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ABSTRACT

When an epidemic moves through a population of hosts, the process of transmission

may leave a signature in the genetic sequences of the pathogen. Patterns in pathogen

sequences may therefore be a rich source of information on disease dynamics. Genetic

sequences may replace or supplement other epidemiological observations. Furthermore,

sequences may contain information not present in other datatypes, opening the possibility

of inferences inaccessible by other means. The field of phylodynamic inference aims to

reconstruct disease dynamics from pathogen genetic sequences.

Although a wide variety of phylodynamic inference methods have been proposed, most

methods for fitting mechanistic models of disease operate in two disjoint steps, first estimat-

ing the phylogeny of the pathogen and then fitting models of disease dynamics to properties

of the estimated phylogeny. Logical inconsistency in demographic assumptions underlying

the two stages of inference may create bias in resulting parameter estimates. Joint inference

of disease dynamics and phylogeny ensures consistent assumptions, but few methods for

joint inference are currently available. The central work of this thesis is a new method for

joint inference of disease dynamics and phylogeny from pathogen genetic sequences. This

likelihood-based method, which we call genPomp, allows for fitting mechanistic models of

arbitrary complexity to genetic sequences.

The organization of this thesis is as follows. In Chapter I, we present background on

the field of phylodynamic inference. In Chapter II, we use simulation to study a two-stage

inference approach proposed by Rasmussen et al. (2011). We find that errors in phylogenetic

reconstruction may drive bias in two-stage phylodynamic inference. This result underscores

the need for methodology for joint inference of the transmission model and the pathogen

phylogeny. In Chapter III, we propose a flexible method for joint inference and demonstrate

the feasibility of this method through simulation and a study on stage-specific infectiousness

x



of HIV in Detroit, MI. This method is comprised of a class of algorithms that use sequential

Monte Carlo to estimate and maximize likelihoods. In Appendix A we show theoretical

support for our algorithms. In Chapter IV, we demonstrate the flexibility of our approach

by developing a model of transmission of Vancomycin-resistant enterococcus in a hospital

setting. To allow for fitting this model to patient-level data we developed a targeted

proposal, detailed in Appendix B. We present exploratory analysis of a hospital outbreak

at NIH that motivates the form of the model, and carry out a study on simulated data.

Although some assumptions of the simulated example are unrealistic, these initial results

will inform future efforts at fitting real data. In Chapter V, we summarize the progress

represented in this thesis and consider possibilities for future work.
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CHAPTER I

Introduction

Grenfell et al. (2004) coined the term phylodynamics, defining it to be the study of how

immunological, epidemiological and evolutionary processes combine to shape pathogen phy-

logenies. This paper called for a synthesis of multiple fields to better understand processes

operating across different scales, from within-host infections to between-host interactions

to population-level dynamics. Thinking broadly across the range of patterns in observed

RNA virus phylogenies, Grenfell et al. (2004) presented what they termed “a phylodynamic

framework”. This framework was in essence a categorization of commonly observed phy-

logenetic shapes coupled with well-reasoned hypotheses about the complex processes that

formed them. In turn, they speculated about the type of inferences one could make about

process from the shape of phylogenies. In order to move beyond a heuristic link between

mechanism and observed phylogeny shape, this paper concluded with a call for research

effort in three areas:

1. A focus on determining the “immunological implications of genetic change in the

virus”.

2. A better understanding of “the quantitative interaction between the strength of the

immune response, the kinetics of viral adaptation, and the timing of transmission”.

3. Work to “establish how epidemic and metapopulation disease dynamics modulate

selective forces [...] to drive long-term phylogenetic patterns”.

The field of phylodynamics therefore encompasses a broad research agenda, and much of

what Grenfell et al. (2004) highlighted as important operates at the level of within-host

processes. At the other end of the spectrum lies the related goal of understanding how

population-level processes, such as disease dynamics and patterns of disease transmission,

operate to shape pathogen phylogenies.
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For patterns of transmission to affect the shape of phylogenies, the rate of pathogen

evolution and the process of transmission must occur on similar timescales. Pathogen pop-

ulations that meet this criteria have been called measurably evolving populations (Drum-

mond et al., 2003). For example, RNA viruses, despite having relatively short genomes,

evolve at a rapid enough rate that their phylogenies may contain a signature of disease

dynamics (Pybus and Rambaut, 2009). In recent years, as the quality of sequencing tech-

nology has improved, the definition of what constitutes a measurably evolving population

has expanded to include populations of bacterial pathogens (Biek et al., 2015). While the

mutation rate of bacteria is lower than that of RNA viruses, the length of whole genome

sequences from bacteria allow for detecting informative mutations over the timeframe of

an outbreak.

Resting on the key the assumption of studying a measurably evolving population, phy-

lodynamic inference aims to infer epidemiological process from patterns in pathogen genetic

sequences. Phylodynamic inference methods include a broad range of goals and techniques;

methods differ not only in mechanics, but also in objective. For example, some methods

aim to estimate the effective population size of infected individuals through time. In some

cases, a simple scaling of effective population size is an adequate proxy for census popula-

tion size. Other methods aim to estimate transmission trees (e.g. Didelot et al. (2014)).

More recently, methods have been developed to fit mechanistic models of transmission to

pathogen genetic sequences. To achieve any of these aims, methods require a means for

relating population dynamics to phylogeny. Below we discuss methods that fall into three

major categories: coalescent-based approaches, birth-death process methods, and feature

matching approaches.

Proposed by Kingman (1982a,b), the coalescent is the basis for many inference ap-

proaches. The coalescent is a backward-in-time approximation for the distribution of trees

that arise from simple forward-in-time models, such as the Moran model (Moran, 1958) and

the Fisher-Wright model (Wright, 1931; Fisher et al., 1999). Extensions to the coalescent al-

low for modeling more complicated population dynamics. Coalescent-based phylodynamic

inference approaches connect models of infectious disease to phylogenies by explicitly spec-

ifying how demographic quantities relate to the distribution of coalescence times of the

phylogeny. Coalescent-based methods for estimation of effective population size through

time are perhaps the most widely-used phylodynamic inference approaches. Methods for

inference of effective population size are often integrated into the software BEAST (Drum-

mond and Rambaut, 2007). In many cases, BEAST allows for joint estimation of phylogeny

and effective population size. Early methods for estimation of effective population size used

simple parametric models, such as constant population size or exponential growth (Kuhner
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et al., 1998; Drummond et al., 2002). While these parametric models are easy to work with,

they lack the flexibility one may desire in modeling more complicated disease dynamics that

are commonly observed, such as seasonality in population size. The Bayesian skyline plot

was one of the first nonparametric approaches for estimating a flexible trajectory of effec-

tive population size through time from a phylogeny (Pybus et al., 2000). This technique

generates a piecewise constant estimate of the effective population size through time, a

trajectory which may resemble a city skyline. The basic ideas underlying this method have

been extended and modified to yield other related approaches. The generalized skyline plot

(Strimmer and Pybus, 2001) smooths the estimate of the effective population size through

time by aggregating adjacent coalecent intervals. The skyride (Minin et al., 2008), and a

yet more flexible version of the skyride, the skygrid (Gill et al., 2013) , both use a Gaussian

Markov random field to smooth the estimate of effective population size. Most recently,

the skygrowth method (Volz and Didelot, 2018) defines the prior for epidemic history in

terms of the growth rate of the effective population size. This prior may be more realistic

for commonly observed disease dynamics than options available in earlier methods.

Birth-death models provide an alternative basis for estimation of effective population

size from phylogeny. Using a birth-death model may be advantageous when the assumptions

of the coalescent are problematic. For example, the coalescent approximation assumes a

small sample from a large population. If the proportion of sampled infections is large

then it may be more appropriate to use a birth-death model. Stadler (2010) derived the

density for a tree with sampled extant and extinct ancestors. This work allowed for using

a birth-death prior for phylogenies in Bayesian inference approaches. In particular, Stadler

et al. (2013) proposed the birth-death Bayesian skyline plot as an alternative to coalescent-

based approaches. Recently, this method was extended to allow for modeling multitype

birth-death processes. This extension allows for modeling structured populations, such as

transmission between metapopulations (Kühnert et al., 2016).

Methods for estimation of effective population size have the advantage of fitting natu-

rally into a Bayesian framework that allows for joint inference of dynamics and phylogeny.

A disadvantage is that effective population size is an abstract quantity that relates to

census population size in a straightforward manner only under idealized models of repro-

duction. Appropriate scaling of effective population size to extract census population size is

therefore not always possible. Furthermore, census population size may not be of primary

interest. In many cases, researchers may instead be interested in understanding underlying

mechanisms that drive observed disease dynamics. Fitting mechanistic models of trans-

mission is an alternative approach to inference that allows for asking a broader range of

questions. Mechanistic models can be carefully formulated to represent a wide range of
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scientific hypotheses.

The coalescent can be used as a basis for fitting mechanistic models of transmission

to phylogenies. For example, Volz et al. (2009) derived a coalescent-based approximation

for relating an SIR model to the coalescent times of a phylogeny. This approximation

served as the basis for a particle MCMC approach presented in Rasmussen et al. (2011).

Furthermore, modifications to this approximation have allowed for fitting more complex

models (Rasmussen et al., 2014).

Birth-death models can also form the basis of fitting mechanistic models of transmission.

For example, the birth-death skyline model can be parametrized so as to approximate a

stochastic SIR model (Kühnert et al., 2014). This approach allows for joint inference of epi-

demiological parameters of interest, such as the basic reproductive number, and phylogeny.

In simulation, Kühnert et al. (2014) demonstrate that this approximation of a stochas-

tic SIR model is sufficient to accurately estimate parameters of interest. However, this

approach allows for fitting an approximation of a specific mechanistic model to sequence

data. Modifying the parameterization of the birth-death skyline model is not a general

strategy for fitting models of arbitrary complexity to sequences of pathogens. Therefore

this avenue of methodological development is unlikely to serve as a foundation for fitting

mechanistic models that represent the diverse hypothesis one may desire to consider.

Feature matching approaches provide a general basis for fitting mechanistic models of

disease. These methods bypass computing a likelihood and instead fit models of disease

transmission to phylogenies by using simulation to match summary statistics. A number

of feature matching approaches have been proposed for phylodynamic inference. Ratmann

et al. (2012) proposed an Approximate Bayesian computation (ABC) method, which was

then applied to study the dynamics of influenza. Poon (2015) developed an ABC method

based on a kernel function from computational linguistics, and showed its utility in a study

on HIV. Giardina et al. (2017) used an approach that combines ABC and sequential Monte

Carlo to infer contact network structure from phylogeny. This methodology is based on

a more general ABC-SMC approach proposed by Toni et al. (2009). Feature matching

methods have the advantage of being simulation-based, and therefore in principle allow for

fitting mechanistic models of arbitrary complexity. However, they have the disadvantage of

having no systematic criteria to define which summary statistics are optimal. Likelihood-

based methods, when feasible, allow for more efficient use of information in the data.

Most phylodynamic inference methods that allow for fitting mechanistic models operate

by first estimating a pathogen phylogeny and then relating a dynamic model of disease to

coalescent times or summary statistics on the phylogeny. We refer to these approaches

as two-stage inference methods. These methods are a natural first step in refining the

4



phylodynamic framework outlined by Grenfell et al. (2004), and have involved much careful

work in crafting connections between models of disease dynamics and pathogen phylogenies.

Although these two-stage methods may differ in how they relate transmission models to

phylogenies, all may suffer from a common weakness. In particular, two-stage inference

methods do not guarantee agreement between the demographic assumptions underlying

phylogenetic reconstruction and those of the transmission model. Disagreement in these

demographic assumptions, for example fitting an SIR model to a phylogeny estimated under

the assumption of a constant population size, could drive bias in parameter estimates. To

explore this hypothesis, in Chapter II we study a two-stage inference approach proposed by

Rasmussen et al. (2011). Through a simulation study, we show that errors in phylogenetic

reconstruction may bias estimates of transmission rate derived from this particular two-

stage phylodynamic inference approach. The results of this chapter, if broadly applicable,

emphasize the need for methodology for joint inference of the transmission model and the

pathogen phylogeny.

There are few currently available methods for joint inference using mechanistic models,

and those that do exist are limited in various ways. The birth-death SIR model of Kühnert

et al. (2014), discussed above, allows for joint inference only for an approximation of specific

mechanistic model. Recently, Rasmussen et al. (2017) proposed Bayesian method for joint

inference on contact network structure and phylogeny. This method is limited to fitting

pairwise coalescent models, which may be of use only under certain scenarios. Lau et al.

(2015) proposed a more general Bayesian method for joint inference. All of these approaches

suffer from the drawback that tuning of the MCMC sampler may be required for efficient

inference.

In Chapter III, we describe the central work of this thesis: genPomp, a method for

likelihood-based joint inference of mechanistic models of transmission and phylogeny. This

method is comprised of a class of algorithms that use sequential Monte Carlo to estimate

and maximize likelihoods of models. In Appendix A we present theoretical support for our

approach. We also describe a broad class of individual-based partially observed Markov

process models for which our methods are applicable. The flexibility of this class of mod-

els allows for tailoring mechanistic models to represent specific scientific hypotheses. We

demonstrate the feasibility of genPomp through a study on simulated data and show its

potential for inference in a study on stage-specific infectiousness of HIV in a subepidemic

in Detroit, MI.

A recent review on phylodynamics highlighted the increasing importance of data inte-

gration as a path to stronger inference (Baele et al., 2017). The idea is simple: instead of

using only pathogen genetic sequences, it may be critical to incorporate additional sources
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of information to maximize potential insights from phylodynamic analyses. However, in-

tegrating multiple data types into one analysis is not necessarily an easy task for most

phylodynamic methodologies. The approach of Rasmussen et al. (2011) is a notable exam-

ple of one of the first methods to allow for using both pathogen genetic data and case count

data to inform a model of disease transmission. The ability to easily incorporate multiple

data types in a single model fitting procedure is also one of the strengths of the genPomp

approach.

In Chapter IV, we develop a model of transmission of Vancomycin-resistant enterococ-

cus in a hospital setting. We perform a study on simulated data, using a model with only

two wards, to explore the feasibility of our approach to inference. This study on simulated

data makes a number of assumptions that depart from the more difficult scenario we will en-

counter in fitting the real data. Nevertheless, results from the simulated example represent

a nontrivial step forward. Fitting detailed individual-level data required development of a

targeted proposal to allow for computing likelihoods. We describe the targeted proposal in

Appendix B. Furthermore, the study on simulated data showed that incorporating multiple

datatypes will likely be essential for leveraging information in the genetic sequences when

fitting data from real outbreaks. We present exploratory analysis of a hospital outbreak at

NIH that indicates the data may contain information on transmission history. Scaling up

to fitting this data from this outbreak, or other outbreaks, may require further simulation

studies designed to be more similar to the form of real data in scale and structure.

As our ability to sequence pathogens continues to improve, the potential of phylody-

namic inference to revise our understanding of infectious disease systems will increase.

However, a critical component to success will be the synthesis of multiple fields of study

in a meaningful way. The central work of this thesis aims to unite mechanistic models of

transmission and neutral models of pathogen evolution in a consistent and useful fashion.

In doing so, we lay the foundation for asking and answering questions not accessible via

other approaches. In Chapter V, we summarize the progress represented in this thesis and

consider possible future directions.
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CHAPTER II

An argument for the importance of joint inference of phylogeny

and transmission

2.1 Abstract

Many phylodynamic inference methods operate by fitting models of disease transmission

to features of phylogenies, such as coalescence times or summary statistics. These methods

proceed in two stages: (1) estimate the pathogen phylogeny, and (2) fit the transmission

model to features of the phylogeny. In practice, except for very simple models, these meth-

ods allow the demographic assumptions underlying phylogenetic reconstruction to disagree

with dynamics of the fitted transmission model. In this paper, we use simulation to show

that errors in phylogenetic reconstruction may drive bias in parameter estimates from two-

stage phylodynamic inference. The fragility of inference when working with an estimated

phylogeny underscores the need for methods that jointly infer transmission dynamics and

pathogen phylogeny.

2.2 Introduction

When transmission dynamics and pathogen evolution occur on a similar timescale, the

process of transmission may play a central role in shaping the pathogen phylogeny. Under

such conditions, the pathogen phylogeny may have similar characteristics to the transmis-

sion tree. Working from this assumption, many phylodynamic inference methods aim to

reconstruct infectious disease dynamics by fitting models of transmission to features of

estimated phylogenies, such as coalescence times or summary statistics (Volz et al., 2009;

Rasmussen et al., 2011, 2014; Ratmann et al., 2012; Volz and Frost, 2014; Boskova et al.,

2014; Leventhal et al., 2014; Poon, 2015; Giardina et al., 2017). These methods operate

in two stages: (1) estimate the pathogen phylogeny from time-stamped genetic sequences

and (2) fit a model of transmission to properties of the estimated phylogeny. Although
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these methods differ in the details of how they relate transmission models to features of

pathogen phylogenies, all may suffer from a common weakness. Because these methods

operate in two uncoupled stages, with a separate model for each stage, inconsistency in

model assumptions may compromise inference. In particular, except for very simple mod-

els (e.g., the birth-death SIR model of Kühnert et al. (2014)), in many currently available

methods the demographic assumptions of the model used to estimate the phylogeny may

be incompatible with those of the fitted transmission model. Inconsistency in demographic

assumptions underlying these two stages of inference may generate bias of unknown mag-

nitude in parameter estimates.

In this paper, we use simulation to explore scenarios under which a specific two-stage

inference method may be suitable as well as scenarios under which it may be problematic.

We use a stochastic, individual-based, seasonally-forced SIR model to simulate transmission

trees and pathogen sequences under three different sampling regimes. With this toy exam-

ple, we compare the performance of two-stage inference when provided the true phylogeny

of the pathogen versus its performance when using an estimated phylogeny. Furthermore,

we explore the influence of different sampling regimes on inference.

2.3 Methods

2.3.1 A seasonally-forced SIR model

In this section we describe a stochastic, individual-based SIR model, seasonally forced

with a square wave. We construct the model as a particular instance of the class of partially

observed Markov process models described in Chapter III, Section 3.3. The latent state of

the system at time t is a Markov process with three components: X(t) =
(
T (t), P(t), U(t)

)
.

Here, T (t) is the transmission forest, P(t) is the pathogen phylogeny, and U(t) is itself a

Markov process describing the infection status of each individual in the population at time

t. There are three possible infection statuses: S, susceptible; I, infected; or R, removed

(see Fig. 2.1). The infection status of individual i at time t is given by a random process

{Xi(t)}. The probabilities of a change in infection status for each individual over an interval
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of duration δ are given by

P
[
S→ I

]
= δβ(t)It + o(δ), (2.1)

P
[
I→ R

]
= δγ + o(δ), (2.2)

P
[
S→

]
= δµ+ o(δ), (2.3)

P
[
I→

]
= δµ+ o(δ), (2.4)

P
[
R→

]
= δµ+ o(δ), (2.5)

P
[
� → S

]
= δµ[St + It +Rt] + o(δ), (2.6)

where

β(t) =




βL, if t− btc > 0.5

βH , otherwise,
(2.7)

γ is the recovery rate, St is the number of susceptible individuals at time t, It is the number

of infected individuals at time t, Rt is the number of recovered individuals at time t, �
indicates an individual is outside the study population, and indicates an individual is

dead or removed from the population.

We assume that the topology of the pathogen phylogeny, P(t), maps onto that of the

transmission tree. That is, each node or edge in P(t) has a corresponding node or edge in

T (t). However, we allow for the edge lengths of P(t) to differ from those of T (t) to model

heterogeneity in the rate of molecular evolution. We assume that each edge of P(t) has

length conditionally Gamma distributed with expectation equal, and variance proportional,

to the length of the corresponding edge of T (t). That is, if L is the length of an edge of

P(t) corresponding to an edge of length D in T (t), we let L|D be Gamma distributed with

E [L|D = d] = d and Var[L|D = d] = σ d. Once the structure of P(t) is specified, then the

time-reversible model of molecular evolution applied across this structure yields the joint

distribution of the sequences at each tip of P(t). For this study, we used the TN93 model

of molecular evolution (Tamura and Nei, 1993), which is fully specified by the following

rate matrix:

Q =




∗ βπT βπC αRπG

βπA ∗ αY πC βπG

βπA αY πT ∗ βπG

αRπA βπT βπC ∗
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S I R
β(t) γ

µ µ µ

Figure 2.1: A schematic of the possible infection statuses for individuals. The per capita
birth rate of susceptible individuals is the same as the per capita death rate, µ, such that
on average the total population remains constant. The transmission rate, β(t), is time-
dependent; high in the first half of each year and low in the second. Infected individuals
recover at rate γ.

2.3.2 Simulation

Using the model described above, we simulated epidemics with annual peaks over a

three year period. We implemented this model in the software genPomp and simulated

from the model using an exact method (Gillespie, 1977). Simulated data consist of time-

stamped pathogen genetic sequences as well as the pathogen phylogeny that underlies these

sequences.

We chose to simulate using three different sampling regimes: (1) uniform sampling,

in which samples were spaced evenly across the period of simulation; (2) proportional

sampling, in which samples were taken proportional to the number of infected individuals

at a given time; and (3) late sampling, in which samples were taken uniformly over a

short period of time during the declining phase of the epidemic each year. We chose these

sampling regimes in part because they have been studied before (Stack et al., 2010; Hall

et al., 2016). Also, these sampling regimes correspond to three scenarios one may encounter

in practice. Proportional sampling corresponds to an observation process that is directly

tied to the dynamics of the disease. For example, in a highly seasonal infectious disease

the number of cases varies significantly over the course of the year. A convenience sample

from such a process may yield more sequences from the peaks of epidemics than from

the troughs. Late sampling corresponds to a surveillance system that misses the initial

onset of an epidemic. Finally, uniform sampling represents a possible strategy one could

employ when conducting a retrospective study of an epidemic with a limited budget for
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sequencing. This sampling regime allows for capturing some measure of the pathogen

evolutionary process over the entire course of the epidemic.

We simulated using parameters that generate annual dynamics with strong bottlenecks.

For each sampling regime we simulated 100 epidemics and for all sampling regimes we allow

each individual to be sampled only once. The parameters used in simulation are given in

Table 2.1 and Table 2.2.

Table 2.1: Parameters of the transmission model used in simulation of datasets.

Parameter Interpretation Value

St0 Number of susceptible individuals at t0 1485

It0 Number of infected individuals at t0 15

Rt0 Number of recovered individuals at t0 23000

βL Low transmission rate (during first half of the year) 312 yr-1

βH High transmission rate (during second half of the year) 624 yr-1

γ Recovery rate of infected individuals 13 yr-1

µ Death rate (and birth rate) 0.1 yr-1

t0 Start time of simulation 0 yr

tend End time of simulation 3 yr

ζ Sampling rate (only for proportional sampling regime) 0.2 yr-1
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Table 2.2: Parameters of the genetic model used in simulation of datasets.

Parameter Interpretation Value

β Rate of transversions 1 yr-1

αY Rate of transitions between purines 0.5 yr-1

αR Rate of transitions between pyrimidines 0.5 yr-1

πA Equilibrium frequency of adenine 0.25

πG Equilibrium frequency of guanine 0.25

πC Equilibrium frequency of cytosine 0.25

πT Equilibrium frequency of thymine 0.25

σsite Relaxation of the molecular clock with respect to sites 0

σ Relaxation of the molecular clock with respect to branches 0.5 yr

δfixed The initial component of the sequence stem 0.001 yr

δprop Proportion of time since infection to add to the sequence stem 0

nL Number of loci in simulated genetic sequences 100

tp Time of the polytomy 0 yr

12



2.3.3 Inference

To perform two-stage phylodynamic inference, we used a particle filtering approach

developed by Rasmussen et al. (2011). This approach is based on coalescent theory, and

relates the counts of S, I and R individuals of an SIR process (such as the one described in

Sect. 2.3.1) to the coalescent times of the pathogen phylogeny. Following the work of Volz

et al. (2009), this approach assumes that the hazard of an infection event being observed

as a coalescence in the pathogen phylogeny at time t is:

λ(t) =

(
it
2

)
(
It
2

)β(t)
St
Nt

It, (2.8)

where it is the number of lineages in the pathogen phylogeny at time t, St is the number of

susceptible individuals, It is the number of infected individuals, Nt is the total number of

individuals in the population, and β(t) is the transmission rate at time t. In the analyses

in this paper, we modify this equation slightly:

λ(t) =

(
it+1

2

)
(
It+1

2

)β(t)
St
Nt

It. (2.9)

We made this modification in part for numerical tractability when the count of infected

individuals becomes small. In our formulation, the hazard is defined even when It = 1.

We also prefer this formulation as it fits with a forward-in-time, mechanistic interpretation

of the equation. If, instead of thinking of λ(t) as a coalescence rate, we think of it as a

branching rate then we can interpret λ(t) as the hazard of incrementing the number of

infected lineages by one and observing that branching event in the phylogeny. That it is

not clear which is the correct choosing statement hints at a fundamental inconsistency in

this approach.

Over any time interval, we can compute the cumulative hazard of an infection event

being observed as a coalescence in the pathogen phylogeny:

Λj =

∫ tj

tj−1

λ(t)dt (2.10)

The hazard and the cumulative hazard are the two quantities used to construct the mea-

surement model used in the particle filter.

