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ABSTRACT

New predictions regarding the role of color flow in high energy Quantum Chro-
modynamics (QCD) processes have emerged in the last decade. Novel effects due
to the non-Abelian nature of QCD have been predicted and are just now accessible
experimentally due to significantly improved facilities that are able to measure multi-
differential observables. High energy proton-proton collisions provide a testing ground
to study nonperturbative QCD in a regime where perturbative calculations should
be applicable; thus theoretical tools within a perturbative framework can be used to
probe and constrain nonperturbative functions and effects in QCD. In particular, the
role of color flow is now being explored through many different observables throughout
various subfields of QCD; one such observable is nearly back-to-back hadron correla-
tions in proton-proton collisions which are predicted to be sensitive to states that are
entangled via their QCD color charge.

The PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) is well suited
to study potential effects from color flow. In 2013 and 2015 the PHENIX experiment
recorded data from proton-proton and proton-nucleus collisions. Angular correlations
between two nearly back-to-back hadrons or a direct photon and hadron are mea-
sured to study the prediction of color entanglement; this refers to a novel entangled
state of the two hard-scattering partons across the colliding hadronic system. These
correlations can be treated in a transverse-momentum-dependent framework where
sensitivity to these non-Abelian effects from color are predicted. The measurements
presented here are the first ever to search for experimental evidence of these entangled

states and furthermore will help establish color flow in hadronic interactions as a new

xxi1



area of focus within QCD research.

Results are presented for proton-proton collisions at center-of-mass energies of 200
and 510 GeV and proton-nucleus collisions at nucleon-nucleon center-of-mass energies
of 200 GeV. World measurements of processes where factorization is predicted to hold
are also compiled and analyzed to compare to the new experimental results presented
here. The measured results, which include the first measurements of nonperturbative
momentum widths in processes predicted to break factorization, do not indicate any
obvious qualitative differences from observables where factorization is predicted to
hold. This indicates that quantitative comparisons with phenomenological calcula-
tions will be necessary to identify the magnitude of effects from color entanglement.
Future calculations will therefore have the opportunity to establish the magnitudes
of non-Abelian color effects in hadronic collisions with comparisons to these results.
In addition, future measurements of similar observables have the potential to fur-
ther identify nontrivial effects from color interactions and color entangled states in
hadronic collisions. As QCD is the only non-Abelian quantum field theory known to
exist in nature that admits bound states, it will be essential to continue exploring
unique QCD phenomena due to color interactions in controlled ways in the coming

years.
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CHAPTER I

Introduction

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD), the fundamental theory of the strong force, is
the non-Abelian gauge invariant quantum field theory which describes the interactions
between quarks and gluons. The QCD Lagrangian is shown in Eq. 1.1 and is analogous
to the Quantum Electrodynamics (QED) Lagrangian

- 1

EQCD = 1/1(i7“Du — m)w — Ga Géw. (11)

4 - m

Here ¢ is a spin 1/2 fermion quark field, D, is a covariant derivative defined by
D, = 0, +it* A5, and G, is the spin 1 boson gluon field tensor [1]. The gluon field
tensor is expressed in terms of the gluon field A, defined as

G, = 0,A — 0,A% — fag, ALA] (1.2)

pivo

where f,p, are the structure constants of the SU(3) gauge group. While the La-
grangian as written in Eq. 1.1 looks identical to the QED Lagrangian, the final term
in the gluon field tensor is the reason that QCD is fundamentally so different from
QED; the gauge boson which mediates the strong nuclear force can interact with itself

in addition to the fermions of the theory, unlike the photon in QED.



