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ABSTRACT 

 

Tissue plasminogen activator (tPA) is a serine protease classically known for its 

endogenous activity promoting fibrinolysis and for its clinical role as a thrombolytic 

agent for treating ischemic stroke. This singular function for tPA in the vasculature 

contrasts with the numerous reported actions of tPA in the central nervous system 

(CNS); including, synaptic plasticity, neurodegeneration, and blood-brain barrier (BBB) 

permeability. Within each of these processes a variety of substrates and receptors have 

been implicated in mediating tPA’s effects, suggesting that tPA is a pleiotropic mediator 

whose actions are restricted in space and time. The specific localization of tPA, 

therefore, can provide useful information about its function. 

Accordingly, we utilized two new transgenic reporter mice – PlatBetaGAL and 

tPABAC-Cer – to provide a detailed characterization of tPA expression in the adult 

murine brain. The PlatBetaGAL reporter mouse houses the beta-galactosidase gene in 

the tPA locus and the tPABAC-Cer mouse has a cerulean-fluorescent protein fused in-

frame to the tPA C-terminus. A comparison of these reporter mice demonstrates that 

neuronal tPA is primarily trafficked away from its somatic site of synthesis to nerve 

fibers in limbic brain structures, such as the hippocampus, amygdala, and basal ganglia. 

This differential expression pattern is most apparent in the hippocampus where tPA-



xxv 
 

BetaGAL expression is present in the dentate gyrus, while tPA-Cer is localized to giant 

mossy fiber boutons (MFBs) in the mossy fiber pathway. 

To understand the functional implications of tPA in the MFBs we assessed 

synchronous activity in the CA3 hippocampal subfield using a “no magnesium/high 

potassium” model of “seizure-like” activity. As previous work from our lab implicated tPA 

in mediating seizure progression in vivo via its role regulating BBB permeability, we 

dissected the BBB component to seizure progression and specifically tested tPA’s effect 

on neuronal communication. We found brain slices from tPA deficient mice to have an 

enhanced synchronous activity onset time, suggesting that the “seizure-resistance” 

observed in tPA deficient mice in vivo is likely a result of improved barrier function, not 

tPA’s role in modulating synaptic transmission. 

Lastly, in this dissertation, using sophisticated imaging and analytical tools we 

provide a rigorous assessment of vascular morphometry in wild-type mice, the original 

Carmeliet-tPA null mice, and in newly-generated tPA deficient mice on a pure C57BL/6J 

background (Szabo-tPA null mice). Through this examination we report that the 

lognormal distribution is a good model for cerebral vessel diameter and length and that 

there is a weak negative correlation between vessel diameter and length. We also find 

that the increased vascular density in Carmeliet-tPA null mice is possibly a compound 

result of constitutive loss of tPA and/or some strain-dependent modifier genes. 

Cumulatively, our data supports a model whereby tPA acts a pleiotropic mediator 

in the CNS whose actions are highly spatially and temporally compartmentalized. This 

compartmentalized localization is appreciable in the differential expression pattern seen 

for tPA between the PlatBetaGAL and tPABAC-Cer transgenic mice; and functionally, we 
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show that in ex vivo hippocampal slices tPA modulates synchronous activity, but in an in 

vivo model of seizure, the dominant effect of tPA is on regulating BBB permeability. Our 

vascular morphometry data also suggests a possible developmental effect of tPA on 

cerebrovascular patterning. Future work using the models developed here should help 

to clarify the relative contribution of the various substrates and pathways associated 

with tPA in CNS physiology and pathology. 
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CHAPTER 1 
 
 

Introduction 
 
 

1.1 Abstract 

Tissue plasminogen activator’s (tPA) fibrinolytic function in the vasculature is 

well-established. This specific role for tPA in the vasculature, however, contrasts with its 

pleiotropic activities in the nervous system. Numerous physiological and pathological 

functions have been attributed to tPA in the central and peripheral nervous system: 

including, neurite outgrowth and regeneration; synaptic and spine plasticity; 

neurovascular coupling; and neurodegeneration, microglial activation, and blood-brain 

barrier permeability. A variety of substrates, plasminogen-dependent and plasminogen-

independent, and receptors have been reported to mediate tPA’s actions in these 

processes, including pro-hepatocyte growth factor (pro-HGF), N-methyl-D-aspartate 

receptor (NMDAR), platelet-derived growth factor-CC (PDGF-CC), low-density 

lipoprotein (LDL) receptor-related protein (LRP1), pro-brain derived neurotrophic factor 

(pro-BDNF). 

Given the varied reports on tPA roles in the central and peripheral nervous 

system and the different substrates implicated in effectuating tPA’s actions, it’s likely 

that tPA’s functions are spatially and temporally restricted. This review of the literature 

aims to dissect these different roles and the different molecular mechanisms attributed 
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to tPA. In addition, it aims to contextualize some of the original research on tPA with 

what is currently known about tPA’s function and localization in the nervous system. 

 

1.2 Introduction 

Tissue plasminogen activator (tPA) is a serine protease with a well-established 

role in fibrinolysis. It is released from endothelial cells and mediates clot resolution by 

specifically catalyzing the conversion of the zymogen plasminogen into the active 

enzyme plasmin. Plasmin, in turn, proteolyzes the fibrin network of a blood clot. 

Mechanistic understanding of tPA’s endogenous fibrinolytic function led to the 

development of recombinant tPA (rtPA) as a thrombolytic agent for the treatment of 

ischemic stroke. However, tPA’s usage is limited, especially if given outside its 

prescribed time window (< 3 – 4.5 hrs), due to reduced efficacy and an increased risk of 

hemorrhagic conversion (Ahmed et al., 2010; group et al., 2012; Prabhakaran et al., 

2015). Efforts to understand the molecular mechanism for this phenomenon have 

shown that the increased risk for hemorrhage are due, in part, from exogenously 

administered rtPA crossing the ischemic blood-brain barrier (BBB) and acting through 

endogenous tPA-mediated signaling pathways on the abluminal side of the vasculature 

to induce further opening of the barrier (Su et al., 2008). Indeed, in addition to its role in 

regulating BBB permeability, tPA has been shown to be involved in multiple processes 

in the central and peripheral nervous system (CNS and PNS), including, neurite 

outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; and 

neurodegeneration and microglial activation. In addition, numerous molecular 

mechanisms implicating a variety of substrates, both plasminogen-dependent and -
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independent, have been proposed to be responsible for tPA’s action in the CNS. This 

review summarize the foundational studies on tPA function and how those studies have 

led to and informed more recent work on tPA in the CNS and PNS. 

 

1.3 Role of tPA in CNS development and nerve regeneration 

1.3.1 Neuritogenesis and neurite outgrowth 

Neuritogenesis and neurite outgrowth during development and regeneration 

(Table 1.1) involves the complex interplay between the actin-cytoskeletal network of the 

growing neurite and its surrounding extracellular environment (da Silva and Dotti, 2002; 

Kiryushko et al., 2004). Proteases and their cognate inhibitors have long been 

implicated in regulating neurite outgrowth via remodeling of the extracellular matrix 

(ECM) (Monard, 1988; Pittman et al., 1989; Pittman and Williams, 1989). Krystosek and 

Seeds were the first to demonstrate a possible role for the plasminogen activation (PA) 

system (tissue plasminogen activator, tPA; and urokinase plasminogen activator, uPA) 

in neurite outgrowth (Krystosek and Seeds, 1981a). PAs were shown to be released 

from the growth cones of cerebellar granule neurons (Krystosek and Seeds, 1981b; 

Verrall and Seeds, 1988), peripheral neurons and Schwann cells (Krystosek and Seeds, 

1984), and neuroblastoma cells (Krystosek and Seeds, 1981a). Specifically, tPA’s 

release was found to strongly correlate with ECM degradation in migration and 

regeneration assays (Pittman and DiBenedetto, 1995), supporting a functional role for 

tPA in structurally modifying the cell-matrix interactions of migrating neurons.  

 Mechanistic studies examining PA-mediated neuritogenesis suggested a role for 

the membrane-associated protein annexin II (Jacovina et al., 2001). Similar to its role in 
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the vasculature promoting fibrinolysis by acting as a scaffolding cofactor for 

plasminogen and tPA, annexin II facilitates plasmin generation in pheochromocytoma 

PC-12 cels and, in turn, supports nerve growth factor (NGF) - induced neurite outgrowth 

(Figure 1.1 A). The PA system and annexin II were specifically implicated since 

treatment of PC-12 cells with neutralizing antibodies against uPA, tPA, plasmin, and 

annexin II blocked neurite outgrowth.  

 Yet. other studies have demonstrated tPA-mediated neurite outgrowth 

independent of plasminogen activation (Shi et al., 2009; Lee et al., 2014). Using a 

proteolytically inactive mutant of tPA, Shi et al. (2009) showed that mutant tPA was able 

to transactivate Trk-receptors via the endocytic and signaling receptor low-density 

lipoprotein (LDL) receptor-related protein (LRP1) in PC-12 cells and granule cell 

neurons (Figure 1.1 B). Subsequent activation of Akt and ERK1/2 signaling pathways 

downstream of Trk was shown to promote neurite outgrowth, which could be blocked by 

pharmacological inhibitors of LRP1 or Trk.  

In addition to LRP1, another member of the LDL receptor-related family of 

proteins, LRP5/6, was implicated in tPA-mediated signaling and neurite outgrowth (Lee 

et al., 2014). Though plasminogen-dependence wasn’t tested per se, activation of the 

Wnt-LRP5/6-GSK3β-β-catenin canonical signaling pathway, which is known to induce 

transcription of genes involved in neuritogenesis (Endo and Rubin, 2007), was shown to 

be upregulated by tPA treatment in primary neural progenitor cell (NPC) cultures (Figure 

1.1 C). Increased neurite outgrowth was also measured upon application of tPA to 

primary neuronal cultures, which could be inhibited by siRNAs individually knocking-

down expression of LRP5/6, GSK3β, and β-catenin. Two possible mechanisms for tPA-
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induced activation of β-catenin signaling were demonstrated: 1) tPA increased release 

of Wnt7a from the ECM of cultured NPCs and 2) direct tPA binding to LRP5/6. The Wnt-

LRP5/6-GSK3β-β-catenin signaling pathway is also critical for vasculogenesis and BBB 

differentiation in the CNS (Quaegebeur et al., 2011). Interestingly, tPA-/- mice were 

recently reported to have an altered cerebrovascular architecture, including an increase 

in the capillary bed density, and an increase in endothelial cell and tight-junction (ZO-1) 

content (Stefanitsch et al., 2015) (See also Chapter 4). A direct connection between tPA 

and Wnt signaling and vasculogenesis, however, has yet to be investigated. 

 

1.3.2 Neuronal migration 

With the generation of mice deficient in the tPA gene (Carmeliet et al., 1994), it 

became possible to directly assess tPA’s functional role in regulating neuritogenesis in 

vivo. As cultured cerebellar granule neurons were previously shown to store and 

release tPA (Krystosek and Seeds, 1981b; Verrall and Seeds, 1988) cerebellar granule 

neuron migration was examined in developing brains of tPA-/- mice (Seeds et al., 1999). 

Granule cells were found to migrate from their germination zone in the external granule 

cell layer through the molecular layer and in to the internal granule cell layer at a slower 

rate in tPA-/- mice, compared to wild-type controls. Despite the slower migration rate, 

however, at the end of the granule cell migratory phase, there was no detectable 

difference in granule cell layer number or thickness. 

tPA has also been implicated in mediating neuronal migration through its 

activation of hepatocyte growth factor (HGF). tPA was shown to cleave single-chain 

HGF, a potent mitogen that shares high homology with plasminogen (though HGF 
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doesn’t have proteolytic activity), into its mitogenic active two-chain form (Mars et al., 

1993). HGF is highly expressed in the brain (Jung et al., 1994) and acts as a pleiotropic 

mediator of cell proliferation and differentiation, neuronal outgrowth and chemoattraction, 

and survival (Maina and Klein, 1999). Moreover, the expression pattern of HGF and its 

receptor c-met is coincident with tPA expression in the rostral migratory stream (RMS), 

a well-established route that neuroblasts from the striatal subventricular zone (SVZ) of 

the lateral ventricles traverse on their way to the olfactory bulb (Thewke and Seeds, 

1996). As deficiency in HGF or c-met cause embryonic lethality, tPA-/- mice were used 

as a model of partial HGF deficiency to assess tPA/HGF’s role in proliferation, migration, 

and differentiation (Wang et al., 2011). 

 Indeed, in the postnatal mouse brain (P2 to P14) tPA-/- mice were found to have 

decreased expression of HGF in the RMS (Wang et al., 2011). In addition, neuroblasts 

from the SVZ of tPA-/- mice were shown to have an accelerated, but dispersed and 

ectopic, migratory path; and immunostaining for Ki67+ and doublecortin demonstrated 

tPA-/- mice to have diminished cell proliferation and neurogenesis, respectively, in the 

SVZ (Figure 1.2). These data are in keeping with previously reported roles for HGF in 

cell proliferation, neurogenesis, and chemoattraction (Maina and Klein, 1999). Since 

gross aberrant neuronal patterning in adult tPA-/- mice has not been observed 

(Carmeliet et al., 1994; Frey et al., 1996; Huang et al., 1996), these in vivo results 

suggest that tPA may be playing a more supportive, but not an essential, role in 

neuritogenesis and neuronal migration during development in the cerebellum, forebrain, 

and olfactory bulb. 
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Differences in cerebroventricular morphology and ependymal lining molecular 

composition, however, have been reported in adult tPA-/- mice, when compared to their 

wild-type littermate controls. Two groups have independently observed mice deficient in 

tPA to have enlarged ventricles (Wang et al., 2011; Stefanitsch et al., 2015) and an 

ependymal lining that has enhanced GLUT-1 and ZO-1 expression (Stefanitsch et al., 

2015). It is unclear if the developmental consequence of enlarged ventricles in tPA-/- 

mice is biologically significant and how such morphological and molecular differences in 

the ventricles might influence the functions attributed to tPA in the adult murine brain. 

 

1.3.3 Nerve Regeneration 

While tPA may have a more subtle role in neuritogenesis during development, it 

has been shown to be a critical player in models of nerve regeneration in the adult 

mouse PNS (Akassoglou et al., 2000; Siconolfi and Seeds, 2001a, b; Zou et al., 2006). 

Following sciatic nerve crush, Wallerian degeneration occurs (Waxman, 2005) whereby 

the axon disintegrates along with the myelin sheath. In addition, Wallerian degeneration 

is accompanied by infiltrating macrophages and proliferating Schwann cells and by 

regenerating peripheral neurons that migrate through the lesion to reinnervate their 

synaptic targets (Figure 1.3 A). The in vitro observation that peripheral neurons and 

Schwann cells release tPA was supported by spatial correlational evidence 

demonstrating upregulation of the serine protease in vivo around the sciatic nerve 

following injury (Akassoglou et al., 2000). This increase in plasminogen-dependent 

proteolytic activity after nerve injury appeared to be primarily driven by tPA, not uPA, as 

in situ zymography of the sciatic nerve after injury from uPA-/- mice and wild-type mice 
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treated with the uPA inhibitor, amiloride, still showed increased proteolysis. SDS-PAGE 

gel zymography of sciatic nerve homogenates, however, showed increases in both tPA 

and uPA proteolytic activity following sciatic nerve injury (Siconolfi and Seeds, 2001a). 

 Overall, though, tPA was found to have a protective effect in sciatic nerve injury, 

as axonal degeneration and demyelination and functional recovery were deleteriously 

exacerbated in tPA-/- mice (Akassoglou et al., 2000; Ling et al., 2006) (Figure 1.3 B and 

C). Given the in vitro data suggesting a role for tPA in neurite outgrowth, it was 

hypothesized that tPA is acting to promote axonal regrowth. However, while axonal 

regeneration was assessed using GAP-43, a marker of regeneration, in injured versus 

sham-treated sciatic nerves, axonal regeneration was never reported in tPA-/- or uPA-/- 

mice (Siconolfi and Seeds, 2001a). To more directly test the effect of loss of tPA on 

axonal regrowth, therefore, these studies should be repeated in tPA-/- mice. 

It’s also possible that tPA-mediated fibrinolysis is responsible, as fibrin(ogen) 

deposition correlated with axonal degeneration and demyelination and as 

pharmacological depletion of fibrinogen reduced axonal damage and muscle atrophy in 

tPA-/- mice (Akassoglou et al., 2000). Reduced macrophage migration has also been 

implicated (Ling et al., 2006). After sciatic nerve injury, tPA-/- mice were found to have 

significantly fewer infiltrating macrophages compared to wild-type controls (Figure 1.3 B 

and C), and it was suggested that this was due to decreased macrophage expression of 

the ECM degradation enzyme MMP9. Other studies, however, have shown that tPA can 

directly promote macrophage migration through its interaction with the integrin MAC-1 

(Cao et al., 2006). These reported beneficial effects of tPA appear to be PNS specific, 

supporting a tPA-mediated role involving infiltrating macrophages and Schwann cells, 
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which are unique to PNS regeneration, as overexpression of tPA appears to have no 

effect in CNS models of axonal degeneration (Moon et al., 2006). 

 

1.4 Role of tPA in synaptic transmission and synaptic plasticity 

1.4.1 Upregulation of tPA following activity-dependent events 

Contemporaneous to the early studies investigating tPA’s involvement in neurite 

outgrowth was a report demonstrating that tPA is an immediate-early gene that is 

induced by neuronal activity (Qian et al., 1993). In this study tPA was identified in a 

differential screen of 30,000 clones from a cDNA library; using three activity-dependent 

paradigms - seizure, long-term potentiation (LTP), and kindling - tPA gene expression 

was found to be upregulated in vivo by 1 hr in the granule and pyramidal cell layers of 

the hippocampus in the adult rat brain (Figure 1.4 A). tPA’s upregulation following 

increased neuronal activity suggested a novel role for tPA in synaptic plasticity. 

Consistent with these data, tPA was found to be induced in the cerebellum of rats after 

learning a complex motor task (Seeds et al., 1995). Using a pegged runway of regular 

and irregular patterning to test cerebellar-dependent motor learning, Seeds et al. (1995) 

found tPA mRNA expression upregulated in Purkinje cells during the most active phase 

of learning (Figure 1.4 B). This spatial and temporal evidence demonstrating 

upregulation of tPA expression in both hippocampal and cerebellar learning paradigms 

suggested that tPA may have a role in regulating neuronal plasticity. 

 

 

 



10 
 

1.4.2 Modulation of basal synaptic transmission by tPA 

 Further studies deconstructing tPA’s role in hippocampal plasticity ex vivo, 

however, have yielded somewhat varied results (Table 1.2). While some groups have 

observed defects in basal synaptic transmission (Frey et al., 1996) and the early 

(Calabresi et al., 2000) and late phase of LTP (L-LTP) in the hippocampal CA1 region of 

tPA-/- mice, others have not (Huang et al., 1996; Zhuo et al., 2000) (Figure 1.5 A). Frey 

and colleagues were the first to report deficits in synaptic efficacy at the Schaffer 

collateral-to-CA1 synapse in tPA-/- mice under basal conditions (Frey et al., 1996). In 

tPA-/- mice, a larger stimulus was needed to evoke a pop-spike of similar amplitude to 

that seen in wild-type mice, and when measuring paired-pulse behavior of the pop-spike, 

tPA-/- mice displayed significant reductions in paired-pulse facilitation (Figure 1.5 B and 

C). These results suggest that tPA-/- mice are under enhanced GABAergic inhibition, 

especially since increased facilitation was observed when slices were treated with the 

GABAA receptor competitive antagonist bicuculline. Consistent with the hypothesis that 

tPA-/- mice have altered GABAergic transmission, Frey et al. (1996) found no 

differences in L-LTP between tPA-/- mice and wild-type mice, but significant differences 

when GABAergic transmission was blocked with the noncompetitive GABAA channel 

blocker picrotoxin (Figure 1.5 D). 

Alternatively, Wu and colleagues proposed that tPA modulates synaptic 

transmission through its effects on synaptic vesicle cycling (Wu et al., 2015). From 

immunoblots of cortical neuron membrane extracts and isolated synaptic fractions from 

synaptoneurosomes, tPA was found to recruit βII-spectrin, a cytoskeletal protein 

implicated in synaptic vesicle release, to the active zone and induce the binding of 
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synaptic vesicles to βII-spectrin. tPA also induced phosphorylation of synapsin I, a 

synaptic vesicle membrane protein, presumably via tPA-mediated increases in voltage-

gated calcium channels expression. In keeping with these expression and localization 

studies indicating that tPA facilitates synaptic vesicle release, tPA treatment was shown 

to increase miniature excitatory post-synaptic currents (mEPSCs) in CA1 pyramidal 

neurons from rat brain slices. Further mechanistic studies investigating whether tPA 

increases the release probability of individual synaptic vesicle or increases the number 

of synaptic vesicles released were not performed. Moreover, it is unclear if this increase 

in mEPSCs is due to tPA-mediated increases in the expression/recruitment of synaptic 

vesicle cycling proteins to the active zone. Further studies, therefore, need to be done 

to determine if these reported effects of tPA are linked and if they are responsible for 

the defects in basal synaptic transmission first reported by Frey et al. (1996). 

 

1.4.3 Effects of tPA on long-term potentiation 

Still others, however, have reported no differences in basal synaptic transmission 

in the CA1 hippocampal region of tPA-/- mice, but significant defects in L-LTP, with or 

without blocking GABAergic transmission (Huang et al., 1996; Calabresi et al., 2000; 

Zhuo et al., 2000) (Figure 1.6 A). It has also been shown that L-LTP can be blocked at 

the Schaffer collateral-to-CA1 synapse with application of the protease inhibitor tPA-

Stop (Baranes et al., 1998), while potentiation can be enhanced when tentanization is 

coupled with either pharmacologic or genetic increases in tPA (Baranes et al., 1998; 

Madani et al., 1999; Zhuo et al., 2000). It was further demonstrated that this potentiation 

in CA1 is due to activation of a cAMP/PKA- mediated pathway (Huang et al., 1996; 
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Baranes et al., 1998), as analogs to cAMP and activators of cAMP/PKA-dependent 

signaling cascades (Sp-cAMPS and 6-Br-APB) can induce L-LTP in wild-type, but not 

tPA-/- mice (Figure 1.6 B). Consistent with this, the tPA gene, Plat, has previously been 

shown to house a functional cAMP responsive element (CRE) in its promoter (Medcalf 

et al., 1990). 

 It is still unclear if the differences in hippocampal plasticity between wild-type and 

tPA-/- mice are biologically related to tPA or the result of variations in experimental 

technique, or to differences in genetic background. The background strain of the tPA-/- 

mice used in the initial LTP experiments (Frey et al., 1996; Huang et al., 1996) was not 

reported; and, while Zhuo et al. used tPA-/- mice on a pure C57BL/6J background, L-

LTP experiments comparing wild-type and tPA-/- mice were not performed (Zhuo et al., 

2000). Rescue experiments - where tPA protein is infused over hippocampal slices from 

tPA-/- mice - were done, though, and showed potentiation from tPA treatment. Given that 

we now understand the importance of controlling for genetic background it would useful 

to repeat these experiments in the recently described tPA-/- mouse that was generated 

directly in the C57BL/6J background using zinc-finger nuclease genome editing 

technology. These mice are not on a mixed background and unlike the original tPA-/- 

mice they do not harbor any remnant DNA from the 129/Sv embryonic stem (ES) cells 

flanking the tPA allele (Szabo et al., 2016).  

There is also conflicting evidence on whether or not tPA directly or indirectly, 

through plasmin generation, mediates the induction and maintenance of L-LTP. Several 

lines of evidence suggest that tPA’s role in L-LTP is independent of plasminogen. 1) 

Mice deficient in uPA (uPA-/-) show no defect in L-LTP (Huang et al., 1996);  2) Mice 
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that overexpress uPA display impaired learning (Meiri et al., 1994); and 3) Deficits in 

step-down avoidance learning in tPA-/- mice are not rescued by hippocampal infusions 

of uPA (Pawlak et al., 2002). As uPA is also a specific activator of plasminogen, these 

data implicate tPA, and not plasmin, as being directly responsible for the observed L-

LTP phenotype. Moreover, Zhuo et al. demonstrated that tPA could be acting directly 

through LRP1 (Zhuo et al., 2000), an endocytic receptor for tPA in neurons (Bu et al., 

1994), to induce L-LTP. Blocking LRP with an inhibitor, receptor-associated protein 

(RAP), caused deficits in L-LTP that were similar to what was reported previously for 

tPA-/- mice (Figure 1.6 C). And RAP blocked Schaffer collateral-to-CA1 synaptic 

potentiation in tPA-/- hippocampal slices that had been treated with tPA. PKA, a kinase 

known to play a key role in the induction and maintenance of L-LTP (Abel et al., 1997), 

was also shown to be activated upon tPA binding to LRP. Together, these data support 

a plasminogen-independent mechanism of action for tPA in L-LTP (Figure 1.6 D). In 

addition, they suggest that tPA’s protease activity is not necessary for the full 

expression of L-LTP, as proteolytically active tPA is not required to interact with and 

signal through LRP (Hu et al., 2006). 

While LRP’s involvement in tPA-mediated L-LTP implicates tPA as having a 

plasminogen-independent mechanism of action, tPA/plasmin-induced cleavage of 

BDNF has also been demonstrated to be essential for long-term hippocampal plasticity 

(Pang et al., 2004). Previously, genetic or pharmacologic ablation of BDNF or its 

receptor TrkB was shown to inhibit L-LTP (Korte et al., 1995; Korte et al., 1998; Xu et al., 

2000; Minichiello et al., 2002). It was also previously demonstrated that secreted 

proBDNF can be cleaved extracellularly by plasmin (Lee et al., 2001). It was not known, 
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however, if the tPA/plasmin/mBDNF pathway formed a common pathway important for 

hippocampal L-LTP. 

 Through a series of L-LTP experiments using tPA-/- mice, plasminogen deficient 

(Plg-/-) mice, and mice heterozygous for BDNF (BDNF+/-), Pang and colleagues (2004) 

demonstrated that tPA/plasmin-mediated cleavage of proBDNF is critical for the full 

expression of L-LTP in the CA1 region of the mouse hippocampus (Figure 1.7). 

Subcellular localization studies support these functional findings. In cultured 

hippocampal neurons transfected with BDNF-mCherry and tPA-EYFP vectors, BDNF 

and tPA were shown to be co-packaged in presynaptic dense core vesicles (Scalettar et 

al., 2012), suggesting that tPA and BDNF are proximally localized and likely 

concomitantly released to act through a common pathway. 

 Interestingly, while these experiments were looking at long-term plasticity in the 

CA1 region, both BDNF and tPA have been shown to be most highly expressed in giant 

mossy fiber boutons (MFB) in the mossy fiber pathway of the hippocampus (Figure 1.8) 

(Stevenson and Lawrence, 2018; Conner et al., 1997; Yan et al., 1997; Danzer and 

McNamara, 2004). Giant MFBs are one of three - in addition to en passant terminals 

and filipodial extensions - identified presynaptic specializations that emanate from the 

mossy fiber axons of dentate granule neurons (Acsady et al., 1998; Rollenhagen and 

Lubke, 2010). The subcellular localization of both BDNF and tPA to giant MFBs, 

therefore, not only indicates that these two proteins are proximally localized to act in 

concert, but that their role in synaptic plasticity is highly compartmentalized and possibly 

unique to mossy fiber-to-CA3 synaptic plasticity. However, while deficits in L-LTP have 

been reported in tPA-/- mice at the mossy fiber-to-CA3 cell synapse (Huang et al., 1996; 
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Baranes et al., 1998), functional consequences of tPA/plasmin-mediated mBDNF 

generation have not been tested in the CA3 region specifically. Therefore, it remains to 

be seen if this protease-induced neurotrophin cascade is involved in regulating plasticity 

at the mossy fiber-to-CA3 synapse. 

High-resolution, confocal microscopy of plasminogen in adult murine brain, 

however, has yet to be done. Though widefield microscopy has shown plasminogen 

immunoreactivity in the hippocampus, plasminogen was not expressed in the mossy 

fiber pathway (Tsirka et al., 1997; Taniguchi et al., 2011). Rather, plasminogen 

appeared to be localized to scattered cell bodies in the pyramidal cell layers of CA1 - 

CA3, the hilus, and the stratum oriens and stratum radiatum lamina. tPA-expressing 

inhibitory interneurons have also been reported to have a scattered localization in 

stratum oriens (Stevenson and Lawrence, 2018). It has not been investigated if this 

population of neurons co-expresses plasminogen and tPA. 

 In addition to tPA being highly expressed in the hippocampus, tPA protein is also 

present in other subcortical regions of the adult murine brain (Figure 1.9). In a 

transgenic fusion reporter mouse that has a cerulean fluorescent protein tagged to the 

C-terminus of tPA, it was shown that tPA-protein is primarily expressed in blood vessels 

throughout the murine brain and in nerve fibers emanating or innervating brain regions 

associated with the limbic system (Stevenson and Lawrence, 2018). When compared 

with the gene expression pattern of tPA, an uncoupling between tPA’s sites of synthesis 

and its trafficked localization becomes apparent (Sappino et al., 1993; Yu et al., 2001; 

Salles and Strickland, 2002; Louessard et al., 2016). 
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1.5 Functional behavioral consequences of tPA deficiency 

1.5.1 Mice deficient in tPA display defects in avoidance behavior 

Given the deficits in hippocampal L-LTP in tPA-/- mice (Huang et al., 1996; 

Calabresi et al., 2000; Zhuo et al., 2000) it was thought that mice lacking tPA would 

exhibit comparable behavioral deficits in hippocampal-dependent learning and memory 

tasks. Deletion of the tPA gene, however, does not appear to cause overt cognitive 

defects (Huang et al., 1996; Calabresi et al., 2000; Pawlak et al., 2002). Mice deficient 

in tPA, however, have been consistently found to have impairments in avoidance tests 

(Huang et al., 1996; Calabresi et al., 2000; Pawlak et al., 2002). Avoidance tests require 

the mouse to learn to avoid an adverse stimulus, usually foot shock. Depending on the 

experimental design avoidance tests can reveal differences in acquisition, working 

memory, consolidation, and long-term recall (Rodriguiz and Wetsel, 2006). In addition, 

how the adverse stimulus is presented to the mouse - in an active or passive way - can 

alter the cognitive difficulty, and affect the type of learning being tested and brain 

structures involved (Rodriguiz and Wetsel, 2006). 

 Mice lacking the tPA gene have been tested in both two-way shuttlebox active 

avoidance (Huang et al., 1996; Calabresi et al., 2000) and step-down passive 

avoidance (Pawlak et al., 2002) (Figure 1.10 A and B). In a two-way shuttlebox active 

avoidance test, mice are trained to avoid a foot shock upon the presentation of a light 

cue. Mice are said to have successfully learned the task if they associate the light cue 

with the oncoming foot shock and avoid the shock by moving to the neighboring 

compartment. Using this paradigm, tPA-/- mice were found to have significant defects in 

their ability to avoid the aversive stimulus. Similarly, in a step-down passive avoidance 
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test, mice are placed on a raised platform and learn to not step-down onto the lower 

platform/electrical grid, thereby avoiding a foot shock. In the step-down passive 

avoidance test, tPA-/- mice had significantly shorter latencies to step-down than wild-

type mice. Though these data suggest that tPA-/- mice have deficits in acquisition or 

working memory to aversive or associative learning, this interpretation is complicated by 

the role tPA has been shown to have in the amygdala function. 

 

1.5.2 Key role for tPA in anxiety-like behavior 

Mice deficient in tPA have been found to be resistant to stress-induced anxiety 

(Matys and Strickland, 2003; Pawlak et al., 2003). Anxiety was tested in an elevated-

plus maze, which takes advantage of a rodent’s natural aversion to open spaces and 

preference for closed spaces. And, while tPA-/- mice were initially found to not have 

altered basal levels of anxiety when assessed in an elevated-plus maze, further 

evaluation, in which wild-type and tPA-/- mice were first subjected to bouts of chronic 

restraint, demonstrated a lack of stress-induced anxiety in the absence of tPA. This 

increased anxiety in wild-type mice correlated with increased tPA activity in the central 

(CeA) and medial (MeA) amygdala, but not the basolateral amygdala. In line with this 

phenotype and in-keeping with tPA promoting anxiety-like behavior, intraventricular 

injections of the stress hormone, corticotropin-releasing factor, were found to upregulate 

tPA activity in the CeA and MeA. 

 The molecular mechanism for tPA’s role in facilitating anxiety-like behavior points 

to plasminogen-independent neuronal remodeling, with evidence showing that: 1) Plg-/- 

mice do not phenocopy tPA-/- mice, 2) signaling cascades implicated in spine plasticity 
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(ERK 1/2 and GAP-43) are upregulated in wild-type, but not tPA-/- mice (Pawlak et al., 

2003; Thomas and Huganir, 2004), and 3) tPA-/- mice have significantly attenuated 

stress-induced spine retraction in the MeA compared to wild-type mice (Bennur et al., 

2007). Given the behavioral data demonstrating tPA-/- mice to have diminished stress-

induced anxiety, it’s possible that the impairments observed in tPA-/- mice in avoidance 

tasks are due to tPA’s effect on stress-induced neuronal plasticity in the amygdala and 

not any effect of tPA on hippocampal-dependent learning and memory. Future studies 

that employ task-independent stressors to test learning and memory (Moore et al., 

2013) would be informative in discriminating between tPA’s role in stress versus 

learning and memory. 

  

1.6 Consequences of dysregulated tPA expression and activity 

1.6.1 Excitotoxicity-induced neuronal degeneration 

In addition to stress, other pathological perturbations - such as excitotoxicity, 

seizures, stroke, and traumatic brain injury (TBI) - have revealed tPA to be a pleiotropic 

mediator of numerous neurological processes, such as neuronal degeneration and 

blood-brain barrier permeability (Table 1.3). tPA was first implicated in having a role in 

neuronal degeneration when Tsirka et al. demonstrated tPA deficient mice to be 

resistant to cell death following excitotoxic intrahippocampal injections of kainate (KA) 

(Tsirka et al., 1995) (Figure 1.11 A). Plasminogen deficient mice and mice treated with 

α2-antiplasmin, a plasmin inhibitor, were also found to be resistant to excitotoxic 

neuronal degeneration (Tsirka et al., 1997). Subsequent studies demonstrated that 

degradation of the ECM protein laminin - not fibronectin or collagen IV - by plasmin 
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plays a critical role in promoting neuronal degeneration (Chen and Strickland, 1997) 

(Figure 1.11 B). 

 

1.6.2 Microglial activation 

Microglia cells have also been implicated in tPA-mediated neuronal degeneration. 

In a transgenic tPA/LacZ reporter mouse that has the mouse tPA promoter driving 

expression of the bacterial LacZ gene (Carroll et al., 1994), extant tPA/LacZ-expression 

was observed in the CA1 pyramidal cell layer after excitotoxic injury, despite complete 

neuronal cell loss (Tsirka et al., 1995). The remaining tPA/LacZ expression was 

presumed to be from microglia cells. Evidence for the existence of tPA-expressing 

microglial cells in vivo, however, is still tenuous (Louessard et al., 2016). While more 

than one group has reported microglia to express tPA (Rogove and Tsirka, 1998; 

Rogove et al., 1999; Yu et al., 2001), these conclusions were based on results from in 

vitro culture studies or widefield microscopy of immunohistochemical stains. To date, 

high resolution confocal microscopy and coexpression analysis has yet to demonstrate 

microglia cells expressing tPA in vivo. 

 Regardless of the cellular source of tPA, in vitro studies have shown that tPA is 

necessary for lipopolysaccharide (LPS)-induced activation of microglia cells (Rogove et 

al., 1999; Siao and Tsirka, 2002) and tPA-/- mice have attenuated microglial activation 

following excitotoxic injury (Tsirka et al., 1995) (Figure 1.11 A). The correlation between 

tPA-mediated microglial activation and tPA/plasmin-mediated neuronal degeneration 

strongly suggested a pathway by which activated microglial cells cause degeneration. 

However, Plg-/- mice, unlike tPA-/- mice, do not show attenuated KA-induced microglial 
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activation (Tsirka et al., 1997) (Figure 1.11 A). Moreover, intrahippocampal injections of 

tPA into tPA-/- mice were shown to cause neuronal degeneration and microglial 

activation, but intrahippocampal injections of proteolytically inactive tPA only induced 

microglial activation, with no corresponding neuronal degeneration (Rogove et al., 1999) 

(Figure 1.11 C). Therefore, it appears two separate pathways - a proteolytically-

dependent and a proteolytically-independent tPA pathway - are responsible for 

excitotoxicity-induced neuronal degeneration and microglial activation, respectively. 

 

1.6.3 Alzheimer’s disease 

The tPA/plasmin system has also been implicated in amyloid β (Aβ)-induced 

neuronal degeneration in Alzheimer’s disease (AD) (Van Nostrand and Porter, 1999; 

Ledesma et al., 2000; Tucker et al., 2000a; Tucker et al., 2000b; Melchor et al., 2003; 

Liu et al., 2011; Oh et al., 2014). One of the hallmark pathologies of AD is the deposition 

of Aβ plaques in the brain parenchyma; the neuroinflammation that accompanies Aβ 

accumulation is also now thought to contribute to AD progression (Heppner et al., 2015). 

Multiple groups have demonstrated the importance of the tPA/plasmin system in the 

degradation of Aβ and how regulation of tPA by its inhibitor plasminogen activator 

inhibitor-1 (PAI-1) decreases tPA activity and increases Aβ burden. Indeed, in both 

mouse AD models and human patients, Aβ accumulation correlates with increased PAI-

1 expression and decreased activity of the tPA/plasmin system (Sutton et al., 1994; Mari 

et al., 1996; Melchor et al., 2003; Liu et al., 2011). In contrast, knocking out the PAI-1 

gene from the Aβ precursor protein/presenilin 1 (APP/PS1) transgenic AD mouse 

increases tPA/plasmin activity and Aβ degradation (Liu et al., 2011). Interestingly, 
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ablation of the tPA gene in AD mice overexpressing the amyloid precursor protein 

(Tg2576) is lethal; Tg2576 mice heterozygous for the tPA gene also have reduced 

survival rates and a more severe AD pathology than tPA wild-type Tg2576 mice (Oh et 

al., 2014). It is unknown if dysregulation of the tPA/plasmin system is a contributing 

factor to AD or a consequence of disease progression. It also remains to be seen if 

tPA’s proteolytically-independent role in microglial activation and tPA’s proteolytically-

dependent role in neurodegeneration intersect in AD. 

 

1.6.4 NMDA receptor function 

Though Chen and Strickland (1997) demonstrated the extracellular importance of 

laminin in tPA/plasmin-mediated neuronal degeneration, the downstream signaling 

events leading to cell death were not known. Since tPA in-and-of itself does not induce 

cell death, but potentiates the excitotoxicity of KA (Tsirka et al., 1996), Nicole et al. 

explored the possibility that tPA was modulating excitatory glutamatergic drive via the 

NMDA receptor (NMDAR) (Nicole et al., 2001). From both mixed cortical cultures and 

intra-striatal injections of tPA and NMDA, catalytically active tPA was shown to enhance 

NMDA-induced neuronal death. Though Plg-/- mice weren’t used to demonstrate an in 

vivo plasminogen-independent effect of tPA on NMDA excitotoxicity, tPA’s actions 

appeared not to require plasmin in in vitro excitotoxicity studies. From co-

immunoprecipitation analysis and calcium imaging, tPA was found to interact with and 

cleave the NR1 subunit of the NMDAR to potentiate intracellular calcium influx. It is via 

this Ca2+ overload mechanism that tPA’s neurotoxic effects were postulated to occur. 



22 
 

  The direct interaction between tPA and the NR1 subunit of the NMDAR (Nicole et 

al., 2001; Reddrop et al., 2005), however, has been debated (Matys and Strickland, 

2003; Kvajo et al., 2004; Liu et al., 2004; Pawlak et al., 2005; Samson et al., 2008). 

While other groups have observed downstream tPA-mediated activation of the NMDAR, 

it was not through interaction with the NR1 subunit, but indirect interaction via a LDL 

receptor (LDLR) family member (Samson et al., 2008) or the NR2B subunit of the 

NMDAR (Pawlak et al., 2005; Park et al., 2008) (Figure 1.12). In well-controlled in vitro 

model systems Samson et al. persuasively demonstrated that 1) plasmin, but not tPA, 

can cleave the NR1 subunit, 2) a LDLR family member is required for tPA-mediated 

potentiation of NMDA-induced Ca2+ transients, and 3) NMDA-induced changes in Ca2+ 

is dependent on proteolytically active tPA, but independent of plasminogen (Samson et 

al., 2008). 

 Activation of the NMDAR via tPA signaling through the NR2B subunit has been 

shown to be important for regulating neurovascular coupling (Park et al., 2008) and 

seizure severity in a model of ethanol withdrawal (Pawlak et al., 2005) (Figure 1.12). 

Park et al. (2008) demonstrated that mice deficient in tPA, but not plasminogen, have a 

reduced functional hyperemia response in the whisker barrel cortex following whisker 

stimulation. This response in tPA-/- mice could be restored with application of rtPA. As 

the NR2B subunit is functionally coupled to nNOS it was hypothesized that modulation 

of the NMDAR by tPA altered nNOS-dependent NO synthesis and, in turn, cerebral 

perfusion. To test if this mechanism is responsible for tPA’s effects on blood flow, the 

cell permeable peptide inhibitor NR2B9c was used to uncouple NMDAR activity from 

NO production. With NR2B9c application, wild-type mice had an attenuated cerebral 
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blood flow response to whisker stimulation and rtPA no longer rescued the functional 

hyperemia response in tPA-/- mice. 

Pawlak et al. (2005) also demonstrated a role for tPA/NMDAR-signaling via the 

NR2B subunit in a model of ethanol withdrawal (Figure 1.12). Using in situ zymography 

and co-immunoprecipitation assays, tPA was found to be temporally upregulated with 

the NR2B subunit in the amygdala during ethanol treatment and ethanol withdrawal, 

and to directly bind the NR2B subunit. Moreover, activation of the NMDAR signaling 

pathway, as evidenced by phosphorylation of NR2B and ERK1/2, was specifically and 

significantly downregulated in tPA-/- mice during ethanol withdrawal. Mice deficient in 

tPA that received an intracerebroventricular injection of tPA also had much more severe 

seizures than mice that received a vehicle injection. The NR2B subunit was specifically 

implicated in this process as seizure severity could be attenuated by the NR2B-specific 

NMDAR antagonist ifenprodil. This tPA-mediated effect on signaling and seizures 

appears to be via a non-proteolytic, plasminogen-independent mechanism, as the tPA 

protease inhibitor, tPA-STOP, had no effect on seizure severity and plasmin completely 

degraded NR2B. Cumulatively, these data demonstrate that tPA can signal through the 

NMDAR, as Nicole et al. (2001) first speculated, but its interaction is likely more 

complex than a one-to-one/protease-to-substrate cleavage mechanism. 

And while Samson et al. (2008) and Pawlak et al. (2005) implicated different 

subunits of the NMDAR, their results are not mutually exclusive. Samson and 

colleagues (2008) specifically demonstrated that the NR1 subunit is not a direct 

substrate of tPA and that tPA potentiates Ca2+ influx in cultured cortical neurons and 

oocytes transfected to express NR1A- and NR2A-containing NMDARs. The isoform 
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composition of the NMDARs present in cortical cultures was not reported and any 

specific effect of tPA on NMDARs comprising NR2B subunits was not interrogated. 

Interestingly, though, a time-dependent effect of culture day (DIV 5 vs DIV12) was 

observed for tPA-mediated NMDA Ca2+ transients; larger Ca2+ transients were seen in 

cortical cultures at DIV12, suggesting that an additional co-factor present at DIV12 was 

facilitating tPA’s modulation of the NMDAR. The authors pointed to protease nexin-1 

(PN-1), as a previous report  (Kvajo et al., 2004) implicated this protease:inhibitor pair in 

regulating NMDAR function, and the fact that PN-1 expression at DIV5 vs DIV12 

correlated with increased tPA-mediated NMDA Ca2+ influx. 

It’s possible, however, that this difference in the NMDA Ca2+ response between 

DIV 5 and DIV12 was not due to some extrinsic co-factor, but an intrinsic change in 

NMDAR subunit composition. For, NMDARs have been shown to be dynamically 

regulated during development and in response to activity (Lau and Zukin, 2007). And, 

given that NMDARs comprised of different subunits (NR1, NR2, and NR3) display 

differences in their biophysical and pharmacological properties (Lau and Zukin, 2007), 

the enhanced Ca2+ signal observed in cortical cell cultures at DIV12 could be due to a 

change in molecular composition of the NMDARs. Indeed, evidence for differential 

cleavage based on the neuronal culture system (hippocampal vs cortical) and the 

maturity of the culture system can be found for another protease, the calcium-activated 

protease calpain (Li et al., 1998; Sans et al., 2000; Dong et al., 2004; Wu et al., 2005; 

Dong et al., 2006). In younger and acutely dissociated cortical cultures calpain 

proteolyzes intracellular cleavage sites of both the NR2A and NR2B subunits of the 

NMDAR (Wu et al., 2005). However, in more mature hippocampal neuronal cultures 
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(DIV 17 or older) NR2A’s association with the PSD-95 protein hinders calpain-mediated 

cleavage (Li et al., 1998; Sans et al., 2000; Dong et al., 2004). Therefore, it remains to 

be seen whether the reported differences in tPA/NMDAR signaling are experimental or 

part of the biological complexity of these two molecules in the central nervous system. 