This particle filter takes as input the count of lineages in the pathogen phylogeny

through time. We can represent this data reduction of the pathogen phylogeny, which

we call the lineage count trajectory, as an ordered set of N + 1 times, {t0, t1, ..., tN}, and
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N + 1 corresponding lineage counts, {it0 , it1 , ..., itN}. At time t0, the initial number of lin-

eages in the pathogen phylogeny is it0 . At time t1, the count of lineages changes to it1 , and

so on. At times of sampling, the lineage count decrements by one; at times of coalescence,

the lineage count increments by one.

The particle filter begins at t0 and sequentially processes the subsequent times, gener-

ating a score for each time interval, ωj = tj − tj−1, j ∈ {1, 2, ..., n}, to ultimately build up

an aggregate score for all of the data. As described above, there are two types of intervals:

an interval either ends in a sampling event or in a coalescent event. Using the hazard,

cumulative hazard, and known trajectories of state variables in each particle, we can com-

pute a density for each interval of time. The more compatible the simulations are with the

observed lineage count trajectory of the pathogen phylogeny, the higher the density. The

steps of this particle filter are detailed in Algorithm 1.

Algorithm 1: The particle filter of Rasmussen et al. (2011) applied to
the model of Sect. 2.3.1

input: {St0 , It0 , Rt0}, initial state values;
{βL, βH , γ, µ}, parameter values;
{t0, t1, ..., tn}, event times;
{it0 , it1 , ..., itN}, lineage counts;
J , the number of particles.

Initialize each particle with initial state values: {St0 , It0 , Rt0}
for n in 1 : N

for j in 1 : J
Simulate states of particle j forward in time from tn−1 to tn
Compute particle weight, wj, the log of the density of the interval:

If itn > itn−1: wj = ln(λ(tj))− Λj (a coalescent event at tn)
Else: wj = −Λj (a sampling event at tn)

Resample particles proportional to their weights
end for
Compute interval score, Wn = ln 1

J

∑J
j=1 e

wj

end for

output: Rasmussen criterion: R =
∑N

n=1Wn

We implemented this particle filter using the R package pomp (King et al., 2016b). See

archived codes for details of this implementation. The particle filter calculation described in

Rasmussen et al. (2011) is not a likelihood, at least not for the mechanistic model for which

we aim to calculate a likelihood. We expand on why this calculation is not a likelihood

and speculate on the potential implications of this approximation in the discussion. For

the purpose of generating point estimates and confidence intervals, however, we follow the

current standard practice and treat this calculation as if it were a likelihood. To indicate
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that it is not a likelihood, we refer to this calculation as the Rasmussen criterion, R.

We derived point estimates and confidence intervals for βL and βH from estimated

likelihood profiles. To estimate likelihood profiles, we fixed all other parameters at their

known true values and then estimated a two-dimensional likelihood surface over a grid of

values for βL and βH . From this surface we then extracted likelihood profiles for each

parameter. For each simulation, we estimated profiles in two ways: (1) using the true

pathogen phylogeny, and (2) using an estimated pathogen phylogeny. We used BEAST

(Drummond and Rambaut, 2007) with a Bayesian skyline and an independent lognormal

relaxed clock to estimate the phylogeny. By comparing results from the estimated versus the

true phylogeny we were able to assess how much the process of phylogenetic reconstruction

affected the conclusions of two-stage inference.

2.4 Results

We find that the process of estimating the pathogen phylogeny degrades or erases the

signal of seasonality contained in the true phylogeny. Figures 2.2 and 2.3 show a repre-

sentative example of this result from a single simulation in which samples were distributed

uniformly across the span of the epidemic. In Fig. 2.2 we see that although the estimated

and true phylogenies share some general structural characteristics, the lineage count tra-

jectories of the two trees differ markedly. In particular, the lineage of trajectory of the

estimated phylogeny has a dampened signal of seasonality relative to that of the true phy-

logeny. What we see by eye in the plot of lineage count trajectories is confirmed in the

likelihood profiles for βL and βH (Fig. 2.3). When using the lineage count trajectory of

the true phylogeny, parameter estimates fall near the truth and 95% confidence intervals

encompass the truth. On the other hand, when using the lineage count trajectory from the

estimated phylogeny the point estimate for βH is low, with a confidence interval that does

not contain the true value.

Examining point estimates and confidence intervals across many simulated examples

reveals that downward bias in the point estimate for βH is a common problem when using

an estimated phylogeny, but the severity of bias depends on the sampling regime (Fig. 2.4).

Of the three sampling regimes considered in this study, the distributions of point estimates

and confidence intervals overlap to the greatest degree for the late sampling regime. For

both uniform and proportional sampling regimes there is clear bias in the estimates for

βH when using the estimated phylogeny; the distributions of point estimates are both

centered below the true value of βH . However, the signal of seasonality in these two cases

is not completely obscured as one can still see some separation in the distributions of point
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estimates for βH and βL.

When provided the true pathogen phylogeny, two-stage inference may perform quite

well, regardless of the sampling regime. We can think of this scenario as two-stage inference

in the case when the first stage is executed without error. As shown in Fig. 2.4, under all

sampling regimes we find that the distributions of point estimates for both βL and βH are

centered about their true values, and their corresponding 95% confidence intervals appear

to have approximately the correct level of coverage.

In Fig. 2.4 we excluded all cases in which the estimated phylogeny implied initial con-

ditions that were incompatible with the true initial conditions. This occurs when the

estimated phylogeny has a deep root relative to the true phylogeny such that the lineage

count of the estimated phylogeny at t0 exceeds the known number of infected individuals

at t0. Under this scenario the estimated lineage trajectory is entirely incompatible with the

assumption of the model that each infected individual carries only one pathogen lineage.

Excluding these examples means that Fig. 2.4 shows an overly favorable picture of the

performance of this two-stage inference approach when using the estimated phylogeny.

2.5 Discussion

2.5.1 The consequences of two-stage inference

This study shows that error in phylogenetic reconstruction may drive bias in param-

eter estimation via two-stage phylodynamic inference. Although inference using the true

phylogeny yields a clear signal of seasonality, when performing inference with an estimated

phylogeny the signal of seasonality is degraded or lost almost entirely. These results are

compatible with those of Rasmussen et al. (2011), which examined the quality of inference

only when using the true phylogeny. Rasmussen et al. (2011) found that their particle

filtering approach, used in particle MCMC, was able to successfully estimate parameters of

a seasonal SIR model when given the true phylogeny. Our simulation study adds an impor-

tant perspective by exploring the performance of this approach when using an estimated

phylogeny. The fragility of inference when using an estimated phylogeny underscores the

need for methods that jointly infer the transmission model and the pathogen phylogeny.

This study presents only a handful of scenarios; there may be others in which estimation

of the phylogeny is sufficiently accurate so as to merit the use of two-stage inference. For

example, in some cases, inference of divergence times is likely to be quite accurate when

estimated using BEAST on heterchronous genetic sequences. This may indeed be the case

when the molecular model of evolution is correctly specified.
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2.5.2 The influence of sampling regime on inference

When working with the estimated phylogeny we found that the sampling regime played

an important role in how well two-stage inference was able to recover the true parameters.

Uniform and proportional sampling both performed better than late sampling. These two

sampling regimes share the property that they have some degree of sampling throughout

the full course of the epidemic. Late sampling, on the other hand, captures sequences only

from period when the annual epidemic is declining.

This result does not agree with those of Stack et al. (2010), which found that sampling

during the declining phase of the epidemic was the best strategy to capture information

on disease dynamics with strong seasonality. Stack et al. (2010) compared several different

sampling regimes, some not included in our study, but did include both late sampling and

uniform sampling. In many respects the simulation study of the Stack et al. (2010) study

is similar this study; a key difference is that Stack et al. (2010) used a strict molecular

clock to simulate the sequences. This could be the main reason that our results differ.

A strict clock would preserve a great deal more information than a relaxed clock. Stack

et al. (2010) argue that late sampling allows for capturing ephemeral lineages as well as

persistent lineages that together yield information on both growth and decline. A relaxed

clock could obscure the distinction between these two types of lineages. When estimating

the phylogeny from sequences generated by a relaxed clock it may be best to have samples

spaced throughout the epidemic Distributed samples would serve as anchor points that

facilitate interpolation as opposed to the clustered nature of late sampling, which would

leave more to extrapolation. This is speculation as to why our results differ from those of

Stack et al. (2010). One could explore whether there is support for this idea by carrying

out a simulation study in which sequences were simulated under a strict clock.

2.5.3 The Rasmussen Criterion

The computation generated by Algorithm 1 is not a likelihood for the model for which we

aim to compute a likelihood. One way to see this is to compare the process that generates

the data with the model represented in Algorithm 1. The process that generates the data

involves multiple steps: first, an epidemic unfolds forward in time and a subset of infected

individuals are sampled for sequencing; second, the time-stamped pathogen sequences are

used to estimate a phylogeny; last, we extract from the phylogeny a set of coalescence times.

The process to generate the data involves both a forward-in-time realization of a stochastic

system and a backward-in-time reconstruction of past events. Importantly, the data cannot

be observed until the forward-in-time process of simulation and sampling is complete; only
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when all samples have been taken can one construct the set of all coalescence times.

In the particle filter described in Algorithm 1, we aim to compute a likelihood for data

generated from this process only through a set of forward-in-time operations carried out

in a sequential fashion. By using a particle filter to estimate the likelihood, our implicit

assumption is that we are fitting a POMP model. By definition, a POMP model includes

a simulator of the latent state and a measurement model. The simulator of the latent state

used in Algorithm 1 is correct; our claim is that the measurement model used is not the

appropriate counterpart to the process that generates the data.

One could use the measurement model of Algorithm 1, together with the simulator of the

latent state, to simulate forward in time a set of coalescence times (without constructing

trees of any sort, merely by using the hazard as measurement model for a generative

process). The distribution of these coalescence times would not match the distribution

of those generated by the forward-backward process described above. For example, a set

coalescence times generated purely forward in time could produce realizations in which the

number of infected individuals is less than the number of lineages in the phylogeny. In the

forward-backward generative process, this outcome is not possible.

Although this argument shows that the Rasmussen criterion is at best an approximation,

it may be quite a good approximation under certain circumstances. The empirical results

from our simulation study suggest that this approximation holds up well enough to be

useful for inference when the true phylogeny is provided. The limits of this approximation,

however, are yet to be fully explored and there may be cases when it breaks down.

2.5.4 The role of relaxed clock models

The relaxed clock model that we used to estimate the phylogeny using BEAST is not

the same as the relaxed clock model that we used to simulate. We simulated using a relaxed

clock with gamma white noise on the rate and fit using a lognormal relaxed clock. This

difference could matter quite a lot. A potential criticism of our results is that they may

be largely driven by model misspecification. Were we able to give BEAST the correct

relaxed clock model, we might have seen much better performance for inference using the

estimated phylogeny. A rejoinder to this criticism is that in practice we may be more

likely to encounter the scenario we present. In general, one never knows how well one

has estimated the phylogeny. Furthermore, the lognormal relaxed clock is widely used in

BEAST analyses, yet this model fails to meet basic properties that we expect to see in

real evolutionary systems. For example, evolutionary branch lengths under an independent

lognormal relaxed clock model are not additive. The relaxed clock with gamma noise does

have properties that we would expect from a physical process of evolution, such as additivity
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of branch lengths, and is a reasonable model to simulate the process of evolution.

2.5.5 Joint inference

Joint inference of transmission and phylogeny holds the promise to remedy the problem

of bias that may arise in two-stage inference. Until recently, joint inference has only been

possible for simple models of transmission. In the last few years, researchers have begun

to develop joint inference methodology for fitting more complex models that correspond

more directly with questions of scientific interest. A handful of methods are now available.

Lau et al. (2015) developed a Bayesian method for joint inference. Rasmussen et al. (2017)

proposed a method for joint inference on network structure and phylogeny. In Chapter III

we propose a plug-and-play method for likelihood-based joint inference that allows for

fitting stochastic mechanistic models of arbitrary complexity.

2.6 Future Directions

1. A worthwhile comparison will be to run a simulation study using a strict molecular

clock as opposed to a relaxed clock. It will be especially interesting to see if the results

for the late sampling regime change relative to the other two sampling regimes.

2. We will add results from estimating βL and βH using genPomp. Replication on the

scale needed to add a column to Fig. 2.4 is not feasible, but we could show results

for a subset of the simulations.
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Figure 2.2: Components of an SIR epidemic, simulated and estimated. Panel A shows
a simulated trajectory of infected individuals. Panel B shows the true phylogeny that
connects a set of uniformly sampled sequences from the epidemic above. Panel C shows an
estimated phylogeny for the sampled sequences. Panel D shows lineage count trajectories of
true and estimated phylogenies, in blue and green respectively. The lineage count trajectory
of the true tree appears to have a stronger signal of seasonality than the lineage count
trajectory of the estimated tree; peaks and troughs of the blue curve are more extreme
than those of the green curve.
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Figure 2.3: Likelihood profiles for βL and βH derived from using the true phylogeny (panels
A and B) and the estimated phylogeny (panels C and D). Black dots show likelihood
estimates, red lines show smoothed likelihood profiles, and blue vertical lines show the true
values of βL and βH . Point estimates and confidence intervals are shown in green at the
bottom of each panel. This plot shows evidence for downward bias in the estimate for
βH . This result is in line with the dampened lineage count trajectory of the estimated
phylogeny, relative to the lineage count trajectory of the true phylogeny, shown in Fig. 2.2.
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Figure 2.4: Distributions of point estimates and 95% confidence intervals for βL (in blue)
and βH (in red) when using true phylogenies (left column) and estimated phylogenies (right
column) under three different sampling regimes (top row, uniform sampling; middle row,
proportional sampling; bottom row, late sampling). Distributions of point estimates are
shown as empirical densities; horizontal bars above the densities show the distributions of
confidence intervals (sorted by βL point estimates). Dark vertical lines in blue and red show
the true values of βL and βH , respectively. The degree of overlap between the distributions
of estimates for βL and for βH demonstrates how much inference breaks down in the case
of different sampling schemes when using the estimated phylogeny.
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CHAPTER III

A flexible method for joint phylodynamic inference

This chapter of my dissertation was published in the Molecular Biology and Evolution

in 2017 (DOI: https://doi.org/10.1093/molbev/msx124). The authors are myself, E.

L. Ionides, and A. A. King. The supplementary material is included in this thesis as

Appendix A. I drafted the main paper and ELI drafted the supplement. All three of us

edited both the main paper and the supplement. I developed the software genPomp and

ran the analyses, with guidance from both coauthors.

3.1 Abstract

Genetic sequences from pathogens can provide information about infectious disease

dynamics that may supplement or replace information from other epidemiological obser-

vations. Most currently available methods first estimate phylogenetic trees from sequence

data, then estimate a transmission model conditional on these phylogenies. Outside limited

classes of models, existing methods are unable to enforce logical consistency between the

model of transmission and that underlying the phylogenetic reconstruction. Such conflicts

in assumptions can lead to bias in the resulting inferences. Here, we develop a general,

statistically efficient, plug-and-play method to jointly estimate both disease transmission

and phylogeny using genetic data and, if desired, other epidemiological observations. This

method explicitly connects the model of transmission and the model of phylogeny so as

to avoid the aforementioned inconsistency. We demonstrate the feasibility of our approach

through simulation and apply it to estimate stage-specific infectiousness in a subepidemic

of HIV in Detroit, Michigan. In a supplement, we prove that our approach is a valid se-

quential Monte Carlo algorithm. While we focus on how these methods may be applied to

population-level models of infectious disease, their scope is more general. These methods

may be applied in other biological systems where one seeks to infer population dynamics

from genetic sequences, and they may also find application for evolutionary models with
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phenotypic rather than genotypic data.

Keywords: phylodynamics, iterated filtering, sequential Monte Carlo, maximum likeli-

hood, virus evolution, human immunodeficiency virus

3.2 Introduction

Phylodynamic methods extract information from pathogen genetic sequences and epi-

demiological data to infer the determinants of infectious disease transmission (Grenfell

et al., 2004). For successful phylodynamic inference, mechanisms of transmission must

leave their signature in genetic sequences. This occurs when pathogen transmission and

evolution occur on similar timescales (Drummond et al., 2003). By explicitly relating

models of disease dynamics to their predictions with respect to pathogen sequences, it is

possible to estimate aspects of the mechanisms of transmission (Rasmussen et al., 2011;

Stadler et al., 2013; Volz et al., 2013; Frost et al., 2015; Poon, 2015; Karcher et al., 2016).

Most existing phylodynamic inference methods proceed in three stages. First, one estimates

the pathogen phylogeny using sequence data. Next, one fits models of disease dynamics

to properties of the pathogen phylogeny, such as coalescent times or summary statistics on

the tree. Finally, one assesses the robustness of the results to variation in the estimated

phylogeny to account for phylogenetic uncertainty. Frequently, such methods harbor logi-

cal inconsistencies between the assumptions of the model used to estimate the phylogeny

and those of the model of disease dynamics. In particular, it may happen that population

dynamics, as estimated by the transmission model, are inconsistent with those assumed

when estimating the phylogeny. In the absence of consistent methods, it may be difficult

to assess the loss of accuracy due to the use of inconsistent methods.

Researchers developing Markov chain Monte Carlo (MCMC) approaches to phylody-

namic inference have recognized the need to develop fully consistent approaches. In par-

ticular, Lau et al. (2015) have proposed a Bayesian method for joint inference. This work

builds off phylodynamic inference that uses MCMC to fit deterministic population models

(Bouckaert et al., 2014). However, to achieve efficiency, it is typically necessary to tailor

an MCMC sampler to the specific model being fit (Vaughan et al., 2014). The required

investment makes it costly to entertain competing models and to base inference directly on

the models of greatest scientific interest. In practice, phylodynamic inference for infectious

diseases has therefore tended to focus on the three-stage methods described above.

In this paper, we develop methodology for jointly inferring both phylogeny and trans-

mission, as well as estimating unknown model parameters. Our central contribution is an

algorithm which we call GenSMC, an abbreviation of sequential Monte Carlo with genetic
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sequence data. Sequential Monte Carlo (SMC), also known as the particle filter, provides

a widely used basis for inference on complex dynamic systems (Kantas et al., 2015) with

several appealing properties. Because basic SMC methods rely only on forward-in-time

simulation of stochastic processes, it can accommodate a wide variety of models: essen-

tially any model that can be simulated is formally admissible. Thus, the algorithm enjoys

a variant of the plug-and-play property (Bretó et al., 2009; He et al., 2010). An SMC com-

putation results in an evaluation of the likelihood, which is a well-understood and powerful

basis for both frequentist and Bayesian inference. Finally, again because SMC requires only

forward-in-time computation, it is straightforward to construct a model of genetic sequence

evolution upon the basis of a transmission model, thus avoiding all conflict between these

models.

SMC techniques have previously been used for inferring phylogenies (Bouchard-Côté

et al., 2012) and for phylodynamic inference conditional on a phylogeny (Rasmussen et al.,

2011). However, using SMC to solve the joint inference problem through forward-in-time

simulation of tree-valued processes is a high-dimensional, computationally challenging prob-

lem. We found that several innovations were necessary to realize a SMC approach that is

computationally feasible on models and datasets of scientific interest. The key innovations

that provided a path to feasibility were: just-in-time construction of state variables, hi-

erarchical sampling, algorithm parallelization, restriction to a class of physical molecular

clocks, and maximization of the likelihood using the iterated filtering algorithm of Ionides

et al. (2015).

In the following, we first give an overview of the class of models for which our SMC al-

gorithms are applicable. A formal specification is given in the supplement, and the source

code for our implementation is also available. Next, we present a study on a simulated

dataset as evidence of the algorithm’s feasibility. Finally, we use our methods to estimate

determinants of the epidemic of human immunodeficiency virus (HIV) among the popula-

tion of young, black, men who have sex with men (MSM) in Detroit, Michigan from 2004

to 2011. This analysis uses time-of-diagnosis and consensus protease sequences to estimate

the rates of infection attributable to sources inside and outside the focal population.

3.3 New Approaches

The key novelty in our approach to phylodynamics is in formulating a flexible class of

phylodynamic models and a class of sequential Monte Carlo algorithms in such a way that

the latter can be efficiently applied to the former. We refer to our phylodynamic model

class as GenPOMP models, in recognition of the fact that they are partially observed
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Markov processes (POMPs). As such, a GenPOMP model consists of an unobserved

Markov process—called the latent process—and an observable process. In the following

sections, we specify the structure of each of these components. An additional, more for-

mal, description of the GenPOMP model is given in the supplement (Section S1). Our

GenSMC algorithm for GenPOMP models is introduced in the Materials and Methods

section. GenSMC is presented at greater length in the supplement (Section S2) and also

provided with a mathematical justification (Section S3). Our extension of GenSMC to

parameter estimation, via iterated filtering, is called the GenIF algorithm and is discussed

briefly in the Material and Methods section and at greater length in Section S2.2. For

computational implementation of the GenPOMP framework and the GenSMC and GenIF

algorithms, we wrote the open-source genPomp program discussed further in Section S2.1.

For concreteness, we focus here on an infectious disease scenario, wherein the model

describes transmission of infections among hosts and the sequences come from pathogens in

those infections. In this context, measurements on infected individuals are called diagnoses.

In the concluding discussion section, we briefly consider other contexts within which the

models and methods we have developed may prove useful.

3.3.1 The latent process

We adopt the convention of denoting random variables using uppercase symbols; we

denote specific values assumed by random variables using the corresponding lowercase

symbol. We use an asterisk to denote the data, which are treated as a specific realization

of random variables in the model.

The latent Markov process, {X(t), t ∈ T}, defined over a time interval T = [t0, tend],

explicitly models the population dynamics and also includes any other processes needed

to describe the evolution of the pathogen. Specifically, we suppose that we can write

X(t) =
(
T (t), P(t), U(t)

)
, where T (t) is the transmission forest, P(t) is the pathogen

phylogeny equipped with a relaxed molecular clock, and U(t) represents the state of the

pathogen and host populations. For example, U(t) may categorize each individual in the

host population into classes representing different stages of infection. We suppose that

{U(t), t ∈ T} is itself a Markov process.

The transmission forest represents the history of transmission among hosts. We assume

that hosts cannot be multiply infected; this implies that T (t) is a forest, i.e., a collection

of trees. Nodes in T (t) are time-stamped and of several types. Internal nodes represent

transmission events. Terminal nodes are of three types: (a) active nodes represent infections

active at time t; (b) observed nodes correspond to diagnosis events, possibly associated with

genetic sequences; (c) dead nodes correspond to death or emigration events. Root nodes
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at time t0 correspond to infections present in the initial population; root nodes at times

t > t0 correspond to immigration events. Since all nodes are time-stamped, edges of T (t)

have lengths measured in units of calendar time.

The pathogen phylogeny P(t) represents the history of divergences of pathogen lineages.

Internal nodes of P(t) represent branch-points of pathogen lineages, which, we assume,

coincide with transmission events. The terminal nodes of P(t) are in 1-1 correspondence

with the terminal nodes of T (t). The distinction between P(t) and T (t) allows for random

variation in the rate of molecular evolution, i.e., relaxed molecular clocks (see below).

Specifically, the edge lengths of T (t) measure calendar time between events, whereas edge

lengths in P(t) can have additional random variation describing non-constant rates of

evolution.

The transmission forest T (t) can grow in only five distinct ways: (1) active nodes can

split in two, when a transmission event occurs, (2) active nodes can become dead nodes,

upon emigration, recovery, or death of the corresponding host, (3) immigration events can

give rise to new active nodes, each with its own distinct root, (4) sampling events cause

active nodes to spawn diagnosis nodes, and (5) active nodes for which none of the above

occur simply grow older. Likewise, the pathogen phylogeny P(t) grows along with T (t)

(Fig. 3.1). The Markov process {U(t)} can contain additional information about the system

at time t, e.g., states of individual hosts. {U(t)} can affect, but must not be affected by, the

{T (t)} and {P(t)} processes. That is, given any sequence of times t1 < · · · < tk < t, {U(t)}
is independent of

{(
T (tj),P(tj)

)
, j = 1, . . . , k

}
conditional on {U(tj), t1 < · · · < tk < t}.

The dependence relationships among T , P , U , and the data are diagrammed in Fig. A.1.

We assume subsequently that P(t) and T (t) agree topologically, but we note that this

assumption is not essential. In particular, the sequential Monte Carlo algorithms we apply

could be straightforwardly extended to allow the topology and timing of genetic lineage

divergences to deviate from those of transmission events and to allow multiple pathogen

lineages within each host. Such extensions might be useful, for example, in accounting for

within-host pathogen diversity.

3.3.2 The observable process

We now describe the model explicitly linking the latent process to the data. Let Y be

the set of all finite collections of dated genetic sequences, with an element of Y being a

collection {(gk, tk), k = 1, . . . , n} where gk is a sequence and tk is the associated diagnosis

time. We allow gk to be an empty sequence, in the event that the corresponding diagnosis

had no associated sequence. The observable process is a Y-valued process, {Y (t), t ∈ T},
where Y (t) consists of all sequences that have accumulated up to time t. Thus, Y (t) is
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expanding, i.e., Y (t) ⊂ Y (t′) whenever t ≤ t′, and if Y (t) = {(Gk, Tk), k = 1, . . . , N},
then Tk ≤ t for all k. The data are modeled as a realization of the observable process,

Y (tend) = y∗.

Suppose each diagnosis has has an equal and independent chance to give rise to a

pathogen sequence, and each diagnosis event in Y (t) corresponds to a unique diagnosis

node in T (t). Suppose also that some time-reversible molecular substitution model is

defined to describe sequence evolution on the pathogen phylogeny P(t). These modeling

assumptions implicitly define a conditional distribution for Y (t) given X(t).

