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DEDICATION 
 
 
 

This dissertation is dedicated to all people who give advice about health to other people.  

May your health advice for others be formulated with the least possible amount of uncertainty. 
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ABSTRACT 
 
 
 

Here we demonstrate how more highly interoperable computable knowledge enables 

systems to generate large quantities of evidence-based advice for health. We first provide a 

thorough analysis of advice. Then, because advice derives from knowledge, we turn our focus to 

computable, i.e., machine-interpretable, forms for knowledge. We consider how computable 

knowledge plays dual roles as a resource conveying content and as an advice enabler. In this 

latter role, computable knowledge is combined with data about a decision situation to generate 

advice targeted at the pending decision. 

We distinguish between two types of automated services. When a computer system 

provides computable knowledge, we say that it provides a knowledge service. When computer 

system combines computable knowledge with instance data to provide advice that is specific to 

an unmade decision we say that it provides an advice-giving service. The work here aims to 

increase the interoperability of computable knowledge to bring about better knowledge services 

and advice-giving services for health. 

The primary motivation for this research is the problem of missing or inadequate advice 

about health topics. The global demand for well-informed health advice far exceeds the global 

supply. In part to overcome this scarcity, the design and development of Learning Health 

Systems is being pursued at various levels of scale: local, regional, state, national, and 

international. Learning Health Systems fuse capabilities to generate new computable biomedical 

knowledge with other capabilities to rapidly and widely use computable biomedical knowledge 
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to inform health practices and behaviors with advice. To support Learning Health Systems, we 

believe that knowledge services and advice-giving services have to be more highly interoperable.  

 I use examples of knowledge services and advice-giving services which exclusively 

support medication use. This is because I am a pharmacist and pharmacy is the biomedical 

domain that I know. The examples here address the serious problems of medication adherence 

and prescribing safety. Two empirical studies are shared that demonstrate the potential to address 

these problems and make improvements by using advice. But primarily we use these examples to 

demonstrate general and critical differences between stand-alone, unique approaches to handling 

computable biomedical knowledge, which make it useful for one system, and common, more 

highly interoperable approaches, which can make it useful for many heterogeneous systems. 

Three aspects of computable knowledge interoperability are addressed:  modularity, 

identity, and updateability. We demonstrate that instances of computable knowledge, and related 

instances of knowledge services and advice-giving services, can be modularized. We also 

demonstrate the utility of uniquely identifying modular instances of computable knowledge. 

Finally, we build on the computing concept of pipelining to demonstrate how computable 

knowledge modules can automatically be updated and rapidly deployed.  

Our work is supported by a fledgling technical knowledge infrastructure platform called 

the Knowledge Grid. It includes formally specified compound digital objects called Knowledge 

Objects, a conventional digital Library that serves as a Knowledge Object repository, and an 

Activator that provides an application programming interface (API) for computable knowledge. 
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The Library component provides knowledge services. The Activator component provides both 

knowledge services and advice-giving services.  

In conclusion, by increasing the interoperability of computable biomedical knowledge 

using the Knowledge Grid, we demonstrate new capabilities to generate well-informed health 

advice at a scale. These new capabilities may ultimately support Learning Health Systems and 

boost health for large populations of people who would otherwise not receive well-informed 

health advice. 
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INTRODUCTION 

 

OVERVIEW 

 

 Throughout this dissertation, I describe moves towards a new technical infrastructure to 

generate large amounts of well-informed health advice. A bit later, the difficult problems 

motivating this work are discussed. Before that, I provide an overview for the reader. 

 

This work is deeply rooted in the sciences of advice. What various sciences have to say 

about the concept of advice is the focus of Chapter I. In that chapter I establish a theoretical 

definition that a message of advice is an information object targeted at an unmade decision. In 

addition, I give a content-based framework for advice. This framework makes it possible to 

analyze advice-giving systems and advice-giving services in new ways. 

 

 The rest of this work, Chapters II, III, and IV, comprise a trilogy focused on increasing 

the interoperability of computable knowledge. But what is the link between advice and 

increasing the interoperability of computable knowledge? 

 

 Figure A below portrays data, knowledge, advice and certain links between them. I show 

in Chapter I that advice is any information targeted by an advisor at an unmade decision faced by 

a decision-maker. That is why Figure A depicts both data and knowledge being particularized to 

form advice. The relevant point here is that the process of producing advice is a process that 

particularizes, meaning fits or applies, data and/or knowledge to the specific context of an 

unmade decision. Precisely how this particularization happens is not relevant at the moment. 

What is critically important to note is that some advice derives from knowledge. This 

relationship between knowledge and advice is precisely the link that holds this dissertation 

together. The more the interoperability of computable knowledge is increased, the easier it 

should become to particularize knowledge computationally to produce messages of advice. 
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 The trilogy of chapters on computable knowledge interoperability unfolds like this. In 

Chapter II, the architecture of a promising stand-alone advice-giving system is analyzed in 

hindsight to better understand some limitations that restrict the interoperability of its computable 

biomedical knowledge. In Chapter III, an account of the design and development of the 

Knowledge Grid platform is given. The technical components of this knowledge infrastructure 

platform provide potential means to increase the interoperability of computable knowledge. In 

Chapter IV, a modularized data-to-advice pipeline is designed, developed, and tested. This 

pipeline uses components of the Knowledge Grid to create, modularize, identify, update, and 

combine unique instances of computable biomedical knowledge automatically. The success of 

this data-to-advice pipeline trial shows that it is possible to use the Knowledge Grid to increase 

the interoperability of computable biomedical knowledge. In the end, this work moves us a step 

closer to a technical knowledge infrastructure that is capable of generating large amounts of 

well-informed health advice on demand. 
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While parts of this are my own work, other parts have been accomplished by the teams 

with whom I work. Therefore, statements of attribution shift from “me” to “we” throughout. 

 

MAIN CONTRIBUTION AND MOTIVATION 

 

For our main contribution, we show how the interoperability of computable knowledge 

can be increased in ways that facilitate shareable knowledge services and advice-giving services. 

The work we present here is domain agnostic. Any computable knowledge can be treated this 

way. However, our focus here is exclusively in the domain of biomedicine because our 

overarching goal is to improve human health. Therefore, when speaking generally, I frequently 

use the term computable knowledge, but, when speaking about the health use cases we are 

pursuing, I use the more specific term computable biomedical knowledge. 

 

This work is motivated by a shortage of well-informed health advice.1–4 Here, advice is 

any information object targeted at an unmade decision. This perspective is elaborated in Chapter 

1. By well-informed advice, we mean advice that reflects current best practices, which in turn are 

based on empirical scientific knowledge. Hence, well-informed advice is information, based on 

some knowledge in the world, that is given as a message to inform an unmade decision.4,5  

 

Manual methods of giving health advice are insufficient. There are too few health experts 

with too little available work-time to provide enough well-informed health advice for all 

people.6,7 This problem is compounded by rapid growth in the quantity of scientific biomedical 

knowledge.8 For these reasons, automated methods are needed.9 Medical experts indicate that 

automation is the key to meeting the global demand for expert advice to improve health.10–12 

 

MAJOR CHALLENGES 

 

There are major challenges that have to be overcome to successfully automate  

advice-giving for health on a large scale. Some of these major challenges are conceptual. Science 

has yet to settle the questions of precisely what advice is or how advice relates to data, 

information, and knowledge (see Figure A).13 Other major challenges are technical and 
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infrastructural. One is to devise knowledge infrastructure that can support knowledge services 

and advice-giving services capable of generating sufficient quantities of health advice to meet 

demand. Embedded in this infrastructural challenge is the need to increase the interoperability of 

computable biomedical knowledge, which is the primary goal of this work. 

 

According to Edwards, knowledge infrastructure is, “a sociotechnical system that collects 

data, models processes, tests theories, and ultimately generates a widely shared understanding.”14 

Edwards, a historian of climate change science, focuses on societal learning, where the goal is to 

achieve a widely shared understanding among the public.14 As a sociotechnical phenomenon, an 

instance of knowledge infrastructure unites technology with socially-determined norms and 

standards and with related technical and social processes to make knowledge, in any form, 

findable, accessible, interoperable, and reusable (the FAIR principles).15 

 

Another major challenge we face is that health knowledge, in particular, often needs to be 

understood by only a few people whose health depends on it. For better population health, the 

goal of using knowledge infrastructure is sometimes to achieve a widely shared understanding14, 

but just as often it is to achieve an easily shareable understanding. An easily shareable 

understanding is one that is kept updated and quickly found and accessed on-demand by 

individuals just when they need it. This difference can be clarified with a health example. 

Consider the case of multiple-system atrophy (MSA), a rare and fatal disease.16 The few who are 

afflicted with MSA, and their families, have an obvious need for well-informed health advice 

about it. Yet for most other people there is little or no need to reach a shared understanding about 

MSA. So, another major challenge here is to be able to have the most current biomedical 

knowledge – spanning most or all diseases, tests, treatments, and health behaviors – in a  

ready-to-be-applied format in order to provide best practice advice to individuals on demand. 

 

Finally, this work addresses another major challenge, which is to develop technical 

infrastructure to support Learning Health Systems (LHSs). LHSs learn about human health in a 

systematic way.17 They rely on communities of interest to generate and apply new biomedical 

knoweldge.12,18–20 Here we explore how to achieve potentially better knowledge services and  
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advice-giving services for LHSs. Taking a macro view, these services are parts of a much larger 

sociotechnical infrastructure needed by LHSs to support ongoing processes of learning.19,20 

 

At a micro level, it is postulated that LHSs instantiate learning cycles, which unite four 

activities that learning communities do to achieve continuous learning about a problem of 

interest to them (Figure B).19 The four steps of a learning cycle are illustrated in Figure B above.  

 

First, on the lower left, the learning cycle begins when a learning community forms 

around a problem of interest to them. Second, the community analyzes or deliberates over data 

relevant to their problem of interest and generates results as new knowledge. This process is 

labeled “D2K”, which stands for “Data to Knowledge.” Third, to improve performance, the 

community implements and acts on its new knowledge. This process is labeled “K2P”, meaning 

“Knowledge to Performance.” Fourth, once new knowledge has been implemented and acted on, 

the learning community collects additional data to study the impacts of implementing its new 
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knowledge on the problem of interest. This is a process of data collection labeled “P2D”, which 

stands for “Performance to Data.” By repeatedly doing the work of D2K, K2P, and P2D, 

performance is iteratively improved. 

 

Embedded in the learning cycle model portrayed in Figure B are the same links between 

data, knowledge, and advice that were introduced before. LHSs need infrastructure to take data 

and generalize it to get knowledge. They also need infrastructure to take knowledge and 

particularize it to get advice. Here we address the major challenge of first devising and then 

starting to develop the knowledge infrastructure needed by LHSs to systematically particularize 

computable biomedical knowledge and generate health advice. 

 

BACKGROUND AND SIGNIFICANCE 

 

 Lack of well-informed health advice 

 

 Problems resulting from a lack of well-informed health advice are plain to see. A current 

example is the epidemic of opioid-related drug-overdose deaths in the United States.21 Some of 

these avoidable deaths result from misunderstanding best practices for the use of opioids to treat 

pain.22 Others result from the use of illicit “street drugs.”23 Still others result from an incapacity 

of the health system to systematically treat drug addiction as expert addictionologists do.24 The 

absence of ready advice, predicated on expert knowledge about opioid drugs and their use to 

treat pain and overcome addiction, hinders many physicians, nurses, pharmacists, dentists, and 

others in their efforts to use opioids safely and effectively.23 The ongoing opioid epidemic in the 

United States highlights, in a woeful way, our need for better knowledge infrastructure to 

improve the flows of reliable, valid knowledge and the health advice we derive from it. 

 

 There are, unfortunately, many more indicators of the lack of sufficient, well-informed 

health advice. These indicators include clinical knowledge gaps that are apparent in everyday 

medical practice, information overload in clinical practice, evidence that predictable cognitive 

biases can negatively influence medical decision-making, and a lack of care coordination. Based 

on the totality of this evidence, it is reasonable to conclude that there is a substantial unmet need 
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for well-informed, readily-available health advice. The scientific evidence supporting this 

conclusion is reviewed in greater detail next. 

 

 In a study of knowledge gaps in clinical practice from 1985, Covell et al. described the 

unmet information needs of physicians.25 They found that only 30% of physicians’ information 

needs were being met. This study measured the proportion of answers available to “highly 

specific” questions about “patient management” arising in the minds of clinicians while 

providing care.25 Some of the questions that arose in practice were matters of fact, others of 

opinion. In 2007, in a study of 3,511 patient consultations, González-González estimated that 

only 20% of primary care physician information needs were being met.26 These findings suggest 

that clinical knowledge gaps appear routinely and persist in everyday clinical practice.27 

 

Information overload occurs when the quantity of potentially useful information received 

by an individual becomes a hindrance because the burden of processing it cannot be overcome.28 

Beasley et al. claim primary care physicians regularly experience information chaos, which 

includes information overload, underload, scatter, conflict, and falsity.29 Markman describes how 

the number of relevant inputs needed to choose an appropriate oncology treatment overwhelms 

practitioners’ ability to identify and assimilate them.30 

 

Advice has the potential to counter information overload only if it brings forward 

actionable, contextualized information that is better than the information clinicians already 

have.9,11 Toward this end, Stead et al. envision intuitive, assistive computer systems that work to 

coordinate the thinking of multiple experts by providing them with “patient centered cognitive 

support.”11 Such systems would be capable of rendering well-informed, relevant health advice 

using commonly understood, highly visual, easy-to-grasp, anatomic, physiologic, and pathologic 

models of people and disease.11 Computable biomedical knowledge has to be very well 

organized to do this. 

 

Probability neglect is a known cognitive bias that affects medical practice and could be 

counteracted by well-informed health advice. Sunstein defines probability neglect as, “emotional 

interference with judgment about risk”, causing some risks to be overlooked and others to be 
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overestimated.31–33 To counter probability neglect, advice could indicate how to incorporate 

probabilities into a decision-making process,31 or advice could convey the gist of the available 

evidence in a manner that overcomes emotional interference.34 

 

Outcomes bias is another known cognitive bias. It happens when decision makers judge 

the quality of their decisions according to the outcomes that result from them.35 Advice could be 

used to counteract this by communicating how to evaluate decisions regardless of outcome. 

 

The need for more and better health advice can be inferred from the number of 

preventable adverse events (PAEs) occurring due to medical errors. PAEs are unintended injuries 

caused by medical management resulting in measurable disability. Leape et al. estimated the 

incidence and preventability of adverse events effecting hospital patients.36 Using 30,195 

randomly selected hospital patient records from 1984, they estimated that nearly 4% of patients 

suffered an adverse event.36 Of these events, 42% were PAEs unassociated with negligence. 

Another 6% were potentially preventable, save for lack of expertise. There is further evidence 

that PAEs continue to occur at similar rates today.37 

 

Adding to these data about medical errors, Lesar, Briceland, and Stein demonstrated that 

the most common factors associated with medication prescribing errors involve missing 

knowledge, or the misapplication of knowledge, in 30% of cases.38 These findings suggest a 

significant role for advice in preventing medication errors. These results were cited in the 

Institute of Medicine’s seminal report To Err is Human.39 This report called on organizations to 

(1) “avoid reliance on memory” by adopting “protocols and checklists”, (2) to “use constraints 

and forcing functions”, and (3) to “improve access to accurate, timely information.”39 In other 

words, the Institute of Medicine recommends that well-informed health advice be made more 

readily and widely available. In this report, they emphasize medication safety, just as we do here. 

 

If, as Jureta asserts13, “advice is a tool of coordination”, then, where advice is lacking, 

some degree of discoordination should be expected. This is the case in health care. Sadly, reports 

of bad outcomes resulting from poor care coordination are plentiful.40,41 The Institute of 

Medicine reviewed a large body of evidence and concluded, “care delivery has become 
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increasingly fragmented leading to coordination and communication challenges for patients and 

clinicians.”42 Therefore it is reasonable to attribute a measure of poor coordination of health care 

activities to a lack of well-informed health advice. 

 

All of this evidence probably underestimates the need for well-informed health advice 

because of the rapid growth in the quantity of available biomedical knowledge. This topic is 

discussed next. 

 

 Rapid growth in biomedical knowledge 

 

In 1976, Pauker et al. estimated family-practice physicians must have one million facts at 

their disposal for medical decision-making.43 They speculated that medical specialists require 

access to two million facts.43 These past estimates of the number of facts individual practitioner’s 

must command to support their medical practices may be gross underestimates today.  

 

A simple way to document the growth in our overall corpus of biomedical knowledge is 

to examine the number of scientific biomedical journal articles being indexed each year in the 

National Library of Medicine’s online digital library, PubMed. Table A indicates that, overall, 

with fluctuations, the number of new articles indexed in PubMed annually has been increasing 

steadily over the previous two decades, since 1997 (2.7% average growth per year).44  

	
Table A. Annual Number of Scientific Biomedical Articles Indexed in PubMed 
(Source: https://www.nlm.nih.gov/bsd/index_stats_comp.html) 

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 
519,012 411,921 434,000 442,000 463,000 502,000 526,000 571,000 606,000 623,089 

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
670,943 671,904 712,675 699,420 724,831 760,903 734,052 765,850 806,326 869,666 

 

 Meanwhile, new open access knowledgebases about health are also appearing from 

reputable sources.45,46 Here, a knowledgebase is defined as a store of computable knowledge. 

One example of a new public knowledgebase comes from the Clinical Pharmacogenetics 

Implementation Consortium (CPIC).47 Included amongst CPIC’s published online files are 

spreadsheets describing the genetic determinants of drug-gene associations. These spreadsheets 

contain approximately 2,000 drug selection and dosing rules.45 These numerous drug-gene rules 
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represent 0.2% of the number of facts that Paulker estimated physicians must know to practice 

medicine effectively in 197643, but they cover only a miniscule amount of the actionable drug 

knowledge that is available today. 

 

Not only has the overall corpus of scientific knowledge about biomedicine grown rapidly 

since 1976, but health facts are now subject to more rapid change.48 While patients and their 

families expect doctors to know what to do to meet their medical needs - and how to do it - Weed 

commented several decades ago in 1983 that, “the unaided mind cannot meet such 

expectations.”49 Therefore, it is evidently well-established that computer systems and 

information technology are now required to aid people by providing health advice.  

 

Next, we introduce the fundamental concepts of an advice interaction, an advice-giving 

system, and an advice-giving service, and then, to complete this dissertation, we briefly review 

some of the science pertaining to advice-giving systems for health. 

 

Model for an advice interaction 

 

Figure C below portrays a conceptual model of a two-way, advisor-advisee advice 

interaction. I developed this model in 2014 after reviewing the scientific literature on advice. 

This model is directly informed by the works of Jureta13, Salacuse50, Friedman51, and Shannon.52 

It includes a series of actions prompted by a cue, which is perceived by the advisor and serves to 

trigger the advisor to begin formulating advice for an advisee. Formulation of advice is a critical 

step in an advice interaction preceding the transmission (or communication) of advice. Together 

these acts of formulation and transmission of advice are referred to throughout this work as 

generating or producing advice. Note that, according to the model in Figure C below, advice 

interactions can cycle back and forth between advisor and advisee before halting. 

 

Stepping through this advice interaction model in Figure C from the beginning, first the 

advisor is prompted by an initial cue (the cue may or may not be an initial request for advice 

from the advisee). The cue triggers the advisor to formulate advice. Next the advice about a 

target decision has to be transmitted by communicating a message. This is how advice is  
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“given” to an advisee. Advice is then received and interpreted by the advisee. Next, the advisee 

chooses whether to proceed and make the target decision, while applying or ignoring the advice 

received, or whether to request more or different advice from the advisor.  

 

In response to a request for more or different advice, which is a cue, the advisor may 

choose whether or not to provide more or different advice. According to the model, an advice 

interaction ends when either the advisee or advisor halts it at the choice point under their control. 

After the advisor-advisee interaction ends, the advisee’s yet unmade decision, at which the 

advice given is targeted, finally gets made. 

 

There is no limit to the amount of communication that can take place within an advice 

interaction according to the advice interaction model. The model illustrated in Figure C greatly 

simplifies advice-giving and advice-receiving. In the real-world, additional complexities pertain. 

Real advice interactions can be interrupted and restarted. Advisors and advisees can change roles 
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or participate in multiple, concurrent advice interactions with different target decisions. 

Sometimes, decisions at which advice is targeted may be deferred or avoided altogether. The 

model in Figure C provides us with just enough detail to consider what it means to have an 

automated advice-giving system, or an advice-giving service, function in the role of advisor. 

 

Model of an advice-giving system and of an advice-giving service 

  

 Throughout this dissertation, the terms advice-giving system and advice-giving service 

are used. Here, the term advice-giving system is an over-arching term for complete decision-

support systems, recommendation systems, and expert systems, among others. For a system to be 

considered an advice-giving system it must automatically particularize some knowledge in the 

world, using contextual information about a decision situation, to generate messages of advice 

that are specific to some decision situation. 
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Advice-giving systems play the role of automated advisor. Via private communication, 

Friedman has provided a six-part conceptual model of an advice-giving system (Figure D). As 

depicted above, the first required capability is the Trigger capability. Advice-giving systems 

must include a Trigger capability to enable outside agents, either people or machines, to initiate 

advice-generation by the system. The Trigger capability is recognized among clinical decision 

support experts as a critical, scope-limiting component of advice-giving systems.49,53,54 

Therefore, a couple of additional points specifically about the Trigger capability are warranted.  

 

In 1983, Weed and Hertzberg presaged context-aware advice-giving system Trigger 

capabilities in a paper about “Problem-Knowledge Couplers.”49 Their couplers enabled 

knowledge to be used to make advice appear automatically under predetermined conditions.49 

Since that time, efforts to develop and improve the Trigger capability for advice-giving systems 

have continued. One current example is the “CDS Hooks” project. CDS Hooks seeks both to 

expand and standardize automated triggers (also called “hooks”) within health information 

systems, especially electronic health record (EHR) systems.54  

 

Figure D shows how, once an advice-giving system is triggered to generate advice, it 

combines two different types of inputs, data and knowledge. In Friedman’s model, input data 

(i.e., “Data”) describe something related to a decision situation. These “instance data” may 

describe a single person, one biological sample, the current state of an organization, etc. These 

descriptions are the data which, when combined with computable knowledge, result in advice. 

 

In addition, advice-giving systems must also draw on computable knowledge  

(i.e., “Knowledge”). Per Friedman, knowledge is a result from a previous analytic or deliberative 

process of study that is significant to a community.19 Methods of knowledge representation are 

used to encode knowledge to make it computable so that advice-giving systems can use it. 

 

All advice-giving systems apply computable knowledge to data, through processes of 

reasoning and computation, to generate advice. In Friedman’s model, the Reasoner capability, 

depicted as a set of gears in the middle of Figure D, includes formal logical reasoning, pattern-

matching, calculation using statistical prediction rules, and other computational functions. 
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Viewed from this most general perspective, advice-giving system Reasoners come in many 

forms and are called by many names, e.g., rules engine, reasoning engine, or interpreter.  

 

The fifth required capability of all advice-giving systems is the Rendering capability, 

indicated by a painter’s palette in Figure D. After data and knowledge are combined in the 

Reasoner and a new result is generated, advice-giving systems must then formulate messages of 

advice and communicate them in verbal and/or visual formats. 

 

Finally, Friedman’s model of an advice-giving system includes a sixth component, the 

Human Decision-maker. Including the Human Decision-maker in the model makes it clear that 

advice-giving systems provide advice to people. However, as we will see in Chapter I, advice-

giving systems can also provide advice to other machines. 

 

An advice-giving service is the subcomponent of an advice-giving system that does the 

work of formulating and transmitting messages of advice. In Friedman’s general model of an 

advice-giving system (Figure D), the advice-giving service subcomponent encompasses only the 

“Data”, “Knowledge”, “Reasoner” and “Renderer” parts, as indicated by the dashed grey line in 

the figure. Advice-giving systems may have more than one advice-giving service subcomponent. 

As we will see, some of the work presented here enables the advice-giving service 

subcomponents of advice-giving systems to be modularized so they stand on their own. 

 

 There are many studies of health advice-giving systems built in accordance with 

Friedman’s model (Figure D). Much of the science about these systems is organized under the 

rubric of Clinical Decision Support Systems or CDSS.53 CDSS are one category of advice-giving 

systems, and they are an important category for health. However, in addition to CDSS, other 

advice-giving systems for health, notably those that generate advice for consumers, including 

patients, their family members and caregivers, have also been developed and studied.55 Central 

findings about the benefits and limitations of both of these types of advice-giving systems, CDSS 

and consumer-oriented systems for health, are reviewed next. 
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Advice-giving systems for health 

 

 In a synthesis of 17 well-executed systematic reviews, Jasper et al. reported in 2011 that, 

“there is significant evidence that CDSS can positively impact healthcare providers’ 

performance, with drug ordering and preventive care reminder systems as the most clear [sic] 

examples.”53 However, what these authors also make clear is that, as of 2011, few studies of 

CDSS to date have demonstrated any benefits to patient outcomes.53 

 

 There is even less evidence showing benefits from consumer-oriented advice-giving 

systems. In 2014, Payne et al. performed a systematic review of mobile applications (apps) used 

to support health behavior change, resulting in an analysis of 24 studies.55 Most of these studies 

focused on increasing physical activity and/or weight loss, while a few focused on better mental 

health. Making it more difficult to determine the impact of these apps, many of the studies 

analyzed involved a multi-component strategy for health behavior improvement that included the 

use of advice-giving apps along with other interventions, such as personal counseling. Further 

limiting evidence of positive benefits from advice-giving health apps for consumers, most 

studies to date are pilot studies conducted with small samples showing only the potential for real-

world health gains.55 

 

An orthodox interpretation of the central finding about advice-giving systems for health, 

which is that these systems have yet to result in widespread health outcomes improvement, could 

be that advice-giving systems are of uncertain value and need to be further studied in larger 

populations for longer periods of time. This view is supported by evidence. 

 

A somewhat less conservative interpretation of this central finding, made in light of the 

need for more well-informed health advice, is that the modest health benefits so far demonstrated 

from using advice-giving systems are enough to show that these systems are moderately 

effective today and likely to become more effective in the future. This interpretation is bolstered 

by the views of health care thought leaders9–12 and reflected in national health IT policy in the 

United States, which promotes the use of advice-giving systems.56 
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Yet another interpretation of this central finding, the one that is most relevant here, is that 

knowledge services and advice-giving services capable of providing high-quality advice that is 

sophisticated enough to be helpful and made available at the scale needed to improve health 

outcomes, have yet to be designed, developed, and deployed. This interpretation rests on 

evidence that there are known limitations of current advice-giving systems that can potentially be 

overcome in part by increasing the interoperability of computable biomedical knowledge.9,57,58 

 

 Limitations of current advice-giving systems for health 

 

 Current advice-giving systems, including most CDSS, are limited in their impact by the 

narrowness of their scope, inadequate upkeep of knowledge, the large scope of work needed to 

implement them, the fact that they are naïve to what their users already know, and their cost.59 

 

 To date, many task-oriented, domain-specific advice-giving systems for health have been 

developed and deployed.53 Examples include CDSS to guide antibiotic selection and dosing60, 

CDSS to warn responders about gradual clinical worsening of patients in the hospital61, and 

CDSS to guide the use of radiological imaging.62 These domain-specific advice-giving systems 

have their own unique, often closed and proprietary, knowledgebases. 

 

One of the ways that narrowly scoped advice-giving systems fail is by not accounting for 

common real-world complexities related to health. Examples of this are cases of multiple 

diseases, also called multiple comorbidities. Many advice-giving systems for health are purpose-

built to advise about a single disease, condition, treatment, or intervention. Advice-giving 

systems with such narrow scope are incapable of reconciling the advice they give about one topic 

with advice about other related topics. To address this problem, some research has been done on 

automatically merging multiple disease-specific computable clinical practice guidelines.63 

 

In contrast to advice-giving systems built using narrowly scoped knowledgebases, 

systems with a broader scope of computable biomedical knowledge have been envisioned. 

Tsafnat and Coiera propose modular, composable or combinable advice-giving services arising 

from individual instances of computable knowledge focused at the molecular, organelle, cellular, 
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organ, or whole-body levels.64 Similarly, Stead envisions computer-supported continuous 

learning and performance environments for medical providers.11,12 Such environments would 

track and assess provider knowledge while also directly supporting provider performance with 

“just in time” access to well-informed advice provided to them in their clinical workflow.”12 

 

 Another limitation of today’s advice-giving systems is that the knowledgebases they use 

are difficult to keep current. Ash et al. reported in 2007 that keeping the knowledge in CDSS 

current is difficult, even for well-resourced organizations.65 Reinforcing this point, Campbell et 

al. noted that CDSS upkeep is unending, requiring a permanent commitment of time and 

attention.66 One strategy for achieving more efficient knowledge upkeep is to distribute the work 

of knowledge maintenance across a group of domain experts. Geissbuhler and Miller described 

this approach as the “Knowledge Library” model of distributing knowledge maintenance for 

CDSS in 1999.67 Similarly, Learning Health Systems depend on communities of interest, focused 

on particular health problems, to steward computable knowledge assets that can be shared on a 

local, regional, national, or international scale.19 

 

 The effort, in terms of time and attention, required to implement advice-giving systems is 

another limitation to their use. The work of advice-giving system implementation can be broken 

down into two categories. The first category is the technical work needed to turn these systems 

on. The second category is the process change work needed to make use of these systems in 

practice. A large portion of the technical work involves engineering and testing interfaces 

between advice-giving systems and other systems.68 Research and development efforts to reduce 

the burden of interface engineering and testing are ongoing.69 Meanwhile, other efforts in 

implementation science address ways to improve and scale-up process change.70 

 

 Another limitation of today’s advice-giving systems is that they can be difficult, if not 

impossible, to customize to meet local needs.65 Some of this difficulty arises from a lack of 

granularity in the affordances that govern how the knowledgebases supporting advice-giving 

systems function. When the only available controls are to activate or deactivate knowledge 

categorically, instead of more granular controls over individual instances of computable 

knowledge, then advice-giving system users may face a trade-off. Either they enable the advice-
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giving system to provide wanted advice along with unwanted advice, or they forego wanted 

advice to avoid unwanted advice. Improved knowledge infrastructure could address this problem 

of granularity of control over the computable knowledge that supports advice-giving systems.71 

 

 Proprietary approaches to developing advice-giving systems that are scoped for narrow 

domains and use minimally interoperable computable knowledge thwart the scale-up of advice-

giving capabilities that is needed today. The present work is significant because it addresses the 

need for better knowledge infrastructure, and especially for more highly interoperable 

computable biomedical knowledge, to scale-up automated advice-giving sufficiently to close the 

gap between the demand for well-informed health advice and the current inadequate supply of it. 

