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ABSTRACT

Unstructured data is available in abundance with the rapidly growing size of digital infor-

mation. Labeling such data is expensive and impractical, making unsupervised learning

an increasingly important field. Big data collections often have rich latent structure that

statistical modeler is challenged to uncover. Bayesian hierarchical modeling is a particu-

larly suitable approach for complex latent patterns. Graphical model formalism has been

prominent in developing various procedures for inference in Bayesian models, however the

corresponding computational limits often fall behind the demands of the modern data sizes.

In this thesis we develop new approaches for scalable approximate Bayesian inference. In

particular, our approaches are driven by the analysis of latent geometric structures induced

by the models.

Our specific contributions include the following. We develop full geometric recipe of

the Latent Dirichlet Allocation topic model. Next, we study several approaches for exploit-

ing the latent geometry to first arrive at a fast weighted clustering procedure augmented

with geometric corrections for topic inference, and then a nonparametric approach based

on the analysis of the concentration of mass and angular geometry of the topic simplex,

a convex polytope constructed by taking the convex hull of vertices representing the la-

tent topics. Estimates produced by our methods are shown to be statistically consistent

under some conditions. Finally, we develop a series of models for temporal dynamics of

the latent geometric structures where inference can be performed in online and distributed

fashion. All our algorithms are evaluated with extensive experiments on simulated and real

datasets, culminating at a method several orders of magnitude faster than existing state-of-

the-art topic modeling approaches, as demonstrated by experiments working with several

million documents in a dozen minutes.

xi



CHAPTER 1

Introduction

Bayesian hierarchical models are prominent tools for unsupervised learning of patterns
in data. Unlabeled data is often available in vast amount - images, news articles, tweets,
query logs, scientific articles, etc. Ghahramani (2004) provides an overview of unsupervised
models such as Factor Analysis (Roweis & Ghahramani, 1999), probabilistic Principal
Component Analysis (Roweis, 1998; Roweis & Ghahramani, 1999), Independent Compo-
nent Analysis (Hyvärinen et al., 2004), mixture models (McLachlan & Peel, 2004), Hidden
Markov Models (HMM) (Rabiner & Juang, 1986), State Space Models (SSM) (Kitagawa,
1996), which by now are over a decade old. Other important models from the same time
period are admixtures (Pritchard et al., 2000), Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), Finite Feature Model (FFM) (Ghahramani & Griffiths, 2005); nonparametric
models such as Dirichlet Process (DP) (Ferguson, 1973), DP mixtures (Antoniak, 1974)
and Beta Processes (Hjort, 1990). Larger data often has more structure like time stamps,
location or publisher, hence requiring more sophisticated models to take into account all the
information, and nonparametric approaches, as specifying number of patterns of interest
apriori is very challenging and it is desirable to infer this quantity from the data instead. In
the recent decades many complex Bayesian hierarchical and nonparametric models have
been developed, where classical unsupervised models may play a role of building blocks.
Hierarchical Dirichlet Process (HDP) (Teh et al., 2006) for nonparametric topic modeling,
its extension for topics changing over time (Ahmed & Xing, 2012); document clustering
and topic modeling with context (Nguyen et al., 2014b) utilizing HDP and Nested Dirichlet
Process (Rodriguez et al., 2008); Indian Buffet Process (IBP) (Griffiths & Ghahramani,
2011) and Hierarchical Beta-Bernoulli process (Thibaux & Jordan, 2007), its extensions
combining IBP and HMM for time series data (Fox et al., 2009); nonparametric clustering
of functional data (Nguyen & Gelfand, 2011) to name a few.

Unfortunately the data size and modeling are at crossroads — training sophisticated
models on large data is often infeasible. Moreover, the problem remains acute for simpler
models such as mixtures or Latent Dirichlet Allocation. Exact inference of the posterior
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distribution or even Maximum Aposteriori estimation (MAP) is intractable and approximate
inference techniques were developed. Markov Chain Monte Carlo (MCMC) (e.g., Gibbs
sampler for LDA by Griffiths & Steyvers (2004)) and mean field variational inference (VI)
(Jordan et al., 1999; Blei et al., 2017) are among the most common approaches. Variational
inference historically was advocated as a faster alternative to sampling methods (e.g.,
comparison for the Boltzmann Machines by Anderson & Peterson (1987)). Nonetheless,
classic versions of neither VI nor MCMC can efficiently handle modern data sizes of millions
of observations.

Scalable approximate Bayesian inference is an active research area in the recent years
and many approaches were proposed: divide-and-conquer and subsampling based MCMC
(see Bardenet et al. (2017) for an overview), stochastic gradient MCMC (see Ma et al.
(2015) for classification of some of the algorithms, Betancourt (2017) for introduction to
Hamiltonian Monte Carlo, Mandt et al. (2017) for connection to stochastic gradient descent),
stochastic variational inference (Hoffman et al., 2013).

It is evident that scalable inference even for simpler models remains an important
problem up-to-date. Over the past couple decades MCMC and VI evolved a lot and became
sophisticated approximate inference techniques applicable to many problems, however
conceptually both approaches are rooted in the same fundamental concept of graphical

models (Jordan et al., 2004). Graphical models formalism is based on graph theory and
probability theory, where graph induced by the model is utilized to deduce various inference
procedures. Such inference procedures, including Gibbs sampler and variational inference,
belong to the family of message-passing algorithms (e.g., see review papers by Jordan et al.
(1999); Ghahramani (2004); Wainwright et al. (2008)).

In this thesis we depart from the graphical models formalism and make first steps in
developing a new way of approaching inference in Bayesian hierarchical models. Instead
of a graph, our approach is based on the analysis of the geometry induced by the model.
Specifically, we analyze geometric relationships among latent variables and data arising
from the Latent Dirichlet Allocation model (Blei et al., 2003), which leads us to propose new
inference algorithms for the latent geometry of the LDA, including nonparametric inference
and inference for some of the LDA extensions. Key advantage of our algorithms is orders of
magnitude speed ups comparative to graphical models based approaches.

In Section 1.1 we give an overview of the Latent Dirichlet Allocation, some of its
extensions and estimation procedures. In Section 1.2 we review role of geometry in the
LDA and some other Machine Learning problems. Key ingredients of our work are outlined
in Section 1.3. Main problems and contributions are summarized in Section 1.4.

2



1.1 Latent Dirichlet Allocation

With the rapidly growing size of digital information it is important to be able to explore,
organize and summarize it. Internet is full of news, blogs, Web pages, scientific articles
and other text, image, audio or video types of data. We focus our attention on the class of
algorithms called Topic Models. The goal of such algorithms is to summarize collections of
data (e.g., text data) by finding topics in it, which are essentially distributions over words.
One of the pioneering works in this field is a probabilistic topic model - Latent Dirichlet
Allocation by Blei et al. (2003). Examples of topics learned from the New York Times
articles are demonstrated in Table 1.1. In this section we review Latent Dirichlet Allocation,
its graphical representation, some of its predecessors and extensions and common inference
approaches.

Table 1.1: New York Times topics

Cooking Stem Cells Antitrust LGBT Elections

cup cell Microsoft gay ballot
minutes stem window lesbian Al Gore

tablespoon research company right election
add human software sex votes

teaspoon scientist case marriage recount
pepper cloning system group Florida

oil patient operating couples court
sugar disease computer sexual vote
butter phones antitrust partner voter
pan researcher court issue count

1.1.1 Model

First we summarize the data generative process of the Latent Dirichlet Allocation. Let
α ∈ RK

+ and η ∈ RV
+ be hyperparameters, where V denotes the number of words in a

vocabulary, and K the number of topics. The K topics are represented as distributions on
words:

βk|η ∼ DirV (η), for k = 1, . . . , K.

Each of the M documents can be generated as follows. First, draw the document topic
proportions:

θm|α ∼ DirK(α), for m = 1, . . . ,M.
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Next, for each of the Nm words in document m, pick a topic label z and then sample a word
d from the chosen topic:

znm|θm ∼ Categorical(θm); dnm|znm , β1...K ∼ Categorical(βznm ).

Each of the resulting documents is a vector of length Nm with entries dnm ∈ {1, . . . , V },
where nm = 1, . . . , Nm. Because these words are exchangeable by the modeling, they are
equivalently represented as a vector of word counts wm ∈ NV . Corresponding graphical
model representation is shown in Figure 1.1. From the model construction it follows that
each document can exhibit multiple topics to a different extent. This property, encoded in
corresponding θm, distinguishes LDA from mixture models and makes it more suitable for
modeling text data, where single topic may not be sufficient to describe a document.

α

θ z w

β

η

M

K

Nm

Figure 1.1: Latent Dirichlet Allocation graphical model representation.

Latent Semantic Analysis (Deerwester et al., 1990) is a precursor of the LDA model
casting topics as basis vectors of low dimensional latent subspace. Hofmann (1999) added
probabilistic component to it. Admixture (Pritchard et al., 2000) is an equivalent to LDA
model widely used in the field of population genetics.

LDA is a fundamental building block for many more sophisticated topic models. It is a
parametric model, meaning that we need to provide number of topics as an input, which
could be challenging in practice. Nonparametric version, based on the Dirichlet process
(Ferguson, 1973) is known as Hierarchical Dirichlet Process (Teh et al., 2006). Apriori topics
are assumed independent, Correlated Topic model (Blei & Lafferty, 2006a) relaxes this
assumption by using logistic-normal distribution instead of Dirichlet to model latent topic
proportions of a document. Similar idea is used to allow time changing topics - Dynamic
Topic Models (Blei & Lafferty, 2006b) and a nonparametric version by Ahmed & Xing
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(2012). Nested Chinese Restaurant Process (Blei et al., 2010) allows for topic hierarchies.
Supervised LDA (Mcauliffe & Blei, 2008) incorporates prediction in the model, allowing
for documents with labels. Multilevel Clustering with Context (Nguyen et al., 2014b) allows
to use context information (like authors, time and location stamps) and cluster documents
by combining Hierarchical and Nested Dirichlet Processes.

1.1.2 Inference

Graphical model formalism leads to the two most common approaches for inference of
the LDA topics — Gibbs sampling (Griffiths & Steyvers, 2004) based on the Multinomial-
Dirichlet conjugacy and mean field variational inference (Blei et al., 2003) minimizing the
Kullback-Leibler divergence between posterior and factorized posterior. Brief summary of
these methods is given in the Supplement.

Neither Gibbs sampling nor variational inference in their respective original formulations
scale well to large corpora of millions of documents. Training time gets off practical limits
for more complex and nonparametric LDA extensions. In the past decade significant research
efforts have been made to address this concern. Online (Hoffman et al., 2010), distributed
(Newman et al., 2008) and both online and distributed (Broderick et al., 2013) algorithms
have been developed. Online algorithms for Hierarchical Dirichlet Process (HDP) (Teh
et al., 2006), a nonparametric counterpart of LDA, have also been proposed (Wang et al.,
2011; Bryant & Sudderth, 2012). Both classes of inference algorithms (i.e. sampling and
variational inference), their virtues notwithstanding, are known to exhibit certain deficiencies,
which also propagate through their modern extensions. The problem can be traced back
to the need for approximating or sampling from the posterior distributions of the latent
variables representing the topic labels. Since these latent variables are not geometrically
intrinsic — any permutation of the labels yields the same likelihood — the manipulation of
these redundant quantities tend to slow down the computation, and compromise with the
learning accuracy.

Another fruitful perspective on topic modeling can be obtained by partially stripping
away the distributional properties of the probabilistic model and turning the estimation
problem into a form of matrix factorization (Deerwester et al., 1990; Xu et al., 2003;
Anandkumar et al., 2012; Arora et al., 2013). We call this the linear subspace viewpoint.
For instance, the Latent Semantic Analysis approach (Deerwester et al., 1990) looks to find
a latent subspace via singular-value decomposition, but has no topic structure. Notably,
the RecoverKL by Arora et al. (2013) is one of the recent fast algorithms with provable
guarantees coming from the linear subspace perspective.
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1.2 Geometry in Machine Learning

In this section we summarize prior work concerning the geometry of the Latent Dirichlet
Allocation. Then we give some examples of geometry arising in other Machine Learning
problems.

1.2.1 Geometry of the Latent Dirichlet Allocation

The key idea underlining the geometric viewpoint of the Latent Dirichlet Allocation is
that latent topics induce a convex set to be called a topic polytope. Observed documents
then correspond to points randomly drawn inside this topic polytope. Probabilistic Latent
Semantic Analysis (Hofmann, 1999) contains early hints of this viewpoint, however it does
not explore the distribution of the documents inside the topic polytope. One of the key Latent
Dirichlet Allocation (Blei et al., 2003) ideas is to place a Dirichlet prior on the inside of the
topic polytope. Figure 4 of Blei et al. (2003) summarizes this idea. Geometric viewpoint had
laid dormant for quite some time, until studied in depth in the work of Nguyen (2015), who
demonstrated theoretically that posterior distribution of the LDA topics contracts towards the
true latent topic polytope. The contraction behavior was also verified in practice (Tang et al.,
2014). In this thesis we complete geometric interpretation of all of the LDA latent variables
(i.e., topics and topic proportions) and use it to develop a series of efficient algorithms
directly targeting estimation of the latent topic polytope.

1.2.2 Geometry in other problems

Geometry has always played an important role in Machine Learning. Support Vector
Machines (Vapnik, 2006) is among famous classification algorithms with intuitive geometric
motivation. Principal Component Analysis can be interpreted geometrically; k-means
clustering is tightly related to a geometric problem of Centroidal Voronoi Tessellation (Du
et al., 1999). Many problems go beyond Euclidean geometry — topological data analysis
(Wasserman, 2016), manifold learning (Belkin et al., 2006), some of the deep learning
(Bronstein et al., 2017).

Another important problem, related to Topic Modeling through the linear subspace
perspective, is the Nonnegative Matrix Factorization (NMF) (Lee & Seung, 1999). Although
NMF is a NP-hard problem in general (Vavasis, 2009), it may be solved provably when
separability is assumed (Arora et al., 2012). Under this assumption NMF problem has an
elegant geometric interpretation — some (unknown) rows of the data matrix form a polytope
containing rest of the data. Damle & Sun (2017) utilized this geometric treatment of NMF
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to propose scalable estimation algorithms. In topic modeling separability assumption is
usually called an anchor word assumption — each topic is assumed to contain a word absent
in all other topics. RecoverKL by Arora et al. (2013) is one of the recent fast algorithms
utilizing the anchor word assumption. We will show that one of our geometric algorithms
can be used to improve RecoverKL and make it nonparametric.

1.3 Key ideas in our framework

In this section we shall present the full geometric recipe of the Latent Dirichlet Allocation
and outline some of the concepts we will use for the algorithms and models development.

In Section 1.1.2 we noted that the root of the inefficiency of sampling and variational
inference methods can be traced to the need for approximating the posterior distributions
of the latent variables representing the topic labels — these are not geometrically intrinsic
as any permutation of the labels yields the same likelihood. By integrating out the latent
variables that represent the topic labels, we obtain a geometric formulation of the LDA.
Indeed, integrating z’s out yields that, for m = 1, . . . ,M ,

wm|θm, β1...K , Nm ∼ Multinomial(pm1, . . . , pmV , Nm),

where pmi denotes probability of observing the i-th word from the vocabulary in the m-th
document, and is given by

pmi =
K∑
k=1

θmkβki for i = 1, . . . , V ; m = 1, . . . ,M.

Resulting graphical model representation is given in Fig. 1.2. The crucial geometric
observation is that the exact same form of pm would arise if we interpreted topic proportions
θm as barycentric coordinates of document m with respect to the topic polytope B =

Conv(β1, . . . , βK) and pm as the corresponding Cartesian coordinates.

α

θ w β

ηM K

Figure 1.2: Latent Dirichlet Allocation with integrated topic labels.
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(a) Topic polytope (b) Barycentric coordinates

(c) Cartesian coordinates (d) Normalized document

Figure 1.3: Toy geometric illustration of the LDA document generation.

Figure 1.4: Toy geometric illustration of topic polytope and document collection.

Let us now restate the generative process of the LDA with each layer of the model
accompanied by a toy graphical illustration from Fig. 1.3.
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Generate K topics — extreme points of the topic polytope (Fig. 1.3a):

βk|η ∼ DirV (η), for k = 1, . . . , K.

For each of the M documents sample a vector of barycentric coordinates (Fig. 1.3b):

θm|α ∼ DirK(α).

Translate into Cartesian coordinate system (Fig. 1.3c):

pm =
∑
k

θmkβk.

Generate and normalize document (Fig. 1.3d):

wm ∼ Multinomial(pm, Nm), w̄m = wm/Nm.

Resulting normalized document w̄m is a noisy estimate of pm. The whole (normalized)
corpora can be viewed as a cloud of points around the latent topic polytope (Fig. 1.4).

In this thesis we consider a variety of approaches targeting topic polytope estimation.
We shall establish a geometric objective function, its connection to the LDA likelihood
and subspace learning. To arrive at scalable geometric inference algorithms we analyze
the concentration of mass inside the topic polytope. First, by investigating the Centroidal
Voronoi Tessellation (Du et al., 1999) of the topic polytope, and then, by covering the topic
polytope with suitable cones and spherical balls.

Given efficient nonparametric procedure for topic estimation, it is natural to ask if our
geometric framework can be extended to more sophisticated topic modeling scenarios. To
answer this question we build a series of models directly targeting the latent geometry.
Specifically, we develop a nonparametric model for the temporal dynamics of the topic
polytope. We shall utilize an isometric embedding of the unit sphere in the word simplex, so
that the evolution of topic polytopes may be modeled by a collection of (random) trajectories
of points residing on the unit sphere. Instead of worrying about mix-matching vertices in an
ad hoc fashion, we appeal to the Bayesian nonparametric modeling framework that allow
the number of topic vertices to be random and vary across time. The mix-matching between
topic variables shall be guided by the assumption on the smoothness of the collection of
global trajectories on the sphere using Von Mises-Fisher dynamics (Mardia & Jupp, 2009).
The selection of active topics at each time point will be guided by a nonparametric prior on
the random binary matrices via the (hierarchical) Beta-Bernoulli process (Thibaux & Jordan,
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2007). For the inference part, we demonstrate connection between MAP estimation in the
Beta-Bernoulli process and the Hungarian matching algorithm (Kuhn, 1955).

1.4 Main problems and contributions

In this section we provide an extended summary of the problems considered in this thesis
and our contributions in regard to these problems.

• Geometric formulation of the Latent Dirichlet Allocation.

• Geometric procedure for estimating topic proportions given a topic simplex.

• Fast parametric geometric algorithm based on the analysis of Centroidal Voronoi
Tessellation of a topic polytope.

• Fast nonparametric geometric algorithm based on the analysis of the concentration of
mass inside the topic simplex and its coverage with suitable cones and spheres.

• New model for temporal dynamics of the topic polytope and corresponding online
and distributed inference algorithm.

• Novel Bayesian hierarchical model for supervised adaptive selection of interactions
of arbitrary order among predictor variables.

At a high level, we uncover and exploit geometry induced by the Latent Dirichlet
Allocation model to develop several algorithms that are much faster and as accurate as their
graphical models inspired counterparts. Being able to efficiently infer the latent geometry,
we propose new models to allow for dynamically evolving latent geometry, where inference
can be done in online and distributed fashion allowing for topic estimation from several
millions of documents in a dozen of minutes.

1.4.1 Geometric analysis of the LDA and Geometric Dirichlet Means
algorithm for topic inference

In Chapter 2 we further elaborate on the geometric viewpoint of the LDA outlined in Section
1.3. We develop and analyze a new class of algorithms for topic inference, which exploits
both the convex geometry of topic models and the distributional properties they carry. The
main contributions in Chapter 2 are the following: (i) we investigate a geometric loss
function to be optimized, which can be viewed as a surrogate to the LDA’s likelihood;
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this leads to a novel estimation and inference algorithm — the Geometric Dirichlet Means
(GDM) algorithm, which builds upon a weighted k-means clustering procedure and is
augmented with a geometric correction for obtaining polytope estimates; (ii) we prove that
the GDM algorithm is consistent, under conditions on the Dirichlet distribution and the
geometry of the topic polytope; (iii) we propose a nonparametric extension of GDM and
discuss geometric treatments for some of the LDA extensions; (v) finally we provide a
thorough evaluation of our method against a Gibbs sampler, a variational algorithm, and
the RecoverKL algorithm. Our method is shown to be comparable to a Gibbs sampler in
terms of estimation accuracy, but much more efficient in runtime. It outperforms RecoverKL
(Arora et al., 2013) algorithm in terms of accuracy, in some realistic settings of simulations
and in real data.

1.4.2 Conic Scan-and-Cover algorithms for nonparametric topic mod-
eling

In Chapter 3 we shall continue to amplify the geometric viewpoint to address nonparametric

topic modeling, a setting in which the number of topics is unknown, as is the distribution
inside the topic polytope (in some situations). We will propose algorithms for topic esti-
mation by explicitly accounting for the concentration of mass and angular geometry of the
topic polytope, typically a simplex in topic modeling applications. The geometric intuition
is fairly clear: each vertex of the topic simplex can be identified by a ray emanating from its
center (to be defined formally), while the concentration of mass can be quantified for the
cones hinging on the apex positioned at the center. Such cones can be rotated around the
center to scan for high density regions inside the topic simplex — under mild conditions
such cones can be constructed efficiently to recover both the number of vertices and their
estimates. We will also extend RecoverKL (Arora et al., 2013) to a nonparametric setting
and show that the anchor word assumption appears to limit the number of topics one can
efficiently learn.

1.4.3 Streaming dynamic and distributed inference of latent geomet-
ric structures

When data and the associated modeling are indexed by time dimension, it is of interest
to study the temporal dynamics of the latent geometric structure that arises. In Chapter 4
we focus on the modeling and algorithm for analyzing the temporal dynamics of a topic

polytope. A number of authors have extended the basic topic modeling framework to analyze
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how topics evolve over time. The Dynamic Topic Models (DTM) (Blei & Lafferty, 2006b)
demonstrated the importance of accounting for non-exchangeability between document
groups, particularly when the time information is provided. Another approach is to fix the
topics and only consider evolving topic popularity (Wang & McCallum, 2006). Hong et al.
(2011) extended such an approach to multiple corpora. Ahmed & Xing (2012) proposed
an interesting nonparametric construction extending DTM where topics can appear or
eventually die out. The evolution of the latent geometric structure arising from the model
(the topic polytope) is implicitly present in all these works, however it was not explicitly
considered and analyzed.

Directly confronting the modeling and inference of the temporal dynamics of the topic
polytope offers several opportunities and challenges. To start, what is the suitable space that
we may consider the topic polytope to be represented? As topics evolve over time, so are
the number of topics that may become active and dormant again, raising interesting choices
about modeling of this evolution. Interesting issues arise in the inference, too. For instance,
what is the principled way of mix-matching the vertices of a polytope to its reincarnation in
the next time point? These challenges also open the door for directly modeling the geometric
structure in a way that facilitates efficient inference.

To this end, we construct a sequence of Bayesian nonparametric models in increasing
levels of complexity: the simpler model captures the temporal dynamics of a sequence of
topic polytopes, while the full model describes the temporal dynamics of a collection of
topic polytopes as they arise from multiple corpora. The semantic of topics that arise from
our models can be interpreted as follows: there is a latent collection of global topics of
unknown cardinality that evolve over time (e.g. topics in science or social topics in Twitter)
and each year (or day) a subset of the global topics is elucidated by the community (i.e.
some topics may be dormant at a given time point). The nature of each global topic may
change smoothly (via varying word frequencies). Additionally, different subsets of global
topics are associated with different groups (e.g. journals or Twitter location stamps), some
become active and inactive over time.

It is interesting to note that our model construction leads to a suite of approximate
inference algorithm that scales well in an online and distributed setting. In particular, the
online MAP update of the latent topic polytope can be viewed as solving an optimal matching
problem for which a fast Hungarian matching algorithm (Kuhn, 1955) can be applied. Our
approach is able to perform dynamic nonparametric topic inference on 3 million documents
in 12 minutes, which is significantly faster than prior static online and/or distributed topic
modeling algorithms (Newman et al., 2008; Hoffman et al., 2010; Wang et al., 2011; Bryant
& Sudderth, 2012; Broderick et al., 2013).
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1.4.4 Multi-way Interacting Regression via Factorization Machines

A fundamental challenge in supervised learning, particularly in regression, is the need
for learning functions which produce accurate prediction of the response, while retaining
the explanatory power for the role of the predictor variables in the model. The standard
linear regression method is favored for the latter requirement, but it fails the former when
there are complex interactions among the predictor variables in determining the response.
The challenge becomes even more pronounced in a high-dimensional setting – there are
exponentially many potential interactions among the predictors, for which it is simply not
computationally feasible to resort to standard variable selection techniques (cf. Fan & Lv
(2010)).

There are numerous examples where accounting for the predictors’ interactions is of
interest, including problems of identifying epistasis (gene-gene) and gene-environment
interactions in genetics (Cordell, 2009), modeling problems in political science (Brambor
et al., 2006) and economics (Ai & Norton, 2003). In the business analytics of retail demand
forecasting, a strong prediction model that also accurately accounts for the interactions of
relevant predictors such as seasons, product types, geography, promotions, etc. plays a
critical role in the decision making of marketing design.

A simple way to address the aforementioned issue in the regression problem is to simply
restrict our attention to lower order interactions (i.e. 2- or 3-way) among predictor variables.
This can be achieved, for instance, via a support vector machine (SVM) using polynomial
kernels (Cristianini & Shawe-Taylor, 2000), which pre-determine the maximum order of
predictor interactions. In practice, for computational reasons the degree of the polynomial
kernel tends to be small. Factorization machines (Rendle, 2010) can be viewed as an
extension of SVM to sparse settings where most interactions are observed only infrequently,
subject to a constraint that the interaction order (a.k.a. interaction depth) is given. Neither
SVM nor FM can perform any selection of predictor interactions, but several authors have
extended the SVM by combining it with `1 penalty for the purpose of feature selection (Zhu
et al., 2004) and gradient boosting for FM (Cheng et al., 2014) to select interacting features.
It is also an option to perform linear regression on as many interactions as we can and
combine it with regularization procedures for selection (e.g. LASSO (Tibshirani, 1996) or
Elastic net (Zou & Hastie, 2005)). It is noted that such methods are still not computationally
feasible for accounting for interactions that involve a large number of predictor variables.

In Chapter 5 we propose a regression method capable of adaptive selection of multi-
way interactions of arbitrary order (MiFM for short), while avoiding the combinatorial
complexity growth encountered by the methods described above. MiFM extends the basic
factorization mechanism for representing the regression coefficients of interactions among

13



the predictors, while the interaction selection is guided by a prior distribution on random
hypergraphs. The prior, which does not insist on the upper bound on the order of interactions
among the predictor variables, is motivated from but also generalizes Finite Feature Model,
a parametric form of the well-known Indian Buffet process (IBP) (Ghahramani & Griffiths,
2005). We introduce a notion of the hypergraph of interactions and show how a parametric
distribution over binary matrices can be utilized to express interactions of unbounded order.
In addition, our generalized construction allows us to exert extra control on the tail behavior
of the interaction order. IBP was initially used for infinite latent feature modeling and
later utilized in the modeling of a variety of domains (see a review paper by Griffiths &
Ghahramani (2011)).