3.3.3 Relaxed molecular clocks

A strict molecular clock assumes that the rate of evolution is constant through time

and across lineages. Relaxation of this assumption has been shown to improve the fit of

phylogenetic models to observed genetic sequences in many cases (Drummond et al., 2006)

and for HIV in particular (Posada and Crandall, 2001). A relaxed molecular clock models

the rate of evolution as random. In our approach, this corresponds to constructing each

edge length of P(t) as a stochastic process on the corresponding edge of T (t). Various

forms of such processes have been assumed in the literature (Lepage et al., 2007; Ho and

Duchêne, 2014), but not all of these are compatible with a mechanistic approach. In

particular, a mechanistic molecular clock must be defined at all times and must have non-

negative increments. Many relaxed clocks commonly employed in the literature do not

enjoy the latter property: in effect, such clocks allow evolutionary time to run backward.

The class of suitable random processes includes the class of nondecreasing Lévy processes,

i.e., continuous-time processes with independent, stationary, non-negative increments.

3.3.4 The plug and play property

The formulation of the latent and observable processes as above is flexible enough to

embrace a wide range of individual-based models. In particular, models that describe

actual or hypothetical mechanisms of transmission and disease progression are readily for-

mulated in this framework. Moreover, with this formulation, it becomes clear that the

models described are partially observed Markov processes (Bretó et al., 2009). This fact

makes sequential Monte Carlo methods for likelihood-based inference available for use in

the present context. The supplementary material makes the formal connections between

this class of models and sequential Monte Carlo methodology.

It is worth noting that models formulated as above are compatible with inference tech-

niques that only require simulation from the model, not closed-form expressions for tran-
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sition probabilities. Such algorithms are said to have the plug-and-play property (Bretó

et al., 2009; He et al., 2010). The particle filter and iterated filtering, which we describe in

the Methods section, are two algorithms that have this property. Because these algorithms

only require the ability to simulate from the model, they allow for consideration of a wide

class of models. Greater freedom in choice of the form of the model allows one to pose sci-

entific questions closed to non-plug-and-play approaches. In the following, we demonstrate

this potential in a study of HIV transmission dynamics.

3.4 A model of HIV transmission

Our study focuses on the expanding HIV epidemic among young, black, MSM within the

Detroit metropolitan area. Specifically, we ask two questions: (1) How much transmission

originates inside the study population relative to that originating outside? (2) Within

the study population, how does transmission vary with respect to stage of disease (e.g.,

early, chronic, AIDS) and diagnosis status? To address these questions we construct a

basic model of HIV transmission, similar to that of Volz et al. (2013). We describe our

model as a special case of the general class of models described above. This model contains

assumptions that can be altered and examined within our methodological framework. In

the following, we describe both the form of the model and how we relate it to two data

types: diagnosis times and genetic sequences.

3.4.1 The latent and observable processes

The latent state of the system at time t,
(
T (t), P(t), U(t)

)
, is of the form described

above. To specify it completely, it remains to describe the Markov process {U(t)} and

the transitions of {T (t)} and {P(t)}. U(t) contains information about all infected indi-

viduals in the population. Following Volz et al. (2013), we do not explicitly track unin-

fected individuals and thus disallow depletion of the susceptible pool. There are reasons

to suspect that this assumption may be problematic (Kenah et al., 2016), but its adoption

here facilitates comparison of our results with those of Volz et al. (2013). Specifically,

U(t) =
{(
τi, Bi(t)

)
: i infected at time t

}
, where τi is the time at which individual i was

infected and Bi(t) ∈ C, the class of individual i at time t, where C = {I0, I1, I2, J0, J1, J2}.
Bi(t) = Ik indicates that individual i has an infection at stage k ∈ {0, 1, 2} but has not

yet been diagnosed; Bi(t) = Jk indicates that individual i has been diagnosed and has an

infection at stage k. We think of k = 0 as indicating the early stage of infection; k = 1,

the chronic stage; k = 2, AIDS. Individuals move between classes according to Fig. 3.2.

New infections can occur, as can deaths, emigrations, and diagnosis events. Transmission
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events, immigration events, deaths, and diagnoses all result in events of the corresponding

type being recorded in the structure of T (t).

New infections arise from two distinct sources: immigration and transmission within the

population. Immigrations occur at a constant rate, ψ. Each currently infected individual

inside the population seeds new infections at rate εc, where c ∈ C indicates infection class.

Thus, we allow transmissibility to vary between different infection classes, but assume ho-

mogeneous transmissibility within each class. It follows that the incidence of new infections

is h(t)+ψ, where h(t) = εI0NI0(t)+εI1NI1(t)+εI2NI2(t)+εJ0NJ0(t)+εJ1NJ1(t)+εJ2NJ2(t),

and Nc(t) is the number of individuals in class c at time t. Defining all nonzero transition

rates between states is sufficient to specify a Markov process; a full set of model equations

for {U(t)} is presented in the supplement (Section S4).

The inclusion of individual time-of-infection, τi, within {U(t)} allows us to model within-

host pathogen evolution. In particular, when an individual is diagnosed at time t, a diag-

nosis node is added to T (t), together with a diagnosis edge, the length of which is linearly

related to how long the diagnosed individual has been infected (Fig. 3.1). This edge may

account for sequencing error; it can also describe the emergence of new pathogen strains

within a host having reduced between-host transmission potential (Lythgoe and Fraser,

2012).

We assume for simplicity that the topology of P(t) matches that of T (t). Thus, we

explicitly disallow the possibility of incomplete lineage sorting, though, as mentioned before,

this choice is not forced by the algorithm. We assume a relaxed molecular clock: the

edge lengths of P(t) are random. Specifically, each edge of P(t) has length conditionally

Gamma distributed with expectation equal, and variance proportional, to the corresponding

edge of T (t). That is, if L is the length of an edge of P(t) corresponding to an edge of

length D in T (t), we posit that L|D is Gamma distributed with E [L|D = d] = d and

Var[L|D = d] = σ d. The parameter σ scales the noise on the rate of evolution. This

relaxation, identical to the white noise model of Lepage et al. (2007), is a Lévy process

with non-negative increments, as we require. Having specified P(t), the joint distribution of

observed sequences is determined by the choice of the time-reversible molecular substitution

model. Here, we used the TN93 model of molecular evolution (Tamura and Nei, 1993). This

model distinguishes between the rate of transitions between purines, the rate of transitions

between pyrimidines, and the rate of transversions. It is fully specified by the following
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rate matrix (see also Table 3.2):

Q =




∗ βπT βπC αRπG

βπA ∗ αY πC βπG

βπA αY πT ∗ βπG

αRπA βπT βπC ∗




3.5 Results

We present results from both a study on simulated data and an analysis of actual data.

The primary goal of the simulation study is to show how our methods can be used to extract

information about transmission dynamics from pathogen genetic sequence data within the

framework of likelihood-based inference. This study was carried out with 30 sequences

of length 100 bases. The goals of the data analysis are to demonstrate the numerical

feasibility of our implementation as well as illustrate the role of likelihood-based inference

as part of the cycle of data-informed model development for a phylodynamic model. The

data analysis was carried out using 100 protease consensus sequences of length 297 bases.

Due to the intensive nature of the computations, further developments will be required to

handle considerably larger datasets. Some empirical results concerning how our GenSMC

implementation scales with number of sequences are given in the supplement (Section S2.3).

We discuss applicability to the range of current phylodynamic challenges in the discussion

section.

3.5.1 A study on simulated data

Using the individual-based, stochastic model of HIV described above (Fig. 3.2), we set

parameters governing the rate of evolution at relatively high values to generate a high

proportion of variable sites. As computation scales with the number of variable sites, the

computational effort in this simulation study could be comparable to fitting real sequences

of greater length. Parameters values and their interpretations are specified in Tables 3.1

and 3.2. Algorithmic parameters are specified in Section S4.2. Each simulated epidemic

consisted of a transmission forest and a set of pathogen genetic sequences. We randomly

selected 5 epidemics to fit. Each dataset consists of two types of data: times of diagnoses

and pathogen genetic sequences. A representative simulated transmission forest and its

associated pathogen genetic sequences are shown in Fig. 3.3.
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For each of the selected epidemics we ask two questions. First, when all other parameters

are known, is it possible to infer εI0 and εI1 using only diagnosis times? Second, how does

inference change when we supplement the diagnosis data with pathogen genetic sequences?

To perform this comparison we estimated two likelihood surfaces for each epidemic: one

using only the diagnosis likelihood, and one using both the diagnosis likelihood and the ge-

netic likelihood. We estimated each surface by using the particle filter to compute a grid of

likelihood estimates with respect to the two parameters of interest: εI0 , the infectiousness

of early-stage undiagnosed individuals, and εI1 , the infectiousness of chronic-stage undi-

agnosed individuals. Equilibrium base frequencies were set to the empirical values in the

simulated data. All other parameters were fixed at the known values used for simulation.

We extracted grid-based likelihood profiles for each parameter by taking maxima over the

columns or rows of the grid. For each parameter we therefore obtained two profiles: one

using only the diagnosis likelihood and one using the joint likelihood. The difference in

curvature between these profiles tells how much the genetic data improves, or weakens,

inference on the parameters.

When only the diagnosis data are used, we find a tradeoff between εI0 and εI1 (Fig. 3.4).

The diagnoses provide information on upper bounds for each infectiousness parameter, but

otherwise only inform their sum. In other words, when estimated using only the diagnosis

times, εI0 and εI1 are nonidentifiable. Supplementing the data on diagnoses with pathogen

genetic sequences resolves this uncertainty (Fig. 3.4). Note that including the genetic data

increases noise in the likelihood estimate. This is expected, as computing the likelihood

estimate for the genetic sequences requires a numerical approximation to an integral over

tree space. Nevertheless, the genetic data increase the curvature of the likelihood surface.

From Fig. 3.4, we see that this additional curvature leads to more precise identification

of the parameters despite the increased Monte Carlo noise. In principle, Monte Carlo

variation can be reduced to negligibility by increased computational effort. This may not

be practical when computational expense is high, as it is here. Therefore, it is necessary

to bear in mind the tradeoff between the benefits of the information accessed for inference

versus the computational burden of extracting this information.
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Figure 3.1: A schematic showing the nature and evolution of the latent transmission and
phylogeny processes. The transmission forest, T (t), is shown in black; the pathogen phy-
logeny, P(t), in blue. On the left, we see the latent state at time t1; it evolves by time t2 to
the state shown on the right. At time t1, T (t1) consists of two disconnected trees, repre-
senting the transmission histories of five active infections (◦). These infections derive from
two infections present at t0 (black dots). The branching pattern of the pathogen phylogeny
mirrors that of T (t) over the interval [t0, t1]. This diagram assumes that pathogen lineages
branch exactly at transmission events; alternative models could allow for differences in the
branching pattern between T (t) and P(t). This diagram displays a model with a relaxed
molecular clock; randomness in the rate of evolution along lineages is depicted via random
edge lengths in P(t). Over the time interval [t1, t2], changes of each of the five permissible
types are shown. At 1O , an active node splits in two when a transmission event occurs. At
2O , an active node becomes a dead node (Ö) when an infected host emigrates, recovers, or

dies. At 3O , an immigration event gives rise to a new active node with its own root. At 4O
, a sequence node (�) is spawned when a sample is taken. Finally, active nodes for which
none of the above occur simply persist. The Markovian property insists that the latent
state at time t2 be an extension of the latent state at time t1. In other words, changes
to the latent state over the interval [t1, t2] must not retroactively modify elements of the
latent state prior to time t1.
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Figure 3.2: A flow diagram showing the possible classes for infected individuals. The
columns represent stage of disease: with subscripts 0, 1 and 2 representing early, chronic,
and AIDS stages respectively. The rows represent diagnosis status, with the top row repre-
senting undiagnosed individuals, Ik, and the bottom row representing diagnosed individuals,
Jk, where k ∈ {0, 1, 2}. ρk are per capita rates of diagnosis and γc are rates of disease pro-
gression. Arrows out of classes that do not flow into other classes represent the combined
flow out of the infected population due to death and emigration.
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Table 3.1: Parameters of the transmission model used in simulation of datasets.

Parameter Interpretation Value

εI1 Infectiousness of undiagnosed chronic stage individuals 0.25 yr−1

εI2 Infectiousness of undiagnosed AIDS individuals 0 yr-1

εJ0 Infectiousness of diagnosed acute stage individuals 0.125 yr-1

εJ1 Infectiousness of diagnosed chronic stage individuals 0.025 yr-1

εJ2 Infectiousness of diagnosed AIDS individuals 0 yr-1

µI0 Death rate + Aging rate of undiagnosed acute stage individuals 1/3 yr-1

µI1 Death rate + Aging rate of undiagnosed chronic stage individuals 1/3 yr-1

µI2 Death rate + Aging rate of undiagnosed AIDS individuals 5/6 yr-1

µJ0 Death rate + Aging rate of diagnosed acute stage individuals 1/3 yr-1

µJ1 Death rate + Aging rate of diagnosed chronic stage individuals 1/3yr-1

µJ2 Death rate + Aging rate of diagnosed AIDS individuals 2/3 yr-1

γI0 Progression rate from undiagnosed acute to undiagnosed chronic 1 yr-1

γI1 Progression rate from undiagnosed chronic to undiagnosed AIDS 1/6.3 yr-1

γJ0 Progression rate from diagnosed acute to diagnosed chronic 1 yr-1

γJ1 Progression rate from diagnosed chronic to diagnosed AIDS 1/6.3 yr-1

ρ0 Diagnosis rate of acute stage individuals 0.5 yr-1

ρ1 Diagnosis rate of chronic stage individuals 0.225 yr-1

ρ2 Diagnosis rate of AIDS individuals 50 yr-1

ψ Immigration rate of infected individuals 0 yr-1

φ Emigration rate of infected individuals 0 yr −1

troot Root (polytomy) time 0 yr

t0 Time to begin simulation of the transmission model 2 yr

tend Time to end simulation of the transmission model 10 yr

nloci Length of the sequences to simulate 100 base pairs

pG Probability of a sequence given diagnosis 0.48

NI0(t0) Number of undiagnosed early-stage individuals at t0 11

NI1(t0) Number of undiagnosed chronic-stage individuals at t0 15

NI2(t0) Number of undiagnosed AIDS individuals at t0 0

NJ0(t0) Number of diagnosed early-stage individuals at t0 4

NJ1(t0) Number of diagnosed chronic- stage individuals at t0 8

NJ2(t0) Number of diagnosed AIDS individuals at t0 6
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Table 3.2: Parameters of the genetic model used in simulation of datasets.

Parameter Interpretation Value

β Rate of transversions 0.013 yr-1

αY Rate of transitions between purines 0.03 yr-1

αR Rate of transitions between pyrimidines 0.1 yr-1

πA Equilibrium frequency of adenine 0.37

πG Equilibrium frequency of guanine 0.23

πC Equilibrium frequency of cytosine 0.18

πT Equilibrium frequency of thymine 0.22

σsite Relaxation of the molecular clock with respect to sites 0

σ Relaxation of the molecular clock with respect to edges 0.1 yr

δfixed The initial component of the sequence stem 0.001 yr

δprop Proportion of time since infection to add to the sequence stem 0.05
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Figure 3.3: A simulated transmission forest (bottom), its associated pathogen genetic se-
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Figure 3.4: Grid-based estimates of likelihood surfaces and likelihood profiles from fitting
to simulated data. The top row shows the surface (A) and profiles (B and C) estimated
using only the diagnosis likelihood. The bottom row shows the surface (D) and profiles
(E and F) estimated using both the diagnosis and the genetic likelihood. Red dots and
red lines indicate true values of εI0 and εI1 used in simulation. Point estimates and 95%
confidence intervals are shown in green just above the horizontal axis of the likelihood
profile plots. Confidence intervals for E and F account for both statistical uncertainty and
Monte Carlo noise (Ionides et al., 2016) using a square root transformation appropriate for
non-negative parameters. Augmenting the diagnosis data with genetic data yields smaller
confidence intervals for εI0 and εI1 , and resolves the nonidentifiability of these parameters
when estimated using only the diagnoses. Note that scales of the likelihood surfaces shown
in A and D are not the same; E and F have the same scale as B and C but with a vertical
shift.
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3.5.2 Analysis of an HIV subepidemic in Detroit, MI

In this data analysis, we explored whether our full-information approach could estimate

key transmission parameters using HIV protease consensus sequences and diagnosis times.

We focused our analysis on a subepidemic in the young, black, MSM community. The

cohort of individuals that we chose to study is shown in Fig. 3.5. See the Materials and

Methods section for details on how we selected the subepidemic and cleaned the sequence

data.

As in the study on simulated data, we were interested in what the genetic data yield

beyond what we can see using the diagnoses alone. Therefore, we again estimated likelihood

profiles in two ways: using only the diagnosis data and using both the diagnosis data and

the genetic sequences. We estimated likelihood profiles for three parameters of interest:

εI0 , εJ0 , and ψ. In contrast to the simulation study, in this analysis we were faced with

a parameter space of much higher dimension. To reduce the dimension of the problem

we fixed some parameters: rates of disease progression, rates of diagnosis, and the rate of

emigration. Parameters that were fixed and fit are shown in Tables 3.3 and 3.4, respectively.

Algorithmic parameters are specified in Section S4.2. For each likelihood profile we first

used iterated filtering (Ionides et al., 2015) to maximize the likelihood for a sequence of

values that spanned the reasonable range of the parameter. Second, we used the particle

filter to estimate likelihoods for each parameter set obtained from iterated filtering. We

repeated this process of maximization followed by evaluation until the profile stabilized. All

initial-value parameters were fixed, with the exception of troot. Initial counts for individuals

in each class were fixed. See the supplement for details on how we arrived at these counts.

When only the diagnosis data are used, we find that the model prefers to explain all

infections as originating outside the cohort, with the maximum likelihood estimate (MLE)

for ψ ≈ 120 infections per year (Fig. 3.6). Under this explanation for the data, little or

no transmission occurs inside the cohort: this covariate-defined subgroup acts as a sentinel

of the broader epidemic. Equivalently, this result would imply that the covariates we used

to select these cases do not define a meaningful subepidemic.

On the other hand, when the genetic data are folded in, the estimate of ψ is greatly

revised: the MLE for ψ becomes ≈ 6 infections per year. On its face, this is evidence

for a low rate of transmission into the cohort and, therefore, evidence that the cohort

subepidemic is much more self-contained. Although this may in part be true, the lower

estimate of ψ is also potentially driven by assumptions of the genetic model. Supposing, as

it does, that all immigrant lineages coalesce at a single, global polytomy, the model insists

that sequences from immigrant infections derive from a broad genetic pool. The breadth
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of this pool—the average genetic distance between an imported infection and any other

observed sequence—is determined by the depth of the polytomy, an estimated parameter.

Nevertheless, the low estimate of ψ implies that few infections derive from this broader

pool. The model’s disallowance of a more structured immigrant pool makes it difficult to

say more, however. In particular, the low value of ψ is not inconsistent with the existence of

chains of transmission originating within the cohort, leaving it, and returning. Such chains

would produce sequence clustering despite the openness of the cohort to transmission.

Future work, incorporating genetic and diagnosis information from the broader epidemic

will be needed to better quantify the latter effect.

Joint likelihood profiles over εI0 and εJ0 show support for transmission from both of

the early-stage groups, with evidence for higher infectiousness in the early-stage diagnosed

class than in the early-stage undiagnosed class. However, it is epidemiologically implausible

that diagnosis increases transmission: this is a paradox. Since the paradox did not arise in

the simulation study, it cannot be due to a coding error in the implementation of the model

or the statistical methodology. Assuming no errors in the data, therefore, it must derive

from some inappropriate feature of the model. We propose two possible explanations for

how the model and data combine to yield this result.

One possibility is that temporal clusters of genetically related diagnoses favor high

infectiousness for the early-stage diagnosed. For example, this could be an artifact of

unmodeled clusters in HIV testing. We searched the data for such clusters, but found no

conclusive evidence for their presence.

A second possibility is understood by noting that, under the model, any significant

amount of transmission from the undiagnosed classes leads necessarily to an exponentially

growing accumulation of diagnoses, in conflict with the data. When the genetic data

were left out, the model accounted for the observed, roughly linear, ramp-up in diagnoses

using immigration, hence the relatively high estimated ψ. Incorporating the genetic data

eliminates this option, forcing the model to explain the epidemic’s sub-exponential growth

as a consequence of diagnosis itself.

To illustrate the second possibility, we estimated likelihood profiles using only the di-

agnosis likelihood, fixing the immigration rate, ψ, at zero. These profiles show that, when

forced to explain the diagnoses without any imported infection, the model prefers to do so

by making the early-stage diagnosed class most infectious (Fig. 3.6). This suggests that

the model lacks flexibility to explain the pattern in the diagnoses without immigration;

this constraint likely limits efficient use of information in the genetic sequences. To remedy

this problem, one could modify the model by explicitly introducing a small and ephemeral

population of susceptible hosts.
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In this methodological paper, we display but one iteration of the scientific method and

it is clear that our motivating scientific questions remain incompletely answered. Our

principal goal, however, is to illustrate how the methodology facilitates the formulation

and testing of scientific hypotheses. For example, the results above suggest a number of

straightforward model modifications: the plug-and-play property of the methodology makes

it nearly as straightforward to evaluate the evidence for these new hypotheses just as we

have done for the old. Moreover, we have shown how probing the data with a mechanistic

model can lead to clear identification of flaws in model structure, along with indications

for improvements.
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Figure 3.5: The distribution of age at diagnosis through time for black MSM in Detroit,
MI. The cohort that we selected for analysis is outlined in red. We excluded the data from
2012 to limit effects from delays in updating the MDCH database. 29 individuals that were
diagnosed at ages greater than or equal to 60 years are not shown on this plot.

42



Table 3.3: Parameters fixed in the data analysis.

Parameter Interpretation Value

µI0 Death rate of undiagnosed acute stage individuals 1/70 yr-1

µI1 Death rate of undiagnosed chronic stage individuals 1/70 yr-1

µI2 Death rate of undiagnosed AIDS individuals 1/2 yr-1

µJ0 Death rate of diagnosed acute stage individuals 1/70 yr-1

µJ1 Death rate of diagnosed chronic stage individuals 1/70 yr-1

µJ2 Death rate of diagnosed AIDS individuals 1/70 yr-1

γI0 Progression rate from undiagnosed acute to undiagnosed chronic 1 yr-1

γI1 Progression rate from undiagnosed chronic to undiagnosed AIDS 1/6.3 yr-1

γJ0 Progression rate from diagnosed acute to diagnosed chronic 1 yr-1

γJ1 Progression rate from diagnosed chronic to diagnosed AIDS 1/6.3 yr-1

ρ0 Diagnosis rate of acute stage individuals 0.225 yr-1

ρ1 Diagnosis rate of chronic stage individuals 0.225 yr-1

ρ2 Diagnosis rate of AIDS individuals 50 yr-1

φ Emigration rate of infected individuals 0 yr-1

NI0(t0) Number of undiagnosed early-stage individuals at t0 20

NI1(t0) Number of undiagnosed chronic-stage individuals at t0 36

NI2(t0) Number of undiagnosed AIDS individuals at t0 0

NJ0(t0) Number of diagnosed early-stage individuals at t0 4

NJ1(t0) Number of diagnosed chronic- stage individuals at t0 22

NJ2(t0) Number of diagnosed AIDS individuals at t0 16

σsite Relaxation of molecular clock with respect to sites 0 yr

t0 Time to start filtering 1 Jan 2004
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Table 3.4: Parameters fit in the data analysis. We present confidences intervals for param-
eters for which we computed likelihood profiles. For all other parameters, we present only
the point estimate. This table is continued in Table 3.5.

Parame-
ter

Interpretation Diagnosis data
Diagnosis data

and genetic
sequences

Diagnosis data,
with ψ fixed at

0

ψ
Immigration rate of
infected individuals

120 (104, 134)
yr-1

5.82 (2.55, 11.2)
yr-1

0 yr-1

εI0

Infectiousness of
undiagnosed acute
stage individuals

0 (0, 0.413)
0.257 (0.0399,

0.623)
0 (0, 0.192)

εI1

Infectiousness of
undiagnosed chronic
stage individuals

0.0042 0.00048 0.0056

εI2

Infectiousness of
undiagnosed AIDS
individuals

0 0 0

εJ0

Infectiousness of
diagnosed acute stage
individuals

0.0675 (0, 1.17) 3.36 (3.13, 4.2) 7.34 (5.78, 9.25)

εJ1

Infectiousness of
diagnosed chronic stage
individuals

0.0089 0.17 0.032

εJ2

Infectiousness of
diagnosed AIDS
individuals

0 0 0
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Table 3.5: Parameters fit in the data analysis (continued).