 

COMPUTABLE KNOWLEDGE INTEROPERABILITY 

 

As indicated in the Overview, we primarily address advice and computable knowledge 

interoperability in this work. Following a conceptual analysis of advice, the preponderance of 

this work focuses on increasing the interoperability of computable knowledge, especially 

computable biomedical knowledge, for the purpose of generating more and better health advice. 

 

Definition of interoperability 

 

Before going further, it is necessary to define, as precisely as possible, what is meant 

throughout this work by the term interoperability. David Chen and his colleagues discuss the 

definition of interoperability in the context of information system engineering.72 Fundamentally, 

they note that interoperability is the ability for two or more arbitrary things to function jointly.72 

This definition of interoperability implies three important things that are detailed next. 

 

First, interoperability is an ability that things may have which varies by degrees. For 

scientific purposes, to say that a thing is or is not interoperable is insufficient. Unfortunately, 

however, precise measures of interoperability are wanting. Therefore, interoperability is 

discussed here in categorical ways to convey a scale from low to high.  
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Second, the definition of interoperability above implies that the degree to which two 

things are interoperable depends on multiple factors and not on just one factor. Features of each 

thing involved, and aspects of their joint action, help determine the degree of interoperability in 

any particular case.  

 

Third, the definition of interoperability above further implies that the interoperability of 

many things, including instances of computable biomedical knowledge, can potentially be 

increased or augmented in a variety of ways, not just in one way. 

 

Previous scientific work on information artifact interoperability 

 

Scientific work towards making digital information systems more highly interoperable is 

longstanding. We note that Cerf and Kahn published their protocol for packet-based network 

communication in 1974.73 They were motivated by the need to increase the interoperability of 

computer systems enough to support sharing of information artifacts (or resources) by disparate 

systems over digital computer networks. Their seminal work has evolved into the TCP/IP 

protocol suite that enables computers to share information across the modern global Internet. 

 

Scholarly information artifact interoperability. Past scientific work intended to augment 

the interoperability of scholarly information artifacts is most relevant here. In this regard, Lagoze 

and Van de Sompel provide a review of some of the earliest moves of the Open Archives 

Initiative (OAI).74 The OAI set out to build an interoperability framework to improve scholarly 

artifact sharing among federated archives. These early moves included efforts, which were 

deliberately limited in scope, to expose the metadata describing scholarly information artifacts 

held in various different online archives. Work to expose and share these metadata stimulated the 

development of value added services that consumed and further processed these metadata 

describing scholarly artifacts. An important outcome of early work on the OAI was the protocol 

for metadata harvesting (PMH).74 To enhance its interoperability, the PMH was based on the 

common Hypertext Transfer Protocol (HTTP) methods GET and POST.  
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As implied by their names, the HTTP GET method supports requests to get artifacts or 

resources from an archive while the POST method supports posting artifacts or resources to an 

archive. Using these HTTP methods, which take advantage of the World Wide Web (WWW) as 

a common infrastructure for information interoperability, it becomes possible to improve the 

interoperability of technical component-to-component interactions, to reduce interaction latency 

between technical components, and to facilitate technical solutions that address cross-cutting 

concerns, such as information system security. For these reasons, there has been substantial 

growth in the number of HTTP-based webservice application programming interfaces (APIs) 

available for use via the WWW. Work reported here to increase the interoperability of 

computable knowledge takes advantage of these same HTTP methods. 

 

Web-centric scholarly information artifact interoperability. More recently, Van de 

Sompel and Nelson provided an update on the evolution of the Open Archives Initiative for 

increasing the interoperability of what they have come to call web-based scholarship.75 They 

note that the PMH has achieved broad adoption since 2001. Metadata about scholarly artifacts is 

now routinely shared among scholarly archives using computer networks. However, they view 

the successful uptake of the PMH with some concern because it enabled archive-centric, instead 

of web-centric, interoperability gains. Archive-centric approaches emphasize archive-level 

interoperability over potentially more desirable artifact-level interoperability enabled by the web-

centric approach.75 In this regard, with respect to artifacts, during the period between 2001 and 

2015, it became apparent that future attempts to improve the interoperability of artifacts of 

scholarly communication using the WWW could be even more successful if they focused on 

improving the interoperability of individual units of communication in the form of compound 

digital objects instead of units of communication that are scientific papers or monographs76. 

 

Compound digital objects. According to Kahn and Wilensky, who pioneered this idea, a 

compound digital object is a digital object with a unique identifier, or handle, that is composed of 

one or more instances of typed, structured “data” plus descriptive metadata.77 We emphasize that 

when Kahn and Wilensky refer to “data”, they are referring to any binary content and generally 

not to the data comprising a scientific data set. We are exclusively interested in increasing the 

interoperability of the computable knowledge class of scholarly artifacts. To be clear, the “data” 
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of interest here, in the Kahn and Wilensky sense of the term “data”77, is computable knowledge. 

We will refer to this “data” as computable knowledge from hereon to limit any confusion. 

 

Van de Sompel and Nelson’s insight about the importance of compound digital objects as 

units of scholarly communication has greatly influenced our approach to increasing the 

interoperability of computable knowledge.75 Applying their insight, it was Lagoze who first 

introduced the idea of formally specifying a new class of compound digital objects to hold, 

steward, share, disseminate and facilitate deployment of instances of computable biomedical 

knowledge. Details about our work to formally specify a new class of compound digital objects 

appear in Chapter III. 

 

This dissertation focuses on how the interoperability of computable knowledge may be 

increased for the purpose of producing more and better health advice. The previous three 

paragraphs have highlighted how a host of strong standards (TCP/IP, HTTP, PMH) have been 

used to augment the interoperability of scholarly resources via the WWW. Yet there are other 

ways to augment information artifact interoperability that must be considered too. 

 

Other approaches to increasing information artifact interoperability. To augment 

information artifact interoperability, a shift away from repository-centric approaches towards 

web-centric and/or object-centric approaches is notable.75 This shift is facilitated by the methods 

of HTTP, typed links, and compound digital objects.75 Besides these methods, there are even 

more potential solutions to consider for increasing information artifact interoperability. 

 

Paepcke et al. have described the information artifact interoperability solution space in an 

expansive way.78 They delineate five clusters of approaches for augmenting information resource 

interoperability. These five clusters of approaches are strong standards (e.g., HTTP), families of 

standards (e.g., the family of scripting computer languages with members such as PERL and 

Python), external mediation (e.g., a text file to PDF converter), specification-based interaction 

(e.g., a RESTful webservice), and mobile functionality (e.g., a JavaScript module that can be 

executed by any modern Internet browser). The work we report here takes advantage of solutions 

from all five of these clusters of approaches.   
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Interest in interoperability within the greater health community  

 

Meanwhile, over approximately the past two decades in the health community, the term 

“interoperability” has become a buzzword. Recently, a group of experts in health care delivery 

and health informatics convened by the National Academy of Medicine in 2016 published a 

clarion call for greater interoperability of health information technology.79 They assert it is vital 

for the health system to have a more flexible and adaptable health information technology 

infrastructure. They promote two specific approaches for this:  Enable end-user software 

applications to become readily “substitutable” and enable software-as-a-service by taking 

advantage of the HTTP-based methods of the WWW. 

 

Also in 2016, another large group of experts, members of the Electronic Data Methods 

(EDM) forum, published a report calling for better interoperability of health information 

resources.80 The EDM forum was convened by Academy Health under a cooperative agreement 

with the United States Agency for Healthcare Research and Quality (AHRQ). Their report 

describes a complex model of interoperability with four supporting layers: a technical 

interoperability layer, enabled by communication protocols, a syntactic interoperability layer, 

enabled by common structures for sharing information, a semantic interoperability layer, 

enabled by common interpretations of the meaning of shared information, and a process 

interoperability layer, enabled by methods that link health-related processes of care and activity 

to shared information with a common interpretation. Their perspective reinforces the notion that 

approaches to augmenting the interoperability of computable biomedical knowledge for health 

advice-giving systems have to be multiple and varied. 

 

Definition of computable knowledge 

 

Up until this point, we defined knowledge in its own right but have used the term 

computable knowledge loosely. We require a precise definition of computable knowledge. To 

arrive at this definition, we begin by stating what computable knowledge is not. Computable 
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knowledge is not an arbitrary instance of freetext, even if the arbitrary instance of freetext 

conveys knowledge to a human reader. Computable knowledge is something other than that. But 

what is it? To define computable knowledge, we borrow conceptually from Soare and his 

predecessors in the mathematical domain of computability theory, primarily Turing. They equate 

what is computable with what is known –  in advance of executing any computational process – 

to be calculable.81 There are, of course, undecidable problems that are known in advance not to 

be calculable. But the reason that an arbitrary instance of freetext is not computable is because it 

cannot be known in advance whether or not an arbitrary instance of freetext is calculable 

(decidable). So, for the purpose of this work, computable knowledge is knowledge represented so 

that it is known to be calculable before it is used in a computational process. The practical 

implications of this definition are that any instance of computable knowledge must be able to be 

formatted so it becomes machine-interpretable. It follows that any instance of computable 

knowledge must ultimately be reducible to a set of instructions that a computing machine can 

execute which provide an algorithmically decided result (in contrast to a result that is undefined). 

 

Towards perfect computable knowledge interoperability 

 

Next, we introduce a theoretically ideal state where computable knowledge, and the 

knowledge services and advice-giving services it enables, are perfectly interoperable. Perfect 

interoperability means that two disparate information systems can perform a desired function 

suitably without any further work either to make it or keep it so. In this case, the desired set of 

functions are to preserve computable knowledge, to distribute computable knowledge, and to use 

computable knowledge, in conjunction with information about the context of a decision, to 

generate advice. 

 

Figure E below portrays the types of things that must interoperate perfectly to achieve an 

ideal state of computable knowledge preservation, distribution, and use to generate advice. We 

review these things in this theoretically perfect way just to set ourselves on a path to work 

towards perfect computable knowledge interoperability, even though we know it is impossible to 

achieve it. 
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Five layers are portrayed in Figure E below. Starting on the bottom layer we find modular 

instances of computable knowledge organized into four different collections of individual digital 

objects. In this portrayal, each circular digital object is a small system containing a discrete 

instance of computable knowledge. A discrete instance of computable knowledge could be a 

statistical prediction rule, a set of “IF-THEN” production rules, or some other single unit of 

computer-processable knowledge. Objects are formed into differently shaded collections. 

 

On the next layer up, we find five-sided software modules. Each one of these is an 

individual system dedicated both to preserving computable knowledge in digital forms and to 

providing knowledge services which distribute computable knowledge. Each of the four modules 

in this layer serve as a repository and hold at least two of the collections of computable 

knowledge from the layer below. Having multiple copies of each collection is an important 

digital preservation mechanism that systems-of-systems like this enable.82 Note that within this 

layer, green lines indicate that these four five-sided repository modules interconnect over a 
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computer network. This is so that they can share the digital objects they hold with each other. 

These technical connections can be made in a variety of different ways. 

 

Moving up another layer, we find four hexagonal modules that support four different and 

discrete advice-giving services. As indicated by the green lines, these advice-giving service 

modules are independent systems that connect over a network with the modules in the layer 

immediately below. Each of these advice-giving service modules has the capacity to combine 

data with computable knowledge to produce advice. In addition, the advice-giving service 

modules in this layer interact over a computer network with the software applications in the layer 

immediately above. Therefore, as depicted in Figure E, the advice-giving service modules on this 

layer are a kind of middleware, which is software that performs a bridging role on a computer 

network.83 In this case, these four advice-giving service modules bridge the knowledge service 

system layer below to the application layer above. 

 

On the next layer up, we find three software applications, generically labeled A, B, and 

C. These applications engage multiple advice-giving services to perform their roles. In Figure E, 

each application engages two or more advice-giving service modules in the layer immediately 

below. These applications use those advice-giving service modules to meet the needs of their 

human users, who are depicted in the top layer of Figure E. 

 

There is reason to believe that, while not perfect because ongoing work would always be 

required, a high degree of computable knowledge interoperability could be achieved if the 

system-of-systems approach in Figure E could even partly be realized.84 Such an approach, 

where discrete software modules are consistently used from the bottom up, can potentially give 

rise to a loosely coupled system-of-systems that can meet the actual demand for health advice.  

 

While it may not be obvious in Figure E, among the other things that it affords, the 

system-of-systems approach illustrated facilitates replacement of individual objects at the 

bottom, and knowledge service modules, and advice-giving service modules in the middle layers, 

without having to replace or change any other parts. A high degree of modularity like this is one 

of the known properties of infrastructure.85 
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The Knowledge Grid 

 

The Knowledge Grid, which was first mentioned above in the Overview, is introduced 

here in brief and covered in depth in Chapter III. Figure F below portrays the Knowledge Grid in 

its current developmental form. The Knowledge Grid has not been deployed in practice. 

Therefore, no people in need of health advice are benefitting from it yet. Notice that its 

architecture generally follows the ideal system-of-systems architecture approach for increasing 

the interoperability of computable knowledge (see Figure E). 

 

The Knowledge Grid is a novel, prototype, fledgling knowledge infrastructure (Figure F). 

It is intended to make computable knowledge as interoperable as possible. Components of the 

Knowledge Grid have first been built and then iteratively improved, starting in January of 2016, 

by a team of developers and researchers, including staff, students, and faculty, at the University 

of Michigan School of Information and Medical School. 
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The Knowledge Grid is capable of supporting computable knowledge curation, 

organization, and distribution. It is also capable of supporting the application of computable 

knowledge to produce advice. Its three primary technical components exist as mature prototypes. 

These technical components are: (1) Knowledge Objects86, (2) a conventional digital Library 

repository for curating, organizing, and distributing Knowledge Objects87, and (3) an Activator 

for deploying Knowledge Objects in support of advice-giving services. These three technical 

components appear below the thick red horizontal line in the blue-shaded area of Figure F. Each 

component is briefly described next. 

 

Knowledge Objects. As described conceptually by Flynn et al.86, a “Knowledge Object”, 

abbreviated “KO”, is a structured compound digital object77 suitable for holding and managing 

instances of computable knowledge. A KO is a specific type of compound digital object 

containing three types of information. As depicted in Figure F, every KO has: (1) descriptive 

information about the KO, i.e., its metadata, which always include a unique KO identifier, (2) a 

machine-interpretable representation of an instance of computable knowledge, called a payload, 

and (3) a representation of an interface or service specification, which describes the format and 

character of the input parameters needed to engage the computable knowledge held in the KO 

and the format and character of the advice that can be generated by engaging it. 

 

 The Knowledge Grid Library. A conventional library provides a set of core functions for 

storing, discovering, and curating its holdings.87 A conventional digital library adequately 

supports people wanting to store, find, access, and curate digital artifacts. The system 

architecture for the Knowledge Grid Library, which is reviewed in Chapter III, was designed 

with these three functional categories in mind.87 Currently, the Knowledge Grid Library 

component is a conventional digital library prototype that can be used to organize, curate, and 

distribute KOs. This component has its own API that enables it to provide knowledge services to 

other systems (Figure F). Automated knowledge services include KO discovery services, for 

finding KOs, and KO distribution services, for sharing KOs with other computer systems over a 

network. We have successfully tested a knowledge service that shares KOs with the Knowledge 

Grid Activator over a computer network (Figure F). 
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 The Knowledge Grid Activator. The Knowledge Grid Activator is primarily an advice-

giving service component. It uses Knowledge Objects to generate advice. The Knowledge Grid 

Activator is a modular system with its own API. Its API can expose the technical service 

specification of any KO in a way that external systems can process. By doing so, the Knowledge 

Grid Activator enables other systems to send it requests for advice, requests that carry instance 

data (Figure F). Upon receiving such requests, the Knowledge Grid Activator combines the 

instance data it receives over a computer network with the computable knowledge payload of the 

KO from which advice is sought to generate new messages of advice. The Knowledge Grid 

Activator then sends the advice it generates back to the requesting system (Figure F). Note that 

to date, instances of the Knowledge Grid Activator have been used primarily with test 

applications. However, in Chapter IV we report a trial involving the Knowledge Grid Activator 

as a key component in a new data-to-advice pipeline. We anticipate future work to use the 

Knowledge Grid to provide health advice to health IT applications used by people. This has not 

happened yet.  

 

GOAL AND SPECIFIC AIMS 

 

 Goal 

 

 My goal in this dissertation is show how to increase the interoperability of computable 

biomedical knowledge sufficiently to potentiate the production of well-informed health advice. 

 

 Specific aims 

 

The four specific aims of this dissertation are: 

 

1. To define and categorize advice more precisely by building on existing advice 

theory found in the published record of the sciences of advice 

2. To explain the ways in which proprietary knowledgebases limit the 

interoperability of the computable knowledge they hold and, by extension, 

limit the interoperability of the advice-giving systems they support 
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3. To determine how to increase the interoperability of the computable 

biomedical knowledge that is used by advice-giving systems through the 

design and development of new knowledge infrastructure components 

4. To demonstrate that increasing the interoperability of computable biomedical 

knowledge enables modular, uniquely identifiable knowledge services and 

advice-giving services that are capable of generating useful health advice on 

demand and that can be updated automatically 

 

 This work unfolds from here in the following way. Each chapter addresses a single 

specific aim. Chapter I provides a scientific conceptual analysis of advice. It is followed by a 

trilogy of chapters about computable knowledge interoperability.  

 

Chapter II shares a study of a promising but stand-alone advice-giving system for 

improving medication adherence called MedMinify. More to the point, Chapter II provides a 

retrospective analysis of the interoperability of the computable biomedical knowledge used by 

MedMinify. What results from this analysis is a better understanding of some of the things that 

limit the interoperability of computable knowledge in general. 

 

Chapter III covers the design and development of the Knowledge Grid. It introduces the 

Knowledge Object Reference Ontology, KORO, which formally specifies what a Knowledge 

Object is. It also reviews the system architectures of the Knowledge Grid Library and the 

Knowledge Grid Activator. 

 

The final chapter, Chapter IV, shares a study of a promising modularized data-to-advice 

pipeline called ScriptNumerate. ScriptNumerate makes use of the Knowledge Grid. It 

systematically analyzes raw medication prescription data, bundles the results of its analyses into 

Knowledge Objects, deploys the Knowledge Objects it generates using the Knowledge Grid 

Activator, and then uses the Knowledge Grid Activator API to generate prescription advice. By 

doing all of these things – automatically – ScriptNumerate points the way towards a future state 

when sufficient quantities of health advice can be generated using knowledge infrastructure built 

from the ground up to optimize the interoperability of computable knowledge. 
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CHAPTER I 
 

Theory of Advice as an Information Object Targeted at an Unmade Decision 
 

We must seek better ways to integrate our growing body 
of scientific knowledge and technical expertise with our 
needs as human beings living in an increasingly global 
society.  
– George E. Brown, Jr.1 

 

INTRODUCTION 

 

The purpose of this chapter is to bring about a better understanding of advice, and its 

relationship to documents, information, and knowledge, by synthesizing and extending existing 

advice theory. This chapter sets the stage for the rest of this dissertation, where increasing the 

interoperability of computable knowledge, and thereby the interoperability of related knowledge 

services and advice-giving services, is the focus. Several questions about advice are addressed. 

What is advice and what are advice documents? What is its purpose? What types of advice exist? 

 

Since at least the 1940s, researchers have studied advice2. Yet what advice is remains 

unclear. Our vague understanding of advice is reflected in the Oxford English Dictionary. In 

current English usage, the word advice connotes variously as “an opinion as to what action to 

take”, “a recommendation”, or as, “information imparted”3. Advice is thought of concurrently in 

these three different ways, which respectively increase in their generalness, finally encompassing 

any imparted information! This chapter surfaces and then extends available scientific theory 

about advice to conceptualize it more clearly. There are good reasons to do this. 

 

An argument for the importance of studying advice follows in three succinct parts. It is 

predicated on the general usefulness of advice, its costs, and on overt unmet needs for advice. 

 



	 36 

Advice is evidently useful in addressing information overload. Weinberger4 claims that 

information overload causes us to fear that we are, “not getting enough of the information we 

need.” Indeed, the needs of decision-makers to reduce information load to manageable levels are 

well-founded5. Sometimes the information people need can be obtained as advice6,7. This helps 

explain the continued growth of professional advice-giving services8. Further explanation comes 

from Bryson9. He views advice as a general mechanism, “to put knowledge at the service of 

power.” Power is sometimes exercised on a grand scale. Anthropologists Collier and Ong10 

describe how complex, enduring “global assemblages” of production depend on “fine-grained 

coordination” arising from flows of expertise and standards, which constitute advice. 

Reinforcing this point, Jureta11 claims advice is a tool that begets coordination. 

 

Advice is important for economic reasons. It often costs dearly, demonstrating its 

perceived utility through pricing. Competent legal advice is currently estimated to cost $200 per 

hour12. Financial planning advice can cost $1000 or more per financial plan13. Likewise, the 

advice of medical experts, available as “second opinions”, is sold at similar prices14. Evidence 

shows that irrevocable pre-payment for advice biases purchasers towards its use15. Of course, the 

total cost of advice includes the time and effort it takes to get it16. 

 

Evidence that there is a serious shortage of advice comes from law and medicine. In law, 

people frequently represent their own interests without the benefit of legal advice, diminishing 

their chances of an ideal legal outcome12. In medicine, the unmet need for advice is apparent in 

multiple ways. These include growing knowledge gaps in medical practice17,18, the high 

frequency of avoidable medical errors19,20, and a lack of care coordination21. 

 

To date, researchers have approached the study of advice from multiple positions. Their 

work has resulted in several distinct lines of inquiry. Three such lines are explored here with an 

emphasis on advice theory22. One line focuses on human-to-human advice interactions, another 

focuses on machine-to-machine advice interactions, and a third focuses on advice interactions 

involving humans that are intermediated by information and communication technologies 

(ICTs). These three lines of inquiry are briefly introduced next and later scrutinized. 
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By far the broadest line of scientific inquiry about advice examines interactions between 

human advisors and human advisees. This line runs primarily through the communication, 

counseling, decision-making, economic, educational, health services, management, 

organizational, political, and psychological sciences. Bryson’s “Notes on a Theory of Advice”9 is 

an early example. In it he relates characteristics that differentiate the roles, attitudes, and actions 

of human advisors from those of human advisees. Bonaccio and Dalal23 and MacGeorge, Feng, 

and Guntzviller22 each provide comprehensive reviews about human-to-human advice. 

 

In contrast, perhaps the most narrowly focused line of inquiry about advice is found in 

computer science. This line concerns artificial intelligence, computing theory, and distributed 

computing. It focuses on advice that is exchanged by machines in support of machine reasoning. 

As an early example, McCarthy published a theory of machine decision-making24. In it, advice 

takes the form of computable facts about situations, goals, and actions. McCarthy’s factual 

advice serves as input that, when combined with existing computable means-ends axioms, i.e., 

with computable knowledge, enables a machine to reason and make decisions automatically. 

 

A third diffuse and nearly independent line of inquiry investigates advice when it is 

designed and arranged by human advisors for delivery to human advisees through intermediating 

ICTs. This line of inquiry focuses on human-in-the-loop automation and decision support 

systems. It runs mostly through the sciences of automation, cognitive ergonomics, computing, 

decision-support, design, human-computer interaction, human factors, informatics, information, 

knowledge engineering, safety, trust, and visualization. An early example of ICT-intermediated 

advice is the MYCIN interactive computer program. MYCIN generated advice about antibiotic 

treatments25. More contemporary examples of decision support systems abound26. 

 

Prior research on advice highlights the following open questions. What types of advice 

exist? What explains why these types exist? How is each type of advice formulated and used? In 

terms of its content, is all advice normative or is some purely factual? Regarding its purpose, is 

advice primarily intended to increase the number of alternatives about which decision-makers are 

aware, or is it to help them decrease the number of alternatives under consideration? Regarding 

its intended effects, is the force of advice limited to being suggestive or can it also include 
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persuasive communication, like an argument? The answers to these questions about advice are 

far from self-evident. 

 

The goal of the conceptual analysis presented next is to add clarity about advice, its 

types, and its purpose. This chapter primarily examines how researchers have approached advice 

through the lens of the information and documentation sciences. 

 

BACKGROUND 

 

Foundational concepts about advice 

 

The conceptual foundation for this chapter is established next, starting with the concept 

of advice itself. In general, advice is understood as a category of material information objects 

having a verbal or written form. A material information object is one that can be sensed or 

perceived. This perspective aligns with Searle’s27 fundamental notion of a speech (or linguistic) 

act being a rule-governed “noise or mark” produced by a speaker or writer who has certain 

intentions in mind. Moreover, this view of advice-as-information-object permits advice to be 

analyzed using the theories and methods of the information and documentation sciences. 

 

Since the 1970s, Buckland has developed a research program relevant to this work. One 

way Buckland28 and his predecessors have conceptualized information is as a material thing. For 

clarity, a material embodiment of information, in the form of verbal utterances or written 

symbols that can be sensed or perceived in the world, is referred to hereon either as an 

information object or message. 

 

When advice is conceptualized as a proper subset of information objects, it means that 

some information objects are advice while other information objects are not advice. The 

challenge taken up here is to articulate the property or properties that distinguish advice objects 

from all other information objects. Properties exclusive to advice could be intrinsic ones, such as 

an advice-specific grammar, or extrinsic ones, such as its unique purpose 29. 
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Another foundational concept for this work is the concept of an advice interaction. An 

advice interaction is an instance of advisors and advisees respectively giving and receiving 

advice. Advice interactions are frequently, but not always, social phenomena. As Foucault 

noted30, there are times when the self becomes its own subject. At such times, a person may self-

advise via an internal mental dialog or by self-verbalization. 

 

Also, as noted above, one machine can be made to advise another machine. Yet machine-

to-machine advice interactions, while they are obviously “artificial” and not social phenomena, 

nevertheless ultimately arise out of human needs5. This chapter covers advice interactions that 

involve people, machines, or people using intermediating ICTs. Given these three different 

advice interaction modes, and considering the different roles of advisors and advisees, it is clear 

that advice must be studied from a variety of perspectives to understand it fully.  

 

Placing advice in the context of decision situations 

 

All of the previously cited advice scholars, and many others, explicitly place advice 

interactions in the larger context of decision situations9,11,22–24,31. Some of these scholars have 

outlined decision-making processes involving advice in detail9,11. 

 

As the term is understood here, a decision situation is any situation when two or more 

alternatives are under consideration in advance of a decision being made32. A decision, which is 

also called a choice, is said to be made (or taken or finalized or reached) when one alternative is 

chosen while other alternatives are not33. Given this definition, decisions may incur opportunity 

costs resulting from unchosen alternatives. These opportunity costs can be considerable34. Hence, 

decision situations encapsulate decision-making processes involving the weighing of options 

when tradeoffs are inevitable. 

 

Within a decision situation, decision-making processes may begin with problem 

representation and goal-setting5,9,22. These preliminary steps support deliberation over what 

decision to take and why to take it. Simon’s5 strong argument that human rationality is bounded 

is important to mention here. Simon points out real limits, in time and expertise, that govern 
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human decision-making processes. Bolstering Simon’s argument for bounded rationality is work 

that has uncovered consistent cognitive biases in human decision-making35. 

 

In part as a response to these discoveries about human cognition, starting in the 1980s, a 

body of scientific work began to grow in the area of naturalistic decision making33,36. It has since 

been shown that human decision-making unfolds imperfectly via various formal and informal 

methods of intuition and analysis. It involves prior experience, mental simulation, and decision 

situation categorization33. During such decision-making processes, advice interactions take place 

whenever advice is sought and shared. 

 

Not all decision situations ultimately result in a decision. Sometimes decisions are set-

aside and forever left unmade. As Lewis37 points out, not all decision situations need to be 

resolved because not all decisions finally matter. Things change, sometimes quickly, and when 

they do a decision situation may be exited without reaching any decision. 

 

Decision situations, decision accuracy, uncertainty and advice 

 

Another key concept related to advice and decision-making is the concept of decision 

accuracy. Many studies have explored the effects of advice on decision accuracy23. Taylor38 

operationalized decision accuracy as a measure of the correctness of a series of decisions as 

judged by an expert panel. Many studies since have operationalized decision accuracy similarly 

by comparing decisions made to known facts that serve as a “gold standard.” LaFond39 provides 

a recent example by defining decision accuracy as agreement between the actual choices made 

by a decision-maker and what is known to be the truth. In a contrasting move, Friedman and 

colleagues innovated a method to measure how close physician subjects came to giving an 

accurate diagnosis in response to complex medical cases40. Their physician subjects created 

ranked lists of possible diagnoses. This enabled the study team to use a definitive diagnosis for 

each case to calculate both decision accuracy and each subject’s degree of “correctness.” 

