.7). The
optimized solution also shows smoother pressure distributions on the lower surface of the
wing, which slows boundary layer growth and thus decreases viscous drag.

The elimination of shocks has a positive impact on separation, as a large portion of
separation observed in the baseline design is induced by shocks (Fig. 5.8). The wing-strut
junction also induces separation on its trailing edge, and the optimizer manages to adjust
the geometry of the intersection to reattach the flow in this region.

72

Figure 5.7: Comparison of shock and pressure distributions between the baseline (left) and
optimized (right) designs. The strut is shown at a different scale.

Figure 5.8: Separation on the trailing edge of the wing-strut junction before (top) and after
(bottom) the optimization.

The incidence angle of the optimized strut is reduced to the point of generating negative
lift, as shown in Fig. 5.9 and Fig. 5.10. This negative lift generation is compensated for by
increased twist in the midspan part of the wing, resulting in an overall lift distribution that is
close to elliptical. These trends were also observed in Euler- and RANS-based aerodynamic

73

shape optimizations of different SBW geometries [11, 116, 117, 120]. Parametric studies
done by Ko et al. [122] also show that using a strut with negative incidence angles and
a relatively flat upper surface reduces the shock strength near the wing-strut intersection.
Most of the drag reduction occurs from the inboard region of the wing and also from the
strut sections near the junction, as shown in the upper right plot in Fig. 5.9.

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

L
if

t
[1
/m

]

Elliptical
Total

Optimized

Baseline

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Span

0.0

1.0

2.0

N
or

m
al

iz
ed

L
if

t
[1
/m

]

Strut

Wing

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

D
ra

g
[1
/m

]

B

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Span

−6.0

−4.0

−2.0

0.0

T
w

is
t

[d
eg

]

Figure 5.9: Spanwise distribution of lift, drag and twist for the baseline (dashed lines) and
optimized configuration (solid lines). The strut generates downward lift, and the inboard
region of the wing increases its lift distribution to compensate for that, yielding an overall
elliptical lift distribution.

Baseline Optimized

N
or

m
al

iz
ed

L
if

t

86%

11%
3%

100%

W
in

g

S
tr

u
t

F
u

se
la

ge

T
ot

al

110%

−12%

2%

100%

W
in

g

S
tr

u
t

F
u

se
la

ge

T
ot

al

Figure 5.10: Component-wise lift distribution. The lift is normalized by the CL constraint.

74

The optimization lowered the magnitude of the suction peaks on the lower surface of
the wing and on the upper surface of the strut (Fig. 5.11). The wing slice at 59% of the
semi-span of the optimized configuration has a subtle bump on the lower surface at ap-
proximately three quarters of the chord. The strut slice at 59% of the semi-span shows a
bump near the trailing edge of the upper surface to increase the extent of favorable pressure
gradient in this area, thus delaying separation.

W
in

g

0.22 · b/2 0.46 · b/2 0.59 · b/2

S
tr

u
t

−1

0

1

C
p

Baseline

Optimized

−1

0

1

C
p

Figure 5.11: Cross-sectional slices of the wing and strut and corresponding pressure distri-
butions for the baseline (dashed lines) and optimized (solid lines) configurations.

This trailing edge bump also extends to the vertical section of the strut (Fig. 5.12).
The redesigned shape eliminated the flat pressure distribution regions on the trailing edge
caused by separation. The suction side of this vertical segment of the strut is on the outboard
surface, following the same trend as the rest of the strut, to avoid high-speed flow on the
inner side of the junction. According to the cross-sectional slices shown in Fig. 5.11 and
Fig. 5.12, the optimization makes more significant changes to the strut rather than the wing
in the quest to reduce drag.

This study marks a notable improvement to our previous TBW investigation [11]. The
previous optimization using multiblock meshes could not remove junction shocks and sep-

75

aration as effectively as the current approach based on overset meshes and component-
based parametrization. In addition, the current work avoids the generation of negative
volume cells that hindered the optimization in the original process. While the previous
work seemed to obtain a greater relative drag reduction, the results are not quantitatively
comparable to this study as the previous optimization referenced a different baseline con-
figuration, a different flight condition, and more permissive thickness constraints.

A

Baseline

Optimized

B

−1

0

1

C
p

C

Figure 5.12: Cross-sectional slices of the vertical segment of the strut for the baseline
(dashed lines) and optimized (solid lines) configurations.

5.3 Junction optimization according to PADRI 2017 guide-
lines

We also analyze a second optimization problem following the guidelines of the PADRI
2017 workshop, which establishes that the aircraft shape can only be modified between
52% and 63% of the semi-span. Furthermore, the twist and the upper skin of the wing
cannot be changed at any place.

We achieve this requirement by fixing control points outside of the specified spanwise
range. The first layer of control points inside the optimization range is also constrained
due to the support of the B-splines used in the FFD mapping. The control points on the
upper surface of the wing are also fixed, while the lower surface control points can only
move downward to avoid reduction of the wing thickness. We also constrain the leading
and trailing edge control points on the lower surface of the wing to avoid shear twist.

The bounds of the wing FFD control points already prevent thickness reduction and
shear twist for this component. Therefore, we only need to keep the thickness constraints
and shear twist constraints for the strut. In the end we have 233 design variables and 63
constraints, as shown in Tab. 5.3.

76

Table 5.3: SBW aerodynamic shape optimization problem after PADRI 2017 guidelines.

Variable/function Description Quantity

minimize CD Drag coefficient

with respect to −1.0 ≤ α ≤ 3.0 Angle of attack [deg] 1
−0.05 ≤ ∆zwing ≤ 0.00 Vertical displacement of wing FFD control points [m] 72
−10.0 ≤ τstrut ≤ 5.0 Strut sections twist [deg] 6
−0.06 ≤ ∆nstrut ≤ 0.06 Normal displacement of strut FFD control points [m] 154

Total design variables 233

subject to CL = 0.4058 Lift constraint (baseline at α = 1.0 deg) 1
t/tinit,strut ≥ 0.999 Strut thickness constraint 48
∆nstrut,TE,upper = −∆nstrut,TE,lower Strut fixed trailing edge constraint 7
∆nstrut,LE,upper = −∆nstrut,LE,lower Strut fixed leading edge constraint 7

Total constraints 63

This optimization takes 31 hours on 1088 threads distributed among 16 Intel Xeon Phi
7250 KNL nodes. It requires 91 CFD simulations and 57 adjoint solutions to arrive at the
final result. The optimized configuration drag coefficient is 6.4% smaller than the baseline,
as shown in the optimization history (Fig. 5.13). Figure 5.14 shows that the deformations
only occur within the spanwise range defined by the PADRI 2017 guidelines. The con-
straints imposed by the PADRI 2017 guidelines prevents the optimizer from reaching a
shock-free configuration. Figures 5.15 and 5.16 show that shocks and separation remain
outside the optimized region.

220.0

240.0

C
D

[c
ou

nt
s]

flow solution

flow and adjoint solution

0.415

0.430

0 20 40 60 80

CFD Solutions

0.406

0.407

C
L

Figure 5.13: Optimization history of the SBW optimization for the PADRI 2017 guidelines.
The drag decreases by 14 counts while maintaining the same lift coefficient of the baseline
configuration (red line).

77

Figure 5.14: Discrepancies between the CFD surface nodes of the baseline (black) and
optimized (red) configurations only occur on the lower surface of the wing and on the strut
surface within the specified spanwise range.

Figure 5.15: Comparison of shock waves between the baseline (left) and optimized (right)
designs for the PADRI optimization case. Shocks still remain outside of the optimized
region.

Figure 5.16: Rear view of the wing-strut intersection showing separation regions (blue).
The optimizer manages to remove the trailing edge separation only within the spanwise
range where the design variables are active.

78

Figure 5.17 shows cross-sectional slices of the previous optimized configuration (shown
in Sec. 5.2) and the one obtained after imposing the PADRI 2017 constraints. Even though
both optimized designs follow the same trends, the magnitude of these changes are more
expressive in the latter due to the additional constraints. For instance, the optimized strut
of the PADRI 2017 case needs additional twist to reduce the flow velocity in the wing-strut
gap, since the wing twist is fixed. The fixed wing twist also forces the optimizer to increase
the bump size on the lower surface of the wing near the strut intersection for a smoother
pressure recovery, as shown in the wing slice at 59% of the semi-span (upper right chart of
Fig. 5.17).

W
in

g

0.52 · b/2 0.55 · b/2 0.59 · b/2

S
tr

u
t

−1

0

1

C
p

Baseline

Optimized

PADRI
−1

0

1

C
p

Figure 5.17: Comparison among the cross-sectional slices of the wing and strut and corre-
sponding pressure distributions for the baseline configuration (red dashed lines), the fully
optimized configuration (red solid lines), and the optimized configuration for the PADRI
guidelines (black). The optimized shape for the PADRI 2017 case has more twist to com-
pensate the fixed twist angles of the wing and the remainder of the strut.

79

5.4 Summary

In this chapter we demonstrate the feasibility of RANS-based aerodynamic shape optimiza-
tion of a transonic SBW geometry using overset meshes and component-based geometry
manipulation. These methodologies avoid the mesh deformation issues seen in previous
work and gave better shape control of the SBW components and their junctions.

The optimized design achieves a 14.7% drag reduction compared to the baseline con-
figuration for the same lift. Studies of the optimized configuration show that a downward-
lifting strut avoids suction peaks in surfaces facing the wing-strut gap, eliminating the shock
wave seen in the baseline configuration. The inboard section of the wing has to increase its
load to compensate the negative lift of the strut and achieve an elliptical overall lift distri-
bution. Adjustments to the wing-strut intersection curve and the addition of a bump on the
strut trailing edge change the pressure recovery and reduce the separation. The optimiza-
tion also demonstrates that changes to the strut shape are more effective for drag reduction
rather than modifications to the wing shape.