 

1.6.5 Mitochondrial dysfunction – the Nervous (nr) mutant mouse 

Other models of neuronal degeneration, however, have pointed to different 

mechanisms of action for tPA in this pathological process. In two unrelated mutant 

mouse models that present with cerebellar Purkinje cell loss - Lurcher (Lc) and Nervous 

(nr) (Lu and Tsirka, 2002; Li et al., 2006) tPA mRNA and protein/activity are significantly 

upregulated and correlated with cell death. One of the most striking features of the nr 

mutant mice, whose Purkinje neurons (PN) selectively degenerate by P35, is their 

altered PN mitochondrial morphology. Starting from P9, PN mitochondria balloon; this 

spherical swelling is accompanied by partial or complete disintegration of the outer 

mitochondrial membrane. Intracerebellar injections of tPA into wild-type mice reproduce 

the mitochondrial phenotype observed in nr mice, and the nr mice express elevated 

levels of tPA (Li et al., 2013). 

VDAC, a voltage-dependent anion channel, is a major pore-forming protein on 

the outer membrane of mitochondria that is involved in regulating ATP release and cell 

volume. VDAC’s role in contributing to the mitochondrial pathology observed in mice 

was investigated as biochemical analysis showed VDAC to act as a cofactor for tPA and 

plasminogen to promote plasmin generation (Gonzalez-Gronow et al., 2013). Not only 

does VDAC act as a cofactor, like fibrin(ogen), to enhance tPA’s catalytic activity, but 
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VDAC also acts as a receptor for the Kringle 5 domain of plasmin(ogen) (Gonzalez-

Gronow et al., 2003). Functional downstream effects of plasmin(ogen) binding to VDAC 

include intracellular acidification and mitochondrial membrane hyperpolarization 

(Gonzalez-Gronow et al., 2003; Li et al., 2013), processes associated with apoptosis 

(Gottlieb et al., 1996; Vander Heiden et al., 1999). 

Indeed, in cerebellar cell cultures treated with tPA/plasminogen, decrements in 

mitochondrial membrane potential, as well as increases in mitochondrial diameter and 

cell death, were measured (Li et al., 2013). While cell death was not found to be 

mediated by caspase-3, apoptosis-inducing factors (AIFs) have been shown to be 

released through VDACs to initiate apoptosis (Madamanchi and Runge, 2007; 

Shoshan-Barmatz et al., 2017). Whether or not this caspase-independent mitochondrial 

apoptotic pathway was involved in mediating tPA’s effects was not investigated. 

Moreover, when nr mutant mice were crossed with tPA-/- mice (nr;tPA-/-), these doubly 

mutant mice had significant reductions in PN death and enhanced motor coordination. 

Despite the protection conferred by tPA deficiency, nr;tPA-/- mice had only partial PN 

preservation, suggesting that other pathways are also responsible for PN degeneration 

in the nr mutant mice. Nonetheless, a VDAC-mediated pathway responsible for 

tPA/plasmin-induced mitochondrial dysfunction and cell death is intriguing, especially 

given the in vitro evidence demonstrating VDAC expression on endothelial cells 

(Gonzalez-Gronow et al., 2003; Madamanchi and Runge, 2007) and tPA’s role in 

regulating blood-brain barrier permeability (as discussed below). 
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1.6.6 Apoptosis - the Lurcher (Lc) mutant mouse 

In a separate model of cerebellar neuronal degeneration, Lu and Tsirka also 

demonstrated a link between tPA and PN cell loss in the Lc mutant mouse (Lu and 

Tsirka, 2002). Sequencing revealed an alanine to threonine gain-of-function mutation in 

the δ2 glutamate receptor (GluRδ2), which are predominantly expressed on PN, to be 

the genetic cause of the Lc mouse. The molecular mechanism bridging genotype to 

phenotype, however, is still debated and likely highly factorial. While both the nr and Lc 

mutant mice display ataxia cerebellar degeneration, the Lc mice have a more severe 

phenotype in that homozygous Lc mice die soon after birth (Vogel et al., 2007). 

Heterozygous Lc mice (+/Lc), however, are viable, and they are outwardly characterized 

by their “lurching” gait and inwardly by the complete degeneration of PN by 3 months 

post-birth. While this degeneration reaches its apex at 3 months, necrotic PN are 

noticeable by P4 (Caddy and Biscoe, 1979). 

tPA appears to be more highly involved in the earlier phase of degeneration as 

both tPA mRNA and tPA protein/activity are significantly upregulated in the +/Lc mice at 

P12, but comparably normal at P30 (Lu and Tsirka, 2002). tPA’s role in degeneration 

was further demonstrated when doubly mutant +/Lc:tPA-/- mice were found to have an 

attenuation in PN cell death. This partial preservation appears to be due to decreased 

activation of apoptotic caspase-8 mediated signaling (at P12 and P30) in +/Lc:tPA-/- 

mice compared to +/Lc mice. Despite this reduction in caspase-8, caspase-9 was still 

elevated in both +/LC and +/Lc:tPA-/- mice (at P30, but not P12). These data suggest 

that while tPA may play a role in receptor-mediated apoptosis (caspase-8) in the +/Lc 
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mouse, tPA-independent mitochondrial-mediated apoptotic (caspase-9) pathways are 

also at work. 

Given more recent data, however, that demonstrate mitochondrial caspase-

independent apoptosis (Madamanchi and Runge, 2007; Gupta et al., 2009) and tPA’s 

involvement in mitochondrial dysfunction in the nr mouse (Li et al., 2006; Li et al., 2013), 

tPA’s role in mitochondrial-mediated apoptosis in the +/Lc mouse shouldn’t be excluded. 

Moreover, it was not investigated if tPA/plasmin-induced cleavage of laminin in the Lc 

mice enhances receptor-mediated caspase-8 PN cell death. As extracellular matrix 

proteins, including laminin, have been shown to be important players in neuronal 

survival and death, in both development and disease states (Hagg et al., 1989; 

Coucouvanis and Martin, 1995), it’s possible that the KA-induced degeneration in adult 

mice and degeneration in Lc mutant mice are part of a common tPA/plasmin/laminin-

mediated apoptosis signaling pathway. 

 

1.7 Stroke and tPA 

1.7.1 Effects of endogenous and exogenous tPA in models of cerebral ischemia  

Efforts to elucidate tPA-mediated signaling pathways that promote excitotoxicity 

and neuronal degeneration have largely been driven by the fact that rtPA is still the only 

FDA-approved pharmacologic treatment of ischemic stroke. Further, understanding 

these pathways could lead to the development of adjuvant therapies that block tPA’s 

harmful effects in the brain parenchyma, while preserving its thrombolytic action, which 

could extend the efficacy of rtPA in the clinical setting. This would be especially 

beneficial as the hemorrhagic complications that can arise from rtPA treatment limit its 
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administration, despite strong endorsements from the American Heart Association and 

the American Stroke Association (Powers et al., 2018). 

Early reports on tPA-mediated excitotoxicity (Tsirka et al., 1995) suggested that 

additional studies were necessary to understand all of the implications of the use of tPA 

for the treatment of ischemic stroke. Wang et al. (1998) was the first to discriminate 

between tPA’s beneficial role in the vasculature and its harmful role in the brain 

parenchyma in a model of cerebral ischemia (Wang et al., 1998). Using an intravascular 

filament to transiently occlude the middle cerebral artery, tPA-/- mice were found to have 

smaller infarct volumes and hippocampal neuronal preservation compared to wild-type 

controls (Figure 1.13 A). Since the tPA-/- mice used were generated from 129/Sv ES 

cells and crossed onto a C57BL/6J background (Doetschman et al., 1985; Carmeliet et 

al., 1993; Carmeliet et al., 1994), both C57BL/6J and 129/Sv wild-type mice were 

separately used as controls. 

Contradicting these results, however, was a study showing tPA-/- mice to have 

larger, not smaller, stroke volumes than wild-type mice (Tabrizi et al., 1999). In this 

study Tabrizi et al. (1999) followed the same transient ischemia/reperfusion model as 

Wang et al. (1998); however, in an effort to control for the mixed genetic background of 

the tPA-/- mice (Carmeliet et al., 1993; Carmeliet et al., 1994) these authors compared 

tPA-/- mice to wild-type mice on a mixed 129/Sv and C57BL/6J background. The 

breeding strategy employed to generate the mixed C57BL/6J and 129/Sv control mice, 

however, was not an appropriate way to control for strain differences. The control mice 

and tPA-/- mice were genetically unique, containing a mix of genes from the C57BL/6J 
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and 129/Sv strains but in a random configuration that was different between the two 

(Flurkey et al., 2009).  

Since these early studies (Wang et al., 1998; Tabrizi et al., 1999) that utilized 

knockout mice, there is a better appreciation for the phenotypic differences between 

strains and the importance of controlling for genetic background. Szabo et al. (2016) 

recently described new tPA-/- mice (NIH-tPA-/-) that were generated using zinc-finger 

nuclease genome editing technology, and these mice are not on a mixed background. 

Unlike the original tPA-/- mice they are on a pure C57BL/6J background and do not 

harbor any 129/Sv genomic DNA (Szabo et al., 2016). Using these newly created NIH-

tPA-/- mice and the original tPA-/- mice that have been extensively backcrossed into 

C57BL/6J, we have now validated the results from the original publication by Wang 

colleagues. In a photothrombotic middle cerebral artery occlusion (MCAO) stroke model, 

we show that both the original and NIH-tPA-/- mice have significantly smaller infarct 

volumes than their pure C57BL/6J wild-type controls (Su and Lawrence, personal 

communication). Importantly, these data strongly indicate that endogenous tPA, and not 

strain-dependent modifier genes, is directly responsible for stroke severity in response 

to cerebral ischemia. 

In addition to examining the effects of parenchymal brain tPA on cerebral 

ischemia, Wang and colleagues (1998) investigated the impact of exogenous rtPA on 

stroke outcome. Accordingly, rtPA was injected via the femoral vein 2 hrs after vascular 

occlusion of either 2 or 3 hrs in wild-type and tPA-/- mice. Following thrombolysis, both 

tPA deficient mice and wild-type mice had significantly larger infarct volumes compared 

to their saline-injected control mice. In situ zymography revealed tPA activity in the 
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ischemic core of tPA-/- mice, suggesting that exogenous rtPA crossed the ischemic, 

compromised BBB and exacerbated neuronal degeneration.  

Using a similar intraluminal filament ischemic stroke model, but in contrast to 

Wang et al. (1998), Zhang and colleagues (2017) observed reduced infarct volume and 

improved neurological score in C57BL/6J wild-type mice after intravenous rtPA 

thrombolysis administered 2 hrs after 1 hour of vascular occlusion (Zhang et al., 2017). 

The disparity in stroke outcome between these studies is likely related to the initial 

stroke severity (2 or 3 hrs occlusion time in Wang vs only 1 hr in Zhang), since a well-

established correlation is known to exists between occlusion time and infarct volume 

(Stoll et al., 2008). Thus, even after recanalization, the prolonged occlusion time likely 

provoked a pathological state that promoted secondary thrombosis (Pham et al., 2010) 

and greater BBB damage (Liu et al., 2018), allowing exogenous rtPA to enter the brain 

parenchyma and worsen stroke outcome. In agreement with tPA’s efficacious use as a 

thrombolytic agent, other studies using models of thrombotic (Su et al., 2008) or 

thromboembolic stroke (Zivin et al., 1988; Orset et al., 2016) have shown that, as in 

humans, early rtPA treatment following stroke onset is beneficial for restoring blood flow 

and reducing ischemic damage to the brain. 

 

1.7.2 BBB opening by tPA mediates neuronal degeneration in models of cerebral 

ischemia 

How tPA promotes neuronal degeneration, however, is still controversial. Yepes 

and colleagues (2003) advanced a novel hypothesis in 2003 when they showed that 

tPA induces opening of the blood-brain barrier (BBB) in a model of stroke. Following 
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MCAO, tPA-/- mice and wild-type mice treated with an intraventricular injection of a 

specific tPA inhibitor, neuroserpin (Nsp), had significantly less leakage of Evan’s blue 

dye from the vasculature into the brain parenchyma (Yepes et al., 2003), while in a 

related study rats treated with intracerebral Nsp had less neurodegeneration (Yepes et 

al., 2000) (Figure 1.13 B). In contrast, mice lacking uPA and Plg were not protected 

from MCAO-induced leakage of Evan’s blue dye (Yepes et al., 2003). Moreover, when 

active tPA was injected into the cerebral ventricles of wild-type mice and Plg-/- mice, 

there was a significant increase in BBB permeability. This increase in tPA-induced BBB 

permeability was not blocked by treatment with MK-801, an antagonist of the NMDAR. 

However, intraventricular co-injections of tPA with RAP or tPA with an anti-LRP1 

antibody did protect against tPA-induced BBB opening. Conversely, intraventricular 

injections of inactive tPA or uPA did not induce opening of the BBB. Cumulatively, these 

results demonstrate that 1) active tPA is required for inducing opening of the BBB, 2) 

tPA-mediated BBB opening is plasminogen- and NMDAR-independent, 3) the substrate 

involved in BBB opening is specific to tPA, not uPA, and 4) tPA-induced BBB opening is 

mediated by activation of a signaling pathway involving LRP1. 

 As previous studies also implicated matrix metalloproteinase 9 (MMP9) in stroke-

induced neuronal degeneration (Asahi et al., 2000; Asahi et al., 2001), BBB permeability 

was assessed after MCAO in MMP9-/- mice. MMP9 is a member of the MMP family of 

zinc-dependent endopeptidases that proteolyzes components of the ECM. Despite 

earlier studies demonstrating a reduction in infarct volume and BBB leakage in MMP-/- 

mice (Asahi et al., 2000; Asahi et al., 2001), when Yepes et al. (2003) assessed BBB 

permeability after MCAO, deficiency in MMP9 did not confer protection. MMP9 activity, 
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however, was increased in brain extracts from both rats and wild-type mice that 

underwent cerebral ischemia. And, this increase in MMP9 appeared to be dependent on 

proteolytic tPA (Lapchak et al., 2000; Wang et al., 2003; Cheng et al., 2006), as MMP9 

activity was blunted in rats treated with Nsp and in mice lacking tPA. 

 Experimental differences in the circulating time of Evan’s blue dye may be 

responsible for the differential reports on MMP9’s involvement in stroke-induced BBB 

opening. Asahi et al. infused Evan’s blue dye at the onset of reperfusion 2 hrs after 

transient focal ischemia and the dye circulated for 18-20 hrs before the brains were 

harvested (Asahi et al., 2001), while Yepes et al. (2003) delivered an intravenous 

injection of Evan’s blue immediately after MCAO, without reperfusion, and allowed the 

dye to circulate for 6 hrs before harvesting the brains. As BBB opening following stroke 

is thought to follow a biphasic progression, it’s likely that MMP9 is involved in the later, 

second phase of BBB disruption (Sandoval and Witt, 2008), which was not captured at 

the earlier experimental time-point used by Yepes and colleagues (2003). Though the 

mechanism and cellular source of MMP9 in stroke and BBB damage is still controversial 

(Turner and Sharp, 2016), numerous studies have demonstrated that neutrophils 

infiltrating the brain parenchyma are the main source of MMP9 in the later stages of 

stroke and BBB damage (Justicia et al., 2003; Gidday et al., 2005). 

 

1.7.3 Tissue plasminogen activator induces opening of the BBB via activation of the 

PDGFRα. 

Since tPA-induced upregulation of MMP9 expression and MMP9-mediated ECM 

degradation appears to be more involved during the later stages of BBB breakdown, it 
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was unclear how tPA was signaling to increase BBB permeability. Earlier studies 

already precluded plasminogen as a potential substrate of mediating tPA’s actions on 

the barrier (Yepes et al., 2003). Coincidental but independent of efforts to elucidate 

tPA’s effector molecule in stroke, Fredriksson et al.(2004) found tPA to be a potent 

activator of platelet-derived growth factor C (PDGF-CC). It was unknown, though, if 

PDGF-CC was the downstream substrate of tPA in the neurovascular unit responsible 

for inducing BBB opening. 

PDGF-CC belongs to the VEGF/PDGF family of growth factors (Andrae et al., 

2008). The VEGF/PDGF family can be subdivided into two classes: class I family 

members house basic retention motifs (PDGF-AA and PDGF-BB) and class II family 

members house CUB domains (PDGF-CC and PDGF-DD). As a class II family member, 

structurally, PDGF-CC is characterized by two C-terminal disulfide-linked growth factor 

domains and their associated N-terminal CUB (for complement C1r/C1s, Uegf, Bmp1) 

domains. Unlike PDGF-AA and PDGF-BB, which are secreted in their active forms, 

PDGF-CC and PDGF-DD are secreted as inactive growth factors and processed 

extracellularly into their active forms via proteolysis. Both the growth factor and CUB 

domains of PDGF-CC are required for tPA to interact; upon binding, tPA’s cleaves the 

CUB domains of latent PDGF-CC to form active PDGF-CC (Fredriksson et al., 2004). 

Binding of active PDGF-CC induces homodimerization and activation of downstream 

signaling of the PDGF receptor α (PDGFRα), a receptor tyrosine kinase. 

 Subsequent immunohistochemical analysis has demonstrated tPA, PDGF-CC, 

and the PDGFRα to be expressed by perivascular cells on the abluminal side of the 

vasculature in the adult mouse brain (Su et al., 2008; Fredriksson et al., 2015). 
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Moreover, both tPA and PDGF-CC independently, and to similar degrees, induce BBB 

opening when injected intraventricularly. Co-injections of the two are not additive and 

tPA’s actions on the barrier can be blocked by anti-PDGF-CC antibodies. And, while 

RAP does not block PDGF-CC-induced opening, LRP1 was shown to significantly 

facilitate cleavage of latent PDGF-CC into active PDGF-CC by tPA. Together, these 

data indicate that tPA, PDGF-CC, and the PDGFRα are proximally situated to act on the 

vasculature; tPA and PDGF-CC work through a common pathway to induce opening; 

and tPA and LRP1 are upstream mediators of PDGF-CC activation.  

 These in vivo mechanistic studies were then extrapolated to a model of 

photothrombotic stroke to see if blocking the tPA/PDGF-CC/PDGFRα signaling pathway 

could reduce BBB permeability and neuronal damage after MCAO. PDGFRα activation 

was inhibited with the tyrosine kinase inhibitor Imatinib or with anti-PDGF-CC antibodies. 

With either inhibitor there was a significant decrease in Evan’s blue extravasation into 

the brain parenchyma and Imatinib treatment (200 mg/kg, p.o.; 1 hr and 8 hr after 

MCAO) improved stroke outcome by significantly decreasing infarct size, presumably 

due to preserved barrier function (Figure 1.13 B). Imatinib treatment was also shown to 

significantly reduce intracerebral hemorrhage following photothrombotic MCAO and late 

(5 hrs post-MCAO) thrombolytic treatment with tPA. 

 

1.7.4 MAC-1-expressing microglia enhance tPA-mediated cleavage of PDGF-CC and 

downstream BBB opening in models of cerebral ischemia 

Additional insights into the molecular mechanism underlying activation of the 

tPA/PDGF-CC/PDGFRα signaling pathway were made when it was shown that the 
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integrin MAC-1 (also known as αMβ2 and CD11b/CD18) acts as a co-factor for tPA to 

accelerate cleavage of PDGF-CC (Su et al., 2017). Earlier biochemical work had shown 

tPA to be an inefficient enzyme, compared to other serine proteases (Fredriksson et al., 

2004). tPA’s activity, however, can be greatly enhanced by co-factors, like fibrinogen. 

Insights from the biophysical attributes of tPA in the vasculature and tPA’s inefficient 

activation of PDGF-CC in vitro led Su et al. to hypothesize that there existed some 

unknown co-factor in the neurovascular unit that was facilitating tPA’s cleavage of 

PDGF-CC (Su et al., 2017). Previous work by numerous groups had already 

demonstrated the importance of LRP1, but more recent studies also indicated that 

MAC-1 on microglial cells might be involved. 

 Using a combination of well-controlled in vitro and in vivo model systems, Su et 

al. demonstrated that both LRP1 and MAC-1 are necessary and sufficient to facilitate 

activation of PDGF-CC by tPA (Su et al., 2017). In a sequential cell culture system with 

PAE-α cells that stably express PDGFRα, but not PDGFRβ, both immortalized (Line 

BV2) and primary microglial cells were shown enhance tPA-mediated activation of 

PDGF-CC from latent PDGF-CC. This effect from microglial cells appeared to be 

specific to MAC-1, as primary microglial cells cultured from MAC-1 deficient mice (MAC-

1-/-) were not able to facilitate tPA-mediated activation of PDGF-CC. To more directly 

assess the contribution of MAC-1 and LRP1 to PDGF-CC activation, PDGFRα 

phosphorylation was monitored after PAEα and BV2 co-cultures were treated with 

specific antagonists and small hairpin RNAs against MAC-1 and LRP1. These studies 

demonstrated that independently blocking MAC-1 or LRP1 reduced PDGF-CC 

activation to similar degrees. 
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 In agreement with these in vitro data indicating that MAC-1 is upstream of PDGF-

CC activation, intracerebroventricular injections of either tPA or active PDGF-CC 

induced BBB opening in wild-type mice, but only active PDGF-CC and not tPA, 

increased Evan’s blue extravasation in MAC-1-/- mice (Figure 1.13 B). This decrease in 

PDGF-CC activation in MAC-1-/- mice translates to preserved BBB function, as MAC-1 

deficient mice had significantly less BBB leakage than wild-type mice following MCAO. 

These functional data are supported by immunohistochemical stains showing CD11b 

(the alpha chain of MAC-1), LRP1, and the PDGFRα to be localized to the 

neurovascular unit. Immunohistochemical analysis of the neurovascular unit also 

showed PDGFRα activation to be elevated in wild-type mice 6 hrs post-MCAO 

compared to MAC-1 null mice. 

 Taking advantage of the CX3CR1-GFP/CCR2-RFP (R/G) transgenic mouse line 

(Jung et al., 2000; Saederup et al., 2010) Su et al. (2017) were also able to show that 

resident microglial cells, not infiltrating monocytes, are the likely source of the MAC-1 

co-factor (Figure 1.14). In R/G mice, GFP expression is driven by the CX3CR1 promoter 

and selectively labels microglia and macrophages, while RFP is driven by the CCR2 

promoter and is expressed in monocytes and macrophages. With these mice, green 

resident microglial cells are easily distinguishable from red circulating monocytes and 

yellow monocyte-derived macrophages. At 6 hrs post-MCAO, when 

immunohistochemical analysis showed increased PDGFRα activation, there was little 

evidence of infiltrating RFP+ monocytes, but high levels of resident GFP+ microglia in 

the neurovascular unit of the ischemic penumbra (Figure 1.14). Infiltrating RFP+ 

monocytes are not observed till later (24 hrs) time-points of stroke development. The 
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presence of GFP+ microglia and not RFP+ monocytes suggests that microglial MAC-1 

is facilitating tPA-mediated activation of PDGF-CC and PDGFRα downstream signaling. 

  To further validate that resident microglia and not infiltrating monocytes are the 

source of MAC-1, wild-type and MAC-1-/- mice underwent bone marrow transplantation. 

Lethally irradiated wild-type mice received bone marrow transplants from MAC-1-/- mice 

(MAC-1-/- -> WT), while irradiated MAC-1-/- received transplants from wild-type mice 

(WT -> MAC-1-/-). Unlike circulating monocytes, microglial cells in the brain are not 

replenished by peripheral hematopoietic stem cells after BBB formation (Ginhoux and 

Prinz, 2015; Reu et al., 2017). Following irradiation and transplantation, therefore, the 

resident microglial population in wild-type and MAC-1-/- mice will be unchanged; 

monocytes in wild-type mice, however, will be MAC-1 deficient while monocytes in 

MAC-1-/- mice will express MAC-1. If MAC-1 from infiltrating monocytes is responsible 

for activating the tPA/PDGF-C/PDGFRα signaling pathway and inducing BBB opening, 

then wild-type mice transplanted with MAC-1-/- bone-marrow cells should phenocopy un-

irradiated MAC-1-/- mice after MCAO. Following ischemia and assessment of BBB 

leakage, however, there was no difference in wild-type or MAC-1 deficient mice with or 

without irradiation, indicating that MAC-1-mediated BBB permeability in the first 24 hrs 

after MCAO is independent of infiltrating monocytes. 

 

1.7.5 Imatinib treatment improves outcome in murine models of cerebral ischemia and 

in human stroke patients 

 Importantly, in agreement with these results, other groups have reported similar 

benefits to blocking the tPA/PDGF-CC/PDGFRα pathway in stroke. In a rat 
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endovascular perforation subarachnoid hemorrhage model, Imatinib was found to 

ameliorate BBB leakage and edema 24 hrs after hemorrhage (Zhan et al., 2015). This 

preservation of BBB integrity was in conjunction with improved neurological function. 

Imatinib has also been shown to improve stroke outcome in an ischemia/reperfusion 

injury model (Merali et al., 2015). Following transient MCAO and Imatinib treatment, 

BBB permeability was assessed using MRI by analyzing Gadolinium leakage, and again, 

with this method, Imatinib preserved BBB integrity, which in turn, led to a decrease in 

infarct volume, edema, and improved neurologic function. In humans, elevated plasma 

levels of PDGF-CC in stroke patients with hemorrhagic transformation after tPA 

treatment have also been observed (Rodriguez-Gonzalez et al., 2013). Based on all of 

these studies a phase II randomized clinical trial of Imatinib’s efficacy as an adjuvant 

therapy for tPA-mediated thrombolysis was assessed (Wahlgren et al., 2016). From this 

study, Imatinib was found to be safe and tolerable, and importantly, Imatinib treatment 

correlated with improved neurological outcome. A phase III trial is now currently being 

planned to further test the efficacy of Imatinib as an adjuvant therapy for tPA-mediated 

thrombolysis. 

 

1.8 Regulation of BBB permeability and seizure progression by tPA 

In the course of the original KA-induced neuronal degeneration experiments by 

Tsirka and colleagues (Tsirka et al., 1995; Tsirka et al., 1997) the authors made an 

intriguing observation: They noticed that following intrahippocampal KA injections wild-

type mice developed seizures, but tPA-/- mice did not. To more systematically test and 

quantify this observation, wild-type and tPA-/- mice were behaviorally evaluated for 
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seizure progression following intraperitoneal injections of metrazol (a known convulsant) 

or KA. Indeed, for both seizure-inducing drugs, tPA-/- mice had significantly less severe 

seizures. And while tPA-/- mice were also protected from KA-induced neuronal loss and 

microglia activation, it was unclear how, if at all, these events were related to seizure 

susceptibility. Given that proteolytically-active tPA and proteolytically-inactive tPA 

appear to effectuate divergent outcomes - neuronal degeneration and microglial 

activation, respectively - it was also unclear if the discrepancy between active and 

inactive tPA pertained to seizure progression. 

Subsequent investigations have since shown that proteolytically-active tPA is an 

important mediator of acute KA-induced seizures and that tPA’s role in seizure 

progression is, in part, due to regulating BBB permeability. These actions of tPA were 

revealed in studies using intra-amygda injections of KA to induce seizure. In this acute 

seizure model, tPA-/- mice were again found to have a delayed seizure onset time 

compared to wild-type mice (Yepes et al., 2002). Moreover, neuroserpin (Nsp), not 

plasminogen activator inhibitor-1 (PAI1), the principal inhibitor of tPA in the vasculature, 

was demonstrated to be the critical regulator of tPA activity in seizure. To determine if 

tPA’s role in seizure spreading is mediated by plasmin, the behavioral seizures of Plg-/- 

mice were assessed. Given the plasminogen-dependence of tPA in KA-induced models 

of neuronal degeneration, it was surprising, therefore, when the seizure behavior of Plg-

/- mice phenocopied wild-type mice, not tPA-/- mice, which is not what would be 

expected if tPA and plasmin were working through a common pathway. As studies 

examining tPA’s role in stroke suggested that PDGF-CC was a candidate effector 

molecule, Fredriksson et al. (2015) tested if the tPA/PDGF-CC/PDGFRα signaling 
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pathway responsible for promoting BBB permeability and worse stroke outcome was 

also responsible for seizure severity. 

Using a combination of in vitro and in vivo approaches, Fredriksson and 

colleagues (2015) demonstrated a clear link between tPA/PDGF-CC/PDGFRα-induced 

BBB opening and seizure progression. It was also shown that this pathway could be 

opposed at the level of tPA by Nsp or through genetic or pharmacologic inhibition of the 

PDGFRα. Similar to what was previously reported for tPA-/- mice in an intra-amygdala 

KA-induced seizure model (Yepes et al., 2002) mice lacking tPA had delayed seizure 

progression. Conversely, mice deficient in Nsp (Nsp-/-) had enhanced seizure 

progression, compared to wild-type and tPA-/- mice. And, as hypothesized, mice doubly 

deficient in tPA and Nsp (Nsp:tPA-/-) phenocopied tPA-/- with their attenuated seizure 

onset and generalization times. PAI-1 deficient mice behaved like wild-type mice, 

demonstrating that in this seizure model, Nsp is the primary inhibitory of tPA activity. 

Using Evan’s blue to evaluate BBB leakage after KA-induced seizure, seizure 

severity was found to correlate with BBB permeability, with “seizure resistant” tPA-/- 

mice showing significant barrier protection at 4 hrs post seizure induction (Fredriksson 

et al., 2015). In contrast, by 2 hrs post seizure induction, “seizure prone” Nsp-/- mice 

already had significant levels of Evan’s blue extravasation into the parenchymal space. 

The BBB component to the in vivo seizure phenotype observed in these mice was 

further assessed in a no Mg2+/high K+ ex vivo model that induces synchronous (or 

“seizure-like”) activity. In an ex vivo preparation, a brain slice is bathed in oxygenated 

artificial cerebrospinal fluid (aCSF) and not subject to alterations of the BBB. As such, a 

“seizure-like” phenotype can be evaluated independent of the BBB. If the in vivo seizure 
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phenotype in wild-type, tPA-/-, and Nsp-/- mice is related to the BBB, then in an ex vivo 

slice preparation there should be no phenotypic difference between these mice. Using 

this approach, latency to synchronous activity was evaluated. While brain slices from 

Nsp-/- mice showed no significant difference in onset time, brain slices from tPA-/- mice 

actually showed an enhanced onset time (We have since increased our “n” for these 

experiments and now find no significant difference between wild-type and Nsp-/- mice or 

wild-type and tPA-/- mice. We do, however, find a significant difference between tPA-/- 

and Nsp-/- mice, with tPA-/- mice developing synchronous activity earlier than Nsp-/- mice. 

Further details of these experiments are provided in Chapter 3 of this thesis). This more 

hyperexcitable phenotype in brain slices of tPA-/- mice, however, is opposite the “seizure 

resistant” phenotype observed in vivo. Therefore, despite tPA-/- mice being more 

excitable ex vivo, these data suggest that a significant component of the in vivo seizure 

phenotype in wild-type, tPA-/-, and Nsp-/- mice is due to dysregulation of the BBB. 

Pharmacologic and genetic blockade of the PDGFRα activation further 

demonstrated the tPA/PDGF-CC/PDGFRα signaling cascade as being an important 

pathway regulating BBB permeability and seizure progression. Consistent with tPA 

being an upstream activator of PDGFRα signaling, Imatinib treatment had no effect on 

seizure onset or generalization in tPA-/- mice, but it significantly delayed seizure 

progression in Nsp-/- and wild-type mice. Moreover, conditional ablation of the PDGFRα 

in perivascular astrocytes, which show high expression of the α-receptor, significantly 

delayed time to seizure generalization. Together, these results strongly support a 

mechanism whereby activation of the tPA/PDGF-CC/PDGFRα signaling pathway 

induces opening of the BBB and contributes to seizure progression. 
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1.9 Role for tPA in mediating BBB dysregulation in other CNS pathologies 

The tPA/PDGF-CC/PDGFRα pathway regulating BBB permeability doesn’t 

appear to be unique to stroke or seizures (Figure 1.15). Blocking PDGFRα activation 

with Imatinib also improved barrier function and cognition after traumatic brain injury (Su 

et al., 2015); and it improved recovery after spinal cord injury (Abrams et al., 2012). 

Preserving BBB function with Imatinib has been shown to be therapeutically beneficial 

in neurodegenerative and neuroinflammatory mouse models as well. In a model of 

amyotrophic lateral sclerosis (ALS) Imatinib treatment restored integrity of the brain 

spinal cord barrier and delayed ALS onset (Lewandowski et al., 2016), while rats with 

autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, had improved 

barrier function and EAE symptoms after Imatinib treatment (Adzemovic et al., 2013). 

The congruity of the tPA/PDGF-CC/PDGFRα pathway across disease model systems 

suggests that this pathway is a conserved, common regulator of BBB permeability. 

Targeting this pathway to preserve barrier integrity, therefore, could have therapeutic 

benefit for numerous pathologies associated with BBB dysfunction.  
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Process Biological Effect and/or Mechanism of Action References

(in vitro ) Plasminogen activators (tPA and uPA) are released from growth cones of 

cerebellar granule neurons, peripheral neurons and Schwann cells, and 

neuroblastoma cells. Implications for neurite outgrowth. 

Krystosek and Seeds, 

1981a, b, 1984; Verrall 

and Seeds, 1988

(in vitro ) PC12 cells overexpressing tPA regenerate neurites and migrate faster than 

control cells in a complex extracellular matrix

Pittman and 

DiBenedetto, 1995

(in vitro ) Plasma membrane-related protein annexin II on PC12 cells supports tPA-

mediated plasmin generation and NGF-induced neurite outgrowth
Jacovina et al., 2001

(in vitro ) Inactive tPA transactivates Trk-receptor signaling via LRP1, promoting NGF-

induced neurite outgrowth in cultured PC12 cells and primary cerebellar neurons
Shi et al., 2009

(in vitro ) Upregulation of the Wnt-LRP5/6-GSK3beta-beta-catenin canonical signaling 

pathway and neurite outgrowth following tPA treatment in primary neural progenitor 

cells

Lee et al., 2014

(in vivo ) Delayed migration of cerebellar granule neurons during development (P7 – 

P13) in tPA
-/-

 mice, but similar granule cell patterning at the end of the granule cell 

migratory period (P16)

Seeds et al., 1999

(in vivo ) Reduced tPA-mediated generation of HGF in tPA
-/-

 mice leads to 

accelerated, but ectopic, neuroblasts in the rostral migratory stream and decreased 

cell proliferation and neurogenesis in the sub-ventricular zone in the developing 

mouse brain (P2 – P14)

Mars et al., 1993; Jung 

et al., 1994; Thewke and 

Seeds, 1996; Wang et 

al., 2011

Nerve 

Regeneration

(in vivo ) Mice deficient in tPA have exacerbated axonal degeneration and 

demyelination and impaired functional recovery following sciatic nerve injury. 

Exogenous tPA treatment enhances nerve regeneration and functional recovery. 

Akassoglou et al., 2000; 

Siconolfi and Seeds, 

2001a, b; Ling et al., 

2006; Zou et al., 2006

Cerebro-vascular 

architecture

(in vivo ) Increased capillary density, decreased number of large diameter (>10 µm), 

smooth-muscle covered vessels, and enhanced ZO-1 staining in tPA
-/-

 mice. 
Stefanitsch et al., 2015

Cerebro-

ventricular 

morphology

(in vivo ) Enlarged ventricles and altered molecular composition of ependymal lining 

in tPA
-/-

 mice. 

Wang et al., 2011; 

Stefanitsch et al., 2015

Neurite outgrowth

Neuronal migration

Table 1.1. Studies supporting a role for tPA in CNS development and nerve regeneration
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Process Biological Effect and/or Mechanism of Action References

(in vivo ) Gene expression of tPA is upregulated in the hippocampus and 

cerebellum following activity-dependent events. Implications for tPA in 

synaptic plasticity.  

Qian et al., 1993; Seeds 

et al., 1995

(in vivo ) No difference in the late phase of LTP between wild-type and tPA
-/- 

 mice in the CA1 hippocampal region, but a significant difference when 

GABAergic transmission is blocked. 

Frey et al., 1996

(in vivo ) Defects in the late phase of LTP in the CA1 hippocampal region in              

             tPA
-/-

 mice with and without GABAergic transmission blocked. A 

post-synaptic mechanism of action for tPA involving the endocytic receptor 

LRP1 and cAMP/PKA signaling is proposed. 

Huang et al., 1996; 

Baranes et al., 1998; 

Calabresi et al., 2000; 

Zhuo et al., 2000

(in vivo ) tPA/plasmin-mediated cleavage of pro-BDNF is critical for the full 

expression of the late phase of LTP in the CA1 hippocampal region.
Pang et al., 2004

(in vivo ) A larger stimulus is required to evoke a population-spike of similar 

amplitude in tPA
-/-

 mice compared to wild-type controls and tPA
-/-

 mice 

display deficits in paired-pulse facilitation. 

Frey et al., 1996

(in vivo ) tPA treatment of rat brain slices increases mEPSCs in CA1 

hippocampal pyramidal neurons. 
Wu et al., 2015

Synaptic plasticity

Synaptic 

transmission

Table 1.2. Studies demonstrating a role for tPA in synaptic transmission and plasticity
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Process Biological Effect and/or Mechanism of Action References

Excitotoxicity-

induced neuronal 

degeneration

(in vivo ) tPA
-/-

 mice are resistant to KA-induced excitotoxic neuronal degeneration in 

the hippocampus. tPA/plasmin-mediated degradation of the extracellular matrix 

protein laminin promotes cell death. 

Carroll et al., 1994; 

Tsirka et al., 1995; Chen 

and Strickland, 1997; 

Tsirka et al., 1997

Purkinje neuron 

degeneration

(in vivo  and in vitro ) In two unrelated mutant mouse models - Lurcher (Lc ) and 

Nervous (nr ) - tPA mRNA and protein/activity are significantly upregulated and 

correlated with Purkinje neuron cell death. Crossing the Lc  or nr  mutant mice with 

tPA
-/-

 mice reduced PN cell death.

Lu and Tsirka, 2002; Li 

et al., 2006; Li et al., 

2013

Microglial 

activation

(in vitro  and in vivo ) Microglia in mixed cortical  cultures from tPA
-/-

 mice and 

microglia in the hippocampal region of tPA
-/-

 mice show attenuated endotoxin-

induced or excitotoxin-induced activation, respectively.  Treatment with tPA restores 

microglial activation.  Proteolytically active tPA is not necessary for microglial 

activation.

Tsirka et al., 1995; 

Rogove and Tsirka, 

1998; Rogove et al., 

1999; Siao and Tsirka, 

2002

Alzheimer’s 

disease

(in vivo ) Amyloid β accumulation correlates with increased PAI-1 expression and 

decreased activity of the tPA/plasmin system in mouse AD models and human AD 

patients.  Ablation of the tPA gene in the mouse Tg2576 AD model is lethal.

Sutton et al., 1994; Mari 

et al., 1996; Melchor et 

al., 2003; Liu et al., 

2011; Oh et al., 2014

(in vivo ) The tPA/PDGF-CC/PDGFRα pathway regulates BBB permeability in animal 

models of stroke, seizures, and TBI. Blocking PDGFRα activation with Imatinib 

reduced BBB permeability.

Su et al., 2008; 

Fredriksson et al., 2015; 

Merali et al., 2015; Su et 

al., 2015; Zhan et al., 

2015;  Su et al., 2017

(in vivo ) Imatinib treatment improves barrier function and neurologic outcome in  

progressive neurodegenerative and neuroinflammatory animal models of ALS and 

EAE. 

 Adzemovic et al., 2013; 

Lewandowski et al., 

2016

Stroke patients have elevated plasma levels of PDGF-CC and Imatinib treatment 

correlates with improved neurological outcome after stroke.