 

Next, a host of key concepts about uncertainty and decision situations are shared to 

illuminate the limits of using decision accuracy as a measure in advice studies. 
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Two key concepts are subjective uncertainty and environmental uncertainty41. Subjective 

uncertainty is the decision maker’s own subjective view of the degree of predictability in a 

decision situation. Environmental uncertainty is the degree to which a future state of nature can 

be accurately predicted with information and knowledge in the world. Environmental uncertainty 

is thus a combined measure of what is as yet unknown and what is forever unknowable. It has 

been noted by Simon5 and others, that, due to environmental uncertainty, decision accuracy 

cannot be determined for many, if not most, real-world decisions42. 

 

Two subcategories of environmental uncertainty are statistical uncertainty, which refers 

to inherent randomness, and epistemic uncertainty, which reflects a lack of knowledge in the 

world43. Many decisions are impacted by irresolvable statistical uncertainty or potentially 

resolvable, but as yet unresolved, epistemic uncertainty43. For decision situations associated with 

these uncertainties, the best possible advice may be limited to helping decision-makers recognize 

the types and degrees of uncertainty that pertain to an unmade decision44. 

 

Another key concept from computability theory is called decidability. Here it is sufficient 

to point out that some decision problems are known to be undecidable45, while others are thought 

to be so46. For undecidable decision problems, it is impossible to construct a method that always 

leads to an answer. These findings establish that irresolvable and seemingly irresolvable 

environmental uncertainties exist. As a consequence, following Simon5, the additional concept of 

the defensibility of a decision becomes important to the science of advice studies. 

 

Compared to decision accuracy, decision defensibility is a weaker standard by which to 

judge decisions. Many decision problems do not have a single “correct answer.” In such cases 

decisions may be fairly judged defensible or indefensible5. Standards akin to decision 

defensibility appear in the law, such as the reasonable person standard for judging liability47. 

Unlike decision accuracy, which is a binary, “yes/no” measure, decision defensibility is 

measured in degrees. As the environmental uncertainty pertaining to a decision situation goes up, 

the evidence available to defend the decision goes down. 

 



	 42 

Risk is another dimension influencing evaluations of decision defensibility48. Some 

decisions involve much greater risks than others, potentially making them more difficult to 

defend in the case of bad outcomes49. 

 

Taken together, the concepts of decision defensibility and decidability raise the following 

important question:  When is it reasonable to judge the accuracy of a decision and when is it 

not? Many decisions are judgment calls made in the context of decision situations associated 

with risks, opportunity costs, potential gains, and environmental uncertainties42,46,47. These 

decisions may be judged on a scale of defensibility, but their accuracy is necessarily 

indeterminable. This chapter frames the concept of advice in this light. 

 

What makes advice acceptable to human advisees? 

 

A sizeable body of research has been conducted to surface features that tend to make 

advice messages acceptable to human advisees. While advice acceptability is not the main focus 

of this work, the results of these studies provide useful background for conceptualizing advice. 

 

Linguistic analyses of actual advice communicated during advice interactions indicate 

that it is problematic to give advice as a command50,51. Instead, advisors tend to employ modality 

markers (e.g., you could do this), pseudo-cleft constructs (e.g., what I would do is this), agent de-

emphasis (e.g., that thing needs this), and conditionals (e.g., if this is the case then you can do 

that). These linguistic devices soften both imperative commands (e.g., do this!) and outwardly 

normative statements (e.g., you should do this), thereby improving advice acceptability52. 

 

Several scholars have noted the need for advisors to analyze the decision problem with 

advisees prior to offering advice. Leppanen50 concluded that “advice is easier to communicate 

when problems are established prior to the delivery of advice.” Similarly, Jefferson and Lee53 

distinguished between “troubles telling” conversations, which do not focus on a particular 

problem, and “service encounter” conversations, where a problem is the main focus of 

discussion. They noted that advice is more likely to be accepted during “service encounter” 
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conversations. These results are further bolstered by indications that unsolicited advice is more 

likely to be rejected50,53–55. 

 

Advice acceptability is related to the source of advice. It has been shown that relational 

closeness between advisor and advisee56, the offering of emotional support prior to advice-

giving57, and advisor expertise, are strongly associated with receptiveness to advice58. To wit, it 

is known that trust between advisors and advisees plays a significant role in advice 

interactions59,60. 

 

Finally, advice acceptability is related to the benefits and costs implied by the advice. 

Advice is perceived to be of higher quality if it is “feasible” to implement, “absent of 

limitations” that result in losses for the human advisee, and not too radical57,61. However, it has 

also been shown that human advisees generally find advice with unexpected content to be of 

greater value than advice they anticipate62,63.  

 

Advice and the concept of “documental becoming” 

 

 We now examine ways in which document science may apply to advice. Following 

Meyriat64, Lund65, and Couzinet66, documents are understood to have both a “dormant” 

informational-material dimension and an “active” communicational dimension. The former 

“dormant” dimension is subject to curation. The latter “active” dimension is perceptual 29.  

 

By drawing on these antecedents from document theory, Gorichanaz and Latham29 used 

document phenomenology to create a framework of “documental becoming” that distinguishes 

between information as a material thing and information as meaning. Their framework builds on 

the idea that information can be understood differently at multiple levels. As Weaver points out, 

information can be understood at one level in terms of transference of material bits of 

information but also at another level in terms of conveyance of meaning 67. In this regard, 

Weaver’s levels of information resemble Austin’s similar concepts of locutionary, illocutionary, 

and perlocutionary impacts of speech68. 
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A related but more general perspective is found in the Basic Formal Ontology where 

continuants, which are material things that persist in the world, are contrasted with occurrents, 

which are fleeting processes that take place in the world69. In this regard, it may be more precise 

to say that documental becoming happens when a continuant information object is given 

meaning through an occurrent process, i.e., a transaction. If what results from an occurrent 

process of documental becoming is recorded, then it becomes yet another continuant information 

object. Thus, the potential for a repeating cycle of sequential object-making and meaning-making 

is implied via transactions of documental becoming. 

 

As portrayed in more detail in Figure 1.1, the constructivist documental becoming 

framework of Gorichanaz and Latham29 brings together a material information object and a 

meaning-generating person into a process resulting in a document. In their conceptualization, a 

document results from a transaction whereby four types of information are processed and “made 

into meaning – and action.”29. The four types of information processed during a meaning-making 

transaction resulting in a document are intrinsic and extrinsic information associated with a 

material information object and “abtrinsic” and “adtrinsic” information associated with a person 

who encounters and ascribes meaning to the information object. Abtrinsic information is 

information about that person’s mental state, e.g., an attitude. Adtrinsic information is 

information about that person’s past life experience, e.g., a memory. 

 

Gorichanaz and Latham29 focus only on “object-person” documents but they do not rule 

out the existence of “object-machine” documents, where a machine encounters an information 

object and executes a transaction that also gives rise to situated and momentary meaning – and 

action, and thus a constructed document. Comparing a machine to a person, abtrinsic information 

may be analogous to the current machine state whereas adtrinsic information may be analogous 

to a machine-accessible log of past computational events. 

 

Using the framework of documental becoming29, advice can be distinguished from advice 

documents (Figure 1.1). Advice is an information object or message. Advice documents are what 

result from transactions whereby active processes of reasoning ascribe meaning to advice at a 

specific moment in time. Following Gorichanaz70, the constructivist perspective about how  
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documents exist views all advice documents as idiosyncratic, context-bound, and unique to the 

individual advice beholder at the moment of advice beholding. An advice beholder is an agent 

that reasons. In sum, advice documents constitute situated meaning that arises when an agent 

encounters advice. As an example, consider a college student acting as an agent who seeks 

advice about which course to take from his or her academic advisor. Upon receiving a verbal 

message of advice suggesting a particular course, the student ascribes meaning to the advice in 

his or her own mind, thereby giving rise to a situated and momentary advice document. 

 

In this chapter, it is necessary to account for object-machine documents because advice is 

known to be shared among machines24,71,72. Yet it is certainly controversial to view information 

processing by a machine as a meaning-making transaction that results in a newly constructed 

document73. Here this controversy is mostly sidestepped by appealing, on the one hand, to known 

capabilities of machine reasoning, which have given rise to “systems of interactive agency” 74; 

and, on the other hand, by stipulating that some experiences remain exclusively human (e.g., 
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feelings and emotions)75. In keeping with Actor Network Theory, which addresses powers and 

their effects regardless of their source 76, the term agent is used here to signify a participant with 

influence in an actor network. Any agent with reasoning capabilities, be it a person or machine, 

can act as an advisor, by formulating and sending advice, and also as an advisee, by receiving 

and giving meaning to advice (Figure 1.1). Furthermore, like human agents, machine agents can 

also learn77. 

 

RESEARCH QUESTIONS 

 

The above review provided background and a broad conceptual foundation for this study. 

It asserted and justified the following initial conjectures. Advice is some type of material, 

transmittable information object. It is given and received during advice interactions, which 

happen within the context of decision situations. Decision situations are associated with 

decisions that involve varying degrees of environmental uncertainty. Once made, some decisions 

can be judged for accuracy. Many other decisions can only be judged on their defensibility. 

When advice is given by an advisor to a human advisee, what makes it acceptable are the 

advisor’s discourse, advisor and advisee understandings of the decision problem, the nature of 

the advisor-advisee relationship, the advisor’s expertise, the cost paid for the advice, and the 

perceived feasibility, benefit, and costs of adopting it. Moreover, during an advice interaction, 

documental becoming occurs in the following way. Advice is encountered by an agent and 

processed via a meaning-making transaction resulting in a momentary, situated advice document. 

To examine the issues raised above in more detail, this study addresses three research questions: 

 

RQ1. In which ways have researchers approached the analysis of advice as a concept? 

 

RQ2. What types of advice emerge by analyzing advice-as-an-information-object using a 

framework that spans decision accuracy, decision defensibility, and decision 

decidability to encompass a content-based typology of advice? 

 

RQ3. How may advice be conceptualized in light of existing advice theory while also 

accounting for a content-based typology of advice? 
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Answers to RQ1 arise from a systematic literature review focused on advice theory. This 

literature review covers three lines of inquiry about human-to-human, machine-to-machine, and 

ICT-intermediated advice interactions. An answer to RQ2, in the form of a new framework and 

related content-based typology of advice, comes about in light of the answers to RQ1. Similarly, 

an answer to RQ3, in the form of a refined theory of advice, comes about by applying insights 

from addressing RQ1 and RQ2 to reconcile perspectives and clarify the nature of advice. 

 

METHODS, RESEARCH MATERIALS, AND ANALYSIS 

 

To answer the research questions above, a systematic literature review of scientific 

publications about advice theory was undertaken. The review identified prior works that 

explicitly conceptualized advice or advice interactions in a theoretical manner, or which 

described models (or types) of advice or advice interactions as a proxy for theory about advice. 

 

By design, the scope of the review was further expanded in an attempt to identify how the 

term advice is generally used within scientific publications found in four domain-oriented 

databases. This widening of scope was effected in part by the deliberate inclusion of relevant 

systematic reviews found in the advice studies literature. Two scholarly books about advice were 

identified and included as well11,54. The final sample of research materials was further augmented 

to ensure coverage of several key concepts related to advice, e.g., construal level, coordination, 

decision accuracy, and decision defensibility. 

 

The publication databases searched are listed next with their domains of scientific 

coverage in parentheses. They are ProQuest’s ABI/INFORM Collection (covering business, 

organization, and management sciences), the Association for Computing Machinery’s Digital 

Library (covering computer and information sciences), the U.S. National Library of Medicine’s 

Pubmed (covering biomedical sciences), and EBSCO’s PsychINFO (covering behavioral and 

social sciences). As a backstop, the general-purpose database Google Scholar was also searched 

specifically for works about advice theory to identify any obviously relevant works that fell 

outside the scope of the other four domain-oriented databases. 



	 48 

 

 

To give structure to the systematic literature review, the PRISMA 2009 Checklist,  

pertaining to the documentation of a systematic review, was used78. 

 

A flow diagram for the literature search is shown in Figure 1.2. The keywords used to 

search publication titles were term expansions of the word root advi* (e.g., advice, advisor, 

advisee, advising), one of which was mandatory for inclusion in the initial search results, along 

with 24 additional terms generally related to scientific works of a theoretical nature (e.g., 

framework, model, level, theory, typology, etc.). No additional searching was done for terms that 

are near synonyms of advice, e.g., recommendation or guidance. Searches were limited to 

articles published in English between January 1940 and November 2017. Searches were further 

limited to finding keywords in article titles only. Nevertheless, this search strategy resulted in a 

large number of false positive results which had to be set aside. This was accomplished by 
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screening the content of titles and abstracts. Included in the final sample were 48 scientific 

papers, 5 of which were added from other sources. Two scholarly books were also included. 

The conceptual analysis unfolded by reading and marking relevant portions of the works 

included in the study sample. These relevant portions speak directly to one or more aspects of 

advice theory. Next, concepts about advice were documented and related using a visual mapping 

technique and specialized concept mapping software (MindNode Pro, Version 1.11). As the 

work to analyze concepts during the present study progressed, an opportunity to organize its 

results emerged when it became clear that advice has been conceptualized in potentially different 

ways by scientists studying human-to-human advice interactions versus machine-to-machine 

advice interactions versus ICT-intermediated advice interactions. 

 

While this conceptual analysis only enables partial refinement of reported understandings 

of the concept of advice, nevertheless it does advance a refined theory of advice that spans all 

three previously mentioned advice interaction modes. The results reported represent a first step 

toward a theory of advice spanning all advice interactions. It is important to note that the 

literature sample used for this conceptual analysis is diverse yet imperfect and incomplete. 

 

RESULTS 

 

The results unfold sequentially in the order of the research questions posed for this study. 

First, results that address RQ1 are presented by summarizing the three nearly distinct lines of 

inquiry found in the scientific literature. For results that address RQ2, an advice content 

framework is developed. This new framework is organized along a continuum of environmental 

uncertainty encompassing decision accuracy, defensibility, and decidability. A content-based 

typology of advice is then derived from this framework and described. For results that address 

RQ3, a model of an advice interaction, informed by theories of decision-making, information, 

and documents, extends previous theorizing to arrive at a refined theory of advice. 

 

A note about the context of all advice and advice interactions. As a lead-in to the 

results, the critical role that context plays in all advice interactions is reiterated here. Unless 

context is accounted for, advice is likely to be of little value79. Here, what is meant by context is 
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the set of background phenomena, or the field of action, within which a focal event is embedded, 

such that the field of action and the focal event inform each other80. Advice interactions are focal 

events. They are embedded in the larger context of a decision situation, which in turn is 

embedded in the even larger context of the informational life-worlds of advisor(s) and 

advisee(s)81. Accordingly, the potential exists for advice to be informed by both the context of 

the decision situation and the informational life-worlds of those participating in an advice 

interaction. 

 

RQ1. In which ways have researchers approached the analysis of advice as a concept? 

 

Advice for human-to-human advice interactions.  

 

This section reporting results about advice for human-to-human advice interactions 

unfolds in two parts. For Part One, a series of domain-specific ideas and theories about human-

to-human advice interactions are described to give a sense of their scope, variety, and 

complexity. Second, to expand on key ideas surfaced in Part One, several domain-agnostic 

advice theories are examined in Part Two. 

 

Part One of advice for human-to-human interactions:  

 

Domain-specific ideas about advice for human-to-human advice interactions. Business, 

economic, and financial advisors play important roles in the modern economy. Policy advisors 

provide advice to people in powerful positions. Counselors provide interpersonal advice to 

individuals. Some key ideas and theories about advice were identified from all three of these 

domains. 

 

Downs82 pointed out the lack of theory about giving people economic advice. He asserts 

that the purpose of economic advice is to reduce the likelihood of expensive mistakes. He goes 

on to point out the need to organize the activities of decision analysis properly, especially their 

timing and scope, so that advice is valuable. 
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Blankart83 contrasts those economic advisors wanting to bring about policy consensus, 

regardless of their own views, with other economic advisors wanting adoption of their own 

proposals, regardless of the views of policy makers. He then hypothesizes that advice 

effectiveness depends on the advisor finding some middle-ground between these two extreme 

positions. Harvey 84 takes this idea a step further and posits that economic advisors must settle on 

two things when giving advice: (1) the content of the economic advice they will give, and (2) the 

political tactics they will use to “package” their advice sufficiently so that it might be acted on. 

The works of these and other authors indicate that it is naïve to believe that human-to-human 

advice interactions involve a straightforward sharing of expertise without rhetoric50,85. 

 

From the perspective of political science, Bryson9 theorized about how expert advisors 

use advice to inform policy decisions made by powerful actors. His work, “Notes on a Theory of 

Advice”, describes using advice to give new dimensions of freedom to the thinking of advisees 

in power, thereby expanding the “range of choices” they have to consider9. Davies86 takes this 

notion one step further and argues that advice must, “offer new dimensions of freedom of 

action.” He claims that if advice is given as a recommendation to select one alternative over all 

others then it is actually not advice at all but is instead a plea86. 

 

In their “Theory of Policy Advice”, Swank, Letterie, and van Dalen87 model four things: 

the limited goals of policy-makers, the multiplicity of uncertain consequences arising from any 

policy choice, the differing opinions of experts weighing in on the same topic in ways that are 

implicitly value-laden, and the power to select experts, which is wielded by the policy-makers 

themselves. Using a game theoretic analysis, they demonstrate that policy advice is effective 

when it diminishes the bias ascribed to one policy maker by another. This result lends support to 

Blankart’s83 middle-ground hypothesis of advice effectiveness. 

 

Recently, policy advice researchers have explored the concept of a policy advisory 

system (PAS)88. In this work, policy advice is thought of both as a general mechanism for 

government knowledge utilization and as a way to inform specific policy decision situations. A 

PAS is a complex set of policy actors and organizations, each with their own goals and 

constraints, that interact to generate advice that informs policy decisions. Examples of interacting 



	 52 

“advisory units” comprising a PAS include government agencies; commissions of inquiry, expert 

panels, external consultancies, and citizen advisory boards89.  Some work investigates how PAS 

dynamics vary amongst polities. Here, what is of greatest interest are the types of advice that 

have been identified through PAS studies. These include political advice targeted at maintaining 

power for those in office, public service advice targeted at bringing social gains, and technical 

advice targeted at issues of the feasibility and the potential consequences of alternatives. 

 

Switching from the macro-perspective of policy advice to the micro-perspective of 

counseling individuals about choices in their personal lives, relational-cultural theory has been 

applied towards building growth-fostering relationships between human advisors and advisees 90. 

Relational-cultural theory invokes three concepts: relational awareness, mutual empathy, and 

authenticity. By advising with these concepts in mind, advice is put in service of the larger goal 

of creating a “mutual, relevant, nurturing, and valuable” advising relationship 90. Advising in this 

manner expands the potential scope of personal advice interactions to include discussions of the 

power dynamics within advisor-advisee relationships (relational awareness), intentional role 

reversal so that advice giving and receiving become bidirectional (mutual empathy), and 

reciprocal demonstrations of trust (authenticity).  

 

Part Two of advice for human-to-human interactions:  

 

Domain-agnostic theories about advice for human-to-human advice interactions. 

Beginning the 1980s, coincident with other initial approaches to the study of naturalistic decision 

making 36, the Judge Advisor Systems Theory (JAS) was developed by Sniezek 91. JAS enables 

studies of the psychology of human judgment and decision-making. It provides a framework for 

studying how human decision makers conduct social information search involving other people. 

In the JAS model, the human “judge” has the authority to take a decision after one or more 

pieces of advice are contributed by one or more human “advisors.”  

 

Numerous studies since have used the JAS model to explore advice and advising, mostly 

in for decision-making tasks involving uncertainty 23. However, most JAS studies have 

operationalized advice extremely narrowly as a recommendation in favor of one alternative 92. 
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Some JAS studies have added advisors' expressions of confidence to their recommended 

alternative 93, expanding the scope of the advice content used in JAS studies somewhat.  

 

Bonaccio and Dalal note that advice theory, in particular, has received inadequate 

attention by those who do JAS studies 23. These authors argue for a construct of advice that 

includes (a) recommendations for a single alternative, (b) recommendations against one or more 

alternatives, (c) factual, non-normative information about alternatives, and (d) advice targeted 

not at the original target decision but instead at the “meta-decision” of how to decide it 92.  

 

As a collection, JAS studies generally confirm that judges discount advice from advisors 

too much, perhaps by intuitively evoking their own efficient but faulty cost-benefit estimates 23. 

This bias that advisors have towards their own beliefs is called egocentric discounting of advice 
94. Most relevant here, however, are the results from JAS studies related to decision accuracy. 

How decision accuracy has been operationalized and measured is of special interest because it 

reflects the nature of the advice examined in JAS studies.  

 

To measure decision accuracy, a correct answer for each decision problem has to be 

known to the study team in advance. For this reason, JAS studies have compared the decisions 

made by judges who received advice from advisors about the following things:  prices for 

consumer goods (e.g., prices of backpacks) 95, the dates when historical world events occurred 

(e.g., the date when the Suez Canal first opened) 61, the answers to multiple-choice questions of 

computer literacy 93, and the fictitious perpetrators in “murder mystery” scenarios 96. 

 

Regarding decision accuracy, JAS studies have shown that, in general, using advice 

increases decision accuracy 22,23. In these studies, decision accuracy has been correlated with 

information availability. Specifically, decision accuracy increases as either the amount of 

decision relevant information available to advisors, or the amount of performance feedback 

information available to judges, increase 23. 

 

Studies in communication science investigate advice in the larger, general context of 

“supportive interactions.” A supportive interaction begins when support-seeker discloses a 
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problem, and may prompt others to offer emotional support, comfort, assistance with coping, and 

advice 57. If choices have to be made to overcome the disclosed problem, support-seekers may 

become decision-makers. When they do, they may benefit from advice. 

 

In this context of supportive interactions, two factors from debate theory, “cure” and 

“cost-benefit”, have been used as starting points to model how to evaluate advice message 

content 57. The resulting advice content evaluation model posits that advice message content 

quality, as perceived by advisees, depends on the advisees’ receptiveness to advice and also on 

advice message clarity, relevance to the decision problem, the degree to which the advice 

mitigates threats to face, the feasibility of its advised solution(s), and the absence of limitations 

to its advised solution(s). An initial study indicated that these factors were all significant and 

accounted for 51% of variance in perceived advice message quality. 

 

Additional research on advice in the context of supportive interactions has demonstrated 

the effectiveness of an integrated model of advice giving that consists of three sequential moves 

for “supportive advisors” to make. These sequential moves that human advisors make are first to 

offer emotional support, second to perform problem analysis work in conjunction with the 

advisee, and third to formulate and communicate advice 97. 

 

Further work in communication science has led to the development of Advice Response 

Theory (ART) 98. ART is an attempt to move beyond feature-level analysis of advice messages 

to examine how advice message, advisor, and decision situation combine to influence decision 

outcomes. Several studies using ART give an early indication that the influence of advice 

message features is greater than the influence of advisor characteristics in the minds of advisees 
99. This work suggests that, during a supportive interaction, what is said in an advice message, 

and how it is said, may have more influence on advisees than who says it. 

 

Advice has more recently been studied from a social psychology perspective using 

Construal Level Theory (CLT). CLT proposes that people perceive objects and events differently 

according to the temporal, spatial, social, and hypothetical dimensions of distance they perceive 

between themselves and an object or event of interest. Overall, a higher construal level (i.e., 
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greater “psychological distance”) from an object or event of interest elicits more abstract 

thinking about it whereas a lower construal level (i.e., less “psychological distance”) elicits more 

concrete thinking about it. CLT has been used in an attempt to explain why advisors may 

approach a decision situation differently from advisees. Studies using CLT suggest that advisors 

think differently than advisees about decision problems when the advisors are not directly 

impacted by consequences of the decision 100. Higher construal levels have also been associated 

with a greater degree of utilitarianism in decision-making101. 

 

Juerta11 published a book on advice analysis within the field of management studies. Here 

it is only possible to give a superficial indication of the depth of this work. In it he carefully 

elaborates his argument for the following definition of advice (p. 106): 

 

“Advice: Any instance x of the concept advice must satisfy the following identity criteria: 

 

1. x is some potentially complex speech act that has been performed by an individual called 

an advisor 

2. x has been experienced by an individual called a recipient  

3. the recipient can distinguish the dicta (what is said) and the modi (how it is said) in x, and 

from the modi establish which of the dicta he could adopt as beliefs, desires, intentions, 

or evaluations 

4. the recipient can form reference relations between at least some of the dicta in x and 

objects in his context of reference”11 

 

Jureta views advice as a tool of social communication whose purpose is to coordinate people and 

things. For him, advice is information given by an advisor to a recipient (i.e., advisee) with the 

over-arching intent of better orienting the advisee to the world around them. To arrive at the 

definition above, Jureta uses a new “model of choice” based on intentional states of mind. In this 

model of choice, a person can only communicate four things: their beliefs, desires, intentions, 

and attitudes. (To improve clarity, the term “attitude” is substituted here for Jureta’s term 

“evaluation.” Here, both terms generally refer to a like or dislike, or to a feeling or disposition.) 
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Per Jureta11, advice is generated in the following way. Advisors begin the process of 

formulating advice by ascribing intentional states (i.e., beliefs, desires, intentions, or attitudes) to 

advisees, either accurately or inaccurately. Advisors also come to understand something about 

the decision situation. Next, advisors generate fleeting, speculative,  also called naïve 102, mental 

picotheories about the advisee(s) and the decision situation. Then, advisors apply their 

picotheories to arrive at beliefs, desires, intentions, or attitudes of their own. Finally, once they 

have settled on relevant intentional states of their own, advisors communicate their relevant 

intentional states as advice. Advice generated in this manner either supports or repudiates the 

beliefs, desires, intentions, or attitudes (i.e., intentional states) of the advisee. Jureta’s theory of 

advice as a message formed by advisor via ascription and prediction results in a typology of eight 

functional advice types. In sum, Jureta’s theory could be called a theory of advice as Messages of 

Ascription and Prediction (MAP). 

 

Two more related topics in the literature about human-to-human advice interactions are 

the topic of advice-seeking behavior and the topic of how human advisees combine (or integrate) 

advice from multiple human advisors when making decisions. It has been noted that most models 

from social psychology of how humans use information from multiple sources assume either that 

all information sources have equal influence or that all sources are associated with some unequal 

but fixed weight of influence103. 

 

The dynamics of weighting advice from multiple advisors is starting to get some attention 

from scientists. Through a series of experiments, Hütter and Ache 94, who view advice-taking as 

an adaptive process, recently demonstrated that participants increase their sampling of advice 

when advice is more informative and divergent. When integrating this advice, participants gave 

greater weight to advice that differed most from their initial estimates and advice that was 

consistent with other advice. This work reinforces earlier results from Calvert 62, who undertook 

a thought experiment to demonstrate why advisees stand to gain when they seek the opinions of 

like-minded, and thus predictably biased, advisors. The reason, explains Calvert, is that advice 

from an advisor who is known to think like the advisee, but which runs counter to the advisee’s 

expectations, is more surprising and thereby more informative. 

 



	 57 

This section ends with a brief mention of the growing science of human advice networks. 

An advice network is a pattern of relationships in which one person requests and receives advice 

from other people 22. This research applies social network theory to study advice network (and 

subnetwork) effects. As examples, Nebus 104 explored how advice networks may differ from 

social networks in ways that reflect that knowledge asymmetry between expert advisors and 

advisees. In turn, in the context of a single government organization with multiple internal 

business units where an advice network already existed, Zappa 105 was able to distinguish 

between within-unit advice relations on the network, which were shaped by status recognition, 

and cross-unit advice relations on the network, which were instead shaped by norms of 

reciprocity. 

 

Presupposing an advice network, Perry has articulated a framework for providing 

scientific advice that suggests routine processes of learning will result in incremental updates to 

advice provided to a community of interest 106. Friedman has previously articulated a similar idea 

for the domain of human health called the Learning Health System107. 

 

Advice for machine-to-machine advice interactions 

 

This section reports results from the fields of artificial intelligence, theoretical computer 

science, and distributed network computing. It is relevant that, for distributed computing, both 

data and software code are automatically shared and processed among multiple machines. Hence, 

the need for machine-to-machine advice often arises in the context of distributed computing. 

 

In an early approach to the development of artificial intelligence capabilities, McCarthy24 

investigated the antecedents to everyday predictions human beings make about the world. He 

noted humans represent in their minds facts about situations, goals, and the effects of actions so 

as to “draw conclusions about which sequences of actions are likely to achieve our goals.” 

Building on this observation, McCarthy defined computable advice as a series of factual 

statements represented in a manner that allows the statements to be input into a computing 

machine. Using such inputs, a machine that has previously been programmed to reason over 
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given factual statements was shown to generate new inferences. McCarthy thus demonstrated 

that machines can do basic logical reasoning for simple decision situations. 

 

In turn, Michie71 conceptualized advice from the perspective of machine intelligence. In 

his paper entitled, “Theory of Advice”, Michie conceived of advice as workable approaches to 

solve semi-hard problems. Semi-hard problems are those computational problems that have 

solutions which cannot be calculated due to practical limits on computer memory or time. With 

semi-hard computational problems in mind, Michie described two types of advice. First there is 

the “great leap forward” type of advice. This type of advice provides a fundamentally new 

approach, in the form of a novel computer algorithm, to enable a semi-hard computational 

problem to be solved with available computer memory or time. Second there is the “incremental” 

type of advice. Michie’s incremental advice takes the form of a new rule that saves time or 

computer memory when it is added as a refinement to an existing computer algorithm. In both 

cases, Michie’s advice is formulated as executable computer instructions, i.e., as “code.” 