The wing-strut junction optimization following the PADRI 2017 guidelines reduces
the drag coefficient by 6.4%. Changes on the strut shape follow the same trends of the
previous optimization, in which the entire wing and strut are redesigned. However, the
magnitude of these changes become more significant to compensate the smaller number
of design variables. This highlights the fact that better performance margins are achieved
when issues are addressed earlier on during the design processes, when the designer has
more freedom to modify the overall shape of the aircraft. The use of high-fidelity analysis
and optimization during the conceptual design facilitates the detection and solution of these
potential issues.

80

CHAPTER 6

Concluding remarks

In this chapter the main conclusions of the work presented in this thesis are summarized.
The main contributions are also highlighted and directions for future studies are suggested.

6.1 Conclusions

The aerospace research community is actively pursuing new geometric and mesh parametriza-
tion methods to add more flexibility to CFD-based optimization frameworks. Chapter 1 de-
scribed that one of the main challenges of the current geometry manipulation modules is the
need to track changes in intersections among different components during the optimization,
while allowing the computation of derivatives for gradient-based optimization. This pre-
vents the use of Euler- and RANS-based optimization frameworks to design configurations
with multiple components and junctions, such as the SBW.

To address this need, a component-based parametrization technique that uses triangu-
lated surfaces to compute intersections and generate collar meshes is introduced, as shown
in Chapter 2. These triangulated surfaces are embedded in the same geometry manipulation
module (in our case FFD) as the structured surface meshes, so that both surface represen-
tations have consistent displacements. The intersection lines defined by the triangulated
surfaces are used to grow collar meshes using hyperbolic mesh marching algorithms. The
hyperbolic mesh marching method is modified to improve its robustness and the quality of
the surface mesh, especially near sharp edges. These tasks are implemented in the form of
a Python module called pySurf.

This module is differentiated using reverse AD to fit directly into the reverse chain
of the optimization framework used in the hybrid adjoint method and avoid the use of
finite differences. The source code transformation is selectively applied to efficiently reuse
information from the forward execution of the code, thus avoiding the repetition of iterative
solutions and tree searches during the reverse propagation of derivatives.

81

The next step was the inclusion of the pySurf module into the MACH optimization
framework, as explained in Chapter 3. The interactions among the multiple framework
modules are detailed, both in the original and reverse executions of the code. This frame-
work is first tested in a univariate optimization problem to address possible outcomes of
component-based parametrization and variable overset connectivities. The study of the de-
sign space of this problem shows that changes in overset connectivity due to relative mesh
displacement generate noise in integrated CFD quantities, such as CL and CD. This noise
becomes smaller as the mesh is refined, and its amplitude is on the order of hundredths of
drag counts for mesh sizes between one and six million cells, which are usually used in
ASO problems. Nevertheless, the gradients consistently point towards the overall decrease
direction, what still enables the use of gradient-based optimizers. Noise becomes an is-
sue at the later stages of the optimization, when variations caused by the noise exceed the
shallow slopes of the underlying function. Nevertheless, a significant improvement with re-
spect to the baseline configuration has already been achieved at that point, and the distance
to the true optimum falls within the uncertainties of the numerical models.

The analysis of the univariate problem gave us confidence to study more complex cases.
The next two chapters refer to ASO applications that became possible due to the new ge-
ometry and mesh manipulation approach.

The MACH optimization framework is used, now with the pySurf module, to optimize
the wing-body junction of a conventional aircraft configuration in Chapter 4. The optimizer
managed to remove the flow separation at the junction trailing edge by using the fairing
design variables, achieving a 1.8% reduction in drag. The simultaneous optimization of
the wing and fairing reduced drag by 5.4%. The optimum fairing size gets smaller as wing
design variables are included since the optimizer only uses the fairing design variables to
locally improve the junction flow.

Next, an application of the optimization framework in the design of an unconventional
aircraft configuration is shown. The wing and the strut of a SBW flying at transonic con-
ditions is optimized in Chapter 5. The optimization reduces drag by 14.7% for a fixed lift
constraint. The wing and strut design variables remove shock waves and flow separation
at the wing-strut junction. The strut generates negative lift to reduce the flow speed in the
wing-strut gap. The wing increases its midspan twist to compensate for the negative lift of
the strut, so that the overall lift distribution becomes elliptical.

Despite the noise in the functions of interest, the optimizer manages to reduce drag in
all cases, showing that ASO with variable overset connectivities is feasible. Analyses of
the optimized designs provide insights for future aircraft configuration. These ASO cases
demonstrate that the new geometry manipulation methodology expands the envelope of

82

possible applications for CFD-based optimization frameworks and also gives better shape
control for the designer. In addition, this methodology contributes to the application of
ASO beyond the conceptual aircraft design.

6.2 Contributions

The contributions of this thesis are the following:

1. Development of a component-based manipulation technique for gradient-based opti-
mization that is fully integrated in the reverse AD chain used to compute derivatives
in the hybrid adjoint method [118, 123]. This made possible the integration of inter-
section computation, automatic mesh generation, and overset connectivity variation
in gradient-based optimization frameworks. I also modified the hyperbolic mesh
marching to improve the robustness of the automatic collar mesh generation proce-
dure.

2. Study of the impacts caused by changes in overset connectivities during the optimiza-
tion iterations. The noise caused by connectivity changes does not hinder the use of
gradient-based optimizers provided the mesh is sufficiently fine. The use of reverse
AD for gradient computation is key, since gradients obtained via finite differences
will be affected by the noise within small step sizes.

3. Simultaneous ASO of the wing and fairing of a conventional aircraft configura-
tion [118, 123]. It was shown that the optimizer may ineffectively use the fairing
design variables to address overall problems of the configuration in a fairing-alone
optimization, while the simultaneous wing-fairing optimization leads to more effi-
cient results.

4. First RANS-based ASO of a SBW configuration flying at a transonic condition [124,
125]. The component-based design variables successfully removed undesired flow
features in the junction region. The new approach also prevented the mesh-related
problems faced in previous optimization attempts.

Figure 6.1 highlights the main modifications done to the MACH optimization frame-
work to achieve the result shown in this thesis.

83

FFD updates
(pyGeo)

design variables

Intersection
computation

(pySurf)

Surface
marching
(pySurf)

Inclusion of
primary meshes

Volume mesh
deformation

(pyWarp)

Hyperbolic
extrusion
(pyHyp)

Flow Solver
(ADflow)

functions of interest

triangulated surfaces

intersection curve

collar surface mesh

pr
im

ar
y

su
rf

ac
e

m
es

he
s

initial
surfaces

reference
volume mesh

updated
surfaces

updated
volume mesh

Allowed independent FFDs for each component

Added support for independent deformation
of each overset mesh

Added the SA-R-QCR2000 turbulence model

New modules added to the framework

Figure 6.1: Execution order of the MACH framework modules during each optimization
iteration (black lines) and summary of the modifications done to these modules as part
of this thesis (in red). The dashed lines indicate processes that are only executed in the
initialization step of the optimization.

84

6.3 Recommendations for future work

Possible research topics were identified during the execution of the current work. These
suggestions involve not only new applications cases but also the improvement of the current
ASO techniques:

1. Hybrid mesh deformation approach.

It is important to develop techniques to reduce the noise associated with the over-
set connectivity changes and facilitate the optimization convergence to more strict
optimality levels.

A two-step optimization using different mesh deformation procedures may avoid the
noise issue. First, the optimization would use the component-based geometry and
mesh manipulation techniques introduced in this thesis to handle the more expressive
changes in the design, while allowing changes in the overset connectivities. This op-
timization would be carried out until the optimizer quits due to numerical difficulties
cause by the noise. Next, one would take the final design and start a new optimiza-
tion using fixed overset connectivities and a global geometry and mesh deformation
technique.

Since all components are deformed simultaneously, the relative position of the inter-
polated cells and their respective interpolation stencils are preserved, thus reducing
the noise level. The global geometry manipulation approach would be feasible in this
situation since only small changes in design variables are expected.

2. Aerostructural optimization of the SBW configuration.

The SBW optimization shown in this work did not consider the spanwise position
of the wing strut-junction as a design variable since structural considerations are
necessary to model the trade-offs associated with this design variable.

3. Multipoint ASO of the wing-body junction.

The consideration of multiple flight conditions in the ASO of the wing-body junction
may lead to more realistic designs. This can also tell how robust the multipoint design
case compared to the single point design.

4. Other novel applications cases.

The techniques developed in this work are applicable to other ASO problems that
currently are not fully explored (Fig. 6.2), such as the nacelle-pylon-wing integration
and engine placement, the design of aft propulsor fans with buried vertical tail, and

85

the optimization the longitudinal position of the wing with respect to the fuselage
while accounting for stability and controllability considerations.

(a) Nacelle integration. (b) Aft propulsor.

(c) Wing longitudinal position.

Figure 6.2: Possible applications for the component-based parametrization technique de-
veloped in this thesis.

86

APPENDIX A

Surface mesh generation

In this chapter we provide an overview of the hyperbolic equation used to generate the sur-
face meshes. First, we provide an alternative derivations of the mesh generation equations
proposed by [37] in Sec. A.1. Then, we discuss the modifications introduced in this thesis
to improve the robustness of the automatic mesh generation in the remaining sections.

A.1 Hyperbolic equations for surface generation

Let r = (x, y, z)T represent physical coordinates of mesh nodes in a tridimensional space
while ξ(x, y, z) and η(x, y, z) represent bidimensional parametric coordinates of a tridi-
mensional surface. Then, r(ξ, η) is the mapping of this surface from the bidimensional
parametric space to the tridimensional physical space.

To generate a surface mesh with ni by nj nodes, we first define a regular grid in the
parametric space with the same number of nodes spaced by ∆ξ = 1 and ∆η = 1. There-
fore, the parametric mesh is within the bounds defined by [1, ni]× [1, nj]. The initial curve
used to propagate the surface mesh is defined by r(ξ, 1) for 1 ≤ ξ ≤ ni, and the mesh is
marched in the η direction.