The symmetry structure of QCD is described mathematically with the SU(3)
gauge group in which there are 8 generators, in this case 3x3 matrices, denoted by t*
in the covariant derivative definition above. The generators satisfy the commutation
relations of the group in conjunction with the structure constants, [t*, %] = i f*#7¢".
Physically this group corresponds to a theory in which there is an additional quantum
number called color. Color charge is the QCD analogue to electric charge in QED; in
SU(3) this quantum number can take on three different values, cleverly named red,
green, and blue. However, it is important to emphasize that these have no relation
to the actual visible color spectrum. Interestingly in QCD the gauge boson also
carries this quantum number, while in QED the photon does not carry any electric
charge. Based on the generator structure, there are eight linearly independent color
combinations gluons can carry, while quarks carry one of the three color charges. The
eight generators of the group, or physically the color combinations that gluons carry,
encode the fact that a gluon’s interaction with a quark rotates the quark’s color in
SU(3) space.

There is also an additional SU(3) flavor symmetry which arises due to the small
mass of the lightest quarks (up, down, and strange). The quarks are classified into
3 generations, where up and down quarks comprise generation 1, charm and strange
quarks comprise generation 2, and top and bottom quarks comprise generation 3.
The unique features described above in QCD, such as the gluon self coupling and
color charges, which differentiate it from QED led to the concepts of confinement and
asymptotic freedom, for which the Nobel prize was awarded in 2004 [2, 3]. This was
the symbolic closure of the initial development period of QCD, and cemented the

theory as the correct theory of the strong force.



1.1.1 Asymptotic Freedom

Both QCD and QED are characterized by a scale dependent coupling constant
which depends on the energy scale of the interaction. Running coupling constants
can be defined by a beta function, which is a differential equation that must be
solved within the perturbative field theory based on a renormalization scale for which
the theory breaks down. The one-loop running coupling constant in QCD has been

calculated to be [4]

2\ O‘S(NQ)
) = T B (@) (13)

where ;12 defines the scale at which perturbative techniques break down and has been

determined experimentally to be several hundred MeV, and

6_11NC—2nf
O or

Higher order terms have been calculated [4], but to see the dominant behavior only the
one-loop term is necessary. In the standard model, where N., the number of colors,
is three, and ny, the number of quark flavors, is six, the quantity 3, is dominated
by the color term which comes from the gluon self coupling. This results in a strong
decrease of a, with the momentum transfer Q?, which is referred to as the running
of the strong coupling constant, or asymptotic freedom. The running of «a, confirms
the name of the strong force, namely that it is very strong at small energies but small
enough to apply perturbative techniques at large energies. Figure 1.1 shows world
measurements of a; as a function of momentum transfer, which agree excellently with
perturbative calculations [4]. At low energies less than several GeV a, becomes large
and thus perturbative expansions in a, break down.

Asymptotic freedom allows the use of perturbative techniques when processes

are “hard,” or have a large momentum transfer such that the coupling constant a
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Figure 1.1: World measurements of the strong coupling constant «, are shown over
a wide range of momentum transfers, taken from Ref. [4]. Perturbative
calculations agree well with data.

is small. When the coupling constant is large, nonperturbative or “soft” processes

dominate and quarks and gluons, collectively referred to as partons, can no longer be

treated as free particles within the field theory. At this point partons hadronize into
color neutral mesons and baryons, which are a quark-antiquark and a three quark
state, respectively. These are the stable QCD bound states that are observed in
nature. This occurs because as the distance between two partons becomes large, the
energy carried by the gluon fields exceeds the threshold necessary to spontaneously
create matter; thus, partons are created which hadronize into bound states. This is
referred to as confinement and is why free partons cannot be observed. Ultimately
the properties of the baryons and mesons, collectively referred to as hadrons, are
generated nonperturbatively and depend on the long distance behavior of QCD. Thus,
it is necessary to construct a formalism which relates the degrees of freedom of the
gauge invariant field theory to the long range nonperturbative degrees of freedom of

the hadrons within QCD.