Although Michie does not mention machines advising other machines, given the transferability 

of software code, when one machine shares Michie’s advice as computer algorithm with another 

machine, a machine-to-machine advice interaction occurs. Machine-to-machine advising like this 

happens, for example, when software updates are automatically applied via a computer network. 

 

A number of researchers in the domain of machine learning have conceptualized advice 

as a predicted or estimated probability, e.g., a number p between 0 and 1 that can be interpreted 

as the probability of some future event of interest 108. Others have similarly conceptualized 

advice as a probability distribution 72,109. Using advice from multiple advisors in the form of 

probability distributions, and taking a game theoretic approach, Chung 72 showed how to 

effectively combine this advice mathematically to compute both optimal and high-performing 

approximate results for a class of sequential prediction problems including choosing a financial 

stock portfolio from among m financial stocks. In a similar way, using advice from multiple 

advisors - in the form of estimated probabilities - a method has been developed to approximate 

what is otherwise a computationally intractable min/max prediction strategy that minimizes the 

maximum of the difference between the advisee and the best performing advisor over time. 

Machine learning applies to situations like these where multiple data sources are used to generate 
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advice (i.e., point estimates or probability distributions). Machine learning allows advice to 

effectively be combined computationally to make increasingly accurate predictions over time. 

 

The aspect-oriented programming paradigm explicitly uses a concept of advice pioneered 

by Selfridge110, Teitelman111, and Minsky112. In this case, advice takes the form of a special class 

of computer functions that modify or extend the behavior of other computer functions. Advice 

functions are invoked before, during, or after other functions. They are designed to add common, 

cross-cutting capabilities to many different software applications, e.g., security capabilities. 

Quite recently, coordination languages that were originally created to support inter-process 

communications amongst machines have been extended to support fully automated aspect-

oriented advice functions too113,114. 

 

Finally, the profound effects of large-scale computer networking also appear in this 

literature about machine-to-machine advice interactions. Studies have been published describing 

online computation benefitted by machine-to-machine advice. Online computation refers to 

networked systems that process requests in the order they are received. Advice for online 

computation is conceptualized as some function of an entire request sequence or request queue, 

i.e., advice arising as part of a computational oversight function intended to help coordinate 

distributed request processing overall. Computer scientists are interested in incorporating this 

type of machine-to-machine advice into transactional requests for the purpose of improving 

request processing performance of networked systems109,115.  

 

Advice for ICT-intermediated advice interactions 

 

This section, reporting results about advice for ICT-intermediated advice interactions, 

principally addresses advice coming from decision support systems (DSSs). Here, a DSS is 

simply a computer system that generates advice. Therefore, DSSs include expert systems, 

computer-based advisors, and all other advice-giving systems.  

 

Advice interactions involving DSSs are human-to-human interactions only in a very 

limited and distant sense. This is because humans design the advice-giving systems that generate 
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the advice DSS users receive. Of course, users may attribute the advice they get from DSS to the 

systems themselves instead of to the human designers of that advice116,117. 

 

This section, reporting results about advice for ICT-intermediated human-to-human 

advice interactions, like the previous one, unfolds in two parts. First, a series of studies on DSSs 

are reviewed to develop a picture of ICT-intermediated advice interactions. Second, studies 

addressing human learning as a consequence of using DSSs are specifically treated in brief. 

 

Part One of advice for ICT-intermediated advice interactions:  

 

Developing a picture of ICT-intermediated advice interactions. What is specifically 

meant in the literature by the term decision support in not entirely clear. Here, decision support is 

thought of generally as a capability of information and communication technology to play the 

role of automated advisor within advice interactions. Some partial theories of decision support 

can be inferred from the approaches to DSSs taken in the following studies. 

 

In early work on a DSS, within the problem domain of the card game Hearts, Mostow 

studied how a computer system can operationalize general advice that it receives in the form of 

computable heuristics 118. Using automated means-ends analysis and previously encoded rules to 

solve problems, it was shown that a computer system can generate abstract plans based on 

computable heuristics. These abstract plans can then either be automatically applied by the 

computer, or shared with human game players, during Hearts game play. 

 

Hadden 119 describes two impacts of Intelligent Advisory Systems (IASs), which are 

defined as “computer programs that use the techniques of artificial intelligence to mimic human 

expertise.” (As such, IASs are DSSs.) She first describes a momentary function where DSSs 

apply computable knowledge to enable data retrieval and subsequent interpretation for their 

human users. She also describes a more general effect of DSSs, which is to make human 

expertise computable and thus more widely available to other people. 
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Gilbert and colleagues120 describe a DSS intended to help users explore a solution space, 

weigh alternatives, and understand the reasons for the advice offered by the system. The DSS 

they describe helps people understand social security benefits in the UK. Twenty different types 

of answers are supported by this DSS, which relies on 4 types of computable knowledge applied 

at 3 different decision problem levels. The four types of computable knowledge are (1) 

taxonomic entity-relationship knowledge, (2) formal analytic knowledge about relationships 

between entities’ attributes, (3) contingent “how to” procedural knowledge about the social 

security system, and (4) control knowledge about the DSS itself. The three decision problem 

levels are the individual case level, the general benefit domain level, and the theory level of 

meta-domain principles about social security. This DSS remembers prior moves made by its 

users and uses those records to support an iterative advice interaction. 

 

Licker102 describes DSSs as “systems that assist in the coming to conclusions.” He then 

defines five types of DSSs, each one offering a different type of advice to its users. Moving from 

the simplest to the most complex systems, Licker’s five types of DSSs are: Display Systems 

giving text and images using data models, Management Information Systems giving reports 

using information models, Consulting Systems giving analyses using similarity models, Expert 

Systems giving explanations using heuristic models, and “Simulation Systems” giving predictive 

outputs using theoretical models. 

 

Hoch and Schkade121 studied DSSs and the psychology of human decision-makers. They 

asked, “Is it better for a decision support system to capitalize on human strengths or compensate 

for human weaknesses?” This research question goes directly to the allocation of functions 

between human and machine122. In their study, human strengths were operationalized via pattern 

matching using historic data. Meanwhile, human weaknesses were operationalized by using a 

prediction model involving a statistical combination of random variables. Hoch and Schkade 

found that, for a business forecasting task, the degree of environmental uncertainty mattered. 

Under conditions of high uncertainty, when a linear predictive model was used to consistently 

combine random variables, having the result computed with the model improved human decision 

accuracy. This effect was greatly muted under conditions of low uncertainty. Their findings align 

with decades of research on the usefulness of statistical prediction123. 
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Aspinall 124 has since commented on the importance of quantifying uncertainty for human 

decision-makers in order to improve decision-making. He notes that computational methods, 

such as the Cooke method 44, exist to combine previously elicited “subjective probabilities” 

provided by experts into advice with explicit representations of uncertainty for people. Of 

course, other methods exist to quantify statistical uncertainty associated with random variables 
125. 

 

Jones and Brown126 examined the decision of labor between people and DSSs directly. 

They investigated whether or not decision-makers use a systematic “divide and conquer” 

approach when receiving “modeled” and “non-modeled” advice from a DSS. Modeled advice is 

generated using a statistical prediction model to combine multiple facts into a single result. Non-

modeled advice (which Jones and Brown call “information”) takes the form of multiple 

independent facts. They found that humans did not exhibit a theoretically optimal “divide and 

conquer” strategy when using the studied DSS.  

 

Part Two of advice for ICT-intermediated advice interactions:  

 

Human learning as a consequence of ICT-intermediated advice interactions. What 

Hadden119 claims is that DSSs are a mechanism for transferring knowledge among people. This 

suggests that people can learn lessons from DSSs which they can apply immediately to a 

decision problem and again later to future decision problems. Indeed, Anstey 127  wrote that, “in 

many cases the ideal advisory encounter will become a teaching activity, so that the user is better 

informed and will hopefully be able to avoid not only identical problems but similar ones.”  

 

A large body of literature on trust in automation suggests that indeed people do learn 

from repeated advice interactions with DSSs. In studies of task allocation between humans and 

machines, Muir60 noted that trust between humans and machines must be “calibrated.” Trust is 

an evolving, uncertain prediction made by people reflecting their willingness to be vulnerable59. 

Calibration of trust involves a person updating their prediction model about what a DSS will do 

as new experience becomes available. Existence of such experiential learning resulting from 



	 63 

DSS use has been confirmed. Studies show that DSSs have to give advice users expect for easy 

decision problems otherwise users will assume the DSSs are incapable of providing reliable 

advice for difficult ones128–130. 

 

Gardner and Berry131 demonstrated a direct learning effect from DSS use. In a study of 

drug dosing advice, a DSS was shown to have a significant impact on human learning in two 

ways. First, access to DSS advice in the past was associated with improved dosing in the present 

in the absence of advice. Second, a group receiving explanations along with dosing advice 

outperformed other groups on a questionnaire about dosing methods. 

 

Finally, there is currently significant interest in understanding how learning may result 

from network-enabled DSSs. The Science of Learning program at the National Science 

Foundation 132 and a growing emphasis on developing Learning Health Systems 107 presage a 

body of scientific work on network-enabled DSSs capable of unicasting and multicasting 

computer-generated advice. 

 

RQ2. What types of advice emerge by analyzing advice-as-an-information-object using 

a framework that spans decision accuracy, decision defensibility, and decision 

decidability to encompass a content-based typology of advice? 

 

A content-based advice typology 

 

The answer to RQ2 is given in the form of an advice content framework (Figure 1.3). 

This framework gives rise to a new advice typology or categorical scheme for advice. Unlike the 

previously reviewed “functional” advice typology of Jureta or the “format-based” advice 

typology of Liker, what follows is a content-based advice typology. It categorizes advice 

messages into four specific types of content, depicted by four numbered “buckets” in Figure 1.3.  

 

The concept of environmental uncertainty is foundational in this result. Recall that 

environmental uncertainty is the degree to which a future state of nature can be accurately 

predicted with information and knowledge in the world41. The advice content framework in 
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Figure 1.3 places environmental uncertainty on a horizontal axis and relates it to decision 

accuracy, defensibility, and decidability on one level, to related solution points and spaces on 

another level, and to the four types of advice content – 1. facts, 2. probabilities, 3. possibilities, 

and 4. acknowledgments of the unknown –on yet another level.  

 

When decision problems arise where there is no environmental uncertainty, it means 

correct solutions to the problems are known in the world. (Of course, many advisors and 

advisees may remain ignorant of these correct solutions.) In such cases, the solution is known to 

be completely certain and decisions can be judged for accuracy. The content of the best possible 

advice message for these decision situations is the correct answer to the decision problem. An 

example of this is advice that gives an accurate, definitive diagnosis of a medical disease. 

 

Some decision problems arise where there is statistical uncertainty due to random 

variables, and so their solutions involve probabilities. In these cases, the quality of the decisions 

made must be judged in terms of decision defensibility and not decision accuracy. Setting aside 
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the magnitude of risk involved, a decision will often, but not always, be more defensible if it is 

keeping goes with, and not against, the odds or likelihood of a result. Here, success means 

maximizing benefits while minimizing costs for the decision-maker. In such situations, the 

content of the best possible advice takes the form of probabilities (or probability distributions) 

for random variables. An example of this is advice, in the form of odds, that suggest to a 

Blackjack player when to hit or when to stand. 

 

Other decision problems arise where there is even greater environmental uncertainty. 

These problems are associated with a possibility space where no random variables pertain. 

Instead, what pertains are only sets of possible alternatives. The quality of the decisions made 

under these conditions must also be judged in terms of decision defensibility, which will depend 

in part on awareness of possible alternatives. A decision made without awareness of all possible 

alternatives may be less defensible, depending on its outcomes. In these situations, the best 

possible advice takes the form of possible alternatives. An example of this is advice that tells a 

student what elective courses they may benefit from taking. 

 

Due to total environmental uncertainty, some decision problems cannot be solved. These 

are decision problems where the solution is either unknown or unknowable, making these 

problems undecidable. Undecidable problems call for a guess and not a decision. In these cases, 

the best possible advice acknowledges the total environmental uncertainty that pertains. A 

technical example of this is the “halting problem.” For this problem, it has been proven that it is 

impossible to decide, given an arbitrary computer program and an input, whether the program 

will halt or continue to run forever 133. A biological example is the impossibility of deciding 

precisely which individual cell first gave rise to a tumor. In both cases, the best possible advice 

can only acknowledge the impossibility of finding a solution to the problem. 

 

Summarizing the typology that emerges from the framework in Figure 1.3, a content-

based typology of advice, spanning the full range of environmental uncertainty, includes four 

types of advice: facts (i.e., correct answers), probabilities for random variables (e.g., bivariate 

linear correlations), possible alternatives, and plain acknowledgements of the unknown. Because 

the full range of environmental uncertainty has been spanned, this result asserts that no other 
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content-based types of advice exist. It is hypothesized that these four categories are 

indepdendent. Thus, future work is needed to determine whether or not these four advice content 

categories overlap to any degree. 

 

RQ3. How may advice be conceptualized in light of existing advice theory while 

accounting for a content-based typology of advice? 

 

A refined theory of advice 

 

The answer to RQ3 unfolds as prior advice theory is analyzed in light of the above 

content-based advice typology. What results is a refined theory of advice. 

 

It is asserted, with support from document theory29, that advice is an information object. 

In addition, because essentially all advice theories agree on this point, it is further asserted that 

advice is generated and transmitted during advice-interactions within the larger context of a 

decision situation. To address RQ3, the following question thus becomes relevant:  Can the 

concept of advice be further qualified using existing advice theory and the content-based 

typology of advice above? 

 

Bryson9 contends the purpose of advice is to give new dimensions of freedom to the 

thinking of advisees, thereby expanding the number of available alternatives advisees’ have 

when they are facing decisions. Likewise, Davies 86 argues that advice must “offer new 

dimensions of freedom of action” to advisees. However, Jureta 11 directly counters Bryson and 

Davies by arguing to the contrary that, “Advice should have the capacity of constraining choice. 

It should eliminate alternatives, occasionally to the extent that only one remains.” 

 

Applying the above content-based typology of advice, it is evident that advice can either 

expand, contract, or leave the number of alternatives about which the decision-maker is aware 

unchanged. Advice may expand an advisee’s range of choices for decision problems associated 

with a possibility space. It may contract an advisee’s range of choices for decision problems 
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associated with a probability space. It may also contract an advisee’s range of choices down to a 

single correct choice for decision problems associated with a correct answer. 

 

Some advice researchers have asserted that advice is always normative. However, there 

are examples of advice described in the literature suggest otherwise. Leppanen 50 claims advice 

is “overtly normative” because it proposes a preferred course of future action. Pilnick 55 claims 

advice has a normative character while factual information, which she claims is different from 

advice, is non-normative. This distinction between advice, which is thought by some to always 

be normative, and “information”, also appeared in the work of Jones and Brown on DSS 126. Yet 

in studies that use the Judge-Advisor System, advice is typically operationalized as advisors’ 

estimates of known facts 23. Interestingly, in computer science advice has been thought of in 

strictly numerical terms, as probabilities or probability distributions72,108,109,115 , or as computable 

rules expressed in software code71,113,114. 

 

The above content-based typology of advice clearly encompasses normative and non-

normative advice. However, the confusion over whether advice is normative or non-normative 

cannot be entirely resolved by understanding its content alone. As the concept has been further 

developed here, advice is an information object that, upon being received by an agent, gives rise 

to an advice document through a meaning-making transaction. The meaning ascribed to an 

advice document is therefore also relevant to this question of normativity. 

 

The perspective of documental becoming makes a distinction between advice, as an 

information object, and an advice document. Using that distinction, cases are easily outlined 

where advice messages carry non-normative content while the corresponding advice documents 

they engender are given normative meaning. As an example, if an advisor with reliable 

information gives factual and accurate advice that, “the price of gasoline is cheaper today than it 

will be tomorrow” to an advisee who needs to purchase gasoline soon, the advisee can draw from 

this factual advice a normative meaning, e.g., “you should purchase gasoline today and not 

tomorrow.” In this case the advice is factual while the normative meaning drawn from it, 

corresponding to an advice document, is not. Normative meaning may be ascribed by an advisee 

to an instance of advice even though it may not have been intended by the advisor. 
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A similar issue mentioned in the literature is whether or not advice can be suggestive or 

persuasive103,126. Again, this determination may in part depend on the meaning-making 

transaction that gives rise to an advice document. Yet it is clear from the above advice-content 

typology that advice may impart an argument, e.g., an argument that a particular decision 

problem is undecidable. Furthermore, in terms of its function, Jureta 11 asserts that advice 

supports or counters beliefs, presumably also through argumentation. The result is that advice 

may or may not be suggestive or persuasive. 

 

Figure 1.4 illustrates the resulting refined theory of advice that is the answer to the RQ3. 

In this figure, advice is depicted as the result of documental becoming within the context of an 

advice interaction taking place within some broader decision situation. 

 

After receiving a cue of some sort, an agent, acting in the role of advisor, formulates 

advice, which is an information object or message. At that moment, the advisor draws meaning 

from the advice through a transaction leading to an original, situated advice document, signified 

advice document°. Next, the advisor may transmit, either verbally or in writing, the advice 

message. At that point, the action in Figure 1.4 switches to an agent acting in the role of advisee. 

 

When an advisee receives a message of advice that message may be interpreted by the 

advisee. Through this transactional interpretation process the advisor ascribes meaning to the 

advice, leading to a new, situated advice document, signified advice document’. The advisee can 

then choose whether or not to end the advice interaction and also whether or not to exit the 

decision situation. 

 

During an interactive advice interaction, the advisee may elect to formulate and transmit 

a request message asking for more advice. Such a request proceeds in an identical fashion 

through transmission, receipt, and interpretation by an advisor (Figure 1.4). 

 

A careful analysis of this advice interaction portrayed in Figure 1.4 indicates it is 

complex. It has within it two embedded decisions, making it potentially recursive. This recursion 



	 69 

happens in practice when advice is given about the decisions to ask for or provide more advice. 

To that point, upon close inspection, the identical nature of the “request” pathway between 

advisee and advisor reveals that, although it seems quite strange, a request for advice counts as 

advice too! To its recipient, a request for advice communicates a desire 11 and it communicates a 

frame for a choice with two possibilities, which are to meet or deny the request. As such it 

imparts content about possible alternatives. Seeing that a request for advice is itself also a form 

of advice highlights the coordinating effect of advice. Advisees and advisors may coordinate 

advice interactions in part through cycles of advice requests and advice responses (Figure 1.4). 

 

Finally, although it is known that advice is more acceptable when it takes account of the 

particulars of the decision situation within which it occurs, there is no requirement that advice be 

acceptable. Does this mean that all information can be construed as advice? No, it does not. 

Recall that the result here places advice in the context of an advice interaction taking place in the 

context of a decision situation. For advice to be realized, there must be a preexisting decision 

situation into which that advice comes, a situation associated with a pending, unmade decision. 
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For this reason, while it is possible to conceive of advice that is almost wholly uninformed by the 

details of the decision situation within which it arises, the fundamental fact remains that advice 

must always pertain to some decision situation, otherwise it is not advice. Evidently, this 

decision-pertaining relationship is central to the concept of advice. To indicate this relationship 

without suggesting that advice is otherwise informed in any way by the decision to which it 

pertains, it might be sufficient to say that advice must always target some decision. The verb 

target is used here in the sense of “fix on”, signifying that advice is fixed on, or attendant to, an 

unmade decision. 

 

Summarizing this final result, a number of potential further qualifications of the concept 

of advice have fallen away through this analysis. Thus, it is theorized that every instance of 

advice is an information object targeted at an unmade decision.  

 

DISCUSSION 

 

The present study examined advice and advice theory in a comprehensive way to better 

conceptualize advice. Using insights from document theory and information theory, advice was 

analyzed via a systematic literature review. An organizing principle for advice studies was 

identified when it became clear that studies either focused on advice in the context of human-

human, machine-machine, and ICT-mediated advice interactions. Synthesizing many previous 

works across these three modes of advice interaction, what resulted is a conceptualization of 

advice as an information object targeted at an unmade decision. 

 

Within the literature about advice, a shift from domain-specific to general notions of 

advice is noticeable9,22,92. The domain of computer science is an exception to this. There, advice 

was conceived of in very general terms early on24,111,113. 

 

Some more recent studies of advice interactions that are human-human, machine-

machine, or ICT-mediated, put an emphasis on advice networks. For human-human advice, 

advisee-advisor networks have been contrasted to other types of social networks22. For machine-

machine advice, Internet-scale distributed computing has made computable advice more wide-
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reaching and impactful than in the past109,113,114. For ICT-mediated advice, an emerging science 

of learning, focused in part on ongoing, global scale human learning enabled by networks, is 

coming to the fore77,107,134,135. These works presage a future when the preponderance of advice in 

the world may be generated by machines and distributed over networks to people and other 

machines. 

 

An ongoing challenge with machine-generated advice is that it generally arises from 

computer procedures that are strictly parameterized, inevitably biased 136, and in which people 

often place too much confidence 137. The resulting advice provides sufficient assistance in many 

cases, but it is also greatly constrained by preconceived notions of decision situation context 16. 

However, newer ways of representing computable knowledge so that it can be automatically 

enriched and combined, such as those associated with the semantic web 138, are starting to enable 

more context-aware and adaptive machine advice-giving. Yet there will always be limits on the 

amount of information about decision situation context that can be considered by agents acting as 

advisors. 

 

A variety of typologies or categorization schemes for advice have been surfaced in this 

review. Juerta’s 11 scheme is described here as a “functional” one because it categorizes advice in 

terms of what it does, which is to support or refute beliefs, desires, intentions or attitudes. 

Licker’s 102 scheme is different. It describes, in an imprecise way, various forms of advice 

coming from DSSs on a rough scale spanning data, information, analyses, explanation, and 

simulation. Bonaccio and Dalal 92 also articulated several different types of advice, including 

arguments for or against a single alternative, general information about an alternative, and advice 

on how to made a decision.  

 

Building on these thoughts with concepts related to environmental uncertainty, a new 

content-based typology of advice has been developed in this chapter. In this typology, the best 

possible advice is defined for four different states of environmental uncertainty. When a decision 

problem has a correct answer, that answer is the best possible advice. When a decision problem 

involves random variables, probabilities with the greatest possible precision constitute the best 

possible advice. When a decision problem is uncertain to the degree that only possible alternative 
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moves are known, then the best possible advice surfaces those possible moves. Finally, when a 

decision problem is undecidable, acknowledging that it is so is the best possible advice. 

 

As a pragmatic example of how the content-based typology of advice applies in practice, 

consider an unfortunate case involving all four advice types. Jeanette, a 42-year old mother of 

three, suffers rapid and profound hearing loss three days after taking a widely used medication 

for the first time. She stops taking the medication immediately. She needs to decide whether or 

not the medication precipitated her hearing loss. At first, the best possible advice comes from a 

pharmacist who acknowledges that there is no known evidence of a relationship between the 

medication and hearing loss. Next, an online search for possible and probable causes of rapid 

hearing loss provides additional relevant advice for Jeanette. Finally, through a process of 

medical examination, Jeanette receives a definitive diagnosis of Cogan’s syndrome 139. As a 

byproduct of this diagnosis, an accurate answer to the original decision problem is apparent. The 

time of onset for Cogan’s syndrome eliminates the possibility that Jeanette’s hearing loss 

stemmed from taking the medication for just a few days. 

 

The case above highlights an important relationship between knowledge and advice. 

Knowledge in the world has the effect of diminishing overall environmental uncertainty. Advice 

is an information object targeted at a decision. Therefore, the best possible advice reflects the 

current state of all available knowledge about the decision problem at which it is targeted. 

 

As mentioned at the outset, advice is a complex concept and not a self-evident one. When 

conceptualized as a message, advice can give rise to a situated advice document when it is 

encountered by an agent. Taken together, the results of this review suggest that the purpose of 

the best possible advice is to help advisees gain an understanding of what is known and relevant 

about a decision problem of interest. 

 

CONCLUSION 

 

In this chapter, a systematic review of advice theory led to an analysis of research 

findings organized according to three modes of advice interactions. These three modes of advice 
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interactions include human-human, machine-machine, or ICT-mediated ones. Based on these 

findings, advice is conceptualized as information objects targeted at unmade decisions. 

Furthermore, through a transactional process of documental becoming, advice gives rise to 

momentary, situated advice documents in the minds of human advisors and advisees or in the 

digital registers of machines capable of generating and receiving advice. 

 

Using the concept of environmental uncertainty, an advice content framework was 

developed which gives rise to a content-based typology of advice. Depending on the degree of 

environmental uncertainty that pertains to a decision problem, the best possible advice targeted at 

that decision problem either provides a factual answer that solves the problem, probabilities or 

possibilities that help address the problem, or an acknowledgement that the problem has not yet 

been, or cannot be, resolved. 

 

This study of advice informs work to develop better advice-giving systems and advice-

giving services. A major point that it makes is that networks of advice-giving systems are 

evolving for the purpose of providing advice to improve coordination in complex, distributed 

systems of interactive agency.  

 

Advice-giving services combine knowledge with data about the context of a decision to 

produce their advice. For this reason, in the next three chapters we turn our attention away from 

advice toward computable knowledge. Specifically, we focus on increasing the interoperability 

of computable knowledge. We do this so that, by using current computable knowledge, the best 

possible advice can be produced by advice-giving systems to improve human health. We also do 

this so that networks of advice-giving systems can more easily be formed by building on better 

computable knowledge infrastructure. 
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CHAPTER II 
 

MedMinify: Study of a Promising but Stand-alone Advice-giving System 

 

INTRODUCTION 

 

The previous chapter explored advice as a concept. This chapter builds on the concept of 

advice while narrowing our focus to information-and-communication-technology (ICT)-

intermediated advice-giving. ICT-intermediated advice-giving means producing advice using 

advice-giving systems, advice-giving services, and decision support systems. Together, these 

similar terms delineate a broad class of information systems that generate advice and 

communicate it primarily to people.  

 

This chapter is the first of a trilogy of chapters which together relate the core scientific 

argument of this dissertation. In these chapters I argue that it is feasible to devise a domain-

agnostic technical knowledge infrastructure capable of increasing the interoperability of 

computable knowledge and, consequently, of the advice-giving systems and services that use it. 

 

 The trilogy comprised by this chapter, along with Chapters III and IV, unfolds in the 

following way. To begin, this chapter does two things. It describes a potentially useful advice-

giving system called MedMinify and it also critiques the technical architecture of that system. 

Chapter III reports progress on a potentially better architecture for technical knowledge 

infrastructure to support advice-giving systems that is realized as the Knowledge Grid. Finally, 

Chapter IV describes a potentially useful technical data-to-advice pipeline called ScriptNumerate 

that makes use of the Knowledge Grid. This trilogy of chapters reveals some common limitations 

to the interoperability of computable knowledge. Also covered are the design and development 

of knowledge infrastructure to overcome those limitations. Finally, this trilogy of chapters relates 

a demonstration project showing that it is feasible to devise a domain-agnostic technical 
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knowledge infrastructure capable of increasing the interoperability of computable knowledge 

and, consequently, of the stand-alone advice-giving systems and services that use it. 

 

 Stand-alone advice-giving systems are a subclass of advice-giving systems. Stand-alone 

advice-giving systems are monolithic, vertically integrated systems without independently 

functioning and separately accessible subcomponents. Put another way, stand-alone advice-

giving systems have a centralized, and not a distributed, system architecture.1 Stand-alone 

advice-giving systems are not built using the highly modularized, system-of-systems approach 

described in the Introduction. Instead, stand-alone advice-giving systems are built in custom 

ways that make them idiosyncratic and inflexible. MedMinify is such a stand-alone system. 

 

MedMinify was not developed using a common knowledge infrastructure for all of its 

computable biomedical knowledge. Its general architecture is portrayed in Figure 2.1 below 
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MedMinify’s architecture includes two external resources (Figure 2.1). One of these is a 

source of prescription data and the other is a source of drug product knowledge. Both of these 

sources are engaged via different Application Programming Interfaces (APIs). The rest of 

MedMinify is concentrated in a centralized monolithic system core. The four items in its core are 

inseparable and cannot stand alone. These are its Trigger function, combined Reasoner-Renderer 

function, and two additional knowledge resources. These four items, comprising MedMinify’s 

core, are implemented and integrated in idiosyncratic ways. In particular, MedMinify’s Drug 

Interaction Knowledge and Medication Regimen Display Knowledge are implemented as “one-

offs” that function only within MedMinify. It is the vertically integrated, multi-function 

centralized monolithic system core that makes MedMinify a stand-alone advice-giving system. 

 

In hindsight, even though the promise of MedMinify as an advice-giving system is 

demonstrated here, because most of its system components have a relatively low degree of 

interoperability, it is difficult to use and maintain MedMinify as is. 

 

This chapter presents promising results from evaluating the advice from MedMinify 

specifically in light of the limited interoperability of its computable knowledge. It puts into relief 

the need for, and potential opportunities to attain, more highly interoperable computable 

knowledge, and consequently more highly interoperable knowledge services, advice-giving 

systems and advice-giving services. To support an analysis of interoperability, I provide a 

categorical model of interoperability in this chapter which ranges over five categories from low 

to high. 