The hyperbolic mesh marching equations is a set of partial differential equations that
defines the r(ξ, η) mapping from parametric to physical coordinates. The sampling of this
function on the regular grid we introduced in the previous paragraph will determine the
physical location of the surface mesh nodes. The hyperbolic mesh marching equations are:

rξ · rη = 0, (A.1a)

n · (rξ × rη) = ∆S, (A.1b)

n · rη = 0, (A.1c)

87

where rξ is the partial derivative with respect to ξ, rη is the partial derivative with respect
to η. The vector n = (n1, n2, n3)

T is the local normal vector (in physical coordinates) from
the reference surface onto which the mesh will be generated. ∆S is a factor that controls
the area of the cells in physical coordinates, and its value may vary within the bounds of the
parametric space to control mesh resolution. Equation (A.1a) enforces cell orthogonality,
Eq. (A.1b) controls the cell density, and Eq. (A.1c) indicates that the marching direction
should be parallel to the surface.

The PDE are hyperbolic with respect to the marching direction η. Therefore, we can
generate the mesh layer by layer in this direction, from layer η = j − 1 to layer η = j.
This nonlinear partial differential equations (PDE) can be linearized around a point r0 =

(x0, y0, z0) = ri,j−1 that belongs to the layer η = j− 1. Since, the PDE should be valid for
this point we have:

r0ξ · r0η = 0 (A.2a)

n0 · (r0ξ × r0η) = ∆S0 (A.2b)

n0 · r0η = 0 (A.2c)

Now, by setting r = r0 + ∆r in Eq. (A.1) we obtain the linearized equations:

r0η ·∆rξ + r0ξ ·∆rη = 0 (A.3a)

(n0 × r0η) ·∆rξ + (n0 × r0ξ) ·∆rη = ∆S −∆S0 (A.3b)

n0 ·∆rη = 0, (A.3c)

We can also cast Eq. (A.3) using the individual physical coordinates in matrix form as:

A0 ·∆rξ + B0 ·∆rη = g − g0, (A.4)

where:

A0 =

 x0η y0η z0η

n0
2z

0
η − n0

3y
0
η n0

3x
0
η − n0

1z
0
η n0

1y
0
η − n0

2x
0
η

0 0 0

 , (A.5)

88

B0 =

 x0ξ y0ξ z0ξ
n0
2z

0
ξ − n0

3y
0
ξ n0

3x
0
ξ − n0

1z
0
ξ n0

1y
0
ξ − n0

2x
0
ξ

n1 n2 n3

 , (A.6)

g =

 0

∆S

0

 and g0 =

 0

∆S0

0

 . (A.7)

We need to compute partial derivatives with respect to ξ and η at the reference point r0

to populate these matrices. Since we generate the surface mesh layer by layer, we know the
position of all other nodes of the previous layer (η = j − 1). Therefore, we can compute
the ξ derivatives for the node (i, j − 1) via central difference (using ∆ξ = 1):

r0ξ =
ri+1,j−1 − ri−1,j−1

2
(A.8)

Once we have the ξ derivatives, we can obtain the η derivatives via Eq. (A.2). This
equation can be modified to use the same B0 matrix from Eq. (A.6):

r0ξ · r0η = 0

(n0 × r0ξ) · r0η = ∆S0

n0 · r0η = 0

=⇒ B0 · r0η =

 0

∆S0

0

 (A.9)

Since we already compute the inverse of B0 to solve Eq. (A.9), we can modify Eq. (A.4)
to use the same matrix:

∆rη + (B0)−1 ·A0 ·∆rξ = (B0)−1 · (g − g0). (A.10)

We can rewrite this equation as:

∆rη + C0 ·∆rξ = (B0)−1 · (g − g0), (A.11)

where:

C0 = (B0)−1 ·A0 (A.12)

Chan and Buning [37] suggests the addition of second-order dissipation terms to stabi-
lize the hyperbolic marching. This is achieved by adding an implicit dissipation term to the
left-hand side of the equation and an explicit dissipation term to the right-hand side:

89

∆rη + C0 ·∆rξ − εi∆rξξ = (B0)−1 · (g − g0) + εer
0
ξξ (A.13)

Where εi is the implicit dissipation factor and εe is the explicit dissipation factor. We
reversed the sign of the explicit dissipation term compared to the cited reference since we
verified that the original equations were causing instabilities during the mesh generation.

We can apply backward difference with respect to the η = j layer for η derivatives and
central difference for ξ derivatives to write:

∆rη ≈ ∆ri,j −∆ri,j−1

∆rξ ≈
∆ri+1,j −∆ri−1,j

2

∆rξξ ≈ ∆ri+1,j − 2∆ri,j + ∆ri−1,j

(A.14)

The second order partial derivative of the explicit dissipation term can be computed
with:

r0ξξ = ri+1,j−1 − 2ri,j−1 + ri−1,j−1 (A.15)

Using Eq. (A.14) into Eq. (A.13) gives:

(
−C0

2
− εiI

)
·∆ri−1,j + (1 + 2εi)I ·∆ri,j +

(
C0

2
− εiI

)
·∆ri+1,j =

= (B0)−1 · (g − g0) + εer
0
ξξ + ∆ri,j−1

(A.16)

where I represents a 3× 3 identity matrix. If we use the backward difference approxi-
mation and Eq. (A.9) we can write:

∆ri,j−1 = ri,j−1 − ri,j−2 ≈ r0η = (B0)−1 · g0 (A.17)

This lets us rewrite Eq. (A.16) as:

Li,j ·∆ri−1,j + Mi,j ·∆ri,j + Ni,j ·∆ri+1,j = fi,j (A.18)

where:

Li,j = −C0
i,j

2
− εiI (A.19)

90

Mi,j = (1 + 2εi)I (A.20)

Ni,j =
C0
i,j

2
− εiI (A.21)

fi,j = (B0
i,j)

−1 · gi,j + εer
0
ξξ (A.22)

We added the i, j indices to highlight that these matrices and vectors are different for
each node. If we apply these equation to all nodes of the current curve we get a block
tridiagonal matrix that will implicitly give ∆ri,j values to determine the nodes of the next
mesh layer:

M1,j N1,j 0 · · · 0

L2,j M2,j N2,j · · · 0

0 L3,j M3,j · · · 0
...

...
...

0 0 0 · · · Mni,j

·

∆r1,j

∆r2,j

∆r3,j
...

∆rni,j

=

f1,j

f2,j

f3,j
...

fni,j

(A.23)

This system can also be compactly expressed as:

Kj ·∆Rj = Fj (A.24)

Once we solve this linear system we compute the position of the j-th layer nodes with:

r∗i,j = ri,j−1 + ∆ri,j (A.25)

The new nodes do not necessarily lie on the reference surface. Therefore, we still need
to project these nodes to the surface to determine the correct position of the next layer of
points. This procedure is represented by the projection operator Fproj:

ri,j = Fproj

(
r∗i,j
)

(A.26)

Now we can use ri,j as the starting curve for the computation of the next layer by
repeating the process, from j = 2 until j = nj .

91

A.2 Marching distance

We need to provide a desired cell area ∆S to control the mesh growth. In this section we
outline the steps used to compute ∆S that we developed for the pySurf module.

Let ∆dj be the average distance between layer j + 1 and j, which is also the average
height of the cells between these layers. The user initially specifies the number of layers
nj , the marching distance of the first layer ∆d1, and the desired marching distance d for
the entire surface mesh. Assuming a geometric progression of cell sizes, we can relate the
average cell heights of two consecutive layers as:

∆dj = q ·∆dj−1 (A.27)

Where q > 1 is a constant growth factor. The sum of all average cell distances between
layers should be equal to the overall marching distance of the mesh:

d =

nj−1∑
j=1

∆dj = ∆d1
1− qnj−1

1− q (A.28)

This can be rearranged as the following relationship:

∆d1(1− qnj−1)− d(1− q) = 0 (A.29)

We solve Eq. (A.29) for q using Newton’s method. Once we have q, we can determine
the average cell height ∆dj of every layer with Eq. (A.27). However, we still need to
convert this distance into an area metric to be used as ∆S. We do this by multiplying the
average cell height by an average cell width corresponding to each node of the curve. We
defined this average cell width wi,j as the average of the distance of a given node to its two
neighbors:

wi,j =
|ri+1,j − ri,j|+ |ri−1,j − ri,j|

2
(A.30)

The boundary nodes use only the distance to their single neighbor. Then we can com-
pute the area factor with:

∆Si,j = wi,j−1∆dj−1 (A.31)

When marching the j-th layer, we use ∆Si,j to compute gi,j in Eq. (A.22) and ∆Si,j−1

to obtain r0η in Eq. (A.9).

92

A.3 Dissipation coefficients

The dissipation coefficients εi and εi are important to stabilize the hyperbolic marching
scheme. Large values of dissipation add stability to the mesh generation process while
sacrificing cell orthogonality. Ideally, one should use the smallest dissipation value that
ensures a stable solution. Consequently, we need methods that automatically vary these
coefficients to avoid excessive dissipation in regions where it is not necessary. We adapted
the dissipation coefficients used for volume mesh generation [38] to make them suitable
for surface mesh generation.