In developing MiFM, our contributions are the following: (i) we introduce a Bayesian
multi-linear regression model, which aims to account for the multi-way interactions among
predictor variables; part of our model construction includes a prior specification on the
hypergraph of interactions — in particular we show how our prior can be used to model the
incidence matrix of interactions in several ways; (ii) we propose a procedure to estimate
coefficients of arbitrary interactions structure; (iii) we establish posterior consistency of the
resulting MiFM model, i.e., the property that the posterior distribution on the true regression
function represented by the MiFM model contracts toward the truth under some conditions,
without requiring an upper bound on the order of the predictor interactions; and (iv) we
present a comprehensive simulation study of our model and analyze its performance for
retail demand forecasting and case-control genetics datasets with epistasis. The unique
strength of the MiFM method is the ability to recover meaningful interactions among the
predictors while maintaining a competitive prediction quality compared to existing methods
that target prediction only.

1.5 Thesis organization

The reminder of this thesis proceeds as follows:
Chapter 2: Geometric Dirichlet Means algorithm for topic inference
This chapter develops geometric viewpoint of the LDA, defines corresponding geometric

loss functions and proposes new geometrically inspired topic polytope estimation algorithm.
Chapter 3: Conic Scan-and-Cover algorithms for nonparametric topic modeling
This chapter continues with the geometric viewpoint of Chapter 2 to investigate concen-

tration of mass inside the topic polytope and to propose a fast nonparametric topic estimation
algorithm.

Chapter 4: Streaming dynamic and distributed inference of latent geometric struc-
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tures
This chapter develops a model of temporal dynamics of the topic polytope and introduces

an online and distributed estimation algorithm based on Chapter 3.
Chapter 5: Multi-way Interacting Regression via Factorization Machines
This chapter proposes a notion of hypergraph of interactions and develops a correspond-

ing Bayesian hierarchical model for uncovering high-order interactions in the regression
setting.

Chapter 6: Conclusions and suggestions
This chapter summarizes contributions of this thesis and discusses ideas for the future

work.
Each chapter is sufficiently self-contained covering all relevant background knowledge

and literature. Chapter 2 initiates the geometric journey taking off from a more classical
likelihood perspective. Chapter 3 culminates the geometric exploration. Chapter 4 uses al-
gorithmic results of Chapter 3, although it could be read independently. Chapter 5 addresses
a problem in the supervised learning domain and can be read without the background in the
previous chapters.
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Appendix

1.A Collapsed Gibbs Sampling

Here we briefly summarize Collapsed Gibbs sampler of Griffiths & Steyvers (2004). Due to
the conjugacy of Categorical and Dirichlet distributions we can integrate out θ and β to be
left only with latent variables z, for which closed form full conditional is available:

P (zmi = k|z−mi,W ) ∝
n

(wmi)
−i,k + γ

n
(·)
−i,k + V γ

n
(m)
−i,k + α

n
(m)
−i,· +Kα

.

First ratio gives probability of word wmi in topic k. n(wmi)
k is the number of times word

wmi has been assigned to topic k. −i index means excluding current assignment of zmi.
Second ratio gives probability of topic k in document m. n(m)

k is the number of times a
word from document m has been assigned to topic k. Markov Chain Monte Carlo algorithm
is then to start with some initial state and sample topic assignments for each word in each
document until chain approaches target posterior distribution. Estimates for topics and topic
proportions are:

βkv =
n

(v)
k + γ

n
(·)
k + V γ

.

θmk =
n

(m)
k + α

n
(m)
· +Kα

.

This algorithm converges asymptotically, but as in any MCMC it is hard to assess rate and it
is quite slow. Also we have to do sampling for every word, which is one of the inefficiencies
we are addressing in our work. Moreover it is problematic to estimate θ of unseen document,
since we have to sample topic assignments to obtain posterior for the document.

1.B Variational Inference

Variational inference (Blei et al., 2003) is based on decoupling latent variables, and min-
imizing KL divergence between factorized posterior with unknown parameters and true
posterior. Resulting objective is non-convex, therefore it is only guaranteed to converge to
local optima. Next we give a short description of how VI works.

Let for a probabilistic graphical model z be latent variables and x - data. We are
interested in the posterior p(z|x), which is often intractable, as in the LDA case. We want to
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approximate the true posterior with some easier-to-compute distribution q(z) by minimizing

KL(q||p) = Eq
[
log

q(z)

p(z|x)

]
= Eq [log q(z)]− Eq [log p(z|x)]

= −

Eq [log p(z, x)]− Eq [log q(z)]︸ ︷︷ ︸
ELBO

+ Eq [log p(x)] .

Evidence Lower Bound (ELBO) is a lower bound of the log-likelihood of the data and
could be derived via Jensen’s inequality. Last term Eq [log p(x)] does not depend on q(z),
therefore minimizing KL is equivalent to maximizing ELBO. For LDA we take q(z) as
factorized (decoupling latent variables) posterior (Blei et al., 2003):

q(β, θ, z|λ, γ, φ) =

[
K∏
k=1

q(βk|λk)
]
·
[

M∏
m=1

q(θm|γm)

]
·
[

M∏
m=1

Nm∏
n=1

q(zmn|φmwmn)

]
, where

q(βk|λk) = DirV (βk|λk), q(θm|γm) = DirK(θm|γm), and

q(zmn|φmwmn) = CategoricalK(zmn|φmwmn).

We minimize ELBO over parameters (λki), (γmk), (φmik) with k ∈ {1, ..., K}, i ∈ {1, ..., V },
m ∈ {1, ...,M}. Common approach is to do coordinate ascent, but there are more modern
techniques, that are faster.
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CHAPTER 2

Geometric Dirichlet Means algorithm for topic
inference

We propose a geometric algorithm for topic learning and inference that is built on the
convex geometry of topics arising from the Latent Dirichlet Allocation (LDA) model and its
nonparametric extensions. To this end we study the optimization of a geometric loss function,
which is a surrogate to the LDA’s likelihood. Our method involves a fast optimization based
weighted clustering procedure augmented with geometric corrections, which overcomes the
computational and statistical inefficiencies encountered by other techniques based on Gibbs
sampling and variational inference, while achieving the accuracy comparable to that of a
Gibbs sampler.1 The topic estimates produced by our method are shown to be statistically
consistent under some conditions. The algorithm is evaluated with extensive experiments on
simulated and real data.2

2.1 Introduction

Most learning and inference algorithms in the probabilistic topic modeling literature can be
delineated along two major lines: the variational approximation popularized in the seminal
paper of Blei et al. (2003), and the sampling based approach studied by Pritchard et al. (2000)
and other authors. Both classes of inference algorithms, their virtues notwithstanding, are
known to exhibit certain deficiencies, which can be traced back to the need for approximating
or sampling from the posterior distributions of the latent variables representing the topic
labels. Since these latent variables are not geometrically intrinsic — any permutation of the
labels yields the same likelihood — the manipulation of these redundant quantities tend to
slow down the computation, and compromise with the learning accuracy.

1Code is available at https://github.com/moonfolk/Geometric-Topic-Modeling.
2This chapter has been published in Yurochkin & Nguyen (2016).
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In this chapter we take a convex geometric perspective of the Latent Dirichlet Allocation,
which may be obtained by integrating out the latent topic label variables. As a result, topic
learning and inference may be formulated as a convex geometric problem: the observed
documents correspond to points randomly drawn from a topic polytope, a convex set whose
vertices represent the topics to be inferred. The original paper of Blei et al. (2003) (see also
Hofmann (1999)) contains early hints about a convex geometric viewpoint, which is left
unexplored. This viewpoint had laid dormant for quite some time, until studied in depth in
the work of Nguyen and co-workers, who investigated posterior contraction behaviors for
the LDA both theoretically and practically (Nguyen, 2015; Tang et al., 2014).

Another fruitful perspective on topic modeling can be obtained by partially stripping
away the distributional properties of the probabilistic model and turning the estimation
problem into a form of matrix factorization (Deerwester et al., 1990; Xu et al., 2003;
Anandkumar et al., 2012; Arora et al., 2013). We call this the linear subspace viewpoint. For
instance, the Latent Semantic Analysis approach (Deerwester et al., 1990), which can be
viewed as a precursor of the LDA model, looks to find a latent subspace via singular-value
decomposition, but has no topic structure. Notably, the RecoverKL by Arora et al. (2013) is
one of the recent fast algorithms with provable guarantees coming from the linear subspace
perspective.

The geometric perspective continues to be the main force driving this work. We develop
and analyze a new class of algorithms for topic inference, which exploits both the convex
geometry of topic models and the distributional properties they carry. The main contributions
in this chapter are the following: (i) we investigate a geometric loss function to be optimized,
which can be viewed as a surrogate to the LDA’s likelihood; this leads to a novel estimation
and inference algorithm — the Geometric Dirichlet Means algorithm, which builds upon a
weighted k-means clustering procedure and is augmented with a geometric correction for
obtaining polytope estimates; (ii) we prove that the GDM algorithm is consistent, under
conditions on the Dirichlet distribution and the geometry of the topic polytope; (iii) we
propose a nonparametric extension of GDM and discuss geometric treatments for some of
the LDA extensions; (v) finally we provide a thorough evaluation of our method against
a Gibbs sampler, a variational algorithm, and the RecoverKL algorithm. Our method is
shown to be comparable to a Gibbs sampler in terms of estimation accuracy, but much more
efficient in runtime. It outperforms RecoverKL algorithm in terms of accuracy, in some
realistic settings of simulations and in real data.

The chapter proceeds as follows. Section 2.2 provides a brief background of the LDA
and its convex geometric formulation. Section 2.3 carries out the contributions outlined
above. Section 2.4 presents experiments results. We conclude with a discussion in Section
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2.5.

2.2 Background on topic models

In this section we give an overview of the well-known Latent Dirichlet Allocation model
for topic modeling (Blei et al., 2003), and the geometry it entails. Let α ∈ RK

+ and η ∈ RV
+

be hyperparameters, where V denotes the number of words in a vocabulary, and K the
number of topics. The K topics are represented as distributions on words: βk|η ∼ DirV (η),
for k = 1, . . . , K. Each of the M documents can be generated as follows. First, draw the
document topic proportions: θm|α ∼ DirK(α), for m = 1, . . . ,M . Next, for each of the
Nm words in document m, pick a topic label z and then sample a word d from the chosen
topic:

znm|θm ∼ Categorical(θm); dnm|znm , β1...K ∼ Categorical(βznm ). (2.1)

Each of the resulting documents is a vector of length Nm with entries dnm ∈ {1, . . . , V },
where nm = 1, . . . , Nm. Because these words are exchangeable by the modeling, they are
equivalently represented as a vector of word counts wm ∈ NV . In practice, the Dirichlet
distributions are often simplified to be symmetric Dirichlet, in which case hyperparameters
α, η ∈ R+ and we will proceed with this setting.

Two most common approaches for inference with the LDA are Gibbs sampling (Griffiths
& Steyvers, 2004), based on the Multinomial-Dirichlet conjugacy, and mean-field inference
(Blei et al., 2003). The former approach produces more accurate estimates but is less
computationally efficient than the latter. The inefficiency of both techniques can be traced
to the need for sampling or estimating the (redundant) topic labels. These labels are not
intrinsic — any permutation of the topic labels yield the same likelihood function.

Convex geometry of topics. By integrating out the latent variables that represent the topic
labels, we obtain a geometric formulation of the LDA. Indeed, integrating z’s out yields that,
for m = 1, . . . ,M ,

wm|θm, β1...K , Nm ∼ Multinomial(pm1, . . . , pmV , Nm),
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where pmi denotes probability of observing the i-th word from the vocabulary in the m-th
document, and is given by

pmi =
K∑
k=1

θmkβki for i = 1, . . . , V ; m = 1, . . . ,M. (2.2)

The model’s geometry becomes clear. Each topic is represented by a point βk lying in the
V − 1 dimensional probability simplex ∆V−1. Let B := Conv(β1, . . . , βK) be the convex
hull of the K topics βk, then each document corresponds to a point pm := (pm1, . . . , pmV )

lying inside the polytope B. This point of view has been proposed before (Hofmann,
1999), although topic proportions θ were not given any geometric meaning. The following
treatment of θ lets us relate to the LDA’s Dirichlet prior assumption and complete the
geometric perspective of the problem. The Dirichlet distribution generates probability
vectors θm, which can be viewed as the (random) barycentric coordinates of the document
m with respect to the polytope B. Each pm =

∑
k θmkβk is a vector of Cartesian coordinates

of the m-th document’s multinomial probabilities. Given pm, document m is generated by
taking wm ∼ Multinomial(pm, Nm). In Section 2.4 we will show how this interpretation of
topic proportions can be utilized by other topic modeling approaches, including for example
the RecoverKL algorithm of Arora et al. (2013). In the following the model geometry
is exploited to derive fast and effective geometric algorithm for inference and parameter
estimation.

2.3 Geometric inference of topics

We shall introduce a geometric loss function that can be viewed as a surrogate to the LDA’s
likelihood. To begin, let β denote the K × V topic matrix with rows βk, θ be a M ×K
document topic proportions matrix with rows θm, and W be M ×V normalized word counts
matrix with rows w̄m = wm/Nm.

2.3.1 Geometric surrogate loss to the likelihood

Unlike the original LDA formulation, here the Dirichlet distribution on θ can be viewed as a
prior on parameters θ. The log-likelihood of the observed corpora of M documents is

L(θ,β) =
M∑
m=1

V∑
i=1

wmi log

(
K∑
k=1

θmkβki

)
,
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where the parameters β and θ are subject to constraints
∑

i βki = 1 for each k = 1, . . . , K,
and

∑
k θmk = 1 for each m = 1, . . . ,M . Partially relaxing these constraints and keeping

only the one that the sum of all entries for each row of the matrix product θβ is 1, yields the
upper bound that L(θ,β) ≤ L(W ), where function L(W ) is given by

L(W ) =
∑
m

∑
i

wmi log w̄mi.

We can establish a tighter bound, which will prove useful (the proof of this and other
technical results are in the Supplement):

Proposition 2.1. Given a fixed topic polytope B and θ. Let Um be the set of words present
in document m, and assume that pmi > 0 ∀ i ∈ Um, then

L(W )− 1

2

M∑
m=1

Nm

∑
i∈Um

(w̄mi − pmi)2 ≥ L(θ,β) ≥ L(W )−
M∑
m=1

Nm

∑
i∈Um

1

pmi
(w̄mi − pmi)2.

Since L(W ) is constant, the proposition above shows that maximizing the likelihood
has the effect of minimizing the following quantity with respect to both θ and β:∑

m

Nm

∑
i

(w̄mi − pmi)2.

For each fixed β (and thus B), minimizing first with respect to θ leads to the following

G(B) := min
θ

∑
m

Nm

∑
i

(w̄mi − pmi)2 =
M∑
m=1

Nm min
x:x∈B

‖x− w̄m‖2
2, (2.3)

where the second equality in the above display is due pm =
∑

k θmkβk ∈ B.
The proposition suggests a strategy for parameter estimation: β (andB) can be estimated

by minimizing the geometric loss function G:

min
B
G(B) = min

B

M∑
m=1

Nm min
x:x∈B

‖x− w̄m‖2
2. (2.4)

In words, we aim to find a convex polytope B ∈ ∆V−1, which is closest to the normalized
word counts w̄m of the observed documents. It is interesting to note the presence of document
length Nm, which provides the weight for the squared `2 error for each document. Thus,
our loss function adapts to the varying length of documents in the collection. Without
the weights, our objective is similar to the sum of squared errors of the Nonnegative
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Matrix Factorization(NMF). Ding et al. (2006) studied the relation between the likelihood
function of interest and NMF, but with a different objective of the NMF problem and without
geometric considerations. Once B̂ is solved, θ̂ can be obtained as the barycentric coordinates
of the projection of w̄m onto B̂ for each document m = 1, . . . ,M (cf. Eq (2.3)). We note
that if K ≤ V , then B is a simplex and β1, . . . , βk in general positions are the extreme
points of B, and the barycentric coordinates are unique. (If K > V , the uniqueness no
longer holds).

Finally, p̂m = θ̂Tmβ̂ gives the Cartesian coordinates of a point in B that minimizes
Euclidean distance to the maximum likelihood estimate: p̂m = argmin

x∈B
‖x − w̄m‖2. This

projection is not available in the closed form, but a fast algorithm is available (Golubitsky
et al., 2012), which can easily be extended to find the corresponding distance and to evaluate
our geometric objective.

2.3.2 Geometric Dirichlet Means algorithm

We proceed to devise a procedure for approximately solving the topic polytope B via
Eq. (2.4): first, obtain an estimate of the underlying subspace based on weighted k-means
clustering and then, estimate the vertices of the polytope that lie on the subspace just obtained
via a geometric correction technique. Please refer to the Supplement for a clarification of
the concrete connection between our geometric loss function and other objectives which
arise in subspace learning and weighted k-means clustering literature, the connection that
motivates the first step of our algorithm.

Geometric Dirichlet Means (GDM) algorithm estimates a topic polytope B based on
the training documents (see Algorithm 2.1).

The algorithm is conceptually simple, and consists of two main steps: First, we perform
a (weighted) k-means clustering on the M points w̄1, . . . , w̄M to obtain the K centroids
µ1, . . . , µK , and second, construct a ray emanating from a (weighted) center of the polytope
and extending through each of the centroids µk until it intersects with a sphere of radius
Rk or with the simplex ∆V−1 (whichever comes first). The intersection point will be our
estimate for vertices βk, k = 1, . . . , K of the polytope B. The center C of the sphere is
given in step 1 of the algorithm, while Rk = max

1≤m≤M
‖C − w̄m‖2, where the maximum is

taken over those documents m that are clustered with label k.
To see the intuition behind the algorithm, let us consider a simple simulation experiment.

We use the LDA data generative model with α = 0.1, η = 0.1, V = 5, K = 4, M = 5000,
Nm = 100.
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Algorithm 2.1 Geometric Dirichlet Means (GDM)
Input: documents w1, . . . , wM , K,

extension scalar parameters m1, . . . ,mK

Output: topics β1, . . . , βK
1: C = 1

M

∑
m w̄m {find center of the data}

2: µ1, . . . , µK = weighted k-means(w̄1, . . . , w̄M , K) {find centers of K clusters}.
3: for all k = 1, . . . , K do
4: βk = C +mk (µk − C).
5: if any βki < 0 then {threshold topic if it is outside vocabulary simplex ∆V−1}
6: for all i = 1, . . . , V do
7: βki =

βik1βki>0∑
i βki1βki>0

.
8: end for
9: end if

10: end for
11: β1, . . . , βK .

Multidimensional scaling is used for visualization (Fig. 2.1). We observe that the k-
means centroids (pink) do not represent the topics very well, but our geometric modification
finds extreme points of the tetrahedron: red and yellow spheres overlap, meaning we found
the true topics. In this example, we have used a very small vocabulary size, but in practice
V is much higher and the cluster centroids are often on the boundary of the vocabulary
simplex, therefore we have to threshold the betas at 0. Extending length until Rk is our
default choice for the extension parameters:

mk =
Rk

‖C − µk‖2

for k = 1, . . . , K, (2.5)

but we will see in our experiments that a careful tuning of the extension parameters based
on optimizing the geometric objective (2.4) over a small range of mk helps to improve the
performance considerably. We call this tGDM algorithm (tuning details are presented in
the Supplement). The connection between extension parameters and the thresholding is the
following: if the cluster centroid assigns probability to a word smaller than the whole data
does on average, this word will be excluded from topic k with large enough mk. Therefore,
the extension parameters can as well be used to control for the sparsity of the inferred topics.

2.3.3 Consistency of Geometric Dirichlet Means

We shall present a theorem which provides a theoretical justification for the Geometric
Dirichlet Means algorithm. In particular, we will show that the algorithm can achieve
consistent estimates of the topic polytope, under conditions on the parameters of the Dirichlet
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Figure 2.1: Visualization of GDM: Black, green, red and blue are cluster assignments;
purple is the center, pink are cluster centroids, dark red are estimated topics and yellow are
the true topics.

distribution of the topic proportion vector θm, along with conditions on the geometry of
the convex polytope B. The problem of estimating vertices of a convex polytope given
data drawn from the interior of the polytope has long been a subject of convex geometry
— the usual setting in this literature is to assume the uniform distribution for the data
sample. Our setting is somewhat more general — the distribution of the points inside the
polytope will be driven by a symmetric Dirichlet distribution setting, i.e., θm

iid∼ DirK(α).
(If α = 1 this results in the uniform distribution on B.) Let n = K − 1. Assume that the
document multinomial parameters p1, . . . , pM (given in Eq. (2.2)) are the actual data. Now
we formulate a geometric problem linking the population version of k-means and polytope
estimation:

Problem 2.1. Given a convex polytope A ∈ Rn, a continuous probability density function

f(x) supported by A, find a K-partition A =
K⊔
k=1

Ak that minimizes:

K∑
k

∫
Ak

‖µk − x‖2
2f(x) dx,
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where µk is the center of mass of Ak: µk := 1∫
Ak

f(x) dx

∫
Ak
xf(x) dx.

This problem is closely related to the Centroidal Voronoi Tessellations (Du et al., 1999).
This connection can be exploited to show that

Lemma 2.1. Problem 2.1 has a unique global minimizer.

In the following lemma, a median of a simplex is a line segment joining a vertex of a
simplex with the centroid of the opposite face.

Lemma 2.2. If A ∈ Rn is an equilateral simplex with symmetric Dirichlet density f param-
eterized by α, then the optimal centers of mass of the Problem 2.1 lie on the corresponding
medians of A.

Based upon these two lemmas, consistency is established under two distinct asymptotic
regimes.

Theorem 2.1. Let B = Conv(β1, . . . , βK) be the true convex polytope from which the
M -sample p1, . . . , pM ∈ ∆V−1 are drawn via Eq. (2.2), where θm

iid∼ DirK(α) for m =

1, . . . ,M .

(a) If B is also an equilateral simplex, then topic estimates obtained by the GDM algo-
rithm using the extension parameters given in Eq. (2.5) converge to the vertices of B
in probability, as α is fixed and M →∞.

(b) If M is fixed, while α → 0 then the topic estimates obtained by the GDM also
converge to the vertices of B in probability.

2.3.4 nGDM: nonparametric geometric inference of topics

In practice, the number of topics K may be unknown, necessitating a nonparametric proba-
bilistic approach such as the well-known Hierarchical Dirichlet Process (HDP) (Teh et al.,
2006). Our geometric approach can be easily extended to this situation. The objective (2.4)
is now given by

min
B
G(B) = min

B

M∑
m=1

Nm min
x∈B
‖x− w̄m‖2

2 + λ|B|, (2.6)

where |B| denotes the number of extreme points of convex polytopeB = Conv(β1, . . . , βK).
Accordingly, our nGDM algorithm now consists of two steps: (i) solve a penalized and
weighted k-means clustering to obtain the cluster centroids (e.g. using DP-means (Kulis
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& Jordan, 2012)); (ii) apply geometric correction for recovering the extreme points, which
proceeds as before.

Our theoretical analysis can be also extended to this nonparametric framework. We
note that the penalty term is reminiscent of the DP-means algorithm of Kulis & Jordan
(2012), which was derived under a small-variance asymptotics regime. For the HDP this
corresponds to α → 0 — the regime in part (b) of Theorem 2.1. This is an unrealistic
assumption in practice. Our geometric correction arguably enables the accounting of the
non-vanishing variance in data. We perform a simulation experiment for varying values of α
and show that nGDM outperforms the KL version of DP-means (Jiang et al., 2012) in terms
of perplexity. This result is reported in the Supplement.

2.4 Performance evaluation

Simulation experiments We use the LDA model to simulate data and focus our attention
on the perplexity of held-out data and minimum-matching Euclidean distance between the
true and estimated topics (Tang et al., 2014). We explore settings with varying document
lengths (Nm increasing from 10 to 1400 - Fig. 2.2(a) and Fig. 2.3(a)), different number
of documents (M increasing from 100 to 7000 - Fig. 2.2(b) and Fig. 2.3(b)) and when
lengths of documents are small, while number of documents is large (Nm = 50, M ranging
from 1000 to 15000 - Fig. 2.2(c) and Fig. 2.3(c)). This last setting is of particular interest,
since it is the most challenging for our algorithm, which in theory works well given long
documents, but this is not always the case in practice. We compare two versions of the
Geometric Dirichlet Means algorithm: with tuned extension parameters (tGDM) and the
default one (GDM) (cf. Eq. (2.5)) against the variational EM (VEM) algorithm (Blei et al.,
2003) (with tuned hyperparameters), collapsed Gibbs sampling (Griffiths & Steyvers,
2004) (with true data generating hyperparameters), and RecoverKL (Arora et al., 2013) and
verify the theoretical upper bounds for topic polytope estimation (i.e. either (logM/M)0.5

or (logNm/Nm)0.5) - cf. Tang et al. (2014) and Nguyen (2015). We are also interested
in estimating each document’s topic proportion via the projection technique. RecoverKL
produced only a topic matrix, which is combined with our projection based estimates to
compute the perplexity (Fig. 2.3). Unless otherwise specified, we set η = 0.1, α = 0.1,
V = 1200, M = 1000, K = 5; Nm = 1000 for each m; the number of held-out documents
is 100; results are averaged over 5 repetitions. Since finding exact solution to the k-means
objective is NP hard, we use the algorithm of Hartigan & Wong (1979) with 10 restarts and
the k-means++ initialization.

Our results show that (i) Gibbs sampling and tGDM have the best and almost identical
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performance in terms of statistical estimation; (ii) RecoverKL and GDM are the fastest
while sharing comparable statistical accuracy; (iii) VEM is the worst in most scenarios due
to its instability (i.e. often producing poor topic estimates); (iv) short document lengths
(Fig. 2.2(c) and Fig. 2.3(c)) do not degrade performance of GDM, (this appears to be an
effect of the law of large numbers, as the algorithm relies on the cluster means, which are
obtained by averaging over a large number of documents); (v) our procedure for estimating
document topic proportions results in a good quality perplexity of the RecoverKL algorithm
in all scenarios (Fig. 2.3) and could be potentially utilized by other algorithms. Additional
simulation experiments are presented in the Supplement, which considers settings with
varying Nm, α and the nonparametric extension.
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Figure 2.2: Minimum-matching Euclidean distance: increasing Nm, M = 1000 (a); increas-
ing M , Nm = 1000 (b); increasing M , Nm = 50 (c); increasing η, Nm = 50, M = 5000
(d).
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Figure 2.3: Perplexity of the held-out data: increasing Nm, M = 1000 (a); increasing M ,
Nm = 1000 (b); increasing M , Nm = 50 (c); increasing η, Nm = 50, M = 5000 (d).

Comparison to RecoverKL Both tGDM and RecoverKL exploit the geometry of the
model, but they rely on very different assumptions: RecoverKL requires the presence of
anchor words in the topics and exploits this in a crucial way (Arora et al., 2013); our
method relies on long documents in theory, even though the violation of this does not
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appear to degrade its performance in practice, as we have shown earlier. The comparisons
are performed by varying the document length Nm, and varying the Dirichlet parameter η
(recall that βk|η ∼ DirV (η)). In terms of perplexity, RecoverKL, GDM and tGDM perform
similarly (see Fig.2.4(c,d)), with a slight edge to tGDM. Pronounced differences come
in the quality of topic’s word distribution estimates. To give RecoverKL the advantage,
we considered manually inserting anchor words for each topic generated, while keeping
the document length short, Nm = 50 (Fig. 2.4(a,c)). We found that tGDM outperforms
RecoverKL when η ≤ 0.3, an arguably more common setting, while RecoverKL is more
accurate when η ≥ 0.5. However, if the presence of anchor words is not explicitly enforced,
tGDM always outperforms RecoverKL in terms of topic distribution estimation accuracy for
all η (Fig. 2.2(d)). The superiority of tGDM persists even as Nm varies from 50 to 10000
(Fig. 2.4(b)), while GDM is comparable to RecoverKL in this setting.
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Figure 2.4: MM distance and Perplexity for varying η, Nm = 50 with anchors (a,c); varying
Nm (b,d).