 

As portrayed in Figure 2.1, MedMinify’s computable knowledge takes three forms. Some 

of its computable knowledge is drug-drug interaction knowledge. Some of it is knowledge about 

which drug products are available to be prescribed. The rest of it is knowledge of how to render 

or display a medication regimen in a manner that is known to be easy for people to read and 

understand.2,3 MedMinify implements these three forms of computable knowledge in three 

different ways, two of which are tightly bound to its monolithic system core. It turns out that in 

all three cases, however, methods exist to potentially increase the interoperability of the 

computable biomedical knowledge that MedMinify uses. 
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BACKGROUND ABOUT MEDMINIFY 
 

Dual purposes of MedMinify 

 

 To minify is to reduce the amount of something4. The advice-giving system MedMinify is 

a prototype originally built for the purpose of improving patient adherence to prescribed 

medication regimens at home. MedMinify was evaluated in a study published in 2014 5. The 

results of that study include an review of MedMinify’s design and technical architecture (see 

Figure 2.2 below). 

 

The 2014 study of MedMinify investigated only its potential to generate and 

communicate advice to help minify the number of times individuals have to take medications 

each day and the quantity of pills they have to ingest daily5. While MedMinify was shown to 

have some potential, in hindsight, it has some far-reaching limitations too. So, although 

unintended, another purpose of MedMinify has emerged over time. MedMinify exposes how a 

stand-alone system architecture limits interoperability in several identifiable ways. 

 

About medication adherence  

 

To describe what MedMinify does more fully, the topic of medication adherence is 

discussed next. Medication adherence improves when home medication regimens are made as 

simple as possible for patients to execute6. In addition, for safety, simpler home medication-

taking schedules may diminish medication mishaps7. However, research on medication 

adherence is primarily justified on the basis that better adherence resulting from simplified 

medication regimens improves the health and well-being of consumers. It is known that, for 

individuals with high blood pressure, high cholesterol, or diabetes, adherence to home 

medication regimens improves health8. Conversely, lack of adherence to home medication 

regimens for these chronic conditions causes considerable harm9. 

 

The overall cost of non-adherence to medication regimens has been estimated to be $100 

billion per year in the United States10. Some strategies to increase medication adherence have 
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proven modestly effective10. These include strategies to improve communication of what 

medications to take and why; strategies to support behavior change, such as self-monitoring of 

adherence; strategies to decrease out-of-pocket costs of medications; and, strategies to cue 

consumers to take their medications, such as reminders and calendars10. The most effective 

approaches combine these strategies10. However, in terms of effect size, the evidence indicates 

that greater adherence improvements result from decreasing the complexity of home medication 

regimens than from combining educational, behavioral, and cueing interventions10. 

 

One strategy to decrease the complexity of medication regimens is to standardize the 

times when daily medication-taking events occur. Another related strategy is to limit the number 

of times medications are to be taken each day to a maximum of four11. Yet another strategy is for 

health care providers to conduct medication regimen reviews intended to simplify medication 

regimens12. To facilitate all three of these strategies, the stand-alone advice-giving system 

MedMinify was developed, in prototype form, and its capabilities were explored.  

 

If and when it is upgraded and deployed for real-world use, MedMinify is intended to 

assist people to simplify home medication regimens. It advises users as to the availability of 

sustained-release or fixed-dose combination drug products. It also indicates whether there are 

pertinent drug interactions related to the simultaneous ingestion of two prescribed drug products. 

The literature points to the potential utility of simplifying medication regimens in these ways12,13. 

 

Two types of advice MedMinify generates and communicates are advice about the 

availability of two different classes of oral drug products, sustained-release and fixed-dose 

combination products. A sustained-release oral drug product is a tablet or capsule formulated to 

release its active drug ingredient into the gastrointestinal tract slowly and consistently over 8 to 

24 hours. A fixed-dose combination oral drug product is a tablet or capsule containing two or 

more active drug ingredients in fixed amounts14. An example of this is the product with the brand 

name Lotrel. Lotrel contains two active drug ingredients to treat high blood pressure, amlodipine 

and benazepril. It comes in different tablets containing these two drugs in various fixed amounts. 
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 In a systematic review of the association between the number of daily medication-taking 

events and adherence, Claxton, Cramer, and Pierce found mean adherence to a medication 

regimen declined as daily medication-taking events increased. Mean adherence for one, two, 

three, and four daily medication-taking events was 79% (Standard Deviation (SD), 14%), 69% (SD, 

15%), 65% (SD, 16%), and 51% (SD, 20%) respectively13. The mean adherence differences 

between one daily medication-taking event and either three or four daily medication-taking 

events were statistically significant. The mean adherence difference between two daily 

medication-taking events and four daily medication-taking events was also statistically 

significant13. In light of more recent concurring evidence, these findings indicate that decreasing 

an individual’s number of daily medication-taking events results in improved adherence15,16. 

 

Controlled studies of a standardized home medication scheduling scheme, where patients 

are instructed to take their medications only at breakfast, lunch, dinner or bedtime, indicate that 

consumers generally do not need to take medications for most chronic conditions more than four 

times a day2,3,17. These studies suggest there is an opportunity to minify the number of daily 

medication-taking events. 

 

Adherence to home medication regimens is also influenced by the number of pills taken 

per day, a factor that is called the daily pill burden. To minify a person’s daily pill burden is a 

potentially helpful adherence intervention16,18. In a recent meta-analysis, higher daily pill burden 

was associated with lower medication adherence to medication regimens that treat human 

immunodeficiency virus infection16. In another study, agreement with the statement, “I am 

already taking too many medications”, was a predictor of very low adherence amongst women 

being treated for osteoporosis19. 

 

One difficulty in minifying daily medication-taking events and daily pill burden is that 

consumers may actually increase the number of scheduled daily medication-taking events on 

their own for a variety of reasons20. A partial explanation for this complexification could be 

concern over drug interactions20. Consumers may assume that taking oral medications at 

different times of day mitigates adverse events from drug interactions. Actually, relatively few 

drug interactions result from their simultaneous oral ingestion21. Much more often drug 
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interactions result from systemic effects at the sites in the body where drug metabolism, 

pharmacologic action, or drug excretion take place21. To counteract their largely false beliefs 

about drug interactions due to simultaneous ingestion of drugs, consumers need advice to help 

decide which drugs they should and should not ingest at the same time. MedMinify also provides 

this advice. 

 

To improve medication adherence, prior research has examined the use of information 

technology to assist in reducing medication regimen complexity and polypharmacy22. Others 

have reported on the automated generation of printed home medication schedules2. MedMinify is 

designed to use information technology differently to improve adherence. It gives advice on how 

to minify daily medication-taking events and daily pill burden while ensuring that the advice 

given is in concordance with what is known about the relatively few serious drug interactions 

that result from the simultaneous ingestion of two drugs. 

 

SIGNIFICANCE 

 

The research on MedMinify presented in this chapter is significant for several reasons. 

While the majority of patients take multiple medications for multiple conditions, many 

interventional trials have focused on adherence to single medication therapies or to treatments 

for one condition20. MedMinify is intentionally designed to analyze prescriptions for all 

scheduled tablets and capsules (i.e., for all “oral solid dosage forms” or “pills”) that consumers 

must ingest orally to adhere to their actual home medication regimens.  

 

In addition, whereas pharmacist-led medication regimen review helps to simplify 

medication regimens, a lack of pharmacist time to conduct home medication regimen reviews, 

and a lack of insurance coverage for this service, greatly limit its scope and impact12. An 

information resource that gives advice on how to minify daily medication-taking events and daily 

pill burden could decrease the amount of time required for pharmacists to review home 

medication regimens, making it more feasible to provide this service routinely. Further, the same 

advice-giving capabilities may also facilitate the reconciliation of a patient’s prescriptions at 

transitions in care, a task that is thought to be important for ensuring safe use of medications23,24. 
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As stated above, in the context of this dissertation, MedMinify is significant because it 

serves as an example of a stand-alone advice-giving system with limited interoperability. 

 

In part, this chapter reports on the advice that MedMinify offers for simplifying 

medication regimens. In the next section I share the work of the first study of MedMinify’s 

advice generation and communication capabilities. The results cover the architecture of 

MedMinify and show why MedMinify is a stand-alone advice-giving system.  

 

In addition, the results of the study are supplemented with information about the varying 

degrees to which MedMinify’s three types of computable knowledge interoperate to help it 

generate and communicate its advice (Figure 2.1). Then, looking forward, the chapter ends by 

highlighting several opportunities to increase the interoperability of computable biomedical 

knowledge and, by extension, the interoperability of related automated knowledge services, 

advice-giving services, and advice-giving systems. These are opportunities to improve the design 

of technical knowledge infrastructure by increasing the interoperability of computable 

knowledge that are discussed further in the following chapters. 

 

RESEARCH QUESTIONS 

 

 I addressed the following three research questions to evaluate MedMinify’s potential as 

an advice-giving system5: 

 

RQ1. What is a workable architecture for a stand-alone advice-giving system capable 

of generating advice to help minify daily medication-taking events and daily pill 

burden while accounting for drug interactions from simultaneous ingestion and, 

in particular, what computable knowledge resources and related knowledge 

services does the advice-giving system’s architecture include? 

 

RQ2. How much advice can be generated by analyzing home medication regimens 

with an advice-giving system capable of identifying candidate regimens for 
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minification of daily medication-taking events and daily pill burden while 

accounting for drug interactions from simultaneous ingestion?  

 

RQ3. To what extent would the requirements of home medication regimens change if 

advice provided by MedMinify on how to minify daily medication-taking events 

and daily pill burden were implemented? 

 

METHODS 

 

 MedMinify design and development  

 

I designed and developed MedMinify in early 2014 to meet the following requirements, 

which are expressed as capabilities to do the following ten things:  

   

• Access prescription data organized as individual medication regimens 

• Analyze and summarize an individual’s medication regimen data 

• Identify all of the active ingredients in all current prescriptions in a regimen 

• Check for potential substitute drug products containing the same active ingredients 

• Check for drug interactions related specifically to simultaneous oral ingestion 

• Generate and communicate advice for minifying daily medication taking events 

• Generate and communicate advice for minifying daily pill burden 

• Generate and communicate advice about drug interactions 

• Render and display an evidence-based, easy-to-understand visual of a patient’s regimen 

 

Software design and application development of MedMinify involved the Substitutable 

Medical Applications and Reusable Technologies or “S.M.A.R.T.” reference Electronic Medical 

Record (EMR) platform25 (Version 1, smarthealthit.org), the Django web framework for Python 

(Version 1.5, djangoproject.com), and the RxNorm Application Programming Interfaces26,27 

(APIs), which are described in more detail at: rxnav.nlm.nih.gov/APIsOverview.html. 
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To give MedMinify’s the capability to lookup active ingredients of drug products and to 

find potential substitute prescribable drug products, the RxNorm Application Programming 

Interface was used via the WWW. The automated knowledge services provided by RxNorm’s 

API are external to MedMinify and were shared with other systems. APIs are one method of 

separating tightly integrated computer system components, thereby increasing their 

interoperability and making data and computer logic more accessible.28 

 

To support the drug interaction identification capability of MedMinify, a knowledgebase 

containing partial drug interaction monographs was used (First DataBank, Inc. (FDB), San 

Francisco, CA). This company, FDB, provided us with a one-time snapshot from their 

proprietary drug knowledgebase. This one-time snapshot came in the form of a table of select 

fields copied from FDB’s complete set of highest severity drug interaction monographs. This 

knowledge is embedded in MedMinify’s centralized monolithic system core (Figure 2.1).  

 

The selected three fields in the table provided by FDB were the drug interaction 

monograph title field, drug interaction mechanism field, and the clinical effects field. Keyword 

screening of this FDB knowledge resource was conducted to select only those highest severity 

drug interactions related specifically to simultaneous oral ingestion of medications. The 34 

keywords used for this screening included “gut”, “intestine”, “bioavailability”, “absorption”, 

“gastric”, and “pH”. A list of 59 unique, high-severity drug interaction mechanisms associated 

with simultaneous oral ingestion of drugs from two or more chemical classes was created as part 

of this process of determining what are relevant drug-drug interactions for MedMinify. 

 

After expanding the drug interaction mechanisms list, which is based on chemical classes 

of drugs, to include all specific drug-drug pairs associated with each mechanism, and after 

removing duplicates, a list of 559 interacting, active drug ingredient pairs associated with drug 

interactions due only to simultaneous ingestion of pills resulted. This list of 559 interacting drug 

pairs became one of the three sources of computable knowledge resources used by MedMinify. 

An example row from this drug interaction knowledge resource includes the antacid omeprazole 

(RxNorm ingredient number = 7646) and the antiviral drug atazanavir (RxNorm ingredient 

number = 343047). Regarding the mechanism of this drug-drug interaction, it is known that 
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omeprazole lowers the acidity of the gastric juices, thereby decreasing the solubility of 

atazanavir. In turn, this disrupts atazanavir absorption and diminishes its potential efficacy. 

 

Otherwise, to support the rest of MedMinify’s capabilities listed above, a copy of the 

SMART Reference EMR was deployed on a local server at the University of Michigan. In 

addition, the code for MedMinify, which is a web application, was developed and tested using 

the Python computer language, the Django web framework and an Internet Browser (Apple 

Safari, Version 6.1.1). Finally, the drug interaction knowledgebase table from FDB was loaded 

into a SQL database using SQLiteStudio (Version 2.1.5 by Pawel Salawa), making this 

knowledge directly accessible to MedMinify. 

 

Medication regimen data source and sample 

 

To evaluate MedMinify, de-identified prescription data were used from the University of 

Michigan’s electronic medical record (EMR) system (EpicCare Ambulatory EMR, Epic, Verona, 

WI). The University of Michigan’s Institutional Review Board reviewed and approved this 

study. Up to date medication regimens, provided as records of electronic prescriptions for 41,903 

unique individuals, were selected via a query with the following criteria, a-c:   

 

a. Each individual whose medication regimen was selected was alive and of a 

chronological age greater than or equal to 60 years on the date of the query, 

January 15, 2014. 

 

b. To ensure regimen currency, each individual whose medication regimen was 

selected had at least one medication list update documented in the University of 

Michigan’s EMR during calendar year 2013 or the first two weeks of 2014.  

 

c. Each individual’s University of Michigan EMR profile had an International 

Classification of Diseases (ICD version 9) coded diagnosis for hypertension 

(401.x, 405.x, 416.x, 459.3x) and/or diabetes (249.x, 250.x, 253.5) and/or 

hypercholesterolemia (272.x). 
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These three inclusion criteria were chosen to provide actual, real-world medication 

regimen data for adults likely to be taking multiple medications to treat common chronic 

diseases. This query of the University of Michigan’s EMR resulted in data for 380,932 

prescriptions for 41,903 different people. Besides patient identifiers such as age and gender, 

these data included prescription fields for ordering date, prescription start date, prescription end 

date, generic drug name, drug product strength, frequency, medication dosage form, route of 

administration, quantity to dispense, number of refills, medication therapeutic subclass, 

prescriber instructions, and RxNorm Semantic Clinical Drug (SCD) code.  Not all of these data 

were usable. A data exclusion diagram for the study prescriptions is shown below in Figure 2.2. 

 

 

After exclusions were applied and prescriptions that were missing data were removed, 

123,845 active prescriptions remained for 35,042 people. These prescriptions were all 

prescriptions for scheduled, recurring home medications with known product strengths 

prescribed to be taken orally or sublingually. Next, because MedMinify’s purpose is to simplify 
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multi-prescription regimens, another 8,105 medication regimens consisting of only one 

medication were further excluded. This finally left 115,740 prescriptions, comprising the home 

medication regimens of 26,937 individuals, each with more than one scheduled and recurring 

oral medication (Figure 2.2). These included prescription data for this study did have 

medications prescribed for use on a weekly (e.g., “three times a week”) or monthly (e.g., “once a 

month”) schedule. 

 

For this study of MedMinify’s advice-giving performance, the 26,937 medication 

regimens included in the final data set represent the population of qualified multi-drug 

medication regimens used to treat chronic hypertension, hypercholesterolemia and diabetes. The 

26,937 regimens include regimens for 14,403 females (53.5%) and 12,534 males (46.5%). The 

26,937 individuals included had an average age of 71 years (SD 8.3, Range 60 to 103). 

 

Several steps were completed to convert this available real-world medication regimen 

prescription data to the custom formats used by the SMART Reference EMR. These data 

conversions were made using rules in a spreadsheet. For example, the quantity of pills to be 

administered was not a discrete field in the available prescription data but the SMART Reference 

EMR data model included a discrete value for this field. So, the quantity of pills to take at each 

medication-taking event was extracted from the text instructions field automatically. As a case in 

point, the actual prescription instruction “Take 2 tablets daily” resulted in an extracted numeric 

quantity of pills to take value of “2” for this prescription. 

 

Because each medication regimen in the study data set required approximately 10 

seconds of time to analyze with the MedMinify prototype advice-giving system, and 30 seconds 

more to assess whenever advice was generated, instead of analyzing all 26,937 regimens, we 

used a random sample of 1,500 regimens consisting of 6,241 prescriptions automatically drawn 

from the population of 26,937 qualified regimens using SPSS (version 21). 

 

For this study, random sampling was preferred over a selective sample of the most 

complex regimens because random sampling offered the more conservative test of MedMinify’s 
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capabilities. Using a sample of only complex home medication regimens could enhance 

estimates of the impact of MedMinify. 

 

The sample size of 1,500 regimens was chosen to give a desired margin of error of 0.025 

for 95% confidence intervals for Chi-squared tests with one degree of freedom29. Sampling was 

done without replacement resulting in a hypergeometric distribution. However, because the 

population of 26,937 is much larger than the sample size of 1,500, it was assumed that the 

binomial distribution provided a reasonably good approximation for calculating proportion 

confidence intervals. Therefore, the Agresti-Coull adjusted Wald interval for large sample sizes 

was used to calculate the confidence intervals for sample proportions reported in this chapter30. 

 

Generation of advice to minify daily medication-taking events or daily pill burden 

 

1,500 randomly sampled regimens were analyzed using MedMinify. For each regimen, 

MedMinify calculated the number of prescriptions in the regimen, the daily pill burden, the 

number of unique pills in the regimen, and the maximum number of daily medication-taking 

events required by the regimen. 

 

Next, for every immediate-release pill taken more than once a day, MedMinify engaged 

an RxNorm API to see if a sustained-release product was available as a potential substitute. If so, 

MedMinify recommended that the sustained-release product or products be considered as 

substitutes. Subsequently, for every pair of active ingredients prescribed as two single ingredient 

products, MedMinify checked RxNorm to see whether a fixed-dose combination drug product 

was available that combined two active ingredients in one pill. If so, MedMinify recommended 

that the fixed-dose combination product or products be considered as substitutes. 

 

Continuing its regimen-specific analysis, MedMinify next screened every pair-wise 

combination of active drug ingredients in each regimen against the table of 559 known 

interacting drug pairs where the drug interaction is associated mechanistically with simultaneous 

ingestion. When a potential drug interaction like this was identified, MedMinify gave advice not 

to take the two interacting drugs at the same time of day. 
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Finally, MedMinify also counted all instances when a single active ingredient in a 

regimen appeared in the drug interaction knowledge table (i.e., one drug of an interacting pair) 

even where no drug interaction was found. 

 

This study was a lab function study31. Its scope included only the processing of real-

world medication regimen data using MedMinify to generate and communicate advice. Thus, 

there were no clinical or patient end users of MedMinify for this study, and none of the advice 

generated and communicated by MedMinify was ever shared beyond the study team. 

 

Quantification of how much home medication regimen requirements would change if 

the advice from MedMinify were implemented 

 

All instances of advice generated and communicated by MedMinify about changing the 

sampled medication regimens were documented, counted, and considered in the following 

manner that approximated the consideration this advice would receive in pharmacy practice. 

 

Assuming MedMinify’s advice was accepted and heeded, the potential change or changes 

to each medication regimen where advice was generated and communicated were considered in 

two ways. First, if a sustained-release drug product or products was recommended, I used my 

background as a pharmacist to check manually to see whether the maximum number of 

medication-taking events per day could be reduced, and, if so, by how many daily events. (This 

additional step is required because the opportunity to minify the maximum number of 

medication-taking events per day depends on whether the recommendation to substitute a 

sustained-release product applies to the prescription with the most daily medication-taking 

events, and whether there is only one prescription with the highest number of daily medication-

taking events or multiple. This step was not automated although it potentially could be.) 

 

Second, if either a sustained-release or a fixed-dose combination drug product, or both, 

were pointed out by MedMinify, another manual check was done to see whether the daily pill 

burden could be reduced, and if so by how much. When overlapping advice arose, for example 

when the same active ingredient could be taken via a sustained-release drug product or as a 
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component of a fixed-dose combination drug product, preference was given to minifying the 

number of daily medication-taking events over minifying the daily pill burden. This preference 

assumes, based on pharmacy practice experience, that to minify the number of daily medication-

taking events brings a slightly greater benefit to patients than to minify daily pill burden.  

 

RESULTS 

 

This section reports results in the order of the research questions posed for the study of 

MedMinify. First, results that address RQ1 are presented. They describe the system architecture 

of MedMinify. Adding to these results, a supplemental comparison of MedMinify’s three 

computable knowledge subparts is reviewed. Next, results addressing RQ2, stemming from a 

study of MedMinify using real-world patient home medication regimen data, are described and 

summarized. To complete this Results section, results are shared that address RQ3 and provide 

insight about the potential impact of the advice generated and communicated by MedMinify. 

 

RQ1. What is a workable architecture for a stand-alone advice-giving system capable of 

generating advice to help minify daily medication-taking events and daily pill 

burden while accounting for drug interactions from simultaneous ingestion and, in 

particular, what computable knowledge resources and related automated 

knowledge services does the advice-giving system’s architecture include? 

 

MedMinify’s overall advice-giving system architecture 

 

Using Friedman’s general model of an advice-giving system, a more detailed system 

architecture of MedMinify is portrayed in Figure 2.3. In this figure, the five parts are numbered: 

1. Data, 2. Trigger, 3. Computable Knowledge Resources and Automated Knowledge Services, 

4. combined Reasoner-Renderer, and 5. Human User. 
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The MedMinify advice-giving system is an example of a SMART Reference EMR 

application (Figure 2.3)25. The SMART Reference EMR provides an API offering needed 

mechanisms to authenticate systems and execute transactions by reading data from, and writing 

data to, its SMART Reference EMR database.  

 

With respect to the part marked “1. Data” in Figure 2.3, to meet MedMinify’s 

requirement for access to prescription, the SMART Reference EMR’s API permitted MedMinify 

access to prescription data stored in its database with one minor limitation. In 2014, the SMART 

Reference EMR data model could not fully represent prescriptions with specific days and times 

in coded fields (e.g., “Take 1 tablet at 2:00 p.m. on Tuesdays and Thursdays.”). For this reason, a 

few prescriptions had to be represented in less detail with respect to the timing of prescribed 

doses upon conversion to the SMART Reference EMR data format for prescriptions. (This data 

model limitation no longer pertains to prescription data from SMART because the SMART 

Reference EMR has been upgraded to address it.) 
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The mandatory part of any advice-giving system marked “2. Trigger” in Figure 2.3 was 

implemented in a straightforward way by using an onscreen button in the MedMinify web 

application. When the user of MedMinify clicked on this button, the medication regimen for the 

current patient, already in context on screen, was analyzed and, if applicable, advice was 

generated to help simplify the medication regimen. 

 

Another required part for any advice-giving system is marked “3. Computable 

Knowledge Resources and Automated Knowledge Services” in Figure 2.3. For MedMinify, as 

indicated previously, three different instances of computable knowledge resources are used. 

These are the subparts or part 3 marked “A”, “B”, and “C” in Figure 2.3. Independent, two-way 

connections between subparts “A”, “B”, and “C” and the Reasoner-Renderer (Part 4) are 

indicated by purple arrows. As noted previously, two of these three subparts, “A” and “C” are 

tightly integrated within MedMinify’s centralized monolithic system core. These three subparts 

each combine a computable knowledge resource with an automated knowledge service. They are 

described next. 

 

To meet the requirement for integration of computable drug interaction knowledge for 

MedMinify, the subpart denoted with an “A” in Figure 2.3, which includes a custom SQL 

database, was added to MedMinify. The Django web framework made it possible to easily add 

this integrated SQL database to MedMinify. A table was created in this embedded SQL database 

to organize and hold the 559 two-drug pairs that have been associated with drug interactions 

arising from their simultaneous oral ingestion. This drug interaction knowledge is applied by 

MedMinify to generate and communicate advice about interactions related to the simultaneous 

oral ingestion of drugs. To apply it as an automated knowledge service, a SQL database query is 

executed for each medication regimen MedMinify processes as instance data (Figure 2.3). 

 

The subpart of MedMinify involving computable knowledge and related knowledge 

services from RxNorm is denoted with a “B” in Figure 2.3. RxNorm has an API that provides a 

knowledge service which is used by MedMinify to check for the availability of sustained release 

and fixed-dose combination drug products. To find and access this drug product availability 

information, procedural code within MedMinify was written in the Python programming 
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language. This code manages calls and responses to and from RxNorm’s knowledge service API. 

RxNorm drug product knowledge, accessed via its APIs over the WWW, is applied by 

MedMinify to generate and communicate MedMinify’s drug product advice. 

 

Within MedMinify’s architecture, a third subpart comprised of a computable knowledge 

resource and a related service is denoted with a “C” in Figure 2.3. This subpart is an instance of 

an algorithm encoded to render the patient’s current medication regimen to the screen using the 

evidence-based Universal Medication Schedule (UMS) image design shown below in Figure 

2.42,3. For that reason, this computable knowledge resource is called the Regimen Visualizer 

Algorithm (RVA). An instance of this algorithm is engaged when MedMinify places an internal 

call to a JavaScript module that is executed by an HTML 5 Compatible Browser and which 

results in a computer-generated visualization of a medication regimen.  

 

The design of the UMS medication regimen visualization rendered by the RVA has four 

columns, one each for morning, noontime, afternoon and evening. It also has rows for each 

prescribed oral solid medication. An example of this UMS visual is portrayed in Figure 2.4 

immediately below. Evidence suggests that this design is easier for people to understand than 

other ways of presenting medication regimen data2,3. 

 

Returning to the overview of the technical architecture of MedMinify, the fourth required 

part of any advice-giving system is marked “4. Reasoner-Renderer” in Figure 2.3 further above. 

In the case of MedMinify, this part integrates the reasoning function and the rendering function 

so tightly that they cannot be separated from one another. The Reasoner-Renderer includes a 

Python interpreter capable of combining software code written in Python, Version 2, with data to 

compute advice messages. The Reasoner-Renderer also includes a Django-based webserver for 

serving webpage content to a browser. In addition, the Reasoner-Renderer includes a JavaScript 

component capable of shuttling data to and from the screen of an HTML 5 Compatible Browser. 

This component is also capable of feeding the browser with logic for rendering images 

dynamically. It is tightly integrated components like these that make MedMinify a stand-alone 

advice-giving system. 
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Finally, as is the case for all ICT-mediated advice interactions supported by advice-

giving systems, the human user is included as part of the system. For this reason, in Figure 2.3, 

the part “5. Human User” is depicted on the far right of the figure.  

 

The combination of the parts in Figure 2.3 afforded a workable advice-giving system 

architecture that supported a functional prototype version of MedMinify. This architecture 

resulted in a stand-alone MedMinify application. Its connection to the SMART Reference 

EMR’s API carries with it the potential to link MedMinify to other, commercial and open source 

EMR platforms. However, MedMinify has yet to be developed beyond its prototype stage, and it 

has yet to be integrated with any other EMR platform except for the SMART Reference EMR. In 

addition, since MedMinify was developed in 2014, the SMART Reference EMR has been 

completely re-engineered and its unique medical data model replaced with models for Health 

Level Seven (HL7) Fast Health Interoperability Resources (FHIR)33. This move to FHIR by the 

SMART EMR team is a step towards better interoperability for health data. 



	 101 

Comparison of the interoperability of MedMinify’s computable knowledge resources 

and related automated knowledge services 

 

RQ1 focuses attention on MedMinify’s system architecture. Additional attention is given 

here to the interoperability of its computable knowledge components. The columns in Table 2.1 

give information about these components, which are subparts “A”, “B”, and “C” in Figure 2.3. 

The table shows the varying degrees to which MedMinify’s computable knowledge resources 

and services are capable of interoperating with other advice-giving systems besides MedMinify.  