The dissipation coefficients are computed in pySurf as:

εe = ε0 ·N ·R and εi = 2εe, (A.32)

where ε0 is an user provided factor (ranging from 4.0 to 15.0). N is an approximation
of the |[C0]| matrix norm to keep the same relative scale the dissipation terms to the other
terms of Eq. (A.13):

N =
|rη|
|rξ|

(A.33)

The R coefficient is composed by three factors that control the dissipation:

R = sj · a · d̄ (A.34)

It is useful to use low dissipation factors for the first layers of the mesh to guarantee
orthogonality with respect to the baseline curve. On the other, high dissipation values in the
outer layers are important to prevent crossing of grid lines. The sj factor steadily increases
the dissipation along the marching direction:

sj =

√

j − 1

nj − 1
for 2 ≤ j ≤ ntrans√

ntrans − 1

nj − 1
for ntrans + 1 ≤ j ≤ nj

(A.35)

where ntrans = 3nj/4.
The a factor increases dissipation in concave segments of the layer to spread the grid

lines and avoid invalid cells, while there is no need to increase the dissipation if the layer
is locally convex:

93

a =

 1 if α ≤ π
1

1− cos2 (α/2)
if α > π

(A.36)

α is the angle between the two vectors connecting a node and its neighbors. For the i-th
node of the layer we define:

v1 = ri − ri−1

v2 = ri+1 − ri
(A.37)

Then we compute the acute angle between the vectors’ orientation:

α∗ = arccos

(
v1 · v2

|v1| · |v2|

)
(A.38)

Then we detect if the we have a concave (α < π) or convex (α ≥ π) corner with:

α =

{
π − α∗ if ni,j · (v1 × v2) < 0

π + α∗ if ni,j · (v1 × v2) ≥ 0
(A.39)

where ni is the reference surface normal vector at the point ri.
The last factor of the dissipation coefficient is d̄, which increases dissipation when

nodes are getting closer for consecutive layers. First, we compute the node distribution
sensor bi,j as:

bi,j =
|ri+1,j−1 − ri,j−1|+ |ri−1,j−1 − ri,j−1|
|ri+1,j − ri,j|+ |ri−1,j − ri,j|

(A.40)

Then we compute d̄ as:

d̄ = max
(

0.1, (bi,j)
2/sj
)

(A.41)

A.4 Boundary conditions and special cases

This section discusses about how the Li,j , Mi,j , and Ni,j matrices from Eq. (A.18) can be
modified for special nodes, such as the boundary nodes (i=1 or i = ni).

A.4.1 Periodic boundary conditions

If we start the marching process with a periodic curve, we may use periodic boundary
conditions. In this case, we use the stencil (ni, j − 1), (1, j − 1), and (2, j − 1) to compute

94

the A0 and B0 matrices for node (1, j). We also enforce the last node to have the same
displacement as the first one with the following equation:

I ·∆r1,j − I ·∆rni,j = 0 (A.42)

The identity matrices replace the L, M, and N matrices in the last row of Eq. (A.23).

A.4.2 Free nodes

If the curve is not periodic, we cannot use central differences at the extremities of the
baseline curve. So we modify the marching equations of these nodes to use one-sided
second-order differences.

• For node i = 1:

Eq. (A.8) becomes:

r0ξ =
−3 · r1,j−1 + 4 · r2,j−1 − r3,j−1

2
(A.43)

And Eq. A.18 is replaced by:

L1,j ·∆r1,j + M1,j ·∆r2,j + N1,j ·∆r3,j = f1,j (A.44)

where:

L1,j = −3

2
C0

1,j + (1− εi)I (A.45)

M1,j = −2C0
1,j + 2εiI (A.46)

N1,j = −1

2
C0

1,j − εiI (A.47)

• For node i = ni:

Eq. (A.8) becomes:

r0ξ =
rni−2,j−1 − 4 · rni−1,j−1 + 3 · rni,j−1

2
(A.48)

And Eq. A.18 is replaced by:

95

Lni,j ·∆rni−2,j + Mni,j ·∆rni−1,j + Nni,j ·∆rni,j = fni,j (A.49)

where:

Lni,j =
1

2
C0
ni,j
− εiI (A.50)

Mni,j = −2C0
ni,j

+ 2εiI (A.51)

Nni,j =
3

2
C0
ni,j

+ (1− εi)I (A.52)

We can control the splay of the mesh boundaries by changing the marching distance of
the end nodes compared to the interior ones. This can be achieved by modifying Eq. (A.31)
as follows:

∆S1,j = w1,j−1∆dj−1(1− σ) (A.53)

∆Sni,j = wni,j−1∆dj−1(1− σ) (A.54)

where σ is the splay factor. If the marching distance of the end nodes is smaller than
the interior nodes (σ > 0), the mesh splays out, while if the end nodes march farther than
the interior ones (σ < 0), the mesh splays in, as shown in Fig. A.1.

(a) σ = −0.1 (b) σ = 0.0 (c) σ = 0.2

Figure A.1: Meshes marched with different splay factors. The red line is the baseline curve
for the marching process.

96

A.4.3 Sharp angles

If the current layer of nodes has a sharp angle, we determine the marching direction for
the corner node as the average of the distance marched by its neighbors, since this is more
robust [38]. We classify a node as a corner if α < 70 degrees, where α is the local layer
angle computed with Eq. (A.39).

The contribution of a corner node (i, j) to Eq. A.23 becomes:

− I ·∆ri−1,j + 2I ·∆ri,j − I ·∆ri+1,j = 0 (A.55)

A.4.4 Guide curves

The user can specify guide curves to control the marching direction of certain nodes and
ensure that relevant surface features, such as sharp corners, are represented by the mesh
(Fig. 2.2). These guide curves are represented by a set of points connected by the linear
segments. At the beginning of the marching process, we detect which nodes from the
baseline curve are the closest ones to each guide curve. Once these nodes are assigned to
their corresponding guide curves, their marching direction is dictated by the curve tangent
vector rather than the reference surface normal. Let tg,j−1 be the curve tangent vector at
the projection of node rg,j−1 on this curve. The contribution from node (g, j) to Eq. (A.23)
becomes:

I ·∆rg,j = ∆dj−1tg,j−1 (A.56)

After the solution of Eq. (A.23), we project the node (g, j) back to the guide curve
rather than the reference surface before marching the next layer.

A.5 Guide curve blending

If a guide curve is oblique to the marching direction of the mesh, the hyperbolic equations
will generate highly skewed or even invalid cells due to the conflicting marching directions.
This happens because only the guided node uses the guide curve tangent to compute its
displacement (Eq. (A.56)). We developed a blending procedure that extends the influence
to the guide curve tangent to other nodes, preventing crossed grid lines.

Let the node (g, j) be the node guided by a curve while (i, j) is the node where we apply
the blending. We define an user-provided blending factor ν that combines the displacement
of the guided node and the displacement originally predicted by the hyperbolic marching

97

equations ∆ri,j:

∆rbi,j = ν∆rg,j + (1− ν)∆ri,j (A.57)

where ∆rbi,j is the blended displacement. If ν = 1, node (i, j) will march parallel to the
guide node, whereas no blending occurs for ν = 0. If we substitute ∆ri,j from Eq. (A.57)
into Eq. (A.18) we get the blended marching equation:

Li,j ·∆ri−1,j + Mb
i,j ·∆ri,j + Ni,j ·∆ri+1,j = f bi,j (A.58)

where we only need to redefine:

Mb
i,j =

1

1− νMi,j (A.59)

f bi,j = fi,j +
ν

1− νMi,j · (∆dj−1tg,j−1) (A.60)

We apply the blending to the four nearest neighbors of the guided node. The blending
factor is halved for the last two neighbors. Figure A.2 shows a blending application for a
blunt trailing edge mesh that is marched from an oblique intersection.

Figure A.2: The use of blending factor (ν = 0.5) avoids highly skewed cells where guide
curves are oblique to the intersection line.

98

A.6 Pseudo marching steps

Large marching distances may lead to instabilities in the mesh generation process. We
solve this by using pseudo marching steps. In other words, instead of marching directly
to the desired marching distance, we execute many intermediate steps until reaching this
distance. The nodes of these intermediate layers are not included in the final surface mesh.
They are stored nonetheless for the propagation of derivatives with reverse AD.

The number of intermediate steps to march from layer j − 1 to layer j is based on the
aspect ratio of the cells (ci,j), which we define as the ratio of their height ∆dj−1, given by
Eq. (A.27), to their width wi,j−1, defined by Eq. (A.30):

ci,j =
∆dj−1

wi,j−1

(A.61)

The number of pseudo marching steps n∗ is given by:

n∗ =

⌈
max
i
ci,j

cmax

⌉
(A.62)

Where cmax is an user-provided value (usually between 5.0 and 10.0). Then we compute
the pseudo marching distance ∆d∗p as:

∆d∗j−1 = ∆dj−1/n
∗ (A.63)

Thus, instead of directly marching to a distance ∆dj−1, we execute n∗ marching steps
of size ∆d∗j−1.

99

BIBLIOGRAPHY

[1] Anderson Jr, J. D., Fundamentals of Aerodynamics, Tata McGraw-Hill Education,
2010.

[2] Nemec, M., and Zingg, D. W., “Newton-Krylov algorithm for aerodynamic design
using the Navier-Stokes equations,” AIAA Journal, Vol. 40, No. 6, 2002, pp. 1146–
1154.

[3] Poole, D., Allen, C., and Rendall, T., “High-fidelity aerodynamic shape optimiza-
tion using efficient orthogonal modal design variables with a constrained global op-
timizer,” Computers & Fluids, Vol. 143, 2017, pp. 1–15.

[4] Masters, D., Taylor, N., Rendall, T., and Allen, C., “Multilevel Subdivision Parame-
terization Scheme for Aerodynamic Shape Optimization,” AIAA Journal, 2017, pp.
1–16.

[5] Hicken, J. E., and Zingg, D. W., “Induced-drag minimization of nonplanar geome-
tries based on the Euler equations,” AIAA Journal, Vol. 48, No. 11, 2010, pp. 2564–
2575.

[6] Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “Aerodynamic Shape Opti-
mization Investigations of the Common Research Model Wing Benchmark,” AIAA
Journal, Vol. 53, No. 4, 2015, pp. 968–985. doi:10.2514/1.J053318.

[7] Kenway, G. K. W., and Martins, J. R. R. A., “Multipoint Aerodynamic Shape Op-
timization Investigations of the Common Research Model Wing,” AIAA Journal,
Vol. 54, No. 1, 2016, pp. 113–128. doi:10.2514/1.J054154.