Parame-
ter

Interpretation Diagnosis data
Diagnosis data

and genetic
sequences

Diagnosis data,
with ψ fixed at

0

β Rate of transversions - 0.0042 yr-1 -

αY
Rate of transitions
between purines

- 0.047 yr-1 -

αR
Rate of transitions
between pyrimidines

- 0.043 yr-1 -

πA
Equilibrium frequency
of adenine

- 0.37 -

πG
Equilibrium frequency
of guanine

- 0.24 -

πC
Equilibrium frequency
of cytosine

- 0.18 -

πT
Equilibrium frequency
of thymine

- 0.21 -

σ
Relaxation of molecular
clock with respect to
edges

- 2 yr -

δprop

Proportion of time
since infection to use
for diagnosis edge

- 0.064 -

δfixed

Amount of calendar
time to add on to
diagnosis edge

- 0.00049 yr -

troot

Time of the polytomy
that joins all genetic
lineages

- 27 Aug 2000 -

45



A

2460

2470

2480

2490

2500

0.0 0.5 1.0 1.5
εI 0

Lo
g 

Li
ke

lih
oo

d

D

-800

-700

-600

-500

-400

-300

0.0 0.5 1.0 1.5
εI 0

Lo
g 

Li
ke

lih
oo

d

G

2460

2470

2480

2490

2500

0.0 0.5 1.0 1.5
εI 0

Lo
g 

Li
ke

lih
oo

d
B

2460

2470

2480

2490

2500

0.0 2.5 5.0 7.5 10.0
εJ0

E

-800

-700

-600

-500

-400

-300

0.0 2.5 5.0 7.5 10.0
εJ0

H

2460

2470

2480

2490

2500

4 6 8 10
εJ0

C

2460

2470

2480

2490

2500

0 50 100 150
ψ

F

-800

-700

-600

-500

-400

-300

0 50 100 150
ψ

Figure 3.6: Estimated likelihood profiles from fits to data from the black, MSM cohort. A-C
show likelihood profiles computed using only the diagnosis likelihood. D-F show likelihood
profiles computed using both the diagnosis likelihood and the genetic likelihood. G and H
show likelihood profiles computed using only the diagnosis likelihood when ψ is fixed at
zero. Black dots represent particle filter likelihood evaluations of parameter sets obtained
using iterated filtering. Red dots represent mean log likelihoods of the multiple likelihood
evaluations (black dots) at each point in the profile. Red lines are loess fits to the red dots.
Green bars along the lower margin of each panel encompass 95% confidence intervals for
each parameter. Confidence intervals account for both statistical uncertainty and Monte
Carlo noise (Ionides et al., 2016). The smoothed profile was calculated on the square root
scale, appropriate for non-negative parameters, with a green dot indicating the maximum.
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3.6 Discussion

We demonstrated, via a simulation study, that our algorithms provide access to the

likelihood surface of a population dynamic model fit to genetic sequence data. This opens

the door to likelihood-based phylodynamic inference. As this study shows, incorporating

information from genetic data has the potential to improve on inference that we obtain

using diagnosis data alone.

In our analysis of an HIV subepidemic in Detroit, MI, we showed that our methods

can be used to ask questions of current public health interest by fitting practical models to

data of nontrivial size. This study illustrates how the ability to confront the model with

different data types, alone or in combination, can be essential to understanding how the

model interacts with the data, to uncovering shortcomings of the model, and to pointing

the way toward improved model formulations. The ability of our methods to incorporate

different data types made it possible to assess each source of information’s contribution to

the overall inference. In turn, the ability to easily restructure the model, guaranteed by

the plug-and-play property, will allow us to push forward model development.

The scope of our methodology goes beyond the examples presented: the algorithms

described here are applicable across a wide range of host-pathogen systems and may find

application in realms beyond genetics. From an abstract perspective, these algorithms

provide the ability to relate demographic processes with a growing tree-like structure to the

evolution of discrete characters that are carried and passed along the branches of that tree.

So long as this evolution occurs on a similar timescale to that of the demographic process,

and measurements of the discrete process are heterochronous, the methods presented here

apply.

In this paper, we demonstrated the methods using relatively short consensus sequences

derived from Sanger sequencing. While our methods may be well suited to analysis of data

from fast-evolving RNA viruses, they may also apply in studies of pathogens that evolve

more slowly. Advances in sequencing are increasing the range of problems for which phy-

lodynamic inference is applicable (Biek et al., 2015). The ability to apply phylodynamic

inference to bacterial and protozoan genomes opens the door to many epidemiological ap-

plications. One area that may be particularly interesting to explore using our methods is

hospital outbreaks of drug resistant bacteria. Hospital records on location and duration

of stay may provide fine-scale information on populations of susceptible and infected in-

dividuals. Accurate measures of these demographic quantities may allow for efficient use

of information held in genetic data. Furthermore, the relatively small size of outbreaks in

hospitals means that stochasticity may play a large role in their dynamics, and our methods
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are designed to explicitly account for the role of different sources of stochasticity.

We conclude by placing our new methodology in the context of the eight current chal-

lenges identified by Frost et al. (2015) for inferring disease dynamics from pathogen se-

quences. We will make some relevant comments on each challenge, in order.

1. Accounting for sequence sampling patterns. Our methodology explicitly mod-

els sequence sampling. The chance of an individual being diagnosed, or subsequently

having their pathogen sequenced, is permitted to depend on the state of the indi-

vidual. This state could contain geographic information, or whatever other aspect

of the sampling procedure one desires to investigate. Sampling issues revolve around

how the dynamics and the measurement process affect the relatedness of sequences,

and are more naturally handled in a framework that deals jointly with estimation

of the population dynamics and the phylogeny. Thus, our main innovation of joint

estimation is directly relevant to this challenge.

2. Using more realistic evolutionary models to improve phylodynamic infer-

ences. In this paper, we have used simple evolutionary models that have been widely

used for previous phylodynamic inference investigations. Our methodology does not

particularly facilitate the use of more complex evolutionary models, since the large

number of trees under consideration puts a premium on rapid likelihood computa-

tion. However, our methodology is primarily targeted at drawing inference on the

population dynamics rather than the micro-evolutionary processes. For this purpose,

it may be sufficient to employ an evolutionary model which captures the statistical

relationship between genetic distance and temporal distance on the transmission tree,

together with an appropriate estimate of the uncertainty in this relationship. Better

evolutionary models would be able to extract information more efficiently from the

data, but from our perspective this challenge may not be a primary concern.

3. The role of stochastic effects in phylodynamics. Our methodology explicitly

allows for stochastic effects in the population dynamics and sequence collection.

4. Relating the structure of the host population to pathogen genetic vari-

ation. Our framework explicitly models this joint relationship. Further scientific

investigations, fitting models using methods accounting properly for the joint rela-

tionship, will lead to progress in understanding which aspects of dynamics (such as

super-spreading) might be especially important to include when carrying out phylo-

dynamic inference.
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5. Incorporating recombination and reassortment. In principle, our methodology

is flexible enough to include co-infection and its evolutionary consequences. Due to

computational considerations, it will be important to capture parsimoniously the key

aspects of these processes.

6. Including phenotypic as well as genotypic information. Our framework nat-

urally combines genotypic information with other information sources. For example,

in our data analysis we complemented genetic sequence data with diagnosis times for

unsequenced patients.

7. Capturing pathogen evolution at both within-host and between-host scales.

The diagnosis edges on our phylogenetic tree allow for differences between observed

and transmissible strains, and therefore give a representation of within-host diversity

or measurement noise. Other approaches to within-host pathogen diversity are possi-

ble within our general framework. For example, one could include within-host branch-

ing of the phylogenetic tree. More complete investigation of within-host pathogen

dynamics will require additional modeling. Due to the larger models and datasets in-

volved, applying our methodology to such investigations will require further method-

ological work on scaling.

8. Scaling analytical approaches to keep up with advances in sequencing. In

this manuscript, our goal was to develop generally applicable and statistically efficient

methodology. Our methodology is structured with computational efficiency in mind,

subject to that goal. Our approach combines various algorithms that have favorable

computational properties: peeling, particle filtering with hierarchical resampling and

just-in-time variable construction, and iterated filtering. There is scope for computa-

tional enhancement by adapting the methodology to high performance architectures.

In particular, parallel particle filtering is an active research topic (Paige et al., 2014)

that is directly applicable to our methodology. There are also possibilities for im-

proving scaling by imposing suitable situation-specific approximations; for example,

it might be appropriate to reduce the computational burden by supposing that some

deep branches in the phylogeny are known.

In summary, our new methodology has potential for making progress on many of the

challenges identified by Frost et al. (2015). Beyond that, the methodology offers a full-

information, plug-and-play approach to phylodynamic inference that gives the scientist

flexibility in selecting appropriate models for the research question and dataset at hand.

Although technical challenges remain, especially in scaling these methods to large data,
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these algorithms hold the potential to ask and answer questions not accessible by alternative

approaches.

3.7 Materials and methods

3.7.1 Overview of sequential Monte Carlo estimation of the likelihood

Sequential Monte Carlo (SMC) is a family of stochastic algorithms originally designed to

estimate imperfectly observed states of a system via a collection of dynamically interacting

simulations (Arulampalam et al., 2002). Each such simulation is called a particle; SMC is

often referred to as the particle filter. The simplest SMC algorithm sequentially estimates

the latent state at the time of each observation by iteratively repeating three steps: (1) for

each particle, simulate the latent process forward in time to the next data point, (2) for

each particle, compute the conditional probability density of the observation given the

proposed latent state, and (3) resample the particles with replacement with probabilities

proportional to their conditional probabilities. While inference of unobserved states is

one use of the particle filter, we are primarily interested in using the filter for likelihood

estimation. The average of the conditional likelihoods across particles is an estimator of the

conditional likelihood of each observation, and the product of these conditional likelihoods

is an unbiased estimator of the full likelihood of the data (Theorem 7.4.2 on page 239 in

Del Moral, 2004).

The basic particle filter described above requires only the ability to simulate realizations

of the latent state and to evaluate the density of an observation given the latent state. As

explained above, in the present case, the latent state contains both the full transmission

forest and the phylogeny of the pathogen lineages. At minimum, the observations consist

of a time-ordered set of pathogen genetic sequences. Although in principle these methods

could be applied to homochronous sequences, we primarily envision using them to fit models

to heterochronous sequences. Additional datatypes can be incorporated into the likelihood

evaluation if desired so long as there is a means to relate these data to the latent state.

We implemented the particle filter such that the algorithmic code is independent of

the code that specifies the model. This structure allows for realizing the advantanges of

the plug-and-play paradigm by facilitating quick comparisons between models of different

forms. Pseudocode for the algorithm is provided in the supplement.

In our framework, the user specifies the model by writing three functions:

1. A simulator for the initial state of the latent process. This function initializes

T (t0) and U(t0). For example, in a model with only one class of infected individuals,
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this function would initialize T (t0) by specifying the number of infected individuals

at t0. Additional information about the states of those individuals may be contained

in U(t0). Each of these individuals then becomes a root of a tree in the transmission

forest. Each root of the transmission forest has its own genetic lineage; these comprise

P(t0). In our implementation, the initializer does not construct P(t0); the structure

of P(t) is built as needed (see below in the section ‘Just-in-time construction of state

variables’).

2. A forward simulator for the latent state. This function simulates T (t) and

U(t) forward in time from one observation to the next. This function also places

the next observation on T (t), assigning the sequence to an individual by augmenting

T (t) with a diagnosis edge and a sequence node. Note that this function does not

simulate evolution of genetic sequences. Rather, the algorithm proposes ancestral

relationships between genetic sequences via the simulated transmission forest. While

formally, the pathogen phylogeny P(t) is part of the latent state, for computational

efficiency we choose not to simulate its structure in full. The function in (3) builds the

necessary components of P(t) given the simulated transmission forest and placement

of sequences on the forest.

3. An evaluator for the conditional probability of observing a sequence. This

function returns the conditional probability of observing a sequence given the latent

state and all previously observed sequences. In particular, this function conditions

on the structure of the subtree of P(t) that connects the observed sequences. The

simplest choice for this function is to (1) make the strong assumption that P(t)

maps directly onto T (t), and therefore build the phylogeny based strictly on the

topology of T (t) and (2) evaluate the conditional likelihood of the genetic sequence

using the peeling algorithm (Felsenstein, 1981). These two choices are equivalent

to assuming a strict molecular clock. However, one may choose more complicated

functions, such as mappings that allow for discrepency between T (t) and P(t) or a

relaxed molecular clock, to better match the mechanistic processes that generate real

data. The branching pattern of the transmission forest and of the phylogeny may

differ for a number of reasons (Romero-Severson et al., 2014), so there may be strong

arguments for allowing for discrepency between these trees.
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Algorithm 2: GenSMC [Corresponding step numbers for the complete descrip-
tion in Section S2 are in brackets]

input: simulator for the initial state; a dynamic model; diagnosis times; genetic
sequence data; number of particles; number of nested particles; number of
relaxed clock samples.

initialize filter particles [step 1]
for each diagnosis time do [step 2]

simulate particles through to next diagnosis time [steps 3, 5]
propose multiple candidate individuals for the next diagnosis [steps 6, 7]
propose multiple relaxed clock edge lengths for each candidate assignment

[steps 8-11]
compute particle weights: the probability density of the diagnosis and sequence

[steps 4, 12, 13]
resample according to particle weights [steps 14-21]
compute conditional log likelihood [step 22]

end for output: log likelihood estimate; latent states estimates.
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Particle 1 Particle 2 Particle 3

troot t0 t1 troot t0 t1 troot t0 t1

t1 t2 t1 t2 t1 t2

1. Proposal. Simulate
particles forward from
time t1 to time t2. Then
select an individual to be
sequenced.

w1 w2 w3

P
2. Weighting. Based on the
structure of the proposed trans-
mission forest, construct the
subtree of the phylogeny that
connects the observed sequences.
Use this subtree to compute
weight of the particle: the con-
ditional probability of the new
sequence.

3. Resampling. Resample
particles with probability
proportional to their weights.

Figure 3.7: A schematic of the particle filter. Here, we show steps to run the filter from the
first sequence to the second. Transmission forests are shown in black and phylogenies that
connect observed sequences, P̃(t), are shown in blue. Observed sequences are depicted as
blue dots. This schematic shows how the algorithm uses just-in-time construction of state
variables to ease computational costs. Although the model describes how P(t) relates to
T (t) across all branches of the transmission tree, the algorithm only constructs the subtree
of the phylogeny needed to connect the observations (and therefore evaluate conditional
probabilities of sequences). Note that in our implementation of the particle filter we intro-
duce additional procedures in the proposal and weighting steps. These procedures, which
are detailed below, allow for more accurate assessment of a particle’s weight (through hi-
erarchical sampling) and estimation of the conditional probability of a sequence under a
relaxed clock. In our current implementation (Algorithm 3), assimilation of each data point
is followed by systematic resampling (Arulampalam et al., 2002; Douc et al., 2005); future
developments may aim to increase efficiency further using alternative resampling schemes.
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3.7.2 Maximization of the likelihood via iterated filtering

The particle filter provides access to the likelihood surface, but it does not provide an

efficient way to maximize the likelihood. A closely related class of algorithms, iterated

filtering, allows for maximizing the likelihood. Iterated filtering incorporates perturbation

of unknown parameters into the particle filter. Repeatedly passing the filter over the data

while shrinking the size of the perturbations allows the parameters to converge to their

maximum likelihood estimates. The setup here, with the use of just-in-time construction

of unobserved states, does not perfectly match the framework used to develop iterated

filtering by Ionides et al. (2015). However, the basic iterated filtering approach of perturbing

parameters and filtering repeatedly can be applied, and can be assessed on its empirical

success at maximizing the likelihood.

3.7.3 Computational Structure

One way our algorithms differ from a standard SMC approach is that each particle

maintains a latent state comprising of tree structures that reach back to troot. As the

algorithm incorporates each additional data point its memory requirement grows. From a

practical perspective, the necessity of maintaining a deep structure in the particles presents

challenges for writing a computationally feasible implementation of the algorithm. We

developed several innovations to meet the computational challenges posed by numerically

integrating over tree space. In this section, we give an overview of key components of our

implementation that contributed to numerical tractability. For details, see the source code

at https://github.com/kingaa/genpomp (to be archived at datadryad.org).

3.7.3.1 Data structures and their relationship to model specification

Our implementation holds two tree structures in memory for each particle: (1) T (t), the

transmission tree, and (2) P̃(t), the subtree of P(t) that connects all sequences observed

up to time t. We represent T (t) as a vector of nodes, where each node contains the index of

its mother, a timestamp, and the index of the genetic lineage with which it is associated (if

any). Although the model of the latent state includes the full phylogeny of the pathogen,

P(t), our algorithms only need to keep a subtree of the phylogeny, P̃(t), in memory. We

also represent P̃(t) as a vector of nodes. However, nodes of P̃(t) require more memory

than the nodes of T (t). In addition to the information in a transmission tree node, each

node of P̃(t) contains the indices of the node’s daughters, an array of probabilities, and an

evolutionary edge length. These additional components allow for computing the likelihood

of observing the sequences at the tips of P̃(t).
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Our implementation provides a set of functions that allow for specifying the model via

forward-in-time simulation of the latent state. These functions provide access to the latent

state and allow for modifying the latent state by branching lineages in T (t), terminating

leaves in T (t), etc. Our code does not provide access to P̃(t). Instead, internal functions

update the structure of P̃(t) as necessary (detailed in the following section on just-in-

time construction of state variables). The structure of P̃(t) is in part determined by the

molecular clock model. Our current implemention supports strict molecular clock models

and relaxed molecular clocks with gamma distributed edge lengths (as we use in this paper).

Alternative models for P(t) are possible, and the plug-and-play structure of our algorithms

allows the user to explore a wide range of alternative models.

3.7.3.2 Just-in-time construction of state variables

Although the model of the latent process includes the full phylogeny of the pathogen,

P(t), for the purposes of computation we need only store P̃(t) in memory. In our imple-

mentation, we add new edges to P̃(t) at the time of measurement; it is not until a sequence

is placed on a lineage of T (t) that we have enough information to update P̃(t). We call this

approach just-in-time construction of state variables because simulation of part of the state

is postponed until the last moment. An alternative approach would include simulation of

P(t) in tandem with the transmission forest. Then, when a sequence is attached to T (t)

the necessary components of P(t) to relate the new sequence to all previously observed se-

quences would be guaranteed to be present. When the transmission forest is large relative

to the phylogeny such an approach would be costly in both computation and memory.

3.7.3.3 A hierarchical sampling scheme

We developed a hierarchical sampling scheme to allow for scaling the effective number

of particles while holding only a fraction of the effective number of particles in memory.

This sampling scheme allows for holding J particles in memory while approaching effective

sample sizes approaching JK, where J is the number of base particles and K is the num-

ber of nested particles. In this hierarchical scheme, we split the proposal into two steps:

(1) proposal of the transmission forest, and (2) proposal of the location of the sampled

sequence on the transmission forest. Each of J particles first proposes a transmission for-

est. Then each of the J particles calculates the likelihood of the observed sequence for

K possible locations of the observed sequence (Fig. 3.8). One of the K nested particles

is kept, sampled with weight proportional to its conditional likelihood, and the remaining

K − 1 particles are discarded. The weight of the surviving particle is the average of the
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conditional likelihoods of the K nested particles.

3.7.3.4 A Monte Carlo procedure for the relaxed molecular clock

As we have no closed-form expression for the conditional probability of an observed

sequence under a relaxed clock, we estimate this probability via simulation. Fig. 3.9 shows

how we incorporate this Monte Carlo procedure into our SMC framework. We generate L

instances of the subtree of the phylogeny that connects all previously observed sequences

up to time t, P̃(t). We then augment each subtree with an edge to accommodate the new

sequence. The length of this edge is gamma distributed as described above. When connect-

ing the new edge to the existing phylogeny, there are two cases: either the edge connects

at the root or the new edge splits an existing edge. In the case of a split edge, we allocate

edge length to either side of the split according to a beta distribution. This procedure

maintains gamma distributed edge lengths. Having constructed the phylogeny connecting

all sequences up to the new sequence, we then use the peeling algorithm (Felsenstein, 1981)

to compute the conditional probability of the new sequence. The average of the conditional

probability given each of the L subtrees is an estimate of the conditional probability of the

new sequence under a relaxed clock.

3.7.3.5 Parallelization

We used openMP (Dagum and Menon, 1998) to parallelize the algorithm at the level

of a single machine to reduce runtimes. In particular, we parallelized the outer loop of the

hierarchical sampling scheme described above. Each processor handles one base particle at

a time. The cost in memory for n processors handling J particles with a nested sample

size of K is therefore at worst J + nK, as each processor may have at most K additional

particles in memory.

3.7.4 A model of HIV transmission: computation of the measurement model

Each diagnosis event consists of a diagnosis time and, possibly, an associated genetic

sequence. In the case where the diagnosis event has no sequence, the measurement model

is only the conditional density of the diagnosis time. When there is an associated sequence,

it is the product of the conditional density of the diagnosis time and the conditional prob-

ability of the genetic sequence.

We compute the conditional density of a diagnosis time as follows. We decompose the

density into two terms: (1) The probability of no diagnosis over the last interdiagnosis
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interval: exp
(
−∑2

k=0 Λk

)
where Λk is the cumulative hazard of a diagnosis from class Ik,

k ∈ {0, 1, 2}. That is, Λk = ρk
∑R

r=1 δrNIk,r, where, ρk is the diagnosis rate for class Ik, δr is

length of the rth subinterval in the interdiagnosis interval over which the count of class Ik,

NIk,r, is constant, and (2) the hazard of a diagnosis at the time of diagnosis:
∑2

k=0 ρkNIk .

The conditional density of a diagnosis time is the product of these two quantities, and

is therefore a mixture of a probability and a density. To compute the first, each particle

accumulates the person-years of undiagnosed individuals over the last diagnosis interval

(Fig. 3.10). The second is easily computed given the number of each class of undiagnosed

individual at the time of diagnosis.

The conditional probability of a genetic sequence is the probability of observing that

sequence given the latent state of the system and all previously observed sequences. Our

Monte Carlo approach for computing this probability under a relaxed clock is detailed in

the ‘Computational Structure’ section.

3.7.5 Data analysis methods: the sequence data

We preprocessed the sequence data following Volz et al. (2013) to facilitate comparision

with that work. We excluded poor quality sequences and recombinant sequences, and

accounted for known sources of selection. We first aligned all sequences to the reference

sequence for the pol gene of HIV subtype-B. We then masked known drug resistant sites,

as specified in the Stanford database of HIV drug resistance (Bennett et al., 2009). We

used the program HyPhy (Pond et al., 2005) to identify the type of each sequence and

then excluded recombinant sequences and nonsubtype-B sequences. Many individuals in

the dataset have multiple sequences. To limit the complexity of the problem, we chose to

keep only first available sequences that were collected within one year of diagnosis. Our

methods could, in principle, allow for multiple sequences from each individual. However,

this extension has not yet been implemented. We took the time of diagnosis as the time of

sequencing – for most sequences this is a reasonable approximation. Poor quality sequencing

often manifests as sequences with clipped ends. We therefore considered the length of a

sequence as a proxy for quality, and we excluded sequences whose concatenated length was

shorter than 1100 base pairs.

3.7.6 Data analysis methods: selecting a subepidemic

The Michigan Department of Community Health (MDCH) maintains an extensive

dataset on HIV positive individuals living in the state of Michigan. This dataset stretches
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back to the beginnings of the HIV epidemic in the United States, and includes over 30,000

diagnoses and nearly 9,000 genetic sequences. Analysis of the full dataset is beyond the

scope of our current implementation. Further developments, possibly including prelimi-

nary splitting of the full phylogeny into clusters, will be necessary to apply our methods

to larger-scale situations. We therefore selected a subset of the cases based on a number

of clinical covariates. We chose to focus on the young, black, MSM, subepidemic, which

has been of recent concern in Detroit and elsewhere in the USA (Maulsby et al., 2014).

In selecting this subset, one of our goals was to choose a well-defined subpopulation. We

selected records of individuals from the the MDCH dataset that met the following criteria:

black, MSM, known not to be an intravenous drug user, and diagnosed in one of 10 counties

that comprise the Detroit Metropolitan Area. For this subpopulation, the distribution of

the age at diagnosis through time shows striking patterns. In particular, it there is evidence

for cohorts of infected individuals that may be clusters of transmission within the young,

black, MSM community. We selected a cohort from this population that may represent

such a cluster of transmission: individuals that were between the ages of 19 and 28 inclu-

sive in the year 2011 (a span of 10 years) and were diagnosed between 1 January 1999 and

31 December 2011 (Fig. 3.5). We selected this particular cohort of individuals because it

contains what appears to be a pulse of transmission, and because it coincides with when we

have high rates of sampling for the genetic sequence data. Counts of individuals diagnosed

between 1 January 1999 and 31 December 2003 were used to determine initial conditions

(detailed in the supplement). We fit models to data from 1 January 2004 to 31 December

2011. This portion of the cohort has 709 diagnoses and 253 primary genetic sequences.

We subsampled the genetic sequences, randomly selecting 100 sequences to keep in the

analysis. For the current implementation of our methodology, and in the context of this

HIV model, 100 sequences was around the limit of computational tractability.
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1. Proposal (part 1). Simulate
the transmission forest forward
from time t1 to time t2.

2. Proposal (part 2). Copy
the particle K times. For each
copy, propose an individual to
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w1 w2 wK

P
3. Weighting. For each
of the K copies, construct
the subtree of the phylogeny
that connects the observed
sequences. Use this sub-
tree to compute weight of
the particle: the conditional
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quence.
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with probability proportional to its weight.
The sampled particle takes the average of the
K particle weights from the previous step as its
weight.