 

Table 2.1 Comparison of MedMinify’s Three Computable Knowledge Subparts 

 Subpart A Subpart B Subpart C 

CONTENT 
Drug-drug Interaction 

Knowledge 
Prescribable Drug 

Product Knowledge 
Regimen Visualization 

Knowledge 
Computable Knowledge Resources 

KNOWLEDGE SOURCE 
First Databank 

(FDB) 
RxNorm 
(NLM) 

Scientific  
Literature2,3 

ORIGINAL FORMAT 
Microsoft Excel 

Spreadsheet 
Rich Release Format 

(RRF) File 
Written 

Publication 

COMPUTABLE FORM 
SQL  
Table 

? 
JavaScript Algorithm 

Implementation 
NEED FOR  
ROUTINE UPDATES 

High High Low 

DEGREE TO WHICH 
RESOURCE IS  
INTEOPERABLE 

Modestly Highly Slightly 

Automated Knowledge Services 

TECHNICAL FUNCTION 
Capability to execute 
custom SQL Query 

Provision of shared 
API webservice 

Capability to execute 
custom JavaScript code 

DEGREE TO WHICH 
SERVICE IS 
INTEROPERABLE 

Modestly Highly Slightly 

Potential Advice Enabled 

POTENTIAL  
ADVICE  
MESSAGE CONTENT 
 

Avoid Taking Drug 
Product A and Drug 

Product B at the 
Same Time of Day 

 

Consider Taking a 
Sustained Release Drug 

Product  
~ OR ~ 

Consider Taking Fixed-
Dose Combination Drug 

Product  

See Figure 2.4 
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Computable knowledge resources and related knowledge services can exhibit varying 

degrees of interoperability. For the purposes of this dissertation, these varying degrees of 

interoperability are described in very coarse terms using a five-level scale. The five terms used 

here to express the varying degrees of interoperability are:  Not, Slightly, Modestly, Highly, and 

Perfectly. These terms are defined in the following ways: 

 

Not:   Two things cannot, under any circumstances, be made to jointly and 

suitably perform a desired set of functions 

Slightly:  Given two things, to make them jointly and suitably perform a desired set 

of functions, it requires less work to replace or entirely remake one or both 

of them than to modify and upgrade one or both of them  

Modestly:  Given two things, to make them jointly and suitably perform a desired set 

of functions, it requires about the same amount of work to replace or 

entirely remake one or both of them than to modify and upgrade one or 

both of them 

Highly: Given two things, to make them jointly and suitably perform a desired set 

of functions, it requires more work to replace or entirely remake one or 

both of them than to modify and upgrade one or both of them 

Perfectly: Two things can perform a desired set of functions suitably without any 

further work either to make it or keep it so 

 

Obviously, the five categorical levels of the interoperability scale presented above can 

only be used to roughly estimate the degree to which two things jointly perform a desired set of 

one or more functions in a suitable manner. Users of this categorical scale still need to determine 

many things for themselves, starting with what are the desired functions to be performed and 

what does it mean for two things to jointly perform them in a suitable way. Yet, the five-level 

scale above is sufficient to compare a variety of cases with respect to interoperability.  

 

The five-level interoperability scale above enables us to distinguish, in a coarse way, 

cases where two things – especially two computer system components – are highly interoperable 

from other cases where they are not. The underlying logic of this interoperability scale relates to 
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work. When interoperability is slight, the work of replacing or entirely remaking things to 

increase interoperability is justified. Where interoperability is high, only the work of modifying 

or upgrading things to increase interoperability further is justified. 

 

Furthermore, the five-level interoperability scale above successfully reflects the general 

principle, outlined in the Introduction to this dissertation, that interoperability is a matter of 

degrees. The scale places great emphasis on the work of augmenting interoperability. If two 

things can be jointly used to perform a set of functions, then the scale clarifies that the degree to 

which they jointly function can be measured in terms of the work required to make it so.   

 

With this five-level categorical interoperability scale in mind, some comparisons about 

MedMinify’s three computable knowledge subparts, “A”, “B”, and “C” can be drawn by 

referencing the information in Table 2.1. 

 

Subpart “A” includes a knowledge resource from FDB, which is a one-time snapshot in 

the form of an Excel spreadsheet. This knowledge resource was converted into a one-of-kind-

table in a SQL database, making it a computable resource. Its related knowledge service executes 

a custom query against that one-of-a-kind SQL table. This computable knowledge resource and 

its related knowledge service are both only modestly interoperable when used to suitably perform 

the functions they provide within MedMinify. If another Advice-giving System, referred to here 

as ANAGS, wanted to take advantage of subpart “A”, either it or subpart “A”, or both, would 

have to be significantly changed. These changes would require about as much work as starting 

over to provide these functions to ANAGS.  

 

Subpart “C” includes a computable resource from published manuscripts in the form of a 

JavaScript software routine. Its RVA software routine provides the computable instructions 

needed for browsers and other systems to draw an instance of the UMS when given data 

describing a patient’s medication regimen. The computable knowledge resource and related 

automated knowledge service comprising subpart “C” are both only slightly interoperable when 

used to suitably perform the functions they provide to MedMinify. Because of how tightly 

integrated the RVA is with the other parts of MedMinify’s Reasoner-Renderer, if ANAGS 
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wanted to take advantage of this same function, it would be easier to remake subpart “C” just for 

ANAGS than it would be to excise it from MedMinify. As it stands, subpart “C” is so deeply 

embedded within the structure of MedMinify’s software code that it is a very difficult task to 

isolate it. 

 

In contrast, MedMinify’s computable knowledge subpart “B” includes a highly 

interoperable knowledge resource from the NLM, in the form of an RxNorm Rich Release 

Format (RRF) file. This RRF file has a well-defined and described standardized file structure. 

The NLM also provides a companion highly interoperable RxNorm knowledge service, in the 

form of a well-described, open API available via the WWW26,27. Interestingly, it is inscrutable to 

RxNorm API users how the knowledge service it provides works technically. All API users need 

to know to use the RxNorm API is the format of its service requests and service responses. By 

using the specified format, any advice-giving system like MedMinify can be made to request and 

receive RxNorm drug product information via the WWW. 

 

It is of interest that an API is partly responsible for making it so that subpart “B” of 

MedMinify’s larger computable knowledge component (Part 3) is a highly interoperable subpart. 

Why is this so? In a recent article, Plantin et al. compare the architectural and other properties of 

larger-scale information infrastructure, like the Internet, with those of smaller-scale private 

platforms28. In this context, APIs are defined as technical points of access to data and computer 

logic provided by platforms. When APIs are deployed over the WWW, as is the case for the 

RxNorm APIs, the architecture of the WWW, which is based on a host of open protocols and 

standards, helps to make the APIs even more highly interoperable.28 

 

One thing this discussion has so far ignored is how easy or difficult it is to keep 

MedMinify’s computable knowledge subparts “A”, “B”, and “C” updated with the most current 

knowledge. Because knowledge is always in flux, always being updated and refined33, the need 

for routine updates is relevant to the interoperability of MedMinify and other advice-giving 

systems. In the case of MedMinify, subpart “A” and subpart “B” have a high need for routine 

updates. Drug-drug interaction and drug product knowledge change frequently. On the other 

hand, subpart “C” has a low need for updates. The design of the UMS, and the JavaScript code 
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used to render it, are both very stable. The routinely provided updates to drug product knowledge 

provided by the NLM are another reason why subpart “B” is highly interoperable whereas 

subpart “A”, which is based on a one-time snapshot of knowledge from a proprietary 

knowledgebase, is only modestly interoperable.  

 

Next let me explain why MedMinify’s subpart “B”, comprised of RxNorm resources and 

its API, is not thought to be perfectly interoperable for the set of functions it provides to 

MedMinify. The reason for this relates back to the inscrutability of the internal workings of its 

API from the perspective of advice-giving system developers. As a computable knowledge 

subpart for MedMinify, RxNorm is controlled externally by the NLM. For this reason, with or 

without warning, the NLM is within their rights to unilaterally change or decommission 

RxNorm. Therefore, from the perspective of MedMinify and similar systems, the interoperability 

of its computable knowledge could be further improved by enabling an updateable copy of 

RxNorm to come under the control of others, including makers of advice-giving systems. Indeed, 

this may even be possible, but it is not the way RxNorm works. Hence, the interoperability of 

RxNorm is not perfect because the NLM maintains policies and procedures governing the use of 

its APIs that constrain their use somewhat. This example shows how interoperability is a socio-

technical phenomenon. Interoperability involves policy and governance as well as the technical 

features of things. 

 

Summary of the results about MedMinify’s advice-giving system architecture 

 

Summarizing the results in this section, MedMinify has a workable system architecture, 

which is depicted in Figure 2.3. Its architecture includes three computable knowledge subparts. 

Each of these subparts combines a computable knowledge resource with an automated 

knowledge service. The degree to which the resources and services comprising these subparts 

interoperate within the context of MedMinify’s technical architecture varies considerably. 
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RQ2. How much advice can be generated by analyzing home medication regimens with 

an advice-giving system capable of identifying candidate regimens for minification 

of daily medication-taking events and daily pill burden while accounting for drug 

interactions from simultaneous ingestion? 

 

Descriptive statistics and results quantifying the number of sampled regimens prompting 

advice from MedMinify are given in Table 2.2 below. In that table, the 1,500 sampled home 

medication regimens are categorized according to the current or prescribed number of daily 

medication-taking events associated with each regimen. 

 

Table 2.2 Results by Number of Daily Events: Sampled medication regimens for individuals 
of age ≥ to 60 years with diagnoses for hypertension or diabetes or hypercholesterolemia 
organized by the current number of daily medication-taking events per regimen. 

Current Number of  
Daily  

Medication-Taking 
Events 

Number of 
Sampled  

Regimens  
 

Number of 
Sampled 

Regimens  
prompting Advice 
from MedMinify 

Average  
Number of 

Prescriptions per 
Sampled Regimen 

Average  
Daily Pill Burden 

per Sampled 
Regimen 

8 EVENTS DAILY 1 0 7.0 26.0 

6 EVENTS DAILY 3 2 5.3 15.6 

5 EVENTS DAILY 4 2 6.3 15.8 

4 EVENTS DAILY 44 22 5.4 11.3 

3 EVENTS DAILY 178 126 5.7 10.4 

2 EVENTS DAILY 643 388 4.6 6.7 

1 EVENT DAILY 626 79 3.2 3.4 

0* EVENTS DAILY 1 0 2.0 0.0 

TOTALS 1,500 619 
  

* One regimen included only two prescriptions for medications to be taken weekly and no medications to be taken daily. 
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 Per the results organized and presented in Table 2.2., MedMinify generated advice for 

619 (41.3%) of the 1,500 randomly sampled regimens (95% Confidence Interval (CI) of 38.7% to 

43.7%). These 619 regimens are regimens where either the number of daily medication-taking 

events or the daily pill burden could potentially be reduced. 

 

In Table 2.3 below, the 619 regimens where at least one message of advice, or advisory, 

about a potential change to a medication regimen was generated and communicated by 

MedMinify are categorized by advice type. Population estimates for the proportion of regimens 

subject to each specific type of advice are given with 95% confidence intervals. 

 

Table 2.3 Results by Advisory Type: Counts and percentages of sampled regimens (n = 
1,500) are provided by specific advisory type with confidence intervals for population 
estimates of the percentages of regimens for which MedMinify would generate advice for the 
entire study population of 26,937 home medication regimens. 

Advisories Generated  
per 

Sampled Regimen 

Number of  
Sampled 

Regimens 

% of Sampled 
Regimens with 

Population Estimate 
as (95% CI’s) 

ANY ADVISORY 619 41.3% (38.8, 43.8) 

SUSTAINED RELEASE PRODUCT ADVISORY ONLY 407 27.1% (24.9, 29.4) 

FIXED-DOSE COMBINATION PRODUCT ADVISORY ONLY 114 7.6% (6.3, 8.9) 

SUSTAINED RELEASE AND FIXED-DOSE COMBINATION 
PRODUCT ADVISORIES 

94 6.3% (5.0, 7.5) 

SUSTAINED RELEASE AND DRUG INTERACTION ADVISORIES 3 0.2% (0.0, 0.4) 

DRUG INTERACTION ADVISORY ONLY 1 0.1% (0.0, 0.3) 

 

Specifically regarding the very few advisories about drug-drug interactions possibly 

resulting from the simultaneous ingestion of two drugs, for the 1,500 sampled home medication 

regimens, MedMinify identified at least one drug on the FDB drug interaction pairs list in 1,209 

(81%) of regimens, 95% CI [78.6, 82.6]. However, MedMinify only found relevant drug pairs, 

and thus advised against taking the two drugs comprising a pair at the same time, in  

4 out of 1,500 regimens (Table 2.3).  
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Three of the four drug interaction advice messages from MedMinify indicated a concern 

about ingesting cyclosporine and simvastatin at the same time. (This concern is due to 

competition over drug absorption in the small intestine and liver that could change the serum 

levels and efficacy of either drug34. It is not clear whether taking cyclosporine and simvastatin at 

different times of day mitigates this risk.) The fourth case of a drug-drug interaction related to 

simultaneous ingestion involved the drugs rosuvastatin and gemfibrozil. (In this case there is a 

risk of muscle damage when using these drugs simultaneously. The exact mechanism of this 

drug interaction is unknown. There is a suggestion in the literature that simultaneous ingestion 

may play a role in the interaction35. It is not clear whether taking rosuvastatin and gemfibrozil at 

different times of day mitigates this risk.)  

 

RQ3. To what extent would the requirements of home medication regimens change if 

advice provided by MedMinify on how to minify daily medication-taking events 

and daily pill burden were implemented? 

 

If MedMinify’s advice were accepted and implemented for all of the regimens for which 

advice messages were generated, 320 out of the 1,500 regimens (21.3%, 95% CI [19.3, 23.4]) would 

have at least one fewer daily medication-taking event (Table 2.4). In addition, three regimens 

would gain an additional daily medication-taking event in an attempt to mitigate a drug 

interaction. 

 

Finally, the daily pill burden for an additional 295 of the 1,500 regimens (19.7%, 95% CI 

[17.7, 21.8]) would be minified by an average of 1.4 pills per regimen. Table 2.4 includes more 

detail about the regimen changes that would come about if MedMinify’s advice messages were 

heeded. 
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Table 2.4 Impact of Advisories. Sampled medication regimens (n = 1,500) for individuals of 
age ≥ to 60 years with diagnoses for hypertension or diabetes or hypercholesterolemia 
organized by the current number of daily medication-taking events per regimen. 

Current Number of  
Daily  

Medication-Taking 
Events 

Number of  
Sampled 

Regimens  
 

Number of  
Sampled 

Regimens with 
Fewer Daily 
Medication-

Taking Events 

Number of  
Sampled 

Regimens with 
Decreased Daily 
Pill Burden Only 

New Average 
Daily Pill Burden 

per Sampled 
Regimen if 

Advice were 
Implemented 
(Difference) 

8 EVENTS DAILY 1 0 0 26.0 (0) 

6 EVENTS DAILY 3 1 1 13.3 (-2.3) 

5 EVENTS DAILY 4 1 1 14.8 (-1.0) 

4 EVENTS DAILY 44 10 12 10.2 (-1.1) 

3 EVENTS DAILY 178 80 45 9.3 (-1.1) 

2 EVENTS DAILY 643 228 157 5.8 (-0.9) 

1 EVENT DAILY 626 N/A† 79 3.3 (-0.1) 

0* EVENTS DAILY 1 N/A N/A 0.0 (0) 

TOTALS 1,500 320 295 
 

* One regimen included only two prescriptions for medications to be taken weekly and no medications to be taken daily. 
† One is the least possible daily medication-taking event number. MedMinify never advises to discontinue medications. 

 

DISCUSSION 

 

The overall potential of the advice MedMinify generates and communicates 

 

Taking medications every day at home to treat chronic diseases is difficult for most 

people. The degree to which a person adheres to a home medication schedule is a result of a 

complex set of influences including economic factors, social support, individual dedication to the 

task, and beliefs about the utility of prescribed medication treatments6,10,36. For individuals with 
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means who have supportive relationships and believe that taking medications is beneficial, 

adherence to complex medication regimens is still difficult13. More attention on simplifying 

regimens is needed to make every home medication regimen as easy to execute as possible11. 

 

Pharmacists have long been champions of simplifying medication regimens and reducing 

polypharmacy37. However, many consumers are unaware that their pharmacist can assist them to 

simplify their home medication regimens. Evidence shows that relatively few consumers are 

assured to have the simplest possible home medication regimens20. Advice from MedMinify 

could potentially improve the efficiency of time-consuming home medication regimen reviews 

offered by pharmacists. These reviews by pharmacists are provided in a mostly haphazard 

manner to consumers today. 

 

In this initial laboratory function study of the MedMinify advice-giving system, advice to 

minify daily medication-taking event and daily pill burden was generated for 41.3% of actual 

home medication regimens for adults with one or more of three common chronic diseases. This 

result is bolstered by a previous analysis we did where we found that similar drug product 

substitution advice could be generated for 38.4% of 2,944 home medication regimens of retirees 

surveyed in 200738, and by results from Elliott that potential changes to reduce complexity were 

identified in 45.7% of reviewed medication regimens at hospital discharge12.  

 

Based on a careful analysis of the 1,500 sampled regimens, we believe the 41.3% figure 

may overestimate the actual percentage of candidate home patient medication regimens subject 

to useful simplification advice. There are countervailing issues that would prevent changes to a 

home medication regimen in some cases when MedMinify provided advice. These include 

consumer preference, clinical need, drug product cost, and perceived low marginal utility from 

making a change. Yet, if only 1 out of 5 home medication regimens for which advice was 

generated and communicated by MedMinify were actually simplified, the percentage of home 

medication regimens changed would still be approximately 8% in this population.  

 

If 8% of home medication regimens could be simplified then routine screening of 

medication regimens with an advice-giving system like MedMinify may be justified. This is a 
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particularly important finding when one considers that 15.3% of home medication regimens in 

this population require individuals to take medications more than two times a day (Table 2.2). 

The results of this study indicate that 151 of 230 complex regimens (65.6%) were candidates for 

simplification, and that the greater fraction of the advice given to simplify these regimens would 

have resulted in diminishing the number of daily medication-taking events (Table 2.4). Because 

the regimens studied were real ones, and because there is other supporting evidence that 

medication regimens are unnecessarily complex20, it seems reasonable to generalize these 

findings to similar older adult populations with high blood pressure, high cholesterol, and/or 

diabetes. Therefore, this study shows that advice from MedMinify has the potential to be helpful. 

 

Reviewing the types of advice MedMinify provides 

 

Based on the content-based typology of advice from Chapter I, MedMinify provides two 

different types of advice content. MedMinify’s advice is designed to communicate definitive, 

accurate facts about the availability of drug products and the existence of certain drug-drug 

interactions or to communicate possible drug product alternatives from which to choose. 

MedMinify does not communicate medication regimen simplification advice in terms of 

probabilities nor does it generate advice about anything that is either unknown or unknowable.  

 

Specific messages of advice to substitute sustained-release products for immediate-

release ones were the most common recommendations made by MedMinify (Table 2.3). An 

example would be to use the antihypertensive beta-blocker carvedilol as a sustained-release 

product once a day instead of taking the drug twice a day as an immediate-release product.  

 

MedMinify generated fixed-dose combination recommendations for a total of 208 out of 

the 1,500 regimens (Table 2.3). An example of a fixed-dose combination advice message would 

be a message recommending substitution of a pill that contains both the antihypertensive drugs 

hydrochlorothiazide and lisinopril, instead of taking these two drugs as two separate pills.  

 

It was expected that very few drug interactions would be identified in real regimens 

because of prior drug interaction screening at the clinic or in the pharmacy. In this study, while 
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most regimens included one drug in the drug interaction knowledge table, rarely were two 

interacting drugs found in the same medication regimen. For a drug interaction to be detected by 

MedMinify, commonly used medications, such as the “cholesterol-lowering statins”, had to have 

been paired with other drugs that are rarely used. By checking for the rare drug interactions that 

can potentially be managed by taking medications at different times of day, MedMinify can 

conversely confirm that most oral medications prescribed to treat high blood pressure, diabetes, 

and high cholesterol can safely be taken together at the same time of day. 

 

Limitations regarding the study of MedMinify’s advice 

 

This study of MedMinify’s advice has several limitations. With respect to the methods 

used in this study, the clinical appropriateness of the advice offered by MedMinify was not 

formally assessed. Also, prescriptions for non-oral drug products were excluded, as were 

prescriptions where the instructions tell the patient to “take as needed”, making the regimens 

studied less complex than they actually are in reality.  

 

In addition, MedMinify’s advice-giving is limited in its scope. It does not reconcile 

medication-taking events with individual preferences for meal times, work hours, or sleep 

schedules. Also, MedMinify does not account for the differing costs of various medication 

products, nor does it account for various prescription insurance plans. Moreover, MedMinify 

does not recognize the difference between temporary or trial prescriptions and other prescriptions 

for medications intended to be in use for a long time. Also, by limiting the scope of drug 

interaction assessment to only the highest severity interactions, as defined by FDB, some less 

severe but important drug interactions were surely overlooked.  

 

Interoperability challenges to be overcome related to MedMinify’s computable 

knowledge resources and automated knowledge services 

 

 Significant challenges to building and deploying advice-giving systems that actually 

improve health fall into a number of categories39,40. There are challenges sourcing the data 

needed to compute advice with these systems, challenges implementing advice-giving systems 
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within established workflows, and challenges related to the design and upkeep of the computable 

knowledge resources and related automated knowledge services used by these systems. This 

chapter finishes by framing a series of limitations that are specific to MedMinify. These 

limitations relate to the interoperability of its computable knowledge.   

 

While advice provided by MedMinify evidently has the potential to be helpful, its system 

architecture has some critical limitations. These limitations have to be overcome to make the 

computable knowledge components used by MedMinify more highly interoperable. While they 

are real limitations in MedMinify’s case, they are also opportunities to improve the design and 

technical architecture of the computable knowledge components of advice-giving systems.  

 

MedMinify stands alone as an advice-giving system primarily because it relies on two 

unique computable knowledge subparts. These are MedMinify’s Subpart A with drug interaction 

knowledge and its Subpart C with regimen visualization knowledge (Table 2.1). These two 

computable knowledge subparts function only within the context of MedMinify’s particular 

technical architecture.  

 

In the case of MedMinify’s drug interaction knowledge subpart, which is comprised of 

static computable knowledge stored in a database table and accessed by a query, two limitations 

need to be overcome to improve its interoperability. The first limitation is that, in its current 

form, this computable knowledge cannot be accessed by other systems. The second limitation is 

that this computable knowledge is a static isolate without a globally unique identifier. As such, it 

stands apart from any mechanism that could potentially keep it up to date. If these limitations are 

overcome, then there is the potential to for widespread use and routine updating which is 

associated with the virtuous learning cycle of Learning Health Systems.41 

 

To overcome the first limitation, which is about access, poses a technical challenge. It is 

the challenge of modularizing, encapsulating, and then making MedMinify’s drug interaction 

knowledge both accessible and serviceable to other information systems. To make computable 

knowledge accessible means to share it with other systems as a resource. To make computable 
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knowledge serviceable is harder. It involves providing an automated knowledge service, such as 

an API, that multiple systems, and not just one, can easily draw on.  

 

MedMinify’s regimen visualization algorithm subpart is only slightly or modestly 

interoperable. It could also be made more accessible and interoperable by using an API. 

 

Many other medication-use systems could potentially benefit from a capability to draw 

better medication regimen visuals and from a capability to identify drug interactions specifically 

related to simultaneous ingestion of two drugs. As one example, information systems used on 

nursing wards and in nursing homes could benefit from both of these capabilities. The first 

capability would help nurses and others communicate medication regimens to patients. The 

second capability could be used to offset the timing of medication administration to mitigate the 

effects of some drug interactions. 

 

To overcome the second limitation of MedMinify’s computable drug interaction 

knowledge poses two procedural challenges. These are the challenges of uniquely identifying 

this and other instances of computable biomedical knowledge and of developing reliable 

mechanisms to keep instances of computable biomedical knowledge current.  

 

MedMinify’s Regimen Visualization Algorithm (RVA) subpart is comprised of static 

JavaScript code. To augment its interoperability sufficiently so that it can be shared with other 

systems, that code needs to be modularized or encapsulated, uniquely identified, and made 

serviceable, perhaps by using an API. It would also help to have mechanisms to version and 

update it. 

 

MedMinify exposes a series of three limitations constraining its computable knowledge 

resources and related automated knowledge services. The limitations in this series are (1) a lack 

of modularization enabling instances of computable knowledge and related services to be 

externalized from any system, (2) a lack of unique identifiers for instances of computable 

knowledge and related services, and (3) a lack of mechanisms to keep computable knowledge 

and related services up to date.  
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Summarizing, as a stand-alone advice-giving system, MedMinify puts into relief the need 

for more easily shareable and updatable computable knowledge resources and related automated 

knowledge services. It also shows that potentially useful advice to simplify medication regimens 

can be generated automatically. Work to overcome the series of limitations above and increase 

the interoperability of computable knowledge resources and related automated knowledge 

services so that they can be used by multiple systems follows in Chapters III and IV of this 

dissertation. These two upcoming chapters focus on the development and early testing of the 

Knowledge Grid, respectively. The Knowledge Grid includes a set of technical components 

intended to help overcome the technical and procedural challenges that pertain to much of the 

computable knowledge used by MedMinify. 

 

CONCLUSION 

 

MedMinify generates potentially useful advice for simplifying medication regimens. 

Because of its system architecture MedMinify is a stand-alone advice-giving system. It has a 

number of tightly integrated core components, and these components have a low degree of 

interoperability with any system other than MedMinify. Therefore, among other requirements 

not yet met by MedMinify, a better advice-giving system for simplifying home medication 

regimens would provide for more highly interoperable, shareable, and easily updateable 

computable knowledge resources and related automated knowledge services. 

 

Improvements in the interoperability of computable knowledge are required to accelerate 

the flow of health knowledge, and advice based on health knowledge, throughout the health 

system41,42. Without improvements in the interoperability of the computable knowledge 

components of advice-giving systems like MedMinify, stand-alone advice-giving systems will 

continue to have only a modest impact on health practice. We know this because of the 

increasing number of promising but stand-alone advice-giving systems that have been developed, 

tested, and described in the scientific literature, but yet used only sparingly in practice.43–45 
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This dissertation now turns to a body of scientific work on increasing the interoperability 

of computable knowledge and related automated knowledge services and advice-giving systems 

and services. That body of work is intended to make advice-giving systems like MedMinify 

easier to develop, deploy, and use in a wide variety of situations. 
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CHAPTER III 

 

Design and Development of Initial Technical Components for the Knowledge Grid 

 

INTRODUCTION 

 

My goal in this dissertation is show how to increase the interoperability of computable 

biomedical knowledge sufficiently to potentiate the production of well-informed health advice. 

Well-informed advice reflects current best practices, which are established primarily through the 

results of empirical science.  

 

Chapter I is the cornerstone of this dissertation. Its conceptual analysis indicates that 

advice messages are information objects targeted at unmade decisions. In this chapter, we 

explore new methods to generate and communicate large quantities of well-informed advice. 

 

This chapter is the middle chapter in a trilogy of chapters that complete the principal 

scientific argument of this dissertation. That argument asserts the feasibility of building a 

domain-agnostic technical knowledge infrastructure capable of significantly augmenting the 

degree of interoperability of computable knowledge. 

 

Chapter II set the baseline for improvement. Using the example of the MedMinify 

advice-giving system, Chapter II exposed a series of limitations to the interoperability of 

MedMinify’s computable knowledge resources and related automated knowledge services. These 

limitations were a lack of resource and service modularity, a lack of unique identifiers for its 

resources and services, and a lack of mechanisms to keep its resources and services up to date. 

These are serious limitations. They explain why MedMinify stands alone due to proprietary 

elements of its technical architecture. These limitations hinder MedMinify from being easily 

deployed in real-world settings. 
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This chapter covers the work of designing and developing new technical means to 

augment the interoperability of computable biomedical knowledge and related services. This 

work attempts to overcome the limits of resource and service modularity, identification, and 

upkeep that were recognized in hindsight by analyzing MedMinify after it was built and tested.  

 

Specifically, this chapter focuses on the design and development of three initial 

technological components for a new computable knowledge infrastructure1 called the Knowledge 

Grid, or KGrid. Besides helping to organize computable knowledge, KGrid’s technical 

components are intended to make it easier to automatically apply computable knowledge to 

generate and communicate well-informed advice. In keeping with this intent, KGrid’s software 

components have been designed and developed to overcome the noted deficiencies of 

MedMinify’s system architecture. KGrid overcomes them by augmenting the interoperability of 

computable knowledge resources and related services through technical means and methods.  

 

As a fledgling knowledge infrastructure for computable knowledge, the Knowledge Grid 

is designed to enable a paradigm shift away from large, monolithic, stand-alone advice-giving 

systems, which operate in proprietary ways, towards simpler, smaller, modular, individuated 

advice-giving services, which operate in open ways. One benefit of this approach is that open 

knowledge and advice-giving services can be drawn on by many different systems. 

 

In this case, open signifies only an architectural perspective promoting service oriented 

machine interfaces for generating and communicating advice. Here, the term open does not 

connote free and unlimited access to content or services2. Usually, providing access to 

knowledge content and related services involves some work and cost. 

 

The paradigm shift mentioned above from stand-alone advice-giving systems to 

individuated advice-giving services is of particular interest in the health domain today. It is 

hoped that advice-giving services may provide a manageable and suitable technical mechanism 

to generate and communicate the large quantities of well-informed health advice needed to 

support Learning Health Systems3–7. To meet this need is a major challenge.  
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KGrid’s initial three technical components are (1) Knowledge Objects, (2) the KGrid 

Library, and (3) the KGrid Activator. This chapter briefly introduces these three components 

below and later provides detailed descriptions of them. These descriptions explain their purpose, 

design, and stage of development. As a result, this chapter encompasses a body of scientific work 

establishing KGrid’s technical underpinnings as a testbed system8,9. A testbed system is a 

platform to conduct tests and studies. KGrid serves as a testbed for research and development on 

how to use compound digital objects10 to solve some hard computable knowledge management 

problems. 

 

KGrid’s three technical components are briefly introduced next. Knowledge Objects are 

compound digital objects that combine an instance of computable knowledge with a service 

specification and descriptive metadata. The KGrid Library is a conventional digital library for 

storing and managing Knowledge Objects. The KGrid Activator is a technical service component 

for deploying the computable knowledge in Knowledge Objects.  
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The three core technical components comprising the Knowledge Grid, and the 

relationships between them, are depicted in the grey box in Figure 3.1 above. On the far left, a 

group of individual Knowledge Objects are shown in different colors. They can be collected in 

KGrid Libraries, three of which are portrayed as squares in the middle of Figure 3.1. Each of 

these KGrid Library instances holds different Knowledge Objects. Each KGrid Library connects 

over a computer network to another KGrid Library. These network connections are illustrated by 

short vertical green lines between the KGrid Library boxes. 