NIPS corpora analysis We proceed with the analysis of the NIPS corpus.3 After prepro-
cessing, there are 1738 documents and 4188 unique words. Length of documents ranges
from 39 to 1403 with mean of 272. We consider K = 5, 10, 15, 20, α = 5

K
, η = 0.1. For

each value of K we set aside 300 documents chosen at random to compute the perplexity
and average results over 3 repetitions. Our results are compared against Gibbs sampling,
Variational EM and RecoverKL (Table 2.1). For K = 10, GDM with 1500 k-means iter-
ations and 5 restarts in R took 50sec; Gibbs sampling with 5000 iterations took 10.5min;
VEM with 750 variational, 1500 EM iterations and 3 restarts took 25.2min; RecoverKL
coded in Python took 1.1min. We note that with recent developments (e.g., see Hoffman
et al. (2013)) VEM could be made faster, but its statistical accuracy remains poor. Although
RecoverKL is as fast as GDM, its perplexity performance is poor and is getting worse with
more topics, which we believe could be due to lack of anchor words in the data. We present

3https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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topics found by Gibbs sampling, GDM and RecoverKL for K = 10 in the Supplement.

Table 2.1: Perplexities of the 4 topic modeling algorithms trained on the NIPS dataset.

GDM RecoverKL VEM Gibbs sampling

K = 5 1269 1378 1980 1168
K = 10 1061 1235 1953 924
K = 15 957 1409 1545 802
K = 20 763 1586 1352 704

2.5 Discussion

We wish to highlight a conceptual aspect of GDM distinguishing it from moment-based meth-
ods such as RecoverKL. GDM operates on the document-to-document distance/similarity
matrix, as opposed to the second-order word-to-word matrix. So, from an optimization
viewpoint, our method can be viewed as the dual to RecoverKL method, which must require
anchor-word assumption to be computationally feasible and theoretically justifiable. While
the computational complexity of RecoverKL grows with the vocabulary size and not the
corpora size, our convex geometric approach continues to be computationally feasible when
number of documents is large: since only documents near the polytope boundary are relevant
in the inference of the extreme points, we can discard most documents residing near the
polytope’s center.

We discuss some potential improvements and extensions next. The tGDM algorithm
showed a superior performance when the extension parameters are optimized. This proce-
dure, while computationally effective relative to methods such as Gibbs sampler, may still
be not scalable to massive datasets. It seems possible to reformulate the geometric objective
as a function of extension parameters, whose optimization can be performed more efficiently.
In terms of theory, we would like to establish the error bounds by exploiting the connection
of topic inference to the geometric problem of Centroidal Voronoi Tessellation of a convex
polytope.

The geometric approach to topic modeling and inference may lend itself naturally to
other LDA extensions, as we have demonstrated with nGDM algorithm for the HDP (Teh
et al., 2006). Correlated topic models of Blei & Lafferty (2006a) also fit naturally into the
geometric framework — we would need to adjust geometric modification to capture logistic
normal distribution of topic proportions inside the topic polytope. Another interesting
direction is to consider dynamic (Blei & Lafferty, 2006b) (extreme points of topic polytope
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evolving over time) and supervised (Mcauliffe & Blei, 2008) settings. Such settings appear
relatively more challenging, but they are worth pursuing further.
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Appendix

2.A Proof of Proposition 2.1

Proof. Consider the KL divergence between two distributions parameterized by w̄m and pm,
respectively:

D(Pw̄m‖Ppm) =
∑
i∈Um

w̄mi log
w̄mi
pmi

=
1

Nm

(∑
i∈Um

wmi log w̄mi −
∑
i∈Um

wmi log pmi

)
.

Then L(W ) − L(θ,β) =
∑

mNmD(Pw̄m‖Ppm) ≥ 0, due to the non-negativity of KL
divergence. Now we shall appeal to a standard lower bound for the KL divergence (Cover &
Thomas, 2006):

D(Pw̄m‖Ppm) ≥ 1

2

∑
i∈Um

(w̄mi − pmi)2,

and an upper bound via χ2-distance (e.g. see Sayyareh (2011)):

D(Pw̄m‖Ppm) ≤
∑
i∈Um

1

pmi
(w̄mi − pmi)2.

Taking summation of both bounds over m = 1, . . . ,M concludes the proof.

2.B Connection between our geometric loss function and
other objectives which arise in subspace learning and
k-means clustering problems.

Recall that our geometric objective (Eq. (2.4)) is:

min
B
G(B) = min

B

M∑
m=1

Nm min
x:x∈B

‖x− w̄m‖2
2.

We note that this optimization problem can be reduced to two other well-known problems
when the objective function and constraints are suitably relaxed/modified:
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• A version of weighted low-rank matrix approximation is min
rank(D̂)≤r

tr((D̂−D)TQ(D̂−

D)). If Q = diag(N1, . . . , NM), D = W , r = K and D̂ = θβ, the problem looks
similar to the geometric objective without constraints and has a closed form solution
(Manton et al., 2003): D̂ = Q−1/2UΣKV

T , where

Q1/2D = UΣKV
T (2.7)

is the singular value decomposition and ΣK is the truncation to K biggest singular
values. Also note that here and further without loss of generality we assume M ≥ V ,
if M < V for the proofs to hold we replace Q1/2D with (Q1/2D)T .

• The k-means algorithm involves optimizing the objective (Hartigan & Wong, 1979;
Lloyd, 1982; MacQueen, 1967): min

x1,...,xK

∑
m min
i∈{1,...,K}

‖w̄m − xi‖2
2. Our geometric

objective (2.4) is quite similar — it replaces the second minimization with minimizing
over the convex hull of {x1, . . . , xK} and includes weight Nms.

• The two problems described above are connected in the following way (Xu et al.,
2003). Define the weighted k-means objective with respect to cluster assignments:∑

k

∑
m∈Ck Nm‖w̄m − µk‖2, where µk is the centroid of the k-th cluster:

µk =

∑
m∈Ck Nmw̄m∑
m∈Ck Nm

. (2.8)

Let Sk be the optimal indicator vector of cluster k, i.e., m-th element is 1 if m ∈ Ck
and 0 otherwise. Define

Yk =
Q1/2Sk
‖Q1/2Sk‖2

F

. (2.9)

If we relax the constraint on Sk to allow any real values instead of only binary values,
then Y can be solved via the following eigenproblem: Q1/2WW TQ1/2Y = λY .

Let us summarize the above observations by the following:

Proposition 2.2. Given the M × V normalized word counts matrix W . Let µ1, . . . , µK be
the optimal cluster centroids of the weighted k-means problem given by Eq. (2.8), and let
vks be the columns of V in the SVD of Eq. (2.7). Then,

span(µ1, . . . , µK) = span(v1, . . . , vK).
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Proof. Following Ding & He (2004), let Pc be an operator projecting any vector onto
span(µ1, . . . , µK): Pc =

∑
k µkµ

T
k . Recall that Sk is the indicator vector of cluster k and

Yk defined in Eq. (2.9). Then

µk =
W TQSk
‖Q1/2Sk‖2

F

= W TQ1/2Yk, and

Pc =
∑
k

W TQ1/2Yk(W
TQ1/2Yk)

T .

Now, note that Yk’s are the eigenvectors of Q1/2WW TQ1/2, which are also left-singular
vectors of Q1/2W = UΣV T , so

Pc = (Q1/2W )TYk((Q
1/2W )TYk)

T =
∑
k

λ2
kvkv

T
k ,

which is the projection operator for span(v1, . . . , vK). Hence, the two subspaces are equal.

Prop. 2.2 and the preceding discussions motivate the GDM algorithm for estimating
the topic polytope: first, obtain an estimate of the underlying subspace based on k-means
clustering and then, estimate the vertices of the polytope that lie on the subspace just
obtained.

2.C Proofs of technical lemmas

Recall Problem 2.1 from the main part:

Problem 2.1. Given a convex polytope A ∈ Rn, a continuous probability density function

f(x) supported by A, find a K-partition A =
K⊔
k=1

Ak that minimizes:

K∑
k

∫
Ak

‖µk − x‖2
2f(x) dx,

where µk is the center of mass of Ak: µk := 1∫
Ak

f(x) dx

∫
Ak
xf(x) dx.

Proof of Lemma 2.1

Proof. The proof follows from a sequence of results of Du et al. (1999), which we now
summarize. First, if the K-partition (A1, . . . , AK) is a minimizer of Problem 2.1, then Aks
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are the Voronoi regions corresponding to the µks. Second, Problem 2.1 can be restated in
terms of the µks to minimize K(µ1, . . . , µK) =

∑
k

∫
Âk
‖µk − x‖2

2f(x) dx, where Âks are

the Voronoi regions corresponding to their centers of mass µks. Third, K(µ1, . . . , µK) is a
continuous function and admits a global minimum. Fourth, the global minimum is unique if
the distance function in K is strictly convex and the Voronoi regions are convex. Now, it can
be verified that the squared Euclidean distance is strictly convex. Moreover, Voronoi regions
are intersections of half-spaces with the convex polytope A, which can also be represented
as an intersection of half-spaces. Therefore, the Voronoi regions of Problem 2.1 are convex
polytopes, and it follows that the global minimizer is unique.

Proof of Lemma 2.2

Proof. Since f is a symmetric Dirichlet density, the center of mass of A coincides with
its centroid. Let n = 3. In an equilateral triangle, the centers of mass µ1, µ2, µ3 form
an equilateral triangle C. An intersection point of the Voronoi regions A1, A2, A3 is the
circumcenter and the centroid of C, which is also a circumcenter and centroid of A. There-
fore, µ1, µ2, µ3 are located on the medians of A with exact positions depending on the α.
The symmetry and the property of circumcenter coinciding with centroid carry over to the
general n-dimensional equilateral simplex (Westendorp, 2013).

2.D Proof of Theorem 2.1

Proof. For part (a), let (µ̂1, . . . , µ̂K) be the minimizer of the k-means problem

min
µ1,...,µK

∑
m

min
i∈{1,...,K}

‖pm − µi‖2
2.

Let µ̃1, . . . , µ̃K be the centers of mass of the solution of Problem 2.1 applied to B and the
Dirichlet density. By Lemma 1, these centers of mass are unique, as they correspond to the
unique optimal K-partition. Accordingly, by the strong consistency of k-means clustering
under the uniqueness condition (Pollard, 1981), as M →∞,

Conv(µ̂1, . . . , µ̂K)→ Conv(µ̃1, . . . , µ̃K) a.s.,

where the convergence is assessed in either Hausdorff or the minimum matching distance for
convex sets (Nguyen, 2015). Note that C = 1

M

∑
m pm is a strongly consistent estimate of

the centroid C0 of B, by the strong law of large numbers. Lemma 2 shows that µ̃1, . . . , µ̃K
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are located on the corresponding medians. To complete the proof, it remains to show that
R̂ := max

1≤m≤M
‖C − pm‖2 is a weakly consistent estimate of the circumradius R0 of B.

Indeed, for a small ε > 0 define the event Ek
m = {pm ∈ Bε(βk) ∩ B}, where Bε(βk) is an

ε-ball centering at vertex βk. Since B is equilateral and the density over it is symmetric and
positive everywhere in the domain, P(E1

m) = . . . = P(EK
m ) =: bε > 0. Let Em =

⋃
k

Ek
m,

then P(Em) = bεK. We have

lim sup
M→∞

P(|R̂−R0| > 2ε) = lim sup
M→∞

P( max
1≤m≤M

‖C0 − pm‖2 < R0 − ε) <

< lim sup
M→∞

P(
M⋂
m=1

E{
m) = lim sup

M→∞
(1− bεK)M = 0.

A similar argument allows us to establish that each Rk is also a weakly consistent estimate
of R0. This completes the proof of part (a). For a proof sketch of part (b), for each α > 0,
let (µα1 , . . . , µ

α
K) denote the K means obtained by the k-means clustering algorithm. It

suffices to show that these estimates converge to the vertices of B. Suppose this is not
the case, due to the compactness of B, there is a subsequence of the K means, as α→ 0,
that tends to K limit points, some of which are not the vertices of B. It is a standard
fact of Dirichlet distributions that as α → 0, the distribution of the pm converges weakly
to the discrete probability measure

∑K
k=1

1
K
δβk . So the k-means objective function tends

to M
K

∑
k mini∈{1,...,K} ‖βk − µαi ‖2

2, which is strictly bounded away from 0, leading to a
contradiction. This concludes the proof.

2.E Tuned GDM

In this section we discuss details of the extension parameters tuning. Recall that GDM
requires extension scalar parameters m1, . . . ,mK as part of its input. Our default choice
(Eq. (2.5)) is

mk =
Rk

‖C − µk‖2

for k = 1, . . . , K,

where Rk = max
m∈Ck

‖C − w̄m‖2 and Ck is the set of indices of documents belonging to

cluster k. In some situations (e.g. outliers making extension parameters too big) tuning
of the extension parameters can help to improve the performance, which we called tGDM
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algorithm. Recall the geometric objective (2.4) and let

Gk(B) :=
∑
m∈Ck

Nm min
x:x∈B

‖x− w̄m‖2
2, (2.10)

which is simply the geometric objective evaluated at the documents of cluster k. For
each k = 1, . . . , K we used line search procedure (Brent, 2013) optimization of Gk(B)

in an interval from 1 up to default mk as in (2.5). Independent tuning for each k gives an
approximate solution, but helps to reduce the running time.

2.F Additional experiments

Here we present some additional simulation results and NIPS topics.

2.F.1 Nonparametric analysis with nGDM

Based on simulations we show how nGDM can be used when number of topics is unknown
and compare it against DP-means utilizing KL divergence (KL DP-means) by Jiang et al.
(2012). We analyze settings with α ranging from 0.01 to 2. Recall that KL DP-means
assumes α → 0. V = 1200, M = 2000, Nm = 3000, η = 0.1, true K = 15. For each
value of α average over 5 repetitions is recorded and we plot the perplexity of 100 held-out
documents. Fig. 2.F.1 supports our argument - for small values of α both methods perform
equivalently well (KL DP-means due to variance assumption being satisfied and nGDM due
to part (b) of Theorem 1), but as α gets bigger, we see how our geometric correction leads
to improved performance.
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Figure 2.F.1: Perplexity for varying α
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2.F.2 Documents of varying size

Until this point all documents are of the same length. Next, we evaluate the improvement of
our method when document length varies. The lengths are randomly sampled from 50 to
1500 and the experiment is repeated 20 times. The weighted GDM uses document lengths as
weights for computing the data center and training k-means. In both performance measures
(Fig. 2.F.2 left and center) the weighted version consistently outperforms the unweighted
one, while the tuned weighted version stays very close to Gibbs sampling results.

2.F.3 Effect of the document topic proportions prior

Recall that topic proportions are sampled from the Dirichlet distribution θm|α ∼ DirK(α).
We let α increase from 0.01 to 2. Smaller α implies that samples are close to the extreme
points, and hence GDM estimates topics better. This also follows from Theorem 1(b) of the
chapter. We see (Fig. 2.F.2 right) that our solution and Gibbs sampling are almost identical
for small α, while VEM is unstable. With increased α Gibbs sampling remains the best,
while our algorithm remains better than VEM. We also note that increasing α causes error
of all methods to increase.
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Figure 2.F.2: Minimum-matching Euclidean distance: varying Nm (left); increasing α
(right). Perplexity for varying Nm (center).

2.F.4 Projection estimate analysis

Our objective function (2.4) motivates the estimation of document topic proportions by
taking the barycentric coordinates of the projection of the normalized word counts of a
document onto the topic polytope. To do this we utilized the projection algorithm of
Golubitsky et al. (2012). Note that some algorithms (RecoverKL in particular) do not have a
built in method for finding topic proportions of the unseen documents. Our projection based
estimate can solve this issue, as it can find topic proportions of a document only based on

38



the topic polytope. Fig. 2.F.3 shows that perplexity with projection estimates closely follows
corresponding results and outperforms VEM on the short documents (Fig. 2.F.3 (right)).
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Table 2.F.1: Top 10 words (columns) of each of the 10 learned topics of NIPS dataset

GDM topics

analog regress. reinforc. nodes speech image mixture neurons energy rules
circuit kernel policy node word images experts neuron characters teacher
memory bayesian action classifier hmm object missing cells boltzmann student
chip loss controller classifiers markov visual mixtures cell character fuzzy
theorem posterior actions tree phonetic objects expert synaptic hopfield symbolic
sources theorem qlearning trees speaker face gating spike temperature saad
polynom. hyperp. reward bayes acoustic pixel posterior activity annealing membership
separation bounds sutton rbf phoneme pixels tresp firing kanji rulebased
recurrent monte robot theorem hmms texture loglikel. visual adjoint overlaps
circuits carlo barto boolean hybrid motion ahmad cortex window children

Gibbs sampler topics

neurons rules mixture reinforc. memory speech image analog theorem classifier
cells language bayesian policy energy word images circuit regress. nodes
cell recurrent posterior action neurons hmm visual chip kernel node
neuron node experts robot neuron auditory object voltage loss classifiers
activity tree entropy motor capacity sound motion neuron bounds tree
synaptic memory mixtures actions hopfield phoneme objects vlsi proof clustering
firing nodes markov controller associative acoustic spatial circuits polynom. character
spike symbol separation trajectory recurrent hmms face digital lemma rbf
stimulus symbols sources arm attractor mlp pixel synapse teacher cluster
cortex grammar principal reward boltzmann segment. pixels gate risk characters

RecoverKL topics

entropy reinforc. classifier loss ensemble neurons penalty mixture validation image
image controller classifiers theorem energy neuron rules missing regress. visual
kernel policy speech bounds posterior spike regress. recurrent bayesian motion
energy action nodes proof bayesian synaptic bayesian bayesian crossvalid. cells
ica actions word lemma speech cells energy posterior risk neurons
images memory node polynom. boltzmann firing theorem image stopping images
separation robot image neurons student cell analog markov tangent receptive
clustering trajectory tree regress. face activity regulariz. speech image circuit
sources sutton character nodes committee synapses recurrent images kernel spatial
mixture feedback memory neuron momentum stimulus perturb. object regulariz. object
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CHAPTER 3

Conic Scan-and-Cover algorithms for
nonparametric topic modeling

We propose new algorithms for topic modeling when the number of topics is unknown. Our
approach relies on an analysis of the concentration of mass and angular geometry of the topic
simplex, a convex polytope constructed by taking the convex hull of vertices representing
the latent topics. Our algorithms are shown in practice to have accuracy comparable to a
Gibbs sampler in terms of topic estimation, which requires the number of topics be given.
Moreover, they are one of the fastest among several state of the art parametric techniques.1

Statistical consistency of our estimator is established under some conditions.2

3.1 Introduction

A well-known challenge associated with topic modeling inference can be succinctly summed
up by the statement that sampling based approaches may be accurate but computationally
very slow, e.g., Pritchard et al. (2000); Griffiths & Steyvers (2004), while the variational
inference approaches are faster but their estimates may be inaccurate, e.g., Blei et al. (2003);
Hoffman et al. (2013). For nonparametric topic inference, i.e., when the number of topics
is a priori unknown, the problem becomes more acute. The Hierarchical Dirichlet Process
model (Teh et al., 2006) is an elegant Bayesian nonparametric approach which allows for
the number of topics to grow with data size, but its sampling based inference is much more
inefficient compared to the parametric counterpart. As pointed out in Chapter 2, the root of
the inefficiency can be traced to the need for approximating the posterior distributions of the
latent variables representing the topic labels — these are not geometrically intrinsic as any
permutation of the labels yields the same likelihood.

1Code is available at https://github.com/moonfolk/Geometric-Topic-Modeling.
2This chapter has been published in Yurochkin et al. (2017a).
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A promising approach in addressing the aforementioned challenges is to take a convex

geometric perspective, where topic learning and inference may be formulated as a convex
geometric problem: the observed documents correspond to points randomly drawn from
a topic polytope, a convex set whose vertices represent the topics to be inferred. This
perspective has been adopted to establish posterior contraction behavior of the topic polytope
in both theory and practice (Nguyen, 2015; Tang et al., 2014). In Chapter 2 we extended this
perspective and exploited the convex geometry to propose the Geometric Dirichlet Means
(GDM) algorithm, which demonstrated attractive behaviors both in terms of running time
and estimation accuracy. In this chapter we shall continue to amplify this viewpoint to
address nonparametric topic modeling, a setting in which the number of topics is unknown,
as is the distribution inside the topic polytope (in some situations).

We will propose algorithms for topic estimation by explicitly accounting for the con-
centration of mass and angular geometry of the topic polytope, typically a simplex in topic
modeling applications. The geometric intuition is fairly clear: each vertex of the topic
simplex can be identified by a ray emanating from its center (to be defined formally), while
the concentration of mass can be quantified for the cones hinging on the apex positioned
at the center. Such cones can be rotated around the center to scan for high density regions
inside the topic simplex — under mild conditions such cones can be constructed efficiently
to recover both the number of vertices and their estimates.

We also mention another fruitful approach, which casts topic estimation as a matrix fac-
torization problem (Deerwester et al., 1990; Xu et al., 2003; Anandkumar et al., 2012; Arora
et al., 2013). A notable recent algorithm coming from the matrix factorization perspective is
RecoverKL (Arora et al., 2013), which solves non-negative matrix factorization (NMF) effi-
ciently under assumptions on the existence of so-called anchor words. RecoverKL remains
to be a parametric technique — we will extend it to a nonparametric setting and show that
the anchor word assumption appears to limit the number of topics one can efficiently learn.

This chapter is organized as follows. In Section 3.2 we discuss recent developments
in geometric topic modeling and introduce our approach; Sections 3.3 and 3.4 deliver
the contributions outlined above; Section 3.5 demonstrates experimental performance; we
conclude with a discussion in Section 3.6.

3.2 Geometric topic modeling

Background and related work In this section we present the convex geometry of the
Latent Dirichlet Allocation (LDA) model of Blei et al. (2003), along with related theoretical
and algorithmic results that motivate our work. Let V be vocabulary size and ∆V−1 be
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the corresponding vocabulary probability simplex. Sample K topics (i.e., distributions on
words) βk ∼ DirV (η), k = 1, . . . , K, where η ∈ RV

+. Next, sample M document-word
probabilities pm residing in the topic simplex B := Conv(β1, . . . , βK) (cf. Nguyen (2015)),
by first generating their barycentric coordinates (i.e., topic proportions) θm ∼ DirK(α) and
then setting pm :=

∑
k βkθmk for m = 1, . . . ,M and α ∈ RK

+ . Finally, word counts of the
m-th document can be sampled wm ∼ Mult(pm, Nm), where Nm ∈ N is the number of
words in document m. The above model is equivalent to the LDA when individual words to
topic label assignments are marginalized out.

Nguyen (2015) established posterior contraction rates of the topic simplex, provided
that αk ≤ 1∀k and either number of topics K is known or topics are sufficiently separated
in terms of the Euclidean distance. In Chapter 2 we devised an estimate for B, taken
to be a fixed unknown quantity, by formulating a geometric objective function, which is
minimized when topic simplex B is close to the normalized documents w̄m := wm/Nm.
We showed that the estimation of topic proportions θm given B simply reduces to taking
barycentric coordinates of the projection of w̄m ontoB. To estimateB givenK, we proposed
a Geometric Dirichlet Means (GDM) algorithm, which operated by performing a k-means
clustering on the normalized documents, followed by a geometric correction for the cluster
centroids. The resulting algorithm is remarkably fast and accurate, supporting the potential
of the geometric approach. The GDM is not applicable when K is unknown, but it provides
a motivation which our approach in this chapter is built on.

The Conic Scan-and-Cover approach To enable the inference of B when K is not
known, we need to investigate the concentration of mass inside the topic simplex. It suffices
to focus on two types of geometric objects: cones and spheres, which provide the basis
for a complete coverage of the simplex. To gain intuition of our procedure, which we call
Conic Scan-and-Cover (CoSAC) approach, imagine someone standing at a center point of a
triangular dark room trying to figure out all corners with a portable flashlight, which can
produce a cone of light. A room corner can be identified with the direction of the farthest
visible data objects. Once a corner is found, one can turn the flashlight to another direction
to scan for the next ones. See Fig. 3.1a, where red denotes the scanned area. To make sure
that all corners are detected, the cones of light have to be open to an appropriate range of
angles so that enough data objects can be captured and removed from the room. To make
sure no false corners are declared, we also need a suitable stopping criterion, by relying only
on data points that lie beyond a certain spherical radius, see Fig. 3.1b. Hence, we need to be
able to gauge the concentration of mass for suitable cones and spherical balls in ∆V−1. This
is the subject of the next section.
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Figure 3.1: Complete coverage of topic simplex by cones and a spherical ball for K = 3,
V = 3.

3.3 Geometric estimation of the topic simplex

We start by representing B in terms of its convex and angular geometry. First, B is
centered at a point denoted by Cp. The centered probability simplex is denoted by ∆V−1

0 :=

{x ∈ RV |x + Cp ∈ ∆V−1}. Then, write bk := βk − Cp ∈ ∆V−1
0 for k = 1, . . . , K and

p̃m := pm − Cp ∈ ∆V−1
0 for m = 1, . . . ,M . Note that re-centering leaves corresponding

barycentric coordinates θm ∈ ∆K−1 unchanged. Moreover, the extreme points of centered
topic simplex B̃ := Conv{b1, . . . , bK} can now be represented by their directions vk ∈ RV

and corresponding radii Rk ∈ R+ such that bk = Rkvk for any k = 1, . . . , K.

3.3.1 Coverage of the topic simplex

The first step toward formulating a CoSAC approach is to show how B̃ can be covered

with exactly K cones and one spherical ball positioned at Cp. A cone is defined as set
Sω(v) := {p ∈ ∆V−1

0 |dcos(v, p) < ω}, where we employ the angular distance (a.k.a. cosine
distance) dcos(v, p) := 1− cos(v, p) and cos(v, p) is the cosine of angle ∠(v, p) formed by
vectors v and p.

The Conical coverage It is possible to choose ω so that the topic simplex can be covered

with exactly K cones, that is,
K⋃
k=1

Sω(vk) ⊇ B̃. Moreover, each cone contains exactly one

vertex. Suppose that Cp is the incenter of the topic simplex B̃, with r being the inradius.
The incenter and inradius correspond to the maximum volume sphere contained in B̃. Let
ai,k denote the distance between the i-th and k-th vertex of B̃, with amin ≤ ai,k ≤ amax for
all i, k, and Rmax, Rmin such that Rmin ≤ Rk := ‖bk‖2 ≤ Rmax ∀ k = 1, . . . , K. Then we
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can establish the following.

Proposition 3.1. For simplex B̃ and ω ∈ (ω1, ω2), where ω1 = 1 − r/Rmax and ω2 =

max{(a2
min)/(2R2

max), max
i,k=1,...,K

(1−cos(bi, bk)}, the cone Sω(v) around any vertex direction

v of B̃ contains exactly one vertex. Moreover, complete coverage holds:
K⋃
k=1

Sω(vk) ⊇ B̃.

We say there is an angular separation if cos(bi, bk) ≤ 0 for any i, k = 1, . . . , K (i.e.,
the angles for all pairs are at least π/2), then ω ∈

(
1− r

Rmax
, 1
)
6= ∅. Thus, under angular

separation, the range ω that allows for full coverage is nonempty independently of K. Our
result is in agreement with that of Nguyen (2015), whose result suggested that topic simplex
B can be consistently estimated without knowing K, provided there is a minimum edge
length amin > 0. The notion of angular separation leads naturally to the Conic Scan-and-
Cover algorithm. Before getting there, we show a series of results allowing us to further
extend the range of admissible ω.