1.1.2 Confinement and Factorization

As perturbative techniques cannot be used to describe the bound state structure of
hadrons, another method must be used to accurately characterize the nonperturbative
behavior that leads to color neutral hadrons that are observed in nature. To probe
the partonic structure of matter, high energy collisions are typically used so that
perturbative QCD can be applied. Some typical interactions that are studied are
et +e —qg+qg+X,e+p = e +X,and p+p — X, where X refers to
an arbitrary final-state that may or may not include QCD bound states. In any of
these interactions, the cross section, which is the actual physical observable, must
be written in a way that includes both the perturbative interaction as well as the
nonperturbative long range dynamics in both the initial and final states which results
in the measured cross section.

In ete™ — ¢q production, the only nonperturbative QCD behavior is in the final
fragmenting state. The long-range dynamics are written as a parametrization called
the fragmentation function (FF), often denoted D! (z, @*). At leading order (LO) this
is defined as the probability for a given parton ¢ to hadronize into a particular hadron
h, and is to first approximation only a function of the longitudinal momentum fraction
z = pn/p, that the hadron carries with respect to the initial parton’s momentum and
the Q? of the interaction. In e”p — e~ X, or deep-inelastic scattering (DIS), the
hadron in the initial-state must also be parametrized in a similar way. Here the long-
range dynamics are characterized by parton distribution functions (PDFs), and are
often denoted fy/n(z,@*). At LO these are defined as the probability for a certain
flavor of parton ¢ from hadron h to interact in the hard scattering, and is to first
approximation only a function of the longitudinal momentum fraction of the parton
within the hadron x = p,/ps, and the momentum transfer of the process Q*. Both
PDFs and FFs can be intuitively thought of as probability density functions at LO,

and are used to relate the partonic and hadronic degrees of freedom.



Therefore a generic cross section can be written as the convolution of PDFs, FFs,

and a partonic hard scattering cross section which is perturbatively calculable:

dQ?

v

11 1
%52 - Z / //dzld%dmfl/hl (1, Q%) fayny (w2, QQ)da(xbmz’ i ZJ)D?T’(Zl)
000

(1.4)

where the 4,7 indices are a sum over parton flavors in the hadrons. This is known
as a factorization definition, since the long and short distance physics factorizes from
one another, and the generic definition shown here necessarily depends on what kind
of collision is being studied. For example in e* e~ annihilation to hadrons there
would only be FFs and no PDF's as there are no initial-state hadrons in this process.
Factorization necessarily relies on a scale for which one can resolve the PDFs, and
this is called a factorization scale and is generally set to the interaction hard scale
Q?. It can be conceptually thought of as a definition of what is included in the
nonperturbative functions and what is included in the partonic hard function, as
this is in a sense somewhat arbitrary. This scale is often adjusted as an estimate of
theoretical uncertainties which might depend on the choice of what is included in the
hard function and nonperturbative functions. The definition of collinear factorization,
shown here as a function of only the longitudinal momentum fractions, for a particular
process is often assumed, although it has only been rigorously proven in the processes
¢T¢~ — hadrons, ¢p — (+ X, and pp — ¢7¢~ + X [1]. Collinear factorization has not
been rigorously proven to all orders for hadronic collisions where final-state hadrons
are measured, and in fact recent studies have shown that it is broken at the multi-loop
level [5, 6]; however, it is generally assumed to be true and cross section calculations
have been shown to match data with the precision of tens of percent (see e.g. Ref. [7]).
It is important to emphasize that PDF's and FFs are not perturbatively calculable

as they are nonperturbative functions; they require data which can then be used to



constrain fitting procedures that extract the dependence of the functions on x and Q2.
Lattice QCD offers an alternative method to perturbative techniques, where partons
are placed on a three dimensional discrete lattice and interactions between these
partons may be calculated. While many computations still require several caveats,
recent lattice QCD calculations have made significant strides in calculating the full
dependence of certain PDFs [8, 9, 10]. This is in contrast to previous studies which
could only calculate moments of PDFs. Very recently, calculations have even been
able to determine certain PDFs at the physical pion mass [11]; this is a major step
forward for lattice calculations which were previously only possible at unphysical
pion masses of approximately 300 MeV/c2. While lattice calculations are still at
an early stage these recent studies show promising possibilities for future work as
computational power limitations become less of a barrier.