Rodriguez-Gonzalez et 

al., 2013;  Wahlgren et 

al., 2016

Table 1.3.  Pathological consequences of dysregulated tPA expression and activity 

BBB permeability
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Figure 1.1 
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Figure 1.1. Proposed models for tPA-mediated neurite outgrowth. (A) The 
membrane-associated protein annexin II acts as a scaffolding cofactor for plasminogen 
and tPA, promoting plasmin generation by pheochyromocytoma PC-12 cells (Jacovina 
et al., 2001). Neurite outgrowth was attenuated by ε-aminocaproic acid, a lysine analog 
that inhibits plasminogen binding to annexin II and plasmin generation. Previous studies 
found a correlation between tPA-mediated extracellular matrix degradation and 
neuronal migration (Pittman and DiBenedetto, 1995). (B) Proteolytically inactive tPA 
transactivated Trk receptors via tPA binding to LRP1 and SFK-dependent 
phosphorylation of Trk (Shi et al., 2009). Activation of Akt and ERK1/2 signaling 
pathways downstream of Trk promoted neurite outgrowth in PC-12 cells and granule 
neurons. (C) Activation of the Wnt-LRP5/6-GSK3β-β-catenin canonical signaling 
pathway was upregulated by tPA treatment of primary NPCs. The Wnt-LRP5/6-GSK3 β-
β-catenin signaling pathway is involved in regulating the transcription of genes that 
promote neurite outgrowth. tPA was shown to activate β-catenin signaling via the 
release of Wnt7a from the extracellular matrix of cultured NPCs and direct binding to 
LRP5/6 (Lee et al., 2014). Abbreviations: SFK – Src family kinase; ERK1/2 – 
extracellular regulated kinase, LRP – low-density lipoprotein (LDL) receptor-related 
protein; GSK-3β – glyocogen synthase kinase-3β; β-cat – β-catenin.  
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Figure 1.2 
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Figure 1.2. Reduced HGF expression in tPA-/- mice leads to altered neuronal 
migration, neurogenesis, and proliferation. Compared to wild-type mice, at post-
natal day 2 (P2) migrating neuroblasts from the SVZ in tPA-/- mice had an accelerated, 
but ectopic, migratory path into the striatum. Immunostaining for Ki67+ and doublecortin 
also demonstrated tPA-/- mice to have diminished cell proliferation and neurogenesis in 
the SVZ. In addition, enhanced neurogenesis in the olfactory bulb, as evidenced by 
increased BrdU labeling, was apparent at P8 and P14 in tPA-/- mice (Wang et al., 2011). 
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Figure 1.3 
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Figure 1.3. Axonal degeneration and demyelination are exacerbated in tPA-/- mice 
after sciatic nerve injury. (A) Following peripheral nerve injury, such as in a model of 
sciatic nerve crush, Wallerian degeneration, whereby the distal axonal process of the 
injured neuron degenerates, occurs. Wallerian degeneration is accompanied by 
degradation of the myelin sheath and infiltration of macrophages. Macrophages and 
proliferating Schwann cells help to promote an environment that favors axonal 
regeneration. (B) Release of tPA from Schwann cells and subsequent tPA/plasmin-
mediated fibrinolysis appears to be important for axonal regeneration and functional 
recovery, as (C) fibrinogen deposition correlates with axonal degeneration and 
demyelination and increased muscle atrophy in tPA-/- mice (Akassoglou et al., 2000). 
Following sciatic nerve injury, tPA-/- mice have also been shown to have reduced 
macrophage infiltration. Decreased macrophage expression of the extracellular matrix 
degradation enzyme MMP-9, of which tPA may directly or indirectly upregulate, was 
found to attenuate macrophage migration (Ling et al., 2006). Though other studies have 
shown that tPA can directly stimulate macrophage migration through its interaction with 
the integrin MAC-1 (Cao et al., 2006). 
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Figure 1.4 
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Figure 1.4. Expression of tPA mRNA is upregulated by neuronal activity. (A) A 
differential screen of ~ 30,000 clones from a hippocampal complementary DNA library 
identified tPA as an immediate-early gene whose expression is elevated in the rat brain 
following three activity-dependent events: long-term potentiation (LTP), seizures, and 
kindling. LTP-induced increases in tPA mRNA expression were restricted to the granule 
cell layers of the dentate gyrus, while seizures and kindling induced tPA mRNA in both 
the granule and pyramidal cell layers of the hippocampus. Increased tPA mRNA levels 
were detectable by 1 hr following neuronal activity and remained elevated for at least 4 
hrs (Qian et al., 1993). (B) In situ hybridization of tPA mRNA in rat cerebella also 
demonstrated induction of tPA mRNA expression in the Purkinje cell layers after rats 
learned a complex motor task. Levels of tPA mRNA were elevated 1 hr after performing 
a cerebellar-dependent motor learning test, and remained elevated for at least 4 hrs 
(Seeds et al., 1995). These studies by (A) Qian et al. (1993) and (B) Seeds et al. (1995) 
demonstrating upregulation of tPA mRNA expression following activity-dependent 
events implicated tPA in having a role in regulating neuronal plasticity. 
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Figure 1.5 
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Figure 1.5. Mice lacking the tPA gene display deficits in basal synaptic 
transmission in the CA1 hippocampal region. (A) In field potential recordings from 
hippocampal brain slices, Frey et al. (1996) performed some of the initial 
electrophysiological experiments of basal synaptic transmission and long-term 
potentiation in tPA-/- mice. (B) EPSP-pop spike relationship in stratum radiatum gathered 
from increasing stimulus intensities. EPSP-pop spike curve from tPA-/- mice displayed a 
rightward shift, indicating that in tPA-/- mice a larger stimulus is needed to evoke a pop-
spike of similar amplitude to that seen in wild-type mice. (C) As paired-pulse behavior of 
the pop-spike in tPA-/- mice showed reduced facilitation, which can be suggestive of 
increased feedback inhibition, GABAergic transmission was examined. When blocking 
GABAergic transmission with the GABAAreceptor blocker bicuculine tPA-/- mice 
displayed increased facilitation. (D) Consistent with tPA-/- mice being under enhanced 
GABAergic transmission, no differences in the late phase of LTP between tPA-/- mice 
and wild-type mice were found. However, significant differences were seen when 
GABAergic transmission was blocked with the noncompetitive GABAA channel blocker 
picrotoxin.  
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Figure 1.6 
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Figure 1.6. Mice lacking the tPA gene display deficits in L-LTP in the CA1 
hippocampal region. (A) In contrast to Frey et al. (1996) deficits in L-LTP at the 
Schaffer collateral-to-CA1 synapse of tPA-/- mice have been found by other groups 
(Huang et al., 1996; Calabresi et al., 2000; Zhuo et al., 2000). This deficit in L-LTP was 
apparent in tPA-/- mice with or without blocking GABAergic transmission. (B) The tPA 
gene, Plat, has a cAMP response element in its promoter and was shown to be a 
downstream effector gene important for L-LTP when activators of the cAMP/PKA-
signaling pathway, such as the cAMP analog Sp-cAMP, induced synaptic potentiation in 
wild-type mice, but not tPA-/- mice. Sp-cAMP was previously shown to induce a L-LTP. 
(C) The endocytic signaling receptor LRP1 was also implicated in mediating tPA’s role 
in L-LTP (Zhuo et al., 2000). While pharmacologic treatment of tPA induced synaptic 
potentiation in stratum radiatum of tPA-/- mice, this effect could be blocked when 
hippocampal slices were pretreated with the LRP1 inhibitor RAP. (D) Proposed model 
for upstream mediators of tPA gene transcription and post-synaptic release of tPA in L-
LTP. 
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Figure 1.7 
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Figure 1.7. Cleavage of proBDNF by tPA/plasmin is critical for the full expression 
of L-LTP. (A) Previous work demonstrated that the neruotrophin BDNF plays an 
important role in L-LTP as hippocampal slices from heterozygous BDNF+/- mice have 
defects in L-LTP in the CA1 region. Mature BDNF (mBDNF) rescues L-LTP impairments 
in both tPA-/- (B) and Plg-/- mice (C). Proposed model of presynaptic tPA/plasmin-
mediated cleavage of proBDNF and mBDNF activated signaling pathways through its 
receptor TrKB. Three main pathways are known to be activated upon mBDNF binding to 
TrkB: the MAPK/ERK and PI3K pathways that induce transcription of genes important 
for neuronal survival and growth and the PLCgamma signaling cascade which regulates 
the transcription of genes involved in LTP. PLCgamma cleaves PIP2 into IP3 and DAG. 
IP3 stimulates Ca2+ release from the ER and elevated Ca2+ levels activate 
Ca2+/Camodulin-dependent protein kinses (CamKII, CamKK and CamKIV). Subcellular 
localization studies using cultured hippocampal neurons demonstrated that BDNF and 
tPA are co-packaged in presynaptic dense core vesicles (Scalettar et al., 2012). 
Abbreviations: MAPK - Ras-mitogen-activated protein kinase; ERK - extracellular signal-
regulated kinase; PLCγ – phospholipase Cγ; PIP2 – phosphatidylinositol 4,5-
bisphosphate (PtdIns(4,5)P2); Ca2+/CaM - Ca2+/Calmodulin; CaMK - (Ca2+/CaM)-
dependent protein kinases; IP3 – inositol-1,4,5-trisphosphate (Ins(1,4,5)P3); DAG – 
diacylglycerol; PI3K – phosphatidylinositol 3-kinase. 
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Figure 1.8 
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Figure 1.8. Tissue plasminogen activator is highly expressed in blood vessels 
and in the hippocampus of the adult murine brain. (A) Coronal hippocampal section 
from a transgenic fusion reporter mouse that expresses a cerulean fluorescent protein 
tagged to tPA (Stevenson and Lawrence, 2018). Image has been pseudocolored so that 
tPA protein is in orange and the neuronal marker NeuN is in cyan. tPA protein is most 
apparent in the hilus and mossy fiber pathway, but also in blood vessels (open arrows) 
and neuronal cell bodies in the stratum oriens lamina (closed arrows). (B) Confocal 20 
µm max projection (63x) of blood vessels in the hippocampal fissure showing that tPA 
protein is highly expressed in blood vessels stained with the endothelial cell marker 
CD31 (blue).  (C) 3D max projection of a 5 µm z-stack from the stratum lucidum lamina 
of the hippocampus demonstrating colocalization of tPA-protein (orange) and the zinc 
transporter-3 (ZnT3, magenta), which is exclusively expressed in giant mossy fiber 
boutons. Areas of colocalization are seen in white. (D) 3D max projection of a 5 µm z-
stack from the stratum lucidum lamina of the hippocampus demonstrating that tPA 
(orange) does not colocalize with the dendritic marker MAP2 (green), which detects the 
dendritic thorny excrescences of CA3 pyramidal neurons and are the post-synaptic 
partner to the mossy fiber boutons. Scale bars: A – 500 µm; B – 25 µm; C,D – 10 µm. 
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Figure 1.9 
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Figure 1.9. Schematic summary of tPA gene and protein expression in the adult 
murine brain. (A) Sagittal and (B) coronal sections illustrating the gene and protein 
expression pattern of tPA compiled from published reports. Orange dots represent gene 
expression of tPA from transgenic reporter mice (Stevenson and Lawrence, 2018; Yu et 
al., 2001) and in situ mRNA hybridization studies (Sappino et al., 1993), and green dots 
represent the expression pattern of somatic or trafficked tPA protein (Stevenson and 
Lawrence, 2018; Salles and Strickland, 2002; Louessard et al., 2016). While the tPA 
gene (orange) is highly expressed in the olfactory system, cerebellum, cortex, and 
subcortical brain structures, tPA protein (green) is more restricted and concentrated in 
nerve fibers in subcortical regions of or associated with the limbic system. 
Immunohistochemistry has revealed sparsely populated tPA-positive cell bodies in the 
somatosensory and piriform cortex as well as the stratum oriens layer of the 
hippocampus. Primarily, though, tPA protein is expressed in the mossy fiber pathway of 
the hippocampus, the globus pallidus nuclei of the basal ganglia, the centromedial 
nucleus of the amygdala, the hypothalamus and paraventricular nucleus of the 
thalamus, the medial habenula, the septal nuclei, the bed nucleus of the stria terminalis, 
and the periaqueductal (Stevenson and Lawrence, 2018). 
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Figure 1.10 
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Figure 1.10. Mice deficient in tPA have impairments in avoidance tests. In passive 
and active avoidance behavioral assessments, tPA-/- mice have been shown to have 
deficits in avoiding behaviors that increase anxiety and engaging in behaviors that 
decrease anxiety, respectively (Huang et al., 1996; Calabresi et al., 2000; Pawlak et al., 
2002). (A) In a step-down passive avoidance task, during the training sessions, mice 
are placed on a raised platform and receive a foot shock if they step-down to the lower 
platform. To test if mice have learned to associate the lower electrical grid platform with 
foot shock, their latency to step-down time is measured during test trials. Compared to 
wild-type mice, tPA-/- mice were found to have significantly shorter latencies to step-
down (Pawlak et al., 2002) . B) In an active two-way shuttle box avoidance task, during 
the training sessions, mice are presented with a light cue that precedes a foot shock. 
They are taught to move, upon presentation of that light, to the neighboring 
compartment to avoid the foot shock. Similar to the passive avoidance task, compared 
to wild-type mice, tPA-/- mice displayed impairments in their ability to correctly avoid the 
foot shock (Huang et al., 1996; Calabresi et al., 2000). These data indicated that mice 
lacking the tPA gene might have deficits in hippocampal-dependent earning.  
Subsequent studies demonstrating high expression of tPA in the centromedial 
amygdala and that tPA-/- mice are resistant to stress-induced anxiety, however, have 
complicated that interpretation (Pawlak et al., 2003). Indeed, the work by Pawlak et al. 
suggests that tPA’s role in the amygdala and anxiety (Pawlak et al., 2003), not the 
hippocampus and learning, may be influencing the phenotypic behavioral output in 
these avoidance tasks. 
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Figure 1.11 
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Figure 1.11. Tissue plasminogen activator mediates neuronal degeneration and 
microglial activation. (A) In a kainate (KA) – induced model of excitotoxicity, tPA-/- 
mice were protected against neuronal degeneration and they had reduced microglia 
activation. Mice deficient in plasminogen (Plg), the putative substrate of tPA, or wild-
type mice treated with α2-antiplasmin, a serine protease inhibitor of plasmin, were also 
resistant to KA-induced neuronal degeneration, but had wild-type levels of microglia 
activation (Tsirka et al., 1995; Tsirka et al., 1997). (B) tPA/plasmin-mediated 
degradation of the extracellular matrix protein laminin, which is expressed 
perisomatically in the pyramidal and granule cell layers of the adult murine brain, was 
shown to precede and correlate with neuronal degeneration (Chen and Strickland, 
1997). (C) Differential microglia activation in response to KA injections following 
Intrahippocampal infusions of active tPA or inactive tPA (S478A) into tPA-/- mice. 
Proteolytically active tPA was shown to be responsible for neuronal degeneration, while 
proteolytically inactive tPA mediates microglial activation (Rogove et al., 1999).  
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Figure 1.12 
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Figure 1.12. Modulation of NMDA receptor function by tPA. Using well-controlled in 
vitro model systems, Samson et al. (2008) demonstrated that a low-density lipoprotein 
receptor (LDLR) family member is required for tPA-mediated potentiation of NMDA-
induced Ca2+ transients. tPA-induced potentiation of NMDAR-mediated Ca2+ transients 
can be blocked by the LDLR inhibitor RAP. This signaling was independent of 
plasminogen, but it required proteolytically active tPA. Functional hyperemia and 
ethanol withdrawal seizures have also been shown to be regulated by tPA signaling 
through the NMDAR, specifically via the NR2B subunit (Pawlak et al., 2005; Park et al., 
2008). The NR2B subunit of the NMDAR is functionally coupled to nNOS. The cell 
permeable peptide inhibitor NR2B9c uncouples NMDAR activity from NO production. 
Using this inhibitor, Park et al. (2008) showed that wild-type mice had an attenuated 
neurovascular coupling response and that rtPA no longer rescued the functional 
hyperemia response in tPA-/- mice. tPA/NMDAR-signaling via the NR2B subunit has 
also been shown in a model of ethanol withdrawal seizures. Pawlak et al. demonstrated 
that tPA directly binds to the NR2B subunit and that activation of the NMDAR, as seen 
by downstream activation of ERK1/2, is downregulated in tPA-/- mice during ethanol 
withdrawal (Pawlak et al., 2005). tPA-/- mice have less severe ethanol withdrawal 
seizures than wild-type mice and injections of tPA into tPA-/- mice during ethanol 
withdrawal increases seizure severity. The NR2B inhibitor Ifenprodil blocks this tPA-
mediated increase in seizure severity. Abbreviations: ERK1/2 – extraceulluar signal-
regulated kinase; NMDAR – N-methyl-D-aspartate Receptor; nNOS – neuronal nitric 
oxide synthase; NO – nitric oxide; NR2B - N-methyl-D-aspartate Receptor subtype 2B; 
RAP – receptor-associated protein. 
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Figure 1.13 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



87 
 

 
Figure 1.13. Mice deficient in tPA are protected during cerebral ischemia. (A) In a 
transient intravascular filament stroke model, Wang et al. (1998) was the first the 
demonstrate the tPA-/- mice have smaller infarct volumes and neuronal preservation 
following cerebral ischemia when compared to their wild-type controls. Stroke volume 
was quantified using a 2,3,5-triphenyltetrazolium chloride (TTC) stain that differentiates 
between metabolically active (red) and inactive (white) tissue. Though not tested, the 
role tPA plays in excitotoxicity-induced neuronal degeneration – via plasmin generation 
and laminin degradation – was suggested to play a part in promoting cell death in wild-
type mice. (B) Subsequent studies, however, have also pointed to the role that tPA 
plays in regulating BBB leakage (Yepes et al., 2003; Su et al., 2008; Su et al., 2017). 
Following occlusion of the middle cerebral artery, tPA-/- mice have significantly less 
Evan’s blue extravasation than wild-type mice. Blocking tPA-mediated signaling through 
the PDGFRα receptor using the tyrosine kinase inhibitor Imatinib and/or attenuating 
tPA-mediated generation of active PDGF-CC from latent PDGF-CC in MAC-1 null mice 
also decreases BBB leakage. 
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Figure 1.14 
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Figure 1.14. Time course of monocyte infiltration in the pneumbra after cerebral 
ischemia in R/G mice. Representative confocal images (20x) stained for the blood 
vessel marker podocalyxin (cyan) from the pneumbra of RFP+ 
(monocytes/macrophages) and GFP+ (microglia) brain sections 6 hrs and 24 hrs after 
MCAO (Su et al., 2017). At 0 hr (A, sham mice) and 6 hr (B) there is no or minimal 
detectable RFP+ monocytes in the parenchyma, but by 24 hr (C) there is a significant 
increase in infiltrating RFP+ monocytes in and around the blood vessels. These data 
indicate that resident microglia, not infiltrating monocytes/macrophages, are the source 
of MAC-1 and that microglial MAC-1 is responsible for mediating activation of PDGF-CC 
by tPA. Abbreviations: R/G – CX3CR1-GFP/CCR2-RFP; MCAO – middle cerebral 
artery occlusion. Scale bars: 50 µm.  
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Figure 1.15 
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Figure 1.15. Proposed model for tPA-mediated activation of PDGF-CC and BBB 
leakage. (A) The neurovascular unit is comprised of endothelial cells, mural cells 
(pericytes and smooth muscle cells), astrocytes, microglia and neurons. 
Immunohistochemistry and high-resolution confocal microscopy have demonstrated that 
the PDGFRα, LRP1, and MAC-1 are localized to the neurovascular unit (Fredriksson et 
al., 2015; Su et al., 2017). Potassium chloride (KCl)-induced membrane depolarization 
and oxygen glucose deprivation have been shown to stimulate the release of tPA in 
vitro from primary hippocampal and cortical neurons and clonal neuroendocrine cells 
(Gualandris et al., 1996; Parmer et al., 1997; Echeverry et al., 2010). It is unclear if the 
tPA/PDGF-CC/PDGFRα signaling pathway is activated under physiological conditions. 
(B) During pathological conditions, however, such as cerebral ischemia, microglial 
MAC-1 and LRP1 facilitate tPA-mediated activation of latent PDGF-CC into active 
PDGF-CC (Su et al., 2017). Binding of active PDGF-CC induces homodimerization and 
activation of downstream signaling of the PDGFRα that results in BBB leakage. 
Treatment with the tyrosine kinase inhibitor Imatinib preserves barrier integrity and 
reduces hemorrhagic bleeding after MCAO and late thrombolysis in mice (Su et al., 
2008). The molecular mechanism by which PDGFRα activation leads to BBB disruption 
is unknown. With late thrombolysis, rtPA can cross the compromised barrier and 
exacerbate leakage by acting on endogenous tPA signaling pathways. Activation of the 
tPA/PDGF-CC/PDGFRα signaling pathway appears to be involved in the early loss of 
BBB integrity (Su et al., 2008; Su et al., 2017), while MMP9 from infiltrating neutrophils 
is responsible for ECM breakdown in the later stage of stroke and BBB damage 
(Justicia et al., 2003; Gidday et al., 2005). Moreover, the tPA/PDGF-CC/PDGFRα 
signaling pathway that regulates BBB has been implicated in other pathologies, 
including seizures, traumatic brain injury, amyotrophic lateral sclerosis, and 
experimental autoimmune encephalomyelitis (Su et al., 2008; Adzemovic et al., 2013; 
Rodriguez-Gonzalez et al., 2013; Fredriksson et al., 2015; Merali et al., 2015; Su et al., 
2015; Zhan et al., 2015; Lewandowski et al., 2016; Wahlgren et al., 2016; Su et al., 
2017). Abbreviations: PDGFRα – platelet derived growth factor receptor α; PDGF-CC – 
platelet derived growth factor-CC; LRP1 – low-density lipoprotein (LDL) receptor-related 
protein-1; MAC-1 – macrophage-1 antigen. 
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Chapter 2 
 

Characterization of tissue plasminogen activator expression and trafficking in the  
 

adult murine brain 
 
 

2.1 Abstract 
 

Tissue plasminogen activator (tPA) is an immediate-early gene important for 

regulating physiological processes like synaptic plasticity and neurovascular coupling. It 

has also been implicated in several pathological processes including blood-brain barrier 

permeability, seizure progression, and stroke. These varied reports suggest that tPA is 

a pleiotropic mediator whose actions are highly compartmentalized in space and time. 

The specific localization of tPA, therefore, can provide useful information about its 

function. Accordingly, the goal of this study was to provide a detailed characterization of 

tPA’s regional, cellular, and subcellular localization in the brain. To achieve this, two 

new transgenic mouse lines were utilized: (1) a PlatβGAL reporter mouse, which 

houses the β-galactosidase gene in the tPA locus and (2) a tPABAC-Cerulean mouse, 

which has a cerulean-fluorescent protein fused in-frame to the tPA C-terminus. Using 

these two transgenic reporters, we show that while tPA is expressed throughout most 

regions of the adult murine brain, it appears to be preferentially targeted to fiber tracts 

_____________________ 

This chapter represents a published article: Stevenson TK and Lawrence DA (2018) 
Characterization of tissue plasminogen activator expression and trafficking in the adult 
murine brain. eNeuro (in press). 
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in the limbic system. In the hippocampus, confocal microscopy revealed tPA-Cerulean 

(tPA-Cer) puncta localized to giant mossy fiber boutons and astrocytes in stratum 

lucidum. With amplification of the tPA-Cer signal, somatically localized tPA was also 

observed in the stratum oriens/alveus layer of both CA1 and CA3 subfields. Co-

immunostaining of tPA-Cer and interneuronal markers indicates that these tPA-positive 

cell bodies belong to a subclass of somatostatin/oriens-lacunosum moleculare 

interneurons. Together, these data imply that tPA’s localization is differentially regulated, 

suggesting that its neuromodulatory effects may be compartmentalized and specialized 

to cell-type. 

 

2.2 Significance Statement 

 The serine protease tissue plasminogen activator (tPA) has been shown to 

modulate numerous neurological processes including synaptic plasticity and 

neurodegeneration. Many of the functional conclusions drawn about tPA activity, 

however, have not been affirmed by high-resolution, imaging analysis of tPA localization. 

To address these shortcomings, we utilized two new transgenic reporter mice to provide 

a detailed characterization of tPA expression in the adult murine brain. A comparison of 

these reporter mice demonstrates a differential expression pattern between where tPA 

is synthesized and where it is trafficked in the hippocampus, amygdala, and basal 

ganglia. Moreover, colocalization and co-expression analysis reveals that tPA is 

primarily trafficked to pre-synaptic structures and that it’s predominant somatic and/or 

axonal localization is cell-type specific. 
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2.3 Introduction  

Tissue plasminogen activator (tPA) is a serine protease expressed in vascular 

endothelial cells with a well-established role in fibrinolysis. Biomechanistic 

understanding of tPA’s fibrinolytic function led to the development of recombinant tPA 

(rtPA) as a thrombolytic agent, and the current standard of care for moderate to severe 

ischemic stroke is thrombolytic therapy with rtPA (Prabhakaran et al., 2015). However, 

beyond 3-4.5 hrs following stroke onset, thrombolytic efficacy is diminished and there is 

an increased risk of hemorrhagic conversion, limiting the therapeutic window for rtPA 

administration (Ahmed et al., 2010; group et al., 2012). The molecular mechanisms 

responsible for the increased risk of hemorrhage are thought, in part, to occur from 

exogenously administered rtPA crossing the ischemic, compromised blood-brain barrier 

(BBB) and acting through endogenous tPA-mediated signaling pathways on the 

abluminal side of the vasculature in the central nervous system (CNS) to induce BBB 

opening (Su et al., 2008). 

In addition to BBB regulation (Fredriksson et al., 2015) parenchymal brain tPA 

has been reported to be involved in other processes in the CNS, including neurite 

outgrowth (Krystosek and Seeds, 1981), regeneration (Akassoglou et al., 2000; Zou et 

al., 2006) synaptic transmission and synaptic plasticity (Frey et al., 1996; Huang et al., 

1996; Wu et al., 2015), excitotoxic injury (Tsirka et al., 1995; Nicole et al., 2001; Siao 

and Tsirka, 2002), and neurovascular coupling (Park et al., 2008). One of the earliest 

studies implicating tPA in a non-fibrinolytic function found the serine protease to be an 

immediate-early gene that is upregulated in the hippocampus following seizures, 

kindling, and long-term potentiation (Qian et al., 1993), suggesting a proteolytic 
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mechanism for activity-dependent structural changes at the synapse. Subsequent in situ 

hybridization studies showed tPA mRNA expression predominantly in hippocampal 

pyramidal and granule cell layers, and the granule cell layer of the cerebellum (Sappino 

et al., 1993).  

While gross anatomical localization studies of tPA protein and protease activity 

have consistently shown tPA in the hilus and stratum lucidum layer of the hippocampus 

(Sappino et al., 1993; Salles and Strickland, 2002), more detailed cellular localization 

studies of tPA protein expression have been inconsistent (Fredriksson et al., 2015; 

Louessard et al., 2016). tPA-immunoreactivity, following colchicine treatment to block 

axo-dendritic transport, has been reported in glutamatergic cortical neurons and in the 

pyramidal and granule cell layers of the hippocampus (Louessard et al., 2016). In 

contrast, Fredriksson et al. (2015) primarily detected tPA-immunoreactivity in 

endothelial cells and a subset of perivascular interneurons. At the subcellular level, tPA 

appears to have a polarized distribution, as it has been localized to dense core vesicles 

in both pre- (Silverman et al., 2005; Scalettar et al., 2012) and post-synaptic (Lochner et 

al., 1998; Shin et al., 2004; Lochner et al., 2006) compartments; though these studies 

were done in vitro using clonal neuroendocrine cell lines or primary hippocampal 

neurons. 

These disparate findings on localization of tPA have complicated and contributed 

to the multivariate hypotheses that exist regarding tPA’s function in the CNS. To 

address some of these discrepancies, we have utilized two transgenic mouse 

strategies: (1) a PlatβGAL reporter mouse, which has the β-galactosidase gene 

knocked-in to the tPA gene, Plat, and (2) a tPABAC-Cerulean (tPABAC-Cer) fusion mouse, 
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which has a cerulean-fluorescent protein fused to tPA. The tPABAC-Cer mice were 

generated using bacterial artificial chromosome (BAC) technology. Critically, large 

transgene vectors, like BACs, are more likely than smaller plasmids to produce copy-

number dependent transgene expression, and thereby, recapitulate endogenous gene 

expression patterns (Van Keuren et al., 2009). In parallel analysis of coronal sections 

from PlatβGAL and tPABAC-Cer mice, our results demonstrate that tPA’s protein 

localization is uncoupled from its site of synthesis. This differential expression pattern is 

most prominent in the hippocampus, but it is also pronounced in the amygdala and 

basal ganglia. Moreover, using high-resolution confocal microscopy, in the 

hippocampus we found tPA to be localized to giant mossy fiber boutons and astrocytes 

in stratum lucidum and somatically localized to interneurons in stratum oriens/alveus. 

Co-expression analysis indicates that these tPA-positive cell bodies in the hippocampus 

belong to a subset of somatostatin/oriens-lacunosum moleculare inhibitory interneurons. 

These results suggest that tPA is differently trafficked and positioned to have diverse 

modulatory effects on synaptic efficacy based on cell-type and subcellular localization. 

 

2.4 Materials and Methods 

2.4.1 Transgenic mice 

2.4.1.1 tPABAC-Cerulean transgenic mice. Founder lines (863 and 876) for tPABAC-Cer 

transgenic mice were generated using BAC technology. To generate tPABAC-Cer 

transgenic mice, exon 14 of the tPA gene, Plat, on a 162.524 kb BAC acquired from 

chori.org (RP23-259A10) was replaced with a cerulean fluorescent gene fused to the 

carboxy terminal of exon 14 of the murine tPA gene (NM_008872.2) followed by a 
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bovine growth hormone polyadenylation signal sequence. The tPA-Cer fusion gene is 

under control of the endogenous regulatory elements contained in the Plat locus. BAC 

DNA integrity was verified by restriction enzyme analysis via pulse field gel 

electrophoresis and exon sequencing prior to pronuclear microinjection of supra-

ovulated eggs from (C57BL/6 x SJL)F1/TAC female mice. Transgenic mice were 

genotyped by PCR using primers that were specific to a remnant of the sub-cloning 

PGKneo vector and the tPA-Cer fusion gene (FWD 5’ – CAT GAA GCA AGG ATC CAT 

GG – 3’, and REV 5’ – GGA ACT TCG CGG CCG CAG C – 3’); and tPA protein 

expression was confirmed by analysis of brain homogenates from the founder lines. 

After PCR analysis of the cerulean fusion gene confirmed stable, germline transmission 

in F1 pups two founder lines - lines 863 and 876 - were propagated; these mice were 

then backcrossed at least 8 generations onto a C57BL/6J genetic background. 

Transgenic mice displayed normal gross anatomy and a Mendelian inheritance pattern. 

 

2.4.1.2 PlatβGAL reporter mice. The PlatβGAL mice were acquired from the UC Davis 

Knockout Mouse Project (KOMP) Repository (Project ID: VG15085) on a C57BL/6NTac 

background. PlatβGAL mice were then backcrossed onto a C57BL/6J background for at 

least 10 generations. Per the KOMP Repository, PlatβGAL mice were generated by 

inserting a LacZ-containing targeting vector between exon 2 and 14 to produce a null 

allele. The insertion sites of the PlatβGAL mice were sequenced to confirm the 

appropriate insertion of the LacZ gene in the Plat locus. 

All animals were housed in a controlled environment and were provided with food 

and water ad libitum. All animal experiments were approved by the Institutional Animal 
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Care and Use Committee at the University of Michigan, USA, and the studies were 

conducted in accordance with the United States Public Health Services Policy on 

Humane Care and Use of Laboratory Animals. 

 

2.4.2 Protein expression analysis 

2.4.2.1 Sample preparation. Total tPA protein and enzymatic activity were analyzed 

using whole brain homogenates from tPABAC-Cer mice. The total and active tPA values 

from tPABAC-Cer transgene positive mice were normalized to transgene negative 

littermate controls for each experimental run. Two independent experiments were 

carried out for a combined total of 6-7 mice per transgenic line. Briefly, brains were 

harvested into ice-cold extraction buffer (0.4 M HEPES, 0.1 M NaCl, pH 7.4, 1% Triton 

X-100), homogenized for 1 min. (2 x 30 sec) and centrifuged at 10,000 x g for 10 min 

The supernatant was removed to a new, chilled 1.5 mL microcentrifuge tube and 

centrifuged again at 10,000 x g for 10 min. The supernatant was again removed to a 

new, chilled 1.5 mL microcentrifuge tube and used for ELISA, Luminex, and SDS-PAGE 

zymography assays. 

 

2.4.2.2 Enzyme-linked immunosorbent assay (ELISA). An ELISA was performed to 

measure tPA activity from brain tissue extracts. Briefly, avidin-coated microtiter plates 

(Molecular Innovations, AVI-PLATE) were incubated with a biotin-conjugated PAI-1 

capture (1 µg/ml; Molecular Innovations, NTBIOCPAI) for 30 min at room temperature. 

After which, 100uL of brain extract samples were loaded onto the plate and incubated 

for 1hr. at room temperature. A Rabbit anti-human tPA (3 µg/mL; Molecular Innovations, 
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ASHTPA-GF) was used as the primary antibody and a Donkey anti-rabbit HRP (1:5000; 

Jackson ImmunoResearch, 711-036-152) was used as the secondary. All sample and 

antibody incubations were followed by 3 washes of PBS-0.05% Tween-20. After the 

final wash, 3,3’,5,5’-Tetramethylbenzidine (TMB) substrate (Molecular Innovations, 

TMB) was added to each sample for 3 min at room temperature. H2SO4 (1 N) was then 

added and the plate read on a spectrophotometer at 450 nm. 

 

2.4.2.3 Luminex. To measure total murine tPA protein from tPABAC-Cer brain extracts, 

50 µg of Rabbit anti-murine tPA (mtPA; Molecular Innovations, ASMTPA-GF-HT) was 

coupled to Luminex carboxylated beads for mtPA capture. Standards of known 

concentration of murine tPA (Molecular Innovations, MTPA) and brain extract samples 

(diluted in 0.4 M HEPES, 0.1 M NaCl pH7.4, 1.0% Triton X-100) were loaded onto a 96 

well filter plate (Millipore) and incubated with 5000 beads (PBS – 1.0% Bovine Serum 

Albumin, BSA) for 2 hrs at room temperature in the dark. The solution from was 

removed from each well and washed twice with PBS - 0.05% Tween-20. The beads 

were then mixed with continuous shaking in the dark at room temperature for 1 hour 

with 2 µg/mL biotin-labeled Rabbit anti-mouse tPA-high titer (Molecular Innovations, 

ASHTPA-HT), after which 10 µg/mL of Streptavidin, R-Phycoerythrin (ThermoFisher 

Scientific, S866) was added to each well for 1 hour. The solution was removed from 

each well and the beads were washed three times with PBS-0.05% Tween-20 and, 

lastly, sheath fluid was added for 5-10 mins. The beads were then read with the 

Luminex 100 (medium setting; 10 µL sample size; 100 events/bead). 
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2.4.2.4 SDS-PAGE zymographies. Gel electrophoresis and zymography were 

performed as previously described (Huarte et al., 1985). Briefly, 1 µg of protein from 

homogenized whole brain tissue extracts from transgene positive and transgene 

negative tPABAC-Cer mice were loaded onto an in-house prepared 10% polyacrylamide 

gel with plasminogen ([10.0 µg/ml]FINAL) and casein ([1.0 mg/ml] FINAL). Samples were 

run for 30 min at 100 V through the stacking gel and 200 V for 40 min through the 

running gel. Gel was washed 4x30 min in 2.5% Tx-100 (dH2O) and then briefly washed 

for 5 min. in 0.1 M Tris buffer (pH 8.1) before developing in 0.1 M Tris buffer at 37 ॰C for 

4 hrs. Gels were stained with Bio-Safe Coomasie (Bio-Rad, 1610786); bands devoid of 

stain indicate areas of proteolytic activity. 

 

2.4.3 Immunofluorescence and histochemical analysis 

2.4.3.1 Sample preparation. Mice were anesthetized with isoflurane and sacrificed by 

transcardiac perfusion for 3 min with PBS followed by perfusion for 5 min with 4% 

paraformaldehyde (PFA). Brains were harvested and post-fixed in 4% PFA for 1hr at 4 

C, then overnight in PBS. The brains were then moved to a 30% sucrose solution and 

kept at 4 C till submerged. Subsequently, dorsal hippocampal sections (14 µm and 50 

µm) and serial sections (14 µm, bregma +1.0 to bregma -8.0) were cut coronally for 

immunofluorescence analysis of tPA expression. When using the Rabbit anti-mtPA 

antibody, sections underwent antigen retrieval (DAKO, S1700); the additional antigen 

retrieval step was not necessary for other antibodies. Sections were permeabilized with 

0.50% Triton X-100 (PBS) for 20 min at room temperature and blocked in 3% BSA 

(PBS) for 1 hr at room temperature. The sections were then incubated with primary 
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antibodies in 2% BSA (PBS) overnight at 4 C, followed by incubation with secondary 

antibodies in 2% BSA (PBS) for 1 hr at room temperature. When using biotin-

conjugated primary antibodies and their respective streptavidin-conjugated secondary 

was used, a biotin-blocking kit was used to reduce background (ThermoFisher Scientific, 

E21390) and for amplification using the Tyramide SuperBoost Kit (ThermoFisher 

Scientific, B40932) detection protocols were followed according to the manufacturer’s 

instructions. 

 

2.4.3.2 Primary and secondary antibodies. The primary antibodies used were as 

follows: calbindin D28K (Rabbit anti-Calbindin, 1:500; Synaptic Systems, 214002; Lot# 

214002/3), microtubule-associated protein 2 (Rabbit anti-MAP2, 1:1000; Millipore, 

AB5622; Lot# 2624211), zinc transporter 3 (Guinea Pig anti-ZnT3, 1:500; Synaptic 

Systems, 197004; Lot# 197004/4), excitatory amino acid transporter 2 (Rabbit anti-

EAAT2, 1:500; Synaptic Systems, 250203; Lot# 250203/3), GFP (Chicken anti-GFP, 

1:1000; abcam, ab13970; Lot# GR236651-7 and GR236651-14),  NeuN (Guinea Pig 

anti-NeuN, 1:400; Synaptic Systems 266004; Lot# 266004/2-14 and 266004/7), GAD65 

(Guinea Pig anti-GAD65, 1:500; Synaptic Systems 198104; Lot# 198104/7), murine 

tissue plasminogen activator (Rabbit anti-mtPA, 12µg/mL; Molecular Innovations, 

ASMTPA-GF-HT; Lot# 804 and 914), metabotropic glutamate receptor type 1a (Rabbit 

anti-mGluR1a, 1:200; Sigma, G9665; Lot# SLBL4165V), somatostatin (Rat anti-SST, 

1:100; Millipore, MAB354; Lot# 2885355, 3005269), CD31 (Rat anti-mCD31, 1:100; BD 

Biosciences, 550274; Lot # 21055). The secondary antibodies used were as follows: 

Biotin-conjugated Goat anti-Chicken IgY H&L (1:100; abcam, ab6876), Goat anti-
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Guinea Pig IgG (H+L) 568 (1:500; ThermoFisher Scientific, A-11075), Donkey anti-

Rabbit IgG (H+L) 568 (1:500; ThermoFisher Scientific, A-10042), Donkey anti-Guinea 

Pig IgG (H+L) 594 (1:500; Jackson ImmunoResearch, 706-585-148), Donkey anti-Rat 

IgG (H+L) 594 (1:500; ThermoFisher Scientific, A-21209), Donkey anti-Rabbit IgG (H+L) 

594 (1:500; ThermoFisher Scientific, A-21207), Tyramide-conjugated Alexa Fluor 488 

(ThermoFisher Scientific, B40953).  The sections were mounted using VectaShield anti-

fade mounting medium (Vector Laboratories, H-1000). 

 

2.4.3.3 5-Bromo-4-Chloro-3-Indolyl-β-D-Galactoside. Heterozygous, homozygous, and 

wildtype PlatβGAL mice (mice, n = 3 – 5 per genotype) were used to examine the 

regional somatic expression of tPA. Homozygous PlatβGAL mice, which are null for tPA 

with two copies of the β-Gal gene, served as control mice for immunohistochemical 

stains that used an antibody directed against mtPA.  PlatβGAL mice were anesthetized 

with isoflurane and sacrificed by transcardiac perfusion for 3 min with PBS and 1 min 

with 2% PFA, and post-fixed in 2% PFA for 1 hr at 4 C. Brains were then cryopreserved 

and sectioned by microtome. Dorsal hippocampal sections and serial sections (50 µm, 

bregma +1.0 to bregma -8.0) were stained and analyzed for LacZ reporter gene 

expression using the β-Galactosidase Reporter Gene Staining Kit (Sigma, GALS). 

 

2.4.4 Image acquisition, processing, and analysis 

2.4.4.1 Widefield and confocal microscopy. For PlatβGAL and tPABAC-Cer transgenic 

mice, low-resolution images were acquired on an inverted Nikon Te2000 widefield 

microscope equipped with a MicroPublisher 5.0 RTV color camera and a CoolSNAP 
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HQ2 CCD camera or an inverted Ti Nikon widefield microscope with an ANDOR Zyla 

sCMOS camera. High-resolution fluorescent images of the dorsal hippocampus in 

tPABAC-Cer transgenic mice were taken using an upright confocal laser scanning 

microscope (Leica SP5X). The SP5X is equipped with an acousto-optical beam splitter 

(AOBS) and a tunable white-light laser; accordingly, the following Ex/Em combinations 

were used: Cerulean (458/468-558) and Alexa Fluor 568 (568/578-720); and Alexa 

Fluor 488 (488/498-584) and Alexa Fluor 594 (594/604-750). Images were acquired 

with a 20x multi-immersion objective or a 63x oil objective (Plan-Apo, 1.4 numerical 

aperture, NA) at a scanning rate of 200 Hz with 4x line averaging at 2x or 4x optical 

zoom. Each frame consists of 512 x 512 pixels or 1024 x 1024 pixels. Z-stacks were 

collected at 0.5 µm or 1 µm increments, ranging in total thickness from 5.0 µm to 35 µm, 

respectively, with the pinhole set to 1 Airy unit. 

 

2.4.4.2 Image processing and colocalization analysis. Widefield images (4x, 10x, 20x, or 

40x objectives) of hippocampal and serial sections from PlatβGAL mice and tPABAC-Cer 

transgene positive and transgene negative mice were stitched using MetaMorph Image 

Analysis software or Nikon’s NIS-Elements Advanced Research software package, 

respectively.  Further processing was done using the open source image processing 

package FIJI (Schindelin et al., 2012). Confocal images are presented as either 

maximum intensity projections, orthongonal slices, or 3D maximum projections using 

FIJI’s 3D viewer (Schmid et al., 2010). 

Subcellular colocalization analysis of tPA-Cer puncta in stratum lucidum was 

performed using the JACoP (Just Another Colocalization Plugin) analysis software in 
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FIJI (Bolte and Cordelieres, 2006). Images were concatenated from 5 µm z-stacks (Δz = 

0.5 µm) that were independently acquired 2 – 4 times (ZnT3: mice n = 10, lines 863 and 

876; EAAT2: mice n = 6 - 8, lines 863 and 876, respectively; MAP2: mice n = 4, lines 

863 and 876).  Manders coefficient and Costes randomization control were used to 

quantify tPA-Cer colocalization (Costes et al., 2004; Bolte and Cordelieres, 2006; Dunn 

et al., 2011). The Manders coefficient was chosen because it is a more sensitive 

measure of colocalization for partial colocalization events and when there are large 

differences in fluorescent intensity between fluorophores (Bolte and Cordelieres, 2006; 

Dunn et al., 2011). The Manders coefficient, which doesn’t mathematically take into 

account average fluorophore intensity values, ranges from 0 to 1, with 0 corresponding 

to no overlap and 1 to complete overlap. Two coefficients are given: M1 and M2, where 

M1 is the summed intensities of fluorophore 1 that are coincident with fluorophore 2, 

divided by the total intensity of fluorophore 1; M2 is calculated the same but for 

fluorophore 2. Costes randomization control provides a statistical assessment of 

whether or not observed colocalization events could be expected to occur by chance. It 

is calculated by comparing the coincidence of colocalization in an original image against 

the coincidence of colocalization in a randomized imaged of shuffled pixels (200 times).  

Costes approach is expressed as a percentage; a Probability (P)-value of ≥ 95% 

suggests that colocalization is significant and not random (Costes et al., 2004). 

Cell count of tPA-Cer and somatostatin (SST)-positive cell bodies was performed 

in the dorsal hippocampus of tPABAC-Cer transgenic mice over an approximate 500 µm 

range from -2.0 to -2.5 bregma. tPA-Cer and SST-positive cells were counted manually 

using the ROI Manager in FIJI.  Cells were deemed positive if their mean pixel intensity 
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was 1 standard deviation (SD) above the mean pixel intensity for the image (Liao et al., 

2016). Cell count data was gathered from 2 - 4 hippocampal sections per mouse (mice, 

n = 8) for each of tPABAC-Cer transgenic lines and their transgene negative littermate 

controls. Cell count data was averaged per mouse and statistics were generated using 

GraphPad Prism, version 7.0. Data are presented as the mean ± 95% confidence 

interval (CI(0.95)) of tPA-Cer expressing cells from stratum oriens/alveus (CA1 and CA3, 

respectively) and stratum radiatum/stratum pyramidale (CA1 and CA3). The percentage 

mean ± CI(0.95) of tPA-Cer cells that co-express SST and the percentage  mean ± CI(0.95)  

of SST-positive cells that co-express tPA-Cer is also given. Immunohistochemical 

analysis of tPA-Cer cell bodies that co-express markers of oriens-lacunosum 

moleculare (O-LM) interneurons was gathered from stainings from 4-8 mice per co-

expression marker. 

 

2.4.5 Experimental design and statistical analysis 

Experimental design, including all critical variables for independent replication, is 

described in detail in the Materials and Methods for each experiment. Briefly, for all 

analysis using PlatβGAL and tPABAC-Cer transgenic mice, a mixture of adult male and 

female mice were used (age 12 – 45 weeks).  Wildtype PlatβGAL littermates were used 

as controls for β-Gal stains, while homozygous PlatβGAL littermates were used as 

controls for immunoreactivity against tPA. When evaluating global protein expression or 

using antibodies directed against GFP, tPABAC-Cer transgene negative littermates were 

used as controls. Brightness and contrast were adjusted over the entire image and 

applied equally to control images from transgene negative samples for figure display. All 
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image processing and statistical analysis of colocalization was preformed using the 

JACoP software in FIJI and described in detail in the Materials and Methods. Statistical t 

tests were performed in GraphPad Prism, version 7.0, and a significance criterion of p < 

0.05 was adopted. All other graphs and statistics (including mean, standard error of the 

mean, and 95% confidence interval) were also generated using GraphPad Prism. 

 

2.5 Results 

2.5.1 Global and regional expression pattern of tPA in the adult murine brain 

PlatβGAL reporter mice were utilized to characterize the global expression 

pattern of tPA in the adult murine brain. Serial coronal sections (50 µm) from 

heterozygous PlatβGAL mice were stained for β-Gal to assess regional patterning of 

somatic tPA expression.  Prominent staining is present in layers 2-6 of the cortex (Fig. 1 

A - F), with an especially strong β-Gal signal highlighting the compact granule cell layer 

of the dentate gyrus and the pyramidal cell layer of the dorsal hippocampal CA3 subfield 

(Fig. 1 D). Though less concentrated, the pyramidal cell layer of the CA1 and CA2 

subfields in the dorsal hippocampus also demonstrates tPA/β-Gal expression (Fig. 2 A). 

In addition, β-Gal staining is apparent in blood vessels throughout the adult murine brain, 

as illustrated in the hippocampal formation (filled arrows, Fig. 2 A). More diffuse reporter 

gene expression is present in subcortical regions, like the medial (Fig. 1 B) and lateral 

(Fig. 1 C) septal nuclei, the bed nucleus of the stria terminalis (Fig. 1 C), the thalamus 

and hypothalamus (Fig. 1, D, E), caudate/putamen (Fig. 1 D), and the basolateral and 

centromedial nuclei of the amygdala (Fig.1 D), while intense β-Gal staining populates 

the molecular and granular layers of the cerebellum (Fig. 1 G-H). There is also 
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noticeable β-Gal staining in the midbrain, pons, and medulla (Fig. 1 E-H); specifically 

there is a cluster of reporter gene expression in the interpeduncular nucleus (Fig. 1 F). 

The interpeduncular nucleus is an integral group of cells involved in limbic midbrain 

circuitry and has been implicated in active avoidance behavior (Hammer and Klingberg, 

1990). Interestingly, multiple groups have demonstrated a role for tPA in avoidance 

behavioral tasks (Huang et al., 1996; Calabresi et al., 2000; Pawlak et al., 2002), though 

interpeduncular tPA has never been explicitly examined. Also, in the pontine central 

gray (Fig. 1 G) there is a small area devoid of β-Gal staining that appears to correspond 

to the locus coeruleus, which is known for its high concentration of neuroserpin, the 

neuronal inhibitor of tPA (Krueger et al., 1997). The regional patterning of tPA in the 

PlatβGAL mice is largely consistent with previous reports examining tPA expression 

using [P32]-labeled tPA cRNA probes (Sappino et al., 1993) and transgenic mice with 

tPA promoter-directed expression of β-Gal (Carroll et al., 1994; Yu et al., 2001). 

However, some differences were observed, such as strong tPA expression in the CA3 

subfield and blood vessels (Fig. 2 A), suggesting that the earlier studies lacked either 

the resolution or specific regulatory elements important for regional and cell specific 

expression. 