[8] Dumont, A., and Méheut, M., “Gradient-Based Optimization of CRM Wing-
alone and Wing-body-tail Configurations by RANS Adjoint Technique,” 54th AIAA
Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics
(AIAA), 2016. doi:10.2514/6.2016-1293.

[9] Chen, S., Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “Aerodynamic Shape
Optimization of the Common Research Model Wing-Body-Tail Configuration,”
Journal of Aircraft, Vol. 53, No. 1, 2016, pp. 276–293. doi:10.2514/1.C033328.

[10] Merle, A., Stueck, A., and Rempke, A., “An Adjoint-based Aerodynamic Shape Op-
timization Strategy for Trimmed Aircraft with Active Engines,” 35th AIAA Applied
Aerodynamics Conference, 2017. doi:10.2514/6.2017-3754, AIAA 2017-3754.

100

http://dx.doi.org/10.2514/1.J053318
http://dx.doi.org/10.2514/1.J054154
http://dx.doi.org/10.2514/6.2016-1293
http://dx.doi.org/10.2514/1.C033328
http://dx.doi.org/10.2514/6.2017-3754

[11] Ivaldi, D., Secco, N. R., Chen, S., Hwang, J. T., and Martins, J. R. R. A., “Aero-
dynamic Shape Optimization of a Truss-Braced-Wing Aircraft,” Proceedings of the
16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Dallas,
TX, 2015. doi:10.2514/6.2015-3436.

[12] Gray, J. S., Mader, C. A., Kenway, G. K., and Martins, J. R., “Modeling Bound-
ary Layer Ingestion Using a Coupled Aeropropulsive Analysis,” Journal of Aircraft,
2017, pp. 1–9.

[13] Kenway, G. K., and Kiris, C. C., “Aerodynamic shape optimization of the STARC-
ABL concept for minimal inlet distortion,” 2018 AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, 2018. doi:10.2514/6.2018-1912,
AIAA 2018-1912.

[14] Gray, J., Mader, C. A., Kenway, G. K. W., and Martins, J. R. R. A., “Modeling
Boundary Layer Ingestion Using a Coupled Aeropropulsive Analysis,” Journal of
Aircraft, 2018. doi:10.2514/1.C034601, (In press).

[15] Kroll, N., Abu-Zurayk, M., Dimitrov, D., Franz, T., Führer, T., Gerhold, T., Görtz,
S., Heinrich, R., Ilic, C., Jepsen, J., et al., “DLR project Digital-X: towards virtual
aircraft design and flight testing based on high-fidelity methods,” CEAS Aeronautical
Journal, Vol. 7, No. 1, 2016, pp. 3–27.

[16] Zingg, D. W., Nemec, M., and Pulliam, T. H., “A Comparative Evaluation of Ge-
netic and Gradient-Based Algorithms Applied to Aerodynamic Optimization,” Eu-
ropean Journal of Computational Mechanics, Vol. 17, No. 1–2, 2008, pp. 103–126.
doi:10.3166/remn.17.103-126.

[17] Yu, Y., Lyu, Z., Xu, Z., and Martins, J. R. R. A., “On the Influence of Op-
timization Algorithm and Starting Design on Wing Aerodynamic Shape Op-
timization,” Aerospace Science and Technology, Vol. 75, 2018, pp. 183–199.
doi:10.1016/j.ast.2018.01.016.

[18] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II,” IEEE transactions on evolutionary computation,
Vol. 6, No. 2, 2002, pp. 182–197.

[19] Jansen, P. W., and Perez, R. E., “Constrained structural design optimization via a
parallel augmented Lagrangian particle swarm optimization approach,” Computers
& Structures, Vol. 89, No. 13-14, 2011, pp. 1352–1366.

[20] Nelder, J. A., and Mead, R., “A simplex method for function minimization,” The
Computer Journal, Vol. 7, No. 4, 1965, pp. 308–313.

[21] Lyu, Z., Xu, Z., and Martins, J. R. R. A., “Benchmarking Optimization Algorithms
for Wing Aerodynamic Design Optimization,” Proceedings of the 8th International
Conference on Computational Fluid Dynamics, Chengdu, Sichuan, China, 2014.
ICCFD8-2014-0203.

101

http://dx.doi.org/10.2514/6.2015-3436
http://dx.doi.org/10.2514/6.2018-1912
http://dx.doi.org/10.2514/1.C034601
http://dx.doi.org/10.3166/remn.17.103-126
http://dx.doi.org/10.1016/j.ast.2018.01.016

[22] Nocedal, J., and Wright, S. J., Numerical Optimization, 2nd ed., Springer-Verlag,
2006.

[23] Peter, J. E. V., and Dwight, R. P., “Numerical Sensitivity Analysis for Aerodynamic
Optimization: A Survey of Approaches,” Computers and Fluids, Vol. 39, No. 3,
2010, pp. 373–391. doi:10.1016/j.compfluid.2009.09.013.

[24] Griewank, A., and Walther, A., Evaluating derivatives: principles and techniques of
algorithmic differentiation, Siam, 2008.

[25] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J., “The Complex-Step Deriva-
tive Approximation,” ACM Transactions on Mathematical Software, Vol. 29, No. 3,
2003, pp. 245–262. doi:10.1145/838250.838251, september.

[26] Martins, J. R. R. A., and Hwang, J. T., “Review and Unification of Methods for
Computing Derivatives of Multidisciplinary Computational Models,” AIAA Journal,
Vol. 51, No. 11, 2013, pp. 2582–2599. doi:10.2514/1.J052184.

[27] Mader, C. A., Martins, J. R. R. A., Alonso, J. J., and van der Weide, E., “ADjoint: An
Approach for the Rapid Development of Discrete Adjoint Solvers,” AIAA Journal,
Vol. 46, No. 4, 2008, pp. 863–873. doi:10.2514/1.29123.

[28] Elham, A., and van Tooren, M. J., “Coupled adjoint aerostructural wing optimiza-
tion using quasi-three-dimensional aerodynamic analysis,” Structural and Multidis-
ciplinary Optimization, Vol. 54, No. 4, 2016, pp. 889–906.

[29] Brezillon, J., and Dwight, R. P., “Applications of a Discrete Viscous Adjoint Method
for Aerodynamic Shape Optimisation of 3D Configurations,” CEAS Aeronautical
Journal, Vol. 3, No. 1, 2012, pp. 25–34.

[30] Lyu, Z., Kenway, G. K., Paige, C., and Martins, J. R. R. A., “Automatic Differentia-
tion Adjoint of the Reynolds-Averaged Navier–Stokes Equations with a Turbulence
Model,” 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA,
2013. doi:10.2514/6.2013-2581.

[31] Burdette, D. A., “High-Fidelity Aerostructural Design Optimization of Transport
Aircraft with Continuous Morphing Trailing Edge Technology,” Ph.D. thesis, Uni-
versity of Michigan, 2017.

[32] Thompson, J. F., Soni, B. K., and Weatherill, N. P., Handbook of grid generation,
CRC press, 1999.

[33] Chawner, J. R., Michal, T. R., Slotnick, J. P., and Rumsey, C. L., “Summary of
the 1st AIAA Geometry and Mesh Generation Workshop (GMGW-1) and Future
Plans,” 2018 AIAA Aerospace Sciences Meeting, 2018. doi:10.2514/6.2018-0128,
AIAA 2018-0128.

102

http://dx.doi.org/10.1016/j.compfluid.2009.09.013
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.2514/1.J052184
http://dx.doi.org/10.2514/1.29123
http://dx.doi.org/10.2514/6.2013-2581
http://dx.doi.org/10.2514/6.2018-0128

[34] Mavriplis, D. J., Vassberg, J. C., Tinoco, E. N., Mani, M., Brodersen, O. P., Eisfeld,
B., Wahls, R. A., Morrison, J. H., Zickuhr, T., Levy, D., et al., “Grid quality and
resolution issues from the drag prediction workshop series,” Journal of Aircraft,
Vol. 46, No. 3, 2009, pp. 935–950.

[35] Diskin, B., Thomas, J., Rumsey, C. L., and Schwöppe, A., “Grid convergence for tur-
bulent flows,” 53rd AIAA Aerospace Sciences Meeting, 2015. doi:10.2514/6.2015-
1746, AIAA 2015-1746.

[36] Steger, J. L., Dougherty, F. C., and Benek, J. A., “A chimera grid scheme.[multiple
overset body-conforming mesh system for finite difference adaptation to complex
aircraft configurations],” Advances in grid generation; Proceedings of the Applied
Mechanics, Bioengineering, and Fluids Engineering Conference, American Society
of Mechanical Engineers, Houston, TX, 1983, pp. 59–69. A84-11576 02-64.

[37] Chan, W. M., and Buning, P. G., “Surface grid generation methods for overset
grids,” Computers & fluids, Vol. 24, No. 5, 1995, pp. 509–522. doi:10.1016/0045-
7930(95)00003-U.

[38] Chan, W. M., and Steger, J. L., “Enhancements of a three-dimensional hyperbolic
grid generation scheme,” Applied Mathematics and Computation, Vol. 51, No. 2,
1992, pp. 181–205. doi:10.1016/0096-3003(92)90073-A.

[39] Lee, Y., and Baeder, J. D., “Implicit hole cutting - a new approach to overset grid
connectivity,” 16th AIAA Computational Fluid Dynamics Conference, Fluid Dynam-
ics and Co-located Conferences, 2003. doi:10.2514/6.2003-4128, AIAA 2003-4128.

[40] Chan, W., Gomez, R., Rogers, S., and Buning, P., “Best practices in over-
set grid generation,” 32nd AIAA Fluid Dynamics Conference and Exhibit, 2002.
doi:10.2514/6.2002-3191, AIAA 2002-3191.

[41] Liao, W., and Tsai, H. M., “Aerodynamic Shape Optimization on Overset Grids
Using the Adjoint Method,” International Journal for Numerical Methods in Fluids,
Vol. 62, No. 12, 2010, pp. 1332–1356. doi:10.1002/fld.2070.