The nonperturbative functions which describe the partonic structure of hadrons
are also taken to be universal functions. This means that a function could be con-
strained with data from one process and then could be used in calculating a cross
section for an entirely different process. For example, FF's could be constrained with
data from e™ e~ annihilation to hadrons; since there are no initial-state hadrons this
makes the determination of the FFs cleaner. These FFs could then be used in a
cross section calculation for a different process, say e p — e~ h + X, also known as
semi-inclusive deep-inelastic scattering (SIDIS). The universality of these functions
has allowed the beyond the Standard Model (BSM) community, for example, to make
predictions for new physics processes at the Large Hadron Collider (LHC). Data from
the HERA electron-proton collider facility has significantly constrained the collinear
PDFs [12] due to the cleaner nature of the DIS interaction, and these PDFs can then
be used for predictions of BSM processes which have been searched for at the LHC.
The universality of certain PDFs and factorization theorems for certain processes will

be one of the focal points of this thesis.



1.2 Nucleon Structure and Spin

1.2.1 Unpolarized Structure

In the previous discussion, the spin of the quarks and gluons is averaged and the
partons are assumed to be moving collinearly with the parent hadron. This is, by
definition, an oversimplification since hadrons are bound states of partons; the un-
certainty principle dictates that there must also be additional transverse degrees of
freedom. As discussed and referenced above, the unpolarized collinear PDF's are quite
well known; recent extractions have well controlled uncertainties down to x ~ O(1073)
(see e.g. Ref. [13]). When the transverse momentum of the partons is explicitly in-
cluded in the definition of the PDF, transverse-momentum-dependent (TMD) PDFs
can be defined. Thus, the collinear PDF definition described above can be extended
to an unpolarized TMD PDF f,,(x, kr, Q*) which is dependent on both the par-
tons longitudinal and transverse momentum degrees of freedom. When transverse
momentum degrees of freedom are integrated over, the collinear unpolarized PDF's
can be recovered; thus TMD PDFs inherently contain more information about the

nonperturbative structure of partons within hadrons.

1.2.2 Polarized Structure

When the spin of the partons and nucleons is considered, there are two other
TMD distributions that also survive integration over transverse momentum; these
are referred to as the helicity distributions for longitudinally polarized partons and
nucleons and the transversity distribution for transversely polarized partons and nu-
cleons. Additionally, when partonic transverse momentum degrees of freedom are
explicitly included in the functions, several new spin-dependent PDFs may be con-
sidered. In sum, at twist-2, or at leading power expansion in the hard scale @,

there are eight TMD PDFs which may depend on spin and partonic longitudinal and



transverse momentum. These functions are shown in a table in Fig. 1.2, where the
three PDF's without a L superscript or T subscript on the diagonal are the only
functions that survive integration over transverse momentum and include the unpo-
larized TMD PDF (f;), the helicity PDF (g;) and the transversity PDF (h;). The
other TMD PDF's manifest themselves as azimuthal modulations, which is why after
integration over kp they become zero by symmetry considerations. It can also be
considered that in the rigorous definition of each TMD PDF| there is a triple-product
term that looks like p - (5’ X ET) Here, p is the boost momentum of the hadron, S
is the spin direction of the parton or nucleon, and kr is the transverse momentum
degree of freedom. Thus, when integrating over kr, this cross product becomes zero

for those TMD PDFs that explicitly depend on kr.
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Figure 1.2: A table showing the eight possible TMD PDFs at twist-2 order, taken
from a talk by Alexei Prokudin at the SPIN 2016 conference. The top
row indicates the polarization of the quark within the nucleon, while the
left column indicates the polarization of the nucleon. The unpolarized,
helicity, and transversity distributions (f1, g1, and hq, respectively) are
the only functions that survive integration over partonic transverse mo-
mentum.