 

2.5.2 Differential expression pattern between where tPA is synthesized and where it is 

trafficked in the dorsal hippocampus  

Immunohistochemical analysis of heterozygous PlatβGAL mice, which have one 

functional copy of the tPA gene and one copy of the LacZ gene, reveals tPA to have a 

differential expression pattern. Using an antibody directed against tPA, there is a distinct 
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uncoupling between the sites of tPA synthesis and sites of tPA trafficking. This is most 

apparent in the dorsal hippocampus where the granule cell layer of the dentate gyrus is 

brightly positive for β-Gal, but devoid of tPA-immunoreactivity (Fig. 2 A, B-B’).  

Conversely, the mossy fiber axonal tracts of the granule cells that project into the hilus 

(Fig. 2 B’) and traverse along stratum lucidum (Fig. 2 B’’) are strongly immunoreactive 

against anti-tPA antibodies. Though strongly expressing β-Gal, no tPA-immunoreactivity 

is detectable in the granule cell layer or CA3 pyramidal layer (Fig. 2 B – B’’).   

Given the disparate expression profiles of where tPA is synthesized and where it 

is trafficked, a more targeted strategy for visualizing tPA is needed. To achieve this, 

bacterial artificial chromosome (BAC) technology was utilized to generate transgenic 

fusion reporter mice that have a fluorescent cerulean protein tagged to the carboxy 

terminal of tPA (Fig. 3 A). Compared to a reporter gene approach, the tPA-Cer fusion 

reporter approach facilitates a more precise analysis of the regional, cellular, and 

subcellular expression pattern of tPA in the adult murine brain. And, it can lead to 

greater functional insights about the dynamic nature of tPA in the brain, including 

cellular packaging and transport, cellular communication, and regional connectivity. 

 

2.5.3 Global tPA protein expression profile in tPABAC-Cerulean transgenic mice 

Prior to a detailed characterization of tPA localization in tPABAC-Cer mice, global 

tPA protein expression levels were measured. Brains from transgene positive and 

transgene negative adult tPABAC-Cer mice (mice, n = 6-7) were harvested and 

homogenized for total and active protein levels using a bead-based Luminex assay (Fig. 

3 B) and ELISA (Fig. 3 C). tPABAC-Cer mice were found to have an approximate 5-6 fold 
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change in total tPA levels from transgene negative mice (Fig. 3 B), and an approximate 

6 fold change in active tPA levels from transgene negative mice (Fig. 3 C). No statistical 

difference in total or active tPA was noted between the two transgenic lines. To more 

specifically discriminate between endogenous tPA protein and that which is from the 

BAC, whole brain homogenates from transgenic tPABAC-Cer mice (lines 863 and 876) 

and their respective transgene negative littermate controls were run on a zymography 

gel (Fig. 3 D). Transgene positive tPABAC-Cer mice showed enzymatic activity from both 

endogenous tPA (~60kDa) and the tPA-Cer protein (~75kDa). Samples from transgene 

negative mice did not display the higher molecular weight band that is indicative of tPA 

protein with the added cerulean fluorescent protein. 

 

2.5.4 tPA-Cerulean fusion protein is prominently expressed in limbic structures and 

blood vessels in the adult murine brain 

In a global survey of tPA-Cer fluorescence in tPABAC-Cer transgenic mice, tPA-

Cer puncta appear to be primarily restricted to two pools: nerve fibers (Fig. 4 A-G, I-M) 

and vascular endothelial cells (Fig. 4 N). No observable cerulean fluorescence was 

detected in transgene negative littermate controls (Fig. 5 A-F, H). In the brain 

parenchyma, faint tPA-Cer cell bodies are noticeable in the piriform and entorhinal 

cortex (Fig. 4 A–E), while more predominant and intense tPA-Cer fluorescence is seen 

in nerve fibers in hippocampal and subcortical regions of the brain. Juxtaposed to the 

somatic neuronal marker NeuN, tPA-Cer fluorescence is clearly not localized to the cell 

body; rather, it appears to be expressed in nerve fibers emanating or innervating brain 

structures associated with the limbic system, including the medial and lateral septal 
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nuclei (Fig. 4 B),the bed nucleus of the stria terminalis (Fig. 4 C, I), the paraventricular 

nucleus of the thalamus (Fig. 4 C), hypothalamus (Fig. 4 C–D), the mossy fiber pathway 

of the hippocampus (Fig. 4 D–F; Fig. 5 G), the centromedial nucleus of the amygdala 

(Fig. 4 D, J), the external and internal globus pallidus nuclei of the basal ganglia (Fig. 4 

D, M), the substantia nigra pars reticulata (Fig. 4 E), the periaqueductal gray (Fig. 4 F, 

K), and the parabrachical nucleus (Fig. 4 G, L).  

In situ zymography previously demonstrated tPA activity in the mossy fiber 

pathway and hypothalamus (Sappino et al., 1993), the bed nucleus stria terminalis 

(Matys et al., 2005), and the centromedial, but not basolateral, nucleus of the amygdala 

(Pawlak et al., 2003). To our knowledge, though, we are the first to report on tPA 

expression in the paraventricular nucleus of the thalamus, the periaqueductal gray, and 

the parabrachial nucleus. These regions, in addition to the bed nucleus stria terminalis 

and the hypothalamus, are connected via afferent and/or efferent projections to the 

centromedial amygdalar nucleus (Janak and Tye, 2015; Penzo et al., 2015; Tasan et al., 

2016; Babaev et al., 2018). Neurons in the basolateral nucleus also send projections to 

the centromedial nucleus. And, while β-Gal expression was detected in both the 

basolateral and centromedial nuclei, given the complex circuitry of the amygdala, it is 

unclear if the tPA-Cer fluorescence in the centromedial nucleus is trafficked tPA from 

basolateral nerve projections or trafficked tPA in afferent/efferent nerve fibers to/from 

other brain regions. 

We also report, for the first time, on tPA expression in the external (GPe) and 

internal (GPi) globus pallidus nuclei of the basal ganglia. Indeed, the differential 

expression of somatic tPA/β-Gal and trafficked tPA-Cer is appreciable when comparing 
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tPA expression in the PlatβGAL (Fig. 1 D) and tPABAC-Cer (Fig. 4 D) transgenic mice. 

While β-Gal staining is present in the caudate/putamen nucleus, it is devoid in both the 

GPe and GPi nuclei in the PlatβGAL reporter mice (Fig. 1 D). In contrast, tPA-Cer 

fluorescence is absent in the caudate/putamen, but present in the GPe, GPi, and 

substantia nigra pars reticulata (SNr) (Fig. 4 D–E). The GPi and SNr are equivalent 

anatomical structures, both embryologically and functionally (Purves et al., 2001), as 

they are the output nuclei of the basal ganglia. Given that tPA-Cer, but not β-Gal, is 

present in the GPe, it’s likely that the observed tPA-Cer is part of the direct loop through 

the basal ganglia. The circuitry of the direct loop involves GABAergic neurons that 

project from caudate/putamen through the GPe to the GPi or GABAergic neurons from 

caudate/putamen that travel through the strionigral fibers to SNr (Purves et al., 2001; 

Gilman and Newman, 2002). In turn, both the GPi and SNr send GABAergic projections 

to the thalamus. The direct loop is known to increase thalamocortical excitation and it is 

important for the selection of desired behaviors. Together, the high expression of tPA-

Cer fluorescence in cell bodies and nerve fibers in limbic structures, especially 

amygdalar-associated brain regions, strongly support a role for tPA in affective, 

motivational, and anxiety-like behavior (Pawlak et al., 2002; Pawlak et al., 2003; Matys 

et al., 2004). And, while tPA has yet to be studied in the basal ganglia, more recent 

evidence has suggested that, functionally, the basal ganglia is more than an “organ of 

habit” in the brain, as it plays a role in perception, cognition, and emotional behaviors 

(Jahanshahi et al., 2015). 
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2.5.5 tPA-Cerulean puncta are localized to large mossy fiber boutons in the stratum 

lucidum CA3 subregion of the hippocampus 

Our previous results established that tPA-Cer fluorescence is highly enriched in 

the mossy fiber pathway (Fig. 4 D, Fig. 5 G). These findings are consistent with 

immunohistochemical analysis and in situ zymography which also report high levels of 

tPA localization and proteolytic activity in the mossy fiber pathway (Sappino et al., 1993; 

Salles and Strickland, 2002; Louessard et al., 2016). As mossy fiber axons are known to 

have morphologically and functionally distinct presynaptic terminals we leveraged the 

use of the tPABAC-Cer mice, combined with high-resolution confocal imaging, to 

establish tPA’s subcellular distribution in the hippocampus. Confocal z-stacks were 

captured of both tPA-Cer and putative co-localization markers. Dorsal hippocampal 

sections from tPABAC-Cer mice were first probed for zinc transporter-3 (ZnT3), which is 

the protein correlate underlying the Timm’s histochemical stain to visualize the mossy 

fiber pathway (Frotscher et al., 1994). ZnT3 was used based on previous electron 

microscopy immunocytochemistry of ZnT3 in the murine brain which revealed the 

exclusive localization of ZnT3 to large mossy fiber boutons (MFB) (Wenzel et al., 1997). 

An analysis of orthogonal YZ and XZ sections from a 5 µm z-stack (Δz = 0.5 µm) 

suggests that tPA-Cer puncta colocalize with ZnT3 (Fig. 6 A). Further, 3-dimensional 

projection confirms that tPA-Cer puncta reside in ZnT3-positive MFB (Fig. 6 A’).   As 

shown in Fig. 6 D–E, quantification of colocalization between tPA and ZnT3 from 5 µm 

concatenated image stacks (mice, n = 10), shows that tPA-Cer has a high degree of 

overlap with ZnT3 (M1 coefficient: 0.704 and 0.649 for lines 863 and 876, respectively; 

Costes Probability (P)-value ≥ 95%).  There was no observable detection of cerulean 
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fluorescence in transgene negative littermate controls (Fig. 5 H). Conversely, ZnT3 

shows only partial overlap with tPA-Cer (M2 coefficient: 0.426 and 0.352 for lines 863 

and 876, respectively). The lack of a one-to-one relationship between the M1 and M2 

coefficients is possibly due to the zinc transporter being a synaptic, not dense core, 

vesicle marker.  Though dense core vesicles are sporadically found in MFBs (Wenzel et 

al., 1997; Rollenhagen et al., 2007), synaptic vesicles are much more abundant.  ZnT3 

staining, therefore, likely illuminates a larger area of the MFB, while the tPA-Cer signal, 

presumably in dense core vesicles, appears more punctate (Silverman et al., 2005; 

Lochner et al., 2008; Scalettar et al., 2012). Lastly, these data indicate that while the 

vast majority of tPA is localized to giant MFBs there is also a population that occupies 

another locale. 

As astrocytes are known to wrap fine processes around mossy fiber boutons 

(Rollenhagen and Lubke, 2010) and as tPA has been shown to be taken-up by 

astrocytes (Casse et al., 2012), tPABAC-Cer hippocampal sections were stained for the 

astrocytic glutamate transporter EAAT2 (excitatory amino acid transporter 2). While a 

strong visual colocalization was difficult to ascertain from orthogonal YZ and XZ slices 

(Fig. 6 B) and 3D projections (Fig. 6 B’), image quantification (Fig. 6 D–E) did 

demonstrate lower levels of colocalization (M1 coefficient: 0.183 and 0.198 for lines 863 

and 876, respectively; Costes Probability (P)-value ≥ 95%). To further validate our 

results, tPABAC-Cer sections were stained for the dendritic marker MAP2 (microtubule 

associated protein 2) as a negative control. In stratum lucidum, MAP2 detects the 

dendritic thorny excrescences of CA3 pyramidal neurons which are the post-synaptic 

partner to the MFBs. As predicated, orthogonal YZ and XZ slices of tPA-Cer and MAP2 
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showed no visual overlap (Fig. 6 C) and a 3D projection (Fig. 6 C’) showed that tPA-Cer 

puncta encapsulate the MAP2-positive dendritic thorny excrescences. Moreover, when 

quantified (Fig. 6 D–E), no colocalization was found (M1 coefficient: 0.032 and 0.060 for 

lines 863 and 876, respectively; Costes Probability (P)-value = 0%). 

 

2.5.6 tPA is expressed in a subset of SST-positive inhibitory interneurons in stratum 

oriens/alveus of CA1 and CA3 hippocampal subfields 

The presence of sporadic β-Gal puncta in stratum oriens (SO), stratum radiatum 

(SR), and the hilus (Fig. 2 A) of the hippocampus in PlatβGAL reporter mice suggested 

that other cell types, in addition to the granule and pyramidal cells, express tPA. In an 

effort to visualize and identify these cells in the tPABAC-Cer transgenic mice, the 

cerulean signal was magnified using a GFP antibody in conjunction with Tyramide 

signal amplification. With amplification, tPA-Cer positive cell bodies were revealed in the 

CA1 and CA3 hippocampal subfields of transgene positive mice (Fig. 7 A, E). CA3 

pyramidal cells became visible, but more strikingly were the sparsely-populated tPA-Cer 

expressing cell somas in SO, SP, and SR, though most were strongly localized to the 

SO/alveus lamina of the CA1 and CA3 subfields (Table 2.1). To quantify strata 

localization of tPA-Cer cell bodies, 2-4 hippocampal sections per mouse (mice, n = 8) 

for each of the transgenic lines were analyzed. Our results show that for a hippocampal 

section there were, on average, 11.68±1.53 (n = 301 cells) and 10.90±2.06 (n = 238 

cells) tPA-Cer cells bodies in the CA1 SO/alveus region and approximately 5.58±1.14 (n 

= 141 cells) and 5.34±1.98 (n = 115 cells) tPA-Cer cell bodies in the CA3 SO/alveus 

region for lines 863 and 876, respectively. Less frequently, on average, 3.32±1.15 (n = 
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78 cells) and 2.28± 1.06 (n = 52 cells) tPA-Cer cells bodies were found in SR and SP for 

lines 863 and 876, respectively. No statistical difference was noted between lines 863 

and 876. 

The sporadic nature of tPA-Cer positive cell bodies is consistent with that of 

GABAergic interneurons (Oliva et al., 2000). To test if tPA-Cer positive cells are indeed 

GABAergic interneurons, various immuno-markers for SO/alveus-interneurons were 

used to neurochemically identify the subpopulation of tPA-Cer positive cells in the 

hippocampus (Somogyi and Klausberger, 2005). tPA-Cer positive cells were found to 

strongly co-express the interneuronal marker somatostatin (SST) in the SO/alveus 

lamina of hippocampal regions CA1 and CA3 (Table 2.1 and Fig. 7). Widefield images 

of the hippocampus show prominent tPA-expression in stratum luciudum (Fig. 7 E), but 

also in SST-positive interneurons scattered throughout SO/alveus (Fig. 7 A). 

Immunostaining for SST and GFP with Tyramide signal amplification in transgene 

negative controls only revealed SST-positive interneurons (Fig. 7 I,J). Confocal images 

from CA1 (Fig. 7 B–D) and CA3 (Fig. 7 F–H) show tPA-Cer cells (green) that clearly 

overlap with SST-positive (magenta) interneurons. When quantified, for a given 

hippocampal section, approximately 54.35±6.32% (n = 520 cells) and 58.90±6.74% (n = 

405 cells) of tPA-Cer cells were found to co-express SST, while 53.89±8.82% (n = 520 

cells) and 44.66±9.45% (n = 540 cells) of SST-positive cells were found to co-express 

tPA-Cer, for lines 863 and 876, respectively. No statistical difference was noted 

between lines 863 and 876. 

 Since oriens-lacunosum moleculare (O-LM) interneurons, whose cell bodies 

reside in stratum oriens and send axonal projections to stratum lacunosum-moleculare, 
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are known to express SST (Fig. 8 A), other neurochemical markers of O-LM 

interneurons were probed for to see if tPA-Cer cells can be immunocytochemically 

classified as O-LM interneurons. tPA-Cerulean cells were found to co-express the 

calcium-binding protein calbindin (Fig. 8 C), which has previously been reported to 

comprise roughly 32% of SST/O-LM interneurons (Oliva et al., 2000); they were also 

found to co-express the metabotropic glutamate receptor 1 (mGlur1a; Fig. 8 B), which is 

highly expressed in SST/O-LM interneurons (Klausberger et al., 2003; Somogyi and 

Klausberger, 2005; Sylwestrak and Ghosh, 2012). Interestingly, tPA mRNA 

polyadenylation and translation has previously been shown to be dependent on mGluR1 

activation (Shin et al., 2004). To confirm the inhibitory nature of these cells, 

immunohistochemistry against GAD65 (glutamic acid decarboxylase 65) in tPABAC-Cer 

mice was performed (Fig. 8 D). In agreement with the localization and cytochemical 

profile of SST/O-LM interneurons, tPA-Cer puncta were observed in structures 

reminiscent of axonal processes in SR (Fig. 8 E). These data strongly suggest that at 

least a portion of tPA-Cer cells can be categorized as O-LM interneurons. 

 

2.6 Discussion 

In the present study we have confirmed and extended our understanding of the 

expression of tPA in the adult murine brain. Using both a PlatβGAL reporter mouse and 

a BAC transgenic mouse expressing a tPA-Cer fusion protein, we have provided a 

detailed characterization of the regional, cellular, and sub-cellular localization of tPA. 

While largely complimenting the expression pattern observed in transgenic mice that 

harbored a 9.5kb segment of the human tPA promoter to drive expression of LacZ (Yu 
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et al., 2001), PlatβGAL reporter mice displayed differences that provide insight into the 

transcriptional regulation of tPA. In contrast to the PlatβGal reporter mice, in the human 

9.5kb tPALacZ reporter mouse, β-Gal staining was only weakly observed in the CA3 

subfield and there was no detection of β-Gal in blood vessels, a well-established site of 

tPA expression (Fredriksson et al., 2015; Louessard et al., 2016). In addition, Yu et al. 

(2001) observed high tPA/LacZ expression in the medial habenula, which was not the 

case for the PlatβGAL reporter mice. These discrepancies suggest that regulatory 

elements important for the regional and cellular expression patterning of tPA are not 

encompassed in the 9.5kb human promoter segment or that there are differences 

between the human and murine promoter sequences that do not completely recapitulate 

species specific expression of tPA. 

When comparing the PlatβGAL reporter mice and the tPABAC-Cer transgenic 

mice, there is a clear uncoupling between where tPA is synthesized and where it is 

trafficked, which is in agreement with previous in situ expression studies examining tPA 

mRNA and tPA-catalyzed proteolysis (Sappino et al., 1993). And, while the laminar, tri-

synaptic circuitry of the hippocampus illustrates this uncoupling most distinctly, tPA’s 

differential expression pattern is also apparent in the amygdala and the basal ganglia. In 

addition, there is a stark dichotomy between β-Gal expression and tPA-Cer 

fluorescence in the cortex and cerebellum. Though β-Gal is abundant throughout the 

cortex and cerebellum in PlatβGAL reporter mice, other than faintly positive cell bodies 

in the piriform and entorhinal cortex, there is no detectable tPA-Cer fluorescence in the 

cortex and cerebellum of tPABAC-Cer transgenic mice. Tracing experiments of cortical 

and cerebellar projections, which are beyond the scope of this paper, would help 
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address this discrepancy. For, if tPA is primarily trafficked as our data suggests, then it’s 

possible that tPA-Cer is localized along cortical descending pathways or in efferent 

targets in the cerebellum, the basal ganglia, the brain stem, and spinal cord. Similarly, 

more detailed tracing studies would be required to assess if tPA-Cer is localized to 

cerebellar efferents, like the vestibulocerebellum, spinocerebellum, and 

cerebrocerebellum pathways, and their target nuclei.  Given that tPA’s site of action is 

removed from its site of synthesis, the tPABAC-Cer transgenic mice, when analyzed in 

conjunction with the PlatβGAL reporter mice, provide a more informative expression 

profile of tPA in the adult murine brain. 

Taking advantage of the tPA-Cer fusion construct, therefore, we report for the 

first time tPA’s subcellular localization to giant MFBs in stratum lucidum of CA3. 

Previous studies have only generally described tPA expression in the mossy fiber 

pathway, without examining its specific compartmentalization. The specific structural 

localization can potentially provide meaningful insight into tPA’s function. This is 

especially true since mossy fiber axons of DGCs display two other morphologically 

distinct presynaptic terminals - small en passant boutons and filipodial extensions that 

emanate from the MFBs (Acsady et al., 1998; Rollenhagen and Lubke, 2010). Moreover, 

these structurally distinct terminals have divergent post-synaptic targets; MFBs synapse 

with hilar mossy cells and the apical dendritic spines or “thorny excrescences” of CA3 

pyramidal cells, while en passant boutons and filipodial extensions preferentially target 

GABAergic interneurons in the hilus and stratum lucidum (Frotscher et al., 1994; 

Acsady et al., 1998). The mossy fiber-to-CA3 pyramidal cell synapse also has a 

different synaptic physiology; compared to the mossy fiber-to-interneuron synapse, the 
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mossy fiber-to-CA3 pyramidal cell synapses shows marked paired-pulse facilitation and 

long-term potentiation (LTP) (Salin et al., 1996; Henze et al., 2000; Toth et al., 2000; 

Nicoll and Schmitz, 2005). 

Thus, the specific localization of tPA-Cer puncta to giant MFBs suggests that it 

may have a role in regulating synaptic efficacy at the mossy fiber-to-CA3 pyramidal cell 

synapse. Consistent with this model, functional studies demonstrate tPA-/- mice have 

deficits in LTP in the mossy fiber pathway (Huang et al., 1996). Further interrogations 

into the mechanism underlying deficits in LTP have focused on a post-synaptic locus of 

expression. Mice deficient in tPA, which carries a cAMP response element in its 

promoter, exhibit reduced potentiation by cAMP analogs (Huang et al., 1996); blocking 

tPA’s non-proteolytic interaction with the post-synaptically expressed low-density 

lipoprotein receptor-related protein (LRP) causes deficits in synaptic potentiation (Bu et 

al., 1994; Zhuo et al., 2000); and tPA-mediated cleavage of proBDNF was found to be 

essential for the full expression of LTP (Korte et al., 1995; Korte et al., 1998; Pang et al., 

2004). These mechanistic studies, however, presumed post-synaptic tPA expression 

and were performed in the hippocampal CA1 region, not at the mossy fiber-to-CA3 

pyramidal cell synapse, where we have shown tPA to be most highly expressed in the 

giant MFBs. Additionally, while amplification of the tPA-Cer signal was able to reveal 

tPA expression in the soma of CA3 pyramidal cells, high-resolution colocalization 

analysis did not uncover tPA in the post-synaptic thorny excrescences of CA3 pyramidal 

cells. In fact, no colocalization was observed between tPA-Cer puncta and the dendritic 

marker MAP2. Though in vitro studies have shown activity-dependent release of tPA 

from both pre- and post-synaptic compartments (Gualandris et al., 1996; Lochner et al., 
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1998; Lochner et al., 2006; Scalettar et al., 2012), our in situ expression data 

demonstrates that tPA’s localization is largely pre-synaptic and suggests that potential 

pre-synaptic neuromodulatory effects at the mossy fiber-to-CA3 synapse may have 

been overlooked. 

 Interestingly, tPA-Cer puncta were also observed to partially co-localize with 

astrocytes. It is unclear, however, if the tPA present is endogenous to astrocytes, as 

transcriptome analysis has shown astrocytes to express tPA mRNA in vitro (Zhang et al., 

2014), or if tPA is endocytosed by astrocytes in an LRP-dependent fashion (Casse et al., 

2012). The mossy fiber-to-CA3 pyramidal cell synapse appears unique with respect to 

its trisynaptic cytoarchitecture.  Previous studies indicate that astrocytes completely 

insulate the synapse, cordoning off the active zone and synaptic cleft from the 

surrounding parenchyma, but not physically encroaching into the cleft (Rollenhagen et 

al., 2007). And, while there is no in vivo functional evidence demonstrating the effects of 

tPA release from astrocytes on synaptic function, in vitro evidence has pointed to tPA 

acting as a gliotransmitter that is released and recycled by astrocytes (Casse et al., 

2012). The lack of perisynaptic astrocytic processes making contact with axon-spine 

interfaces (Rollenhagen et al., 2007), however, possibly indicates that, at least at the 

mossy fiber-to-CA3 pyramidal cell synapse, diffusion-limited gliotransmitter tPA may 

have reduced effects on synaptic function. Moreover, if tPA is released in an activity-

dependent manner (Gualandris et al., 1996; Robert J. Parmer, 1997) from giant MFBs, 

the configuration of the mossy fiber-to-CA3 pyramidal cell synapse suggests that it is 

not geared toward immediate clearance and uptake, but rather, toward potentiating the 

effects of tPA and presumably enhancing synaptic efficacy. 
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 In this study we also identify tPA expression in a subset of SST-positive 

interneurons in the hippocampal stratum oriens/alveus lamina. We provide a detailed 

distribution of tPA-Cer positive cell bodies in both the CA1 and CA3 subfields and their 

quantified co-expression with SST-positive interneurons. While enhancement of the 

tPA-Cer protein, with anti-GFP Tyramide amplification, was necessary to distinctly 

visualize these cell bodies, we believe this somatic expression of tPA is physiological as 

(1) no signal was observed in littermate transgene negative controls, (2) the 

recapitulation of tPA expression in the mossy fiber pathway indicates that tPA-Cer is 

appropriately targeted to its cellular and subcellular locale, and (3) β-GAL puncta in the 

PlatβGAL reporter mice are noticeable in stratum oriens/alveus and stratum radiatum 

(Figure 2.2). Presumably, the increase in tPA expression, due to extra copy number 

from the BAC transgene, allowed for the detection of a previously unrecognized and 

specific population of tPA-expressing cells. It is unclear, though, why tPA is differentially 

localized to the soma or axonal projection and if such differential trafficking is 

functionally significant. For, tPA appears to be largely localized to the soma of inhibitory 

interneurons (Fredriksson et al., 2015) and to the axons of excitatory neurons 

(Louessard et al., 2016). While knowledge about dense core vesicle trafficking is still 

nascent compared to synaptic vesicle trafficking, there is evidence which demonstrates 

regionally-specific, differential trafficking of the neuropeptide NPY to dendrites and 

axons (Ramamoorthy et al., 2011) and that excitatory and inhibitory neurons in the 

hippocampus exhibit different dense core vesicle molecular machinery (Ramirez-Franco 

et al., 2016).  



122 
 

In the CA1 hippocampal region alone more than a dozen different types of 

interneurons have been classified based on their morphological, neurochemical and 

physiological properties (Freund and Buzsaki, 1996; Somogyi and Klausberger, 2005). 

And, while no one single marker is indicative of a specific type of interneuron, tPA-Cer 

positive cells appear to share a very similar somatic distribution (Oliva et al., 2000) and 

immunocytochemical profile with O-LM interneurons ( (Somogyi and Klausberger, 2005; 

Minneci et al., 2007; Sylwestrak and Ghosh, 2012). As tPA-expressing neurons have 

never been described in SST/O-LM interneurons before, it is unclear how tPA may be 

exerting its effects. Morphologically, the axonal projections of O-LM interneurons ramify 

at the distal apical dendrites of CA1 pyramidal cells, where perforant path fibers from 

the entorhinal cortex terminate. Functionally, O-LM interneurons are known to fire 

rhythmically at the trough of theta (4-8 Hz) oscillations in the hippocampus (Klausberger 

et al., 2003), and they have been shown to facilitate LTP in the Schaffer collateral-to-

CA1 pathway. Though deficiency in tPA has been previously implicated in defects in the 

late-phase of LTP in the hippocampal CA1 region (Huang et al., 1996; Calabresi et al., 

2000), the contribution of tPA from O-LM interneurons has not been specifically tested 

in this paradigm. Plasticity of glutamatergic CA1 synapses onto O-LM interneurons has 

also been investigated, as changes in synaptic efficacy may have an important role in 

modulating network excitability (Nicholson and Kullmann, 2014). To date, though, it is 

unknown if tPA is involved in these events. 

Taken together, the regional, cellular, and subcellular characterization of tPA 

expression presented here provides a primer on tPA’s role in the central nervous 

system. Many of the foundational experiments on tPA’s function in the brain were 



123 
 

performed prior to a detailed description of its protein localization, this is especially 

confounding in the case of tPA as its site of synthesis is uncoupled from it targeted site 

of action. With the generation of the tPABAC-Cer transgenic mice and its appropriately 

targeted tPA-Cer fusion protein, however, future mechanistic studies to elucidate tPA’s 

function are now possible. 
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CA1 SO CA3 SO CA1 and CA3

Alveus Alveus SP/SR

Line 863 11.68 ± 1.53 (n=301) 5.58 ± 1.14 (n=141) 3.32 ± 1.15 (n=78) 54.35 ± 6.32 (n=520) 53.89 ± 8.82 (n=520)

Line 876 10.90 ± 2.06 (n=238) 5.34 ± 1.98 (n=115) 2.28 ± 1.06 (n=52) 58.90 ± 6.74 (n=405) 44.66 ± 9.45 (n=540)

Results are presented as the mean ± CI(0.95) for a given hippocampal section.  Cell count data was gathered from stratum oriens/alveus (SO/Alveus),

stratum pyramidale (SP), and stratum radiatum (SR).  "n" refers to the total number of cells counted from 2-4 hippocampal sections per tPA
BAC

-Cer

transgenic mouse (lines 863 and 876; mice = 8 per line).

Table 2.1. Localization and coexpression of tPA-Cerulean positive soma in hippocampus of tPA
BAC

-Cer mice

Localization of tPA-Cerulean positive soma Coexpression of tPA-Cerulean positive soma 

tPA-Cerulean positive 

neurons expressing SST (%)

SST-positive interneurons 

expressing tPA (%)
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133 
 

 
Figure 2.1. 5-Bromo-4-Chloro-3-Indolyl-β-D-Galactoside analysis of tPA 
expression in PlatβGAL reporter mice. Representative images (10x) from a 
heterozygous PlatβGAL reporter mouse (mice, n = 5) stained for β-Gal. Sections (50 
µm) were cut coronally starting from the frontal cortex around bregma +2.5 and 
progressing caudally to the cerebellum around bregma -8.0. tPA/β-Gal activity is 
strongly present in the cortex (A - F), in the granule and pyramidal cell layers of the 
hippocampus (D - F), and in the molecular and granular layers of the cerebellum (G - H). 
More diffuse tPA/β-Gal staining is observable in subcortical regions, such as the medial 
(B) and lateral septal nuclei (C), the bed nucleus of the stria terminalis (C), 
caudate/putamen (D), the basolateral and centromedial nuclei of the amygdala (D), and 
thalamus and hypothalamus (D,E). The locus coeruleus, where neuroserpin, the 
neuronal inhibitor of tPA is highly concentrated, is largely devoid of tPA/β-Gal staining 
(G). There are also distinct β-Gal clusters in midbrain-, pontine-, and medulla structures 
(F,G), such as the interpeduncular nucleus (F). Coronal reference atlas images (were 
taken from the Allen Developing Mouse Brain Atlas (http://mouse.brain-
map.org/static/atlas). From A-H, the following thumbnails were used: 32, 47, 53, 71, 82, 
89, 109, and 123, respectively. Abbreviations: MS – medial septal nuclei; LS – lateral 
septal nuclei; BNST – bed nucleus of the stria terminalis; HPF – hippocampal formation; 
TH – thalamus; CP – caudate/putamen; BLA – basolateral nucleus of the amygdala; 
CeA – central nucleus of the amygdala; MeA – medial nucleus of the amygdala; HY – 
hypothalamus; MB – midbrain; IPN – interpeduncular nucleus; P – pons; LC – locus 
coeruleus; CB – cerebellum; MY - medulla. Scale bars: 1 mm. Reference atlas images 
credit: Allen Institute. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://mouse.brain-map.org/static/atlas
http://mouse.brain-map.org/static/atlas


134 
 

 
Figure 2.2 
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Figure 2.2. Immunohistochemical analysis of tPA protein expression in the 
hippocampus of PlatβGAL reporter mice reveals a differential expression pattern 
between the sites of tPA synthesis and tPA trafficking. (A) Representative image 
(10x) of a 50 µm hippocampal section from a heterozygous PlatβGAL reporter mouse 
(mice, n = 5). tPA is shown to be strongly expressed in the granule cell layer of the 
dentate gyrus and the pyramidal cell layer of hippocampal regions CA1 - CA3. There 
are also scattered β-Gal puncta (arrows) in the hilus, stratum radiatum, and stratum 
oriens; β-Gal staining is also present in blood vessels in the hippocampus (filled 
arrows).  (B) Immunohistochemical analysis of a representative image (10x) from a 50 
µm hippocampal section from a heterozygous PlatβGAL reporter mouse (mice, n = 5) 
using antibodies directed against murine tPA (orange). In contrast to the β-Gal stain 
(cyan), tPA is not expressed in the cell body layers, but in the mossy fiber axons of 
dentate granule cells in the hilus and stratum lucidum lamina (B’ and B”, 40x). To 
visualize the colored β-Gal stain in the immunofluorescent image captured showing tPA-
immunoreactivity, a negative of the fluorescent image was generated and pseudo-
colored cyan. Abbreviations: SLu – stratum lucidum; Hi – hilus; DG – dentate gyrus; SR 
– stratum radiatum; SO – stratum oriens.  Scale bars: A and B, 500 µm; B’ and B’’, 50 
µm. 
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Figure 2.3 
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Figure 2.3. Generation and global tPA protein characterization of tPABAC-Cerulean 
transgenic mice. (A) Founder lines for tPABAC-Cer transgenic mice (863 and 876) were 
generated using Bacterial Artificial Chromosome (BAC) technology. To generate 
tPABAC-Cer transgenic mice, a kanamycin-resistance recombineering cassette 
containing a cerulean fluorescent gene fused to the carboxy terminal of exon 14 of the 
tPA gene was recombineered into a BAC. The tPA-Cer fusion gene is under control of 
endogenous regulatory elements contained in the Plat locus. (B–D) Protein expression 
profile of tPABAC-Cer transgenic mice.  Brains from transgene positive and transgene 
negative adult tPABAC-Cer mice were harvested and homogenized for total and active 
protein quantification using a bead-based Luminex assay (B) and ELISA (C). Data are 
presented as the mean ± SEM fold change from tPA protein levels in transgene 
negative littermate controls (mice n = 6-7). No statistical difference was noted in total 
and active tPA protein levels between line 863 and 876. (D) Zymographic analysis of 
whole brain homogenates from tPABAC-Cer transgene positive and negative mice (lines 
863 and 876) visually delineates endogenous tPA (lower molecular weight bands, E-
tPA) and the tPA-Cer from the BAC (higher molecular weight bands, tPA-Cer).  Not only 
is there increased levels of tPA protein in both tPABAC-Cer transgenic lines, but the tPA-
Cer protein is proteolytically active. Abbreviations: FRT – flippase recognition target; HM 
- homology arms; r-mtPA, recombinant-murine tPA; E-tPA, endogenous-tPA.  
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Figure 2.4 
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Figure 2.4. tPA-Cerulean fusion protein is prominently expressed in limbic 
structures and blood vessels in the adult murine brain. Images shown are 
representative of stitched serial coronal sections from tPABAC-Cer transgenic mice (n = 
3) captured on a widefield microscope (A–H, 10x; I–L, 20x; M, 40x) or confocal 
microscope (N, 63x).  Cryosections stained for the neuronal marker NeuN (red) clearly 
distinguishes the faint tPA-Cer (cyan) cells bodies observed in the piriform (A–D) and 
entorhinal cortex (E), and the tPA-Cer fluorescent nerve fibers found in the medial and 
lateral septal nuclei (B), the bed nucleus of the stria terminals (C,I), the paraventricular 
nucleus of the thalamus (C) and hypothalamus (D), the central (D, J) and medial (D) 
nuclei of the amygdala, the external (D) and internal (M) globus pallidus of the basal 
ganglia, substantia nigra pars reticulata (E), the periaqueductal gray (F, K), and the 
parabrachial nucleus (G, L).tPA is also robustly expressed in the hilus and mossy fiber 
pathway of the hippocampus (D–F). (G, H) In contrast to the PlatβGAL reporter mice, 
tPA expression is not observable in the cerebellum. (N) Brightly positive tPA-Cer puncta 
are noticeable throughout all brain regions in blood vessels using the endothelial cell 
marker, CD31 (magenta). Abbreviations: PIR – piriform cortex; ENT – entorhinal cortex; 
LS – lateral septal nuclei; MS – medial septal nuclei; BNST – bed nucleus of the stria 
terminalis; PVT –paraventricular nucleus of the thalamus; HY – hypothalamus; HPF – 
hippocampal formation; CeA – central nucleus of the amygdala; MeA – medial nucleus 
of the amygdala; BLA – basolateral nucleus of the amygdala; GPe – globus pallidus 
external segment; GPi – globus pallidus internal segment; SNr – substantia nigra pars 
reticulata; PAG – periaqueductal gray; PBN – parabrachial nucleus; MB – midbrain; P – 
pons; CB – cerebellum; MY – medulla. Scale bars: A - H, 1mm; I–M, 100 µm; K, N, 50 
µm. 
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Figure 2.5 
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Figure 2.5. tPA-Cerulean fluorescence is not observed in tPABAC-Cer transgene 
negative littermate controls. (A–D) Images shown are representative of stitched serial 
coronal sections from tPABAC-Cer transgene negative littermate mice (n = 2) captured 
on a widefield microscope (10x). Cyrosections (14 µm) stained for the neuronal marker 
NeuN (red) show no cerulean fluorescence in cell bodies in the piriform (A–C) or 
entorhinal cortex (D). Cerulean fluorescence is also not observable in the medial and 
lateral septal nuclei (B), the bed nucleus of the stria terminals (B), the amygdala (C), 
globus pallidus (C), or the thalamus and hypothalamus (B, C). Midbrain and pontine 
brain structures are devoid of any cerulean fluorescence (D–E), as are the medulla and 
cerebellum (F). (G, H) Representative images from widefield microscopy (4x) of the 
hippocampus from a tPABAC-Cer transgene positive (Tg+) mouse and its transgene 
negative (Tg-) littermate. Cerulean fluorescence is clearly observable in the mossy fiber 
pathway of a tPABAC-Cer transgene positive mouse, but completely absent in the 
transgene negative control. Cerulean fluorescent artifacts from edge effects or folds are 
apparent in panels C, E, and F. Abbreviations: PIR – piriform cortex; ENT – entorhinal 
cortex; LS – lateral septal nuclei; MS – medial septal nuclei; BNST – bed nucleus of the 
stria terminalis; TH – thalamus; HPF – hippocampal formation; AMYG – amygdala; HTH 
– hypothalamus; CP – caudate/putamen; GP – globus pallidus; MB – midbrain; P – 
pons; CB – cerebellum; MY - medulla. Scale bars: A - F, 1mm; G-H, 500 µm. 
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Figure 2.6 
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Figure 2.6. tPA-Cerulean is localized to large mossy fiber boutons and astrocytes 
in the CA3 stratum lucidum lamina of the hippocampus. Subcellular colocalization 
of tPA in stratum lucidum of the hippocampus was investigated using high-resolution 
confocal microscopy. Images (63x) are representative regions of interest from the 
stratum lucidum lamina of tPABAC-Cer transgenic mice and are presented as 5 µm z-
stacks (Δz = 0.5 µm) visualized in orthogonal YZ and XZ slices (A–C,) and magnified 
3D maximum intensity projections (A’–C’), for each of the respective colocalization 
markers.  For quantification of colocalization using the Manders coefficient (D, E) entire 
images were concatenated from 5 µm z-stacks (512 pixels x 512 pixels; Δz = 0.5 µm) 
that were independently acquired 2 – 4 times (ZnT3: mice n = 10, lines 863 and 876; 
EAAT2: mice n = 6 - 8, lines 863 and 876, respectively; MAP2: mice n = 4, lines 863 
and 876).  tPA-Cer puncta was found to colocalize with the zinc transporter-3 (ZnT3, 
red), which has previously been observed exclusively in mossy fiber boutons, as 
indicated visually by the white overlay in the orthogonal sections and 3D max projection 
(Manders M1: 0.704 and 0.649 for lines 863 and 876, respectively; Costes Probability 
(P)-value ≥ 95%) (D, E). Partial colocalization was weakly observed in astrocytes 
visualized with the astrocytic glutamate transporter EAAT2 (orange; B, B’), which is in 
agreement with the lower quantified colocalization coefficient (Manders M1: 0.183 and 
0.198 for lines 863 and 876, respectively; Costes Probability (P)-value ≥ 95%) (D, E). To 
confirm the pre-synaptic localization of tPA to mossy fiber boutons, sections were also 
stained for the dendritic marker MAP2, which detects the dendritic thorny excrescences 
of CA3 pyramidal neurons that mossy fiber boutons encase. Orthogonal YZ and XZ 
slices and 3D max projections of tPA-Cer and MAP2 (yellow; C, C’) showed no 
colocalization (Manders M1: 0.032 and 0.060 for lines 863 and 876, respectively; 
Costes Probability (P)-value = 0.0% (D, E). Abbreviations: ZnT3 - zinc-transporter 3; 
EAAT2 - excitatory amino acid transporter 2; MAP2 - microtubule associated protein 2. 
Scale bars: A – C, 5 µm; A’ – C’, µm. 
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Figure 2.7 
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Figure 2.7. Amplification of tPA-Cerulean signal reveals a population of cells in stratum 
oriens/alveus of the hippocampal CA1 and CA3 regions that co-express somatostatin.  
Representative images of hippocampal CA1 (A) and CA3 (E) subfields from tPABAC-Cer 
transgenic mice (mice, n = 8) exemplifying the localization and distribution of tPA-Cer 
cell bodies (tPA, green) that co-express the inhibitory interneuronal marker somatostatin 
(SST, magenta) – see Table 2.1 for localization and distribution statistics. With GFP 
Tyramide signal amplification, somatic tPA is also detectable in the pyramidal cell layer 
of the CA3 subfield (E), though it is still largely absent in the CA1 pyramidal cell layer 
(A). Confocal (63x) maximum intensity projections focused on a region of interest 
(dashed box) highlighting tPA-Cer positive cells  (tPA, green) that co-express SST 
(magenta) from the CA1 (B–D) and CA3 (F–H) stratum oriens/alveus lamina. Unlike the 
punctate nature of tPA in axonal projections, tPA’s somatic expression appears more 
diffuse. (I–J) Immunostaining for SST and GFP with Tyramide signal amplification in 
transgene negative controls only revealed SST-positive interneurons in the SO/alveus 
lamina of hippocampal CA1 (I) and CA3 (J).  Abbreviations: SO – stratum oriens; SP – 
stratum pyramidale; and SLu – stratum lucidum. Scale bars: A, 50 µm; C – D, 10 µm; E, 
100 µm; F – H, 10 µm; I, 50 µm; J, 100 µm.  
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Figure 2.8 
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Figure 2.8. tPA-Cerulean cells are positive for immunocytochemical markers of 
oriens-lacunosum moleculare (O-LM) inhibitory interneurons.  Dorsal hippocampal 
sections from tPABAC-Cer transgenic mice were probed for previously confirmed 
immunocytochemical markers of O-LM inhibitory interneurons. While O-LM interneurons 
are known for expressing SST (A), other morphologically distinct interneuron subgroups 
have been shown to stain positive for the neuropeptide. O-LM interneurons, though, 
have been shown to be strongly decorated with the metabotropic glutamate receptor 1a, 
mGluR1a, and they have been shown to express the calcium-binding protein calbindin. 
High-resolution, confocal images (63x) of 10 µm thick z-stack maximum intensity 
projections demonstrate that tPA-Cer positive cells bodies in SO/alveus co-express both 
mGluR1a (B) and calbindin (C).  Sections were also stained for GAD65, confirming the 
GABAergic nature of the tPA-Cer expressing cells (D). In agreement with this O-LM 
immunocytochemical profile was the observation of axonal-like projections in stratum 
radiatum, as axons of O-LM interneurons extend to stratum lacunosum moleculare (E). 
Pictures are representative images from stratum oriens/alveus of stainings from at least 
4 transgenic mice (n = 4–8) per interneuronal marker. Abbreviations: SST- 
somatostatin; mGluR1a – metabotropic glutamate receptor 1a; GAD 65 – glutamic acid 
decarboxylase  65. Scale bars: A – E, 5 µm. 
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CHAPTER 3 
 

Ex vivo synchronous activity in brain slices from tPA-/- and Nsp-/- mice does not  
 

phenocopy the in vivo seizure behavior of tPA-/- and Nsp-/- mice 
 
 

3.1 Abstract 
 

Seizures are episodes of abnormal brain activity and are characterized by hyper-

excitable neurons and the synchronous propagation of electrical activity.  They are a 

significant health and economic burden in the U.S., with 200,000 new cases reported 

each year and 17.6 billion spent annually to treat and care for patients. Proteolytic 

activity in the CNS has been shown to play a role in seizure severity. Indeed, following 

injection of kainate into the amygdala, our lab has shown that mice lacking the serine 

protease tissue plasminogen activator (tPA-/-) have a delayed seizure onset time 

compared to wild-type mice; and, mice lacking the serine protease inhibitor (serpin) 

neuroserpin (Nsp-/-), a specific inhibitor of tPA, have an enhanced seizure onset time. 