Figure 3.8: A schematic of our hierarchical sampling scheme. In this scheme, we split
the proposal into two steps: (1) simulation of the transmission forest and (2) selecting
an eligible individual to be sequenced. When each particle is expensive, it may pay to
invest more effort in evaluating the conditional probability of a sequence given the latent
state. This procedure is easily nested within the simpler form of the particle filter shown
in Fig. 3.7. In turn, one can add additional Monte Carlo steps to the weighting step in this
procedure to evaluate the conditional probability of a sequence under a relaxed clock (see
Fig. 3.9).
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Figure 3.9: A schematic showing our Monte Carlo approach to estimate the conditional
probability of a sequence under a relaxed clock. Note that this procedure only modifies the
subtree of the phylogeny that joins the sequences, P̃(t). At the top, we show a particle just
before attaching a new sequence. In this case, the particle has already incorporated two
sequences, and the location of the third sequence on the transmission forest has already
been selected. First, we make L copies of P̃(t2), the subtree of the phylogeny that connects
all sequences observed up to time t2 (at 1O ). For each of these phylogenies we propose
an attachment site and an edge length for sequence g3 (at 2O ). The edge length of the
edge subtending sequence g3, e`, is drawn from a Gamma distribution parameterized as
described in the text. We split the edge between the root and sequence g2 according to a
Beta distribution into two lengths, a` and b`; this procedure preserves Gamma distributed
edge lengths for two components of the split edge. Then, for each proposed phylogeny, we
use the peeling algorithm to compute the conditional probability of sequence g3 (at 3O ).
Finally, we sample one of these proposed phylogenies with probability proportional to its
weight (at 4O ). The unsampled proposals are discarded and the particle takes the average
of the conditional probabilities as its weight.
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Figure 3.10: A schematic of quantities used in calculation of the conditional density of a
diagnosis and the conditional probability of a genetic sequence. At AO we show a simu-
lated transmission tree. For simplicity, this tree only has individuals of class I0 and class
J0. Dashed arrows fall from events in the transmission tree that change the count of I0

individuals in the population. At BO we show a plot of the trajectory of the I0 class. This
plot shows the quantities we use to calculate the cumulative hazard of diagnosis for the I0

class, Λ0, over an interval of time from t1 to t2. We first subdivide the time interval into
R subintervals over which the number of I0 individuals is constant (indicated with dashed
lines). We let the number of I0 individuals in the rth subinterval be NI0,r. The cumulative

hazard of diagnosis is then: Λ0 = ρ0

∑R
r=1 δrNI0,r. The cumulative hazards of diagnosis

for the other two classes of undiagnosed individuals are computed in the same fashion. At
CO we show the set of L subtrees of the phylogeny that we use to numerically estimate
the conditional probability of sequence g2 under our relaxed clock model. The `th subtree
is constructed by augmenting P̃(t1) with a new edge with length e` drawn from a gamma
distribution parameterized as described in the text. For each of these L subtrees we use the
peeling algorithm to compute w` = P[g2|g1, P̃`(t2)], the conditional probability of observing

sequence g2 given sequence g1 and the structure of P̃`(t2). The average of these conditional
probabilities is a numerical estimate of the conditional probability of g2 under our relaxed
clock model. For simplicity, here we do not show the case in which the edge length of g2

splits an existing edge; this case requires a beta bridge to apportion the length of the split
edge so as to maintain gamma distributed edge lengths. For this more complicated case,
see Fig. 3.9.
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3.8 Supplementary Material

Supplementary materials are available online at Molecular Biology and Evolution (http:

//www.mbe.oxfordjournals.org/). The supplement provides a formal specification of the

class of models described in the New Approaches section, technical details on the algorithms

we developed to maximize and evaluate the likelihood of these models, and additional

details concerning the data analysis presented in the main paper. The supplement provides

a formal specification of the class of models described in the New Approaches section,

technical details on the algorithms we developed to maximize and evaluate the likelihood

of these models, and additional details concerning the data analysis presented in the main

paper. The source code for our software implementation of the SMC algorithms is available

at https://github.com/kingaa/genpomp (to be archived at datadryad.org).
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CHAPTER IV

Inferring transmission in a simulated hospital outbreak

4.1 Abstract

Over the last decades, Vancomycin-resistant Enterococcus (VRE) has emerged as a

common pathogen in hospitals worldwide. The epidemiology of VRE transmission and the

factors promoting persistence of VRE in hospitals are not yet well understood. Open ques-

tions remain about the role of antibiotics, both in modulating the transmission rate of VRE

and in facilitating the growth of preexisting low levels of VRE colonization. The role of

heathcare workers and the role of the hospital environment in transmission are also active

areas of research. A potential barrier to a deeper understanding of VRE epidemiology is the

inability to adequately model all the essential elements in the system. In principle, mech-

anistic models of transmission and VRE emergence, informed by whole genome sequences

of the pathogen and surveillance data, have the potential to generate new insights into the

roles of different drivers of VRE dynamics. However, developing the methodology to fit

such models to detailed patient-level data is nontrivial. In this chapter, we first develop a

model of VRE transmission on two wards. In a study on simulated data, we demonstrate

that genPomp, equipped with a targeted proposal, can successfully recover parameters of

within and between-ward transmission. Lessons from this study will serve as a foundation

for later work with data from real outbreaks. We conclude with a discussion of possible

ways forward for fitting a data from an outbreak at the NIH clinical center.

4.2 Introduction

Since its emergence in 1986 in Europe, Vancomycin-resistant Enterococcus (VRE) has

spread to become a common pathogen in hospitals around the world (O’Driscoll and Crank,

2015). Multiple factors may underlie the success of VRE in the hospital. A number of stud-

ies have found a link between antibiotic usage and risk of VRE colonization (Gouliouris
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et al., 2018; Peel et al., 2012; Papadimitriou-Olivgeris et al., 2014). A limitation of these

studies is that they are unable to assess the relative roles of two likely mechanistic expla-

nations for how antibiotics promote the success of VRE. One possibility is that antibiotic

usage affects the transmission rate of VRE, either through increasing susceptibility of un-

colonized patients or through increasing the infectiousness of colonized patients. Another

possibility is that antibiotic usage facilitates the emergence of preexisting low-levels of infec-

tion. In outbreaks of VRE, both of these mechanisms may be a factor. Understanding the

frequency with which these two mechanisms occur could be critical in developing effective

control measures.

The mode of transmission of VRE is also an important area of research. Both envi-

ronmental contamination and healthcare workers are thought to play important roles in

transmission. A study exploring persistence times of different strains of Enterococcus fae-

cium found the bacteria could persist on dry surfaces for at least a week and sometimes as

long as 4 months (Wendt et al., 1998). Furthermore, another study found that prior room

occupancy by a VRE positive patient is a risk factor for VRE colonization (Drees et al.,

2008). A controlled study of the effectiveness of gloving found that use of gloves reduced

hand carriage of VRE by healthcare workers (Tenorio et al., 2001). This study found that

ungloved workers had significant rates of carriage of VRE on their hands, indicating they

could facilitate transmission.

Fitting mechanistic models of transmission to hospital outbreak data may have the po-

tential to estimate the relative importance of different factors driving VRE colonization.

In particular, whole genome sequences may be able to inform our understanding of dif-

ferent mechanisms of VRE transmission and emergence. In Chaper III we proposed that

genPomp could be particularly useful for studying hospital outbreaks of drug resistant bac-

teria. Hospital outbreaks are often relatively small in scale, therefore stochasticity may

play an important role in shaping their transmission dynamics. By design, GenPOMP

models explicitly specify the nature of stochasticity, both in process and in measurement.

Furthermore, hospital outbreaks may offer detailed patient level data, such as surveillance

test results and locations of patients through time. By using genPomp we can easily in-

corporate these additional sources of information as covariates or data to more efficiently

leverage information in the pathogen genetic sequences.

However, using genPomp to fit models to data from hospital outbreaks poses the chal-

lenge of particle filtering on data rich with individual-level information. Fitting an individual-

based model to such data using a particle filter is challenging because standard forward

simulators will, with high probability, propose latent states that are entirely incompatible

with the data. For example, we may interpret a pathogen genetic sequence sampled from
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a patient as indication of a true positive with no error. When a particle arrives at an

observed genetic sequence and the latent state does not include the sequenced individual in

the proposed transmission tree, then that particle is assigned a weight of zero and is subse-

quently culled at the resample step. When this mismatch occurs in all particles for a single

data point, then filtering fails. If the data and model are such that filtering failures are

pervasive then inference becomes impossible. To combat this phenomenon, we developed

a targeted proposal scheme, described in detail in Appendix B.

In this Chapter, through a study on a small simulated outbreak of VRE, we show that

it is possible to use genPomp, coupled with a targeted proposal, to infer rates of within and

between ward transmission from surveillance data and from pathogen genetic sequence data.

As in the study in Chapter III, we examine how genetic data may revise our understanding

of the system. We conclude by discussing future directions for fitting extensions of this

model to data from real hospital outbreaks. In building up to an analysis of data on the

scale of a full hospital, further simulation work will likely be necessary.

4.3 Methods

This study focuses on a small, simulated outbreak unfolding on two hospital wards.

We ask the following questions. Can we estimate how much transmission occurs within

each ward? Can we estimate how much transmission occurs between the two wards? How

much does surveillance data inform inference of transmission? How much do the pathogen

sequence data inform inference of transmission? Finally, how does inference using both

datatypes compare to either used singly?

To explore these questions, we simulated culture tests and genetic sequences from a

yearlong hospital outbreak. We then estimated grid-based likelihood profiles for two pa-

rameters of interest: βw, the within ward rate of transmission, and βb, the between ward

rate of transmission. The form of the model, how we simulated, and how we estimated

profiles are described below.

4.3.1 A model of transmission on a hospital with two wards

In this section we describe a stochastic, individual-based model of transmission of VRE

on a hospital with two wards. This model belongs to the class of partially observed Markov

process models described in Chapter III, Section 3.3. The latent state of the system at time

t is a Markov process with three components: X(t) =
(
T (t), P(t), U(t)

)
. Here, T (t) is

the transmission forest, P(t) is the pathogen phylogeny, and U(t) is itself a Markov process

describing the state of each individual in the population at time t. The set of possible states
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an individual may take is {S1, I1, S2, I2}, where S indicates the individual is susceptible, I

indicates the individual is infected, and the subscript indicates whether the individual is

on ward 1 or ward 2. The probabilities of state changes for each individual over an interval

of duration δ are given by

P
[
S1 → I1

]
= δλ1(t) + o(δ),

P
[
S2 → I2

]
= δλ2(t) + o(δ),

P
[
I1 → S1

]
= δγ + o(δ),

P
[
I2 → S2

]
= δγ + o(δ),

(4.1)

where
λ1(t) = βwNI1(t) + βbNI2(t),

λ2(t) = βbNI1(t) + βwNI2(t),
(4.2)

and NI1(t) and NI2(t) are the number of infected individuals on wards 1 and 2, respectively.

We assume that there is no movement between wards, no death, and no entry or exit from

the hospital over the time period studied. A schematic of the model is shown in Figure 4.1.

Ward 1

S1 I1

λ1(t)

γ

Ward 2

S2 I2

λ2(t)

γ

Figure 4.1: A schematic of a model of transmission on a hospital with two wards. In-
dividuals recover at rate γ and become infected at rate λ1(t) and λ2(t) on wards 1 and
2, respectively. Dashed lines indicate that individuals in the infected class of both wards
contribute to the time-varying overall rate of transmission in each ward.

We assume that the topology of the pathogen phylogeny, P(t), maps directly onto that

of the transmission tree. That is, P(t) has the same branching pattern as T (t); each edge

and each node in P(t) has a corresponding edge or node in T (t). We let the edge lengths

of P(t) differ from those of T (t) so as to allow for heterogeneity in the rate of molecular

evolution. We assume the edge lengths of P(t) are Gamma distributed, with expected
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value equal to the corresponding edge length in T (t) and variance proportional to that

edge length. That is, if L is the length of an edge of P(t) corresponding to an edge of

length D in T (t), we assume that L|D is Gamma distributed with E [L|D = d] = d and

Var[L|D = d] = σ d. Having specified the structure of P(t), the choice of the time-reversible

molecular substitution model determines the joint distribution of the sequences at the tips

of P(t). For this study, we used the TN93 model of molecular evolution (Tamura and Nei,

1993), which is fully specified by the following rate matrix:

Q =




∗ βπT βπC αRπG

βπA ∗ αY πC βπG

βπA αY πT ∗ βπG

αRπA βπT βπC ∗




4.3.2 Simulation

We simulated an outbreak from the model described above using parameters specified

in Table 4.1. We implemented this model in genPomp and used an exact method (Gillespie,

1977) to simulate one epidemic. Each ward contained 20 individuals and each ward was

initialized with one VRE positive individual. We conditioned on the times of measurement:

each individual was cultured once a month over the one year period. If the individual was

VRE positive at the time of culturing, and the individual had never been sequenced before,

then individual was sequenced. A visualization of the latent states of individuals and the

observed culture tests is shown in Figure 4.2.
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Table 4.1: Parameters values used in simulating the outbreak on two wards.

Parameter Interpretation Value

βw Within-ward transmission coefficient 0.0005 day−1

βb Between-ward transmission coefficient 0.0001 day−1

λ Rate of infection from the community to the hospital 0 day−1

γ Rate of recovering from VRE+ to VRE- 0.01 day−1

ρcul Probability of a false positive culture 0.01

φcul Probability of a false negative culture 0.1

tp Time of the polytomy -365 days

NS1(t0) Number of susceptible individuals at time t0 on ward 1 19

NI1(t0) Number of VRE+ individuals at time t0 on ward 1 1

NS1(t0) Number of susceptible individuals at time t0 on ward 2 19

NI1(t0) Number of VRE+ individuals at time t0 on ward 2 1

β Rate of transversions 0.0003 day−1

αY Rate of transitions between purines 0.003 day−1

αR Rate of transitions between pyrimidines 0.001 day−1

πA Equilibrium frequency of adenine 0.25

πG Equilibrium frequency of guanine 0.25

πC Equilibrium frequency of cytosine 0.25

πT Equilibrium frequency of thymine 0.25

σ Relaxation of the molecular clock with respect to edges 0.01 day

δfixed The initial component of the sequence stem 0.001 day

δprop Proportion of time since infection to add to the sequence stem 0.05
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Figure 4.2: A simulated epidemic on two wards showing the latent states of individuals
and their culture test results. Each row represents a patient. Thick grey lines indicate the
patient is infected and thin grey lines indicate the patient is susceptible. Patient IDs 0-19
are on ward 1 and patient IDs 21-40 are on ward 2.

4.3.3 Inference

We estimated grid-based likelihood profiles for two parameters: βw, the within ward rate

of tranmission, and βb, the between ward rate of transmission. We estimated these grid-

based profiles in two ways: (1) using only the culture data and (2) using both the culture
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data and the genetic sequence data together. To estimate the profiles we used the following

procedure. We fixed all other parameters at their known true values and estimated a two-

dimensional likelihood surface by running the particle filter 10 times for each parameter

value pair. We used the targeted proposal when filtering over both datatypes as well as

when filtering using either alone. We then averaged these 10 likelihood evaluations (on

the natural scale) to obtain a likelihood estimate for each grid point. The grid spanned a

range of values that encompassed the known parameter values for βw and βb. To obtain

grid-based profiles, we took the maximum likelihood obtained for each value of the focal

parameter. Differences in curvature and location of the maximum in the profiles obtained

using the cultures alone or both datatypes together allows us to see how each datatype

shapes inference.

4.4 Results

Grid-based profiles of βw and βb reveal that how well this inference approach captures

the true parameter values depends on which datatypes are used (Figure 4.3). In the case

of using only the culture data, we see curvature about the truth in the profile for βw. In

contrast, the profile over βb does not rule out low values of the parameter; in the culture

data alone there is only information on the upper bound of the between-ward rate of

transmission. When using both datatypes we see that both profiles show curvature about

the truth. Futhermore, the curvature for profiles computed using both datatypes is greater

than than for those computed using only the culture data.
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Figure 4.3: Grid-based likelihood profiles over βw and βb. Panels A and B show profiles
computed using only the culture data. Panels C and D show profiles computed using both
the culture and the sequence data. Scales are the same in all panels; the y-axes only differ
by vertical shifts. True parameter values are shown in blue, smoothed profiles in red, and
point estimates and confidence intervals in green.
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4.5 Discussion

In the study on simulated data described above, we made a number of simplifying

assumptions, some of which take us far from reality. Nevertheless, this exercise does pro-

vide useful lessons and will serve as a stepping stone toward an analysis of data from real

outbreaks. In particular, this study shows that the particle filter with the targeted pro-

posal appears to work well both when fitting the culture data alone and when fitting both

datatypes together; variance in the likelihood estimate is small enough allow for inference

on the parameters of interest. Another important lesson is that the sequence data are

crucial for providing information about the rate of transmission between the two wards.

The profile of βb using only the culture data cannot rule out low values of the parameter.

An analysis using both datatypes together yields the strongest results; the culture data

inform the size of the epidemic such that the sequence data are able to provide additional

information about the transmission rate between wards.

In future iterations of the model, the unrealistic assumptions of this simulation study

can be modified to accommodate the complexity of real data. Some of the assumptions,

for example those which have to do with movement and death, will naturally enter the

model as covariates when fitting real data. In the next sections, we outline a way forward

for fitting data from an outbreak of VRE at the NIH clinical center.

4.6 Future Directions

In future work, we will fit models to an outbreak of VRE at the NIH clinical center

that took place over a span of about 4 years. The dataset consists of patient location data,

surveillance tests, antibiotic treatment, timing of contact isolation procedures, and whole

genome sequences. We have the location of patients at the level of ward for all individuals

that pass through the hospital over the time period of the epidemic. Over the 4 year period,

7480 patients pass through the hospital. There are 12 wards in the NIH clinical center.

For 833 patients we have some type of surveillance test, either a culture test or a PCR

tests. Many of these patients are have multiple surveillance tests through time. For 44

individuals we have records of antibiotic treatment, the timing of contact isolation, and

whole genome sequences.

4.6.1 Fitting a genetically-defined cluster

The whole genome sequences of VRE fall into three major clusters (Figure 4.4). These

groupings correspond to three pulsed field gel electrophoresis (PFGE) subtypes of VRE
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that likely comprise separate transmission histories. Figure 4.4 also reveals finer structure

in this dataset that indicates there may be information on transmission history. Sequences

that are close in genetic distance belong to individuals who often, but not always, overlap

in time and space. Our first goal is to fit models to the largest of the three subgroups, the

29 sequences that constitute the large cluster in the lower left of the distance matrix shown

in Figure 4.4. These 29 individuals comprise the most common PFGE subtype observed

in the outbreak. We will fit the model described in Section 4.6.2 to the outbreak defined

by this large cluster of sequences. When fitting models to the outbreak of this subtype,

because the protocol was to sequence all cultures that were in this PFGE subtype, we will

treat all positive cultures (and PCR tests) that were not from sequenced individuals as

negative tests.

4.6.2 A more complicated model of VRE transmission

This model described in this section is designed to estimate the rate of transmission

within ward, between wards, and from the community to the hospital. It also has the

potential to examine the efficacy of contact isolation procedures. This model is an exten-

sion of the two ward model described in Section 4.3.1. The models of T (t) and P(t) are

unchanged as is our choice of the model of molecular evolution. The modifications to bring

this model closer to reality involve changes to U(t) and the new possibility of infection from

a source outside the hospital.

We model the transmission of VRE on twelve hospital wards, Wj, j ∈ {0, 1, ..., 12}.
Outside the hospital is denoted by j = 0. Figure 4.5 depicts the structure of the model.

We use an individual-based model in which the state of each patient consists of the patient’s

VRE status (+ or -), the location of the patient (in one of the twelve wards or outside the

hospital), and whether or not the patient is under contact isolation procedures. Both the

locations of patients and contact isolation procedures are observed, so in fitting the model

these two elements of each patient’s state enter as covariates. The set of possible states an

individual may take is {Snj , Scj, Inj , Icj}, where S indicates the individual is VRE negative, I

indicates the individual is VRE positive, c indicates the individual is under contact isolation,

n indicates that the individual is not under contact isolation, and j indicates the individual

is in ward j. The probabilities of state changes for each individual over an interval of
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duration δ are given by

P
[
Snj → Inj

]
= δβj(t) + o(δ),

P
[
Scj → Icj

]
= δφβj(t) + o(δ),

P
[
Inj → Snj

]
= δγ + o(δ),

P
[
Icj → Scj

]
= δγ + o(δ),

(4.3)

where

βj(t) = λ+ βw[NInj
(t) + ψNIcj

(t)] + βb

12∑

k=1,k 6=j

[NInk
(t) + ψNIck

(t)], (4.4)

φ ∈ [0, 1], and ψ ∈ [0, 1]. Here, φ represents the effect of contact isolation susceptibility,

with φ = 1 indicating no protection and φ = 0 indicating full protection. On the other

hand, ψ represents the effect of contact isolation on infectiousness, with ψ = 1 indicating no

reduction of transmission and ψ = 0 indicating complete prevention. In practice, contact

isolation procedures are usually employed to combat infectiousness. We include the effect

of contact isolation on susceptibility for completeness. We assume that the intensity of

within-ward transmission, βw, is the same for all wards. Similarly, we assume that the

intensity of between-ward transmission, βb, is the same between all wards. We assume that

the rate of infection from the community to the hospital, λ, is constant. The recovery rate,

γ, does not depend on contact isolation status. The above equations specify probabilities

of each possible event that may change the infection status of an individual. All other

event types, which include movement and change in contact isolation status, are observed

directly.

4.6.3 Testing the feasibility of inference

One question is whether the plan outlined above is feasible. A challenge with fitting

this dataset is that a large part of the system is unobserved. There are many people, for

example, for whom we observe only movement data. These individuals may act as links in

hidden chains of transmission. Also, this dataset is much larger than that of the simulated

two ward example above; we have not yet shown through simulation that we can scale to

a system of this size.

We can test whether fitting models to a dataset of this scale is a reasonable exercise.

For example, we could condition on the observed covariates of the dataset, including the

movement of all patients, and then simulate data from a small epidemic on the scale of

the epidemic we aim to fit. We can then test whether we can recover the known values of

parameters of interest. This would be a similar exercise to the two ward example described

above, but with the aim of understanding the limits of inference with a simulated example
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that is much closer to that of the real data. Depending on the results of this exploration,

we can either proceed with an analysis of the full dataset or possibly scale down to model

transmission on a subset of the wards.
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Figure 4.5: A model of VRE transmission on a hospital with 12 wards. The top schematic
shows the connectivity between wards in the study. We directly observe patient movements
between wards as well as movement into and out of the hospital. The model allows for
transmission both within and between wards. The lower schematic shows the pairwise
connectivity between any two wards j and k and the possible state changes of individuals.
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CHAPTER V

Conclusion

In the years since Grenfell et al. (2004) presented a phylodynamic framework for un-

derstanding how various processes shape phylogenies, the field of phylodynamic inference

has made significant steps forward. However, two-stage inference techniques have been the

favored approach of many scientific studies. In this thesis we demonstrated one way in

which two-stage inference may falter. We then proposed a flexible new method for joint

inference and demonstrated its utility in two studies with very different types of data.

In Chapter II, we performed a simulation study to explore the strengths and weakness

of a two-stage inference approach proposed by Rasmussen et al. (2011). In this study

we used genPomp to simulate epidemics from a seasonal SIR model. We then assessed

the quality of inference of the Rasmussen approach when given the true phylogeny versus

a phylogeny estimated using BEAST. The key result from this study was that errors in

phylogenetic reconstruction may drive bias in two-stage phylodynamic inference. This

potential consequence of two-stage inference demonstrates the need for methodology for

joint inference of the transmission model and the pathogen phylogeny.

In Chapter III we presented the central work of this thesis, a simulation-based, statis-

tically efficient method for joint inference of disease dynamics and pathogen phylogeny via

maximum likelihood. In Appendix A we proved that the class of algorithms for estimating

and maximizing the likelihood are valid sequential Monte Carlo algorithms. To test the fea-

sibility of our approach, we performed a study on simulated data. This study showed that

our algorithms provide access to the likelihood surface of a dynamic model fit to genetic

data. Grid-based likelihood profiles revealed that the known true values of stage-specific

infectiousness parameters can be recovered when using both diagnosis and pathogen ge-

netic data. We then used our methodology to study stage-specific infectiousness of HIV in

a subepidemic in the young black MSM population in Detroit, MI. In this data analysis,

we demonstrated one cycle of the iterative process of formulating and fitting a mechanistic

model. Our results showed that the form of the model was likely too rigid to allow for
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properly leveraging information in the genetic sequences on stage-specific infectiousness.

One possible direction of future work is to modify the model to allow for a wider range

of dynamics for the infected population. Figure 5.1 shows one model we may explore. In

this new model, we extend the model fit in Chapter III by adding a susceptible pool. By

allowing for a susceptible pool this model has the flexibility to generate dynamics other

than exponential growth or decay. Our hypothesis is that this model will allow for pulses

and lulls in transmission that may better correspond to observed clusters of transmission

in HIV epidemics. Flexibility in the possible dynamics of the model may allow for more

efficient use of subtle information in the genetic sequences on stage-specific infectiousness.

I0 I1 I2

J0 J1 J2

S

ρI0

γI0

ρI1

γI1

ρI2

γJ0 γJ1

λ(t)κ

ψ

ν

Figure 5.1: A state-space model that includes both a susceptible pool and the infected
population. The Ik classes and Jk classes again represent the infected populations, with
the top row representing undiagnosed individuals (Ik, k ∈ {0, 1, 2}), and the bottom row
representing diagnosed individuals (Jk, k ∈ {0, 1, 2}). The ρIk are rates of diagnosis, and
the γIk and γJk are rates of disease progression. Unlabeled arrows out of infected states
represent the combined flow out of the infected population due to death and emigration.
ψ is a constant rate of infection from a source (or sources) outside the population. Three
rates modulate the size of the susceptible class, S: κ, a constant rate of inflow; ν, a
constant rate of outflow; and λ, the rate of new infections. λ(t) is state dependent: λ(t) =
NS(t)[βI0NI0(t) + βI1NI1(t) + βI2NI2(t) + βJ0NJ0(t) + βJ1NJ1(t) + βJ2NJ2(t)].