[42] Lee, B. J., and Kim, C., “Aerodynamic redesign using discrete adjoint approach on
overset mesh system,” Journal of Aircraft, Vol. 45, No. 5, 2008, pp. 1643–1653.
doi:10.2514/1.34112.

[43] Lee, B. J., Liou, M.-S., and Kim, C., “Optimizing a boundary-layer-ingestion offset
inlet by discrete adjoint approach,” AIAA Journal, Vol. 48, No. 9, 2010, pp. 2008–
2016. doi:10.2514/1.J050222.

[44] Kenway, G. K. W., Secco, N., Martins, J. R. R. A., Mishra, A., and Duraisamy,
K., “An Efficient Parallel Overset Method for Aerodynamic Shape Optimiza-
tion,” Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, AIAA SciTech Forum, Grapevine, TX, 2017.
doi:10.2514/6.2017-0357.

103

http://dx.doi.org/10.2514/6.2015-1746
http://dx.doi.org/10.2514/6.2015-1746
http://dx.doi.org/10.1016/0045-7930(95)00003-U
http://dx.doi.org/10.1016/0045-7930(95)00003-U
http://dx.doi.org/10.1016/0096-3003(92)90073-A
http://dx.doi.org/10.2514/6.2003-4128
http://dx.doi.org/10.2514/6.2002-3191
http://dx.doi.org/10.1002/fld.2070
http://dx.doi.org/10.2514/1.34112
http://dx.doi.org/10.2514/1.J050222
http://dx.doi.org/10.2514/6.2017-0357

[45] Li, Y., Paik, K.-J., Xing, T., and Carrica, P. M., “Dynamic overset CFD simulations
of wind turbine aerodynamics,” Renewable Energy, Vol. 37, No. 1, 2012, pp. 285–
298.

[46] Carrica, P. M., Wilson, R. V., Noack, R. W., and Stern, F., “Ship motions using
single-phase level set with dynamic overset grids,” Computers & fluids, Vol. 36,
No. 9, 2007, pp. 1415–1433.

[47] Carrica, P. M., Ismail, F., Hyman, M., Bhushan, S., and Stern, F., “Turn and zigzag
maneuvers of a surface combatant using a URANS approach with dynamic overset
grids,” Journal of Marine Science and Technology, Vol. 18, No. 2, 2013, pp. 166–
181.

[48] Samareh, J. A., “Survey of Shape Parameterization Techniques for High-Fidelity
Multidisciplinary Shape Optimization,” AIAA Journal, Vol. 39, No. 5, 2001, pp.
877–884.

[49] Bobrowski, K., Ferrer, E., Valero, E., and Barnewitz, H., “Aerodynamic Shape Opti-
mization Using Geometry Surrogates and Adjoint Method,” AIAA Journal, Vol. 55,
No. 10, 2017, pp. 3304–3317. doi:10.2514/1.J055766.

[50] Haimes, R., and Drela, M., “On the Construction of Aircraft Conceptual Ge-
ometry for High-fidelity Analysis and Design,” 50th AIAA Aerospace sciences
meeting including the new horizons forum and aerospace exposition, 2012.
doi:10.2514/6.2012-683, AIAA 2012-0683.

[51] Taylor, N. J., “Industrial Perspectives on Geometry Handling for Aerodynamics,”
22nd AIAA Computational Fluid Dynamics Conference, 2015. doi:10.2514/6.2015-
3408, AIAA 2015-3408.

[52] Hahn, A., “Vehicle Sketch Pad: a Parametric Geometry Modeler for Conceptual Air-
craft Design,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons
Forum and Aerospace Exposition, 2010. doi:10.2514/6.2010-657, AIAA 2010-657.

[53] Hwang, J. T., and Martins, J. R. R. A., “GeoMACH: Geometry-centric MDAO of
Aircraft Configurations with High Fidelity,” Proceedings of the 14th AIAA/ISSMO
Multidisciplinary Analysis Optimization Conference, Indianapolis, IN, 2012.
doi:10.2514/6.2012-5605, aIAA 2012-5605.

[54] McDonald, R. A., “Interactive Reconstruction of 3D Models in the Open-
VSP Parametric Geometry Tool,” 53rd AIAA Aerospace Sciences Meeting, 2015.
doi:10.2514/6.2015-1014, AIAA 2015-1014.

[55] Kenway, G. K., Kennedy, G. J., and Martins, J. R. R. A., “A CAD-Free Ap-
proach to High-Fidelity Aerostructural Optimization,” Proceedings of the 13th
AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort Worth, TX,
2010. doi:10.2514/6.2010-9231.

104

http://dx.doi.org/10.2514/1.J055766
http://dx.doi.org/10.2514/6.2012-683
http://dx.doi.org/10.2514/6.2015-3408
http://dx.doi.org/10.2514/6.2015-3408
http://dx.doi.org/10.2514/6.2010-657
http://dx.doi.org/10.2514/6.2012-5605
http://dx.doi.org/10.2514/6.2015-1014
http://dx.doi.org/10.2514/6.2010-9231

[56] Koc, S., Kim, H.-J., and Nakahashi, K., “Aerodynamic design of complex configu-
rations with junctions,” Journal of aircraft, Vol. 43, No. 6, 2006, pp. 1838–1844.

[57] Kim, H.-J., and Nakahashi, K., “Surface mesh movement for aerodynamic design of
body-installation junction,” AIAA Journal, Vol. 45, No. 5, 2007, pp. 1138–1142.

[58] Xu, S., Timme, S., Mykhaskiv, O., and Müller, J.-D., “Wing-body Junction
Optimisation with CAD-based Parametrisation Including a Moving Intersection,”
Aerospace Science and Technology, Vol. 68, 2017, pp. 543–551.

[59] Mykhaskiv, O., Mohanamuraly, P., Mueller, J.-D., Xu, S., and Timme, S., “CAD-
based shape optimisation of the NASA CRM wing-body intersection using dif-
ferentiated CAD-kernel,” 35th AIAA Applied Aerodynamics Conference, 2017.
doi:10.2514/6.2017-4080, AIAA 2017-4080.

[60] Walther, A., and Griewank, A., “Getting Started with ADOL-C.” Combinatorial
scientific computing, 2009, pp. 181–202.

[61] Kenway, G. K. W., Kennedy, G. J., and Martins, J. R. R. A., “Scalable Parallel Ap-
proach for High-Fidelity Steady-State Aeroelastic Analysis and Derivative Compu-
tations,” AIAA Journal, Vol. 52, No. 5, 2014, pp. 935–951. doi:10.2514/1.J052255.

[62] Bonet, J., and Peraire, J., “An alternating digital tree (ADT) algorithm
for 3D geometric searching and intersection problems,” International Jour-
nal for Numerical Methods in Engineering, Vol. 31, No. 1, 1991, pp. 1–17.
doi:10.1002/nme.1620310102.

[63] Möller, T., “A fast triangle-triangle intersection test,” Journal of Graphics Tools,
Vol. 2, No. 2, 1997, pp. 25–30. doi:10.1080/10867651.1997.10487472.

[64] Eriksson, L., “Generation of Boundary-conforming Grids Around Wing-body Con-
figurations Using Transfinite Interpolation,” AIAA Journal, Vol. 20, No. 10, 1982,
pp. 1313–1320.

[65] Hascoët, L., and Pascual, V., “The Tapenade Automatic Differentiation tool: Prin-
ciples, Model, and Specification,” ACM Transactions On Mathematical Software,
Vol. 39, No. 3, 2013. URL http://dx.doi.org/10.1145/2450153.
2450158.

[66] Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J.,
Hammarling, S., Demmel, J., Bischof, C., and Sorensen, D., “LAPACK: A Portable
Linear Algebra Library for High-performance Computers,” Proceedings of the 1990
ACM/IEEE Conference on Supercomputing, IEEE Computer Society Press, Los
Alamitos, CA, USA, 1990, pp. 2–11.

[67] Giles, M. B., “Collected Matrix Derivative Results for Forward and Reverse Mode
Algorithmic Differentiation,” Advances in Automatic Differentiation, Springer,
2008, pp. 35–44.

105

http://dx.doi.org/10.2514/6.2017-4080
http://dx.doi.org/10.2514/1.J052255
http://dx.doi.org/10.1002/nme.1620310102
http://dx.doi.org/10.1080/10867651.1997.10487472
http://dx.doi.org/10.1145/2450153.2450158
http://dx.doi.org/10.1145/2450153.2450158

[68] Hascoët, L., Vázquez, M., and Dervieux, A., “Automatic Differentiation for Opti-
mum Design, Applied to Sonic Boom Reduction,” Computational Science and Its
Applications - ICCSA 2003, 2003, pp. 976–976.

[69] Vassberg, J. C., DeHaan, M. A., Rivers, S. M., and Wahls, R. A., “Development
of a Common Research Model for Applied CFD Validation Studies,” 26th AIAA Ap-
plied Aerodynamics Conference, Guidance, Navigation, and Control and Co-located
Conferences, 2008. doi:10.2514/6.2008-6919, AIAA 2008-6919.

[70] Chan, W. M., “Best Practices on Overset Structured Mesh Generation for
the High-Lift CRM Geometry,” 55th AIAA Aerospace Sciences Meeting, 2017.
doi:10.2514/6.2017-0362, AIAA 2017-0362.

[71] Lambe, A. B., and Martins, J. R. R. A., “Extensions to the Design Structure Matrix
for the Description of Multidisciplinary Design, Analysis, and Optimization Pro-
cesses,” Structural and Multidisciplinary Optimization, Vol. 46, 2012, pp. 273–284.
doi:10.1007/s00158-012-0763-y.