Electroencephalography recordings agree with this behavioral seizure scoring data. In 

contrast, we have shown that in ex vivo electrophysiological recordings of synchronous 

(or “seizure-like”) activity in brain slices from each genotype do not show this phenotype.  

_____________________ 

Parts of this chapter were published in: Fredriksson L, Stevenson TK, Su EJ, Ragsdale 
M, Moore S, Craciun S, Schielke GP, Murphy GG, Lawrence DA (2015) Identification of 
a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol 
2:722-738. 
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Instead, our data suggests that the onset time and severity of seizures in Nsp-/- and tPA-

/- mice correlate with increases in blood-brain barrier (BBB) permeability. In our 

previously published study we focused on the role of the BBB in seizure progression 

(Fredriksson et al., 2015), whereas in this chapter we focus on the electrophysiological 

consequences of Nsp and tPA deficiency.  

 

3.2 Introduction 

 Epilepsy is a neurological disorder characterized by hyperactive, excitable 

neurons and the synchronous propagation of electrical activity, resulting in seizure 

behavior. It comes from the Greek word “epikgqia,” which originates from the verb 

“epilambanein” – to seize, possess, or afflict (Magiorkinis et al., 2010). The Ancient 

Greeks attributed seizures to a form of spiritual possession. With recent advances in 

genetic sequencing, however, epilepsy has shifted from becoming an idiopathic disease 

to a genetic one. Even the International League Against Epilepsy proposed language 

that would label epilepsy to be of genetic etiology and not idiopathic in nature (Berg et 

al., 2010; Lascano et al., 2016). Not all seizures result from genetic defects, though, as 

there are still about 40% of cases of epilepsy that fall into a “cryptogenic” classification 

because a cause cannot be identified (Shorvon, 2011). Moreover, roughly 30-40% of 

patients with epilepsy has what is known as refractory epilepsy and fails to respond to 

currently available antiepileptic drugs (Laxer et al., 2014). Therefore, there is still a large, 

unmet need for understanding the diverse etiology and complicated pathophysiology of 

epilepsy. 
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Dramatic insults to the cerebrovasculature from stroke, traumatic brain injury 

(TBI), or infection are known to be causal in the development of symptomatic epilepsy 

(Herman, 2002; Friedman et al., 2009). Furthermore, accumulating evidence suggests 

that dysregulation of the blood-brain barrier (BBB) can be a significant contributing 

factor to the pathophysiology of seizures (Oby and Janigro, 2006; Daneman, 2012). 

This has led to the recognition that the BBB is a druggable target for the treatment of 

seizures (Friedman et al., 2009). The serine protease tissue plasminogen activator 

(tPA), which is more commonly known for its role promoting fibrinolysis in the 

vasculature, is also highly expressed in the central nervous system (CNS) (Sappino et 

al., 1993; Yu et al., 2001) and has been implicated in regulating BBB permeability in 

models of stroke, seizures, and TBI (Yepes et al., 2003; Su et al., 2008; Fredriksson et 

al., 2015; Su et al., 2015; Su et al., 2017). Mice deficient in tPA (tPA-/-) have been 

shown to have delayed seizure progression as well (Tsirka et al., 1995; Yepes et al., 

2002; Pawlak et al., 2005; Fredriksson et al., 2015). It is unclear if the seizure 

phenotype in tPA-/- mice is related to tPA’s role in regulating BBB permeability or in 

modulating synaptic transmission, as tPA expression and activity is specifically 

upregulated in the hippocampus following seizure induction (Qian et al., 1993; Tsirka et 

al., 1995; Yepes et al., 2002). 

It is also unclear if proteolytically active tPA or inactive tPA is responsible for 

modulating seizure progression. For, in both rats and wild-type mice treated with the 

serine protease inhibitor neuroserpin (Nsp), a specific inhibitor of tPA in the brain, 

seizure progression of kainic acid (KA)-induced seizures is delayed (Yepes et al., 2002). 

Moreover, Nsp deficient mice (Nsp-/-) have enhanced seizure onset time following KA-
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injection, while tPA-/- mice have an attenuated seizure onset time, suggesting that 

dysregulation of tPA activity promotes seizure progression (Fredriksson et al., 2015). 

This “seizure-resistant” phenotype observed in tPA-/- mice is thought, in part, to occur 

from tPA’s role in regulating BBB integrity. For, seizure progression and severity in Nsp-

/- and tPA-/- mice correlate with increases in BBB permeability.  

In contrast, in a model of ethanol withdrawal seizures, treatment with the tPA-

inhibitor, tPA-STOP, had no effect on seizure severity (Pawlak et al., 2005). Rather, it 

was shown that tPA’s non-proteolytic interaction with NR2B subunit of the NMDA 

receptor was responsible for seizure severity after ethanol withdrawal. As there is 

evidence for active tPA and inactive tPA mediating independent pathways in neuronal 

degeneration and microglial activation, respectively (Rogove et al., 1999), it’s possible 

that the experimental seizure paradigms revealed differential roles for active and 

inactive tPA in seizure progression. Further studies, however, are needed to specifically 

test and dissect the contribution of active tPA and inactive tPA to seizures. 

In an effort to begin to address 1) the BBB component to the observed seizure 

phenotype in tPA-/- mice and Nsp-/- mice and 2) the effect of unregulated tPA activity in 

synaptic transmission and synchronous activity, an ex vivo electrophysiological 

approach was taken in our studies. In an ex vivo preparation, a brain slice is bathed in 

oxygenated artificial cerebral spinal fluid (aCSF) and not subject to alterations of the 

BBB. As such, the hypothesis being tested is that if the in vivo seizure phenotype in 

wild-type, tPA-/-, and Nsp-/- mice is related to the BBB, then in an ex vivo slice 

preparation there should be no phenotypic difference between these mice. To test our 

hypothesis, brain slices from wild-type, tPA-/-, and Nsp-/- mice were bathed in no 
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Mg2+/high K+ aCSF to generate synchronized population bursts. This method, which 

enhances conductance of NMDA receptors and lowers the neuronal firing threshold, is a 

well-established in vitro correlate of in vivo seizures. Synaptic transmission was 

assessed by field potential recordings in the CA1 and CA3 subfields of the 

hippocampus. Evoked responses in standard aCSF were used to generate input/output 

(I/O) curves as a measure of normal basal synaptic transmission, while a gap-free 

recording was used to measure the baseline field potential in standard aCSF and 

spontaneous, synchronized firing in no Mg2+/high K+ aCSF.  

Our results demonstrate that with this model we are able to induce synchronized 

population bursts characteristic of in vivo seizure activity, and we are able to evaluate 

the neuronal component contributing to that activity. We find that the ex vivo “seizure-

like” phenotype in brain slices from Nsp-/- and tPA-/- mice does not phenocopy the in 

vivo seizure behavior of Nsp-/- and tPA-/- mice. Interestingly, brain slices from tPA-/- mice 

appear to be in a more hyperexcitable state than wild-type or Nsp-/- mice, while brain 

slices from Nsp-/- mice appear to be in a more quiescent state than wild-type or tPA-/- 

mice. These data support the evidence demonstrating a significant BBB component to 

the in vivo seizure phenotype observed in Nsp-/- and tPA-/- mice. 

 

3.3 Materials and Methods 

3.3.1 Transgenic mice 

3.3.1.1 NspBAC-DsRED and tPABAC-Cer transgenic mice. Founder lines (519 and 552) 

for NspBAC-DsRed transgenic mice were generated using BAC technology. To generate 

NspBAC-DsRed transgenic mice, exon 9 of the neuroserpin gene, Serpini1, on a 222.141 
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kb BAC acquired from chori.org (RP23-300M7), was replaced with a DsRED fluorescent 

gene inserted into exon 9 of the neuroserpin gene (AJ001700.1) just prior to the coding 

sequence for the 13 residue vesicular targeting sequence (Ishigami et al., 2007) 

followed by a bovine growth hormone (BGH) polyadenylation signal sequence. The 

Nsp-DsRed fusion gene is under control of the endogenous regulatory elements 

contained in the Serpini1 locus. BAC DNA integrity was verified by restriction enzyme 

analysis via pulse field gel electrophoresis and exon sequencing prior to pronuclear 

microinjection of supra-ovulated eggs from (C57BL/6 x SJL)F1/TAC female mice. 

Transgenic mice were genotyped by PCR using primers that were specific to a remnant 

of the sub-cloning PGKneo vector and the Nsp-DsRed fusion gene (FWD 5’ – ACG 

GCG TGC TGA AGG GCG AGA TCT – 3’, and REV 5’ – CGT AGA ATG TTT CCT CTA 

CCT TAG C – 3’); and Nsp protein expression was confirmed by analysis of brain 

homogenates from the founder lines. After PCR analysis of the DsRED fusion gene 

confirmed stable, germline transmission in F1 pups two founder lines - lines 519 and 

552 - were propagated; these mice have since been backcrossed at least 10 

generations onto a C57BL/6J genetic background. However, only NspBAC-DsRED 

transgenic mice from the F1 and F2 generations have been used for analysis in this 

thesis. Transgenic mice displayed normal gross anatomy and a Mendelian inheritance 

pattern. tPABAC-Cer transgenic mice that have a cerulean fluorescent gene fused the C-

terminus of the tPA gene were described in detail previously (See Chapter 2) 

(Stevenson and Lawrence, 2018). 
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3.3.1.2 Transgenic mice for electrophysiological studies. For electrophysiological 

analysis a mixture of adult male and female tPA (tPA-/-) (Carmeliet et al., 1993; 

Carmeliet et al., 1994) and neuroserpin (Nsp-/-) mice (Madani et al., 2003), back-

crossed at least 10 generations onto a C57BL/6J background, and their wild-type 

C57BL/6J controls were used (age: 8 – 20 wks). Nsp-/- mice were provided by Serguei 

Kozlov and Peter Sonderegger from the University of Zurich. Transgenic mice deficient 

for voltage-gated Na+ channel β1 subunits (Scn1b-/-), encoded by SCN1B and wild-type 

littermate controls were a kind gift from Lori Isom at the University of Michigan, Ann 

Arbor, USA (Chen et al., 2004). Electrophysiological experiments in Scn1b-/- and wild-

type littermates were performed when mice were post-natal day P16-P17, prior to sex 

identification. All experiments were approved by the Institutional Animal Care and Use 

Committee at the University of Michigan, Ann Arbor, USA and the studies were 

conducted in accordance with the United States Public Health Service’s Policy on 

Humane Care and Use of Laboratory Animals.  

 

3.3.2 Protein expression analysis 

3.3.2.1 Sample preparation. Total Nsp protein was analyzed using whole brain 

homogenates from NspBAC-DsRED mice. Briefly, brains were harvested into ice-cold 

extraction buffer (0.4 M HEPES, 0.1 M NaCl, pH 7.4, 1% Triton X-100), homogenized 

for 1 min. (2 x 30 sec) and centrifuged at 10,000 x g for 10 min The supernatant was 

removed to a new, chilled 1.5 mL microcentrifuge tube and centrifuged again at 10,000 

x g for 10 min. The supernatant was again removed to a new, chilled 1.5 mL 

microcentrifuge tube and used for ELISA assays. 
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3.3.2.2 Enzyme-linked immunosorbent assay (ELISA). An ELISA was performed to 

measure total Nsp levels from brain tissue extracts. Briefly, high-binding plates 

(Molecular Innovations, AVI-PLATE) were incubated with a rabbit anti-mNsp (2 µg/ml; 

HTmNs, Lawrence Lab) overnight at 4 °C in carbonate buffer (0.15 M Na2CO3, 0.35 M 

NaHCO3, pH 9.6). After which, the plate was washed 3 x 0.9% NaCl (0.05% Tween-20) 

and 200 uL of a blocking solution (PBS, 0.25% Bovine Serum Albumin (BSA), 0.05% 

Tween-20) was added to each well for 2 hrs at room temperature. The plate was again 

washed 3 x 0.9% NaCl (0.05% Tween-20) and 100 uL of brain extract 

samples/standards (diluted in blocking buffer) were loaded onto the plate and incubated 

for 2 hrs at room temperature. The plate was again washed 3 x 0.9% NaCl (0.05% 

Tween-20) and then 100 uL of sheep anti-mNsp-Biot (2 ug/mL; Molecular Innovations, 

SASMNSP-GF-HT-BIO) diluted in blocking buffer was added to each well for 1.5 hrs at 

room temperature. The plate was again washed 3 x 0.9% NaCl (0.05% Tween-20) and 

then 100 uL of sheep anti-HRP-conjugated secondary antibody (1:20,000) was diluted 

in blocking buffer and added to each well for 1 hr at room temperature. The plate was 

washed for a final time (3 x 0.9% NaCl (0.05% Tween-20)) After the final wash, 

3,3’,5,5’-Tetramethylbenzidine (TMB) substrate (Molecular Innovations, TMB) was 

added to each sample for 3 min at room temperature. H2SO4 (1 N) was then added and 

the plate read on a spectrophotometer at 450 nm. 

 

3.3.2.3 Western blot. A Western blot was run to separate and detect endogenous Nsp 

protein and Nsp-DsRED protein in brain homogenates from NspBAC-DsRED transgene 

positive and transgene negative mice. Briefly, samples, including 1 ng of recombinant 
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murine Nsp (mNsp) protein (Lawrence Lab) and brain homogenates from Nsp-/- mice, 

were diluted in 4X sample buffer (β-mercaptoethanol, BME), boiled for 10 min, and run 

on a 10% Tris gel (Bio-Rad, 4561033) for 10 min at 100 V and 40 min at 200 V. Protein 

was transferred overnight at 4 °C to a PVDF membrane. Blots was blocked for 1 hr (5% 

milk) at room temperature and then incubated with primary antibody rabbit anti-mNsp (2 

µg/mL; Lawrence Lab) overnight at 4 °C in 1% BSA (0.1 % TBS-Tween 20). Membrane 

was then washed (3 x 0.1% TBS-Tween 20) 5 min per wash and incubated with the 

secondary antibody donkey anti-rabbit-HRP (1:10,000; Jackson ImmunoReserach, 711-

036-152) in 0.5% milk (TBS, 0.1% Tween-20) for 1 hr at room temperature.  Blots were 

then washed extensively in 0.1 % TBS-Tween 20 (3 x 10 min) with a final 5 min wash in 

TBS.  Blots were then incubated with an enhanced chemiluminescence substrate 

(Pierce, 34080) and developed. 

 

3.3.3 Immunofluorescence analysis 

3.3.3.1 Sample preparation and antibodies. Mice were anesthetized with isoflurane and 

sacrificed by transcardiac perfusion for 3 min with PBS followed by perfusion for 5 min 

with 4% paraformaldehyde (PFA). Brains were harvested and post-fixed in 4% PFA for 

1hr at 4 °C, then overnight in PBS. The brains were then moved to a 30% sucrose 

solution and kept at 4 °C till submerged. Subsequently, dorsal hippocampal sections (14 

µm, bregma -1.5 to bregma -2.5) were cut coronally for immunofluorescence analysis of 

Nsp expression. Sections were permeabilized with 0.50% Triton X-100 (PBS) for 20 min 

at room temperature and blocked in 3% BSA (PBS) for 1 hr at room temperature. The 

sections were then incubated with primary antibodies in 2% BSA (PBS) overnight at 
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4 °C, followed by incubation with secondary antibodies in 2% BSA (PBS) for 1 hr at 

room temperature. When using biotin-conjugated primary antibodies and their 

respective streptavidin-conjugated secondary was used, a biotin-blocking kit was used 

to reduce background (ThermoFisher Scientific, E21390) and for amplification using the 

Tyramide SuperBoost Kit (ThermoFisher Scientific, B40932) detection protocols were 

followed according to the manufacturer’s instructions.  

The primary antibodies used were as follows: murine tissue plasminogen 

activator (Rabbit anti-mtPA, 12µg/mL; Molecular Innovations, ASMTPA-GF-HT; Lot# 

914), RFP (Rabbit anti-RFP, 1:500; Sigma); podocalyxin (Goat anti-podocalyxin, 1:200; 

R and D); CD31 (Rat anti-mCD31, 1:100; BD Biosciences, 550274; Lot # 21055), 

somatostatin (Rat anti-SST, 1:100; Millipore, MAB354; Lot# 2885355, 3005269), Biotin-

conjugated Goat anti-Chicken IgY H&L (1:100; abcam, ab6876). The secondary 

antibodies used were as follows: Donkey anti-Rat IgG (H+L) 594 (1:500; ThermoFisher 

Scientific, A-21209), Donkey anti-Rabbit IgG (H+L) 594 (1:500; ThermoFisher Scientific, 

A-21207), Tyramide-conjugated Alexa Fluor 488 (ThermoFisher Scientific, B40953), 

Donkey anti-Goat IgG (H+L) 488 (1:500; ThermoFisher Scientific, A-11055), Donkey 

anti-Rabbit IgG (H+L) 488 (1:500; ThermoFisher Scientific, A-21206). Nuclei were 

visualized with DAPI (4’,6-diamidino-2-phenylindole, dihydrochloride; 1mg/mL). The 

sections were mounted using VectaShield anti-fade mounting medium (Vector 

Laboratories, H-1000). 

 

3.3.3.2 Image acquisition, processing, and analysis. Widefield images (4x, 20x, or 40x 

objectives) were acquired on an inverted Nikon Te2000 microscope equipped with a 
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MicroPublisher 5.0 RTV color camera and a CoolSNAP HQ2 CCD camera or an 

inverted Ti Nikon microscope with an ANDOR Zyla sCMOS camera. Widefield images 

were initially acquired using MetaMorph Image Analysis software or Nikon’s NIS-

Elements Advanced Research software package. Further processing was done using 

the open source image processing package FIJI (Schindelin et al., 2012). 

 

3.3.4 Electrophysiology 

3.3.4.1 Slice preparation. Hippocampal slices were prepared and extracellular field 

potential recording methods were used similar to that previously described (Moore et al., 

2011; Singer et al., 2011).  Briefly, coronal brain slices (350 um) were cut on a 

vibratome under ice-cold (< 1 °C) oxygenated sucrose-based cutting solution containing 

the following (in mM): 2.8 KCl, 1.25 MgCl2, 1.0 Mg2O4, 1.25 NaH2PO4, 1.25 CaCl2, 206 

sucrose, 26 NaCHO3, 10 D-glucose, and 0.40 ascorbic acid. Slices were transferred to 

a holding chamber filled with aCSF containing the following (in mM): 124 NaCl, 2.8 KCl, 

1 MgSO4, 1.25 NaH2PO4, 2.5 CaCl2, 26 NaHCO3, 10 D-glucose, and 0.40 ascorbic acid 

at room temperature and remained there for at least 1 hr before being individually 

transferred to a submersion chamber and continuously perfused (~1.5 mL/min) with 

oxygenated aCSF heated to 31°C.  

 

3.3.4.2 Basal synaptic transmission and synchronous activity recording. Extracellular 

field potential recordings (fEPSPs) were made using borosilicate glass-pipettes (Sutter 

Instruments) filled with aCSF. Pipettes were made on a P-97 Flaming-Brown pipette 

puller (Sutter Instruments) with a tip resistance ~ 1MΩ filled with artificial cerebral spinal 
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fluid (aCSF). All recordings were made using a differential amplifier (DP-301; Warner 

Instruments) and filtered at 1-3kHz. Recordings were digitized using a Molecular 

Devices 1440A Digidata A/D converter and stored on a Dell desktop computer running 

pClamp 10.0. Basal synaptic transmission was assessed by examining the input/output 

relationship in the CA1 and CA3 hippocampal subfields. In CA1, fEPSPs were evoked 

by stimulating the Schaffer collateral afferent fibers with bipolar electrodes, while 

fEPSPs in CA3 were evoked by stimulating the mossy fibers. Input/output curves were 

generated in aCSF by increasing the stimulation intensity (from 0 to 1.0 mA) and 

measuring the fEPSP slope (mV/ms) as a function of stimulus intensity (mA). 

Spontaneous, synchronous activity was induced by exchanging the normal aCSF 

perfusion with aCSF which contained 0 mmol/L Mg2+ and elevated (10 mmol/L) K+. The 

number of synchronous events, the latency from the time of exchange until the first 

spontaneous high-frequency burst, the duration of the synchronous activity, the peak 

amplitude of high-frequency bursts, and the inter-event interval were recorded.  

 

3.3.5 Statistical analysis 

All recordings were analyzed off-line using Clampfit 10.4 (Axon Instruments). 

Sample size refers to the number of mice in the experiment, with 2-5 slices averaged 

per mouse. All statistical tests, including repeated measures ANOVA with Tukey’s post-

hoc comparison and log-rank (Mantel-Cox) tests, were performed in GraphPad Prism, 

version 7.0 (GraphPad Software, La Jolla, CA, USA), and a significance criterion of p < 

0.05 was adopted. Log-rank (Mantel-Cox) statistical tests were performed on data 

presented in Kaplan-Meirer plots in order to account for mice that did not generalize and 
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develop synchronous activity during the experimental window. All other data is 

presented as the mean ± SEM. 

 

3.4 Results 

3.4.1 Both Nsp and tPA are highly expressed in the hippocampus in neurons and 

vascular- or vascular-associated cells 

Previous in situ mRNA hybridization and immunohistochemical analysis has 

shown that both Nsp and tPA are highly expressed in neurons and vascular- or 

vascular-associated cells in the hippocampus (Hastings et al., 1997; Krueger et al., 

1997; Yu et al., 2001; Teesalu et al., 2004; Fredriksson et al., 2015; Stevenson and 

Lawrence, 2018). In an effort to take advantage of the recent technological 

developments in immunofluorescence microscopy and employ those advancements to 

visualizing Nsp and tPA protein expression in the murine brain, two BAC transgenic 

mouse lines with DsRED and Cerulean fluorescent tags on Nsp and tPA, respectively, 

were generated. The generation and expression pattern of tPA protein in the tPABAC-Cer 

transgenic mouse is described in Chapter 2 (Stevenson and Lawrence, 2018). We 

report here for the first time on the NspBAC-DsRED transgenic mice. A schematic 

diagram of the recombineering strategy used to insert the Exon 9-DsRED-Exon 9 

construct into the BAC that houses the Serpini1 locus is illustrated in Figure 3.1 A. 

ELISA analysis of brain homogenates from NspBAC-DsRED (lines 519 and 552) 

transgene positive and transgene negative mice demonstrate increased murine Nsp 

(mNsp) protein expression, suggestive of increased copy number of the Serpini1 gene 

(Figure 3.1 B). Representative western blot analysis of brain homogenates from NspBAC-
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DsRED line 552 demonstrates endogenous Nsp protein (~ 49 kDa) and Nsp-DsRED at 

a higher molecular weight (~ 75 kDA) due to the added mass of the DsRED protein (25 

kDa) (Figure 3.1 C). 

Immunofluorescence microscopic analysis of hippocampal section from NspBAC-

DsRED transgenic mice show that the Nsp protein fused with a DsRED fluorescent tag 

is appropriately targeted and appears to faithfully recapitulate previously reported 

endogenous expression patterns of Nsp in the adult murine brain (Hastings et al., 1997). 

In the hippocampus Nsp-DsRED is noticeable in hilar cells, CA1-CA3 pyramidal 

neurons, and in scattered, diffusely populated neurons of stratum radiatum and stratum 

oriens (Figure 3.2 and 3.3). In contrast, tPA-Cer is most highly expressed in the mossy 

fiber pathway in the hilus and stratum lucidum layer and, with antibody amplification, 

scattered somatostatin (SST) tPA-positive cell bodies are noticeable in stratum oriens 

(Figure 3.2 and 3.3). Both Nsp-DsRED and tPA-Cer, however, are present in vessel-

associated cells, while tPA is also expressed by endothelial cells (Figure 3.2). These 

data show that Nsp and tPA are expressed in neurons, but also in vessel-associated 

cells. Therefore, it is unclear from the immunofluorescence localization of Nsp and tPA if 

the behavioral seizure phenotype exhibited by Nsp-/- (“seizure prone”) and tPA-/- 

(“seizure resistant”) mice is a direct result of the role that Nsp and tPA have on synaptic 

transmission or an indirect result of their role in regulating BBB permeability and 

extracellular homeostasis. 

 

3.4.2 Mice deficient in Nsp, but not tPA, exhibit enhanced synaptic transmission in the 

hippocampal CA1 region 
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To begin to address the role of Nsp and tPA in regulating seizure progression, an 

electrophysiological approach was taken whereby synchronous (or “seizure-like”) 

activity was induced in ex vivo brain slices from wild-type, tPA-/-, and Nsp-/- mice. 

However, prior to measuring synchronous activity, basal synaptic transmission was 

assessed in the CA1 and CA3 region of the hippocampus. Schematic illustration of an 

ex vivo coronal hippocampal slice preparation for assessing basal synaptic transmission 

in the Schaffer collateral pathway of the CA1 region is presented in Figure 3.4 A. 

Representative traces of fEPSPs from stimulation of the Schaffer collateral-to-CA1 

pyramidal neuron pathway illustrating the various aspects of CA1 synaptic transmission 

that can determine the shape of the curve is shown in Figure 3.4 B.  Basal synaptic 

transmission was assessed in wild-type, Nsp-/-, and tPA-/- mice by examining the 

input/output (I/O) curves (Figure 3.5). With increasing stimulation intensity of the 

Schaffer collateral pathway there is a corresponding increase in the slope and 

amplitude of the fEPSP in CA1 pyramidal neurons. Overlays of representative traces of 

the fEPSPs and the I/O curve illustrate this reciprocal relationship (Figure 3.5). The 

slope of the fEPSP, rather than the amplitude, was chosen as a measure of post-

synaptic strength as negative feedback can sometimes dampen the amplitude. A 

repeated measures two-way ANOVA with a Tukey’s post-hoc multiple comparison 

revealed that the slopes of the field potentials increased with Schaffer collateral stimulus 

intensity (F(10,250) = 254, p < 0.0001) and that synaptic transmission in brain slices from 

Nsp-/- mice is significantly different from wild-type (p < 0.0001) and tPA-/- mice (p = 

0.0053), but that the slope of the fEPSPs from tPA-/- mice is not significantly different 

from wild-type mice (p = 0.7148). 



163 
 

 

3.4.3 Mice deficient in either Nsp or tPA display deficits in basal synaptic transmission in 

the hippocampal CA3 region 

Schematic illustration of an ex vivo coronal hippocampal slice preparation for 

assessing basal synaptic transmission in the mossy fiber-to-CA3 pathway is presented 

in Figure 3.4 C. Representative trace of a fEPSP from stimulation of the Mossy fiber-to-

CA3 pyramidal neuron pathway illustrating the various aspects of CA3 synaptic 

transmission that can determine the shape of the curve is shown in Figure 3.4 D.  

Similar to the CA1 region, basal synaptic transmission was assessed by examining the 

I/O relationship (Figure 3.6). As with the Schaffer collateral pathway there is a 

corresponding increase in the slope of the fEPSP with incremental increases in 

stimulation intensity. Compiled representative traces from wild-type, Nsp-/-, and tPA-/- 

overlaid from the fEPSPs at different stimulus intensities and the plotted I/O curve are 

shown in Figure 3.3. A repeated measures two-way ANOVA revealed that the slopes of 

the field potentials increased in mossy fiber stimulus intensity (F(10,230) = 220.1, p < 

0.0001). In contrast to the I/O curve from the CA1 region where brains slices from Nsp-/- 

mice exhibited enhanced synaptic transmission, a Tukey’s post-hoc multiple 

comparison showed significant deficits in synaptic transmission between wild-type and 

Nsp-/- mice (p = 0.0002). Significant differences were also found in synaptic 

transmission between wild-type and tPA-/- mice (p = 0.0161), but not Nsp-/- and tPA-/- 

mice (p = 0.2695). 
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3.4.4 Ex vivo synchronous activity onset times in tPA-/- and Nsp-/- mice do not 

phenocopy in vivo seizure onset time 

Despite significant differences in synaptic transmission between wild-type and 

Nsp-/- and Nsp-/- mice and tPA-/- mice, it was unclear if those differences would affect the 

progression of synchronous activity in an ex vivo model of seizures. Moreover, we 

wanted to test the hypothesis that if the in vivo seizure phenotype in wildtype, tPA-/-, and 

Nsp-/- mice is related to the BBB, then in an ex vivo slice preparation there should be no 

phenotypic difference between these mice. To test our hypothesis, slices were bathed in 

no Mg2+/high K+ aCSF to generate synchronized population bursts (Figure 3.7 and 3.8). 

This method, which enhances conductance of NMDA receptors and lowers the neuronal 

firing threshold, is a well-established in vitro correlate of in vivo seizures (Mody et al., 

1987; Stanton et al., 1987; Zhang et al., 2012).  

Mice deficient in tPA-/- have been consistently found, in different seizure models, 

to have a delayed behavior seizure onset time (Tsirka et al., 1995; Yepes et al., 2002; 

Pawlak et al., 2005; Fredriksson et al., 2015). In addition, wild-type mice and rats 

treated with Nsp and following intra-amgydala injections of kainic acid (KA) have been 

shown to have delayed seizure progression (Yepes et al., 2002), while Nsp-/- mice have 

an enhanced behavioral seizure onset time (Fredriksson et al., 2015).  

In vivo electroencephalogram (EEG) analysis using an inter-hippocampal depth 

electrode revealed seizure onset times in wild-type, Nsp-/-, and tPA-/- mice to correlate 

with their reported behavioral phenotype (Figure 3.9 A). As evidenced by the median 

time to seizure onset for each respective genotype, Nsp-/- mice (t = 39 min) progressed 

the quickest followed by wild-type mice (t = 65) and then tPA-/- mice (t = 100 min). Data 
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are presented as Kaplan-Meier plots and a log-rank (Mantel-Cox) statistical test was 

used to compare the distributions of wild-type (n = 7), Nsp-/- (n = 5), and tPA-/- (n = 5) 

mice. Statistically significant differences were found between wild-type mice and Nsp-/- 

mice (p = 0.0276), wild-type and tPA-/- mice (p = 0.0450), and Nsp-/- mice and tPA-/- 

mice (p = 0.0027). 

 In contrast, in the ex vivo “seizure-like” model, when perfused with the no 

Mg2+/high K+ aCSF solution, brain slices from tPA-/- mice developed synchronous 

activity the quickest (t = 14), while brain slices from Nsp-/- mice were delayed in their 

synchronous activity onset times (t = 17) (Figure 3.9 B). The synchronous activity onset 

time for wild-type mice (t = 15) was in-between tPA-/- and Nsp-/- mice. A log-rank (Mantel 

Cox) statistical test found no significant difference between wild-type and Nsp-/- mice (p 

= 0.0572) or wild-type and tPA-/- mice (p = 0.2829), but a significant difference between 

Nsp-/- and tPA-/- mice (p = 0.0039). Previously, we reported there to be a statistically 

significant difference in synchronous activity onset time between wild-type and tPA-/- 

mice (Fredriksson et al., 2015). However, since that publication by Fredriksson et al. in 

2015 we have increased our sample size for wild-type (n = 16), Nsp-/- (n = 14), and tPA-

/- (n = 11) mice and now find no significant difference. These data demonstrate that the 

in vivo seizure phenotype observed in Nsp-/- and tPA-/- mice is not preserved in an ex 

vivo “seizure-like” model of synchronous activity. Moreover, the ex vivo “seizure-like” 

phenotype in Nsp-/- and tPA-/- mice is opposed to their in vivo seizure phenotype, 

suggesting that dysregulation of tPA activity at the BBB might be causal for the 

differences observed  in the in vivo seizure phenotype between Nsp-/- and tPA-/- mice 
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 To validate that our no Mg2+/high K+ model is an ex vivo correlate of in vivo 

seizures, we induced synchronous activity in Scn1b-/- mice as a positive control (Figure 

3.9 C). Scn1b-/- mice are deficient in the SCN1B gene, which encodes the voltage-gated 

sodium channel β1 subunit and plays and important in modulating neuronal excitability. 

Scn1b-/- mice display a severe neurological pathology that includes ataxia, spontaneous 

seizures by post-natal day 10, and premature death (Chen et al., 2004). Indeed, 

following perfusion of no Mg2+/high K+ aCSF, Scn1b-/- mice (t = 12.2) developed 

synchronous activity at earlier time-points that their wild-type (t = 14.0) littermate 

controls. Statistical analysis using the log-rank (Mantel Cox) test revealed a significant 

difference between the genotypes (p = 0.0024). These data suggest that our ex vivo no 

Mg2+/high K+ model is able to recapitulate the in vivo seizure phenotype. Given that the 

synchronous activity onset times from the brain slices of Nsp-/- mice and tPA-/- mice did 

not phenocopy the behavioral or EEG seizure induction times of Nsp-/- and tPA-/- mice in 

vivo, it reasons that Nsp and tPA are likely not acting to alter neuronal excitability and 

cause the phenotypic differences observed between these mice during seizure 

progression. 

 

3.4.5 Ex vivo model of synchronous activity reveals hyperexcitable state in brain slices 

from tPA-/- mice, but a quiescent state in brain slices from Nsp-/- mice 

In addition to examining the onset time of synchronous activity, we measured 

other parameters that might indicate if brain slices from Nsp-/- and tPA-/- mice are in a 

more hyperexcitable or quiescent state (Figure 3.10). For the temporal-related 

parameters that we measured – average frequency (events/min) and average inter-
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event interval – wild-type, Nsp-/-, and tPA-/- mice segregated according to their 

synchronous activity onset time (Figure 3.10 A and 3.10 B). Brain slices from Nsp-/- mice 

exhibited a more quiescent state; they had a slower frequency of events and a longer 

interval between events compared to wild-type and tPA-/- mice. In contrast, brain slices 

from tPA-/- mice exhibited a more hyperexcitable state; they had a faster frequency of 

events and a shorter interval between events compared to wild-type and Nsp-/- mice.  

A one-way ANOVA revealed a statistical difference between genotypes (F(2,38) = 

8.802, p = 0.0020), with a Tukey’s post-hoc multiple comparison showing a significant 

difference in the average frequency between wild-type and tPA-/- mice (p = 0.0304) and 

Nsp-/- and tPA-/- (p = 0.0015), but no significant difference between wild-type and Nsp-/- 

mice (p = 0.3827). Statistical analysis of the inter-event interval by one-way ANOVA 

also found a difference between genotypes (F(2,38) = 3.819, p= 0.0308), but a Tukey’s 

post-hoc multiple comparison only showed a significant difference between Nsp-/- and 

tPA-/- mice (p = 0.0305) and no difference between wild-type and Nsp-/- mice (p = 

0.1346) and wild-type and tPA-/- mice (p = 0.6492). For both of these “seizure-like” 

parameters, though, the trend was for brain slices from Nsp-/- mice and tPA-/- to have 

divergent phenotypes, with Nsp-/- mice having a more quiescent phenotype and tPA-/- 

mice have a more hyperexcitable phenotype. Importantly, as with their synchronous 

activity onset times, when looking at average frequency of events and average inter-

event interval, brain slices from Nsp-/- and tPA-/- mice exhibited an ex vivo “seizure-like” 

phenotype that differed from their in vivo seizure phenotype. 

 The average peak amplitude, however, did not show a similar trend to the 

temporal-related parameters (Figure 3.10 C). Rather than segregating in opposite 
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directions, synchronous events from Nsp-/- and tPA-/- mice both displayed peak 

amplitudes that were smaller than wild-type mice. A one-way ANOVA revealed a 

statistical difference between genotypes (F(2,38) = 6.898, p = 0.0028), with a Tukey’s 

post-hoc multiple comparison showing a significant difference between wild-type and 

Nsp-/- mice (p = 0.0047) and wild-type and tPA-/- mice (p = 0.0487), but no difference 

between Nsp-/- and tPA-/- mice (p = 0.9518). 

 

3.5 Discussion 

In the current study we dissected the neuronal component and the BBB 

component to the in vivo seizure phenotype of Nsp-/- and tPA-/- mice using an ex vivo 

“seizure-like” model of synchronous activity. We first demonstrated in newly generated 

NspBAC-DsRED transgenic mice and tPABAC-Cer transgenic mice that Nsp and tPA are 

highly expressed in the hippocampus and that both are localized to neurons and 

vascular or vascular-associated cells. As previously reported, tPA-Cer protein is 

primarily expressed in the mossy fiber pathway of the hilus and stratum lucidum layer 

and in a scattered population of somatostatin (SST)-positive interneurons in stratum 

oriens, stratum pyramidale, and stratum radiatum (Sappino et al., 1993; Salles and 

Strickland, 2002; Louessard et al., 2016) (Stevenson and Lawrence, 2018). Further co-

expression analysis revealed that the population of tPA- and SST-positive interneurons 

in stratum oriens are part of a subset of oriens-lacunosum molecular (O-LM) 

interneurons (Stevenson and Lawrence, 2018). OL-M interneurons have cells bodies 

that reside in stratum oriens and send GABAergic projections to the distal dendritic tuft 

and the proximal dendrites of CA1 pyramidal neurons (Klausberger, 2009). 
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Nsp-DsRED, in contrast, is expressed in hilar cells and in the pyramidal cell layer 

of hippocampal subfields CA1-CA3. These data are in agreement with previous 

immunohistochemical studies examining Nsp protein expression in the adult murine 

brain (Hastings et al., 1997; Teesalu et al., 2004) and demonstrate that the Nsp-DsRED 

fusion protein is appropriately targeted and faithfully recapitulates the endogenous 

expression pattern of Nsp. Interestingly, within the trisynaptic circuitry of the 

hippocampus, Nsp is largely expressed in the post-synaptic target cells of neurons 

expressing tPA. With respect to the mossy fibers of dentate granule cells, tPA is 

expressed in the giant mossy fiber boutons that synapse on the thorny dendritic 

excrescences of Nsp-expressing CA3 pyramidal neurons and hilar cells. And, tPA is 

pre-synaptically expressed in SST-positive OL-M interneurons, whose post-synaptic 

targets are Nsp-expressing CA1 pyramidal neurons.  Nsp-DsRED cell bodies are also 

noticeable in stratum oriens and stratum radiatum, but it is of yet unknown if Nsp and 

tPA are co-expressed in these cells or if they are functionally linked. 

It is also not known if the pre- and post-synaptic pairing of tPA and Nsp, 

respectively, is related to how this protease and protease-inhibitor are functioning. In 

vitro biochemical analysis demonstrates that tPA rapidly and efficiently reacts with Nsp, 

but also that the Nsp/tPA complex is unstable and dissociates within minutes, resulting 

in the complete cleavage of Nsp and release of active tPA (Hastings et al., 1997; 

Barker-Carlson et al., 2002; Makarova et al., 2003). Moreover, both Nsp and the 

Nsp/tPA complex have been shown to be internalized via a low-density lipoprotein 

(LDL) receptor-related protein 1 (LRP1) mediated mechanism in cultured primary 

neurons (Makarova et al., 2003). However, while internalized Nsp is sorted to the 
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lysosome for degradation, the Nsp/tPA complex is not similarly trafficked and 

degradation of the complex is significantly attenuated. It is not clear what purpose the 

internalized Nsp/tPA complex is serving. As LRP1 is reported to function as an 

endocytic signaling receptor (Strickland et al., 2014), it’s possible that the Nsp/tPA 

complex is functioning in that capacity, but further studies are needed to address that 

question. Crossing the NspBAC-DsRED and tPABAC-Cer transgenic mice would help to 

begin to address the subcellular localization and interaction of these two proteins at the 

mossy fiber-to-CA3 synapse and OL-M interneuron-to-CA1 synapse. 

Immunofluorescence analysis of hippocampal sections from NspBAC-DsRED and 

tPABAC-Cer transgenic mice also demonstrated that Nsp and tPA are proximally 

localized to directly act on blood vessels (Fredriksson et al., 2015). Nsp and tPA were 

previously identified in a subset perivascular interneurons that express the vasoactive 

markers SST and vasoactive intestinal peptide (VIP), respectively. In our hands, 

however, we were not able to confirm that tPA and VIP are co-expressed in the same 

interneuron population. It is unclear why we were not able to replicate the 

immunofluorescence co-expression studies by Fredriksson and colleagues (2015). 

Nonetheless, in tPABAC-Cer transgenic mice we do find both vascular and perivascular 

tPA protein, and in the NspBAC-DsRED mice there is a population of DsRED-positive 

perivascular cells that are as yet still unidentified. Cumulatively, these 

immunofluorescence data indicate that both Nsp and tPA are proximally localized to 

influence neuronal excitability and/or BBB permeability and effectuate the observed 

phenotypic differences in seizure severity in Nsp-/- and tPA-/- mice. 
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As the immunofluorescence data is inconclusive, we took a more physiological 

functional approach to dissect the neuronal and/or BBB component to the in vivo 

seizure phenotype in Nsp-/- and tPA-/- mice. Prior to examining the ex vivo “seizure-like” 

synchronous activity in brain slice from wild-type, Nsp-/-, and tPA-/- mice, however, we 

wanted to test slice health and to assess whether there were any differences in basal 

synaptic transmission between the genotypes. Interestingly, we found that there were 

significant differences in synaptic efficacy in CA1 between wild-type and Nsp-/- mice and 

Nsp-/- and tPA-/- mice. In the Schaffer collateral-to-CA1 pathway Nsp-/- mice exhibited 

enhanced basal synaptic transmission, while the I/O curves were not statistically 

different between wild-type and tPA-/- mice.  

Though there was no statistical difference in synaptic transmission between wild-

type and tPA-/- mice, the shape of the I/O curve from tPA-/- mice appears to plateau at 

higher stimulus intensities. It’s possible that in the tPA-/- mice there are fewer fibers to 

recruit, resulting in fewer synapses and a diminished fEPSP slope, though further 

experiments would need to be done to investigate whether this plateau is significant and, 

if so, if a pre- or post-synaptic mechanism is responsible. With respect to the significant 

difference in basal synaptic transmission between wild-type and Nsp-/- mice, it is not 

clear if the enhanced synaptic efficacy in Nsp-/- mice is due to some direct effect of Nsp 

or some indirect effect from loss of inhibition over tPA activity. For, transgenic mice that 

overexpress tPA have been reported to have an increase in paired-pulse facilitation in 

the Schaffer collateral-to-CA1 pathway in stratum radiatum. However, when paired-

pulse facilitation was examined in the Schaffer collateral pathway of Nsp-/- mice, 

compared to wild-type controls, no significant difference was observed (Reumann et al., 
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2017). Therefore, further studies need to be done to reconcile Nsp’s reported effects in 

synaptic transmission and synaptic plasticity studies, especially as a small sample size 

(6 slices from 3 wild-type mice and 7 slices from 3 Nsp-/- mice ) was used in the paired-

pulse experiments with Nsp deficient mice. 

Previously, Frey et al. (1996) reported tPA-/- mice to be under enhanced 

GABAergic transmission in the hippocampal CA1 region. When assessing synaptic 

transmission in the Schaffer collateral-to-CA1 pathway, Frey et al. (1996) found that a 

larger EPSP was needed to evoke a pop-spike of similar magnitude in the tPA-/- mice. In 

addition, compared to wild-type mice, tPA-/- mice were reported to have a significantly 

reduced paired-pulse facilitation of the second pop-spike. When GABAergic 

transmission was blocked with the GABAA blocker bicuculine, however, the pop-spike in 

tPA-/- mice showed a significant increase in facilitation. As we did not examine all the 

same parameters as Frey et al. (1996) it is unclear if our data does not agree. However, 

it is important to note that the genetic background of the tPA-/- mice and control mice 

used by Frey and colleagues was not reported. Therefore, it is not known if the 

differences in basal synaptic transmission between our experiments and those by Frey 

et al. (1996) are biologically related to tPA, experimental, or due to some strain 

modifying genes. 

We also assessed synaptic transmission in the mossy fiber-to-CA3 pathway prior 

to inducing synchronous activity with our no Mg2+/high K+ aCSF solution. In contrast to 

the CA1 region, both Nsp-/- and tPA-/- exhibited decreased synaptic efficacy in the 

mossy fiber-to-CA3 pathway. Nsp-/- and tPA-/- mice were not significantly different from 

each other though. As the I/O curves from Nsp-/- and tPA-/- mice did not oppose one 
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another, it is unclear if the loss of tPA regulation and loss of tPA activity acutely affect 

basal synaptic transmission or if there is some confounding developmental factor 

contributing to decreased synaptic efficacy in both the Nsp-/- and tPA-/- mice. 

Interestingly, similar to the I/O curve in the CA1 region of stratum radiatum, there is a 

plateau in the I/O curve at higher stimulus intensities in brain slices from tPA-/- mice. 

Again, this plateau could be the result of fewer fibers, but further experiments are 

needed to elucidate the pre- or post-synaptic mechanism for the decreased slope of the 

fEPSP at higher stimulus intensities. 