In Chapter IV, we developed a model of transmission of VRE in a hospital setting. In

a simulation study, we showed that pathogen genetic sequences and surveillance data may

contain information on between-ward and within-ward transmission rates. Development of

a targeted proposal to combat particle depletion due to perfectly observed states was an

essential step in making this study feasible. Although several assumptions of the simulated

example were unrealistic, this initial study serves as a test of underlying code and will

inform future efforts at fitting real data. We concluded by outlining steps toward scaling
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up to an analysis of real data from an outbreak of VRE at the NIH clinical center as well

as steps for testing the feasibility of our approach.

It is possible that current computational limitations of genPomp render an analysis of

the full VRE dataset infeasible. For this particular dataset, it may be possible to reduce

the problem by focusing on a handful of wards on which the majority of transmission

occurs. Also, work with simulated data indicated that knowledge of initial conditions plays

a significant role in the Monte Carlo variance of the likelihood estimate. Another possibility

is to make strong assumptions about the number of individuals initially infected on each

ward. Constraining initial conditions may reduce the Monte Carlo variance of the likelihood

estimate to levels suitable for inference.

Tailoring a genPOMP model to fit detailed, patient-level data required additional work

beyond a straightforward application of our algorithms. This work may seem a relatively

high cost to pay. However, it is not clear that other methods for fitting mechanistic models

would be able to fit this type of data at all. For example, coalescent-based approaches

are currently infeasible for highly structured populations. Approximations derived from

birth-death models would face similar challenges when faced with fitting a compartmental

model with a large number of compartments. While the genPomp approach may involve

additional careful work, it may be the most promising way forward in developing a system

for incorporating multiple individual-level datatypes into a single analysis. Furthermore,

although in Chapter IV we focused on specific steps to fit a particular outbreak of VRE, the

model in this chapter could be applied, or easily modified, to fit data from other hospital

outbreaks (either of VRE or of other drug resistant bacteria). The targeted proposal solves

a general problem that may be an issue in other similar datasets. As stochasticity may

play a large role in small outbreaks, it will be important to study multiple outbreaks to

replicate findings.

5.1 Other ideas

One of the great strengths of the genPomp approach is its flexibility to entertain a wide

class of models. In this thesis, we have only begun to explore the scope of this methodology.

In this section, we outline potential future directions for development of genPomp:

1. One of the three research areas highlighted by Grenfell et al. (2004) was to “establish

how epidemic and metapopulation disease dynamics modulate selective forces [...] to

drive long-term phylogenetic patterns”. In the current implementation of genPomp

we ignore the role of selection. However, one could imagine a scheme to incorporate

selection into a GenPOMP model. One way to do so would be to allow the measure-
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ment of sequences to affect the state. The fitness of a sequence measured from an

individual could modify that individual’s transmission rate; individuals with high fit-

ness sequences would be more likely to transmit and those with low fitness sequences

less likely. Such an approach could borrow methodology from the work of Luksza and

Lässig (2014), which developed a model of the fitness of flu to predict which strains

would be successful in the next season. Alternatively, one could use methods from the

field of antigenic cartography (Smith et al., 2004) to assess the fitness of sequences.

2. Real-time analysis of sequences, such as publicly available sequences of influenza,

has the potential to dramatically shorten the timescale on which scientific analyses

inform public health efforts and shape vaccine development. Researchers have already

created such a system. For example, the program nextflu performs real-time analysis

and visualization of influenza sequences (Neher and Bedford, 2015). This is an open

source project, and in principle it would be possible to integrate genPomp into this

environment.

3. It would be interesting to explore how well genPomp can estimate transmission trees.

In this thesis, our primary concern has been estimation of parameters of the epidemi-

ological model. However, there are many contexts in which the transmission tree may

be of greater interest. In hospital outbreaks, for example, we may be interested in the

probabilities of particular paths of transmission as opposed to population level rates

of transmission. There are existing methods for estimating transmission trees from

pathogen sequence data (e.g. the Bayesian methodology proposed by Didelot et al.

(2014)). Although genPomp was designed with another goal in mind, it could be used

for estimating transmission trees that are consistent with models of disease dynamics.

A comparison of the ability of genPomp to estimate transmission trees with current

state-of-the-art methodology could be worthwhile.

5.2 Final remarks

The work in this thesis represents a significant advance in developing likelihood-based

methodology for joint inference of disease dynamics and phylogeny. The flexibility of

genPomp, both in its ability to fit a wide range of models and in its ability to easily in-

corporate multiple data types, is a major strength of the method. Both in Chapter III

and in Chapter IV we demonstrated that constructing likelihood profiles using multiple

datatypes allowed for leveraging information in the genetic data to achieve stronger infer-

ence. Furthermore, construction of profiles with or without different datatypes allowed for

81



evaluating the influence of different sources of information. In future work, this capability

will be useful both in model development and in design of data collection protocols.

A limitation of genPomp is that the computational cost of a full data analysis is cur-

rently quite high. Scaling genPomp to tackle large problems will require further algorithmic

development. In cases where joint inference using genPomp is infeasible due to compu-

tational constraints, various two-stage methods may be applicable. Which alternative

method is most suitable may be an empirical question. As we demonstrated in Chap-

ter II, genPomp can play a role in assessing the effectiveness of other methods under various

scenarios. In this chapter, we used genPomp to simulate genetic sequences of pathogens

consistent with a specific mechanistic model of transmission and with a particular model of

sequence evolution. This same approach can be used to study the strengths and weaknesses

of methods other than that proposed in Rasmussen et al. (2011). Without a method for

likelihood-based joint inference, such as genPomp, it can be difficult to assess how much is

lost in using methods that rely on approximations.

As computational power improves, use of genPomp on problems of modest size will be

more and more feasible. In the work here, we have only begun to explore the potential of

the genPomp approach. By uniting models of disease transmission and pathogen evolution

in a consistent fashion, with the capability to fit models of arbitrary complexity, the work

of this thesis provides a strong foundation for diverse avenues of future study.
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APPENDIX A

Supplementary Material for GenPomp: A flexible

method for joint phylodynamic inference

This section is published as supplementary material a paper published in Molecular

Biology and Evolution in 2017 (DOI: https://doi.org/10.1093/molbev/msx124). Refer

to the beginning of Chapter III for a description of the contributions of the authors.

A.1 The GenPOMP model: linking infectious disease dynamics with genetic

data

We define a class of models that describes an environment within which our general

software implementation can be described. We aim at sufficient generality to represent the

breadth of applicability of our methodology and the key methodological innovations, yet

including enough details to describe the specific data analysis in the main text.

Data consist of n∗ genetic sequences of a pathogen. We use a convention that j:k

denotes the arithmetic sequence (j, j + 1, . . . , k), so that the entire collection of genetic

sequence data can be written as

(g∗1, g
∗
2, . . . , g

∗
n∗) = g∗1:n∗ .

We use asterisks to denote data, to distinguish these from quantities arising in the model.

The times at which the sequenced samples are collected are also data, and the total number

of sequences, n∗, will be modeled as the outcome of a random process rather than some

fixed quantity. We write the genetic sequence times as

(t∗1, t
∗
2, . . . , t

∗
n∗) = t∗1:n∗ .
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We suppose that the data are collected in a time interval

T = [to, tend],

with t0 ≤ t∗1 < t∗2 < · · · < t∗n∗ ≤ tend. Note that we allow multiple observations at the

same time: such ties can be resolved arbitrarily in the ordering of the t∗n. For simplicity, we

exclude the possibility of such simultaneous observations in the following. If no sequence

is available for the diagnosis at some time t∗n, we set g∗n = NA. Otherwise, we suppose the

collection of sequences g∗1:n∗ consist of aligned sequences of length L, i.e., g∗n ∈ {A,C, T,G}L.

Here, we do not include the possibility of additional clinical or epidemiological measure-

ments available at diagnosis, though an extension to allow this is fairly straightforward.

Further, we consider that only a consensus pathogen sequence is available from each host,

so we ignore the possibility of extracting information from data on pathogen genetic di-

versity within hosts. Nevertheless, our framework can account for sequencing error and

differences between observed and transmitted pathogen populations.

The partially observed Markov process (POMP) model consists of a latent, unobserv-

able, Markov process {X(t), t ∈ T} and an observable process {Y (t), t ∈ T}. X(t) takes

values in a set X and Y (t) takes values in a set Y. A POMP model for genetic data,

which we call a GenPOMP, is required to have the following structure. {Y (t)} consists

of a collection of random number N of diagnosis times, denoted T1:N , and corresponding

sequences G1:N . The observed outcomes are N = n∗ and (Tn, Gn) = (t∗n, g
∗
n) for n ∈ 1:n∗.

We adhere to a convention that random variables are denoted by upper case letters; the

corresponding lower case letters are used for possible values of the random variable, and

asterisks denote the actual data for observable variables; blackboard bold typeface is used

for sets.

Recall that, in the main text, we wrote X(t) =
(
T (t),P(t),U(t)

)
where T (t) is a

transmission forest and P(t) is a phylogeny. Here, it is convenient to take a different, but

functionally equivalent, approach. We do not require that X(t) itself contains T (t) and

P(t), but we do require that {X(u), t0 ≤ u ≤ t} is sufficient to construct T (t) and P(t).

This additional layer of abstraction lets us define the GenPOMP model without having to

explicitly construct the processes {T (t), t ∈ T} and {P(t), t ∈ T}.
The set X should describe the state of each individual in a study population. The study

population is supposed to contain a finite number of individuals drawn from a countable

collection of individuals who could potentially enter the study population. We suppose these

potential individuals are labeled with values in the natural numbers, N = {1, 2, 3, . . . }, and

so collections of individuals in the study population take values in the set H consisting of all
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finite subsets of N. We suppose there is a random process {H(t), t ∈ T}, with H(t) taking

a value in H corresponding to the identities of all individuals in the study population at

time t. Formally, we suppose that H(t) is constructed from X(t) via a suitable function

mapping X to H. We suppose that each individual in the study population has a state

in a set S. For a simple compartment model, S could be finite or countable, however, we

also allow for the possibility of continuous real-valued state variables. In particular, we will

later define a random clock process governing the rate of pathogen evolution within each

individual infected host. To keep track of the state of each member of the study population,

we suppose that the state of any individual i in the study population at time t is given by

a random variable Xi(t), constructed from X(t) via a suitable function mapping X to S. A

canonical way to do this is to take

X =
⋃

h∈H

Sh, (A.1)

for which an element
(
si1 , si2 , . . . , sik

)
∈ X is interpreted to mean that the study population

is {i1, i2, . . . , ik} ∈ H and individual ij is in state sj ∈ S. Our definition of the study

population is the collection of individuals being modeled, and so the state of individuals

outside the study population is necessarily undefined. In order to define {Xi(t), t ∈ T} as

a stochastic process, one can formally define an additional state � and set Xi(t) = � when

i 6∈ H(t). Note that, in general, {Xi(t), t ∈ T} does not inherit the Markov property from

{X(t), t ∈ T}. If individual state transitions occur as an independent Markovian process

once that individual is infected (as is the case in our HIV example) then {Xi(t), t ∈ [ti, tend]}
has a conditional Markov property given i ∈ H(ti).

The state process may, in general, need to include other components in addition to

{Xi(t), i ∈ H(t)}. For example, X(t) may include dynamic variables affecting the entire

population, such as environmental or sociological processes. For the remainder of this

article, the specific construction in equation (A.1) suffices, but that is not essential to our

approach. If S is countable then X, given by (A.1), is also countable and {X(t)} is a

Markov chain. Otherwise, {X(t)} is a more general Markov process.

Some basic properties of individuals characterize the model as a disease transmission

system, and these are required to construct the evolutionary process model for the pathogen.

This leads us to define functions that return properties about the state of an individual,

and we call these query functions. This notation differs from usual compartment models,

where each individual is modeled as residing in a single compartment. We write properties

as functions of X(t), rather than components of X(t), to keep applicability to a broad

class of population models. As long as the required query functions can be defined for

a population model, the statistical methodology developed will apply, giving the scientist
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considerable flexibility in the specification of the model.

We require that an individual’s state, i.e., its value in S, can describe whether that

individual is infected and infectious. We represent this requirement by supposing that

there is a query function

QI : S→ {0, 1}

defined as,

QI(s) =





1 if s is an infected state,

0 if s is an uninfected state.

To link the model to diagnosis data, we require that a state in S determines whether an

individual is diagnosed while part of the study population. Specifically, we suppose there

is a query function

QD : S→ {0, 1}

such that

QD(s) =





1 if s is a state for individuals diagnosed as infected while in the study population,

0 otherwise.

We then define

D(t) =
∑

i∈H(t)

QD

(
Xi(t)

)
,

which counts the number of individuals diagnosed while in the study population, by time

t. This counting process (i.e., a non-decreasing integer-valued process) is relevant for re-

lating the model to the data on the study population. Note that D(t) does not count the

number of clinically diagnosed individuals in the study population at time t, which would

require a different accounting for the possibility of immigration and emigration of diagnosed

individuals.

Now, we define the set of infected states to be

I =
{
s ∈ S : QI(s) = 1

}
.

We suppose that the state contains information about the identify of the infector, and we

do this by requiring the existence of a query function

QL : I→ N ∪ {0}
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defined such that

QL(s) =





j if s is infected by individual j within the study population,

0 if s is infected by an infector outside the study population.

The capability to construct the query function QL(s) requires that the identity of the

infector is stored in the state variable at the point of infection, so it is available later as

part of the state of the infectee. Information on the identity of the infector is not usually

required for a compartment model, but is useful when working with genetic data in order

to track lineages of the pathogen.

The evolutionary process of the pathogen genome within an individual in the host

populations is modeled using a relaxed molecular clock, meaning that standard molecular

models for evolution are applied on a stochastically perturbed timescale. It has become

established that the usual models for molecular evolution fit sequence data better if one

allows such fluctuations in the rate of evolution (Drummond et al., 2006). To implement a

relaxed clock, we construct a random process on each edge of the transmission tree. This

process scales calendar time to evolutionary time, the latter meaning a modified timescale

on which the evolutionary rate is constant. We therefore require the existence of a query

function

QΓ : I→ R

returning the relaxed evolutionary clock time corresponding to evolution of a transmissible

pathogen population within an infected individual. Specifically, QΓ(s) represents the ran-

dom, individual-specific, clock time for the evolutionary process that separates the host’s

transmissible pathogen population from the rest of the pathogen community when the host

is in state s ∈ I. For an individual based model in which an individual is infected within

the study population, this corresponds to the evolutionary process within the host subse-

quent to infection. Immigrant pathogens require additional assumptions on how they relate

genetically to pathogens already circulating in the study population. Conditional on the

randomly perturbed molecular clock, pathogen evolution is usually specified by a general

time-reversible Markov model.

We also suppose the existence of a query function

Q∆ : I→ R

which returns the relaxed evolutionary clock time separating the measurable pathogen pop-

ulation from the transmissible host population within an infected individual. If and when
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an individual gives rise to a pathogen genetic sequence within the dataset, this clock time

adds to the clock time QΓ(s) in determining the probability distribution of the measured

sequence.

The separation of the pathogen evolutionary process into transmitted and untrans-

mitted mutations has multiple interpretations. The choice of primary interpretation has

consequences for the appropriate model specification of the branch separating the measure-

ment node v from the transmission tree. The plausibility of these different interpretations

will depend on the biological system under investigation.

(B1) Measurement error. Sequencing error could be modeled by an arbitrary evolution-

like process on the branch separating the measured sequence from the transmissible

sequence.

(B2) Transmissible versus measurable strains. The measured sequence may reflect the

dominant strain reproducing most competitively within the host. It is conceivable

that much of the diversity resulting from within-host evolution may lead to pathogens

which are non-viable or non-competitive for between-host transmission. The evolu-

tionary branch corresponding to the measurement event could represent this dead-end

evolution, leaving the main body of the transmission tree to represent evolution of a

transmissible strain.

(B3) Within-host diversity. A strain transmitted subsequent to sequencing could be more

similar to an ancestral strain than to the sequenced strain by chance, due to within-

host genetic variation, even without appealing to a phenomenon such as (B2). The

measurement branch permits such behavior, so may help to adjust for unmodeled

within-host pathogen genetic diversity.

Other model-specific quantities can be defined by additional query functions, but are

not essential components of a GenPOMP model. For example, epidemiological models

commonly consider the number of susceptible or removed individuals. Also, having de-

fined an appropriate query function for a category of individuals, one can define a process

counting such individuals. For example, to complement the query function QI for infected

individuals, we can define a process

I(t) =
∑

i∈H(t)

QI

(
Xi(t)

)

counting the number of infected individuals in the study population. We can also write the
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size of the study population at time t as,

P (t) = |H(t)| =
∑

i∈H(t)

1.

Our framework therefore incorporates the structure of arbitrary compartment models (Bretó

et al., 2009) represented at the level of compartment membership for each individual.

The history of the query functions for infected individuals,

{
QI

(
Xi(u)

)
, QD

(
Xi(u)

)
, QL

(
Xi(u)

)
, QΓ

(
Xi(u)

)
, Q∆

(
Xi(u)

)
: t0≤u≤t

}
, (A.2)

is sufficient to construct the transmission forest, T (t), and phylogeny, P(t), described in the

New Approaches section of the main text. Formally, for (A.2) and elsewhere, we extend the

query functions to take an undefined value, denoted by �, when the argument is outside the

defined domain. To specify the measurement process model, recall that the measurement

process {Y (t)} consists of an increasing sequence of diagnosis times {Tn} associated with

the diagnosis counting process {D(t)}, together with a collection of genetic sequences {Gn}.
We suppose that the sequences {Gn} are modeled as a continuous-time Markov chain on

P(t). The probability distribution of the genetic sequence Gn at time Tn, conditional on

{X(t), t ≤ tn} and G1:n−1, therefore depends on P(t) and G1:n−1. If a genetic sequence

for the diagnosis at time Tn is not available, we assign Gn the value NA. We suppose this

occurs with probability 1− pG, independently of {X(t)}.
We have defined the GenPOMP model so that the pathogen genetic sequence arises

only in the measurement model. No genetic sequences are included in the state process, or

its particle representation. Our approach is consistent with viewing the genetic evolution-

ary model as a principled way to define and evaluate a statistical metric between genetic

sequences that respects the tree structure of the evolutionary process and has the property

that similar sequences are more likely to come from closely related pathogens. A measure-

ment model satisfying these criteria and providing a statistical fit to the data need not be

judged on the details of its biological strengths and weaknesses if the microevolutionary

processes are not the focus of the investigation. The individual, stochastic molecular clocks

determining the rate of evolution within each host are included in the latent process com-

ponent of the GenPOMP model to facilitate Monte Carlo integration over the distribution

of these clocks, as described in Section A.2.

The definition of a GenPOMP model given here is general and abstract. The population

model {X(t)} corresponds to an arbitrary individual-based Markovian model constrained

to include concepts of transmission of a pathogen and measurement of pathogen genetic
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Figure A.1: A directed acyclical graph representation of dependencies among GenPOMP
model components.

sequences. The measurement model is constrained to be based on a Markovian evolution-

ary process, but this is standard in current models used for phylodynamic inference. Our

methodological approach applies to this general GenPOMP model class, subject to being

able to simulate from the individual-based model and compute the rate at which individual

hosts provide a pathogen sequence. The Markovian assumption is convenient algorithmi-

cally. In one sense, it is not fundamentally a limitation since non-Markovian models may be

approximated by Markovian models with additional state variables. In another sense, it is a

practical limitation since increasing the size of the state space increased the computational

effort required.

A.2 A GenSMC algorithm for filtering the GenPOMP model

We develop a sequential Monte Carlo (SMC) approach for the framework of Section A.1.

We will use the name GenSMC to describe an SMC algorithm for GenPOMP models. As

an instance of SMC, the basic principles and theoretical foundation for GenSMC follows

from the general theory of SMC (Liu, 2001). However, GenPOMP models have a particular

structure that places particular demands on a GenSMC algorithm. Many variations are pos-

sible on our GenSMC algorithm, but demonstration of one successful GenSMC algorithm
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provides a foundation and motivation for future improvements. Our GenSMC approach is

presented as pseudocode in Algorithm 3, which is an expanded version of Algorithm 1 in

the main text. We proceed to define the notation that will be required.

To construct our algorithm, we specify a concrete class of GenPOMP models. Let

{X(t), t ∈ T} be a latent GenPOMP process with the form

X(t) =
(

Φ(t),Ψ(t),Γ(t),∆(t), D(t)
)
, (A.3)

having components Φ(t), Ψ(t), Γ(t), ∆(t) and D(t) defined as follows:

{D(t)} records diagnosis events within the study population, as defined in Section A.1.

We suppose that no diagnoses occur simultaneously, so {D(t)} is a simple count-

ing process. Therefore, we can model {D(t)} via a conditional intensity process

ρ
(
Φ(t),Ψ(t)

)
such that

P
[
D(t+ δ)−D(t) = 0 |Φ(t),Ψ(t)

]
= 1− δρ

(
Φ(t),Ψ(t)

)
+ o(δ),

P
[
D(t+ δ)−D(t) = 1 |Φ(t),Ψ(t)

]
= δρ

(
Φ(t),Ψ(t)

)
+ o(δ),

P
[
D(t+ δ)−D(t) > 1 |Φ(t),Ψ(t)

]
= o(δ),

where o(δ) denotes a function f : [0,∞) → R satisfying limδ→0 f(δ)
/
δ = 0. Here,

ρ(X(t)) is called the diagnosis rate.

{Ψ(t)} is a piecewise constant process which records a list of the identity labels of

individuals diagnosed by time t.

{Φ(t)} contains everything else in the GenPOMP model, so is essentially arbitrary

within the general requirements of a GenPOMP model. We suppose that observation

events are also recorded in the state process; specifically, the observation counting pro-

cess {D(t)} is a function of {Φ(t)} which gives rise to observation times {T1, T2, . . . }
at which the genetic measurements {G1, G2, . . . } are made.

{Γ(t)} is a list of the relaxed clock process for all the interior edges of the transmission

tree, i.e., Γ(t) = {QΓ(Xi(t)), i ∈ N} where QΓ is defined in Section A.1.

{∆(t)} is a list of the relaxed clock process for the terminal branches of the trans-

mission tree, i.e., ∆(t) = {Q∆(Xi(t)), i ∈ N} where Q∆ is defined in Section A.1.

The relaxed clock processes affect the micro-evolution of the pathogen, but in our model

the genetic process has no consequence for the transmission dynamics: the genetic sequence

is simply a marker, and the genetic models we use are models for neutral evolution. A
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consequence of this is that the relaxed clock processes only have to be evaluated when

needed to compute the conditional probability mass function for attaching a new genetic

sequence to the genetic tree. If these components of the latent process can be computed

when needed, there is no need to continually update them. Our computational strategy to

take advantage of this is called a just-in-time representation and is formally described in

Section A.3.4. Informally, the just-in-time representation is the tool that lets us define the

latent GenPOMP model as a continuous-time Markov process while updating the relaxed

clock processes at diagnosis times, when needed. To simulate the GenPOMP model forward

in time using a just-in-time representation, we need to be able to evaluate the relaxed clock

process over arbitrary time intervals, and also split the evolutionary time over a branch of

the transmission tree if a new measurement divides this branch. An example of a Markovian

clock with these properties is the Gamma process.

We will show that the relaxed clock processes {Γ(t)} and {∆(t)} can be represented by

two processes {U(t)} and {V (t)} which generate the evolutionary clocks that are necessary

to evaluate the likelihood of the sequences. The processes {U(t)} and {V (t)} are constant

except at diagnosis times, and so are fully specified by the discrete processes U0:N and

V0:N , with Un = U(Tn) and Vn = V (Tn). The construction of {U(t), V (t)} is an instance

of just-in-time variables, as discussed further in Section A.3.4. Therefore, for the purposes

of Algorithm 3, it is convenient to replace the representation in equation (A.3) with an

equivalent representation,

X(t) =
(
Φ(t),Ψ(t), U(t), V (t), D(t)

)
, (A.4)

The construction of {U(t)} and {V (t)} is described in Figure A.2

Algorithm 3 is written using discrete time steps corresponding to the sequence of ob-

servation times, together with the start and end times of the interval T. It convenient to

define

t∗0=t0, t∗n∗+1 = tend,

so that T = [t∗0, t
∗
n∗+1]. {Ψ(t)} is fully specified by its values at the discrete set of observation

times, and so we define a process {Ψn} with

Ψn = Ψ(t∗n).

To provide a discrete time representation of {Φ(t)}, we write

Φn = {Φ(t), t∗n−1 ≤ t ≤ t∗n},

93



A

B

C

D E

B'

C'

E'

1

3

2

t

Figure A.2: The diagram represents the transmission tree for a particle where individual 1
infected individual 2 at time A < t and individual 3 at time D < t. Sequences are collected
at times B, C and E. Measured but untransmitted sequence mutations occur along BB′,
CC ′ and EE ′. For this particle, we know that the sequence at time B corresponds to
individual 2, and the sequence at time E belongs to individual 1. Suppose we then wish
to evaluate the probability of the new sequence at time t conditional on it belonging to
individual 3, as shown on the diagram. From the previous observed sequences, assigned to
B′ and E ′, this particle has already been assigned evolutionary clock times for the segments
AB′ and AE ′. To place the new sequence at C ′, we first generate a new clock process for the
segment DC ′, which is represented by the variable UP

n,jkl in step 8 of Algorithm 3. Then,
we split the evolutionary clock time for AE ′ into AD and DE ′, in a way that is consistent
with the corresponding calendar times and the stochastic evolutionary clock process. This
computation is represented by the variable V P

n,jklm in step 10 of Algorithm 3.
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for n = 1, . . . , n∗ + 1, with Φ0 = Φ(t∗0). Similarly, we write

Dn = {D(t), t∗n−1 ≤ t ≤ t∗n}.