The inclusion of a spherical ball centered at Cp allows us to expand substantially the
range of ω for which conical coverage continues to hold. In particular, we can reduce the
lower bound on ω in Proposition 3.1, since we only need to cover the regions near the
vertices of B̃ with cones using the following proposition. Fig. 3.1b provides an illustration.

Proposition 3.2. Let B(Cp,R) = {p̃ ∈ RV |‖p̃−Cp‖2 ≤ R},R > 0; ω1, ω2 given in Prop.
3.1, and

ω3 := 1−min

{
min
i,k

(
Rk sin2(bi, bk)

R + cos(bi, bk)

√
1− R2

k sin2(bi, bj)

R2

)
, 1

}
, (3.1)

then we have
K⋃
k=1

Sω(vk) ∪B(Cp,R) ⊇ B̃ whenever ω ∈ (min{ω1, ω3}, ω2).

Notice that as R → Rmax , the value of ω3 → 0. Hence if R ≤ Rmin ≈ Rmax, the
admissible range for ω in Prop. 3.2 results in a substantial strengthening from Prop. 3.1. It
is worth noting that the above two geometric propositions do not require any distributional
properties inside the simplex.

Coverage leftovers In practice complete coverage may fail if ω andR are chosen outside
of corresponding ranges suggested by the previous two propositions. In that case, it is useful
to note that leftover regions will have a very low mass. Next we quantify the mass inside a
cone that does contain a vertex, which allows us to reject a cone that has low mass, therefore
not containing a vertex in it.
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Proposition 3.3. The cone Sω(v1) whose axis is a topic direction v1 has mass

P(Sω(v1)) > P(Λc(b1)) =

∫ 1

1−c θ
α1−1
1 (1− θ1)

∑
i 6=1 αi−1dθ1∫ 1

0
θα1−1

1 (1− θ1)
∑
i 6=1 αi−1dθ1

=

c
∑
i 6=1 αi(1− c)α1Γ(

∑K
i=1 αi)

(
∑

i 6=1 αi)Γ(α1)Γ(
∑

i 6=1 αi)

[
1 +

c
∑K

i=1 αi∑
i 6=1 αi + 1

+
c2(
∑K

i=1 αi)(
∑K

i=1 αi + 1)

(
∑

i 6=1 αi + 1)(
∑

i 6=1 αi + 2)
+ · · ·

]
,

(3.2)

where Λc(b1) is the simplicial cap of Sω(v1) which is composed of vertex b1 and a base
parallel to the corresponding base of B̃ and cutting adjacent edges of B̃ in the ratio c : (1−c).

See Fig. 3.1c for an illustration for the simplicial cap described in the proposition. Given
the lower bound for the mass around a cone containing a vertex, we have arrived at the
following guarantee.

Proposition 3.4. For λ ∈ (0, 1), let cλ be such that λ = min
k

P(Λcλ(bk)) and let ωλ be such
that

cλ =

((
2

√
1− r2

R2
max

)
(sin(d) cot(arccos(1− ωλ)) + cos(d))

)−1

, (3.3)

where angle d ≤ min
i,k

∠(bk, bk − bi). Then, as long as

ω ∈
(
ωλ,max

(
a2
min

2R2
max

, max
i,k=1,...,K

(1− cos(bi, bk)

))
, (3.4)

the bound P(Sω(vk)) ≥ λ holds for all k = 1, . . . , K.

3.3.2 CoSAC: Conic Scan-and-Cover algorithm

Having laid out the geometric foundations, we are ready to present the Conic Scan-and-
Cover (CoSAC) algorithm, which is a scanning procedure for detecting the presence of
simplicial vertices based on data drawn randomly from the simplex. The idea is simple:
iteratively pick the farthest point from the center estimate Ĉp := 1

M

∑
m pm, say v, then

construct a cone Sω(v) for some suitably chosen ω, and remove all the data residing in this
cone. Repeat until there is no data point left.

Specifically, let A = {1, . . . ,M} be the index set of the initially unseen data, then set
v := argmax

p̃m:m∈A
‖p̃m‖2 and update A := A \ Sω(v). The parameter ω needs to be sufficiently

large to ensure that the farthest point is a good estimate of a true vertex, and that the scan
will be completed in exactly K iterations; ω needs to be not too large, so that Sω(v) does
not contain more than one vertex. The existence of such ω is guaranteed by Prop. 3.1.
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In particular, for an equilateral B̃, the condition of the Prop. 3.1 is satisfied as long as
ω ∈ (1− 1/

√
K − 1, 1 + 1/(K − 1)).

In our setting, K is unknown. A smaller ω would be a more robust choice, and accord-
ingly the set A will likely remain non-empty after K iterations. See the illustration of Fig.
3.1a, where the blue regions correspond to A after K = 3 iterations of the scan. As a result,
we proceed by adopting a stopping criteria based on Prop. 3.2: the procedure is stopped as
soon as ∀m ∈ A ‖p̃m‖2 < R, which allows us to complete the scan in K iterations (as in
Fig. 3.1b for K = 3).

The CoSAC algorithm is formally presented by Algorithm 3.1. Its running is illustrated
in Fig. 3.2, where we show iterations 1, 26, 29, 30 of the algorithm by plotting norms of the
centered documents in the active set A and cone Sω(v) against cosine distance to the chosen
direction of a topic. Iteration 30 (right) satisfies stopping criteria and therefore CoSAC
recovered correct K = 30. Note that this type of visual representation can be useful in
practice to verify choices of ω andR. The following theorem establishes the consistency of
the CoSAC procedure.

Theorem 3.1. Suppose {β1, . . . , βK} are the true topics, incenterCp is given, θm ∼ DirK(α)

and pm :=
∑

k βkθmk for m = 1, . . . ,M and α ∈ RK
+ . Let K̂ be the estimated number of

topics, {β̂1, . . . , β̂K̂} be the output of Algorithm 3.1 trained with ω andR as in Prop. 3.2.
Then ∀ ε > 0,

P
({

min
j∈{1,...,K̂}

‖βi − β̂j‖ > ε , for any i ∈ {1, . . . , K̂}
}
∪ {K 6= K̂}

)
→ 0 as M →∞.

Remark We found the choices ω = 0.6 and R to be median of {‖p̃1‖2, . . . , ‖p̃M‖2} to
be robust in practice and agreeing with our theoretical results. From Prop. 3.3 it follows
that choosingR as median length is equivalent to choosing ω resulting in an edge cut ratio
c such that 1− K

K−1
( c

1−c)
1−1/K ≥ 1/2, then c ≤ (K−1

2K
)K/(K−1), which, for any equilateral

topic simplex B, is satisfied by setting ω ∈ (0.3, 1), provided that K ≤ 2000 based on the
Eq. (3.3).

3.4 Document Conic Scan-and-Cover algorithm

In the topic modeling problem, pm for m = 1, . . . ,M are not given. Instead, under the
bag-of-words assumption, we are given the frequencies of words in documents w1, . . . , wM

which provide a point estimate w̄m := wm/Nm for the pm. Clearly, if number of documents
M → ∞ and length of documents Nm → ∞ ∀m, we can use Algorithm 3.1 with the
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plug-in estimates w̄m in place of pm, since w̄m → pm. Moreover, Cp will be estimated
by Ĉp := 1

M

∑
w̄m. In practice, M and Nm are finite, some of which may take relatively

small values. Taking the topic direction to be the farthest point in the topic simplex, i.e.,
v = argmax

w̃m:m∈A
‖w̃m‖2, where w̃m := w̄m−Ĉp ∈ ∆V−1

0 , may no longer yield a robust estimate,

because the variance of this topic direction estimator can be quite high (in Proposition 3.5
we show that it is upper bounded with (1− 1/V )/Nm).

To obtain improved estimates, we propose a technique that we call “mean-shifting”. In-
stead of taking the farthest point in the simplex, this technique is designed to shift the estimate
of a topic to a high density region, where true topics are likely to be found. Precisely, given a
(current) cone Sω(v), we re-position the cone by updating v := argmin

v

∑
m∈Sω(v) ‖w̃m‖2(1−

cos(w̃m, v)). In other words, we re-position the cone by centering it around the mean di-

rection of the cone weighted by the norms of the data points inside, which is simply given
by v ∝∑m∈Sω(v) w̃m/ card(Sω(v)). This results in reduced variance of the topic direction
estimate, due to the averaging over data residing in the cone.

The mean-shifting technique may be slightly modified and taken as a local update for a
subsequent optimization which cycles through the entire set of documents and iteratively
updates the cones. The optimization is with respect to the following weighted spherical
k-means objective:

min
‖vk‖2=1,k=1,...K

K∑
k=1

∑
m∈Sk(vk)

‖w̃m‖2(1− cos(vk, w̃m)), (3.5)

where cones Sk(vk) = {m|dcos(vk, p̃m) < dcos(vl, p̃i) ∀l 6= k} yield a disjoint data partition
K⊔
k=1

Sk(vk) = {1, . . . ,M} (this is different from Sω(vk)). The rationale of spherical k-means

optimization is to use full data for estimation of topic directions, hence further reducing the
variance due to short documents. The connection between objective function (3.5) and topic
simplex estimation is given in the Supplement. Finally, obtain topic norms Rk along the
directions vk using maximum projection: Rk := max

m:m∈Sk(vk)
〈vk, w̃m〉. Our entire procedure

is summarized in Algorithm 3.2.

Remark In Step 9 of the algorithm, cone Sω(v) with a very low cardinality, i.e.,

card(Sω(v)) < λM,

for some small constant λ, is discarded because this is likely an outlier region that does
not actually contain a true vertex. The choice of λ is governed by results of Prop. 3.4.
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For small αk = 1/K, ∀k, λ ≤ P(Λc) ≈ c(K−1)/K

(K−1)(1−c) and for an equilateral B̃ we can

choose d such that cos(d) =
√

K+1
2K

. Plugging these values into Eq. (3.3) leads to

c =

((
2
√

1− 1
K2

) (√
K−1
2K

( 1−ω√
1−(1−ω)2

) +
√

K+1
2K

))−1

. Now, plugging in ω = 0.6

we obtain λ ≤ K−1 for large K. Our approximations were based on large K to get a sense
of λ, we now make a conservative choice λ = 0.001, so that (K)−1 > λ ∀K < 1000. As a
result, a topic is rejected if the corresponding cone contains less than 0.1% of the data.

Finding anchor words using Conic Scan-and-Cover Another approach to reduce the
noise is to consider the problem from a different viewpoint, where Algorithm 3.1 will prove
itself useful. RecoverKL by Arora et al. (2013) can identify topics with diminishing errors
(in number of documents M ), provided that topics contain anchor words. The problem of
finding anchor words geometrically reduces to identifying rows of the word-to-word co-
occurrence matrix that form a simplex containing other rows of the same matrix (cf. Arora
et al. (2013) for details). An advantage of this approach is that noise in the word-to-word
co-occurrence matrix goes to zero as M →∞ no matter the document lengths, hence we
can use Algorithm 3.1 with "documents" being rows of the word-to-word co-occurrence
matrix to learn anchor words nonparametrically and then run RecoverKL to obtain topic
estimates. We will call this procedure cscRecoverKL.

Algorithm 3.1 Conic Scan-and-Cover (CoSAC)
Input: document generating distributions p1, . . . , pM ,

angle threshold ω, norm thresholdR
Output: topics β1, . . . , βk

1: Ĉp = 1
M

∑
m pm {find center}; p̃m := pm− Ĉp for m = 1, . . . ,M {center the data}

2: A1 = {1, . . . ,M} {initialize active set}; k = 1 {initialize topic count}
3: while ∃m ∈ Ak : ‖p̃m‖2 > R do
4: vk = argmax

p̃m:m∈Ak
‖p̃m‖2 {find topic}

5: Sω(vk) = {m : dcos(p̃m, vk) < ω} {find cone of near documents}
6: Ak = Ak \ Sω(vk) {update active set}
7: βk = vk + Ĉp, k = k + 1 {compute topic}
8: end while
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Figure 3.2: Iterations 1, 26, 29, 30 of the Algorithm 3.1. Red are the documents in the
cone Sω(vk); blue are the documents in the active set Ak+1 for next iteration. Yellow are
documents ‖p̃m‖2 < R.
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Figure 3.3: Minimum matching Euclidean distance for (a) varying corpora size, (b) varying
length of documents; (c) Running times for varying corpora size; (d) Estimation of number
of topics.
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Figure 3.4: Gibbs sampler convergence analysis for (a) Minimum matching Euclidean
distance for corpora sizes 1000 and 5000; (b) Perplexity for corpora sizes 1000 and 5000;
(c) Perplexity for NYTimes data.

3.5 Experimental results

3.5.1 Simulation experiments

In the simulation studies we shall compare CoSAC (Algorithm 3.2) and cscRecoverKL
based on Algorithm 3.1 both of which don’t have access to the true K, versus popular
parametric topic modeling approaches (trained with trueK): Stochastic Variational Inference
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Algorithm 3.2 CoSAC for documents
Input: normalized documents w̄1, . . . , w̄M ,

angle threshold ω, norm thresholdR, outlier threshold λ
Output: topics β1, . . . , βk

1: Ĉp = 1
M

∑
m w̄m {find center}; w̃m := w̄m − Ĉp for m = 1, . . . ,M {center the

data}
2: A1 = {1, . . . ,M} {initialize active set}; k = 1 {initialize topic count}
3: while ∃m ∈ Ak : ‖w̃m‖2 > R do
4: vk = argmax

w̃m:m∈Ak
‖w̃m‖2 {initialize direction}

5: while vk not converged do {mean-shifting}
6: Sω(vk) = {m : dcos(w̃m, vk) < ω} {find cone of near documents}
7: vk =

∑
m∈Sω(vk) w̃m/ card(Sω(vk)) {update direction}

8: end while
9: Ak = Ak \ Sω(vk) {update active set}

if card(Sω(vk)) > λM then k = k + 1 {record topic direction}
10: end while
11: v1, . . . , vk = weighted spherical k-means (v1, . . . , vk, w̃1, . . . , w̃M)
12: for l in {1, . . . , k} do
13: Rl := max

m:m∈Sl(vl)
〈vl, w̃m〉 {find topic length along direction vl}

14: βl = Rlvl + Ĉp {compute topic}
15: end for

(SVI), Collapsed Gibbs sampler, RecoverKL and GDM (more details in the Supplement).
The comparisons are done on the basis of minimum-matching Euclidean distance, which
quantifies distance between topic simplices (Tang et al., 2014), and running times (perplexity
scores comparison is given in Fig. 3.C.1). Lastly we will demonstrate the ability of CoSAC
to recover correct number of topics for a varying K.

Estimation of the LDA topics First we evaluate the ability of CoSAC and cscRecoverKL
to estimate topics β1, . . . , βK , fixing K = 15. Fig. 3.3(a) shows performance for the case of
fewer M ∈ [100, 10000] but longer Nm = 500 documents (e.g. scientific articles, novels,
legal documents). CoSAC demonstrates performance comparable in accuracy to Gibbs
sampler and GDM.

Next we consider larger corpora M = 30000 of shorter Nm ∈ [25, 300] documents
(e.g. news articles, social media posts). Fig. 3.3(b) shows that this scenario is harder
and CoSAC matches the performance of Gibbs sampler for Nm ≥ 75. Indeed across both
experiments CoSAC only made mistakes in terms of K for the case of Nm = 25, when it
was underestimating on average by 4 topics and for Nm = 50 when it was off by around 1,
which explains the earlier observation. Experiments with varying V and α are given in the
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Supplement.
It is worth noting that cscRecoverKL appears to be strictly better than its predecessor.

This suggests that our procedure for selection of anchor words is more accurate in addition
to being nonparametric.

Running time A notable advantage of the CoSAC algorithm is its speed. In Fig. 3.3(c)
we see that Gibbs, SVI, GDM and CoSAC all have linear complexity growth in M , but the
slopes are very different and approximately are INm for SVI and Gibbs (where I is the
number of iterations which has to be large enough for convergence), number of k-means
iterations to converge for GDM and is of order K for the CoSAC procedure making it the
fastest algorithm of all under consideration.

Next we compare CoSAC to per iteration quality of the Gibbs sampler trained with
500 iterations for M = 1000 and M = 5000. Fig. 3.4(b) shows that Gibbs sampler, when
true K is given, can achieve good perplexity score as fast as CoSAC and outperforms it as
training continues, although Fig. 3.4(a) suggests that much longer training time is needed
for Gibbs sampler to achieve good topic estimates and small estimation variance.

Estimating number of topics Model selection in the LDA context is a quite challenging
task and, to the best of our knowledge, there is no "go to" procedure. One of the possible
approaches is based on refitting LDA with multiple choices of K and using Bayes Factor
for model selection (Griffiths & Steyvers, 2004). Another option is to adopt the Hierarchical
Dirichlet Process (HDP) model, but we should understand that it is not a procedure to
estimate K of the LDA model, but rather a particular prior on the number of topics, that
assumes K to grow with the data. A more recent suggestion is to slightly modify LDA and
use Bayes moment matching (Hsu & Poupart, 2016), but, as can be seen from Figure 2 of
their paper, estimation variance is high and the method is not very accurate (we tried it with
true K = 15 and it took above 1 hour to fit and found 35 topics). Next we compare Bayes
factor model selection versus CoSAC and cscRecoverKL for K ∈ [5, 50]. Fig. 3.3(d) shows
that CoSAC consistently recovers exact number of topics in a wide range.

We also observe that cscRecoverKL does not estimate K well (underestimates) in the
higher range. This is expected because cscRecoverKL finds the number of anchor words,
not topics. The former is decreasing when later is increasing. Attempting to fit RecoverKL
with more topics than there are anchor words might lead to deteriorating performance and
our modification can address this limitation of the RecoverKL method.
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Table 3.1: Modeling topics of NYTimes articles

K Perplexity Coherence Time

cscRecoverKL 27 2603 -238 37 min
HDP Gibbs 221± 5 1477± 1.6 −442± 1.7 35 hours
LDA Gibbs 80 1520± 1.5 −300± 0.7 5.3 hours
CoSAC 159 1568 -322 19 min

3.5.2 Real data analysis

In this section we demonstrate CoSAC algorithm for topic modeling on one of the standard
bag of words datasets — NYTimes news articles. After preprocessing we obtained M ≈
130, 000 documents over V = 5320 words. Bayes factor for the LDA selected the smallest
model among K ∈ [80, 195], while CoSAC selected 159 topics. We think that disagreement
between the two procedures is attributed to the misspecification of the LDA model when real
data is in play, which affects Bayes factor, while CoSAC is largely based on the geometry of
the topic simplex.

The results are summarized in Table 3.1 — CoSAC found 159 topics in less than 20min;
cscRecoverKL estimated the number of anchor words in the data to be 27 leading to fewer
topics. Fig. 3.4(c) compares CoSAC perplexity score to per iteration test perplexity of the
LDA (1000 iterations) and HDP (100 iterations) Gibbs samplers. Text files with top 20
words of all topics are available on GitHub. Sample of the CoSAC topics is demonstrated
in Table 3.2. We note that CoSAC procedure recovered meaningful topics, contextually
similar to LDA and HDP (e.g. elections, terrorist attacks, Enron scandal, etc.) and also
recovered more specific topics about Mike Tyson, boxing and case of Timothy McVeigh
which were present among HDP topics, but not LDA ones. We conclude that CoSAC is a
practical procedure for topic modeling on large scale corpora able to find meaningful topics
in a short amount of time.

3.6 Discussion

We have analyzed the problem of estimating topic simplex without assuming number of
vertices (i.e., topics) to be known. We showed that it is possible to cover topic simplex
using two types of geometric shapes, cones and a sphere, leading to a class of Conic
Scan-and-Cover algorithms. We then proposed several geometric correction techniques to
account for the noisy data. Our procedure is accurate in recovering the true number of topics,
while remaining practical due to its computational speed. We think that angular geometric
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Table 3.2: CoSAC NYTimes topics sample

Cooking Stem Cells Antitrust LGBT Elections

cup cell Microsoft gay ballot
minutes stem window lesbian Al Gore

tablespoon research company right election
add human software sex votes

teaspoon scientist case marriage recount
pepper cloning system group Florida

oil patient operating couples court
sugar disease computer sexual vote
butter phones antitrust partner voter
pan researcher court issue count

approach might allow for fast and elegant solutions to other clustering problems, although
as of now it does not immediately offer a unifying problem solving framework like MCMC
or variational inference. An interesting direction in a geometric framework is related to
building models based on geometric quantities such as distances and angles.
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Appendix

3.A Proofs of main theorems

We start by reminding the reader of our geometric setup. First, topic simplex B :=

Conv(β1, . . . , βK) is centered at a point denoted by Cp. Let ∆V−1
0 := {x ∈ RV :

x + Cp ∈ ∆V−1}— centered probability simplex. Then, write bk := βk − Cp ∈ ∆V−1
0

for k = 1, . . . , K and p̃m := pm − Cp ∈ ∆V−1
0 for m = 1, . . . ,M . Note that re-centering

leaves corresponding barycentric coordinates θm ∈ ∆K−1 unchanged. Moreover, the ex-
treme points of centered topic simplex B̃ := Conv{b1, . . . , bK} can now be represented by
their directions vk ∈ RV and corresponding radii Rk ∈ R+ such that bk = Rkvk for any
k = 1, . . . , K.

3.A.1 Coverage of the topic simplex

Suppose that Cp is the incenter of the topic simplex B̃, with r being the inradius. Recall
that the incenter and inradius correspond to the maximum volume sphere inside B̃. Let ai,k
denote the distance between the ith and kth vertex of B̃, with amin ≤ ai,k ≤ amax for all
i, k, and Rmax, Rmin such that Rmin ≤ Rk := ‖bk‖2 ≤ Rmax ∀ k = 1, . . . , K

Proposition 3.1. For simplex B̃ and ω ∈ (ω1, ω2), where ω1 = 1 − r/Rmax and ω2 =

max{(a2
min)/(2R2

max), max
i,k=1,...,K

(1−cos(bi, bk)}, the cone Sω(v) around any vertex direction

v of B̃ contains exactly one vertex. Moreover, complete coverage holds:
K⋃
k=1

Sω(vk) ⊇ B̃.

Proof. Let ω0 =
a2min

2R2
max

. Then, for any k ∈ {1, . . . , K}, for any ω ≤ ω0, Sω(vk) does
not contain any other vertices. This can be explained as follows. Fix k, and choose
i ∈ {1, . . . , K} 6= k. Define φi,k as the angle at Cp made by the side connecting the vertex i
and vertex k. Then from the cosine law for triangles, we have

cos(φi,k) =
R2
i +R2

k − a2
i,k

2RiRk

.

Now, for any φ ≤ min
i,k

φi,k, with ωφ = 1 − cos(φ), the cone Sωφ(vk) does not cover any

vertex other than vertex k, for any k. Now φ1 = min
i,k
φi,k satisfies

1− cos(φ1) ≤ a2
min

2R2
max

− (Rmax −Rmin)2

2RmaxRmin

≤ a2
min

2R2
max

.
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A R
B

C

Rk

arccos(1− ωR)

∠(bi, bk)

Figure 3.A.1: C : kth vertex point, A : point where the adjacent side to the vertex has been
cut off by the sphere, Rk: distance to kth vertex from incenter, R : radius of sphere, B :
incenter

from which we obtain the upper bound for ω. For the lower bound, consider for vertex
k, S(vk) the cone connecting the incenter to facial incenters of facets containing vertex k.

Then
K⋃
k=1

S(vk) ⊇ B̃. Now for each k, S(vk) ⊆ Sω2(vk), where ω2 = 1 − cos(φ2), with

φ2 satisfying cos(φ2) ≤ min
k∈{1,...,K}

r
Rk

. From this we get the lower bound. The restriction

2R2
max ≤ a2

min is needed to ensure that the set
{
ω : 1 − ( r

Rmax
) ≤ ω ≤ (

a2min
2R2

max
)
}

is
non-empty.

Proposition 3.2. Let B(Cp,R) = {p̃ ∈ RV |‖p̃−Cp‖2 ≤ R},R > 0; ω1, ω2 given in Prop.

3.1, and

ω3 := 1−min

{
min
i,k

(
Rk sin2(bi, bk)

R + cos(bi, bk)

√
1− R2

k sin2(bi, bj)

R2

)
, 1

}
, (3.6)

then we have
K⋃
k=1

Sω(vk) ∪B(Cp,R) ⊇ B̃ whenever ω ∈ (min{ω1, ω3}, ω2).

Proof. Let φi,k = arccos(1− ωi,k) be the angle formed by the line joining the kth vertex to
the incenter Cp and the radial vector from incenter to the point where the sphere cuts the
edge connecting i and k (segment AB on Fig. 3.A.1). From the sine law for a triangle we
have

cos(φi,k) + cot(bi, bk) sin(φi,k)−
Rk

R = 0. (3.7)

56



Solving for φi,k we have cos(φi,k) =

(
Rk sin2(bi,bk)

R + cos(bi, bk)

√
1− R2

k sin2(bi,bk)

R2

)
. Now,

since we must choose the largest such φ over all i and k, the bound follows immediately.

Notice that asR → Rmax, the value of
(
Rk sin2(bi,bk)

R + cos(bi, bk)

√
1− R2

k sin2(bi,bk)

R2

)
→ 1,

whereas r
Rmax

< 1 strictly. Thus, asR increases the lower bound in this limiting scenario is

dominated by 1−min
i,k

(
Rk sin2(bi,bk)

R + cos(bi, bk)

√
1− R2

k sin2(bi,bk)

R2

)
, thereby obtaining an

improvement in the bound from Proposition 3.1.

Proposition 3.3. The cone Sω(v1) whose axis is a topic direction v1 has mass

P(Sω(v1)) > P(Λc(b1)) =

∫ 1

1−c θ
α1−1
1 (1− θ1)

∑
i 6=1 αi−1dθ1∫ 1

0
θα1−1

1 (1− θ1)
∑
i 6=1 αi−1dθ1

=

c
∑
i 6=1 αi(1− c)α1Γ(

∑K
i=1 αi)

(
∑

i 6=1 αi)Γ(α1)Γ(
∑

i 6=1 αi)

[
1 +

c
∑K

i=1 αi∑
i 6=1 αi + 1

+
c2(
∑K

i=1 αi)(
∑K

i=1 αi + 1)

(
∑

i 6=1 αi + 1)(
∑

i 6=1 αi + 2)
+ · · ·

]
,

(3.8)

where Λc(b1) is the simplicial cap of Sω(v1) which is composed of vertex b1 and a base

parallel to the corresponding base of B̃ and cutting adjacent edges of B̃ in the ratio

c : (1− c).

The truncated beta probability calculations in Proposition 3.3 can be found in Olver et al.
(2010).

Proposition 3.4. For λ ∈ (0, 1), let cλ be such that λ = min
k

P(Λcλ(bk)) and let ωλ be such

that

cλ =

((
2

√
1− r2

R2
max

)
(sin(d) cot(arccos(1− ωλ)) + cos(d))

)−1

, (3.9)

where angle d ≤ min
i,k

∠(bk, bk − bi). Then, as long as

ω ∈
(
ωλ,max

(
a2
min

2R2
max

, max
i,k=1,...,K

(1− cos(bi, bk)

))
, (3.10)

the bound P(Sω(vk)) ≥ λ holds for all k = 1, . . . , K.