Despite significant differences between wild-type and Nsp-/- mice and wild-type 

and tPA-/- in basal synaptic transmission, it was unclear if these differences would affect 

the development of synchronous activity in our ex vivo no Mg2+/high K+ model. As there 

were significant differences between Nsp-/- and tPA-/- mice in all the temporal “seizure-

like” parameters we measured while brain slices were being perfused with the no 

Mg2+/high K+ solution, basal synaptic transmission doesn’t appear to correlate with the 

propensity for a brain slice to develop synchronous activity. The decreased peak 

amplitudes in brain slices from both Nsp-/- and tPA-/- mice, however, did correlate with 

their deficits in basal synaptic transmission in the mossy fiber-to-CA3 pyramidal cell 

pathway. Therefore, while synaptic efficacy might not indicate anything about onset to 

synchronous activity, it might be indicative of the peak amplitude of synchronous events. 

Importantly, though, the ex vivo “seizure-like” phenotype in brain slices Nsp-/- and 

tPA-/- mice was opposed to their in vivo behavioral and EEG seizure phenotype. Indeed, 

in the temporal “seizure-like” parameters we assessed tPA-/- mice appeared to be in a 

more hyperexcitable state, while Nsp-/- mice appeared to be in a more quiescent state. 
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We validated that our ex vivo model was able to detect phenotypic differences in in vivo 

seizure behavior using the Scn1b-/- transgenic mice that develop spontaneous seizures 

around post-natal day P10 (Chen et al., 2004). These data strongly indicate that the in 

vivo seizure phenotype observed in Nsp-/- and tPA-/- mice is not related to the role Nsp 

and/or tPA may be having on neuronal excitability. 

Rather, in conjunction with our data demonstrating a correlation between BBB 

permeability and seizure severity in Nsp-/- and tPA-/- mice (Fredriksson et al., 2015), the 

lack of an ex vivo “seizure-like” phenotype suggests that there is a significant BBB 

component to seizure progression in Nsp-/- and tPA-/- mice. Indeed, using a combination 

of in vitro and in vivo approaches, we have demonstrated that tPA’s actions on the BBB 

appear to be mediated through tPA-catalzyed activation of latent platelet-derived growth 

factor-CC (PDGF-CC) and subsequent binding of active PDGF-CC to its receptor, 

PDGFRα, a tyrosine kinase receptor (Fredriksson et al., 2004; Su et al., 2008). 

Immunohistochemical analysis has shown that tPA, Nsp, PDGF-CC, and the PDGFRα 

are expressed by perivascular cells (Su et al., 2008; Fredriksson et al., 2015), with the 

α-receptor being specifically localized to astrocytes (Su et al., 2017). 

With pharmacologic and genetic blockade of the PDGFRα activation we further 

demonstrated the importance of the tPA/PDGF-CC/PDGFRα signaling cascade in 

regulating BBB permeability and seizure (Fredriksson et al., 2015). Conditional ablation 

of the PDGFRα in perivascular astrocytes significantly delayed time to seizure 

generalization. And, consistent with tPA being an upstream activator of PDGFRα 

signaling, treatment with the tyrosine kinase inhibitor Imatinib had no effect on seizure 

onset or generalization in tPA-/- mice, but it significantly delayed seizure progression in 
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Nsp-/- and wild-type mice. Together, these data results strongly support a mechanism 

whereby activation of the tPA/PDGF-C/PDGFRα signaling pathway induces opening of 

the BBB and contributes to seizure progression. 
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Figure 3.1 
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Figure 3.1. Generation of NspBAC–DsRED transgenic reporter mice and protein 
expression analysis. (A) Diagram of the BAC recombineering strategy used to insert 
the fluorescent DsRED gene. Before pronuclear injection, the kanamycin cassette was 
removed by Flp recombinase. (B) An ELISA assay was performed to quantify the 
concentration of mNsp (ng/mg) in the NspBAC–DsRED founder mice, lines 519 and 552. 
Brains from transgene positive and transgene negative adult mice of lines 519 and 552 
were harvested and homogenized for detection by ELISA. Increased levels of mNsp in 
both lines demonstrate the presence and insertion of at least one copy of the Nsp-
DsRED BAC into the mouse genome. Data is presented as the mean. (C) Western blot 
of brain homogenates from NspBAC-DsRED line 552 were probed for murine Nsp (mNsp; 
2µg/mL). Purified recombinant mNsp (1 ng) was run as a positive control for 
endogenous Nsp (~45kDa) and a brain homogenate sample from a Nsp-/- mouse was 
run as a negative control.  The ~75kDa band for transgene positive mice reflects the 
added molecular weight of the DsRED tag (~25kDa). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



182 
 

 
Figure 3.2 
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Figure 3.2. Nsp and tPA are both highly expressed in neurons and vascular or 
vascular-associated cells in the hippocampus. Representative widefield (4x) 
immunofluorescent hippocampal images from NspBAC–DsRED (A – C) and tPABAC-Cer 
(D – F) transgenic mice. tPA-Cer signal has been pseudocolored red. (A - C) Intense 
Nsp-DsRED signal was detected in the hippocampus of transgene positive NspBAC–
DsRED mice, specifically in the CA1-CA3 pyramidal cell layer, in the hilus, and near 
blood vessels. To enhance the DsRED signal, an anti-RFP primary antibody was used. 
(D – F) Cerulean signal in tPABAC-Cer transgenic mice is prominently seen in the mossy 
fiber pathway in the hilus and stratum lucidum layer, and in blood vessels.  To enhance 
the Cer signal, an anti-mtPA primary antibody was used. tPA-Cer signal has been 
pseudocolored red. (C, F) White, dotted boxes outlining blood vessels in the 
hippocampal fissure of NspBAC-DsRED and tPABAC-Cer transgenic mice are shown in 
magnification in panels G (20x) and H (40x). Blood vessels in panel G are stained for 
the endothelial cell marker Podocalyxin (green), while blood vessels in panel H are 
stained or the endothelial cell marker CD-31 (green). (G) Nsp-DsRED signal is apparent 
in perivascular cells (open arrows), while scattered Nsp-DsRED positive cells are also 
present in stratum radiatum (closed arrows). (H) tPA-Cer signal is apparent in the 
endothelial cell compartment (arrowheads) and in cells surrounding blood vessels (open 
arrows). All nuclei were visualized with the nuclear stain DAPI. Abbreviations: SLu – 
stratum lucidum; Hi – hilus; DG – dentate gyrus; SR – stratum radiatum; SO – stratum 
oriens.  Scale bars: A - F, 500 µm; G, 50 µm; H, 25 µm.  
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Figure 3.3 
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Figure 3.4. Expression pattern of Nsp and tPA in the hippocampus of adult 
murine mice. Representative immunofluorescent images (20x) from NspBAC–DsRED (A 
– I) and tPABAC-Cer (J – L) transgenic mice. Nsp (red) is localized to cell bodies in the 
hilus (A – C), CA3 pyramidal cell layer (D – F), CA1 pyramidal cell layer (G – I), and in 
scattered cell bodies in stratum radiatum and stratum oriens (F – I). As previously 
reported, tPA-positive cell bodies (red) are present in stratum oriens (J – L) and 
represent a sub-population of interneurons that are somatostatin (SST)-positive (green) 
and belong to a family of oriens-lacunosum molecular (OL-M) interneurons.  tPA-Cer 
signal has been pseudocolored red. All nuclei were visualized with the nuclear stain 
DAPI. Abbreviations: SLu – stratum lucidum; Hi – hilus; DG – dentate gyrus; SR – 
stratum radiatum; SP – stratum pyrmidale; SO – stratum oriens.  Scale bars: A – L, 25 
µm.  
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Figure 3.4 
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Figure 3.4. Electrophysiological field potential recording configuration for 
measuring synaptic transmission and synchronous activity in the CA1 and CA3 
regions of the hippocampus. (A) Evoked responses from CA1 and (C) CA3 
hippocampal subfields in standard artificial cerebral spinal fluid (aCSF) were used to 
generate input/output (I/O) curves as a measure of normal basal synaptic transmission. 
(A,B) For CA1 synaptic transmission recordings, Schaffer collateral axons in stratum 
radiatum are stimulated using a bipolar electrode to evoke a excitatory post-synaptic 
response in the CA1 pyramidal neurons, which is recorded by an electrode in stratum 
radiatum as the field excitatory post-synaptic potential (fEPSP). When recording, it is 
common to detect a stimulus artifact and the fiber volley, which represents the action 
potentials generated from the Schaffer collaterals. If the EPSP is strong enough to 
depolarize the CA1 neurons to threshold, it is also possible to detect a population spike 
(“pop-spike”), which is due to the action potentials from CA1 neurons. (C, D) A similar 
recording configuration is used to assess synaptic transmission in CA3. Bipolar 
stimulating electrodes are placed in the mossy fiber pathway and mossy fibers are 
stimulated to evoke an excitatory post-synaptic response in the CA3 pyramidal neurons, 
which is detected by the recording electrode in the stratum oriens layer as a fEPSP.  In 
the CA3 recording configuration it is also possible to detect fiber volleys – or actions 
potentials from the mossy fibers.  
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Figure 3.5 
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Figure 3.5. Brain slices from Nsp-/- mice, but not tPA-/- mice, demonstrate 
enhanced synaptic efficacy compared to wild-type mice in the CA1 hippocampal 
subfield. (A) Compiled, representative traces of field excitatory post-synaptic potentials 
(fEPSPs) from the hippocampal stratum radiatum lamina of wild-type, Nsp-/-, and tPA-/- 
mice. (B) Input/output curve of fEPSP slope (mV/ms) plotted as a function of increasing 
stimulus intensity, from 0 to 1.0 mA in 0.1 mA increments. Basal synaptic transmission 
was significantly different in brain slices from Nsp-/- mice (38 slices from 11 mice) 
compared to wild-type mice (32 slices from 11 mice) and tPA-/- mice (17 slices from 6 
mice), but not between wild-type and tPA-/- mice. Brain slices from all mice displayed 
significant increases in the slope of the fEPSP with increasing stimulus intensity. Data 
are presented as mean ± SEM. * p < 0.05. 
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Figure 3.6 
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Figure 3.6. Brain slices from both Nsp-/- and tPA-/- mice exhibit decreased synaptic 
efficacy compared to brain slices from wild-type mice in the CA3 hippocampal 
subfield. (A) Compiled, representative traces of field excitatory post-synaptic potentials 
(fEPSPs) from the hippocampal stratum oriens lamina of wild-type, Nsp-/-, and tPA-/- 
mice. (B) Input/output curve of fEPSP slope (mV/ms) plotted as a function of increasing 
stimulus intensity, from 0 to 1.0 mA in 0.1 mA increments. Basal synaptic transmission 
was significantly different in brain slices from wild-type mice (30 slices from 9 mice) 
compared to Nsp-/- mice (28 slices from 9 mice) and tPA-/- mice (25 slices from 8 mice), 
but not between Nsp-/- and tPA-/- mice. Brain slices from all mice displayed significant 
increases in the slope of the fEPSP with increasing stimulus intensity. Data are 
presented as mean ± SEM. * p < 0.05. 
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Figure 3.7 
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Figure 3.7. Representative trace of an electrophysiological field potential 
recording used to assess synchronous activity in the CA3 region of hippocampal 
brain slices. Continuous recordings in CA3 were used to measure the baseline field 
potential in standard aCSF and synchronized firing in no Mg2+/high K+ aCSF. Baseline 
field potentials were recorded for 5 min. before the no Mg2+/high K+ solution was 
washed in to the recording chamber.  Synchronous activity was recorded in the no 
Mg2+/high K+ solution for 35 min before standard aCSF was washed back in to the 
chamber. This method, which enhances conductance of NMDA receptors and 
depolarizes the neurons, is a well-established in vitro correlate of in vivo seizures. 
Different parameters, including latency to synchronous activity, duration, number of 
events, peak amplitude, and inter-event interval, were measured to assess the 
hyperexcitable state of brain slices from wild-type, Nsp-/- , and tPA-/- mice.  
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Figure 3.8 
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Figure 3.8. Representative tracings of synchronous activity in no Mg2+/high K+ 
aCSF from the CA3 region of wild-type, Ns-/- and tPA-/- mice. An example of a high-
frequency burst/event is magnified from each trace. Each trace is representative of gap-
free recordings from WT (n = 16), Nsp-/- (n = 14), and tPA-/- (n = 11) mice. Differences in 
onset time to synchronous activity and amplitude are apparent.  
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Figure 3.9 
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Figure 3.9. Ex vivo “seizure-like” activity in brain slices from Nsp-/- and tPA-/- mice 
does not match the in vivo seizure phenotype. Data are presented in Kaplan-Meier 
plots and median time (t = min) to electrographic event is indicated in the figure. (A) An 
inter-hippocampal depth electrode recorded the onset of electroencephalographic 
(EEG) seizure activity following intra-amygdala injections of kainic acid (KA) in wild-type 
(n = 7), Nsp-/- (n = 5), and tPA-/- (n = 5) mice. Electrographic seizure activity develops 
earliest in the Nsp-/- (t = 39 min) and latest in the tPA-/- mice (t = 100 min), while wild-
type mice (t = 65 min) are in-between. Log-rank (Mantel Cox) statistical analysis 
revealed significant differences between wild-type and Nsp-/- mice, wild-type and tPA-/- 
mice, and Nsp-/- and tPA-/- mice. The EEG recordings correlate with the clinical scoring 
of seizure behavior (Fredriksson et al., 2015). (B) Onset to synchronous activity was 
measured from extracellular field potential recordings in the stratrum oriens layer of the 
CA3 region of wild-type (n = 16), Nsp-/- (n = 14), and tPA-/- (n = 11) mice. Synchronous 
activity, or “seizure-like” activity, was induced by exchanging normal aCSF for a no 
Mg2+/high K+ aCSF solution. Log-rank (Mantel Cox) statistical analysis revealed no 
significant differences between wild-type and Nsp-/- mice or wild-type and tPA-/- mice. 
Significant differences, however, were found between Nsp-/- and tPA-/- mice. In contrast 
to the in vivo seizure phenotype, brain slices from tPA-/- mice (t = 14 min) developed 
synchronous activity more quickly than Nsp-/- mice (t = 17 min), while brain slices from 
wild-type mice are in-between (t = 15 min). (C) No Mg2+/high K+ model of synchronous 
activity was validated in a transgenic mouse model (Scn1b-/-) that develops 
spontaneous seizures (Chen et al., 2004). Scn1b-/- mice (n = 4; t = 12 min) develop 
synchronous activity more quickly than their wild-type littermate controls (n = 3; t = 14 
min). * p < 0.05; ns = not significant.  
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Figure 3.10 
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Figure 3.10. No Mg2+/high K+ model of synchronous activity reveal brain slices 
from tPA-/- mice to be in a hyperexcitable state and brain slices from Nsp-/- mice to 
be in a quiescent state. Temporal parameters of synchronous activity, including 
frequency (events/min) and inter-event interval (sec), demonstrate that brain slices from 
Nsp-/- and tPA-/- mice have divergent phenotypes. Brain slices in tPA-/-  mice (n = 11) 
appear to be more hyperexcitable, while brain slices from Nsp-/- mice (n = 14) appear to 
be more quiescent. Wild-type mice (n = 16) have a more intermediate phenotype. (A – 
B) Mice deficient in tPA have a faster frequency of events/min and a shorter inter-event 
interval, while Nsp-/- mice have a slower frequency of events/min and a longer inter-
event interval. (C) Both Nsp-/- and tPA-/- mice, however, have short peak amplitudes 
(mV) than wild-type mice. * p < 0.05 and ** p < 0.005.  
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CHAPTER 4 

Cerebrovascular morphometry and network connectivity characteristics in 

wild-type and tPA-deficient mice: Implications for blood flow regulation and 

pathophysiology 
 
 

4.1 Abstract 

The serine protease tissue-plasminogen activator (tPA), classically known for the 

role that it plays in fibrinolysis, is also expressed on the abluminal side of the 

vasculature in the central nervous system (CNS). Parenchymal brain tPA has been 

implicated in a variety of neuropathological processes, including stroke, seizure 

progression, and traumatic brain injury. In addition to these pathological roles for tPA, a 

physiological one was reported when tPA-/- (Carmeliet-tPA-/-) mice were found to have 

an attenuated functional hyperemia response following whisker-barrel stimulation. 

Recently, however, tPA-/- mice have been shown to harbor “passenger mutations” from 

the original 129/sv embryonic stem (ES) cells flanking the tPA gene and to have 

developmental differences in cerebrovascular and cerebroventricular morphometry and 

molecular composition. 

To understand whether some strain-dependent modifier genes or the observed 

vascular developmental difference associated with tPA deficiency can account for the 

diminished functional hyperemia observed in tPA-/- mice, we performed a detailed 

analysis of the vasculature in wild-type, Carmeliet-tPA-/-, and in the recently established 
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Szabo-tPA-/- mice. The Szabo-tPA-/- mice are a new line of tPA deficient mice that were 

generated using zinc-finger nuclease genome editing on a pure C57BL/6J genetic 

background. Cerebrovascular morphometry and density statistics were gathered from 

each of the three genotypes using SeeDeepBrain (SeeDB) clear brain technology and 

an enhanced vascular visualization method. This approach allowed for a more 

extensive analysis of vascular morphometry – including measurements of correlated 

vessel diameter and length, vascular density, and vertex degree – which is not possible 

with conventional immunofluorescence and microscopy techniques. 

With our more extensive analysis we are able to confirm that Carmeliet-tPA-/- 

mice have a denser capillary bed than both wild-type mice and Szabo-tPA-/- mice, 

however, we did not find any differences in vessel diameter, as was previously reported. 

In our analysis of network connectivity, we also found there to be a significant difference 

between wild-type and Carmeliet-tPA-/- mice in branch vertex degree. Carmeliet-tPA-/- 

mice have fewer vessels that branch with vertex degree 3, but more vessels that branch 

with vertex degree 4. It is not clear if this statistical difference with respect to vertex 

degree has a biological effect. We do find, though, that there is a correlation between 

vascular density and blood flow, since Carmeliet-tPA-/- mice had an elevated basal 

Doppler flux, compared to wild-type and Szabo-tPA-/- mice. Baseline Doppler flux in 

Szabo-tPA-/- mice was not statistically different than wild-type mice 

These data suggest that some strain-dependent genes are responsible for the 

elevated blood flow phenotype in Carmeliet-tPA-/- mice. Furthermore, it raises questions 

about how the cerebrovascular architecture can influence blood flow at rest and in 

response to a neural stimulus. For, if the brains of Carmeliet-tPA-/- mice are already at 
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an elevated level of perfusion, then it’s conceivable that they don’t require the same 

increase in blood flow to meet the metabolic demands of the tissue when there is an 

increase in neural activity. Our results begin to help address these questions by 

providing important vascular statistics on vessel morphometry, density, and connectivity. 

These data are critical for establishing networks to take a statistical modeling approach 

to calculate blood flow at a steady-state and when there is a transient change. 

 

4.2 Introduction 

Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a serine 

protease that is expressed by vascular endothelial cells and is classically known for its 

role in promoting fibrinolysis. However, in contrast to its role in fibrinolysis, in the central 

nervous system (CNS), where tPA is expressed by neurons (See Chapter 2) (Sappino 

et al., 1993; Yu et al., 2001; Salles and Strickland, 2002; Fredriksson et al., 2015; 

Louessard et al., 2016), many in vivo studies using tPA deficient mice (tPA-/-) have 

demonstrated that tPA can have harmful effects in the CNS (Tsirka et al., 1995; Tsirka 

et al., 1996; Tsirka et al., 1997; Rogove and Tsirka, 1998; Wang et al., 1998; Yepes et 

al., 2002; Yepes et al., 2003; Su et al., 2008; Su et al., 2015; Su et al., 2017). In these 

studies, tPA has been shown to promote excitotoxicity, neurodegeneration, and loss of 

blood-brain barrier (BBB) integrity in models of stroke, seizure, and traumatic brain 

injury. Complicating the narrative of tPA primarily being an effector molecule during 

pathological events, however, was a study demonstrating, in vivo, a physiological role 

for tPA in the CNS (Park et al., 2008). Compared to wild-type controls, mice lacking tPA 

(tPA-/-) were shown to have significant deficits in neurovascular coupling (data 
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schematically recreated in Figure 4.1). The diverse and disparate in vivo roles of tPA in 

the CNS have led to two predominant hypotheses: 1) tPA is a pleiotropic mediator with 

compartmentalized actions (Stevenson and Lawrence, 2018), and 2) the functions 

attributed to tPA are an indirect result of tPA’s effects on BBB permeability, and in turn, 

loss of extracellular homeostasis (Fredriksson et al., 2017). 

 Recently, though, two reports have raised questions about studies that used tPA-

/- mice as a model for the effects of acute tPA loss in physiological and pathological 

events (Stefanitsch et al., 2015; Szabo et al., 2016). With new tPA-/- mice, herein called 

Szabo-tPA-/-, that were generated using zinc-finger nuclease technology on a pure 

C57BL/6J background, Szabo et al. (2016) demonstrated that the original tPA-/- mice 

(herein called Carmeliet-tPA-/-) harbor ~20 Mbp of DNA flanking the Plat allele that is 

from the 129/Sv embryonic stem (ES) cell genomic DNA. This ~20 Mbp region of DNA 

contains variants that are potential “passenger mutations” which may affect the 

expression or activity of genes not related to tPA, including genes reported to have 

neurologic function, such as ARHGEF18 (neurite retraction) and MCF2L (formation and 

stabilization of glutamatergic synapses). In a second study, Stefanitsch et al. (2015) 

showed that the Carmeliet-tPA-/- mice have an aberrant cerebrovascular architecture. 

Though no gross anatomical differences in neuronal patterning in brains from adult 

Carmeliet tPA-/- mice had been previously observed (Carmeliet et al., 1994; Frey et al., 

1996; Huang et al., 1996), Stefanitsch et al. (2015) found significant differences in the 

morphology and molecular composition of cerebral vessels from Carmeliet-tPA-/- mice. 

Compared to their wild-type littermate controls, Carmeliet-tPA-/- mice were shown to 

have an increase in small-diameter capillaries (< 10 µm) and a decrease in larger- 
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diameter, smooth muscle-covered (> 15 µm) vessels (Figure 4.2 A and B); enhanced 

expression of ERG (ETS related gene) and ZO-1 (zona occludin-1), a marker of 

vascular integrity and a tight-junction protein, respectively; and decreased expression of 

the PDGFRα, a tyrosine receptor implicated in neurovascular signaling. 

 To determine if 129/Sv “passenger mutations” and/or developmental loss of tPA 

is/are responsible for the aberrant cerebrovascular architecture, a more exhaustive 

analysis of vessel morphometry was undertaken in wild-type mice and in both the 

original Carmeliet-tPA-/- mice and the Szabo-tPA-/- mice. Using an enhanced vascular 

visualization method, coupled with SeeDeepBrain (SeeDB) clearing, we were able to 

sample from an extensive area of the mouse brain and gather statistics on the 

correlated diameter and length distributions, branch density, and branching vertex 

degree. Our results confirm the finding from Stefanitsch et al. (2015) that Carmeliet-tPA-

/- mice have a denser capillary network than wild-type mice. We also extend upon that 

result by showing that this difference in capillary density appears to be due to some 

strain modifying genes as the pure C57BL/6J Szabo-tPA-/- mice were not statistically 

different than wild-type mice. Importantly, we report that the calculated vascular density 

in each of the genotypes appears to correlate with their respective basal cerebral blood 

flow. Carmeliet-tPA-/- mice had a significantly elevated baseline laser speckle intensity 

signal compared to either wild-type or Szabo-tPA-/- mice. 

These data, therefore, will provide important insights into how the 

cerebrovasculature architecture can affect blood flow regulation, which has specific 

implications for the role attributed to tPA in neurovascular coupling (Park et al., 2008), 

but also more general implications for other neurological pathologies, like Alzheimer’s 
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disease, that have been reported to have an altered morphology and 3D architecture 

(Meyer et al., 2008). 

 

4.3 Materials and Methods 

4.3.1 Tomato lectin and gelatin cast  

A modified protocol (Tsai et al., 2009) was used to fluorescently label the 

cerebrovasculature in the murine brain. First, mice were given a 100 µl tail-vein injection 

of either DyLight® 488 Lycopersicon Esculentum (Tomato) Lectin (Vector Laboratories; 

DL-1174) or DyLight® 594 Lycopersicon Esculentum (Tomato) Lectin (Vector 

Laboratories; DL-1177) before isofluorane induction (4%). Prior to injection, the tomato 

lectin dye was dialyzed with PBS to remove the sodium azide preservative. The tomato 

lectin dye circulated for 10 min before the mouse was cardiac-perfused with, in 

sequential order, warmed 0.9% NaCl with Heparin (20 U) for 2 min, 4% 

paraformaldehyde (PFA) for 2 min, and fluorophore-gelatin for 3 min, all at a perfusion 

rate of 7 mL/min.  Following perfusion, the mouse was chilled on a bed of ice for 30 min 

to solidify the gelatin solution; after which, the brain was carefully removed and post-

fixed overnight in 4% PFA. The brain was rinsed in PBS before being coronally 

sectioned into 1 mm slabs and cleared using the SeeDeepBrain (SeeDB) method (Ke et 

al., 2013; Ke and Imai, 2014). 

The fluorophore-gelatin solution contained porcine skin gelatin type A (Sigma; 

G1890) and Albumin-fluorescein isothiocyanate (FITC) conjugate (Sigma; A9771) or 

Dextran-rhodamine B isothiocyanate conjugate (Sigma; R9379) and was prepared by 

bringing a 2% gelatin solution in PBS to a boil before cooling it to 50 °C, at which point 
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Albumin-fluorescein isothiocyanante or Dextran-rhodamine B isothiocyanante was 

added to achieve a final concentration of 0.1% (w/v). The fluorophore-gelatin solution 

was then filtered through filter paper (Whatman; grade 3) pre-moistened with PBS, and 

cooled and maintained at 40°C till perfusion. 

 

4.3.2 SeeDeepBrain “SeeDB” optical clearing 

“SeeDB”, a water-based optical clearing approach, was employed to allow for 

greater depth visualization of the fluorescently-labeled vascular network (Ke et al., 

2013; Ke and Imai, 2014). SeeDB clearing is a non-toxic clearing method that reduces 

light scatter by incrementally changing the aqueous solution of the tissue to a saturated 

fructose solution which has a refractive index of 1.490 and is, therefore, closer to the 

refractive index of fixed tissue. Following PFA fixation and sectioning, 1 mm thick slabs 

of tissue were placed in a 20% fructose solution (w/v; fructose dissolved in distilled 

water) for 4-8 hrs, a 40% fructose solution for 4-8 hrs, a 60% fructose solution for 4-8hrs, 

an 80% fructose solution for 12hrs, a 100% solution for 12 hrs, and finally, in SeeDB for 

24-48hrs. SeeDB is a saturated fructose solution comprised of 20.25 g of fructose in 5 

mL of distilled water. To reduce browning of tissue and autofluorescence, the 20%-

100% fructose solutions contained 0.5% α-thiolglycerol and the SeeDB solution 

contained 2.0% α-thiolglycerol. All incubations were done at room temperature on a 

rotating shaker. 
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4.3.3 Image acquisition, processing, and analysis 

After “SeeDB” clearing, images were acquired using a Leica SP5X 2-Photon 

laser scanning microscope with a Coherent “Chameleon” 2-photon laser (800 nm 

excitation). The SP5X microscope is equipped with an acousto-optical beam splitter 

(AOBS) and hybrid detectors. Emitted light was gathered between 498-600 nm for 

DyLight® 488 /FITC dyes or 604-700 nm for DyLight® 594/Rhodamine B dyes. Images 

(512 pixels x 512 pixels or 1024 pixels x 2014 pixels) were acquired using a dry 10x 

objective or a 20x multi-immersion objective at a scanning rate of 200Hz, with a line 

averaging of 2 per axial position. Z-stacks were collected at 1 µm increments, ranging in 

total thickness from 100 µm (10x) to 250 µm (20x).  Image processing was done using 

the open source image processing package FIJI (Schindelin et al., 2012). A manual 

threshold was set so that all values in the bottom 4% of pixel intensities in the image 

were converted to zero. The threshold was applied evenly across the images and 

equally for all genotypes. Two-photon confocal images are presented as either 

maximum intensity projections or 3D volumetric maximum projections using FIJI’s 3D 

viewer (Schmid et al., 2010). 

The Matlab-based Volumetric Image Data Analysis (VIDA) software program was 

used to generate a centerline mask over the vascular network from which vessel 

diameter, vessel length, and connectivity data was gathered. The VIDA suite was 

developed by the Kleinfeld Lab at the University of California – San Diego and is a 

freely available shared technology. The raw data extracted from the VIDA was further 

processed and analyzed using custom-written Matlab and Mathematica scripts. The 
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Mathematica program was written by Dr. Randy C. Stevenson, an applied physicist 

consulting for the University of Michigan.  

 

4.3.4 Laser speckle contrast imaging 

Laser speckle contrast imaging (LSCI) was used to measure cerebral blood flow 

in the cortical surface of wild-type (n = 10), Carmeliet-tPA-/- (n = 9), and Szabo-tPA-/- (n 

= 9) mice. Mice were anesthetized with chloral hydrate (450 mg/kg) and maintained on 

isoflurane (3%) for the measurements. Flux measurements were gathered using a 

portable Laser Speckle device (MoorFLPI, Moor Instruments) connected to a dell laptop 

computer equipped with real-time data acquisition software (MoorFLPI software version 

2.01, Moor Instruments). In the present study, an image sampling rate of 0.13 Hz with 

an exposure time of 20 ms was used, with the final frame being used for quantification. 

All CBF flux measurements were obtained within a 17.44 mm x 13.4 mm region, but 

four regions of interest (ROIs) from that larger area were selected to quantify flux. The 

four ROIs (~ 1mm2) approximately correspond to the barrel cortex at bregma -0.5 and -

2.0. 

 

4.3.5 Mutant Mice 

For vessel morphometry analysis a mixture of adult (age: 15 to 25 wks) male and 

female Carmeliet-tPA-/- (Carmeliet et al., 1993; Carmeliet et al., 1994) were used. 

Carmeliet-tPA-/- mice have been back-crossed at least 10 generation onto a C57BL/6J 

background. Similarly, a mixture of adult (age: 15 to 21 wks) male and female Szabo-

tPA-/- (Szabo et al., 2016) mice and their wild-type littermate controls were also used for 



209 
 

vessel morphometry analysis. Szabo-tPA-/- mice were generated using zinc-finger 

nuclease technology on a pure C57BL/6J background. For LSCI, age- and sex-matched 

adult (age: 10 to 12 wks) C57BL/6J wild-type, Carmeliet-tPA-/-, and Szabo-tPA-/- male 

were used. All experiments were approved by the Institutional Animal Care and Use 

Committee at the University of Michigan, Ann Arbor, USA and the studies were 

conducted in accordance with the United States Public Health Service’s Policy on 

Humane Care and Use of Laboratory Animals. 

 

4.3.6 Statistical Analysis 

All statistical tests, including one-way ANOVA with Tukey’s post-hoc comparison, 

were performed in GraphPad Prism, version 7.0 (GraphPad Software, La Jolla, CA, 

USA), and a significance criterion of p < 0.05 was adopted. All data are presented as 

the mean ± standard error of the mean (SEM) or mean ± standard deviation (SD), and 

indicated as such in the figure text. Vessel diameter and length data are given out to the 

thousandths place, but given the resolution of the data, the accuracy of the values is 

likely only to the tenths place. Graphs were generated in either GraphPad Prism or 

Mathematica, version 11.0 (Wolfram Research, Champaign, IL, USA). 

 

4.4 Results 

4.4.1 Vessel diameter distributions from the adult murine brain are lognormally 

distributed 

Stefanitsch et al. (2016) published the original observation that Carmeliet-tPA-/- 

mice (n = 5) have more small-diameter capillary-sized vessels (< ~10 µm) and fewer 
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large-diameter (> ~15 µm) arteriole- or artery-sized vessels compared to wild-type 

littermate controls (n = 5). These data were acquired from CD-31 and α-smooth muscle 

actin (ASMA)-stained 50 µm free-float vibratome coronal sections. CD-31 is an 

endothelial cell marker that detects all blood vessels, while ASMA is a mural (smooth 

muscle cells and pericytes) cell marker and detects arterioles and arteries. 

We plotted the raw CD-31 and ASMA vessel diameter distributions from 

Stefanitsch et al. (2016) (the primary data was kindly provided by Dr. Linda Fredriksson 

of the Karolinska Institute, Stockholm Sweden) in separate histograms (Figure 4.2 A 

and B) and noticed that both distributions had a left skew, with Carmeliet-tPA-/- mice 

having an increased number of small-diameter vessels and a decreased number of 

large-diameter vessels compared to wild-type mice. The skewness of the histogram and 

the all-positive nature of the data indicated that vessel diameter may be lognormally 

distributed. Therefore, we replotted the CD-31 and ASMA vessel diameter data from 

both wild-type and Carmeliet-tPA-/- mice as normalized numerical probability densities 

and fit the data to a lognormal distribution (Figure 4.3 A and B) using the non-linear 

fitting function in Mathematica. The lognormal fit parameters for the CD-31 and ASMA 

datasets are given in Table 4.1 and Table 4.2, respectively, as well as the estimated 

mean, mode (peak value), and standard deviation. These quantities were calculated 

from the formulas provided in Table 4.3. For a normal distribution, the mean and the 

mode are the same value; this is only true for the lognormal distribution if the fitting 

parameter σ vanishes, which is a degenerate case. The mean diameter of CD-31-

stained vessels from wild-type mice is 6.140 µm, while Carmeliet-tPA-/- mice have a 

smaller mean vessel diameter of 4.623 µm. Similarly, the mean diameter of ASMA-
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stained vessels from wild-type mice is 21.325 µm, while Carmeliet-tPA-/- mice have a 

smaller mean diameter of 14.334 µm. 

A comparison of different probability distribution functions revealed the lognormal 

distribution to be a good model for the numerical diameter data (Figure 4.4). Compared 

to the normal and Weibull probability distribution functions, the lognormal distribution 

function had the best fit to the numerical diameter data, with a R2 of 0.9876. The R2 

values, fitting parameters, and functional form for the normal, Weibull, and lognormal 

distributions are given in Table 4.4. 

 

4.4.2 Double labeling of vasculature allows for enhanced visualization of small and large 

vessels in the murine brain and quantification of vessel morphometry and network 

connectivity 

The original analysis of vessel morphometry by Stefanitsch et al. (2016) was 

limited in sample size and quantification of different parameters that provide insight into 

vascular architecture and connectivity. Therefore, to gather more informative vessel 

morphometry statistics and sample from a larger volume of tissue we employed 

SeeDeepBrain (SeeDB) clearing, an enhanced vascular visualization method, and 

sophisticated computational programs to analyze the cerebrovasculature in wild-type, 

Carmeliet-tPA-/-, and Szabo-tPA-/- mice. 

A singular vascular labeling approach, using only a tomato-lectin-conjugated 

fluorophore, was initially taken to gather vessel morphometry statistics (Figure 4.5 A 

and C). Tomato-lectin, which is a glycoprotein from the lycopersicon esculentum 

(tomato) plant, intercalates into the endothelial glycocalyx and when conjugated to a 
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fluorophore brightly labels the vasculature. Though this approach is sufficient for 

vascular visualization, it is not adequate for automated quantification of vessel 

morphometry, as the tomato-lectin dye does not fill the vessel lumen; even capillaries of 

~7 µm appeared as “hollow” and the Volumetric Image Data Analysis (VIDA) Matlab-

based software suite detected the endothelial walls separated by the lumen as two 

separate vessels. 

To overcome this experimental obstacle a double labeling approach was taken. 

Using a modified version of the protocol described by Tsai et al. (2009), we labeled the 

vasculature with both a tomato-lectin conjugated fluorophore and a fluorophore-gelatin 

cast. The less viscous tomato-lectin dye efficiently labels the smaller vessels, while the 

more viscous gelatin solution fills the lumen of larger vessels. The enhanced 

visualization of larger vessels is appreciable when comparing the single labeling 

approach (Figure 4.5 A) with the double labeling approach (Figure 4.5 B) in 10x max-

projection images (1476 µm x 1476 µm x 100 µm) of the cortex and dorsal 

hippocampus at bregma -2.0. Magnified 3D volumetric images are shown (Figure 4.5 C, 

D) to more clearly illustrate the difference in labeling approach. 

After implementing this double labeling approach we were able to analyze vessel 

morphometry and network connectivity using the VIDA suite and a custom Mathematica 

program. Two 20x images (738 µm x 738 µm x 250 µm) were acquired from the barrel 

cortex at bregma -0.5 and -2.0 (Figure 4.6 A) in SeeDB-cleared 1 mm thick (see 

Methods and Materials section for full description of SeeDB clearing) coronal slices from 

wild-type, Carmeliet-tPA-/-, and Szabo-tPA-/- mice. The y-direction of the image (738 µm) 

spans from cortical layer 1 to approximately cortical layer 5. A representative 20x 3D 
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volumetric image and a magnified region (200 µm x 200 µm x 100 µm) is shown in 

Figure 4.6 A and B, respectively. The Matlab-based VIDA suite program used to 

process the image and extract vessel statistics is described in detail in Tsai et al. (2009). 

Briefly, a centerline mask comprised of individual vertices is generated over the entire 

3D vascular network (Figure 4.6 C). Each vertex is associated with an XYZ coordinate 

in the 3D volumetric image. The radius of the vessel is extrapolated from the centerline 

at each vertex. The median of radii for all the vertices in a branch was chosen to 

represent the radius of the entire branch. Junction points demarcate branching points 

between vessels (Figure 4.6 D and E). An example volumetric vessel branch comprised 

of 30 bulbar segments between two junction points is shown (Figure 4.6 F). The length 

of the vessel is calculated by measuring the length between two contiguous vertices 

and then summing those segment lengths (Figure 4.6 G). 

 

4.4.3 Vessel diameter and length distributions do not vary between wild-type mice and 

mice deficient in tPA 

In contrast to the vessel diameter distributions from wild-type and Carmeliet-tPA-/- 

mice reported by Stefanitsch et al. (2016), with our more extensive analytical approach 

we did not detect any difference in the mean or the mode of vessel diameter 

distributions. When vessel branch diameters from all samples (n = 8) per genotype were 

aggregated and fit to a lognormal function (Figure 4.7 A), the distributions from all three 

genotypes appeared to overlay one another. The fit parameters for the lognormal 

distribution, mean, mode, and standard deviation are presented in Table 4.5. When the 

mean (Figure 4.7 B) and mode (Figure 4.7 C) from the lognormal fit data for each of the 
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samples (n = 8) was compiled per genotype and a one-way ANOVA was performed, no 

statistical difference was detected (mean: F(2,21) = 0.1137, p = 0.8930; mode: (F(2,21) = 

0.1792, p = 0.8372). These data suggest that the differences between wild-type and 

Carmeliet-tPA-/- mice in mean vessel diameter first reported by Stefanitsch et al. (2016) 

are possibly a result of small sample size (see Discussion). 

With our approach we were also able to gather statistics on vessel length. And, 

similar to the vessel diameter distributions, we did not detect any difference in vessel 

length distributions between wild-type, Carmeliet-tPA-/-, and Szabo-tPA-/- mice. Vessel 

length also appeared to be lognormally distributed, therefore, vessel length distributions 

from all samples (n=8) per genotype were aggregated and fit to a lognormal function 

(Figure 4.8). The lognormal fits to the numerical length data, along with the mean, mode, 

and standard deviation, are presented numerically in Table 4.6. In addition, the mean 

and mode from the lognormal fit data for each of the samples (n = 8) was compiled per 

genotype and a one-way ANOVA was performed. No statistical difference was detected 

in the mean (F(2,21) = 1.906, p = 0.1736) or the mode (F(2,21) = 2.237, p = 0.1316) across 

genotypes, though both the Carmeliet-tPA-/- and the Szabo-tPA-/- mice show a trend 

toward shorter branch lengths. 

 

4.4.4 Joint probability distribution reveals vessel diameter and length to be negatively 

correlated in the barrel cortex of wild-type mice and mice deficient in tPA 

To determine if there exists a correlation between vessel diameter and length, a 

vessel’s diameter and it’s corresponding length were gathered from the VIDA suite 

when analyzing vascular morphometry in wild-type, Carmeliet-tPA-/-, and Szabo-tPA-/- 
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mice. The numerical diameter-length correlated datasets from all samples (n = 8) per 

genotype were aggregated and fit to a joint bivariate lognormal probability density 

function (Figure 4.9). The lognormal fit parameters for diameter and length and the 

correlation coefficients are given in Table 4.7 and the functional form for the joint 

bivariate lognormal distribution is given in Table 4.8. From the joint bivariate lognormal 

distribution for diameter and length we find there to be a weakly negative correlation for 

vessel diameter and length. We observed this correlation for wild-type (ρ = -0.276), 

Carmeliet-tPA-/- (ρ = -0.219), and Szabo-tPA-/- (ρ = -0.252) mice. The negative 

correlation probably results in part from the apparent flow conductance through a blood 

vessel branch. In the mid-19th century, Jean Poiseuille was the first to model steady-

state flow in a cylindrical tube. Poiseuille showed that the flow (𝑄) is linearly related to 

the change in pressure (𝑃) across the length (𝑙) of a tube of radius (𝑟) through the 

conductance (𝐺) by: 

 

𝑄 = 𝐺 𝑃;    𝐺 = (
𝜋 𝑟4

8 𝜇𝑎 𝑙
) , 

 

where 𝜇𝑎 is the apparent viscosity. Thus, our negatively correlated vessel diameter and 

length data are in agreement with the inverse relationship seen for diameter and length 

in the expression for flow conductance. It is unclear what the biological significance is of 

there being a weak negative correlation for vessel diameter and length. To the best of 

our knowledge, though, we are the first to report on the lognormal distribution being a 

good model for cortical capillary vessel diameter and length, and on the weakly negative 

correlation of these two random variables. 
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4.4.5 Capillary density in the barrel cortex is increased in Carmeliet-tPA-/- mice in 

relation to wild-type mice 

Though the techniques employed by Stefanitsch et al. (2016) did not enable 

volumetric vascular density to be quantified, the increased number of small-diameter-

CD-31-stained vessels and small-diameter-ASMA-stained vessels in Carmeliet-tPA-/- 

mice suggested that the Carmeliet-tPA-/- mice had a denser vascular bed. Branch 

number (per mm3), therefore, was calculated from all samples (n = 8) per genotype 

(Figure 4.10) from 20x 3D volumetric images. These images (738 µm x 738 µm x 250 

µm; Δz = 1 µm) comprise approximately cortical layers 1- 5. Our analysis of vascular 

density, therefore, is over multiple cortical layers; we have yet to quantify differences in 

density as a function of cortical depth. From our own preliminary observations, however, 

and from previous reports (Blinder et al., 2013) there does appear to be a correlation 

between the cell density of a cortical layer and the corresponding vascular density of 

that cortical layer. A one-way ANOVA of the average vascular density between 

genotypes revealed a statistical difference (F(2,21) = 4.845, p = 0.0186), with a Tukey’s 

post-hoc multiple comparison showing a significant difference in the mean branch 

density between wild-type and Carmeliet-tPA-/- mice (p = 0.0140), but not wild-type and 

Szabo-tPA-/- mice (p = 0.2990) or Carmeliet-tPA-/- and Szabo-tPA-/- mice (p = 0.2736). 

This increase in vascular density is largely a product of an increase in capillary density, 

as over ~ 98% of the vessels are less than 7 µm (see PDF in Figure 4.7). The difference 

in density is appreciable from 20x 3D volumetric images (738 µm , 738 µm x 250 µm) of 

the barrel cortex in wild-type, Carmeliet-tPA-/-, and Szabo-tPA-/- mice (Figure 4.10). 
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4.4.6 Carmeliet-tPA-/- mice have a different branching pattern than wild-type mice 

An analysis of network connectivity in wild-type, Carmeliet-tPA-/-, and Szabo-tPA-

/- mice revealed Carmeliet-tPA-/- mice to have a different branching pattern. The 

vascular network from each of the samples (n = 8) per genotype was analyzed for 

vessels that branch with a vertex degree 1-5. The network topology graph (Figure 4.11 

E) illustrates the relative connectivity relationship between branches and their 

respective vertex degree in color (1, red; 2, orange; 3, green; 4, blue; 5, purple). Vertex 

degrees of 1, 2 and 5 are largely an artifact of an edge-effect from the image, as seen in 

the network graph with red, orange, and purple circles occupying the periphery. The 

vast majority (~ 95%) of vessels branch with a vertex degree of 3, as indicated by the 

green solid circles. Approximately ~5% of the vessels branch with a vertex degree of 4, 

as indicated by the blue solid circles. Representative magnified images of small-

diameter sized vessels (Figure 4.11 A) and large-diameter sized vessels (Figure 4.11 B) 

demonstrate that vertices of degree 3 (open arrows) and 4 (closed arrows) can be 

observed in both small and large vessels. A one-way ANOVA revealed there to be a 

significant difference among genotypes for branches with vertices of degree 3 (F(2,21) = 

6.374, p = 0.0069) and degree 4 (F(2,21) = 4.297, p = 0.0273). A Tukey’s post-hoc 

multiple comparisons test was performed and significant differences were found 

between wild-type and Carmeliet-tPA-/- mice for vertex degree 3 (p = 0.0054) and 4 (p = 

0.0225) within the same volume of cortical tissue. No significant differences were found 

between wild-type and Szabo-tPA-/- mice (p = 0.0927) or Carmeliet-tPA-/- and Szabo-

tPA-/- (p = 0.3979) mice for vertex degree 3. Similarly, no significant differences were 

found between wild-type and Szabo-tPA-/- mice (p = 0.1808) or Carmeliet-tPA-/- and 
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Szabo-tPA-/- (p = 0.5518) mice for vertex degree 4. It is unclear how, if at all, this 

statistical difference in vertex degree is related to biological function. 