Diagnosis events are modeled as perfectly observed, almost tautologically. We write d∗(t)

for the observed value of D(t), defined as

d∗(t) = sup{n : t∗n ≤ t}.

Also, we write d∗n for the observed value of Dn. Perfectly observed components of the latent

process of a POMP model require special attention in sequential Monte Carlo algorithms,

and so Algorithm 3 uses the targeted proposal developed in Section A.3.2 to handle the

diagnosis process.

Hierarchical sampling (described in Section A.3.3) is carried out in Algorithm 3 over

the components Φ(t) and Ψ(t) in (A.3), as well as over the components Un and Vn in the

just-in-time representation of {Γ(t)} and {∆(t)}.
The pseudocode for Algorithm 3 adopts a space-saving convention that index j always

ranges over 1 : J , index k ranges over 1 :K, index l ranges over 1 :L, and index m ranges

over 1 :M . Thus, for example, line 6 of Algorithm 3 has an implicit loop over j ∈ 1 : J and

k ∈ 1 :K.

If g∗n = NA then w2(n, j, k, l,m) is defined to be the probability of not recording a

genetic sequence at diagnosis. In this case, steps 7 to 16 are not necessary: it suffices to

take K = 1, with Un and Vn being undefined. This special case is omitted from Algorithm 3

for simplicity.

To implement Algorithm 3, we require code to generate initial values, and to simu-

late the dynamic model for all the hierarchical layers conditional on the diagnosis events.

Specifically, we require simulators for

fΦ0,Ψ0(φ0, ψ0), (A.5)

fΦn|Φn−1,Ψn−1,Dn

(
φn|φn−1, ψn−1, d

∗
n

)
, (A.6)

fΨn|Φn,Ψn−1

(
ψn|φn, ψn−1

)
, (A.7)

fUn|Un−1,Vn−1,Φ0:n,Ψ0:n

(
un|un−1, vn−1, φ0:n, ψ0:n

)
, (A.8)

fVn|Vn−1,Un,Φ0:n,Ψ0:n

(
vn|vn−1, un, φ0:n, ψ0:n

)
. (A.9)

We then require code to evaluate the diagnosis rate,

ρ
(
φ(t), ψ(t)

)
(A.10)
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as well as the genetic measurement model,

fGn|G1:n−1,Φ0:n,Ψ0:n,U0:n,V0:n

(
g∗n | g∗1:n−1, φ0:n, ψ0:n, u0:n, v0:n). (A.11)

All the densities in (A.5–A.11) may additionally depend on a parameter vector θ.
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Algorithm 3: GenSMC

input: dynamic model simulators listed in (A.5–A.9) and observation model

evaluators (A.10, A.11); sequences, g∗1:n∗ ; observation times t∗1:n∗ ; initial

time, t∗0; terminal time, t∗n∗+1 = tend; number of particles, J ; number of

hierarchical samples, K, L, M .

1 simulate
(
ΦF

0,j,Ψ
F
0,j

)
∼ fΦ0,Ψ0(φ0, ψ0) and set UF

0,j = V F
0,j = 0

2 for n in 1 :n∗ do
3 propose transmission process: ΦP

n,j(t) ∼ fΦn|Φn−1,Ψn−1,Dn

(
φn|ΦF

n−1,j,Ψ
F
n−1,j, d

∗
n

)

4 set w1(n, j) = exp
{
−
∫ t∗n
t∗n−1

ρ
(
ΦP
n,j(t),Ψ

P
n−1,j(t)

)
dt
}
ρ
(
ΦP
n,j(t

∗
n),ΨP

n−1,j(t
∗
n)
)

5 set ΦP
0:n,j = (ΦF

0:n−1,j,Φ
P
n,j)

6 propose attachment site: ΨP
n,jk ∼ fΨn|Φn,Ψn−1

(
ψn|ΦP

n,j,Ψ
F
n−1,j

)

7 set ΨP
0:n,jk = (ΨF

0:n−1,j,Ψ
P
n,jk)

8 evolution on the new branch:

UP
n,jkl ∼ fUn|Un−1,Vn−1,Φ0:n,Ψ0:n

(
un|UF

n−1,j, V
F
n−1,j,Φ

P
0:n,j,Ψ

P
0:n,jk

)

9 set UP
0:n,jkl = (UF

0:n−1,j, U
P
n,jkl)

10 evolution on the split branch:

V P
n,jklm ∼ fVn|Vn−1,Un,Φ0:n,Ψ0:n

(
vn|V F

n−1,j, U
P
n,j,Φ

P
0:n,j,Ψ

P
0:n,jk

)

11 set V P
0:n,jklm = (V F

0:n−1,j, V
P
n,jklm)

12 set w2(n, j, k, l,m) =

fGn|G1:n−1,Φ0:n,Ψ0:n,U0:n,V0:n

(
g∗n | g∗1:n−1,Φ

P
0:n,j,Ψ

P
0:n,jk, U

P
0:n,jkl, V

P
0:n,jklm)

13 weights: w(n, j, k, l,m) = w1(n, j)w2(n, j, k, l,m)

14 set w(n, j, k) = (1/LM)
∑L

l=1

∑M
m=1w(n, j, k, l,m)

15 resample: select index (l′,m′)(j, k) with probability w(n,j,k,l,m)
w(n,j,k)

16 set w(n, j) = (1/K)
∑K

k=1 w(n, j, k)

17 resample: select index k′(j) with probability w(n,j,k)
w(n,j)

18 set w(n) = (1/J)
∑J

j=1 w(n, j)

19 resample: select indices j′(j) with probability w(n,j)
w(n)

20 set ΦF
0:n,j = ΦP

0:n,j′(j) and ΨF
0:n,j = ΨP

0:n,j′(j) k′(j′)

21 set UF
0:n,j = UP

0:n,j′(j) k′(j′) l′(j′,k′)m′(j′,k′) and V F
0:n,j = V P

0:n,j′(j) k′(j′) l′(j′,k′)m′(j′,k′)

22 conditional log likelihood estimate: ˆ̀
n|1:n−1 = logw(n)

23 end

24 simulate ΦP
n∗+1,j(t) ∼ fΦn∗+1|Φn∗ ,Ψn∗ ,Dn∗+1

(
φ(t)|ΦF

n∗,j,Ψ
F
n∗,j, d

∗
n∗+1

)

25 set w(n∗+1, j) = exp
{
−
∫ tend
t∗
n∗

ρ
(
ΦP
n∗+1,j(t)

)
dt
}

26 conditional log likelihood: ˆ̀
n∗+1|1:n∗ = log

{
(1/J)

∑J
j=1 w(n∗+1, j)

}

output: log likelihood estimate: ˆ̀=
∑n∗+1

n=1
ˆ̀
n|1:n−1, and filtered state estimates

complexity: O(J K LM n log n), assuming the transmission forest is balanced
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A.2.1 The implementation of GenSMC in the genPomp program

Many computational issues arise in effective implementation of a GenSMC method such

as Algorithm 3. Data structures are needed to keep track of the individuals in the study

population, and the genetic relationships between pathogens in different hosts. Efficient

implementation of all these computations, including use of a multi-processor computing

environment, is necessary to work on problems of a practical scientific scale. The record

of our implementation is the open-souce code for the genPomp program that we developed

to carry out inference for GenPOMP models, available at https://github.com/kingaa/

genpomp. The accuracy of genPomp has been successfully tested against exact analytic

calculations for some very small scale situations, and against the pomp package (King et al.,

2016a) for situations where no diagnoses lead to genetic sequences.

There is a substantial difference in the level of abstraction between the formal mathe-

matical representation of a GenPOMP model in Algorithm 3 and the practical implemen-

tation in genPomp. One could write more pseudocode to bridge this gap, but that is beyond

the scope of this article. We have focused instead on the foundational task of understanding

how Algorithm 3 fits in with the theory and practice of SMC.

A.2.2 Extending GenSMC to infer unknown parameters: The GenIF algo-

rithm

Sequential Monte Carlo (SMC) algorithms such as Algorithm 3 produce a Monte Carlo

approximation to the likelihood of the model, but do not directly provide estimates of

unknown parameters. A substantial literature has emerged on using SMC as a basis for

statistical inference (Kantas et al., 2015). Iterated filtering (Ionides et al., 2006, 2015) uses

SMC, together with parameter perturbations, to maximize the likelihood function. Iterated

filtering has demonstrated effectiveness on various nonlinear models arising in infectious

disease transmission studies (Ionides et al., 2015, and references therein). We developed

an adaptation of Algorithm IF2 of Ionides et al. (2015), which we call GenIF as an ab-

breviation of iterated filtering for GenPOMP models. Our implementation of this GenIF

algorithm is included within the genPomp program, as described fully in the source code.

Conceptually, and computationally, GenIF is a simple extension to GenSMC. GenIF carries

out multiple iterations of Algorithm 3 (GenSMC) adding perturbations to the candidate

values of unknown parameters. GenSMC selects particles consistent with the data, and so

allowing particles to have diversity in their parameters values naturally selects for parame-

ter values consistent with the data. The theory and practice of iterated filtering focuses on

using this phenomenon, with multiple SMC iterations having perturbations of decreasing
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magnitude, to maximize the likelihood. Previous iterated filtering theory does not encom-

pass the just-in-time variables employed by GenSMC. In the context of GenIF, this means

that the current theoretical justification of IF2 (Ionides et al., 2015) does not perfectly

apply when we carry out inference for the molecular evolution parameters. Heuristically,

however, the principle of iterated filtering still applies, and we rely on empirical results to

confirm that maximization performance is satisfactory.

Algorithms that permit numerically satisfactory likelihood maximization and likelihood

evaluation provide a foundation for carrying out likelihood-based statistical inference. Pro-

file likelihood methods can be used for obtaining confidence intervals, and likelihood ratio

tests or Akaike’s information criterion can be used for model selection.

A.2.3 Scalability of GenSMC
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Figure A.3: Results from an experiment exploring how the standard deviation of the log
likelihood estimate scales with both the number of sequences fit and the number of particles
used. We ran the particle filter at the truth 80 times for each number of particles (1000,
5000, 10,000 and 20,000) on a simulated dataset of 200 sequences.
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To explore the scalability of our GenSMC implementation, we performed the following

experiments using simulated data. We first simulated an epidemic conditional on observing

200 sequences. We then ran the particle filter at the truth using 1000, 5000, 10,000, and

20,000 particles. For each number of particles we used we ran 80 particle filters. Finally,

for each sequence, we computed the standard deviation of the cumulative log likelihood

estimate across the 80 filtering evaluations. This computation yields a measure of the

variability in the log likelihood estimate if one were to stop filtering at each sequence. The

results from this experiment provide a controlled assessment of how Monte Carlo variance

scales as the number of sequences grows. The standard deviation of the log likelihood

estimate remains relatively small up to around 25 sequences (Figure A.3). An interpretation

of this is that placing early sequences on the growing phylogenetic tree is relatively easy. It

can become harder to find trees with appropriate places to attach later sequences, leading

to increasing Monte Carlo variance. Monte Carlo variance is expected to grow as the size

of a computational problem increases, but we did not find a rapid exponential growth. The

peeling algorithm for computing the likelihood of the genetic sequences conditional on the

phylogeny was typically the largest computational component, though not for all regions

of parameter space.

A.3 A theoretical derivation of the GenSMC algorithm

To derive and justify GenSMC (Algorithm 3) for the GenPOMP model, we work up

in stages from a simple and standard SMC algorithm. Initially working in discrete time,

we start in Section A.3.1 by writing an SMC algorithm that allows for general dependence

between the latent process and the observation process. Then, we consider a useful class of

targeted proposal distributions in Section A.3.2. We add hierarchical layers of resampling

in Section A.3.3. In Section A.3.4, we consider a just-in-time approach to construction of

state variables which can have their creation postponed until necessary. In Section A.3.5,

we move these developments into the context of continuous time models. Putting these

components together, we obtain Algorithm 3.

A.3.1 A basic SMC algorithm

Consider a model consisting of a latent stochastic process X0:N = (X0, X1, . . . , XN)

and an observable process Y1:N = (Y1, Y2, . . . , YN). In this setting, N corresponds to the

number of discrete time points, differing from the notation of Section A.1. Data consist of

a sequence y∗1:N ∈ YN , modeled as a realization of Y1:N . We suppose Xn and Yn take values

in measurable spaces X and Y, and we require the existence of a joint density fX0:N ,Y1:N on
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XN+1 × YN . Conditional densities are denoted using subscripts, for example, the density

of Yn given Y1:n−1 and X0:n is written as

fYn|X0:n,Y1:n−1(yn |x0:n, y1:n−1). (A.12)

In a standard POMP model, {Xn} is a latent Markov process and the conditional distri-

bution of Yn depends only on Xn (Bretó et al., 2009). In the context of GenPOMP, we

require the marginal Markov property for the latent process,

fXn|X0:n−1(xn |x0:n−1) = fXn|Xn−1(xn |xn−1). (A.13)

but we allow a general form for the measurement model in equation (A.12), where the

conditional distribution of the nth observation can depend on the entire histories of the

latent process and the observation process. SMC techniques for POMP models can be

extended to this more general dependence structure (Liu, 2001). A basic SMC algorithm is

outlined in Algorithm 4. This is essentially the basic bootstrap filter algorithm of Gordon

et al. (1993), generalized to allow for the dependence on the history of the process in

(A.12). Notationally, for Algorithm 4 we set Xn = X0:n and use superscripts F and P to

denote particles representing the filtering and prediction distributions respectively. We use

systematic resampling in place of multinomial resampling (Arulampalam et al., 2002; Douc

et al., 2005).

Algorithm 4: A basic Sequential Monte Carlo (SMC) algorithm:

input: simulator for fXn|Xn−1(xn |xn−1); simulator for fX0(x0); evaluator for
fYn|X1:n,Y1:n−1(y

∗
n |x1:n, y

∗
1:n−1); data, y∗1:N ; number of particles, J .

1 initialize filter particles: simulate XF
0,j ∼ fX0 (x0) for j in 1 :J

2 initialize particle filter history: X F
0,j = XF

0,j

3 for n in 1 :N do
4 prediction simulation: XP

n,j ∼ fXn|Xn−1

(
xn|XF

n−1,j

)
for j in 1 :J .

5 history of the prediction: X P
n,j =

(
X F

n−1,j, X
P
n,j

)

6 evaluate weights: w(n, j) = fYn|X0:n,Y1:n−1(y
∗
n|X P

n,j, y
∗
1:n−1) for j in 1 :J

7 normalize weights: w̃(n, j) = w(n, j)/
∑J

m=1w(n,m)
8 apply systematic sampling to select indices k1:J with P {kj = m} = w̃(n,m).
9 resample: set XF

n,j = XP
n,kj

and X F
n,j = X P

n,kj
for j in 1 :J

10 estimate conditional log likelihood: ˆ̀
n|1:n−1 = log

(
J−1

∑J
m=1w(n,m)

)

11 end

output: log likelihood estimate, ˆ̀=
∑N

n=1
ˆ̀
n|1:n−1; filter sample, X F

n,1:J , for n in
0 :N .
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Computational resources are an issue for GenPOMP models, since the spaces X and

Y are both large. Furthermore, the dependence on the history in (A.12) leads to addi-

tional computational requirements for both memory and numerical operations. Careful

implementation of SMC is therefore necessary to make the approach practical. We there-

fore proceed to develop extensions of Algorithm 4 that are necessary to improve numerical

tractability for GenPOMP models.

To understand Algorithm 4, and subsequently extend it, we write out an algebraic

justification of the prediction and filtering steps. For a general latent process X0:N and

observable process Y1:N modeling data y∗1:N collected at times t1:N , assuming (A.12) and

(A.13), the prediction identity is

fX0:n|Y1:n−1(x0:n | y∗1:n−1) = fXn|Xn−1(xn |xn−1)fX0:n−1|Y1:n−1(x0:n−1 | y∗1:n−1) (A.14)

The SMC interpretation of (A.14) is that fX0:n−1|Y1:n−1(x0:n−1 | y∗1:n−1) is represented by a

collection of J filter particles X F,j
n−1, j = 1, . . . , J . Algorithm 4 corresponds to a basic

version of SMC in which particle j has a time tn value generated from fXn|Xn−1(xn |XF
n−1,j)

to give rise to a time tn prediction particle XP
n,j. X

P
n,j inherits its history from XF

n−1,j and

so X P
n,j =

(
X F

n−1,j, X
P
n,j

)
.

A general filtering identity is

fX0:n|Y1:n(x0:n | y∗1:n) =

[
fYn|X0:n,Y1:n−1(y

∗
n |x0:n, y

∗
1:n−1)

fYn|Y1:n−1(y
∗
n | y∗1:n−1)

]
fX0:n|Y1:n−1(x0:n | y∗1:n−1). (A.15)

The SMC interpretation of (A.15) is that observation y∗n requires the prediction particle

X P
n,j representing fX0:n|Y1:n−1(x0:n | y∗1:n−1) to be given a weight proportional to fYn|X0:n,Y1:n−1(y

∗
n |X P

n,j, y
∗
1:n−1).

The denominator on the right hand side of (A.15) is an irrelevant constant for computing

the normalized weights. However, this denominator is approximated in Algorithm 4 as the

normalizing constant, giving a Monte Carlo estimate of the nth term in a factorization of

the likelihood of the data,

fY1:N (y∗1:N) = fY0(y
∗
0)

N∏

n=1

fYn|Y1:n−1(y
∗
n | y∗1:n−1). (A.16)

For a discrete time representation of a simple GenPOMP model, Algorithm 4 might be

directly applicable. For example one can take Xn to correspond to all the information

about individuals in the population at time n, so that X0:n includes the transmission tree.

We could also suppose that X0:n includes information on who would get sequenced if there

are observed sequences—but not how many sequences were observed, which is part of the
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measurement. For example, at each time point tn, the state could contain a permutation

listing the order in which eligible individuals are sequenced. This construction may appear

somewhat contrived, and we proceed to relax it by allowing part of the latent process to

be fully observed and therefore also be part of the measurement process. Regardless of

that issue, evaluation of fYn|X0:n,Y1:n−1(y
∗
n|x0:n, y

∗
1:n−1) involves evaluating the likelihood of a

phylogeny, which can be computed efficiently by a peeling algorithm, together with term

for the probability of the sequence being collected.

A.3.2 A targeted SMC approach with a partial plug-and-play property

Some models of interest may have the feature that the event of obtaining a measure-

ment has an appreciable consequence for the latent dynamics. HIV, for example, has the

features that sequencing of the pathogen typically occurs at diagnosis. The fraction of

infections which are sequenced is high, and diagnosis plays an important role in transmis-

sion dynamics both through changes in sexual contact behavior and reduced infectivity due

to antiviral drugs. For HIV, it is therefore natural to consider models where sequencing

events correspond to transitions of an individual between states and therefore correspond

to a perfectly observed component of the latent process. This kind of situation needs some

extra care, since fYn|X0:n,Y1:n−1(y
∗
n|X P

n,j, y
∗
1:n−1) in Algorithm 4 becomes zero for every draw

of X P
n,j which is not consistent with y∗n. The standard SMC approach to this is to allow for

the possibility of targeted SMC proposal distributions, not necessarily the “vanilla” choice

fXn|Xn−1 . Suppose the proposal distribution for the SMC algorithm is qn(xn|xn−1, y
∗
n), which

is permissible since the proposal distribution is in general allowed to depend on any past,

current or future observations. This corresponds to rewriting (A.14) as

fX0:n|Y1:n−1(x0:n | y∗1:n−1) =

[
fXn|Xn−1(xn |xn−1)

qn(xn|xn−1, y∗n)

]
qn(xn|xn−1, y

∗
n)fX0:n−1|Y1:n−1(x0:n−1 | y∗1:n−1),

(A.17)

which is interpreted to mean that the targeted SMC proposal particle X P
n,j, with XP

n,j drawn

from qn(xn|XF
n−1,j, y

∗
n), must be given a weight fXn|Xn−1(X

P
n,j |XF

n−1,j)
{
qn(XP

n,j |XF
n−1,j, y

∗
n)
}−1

corresponding to the ratio in square brackets in (A.17).

A special case of a targeted proposal arises in the situation where part of the state

variable is perfectly observed. To describe this situation, suppose we can partition the

latent and observable processes as,

Xn = (An, Bn), (A.18)

Yn = (Bn, Cn), (A.19)
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with the data being (b∗1:N , c
∗
1:N). The prediction identity in (A.17) can then be written as

fAn,Bn,X0:n−1|Y1:n−1(an, b
∗
n, x0:n−1 | y∗1:n−1)

=

[
fAn,Bn|Xn−1(an, b

∗
n |xn−1)

qn(an|xn−1, y∗n)

]
qn(an|xn−1, y

∗
n)fX0:n−1|Y1:n−1(x0:n−1 | y∗1:n−1). (A.20)

Then, to obtain the filtering distribution fAn,X1:n−1|Bn,Y1:n−1(an, x0:n−1 | b∗n, y∗1:n−1) one nor-

malizes the weighted particle representation of fAn,Bn,X0:n−1|Y1:n−1(an, b
∗
n, x1:n−1|y∗1:n−1) in

(A.20), with the normalizing constant being the conditional likelihood, fBn|Y1:n−1(b
∗
n|y∗1:n−1).

A particular target choice of interest in (A.20) is

qn(an|xn−1, y
∗
n) = fAn|Xn−1(an |xn−1). (A.21)

(A.20) becomes

fAn,Bn,X0:n−1|Y1:n−1(an, b
∗
n, x0:n−1 | y∗1:n−1)

=
[
fBn|An,Xn−1(b

∗
n|an, xn−1)

]
fAn|Xn−1(an |xn−1)fX0:n−1|Y1:n−1(x0:n−1 | y∗1:n−1). (A.22)

On the component of the state space that is not perfectly observed, the proposal in (A.21)

is plug-and-play (Bretó et al., 2009; He et al., 2010) meaning that the algorithm needs only

a simulation from fAn|Xn−1(an |xn−1). However, we require numerically tractable evaluation

of the importance sampling weight

fBn|An,Xn−1(b
∗
n|an, xn−1),

arising from the identity (A.22), and so we describe the algorithm as partially plug and

play.

Using a targeted proposal typically leads to algorithms without the plug-and-play prop-

erty. Here, we work with situations where fBn|An,Xn−1(b
∗
n|an, xn−1) is tractable, even if the

complete transition density of (An, Bn) is intractable. Thus, fAn|Xn−1(an |xn−1) can be

specified in a fairly arbitrary way.

Example 1. Bn might be the number of diagnoses at time n, which might have a

Poisson or negative binomial distribution conditional on An.

Example 2. Writing the number of sequenced diagnoses at time n by DS
n , unsequenced

diagnoses by DU
n , and infected individuals by In, we might have Bn = (DS

n , D
U) and

An = In. The joint distribution of DS
n , DU

n and In −DS
n −DU

n might be multinomial given

In.
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Example 3. Bn might describe the race or age group of diagnosed individuals as well

as whether they were sequenced.

A.3.3 SMC with hierarchical sampling

For computational considerations, it may be preferable to maintain J filtering parti-

cles and generate K prediction particles from each, rather than maintaining JK filtering

particles. Computation of the K prediction particles can be localized on a single core of

multi-processor hardware, and the memory usage may scale with J rather than JK.

In the context of Algorithm 4, extended to include the general proposal distribution of

Section A.3.2, we write {XP
n,jk, k ∈ 1 :K} for K draws from qn(xn|XF

n−1,j, y
∗
n) for each value

of j. We compute the weights in the second layer of the hierarchy by

wn,jk = fXn|Xn−1

(
XP
n,jk |XF

n−1,j

)[
qn
(
XP
n,j |XF

n−1,j, y
∗
n

)]−1

.

We then define XF
n,j to be a draw from {XP

n,jk, k ∈ 1 :K} with probability proportional to

wn,jk, with the history X F
n,j being constructed accordingly. We then assign X F

n,j a weight

wn,j =
1

K

K∑

k=1

wn,jk. (A.23)

The filter particles {X F
n,j, j = 1, . . . , J} can be again resampled with weight proportional to

wn,j if so desired. Resampling each layer of the hierarchy one at a time gives an approach

that we call staggered resampling. It might sometimes be preferable to resample J particles

from all JK particles {XP
n,jk, j = 1 : J, k = 1 : K} with weights wn,jk. This process,

resampling two or more layers of the hierarchy at the same time, we call simultaneous

resampling. The staggered resampling in (A.23) can have computational advantages in

terms of memory: one never needs to keep all JK particles in memory simultaneously.

Also, staggered resampling is convenient in a multi-processor computational environment,

where the computations for the first layer of the hierarchy can be split across processors and

the second layer can be computed without any need for communication between processors.