Proof. Consider Figure 3.A.1, with length of AC = ai,kc, where c is the proportion in
which the cone cuts AC, the edge joining vertex i and vertex k. Now, from the sine law of a
triangle,

Rk

ai,kc
= sin(bi, bk) cotφi,k + cos(bi, bk) (3.11)
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where φi,k is as defined in the proof of Proposition 3.2. Now ai,k
Rk
≤ 2(
√
R2
max−r2)

Rmax
. The

choice of φλ = cosωλ satisfies

cλ ≥
1

2
√

1− r2

R2
max

min
i,k

1

sin(bi, bk) cotφλ + cos(bi, bk)
(3.12)

therefore proves the theorem. Since, φλ ≤ π
2
− ∠(bi, bk), for all i, k, the function

sin(bi, bk) cotφλ + cos(bi, bk)

is increasing as the angle between bi and bk increases, as can be checked for maxima by the
first derivative rule. Using the cosine law,

cos(bi, bk) =
−R2

i +R2
k + a2

i,k

2ai,kRk

. (3.13)

Minimizing this quantity with respect to i and k we get the result.

3.A.2 Consistency of the Conic Scan-and-Cover algorithm

Under the LDA setup (as presented in Section 3.2), recall that ai,k is the length of the
edge connecting the ith and kth vertex, i.e., ‖βi − βk‖2 = ai,k, where ‖ · ‖2 is the `2 norm.
Let B(·, ε) denote an ε-ball in `2-norm. Then the following result states that with high
probability there exists a document in a neighborhood of every vertex.

Lemma 3.1. Let pm :=
∑

k βkθmk for m = 1, . . . ,M as before. Then for any i and any
0 < ε < max

k 6=i
ai,k,

P(pm /∈ B(βi, ε) ∀ m ∈ {1, . . . ,M}) ≤

∫ 1−(ε/max
k 6=i

ai,k)

0 θαi−1
i (1− θi)

∑
j 6=i αj−1dθi∫ 1

0
θαi−1
i (1− θi)

∑
j 6=1 αj−1dθi

M

.(3.14)

Since

(∫ 1−(ε/max
k 6=i

ai,k)

0 θ
αi−1
i (1−θi)

∑
j 6=i αj−1

dθi∫ 1
0 θ

αi−1
i (1−θi)

∑
j 6=1 αj−1

dθi

)
< 1, for all i because Beta distribution is

absolutely continuous in (0, 1), the bound on the right hand side goes to 0 as M →∞.
Let {β̂1, . . . , β̂K} be the topics identified by Conic Scan-and-Cover algorithm, with

labels permuted according to the minimum matching distance criteria, with {β1, . . . , βK}
being the true topics. Then the following result shows the consistency of the identified
topics.
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Theorem 3.1. Suppose {β1, . . . , βK} are the true topics, incenterCp is given, θm ∼ DirK(α)

and pm :=
∑

k βkθmk for m = 1, . . . ,M and α ∈ RK
+ . Let {β̂1, . . . , β̂K̂} be the output of

the Conic Scan-and-Cover algorithm trained with ω and R as in Proposition 3.2. Then

∀ ε > 0,

P
({

min
j∈{1,...,K̂}

‖βi − β̂j‖ > ε , for any i ∈ {1, . . . , K̂}
}
∪ {K 6= K̂}

)
→ 0 as M →∞.

Proof. From the description of the Conic Scan-and-Cover algorithm it suffices to prove that
for the suitable choice of ω,R as in Proposition 3.2 there holds

P(∃ xi ∈ {p1, . . . , pm} such that ‖βi − xi‖ < ε ∀ i ∈ {1, . . . , K})→ 1 as M →∞.

But this probability expression is bounded from below by 1−∑K
i=1 P(pm /∈ B(βi, ε) ∀ m ∈

{1, . . . ,M}). The conclusion now follows from Lemma 3.1.

3.A.3 Variance argument for multinomial setup

In the topic modeling problem we are not given pm for m = 1, . . . ,M . Under the bag-of-
words assumption we have access to the frequencies of words in documents w1, . . . , wM

which provide a point estimate w̄m := wm/Nm for the pm. The following proposition
establishes a bound on the variation of w̄m from pm.

Proposition 3.5.

E[‖w̄m − pm‖2
2] ≤ 1− (1/V )

Nm

. (3.15)

Proof. By iterated expectation identity,

E[‖w̄m − pm‖2
2] = E

[
E
[ V∑
i=1

‖w̄mi − pmi‖2
2

∣∣∣∣pm]]

= E
[ V∑
i=1

pmi(1− pmi)
Nm

]
=

1− E[
∑V

i=1 p
2
mi]

Nm

≤ 1− (1/V )

Nm

.

The second equality follows because conditioned on pm, each wmi ∼ Bin(Nm, pmi). The
last inequality follows from Cauchy-Schwartz Inequality.
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3.B Spherical k-means for topic modeling

We aim to clarify the role of Step 11 of the document Conic Scan-and-Cover algorithm, a
geometric correction technique based on weighted spherical k-means optimization.

3.B.1 Topic directions as solutions to weighted spherical k-means

The weighted spherical k-means objective takes the form

min
‖vk‖2=1,k=1,...K

K∑
k=1

∑
m∈Sk(vk)

rm(1− cos(vk, p̃m)), (3.16)

where Sk(vk) := {m| cos(vk, p̃m)) > cos(vl, p̃m) ∀l 6= k)}. Next observe that:

rm cos(vk, p̃m) = 〈vk, p̃m〉 =
K∑
i=1

θmi〈vk, bi〉 =
K∑
i=1

θmiRiαi(vk), (3.17)

so our objective 3.16 becomes:

max
‖vk‖2=1,k=1,...K

K∑
k=1

∑
m∈Sk(vk)

K∑
i=1

θmiRiαi(vk). (3.18)

Now, if R1 = . . . = RK and αi(bk) = αi(bl) ∀ k, l 6= i, which implies that topic simplex is
equilateral, we see that cluster boundaries of topic directions are given by m ∈ Sk(bk) iff
θmk > θml ∀ l 6= k. Observe that the corresponding partition is defined by the geometric
medians of topic simplex, which in turn partitions it into equal volume parts. Then, assuming
that the topic simplex B is symmetric, combined with the symmetricity of the Dirichlet
distribution of θm-s, it follows that bk is the centroid of Sk(bk) for k = 1, . . . , K.

3.B.2 Role of the spherical k-means in CoSAC algorithm for docu-
ments

The result of Section 3.B.1 shows that weighted spherical k-means with Lloyd type updates
(Lloyd, 1982) will converge to the directions of the true topics if it is initialized in their
respective neighborhoods and equilaterality ofB and symmetricity of Dirichlet for document
topic proportions is satisfied.

Recall that goal of the Conic Scan-and-Cover is to find the number of topics and their
directions, while Mean Shifting was used to address the noise in the data. We proceed to
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compare weighted spherical k-means by itself (with 500 iterations, which makes it slower
than CoSAC) versus document Conic Scan-and-Cover with only Mean Shifting and the
full document Conic Scan-and-Cover algorithm to see the effect of the spherical k-means
post-processing step. Results in Fig. 3.B.1 are for the same scenarios as in Section 3.5 – that
is when either documents are short Nm ∈ [25, 300] but corpora is large M = 30000 or when
documents are longer Nm = 500 and corpora is smaller M ∈ [100, 10000]. We see that
spherical k-means by itself does not succeed, whereas when used as a postprocessing step
for CoSAC it allows for a slight improvement when documents are short. This is because
it operates on the full data partition when taking averages for direction estimation, while
Mean Shifting only has access to the data in its respective cone Sω(v). Using more data is
important for noise reduction when documents are short as suggested by our analysis.
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Figure 3.B.1: Minimum matching Euclidean distance for (a) varying corpora size, (b)
varying length of documents. Perplexity for (c) varying corpora sizes, (d) varying length of
documents.

3.C Additional experiments

3.C.1 Perplexity comparison

In this section we present perplexity scores comparison for the experiments of Section 3.5.
For simulation experiments we used V = 2000, symmetric α = η = 0.1. To compute held-
out perplexity for the CoSAC we employed projection based estimates for topic proportions
θm from Chapter 2, which led to a slightly worse perplexity scores for CoSAC and GDM
in comparison to Gibbs sampler. However, CoSAC (except for Nm = 25, when it slightly
underestimates K) shows competitive performance without requiring K as an input. We
note that as before cscRecoverKL outperforms RecoverKL in all cases.
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3.C.2 Varying vocabulary size V

Our next experiment investigates the influence of vocabulary size V . We set Nm = 500,
M = 5000, K = 15, symmetric α = η = 0.1 and varied V from 2000 to 15000. We
discovered that ω = 0.6 is too small for V > 10000, meaning that CoSAC algorithm
does not find enough documents in the corresponding cones and keeps discarding without
recording topics (per Step 9 of Algorithm 3.2). This can be explained by the fact that vectors
tending to be far apart in high dimensions and relatively (to V > 10000) small values of
corpora size M and document lengths Nm. On the other hand, setting ω = 0.75 worked
well for all values of V in this experiment. Results are reported in Fig. 3.C.1(c), (d) and
Fig. 3.C.2(d). Document CoSAC with ω = 0.75 recovered true K = 15 for all values of V
and showed better recovery than GDM and Gibbs sampler in terms of minimum matching
distance, while Gibbs sampler had slightly better perplexity for higher values of V . It is
worth reminding that unlike CoSAC, both GDM and the Gibbs sampling based method
requires the number of topics K be given.

3.C.3 Impact of α

Recall that, per the LDA model, topic proportions θ ∼ DirK(α). Cases with α > 1 were
previously shown (Nguyen, 2015) to exhibit slower convergence rates of the LDA’s posterior
estimation (via Gibbs sampler, for instance). Geometrically, large α implies that documents
are more likely concentrated near the center of the topic simplex, leaving fewer documents
near the vertices; this entails that geometric inference is more challenging. In our choices for
parameters ω,R, λ we relied on small values of α as a more practical scenario. Specifically,
we considered ω = 0.8 for this experiment to achieve full coverage of the topic simplex. In
our previous experiments we set α = 0.1. Now, we consider a larger range, α ∈ [0.01, 1.5],
to gauge its impact more fully. Results are reported in Fig. 3.C.2(a), (b) and (c). For smaller
values of α CoSAC is demonstrated to be the best algorithm of all under consideration. As
α increases, CoSAC can still recover correct K with high accuracy, although the quality
of topic estimates deteriorates faster than for Gibbs sampler and GDM. We think that
further work on estimation procedures for topic radii Rks (recall that topics are estimated
as direction and length along this direction bk = Rkvk) might address this issue. In this
work we considered maximum projection (Step 13 of Algorithm 3.2) to estimate Rks, which
might not be as accurate when documents are mostly near the center of the topic simplex
(i.e., for higher α).
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Figure 3.C.1: Perplexity for (a) varying corpora size, (b) varying length of documents, (c)
varying vocabulary size; (d) Minimum matching Euclidean distance for varying vocabulary
size.
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Figure 3.C.2: Varying α (a) Minimum matching Euclidean distance, (b) Perplexity, (c)
Estimation of number of topics; (d) Estimation of number of topics for varying vocabulary
size.

3.D Implementation details

In this section we give details about the implementations of the algorithms used in simulation
studies and real data. We implemented Conic Scan-and-Cover (CoSAC) algorithm in Python
with the help of Scipy (Jones et al., 2001–) sparse matrix modules. Geometric Dirichlet
Means (GDM) was implemented with the help of Scikit-learn (Pedregosa et al., 2011)
k-means implementation (with 10 restarts to avoid local minima of k-means) combined with
a geometric correction technique. Codes for CoSAC and GDM are available at https://
github.com/moonfolk/Geometric-Topic-Modeling. For RecoverKL (Arora
et al., 2013) we applied code from one of the coauthors. To implement cscRecoverKL we
used our CoSAC implementation (Algorithm 3.1 with outlier threshold λ as in Algorithm
3.2) to find anchor words and then recovery routine from the aforementioned code. For the
Gibbs sampling (Griffiths & Steyvers, 2004) we used an lda package in Python that utilizes
Cython to achieve C speed. Gibbs sampler was trained with α = 0.1, η = 0.01 and 500
iterations in simulations studies and α = 0.1, η = 0.1 and 1000 iterations in the NYTimes
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articles3 analysis. For the SVI (Hoffman et al., 2013) we used Gensim implementation
(Řehůřek & Sojka, 2010) with automatic hyperparameters estimation, 50 iterations and
10 passes. Finally for HDP (Teh et al., 2006) we used C++ implementation with default
hyperparameter settings and 100 iterations. For all experiments (except large vocabulary
sizes and bigger α), per discussions in Sections 3.3.2 and 3.4, parameters of the CoSAC were
set to ω = 0.6, n = 0.001M and R as median of the centered and normalized document
norms. Spherical k-means post-processing step was run for 30 iterations. For cscRecoverKL
we set ω = 0.4, λ = 0.015 (λ = 0.005 for real data) and R as corresponding median of
the norms. Note that cscRecoverKL takes word-to-word co-occurrence matrix as input,
therefore sample size is V and "documents" are rows of this matrix. Exploring distributional
properties of the simplex spanned by the anchor words is outside of the scope of this work,
therefore parameter choices were made empirically based on the visual analysis illustrated
by Fig. 3.2. All simulated results are reported after 20 repetitions of the data generation
for each scenario and NYTimes results for LDA and HDP are reported over 10 refits of the
corresponding Gibbs samplers.

3https://archive.ics.uci.edu/ml/datasets/bag+of+words
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CHAPTER 4

Streaming dynamic and distributed inference of
latent geometric structures

We develop new models and algorithms for learning about the temporal dynamics of the topic
polytopes and related geometric objects that arise in topic model based inference. Our model
is nonparametric and the corresponding inference algorithm is able to discover new topics
as the time progresses. We establish the connection between the modeling of topic polytope
evolution, Beta-Bernoulli process and the Hungarian matching algorithm. Our method
is shown to be several orders of magnitude faster than existing scalable topic modeling
approaches, as demonstrated by experiments working with several million documents in a
dozen minutes.1

4.1 Introduction

A large number of unsupervised learning tasks associated with latent variable models can
be fruitfully cast as the inference of a latent geometric structure arising from the model.
Such geometric viewpoints often yield improved understanding about the inferential and
computational behavior of the model. They also lead to more scalable inference and learning
algorithms. When data and the associated modeling are indexed by time dimension, it is of
interest to study the temporal dynamics of the latent geometric structure that arises. In this
chapter, we focus on the modeling and algorithm for analyzing the temporal dynamics of
topic polytope, a fundamental geometric object arising from the topic modeling literature.

The convex geometry of Latent Dirichlet Allocation (LDA) (Blei et al., 2003) and
admixtures (Pritchard et al., 2000) was exploited to analyze the posterior contraction behavior
of latent topics in both theory and practice (Nguyen, 2015; Tang et al., 2014). Chapter 2
studied a convex geometric interpretation of topic modeling that allowed for faster inference

1This work is submitted to ICML 2018
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than variational inference and Gibbs sampling (Griffiths & Steyvers, 2004). Chapter 3
followed this line of work to arrive at a fast geometric algorithm for learning nonparametric
topic models.

A number of authors have extended the basic topic modeling framework to analyze
how topics evolve over time. The Dynamic Topic Models (DTM) (Blei & Lafferty, 2006b)
demonstrated the importance of accounting for non-exchangeability between document
groups, particularly when the time information is provided. Another approach is to fix the
topics and only consider evolving topic popularity (Wang & McCallum, 2006). Hong et al.
(2011) extended such an approach to multiple corpora. Ahmed & Xing (2012) proposed
an interesting nonparametric construction extending DTM where topics can appear or
eventually die out. The evolution of the latent geometric structure arising from the model
(the topic polytope) is implicitly present in all these works, however it was not explicitly
considered and analyzed.

Directly confronting the modeling and inference of the temporal dynamics of the topic
polytope offers several opportunities and challenges. To start, what is the suitable space that
we may consider the topic polytope to be represented? As topics evolve over time, so are
the number of topics that may become active and dormant again, raising interesting choices
about modeling of this evolution. Interesting issues arise in the inference, too. For instance,
what is the principled way of mix-matching the vertices of a polytope to its reincarnation in
the next time point? These challenges also open the door for directly modeling the geometric
structure in a way that facilitates efficient inference.

In particular, in this work we shall utilize an isometric embedding of the unit sphere in
the word simplex, so that the evolution of topic polytopes may be modeled by a collection
of (random) trajectories of points residing on the unit sphere. Instead of worrying about
mix-matching vertices in an ad hoc fashion, we appeal to the Bayesian nonparametric
modeling framework that allow the number of topic vertices to be random and vary across
time. The mix-matching between topic variables shall be guided by the assumption on the
smoothness of the collection of global trajectories on the sphere using Von Mises-Fisher
dynamics (Mardia & Jupp, 2009). The selection of active topics at each time point will
be guided by a nonparametric prior on the random binary matrices via the (hierarchical)
Beta-Bernoulli process (Thibaux & Jordan, 2007).

To this end, we construct a sequence of Bayesian nonparametric models in increasing
levels of complexity: the simpler model captures the temporal dynamics of a sequence of
topic polytopes, while the full model describes the temporal dynamics of a collection of
topic polytopes as they arise from multiple corpora. The semantic of topics that arise from
our models can be interpreted as follows: there is a latent collection of global topics of
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unknown cardinality that evolve over time (e.g. topics in science or social topics in Twitter)
and each year (or day) a subset of the global topics is elucidated by the community (i.e.
some topics may be dormant at a given time point). The nature of each global topic may
change smoothly (via varying word frequencies). Additionally, different subsets of global
topics are associated with different groups (e.g. journals or Twitter location stamps), some
become active and inactive over time.

It is interesting to note that our model construction leads to a suite of approximate
inference algorithm that scales well in an online and distributed setting. In particular,
the online MAP update of the latent topic polytope can be viewed as solving an optimal
matching problem for which a fast Hungarian matching algorithm can be applied. Our
approach is able to perform dynamic nonparametric topic inference on 3 million documents
in 12 minutes, which is significantly faster than prior static online and/or distributed topic
modeling algorithms (Newman et al., 2008; Hoffman et al., 2010; Wang et al., 2011; Bryant
& Sudderth, 2012; Broderick et al., 2013).

The remainder of the chapter is organized as follows. In Section 4.2 we propose an
approach for defining a Markovian process over the space of topic polytopes (simplices).
In Section 4.3 we present a series of models for polytope dynamics across time and over a
collection of corpora. In Section 4.4 we describe our algorithms for online dynamic and/or
distributed inference. Section 4.5 demonstrates experimental results. We conclude with a
discussion in Section 4.6.

4.2 Temporal dynamics of a topic polytope

A fundamental object of inference in this work is the topic polytope arising in topic model-
ing (Blei et al., 2003; Nguyen, 2015). Given a vocabulary of V words, a topic is defined
as a probability distribution on the vocabulary. Thus a topic is taken to be a point in the
vocabulary simplex, namely, ∆V−1, and a topic polytope for a corpus of documents is
defined as a convex hull of topics associated with the documents. Geometrically, the topics
correspond to the vertices (extreme points) of the (latent) topic polytope to be inferred from
data.

In order to infer about the temporal dynamics of a topic polytope, one might consider the
evolution of each topic variable, say θ(t), which represents a vertex of the polytope at time
t. A standard approach is due to Blei & Lafferty (2006b), who proposed to use a Gaussian
Markov chain θ(t)|θ(t−1) ∼ N (θ(t−1), σI) in RV for modeling temporal dynamics and a

logistic normal transformation π(θ(t))i :=
exp(θ

(t)
i )∑

i exp(θ
(t)
i )

for mapping into ∆V−1. This popular

construction does carry some disadvantages: the mapping into ∆V−1 is many-to-one, and
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while this can be remedied by a suitable reparameterization, the domain of the preimage is
noncompact (RV ), resulting in inefficiency of inference.

Motivated by the directional representation of topic polytope studied in Chapter 3, we
shall represent each topic variable as a point in a unit sphere SV−2, which possesses a natural
isometric embedding in the vocabulary simplex ∆V−1, so that the temporal dynamics of a
topic variable can be visualized as a (random) trajectory on SV−2. This trajectory shall be
modeled as a Markovian process on SV−2: θ(t)|θ(t−1) ∼ vMF(θ(t−1), τ0). Von Mises-Fisher
(vMF) distribution is commonly used in the field of directional statistics (Mardia & Jupp,
2009) to model points on a unit sphere. Its likelihood is proportional to the cosine similarity,
a similarity measure popular in text mining applications (Feldman & Sanger, 2007).

Isometric embedding of SV−2 in vocabulary simplex We recall the directional represen-
tation of topic polytope from Chapter 3: let B = {β1, . . . , βK} be a collection of vertices of
a topic polytope. Each vertex is represented as βk := C +Rkvk, where C ∈ Conv(B) is a
reference point in a convex hull of B, vk ∈ RV is a topic direction and Rk ∈ R+. Moreover,
Rk ∈ [0, 1] is determined so that the tip of direction vector vk resides on the boundary of
∆V−1. Since the effective dimensionality of vk is V − 2, we can now define a one-to-one
and isometric map taking vk onto SV−2 in the following way: map of the vocabulary simplex
∆V−1 ∈ RV where it is first translated so that C becomes an origin and then rotated into
RV−1, where resulting topics, say θ1, . . . , θK ∈ SV−2, are normalized to the unit length.
Observe that this geometric map is an isometry and hence invertible. It also preserves
angles between vectors, therefore we can evaluate vMF density without performing the map
explicitly, by simply setting θk := βk−C

‖βk−C‖
.

Figure 4.1 provides a geometric illustration. Let V = 3 and vocabulary simplex be a red
triangle. Two topics on the boundary (face) of the vocabulary simplex are β1 = C + v1 and
β2 = C + v2. Green dot C is the reference point and α = ∠(v1, v2). In Fig. 4.1 (left) we
translate C into the origin and rotate vocabulary simplex from xyz to xy plane. In Fig. 4.1
(center) we show resulting position of the vocabulary simplex and add a unit sphere (blue)
in R2. Corresponding to β1, β2 topics are the points θ1, θ2 on the sphere with ∠(θ1, θ2) = α.
Now we apply the inverse translation and rotation to both vocabulary simplex and unit sphere.
Result is shown in Fig. 4.1 (right) — we are back to R3 and ∠(θ1, θ2) = ∠(v1, v2) = α,
where θk = βk−C

‖βk−C‖2
. In Fig. 4.2 we give an example of the dynamics.

In the preceeding paragraphs, the evolution of each topic variable is modeled as a random
trajectory residing in a unit sphere, and so the evolution of a collection of topics can be
modeled by a collection of corresponding trajectories on the sphere. A modeling challenge
is how to account for the fact that the number of "active" topics may be unknown and
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vary over time. Moreover, a topic may be activated, become dormant, and then resurface
after some time. A natural model-based solution for such situations is to employ Bayesian
nonparametric modeling elements and adapt them to handle the geometric structures of our
inferential interest. This is the focus of the next section.

Figure 4.1: Invertible transformation between unit sphere and a standard simplex

Figure 4.2: Topic dynamics
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4.3 Hierarchical Bayesian modeling for one or multiple
topic polytopes

In this section we present a sequence of models with increasing levels of complexity for
capturing various aspects of topic modeling in online and distributed settings. We start by
proposing a hierarchical model for online learning of the temporal dynamics of a single
topic polytope, allowing for varying number of vertices over time. Then we show how
to borrow strength from multiple topic polytopes learned on different corpora drawing on
a common pool of global topics. We conclude with a construction of a "full" model for
modeling evolution of global topics across time and across groups of corpora.

4.3.1 Dynamic model for single topic polytope

At a high level, our model contains a collection of global trajectories taking values on a unit
sphere. Each trajectory shall be endowed with a Von Mises-Fisher dynamic described in the
previous section. At each time point, a random topic polytope is constructed by selecting
a (random) subset of points on the trajectory evaluated at time t. The random selection is
guided by a Beta-Bernoulli process prior (Thibaux & Jordan, 2007). This construction is
motivated by a modeling technique of Nguyen (2010), who studied a hierarchical Dirichlet
process type model for inference of smooth trajectories on an Euclidean domain. Our model
using Beta-Bernoulli process, as opposed to the Dirichlet-type priors, as a building block
is more appropriate for the purpose of topic discovery. Due to the isometric embedding of
SV−2 in ∆V−1 described in the previous section, from here on we shall refer to topics as
points on SV−2.

First, generate an unbounded collection of global topic trajectories using Beta process
prior (cf. Thibaux & Jordan (2007)):

Q|γ0, H ∼ BP(γ0, H), (4.1)

where H is a base measure on the space of trajectories on SV−2, γ0 the concentration
parameter of the Beta process. It follows that

Q =
∑
i

qiδθi ,

where each θi ∼ H is a sequence of T random elements on the unit sphere θi := {θ(t)
i }Tt=1,
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which are generated as follows:

θ
(t)
i |θ(t−1)

i ∼ vMF(θ
(t−1)
i , τ0) for t = 1, . . . , T and

θ
(0)
i ∼ vMF(·, 0) – uniform on SV−2.

(4.2)

At any given time t = 1, . . . , T , the process Q induces a marginal measure Qt, whose
support is given by the atoms of Q as they are evaluated at time t. Now, select a subset of
the global topics that are active at t via the Bernoulli process

T (t)|Qt ∼ BeP(Qt). (4.3)

This means that T (t) :=
∑

i b
(t)
i δθ(t)i

, where

b
(t)
i |qi ∼ Bern(qi), ∀i. (4.4)

We can also view T (t) as the collection of supporting atoms {θ(t)
i : b

(t)
i = 1, i = 1, 2, . . .},

which represent the topics that are active at time t. Finally, assume that noisy measurements
of each of these topic variables are generated via:

v
(t)
k |T (t) ∼ vMF(T

(t)
k , τ1) for k = 1, . . . , K(t), (4.5)

where K(t) := card(T (t)), number of topics active at t.
The noisy estimates for the topics at any particular time point may come from either

the global topics observed until the previous time point or a so far unexplored topic. The
collection of random variables that link up the observed noisy estimates at any time point to
the global topics observed thus far is of interest. In that regard, let B(t) = ((B

(t)
ik )) denote

the binary matrix representing the presence of connection between observed topic estimates
and global topics at time point t, i.e, B(t)

ik = 1 if the vector v(t)
k is a noisy estimate for θ(t)

i .
The joint posterior probability for the hidden topics θ(t) given observed noisy topics v(t)

is:

P
(
θ(0), {θ(t), B(t)}Tt=1|{v(t)}Tt=1

)
∝

P(θ(0))
T∏
t=1

P(θ(t), B(t)|θ(t−1), {B(a)}t−1
a=1)P(v(t)|θ(t), B(t)).
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Now, using probabilistic calculations, we get

P(θ(t), B(t)|θ(t−1), {B(a)}t−1
a=1)P(v(t)|θ(t), B(t)) ∝

P(θ(t), B(t)|θ(t−1), v(t), {B(a)}t−1
a=1) ∝ (4.6)

Lt−1∏
i=1

(
m

(t−1)
i

t−m(t−1)
i

)∑K(t)

k=1 B
(t)
ik

c(τ0) exp(τ0〈θ(t−1)
i , θ

(t)
i 〉)

exp(−γ0
t

)(γ0/t)
Lt−Lt−1

(Lt − Lt−1)!
exp(τ1

Lt∑
i=1

K(t)∑
k=1

B
(t)
ik 〈θ

(t)
i , v

(t)
k 〉),

where m(t)
i is the number of occurrences of topic i up to time point t — cf. popularity of a

dish in the Indian Buffet Process (IBP) metaphor (Ghahramani & Griffiths, 2005) and Lt is
the number of global topics at time t. Inner product comes from the vMF prior in Eq. (4.2)
and c(τ0) is the corresponding normalizing constant.