 

4.4.7 Carmeliet-tPA-/- mice, but not Szabo-tPA-/- mice, have an elevated basal level of 

cerebral blood flow in the cortical surface 

To determine if these observed changes in vascular density and connectivity 

might influence cerebral blood flow, laser speckle contrast imaging (LSCI) was used to 

characterize basal blood flow in wild-type (n = 10), Carmeliet-tPA-/- (n = 9), and Szabo-

tPA-/- (n = 9) mice. Four regions of interest (~ 1 mm2) were selected, whose midline was 

around bregma -0.5 and -2.0 and whose medial/lateral orientation ranged from ±1.5 to ± 

2.5, to measure basal blood flow. These anatomical regions approximately correspond 

to the regions that were analyzed for vascular morphometry and density. 

Representative images of basal cerebral blood flow are shown, with Carmeliet-

tPA-/- mice clearly having an elevated signal across the cortical surface (Figure 4.12 A). 

This difference is appreciable in a histogram plot of the basal speckle signal showing 

that wild-type and Szabo-tPA-/- mice have a similar laser speckle distribution and that 

Carmeliet-tPA-/- mice have a rightward shift to higher intensity values (Figure 4.12 B). A 

one-way ANOVA found a significant difference (F(2,25) = 18.96, p < 0.0001) with a 

Tukey’s post-hoc multiple comparisons test revealing a statistically significant difference 

between wild-type and Carmeliet-tPA-/- mice (p < 0.0001) and Carmeliet-tPA-/- and 

Szabo-tPA-/- mice (p < 0.0001), but no statistical difference between wild-type and 

Szabo-tPA-/- mice (p = 0.9949) (Figure 4.12 C). 
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From LSCI it is possible to infer relative spatial and temporal differences in blood 

flow, but not absolute measurements of blood flow velocity (Briers et al., 2013). As such, 

we are not able to make definitive statements about whether a difference in the LSCI 

signal between genotypes is due to a difference in velocity or a difference in density. 

However, given that we do not observe a difference in capillary vessel diameter and 

length distributions between genotypes and given that the LSCIs were acquired under 

comparable physiological conditions, the mean of the velocity distribution is likely to be 

approximately equal. These data, therefore, indicate that there may be a correlation 

between an increase in vascular density and the intensity of the laser speckle signal. 

Indeed, linear regression analysis shows a weak linear relationship (R2 = 0.7724) 

between vascular density and the laser speckle signal (Figure 4.12 D). 

 

4.5 Discussion 

Of particular interest in the original report by Stefanitsch et al. (2016) that 

demonstrated Carmeliet-tPA-/- mice to have an altered cerebrovascular architecture was 

the shift in vessel diameter distributions, with Carmeliet-tPA-/- mice having an increased 

number of smaller-diameter capillaries and a decreased number of larger, smooth-

muscle covered arterioles and arteries compared to wild-type mice. These data 

suggested that Carmeliet-tPA-/- mice have a denser capillary bed. The implications for 

this result were two-fold: 1) it demonstrated that Carmeliet-tPA-/- have a possible 

developmental phenotype and that 2) functions attributed to acute loss of tPA are 

potentially the result of some developmental artifact. Whether the putative 

developmental phenotype is due to constitutive loss of tPA or some other modifying 
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genes is unclear, as another report published soon after showed Carmeliet-tPA-/- mice 

to have “passenger mutations” from the 129/Sv ES cells used to generate the knockout 

mice (Szabo et al., 2016). 

Given that functions attributed to tPA – including BBB regulation, 

neurodegeneration, seizure progression, and neurovascular coupling – were derived 

from studies using the Carmeliet-tPA-/- mice, the observation that Carmeliet-tPA-/- mice 

have increased capillary number is consequential. This is especially true for the 

attenuated functional hyperemia response or the decreased stroke volume seen in 

Carmeliet-tPA-/- mice. It’s plausible, for example, that an elevated baseline level of 

perfusion from a denser capillary bed reduces the need for the same increase in blood 

flow to meet the metabolic demands of the tissue during heightened neural activity. 

Similarly, during stroke, an increased capillary density might help to preserve more 

tissue in the penumbra, resulting in a small infarct volume. We have since induced 

stroke in wild-type and Szabo-tPA-/- mice using a photothrombotic middle cerebral artery 

occlusion model and find that Szabo-tPA-/- mice, like the Carmeliet-tPA-/- mice, have 

smaller infarct volumes (Su and Lawrence, personal communication) Nonetheless, 

given the significance of these confounding interpretations for tPA’s role in 

neurovascular coupling, it was imperative that the results from Stefanitsch et al. (2015) 

be confirmed. 

Accordingly, the data presented in this study both confirm and contradict the 

findings that Stefanitsch et al. (2015) originally published. Consistent with what was 

previously suggested by the Stefanitsch data, we find that the vascular capillary density 

in the barrel cortex of Carmeliet-tPA-/- mice is significantly increased compared to wild-
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type and Szabo-tPA-/- mice. Moreover, while the Szabo-tPA-/- mice had a trend toward 

elevated capillary density, it was not statistically different than wild-type or Carmeliet-

tPA-/- mice. We also find that there is a trend for Carmeliet-tPA-/- mice to have shorter 

capillary vessel lengths, which is in agreement with vessels branching more frequently, 

resulting in an increased density. And, that Carmeliet-tPA-/- mice have significantly fewer 

vessels that branch with vertex degree 3 (~1% decrease), but significantly more vessels 

that branch with vertex degree 4 (~1% increase); though it is unclear if this difference in 

vertex degree is biologically significant. Nonetheless, we find that the increase in 

capillary density appears to correlate to some degree with an elevation in basal cerebral 

blood flow. These data give weight to the possibility that the brains of Carmeliet-tPA-/- 

mice are more highly perfused and might not have the same metabolic demands with 

heightened neuronal activity.   

In contrast to the differences in vessel diameter distributions reported by 

Stefanitsch et al. (2015), however, we did not find any difference in the mean or mode 

of the lognormal fits to the diameter distribution data between wild-type, Carmeliet-tPA-/-, 

and Szabo-tPA-/- mice. This difference between studies is likely due to an error in 

sampling. We analyzed ~20x more vessels. The CD-31-stained vessel diameter 

statistics gathered by Stefanitsch et al. (2015) were from five wild-type and five 

Carmeliet-tPA-/- mice and combined for a total of 1342 and 1518 vessels, respectively; 

on the other hand, we analyzed a total of 22,326 and 28,024 vessels from four wild-type 

and four Carmeliet-tPA-/- mice, respectively (25,222 vessels were analyzed from the 

Szabo-tPA-/- mice). It is not possible for us to comment on the different diameter 

distributions between wild-type and Carmeliet-tPA-/- mice that were reported for larger-
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smooth muscle covered vessels. Our method did not distinguish between arterioles and 

arteries and venuoles and veins. Therefore, a more exhaustive analysis that examines 

the distribution of smooth-muscle covered vessels is still needed. Cumulatively, though, 

these data suggest that there might be an interaction between constitutive loss of tPA 

and some strain-modifying gene leading to differences in vascular density.  

Strain-dependent differences in vascularization have been reported (Chan et al., 

2004; Chalothorn et al., 2007; Ward et al., 2007; Kang et al., 2015). Interestingly, in one 

study, it was reported that in a sub-strain of 129 inbred mice (129S3/SvIM) there was an 

increase in vessel surface area and density compared to C57BL/6J mice. Though there 

is wide genetic variation within the 129 “family” (Simpson et al., 1997) and a direct 

correlation can’t be drawn between the enhanced vascularization reported in the 

corneal limbus of 129S3/SvIM mice and the increased vascular density in the Carmeliet-

tPA-/- mice (which have remnant 129/Sv DNA), this study, in addition to others, 

demonstrates that there are significant differences in vascularization between mouse 

strains that might complicate interpretation of some measured variables. Moreover, in 

one of the studies looking at angiogenesis in the cortex across strains under normoxia 

and hypoxia conditions, different mouse strains – CD1, 129/Sv, C57BL/6, and Balb/c – 

had differing levels of increased vascularization in response to hypoxia (Ward et al., 

2007). Unlike CD1, 129/Sv, and C57BL/6 mouse strains, the Balb/c mice did not show a 

significant difference in vessel area between normoxic and hypoxic conditions. The 

Balb/c mice, however, appeared to have an increased baseline level of vascularization 

compared to the other strains. It’s possible, therefore, that similar to our speculation 

about the attenuated functional hyperemia response reported in the Carmeliet-tPA-/- 
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mice, when there is already an elevated level of basal perfusion from an increase in 

vessel density there is less metabolic demand for an increase in blood flow. 

If not some strain-modifying genes from the 129/Sv remnant DNA, then how 

might constitutive loss of tPA increase vascular density? Superficially, there is more 

evidence to suggest that the absence of tPA would result in hypovascularization rather 

than hypervascularization. Pro-hepatocyte growth factor (pro-HGF) has been shown to 

be cleaved by tPA into its mitogenic active two-chain form (Mars et al., 1993). HGF, 

though originally described in hepatocytes, is highly expressed in the brain (Jung et al., 

1994) and acts as a pleiotropic mediator of cell proliferation and differentiation, neuronal 

outgrowth and chemoattraction, and survival (Maina and Klein, 1999). HGF is also an 

pro-angiogenic factor, and in brain tumors high expression of HGF or its receptor c-met 

strongly correlate with tumor growth and angiogenesis, while inhibition of HGF or c-met 

decrease tumor growth and angiogenesis. In keeping with tPA being associated with 

angiogenesis, activation of the sonic hedgehog (Shh) signaling pathway was shown to 

upregulate tPA and induce capillary-like tube formation in primary mouse brain 

endothelial cells (MBEC) (Teng et al., 2012). In addition, the pro-angiogenic factors 

VEGF (vascular endothelial growth factor) and Ang1 (angiopoietin 1) were found to be 

significantly downregulated in MBECs cultured from tPA deficient mice and MBECs 

lacking tPA had impaired tube formation.  Therefore, these data suggest that loss of tPA 

would decrease pro-growth signaling cascades that support vessel sprouting, which in 

turn, would seem to suggest a hypovascularization phenotype in vivo. 

Similarly, tPA has also been shown to increase Wnt-LRP5/6-GSK3β-β-catenin 

signaling via tPA-induced release of Wnt7a from the extracellular matrix of cultured 
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neural progenitor cells and direct tPA binding to LRP5/6 (Lee et al., 2014). Activation of 

the β-catenin signaling pathway has been shown to be critical for vasculogenesis and 

BBB differentiation in the CNS (Quaegebeur et al., 2011). Thus, if Carmeliet-tPA-/- mice 

were found to have a reduced vascular density, altered β-catenin signaling would be a 

likely avenue to explore as a possible molecular mechanism. However, as Carmeliet-

tPA-/- mice have a denser vasculature, it seems unlikely that activation of the Wnt-

LRP5/6-GSK3β-β-catenin is responsible. Indeed, beyond the report published by 

Stefanitsch et al. (2015) and our own results, we are not able to find any study linking 

loss of tPA and angiogenesis or vasculogenesis. It is also unclear if the observed 

difference in vascular density in the Carmeliet-tPA-/- mice is due to differences in chronic 

or acute loss of tPA and/or changes in angiogenesis or vasculogenesis. As such, future 

experiments should control for these variables and examine the temporal development 

of blood vessels.  

It also became apparent to us that a rigorous analysis of cerebrovascular 

architecture would have implications beyond answering a very specific question about 

the Carmeliet-tPA-/- transgenic mice. For, altered vascular morphology and 3D 

architecture have been reported in mouse models of Alzheimer’s disease (Meyer et al., 

2008; Bennett et al., 2018) and it has been shown that cerebral hypoperfusion precedes 

cognitive decline (Ruitenberg et al., 2005); though it is still not clear how an altered 

vascular network affects blood flow regulation. A modeling approach that incorporates 

vascular morphometry and connectivity statistics to calculate blood flow, therefore, 

would be beneficial in both the basic science and clinical setting. To this end, we have 

gathered statistics on correlated vessel diameter and length, vascular density, and 
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branching vertex degree. Moreover, we have established that the lognormal distribution 

is a good model for cerebral vessel diameter and length, and that there is a weak 

negative correlation between vessel diameter and length. These characteristics are 

critical for establishing a vascular network and they lay the groundwork for a statistical 

modeling approach to calculate blood flow, given a model for the flow resistance of each 

branch. 
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Figure 4.1. Illustrative rendering of cerebral blood flow response in barrel cortex 
following whisker stimulation in wild-type and Carmeliet-tPA-/- mice from Park et 
al. (2008). Mice deficient in tPA (purple) have diminished functional hyperemia 
compared to wild-type mice (green) following activation of the barrel cortex from whisker 
stimulation. This attenuation appeared to be specific to the hemodynamic response that 
accompanies increased neural activity, as the cerebrovascular in Carmeliet-tPA-/- mice 
responded normally to stimuli that increase blood flow via smooth muscle relaxation and 
endothelial cell vasodilation. Figure recreated and modified from Park et al. (2008).  
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Figure 4.2 
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Figure 4.2. Cerebral blood vessel diameter distributions from wild-type and 
Carmeliet-tPA-/- mice. Immunofluorescence analysis of blood vessels diameters from 
wild-type (n = 5) and Carmeliet-tPA-/- (n = 5) mice acquired by confocal microscopy 
using the endothelial cell marker CD-31 and the smooth muscle marker α-smooth 
muscle actin (ASMA). CD-31 detects all blood vessels, while ASMA detects arterioles 
and arteries. (A) Histogram plot of CD-31 stained vessel diameters shows Carmeliet-
tPA-/- mice to have a left skew, which is indicative of having an increased number of 
small diameter capillaries and a decreased number of larger diameter blood vessels. 
(B) This trend is also appreciable when arterioles and arteries were specifically 
analyzed using the ASMA stain; a greater number of small diameter arterioles and a 
fewer number of large diameter arterioles are detected in the Carmeliet-tPA-/- mice 
compared to wild-type mice. Data was collected from stainings repeated four 
independent times of 50 µm free-float coronal sections from the cortex and 
hippocampus at bregma -1.5. Raw data from Stefanitsch et al. (2015) was re-graphed 
using GraphPad Prism 7.0.  
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Figure 4.3 
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Figure 4.3. Cerebral blood vessel CD31 and ASMA diameter distributions from 
wild-type and Carmeliet-tPA-/- mice are lognormally distributed. A lognormal 
distribution was fit to both the CD-31 (A) and ASMA (B) numerical diameter distributions 
for wild-type and Carmeliet-tPA-/- mice. The lognormal fit parameters and the mean, 
mode, and standard deviation of the fitted lognormal distribution is given, respectively, 
for the CD-31 and ASMA diameter distributions in Table 4.1 and Table 4.2. The 
estimates for the mean, mode, and standard deviation were calculated from the 
formulas given in Table 4.3. Both the mean and mode for Carmeliet-tPA-/- mice are 
smaller than wild-type mice in the CD-31 dataset and the ASAM dataset. Data is plotted 
as the vessel branch diameter as a function of the probability density function (PDF). 
Raw data from Stefanitsch et al. (2015) was re-graphed and fit to a lognormal function 
using Mathematica. 
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Figure 4.4 
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Figure 4.4. Vessel diameter data is lognormally distributed. A comparison of three 
different probability distribution functions revealed the best model for the vessel 
diameter data to be the lognormal distribution. Compared to the normal and Weibull 
probability distribution functions, the lognormal distribution function had the best fit to 
the numerical vessel diameter distribution, as indicated by the R2 values given in Table 
4.4. A representative numerical distribution from a wild-type mouse is shown, as are the 
representative fits for each of the respective distribution models. The functional forms of 
the distribution models are also provided in Table 4.4. 
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Figure 4.5 
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Figure 4.5. Enhanced vascular visualization with SeeDeepBrain clearing and 
tomato-lectin/gelatin-fluorophore cast. (A and B) Representative 10x images (1476 
µm x 1476 µm x 100 µm; Δz = 1 µm) from coronal sections (bregma -2.0) of wild-type 
mice demonstrating the enhanced vascular visualization of larger vessels with a double-
labeling approach. Coronal sections (1 mm slabs) were cleared using SeeDeepBrain 
(SeeDB). SeeDB is a water-based optical clearing approach that reduces light scatter 
by incrementally changing the aqueous solution of the tissue to a saturated fructose 
solution. (A and C) Labeling alone with a tomato-lectin conjugated fluorophore does not 
sufficiently detect large vessels. Open arrows indicate unfilled vessels. Tomato-lectin 
(from Lycopersicon esculentum) is a glycoprotein that intercalates into the endothelial 
glycocalyx. (B and D) A double labeling approach using a tomato-lectin-conjugated 
fluorophore and a gelatin-fluorophore cast was taken to visualize both large and small 
vessels. Closed arrows indicate filled vessels. 10x image in panel B has been 
psuedocolored red. Following tail-vein injection of either DyLight 594-labeled tomato-
lectin or DyLight 488-labeled tomato-lectin, mice were cardiac perfused with a 2% 
gelatin solution containing 0.1% Rhodamine B Isothiocyanate-Dextran or 0.1% 
Fluorescein-isothiocyanate Albumin, respectively (See detailed protocol described in 
Materials and Methods). Scale bars: A and B, 250 µm; C and D, image scale in µm. 
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Figure 4.6 
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Figure 4.6. Acquiring blood vessel statistics using the Matlab-based software 
suite, Volumetric Image Data Analysis (VIDA), and a custom written Mathematica 
program. (A) Representative 3D volumetric 20x image (738 µm x 738 µm x 250 µm; Δz 
= 1 µm) from the barrel cortex of a wild-type mouse, yielding a tissue volume of 
approximately 0.14 mm3. Two 20x images were acquired per mouse (n = 4). (B – G) 
VIDA suite and a custom written Mathematica program were used to gather correlated 
diameter-length statistics from the 3D tissue sections. VIDA was written and developed 
by the Kleinfeld Lab and a full description of the Matlab-based VIDA software suit is 
given in Tsai et al. (2009) and the Mathematica program was written by Dr. Randy C. 
Stevenson (University of Michigan consultant). (B) Representative magnified volume of 
capillary vessels. (C) Centerline mask comprising vertices over the entire 3D vascular 
network. Each vertex is associated with an XYZ coordinate and a radius is extrapolated 
at that XYZ coordinate (see panel G). (D) Junction points (cyan balls) demarcating the 
branching points of vessels. (E) Merged volumetric image demonstrating centerline 
mask and junction points overlaying vascular network. (F) Representative vessel branch 
made up of 30 segments. A segment connects two contiguous vertices within a vessel 
branch. A vessel branch is defined as the set of vertices between two junction points. 
(G) Schematic illustration showing a representative vessel branch comprised of four 
vertices (2, 111, 298 and 299) and three segments between two junction points (cyan 
balls). The median of the individual radii for all the vertices in a vessel branch was 
chosen to represent the radius of the entire vessel branch. The length between vertices 
was calculated and summed for all the segments in a vessel branch to determine the 
total length of a vessel branch. Image scale in µm. 
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Figure 4.7 
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Figure 4.7. Vessel diameter distributions do not vary between wild-type mice and 
mice deficient in tPA. (A) Vessel branch diameter (µm) datasets from all samples (n = 
8) per genotype were aggregated and plotted. Solid circles represent the numerical 
diameter data and the solid lines represent the lognormal fit to the diameter data. 
Lognormal fit parameters for the vessel diameter distribution are given in the 
corresponding Table 4.5. The mean (B) and mode (C) from the lognormal fit data for 
each of the samples (n = 8) was compiled per genotype and a one-way ANOVA was 
performed. No statistical difference was detected in the mean or mode across 
genotypes. (B and C) Data are presented as mean ± SEM. 
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Figure 4.8 
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Figure 4.8. Vessel length distributions do not vary between wild-type mice and 
mice deficient in tPA. (A) Vessel length (µm) datasets from all samples (n = 8) per 
genotype were aggregated and plotted. Solid circles represent the numerical length 
data and the solid lines represent the lognormal fit to the length data. Lognormal fit 
parameters for the vessel length distribution are given in the corresponding Table 4.6. 
The mean (B) and mode (C) from the lognormal fit data for each of the samples (n = 8) 
was compiled per genotype and a one-way ANOVA was performed. No statistical 
difference was detected in the mean or mode across genotypes, though both the 
Carmeliet-tPA-/- and the Szabo-tPA-/- mice show a trend toward shorter branch lengths. 
(B and C) Data are presented as mean ± SEM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



246 
 

 
Figure 4.9 
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Figure 4.9. Joint probability distribution reveals vessel diameter and length to be 
weakly negatively correlated in the barrel cortex of wild-type mice and mice 
deficient in tPA. Correlated vessel diameter and length datasets from all samples (n = 
8) per genotype were aggregated and plotted. Solid circles represent the correlated 
diameter-length numerical data and the transparent color overlay represents the 
lognormal fit to the diameter-length data. Lognormal fit parameters for diameter and 
length and the correlation for the joint bivariate lognormal probability density function 
are given in the corresponding Table 4.7. The µ and σ fit parameters for diameter and 
length were obtained from their respective univariate diameter and length distributions 
(see Figure 4.7 for diameter and Figure 4.8 for length). The correlation coefficient (ρ) 
was obtained by fitting the joint bivariate lognormal distribution to the joint bivariate 
numerical data. Functional form of the joint bivariate lognormal probability density 
function and correlation matrix (∑) is given in Table 4.8. For wild-type, Carmeliet-tPA-/- 
mice, and Szabo-tPA-/- mice a weakly negative correlation is found for diameter and 
length for blood vessels in the barrel cortex. 
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Figure 4.10 
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Figure 4.10. Carmeliet-tPA-/- mice, but not Szabo-tPA-/- mice, have a more dense 
capillary bed than wild-type mice. Representative volumetric 20x images (738 µm x 
738 µm x 250 µm; Δz = 1 µm) from the barrel cortex of wild-type, Carmeliet-tPA-/-, and 
Szabo-tPA-/- mice illustrate the differences in vascular density. In the y-direction, these 
images comprise approximately cortical layers 1- 5. Vessel density (#/mm3) datasets 
from all samples (n = 8) per genotype were aggregated and a one-way ANOVA with a 
Tukey’s post-hoc multiple comparisons test was performed. Carmeliet-tPA-/- mice were 
found to have an increased vascular density compared to wild-type mice, but not 
Szabo-tPA-/- mice, in the barrel cortex. The increase in vascular density is largely a 
product of an increase in capillary density, as over ~ 98% of the vessels are less than 7 
µm (see PDF in Figure 4.7). Data are presented as mean ± SEM. * p < 0.05. 
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Figure 4.11 
 

 
 
 
 
 
 



251 
 

 
Figure 4.11. Vessel branching pattern differs between wild-type and Carmeliet-
tPA-/- mice, but not Szabo-tPA-/- mice. (A and B) Representative 3D volumetric 
images illustrating vessels that branch with vertex degree 3 (open arrows) and vertex 
degree 4 (closed arrows). White lines represent the centerline mask and the cyan balls 
represent the junction points. Both smaller, capillary-sized vessels (A) and larger, 
arteriole-sized vessels (B) were observed to have vertices of degree 3 and 4. (C and D) 
An analysis of vessel network characteristics revealed a difference in branching pattern, 
with Carmeliet-tPA-/- mice having fewer vessels that branch with a vertex degree 3 (C), 
but more vessels that branch with a vertex degree 4 within the same volume of cortical 
tissue (D). The ratio of vertices with degree 3 and degree 4 was calculated by 
separately dividing the number of 3 degree vertices and 4 degree vertices for each 
sample (n = 8) per genotype by the total of 3 and 4 degree vertices. (E) Network graph 
showing connectivity of branches and vertices of degree 1 to 5. Statistics were gathered 
for vertices of degree 1, 2, and 5, but these vertex degrees were largely an artifact of an 
edge-effect from the image and not included in the analysis. A one-way ANOVA with a 
Tukey’s post-hoc multiple comparisons test was performed and the difference in vertex 
degree 3 and 4 between wild-type and Carmeliet-tPA-/- mice was found to be significant. 
Data are presented as mean ± SEM. * p < 0.05 and ** p < 0.005. 
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Figure 4.12 
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Figure 4.12. Elevated level of basal blood flow in Carmeliet-tPA-/- mice correlates 
with increased vascular density. Laser speckle contrast imaging (LSCI) was used to 
characterize the baseline blood flow in wild-type (n = 10), Carmeliet-tPA-/- (n = 9), and 
Szabo-tPA-/- (n = 9) mice through the skull over the entire cortical surface. (A) 
Representative images of basal cerebral blood flow from each of the genotypes shows 
Carmeliet-tPA-/- mice to have a heightened level of blood flow over the cortical area not 
populated by large vessels. Red color-coded areas indicate high flux, while blue areas 
indicate low flux. Four regions of interest (1 mm2) were selected whose midline was 
around bregma -0.5 and -2.0 and whose medial/lateral orientation ranged from ±1.5 to ± 
2.5 to measure blood flow. These anatomical regions approximately correspond to the 
regions that were analyzed for vascular morphometry and density. (B) Histogram plot of 
the laser speckle intensity signal averaged from each of the four ROIs for each of the 
three genotypes. Wild-type, Carmeliet-tPA-/-, and Szabo-tPA-/- mice each display 
similarly shaped distribution curves; however, the distribution curve for the Carmeliet-
tPA-/- mice has a marked rightward shift toward higher laser speckle intensity values. (C) 
Bar graph of the mean laser speckle intensity signal averaged from each of the four 
ROIs per mouse for each of the three genotypes. A one-way ANOVA with a Tukey’s 
post-hoc multiple comparisons test was performed and a statistically significant 
difference was found between wild-type and Carmeliet-tPA-/- mice and Carmeliet-tPA-/- 

and Szabo-tPA-/- mice, but not wild-type and Szabo-tPA-/- mice. (D) Plot of LSCI signal 
as a function of vessel branch density. Linear regression analysis revealed a weak 
linear relationship (R2 = 0.7724) between vessel branch density and basal blood flow. 
Data in bar graphs are presented as mean ± SEM. Data in XY plot are presented as 
mean ± SD. **** p < 0.0001. 
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Chapter 5 
 

Discussion 
 

 
5.1 Summary 

The work presented in this dissertation provides a detailed characterization of 

tPA expression in the adult murine brain, with more specific focus on tPA’s cellular and 

subcellular localization and function in the hippocampus. Using newly generated 

transgenic reporter mice – PlatβGAL and tPABAC-Cer – we show that tPA is primarily 

trafficked away from its site of synthesis to nerve fibers in limbic and limbic-associated 

brain structures. This uncoupling is most apparent in the hippocampus where tPA-βGAL 

expression is present in the granule cell layer of the dentate gyrus, but tPA-Cer is 

localized to the mossy fibers, the axonal projections of the dentate granule cells. We 

also observed this differential expression pattern in the amygdala and globus pallidus of 

the basal ganglia. In an ex vivo slice preparation we examined the effect of tPA loss on 

basal synaptic transmission in the CA1 and CA3 subfields and on the propensity for the 

neural network in the CA3 region to develop synchronous activity. With this ex vivo 

model of “seizure-like” activity we were able to dissect the BBB component from the in 

vivo seizure phenotype and determine that the “seizure-resistance” observed in tPA-/- 

mice is likely a result of improved barrier function, not tPA’s role in modulating synaptic 

transmission. Lastly, we extend upon previous evidence showing Carmeliet-tPA-/- mice 

to have an aberrant cerebrovascular architecture using sophisticated imaging and 
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analytical tools. A more rigorous examination of vascular morphometry and connectivity 

revealed that the increased vascular density in Carmeliet-tPA-/- mice is possibly a 

compounded result of constitutive loss of tPA and/or some strain-dependent modifier 

genes. Cumulatively, though, our results suggest that tPA is likely a pleiotropic mediator 

in the central nervous system whose actions are highly temporally and spatially 

compartmentalized. 

 

5.1.1 Regional expression pattern of tPA in the adult murine brain 

Early gross anatomical in situ analysis of tPA mRNA expression and activity 

suggested a disconnect between where tPA is synthesized and where it is trafficked in 

the adult murine brain (Sappino et al., 1993). However, this study was never followed-

up by a detailed characterization of tPA expression in the mouse brain employing more 

advanced genetic tools and microscopic imaging analysis. Rather, studies examining a 

limited brain region or cell-type that expresses tPA or studies heavily dependent on in 

vitro cell cultures have been used to over-generalize about how tPA is functioning in the 

entirety of the central nervous system (Wu et al., 2015; Louessard et al., 2016). 

Accordingly, we utilized novel transgenic reporter mice – PlatβGAL and tPABAC-Cer – 

and high resolution confocal microscopy to address these shortcomings. With these 

mice we have confirmed the previously reported observation that tPA mRNA and 

protein are differentially expressed in the hippocampus; in addition, we demonstrate for 

the first time that this dichotomy exists in the amygdala and globus palidus of the basal 

ganglia as well. Moreover, the work presented in this thesis describes for the first time 

new regional localizations of tPA in the adult murine brain, including the paraventricular 
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nucleus of the thalamus, the periaqueductal gray, and the parabrachial nucleus. These 

previously unrecognized regions of tPA expression, that are primarily restricted to the 

limbic system or limbic-associated brain structures, will be informative in understanding 

how tPA is involved in modulating information flow within or between these anatomical 

substrates to influence brain function.  

 

5.1.1.2 Amygdala 

Previous studies have demonstrated a role for tPA in the amygdala in different 

models of neuronal plasticity (Koob et al., 1998; Vyas et al., 2002). Mice deficient in tPA 

have been found to be resistant to stress-induced anxiety (Matys and Strickland, 2003; 

Pawlak et al., 2003) and ethanol withdrawal seizures (Pawlak et al., 2005). In addition, 

in wild-type mice both an increase in anxiety following chronic restraint and ethanol 

withdrawal correlated with an increase in tPA activity in the centromedial amygdala, but 

not the basolateral amygdala. Our observation that tPA-Cer fluorescence is exclusively 

expressed in the centromedial nucleus of the amygdala, not the basolateral nucleus, is 

in agreement those results. When compared to the PlatβGAL mice, however, a more 

informative, though complex, picture of tPA’s function in amygdala circuitry emerges. As 

tPA-βGAL was detected in both the basolateral and centromedial nuclei and neurons in 

the basolateral nucleus send projections to the centromedial nucleus, it’s possible that 

the tPA-Cer in the centromedial nucleus is trafficked tPA from basolateral nerve 

projections. We also find, however, tPA-Cer fluorescence in the bed nucleus of the stria 

terminalis, the paraventricular nucleus of the thalamus, periaqueductal gray, and 

parabrachial nucleus – anatomical substrates of the centromedial amygdala (Janak and 
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Tye, 2015; Babaev et al., 2018). Therefore, it’s also possible that the tPA-Cer in the 

centromedial amygdala is trafficked tPA in afferent/efferent nerve fibers to/from these 

brain regions. Moreover, each of these regions has been previously shown to modulate 

different aspects of fear and anxiety (Penzo et al., 2015; Tasan et al., 2016).  

Specifically, the neuropeptide NPY is expressed in the bed nucleus of the stria 

terminalis, the paraventricular nucleus of the thalamus, periaqueductal gray, and 

parabrachial nucleus (as well as the cortex, hippocampus, basal ganglia, hypothalamus, 

and locus coeruleus) and it has been implicated in being an important molecule 

modulating neurotransmission among and between these regions (Tasan et al., 2016). 

Given the highly coincident expression pattern between these two peptides/proteins it’s 

intriguing to speculate that they may be functioning to effectuate similar outcomes, 

though possibly through different spatial and temporal pathways. For, biophysical 

analysis of tPA and NPY release from adrenal chromaffin cells has shown tPA and NPY 

to be expressed in separate chromaffin cell subpopulations and to have different 

mobility and discharge rates. NPY was found to dissipate from the fusion site within 

~200ms, while tPA’s dissipation rate was much slower, lasting over many seconds 

(Weiss et al., 2014b; Weiss et al., 2014a; Bohannon et al., 2017). The physiological 

implications of slower discharge are unclear, though delayed release suggests that tPA 

may be modifying the initial signaling in some way. It may be of interest, therefore, for 

future studies examining tPA’s expression and function in the amygdala and its 

associated brain regions to focus on whether or not tPA has a modulatory effect on NPY 

signaling.  
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5.1.1.3 Basal ganglia 

In this dissertation we also report, for the first time, on tPA expression in the 

external (GPe) and internal (GPi) globus pallidus nuclei of the basal ganglia. And, 

similar to there being a differential expression pattern in the hippocampus and 

amygdala, the dichotomy between somatic tPA/β-Gal and trafficked tPA-Cer is 

appreciable when comparing tPA expression in the PlatβGAL and tPABAC-Cer 

transgenic mice. In the PlatβGAL reporter mice, β-Gal staining is present in the 

caudate/putamen (neostriatum) but absent in both the GPe and GPi. Contrastingly, in 

the tPABAC-Cer fusion mice, tPA-Cer fluorescence is absent in caudate/putamen but 

present in the GPe, GPi, and substantia nigra pars reticulata (SNr). The GPi and SNr 

are embryologically and functionally equivalent anatomical structures (Purves et al., 

2001), as they are the output nuclei of the basal ganglia.  

Given what is known about basal ganglia circuitry, it’s likely that the observed 

tPA-Cer is expressed in nerve fibers that are part of the direct loop through the basal 

ganglia, not the indirect loop (Gilman and Newman, 2002; Jahanshahi et al., 2015). In 

the direct loop, GABAergic neurons from caudate/putamen project through the GPe to 

the GPi or through the strionigral fibers to the SNr (Purves et al., 2001). Both the GPi 

and SNr send GABAergic projections to the thalamus. The direct loop is known to 

increase thalamocortical excitation and it is important for the selection of desired 

behaviors. 

Though there are no functional studies on how tPA may influence the output 

nuclei of the basal ganglia, the effects of tPA loss have been examined in the 

corticalstriatal pathway and in the mesolimbic dopamine system (Centonze et al., 2002; 
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Nagai et al., 2004). In the corticalstriatal pathway, deficits in LTP were found in tPA-/- 

mice compared to wild-type mice (Centonze et al., 2002). As dopamine treatment did 

not induce a membrane depolarization in striatal interneurons from tPA-/- mice, but 

previous studies had shown the necessity for dopamine in neostriatal LTP (Kerr and 

Wickens, 2001), it was thought that tPA was modulating dopaminergic signaling, and 

synaptic transmission in turn. These experiments, however, were done using a whole-

cell recording configuration, not field potentials; moreover, only 9 cells from wild-type 

mice and 11 cells from tPA-/- mice were recorded from in the neostriatum 

(caudate/putamen). Given our tPA localization data showing no tPA-βGAL or tPA-Cer 

expression in caudate/putamen and the small recording sample size, these whole-cell 

electrophysiological experiments should be repeated using transgenic mice that enable 

tPA-expressing cell bodies to be identified. 

Nonetheless, evidence for tPA-mediated modulation of dopaminergic signaling 

can be found in the ventral striatum/nucleus accumbens (Nagai et al., 2004). Morphine-

induced drug dependency was used to study tPA’s effects on activity-dependent 

synaptic plasticity in the mesolimbic dopaminergic system. Morphine is known to 

increase dopaminergic neurotransmission to ventral striatum by acting on µ-opioid 

receptors in the ventral tegmental area. Following morphine injection, wild-type mice 

were found to have increased mRNA and protein expression of somatic tPA in ventral 

striatum. This increase in tPA appears to have functional implications for the rewarding 

effects of morphine since tPA-/- mice displayed reductions in the conditioned place 

preference task. The conditioned place preference test measures the amount of time a 

mouse spends in a compartment that it associates with morphine treatment vs a 
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compartment that it associates with vehicle treatment. Subsequent in vivo microdialysis 

measurements revealed tPA-/- mice to have significantly reduced dopamine levels in 

ventral striatum following morphine treatment. These results suggest that tPA plays a 

role in regulating dopamine release and in modulating dopaminergic communication in 

the mesolimbic system. 

We, however, do not detect tPA-βGAL in ventral striatum; and while we do find 

tPA-βGAL puncta in the ventral tegmental area of the midbrain, in our serial coronal 

sections from tPABAC-Cer mice we do not readily see any tPA-Cer puncta in the ventral 

tegmental area or ventral striatum. This discrepancy in tPA localization to ventral 

striatum may be due to the fact that all of our analysis was on basal tPA expression 

levels, while the study by Nagai et al. (2004) observed tPA after morphine treatment. 

Nonetheless, given the accumulating evidence demonstrating a role for the basal 

ganglia in augmenting motivational behavior (Ikemoto et al., 2015), it is intriguing to 

speculate that tPA from the GPe, GPi, and SNr, not ventral striatum, may be 

responsible for modulating the rewarding effect of morphine in wild-type mice. 

 

5.1.2 Functional implications of tPA expression in the hippocampus  

Since tPA was found to be an immediate-early gene in the hippocampus 

following activity-dependent events (Qian et al., 1993), it has been shown to modulate 

numerous neurological processes including synaptic plasticity and neurovascular 

coupling, as well as neurodegeneration and BBB permeability (Carroll et al., 1994; 

Tsirka et al., 1995; Frey et al., 1996; Huang et al., 1996; Tsirka et al., 1997; Baranes et 

al., 1998; Rogove et al., 1999; Yepes et al., 2003; Pang et al., 2004; Park et al., 2008; 
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Su et al., 2008; Su et al., 2017). Many of the functional conclusions drawn about tPA 

activity, however, were performed prior to a detailed description of tPA’s protein 

localization and have not been affirmed by high-resolution, imaging analysis. This is 

especially confounding in the case of tPA, as we have shown that there is a differential 

expression pattern between where tPA is synthesized and where it is trafficked in the 

hippocampus, amygdala, and basal ganglia. 

 

5.1.2.1 CA1 hippocampal subfield – basal synaptic transmission 

Indeed, early electrophysiological studies on tPA’s role in L-LTP in the Schaffer 

collateral-to-CA1 pyramidal cell pathway presumed a post-synaptic release mechanism 

for tPA’s effects (Huang et al., 1996; Zhuo et al., 2000). These models were likely based 

on in situ mRNA expression analysis showing tPA in the CA1 to CA3 pyramidal cells 

(Qian et al., 1993; Sappino et al., 1993). In our tPABAC-Cer fusion reporter mouse, 

however, we do not detect tPA-protein in the CA1 pyramidal cells, even with GFP-

Tyramide amplification, which is in agreement with what others have reported using 

traditional immunohistochemistry (Salles and Strickland, 2002; Louessard et al., 2016). 

And, while we do occasionally see cerulean puncta in stratum radiatum, the linear tract-

like orientation and appearance suggest that these puncta are in axonal processes, not 

the distal dendritic trees of the CA1 pyramidal neurons. In keeping with this 

interpretation, we found tPA-positive cells in the stratum oriens/alveus lamina that share 

an immunocytochemical profile with somatostatin (SST)/oriens-lacunosum moleculare 

(O-LM) interneurons, whose cell bodies reside in stratum oriens and send axonal 

projections to stratum lacunosum-moleculare. 
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In support of our imaging studies demonstrating a limited role for tPA post-

synaptic to Schaffer collaterals we found no difference in basal synaptic transmission 

(slope of field EPSP vs stimulus intensity) between wild-type and tPA-/- mice in the 

Schaffer collateral-to-CA1 pyramidal cell pathway. Despite not seeing a statistical 

difference, however, there did appear to be a difference in the shape of the I/O curves 

between wild-type and tPA-/- mice; at higher stimulus intensities the I/O curve from tPA-/- 

mice plateaued. It’s possible, therefore, that in the tPA-/- mice there are intrinsically 

fewer fibers to recruit, resulting in fewer synapses and a diminished fEPSP slope. 

Future experiments would need to be done to investigate whether this plateau is 

biologically significant and, if so, if a pre- or post-synaptic mechanism is responsible.   

Our results, however, do not necessarily contradict previous studies that have 

attributed a role for tPA in modulating L-LTP. For, while we did not detect tPA-Cer 

protein expression in the apical dendrites of CA1 pyramidal neurons, there is in vitro 

evidence to suggest that tPA protein can be rapidly synthesized from tPA mRNA that is 

present in dendrites and polyadenylated after glutamate stimulation (Shin et al., 2004). 

Glutamate-induced polyadenylation of tPA mRNA and tPA protein synthesis were both 

dependent on specific activation of the metabotropic glutamate receptor (mGluR1) type 

1. In this study, glutamate was also found to stimulate the release of tPA from cultured 

primary hippocampal neurons. This result is in agreement with previous reports 

demonstrating tPA to be localized to dense-core vesicles and targeted to a regulated 

secretory pathway that can be rapidly activated to release tPA (Gualandris et al., 1996; 

Parmer et al., 1997; Lochner et al., 2008; Scalettar et al., 2012). Therefore, it’s plausible 
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that our inability to detect tPA-Cer in CA1 pyramidal cell dendrites was due the 

translational regulation of tPA protein, which is kept at a low basal level. 

Interestingly, we found tPA-Cer positive cells in stratum oriens to co-express 

mGluR1a, which is highly expressed in SST/O-LM interneurons. Though our analysis of 

mGluR1a expression focused on somatic localization, previous imaging studies 

demonstrated mGluRs to be tightly localized to a region surrounding the post-synaptic 

specialization (Lujan et al., 1997; Takumi et al., 1999). It is unclear if a similar 

mechanism of rapid mGluR-dependent tPA protein synthesis and release is occurring 

somatically in SST/O-LM interneurons; for, dense core granule fusion can occur at the 

cell body, as well as in axonal boutons and dendrites (Huang and Neher, 1996; Trueta 

et al., 2012). More broadly, it is also unclear why tPA appears to be differentially 

localized to the soma or axonal processes in the hippocampus. It’s possible that 

inhibitory and excitatory neurons possess different molecular machinery to traffick 

dense core vesicles (Ramirez-Franco et al., 2016) or that the difference in hippocampal 

sub-regional expression (stratum oriens lamina vs stratum lucidum lamina) of tPA 

results in differential trafficking. Evidence for this tightly regulated, regional specification 

of dense core trafficking to either dendrites or axons can be found for the neuropeptide 

NPY (Ramamoorthy et al., 2011). 

The tPABAC-Cer fusion reporter mice we generated, therefore, are not only 

important for answering specific questions related to how tPA is functioning in CNS 

physiology and pathology, these mice also provide an important tool to interrogate 

questions related to dense core trafficking, docking, and release. Understanding these 

basic biological processes at a microscopic level is important for understanding how the 
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brain works at a macroscopic level, for neuropeptides are critical molecules regulating a 

range of functions from metabolism and reproduction to behavior as well as learning 

and memory (Billington and Levine, 1992; Garrison et al., 2012; Borbely et al., 2013; 

Kormos and Gaszner, 2013; Walker and McGlone, 2013). 

 

5.1.2.2 CA3 hippocampal subfield – basal synaptic transmission 

Though the identification of tPA in a sparse population of SST/O-LM interneurons 

in the hippocampus is a novel finding, the most concentrated and intense tPA-Cer 

signal in the mouse brain is the mossy fiber pathway. As immunohistochemistry and in 

situ zymography have shown high levels of tPA in the mossy fiber pathway, the fact that 

we see tPA-Cer fluorescence in the mossy fibers is an important indication that the tPA-

Cer protein from the BAC is being appropriately targeted. These previous studies, 

however, only generally described tPA expression in the mossy fiber pathway; tPA’s 

specific compartmentalization was not examined. Taking advantage of the tPA-Cer 

fusion construct in this dissertation we report for the first time on tPA’s subcellular 

localization to giant mossy fiber boutons (MFBs) in stratum lucidum of the hippocampal 

CA3 region. MFBs synapse with hilar mossy cells and the apical dendritic spines or 

“thorny excrescences” of CA3 pyramidal cells (Frotscher et al., 1994; Acsady et al., 

1998). Electrophysiological studies have shown mossy fiber-to-CA3 pyramidal cell 

synapses to have marked paired-pulse facilitation and NMDAR-independent LTP (Salin 

et al., 1996; Henze et al., 2000; Toth et al., 2000; Nicoll and Schmitz, 2005). 