[72] Kenway, G. K. W., and Martins, J. R. R. A., “Buffet Onset Constraint Formulation
for Aerodynamic Shape Optimization,” AIAA Journal, Vol. 55, No. 6, 2017, pp.
1930–1947. doi:10.2514/1.J055172.

[73] Lyu, Z., and Martins, J. R. R. A., “Aerodynamic Design Optimization Studies of a
Blended-Wing-Body Aircraft,” Journal of Aircraft, Vol. 51, No. 5, 2014, pp. 1604–
1617. doi:10.2514/1.C032491.

[74] Kenway, G. K. W., and Martins, J. R. R. A., “Multipoint High-Fidelity Aerostruc-
tural Optimization of a Transport Aircraft Configuration,” Journal of Aircraft,
Vol. 51, No. 1, 2014, pp. 144–160. doi:10.2514/1.C032150.

[75] Brooks, T. R., Kennedy, G. J., and Martins, J. R. R. A., “High-fidelity Multi-
point Aerostructural Optimization of a High Aspect Ratio Tow-steered Composite
Wing,” Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, AIAA SciTech Forum, Grapevine, TX, 2017.
doi:10.2514/6.2017-1350.

[76] Vassberg, J., Tinoco, E., Mani, M., Brodersen, O., Eisfeld, B., Wahls, R., Morrison,
J., Zickuhr, T., Laflin, K., and Mavriplis, D., “Summary of the third AIAA CFD drag
prediction workshop,” 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
doi:10.2514/6.2007-260, AIAA 2007-260.

[77] Luke, E., Collins, E., and Blades, E., “A Fast Mesh Deformation Method Using
Explicit Interpolation,” Journal of Computational Physics, Vol. 231, No. 2, 2012,
pp. 586–601. doi:10.1016/j.jcp.2011.09.021.

[78] van der Weide, E., Kalitzin, G., Schluter, J., and Alonso, J. J., “Unsteady Turboma-
chinery Computations Using Massively Parallel Platforms,” Proceedings of the 44th
AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006. AIAA 2006-0421.

106

http://dx.doi.org/10.2514/6.2008-6919
http://dx.doi.org/10.2514/6.2017-0362
http://dx.doi.org/10.1007/s00158-012-0763-y
http://dx.doi.org/10.2514/1.J055172
http://dx.doi.org/10.2514/1.C032491
http://dx.doi.org/10.2514/1.C032150
http://dx.doi.org/10.2514/6.2017-1350
http://dx.doi.org/10.2514/6.2007-260
http://dx.doi.org/10.1016/j.jcp.2011.09.021

[79] Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution of the Euler Equa-
tions by Finite Volume Methods Using Runge–Kutta Time Stepping Schemes,”
Tech. Rep. AIAA 1981-1259, 1981.

[80] Klopfer, G., Hung, C., Van der Wijngaart, R., and Onufer, J., “A Diagonalized Di-
agonal Dominant Alternating Direction Implicit (D3ADI) Scheme and Subiteration
Correction,” 29th AIAA, Fluid Dynamics Conference, 1998. doi:10.2514/6.1998-
2824, AIAA 1998-2824.

[81] Jameson, A., “Analysis and Design of Numerical Schemes for Gas Dynamics, 1:
Artificial Diffusion, Upwind Biasing, Limiters and Their Effect on Accuracy and
Multigrid Convergence,” International Journal of Computational Fluid Dynam-
ics, Vol. 4, No. 3-4, 1995, pp. 171–218. doi:10.1080/10618569508904524, URL
https://doi.org/10.1080/10618569508904524.

[82] Knoll, D. A., and Keyes, D. E., “Jacobian-free Newton–Krylov methods: a survey
of approaches and applications,” Journal of Computational Physics, Vol. 193, No. 2,
2004, pp. 357–397.

[83] Landmann, B., and Montagnac, M., “A highly automated parallel Chimera method
for overset grids based on the implicit hole cutting technique,” International
Journal for Numerical Methods in Fluids, Vol. 66, No. 6, 2011, pp. 778–804.
doi:10.1002/fld.2292.

[84] Chan, W. M., “Enhancements to the Hybrid Mesh Approach to Surface Loads In-
tegration on Overset Structured Grids,” 19th AIAA Computational Fluid Dynam-
ics, Fluid Dynamics and Co-located Conferences, 2009. doi:10.2514/6.2009-3990,
AIAA 2009-3990.

[85] Tinoco, E. N., Brodersen, O., Keye, S., and Laflin, K., “Summary of Data from
the Sixth AIAA CFD Drag Prediction Workshop: CRM Cases 2 to 5,” 55th AIAA
Aerospace Sciences Meeting, 2017. doi:10.2514/6.2017-1208, AIAA 2017-1208.

[86] Spalart, P. R., and Allmaras, S. R., “A one-equation turbulence model for
aerodynamic flows,” 30th Aerospace Sciences Meeting and Exhibit, 1992.
doi:10.2514/6.1992-439, AIAA 1992-439.

[87] Coder, J. G., Pulliam, T. H., Hue, D., Kenway, G. K., and Sclafani, A. J., “Con-
tributions to the 6th AIAA CFD Drag Prediction Workshop Using Structured Grid
Methods,” AIAA SciTech Forum, American Institute of Aeronautics and Astronau-
tics, 2017. doi:10.2514/6.2017-0960, URL http://dx.doi.org/10.2514/
6.2017-0960.

[88] Dacles-Mariani, J., Zilliac, G. G., Chow, J. S., and Bradshaw, P., “Numeri-
cal/experimental study of a wingtip vortex in the near field,” AIAA Journal, Vol. 33,
No. 9, 1995, pp. 1561–1568. doi:10.2514/3.12826.

107

http://dx.doi.org/10.2514/6.1998-2824
http://dx.doi.org/10.2514/6.1998-2824
http://dx.doi.org/10.1080/10618569508904524
https://doi.org/10.1080/10618569508904524
http://dx.doi.org/10.1002/fld.2292
http://dx.doi.org/10.2514/6.2009-3990
http://dx.doi.org/10.2514/6.2017-1208
http://dx.doi.org/10.2514/6.1992-439
http://dx.doi.org/10.2514/6.2017-0960
http://dx.doi.org/10.2514/6.2017-0960
http://dx.doi.org/10.2514/6.2017-0960
http://dx.doi.org/10.2514/3.12826

[89] Spalart, P. R., “Strategies for turbulence modelling and simulations,” Interna-
tional Journal of Heat and Fluid Flow, Vol. 21, No. 3, 2000, pp. 252–263.
doi:10.1016/S0142-727X(00)00007-2.

[90] Gill, P., Murray, W., and Saunders, M., “SNOPT: An SQP Algorithm for Large-scale
Constrained Optimization,” SIAM Journal on Optimization, Vol. 12, No. 4, 2002, pp.
979–1006. doi:10.1137/S1052623499350013, URL http://dx.doi.org/10.
1137/S1052623499350013.

[91] Saad, Y., and Schultz, M. H., “GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems,” SIAM Journal on Scientific and
Statistical Computing, Vol. 7, No. 3, 1986, pp. 856–869. doi:10.1137/0907058.

[92] Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F., “Efficient Management
of Parallelism in Object Oriented Numerical Software Libraries,” Modern Software
Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtan-
gen, Birkhäuser Press, 1997, pp. 163–202.

[93] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C.,
Rupp, K., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H., “PETSc Web page,”
http://www.mcs.anl.gov/petsc, 2016. URL http://www.mcs.anl.
gov/petsc.

[94] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dal-
cin, L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C.,
Rupp, K., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H., “PETSc Users Man-
ual,” Tech. Rep. ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016.
URL http://www.mcs.anl.gov/petsc.

[95] Brodersen, O., “Drag Prediction of Engine-airframe Interference Effects Using Un-
structured Navier-Stokes Calculations,” Journal of Aircraft, Vol. 39, No. 6, 2002, pp.
927–935.

[96] Laflin, K. R., Klausmeyer, S. M., Zickuhr, T., Vassberg, J. C., Wahls, R. A., Mor-
rison, J. H., Brodersen, O. P., Rakowitz, M. E., Tinoco, E. N., and Godard, J.-L.,
“Data Summary from Second AIAA Computational Fluid Dynamics Drag Predic-
tion Workshop,” Journal of Aircraft, Vol. 42, No. 5, 2005, pp. 1165–1178.

[97] Lee, B., and Kim, C., “Aerodynamic Shape Optimization Using Discrete Adjoint
Formulation Based on Overset Mesh Technique,” European Conference on Compu-
tational Fluid Dynamics, 2006.

[98] Vassberg, J., Sclafani, A., and DeHaan, M., “A Wing-body Fairing Design for the
DLR-F6 Model: a DPW-III Case Study,” 23rd AIAA Applied Aerodynamics Confer-
ence, 2005. doi:10.2514/6.2005-4730, AIAA 2005-4730.

108

http://dx.doi.org/10.1016/S0142-727X(00)00007-2
http://dx.doi.org/10.1137/S1052623499350013
http://dx.doi.org/10.1137/S1052623499350013
http://dx.doi.org/10.1137/S1052623499350013
http://dx.doi.org/10.1137/0907058
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.2514/6.2005-4730

[99] Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “RANS-based Aerodynamic
Shape Optimization Investigations of the Common Research Model Wing,” Proceed-
ings of the AIAA Science and Technology Forum and Exposition (SciTech), National
Harbor, MD, 2014. doi:10.2514/6.2014-0567, aIAA 2014-0567.

[100] Sederberg, T. W., and Parry, S. R., “Free-form Deformation of Solid Geomet-
ric Models,” SIGGRAPH Comput. Graph., Vol. 20, No. 4, 1986, pp. 151–160.
doi:10.1145/15886.15903.

[101] ANSYS ICEM CFD 14.0, ANSYS, Inc., 275 Technology Drive, Canonsburg, PA,
October 2011.