Consider next a scenario for online inference for which we are interested in a sequential
posterior formulation. To this end, we express the logarithm of this posterior distribution in
a form of a matching problem.

log(P(θ(t), Lt, B
(t)|θ(t−1), v(t), {B(a)}t−1

a=1)) =

Lt−1∑
i=1

∑
k

B
(t)
ik [(log

m
(t−1)
i

t−m(t−1)
i

) + 〈τ1v
(t)
k + τ0θ

(t−1)
i , θ

(t)
i 〉]

+
Lt∑

i=Lt−1+2

∑
k

B
(t)
ik {τ1 + c0 + log(γ0/t)− log(i− Lt−1)!

+ log(i− Lt−1 − 1)!}
+
∑
k

B
(t)
(Lt−1+1)k{τ1 + c0 + log(γ0/t)}+ C,

(4.7)

where c0 is the log inverse volume of a unit sphere - a term coming from the uniform prior
on θ(0) in Eq. (4.2), and C is a constant. We highlight the connection of the above expression
to the objective of an optimal matching problem: given a cost matrix workers should be
assigned to tasks, at most one worker per task and one task per worker. We see from Eq.
(4.7) that B(t) can be viewed as an assignment matrix and each new topic v(t)

k should be
assigned to either one of the global topics θ(t)

i or start a new topic with cost for the later
option guided by the prior. We interpret such assignment as topic discovery; details of the
inference algorithm are deferred to Section 4.4.
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4.3.2 Hierarchical Beta process for multiple topic polytopes

We take our modeling in a different direction, by allowing the presence of multiple corpora,
each of which maintains its own topic polytope. Large text corpora often can be partitioned
based on some grouping criteria, e.g. scientific papers by journals, news by different media
agencies or tweets by location stamp. In this subsection we model the collection of topic
polytopes observed at a single time point by employing the Hierarchical Beta Process prior
(HBP) (Thibaux & Jordan, 2007). The modeling of temporal dynamics of a collection of
polytopes will be described in the following subsection.

First, generate distribution of global topics Q as in Eq. (4.1). Since we are interested
only in a single time point in this subsection, the base measure H is simply a vMF(·, 0),
the uniform distribution over SV−2. Next, for each group j = 1, . . . , J , generate a group
specific distribution over topics:

Gj|Q ∼ BP(γj, Q)

Gj :=
∑
i

pjiδθi ,
(4.8)

where pji vary around corresponding qi. The distributional properties of pij are described in
Thibaux & Jordan (2007). We now proceed similarly to Eq. (4.4):

Tj|Gj ∼ BeP(Gj)

Tj :=
∑
i

bjiδθi , where

bji|pji ∼ Bern(pji), ∀i.

(4.9)

Notice that each group Tj := {θi : bji = 1, i = 1, 2, . . .} selects only a subset from the
collection of global topics, which is consistent with the idea of partitioning by journals:
some topics of ICML are not represented in KDD and vice a versa. The last step is analogous
to Eq. (4.5):

vjk|Tj ∼ vMF(Tjk, τ1) for k = 1, . . . , Kj, (4.10)

where Kj := card(Tj) – number of topics present in group j.
We again define matrix B as the binary matrix representing the assignment of global

topics to the noisy topic estimates, i.e., Bijk = 1 if the kth topic estimate for group j arises
as a noisy estimate of global topic θi. The matching problem is now different: we don’t have
any information about the global topics as there is no history, however instead we should
match a collection of topic polytopes to a global topic polytope.

It can be seen from Thibaux & Jordan (2007) that the matrix of topic assignments is
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distributed a priori by an Indian Buffet Process (IBP) with parameter γ0. The posterior
probability for global topics θi and assignment matrix B given the topic estimates vjk has
the following form:

P(B, θ|v) ∝ exp(τ1

∑
i,j,k

Bjik〈θi, vjk〉) (4.11)

(γ0c0)L

f(L)
exp(−γ0

J∑
j=1

1/j)
L∏
i=1

(J −mi)!(mi − 1)!

J !
,

where L is any upper bound on the number of global topics, i.e. L =
∑J

j=1Kj and the value
of f(L) depends on the partitions of L. Similarly to previous case, mi is the popularity of
global topic i after the assignment ((-1)! = 0 when mi = 0).

4.3.3 Dynamic hierarchical Beta process

We are now ready to present Dynamic Hierarchical Beta Process model (dHBP) which
combines the constructions described in subsections 4.3.1 and 4.3.2 to enable inference of
the temporal dynamics of collections of topic polytopes. We start by specifying the upper
level Beta process given by Eq. (4.1) and base measure H given by Eq. (4.2). Next, for
each group j = 1, . . . , J , generate a group specific distribution over topics:

Qj|Q ∼ BP(γj, Q)

Qj :=
∑
i

pjiδθi .
(4.12)

At any given time t, each group j selects a subset from the common pool of global topics:

T
(t)
j |Qjt ∼ BeP(Qjt)

T
(t)
j :=

∑
i

b
(t)
ji δθ(t)i

, where

b
(t)
ji |pji ∼ Bern(pji), ∀i.

(4.13)

Let T (t)
j := {θ(t)

i : b
(t)
ji = 1, i = 1, 2, . . .} be the corresponding collection of atoms – topics

active at time t in group j. Noisy measurements of these topics are generated by:

v
(t)
jk |T

(t)
j ∼ vMF(T

(t)
jk , τ1) for k = 1, . . . , K

(t)
j , (4.14)

where K(t)
j := card(T

(t)
j ), the number of topics active at time t in group j.
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As in Section 4.3.1 we are interested in the posterior distribution of the global topics at
time t given the state of the global topics at time t− 1:

P(θ(t), Lt, B
(t)|θ(t−1), v(t)) ∝ (4.15)

exp(τ0

∑
i

〈θ(t)
i , θ

(t−1)
i 〉)

· exp

(∑
i,j,k

τ1B
(t)
jik〈θ

(t)
i , v

(t)
jk 〉
)
F (Lt, Lt−1, {m(t)

ji }),

where F (Lt, Lt−1, {m(t)
ji }) is a function dependent on the countm(t)

ji for topic i, groups j and
up to time point t. Analogous to the Chinese Restaurant Franchise (Teh et al., 2006), one can
think of an Indian Buffet Franchise in the case of HBP. A headquarter buffet provides some
dishes each day and the local branches serve a subset of those dishes. Although this analogy
seems intuitive, we are not aware of a corresponding Gibbs sampler and it remains to be a
question of future studies. Therefore we are not able to handle the term F (Lt, Lt−1, {m(t)

ij })
directly and propose a heuristic replacement — stripping away popularity of topics across
groups and only considering group specific topic popularity (groups still remain dependent
through the atom locations). The resulting approximate inference algorithm is given in the
next section.

4.4 Streaming dynamic distributed inference

Here we present our algorithm for Streaming Dynamic Distributed (SDD) topic estimation.
In this work we focus on modeling topic polytopes and the first step is to obtain such
polytopes. To do so we partition data into batches according to available group and/or time
information and utilize the very fast Conic Scan-and-Cover algorithm (see Chapter 3) to
obtain polytope estimates for each of the batches in a trivially parallel fashion. To perform
polytope-to-sphere transformation we use our construction of Section 4.2 using estimates of
word marginal probabilities as the reference point C. Such estimate is simply a data mean
which can be updated online. After the transformation we obtain the collections v(t)

j for
t = 1, . . . , T and j = 1, . . . , J .

Our primary practical interests are the questions of topic discovery and evolution over
time. To address the topic discovery question we want to identify a point in time where topic
appeared first and to interpret the dynamics we want to estimate probabilities for each of
the words in each topic at every time step. To this end we focus our attention on Maximum
Aposteriori (MAP) estimation based on our posterior distribution calculations of Section
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4.3.

Streaming Dynamic Matching (SDM) We have already laid out the foundation for the
inference algorithm through the cost representation of the log posterior probability in Eq.
(4.7). The remaining part is the estimation of θ(t). We can readily obtain a MAP estimate of
θ(t) given the assignment matrix B(t), thanks to the self-conjugacy of vMF distribution:

θ̂
(t)
i |B(t)

ik = 1, θ
(t−1)
i =

τ0θ
(t−1)
i + τ1v

(t)
k

‖τ0θ
(t−1)
i + τ1v

(t)
k ‖2

(4.16)

We rewrite parametric part of Eq. (4.7) as∑
i,k

B
(t)
ik R(i, k), where (4.17)

R(i, k) = log
m

(t−1)
i

t−m(t−1)
i

+ ‖τ0θ
(t−1)
i + τ1v

(t)
k ‖2.

Now it is evident that we can maximize Eq. (4.17) using Hungarian algorithm (Kuhn,
1955). Recall that we only considered parametric part of the problem. It is possible to extend
to nonparametric estimation using the Hungarian algorithm based on Eq. (4.7). However,
due to large values of c0 (volume of sphere surface goes to 0 in high dimensions), the
discovery of new topics is over-encouraged. We instead adopt a geometrically intuitive
thresholding — if for B(t)

ik = 1, cos(v
(t)
k , θ

(t−1)
i ) < c, then let v(t)

k be a new topic. We also
note that reward term R(i, k) is closely related to the cosine distance between corresponding
topics, supporting the geometric interpretation of our approach.

Distributed Matching (DM) To obtain the MAP estimate via Eq. (4.11) we again analyze
the parametric subproblem in the form admissible to the Hungarian algorithm:∑

j

∑
i,k

Bjik(τ1(‖vjk +
∑
−j,i,k

B−jikv−jk‖2

− ‖
∑
−j,i,k

B−jikv−jk‖2) + logm−ji),
(4.18)

where m−ji is the popularity of global topic i outside of group j. The problem of matching
is across groups and topics and is not amendable to closed form Hungarian algorithm.
However based on Eq. (4.18) we see that for a fixed group the assignment optimization
reduces to a case for the Hungarian algorithm. We utilize this to perform iterative updates
for different j, which guarantees convergence to a local optimum. Topics are assigned as
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new based on same argument as for the SDM case.

Streaming Dynamic Distributed Matching (SDDM) Finally we combine our results to
perform approximate inference of the model in Section 4.3.3. The assignment for a single
group j is done based on the following objective:

∑
i,k

B
(t)
jik

(
(‖τ1v

(t)
jk + τ1

∑
−j,i,k

B
(t)
−jikv

(t)
−jk + τ0θ

(t−1)
i ‖2

− ‖
∑
−j,i,k

B
(t)
−jikv

(t)
−jk + τ0θ

(t−1)
i ‖2) + logm

(t)
ji

)
, (4.19)

where m(t)
ji denotes the popularity of topic i in group j at time t – a heuristic term replacing

the Indian Buffet Franchise term.

4.5 Experiments

The objective of the experiments is to demonstrate the learning of latent temporal dynamics
and topic discovery, the ability to perform learning in a distributed and streaming fashion,
and to demonstrate scalability of our approaches. We analyze two datasets: Early Journal
Content (EJC) available from JSTOR2 and collection of Wikipedia articles partitioned by
categories and in time according to their popularity.

4.5.1 Early Journal Content

Early Journal Content dataset spans years from 1665 up to 1922. Years before 1882 contain
very few articles and we aggregated them into a single timepoint. After preprocessing,
dataset has 400k scientific articles from over 400 unique journals. Vocabulary was truncated
to 4516 words. We set all articles from the last available year (1922) aside for the testing
purposes. We compare three variations of our model with CoSAC and parametric models
such as Stochastic Variational Bayes (SVB) (Broderick et al., 2013) and Dynamic Topic
Models (DTM) (Blei & Lafferty, 2006b) trained with 100 topics. Perplexity scores on the
held out data, training times, computing resources and number of topics are reported in Table
4.1. SDM achieves the best perplexity, while SDDM outperforms DM, which suggests that
modeling time is beneficial. For this dataset modeling groups negatively effects perplexity
which may be due to majority of the groups having very few articles (i.e. less than 100) - a

2http://www.jstor.org/dfr/about/sample-datasets
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setup challenging for many topic modeling algorithms. We report details about parameter
settings in the Supplement. Next we present a case study of a topic based on the SDM
results.

Case study: epidemics. The beginning of the 20th century is known to have a vast history
of disease epidemics of various kinds. Vaccines or effective treatments against the majority
of them were developed shortly after. Examples of such disease are smallpox, typhoid,
yellow fever and scarlet fever. One of the journals represented in the EJC dataset is the
"Public Health Report", however publications from it are only available starting 1896. One
of the primary objectives of the journal was to reflect epidemic disease infections. As one of
the objectives of our modeling approach is to do topic discovery, it is interesting to see if the
model can discover an epidemics related topic around 1896.

Figure 4.3a shows that our model correctly discovered a new topic is 1896 semantically
related to epidemics. We plot the evolution of probabilities of the top 15 words in this topic
across time. We observe that word "typhoid" increases in probability towards 1910 in the
"epidemics" topic, which aligns with historical events such as Typhoid Mary in 1907 and
chlorination of public drinking water in the US in 1908 for controlling the typhoid fever.
The probability of "tuberculosis" increases too aligning with foundation of the National
Association for the Study and Prevention of Tuberculosis in 1904.

Another interesting aspect is comparison to the analogous topics of the DTM (shown in
Fig. 4.3b). DTM curves are smoother because DTM is based on Gaussian Kalman filtering
with forward-backward updates, which induces smoother curves. In our model we consider
an online learning setup and hence we are only doing a single forward path. It is unclear
which approach is better — smoothing (i.e. backward updates) allows to better account for
uncertainty, which can be beneficial for smaller data. However it tempers with the notion of
new topic discovery as it spreads high probability words over time and results in almost flat
curves.

Table 4.1: Modeling topics of EJC

Perplexity Time Topics Cores used

SDM 1181 24min 124 1
DM 1323 8min 128 20
SDDM 1289 3.2min 88 20
DTM 1194 56hours 100 1
SVB 1840 3hours 100 20
CoSAC 1191 51min 132 1
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Figure 4.3: Epidemics: evolution of top 15 words

4.5.2 Streaming Wiki corpus

We have collected articles from Wikipedia together with their page view counts for the
12 months of 2017 and category information (e.g., Arts, History, Health, etc.). We used
categories as groups and partitioned the data across time according to the page view counts.
We provide detailed description of the dataset construction in the Supplement. Total number
of documents is 3 million and we reduced vocabulary to 7359 words (similar to Hoffman
et al. (2010)). In Table 4.2 we report training times and perplexity on held out documents
from category Art from December 2017. SDDM shows the best performance both in terms
of time and perplexity, which supports the idea of modeling both group and time information.
DM ignores the time component and produces worst results as expected.

Table 4.2: Modeling Wikipedia articles

Perplexity Time Topics Cores used

SDM 1236 35min 182 20
DM 1260 14min 183 20
SDDM 1228 12min 184 20

4.6 Discussion

Now that we presented our models and algorithms, we will discuss some additional related
literature and then possible applications of our modeling approach outside of topic modeling.
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4.6.1 Related literature

The idea of using time series as base measure in the Bayesian nonparametric settings was
previously explored by Nguyen (2010) in the context of Hierarchical Dirichlet Process (HDP)
(Teh et al., 2006). His approach is suitable for modeling evolving clustering structure of
time data, however mixture based models are not appropriate for the modeling of polytopes.
Polytopes (i.e. topics) are collections of distinct points and therefore should originate
from distinct vertices of the global polytope. Mixture model based inference violates this
constraint as multiple vertices of a polytope from a single batch may be assigned to same
vertex of the global polytope. We showed that Beta Process based constructions are a better
approach for modeling geometric object as they account for the desired "distinctiveness"
and lead to a natural matching based inference.

Von Mises-Fisher distribution was previously used as a prior for topics and documents
represented as normalized tf-idf scores (Rasiwasia & Vasconcelos, 2013). Such representa-
tion of documents strips away important geometric information (i.e. norms of documents)
and in our work we aimed to maintain a more classical perspective, where topics represent
word probabilities and documents are generated using multinomial distribution, whereas
vMF distribution is used to model the latent dynamics.

Fox et al. (2009) utilized Beta-Bernoulli process in the time series modeling to incorpo-
rate notion of switching regimes of an autoregressive process and the corresponding Indian
Buffet Process was used to select subsets of the latent states of the Hidden Markov Model.

4.6.2 Geometric inference beyond topic modeling

In this work we have demonstrated several modeling approaches of polytopes in nonpara-
metric, online, dynamic, distributed fashion. Sophisticated Bayesian nonparametric models
are crucial for complicated large-scale data. Unfortunately the data size and modeling are
at crossroads — training sophisticated models on large data is often infeasible. Our work
suggests a new approach for nonparametric learning at large scale. We note that the latent
geometric structure of interest is solely encoded in the base measure H (recall Eq. (4.1)).
It is of interest to continue exploring choices of H for other geometric structures such as
collections of k-means centroids, principal components, etc. Once an appropriate base
measure is constructed, our Beta process based models can be utilized to do dynamic and
distributed learning amendable to large data sizes.
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Appendix

4.A Experiments details

Here we provide all hyperparameter settings for the experiments. The Dynamic Topic
Model (Blei & Lafferty, 2006b) was trained using code from https://github.com/

blei-lab/dtm with default parameter settings and K = 100. In 56 hours we were able
to complete LDA initialization and two EM iterations of the dynamic updates. Streaming
Variational Bayes (Broderick et al., 2013) was trained based on the code from https:

//github.com/tbroderick/streaming_vb with default parameters, K = 100,
batch size of 1024 and 4 asynchronous batches per evaluation. Algorithm ran noticeably
slower on our computing cluster using 20 cores than reported in the paper and we only could
complete 2 EM iterations per batch in a reasonable amount of time, which perhaps explains
the poor perplexity score. For CoSAC, we used code from https://github.com/

moonfolk/Geometric-Topic-Modeling with default parameters and ω = 0.7.
Same setting of CoSAC was used for learning topics on batches in this framework.

For our algorithms we chose cosine threshold c = −0.1, which corresponds to a new
topic being discovered when its best matching global topic is slightly above 90◦ apart from
the batch topic, which is an intuitive choice geometrically. The role of τ0 and τ1 is two fold
— their total magnitude controls the effect of the prior. Larger values mean less influence of
the topic popularity counts. For SDM and SDDM, τ0 influences the rate of the dynamics —
the larger values imply slower dynamics. For SDM and SDDM we set τ0 = 10 and τ1 = 2,
and for DM we set τ1 = 10.

4.B Datasets

4.B.1 Early Journal Content

For the EJC dataset we get from http://www.jstor.org, the data is well-structured
and the preprocessed 1-gram format is available along with the corresponding meta data
in xml format for each document. We perform stemming on every word shown in the
dataset and remove all stop words given in ENGLISH_STOP_WORDS from sklearn.

feature_extraction.stop_words and nltk.corpus.stopwords.words.
Words the length of which are shorter than 3 are removed. We also remove those words
that appear in more than 99% of the documents and those appearing in less than 1% of
the documents. For documents, we remove those outliers, in which a same word appears
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more than 200 times. Those documents which contain less than 100 words (considering
only words in the preprocessed vocabulary) are also excluded. After preprocessing, there
are 4516 words in the vocabulary and approximately 400k documents left. We batch the
documents based on both of their publication years and the journals they are published in.

4.B.2 Wiki

For Wikipedia data, we need four main components: the vocabulary, the original Wikipedia

page texts, the page view counts (for each Wikipedia page being considered), and the
category-title mapping. The data acquisition and processing for each component is described
separately as follows.

The vocabulary We take the vocabulary from Wiktionary:Frequency_lists. Originally
there are 10000 words. We remove words shorter than 3 characters and remove all stop
words given in ENGLISH_STOP_WORDS from sklearn.feature_extraction.

stop_words and nltk.corpus.stopwords.words After preprocessing, there are
7359 words left in the vocabulary.

The original Wikipedia page texts We download the Wiki data dumps (2017/08/20) from
https://meta.wikimedia.org/wiki/Data_dump_torrents containing about
9 million Wikipedia pages after decompression. We split the whole file into multiple text
files in which each individual file contains the content of a single Wikipedia page. We then
use MeTA, a modern C++ data sciences toolkit to transform all of these raw texts files into
1-gram format using the preprocessed vocabulary.

The page view counts We use the Pageview API provided by AQS (Analytics Query
Service) to get the page view count information of each Wikipedia page by specifying the
time period of interest (year 2017) and the granularity (monthly). The API will return the
page view count information as a json file in which the page view count is given for every
month in the year 2017.

The category-title mapping Wikipedia pages are categorized in a structure called cate-

gory tree. There are 22 top-level categories (e.g., Arts, Culture, Events, etc). Under each
category, there could be relevant Wikipedia pages and subcategories, and each subcategory
could also contain another set of subcategories and corresponding pages. Unlike the name
suggests, category tree is cyclic and is in fact not tree-structured: each category could be
under multiple categories and each page could belong to multiple categories/subcategories
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and there could be cycles. Thus trying to traverse the whole tree to get articles under a
certain category is infeasible. Considering all the categories/subcategories in the category
tree could also be distractive. Thus, we only focus on the top-level categories and exclude the
category Reference works since it is of little interest. We use wptools to traverse the category
tree for each of the top-level categories of interest individually by specifying the category
name during the traversal. We store the mapping information between each category and the
corresponding Wikipage titles for later processing.

Components aggregation We first perform intersection over the titles of Wikipedia pages
extracted from the original Wikipedia page texts, page view counts and category-title
mapping, and drop those Wikipedia pages the texts in which contain less than 10 words (the
total word count) from the vocabulary. Since there is a severe inconsistency in titles extracted
from all the three components, performing intersection results in loss of a large portion of
Wikipedia pages. After dropping all unqualified Wikipedia pages, we have approximately
500k remaining Wikipedia pages. We assign each Wikipedia page a timestamp based on its
page view counts across the 12 months in 2017, the month in which the page gets most view
counts is assigned to the page as its timestamp. Since our model naturally considers data in
two-level batches (for example, we batch the Wikipedia pages based on time and category),
and there are overlapping Wikipedia pages among different batches (one Wikipedia page
could belong to multiple categories), we have about three million Wikipedia pages in the
final dataset incarnation across all the batches.
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CHAPTER 5

Multi-way Interacting Regression via
Factorization Machines

We propose a Bayesian regression method that accounts for multi-way interactions of
arbitrary orders among the predictor variables. Our model makes use of a factorization
mechanism for representing the regression coefficients of interactions among the predictors,
while the interaction selection is guided by a prior distribution on random hypergraphs, a
construction which generalizes the Finite Feature Model. We present a posterior inference
algorithm based on Gibbs sampling, and establish posterior consistency of our regression
model.1 Our method is evaluated with extensive experiments on simulated data and demon-
strated to be able to identify meaningful interactions in applications in genetics and retail
demand forecasting.2

5.1 Introduction

A fundamental challenge in supervised learning, particularly in regression, is the need
for learning functions which produce accurate prediction of the response, while retaining
the explanatory power for the role of the predictor variables in the model. The standard
linear regression method is favored for the latter requirement, but it fails the former when
there are complex interactions among the predictor variables in determining the response.
The challenge becomes even more pronounced in a high-dimensional setting – there are
exponentially many potential interactions among the predictors, for which it is simply not
computationally feasible to resort to standard variable selection techniques (cf. Fan & Lv
(2010)).

There are numerous examples where accounting for the predictors’ interactions is of
interest, including problems of identifying epistasis (gene-gene) and gene-environment

1Code is available at https://github.com/moonfolk/MiFM.
2This chapter has been published in Yurochkin et al. (2017b).
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interactions in genetics (Cordell, 2009), modeling problems in political science (Brambor
et al., 2006) and economics (Ai & Norton, 2003). In the business analytics of retail demand
forecasting, a strong prediction model that also accurately accounts for the interactions of
relevant predictors such as seasons, product types, geography, promotions, etc. plays a
critical role in the decision making of marketing design.

A simple way to address the aforementioned issue in the regression problem is to simply
restrict our attention to lower order interactions (i.e. 2- or 3-way) among predictor variables.
This can be achieved, for instance, via a support vector machine (SVM) using polynomial
kernels (Cristianini & Shawe-Taylor, 2000), which pre-determine the maximum order of
predictor interactions. In practice, for computational reasons the degree of the polynomial
kernel tends to be small. Factorization machines (Rendle, 2010) can be viewed as an
extension of SVM to sparse settings where most interactions are observed only infrequently,
subject to a constraint that the interaction order (a.k.a. interaction depth) is given. Neither
SVM nor FM can perform any selection of predictor interactions, but several authors have
extended the SVM by combining it with `1 penalty for the purpose of feature selection (Zhu
et al., 2004) and gradient boosting for FM (Cheng et al., 2014) to select interacting features.
It is also an option to perform linear regression on as many interactions as we can and
combine it with regularization procedures for selection (e.g. LASSO (Tibshirani, 1996) or
Elastic net (Zou & Hastie, 2005)). It is noted that such methods are still not computationally
feasible for accounting for interactions that involve a large number of predictor variables.

In this work we propose a regression method capable of adaptive selection of multi-
way interactions of arbitrary order (MiFM for short), while avoiding the combinatorial
complexity growth encountered by the methods described above. MiFM extends the basic
factorization mechanism for representing the regression coefficients of interactions among
the predictors, while the interaction selection is guided by a prior distribution on random
hypergraphs. The prior, which does not insist on the upper bound on the order of interactions
among the predictor variables, is motivated from but also generalizes Finite Feature Model,
a parametric form of the well-known Indian Buffet process (IBP) (Ghahramani & Griffiths,
2005). We introduce a notion of the hypergraph of interactions and show how a parametric
distribution over binary matrices can be utilized to express interactions of unbounded order.
In addition, our generalized construction allows us to exert extra control on the tail behavior
of the interaction order. IBP was initially used for infinite latent feature modeling and
later utilized in the modeling of a variety of domains (see a review paper by Griffiths &
Ghahramani (2011)).

In developing MiFM, our contributions are the following: (i) we introduce a Bayesian
multi-linear regression model, which aims to account for the multi-way interactions among
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predictor variables; part of our model construction includes a prior specification on the
hypergraph of interactions — in particular we show how our prior can be used to model the
incidence matrix of interactions in several ways; (ii) we propose a procedure to estimate
coefficients of arbitrary interactions structure; (iii) we establish posterior consistency of the
resulting MiFM model, i.e., the property that the posterior distribution on the true regression
function represented by the MiFM model contracts toward the truth under some conditions,
without requiring an upper bound on the order of the predictor interactions; and (iv) we
present a comprehensive simulation study of our model and analyze its performance for
retail demand forecasting and case-control genetics datasets with epistasis. The unique
strength of the MiFM method is the ability to recover meaningful interactions among the
predictors while maintaining a competitive prediction quality compared to existing methods
that target prediction only.

The chapter proceeds as follows. Section 5.2 introduces the problem of modeling
interactions in regression, and gives a brief background on the Factorization Machines.
Sections 5.3 and 5.4 carry out the contributions outlined above. Section 5.5 presents results
of the experiments. We conclude with a discussion in Section 5.6.

5.2 Background and related work

Our starting point is a model which regresses a response variable y ∈ R to observed
covariates (predictor variables) x ∈ RD by a non-linear functional relationship. In particular,
we consider a multi-linear structure to account for the interactions among the covariates in
the model:

E(Y |x) = w0 +
D∑
i=1

wixi +
J∑
j=1

βj
∏
i∈Zj

xi. (5.1)

Here, wi for i = 0, . . . , D are bias and linear weights as in the standard linear regression
model, J is the number of multi-way interactions where Zj, βj for j = 1, . . . , J represent the
interactions, i.e., sets of indices of interacting covariates and the corresponding interaction
weights, respectively. Fitting such a model is very challenging even if dimension D is
of magnitude of a dozen, since there are 2D − 1 possible interactions to choose from in
addition to other parameters. The goal of our work is to perform interaction selection and
estimate corresponding weights. Before doing so, let us first discuss a model that puts a
priori assumptions on the number and the structure of interactions.
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5.2.1 Factorization Machines

Factorization Machines (FM) (Rendle, 2010) is a special case of the general interactions
model defined in Eq. (5.1). Let J =

∑d
l=2

(
D
l

)
and Z :=

⋃J
j=1 Zj =

⋃d
l=2{(i1, . . . , il)|i1 <

. . . < il; i1, . . . , il ∈ {1, . . . , D}}. I.e., restricting the set of interactions to 2, . . . , d-way, so
(5.1) becomes:

E(Y |x) = w0 +
D∑
i=1

wixi +
d∑
l=2

D∑
i1=1

. . .