The specific localization of tPA-Cer puncta to giant MFBs suggests that it may 

have a role in regulating synaptic efficacy at the mossy fiber-to-CA3 pyramidal cell 
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synapse. Consistent with this model, we found tPA-/- mice to have a decrease in basal 

synaptic transmission in CA3 compared to wild-type mice. And, similar to what we 

observed in the CA1 hippocampal subfield, there was an attenuation in the slope of the 

I/O curve at higher stimulation intensities. When basal synaptic transmission in ex vivo 

slices from Nsp-/- mice was assessed, we found Nsp-/- mice, like tPA-/- mice, to have a 

decreased post-synaptic response at similar stimulation intensities compared to wild-

type mice. There was no significant difference between Nsp-/- and tPA-/- mice. This 

finding was unexpected. As Nsp is a specific inhibitor of tPA in the central nervous 

system (Hastings et al., 1997; Barker-Carlson et al., 2002; Fredriksson et al., 2015), it 

was thought that unregulated tPA activity would result in the opposite phenotype. This 

segregation between loss of tPA activity and enhanced tPA activity has been seen with 

respect to LTP, with tPA-/- mice showing deficits in LTP and tPA overexpressing mice 

showing enhancements (Huang et al., 1996; Baranes et al., 1998; Madani et al., 1999). 

Though further experiments are needed to address the underlying mechanisms for 

these deficits, we can think of a few plausible explanations: 1) Even though Nsp is 

expressed in CA3 pyramidal cells, it is not targeted to the CA3 dendrites to act locally 

and inhibit tPA activity; or 2) Nsp and tPA may modulate synaptic transmission at the 

mossy fiber-to-CA3 synapse through independent pathways. Nsp in the CA3 pyramidal 

cells may affect synaptic transmission post-synaptically, while tPA in the mossy fibers 

may affect synaptic transmission pre-synaptically. 
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5.1.2.3 CA3 hippocampal subfield – synchronous activity 

Though Nsp-/- and tPA-/- mice do not display any differences in basal synaptic 

transmission at the mossy fiber-to-CA3 synapse they do have differences in their 

propensity to develop synchronous activity. A no Mg2+/high K+ model was used to 

assess synchronous or “seizure-like” activity in ex vivo hippocampal brain slices. With 

this approach, we were able to dissect the BBB component from the in vivo seizure 

phenotype observed in “seizure-prone” Nsp-/- mice and “seizure-resistant” tPA-/- mice. 

Despite having similar I/O curves, in all the temporal parameters we measured in our 

model (latency to synchronous activity, frequency of events, and inter-event interval), 

brain slices from tPA-/- mice were more hyperexcitable than Nsp-/- mice. This ex vivo 

phenotype is opposed to the in vivo phenotype observed for both tPA-/- and Nsp-/- mice. 

The average amplitude of high-frequency bursting events, however, did not segregate 

by genotype like the temporal synchronous activity parameters. For both tPA-/- and Nsp-

/- mice, average amplitude of events were smaller compared to wild-type mice, which is 

consistent with basal synaptic transmission being decreased in both Nps-/- and tPA-/- 

mice. These results suggest that there are different mechanisms governing the synaptic 

strength vs latency to/frequency of firing in tPA-/- and Nsp-/- mice. They also indicate that 

there might be differences in the neuronal network outside the mossy fiber-to-CA3 

synapse that are altering the development and rate of synchronous activity in tPA-/- and 

Nsp-/- mice. Moreover, when placed in the context of our in vivo data showing a 

correlation between latency to seizure activity and BBB permeability, these ex vivo 

results indirectly support a model whereby tPA-mediated control of vascular integrity 

dictates seizure progression. 
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5.1.3 Cerebrovascular morphometry and network connectivity 

In addition to tPA’s role in regulating BBB permeability, a role for parenchymal 

brain tPA in mediating physiological vascular responses has been observed. In 

neurovascular coupling experiments, tPA-/- mice were found to have an attenuated 

functional hyperemia response compared to wild-type mice (Park et al., 2008). Recently, 

though, tPA-/- mice were shown to harbor “passenger mutations” from the original 

129/Sv embryonic stem (ES) cells flanking the tPA gene (Szabo et al., 2016) and to 

have developmental differences in cerebrovascular and cerebroventricular morphometry 

and molecular composition (Stefanitsch et al., 2015). It is unclear if some strain-

modifying genes from the remnant 129/Sv DNA or some developmental difference from 

constitutive loss of tPA are responsible for the aberrant cerebrovascular architecture. 

Moreover, it is unclear how the cerebrovascular architecture might be influencing blood 

flow at rest and in response to a neural stimulus. To help begin to address these 

questions, we undertook a more extensive analysis of vessel morphometry and network 

connectivity in wild-type mice and in both the Carmeliet-tPA-/- mice and Szabo-tPA-/- 

mice. Understanding how these parameters influence blood flow has implications 

beyond basic science research, as an aberrant vasculature has been observed in 

mouse models of Alzheimer’s disease and diminished blood flow has been found to 

precede cognitive decline in Alzheimer’s patients (Ruitenberg et al., 2005; Meyer et al., 

2008; Bennett et al., 2018). 

In this dissertation, our analysis of the vasculature in wild-type, Carmeliet-tPA-/-, 

and Szabo-tPA-/- confirms that the vascular capillary density in the barrel cortex of 

Carmeliet-tPA-/- mice is significantly increased compared to wild-type. While the 
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capillary density in Szabo-tPA-/- mice trends upward, it was not statistically different than 

wild-type or Carmeliet-tPA-/- mice. Moreover, the trend that we observed in Carmeliet-

tPA-/- mice toward a decrease in blood vessel length is consistent with blood vessels 

branching more frequently, giving rise to a dense capillary bed. Compared to wild-type 

mice, Carmeliet-tPA-/- mice also have significantly fewer vessels that branch with vertex 

degree 3 (~1% decrease), but significantly more vessels that branch with vertex degree 

4 (~1% increase), given the same volume of cortical tissue. It is unclear, though, if this 

difference in vertex degree is biologically significant. 

We also noticed from the joint bivariate lognormal distribution of correlated 

diameter and length that vessel diameter and length are weakly, negatively correlated. 

Though we initially thought that vessel diameter and length would be positively 

correlated, the inverse relationship that we observe for correlated diameter and length 

can be found in Poiseuille’s Law. Poiseuille’s Law is a physical law that models steady-

state conductance flow in a cylindrical tube. Poiseuille showed that flow (𝑄) is linearly 

related to a change in pressure (𝑃) across the length (𝑙) of a tube of radius (𝑟) through 

its conductance (𝐺) by: 

 

𝑄 = 𝐺 𝑃;    𝐺 = (
𝜋 𝑟4

8 𝜇𝑎 𝑙
) , 

 

where 𝜇𝑎 is the apparent viscosity. Our negatively correlated vessel diameter and length 

data, therefore, are in agreement with the expression for flow conductance that 

Poiseuille experimentally derived over 175 years ago.  
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Though we didn’t find there to be a difference in the correlated diameters and 

lengths between genotypes, of the various vasculature characteristics that we did 

examine, the most striking was vascular density. Moreover, when we used laser speckle 

contrast imaging (LSCI) to measure basal cerebral blood flow in the cortical surface of 

wild-type, Carmeliet-tPA-/-, and Szabo-tPA-/- mice, there appeared to be a correlation in 

the laser speckle signal and vascular density. Mice with less dense capillary beds – 

wild-type and Szabo-tPA-/- mice – had lower levels of speckle signal, while the 

Carmeliet-tPA-/- mice with the denser capillary bed and the highest speckle intensity 

signal. Linear regression analysis revealed there to be a slight linear correlation 

between vascular density and the intensity of the laser speckle signal. While further 

studies still need to be performed using littermate controls for the Carmeliet-tPA-/- mice, 

these results don’t discount the possibility that the reported functional hyperemia deficits 

in Carmeliet-tPA-/- mice might be the result of an altered vasculature morphometry and 

architecture. 

 

5.2 Limitations and future directions 

 Though the work we present in this dissertation substantively advances our 

understanding of tPA’s localization and function in the central nervous system, this 

research is not without limitations. In addition, our findings raise further questions that 

necessitate future experiments. The following is an attempt to summarize where 

improvements can be made and where the direction of this research should head. 
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5.2.1 Determining the regional connectivity of tPA-expressing brain regions 

 Though our side-by-side analysis of PlatβGAL and tPABAC-Cer transgenic 

reporter mice provides a more informative profile of tPA localization in the adult murine 

brain, future experiments are needed to interrogate many of the putative anatomical 

connections that we propose for regions expressing tPA. To more directly determine if 

the tPA-Cer we detect in the centromedial nucleus of the amygdala is from axonal 

projections in the basolateral nucleus, a neurotoxic agent could be injected into the 

basolateral nucleus (Maren, 1999). If tPA-Cer expression decreases in the centromedial 

nucleus, this would suggest that the tPA-Cer protein is being trafficked from the 

basolateral nucleus. Similarly, to test if the tPA-Cer we see in the GPe, GPi, and SNr is 

coming from axonal projections in caudate/putamen, neurotoxic lesions can be made in 

caudate/putamen (Guevara et al., 2002) and changes in cerulean fluorescence can be 

assessed in the GPe, GPi, and SNr. Unilateral injections of the neurotoxic agent into 

either the basolateral amygdala or caudate/putamen would also allow for the 

contralateral side to be used as a paired control of changes in tPA-Cer fluorescence.  

 

5.2.2 Generating cell-type specific conditional tPA knockout mice 

While the tPA-/- mice have been an indispensable tool to study tPA’s 

physiological and pathological functions in vivo, these global knockout mice are not 

without their disadvantages and shortcomings. Though initial anatomical analysis of 

tPA-/- mice did not uncover any gross abnormalities (Carmeliet et al., 1994; Frey et al., 

1996; Huang et al., 1996), subsequent studies have found tPA-/- mice to have a 

cerebrovascular and cerebroventricular developmental phenotype (Wang et al., 2011; 
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Stefanitsch et al., 2015). In addition to these confounding developmental variables, the 

original tPA-/- mice have remnant 129/Sv ES cell DNA (Szabo et al., 2016). Recognizing 

the influence of strain (Flurkey et al., 2009), new tPA-/- mice were generated using zinc-

finger nucleases. Importantly, these mice are on a pure C57BL/6J background and they 

do not have any of the “passenger mutations” found in the original tPA-/- mice (Szabo et 

al., 2016).  

However, these Szabo-tPA-/- mice do not help to address possible compensatory 

changes (Kreiner, 2015) in neuronal function that arise from constitutive loss of tPA. We 

cannot account for more subtle, even localized changes in protein expression, 

neuronal/glial patterning, and network connectivity that may be altered with global, 

embryonic deletion of tPA. Indeed, it is still unclear how a denser capillary network and 

enlarged cerebroventricles could be affecting physiological functions in the adult mouse, 

let alone neural and/or glial development. As such, in order to investigate the acute loss 

of tPA in distinct brain structures on synaptic physiology and behavior, a cell-type 

specific conditional knock-out mouse is needed.  

Cell-type specific conditional deletion of tPA in certain brain structures can be 

accomplished by delivering an adeno-associated viral vector containing a Cre 

recombinase (Rohlmann et al., 1996) that is driven by a neuronal specific promoter, like 

calcium/calmodulin-dependent protein kinase II α (CaMKIIα), to transgenic mice that 

have the second exon of tPA gene flanked by LoxP sites (Stefanelli et al., 2016; Todd et 

al., 2018). An even more informative transgenic mouse strategy would be to engineer a 

transgenic mouse whose reporter gene expression is dependent on Cre-mediated 

excision of the tPA gene (Schnutgen et al., 2003; Schnutgen et al., 2005). These mice 
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would not only allow for site- and time-specific conditional ablation of the tPA gene, but 

they would permit the visualization and monitoring of cells that no longer express tPA. 

Specifically, for example, with these mice an electrophysiological profile of tPA-

expressing neurons could be generated, as could a regional map of tPA’s physical and 

functional connectivity. 

 

5.2.3 Determining the role of tPA in amygdala- and basal ganglia-associated brain 

structures  

With these transgenic mice, a CaMKII-Cre virus can be separately injected into 

the centromedial amygdala, periaqueductal gray, parabrachial nucleus, or the 

paraventricular nucleus of the thalamus, and the contribution of tPA activity in/from each 

of these regions to amygdala function can be independently assessed. As the 

periaqueductal gray (Deng et al., 2016), the parabrachial nucleus (Sato et al., 2015), 

and the paraventricular nucleus of the thalamus (Bhatnagar et al., 2003) have all been 

reported to play a role in stress and fear, it would be informative to understand the 

individual role, or collective role, tPA from these regions may be playing in amygdala 

function. 

One way for amygdala function to be examined is through behavioral paradigms 

that involve fear learning. Previous groups have performed fear conditioning 

experiments on tPA-/- mice, but the results have been variable. One group reported no 

difference in percent time freezing in the context (unconditioned stimulus; US) or tone 

(conditioned stimulus; CS) test between male wild-type and tPA-/-, but when female wild-

type and tPA-/- mice were analyzed, female tPA-/- mice had an enhanced freezing 
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response to both the US and CS (Huang et al., 1996). Another group, however, found 

male tPA-/- mice to have an attenuated freezing response to the US, but an enhanced 

freezing response to the CS (Calabresi et al., 2000). Wild-type mice in these 

experiments, however, did not appear to learn to associate the tone with the 

unconditioned stimulus, so it is difficult to make comparative statements about the effect 

of tPA in these studies. In addition, for both of these studies the genetic background of 

the tPA-/- mice is not reported. Since strain differences have been observed in fear 

conditioning (Temme et al., 2014), it is important to repeat these experiments with the 

appropriate controls. 

 While behavioral assessments of tPA-/- mice in fear conditioning experiments 

have been variable across labs, mice deficient in tPA have been consistently found to 

have deficits in active or passive avoidance tasks (Huang et al., 1996; Calabresi et al., 

2000; Pawlak et al., 2002). These data suggest that tPA-/- mice have deficits in 

acquisition or working memory to aversive or associative learning. Given the behavioral 

data demonstrating tPA-/- mice to have diminished stress-induced anxiety (Pawlak et al., 

2003; Matys et al., 2004), however, the impairments observed in tPA-/- mice in 

avoidance tasks might be due to tPA’s effects on stress-induced neuronal plasticity in 

the amygdala (Bennur et al., 2007) and not any effect of tPA on hippocampal-

dependent learning and memory. Future studies, therefore, that employ task-

independent stressors to test learning and memory (Moore et al., 2013) would be 

informative in discriminating between tPA’s role in stress versus learning and memory. 

Active avoidance tasks have also been shown to depend on striatal 

(caudate/putamen) (Vecsei and Beal, 1991) and dopaminergic signaling in the 
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mesolimbic and nigrostriatal pathway (Koob et al., 1984). Given our recent data 

demonstrating tPA-Cer expression in the basal ganglia and earlier studies showing tPA-

/- mice to have decreased dopamine levels and dopamine receptor expression 

(Centonze et al., 2002; Nagai et al., 2004), specific deletion of tPA from the globus 

palldius followed by behavioral analysis in active avoidance tasks would be informative 

in determining if pallidal tPA has a role in the observed deficits in active avoidance. 

 

5.2.4 Determining tPA’s role in hippocampal synaptic plasticity 

Neuronal specific deletion of tPA in the hippocampus would also be important for 

following-up on the differences in basal synaptic transmission that we observed in the 

mossy fiber-to-CA3 pathway. Given that the attenuation in the I/O curve at higher 

stimulus intensities in tPA-/- mice in both the CA1 and CA3 region might have been due 

to a developmental decrease in fiber number or synapses, a cell-type specific 

conditional knock-out of tPA would allow us circumvent that putative experimental 

confounder and directly test the effect of acute tPA loss. If we are able to confirm that 

there is a decrease in basal synaptic transmission in these conditional tPA-/- mice, then 

further experiments dissecting whether tPA is acting pre- or post-synaptically would be 

beneficial in elucidating its mechanism of action. It’s important to keep in mind, though, 

that tPA is stored in dense core vesicles (DCV) (Lochner et al., 2008; Scalettar et al., 

2012), not synaptic vesicles, and that traditional experimental paradigms used to assess 

pre- or post-synaptic determinants of synaptic strength might need to be adjusted to 

what is known about the release properties of DCVs (Voets et al., 1999). 
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5.2.5 Dissecting the molecular machinery of dense core vesicle trafficking and release 

 Indeed, there is still much we don’t know about DCV trafficking and release 

(Nurrish, 2014). Moreover, what we do know is derived from studies using primary 

neuroendocrine cells or PC12 cells, which are an immortalized cell line from the 

pheochromocytoma of a rat adrenal medulla (Hoover et al., 2014). Therefore, the 

tPABAC-Cer transgenic fusion reporter mice are an ideal tool to study basic DCV 

neurobiology. Instead of neuroendocrine and adrenal gland cells, tPABAC-Cer mice can 

be used to study the molecular machinery that targets DCVs to axons vs dendrites or 

that is crucial for DCV priming and docking in primary neuronal cultures. For example, 

live-cell imaging can be used to follow tPA-Cer puncta as it is trafficked; and given that 

we see tPA-Cer in giant mossy fiber boutons in vivo, and not en passant or filipodial 

extensions, these experiments can help inform about the machinery and signaling 

pathways that regulate tPA’s spatial distribution (Bharat et al., 2017). More specific 

questions about tPA release in neurons could also be addressed. Does tPA release 

from neurons have the same release kinetics as tPA from adrenal chromaffin cells 

(Weiss et al., 2014b; Weiss et al., 2014a)? If not, what is causing the difference? What 

might be the physiological reason and implications? The tPABAC-Cer transgenic mice will 

be a useful in vitro tool for addressing these, and other, questions. 

 

5.2.6 Chronic vs acute effect of tPA loss on vasculogenesis and angiogenesis 

 As our data suggest that there may be a strain-independent effect of tPA on 

vascular density, it is important to determine if this effect is from acute or chronic loss of 

tPA, and if tPA is either directly or indirectly affecting vasculogenesis (de novo) or 
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angiogenesis (from a pre-existing vessel), or both. A conditional global tPA knockout 

mouse - tPACreERT - (tPAflox/flox mouse crossed with a tamoxifen inducible Cre transgenic 

mouse (Metzger and Chambon, 2001; Feil et al., 2009) would be informative in 

differentiating between these potential mechanisms. Accordingly, vascular density, 

along with other vascular morphometry and network connectivity characters, can be 

assessed in adult mouse models of acute tPA (tPACreERT) and chronic tPA (Szabo-tPA-/-) 

loss. In addition, it would be important to examine these vascular characteristics at 

earlier time-points. If changes in vascular density and/or other parameters are observed 

during early embryonic development in Szabo-tPA-/- mice, it would suggest that tPA is 

either directly (or indirectly through compensatory changes) involved in vasculogenesis. 

Conversely, if changes in vascular density and/or other parameters are observed in 

adult Szabo-tPA-/- mice, than these data would support a model where tPA has more of 

a role in angiogenesis.  

 

5.2.7 Controlling for environmental factors with littermate controls 

 In addition to the importance of controlling for strain, it is important to control for 

environment as well. This is especially true for vascular patterning as differences in 

cerebral angiogenesis have been reported in the barrel, auditory, and motor cortices of 

mice exposed to chronic stimulation from whisker tickle, noise, or motor activity 

(Whiteus et al., 2014). Using littermate controls help to mitigate some of the variability 

within the same genotypic cohort (Holmdahl and Malissen, 2012). In our analysis of 

vascular morphometry and connectivity, the Szabo-tPA-/- mice were compared with their 

wild-type littermate controls. However, the Carmeliet-tPA-/- mice, though analyzed at the 
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same time, they were not compared with their respective wild-type littermate controls. 

Therefore, these experiments need to be repeated with the appropriate controls.  

 

5.2.8 Gathering vessel morphometry statistics on smooth-muscle covered vessel 

Though our method of collecting vascular morphometry statistics is more 

informative than traditional immunofluorescence techniques, it is limited in its ability to 

differentiate between arteries and arterioles and veins and venuoles. Being able to 

distinguish between these blood vessel types is important since a difference in the 

numerical diameter distribution for smooth-muscle covered vessels between wild-type 

and Carmeliet-tPA-/- mice was reported by Stefanitsch et al. (2015). Therefore, future 

experiments should involve wild-type and tPA deficient mice that have been crossed 

with transgenic mice expressing a fluorescent protein in smooth muscle cells 

(Armstrong et al., 2010). While we didn’t detect a difference in the diameter of all blood 

vessels between these genotypes, it’s possible that differences in the diameter and 

number of smooth-muscle covered vessels exist. As smooth-muscle covered arterioles 

have been shown to be critical regulators of blood flow, integrating neural activity with 

the proportional functional hyperemia response (Hill et al., 2015), it is important to 

determine if this population of blood vessels is different in wild-type, Carmeliet-tPA-/-, 

and Szabo-tPA-/- mice using more sophisticated analytical tools. 

 

5.2.9 Modeling blood flow  

With the vascular data we have gathered we can begin to address questions 

beyond how tPA may or may not be functioning to alter the vascular architecture. By 
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taking a modeling approach, for example, we can incorporate our vascular morphometry 

statistics and network connectivity data to assess how changes in the vasculature affect 

blood flow. There is some correlative evidence to suggest that an altered vascular 

morphology has functional implications for blood flow regulation. In models of 

Alzheimer’s disease, mice are reported to have an altered vascular morphology and 3D 

architecture (Meyer et al., 2008; Bennett et al., 2018), and in the clinical setting, patients 

with Alzheimer’s disease present with hypoperfusion (Ruitenberg et al., 2005). The data 

we have gathered on vessel diameter and length, vascular density, and branching 

vertex degree, therefore, will be critical for establishing a vascular network, and for 

laying the groundwork for a statistical modeling approach to calculate blood flow, given 

a model for the flow resistance of each branch. 

 

5.3 Concluding remarks 

In summary, in this dissertation we provide a primer on the regional, cellular, and 

subcellular localization of tPA in the central nervous system. These data are important 

for informing our understanding of tPA function, especially given the differential 

expression pattern we observe for tPA in the hippocampus, amygdala, basal ganglia, 

and associated brain structures, demonstrating that tPA can act far from its site of 

synthesis. In particular, we examined the effect of tPA loss in the mossy fiber pathway 

of the hippocampus and found tPA-/- mice to have significant deficits in basal synaptic 

transmission and to be more hyperexcitable than Nsp-/- mice. This ex vivo synchronous-

activity “seizure-like” phenotype for tPA-/- and Nsp-/- mice is opposed to the in vivo 

seizure phenotype for both genotypes. Therefore, while tPA may be playing a role in 
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modulating synaptic transmission, in vivo, the more dominant role for tPA appears to be 

in BBB regulation. Lastly, in our extensive analysis of vascular morphometry and 

network connectivity we find that the increased vascular density in Carmeliet-tPA-/- mice 

may be due to some additive effect of strain-dependent modifier genes and constitutive 

loss of tPA. Cumulatively, this dissertation provides evidence for tPA being a pleiotropic 

mediator in the central nervous system whose actions are highly temporally and 

spatially restricted. Moreover, the genetic mouse models and analytical tools we 

developed will not only help answer basic science questions related to tPA and DCV 

neurobiology, but they can be translated to the clinical realm to further our 

understanding of how the cerebrovasculature affects blood flow and the pathology of 

neurodegenerative diseases, like Alzheimer. 

 

  



280 
 

References 

Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G (1998) GABAergic cells are the 
major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 
18:3386-3403. 

Armstrong JJ, Larina IV, Dickinson ME, Zimmer WE, Hirschi KK (2010) Characterization 
of bacterial artificial chromosome transgenic mice expressing mCherry 
fluorescent protein substituted for the murine smooth muscle alpha-actin gene. 
Genesis 48:457-463. 

Babaev O, Piletti Chatain C, Krueger-Burg D (2018) Inhibition in the amygdala anxiety 
circuitry. Exp Mol Med 50:18. 

Baranes D, Lederfein D, Huang YY, Chen M, Bailey CH, Kandel ER (1998) Tissue 
plasminogen activator contributes to the late phase of LTP and to synaptic 
growth in the hippocampal mossy fiber pathway. Neuron 21:813-825. 

Barker-Carlson K, Lawrence DA, Schwartz BS (2002) Acyl-enzyme complexes between 
tissue-type plasminogen activator and neuroserpin are short-lived in vitro. J Biol 
Chem 277:46852-46857. 

Bennett RE, Robbins AB, Hu M, Cao X, Betensky RA, Clark T, Das S, Hyman BT 
(2018) Tau induces blood vessel abnormalities and angiogenesis-related gene 
expression in P301L transgenic mice and human Alzheimer's disease. Proc Natl 
Acad Sci U S A 115:E1289-E1298. 

Bennur S, Shankaranarayana Rao BS, Pawlak R, Strickland S, McEwen BS, Chattarji S 
(2007) Stress-induced spine loss in the medial amygdala is mediated by tissue-
plasminogen activator. Neuroscience 144:8-16. 

Bharat V, Siebrecht M, Burk K, Ahmed S, Reissner C, Kohansal-Nodehi M, Steubler V, 
Zweckstetter M, Ting JT, Dean C (2017) Capture of Dense Core Vesicles at 
Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4. Cell Rep 
21:2118-2133. 

Bhatnagar S, Huber R, Lazar E, Pych L, Vining C (2003) Chronic stress alters behavior 
in the conditioned defensive burying test: role of the posterior paraventricular 
thalamus. Pharmacol Biochem Behav 76:343-349. 

Billington CJ, Levine AS (1992) Hypothalamic neuropeptide Y regulation of feeding and 
energy metabolism. Curr Opin Neurobiol 2:847-851. 

Bohannon KP, Bittner MA, Lawrence DA, Axelrod D, Holz RW (2017) Slow fusion pore 
expansion creates a unique reaction chamber for co-packaged cargo. J Gen 
Physiol 149:921-934. 



281 
 

Borbely E, Scheich B, Helyes Z (2013) Neuropeptides in learning and memory. 
Neuropeptides 47:439-450. 

Calabresi P, Napolitano M, Centonze D, Marfia GA, Gubellini P, Teule MA, Berretta N, 
Bernardi G, Frati L, Tolu M, Gulino A (2000) Tissue plasminogen activator 
controls multiple forms of synaptic plasticity and memory. Eur J Neurosci 
12:1002-1012. 

Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, De Vos R, van 
den Oord JJ, Collen D, Mulligan RC (1994) Physiological consequences of loss 
of plasminogen activator gene function in mice. Nature 368:419-424. 

Carroll PM, Tsirka SE, Richards WG, Frohman MA, Strickland S (1994) The mouse 
tissue plasminogen activator gene 5' flanking region directs appropriate 
expression in development and a seizure-enhanced response in the CNS. 
Development 120:3173-3183. 

Centonze D, Napolitano M, Saulle E, Gubellini P, Picconi B, Martorana A, Pisani A, 
Gulino A, Bernardi G, Calabresi P (2002) Tissue plasminogen activator is 
required for corticostriatal long-term potentiation. Eur J Neurosci 16:713-721. 

Deng H, Xiao X, Wang Z (2016) Periaqueductal Gray Neuronal Activities Underlie 
Different Aspects of Defensive Behaviors. J Neurosci 36:7580-7588. 

Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343-363. 

Flurkey K, Currer JM, Leiter EH, Witham B (2009) The Jackson Laboratory Handbook 
on Genetically Standardized Mice, Sixth Edition, Sixth Edition Edition. Bar 
Harbor, ME 04609 USA: The Jackson Laboratory. 

Fredriksson L, Stevenson TK, Su EJ, Ragsdale M, Moore S, Craciun S, Schielke GP, 
Murphy GG, Lawrence DA (2015) Identification of a neurovascular signaling 
pathway regulating seizures in mice. Ann Clin Transl Neurol 2:722-738. 

Frey U, Muller M, Kuhl D (1996) A different form of long-lasting potentiation revealed in 
tissue plasminogen activator mutant mice. J Neurosci 16:2057-2063. 

Frotscher M, Soriano E, Misgeld U (1994) Divergence of hippocampal mossy fibers. 
Synapse 16:148-160. 

Garrison JL, Macosko EZ, Bernstein S, Pokala N, Albrecht DR, Bargmann CI (2012) 
Oxytocin/vasopressin-related peptides have an ancient role in reproductive 
behavior. Science 338:540-543. 



282 
 

Gilman S, Newman S (2002) Manter and Gatz’s Essentials of Clinical Neuroanatomy 
and Neurophysiology, 10th edition Edition. Philadelphia, PA: F.A. Davis 
Company. 

Gualandris A, Jones TE, Strickland S, Tsirka SE (1996) Membrane depolarization 
induces calcium-dependent secretion of tissue plasminogen activator. J Neurosci 
16:2220-2225. 

Guevara BH, Torrico F, Hoffmann IS, Cubeddu LX (2002) Lesion of caudate-putamen 
interneurons with kainic acid alters dopamine and serotonin metabolism in the 
olfactory tubercle of the rat. Cell Mol Neurobiol 22:835-844. 

Hastings GA, Coleman TA, Haudenschild CC, Stefansson S, Smith EP, Barthlow R, 
Cherry S, Sandkvist M, Lawrence DA (1997) Neuroserpin, a brain-associated 
inhibitor of tissue plasminogen activator is localized primarily in neurons. 
Implications for the regulation of motor learning and neuronal survival. J Biol 
Chem 272:33062-33067. 

Henze DA, Urban NN, Barrionuevo G (2000) The multifarious hippocampal mossy fiber 
pathway: a review. Neuroscience 98:407-427. 

Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional Blood 
Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle 
Cell Contractility and Not by Capillary Pericytes. Neuron 87:95-110. 

Holmdahl R, Malissen B (2012) The need for littermate controls. Eur J Immunol 42:45-
47. 

Hoover CM, Edwards SL, Yu SC, Kittelmann M, Richmond JE, Eimer S, Yorks RM, 
Miller KG (2014) A novel CaM kinase II pathway controls the location of 
neuropeptide release from Caenorhabditis elegans motor neurons. Genetics 
196:745-765. 

Huang LY, Neher E (1996) Ca(2+)-dependent exocytosis in the somata of dorsal root 
ganglion neurons. Neuron 17:135-145. 

Huang YY, Bach ME, Lipp HP, Zhuo M, Wolfer DP, Hawkins RD, Schoonjans L, Kandel 
ER, Godfraind JM, Mulligan R, Collen D, Carmeliet P (1996) Mice lacking the 
gene encoding tissue-type plasminogen activator show a selective interference 
with late-phase long-term potentiation in both Schaffer collateral and mossy fiber 
pathways. Proc Natl Acad Sci U S A 93:8699-8704. 

Ikemoto S, Yang C, Tan A (2015) Basal ganglia circuit loops, dopamine and motivation: 
A review and enquiry. Behav Brain Res 290:17-31. 



283 
 

Jahanshahi M, Obeso I, Rothwell JC, Obeso JA (2015) A fronto-striato-subthalamic-
pallidal network for goal-directed and habitual inhibition. Nat Rev Neurosci 
16:719-732. 

Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517:284-
292. 

Kerr JN, Wickens JR (2001) Dopamine D-1/D-5 receptor activation is required for long-
term potentiation in the rat neostriatum in vitro. J Neurophysiol 85:117-124. 

Koob GF, Simon H, Herman JP, Le Moal M (1984) Neuroleptic-like disruption of the 
conditioned avoidance response requires destruction of both the mesolimbic and 
nigrostriatal dopamine systems. Brain Res 303:319-329. 

Koob GF, Roberts AJ, Schulteis G, Parsons LH, Heyser CJ, Hyytia P, Merlo-Pich E, 
Weiss F (1998) Neurocircuitry targets in ethanol reward and dependence. 
Alcohol Clin Exp Res 22:3-9. 

Kormos V, Gaszner B (2013) Role of neuropeptides in anxiety, stress, and depression: 
from animals to humans. Neuropeptides 47:401-419. 

Kreiner G (2015) Compensatory mechanisms in genetic models of neurodegeneration: 
are the mice better than humans? Frontiers in cellular neuroscience 9:56. 

Lochner JE, Spangler E, Chavarha M, Jacobs C, McAllister K, Schuttner LC, Scalettar 
BA (2008) Efficient copackaging and cotransport yields postsynaptic 
colocalization of neuromodulators associated with synaptic plasticity. Dev 
Neurobiol 68:1243-1256. 

Louessard M, Lacroix A, Martineau M, Mondielli G, Montagne A, Lesept F, Lambolez B, 
Cauli B, Mothet JP, Vivien D, Maubert E (2016) Tissue Plasminogen Activator 
Expression Is Restricted to Subsets of Excitatory Pyramidal Glutamatergic 
Neurons. Mol Neurobiol 53:5000-5012. 

Lujan R, Roberts JD, Shigemoto R, Ohishi H, Somogyi P (1997) Differential plasma 
membrane distribution of metabotropic glutamate receptors mGluR1 alpha, 
mGluR2 and mGluR5, relative to neurotransmitter release sites. J Chem 
Neuroanat 13:219-241. 

Madani R, Hulo S, Toni N, Madani H, Steimer T, Muller D, Vassalli JD (1999) Enhanced 
hippocampal long-term potentiation and learning by increased neuronal 
expression of tissue-type plasminogen activator in transgenic mice. EMBO J 
18:3007-3012. 

Maren S (1999) Neurotoxic basolateral amygdala lesions impair learning and memory 
but not the performance of conditional fear in rats. J Neurosci 19:8696-8703. 



284 
 

Matys T, Strickland S (2003) Tissue plasminogen activator and NMDA receptor 
cleavage. Nat Med 9:371-372; author reply 372-373. 

Matys T, Pawlak R, Matys E, Pavlides C, McEwen BS, Strickland S (2004) Tissue 
plasminogen activator promotes the effects of corticotropin-releasing factor on 
the amygdala and anxiety-like behavior. Proc Natl Acad Sci U S A 101:16345-
16350. 

Metzger D, Chambon P (2001) Site- and time-specific gene targeting in the mouse. 
Methods 24:71-80. 

Meyer EP, Ulmann-Schuler A, Staufenbiel M, Krucker T (2008) Altered morphology and 
3D architecture of brain vasculature in a mouse model for Alzheimer's disease. 
Proc Natl Acad Sci U S A 105:3587-3592. 

Moore SJ, Deshpande K, Stinnett GS, Seasholtz AF, Murphy GG (2013) Conversion of 
short-term to long-term memory in the novel object recognition paradigm. 
Neurobiol Learn Mem 105:174-185. 

Nagai T, Yamada K, Yoshimura M, Ishikawa K, Miyamoto Y, Hashimoto K, Noda Y, 
Nitta A, Nabeshima T (2004) The tissue plasminogen activator-plasmin system 
participates in the rewarding effect of morphine by regulating dopamine release. 
Proc Natl Acad Sci U S A 101:3650-3655. 

Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. 
Nat Rev Neurosci 6:863-876. 

Nurrish S (2014) Dense core vesicle release: controlling the where as well as the when. 
Genetics 196:601-604. 

Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, 
Hempstead BL, Lu B (2004) Cleavage of proBDNF by tPA/plasmin is essential 
for long-term hippocampal plasticity. Science 306:487-491. 

Park L, Gallo EF, Anrather J, Wang G, Norris EH, Paul J, Strickland S, Iadecola C 
(2008) Key role of tissue plasminogen activator in neurovascular coupling. Proc 
Natl Acad Sci U S A 105:1073-1078. 

Parmer RJ, Mahata M, Mahata S, Sebald MT, O'Connor DT, Miles LA (1997) Tissue 
plasminogen activator (t-PA) is targeted to the regulated secretory pathway. 
Catecholamine storage vesicles as a reservoir for the rapid release of t-PA. J Biol 
Chem 272:1976-1982. 

Pawlak R, Magarinos AM, Melchor J, McEwen B, Strickland S (2003) Tissue 
plasminogen activator in the amygdala is critical for stress-induced anxiety-like 
behavior. Nat Neurosci 6:168-174. 



285 
 

Pawlak R, Melchor JP, Matys T, Skrzypiec AE, Strickland S (2005) Ethanol-withdrawal 
seizures are controlled by tissue plasminogen activator via modulation of NR2B-
containing NMDA receptors. Proc Natl Acad Sci U S A 102:443-448. 

Pawlak R, Nagai N, Urano T, Napiorkowska-Pawlak D, Ihara H, Takada Y, Collen D, 
Takada A (2002) Rapid, specific and active site-catalyzed effect of tissue-
plasminogen activator on hippocampus-dependent learning in mice. 
Neuroscience 113:995-1001. 

Penzo MA, Robert V, Tucciarone J, De Bundel D, Wang M, Van Aelst L, Darvas M, 
Parada LF, Palmiter RD, He M, Huang ZJ, Li B (2015) The paraventricular 
thalamus controls a central amygdala fear circuit. Nature 519:455-459. 

Purves D, Augustine G, Fitzpatrick D, Katz L, LaMantia A, McNamara J, Williams S 
(2001) Modulation of movement by the basal ganglia, 2nd edition Edition. 
Sunderland, MA: : Sinauer Associates. 

Qian Z, Gilbert ME, Colicos MA, Kandel ER, Kuhl D (1993) Tissue-plasminogen 
activator is induced as an immediate-early gene during seizure, kindling and 
long-term potentiation. Nature 361:453-457. 

Ramamoorthy P, Wang Q, Whim MD (2011) Cell type-dependent trafficking of 
neuropeptide Y-containing dense core granules in CNS neurons. J Neurosci 
31:14783-14788. 

Ramirez-Franco JJ, Munoz-Cuevas FJ, Lujan R, Jurado S (2016) Excitatory and 
Inhibitory Neurons in the Hippocampus Exhibit Molecularly Distinct Large Dense 
Core Vesicles. Frontiers in cellular neuroscience 10:202. 

Rogove AD, Siao C, Keyt B, Strickland S, Tsirka SE (1999) Activation of microglia 
reveals a non-proteolytic cytokine function for tissue plasminogen activator in the 
central nervous system. J Cell Sci 112 ( Pt 22):4007-4016. 

Rohlmann A, Gotthardt M, Willnow TE, Hammer RE, Herz J (1996) Sustained somatic 
gene inactivation by viral transfer of Cre recombinase. Nat Biotechnol 14:1562-
1565. 

Ruitenberg A, den Heijer T, Bakker SL, van Swieten JC, Koudstaal PJ, Hofman A, 
Breteler MM (2005) Cerebral hypoperfusion and clinical onset of dementia: the 
Rotterdam Study. Ann Neurol 57:789-794. 

Salin PA, Scanziani M, Malenka RC, Nicoll RA (1996) Distinct short-term plasticity at 
two excitatory synapses in the hippocampus. Proc Natl Acad Sci U S A 
93:13304-13309. 



286 
 

Salles FJ, Strickland S (2002) Localization and regulation of the tissue plasminogen 
activator-plasmin system in the hippocampus. J Neurosci 22:2125-2134. 

Sappino AP, Madani R, Huarte J, Belin D, Kiss JZ, Wohlwend A, Vassalli JD (1993) 
Extracellular proteolysis in the adult murine brain. J Clin Invest 92:679-685. 

Sato M, Ito M, Nagase M, Sugimura YK, Takahashi Y, Watabe AM, Kato F (2015) The 
lateral parabrachial nucleus is actively involved in the acquisition of fear memory 
in mice. Mol Brain 8:22. 

Scalettar BA, Jacobs C, Fulwiler A, Prahl L, Simon A, Hilken L, Lochner JE (2012) 
Hindered submicron mobility and long-term storage of presynaptic dense-core 
granules revealed by single-particle tracking. Dev Neurobiol 72:1181-1195. 

Schnutgen F, Doerflinger N, Calleja C, Wendling O, Chambon P, Ghyselinck NB (2003) 
A directional strategy for monitoring Cre-mediated recombination at the cellular 
level in the mouse. Nat Biotechnol 21:562-565. 

Schnutgen F, De-Zolt S, Van Sloun P, Hollatz M, Floss T, Hansen J, Altschmied J, 
Seisenberger C, Ghyselinck NB, Ruiz P, Chambon P, Wurst W, von Melchner H 
(2005) Genomewide production of multipurpose alleles for the functional analysis 
of the mouse genome. Proc Natl Acad Sci U S A 102:7221-7226. 

Shin CY, Kundel M, Wells DG (2004) Rapid, activity-induced increase in tissue 
plasminogen activator is mediated by metabotropic glutamate receptor-
dependent mRNA translation. J Neurosci 24:9425-9433. 

Stefanelli T, Bertollini C, Luscher C, Muller D, Mendez P (2016) Hippocampal 
Somatostatin Interneurons Control the Size of Neuronal Memory Ensembles. 
Neuron 89:1074-1085. 

Stefanitsch C, Lawrence AL, Olverling A, Nilsson I, Fredriksson L (2015) tPA Deficiency 
in Mice Leads to Rearrangement in the Cerebrovascular Tree and 
Cerebroventricular Malformations. Frontiers in cellular neuroscience 9:456. 

Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, Gao Y, Pietras K, Mann 
K, Yepes M, Strickland DK, Betsholtz C, Eriksson U, Lawrence DA (2008) 
Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain 
barrier integrity during ischemic stroke. Nat Med 14:731-737. 

Su EJ, Cao C, Fredriksson L, Nilsson I, Stefanitsch C, Stevenson TK, Zhao J, Ragsdale 
M, Sun YY, Yepes M, Kuan CY, Eriksson U, Strickland DK, Lawrence DA, Zhang 
L (2017) Microglial-mediated PDGF-CC activation increases cerebrovascular 
permeability during ischemic stroke. Acta Neuropathol 134:585-604. 



287 
 

Szabo R, Samson AL, Lawrence DA, Medcalf RL, Bugge TH (2016) Passenger 
mutations and aberrant gene expression in congenic tissue plasminogen 
activator-deficient mouse strains. J Thromb Haemost 14:1618-1628. 

Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of 
expression of AMPA and NMDA receptors in hippocampal synapses. Nat 
Neurosci 2:618-624. 

Tasan RO, Verma D, Wood J, Lach G, Hormer B, de Lima TC, Herzog H, Sperk G 
(2016) The role of Neuropeptide Y in fear conditioning and extinction. 
Neuropeptides 55:111-126. 

Temme SJ, Bell RZ, Pahumi R, Murphy GG (2014) Comparison of inbred mouse 
substrains reveals segregation of maladaptive fear phenotypes. Front Behav 
Neurosci 8:282. 

Todd WD, Fenselau H, Wang JL, Zhang R, Machado NL, Venner A, Broadhurst RY, 
Kaur S, Lynagh T, Olson DP, Lowell BB, Fuller PM, Saper CB (2018) A 
hypothalamic circuit for the circadian control of aggression. Nat Neurosci 21:717-
724. 

Toth K, Suares G, Lawrence JJ, Philips-Tansey E, McBain CJ (2000) Differential 
mechanisms of transmission at three types of mossy fiber synapse. J Neurosci 
20:8279-8289. 

Trueta C, Kuffler DP, De-Miguel FF (2012) Cycling of dense core vesicles involved in 
somatic exocytosis of serotonin by leech neurons. Front Physiol 3:175. 

Tsirka SE, Gualandris A, Amaral DG, Strickland S (1995) Excitotoxin-induced neuronal 
degeneration and seizure are mediated by tissue plasminogen activator. Nature 
377:340-344. 

Tsirka SE, Rogove AD, Bugge TH, Degen JL, Strickland S (1997) An extracellular 
proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. 
J Neurosci 17:543-552. 

Vecsei L, Beal MF (1991) Comparative behavioral and neurochemical studies with 
striatal kainic acid- or quinolinic acid-lesioned rats. Pharmacol Biochem Behav 
39:473-478. 

Voets T, Neher E, Moser T (1999) Mechanisms underlying phasic and sustained 
secretion in chromaffin cells from mouse adrenal slices. Neuron 23:607-615. 

Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces 
contrasting patterns of dendritic remodeling in hippocampal and amygdaloid 
neurons. J Neurosci 22:6810-6818. 



288 
 

Walker SC, McGlone FP (2013) The social brain: neurobiological basis of affiliative 
behaviours and psychological well-being. Neuropeptides 47:379-393. 

Wang TW, Zhang H, Gyetko MR, Parent JM (2011) Hepatocyte growth factor acts as a 
mitogen and chemoattractant for postnatal subventricular zone-olfactory bulb 
neurogenesis. Mol Cell Neurosci 48:38-50. 

Weiss AN, Bittner MA, Holz RW, Axelrod D (2014a) Protein mobility within secretory 
granules. Biophys J 107:16-25. 

Weiss AN, Anantharam A, Bittner MA, Axelrod D, Holz RW (2014b) Lumenal protein 
within secretory granules affects fusion pore expansion. Biophys J 107:26-33. 

Whiteus C, Freitas C, Grutzendler J (2014) Perturbed neural activity disrupts cerebral 
angiogenesis during a postnatal critical period. Nature 505:407-411. 

Wu F, Torre E, Cuellar-Giraldo D, Cheng L, Yi H, Bichler EK, Garcia PS, Yepes M 
(2015) Tissue-type plasminogen activator triggers the synaptic vesicle cycle in 
cerebral cortical neurons. J Cereb Blood Flow Metab 35:1966-1976. 

Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA (2003) 
Tissue-type plasminogen activator induces opening of the blood-brain barrier via 
the LDL receptor-related protein. J Clin Invest 112:1533-1540. 

Zhuo M, Holtzman DM, Li Y, Osaka H, DeMaro J, Jacquin M, Bu G (2000) Role of 
tissue plasminogen activator receptor LRP in hippocampal long-term 
potentiation. J Neurosci 20:542-549. 

 