 

Next, five instances of the KGrid Activator are depicted as hexagons near the middle of 

Figure 3.1. Each of these KGrid Activators contains several Knowledge Objects. Green lines 

indicate that the topmost three KGrid Activators have computer network links to KGrid 

Libraries. Using these links, KGrid Activators find and access Knowledge Objects. However, 

such links between KGrid Libraries and KGrid Activators are not required. A thin, angled dashed 

line helps to indicate that. The bottommost two KGrid Activators are not directly connected to 

KGrid Libraries in Figure 3.1. This is because KGrid Activators can operate independently from 

KGrid Libraries. The flexible modularity of these components enhances the overall utility of the 

Knowledge Grid by increasing their interoperability. In fact, this modular approach makes it 

possible to incorporate one or more of these components into other platforms and infrastructures 

besides the Knowledge Grid.11,12 

 

Finally, on the far right of Figure 3.1, two external systems are depicted as decagons. The 

top External System connects on a network to one advice-giving service endpoint (•) provided by 

a single instance of the KGrid Activator. The bottom External System connects to four similar 

endpoints provided by the other four KGrid Activators. With this diagram in mind, the origin of 

the name of the Knowledge Grid can now be explained. This name stems from the links among 

KGrid Libraries and KGrid Activators that form a network or grid of these things. 

 

Work on these three technical components of the Knowledge Grid offers opportunities to 

rethink the roles that knowledge plays in the world, and the forms that it takes while playing 

them. To wit, Weinberger has remarked about “knowledge’s new medium”, a reference to 

global-scale computer networks where knowledge is “never fully settled, never fully written, 
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never entirely done”13. Similarly, Edwards et al. assert that, “the basic mechanics by which 

knowledge is produced and circulated”1 are undergoing rapid change due to Internet 

technologies. Examples of some of these changes are discussed next. 

 

Increases in the velocity of knowledge production and circulation are causing its 

production and circulation to splinter14. As one example of this, consider the growing importance 

of interim research products, such as scientific manuscript pre-prints. Pre-prints are scientific 

works that precede peer-reviewed articles. They are additional sources of scientific knowledge, 

some of which will never be peer-reviewed. Further, repositories of pre-prints represent yet 

another distinct type of resource where pieces of the global scientific record are now found.  

 

As another example of the splintering of scientific resources across the World Wide Web, 

an example that is very relevant to this dissertation, consider the use of the privately-run GitHub, 

BitBucket, and SourceForge platforms for versioning and sharing research artifacts, including 

software code. The fact that three competing version control platforms exist makes their 

splintering effects obvious. Researchers have encouraged other researchers to use these platforms 

to help produce and communicate new knowledge15. One concern is that none of these privately-

run platforms commit to serve as infrastructure for maintaining the persistence of the global 

scientific record12. In contrast, the Knowledge Grid is being developed to bring about a 

distributed, persistent scholarly computable knowledge infrastructure. 

 

KGrid simultaneously exemplifies and reflects ongoing changes in the mechanics of 

knowledge production and circulation. It is an attempt to manage computable knowledge 

artifacts for science via the World Wide Web in ways that maintain their integrity for generations 

to come. It is also an attempt to make computable knowledge more interoperable. That part of 

the KGrid story is what mainly motivates this dissertation. 
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BACKGROUND 

 

Purpose of The Knowledge Grid 

 

The foremost purpose of the Knowledge Grid is to greatly decrease the multi-year latency 

between the moment new biomedical knowledge is discovered and its widespread uptake and use 

in practice16. The core technical components of the Knowledge Grid are domain-agnostic. 

However, their development has been specifically motivated by the well-established need to 

accelerate global biomedical knowledge flows for health17–24. Without an acceleration of 

biomedical knowledge flows, it is anticipated that current problems with health care 

underutilization, overutilization, disparities, and avoidable iatrogenic harms will persist, if not 

worsen25. 

 

Reiterating, to improve the flow of biomedical knowledge for health and meet its 

foremost purpose, the Knowledge Grid provides the technical bases for an emergent knowledge 

infrastructure. This knowledge infrastructure makes computable knowledge easily transferable 

and rapidly available via highly interoperable webservices accessed via the World Wide Web. In 

this way, computable knowledge can potentially be used by any machine capable of connecting 

to the Internet. 

 

Context of Learning Health Systems 

 

As noted above, efforts to develop the Knowledge Grid are situated within the context of 

a much larger ongoing movement to bring about high-functioning Learning Health Systems3,25–

27. This movement seeks to combine, in credible and workable ways, capabilities for learning 

that already exist in the following areas:  biomedical research28–31, health care quality 

improvement32, health care practice advancement33,34, and personal health behavior 

betterment35,36. Through aggregation of these learning capabilities, large-scale Learning Health 

Systems are ultimately expected to continuously learn from the health experiences of many 

people while reliably providing the latest biomedical knowledge to most, if not all, people. 
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To achieve Learning Health Systems through aggregation of various existing capabilities 

for learning about health, it is thought that an advanced sociotechnical infrastructure for large-

scale system-wide learning is needed3. This infrastructure must support ongoing, cyclical 

processes of learning called learning cycles. These ongoing learning cycles engage communities 

in empirical analysis of data relevant to biomedical problems, resulting in discovery of new 

knowledge via organizational learning. Then, learning cycles directly apply the new knowledge 

gained to change health care practices and health behaviors via individual learning. Next, 

learning cycles move forward by collecting new outcomes data resulting from updated and 

changed practices and behaviors. These new outcomes data drive succeeding learning cycle 

iterations, with improvement in health occurring as a byproduct of these interconnected 

processes. KGrid is an attempt to develop just one portion of this learning infrastructure. 

 

The notion of ongoing learning cycles is not new. One historical example makes this 

point. While writing about organizational science in 1978, Susman and Evered describe a 

cyclical process for executing “action research”, which is research that simultaneously adds to 

the overall body of general scientific knowledge while contributing real-world solutions to 

practical problems that people currently face37. In their work, they depict a model learning cycle 

with five phases. Their version of the learning cycle is akin to the much more commonly 

encountered Plan•Do•Check•Act (PDCA) cycle associated with statistical process control and 

continuous quality improvement since the 1940s38. 

 

A model of the learning cycle for Learning Health Systems is portrayed with three 

distinct information flows in Figure 3.2 below. These three flows are (1) a Practice to Data (P2D) 

flow, resulting in the collection of practice data, including health outcomes data, (2) a Data to 

Knowledge (D2K) flow, resulting in organizational learning by interpreting the results of 

biomedical data analyses, and (3) a Knowledge to Practice (K2P) flow, resulting in individual 

learning via interpretation of advice predicated on current biomedical knowledge. When these 

three information flows come together in the cyclic manner shown in Figure 3.2, they can result 

in better human health. Friedman summarized this idea in the following conceptual equation3: 

 

𝑃2𝐷 + 𝐷2𝐾 + 𝐾2𝑃 = 𝐵𝑒𝑡𝑡𝑒𝑟	𝐻𝑒𝑎𝑙𝑡ℎ 
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The Knowledge Grid is knowledge infrastructure purpose-built specifically to support a 

portion of the Knowledge to Practice (K2P) information flow. To support Step 6 in Figure 3.2, 

“Manage Knowledge”, KGrid provides capabilities to manage large quantities of individual 

computable knowledge resources which will easily number in the millions of instances39.  

 

The K2P flow in Figure 3.2 also involves using knowledge to inform and generate advice 

at Step 7, “Apply Knowledge to Generate Advice.” At this step of the learning cycle, up to date 

knowledge is combined with an adequate set of contextual information about an unmade 

decision to generate and communicate well-informed advice for human decision-makers. When  

used in this way to generate and communicate advice, computable knowledge is, in one step, 

accessed and combined with instance data to compute advice for a specific decision situation. 
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The Knowledge Grid takes advantage of Existing Information Infrastructure 

 

To accelerate the flow of biomedical knowledge within Learning Health Systems, the 

Knowledge Grid attempts to support Steps 6 and 7 in Figure 3.2 above. When used for this 

purpose, its support must unfold on a global scale and it must encompass a huge scope. Its scope 

includes knowledge about the human body, thousands of diseases, and tens of thousands of 

medical tests, interventions, processes, and treatments. Yet, the technological components of the 

Knowledge Grid are not specific to the health domain. They can be used to organize and 

disseminate any knowledge that has a computable form suitable to be interpreted by machines. 

 

To make the work of accelerating knowledge flow effective enough to propel Learning 

Health Systems, KGrid takes advantage of the scalable, global information infrastructure of the 

World Wide Web, and the underlying technologies of the Internet that enables the World Wide 

Web. This existing infrastructure undergirds the Knowledge Grid’s technical components and 

adds considerably to their interoperability. The specific ways that the technologies and standards 

of the World Wide Web add to KGrid’s interoperability are discussed in more detail later in this 

chapter. 

 

Background about Knowledge Objects 

 

To help manage computable knowledge and use it to generate advice, this chapter puts 

forward a formal specification for a new compound digital object called a Knowledge Object. A 

Knowledge Object bundles an instance of computable knowledge, also called a payload, with 

useful resource and service metadata. Resource metadata include a persistent unique identifier 

for each Knowledge Object and statements describing its payload’s provenance and purpose, 

among other things. In contrast, service metadata are limited to descriptions of the specific 

services that the Knowledge Object can enable40. Service metadata describe precisely how to 

interact with a Knowledge Object to get advice. 

 

Yet before a formal specification for Knowledge Objects could be created, a more general 

conceptualization was needed to help us understand what a Knowledge Object could be40. This 
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general conceptualization is depicted in Figure 3.3 above. In Figure 3.3, resource and service 

metadata are depicted as the outer two layers of a Knowledge Object. These outer two layers 

relate to two different portions of the text on the right. This text comprises a simplified example 

of a Knowledge Object. Also in Figure 3.3, a payload is depicted at the core of the Knowledge 

Object in 1’s and 0’s. This payload is associated with its own portion of the example Knowledge 

Object’s text on the right. In the figure, the text of the example Knowledge Object is serialized in 

the JavaScript Object Notation (JSON) format. Other textual and binary formats are possible. 

 

Real-world examples of computable knowledge payloads stored in Knowledge Objects 

include encoded predictive models, computable guidelines, and computable phenotypes.  

 

Early work to develop the Knowledge Grid has focused attention on development of a 

formal specification that precisely defines what a Knowledge Object is. This chapter reports 

work that we have done to build on the conceptual notion of a Knowledge Object portrayed in 

Figure 3.3. We published our conceptual notion of a Knowledge Object in 201640. 
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Background about the initial KGrid Library component 

 

To support computable knowledge management and dissemination, the Knowledge Grid 

includes a conventional digital KGrid Library component (Figure 3.1). It is for managing, 

stewarding, archiving, and preserving computable knowledge that is stored and packaged in 

Knowledge Objects. 

 

From here on, we will use the term curation to mean selecting, managing, stewarding, 

archiving, and preserving Knowledge Objects as a new type of material artifact. As indicated 

above, Knowledge Objects can be collected in KGrid Libraries to facilitate their curation. 

Obviously, there are many aspects to curation of Knowledge Objects, but most of those aspects 

are not addressed here. Instead, what is addressed here is the work to make Knowledge Objects 

as interoperable as possible and then to use them to augment the interoperability of the related 

knowledge services and advice-giving services that they enable. 

 

One important aspect of Knowledge Object curation that does relate directly to the 

interoperability of Knowledge Objects is the KGrid Library-to-KGrid Library sharing of 

Knowledge Objects. We believe the ability to share some high-value, highly interoperable 

Knowledge Objects among KGrid Libraries is critical to the early success of the Knowledge Grid 

effort for the following two reasons. 

 

First, for the Knowledge Grid to be successful, we have to show how it creates value. The 

ability to share Knowledge Objects is an initial move toward demonstrating value. Knowledge 

Object sharing has the potential to bring about economies of scale in computable knowledge 

creation, management, dissemination, and use. For this reason, we are exploring early uses of the 

Knowledge Grid to share an authoritative collection of Knowledge Objects. An example of this 

is work to create Knowledge Objects that encode and encapsulate guidelines about the genetic 

determinants of drug selection and dosing from the Clinical Pharmacogenetics Implementation 

Consortium.41 Further details about this work are outside the scope of this chapter. 
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Second, one of the basic storage-related tenets of digital preservation is to make and 

curate multiple independent copies of digital artifacts. This principle has been articulated using 

the term Lots of Copies Keep Stuff Safe (LOCKSS).42 The purpose of technology that supports 

the LOCKSS principle is to have backups on hand throughout the lifecycle of digital 

artifacts.42,43 Although this dissertation is not about digital preservation, I recognize that long-

term interoperability of computable knowledge artifacts - including Knowledge Objects - 

depends on thoughtful, systematic approaches to digital preservation. 

 

Background about the initial KGrid Activator component 

 

Along with Knowledge Objects and the KGrid Library, the Knowledge Grid also 

includes a core software component called the KGrid Activator. As indicated above in Figure 

3.1, a primary role for the KGrid Activator is to make the payloads of Knowledge Objects 

serviceable for the purpose of generating and communicating advice. It does this by providing 

network access to Knowledge Object payloads in two different ways. Upon request, the KGrid 

Activator can send whole payloads to external systems where they can be used for a variety of 

purposes. More relevant here, though, the KGrid Activator can accept a request for advice from 

an external system and use Knowledge Object payloads to generate advice that is then 

communicated back to the requestor. For the remainder of this chapter, the KGrid Activator’s 

capability to accept and respond to requests for advice from external systems remains in scope. 

However, its capability to shuttle Knowledge Object payloads to other systems is out of scope 

because that use of the KGrid Activator is not primarily about advice-generation. 

 

With the background covered thus far in mind, we can now distinguish more carefully 

between two types of technical services provided by the Knowledge Grid. As illustrated in 

Figure 3.4, the Knowledge Grid provides both automated knowledge services (portrayed with 

green lines) and automated advice-giving services (portrayed with blue lines). Its network-

enabled knowledge services shuttle Knowledge Objects, which are resources, from KGrid 

Libraries to KGrid Activators. Similarly, its network-enabled advice-giving services, which are 

provided exclusively by KGrid Activators, accept requests for advice from External Systems and 

meet those requests by combining the payloads stored in Knowledge Objects with inputs to 
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generate and communicate advice. These requests for advice carry instance data, which are data 

that describe relevant features of a decision-situation related to the advice being sought. For the 

remainder of this dissertation, the focus is primarily on these network-enabled advice-giving 

services provided by KGrid Activators and not on the knowledge services that support them.  

 

When scaled up to regional, national or international scales, primarily by making use of 

the World Wide Web, the loosely coupled interoperable components comprising the Knowledge 

Grid illustrated in Figure 3.4, have the potential to become large-scale computable knowledge 

infrastructure. If and when that happens, the change from a prototype platform to an actual 

knowledge infrastructure will be signaled by an “infrastructural inversion”, which is Bowker’s 

term for emergent capabilities, and related positive and negative effects, that arise when new 

infrastructures take hold in the world.44 

 

I must point out, however, that the idea of providing advice-giving services via the World 

Wide Web is not new. Such services are well described in the scientific literature45,46. What is 
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new is that the Knowledge Grid, by virtue of the KGrid Activator and the KGrid Activator’s 

Application Programming Interface (API), potentially makes it easier to rapidly and reliably 

deploy and update automated advice-giving services predicated on well-curated computable 

knowledge. 

 

Pipeline view of the core technical infrastructural components of the Knowledge Grid 

 

To put its core technical components in the context of learning cycles for Learning Health 

Systems, Figure 3.5 below illustrates how the Knowledge Grid provides supportive infrastructure 

specifically for the Knowledge to Practice (K2P) flow of learning cycles. It does so by using 

Knowledge Objects, instances of the KGrid Library, and instances of the KGrid Activator to 

generate advice about health. 

 

In Figure 3.5, following numbered steps that were previously introduced in Figure 3.2, 

after a knowledge artifact is represented in a computable form (Step 5), then the Knowledge Grid 

provides the means to package it into a Knowledge Object. Next, Knowledge Objects are 

collected and managed within deployed instances of the KGrid Library software (Step 6). From 

deployed KGrid Libraries, instances of KGrid Activators find and access Knowledge Objects, 

and then activate their payloads by using them to bring automated advice-giving services online 

that generate and communicate advice. When these advice-giving services are then engaged by 

external systems on behalf of people, messages of advice targeted at unmade decisions faced by 

those people are received by them (Step 7). When people receive and interpret this advice (Step 

8), the K2P information flow is completed. As depicted in Figure 3.5, the Knowledge Grid 

specifically supports Steps 6 and 7. It takes in computable knowledge, and supports both its 

curation and use to generate and communicate advice targeted at unmade decisions. 

 

Summarizing what has been discussed about the Knowledge Grid thus far, Figure 3.5 

depicts how the three core technical components of the Knowledge Grid function together as 

supportive infrastructure for managing computable knowledge resources and using them to 

deploy advice-giving services. Now that the core technical components of the Knowledge Grid  
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have been reviewed, the following subsection of this chapter provides more relevant but general 

background about the science of knowledge infrastructure as it pertains to the Knowledge Grid. 

 

Pertinent background about compound digital objects and ontologies 

 

This subsection gives some more detail about several topics related to knowledge 

infrastructure and the Knowledge Grid. It begins by comparing KGrid’s Knowledge Objects to 

other similar, preceding types of digital objects. Then, ontologies are introduced and their roles 

within the context of knowledge infrastructure are briefly outlined. Finally, an explanation is 

given for the purposeful use of conventional digital libraries as part of the Knowledge Grid. 

 

About compound digital objects. The idea of creating compound digital objects to hold 

and annotate various types of content, including knowledge in various forms, is not new. This 

idea has been seriously explored for more than 20 years, starting with an effort to develop a 
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framework for distributed digital object services completed by Kahn and Wilensky in the 

1990s10. Building on their work, and on previous work to develop the Dienst architecture for 

distributed document libraries47, Payette and Lagoze built the Flexible Extensible Digital Object 

and Repository Architecture (FEDORA)48. This important groundbreaking work makes it 

possible to further progress the science and technology of compound digital objects via the 

Knowledge Grid. 

 

When considering KGrid’s Knowledge Objects, two similar types of digital objects 

deserve special mention, Learning Objects and Research Objects. These two other types of 

compound digital objects are forerunners of the Knowledge Objects developed here. 

 

Learning Objects have a significant history, yet it is hard to understand precisely what a 

Learning Object is. An overview in 2003 noted numerous “confusing and arbitrary” definitions 

of Learning Objects49. Learning Object content includes text, images, audio, and video files, and 

software applications. Learning Objects have mostly been used in the context of Learning 

Management Systems. These systems are typically used by large organizations to train their 

members on a variety of mandatory competencies, and to track when required training occurred. 

 

Yet the scope of Learning Objects is so broad that it is difficult to formally define them in 

a way that can be widely accepted49,50. Even so, for the purpose of achieving greater 

interoperability, the technical Shareable Content Object Reference Model (SCORM) standard 

has been adopted and used in many Learning Management Systems to date51. A “next 

generation” version of SCORM, based on service-oriented web architectures, is planned52. 

 

Taking note of this history about Learning Objects and SCORM, we took a different 

approach with Knowledge Objects. Our approach is to develop an ontology that formally and 

precisely describes what a Knowledge Object is from the outset. Then it is to put the new 

ontology through peer review. Finally, it is to make it as widely available as possible.  

 

Our approach involves two methods that the developers of SCORM did not use52. The 

first of these methods is to adopt an upper level ontology. The upper level ontology we used is 
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described later. We used it so that the formal specification of a Knowledge Object can, in theory, 

interoperate with formal specifications for other entities that share the same upper level ontology. 

The second method is to define a hierarchy of the entities comprising Knowledge Objects and 

the properties that relate those entities. We did this to define, prescribe, and limit the classes of 

information content entities that Knowledge Objects can contain. Unlike the SCORM 

specification for Learning Objects, our specification for Knowledge Objects does not allow 

Knowledge Objects to hold any content in any format. Instead, Knowledge Objects have 

constraints. They are compound digital objects comprised of instances of computable 

knowledge, resource metadata, and service metadata. The main point is that, compared to the 

way Learning Objects are specified, our work to formally specify Knowledge Objects uses a 

somewhat stricter specification in an attempt to improve Knowledge Object interoperability. 

Whether a stricter specification actually improves Knowledge Object interoperability remains an 

open question. 

 

Another preceding and relevant type of object is the Research Object. A Research Object 

ontology exists53. Per that ontology, a Research Object is an evolving aggregation of 

heterogeneous resources for describing and reproducing research workflows, along with 

annotations of those resources54. The heterogeneous resources that can be placed inside Research 

Objects include, but are not limited to, data sets, lab notebooks, analytic workflows, intermediate 

results, draft manuscripts, and publications. Therefore, the scope of the Research Object 

ontology covers what is needed to bundle essential information relating to experiments and 

investigations for the purpose of increasing scientific transparency and study reproducibility. 

 

The Knowledge Object Reference Ontology (KORO) introduced in this chapter has a 

different scope. The scope of KORO covers what is needed to build compound digital objects 

that store instances of computable knowledge and describe, for each such instance, at least one 

related service that the instance of computable knowledge supports and enough other details 

about each instance of computable knowledge and Knowledge Object itself to make them as 

findable, accessible, interoperable, and reusable as possible55. 
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About ontologies. The idea that ontologies have important roles to play within 

knowledge infrastructures is also not new. When confronted with the challenges of classifying 

information artifacts that continue to grow in number, Weinstein and Alloway point to the 

expressiveness and precision of ontologies as reasons why ontologies are useful for automated 

creation and curation of information artifacts at scale56. More recently, ontologies have been 

developed specifically for the World Wide Web, enabling it to support enhanced data 

aggregation. As one example of this, the website schema.org provides ontologies to improve 

search accuracy for the World Wide Web by making it easier to extract relevant information 

from textual resources facilitating their curation57,58.  

 

In the context of this chapter, an ontology is defined as a, “standardized representational 

framework providing a set of terms for the consistent description of data and information across 

disciplinary and research community boundaries.59” In essence, as they are often used in 

computing and information science, ontologies are formal, explicit, and logically consistent 

specifications of hierarchies of entities and other properties that relate entities. There are well-

established methods to represent ontologies in fully computable forms, and tools that help people 

to do so60–62. 

 

Ontologies are used by the Knowledge Grid mostly as structural frameworks for text-

based compound digital Knowledge Objects and their constituent textual parts and subparts. The 

most important ontology for the Knowledge Grid to date is the Knowledge Object Reference 

Ontology (KORO). Its design and development are described later in this chapter. 

 

We use multiple ontologies, including KORO, as structured models for representing 

hierarchical “is_a”, or subsumption, relationships, “has_part” and “part_of” parthood 

relationships, and other relationships besides56. Once relationships between the entities are 

established as axioms within a given ontology, machines can then reason using the ontology to 

label or “tag” entities automatically. Here we use the Web Ontology Language, called OWL, to 

represent the computable axioms that comprise the KORO ontology for Knowledge Objects. 
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Within biomedicine specifically, two initiatives towards the coordinated evolution of 

biomedical ontologies are particularly relevant to our efforts to design and develop the 

Knowledge Grid. These are the establishment of the National Center for Biomedical Ontology 

(NCBO)63 and the efforts of the Open Biomedical Ontologies (OBO) consortium, which have 

resulted in the OBO Foundry64.  

 

The NCBO provides an online website known as Bioportal65. This website provides a 

collection of several hundred ontologies and terminologies. The ontologies on the Bioportal 

enable their users to automatically annotate textual source materials by mapping arbitrary words 

in texts of interest to ontological terms, thereby “tagging” the texts with those precise terms. The 

results of this mapping and tagging of texts can then be used to improve search performance. 

This kind of automated annotation through mapping and tagging is of great interest for 

improving the findability of Knowledge Objects as work on the KGrid Library progresses. We 

have uploaded the KORO ontology we created to the public Bioportal website. 

 

The OBO Foundry has an ambitious goal of developing ontologies by using a shared set 

of design principles. The Foundry’s goal is to create ontologies that are interoperable and 

combinable64. The OBO Foundry seeks to use ontologies to standardize data coding schemes so 

that clinical data sets may cumulate over time and across organizational boundaries. Similar 

aggregation of structured data over time is also important for the Knowledge Grid. We will 

return to the topic of ontology-enabled aggregation of knowledge resources in Chapter IV.  

 

Besides aggregation, however, the Knowledge Grid has several other needs for support 

from ontologies. Ontologies are needed to improve Knowledge Object findability, curation, and 

interoperability.  

 

Besides using the KORO ontology to specify the overall structure of Knowledge Objects, 

various other ontologies can give structure specifically to the resource metadata of Knowledge 

Objects. These include ontologies for describing people, events, and provenance. Using them can 

improve findability and facilitate curation. However, these important capabilities are not the 

focus here. 
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Other ontologies can give structure to the service metadata of Knowledge Objects. This is 

particularly important for augmenting Knowledge Object interoperability. Ongoing work to 

upgrade the service metadata of Knowledge Objects to support type introspection is an example 

of this. Type introspection is the ability of an arbitrary software program to examine the 

properties of a digital object, such as a Knowledge Object, in order to put digital objects to use 

automatically. To bring about type introspection for Knowledge Objects requires Knowledge 

Objects to be able to expose their service metadata in a structured and standardized way to other 

systems using an ontology. For this purpose, we are presently experimenting with the Open API 

standard66. Open API will allow us to describe, in a machine-processable way, the format of the 

inputs needed to engage a Knowledge Object based advice-giving service and the format of the 

advice output the advice-giving service generates and communicates.  

 

Background about the initial KGrid Library component 

 

As previously discussed, development of the Knowledge Grid is situated in the context of 

supporting Learning Health Systems with better knowledge infrastructure. A core technical 

component of the Knowledge Grid is a conventional digital library component called the KGrid 

Library. The purposes of the KGrid Library are to enable the collection and curation of 

Knowledge Objects, and to provide automated knowledge services, as illustrated above in 

Figures 3.1, 3.4, and 3.5. Here, the metaphor of the library is being used because of the need to 

uphold the integrity of Knowledge Objects by curating them.  

 

Yet Internet technologies make it so that all digital artifacts, including Knowledge 

Objects, are subject to constant revision and repurposing.11 The fact that digital artifacts can 

potentially be constantly in flux creates operational problems for health organizations. These 

problems translate into challenges for the Knowledge Grid. One challenge is that, because the 

health domain involves high-risk decisions and actions, there are requirements to save the 

internal system states of health IT systems and to support rollback to previous system states. The 

legal aspects of this challenge are addressed elsewhere.67 We are only beginning to consider the 

technical aspects of this challenge. Therefore, for my purposes here, it is enough to point out that 
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the role of a conventional digital library for managing Knowledge Objects that will be used to 

generate advice about human health is not yet clear. It may be that such digital libraries will have 

to uphold a set of health care specific policies, e.g., policies for Knowledge Object version 

control, in order to handle Knowledge Objects effectively. Future work, beyond what I report in 

this dissertation, is needed in this area. 

 

For the purpose of establishing trust and for a host of other medicolegal reasons, the 

health care system essentially requires a persistent record of all versions of Knowledge Objects 

that are used to generate and communicate advice. Recently, the United States Food and Drug 

Administration (FDA), which regulates medical devices, shared draft guidance for industry about 

clinical and patient decision support software. Via its draft guidance, the FDA makes it clear that 

it values capabilities that enable health care professionals to “independently review” the basis for 

automatically-generated medical advice about diagnoses and treatments. FDA’s guidance 

suggests that advice-giving systems for clinical and patient decision support without such 

capabilities are more likely to be considered medical devices68. Assuming this draft FDA 

guidance holds, there is an opportunity for the Knowledge Grid to demonstrate how curation and 

versioning of Knowledge Objects promotes the independent review of the evidence upon which 

they are based. 

 

Looking ahead, KGrid anticipates a future where a host of personal “digital health tests”, 

akin to laboratory tests, are performed using instances of computable biomedical knowledge. 

These new digital tests will be done in the manner that laboratory tests and radiological imaging 

studies are frequently done today. However, unlike laboratory tests or imaging studies, which 

require tissue to be sampled, specimens to be drawn, or people to be present for imaging, digital 

health tests will process our health data in the background, and only return results when 

something of potential clinical relevance is calculated. If this future vision comes to pass, then 

the KGrid Library will have to function as a conventional digital library for curating the 

Knowledge Objects that support useful digital health tests. For this to happen, controls over 

Knowledge Objects will be needed so that the origin of, and rationale for, advice from digital 

health tests can be completely understood long after advice is given. 
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It may also be that the broader domain of biomedical science requires fixed and persistent 

versions of the computable knowledge resources it produces. Today, fixed works of peer-

reviewed scholarship are heavily relied upon in clinical practice. For example, oncologists are 

now required to identify prior published studies that directly support their cancer treatment 

decisions before treatments are enacted69. To support this use of published biomedical 

knowledge, publications must be findable and accessible to clinicians. In the future, when more 

biomedical knowledge is available in machine-interpretable forms, it will also need to be made 

interoperable and reusable. These four principles, to make computable knowledge findable, 

accessible, interoperable, and reusable, or FAIR, guide the work of developing the Knowledge 

Grid55. 