D∑
il=il−1+1

βi1,...,il

l∏
t=1

xit , (5.2)

where coefficients βj := βi1,...,il quantify the interactions. In order to reduce model com-
plexity and handle sparse data more effectively, Rendle (2010) suggested to factorize
interaction weights using PARAFAC (Harshman, 1970): βi1,...,il :=

∑kl
f=1

∏l
t=1 v

(l)
it,f

, where
V (l) ∈ RD×kl , kl ∈ N and kl � D for l = 2, . . . , d. Advantages of the FM over SVM are
discussed in details by Rendle (2010). FMs turn out to be successful in the recommendation
systems setups, since they utilize various context information (Rendle et al., 2011; Nguyen
et al., 2014a). Parameter estimation is typically achieved via stochastic gradient descent
technique, or in the case of Bayesian FM (Freudenthaler et al., 2011) via MCMC. In practice
only d = 2 or d = 3 are typically used, since the number of interactions and hence the
computational complexity grow exponentially. We are interested in methods that can adapt
to fewer interactions but of arbitrarily varying orders.

5.3 MiFM: Multi-way Factorization Machine

We start by defining a mathematical object that can encode sets of interacting variables
Z1, . . . , ZJ of Eq. (5.1) and selecting an appropriate prior to model it.

5.3.1 Modeling hypergraph of interactions

Multi-way interactions are naturally represented by hypergraphs, which are defined as
follows.

Definition 5.1. Given D vertices indexed by S = {1, . . . , D}, let Z = {Z1, . . . , ZJ} be the
set of J subsets of S. Then we say that G = (S,Z) is a hypergraph with D vertices and J
hyperedges.

A hypergraph can be equivalently represented as an incidence binary matrix. Therefore,
with a bit abuse of notation, we recast Z as the matrix of interactions, i.e., Z ∈ {0, 1}D×J ,
where Zi1j = Zi2j = 1 iff i1 and i2 are part of a hyperedge indexed by column/interaction j.
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Placing a prior on multi-way interactions is the same as specifying the prior distribution
on the space of binary matrices. We will at first adopt the Finite Feature Model (FFM)
prior (Ghahramani & Griffiths, 2005), which is based on the Beta-Bernoulli construction:
πj|γ1, γ2

iid∼ Beta(γ1, γ2) and Zij|πj iid∼ Bernoulli(πj). This simple prior has the attractive
feature of treating the variables involved in each interaction (hyperedge) in an symmetric
fashion and admits exchangeabilility among the variables inside interactions. In Section
5.4 we will present an extension of FFM which allows to incorporate extra information
about the distribution of the interaction degrees and explain the choice of the parametric
construction.

5.3.2 Modeling regression with multi-way interactions

Now that we know how to model unknown interactions of arbitrary order, we combine
it with the Bayesian FM to arrive at a complete specification of MiFM, the Multi-way
interacting Factorization Machine. Starting with the specification for hyperparameters:

σ ∼ Γ(α1/2, β1/2), λ ∼ Γ(α0/2, β0/2), µ ∼ N (µ0, 1/γ0),

λk ∼ Γ(α0/2, β0/2), µk ∼ N (µ0, 1/γ0) for k = 1, . . . , K.

Interactions and their weights:

wi|µ, λ ∼ N (µ, 1/λ) for i = 0, . . . , D, Z ∼ FFM(γ1, γ2),

vik|µk, λk ∼ N (µk, 1/λk) for i = 1, . . . , D; k = 1, . . . , K.

Likelihood specification given data pairs (yn, xn = (xn1, . . . , xnD))Nn=1:

yn|Θ ∼ N (y(xn,Θ), σ), where y(x,Θ) := w0 +
∑D

i=1 wixi +
∑J

j=1

∑K
k=1

∏
i∈Zj xivik,(5.3)

for n = 1, . . . , N, and Θ = {Z, V, σ, w0,...,D}. Note that while the specification above
utilizes Gaussian distributions, the main innovation of MiFM is the idea to utilize incidence
matrix of the hypergraph of interactions Z with a low rank matrix V to model the mean
response as in Eq. 5.1. Therefore, within the MiFM framework, different distributional
choices can be made according to the problem at hand — e.g. Poisson likelihood and Gamma
priors for count data or logistic regression for classification. Additionally, if selection of
linear terms is desired,

∑D
i=1wixi can be removed from the model since FFM can select

linear interactions besides higher order ones.
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5.3.3 MiFM for Categorical Variables

In numerous real world scenarios such as retail demand forecasting, recommender systems,
genotype structures, most predictor variables may be categorical (e.g. color, season).
Categorical variables with multiple attributes are often handled by so-called “one-hot
encoding”, via vectors of binary variables (e.g., IS_blue; IS_red), which must be mutually
exclusive. The FFM cannot immediately be applied to such structures since it assigns
positive probability to interactions between attributes of the same category. To this end,
we model interactions between categories in Z, while with V we model coefficients of
interactions between attributes. For example, for an interaction between “product type” and
“season” in Z, V will have individual coefficients for “jacket-summer” and “jacket-winter”
leading to a more refined predictive model of jackets sales (see examples in Section 5.5.2).

We proceed to describe MiFM for the case of categorical variables as follows. Let U be
the number of categories and du be the set of attributes for the category u, for u = 1, . . . , U .
Then D =

∑U
u=1 card(du) is the number of binary variables in the one-hot encoding and⊔U

u=1 du = {1, . . . , D}. In this representation the input data of predictors is X , a N × U
matrix, where xnu is an active attribute of category u of observation n. Coefficients matrix
V ∈ RD×K and interactions Z ∈ {0, 1}U×J . All priors and hyperpriors are as before, while
the mean response (5.3) is replaced by:

y(x,Θ) := w0 +
U∑
u=1

wxu +
K∑
k=1

J∑
j=1

∏
u∈Zj

vxuk. (5.4)

Note that this model specification is easy to combine with continuous variables, allowing
MiFM to handle data with different variable types.

5.3.4 Posterior Consistency of the MiFM

In this section we shall establish posterior consistency of MiFM model, namely: the
posterior distribution Π of the conditional distribution P (Y |X), given the training N -data
pairs, contracts in a weak sense toward the truth as sample size N increases.

Suppose that the data pairs (xn, yn)Nn=1 ∈ RD × R are i.i.d. samples from the joint dis-
tribution P ∗(X, Y ), according to which the marginal distribution for X and the conditional
distribution of Y given X admit density functions f ∗(x) and f ∗(y|x), respectively, with
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respect to Lebesgue measure. In particular, f ∗(y|x) is defined by

Y = yn|X = xn,Θ
∗ ∼ N (y(xn,Θ

∗), σ), where Θ∗ = {β∗1 , . . . , β∗J , Z∗1 , . . . , Z∗J},

y(x,Θ∗) :=
J∑
j=1

β∗j
∏
i∈Z∗j

xi, and xn ∈ RD, yn ∈ R, β∗j ∈ R, Z∗j ⊂ {1, . . . , D}
(5.5)

for n = 1, . . . , N, j = 1, . . . , J . In the above Θ∗ represents the true parameter for the
conditional density f ∗(y|x) that generates data sample yn given xn, for n = 1, . . . , N . A
key step in establishing posterior consistency for the MiFM (here we omit linear terms since,
as mentioned earlier, they can be absorbed into the interaction structure) is to show that our
PARAFAC type structure can approximate arbitrarily well the true coefficients β∗1 , . . . , β

∗
J

for the model given by (5.1).

Lemma 5.1. Given natural number J ≥ 1, βj ∈ R \ {0} and Zj ⊂ {1, . . . , D} for
j = 1, . . . J , exists K0 < J such that for all K ≥ K0 system of polynomial equations
βj =

∑K
k=1

∏
i∈Zj vik, j = 1, . . . ,m has at least one solution in terms of v11, . . . , vDK .

The upper bound K0 = J − 1 is only required when all interactions are of the depth
D − 1. This is typically not expected to be the case in practice, therefore smaller values of
K are often sufficient.

By conditioning on the training data pairs (xn, yn) to account for the likelihood induced
by the PARAFAC representation, the statistician obtains the posterior distribution on the
parameters of interest, namely, Θ := (Z, V ), which in turn induces the posterior distribution
on the conditional density, to be denoted by f(y|x), according to the MiFM model (5.3)
without linear terms. The main result of this section is to show that under some conditions
this posterior distribution Π will place most of its mass on the true conditional density
f ∗(y|x) as N → ∞. To state the theorem precisely, we need to adopt a suitable notion
of weak topology on the space of conditional densities, namely the set of f(y|x), which
is induced by the weak topology on the space of joint densities on X, Y , that is the set
of f(x, y) = f ∗(x)f(y|x), where f ∗(x) is the true (but unknown) marginal density on X
(see Ghosal et al. (1999), Sec. 2 for a formal definition).

Theorem 5.1. Given any true conditional density f ∗(y|x) given by (5.5), and assuming
that the support of f ∗(x) is bounded, there is a constant K0 < J such that by setting
K ≥ K0, the following statement holds: for any weak neighborhood U of f ∗(y|x), under
the MiFM model, the posterior probability Π(U |(Xn, Yn)Nn=1)→ 1 with P ∗-probability one,
as N →∞.

The proof’s sketch for this theorem is given in the Supplement.
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5.4 Prior constructions for interactions: FFM revisited
and extended

The adoption of the FFM prior on the hypergraph of interactions carries a distinct behavior
in contrast to the typical Latent Feature modeling setting. In a standard Latent Feature
modeling setting (Griffiths & Ghahramani, 2011), each row of Z describes one of the data
points in terms of its feature representation; controlling row sums is desired to induce
sparsity of the features. By contrast, for us a column of Z is identified with an interaction;
its sum represents the interaction depth, which we want to control a priori.

Interaction selection using MCMC sampler One interesting issue of practical conse-
quence arises in the aggregation of the MCMC samples (details of the sampler are in the
Supplement). When aggregating MCMC samples in the context of latent feature modeling

one would always obtain exactly J latent features. However, in interaction modeling, dif-
ferent samples might have no interactions in common (i.e. no exactly matching columns),
meaning that support of the resulting posterior estimate can have up to min{2D − 1, IJ}
unique interactions, where I is the number of MCMC samples. In practice, we can obtain
marginal distributions of all interactions across MCMC samples and use those marginals for
selection. One approach is to pick J interactions with highest marginals and another is to
consider interactions with marginal above some threshold (e.g. 0.5). We will resort to the
second approach in our experiments in Section 5.5 as it seems to be in more agreement with
the concept of "selection". Lastly, we note that while a data instance may a priori possess
unbounded number of features, the number of possible interactions in the data is bounded by
2D − 1, therefore taking J →∞ might not be appropriate. In any case, we do not want to
encourage the number of interactions to be too high for regression modeling, which would
lead to overfitting. The above considerations led us to opt for a parametric prior such as
the FFM for interactions structure Z, as opposed to going fully nonparametric. J can then
be chosen using model selection procedures (e.g. cross validation), or simply taken as the
model input parameter.

Generalized construction and induced distribution of interactions depths We now
proceed to introduce a richer family of prior distributions on hypergraphs of which the FFM
is one instance. Our construction is motivated by the induced distribution on the column
sums and the conditional probability updates that arise in the original FFM. Recall that under
the FFM prior, interactions are a priori independent. Fix an interaction j, for the remainder
of this section let Zi denote the indicator of whether variable i is present in interaction j
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or not (subscript j is dropped from Zij to simplify notation). Let Mi = Z1 + . . . + Zi

denote the number of variables among the first i present in the corresponding interaction.
By the Beta-Bernoulli conjugacy, one obtains P(Zi = 1|Z1, . . . , Zi−1) = Mi−1+γ1

i−1+γ1+γ2
. This

highlights the “rich-gets-richer” effect of the FFM prior, which encourages the existence
of very deep interactions while most other interactions have very small depths. In some
situations we may prefer a relatively larger number of interactions of depths in the medium
range.

An intuitive but somewhat naive alternative sampling process is to allow a variable
to be included into an interaction according to its present "shallowness" quantified by
(i − 1 − Mi−1) (instead of Mi−1 in the FFM). It can be verified that this construction
will lead to a distribution of interactions which concentrates most its mass around D/2;
moreover, exchangeability among Zi would be lost. To maintain exchangeability, we define
the sampling process for the sequence Z = (Z1, . . . , ZD) ∈ {0, 1}D as follows: let σ(·) be a
random uniform permutation of {1, . . . , D} and let σ1 = σ−1(1), . . . , σD = σ−1(D). Note
that σ1, . . . , σD are discrete random variables and P(σk = i) = 1/D for any i, k = 1, . . . , D.
For i = 1, . . . , D, set

P(Zσi = 1|Zσ1 , . . . , Zσi−1
) = αMi−1+(1−α)(i−1−Mi−1)+γ1

i−1+γ1+γ2
,

P(Zσi = 0|Zσ1 , . . . , Zσi−1
) = (1−α)Mi−1+α(i−1−Mi−1)+γ2

i−1+γ1+γ2
, (5.6)

where γ1 > 0, γ2 > 0, α ∈ [0, 1] are given parameters and Mi = Zσ1 + . . . + Zσi . The
collection of Z generated by this process shall be called to follow FFMα. When α = 1 we
recover the original FFM prior. When α = 0, we get the other extremal behavior mentioned
at the beginning of the paragraph. Allowing α ∈ [0, 1] yields a richer spectrum spanning the
two distinct extremal behaviors.

Details of the process and some of its properties are given in the Supplement. Here
we briefly describe how FFMα a priori ensures "poor gets richer" behavior and offers
extra flexibility in modeling interaction depths compared to the original FFM. The depth
of an interaction of D variables is described by the distribution of MD. Consider the
conditionals obtained for a Gibbs sampler where index of a variable to be updated is
random and based on P(σD = i|Z) (it is simply 1/D for FFM1). Suppose we want to
assess how likely it is to add a variable into an existing interaction via the expression∑

i:Z
(k)
i =0

P(Z
(k+1)
i = 1, σD = i|Z(k)), where k + 1 is the next iteration of the Gibbs

sampler’s conditional update. This probability is a function of M (k)
D ; for small values of

M
(k)
D it quantifies the tendency for the "poor gets richer" behavior. For the FFM1 it is given

by D−M(k)
D

D

M
(k)
D +γ1

D−1+γ1+γ2
. In Fig. 5.1(a) we show that FFM1’s behavior is opposite of "poor
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gets richer", while α ≤ 0.7 appears to ensure the desired property. Next, in Fig.5.1 (b-f) we
show the distribution of MD for various α, which exhibits a broader spectrum of behavior.
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Figure 5.1: D = 30, γ1 = 0.2, γ2 = 1 (a) Probability of increasing interaction depth; (b-f)
FFMα MD distributions with different α.

5.5 Experimental Results

5.5.1 Simulation Studies

We shall compare MiFM methods against a variety of other regression techniques in the
literature, including Bayesian Factorization Machines (FM), lasso-type regression, Support
Vector Regression (SVR), multilayer perceptron neural network (MLP).3 The comparisons
are done on the basis of prediction accuracy of responses (Root Mean Squared Error on the
held out data), quality of regression coefficient estimates and the interactions recovered.

5.5.1.1 Predictive Performance

In this set of experiments we demonstrate that MiFMs with either α = 0.7 or α = 1 have
dominant predictive performance when high order interactions are in play.

In Fig. 5.2(a) we analyzed 70 random interactions of varying orders. We see that MiFM
can handle arbitrary complexity of the interactions, while other methods are comparative
only when interaction structure is simple (i.e. linear or 2-way on the right of the Fig. 5.2(a)).

Next, to assess the effectiveness of MiFM in handling categorical variables (cf. Section
5.3.3) we vary the number of continuous variables from 1 (and 29 attributes across categories)
to 30 (no categorical variables). Results in Fig. 5.2(b) demonstrate that our models can
handle both variable types in the data (including continuous-categorical interactions), and
still exhibit competitive RMSE performance.

3Random Forest Regression and optimization based FM showed worse results than other methods.
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Figure 5.2: RMSE for experiments: (a) interactions depths; (b) data with different ratio of
continuous to categorical variables; (c) quality of the MiFM1 and MiFM0.7 coefficients; (d)
MiFMα exact recovery of the interactions with different α and data scenarios

5.5.1.2 Interactions Quality

Coefficients of the interactions This experiment verifies the posterior consistency result
of Theorem 5.1 and validates our factorization model for coefficients approximation. In
Fig. 5.2(c) we compare MiFMs versus OLS fitted with the corresponding sets of chosen
interactions. Additionally we benchmark against Elastic net (Zou & Hastie, 2005) based on
the expanded data matrix with interactions of all depths included, that is 2D − 1 columns,
and a corresponding OLS with only selected interactions.

Selection of the interactions In this experiments we assess how well MiFM can recover
true interactions. We consider three interaction structures: a realistic one with five linear,
five 2-way, three 3-way and one of each 4, . . . , 8-way interactions, and two artificial ones
with 15 either only 4- or only 6-way interactions to challenge our model. Both binary and
continuous variables are explored. Fig. 5.2(d) shows that MiFM can exactly recover up to
83% of the interactions and with α = 0.8 it recovers 75% of the interaction in 4 out of 6
scenarios. Situation with 6-way interactions is more challenging, where 36% for binary data
is recovered and almost half for continuous. It is interesting to note that lower values of α
handle binary data better, while higher values are more appropriate for continuous, which
is especially noticeable on the "only 6-way" case. We think it might be related to the fact
that high order interactions between binary variables are very rare in the data (i.e. product
of 6 binary variables is equal to 0 most of the times) and we need a prior eager to explore
(α = 0) to find them.
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5.5.2 Real world applications

5.5.2.1 Finding epistasis

Identifying epistasis (i.e. interactions between genes) is one of the major questions in the
field of human genetics. Interactions between multiple genes and environmental factors can
often tell a lot more about the presence of a certain disease than any of the genes individually
(Templeton, 2000). Our analysis of the epistasis is based on the data from Himmelstein et al.
(2011). These authors show that interactions between single nucleotide polymorphisms
(SNPs) are often powerful predictors of various diseases, while individually SNPs might not
contain important information at all. They developed a model free approach to simulate data
mimicking relationships between complex gene interactions and the presence of a disease.
We used datasets with five SNPs and either 3-,4- and 5-way interactions or only 5-way
interactions. For this experiment we compared MiFM1, MiFM0; refitted logistic regression
for each of our models based on the selected interactions (LMiFM1 and LMiFM0), Multilayer
Perceptron with 3 layers and Random Forest.4 Results in Table 5.1 demonstrate that MiFM
produces competitive performance compared to the very best black-box techniques on this
data set, while it also selects interacting genes (i.e. finds epistasis). We don’t know which of
the 3- and 4-way interactions are present in the data, but since there is only one possible
5-way interaction we can check if it was identified or not — both MiFM1 and MiFM0 had a
5-way interaction in at least 95% of the posterior samples.

Table 5.1: Prediction Accuracy on the Held-out Samples for the Gene Data

MiFM1 MiFM0 LMiFM1 LMiFM0 MLP RF

3-, 4-, 5-way 0.775 0.771 0.883 0.860 0.870 0.887
only 5-way 0.649 0.645 0.628 0.623 0.625 0.628

5.5.2.2 Understanding retail demand

We finally report the analysis of data obtained from a major retailer with stores in multiple
locations all over the world. This dataset has 430k observations and 26 variables spanning
over 1100 binary variables after the one-hot encoding. Sales of a variety of products on
different days and in different stores are provided as response. We will compare MiFM1

and MiFM0, both fitted with K = 12 and J = 150, versus Factorization Machines in terms
of adjusted mean absolute percent error AMAPE = 100

∑
n |ŷn−yn|∑

n yn
, a common metric for

evaluating sales forecasts. FM is currently a method of choice by the company for this data

4FM, SVM and logistic regression had low accuracy of around 50% and are not reported.
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Figure 5.3: MiFM1 store - month - year interaction: (a) store in Merignac; (b) store in
Perols; MiFM0 city - store - day of week - week of year interaction: (c) store in Merignac;
(d) store in Perols.

set, partly because the data is sparse and is similar in nature to the recommender systems.
AMAPE for MiFM1 is 92.4; for MiFM0 - 92.45; for FM - 92.0.

Posterior analysis of predictor interactions The unique strength of MiFM is the ability
to provide valuable insights about the data through its posterior analysis. MiFM1 recovered
62 non-linear interactions among which there are five 3-way and three 4-way. MiFM0

selected 63 non-linear interactions including nine 3-way and four 4-way. We note that
choice α = 0 was made to explore deeper interactions and as we see MiFM0 has more
deeper interactions than MiFM1. Coefficients for a 3-way interaction of MiFM1 for two
stores in France across years and months are shown in Fig. 5.3(a,b). We observe different
behavior, which would not be captured by a low order interaction. In Fig. 5.3(c,d) we
plot coefficients of a 4-way MiFM0 interaction for the same two stores in France. It is
interesting to note negative correlation between Saturday and Sunday coefficients for the
store in Merignac, while the store in Perols is not affected by this interaction - this is an
example of how MiFM can select interactions between attributes across categories.

5.6 Discussion

We have proposed a novel regression method which is capable of learning interactions
of arbitrary orders among the regression predictors. Our model extends Finite Feature
Model and utilizes the extension to specify a hypergraph of interactions, while adopting
a factorization mechanism for representing the corresponding coefficients. We found that
MiFM performs very well when there are some important interactions among a relatively
high number (higher than two) of predictor variables. This is the situation where existing
modeling techniques may be ill-equipped at describing and recovering. There are several
future directions that we would like to pursue. A thorough understanding of the fully
nonparametric version of the FFMα is of interest, that is, when the number of columns is
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taken to infinity. Such understanding may lead to an extension of the IBP and new modeling
approaches in various domains.

Appendix

In the Supplementary material we will start by proving consistency of the MiFM theorem,
then we will show several important results related to FFMα: how exchangeability is
achieved using uniform permutation prior on the order in which variables enter the process,
how it leads to a Gibbs sampler using distribution of the index of the variable entering FFMα

last and how to obtain distribution of the interaction depths MD and compute its expectation.
Lastly we will present a Gibbs sampling algorithm for the MiFM under the FFMα prior on
interactions structure Z.

5.A Proof of the Consistency Theorem 5.1

First let us remind the reader of the problem setup. Suppose that the data pairs (xn, yn)Nn=1 ∈
RD×R are i.i.d. samples from the joint distribution P ∗(X, Y ), according to which marginal
distribution for X and the conditional distribution of Y given X admit density functions
f ∗(x) and f ∗(y|x), respectively, with respect to Lebesgue measure. In particular, f ∗(y|x) is
defined as in Eq. (5.5):

Y = yn|X = xn,Θ
∗ ∼ N (y(xn,Θ

∗), σ), where Θ∗ = {β∗1 , . . . , β∗J , Z∗1 , . . . , Z∗J},

y(x,Θ∗) :=
J∑
j=1

β∗j
∏
i∈Z∗j

xi, and xn ∈ RD, yn ∈ R, β∗j ∈ R, Z∗j ⊂ {1, . . . , D},

for n = 1, . . . , N, j = 1, . . . , J.

In the above Θ∗ represents the true parameter for the conditional density f ∗(y|x) that
generates data sample yn given xn, for n = 1, . . . , N . On the other hand, the statistical
modeler has access only to the MiFM:

Z ∼ FFMα(γ1, γ2), vik|µk, λk ∼ N (µk,
1

λk
) for i = 1, . . . , D; k = 1, . . . , K,

yn|Θ ∼ N (y(xn,Θ), σ), where y(x,Θ) :=
J∑
j=1

K∑
k=1

∏
i∈Zj

xivik,

for n = 1, . . . , N, and Θ = (Z, V ).

(5.7)
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We omitted linear terms in the MiFM since they can naturally be parts of the interaction
structure Z and discarded hyperpriors for the ease of representation. Now we show that
under some conditions posterior distribution Π will place most of its mass on the true
conditional density f ∗(y|x) as N →∞.

Theorem 5.1. Given any true conditional density f ∗(y|x) given by (5.5), and assuming that

the support of f ∗(x) is bounded, there is a constant K0 < J such that by setting K ≥ K0,

the following statement holds: for any weak neighborhood U of f ∗(y|x), under the MiFM

model (5.7), the posterior probability Π(U |(Xn, Yn)Nn=1)→ 1 with P ∗-probability one, as

N →∞.

A key part in the proof of this theorem is to clarify the role of parameter K, and the
fact that under model (5.7), the regression coefficient βj associated with interaction j is
parameterized by βj :=

∑K
k=1

∏
i∈Zj vik, for j = 1, . . . , J , which for some suitable choice

of Θ = (Z, V ) can represent exactly the true parameters β∗1 , . . . , β
∗
J , provided that K is

sufficiently large. The following basic lemma is informative.

Lemma 5.2. Let m ∈ [1, J ] be a natural number, βj ∈ R \ {0} for j = 1, . . . ,m. Suppose
that the m subsets Zj ⊂ {1, . . . , D} for j = 1, . . .m have non-empty intersection, then as
long as K ≥ m, the system of polynomial equations

K∑
k=1

∏
i∈Zj

vik = βj , j = 1, . . . ,m (5.8)

has at least one solution in terms of v11, . . . , vDK such that the following collection of K
vectors in Rm, namely, {(∏i∈Z1

vik, . . . ,
∏

i∈Zm vik), k = 1, . . . , K} contains m linearly
independent vectors.

Proof. Let i0 be an element of the intersection of all Zj , for j = 1, . . . ,m. We consider
system (5.8) as linear with respect to {vi01, . . . , vi0K}, where corresponding coefficients
are given by

∏
i∈Zj\{i0} vi,k, which we can pick to form a matrix of nonzero determinant.

Hence by Rouché–Capelli theorem the system has at least one solution if K ≥ m and, since
βj 6= 0 for ∀j, the resulting {(∏i∈Z1

vik, . . . ,
∏

i∈Zm vik), k = 1, . . . , K} contains at least
m linearly independent vectors.

Lemma 5.1. Given natural number J ≥ 1, βj ∈ R \ {0} and Zj ⊂ {1, . . . , D} for

j = 1, . . . J , exists K0 < J : ∀K ≥ K0 system of polynomial equations (5.8) has at least

one solution in terms of v11, . . . , vDK .
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Proof. The proof proceeds by performing an elimination process on the collection of
variables vik according to an ordering that we now define. Let Ji = card({Zj|i ∈ Zj}) for
i = 1, . . . , D. Define J0 = min

i
Ji and i0 = argmin

i
Ji. If K ≥ J0 by Lemma 5.2 we can

find a solution of the reduced system of equations

K∑
k=1

∏
i∈Zj

vi,k = βj , j ∈ {j|i0 ∈ Zj},

while maintaining the linear independence needed to apply Lemma 5.2 again further. Now
we know that we can find a solution for equations indexed by {j|i0 ∈ Zj}. We remove them
from system (5.8) and recompute J1 = min

i 6=i0
Ji and i1 = argmin

i 6=i0
Ji to apply Lemma 5.2

again. Iteratively we will remove all the equations, meaning that there is at least one solution.
Note that Ji are decreasing since whenever we remove equations, number of Zjs containing
certain i can only decrease. Therefore, we will need K ≥ K0 := max(J0, J1, . . . , 0) in
order to apply Lemma 5.2 on every elimination step.