Another motivation for hierarchical sampling arises when one can separate the gener-

ation of the prediction particle into a computationally expensive step followed by a cheap

step. Heuristically, if the particles are large and computationally expensive, one wants to

ensure that a particle does not get culled due to a single unfortunate draw from a proposal

distribution. A component of the proposal distribution that is computationally expensive

but not critical for the particle weight should be carried out relatively few times. By con-
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trast, a component of the proposal distribution that is computationally cheap but critical

for the particle weight, and hence for the survival of the particle, should be carried out

relatively many times. For this motivation, there may be no compelling reason to carry out

staggered resampling, in which case simultaneous resampling should be preferred. Both hi-

erarchical sampling possibilities can arise in different parts of a single algorithm, potentially

giving rise to several layers of sampling and resampling.

SMC with hierarchical sampling fits within the general theory of SMC (Naesseth et al.,

2015), and theory exists to guide a good sampling structure (Skinner et al., 1989). In

practice, however, preliminary experimentation is a good guide. Hierarchical resampling

receives diminishing returns for increasing values of K, since since J is the basic Monte

Carlo sample size which asymptotically justifies the Monte Carlo approach. Moderate

values of K > 1 can have compelling practical advantages, which can be quantified by

evaluating the variance of the Monte Carlo likelihood estimate.

A.3.4 Just-in-time evaluation of some state variable components

In equation A.3, our GenPOMP model included state processes {Γ(t)} and {∆(t)} which

have no role in the dynamics, meaning that they do not affect the infinitesimal transition

probabilities for {Φ(t)} and {Ψ(t)} but do affect the measurements. If the measurements

depend only on some subset or combination of these state variables, it is computationally

desirable to generate the required subsets or combinations only when needed. Carrying out

this computational shortcut, which we call just-in-time generation, does not change the

model under consideration so long as the required variables are properly constructed at the

time they become necessary. Two advantages to just-in-time state variable generation are

1. There may be state variables which, on some event of positive probability, have no

effect on the measured components of the system. These state variables can be

omitted when carrying out inferences on the rest of the system.

2. The sampling of these variables, and consequent resampling of particles, occurs only

when information on the just-in-time variables arrives. In combination with hierar-

chical sampling (Section A.3.3), trying multiple copies of the just-in-time variables

for each particle can help to prevent particles being lost due to a single unfortunate

draw of a random variable.

To formalize the definition of just-in-time variables, we suppose that Xn can be split into

two parts, written as

Xn = (Φn,Υn).
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We say that Ξn = hn(X0:n) gives a just-in-time representation of Υn if

fYn|Y1:n−1,X0:n(yn | y1:n−1, x0:n) = fYn|Y1:n−1,Φ0:n,Ξ0:n

(
yn | y1:n−1, φ0:n, ξ0:n), (A.24)

where ξn = hn(x0:n). If we can evaluate (A.24) and simulate draws from fΦn,Ξn|Φ0:n−1,Ξn−1 ,

then we can effectively replace Υn by Ξn in an SMC method such as Algorithm 4. A

particular case, arising in the just-in-time replacement of
(
Γ(t),∆(t)

)
by
(
U(t), V (t)

)
in

Algorithm 3, occurs when the dynamics of {Φn} do not depend on {Υn}, i.e.,

fΦn|X0:n−1(φn |x0:n−1) = fΦn|Φ0:n−1(φn |φ0:n−1). (A.25)

In this case, implementing a just-in-time scheme requires that we can draw from fΞn|Φ1:n,Ξn−1

and we can evaluate the density in equation (A.24). In practice, Ξ0 may be a trivial random

variable, since there is no observation at t0, but this is not necessary for the just-in-time

construction.

The utility of just-in-time evaluation depends in part on the reduction of dimension

in replacing Ξn by Υn. For example, nothing is gained by the just-in-time representation

Ξn = Υn.

A.3.5 Moving from discrete time to continuous time

Continuous time Markov population models can be approximated in discrete time by

a Markov chain (Bretó et al., 2009) using a stochastic Euler method. A continuous time

measurement model can similarly be discretized to match the time steps of the Euler

approximation. For a continuous time latent process model, suppose that {X(t), t ∈ T} is

a right continuous stochastic process taking values in X. We suppose that the continuous-

time measurement process {Y (t)} consists of a counting process, {D(t)}, together with a

sequence of measurements {G1, G2, . . . } where Gn occurs at time Tn = inf{t : D(t) ≥ n}.
This notational setup is based on Section A.1, but we no not require any of the additional

structure of a GenPOMP model at this point. We write t∗1 < t∗2 < · · · < t∗n∗ for the

observation times of the data, g∗1:n∗ . Here, we suppose that D(t) is part of X(t) and,

specifically, is represented by the observed component B(t) in the decomposition

X(t) =
(
A(t), B(t)

)

corresponding to a continuous-time version of equation (A.18). This situation arises in

GenPOMP models when {D(t)} counts diagnosis events for a disease transmission model

{X(t)}, as in Section A.1. Suppose that the rate of observation events at time t does not
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depend on the measurement process {Yn : tn ≤ t} given the current state process X(t), i.e.,

P[D(t+ δ)−D(t) = 0 |X(t), {Ys, s ≤ t}] = 1− ρ(A(t)) δ + o(δ), (A.26)

P[D(t+ δ)−D(t) = 1 |X(t), {Ys, s ≤ t}] = ρ(A(t)) δ + o(δ). (A.27)

Then, dividing the interval (t∗n−1, t
∗
n] into subintervals of width δ and taking δ → 0, the

limit of discrete approximations using (A.26) and (A.27) corresponds to a combined weight

from evaluating (A.23) in each of the 1/δ subintervals with no measurement followed by

one subinterval with a measurement, i.e.,

lim
δ→0





(t∗n−t∗n−1)/δ∏

m=1

(
1− ρ

(
A(t∗n−1 +mδ)

))


× ρ

(
A(t∗k)

)
fGk|G1:n−1,T1:n,X0:n(g∗n | g∗1:n−1, t

∗
1:n, x0:n)

= exp

{
−
∫ t∗n

t∗n−1

ρ
(
A(s)

)
ds

}
× ρ
(
A(t∗n)

)
× fGk|G1:n−1,T1:n,X0:n(g∗n | g∗1:n−1, t

∗
1:n, x0:n).(A.28)

Note that one can view the first two terms of the product in equation (A.28) as a density

with respect to Poisson counting measure.

A.4 Details of the HIV model used in the main text

In this section we provide additional details that describe the HIV model used in the

main text. As the system is Markovian, we can fully specify the model by defining proba-

bilities of each possible change to the state of the system given the current state over an

interval of time δ. There are three types of events that change the state of system, each in

a fundamentally different way:

1. An individual changes class. This event modifies an existing lineage on a transmission

tree.

2. An individual in the study population infects a new individual. This event adds a

new lineage to an existing transmission tree.

3. An individual outside the study population infects a new individual. This event seeds

a new transmission tree consisting of a single individual. The genetic tree associated

with with this new transmission tree joins all other genetic trees at the polytomy.

We define probabilities for the first two types of events from an individual-based perspective.

Recall that the state of any individual i at time t is given by a random process {Xi(t)}.
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The probabilities of class changes for each individual over an interval of time δ are given

by

P
[
I0 → I1

]
= δγI0 + o(δ),

P
[
I0 → J0

]
= δρ0 + o(δ),

P
[
I1 → I2

]
= δγI1 + o(δ),

P
[
I1 → J1

]
= δρ1 + o(δ),

P
[
I2 → J2

]
= δρ2 + o(δ),

P
[
J0 → J1

]
= δγJ0 + o(δ),

P
[
J1 → J2

]
= δγJ1 + o(δ),

P
[
s→ �

]
= δ(µs + φ) + o(δ).

(A.29)

Above, µs is a state-dependent death rate for an individual in state s ∈ S = {I0, I1, I2, J0, J1, J2},
Xi(t) = � if individual i is not in the study population at time t, and φ is a constant rate

of emigration from the study population. The probability that an infected individual from

inside the population gives rise to a new infection is,

P
[
the ith individual infects a new individual in [t, t+ δ]| Xi(t) = s

]
= δεs + o(δ),

where εs is the infectiousness of an individual in state s. The probability that an infected

individual from outside the population gives rise to a new infection is,

P
[
an infection occurs from outside the study population in [t, t+ δ]

]
= δψ + o(δ).

Note that this last probability, in contrast to those before, is not defined on a per capita ba-

sis. Also note that all new infections start in class I0; this model does not allow immigration

of later stage infected (or diagnosed) individuals into the population.

This model closely resembles a model from a recent phylodynamic analysis of the Detroit

HIV epidemic Volz et al. (2013), but differs in key ways. First, whereas Volz et al. (2013)

modeled incidence as a smooth, deterministic function, we model incidence mechanistically

as a function of the states of individuals in the system. Second, instead of using a system

of deterministic ordinary differential equations to model counts of individuals in each state,

our model incorporates stochasticity into the process of state transitions.

A.4.1 Initial values for the HIV model

The initial value for a GenPOMP model is X(t0). In general, the initial value can

be treated as an unknown parameter vector which can be estimated using our GenIF
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methodology. There may be only limited information about these parameters in the data,

but that is not a major problem for constructing profile likelihood estimates on other

parameters of interest. However, a more parsimonious modeling approach is to set X(t0)

to be a suitable function of the values of the dynamic parameters. For example, under a

stationarity assumption for the dynamic system, one might set X(t0) to be a random draw

from the stationary distribution or some mean value approximation to this. Our HIV model

is not stationary, since we follow an age-cohort, but nevertheless we decided to initialize at

plausible values given the dynamic parameters rather than estimate additional parameters.

Further investigation could relax this assumption.

Part of the specification of X(t0) involves determining the genetic relationship assumed

between infections that do not occur in the study population during the modeled period.

The time t0 at which we start modeling the population does not have to match the time

at which we start to observe it. We could, for example, have zero sequencing probability

before some time point. However, for our HIV model, these two times coincide. In the

context of this HIV model, this component of the initial value involves determining the

depth of the assumed polytomy, quantified by the time troot < t0 at which all trees in the

transmission forest are modeled as meeting in the phylogenetic tree.

We carried out the following construction of the initial values of the membership of each

compartment. We first note that the total number of diagnosed individuals is a perfectly

observed quantity. By selecting a cohort, we have the advantage of working with a well-

defined subpopulation. Over the time period from 2000 to 2012 we know exactly how many

individuals were diagnosed. The MDCH dataset only has gene sequences between 2004

and 2012, so we decided to set t0 = 2004. By 2004, the cohort grew to have 42 diagnosed

individuals. Our aim in specifying initial counts is to apportion these 42 individuals to the

three different classes of diagnosed individuals and populate the three unobserved states

(the undiagnosed individuals) with counts. We assume no deaths over this period of four

years. We constructed initial counts for each class by calculating under some additional

assumptions under which these values become numerically tractable. First, we made the

approximation that all rates of flow, with the exception of h(t), are fixed at a current

parameter estimate. Further, we suppose that h(t) is constant at some fixed value,

h(t) = h0,

ignoring the dependence of h(t) on the state of the system. We then approximate the initial

state by setting up and solving differential equations representing a deterministic solution

to the model equation, formally equivalent to requiring the system of equations (A.29) to
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hold in expectation. We fixed all rates of flow except h(t0) as described in the main text.

Then, if the study cohort begins with all counts at zero in 2000, there is only one possible h0

for which the total number of diagnoses in this approximating model matches the observed

total number of diagnoses. We then solve for this value of h0 and in doing so we obtain the

counts in each compartment. Trajectories for the six states and their final values after four

years are shown in Figure A.4. This approach to setting initial counts is not self-consistent

with the model, as the model assumes that the rate of new infections is dependent on the

state of the system, or with the timing of diagnoses observed in the four years leading up

to the start of filtering. This simple way of setting the initial conditions is a starting point.

Exploring the effect of initial conditions on model fits could be an area of future work.

We treated the time of the polytomy as an initial value parameter, with each particle

starting with its own polytomy time. In this way, the polytomy time fits naturally into the

iterated filtering maximization routines.
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Figure A.4: Trajectories of counts of each class of infected individuals over four years prior
to t0 = 2004 when assuming a constant rate of new infections, all flows between and out
of compartments as specified in the main text, and zero individuals initially in the cohort.
We used the resulting counts in 2004 as the initial values for the data analysis.
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A.4.2 Algorithmic parameters used for the numerical results

The choice of algorithmic parameters can affect the numerical efficiency of the GenSMC

and GenIF algorithms. For large computations, when Monte Carlo variability is an appre-

ciable component of parameter uncertainty, this can have an effect on the quality of the

resulting statistical inferences. In Table A.1 we supply the algorithmic parameters that

we used in the simulation study (for GenSMC) and in the data analysis (for both GenIF

and GenSMC). We selected J , K, L and M such that Monte Carlo uncertainty on param-

eter estimates and confidence intervals was tolerable (Ionides et al., 2016) and such that

runtimes were not prohibitively long.

Three of the algorithmic parameters are only used in GenIF: the random walk standard

deviation, σrw, the cooling factor, αc, and the number of GenIF iterations, I. Together,

these parameters determine the extent to which GenIF shrinks the diameter of the pa-

rameter swarm. In the GenIF algorithm, perturbation of parameters over which we are

maximizing occurs for each particle just before the proposal step. We perturb the param-

eters by multiplying each by a random deviate from a log normal distribution with mean

one and standard deviation σrwα
i
c, where i ∈ {0, 1, ..., I−1} is the iteration of GenIF. This

choice of perturbation is appropriate for nonnegative parameters. Although our framework

allows for a different random walk standard deviation for each parameter, in this case we

found that the same random walk standard deviation for all parameters was effective, and

we report this value in Table A.1.

The algorithmic parameters in Table A.1 together with the source code at https:

//github.com/kingaa/genpomp are sufficient to reproduce the methodology we apply in

our analysis. The HIV sequence data we analyzed are not publicly available, in accordance

with our data use agreement with Michigan Department of Community Health.
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Table A.1: Algorithmic parameters used in the simulation study and the data analysis.

Algorithmic

parameter
Description

Simulation

Study
Data Analysis

GenSMC GenIF GenSMC

Diagnosis

data only

Diagnosis

data and

genetic

sequences

Diagnosis

data only

Diagnosis

data and

genetic

sequences

Diagnosis

data only

Diagnosis

data and

genetic

sequences

J
Number of

particles
10000 60000 10000 10000 10000 10000

K

Number of

attachment

sites per

sequence

- 5 - 10 - 10

L

Number of

relaxed clock

gamma

samples per

attachment

site

- 10 - 10 - 10

M

Number of

relaxed clock

beta samples

per gamma

- 1 - 1 - 1

αc
Cooling

factor
- - 0.95 0.95 - -

σrw

Random walk

standard

deviation

- - 0.01 0.01 - -

I

Number of

GenIF

iterations

- - 50 30 - -
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APPENDIX B

A targeted proposal to combat particle depletion due

to perfect measurement

We derived this correction factor with the help of F. M. G. Magpantay.

B.1 Background

Perfect measurement of unobserved states may degrade efficiency of the particle filter.

In particular, when it becomes highly unlikely that a particle will propose an unobserved

state consistent with a perfect measurement, severe particle depletion may render inference

infeasible.

In the context of hospital outbreak data, in which we have detailed data at the individual

level, we may interpret measurement of a pathogen genetic sequence as indication of a true

positive with no possibility of error. This is a perfect measurement in that the infection

status of the individual is observed without error. Therefore, whenever a particle arrives

at a pathogen genetic sequence, a sequence known to belong to a particular individual,

if that individual is uninfected in the particle’s proposed latent state then the particle is

assigned a weight of zero and will be culled in the resample step. If prevalence is relatively

low, parameter regimes that yield case counts consistent with the data may also be highly

unlikely to recapitulate the particular pattern of perfectly observed infections via forward

simulation. In this scenario, filtering failures are so common that inference is not possible.

One way to combat depletion due to perfect measurement is to use a targeted proposal.

Instead of simulating the infection process in the usual fashion, we simulate conditional

on the known censored infection times of a subset of individuals. Note that we do not

perfectly observe the time of infection, rather we perfectly observe that some individuals

are infected by certain times. Below, we describe the untargeted proposal, how we modify
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this proposal to simulate conditional on censored observations of infection times, and how

we correct for this targeted proposal in calculation of the likelihood.

B.1.1 The untargeted proposal

In the standard setting, when we simulate using the Gillespie algorithm, we assume

constant transition rates and independence. Let {M,N} ⊂ Z>0, {λ1, . . . , λN} ⊂ R>0,

{ξ1, . . . , ξM} ⊂ R>0, and let the set of random variables representing the times to the next

event

{X1, . . . , XN , Y1, . . . , YM}

be independent. Also define Λ =
∑N

n=1 λn and Ξ =
∑M

m=1 ξm. If we assume that each Xn

is exponentially distributed with parameter λn and each Ym is exponentially distributed

with parameter ξm then

FXn(t) = 1− e−λnt (B.1)

fXn(t) = λne
−λnt (B.2)

FYm(t) = 1− e−ξmt (B.3)

fYm(t) = ξme
−ξmt (B.4)

We split the random variables into two classes in anticipation of modifying the distribution

of proposal times for a subset of the events in the case of the targeted proposal. Under the

above assumptions, we can compute the density that a given event occurs first.

Suppose that Xν occurs first for some ν ∈ {1, . . . , N}.

P
(
{Xν ∈ [t, t+ ∆t]} ∩ {Xn > t+ ∆t, ∀n 6= ν} ∩ {Ym > t+ ∆t, ∀m}

)

= P(Xν ∈ [t, t+ ∆t])
N∏

n=1,n6=ν

P(Xn > t+ ∆t)
M∏

m=1

P(Ym > t+ ∆t) (B.5)

= fXν (t)∆t
N∏

n=1,n6=ν

(1− FXn(t))
M∏

m=1

(1− FYm(t)) + o(∆t) (B.6)

= λνe
−λνt∆t

N∏

n=1,n 6=ν

e−λnt
M∏

m=1

e−ξmt + o(∆t) (B.7)

= (∆t)λνe
−Λte−Ξt + o(∆t) (B.8)
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Suppose that Yµ occurs first for some µ ∈ {1, . . . ,M}.

P
(
{Yµ ∈ [t, t+ ∆t]} ∩ {Xn > t+ ∆t, ∀n} ∩ {Ym > t+ ∆t, ∀m 6= µ}

)

= P(Yµ ∈ [t, t+ ∆t])
N∏

n=1

P(Xn > t+ ∆t)
M∏

m=1,m6=µ

P(Ym > t+ ∆t) (B.9)

= fYµ(t)∆t
N∏

n=1

(1− FXn(t))
M∏

m=1,m 6=µ

(1− FYm(t)) + o(∆t) (B.10)

= ξµe
−ξµt∆t

N∏

n=1

e−λnt
M∏

m=1,m 6=µ

e−ξmt + o(∆t) (B.11)

= (∆t)ξµe
−Λte−Ξt + o(∆t) (B.12)

B.1.2 A targeted proposal

Let {t∗1, . . . , t∗M} ⊂ R>0 be observed times of sequencing, i.e., times by which individuals

are known to be infected. One way to simulate such that these M individuals are sure to

be infected by their time of sequencing is to allow for the rate of individual m becoming

infected to increase as the simulation approaches t∗m. We let the rate that individual m

becomes infected at time t ∈ [0, t∗m] be

φm(t) =
1

t∗m − t

A rate of this form implies a uniform distribution on the time of infection of individual m

over the interval [0, t∗m]. Under these changing rates for a subset of individuals, we again

assume independence of the set of random variables representing event times

{X1, . . . , XN , Ỹ1, . . . , ỸM}

where each Xn is exponentially distributed with parameter λn and each Ỹm is uniform on

the interval [0, t∗m]. The distributions of the Ym random variables are therefore:

FỸm(t) =
t

t∗m
, (B.13)

fỸm(t) =
1

t∗m
. (B.14)

Also define P (t) =
∏M

m=1

(
1− FỸm(t)

)
=
∏M

m=1

(
1− t

t∗m

)
. Under this targeted proposal we

can again compute the density that a given event occurs first.
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Suppose that Xν occurs first for some ν ∈ {1, . . . , N}.

P
(
{Xν ∈ [t, t+ ∆t]} ∩ {Xn > t+ ∆t, ∀n 6= ν} ∩ {Ỹm > t+ ∆t, ∀m}

)

= P(Xν ∈ [t, t+ ∆t])
N∏

n=1,n6=ν

P(Xn > t+ ∆t)
M∏

m=1

P(Ỹm > t+ ∆t) (B.15)

= fXν (t)∆t
N∏

n=1,n6=ν

(1− FXn(t))
M∏

m=1

(1− FỸm(t)) + o(∆t) (B.16)

= λνe
−λνt∆t

N∏

n=1,n 6=ν

e−λnt
M∏

m=1

(
1− t

t∗m

)
+ o(∆t) (B.17)

= (∆t)λνe
−ΛtP (t) + o(∆t) (B.18)

Suppose that Ỹµ occurs first for some µ ∈ {1, . . . ,M}.

P
(
{Ỹµ ∈ [t, t+ ∆t]} ∩ {Xn > t+ ∆t, ∀n} ∩ {Ỹm > t+ ∆t, ∀m 6= µ}

)

= P(Ỹµ ∈ [t, t+ ∆t])
N∏

n=1

P(Xn > t+ ∆t)
M∏

m=1,m6=µ

P(Ỹm > t+ ∆t) (B.19)

= fỸµ(t)∆t
N∏

n=1

(1− FXn(t))
M∏

m=1,m 6=µ

(1− FỸm(t)) + o(∆t) (B.20)

=
∆t

t∗µ

N∏

n=1

e−λnt
M∏

m=1,m 6=µ

(
1− t

t∗m

)
+ o(∆t) (B.21)

=
∆t

t∗µ
e−Λt P (t)

1− t
t∗µ

+ o(∆t) (B.22)

= (∆t)
e−ΛtP (t)

t∗µ − t
+ o(∆t) (B.23)

We can simulate from the targeted proposal using the first reaction method. That is,

we find the first reaction that would occur among the Xn independently (by drawing un ∼
uniform(0,1) and setting xn = 1

λn
ln
(

1
un

)
, or by doing the standard Gillespie step here)

and the first reaction to occur among the Ỹm (by drawing a vm ∼ uniform(0,1) and setting

ỹm = t∗mvm) and compare to determine which reaction actually occurs first. After executing

the event that happens first, we update rates appropriately and then iterate.
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B.1.3 The correction term

When filtering, we need to correct the particle weight by the ratio of the density of

the event under the untargeted proposal to the density under the targeted proposal. The

relevant ratios taken in the limit that ∆t→ 0 are

P
(
{Xν ∈ [t, t+ ∆t]} ∩ {Xn > t+ ∆t, ∀n 6= ν} ∩ {Ym > t+ ∆t, ∀m}

)

P
(
{Xν ∈ [t, t+ ∆t]} ∩ {Xn > t+ ∆t, ∀n 6= ν} ∩ {Ỹm > t+ ∆t, ∀m}

) → e−Ξt

P (t)
, (B.24)

P
(
{Yµ ∈ [t, t+ ∆t]} ∩ {Xn > t+ ∆t, ∀n} ∩ {Ym > t+ ∆t, ∀m 6= µ}

)

P
(
{Ỹµ ∈ [t, t+ ∆t]} ∩ {Xn > t+ ∆t, ∀n} ∩ {Ỹm > t+ ∆t, ∀m 6= µ}

) → ξµe
−Ξt(t∗µ − t)
P (t)

(B.25)

As filtering proceeds, we carry in each particle a weight which is the ratio of the density

of proposed events under the model to the density of proposed events under the targeted

proposal. Whenever an event happens, we update the particle’s weight by multiplying by

the appropriate ratio given above. There are two instances when simulation pauses and no

events have occurred: when the next event time proposed by the Gillespie algorithm either

lies beyond the time of the next data point or lies beyond the time of an observed change

in the system (movement, change in isolation status, or any other covariate that one may

choose to condition on). In these instances we update the particle weight by the ratio of

the probability of no event happening under the untargeted proposal versus the probability

of no event happening under the targeted proposal. For some interval of time of length t

over which no event occurs, the ratio of these probabilities is:

P
(
{Xn > t, ∀n} ∩ {Ym > t, ∀m}

)

P
(
{Xn > t, ∀n} ∩ {Ỹm > t, ∀m}

) =
e−Ξt

P (t)
(B.26)

B.2 A simple test of the targeted proposal

Here we construct a simple scenario to test that the procedure described above correctly

estimates the likelihood. In this scenario there is only one individual. This individual is

known to be uninfected at time t0 and subsequently tests positive for a culture at time t∗1.

Parameters of the model fit are given in Table B.1. We estimate the likelihood using both

the untargeted proposal and using the targeted proposal. This scenario is simple, so we

can compute the true likelihood by hand. Figure B.1 shows the empirical distribution
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Table B.1: Parameters of the transmission model used in the simple test of the targeted
proposal approach.

Parameter Interpretation Value

βw Within-ward transmission coefficient 0 day-1

λ Rate of infection from the community to the hospital 0.1 day-1

γ Rate of recovering from VRE+ to VRE- 0 day-1

ρcul Probability of a false positive culture 0

φcul Probability of a false negative culture 0.01

t0 Time to start filtering t0 0 day

NS(t0) Number of susceptible individuals at time t0 1

NI(t0) Number of infected individuals at time t0 0
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Figure B.1: A comparison of the distribution of likelihood estimates computed using the
untargeted proposal (Panel A) and using the targeted proposal (Panel B). The true likeli-
hood is shown in red. Both estimators generate a distribution centered around the truth,
but the targeted proposal produces a distribution with a smaller variance.
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