1.2.2.1 Longitudinally Polarized Structure

The helicity distribution functions represent the difference in probability of scat-
tering off of a parton with its spin vector parallel vs. antiparallel with the nucleon
longitudinal spin. The helicity distributions are determined from global analyses of
world data, similarly to the unpolarized collinear PDF's, and can be probed in a va-
riety of high energy collisions. These distributions provide the spin contributions to

the total spin of the nucleon, where the quark contribution is

1 1
1 1 _
AY = 3 Z/dxquz =3 /dmx Agi(z) + Agi(x)] (1.5)
4 o 0
and the gluon contribution is
1
AG = /dmxAg(w). (1.6)

0

A global analysis from 2008 shows the helicity distributions for various quark fla-
vors, as well as the gluon in Fig. 1.3 [14]. The up and down quark distributions
are very well constrained, since in DIS the valence quarks can be accessed at LO.
The anti quark helicity distributions have larger uncertainties as they are grouped
together with the quark distributions since the probing lepton in DIS cannot differ-
entiate between quarks and antiquarks; however, recent results from the PHENIX
and STAR collaborations at the Relativistic Heavy Ion Collider (RHIC) have shown
that the uncertainties on these distributions will be significantly reduced from W=
boson longitudinal single spin asymmetry measurements [15]. This process constrains
antiquark distributions better than DIS since it tags a particular flavor antiquark ex-
plicitly in the creation of the W boson, most notably anti-up and anti-down quarks
since high = valence quarks are likely to be probed at RHIC center-of-mass energies.

In Ref. [14] the gluon helicity distribution is also highly unconstrained since the
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18U The helicity PDFs for several quark flavors and gluons are shown, taken

from Ref. [14].
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gluon cannot be accessed at LO in DIS. The gluon helicity function has been of
immense interest within the nucleon structure community due to the so called “spin
crisis” (see e.g. Ref. [16] for a review). It was largely assumed that the valence
quarks must carry the majority of the nucleon spin //2; however, it is now well
established that they only contribute roughly 30% of the total proton spin. For this
reason determining the gluon spin contribution to the proton has been a top priority
at the RHIC facility as gluons interact at LO in hadronic collisions, and RHIC is
the world’s only hadronic collider facility capable of polarizing proton beams in both
the longitudinal and transverse directions. A recent global analysis has indicated
that gluons may contribute up to roughly 20% of the total proton spin at large
x [17]. Figure 1.4 shows that this is only in the region of 0.05 < z < 1; there are
still significant uncertainties at smaller momentum fractions x where the unpolarized
collinear gluon distribution is known to be quite large. Recent inclusive jet and dijet
measurements from STAR which probe smaller z and have not been included in the
most recent global analyses will almost certainly provide a significant reduction in

these uncertainties.

1.2.2.2 Transversely Polarized Structure

When transverse polarization and partonic transverse momentum degrees of free-
dom are considered, additional PDFs may be defined as described above and shown
in Fig. 1.2. In this figure the subscript 1 refers to leading twist, while the L or T
refers to the polarization of the nucleon. The TMD PDF's are explicitly dependent on
both the partonic longitudinal and transverse momentum, where the initial partonic
transverse momentum is often denoted kp. Each TMD PDF is uniquely defined by a
particular configuration of nucleon and partonic spin. Note that there are also TMD
FFs that can be defined in addition to the collinear FFs, where in the final fragmen-

tation state the function is explicitly dependent on the longitudinal and transverse

12



= T .
%0 %55 NEW FIT |
alr 90% C.L. region' 7

» [ ZmiDssve _

825 i 90% C.L. region!