From the proof of Lemma 5.1, it can be observed that K0 = max(J0, J1, . . .) � J

when we anticipate only few interactions per variable, whereas the upper bound K0 = J − 1

is attained when there are only (D − 1)-way interactions. Now we are ready to present a
proof of the main theorem.

Proof. (of main theorem). By Lemma 5.1 and the fact that the probability of a finite number
of independent continuous random vectors being linearly dependent is 0 it follows that under
the MiFM prior on V as in (5.7) and ∀β1, . . . , βJ ∈ R \ {0}, distinct Z1, . . . , ZJ and ε > 0

Π

 J∑
j=1

(βj −
∑
k

∏
i∈Zj

vik)
2 < ε |Z1, . . . , ZJ

 > 0. (5.9)

From Eq. (5.6) it follows that for any Z1, . . . , ZJ , the prior probability of the corresponding
incidence matrix is bounded away from 0. Combining this with (5.9), we now establish that
the probability of the true model parameters to be arbitrary close to the MiFM parameters
under the MiFM prior as in (5.7):

Π

(
J∑
j=1

βj −
J∑
j=1

∑
k

∏
i∈Zj

vik)
2 < ε

 > 0, ∀ε > 0. (5.10)

We shall appeal to Schwartz’s theorem (cf. Ghosal et al. (1999)), which asserts that the
desired posterior consistency holds as soon as we can establish that the true joint distribution
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P ∗(X, Y ) lies in the Kullback-Leibler support of the prior Π on the joint distribution
P (X, Y ). That is,

Π (KL(P ∗||P ) < ε) > 0, for ∀ε > 0. (5.11)

Since the KL divergence of the two Gaussian distributions is proportional to the mean
difference, we have (E∗X denotes expectation with respect to the true marginal distribution
of X)

KL(P ∗||P ) ∝ E∗X
1

2
(y(X,Θ)− y(X,Θ∗))2 ∝

E∗X(
J∑
j=1

βj
∏
i∈Zj

xi −
J∑
j=1

∑
k

∏
i∈Zj

vikxi)
2 . (

J∑
j=1

βj −
J∑
j=1

∑
k

∏
i∈Zj

vik)
2.

(5.12)

Due to (5.10) this quantity can be made arbitrarily close to 0 with positive probability.
Therefore (5.11) and then Schwartz theorem hold, which concludes the proof.

5.B Analyzing FFMα

5.B.1 Model definition and exchangeability

Here we remind the reader the construction of FFMα — the distribution over finite collection
of binary random variables that we used to model interactions. Let D be the number
of variables in the data and Z ∈ {0, 1}D is j-th interaction (subscript j is dropped to
simplify notation). Let σ(·) be a random uniform permutation of {1, . . . , D} and let σ1 =

σ−1(1), . . . , σD = σ−1(D). Note that σ1, . . . , σD are discrete random variables and P(σk =

i) = 1/D for any i, k = 1, . . . , D. Next recall FFMα from Eq. (5.6):

P(Zσi = 1|Zσ1 , . . . , Zσi−1
) = αMi−1+(1−α)(i−1−Mi−1)+γ1

i−1+γ1+γ2
,

P(Zσi = 0|Zσ1 , . . . , Zσi−1
) = (1−α)Mi−1+α(i−1−Mi−1)+γ2

i−1+γ1+γ2
,

where γ1 > 0, γ2 > 0, α ∈ [0, 1] are given parameters and Mi = Zσ1 + . . . + Zσi . Due to
the random permutation of indices, distribution of Z1, . . . , ZD is exchangeable because any
ordering of variables entering the process has same probability. Next, we need to integrate
the permutation part out to obtain a tractable full conditional representation.
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5.B.2 Gibbs sampling for FFMα and distribution of interaction depths
MD

To construct a Gibbs sampler for the the FFMα we will use an additional latent variable
- index of the variable entering the process last, σD. Additionally observe that when
permutation is integrated out P(Z1, . . . , ZD) = P(MD = Z1 + . . .+ZD) since P(MD = m)

is precisely the summation over all possible orderings of Z1, . . . , ZD such that Z1 + . . .+

ZD = m.

P(σD = i|Z1, . . . , ZD) ∝

ZiP(σD = i|ZσD = 1, Z)P(ZσD = 1|MD−1 =
D∑
k=1

Zk − 1)P(MD−1 =
D∑
k=1

Zk − 1)+

+ (1− Zi)P(σD = i|ZσD = 0, Z)P(ZσD = 0|MD−1 =
D∑
k=1

Zk)P(MD−1 =
D∑
k=1

Zk),

(5.13)

then if Zi = 1 and
∑D

k=1 Zk = m we obtain

P(σD = i|Z−i, Zi = 1) = P(σD = i|MD = m,Zi = 1) =

=
P(MD−1 = m− 1)P(ZσD = 1|MD−1 = m− 1)

mP(MD = m)
,

(5.14)

where P(ZσD = 1|MD−1 = m− 1) and P(ZσD = 0|MD−1 = m) can be computed as in Eq.
5.6. Our next step is to analyze probability P(MD = m). Indeed it is easy to obtain this
distribution recursively:

P(MD = m) = P(MD−1 = m)P(ZσD = 0|MD−1 = m)+

+ P(MD−1 = m− 1)P(ZσD = 1|MD−1 = m− 1).
(5.15)

The base of recursion is given by the following identities:

P(M0 = 0) = 1,

P(Mi = 0) =
i−1∏
k=0

α(i− 1− k) + γ2

k + γ1 + γ2

=
i−1∏
k=0

αk + γ2

k + γ1 + γ2

,

P(Mi = i) =
i−1∏
k=0

αk + γ1

k + γ1 + γ2

.

(5.16)

The above formulation allows us compute P(Mi = k), D ≥ i ≥ k dynamically (com-
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putations are very fast since we only need to perform (D+1)(D+2)
2

− 1 calculations) before

running MiFM inference and utilize the table of probabilities during it. The last step of the
Gibbs sampler is clearly the update of the Zi|σD = i, Z−i which is done simply using the
FFMα definition 5.6. Recall Figure 1 (a) of the main text which illustrates the behavior of∑

i:Z
(k)
i =0

P(Z
(k+1)
i = 1, σD = i|Z(k)) = P(ZσD = 0|Z)P(Zi = 1|σD = i, Z−i),

and since we choose index of a variable to update based on the probability of it being last,
the expression above reads as the probability that we choose to update a variable not present
in the interaction and then add it to the interaction, therefore increasing the depth of the
interaction.

5.B.3 Mean Behavior of the FFMα

From Eq. (5.15) it follows that

EMD =
D∑

m=0

mP(MD = m) =

=
1

D − 1 + γ1 + γ2

{
(1− 2α)EM2

D−1 + (α(D − 1) + γ2)EMD−1+

+ (2α− 1)E(MD−1 + 1)2 + ((1− α)D − α + γ1)E(MD−1 + 1)

}
=

1

D − 1 + γ1 + γ2

{
EMD−1(D + 2α + γ1 + γ2 − 2) +D(1− α) + α + γ1 − 1

}
.

(5.17)

For α = 0, this relation is simplified to be

(D − 1 + γ1 + γ2)EMD = EMD−1(D + γ1 + γ2 − 2) + (D + γ1 − 1) =

= (D + γ1 − 1) + . . .+ γ1 =
1

2
D(D + 2γ1 − 1).

(5.18)

5.C Gibbs Sampler for the MiFM

Our Gibbs sampling algorithm consists of two parts — updating factorization coefficients
V (based on the results from Freudenthaler et al. (2011)) and then updating interactions Z
based on the analysis of Section 5.B.2. Recall the MiFM model construction. First we have
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a layer of hyperpriors:

σ ∼ Γ(
α1

2
,
β1

2
), λ ∼ Γ(

α0

2
,
β0

2
), µ ∼ N (µ0,

1

γ0

),

λk ∼ Γ(
α0

2
,
β0

2
), µk ∼ N (µ0,

1

γ0

) for k = 1, . . . , K,

Then interactions and their weights:

wi|µ, λ ∼ N (µ,
1

λ
) for i = 0, . . . , D, Z ∼ FFMα(γ1, γ2),

vik|µk, λk ∼ N (µk,
1

λk
) for i = 1, . . . , D; k = 1, . . . , K,

And finally the model’s likelihood from Eq. (5.3)

yn|Θ ∼ N (y(xn,Θ),
1

σ
), where

y(x,Θ) := w0 +
D∑
i=1

wixi +
J∑
j=1

K∑
k=1

∏
i∈Zj

xivik,

for n = 1, . . . , N, and Θ = {Z, V, σ, w0,...,D}.

Inference in the context of Bayesian modeling is often related to learning the posterior
distribution P(Θ|X, Y ). Then, if one wants point estimates, certain statistics of the posterior
can be used, i.e. mean or median. In most situations (including MiFM) analytical form of
the posterior is intractable, but with the help of Bayes rule it is often possible to compute it
up to a proportionality constant:

P(Θ, µ, γ, µ1, . . . µK , λ1, . . . , λK |Y ) ∝
N∏
n=1

P(yn|Z, V, σ, w0,...,D)·

· P(Z)P(V |µ1, . . . , µK , λ1, . . . , λK)P(σ, µ, γ, µ1, . . . µK , λ1, . . . , λK).

(5.19)

One can maximize this quantity to obtain MAP estimate, but this is very complicated due
to the combinatorial complexity of interactions in Z and, additionally, often leads to over-
fitting. We use Gibbs sampling procedure for learning the posterior of our model. Due to
normal-normal conjugacy and a priori independence of Z and other latent variables, we can
derive closed form full conditional (i.e. variable given all the rest and the data) distributions
for each of the latent variables in the model.
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Updating hyperprior parameters

σ ∼ Γ
(
α1+N

2
;

∑N
n=1(yn−y(xn,Θ))2+β1)

2

)
, (5.20)

λ ∼ Γ
(
α0+D+1

2
;

∑D
i=0(wi−µ)2+β0

2

)
, (5.21)

µ ∼ N
(∑D

i=0 wi+γ0µ0
D+1+γ0

; 1
λ(D+1+γ0)

)
, (5.22)

λk ∼ Γ
(
α0+D

2
;

∑D
i=1(vik−µk)2+β0

2

)
, (5.23)

µk ∼ N
(∑D

i=1 vik+γ0µ0
D+γ0

; 1
λk(D+γ0)

)
, (5.24)

for k = 1, . . . , K.

Updating factorization coefficients V For updating coefficients of the model we can
utilize the multi-linear property also used for the Factorization Machines MCMC updates
(Freudenthaler et al., 2011). Note that for any θ ∈ {w0, . . . , wD, v11, . . . , vDK} we can
write y(x,Θ) = lθ(x) + θmθ(x), where lθ(·) are all the terms independent of θ and mθ(·)
are the terms multiplied by θ. For example, if θ = w0, then mθ(x) = 1 and lθ(x) =∑D

i=1wixi +
∑J

j=1

∑K
k=1

∏
i∈Zj xivik. Next we give updating distribution that can be used

for any θ ∈ {w0, . . . , wD, v11, . . . , vDK}.

θ ∼ N (µ∗θ, σ
2
θ),where σ2

θ =

(
σ

N∑
n=1

mθ(xn)2 + λθ

)−1

,

µ∗θ = σ2
θ

(
σ

N∑
n=1

(yn − lθ(xn))mθ(xn) + µθλθ

)
,

(5.25)

and µθ, λθ are the corresponding hyperprior parameters.

Updating interactions Z Posterior updates of Z can be decomposed into prior times the
likelihood:

P(Zi|Z−i, V, Y ) ∝ P(Zi|Z−i)P(Y |V, Z), (5.26)

where second part is the Gaussian likelihood as in Eq. (5.3). To sample Zi|Z−i we use the
construction from Section 5.B, where we first sample the value of ZσD for fixed j:

P(ZσD = 1|Z) = P(σD = i|MD = m,Zi = 1) =

=
P(MD−1 = m− 1)P(ZσD = 1|MD−1 = m− 1)

P(MD = m)
,

(5.27)
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and then uniformly choose and index i to update among {i : Zi = ZσD}. Next Zi can simply
be updated using the process construction 5.6 assuming it to be last. Recall that P(MD = m)

should be computed beforehand using Eq. (5.15).
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CHAPTER 6

Conclusions and suggestions

In this thesis we have investigated inference and modeling of latent geometric structures
arising in topic modeling. We have also proposed a Bayesian hierarchical approach for
interaction selection in the supervised setup. Our contributions can be summarized as
follows:

• Geometric formulation of the Latent Dirichlet Allocation.

• Geometric procedure for estimating topic proportions given a topic simplex.

• Fast parametric geometric algorithm based on the analysis of Centroidal Voronoi
Tessellation of a topic polytope.

• Fast nonparametric geometric algorithm based on the analysis of the concentration of
mass inside the topic simplex and its coverage with suitable cones and spheres.

• New model for temporal dynamics of the topic polytope and corresponding online
and distributed inference algorithm.

• Novel Bayesian hierarchical model for supervised adaptive selection of interactions
of arbitrary order among predictor variables.

Our results are majorly related to Latent Dirichlet Allocation and topic modeling,
however we believe that geometric viewpoint may lend itself naturally for improving
inference in other models and applications. Next we summarize some important directions
and open questions of future and ongoing work.

6.1 Going beyond discrete data

Latent Dirichlet Allocation is a model of discrete data, e.g., word frequencies in text
documents. On the other hand, algorithms proposed in Chapters 2 and 3 are not restricted
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to discrete domain. Moreover, only requirement for performing algorithmic steps is the
ability to evaluate inner product between data points. Therefore it may be possible to extend
our algorithms to domain of reals and even functions (Ramsay, 2006). Furthermore it is
of interest to consider distributions as data points, e.g., short documents equipped with
uncertainty "balls" to better account for the noise.

6.1.1 Simplex Nest: geometric admixture modeling

In the ongoing work we explore extension of LDA to the data in the domain of reals,
which we call the Simplex Nest model. Below are model, objective function and algorithm
sketches.

6.1.1.1 Model Description

Let β1, . . . , βK ∈ RV be the vertices of the nest and B := Conv(β1, . . . , βK) the corre-
sponding nest. Note that unlike LDA, vertices are not constrained to be in unit simplex and
V is simply a notation for data dimension. An observation wm, m = 1, . . . ,M is generated
as follows:

θm ∼ DirK(α), (6.1)

pm :=
∑K

k=1 βkθmk an offspring is born, (6.2)

wm|pm ∼ F (·|pm) offspring leaves the parent nest. (6.3)

When F (·) is Multinomial and β1, . . . , βK are constrained to unit simplex, we recover
the classic LDA model. Gaussian likelihood kernel could be a natural choice for many
applications.

6.1.1.2 Objective function

Our goal is to simultaneously study the topics of each document and cluster the documents
(in topic modeling terms), which we assume to have at most k clusters. To do such, we
utilize the idea of Geometric Dirichlet Mean (GDM) of Chapter 2. Our objective is as
follows:

M∑
m=1

Nmd
2(wm, B) +W 2

2 (
1

M

M∑
i=1

δw̃m , H) (6.4)

where w̃m = arg min
x∈B

‖x− wm‖ for 1 ≤ m ≤ M , i.e., w̃m is the projection of wm on B;

H ∈ Ok(B) is the set of probability measures with at most k atoms, and d2(wm, B) =
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inf
x∈B
‖x− wm‖2 for 1 ≤ m ≤M . We want to minimize w.r.t. B and H . Algorithm 6.1 is an

intuitive geometric approach for solving the problem when k = K.

Some intuition First term in the objective is the Geometric objective of GDM (Eq. (2.3)).
It evaluates how close the simplex B is to the data. Second term can be thought of as
k-means objective of the projected points, hence it penalizes the volume (and dimension if
we try to go nonparametric) of B. Since there are no constraints on β1, . . . , βK , penalizing
volume is crucial. Without it, the problem is simply selecting a sufficiently large B in the
SVD subspace.

Algorithm 6.1 Geometric Admixture Nesting
Input: observations w1, . . . , wM ; K; extension parameters m1, . . . ,mK

Output: simplex vertices β1, . . . , βK
1: C = 1

M

∑
mwm {find data center}

2: µ1, . . . , µK = kmeans(w1, . . . , wM ) {initialize atoms of H}
3: while objective 6.4 not converged do
4: Sk = {m : argmin

k=1,...,K
‖wm − µk‖2

2 = k} for k = 1, . . . , K{get data partitioning

according to H}
5: Ck := 1

|Sk|
∑

m∈Sk wm for k = 1, . . . , K

6: βk := C +mk(Ck − C) for k = 1, . . . , K {update simplex as in GDM}
7: µk := 1

|Sk|
∑

m∈Sk w̃m {update atoms of H}
8: end while

6.2 Geometric Inference as a general approach

Graphical model formalism and correspondingly variational inference and MCMC offer
unifying inference approach for many Bayesian hierarchical models. We have shown that
taking geometric viewpoint may lead to more efficient inference, however developing formal
geometric viewpoint of a general class of Bayesian hierarchical models remains to be
an open and very challenging question. Zoubin Ghahramani in his 2004 review paper
of unsupervised learning (Ghahramani, 2004) referred to creating MCMC methods as a
form of art. Nowadays probabilistic programming languages can automatically perform
inference for large class of models, e.g. STAN (Carpenter et al., 2016) based on a variant
of Hamiltonian Monte Carlo (Hoffman & Gelman, 2014) and automatic differentiation
variational inference (Kucukelbir et al., 2017). However, before sufficiently deep level of
understanding was achieved and automatic approaches developed, the art of MCMC and
variational inference had to be carried out many times for numerous models. We think that
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before considering geometric inference on a higher level of modeling abstraction, it is crucial
to solve the geometric puzzle locally, for a variety of models, to gain understanding. Cases
that appear particularly interesting are mixture models, when the latent geometric structure
is no longer a polytope, demanding for different approaches for exploring concentrations of
points in space; Correlated Topic Models (Blei & Lafferty, 2006a), when distribution inside
the polytope offers new challenges; supervised and semi-supervised problems.

We think that angular geometric approach proposed in Chapter 3 may be extended to
the case of mixture models. Particularly it is fascinating how complex high dimensional
structure can be visually observed on a series of 2D plots as in Figure 3.2. Understanding how
corresponding plots would look like for mixture models may allow for efficient geometric
algorithms. Another interesting direction along the same lines is to investigate distributions
of cosine distances and norms. Recall the directional representation from Chapter 3, where
∆V−1

0 := {x ∈ RV |x + Cp ∈ ∆V−1}, bk := βk − Cp ∈ ∆V−1
0 for k = 1, . . . , K, p̃m :=

pm − Cp ∈ ∆V−1
0 for m = 1, . . . ,M and Cp is a point inside the topic polytope B. The

random variables of interest are Zjm := 1 − cos(bj, p̃m) and rm := ||p̃m||2 for some
topic j and document m. Analyzing joint distribution of (Zjm, rm) may provide insights for
mixtures similar to Figure 3.2. For Latent Dirichlet Allocation, suppose Cp is a circumcenter,
then circumradius R := ||bk||2 for any k = 1, . . . , K. Hereafter we omit document index m.

Distribution of Zj|r

Zj = 1− cos(bj, p̃) = 1− <bj ,
∑
k θkbk>

Rr
=

1−
∑
k 6=j θk<bk,bj>+θjR

2

Rr
=

1− R
r

(∑
k 6=j θk cos(bk, bj) + θj

)
. (6.5)

If all topics are orthogonal we can simplify Zj = 1 − R
r
θj . Marginal distribution of

θj ∼ Beta(αj, α0 − αj), where α0 :=
∑

k αk. Using change of variables we can obtain

fZj |r(x) =
( r
R

)αj 1

B(α0 − αj, αj)
(1− x)αj−1

(
x
r

R
+ (1− r

R
)
)α0−αj−1

(6.6)

If r = R, then Zj|r = R ∼ Beta(α0 − αj, αj). Recall that small values of Zj correspond to
document being close in angle to topic j. Hence, when r = R and αj > α0 − αj , document
is close to the topic j, which is also true from the Dirichlet distribution perspective of topic
proportions θ.
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Distribution of r Distribution of r is a sum of dependent random variables r2 =
∑V

i=1 p
2
i .

Burghouts et al. (2008) analyzed such distributions based on the results from extreme value
theory. Each pi is bounded, therefore, based on Theorem 1 of Burghouts et al. (2008), r is a
Weibull-distributed random variable:

fr(y) =
γ

σ

(y
σ

)γ−1

exp
(
−
(y
σ

)γ)
(6.7)

We can obtain the joint distribution of (Zj, r) by combining the two results.

6.3 Modeling geometry

There are two main directions that we would like to outline in this section.

Modeling latent geometric structures. Ability to do computations in parallel is crucial
for design of many scalable approaches. E.g., divide-and-conquer is concerned with learning
posterior estimates of data batches and aggregating them to obtain overall posterior estimate.
Broderick et al. (2013) have proposed similar framework for variational inference. Large
datasets often have vast amount of metadata associated to them, which may allow for
more principled data partitioning. In Chapter 4 we utilized that scientific articles may be
partitioned by journals and year, similarly news articles may be partitioned by publisher
and day, and tweets by location and minute to form data batches of manageable size. Then
for each of the batches we used CoSAC to extract topics. More generally, at a granular
scale, for a fixed time point and location, it is reasonable to believe that a simple approach
is sufficient to learn the patterns in a batch of data. Depending on the application, for
explaining batch pattern descriptors, one can consider mixture models of various kinds
(McLachlan & Peel, 2004), component analysis (Jolliffe, 1986; Hyvärinen et al., 2004), etc.
Correspondingly, pattern descriptors could be mixture components means, components of
Principal Component Analysis or latent factors of Factor Analysis.

Modeling pattern descriptors may even be a necessity when data privacy is a concern.
Merugu & Ghosh (2005) defined a model integration problem for distributed setting where
only pattern descriptors for each of the data sources are available due to privacy issues.
They proposed using mixture of Gaussians for parametric model integration. We think
that mixture is not an appropriate model for pattern descriptors in many cases. Pattern
descriptors are often ought to be distinct (e.g., topics, principal components, etc.) and
therefore should originate in distinct global patterns. Mixture model based inference violates
this constraint as multiple pattern descriptors of a single batch may be assigned to the same
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global descriptor. In Chapter 4 we proposed a series of models based on the Beta-Bernoulli
processes for modeling dynamic topics and accounting for their distinctiveness. We noted
that the latent geometric structure of interest is solely encoded in the base measure H (recall
Eq. (4.1)). It is of interest to continue exploring choices of H for other geometric structures
such as collections of mixture components, principal components, etc. Once an appropriate
base measure is constructed, our models can be utilized to do dynamic and distributed
learning amendable to large data sizes.

Developing geometric priors. The Dirichlet prior on topics of the Latent Dirichlet Al-
location plays a regularization role (Blei et al., 2003) and does not contain any semantic
meaning. In Chapter 3 we introduced notion of the angular separation, which is in agreement
with theoretical results of Nguyen (2015), who showed that topic polytope can be consis-
tently estimated without knowing true number of topics, provided that minimum distance
between topics is bounded away from zero. These results suggest that it is of interest to
construct a geometric prior on topic polytope enforcing well separated vertices. It would
also make sense semantically, as topics in practice are desired to be distinct. Tang et al.
(2014) mentioned that imposing certain geometric constraints through the prior specification
could improve posterior contraction behavior.

One of the directions to achieve separation in the prior is to consider repulsive prior,
studied by Petralia et al. (2012) for the case of mixtures. Another approach is "diversity-
promoting" modeling (Xie et al., 2016). A geometrically appealing idea is to develop
priors on the pairwise distance matrix of the topic simplex vertices, which would allow to
directly control the separation. Such matrix is a key object of interest in the field of Distance
Geometry (Blumenthal, 1970; Liberti et al., 2014; Liberti & Lavor, 2016). Additionally,
this distance matrix can be used to infer almost any geometric property of the simplex: its
determinant, known as Cayley-Menger determinant, can be used to compute volume of the
simplex, its minors can be used to find the incenter barycentric coordinates, etc.

6.4 Inference of dynamic latent geometric structures

Models that we proposed in Chapter 4 open up a series of inference challenges. We explored
an online MAP estimation procedure without revisiting the past. In some cases it could be
of interest to solve the problem when all the data is available at once, i.e. to find the global
MAP estimate or even the posterior distribution. For Gaussian distributions the problem
of global MAP estimation can be addressed via Kalman filtering (Grewal, 2011), but the
problem becomes more challenging in the case of the Von Mises-Fisher dynamics used
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in our work. Next, even for a case of Gaussian dynamics, the mix-matching introduces
extra layer of complexity in the context of global MAP estimation. Potential approach is to
combine ideas of Kalman filtering and Viterbi algorithm (Viterbi, 1967) to solve the joint
problem, starting from a simpler Gaussian dynamics case. Different approach, additionally
allowing for posterior inference, is particle filtering (Doucet & Johansen, 2009). Lastly, it is
of interest to consider repulsive priors idea (Petralia et al., 2012; Xie et al., 2016) in the base
measure initial state of the dynamics, such that the topic discovery may be done in a more
principled way, replacing the geometric heuristic we employed.

6.5 Visualization, inference and modeling of the interac-
tions

Visualization. The question of identifying interactions arises often in applied sciences.
While working as a consultant in Consulting for Statistics, Computing and Analytics
Research (CSCAR), I had met multiple clients who could benefit from the capabilities of
the MiFM (Chapter 5). Applied researchers often lack sufficient programming experience to
dive into the Python code on their own. Posterior estimate produced by the MiFM is rich in
structure, and even with enough Python experience it may be challenging to navigate through
it. We think that a visualization engine for the MiFM posterior could be of broad interest in
the applied sciences and in business analytics to drive marketing and sales insights.

Inference. We have investigated some of the density estimation properties of the MiFM
posterior (i.e., Theorem 5.1). However, some of the important questions concerning the
properties of the posterior distribution remain open. Suppose there is a true interaction
structure, then we want to know if this structure is identifiable and how well corresponding
posterior mode approximates it. We have shown in Figure 5.2 (d) that proportion of correctly
identified interactions empirically is related to the nature of the predictor variables. We think
that analyzing the case of binary predictor variables is a promising direction to continue this
line of thinking.

Modeling. In Section 5.3.3 we have discussed how MiFM can be applied to categorical
variables. We chose to use categories in the hypergraph of interactions, but allowed for
different coefficients for the attributes. It may be of interest to consider extending MiFM to
capture interactions among attributes in the hypergraph of interactions. For instance, this can
be done by adding an extra layer, where given that category is active in the interaction, one
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of the attributes is chosen according to Categorical distribution parametrized by a probability
vector with Dirichlet prior.

In the MiFM, an interaction was mapped into its numerical realization via cumulative
product of the feature values. This is a common way of representing an interaction in the
regression setting. Meanwhile, idea of modeling hypergraph of interactions via our FFMα

construction may be used broader, for example in the factor graph context (Ghahramani,
2004). Additionally, function class for interactions may be extended to monomials by
allowing for integer values in the hypergraph of interactions matrix representation (e.g.,
by adopting Beta-Negative Binomial Process construction (Zhou et al., 2012)). Finally, a
thorough understanding of the fully nonparametric version of the FFMα is of interest, that
is, when the number of columns is taken to infinity. Such understanding may lead to an
extension of the IBP and new modeling approaches in various domains.
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