[102] Yamamoto, K., Tanaka, K., and Murayama, M., “Effect of a nonlinear constitutive
relation for turbulence modeling on predicting flow separation at wing-body juncture
of transonic commercial aircraft,” 30th AIAA Applied Aerodynamics Conference,
2012. doi:10.2514/6.2012-2895, AIAA 2012-2895.

[103] Vassberg, J., Brodersen, O., Wahls, R., Zickuhr, T., Mavriplis, D., Tinoco, E., Mani,
M., Levy, D., and Morrison, J., “Comparison of NTF Experimental Data with CFD
Predictions from the Third AIAA CFD Drag Prediction Workshop,” 26th AIAA Ap-
plied Aerodynamics Conference, 2008. doi:10.2514/6.2008-6918, AIAA 2008-6918.

[104] Kennedy, G. J., Kenway, G. K. W., and Martins, J. R. R. A., “High Aspect Ratio
Wing Design: Optimal Aerostructural Tradeoffs for the Next Generation of Ma-
terials,” Proceedings of the AIAA Science and Technology Forum and Exposition
(SciTech), National Harbor, MD, 2014. doi:10.2514/6.2014-0596.

[105] Gur, O., Bhatia, M., Schetz, J. A., Mason, W. H., Kapania, R. K., and Mavris,
D. N., “Design Optimization of a Truss-Braced-Wing Transonic Transport Aircraft,”
Journal of Aircraft, Vol. 47, No. 6, 2010. doi:10.2514/1.47546.

[106] Chakraborty, I., Gross, J. R., Nam, T., Perullo, C., and Mavris, D. N., “Analysis
of the Effect of Cruise Speed on Fuel Efficiency and Cost for a Truss-Braced Wing
Concept,” 14th AIAA Aviation Technology, Integration, and Operations Conference,
2014. doi:10.2514/6.2014-2424, AIAA 2014-2424.

[107] Bradley, M. K., Droney, C. K., and Allen, T. J., “Subsonic Ultra Green Aircraft Re-
search. Phase II-Volume I; Truss Braced Wing Design Exploration,” NASA Technical
Report, 2015. NASA/CR-2015-218704/VOL1.

[108] Carrier, G., Atinault, O., Dequand, S., Hantrais-Gervois, J., Liauzun, C., Paluch,
B., Rodde, A., and Toussaint, C., “Investigation of a strut-braced wing configuration
for future commercial transport,” 28th Congress of the International Council of the
Aeronautical Sciences (Brisbane, Australia), 2012.

[109] Turriziani, R., Lovell, W., Martin, G., Price, J., Swanson, E., and Washburn, G.,
“Preliminary design characteristics of a subsonic business jet concept employing
an aspect ratio 25 strut braced wing,” NASA Technical Report, 1980. NASA-CR-
159361.

109

http://dx.doi.org/10.2514/6.2014-0567
http://dx.doi.org/10.1145/15886.15903
http://dx.doi.org/10.2514/6.2012-2895
http://dx.doi.org/10.2514/6.2008-6918
http://dx.doi.org/10.2514/6.2014-0596
http://dx.doi.org/10.2514/1.47546
http://dx.doi.org/10.2514/6.2014-2424

[110] Grasmeyer, J., “Multidisciplinary design optimization of a transonic strut-braced
wing aircraft,” 37th AIAA Aerospace Sciences Meeting and Exhibit, 1999, pp. 11–
14. doi:10.2514/6.1999-10.

[111] Gundlach, J. F., Tétrault, P.-A., Gern, F. H., Nagshineh-Pour, A. H., Ko, A., Schetz,
J. A., Mason, W. H., Kapania, R. K., et al., “Conceptual design studies of a strut-
braced wing transonic transport,” Journal of aircraft, Vol. 37, No. 6, 2000, pp. 976–
983. doi:10.2514/2.2724.

[112] Grasmeyer, J., and Mason, W., “A discrete vortex method for calculating the min-
imum induced drag and optimum load distribution for aircraft configurations with
noncoplanar surfaces,” VPIAOE-242, AOE Department, VPI & SU, Blacksburg, Vir-
ginia, Vol. 24061, 1997.

[113] Tétrault, P.-A., Schetz, J. A., and Grossman, B., “Numerical Prediction of Interfer-
ence Drag of Strut-surface Intersection in Transonic Flow,” AIAA Journal, Vol. 39,
No. 5, 2001, pp. 857–864. doi:10.2514/2.1389.

[114] Duggirala, R. K., Roy, C. J., and Schetz, J. A., “Analysis of Interference Drag for
Strut-strut Interaction in Transonic Flow,” AIAA Journal, Vol. 49, No. 3, 2011, pp.
449–462. doi:10.2514/1.45703.

[115] Gipson, L., “NASA Aeronautics Budget Proposes Re-
turn of X-Planes,” http://www.nasa.gov/feature/
nasa-aeronautics-budget-proposes-return-of-x-planes,
2016-02-18. Accessed: 2016-04-22.

[116] Gagnon, H., and Zingg, D. W., “High-fidelity Aerodynamic Shape Optimization
of Unconventional Aircraft through Axial Deformation,” 52nd Aerospace Sciences
Meeting, 2014. doi:10.2514/6.2014-0908, AIAA 2014-0908.

[117] Gagnon, H., and Zingg, D. W., “Euler-equation-based drag minimization of un-
conventional aircraft configurations,” Journal of Aircraft, Vol. 53, No. 5, 2016, pp.
1361–1371. doi:10.2514/1.C033591.

[118] Secco, N. R., Jasa, J. P., Kenway, G. K. W., and Martins, J. R. R. A.,
“Component-based Geometry Manipulation for Aerodynamic Shape Optimization
with Overset Meshes,” 18th AIAA/ISSMO Multidisciplinary Analysis and Opti-
mization Conference, American Institute of Aeronautics and Astronautics, 2017.
doi:10.2514/6.2017-3327, AIAA 2017-3327.

[119] Bieler, H., Bier, N., Bugeda, G., Periaux, J., Redondo, D., Guttila, S., and Pons,
J., “A common platform for validation of aircraft drag reduction technologies,”
, 2017. URL http://congress.cimne.com/padri-2017/frontal/
default.asp.

[120] Hwang, J. T., Kenway, G. K. W., and Martins, J. R. R. A., “Geometry and Structural
Modeling for High-Fidelity Aircraft Conceptual Design Optimization,” Proceedings

110

http://dx.doi.org/10.2514/6.1999-10
http://dx.doi.org/10.2514/2.2724
http://dx.doi.org/10.2514/2.1389
http://dx.doi.org/10.2514/1.45703
http://www.nasa.gov/feature/nasa-aeronautics-budget-proposes-return-of-x-planes
http://www.nasa.gov/feature/nasa-aeronautics-budget-proposes-return-of-x-planes
http://dx.doi.org/10.2514/6.2014-0908
http://dx.doi.org/10.2514/1.C033591
http://dx.doi.org/10.2514/6.2017-3327
http://congress.cimne.com/padri-2017/frontal/default.asp
http://congress.cimne.com/padri-2017/frontal/default.asp

of the 15th AIAA Multidisciplinary Analysis and Optimization Conference, Atlanta,
GA, 2014. doi:10.2514/6.2014-2041, aIAA 2014-2041.

[121] Meadows, N. A., Schetz, J. A., Kapania, R. K., Bhatia, M., and Seber, G., “Mul-
tidisciplinary design optimization of medium-range transonic truss-braced wing
transport aircraft,” Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1844–1856.
doi:10.2514/1.C031695.

[122] Ko, A., Mason, W., and Grossman, B., “Transonic aerodynamics of a
wing/pylon/strut juncture,” 21st AIAA Applied Aerodynamics Conference, 2003.
doi:10.2514/6.2003-4062, AIAA 2003-4062.

[123] Secco, N. R., Jasa, J. P., Kenway, G. K. W., and Martins, J. R. R. A., “Component-
based Geometry Manipulation for Aerodynamic Shape Optimization with Overset
Meshes,” AIAA Journal, 2018. (Accepted 04-2018).

[124] Secco, N. R., and Martins, J. R. R. A., “RANS-based Aerodynamic Shape Opti-
mization of a Strut-braced Wing with Overset Meshes,” 2018 AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, American Institute of
Aeronautics and Astronautics, Kissimmee, FL, 2018. AIAA 2018–0413.

[125] Secco, N. R., and Martins, J. R. R. A., “RANS-based Aerodynamic Shape Opti-
mization of a Strut-braced Wing with Overset Meshes,” Journal of Aircraft, 2018.
(Accepted 06-2018).

111

http://dx.doi.org/10.2514/6.2014-2041
http://dx.doi.org/10.2514/1.C031695
http://dx.doi.org/10.2514/6.2003-4062

	Dedication
	ACKNOWLEDGMENTS
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Introduction
	High-fidelity aircraft design optimization
	Aerodynamic shape optimization with overset meshes
	Geometry and mesh manipulation methods
	Aerodynamic shape optimization of junctions
	Thesis objectives
	Thesis outline

	Component-based parametrization
	Collar mesh generation overview
	Intersection computation
	Hyperbolic surface mesh generation
	Automatic differentiation

	Optimization Framework
	Geometry modeler—pyGeo
	Collar mesh generator—pySurf
	Volume mesh generator—pyHyp
	Volume mesh deformation—pyWarp
	CFD solver—ADflow
	Optimizer—SNOPT
	Derivative computation throughout the framework
	Noise issues in the functions of interest

	Wing-body junction optimization
	Geometric design variables and constraints
	Problem setup
	Baseline configuration studies
	Optimization results
	Summary

	Strut-braced wing optimization
	Optimization problem definition
	Wing and strut optimization
	Junction optimization according to PADRI 2017 guidelines
	Summary

	Concluding remarks
	Conclusions
	Contributions
	Recommendations for future work

	Appendices
	Surface mesh generation
	Hyperbolic equations for surface generation
	Marching distance
	Dissipation coefficients
	Boundary conditions and special cases
	Guide curve blending
	Pseudo marching steps

	Bibliography