S 72 [ a Dssv

0.5 7]
B L
o L = -

05 - Q*=10GeV? 5
1 I 1 1 1 1 I 1 1 1 | t L1 1 1 { | - I L1 1 1 I

-0.2 -0.1 -0 0.1 | 0.2 0.3
| dx Ag(x)

Figure 1.4: A recent global analysis of the gluon contribution to the proton spin has
shown that at moderate and large x the gluon contributes roughly 20%
of the total proton spin [17].
momentum, z and jr respectively, of the hadron with respect to the outgoing parton.
For an observable to have sensitivity to TMD PDFs and /or TMD FFs, the observable
must be sensitive to two scales Q2 and ¢y, where Q? is the hard scale of the partonic
interaction and ¢r is a soft scale on the order of Agep such that Agep S gr < Q.
Observables sensitive to TMDs are therefore particularly interesting since they probe
multiple scales.
Transversely polarized proton structure came to the forefront of nucleon structure
physics in the 1970’s when the first measurement of the transverse single spin asym-
metry (TSSA) was made by Ref. [18] in collisions of a transversely polarized proton

with an unpolarized proton. The TSSA is defined by

_d'(¢) —a*(9)
An(9) = (D) T o' () (1.7)

and is a left-right asymmetry measurement as a function of ¢ with respect to the
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transverse spin of the polarized proton. Purely perturbative calculations predicted
that the asymmetry should be very small such that Ay ~ m,/Q where m, is a mass
scale of the interacting quark and Q? is the hard scale of the interaction [19]. The mea-
surement in Ref. [18] was performed at center-of-mass energies of approximately +/s
~ 5 GeV, and found that asymmetries rose to tens of percent at large xp = 2p,/+/s;
this was orders of magnitude larger than the perturbative prediction. This discovery
prompted many future measurements to understand if this result was potentially just
due to the small center-of-mass energies where perturbative calculations were known
to be unrealiable. Nonetheless, a flurry of additional measurements in the last several
decades have shown that the asymmetries persist up to center-of-mass energies of
500 GeV and pr of 8 GeV/¢, well beyond the limit where perturbative calculations
have been successful in describing inclusive hadron cross sections [20, 21, 22, 23, 24].
Figure 1.5 shows a collection of several of these measurements. Nonetheless, neutral
pion asymmetries have been found to be consistent with zero at midrapidity up to
pr ~ 15 GeV/c with excellent statistical precision [25], where perturbative calcula-
tions would be expected to hold. See e.g. Ref. [16] for an extensive list of previous
TSSA measurements. It is also surprising that the TSSA measurements show no
obvious dependence on 4/s; these measurements have indicated that the asymme-
tries must be nonperturbatively generated in the initial and/or final hadronic states.
They also appear to be highly dependent on the rapidity of the final-state hadron,
regardless of the /s or hadron pr.

The measurements in the 1970’s and 1980’s prompted theoretical work on trans-
verse partonic dynamics in the early 1990’s to attempt to explain these surprising
results [26], leading to the birth of the era focusing on parton dynamics in QCD.
Ultimately, two TMD functions were proposed as explanations for the asymmetries:
the Sivers function [27, 28] in the initial state and the Collins function [29] in the

final state. The Sivers function corresponds to a spin-momentum correlation between
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Figure 1.5: A collection of several transverse single-spin asymmetry measurements
showing the surprisingly large dependence on xp and large asymmetries

at large /s [16].

the intial-state nucleon transverse spin and the partonic transverse momentum kr,
while the Collins function corresponds to a correlation between the final-state par-
tonic transverse spin and the hadronic transverse momentum jr. Measurements of
these functions in SIDIS [30, 31, 32, 33, 34] and e e~ annihilation [35, 36] have shown
that both the Sivers and Collins functions give rise to sizeable asymmetries, up to
~15% in the case of the Collins asymmetries in e* e~ annihilation. Measurements in
the Drell-Yan (DY) process, p+p — £7¢~, have shown additional TMD PDFs, such
as the Boer-Mulders function, are nonzero as well [37, 38, 39].

In addition to the TMD framework, the collinear twist-3 framework has also been
used to describe the large TSSA measurements. TMD functions are twist-2 func-
tions, indicating that only the hard scattering of two partons is considered. In the
collinear twist-3 framework, the nonperturbative functions remain dependent on only
the longitudinal momentum fractions; while observables sensitive to TMD functi