 
Background Summary 

 

The Knowledge Grid’s core technical components are designed to overcome several 

limitations of stand-alone advice-giving systems. These limitations pertain to the curation and 

use of computable knowledge resources and related services. The rest of this chapter relates a 

body of scientific work undertaken to design and develop technical knowledge infrastructure 

components for KGrid which are modular, uniquely and persistently identified, and readily 

updateable. In the next chapter, technical KGrid components with these properties will be tested 

to evaluate the degree to which they augment the interoperability of computable knowledge 

resources and related services. 

 

RESEARCH QUESTIONS 

 

I address the following six research questions (RQs) in this chapter. The first four 

research questions pertain to the design and development of a formal specification of a 

Knowledge Object. The fifth and sixth research questions pertain to the design and 

development of the KGrid Library and KGrid Activator components of the Knowledge 

Grid, respectively.  
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RQ1. What are required and optional informational parts of a Knowledge Object 

Content Package, and how may those parts and their relations be represented 

and described in a logically consistent way as entities in an ontology? 

 

RQ2. What classes, relations and constraints pertain among the whole and the parts of 

an actual material digital Knowledge Object, when concretized, and how may 

they be represented and made logically consistent in an ontology? 

 

RQ3. What questions about Knowledge Object parthood can an ontology answer 

competently in order to demonstrate its logic and potential utility? 

 

RQ4. What are necessary implementation decisions that have to be made to 

successfully implement a Knowledge Object that bears a concretization of 

computable knowledge within its required instance of a ‘Knowledge Object 

Payload Item’ part? 

 

RQ5. What are a minimum set of necessary and sufficient technical subcomponents, 

which, when integrated, can bring about a stable, scalable digital library capable 

of storing Knowledge Objects, making them discoverable and shareable, 

facilitating their incorporation into various other applications, and supporting 

both Knowledge Object and digital library management? 

 

RQ6. What constitutes a minimum set of necessary and sufficient technical 

subcomponents that, when integrated, result in stable, scalable, rapidly 

deployable, secure, traceable, activated Knowledge Objects, thereby enabling 

KGrid to provide performant and reliable on-demand advice-giving services for 

health? 
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METHODS 

 

Methods for formally specifying what a Knowledge Object is 

 

Initial search for relevant existing ontologies. Before creating an ontology of our own to 

formally specify what a Knowledge Object is, we reviewed ontologies from the NCBO’s online 

Bioportal and from the OBO Foundry to see if an existing ontology might suffice for this 

purpose. We were unable to identify an existing ontology for compound digital objects intended 

to help manage and share computable knowledge. We did find the Software Ontology (SWO), 

which supports annotation of software tools by type, manufacturer, inputs, outputs, and uses. 

However, SWO is evidently a model for software applications, such as Microsoft Word70. SWO 

does not provide enough detail to model the parts and pieces of compound digital objects like 

Knowledge Objects. 

 

Choosing an upper level ontology. Prior to developing the Knowledge Object Reference 

Ontology, called KORO, we addressed the question of which, if any, upper level ontology to use. 

Recall from above that an upper level ontology potentially enhances the interoperability of all 

other ontologies that incorporate it by founding them on some shared model of reality59,71. 

Although several choices for upper level ontologies exist, we decided to use the Basic Formal 

Ontology (BFO) as an upper level ontology for KORO. We chose BFO because it has been 

purpose-built for scientific work and because it’s creators have developed a set of step-wise 

procedures to follow when using it. BFO is described next. 

 

BFO is an upper level ontology that has been purpose-built to support scientific 

endeavors59. Its purpose is to better describe science. BFO is a small ontology. It makes a few 

key metaphysical commitments about reality which can be built upon by other ontologies. Those 

who use it adopt these metaphysical commitments. For example, at its highest level, BFO begins 

by dividing reality, i.e., our conception of the world, into two views. One view takes the 

perspective of persistent entities, like buildings. Another view takes the perspective of transitory 

entities, like the process of entering a building, a process which starts and stops. Next, BFO 

categorizes persistent entities into immaterial entities, such as concepts, and material entities, 
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such as physical objects. In this manner, what BFO does is lay down a short series of 

metaphysical commitments in a logically consistent way to support scientific communication. 

 

While investigating BFO, we discovered that some of its creators had already extended it 

further to create the Information Artifact Ontology (IAO)72. IAO incorporates the upper level 

classes of entities from BFO, and then extends them to model additional classes for information 

entities. We found these information entity classes to be very useful for formally specifying what 

a Knowledge Object is with KORO72. For this reason, we ultimately based KORO directly on 

IAO, which in turn is based on BFO. 

 

KORO ontology design and development procedures. A multidisciplinary team at the 

University of Michigan, led by Flynn and comprised of faculty, graduate students, and 

developers, collaborated to create KORO. At the outset, we determined that KORO needed to 

serve as a formal specification describing all of the parts of Knowledge Objects and how those 

parts relate. For this work, we followed the steps to develop ontologies using BFO given by Arp, 

Smith, and Spear59. 

 

We started the work to design and develop KORO with a copy of the Information 

Artifact Ontology (IAO 1.072) that was previously merged with BFO59. In this case, IAO was 

represented in the Web Ontology Language (OWL) format. OWL is an ontology language that 

formally describes domains of interest in terms of entities, expressions, and axioms. In OWL, 

entities are either classes, properties, or individuals; expressions communicate criteria about 

entities; and axioms communicate assertions of the truth.73 

 

BFO and IAO provide super-classes from which we derive upper level KORO concepts 

and terms. When deriving terms for KORO from BFO and IAO, we used the Minimum 

Information to Reference an External Ontology Term (MIREOT) method74. MIREOT defines the 

least amount of information needed to incorporate information from one ontology into another 

ontology. Its purpose is to limit unnecessary duplication and improve precision when deriving 

entities and properties from those in a preceding ontology. 
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In cases when external sources other than BFO and IAO inspired terms used in KORO, 

those external sources were explicitly noted in the documentation for the KORO ontology. For 

example, we incorporated some fundamental bibliographic concepts of the Functional 

Requirements for Bibliographic Records model into KORO75. 

 

For the first version of KORO, we focused our efforts on defining Knowledge Objects 

and their parts using the class of persistent entities that BFO calls continuants. In BFO, 

continuants are universals that continue or persist in time59. Following in the manner of IAO, we 

modeled the conceptual parts of a Knowledge Object Content Package as information content 

entity continuants. We also modeled the material parts of actual digital Knowledge Objects, and 

whole Knowledge Objects, as BFO continuants.   

 

KORO provides Aristotelian definitions for all KORO classes and properties. These 

definitions follow a precisely defined format (see examples below). After incorporating BFO and 

IAO classes and their relations, we created KORO-specific content through a process of term 

identification. We gathered established terms for the parts of Knowledge Objects from the digital 

library and information technology worlds. For example, the terms “Fact Sheet”, for a document 

that is a collection of key facts and “Log”, for a document resulting from automatic recording of 

activity by a computer, were included in KORO. After assigning existing terms to most parts of 

KOs, we formalized what is meant by the novel terms in the ontology, e.g., the novel term 

‘Knowledge Payload Item’. 

  

Next, we ordered the terms for KORO’s entities in a taxonomical hierarchy using the 

‘is_a’ relation to denote subtypes (also called subclasses). Then we added to KORO the 

minimum number of additional relations needed to represent parthood, notably the relations 

‘has_part’ and ‘is_part_of.’ We then debated and reordered KORO’s entities multiple times 

through an iterative, collaborative process over ten months. We finally arrived at a logically 

consistent version 1.2 of KORO, serialized in OWL. We refined KORO with the help of 

feedback from experts. We uploaded our original version (KORO 1.0), and three improved 

versions (1.1, 1.2, and 1.3) to the National Center for Biomedical Ontology Bioportal at the 

following location on the World Wide Web: http://purl.bioontology.org/ontology/KORO. 
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Evaluation of KORO using competency questions. We developed three competency 

questions (CQs) about Knowledge Objects and their parts to help illuminate the scope and use of 

KORO76. KORO enables inferences to be made to answer the following three competency 

questions: 

 

CQ1. According to its parts, is a given instance of an arbitrary entity a Knowledge 

Object? (Answer: Yes or No)  

 

CQ2. If an arbitrary entity IS an instance of Knowledge Object, what Knowledge 

Object part items does it have?  

 

CQ3. If an arbitrary entity IS NOT an instance of Knowledge Object, does it partially 

fulfill the requirements of Knowledge Object, and, if so, what specific 

Knowledge Object Part Items does it have?  

 

Using Protégé61 software and the automated Pellet reasoner77, we created instances of 

‘Knowledge Object’ and ‘Knowledge Object Part Item’ suitable to demonstrate that KORO 

properly infers answers to the three competency questions above. 

 

Building of Exemplar Knowledge Objects to Illuminate Implementation Decisions. One 

goal we have is to future-proof KORO, as much as possible, so that as technologies and 

capabilities evolve, it will still provide a useful formalism for a package of computable 

knowledge. For this reason, KORO sets only a general pattern for all Knowledge Objects. It does 

not constrain the format(s) of Knowledge Object parts, leaving these to be determined by those 

who create Knowledge Objects. Hence, to help identify implementation decisions that have to be 

made when creating Knowledge Objects, we have built exemplar Knowledge Objects of various 

types. The process of building actual Knowledge Objects allowed us to list an initial set of 

implementation questions that need to be answered about each part of a Knowledge Object when 

building new Knowledge Objects. These questions address the formatting and serialization of 

various parts comprising compound digital Knowledge Objects. They appear in the Results 

section for RQ4. 
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Methods for KGrid Library design and development  

 

To create an encompassing architecture for the KGrid Library, accounting for all of its 

technical components, we analyzed the system architectures of several other existing digital 

library platforms with Application Programming Interfaces (APIs) and we screened a number of 

other related, open source technologies. Here, a technical component is a single entity in a larger 

system architecture, or platform, that can be implemented independently by various technical 

means. The following two paragraphs highlight some of the systems and technologies that we 

studied.  

 

The Fedora repository project brings a fundamental component to the KGrid Library’s 

system architecture78. Fedora, version 4.x, is open source middleware for digital repositories that 

combines native Resource Description Framework (RDF) linked data platform capabilities with 

a scalable capacity for binary file storage79. The Fedora repository middleware can scale up to 

store millions of digital holdings with their RDF descriptions. Two existing digital library 

platforms built on the Fedora repository were also studied: Islandora and Hydra, which is now 

called Samvera80–82. In addition to these, we studied the OpenICPSR platform for organizing and 

curating scientific data sets, which is a Fedora-based research data set repository built using the 

proprietary Archonnex Architecture83,84.  

 

The California Digital Library provides a needed technical service to the KGrid Library 

called EZID. EZID is used to create and manage long-term globally unique identifiers (IDs) for 

digital objects85. EZID mints Archival Resource Keys (ARKs86) that are used by the KGrid 

Library to solve the problem of uniquely identifying Knowledge Objects with universal 

identifiers. ARKs support finding these objects in a universal way, regardless of the KGrid 

Library instance in which they are held.  

 

During KGrid Library development, we routinely tested and improved the capabilities of 

the KGrid Library to store and manage actual Knowledge Objects. For this work, KGrid Library 

holdings consisted of dozens of digital Knowledge Objects that we built using KORO as a 
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formal specification. Through three major development cycles to date, the KGrid Library 

component has been extended and improved, resulting in a mature prototype. 

 

The KGrid Library prototypes were designed and developed with input and support from 

University of Michigan faculty Charles P. Friedman, Carl Lagoze, Zach Landis-Lewis, Tim 

Pletcher, and Douglas Van Houweling. For the KGrid Library platform, the work (a) to design 

the front-end “look and feel”, (b) to define initial KGrid Library requirements, and (c) to 

determine what will be the “technology stack” for the KGrid Library is primarily that of Flynn 

and Boisvert, working in conjunction with Rampton87. The work to develop the software to make 

the KGrid Library capable of meeting its requirements is primarily that of Bahulekar, Boisvert, 

Gittlen, and Meng87. 

 

Methods for KGrid Activator design and development  

 

To create an encompassing architecture for the KGrid Activator, one that delineates a set 

of necessary technical components and is extensible, we analyzed various cloud computing 

architectures developed in the context of health information systems45,46,88. In addition, we also 

studied the differences between a Remote Procedure Call (RPC), Remote Method Invocation 

(RMI), and the network-based RESTful architectural pattern for a stateless, scalable, generic 

networked interface with standard HTTP semantics (i.e., GET, PUT, POST, etc.)89.  

 

The KGrid Activator is an independent component built with the Spring Framework for 

Java90. Using the Java Development Kit, Spring’s Web module, and Maven for Java software for 

“build automation”, we developed the KGrid Activator by combining a series of interdependent 

Java classes and object instances to bring about Knowledge Object based services. To 

demonstrate the feasibility of the KGrid Activator, we have successfully deployed it on the 

Google Cloud and Amazon Web Services platforms.  

 

The KGrid Activator is a stand-alone technical component of the Knowledge Grid that 

has been developed to work in conjunction with the KGrid Library. Via the KGrid Library’s own 

application programming interfaces (APIs), the KGrid Library receives requests from the KGrid 
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Activator for individual Knowledge Objects. Upon request, the KGrid Library then serializes 

Knowledge Objects in JavaScript Object Notation (JSON)91, making them easier to transfer, and 

delivers them to the KGrid Activator. The KGrid Activator then uses the Knowledge Objects it 

receives to enable knowledge services based on the payloads in those objects. 

 

To increase interoperability, Friedman initially specified that the KGrid Activator should 

operate as an independent component in the Knowledge Grid. This requirement led the 

development team to explore how to use APIs effectively to engender the knowledge services 

and advice-giving services that shuttle and apply the payloads of Knowledge Objects within the 

Knowledge Grid (Figure 3.4).  

 

During KGrid Activator development, we routinely tested and improved the capabilities 

of the KGrid Activator to provide RESTful knowledge services using the actual payloads of 

Knowledge Objects. For this work, a variety of Knowledge Objects were built to test various 

KGrid Activator capabilities. In particular, the following two paragraphs describe fundamental 

knowledge service capabilities of the KGrid Activator that have been rigorously tested. 

 

A capability was tested to demonstrate that the KGrid Activator can accept requests from 

external systems, reliably execute computations using Knowledge Object payloads encoded in 

Python or Javascript code, and return the results of those computations to the requesting external 

systems.  

 

Another capability was tested to demonstrate that the KGrid Activator can accept 

requests from external systems and, in response, reliably deliver to those external systems a copy 

of the payload of a Knowledge Object with which the external systems can perform their own 

computations.  

 

Through two redesign and redevelopment iterations to date, the KGrid Activator has 

advanced over a period of 18 months from its early prototype stage to its current, mature 

prototype stage.  
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The KGrid Activator was designed and developed with support from University of 

Michigan faculty members Charles P. Friedman, Carl Lagoze, Zach Landis-Lewis, Tim Pletcher, 

and Douglas Van Houweling. The work (a) to define KGrid Activator requirements, (b) to test 

and confirm that the KGrid Activator meets those requirements, and (c) to determine what will 

be the “technology stack” for the KGrid Activator is primarily that of Boisvert, working in 

conjunction with Flynn92. The work to develop the software to make the KGrid Activator 

capable of meeting its requirements is primarily that of Boisvert, Gittlen, Gross, and Meng92. 

 

RESULTS 

 

The results of the research and development work to address the six research questions 

(RQs) about the Knowledge Grid covered in this chapter are entirely descriptive in nature. This 

section describing these results is comprised of the three following subsections, which follow in 

sequential order: (1) KORO: a formalism for Knowledge Objects and their parts, (2) Overview 

of the system architecture of the KGrid Library, and (3) Overview of the system architecture of 

the KGrid Activator.  

 

KORO: a formalism for Knowledge Objects and their parts 

 

Results for the Knowledge Object Reference Ontology (KORO) begin with the 

definitions of key terms. Many of KORO’s terms come from BFO and IAO. Its terms define 

unique classes of entities (things), or they define relationships that may exist among and between 

classes of entities. All KORO definitions are given in the following Aristotelean form:  

 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠	 𝑆 = 𝑑𝑒𝑓. 𝑎	𝐺𝑒𝑛𝑢𝑠	(𝐺)	𝑡ℎ𝑎𝑡/𝑤ℎ𝑜𝑠𝑒/𝑤𝑖𝑡ℎ	𝐷𝑠, 

 

where “def.” stands for definition, and where “Ds” stands for one or more differentia that 

tells what it is about a certain Genus, in virtue of which they are also a Species59. To clarify, 

these three variables, S, G, and Ds are indicated in the first Aristotelean definition given below. 

 

To begin, BFO separates all ‘Entities’ in the world into the following two classes: 



	 151 

CONTINUANT (S) = def. an ENTITY (G) that continues or persists through time (D1) 

OCCURRANT = def. an ENTITY that occurs or happens, such as an event or process with a 
beginning and an end 

 

Further, BFO separates ‘Continuants’ into three classes, all of which KORO includes: 
GENERICALLY DEPENDENT CONTINUANT = def. a CONTINUANT that is dependent for its 
existence on other INDEPENDENT CONTINUANTS that can serve as its bearer 

INDEPENDENT CONTINUANT = def. a CONTINUANT that is the bearer of qualities such that 
qualities inhere in it 

SPECIFICALLY DEPENDENT CONTINUANT = def. a CONTINUANT that is dependent for its 
existence on one or more specific INDEPENDENT CONTINUANTS that serve as its bearer 

 

The difference between generic and specific dependence is that generic dependence 

accounts for exact copies or clones of an ‘Entity’, such that the ‘Entity’ can migrate from bearer 

to bearer as when copies of the same digital file migrate from one hard drive to another hard 

drive. In contrast, ‘Specifically Dependent Continuants’ cannot migrate in this manner. Instead, 

they depend on specific - not generic - ‘Independent Continuant’ bearers in the world for their 

existence. An example of an independent continuant that bears only specifically dependent 

qualities is a person. Unlike a digital file, a person cannot migrate intact from one material 

representation of itself to any other. In other words, people cannot exhibit generic dependence. 

 

As noted above, IAO extends BFO, starting with a key subclass of ‘Generically 

Dependent Continuant’ that is defined by this term: 
INFORMATION CONTENT ENTITY (ICE) = def. an ENTITY that is generically dependent on 
some MATERIAL ENTITY and which stands in a relation of aboutness to some ENTITY 

 

The term ‘Material Entity’, used in the definition of ICE above, is a subclass of 

‘Independent Continuant’ from BFO that is defined in this way: 
MATERIAL ENTITY = def. an ENTITY that has some portion of matter as part 

 

From IAO, KORO incorporates the term ICE (defined above), along with several terms 

for ICE subclasses, with one underlined modification: 
DATA ITEM = def. an ICE that is intended to be a truthful statement about some thing 

DIRECTIVE INFORMATION ENTITY = def. an ICE whose concretizations indicate to their 
bearer how to realize some ENTITY in a process 
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DOCUMENT = def. an ICE that is a collection of other ICEs intended to be understood together as 
a whole 

 

During our work, we learned from other experts that some definitions in IAO are 

contested and in flux. The definition for ‘Directive Information Entity’ is one of these. As a 

result, the underlined change in the IAO definition of ‘Directive Information Entity’ adopted by 

KORO removes an ambiguity. This is our attempt to clarify that members of the class ‘Directive 

Information Entity’ are procedures or instructions that can be followed and which result in some 

thing, i.e., some entity being “realized in a process”72. 

 

In addition to the terms for the classes defined above, KORO then adds a number of new 

terms. It uses them to help define a key new subclass of ‘Document’, which is the subclass 

termed ‘Knowledge Object Content Package.’ That class is comprised of instances of five other 

ICE subclasses. Its definition, and the definition of one of its most important parts, ‘Knowledge 

Object Payload’, are given next: 

 
KNOWLEDGE OBJECT CONTENT PACKAGE = def. a DOCUMENT that includes or contains, 
at a minimum: 
some knowledge object primary identifier  
some knowledge object resource metadata fact sheet  
some knowledge object service specification  
some knowledge object lifecycle log  
some knowledge object payload  

KNOWLEDGE OBJECT PAYLOAD = def. a DOCUMENT that is comprised of one or more 
KNOWLEDGE CONTENT ENTITIES that may or may not also have other ICEs as its parts 

 

This brings us to a core term in KORO, which is the term ‘Knowledge Content Entity.’ It 

is defined as follows: 
KNOWLEDGE CONTENT ENTITY = def. an ICE that is an empirical result, found to be 
meaningful to one or more person(s) or a community, such that it can be interpreted by them in ways 
that they value, and which arises from a systematic analytic and/or deliberative process of 
investigation and study of other ICEs 

 

The pragmatic definition of ‘Knowledge Content Entity’ above is informed by prior work 

of the Computer Supported Cooperative Work (CSCW) community. This prior work focuses on 

knowledge management and views knowledge as something that is situated in particular social 

and temporal context93,94. The definition of a ‘Knowledge Content Entity’ also reflects the 
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contended epistemological notion that knowledge is information that has somehow been 

upgraded95,96. Instead of defining precisely how information is upgraded to knowledge, KORO 

only stipulates the involvement of a systematic process of study. Otherwise, KORO leaves the 

precise determination of what is knowledge to people and their communities. The following 

definitions of terms for subclasses of ‘Knowledge Content Entity’ serve as examples of these 

types of entities: 
CONTENT ANALYSIS RESULT = def., a KNOWLEDGE CONTENT ENTITY that is the result of 
systematically coding and analyzing qualitative (non-numerical) ICEs 

STATISTICAL ANALYSIS RESULT = def., a KNOWLEDGE CONTENT ENTITY that is the result 
of systematically coding and analyzing quantitative (numerical) ICEs 

MODEL = def. a KNOWLEDGE CONTENT ENTITY that is comprised of a collection of two or more 
DATA ITEMS and their relationship(s) to each other 

EMPIRICAL MODEL = def. a MODEL that describes relationships, or correspondences, among 
DATA ITEMS that have been previously observed and demonstrated 

THEORETICAL MODEL = def. a MODEL that hypothesizes, based on previous observation, 
potential relationships, or possible correspondences, among DATA ITEMS that have yet to be 
observed or demonstrated 

 

By definition, then, ‘Models’ and other analytic or deliberative results are ‘Knowledge 

Content Entities.’ These ‘Knowledge Content Entities’ are parts of ‘Documents’ of the class 

‘Knowledge Object Payload.’ 

 

In addition to having as one of its parts a ‘Document’ that is a ‘Knowledge Object 

Payload’, a ‘Knowledge Object Content Package’ also has a ‘Primary Identifier’, a ‘Resource 

Metadata Fact Sheet’, a ‘Lifecycle Log’, and a ‘Knowledge Object Service Specification’ as its 

parts.  

 

Next, turning the focus to subclasses of ‘Material Entity’, KORO adopts the definitions 

of terms for an ‘Artifact’ and an ‘Information Artifact’ given by Smith and Ceusters97: 
ARTIFACT = def. a MATERIAL ENTITY that is created or modified or selected by some AGENT to 
realize a certain function or ROLE 

INFORMATION ARTIFACT = def. an ARTIFACT whose function is to bear an INFORMATION 
CARRIER 

 

KORO provides a definition for the above term ‘Agent’ (not shown) and IAO provides 

the following definition for the above term ‘Information Carrier’: 
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INFORMATION CARRIER = def. a SPECIFICALLY DEPENDENT CONTINUANT that is a QUALITY 
of an information bearer that imparts the information content 

 

By relating these many defined terms for entities, KORO formally defines a ‘Knowledge 

Object’ and ‘Knowledge Object Part Item’ in these ways: 
KNOWLEDGE OBJECT = def. an INFORMATION ARTIFACT with KNOWLEDGE OBJECT PART 
ITEMS that bears a concretization of a KNOWLEDGE OBJECT CONTENT PACKAGE 

KNOWLEDGE OBJECT PART ITEM = def. an INFORMATION ARTIFACT that is a bearer of a 
concretization of a required or optional part of a KNOWLEDGE OBJECT 

 

Although the definitions of the classes ‘Knowledge Object’ and ‘Knowledge Object Part 

Item’ above do not require it, we anticipate that most actual Knowledge Objects and Knowledge 

Object Part Items in the world will take the form of digital files. When they take a digital form, 

instances of these two subclasses of ‘Information Artifact’ better enable the rapid, widespread 

sharing, deployment, and use of computable knowledge that we intend to achieve with the 

Knowledge Grid. 

 

Having reviewed many fundamental terms and their definitions in KORO, we can now 

proceed to report the remainder of the results about KORO. What follows are results organized 

as responses to the first four research questions addressed by this chapter.  

 

RQ1. What are required and optional parts of a Knowledge Object Content 

Package, and how may those parts and their relations be represented and 

described in a logically consistent way as entities in an ontology? 

 

According to KORO, a ‘Knowledge Object Content Package’ is a ‘Document’, which is 

an ‘Information Content Entity’, which is a ‘Generically Dependent Continuant.’ Figure 3.4 

below depicts the portion of KORO’s ‘is_a’ relation hierarchy that shows this. It illustrates the 

parts of a ‘Knowledge Object Content Package’, thereby answering RQ1. 

 

In Figure 3.6, the key class, ‘Knowledge Object Content Package’, appears toward the 

center. There are five “1st Degree” parts that must be included in a ‘Document’ for it to be an 

instance of the class ‘Knowledge Object Content Package.’ Subclasses for these five “1st degree”  
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parts are marked with a red oval and connected to the ‘Knowledge Object Content Package’ 

class in Figure 3.6 by a thick black line portraying the ‘has_part’ relation. (Note: Other, optional 

subclasses for parts of an instance of ‘Knowledge Object Content Package’ are marked by 

purple-pink ovals. To avoid clutter, the ‘has_part’ relation to these optional part subclasses is not 

portrayed in Figure 3.6) 

 

In addition, because some ‘Knowledge Object Content Package’ parts have their own 

required parts, four more “2nd Degree” required parts of a ‘Knowledge Object Content Package’ 

are indicated with pink ovals. These are connected to the classes of the parts that require them by 

thin, red, curved lines. Optional parts of a ‘Knowledge Object Content Package’ include those 
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parts indicated by the purple-pink ovals. Finally, in KORO inverse relationships exist between 

the classes ‘Knowledge Content Entity’ and ‘Information Content Entity.’ These are the 

‘accounts_for’ and ‘is_accounted_for_by’ inverse relationships. They are defined in the 

following way: 

 
ACCOUNTS FOR = def. a question-answer relationship that exists between an INFORMATION 
CONTENT ENTITY and a KNOWLEDGE CONTENT ENTITY whereby some KNOWLEDGE CONTENT 
ENTITY accounts for, meaning explains, the answer to a question about the INFORMATION 
CONTENT ENTITY 

IS ACCOUNTED FOR BY = def. an answer-question relationship that exists between a 
KNOWLEDGE CONTENT ENTITY and an INFORMATION CONTENT ENTITY whereby an answer to a 
question about some INFORMATION CONTENT ENTITY is accounted for by, meaning is explained 
by, some KNOWLEDGE CONTENT ENTITY 

 

These relationships address a known issue with IAO, which is the need to refine or 

extend IAO in some manner to include the concepts of truth and/or knowledge97. In this regard, 

we assert, as part of these results, that it is not the case that all Information Content Entities are 

truth-bearing. Indeed, the ‘Directive Information Entity’ class is defined in a way that instances 

of procedures may be members of this class. Yet, according to Floridi, procedures, e.g., “lock the 

door at 4pm”, do not “qualify alethically”, meaning they cannot be correctly qualified as true or 

false98. We have been able to create early versions of KORO but we recognize that some things 

about IAO remain unsettled. 

 

RQ2. What classes, relations and constraints pertain among the whole and the 

parts of a Knowledge Object, when concretized and materialized, and how 

may they be represented and made logically consistent in an ontology? 

 

By definition, a Knowledge Object is a ‘Material Entity.’ This means that all Knowledge 

Objects have some “portion of matter.”99 A potential ontological confusion arises here. In BFO 

and IAO, there are subclasses of ‘Material Entity’ termed ‘Object’ and ‘Object Aggregate.’ Yet 

in a more recent work, two of the creators of IAO have defined ‘Artifact’ and ‘Information 

Artifact’ as subclasses of ‘Material Entity’, without making it entirely clear how these subclasses 

relate to the ‘Object’ and ‘Object Aggregate’ subclasses97. For KORO, we opted to include all 

four of these subclasses of ‘Material Entity.’ We did this because the definitions of ‘Artifact’ and 
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‘Information Artifact’ are more recent and more specific to our purposes97. As indicated above, 

this means that a ‘Knowledge Object’ is an ‘Information Artifact.’ To limit confusion about the 

two similar terms, ‘Object’ and ‘Artifact’, we reserve the term ‘Object’ in KORO for entities that 

do not bear concretizations of ‘Information Content Entities.’ 

 

To answer RQ2, it is first necessary to recount how, in BFO, ‘Generically Dependent 

Continuants’ relate to ‘Specifically Dependent Continuants.’ Further, it is also necessary to 

recount how ‘Specifically Dependent Continuants’ in turn relate to ‘Independent Continuants.’ 

Here are definitions from BFO for these relationships: 
IS CONCRETIZED AS = def. a relationship that exists between a GENERICALLY DEPENDENT 
CONTINUANT and a SPECIFICALLY DEPENDENT CONTINTUANT, in which the GENERICALLY 
DEPENDENT CONTINUANT depends on some INDEPENDENT CONTINUANT in virtue of the fact that 
the SPECIFICALLY DEPENDENT CONTINUANT also depends on that same INDEPENDENT 
CONTINUANT 

INHERES IN = def. a relation that exists between a SPECIFICALLY DEPENDENT CONTINUANT (the 
dependent) and an INDEPENDENT CONTINUANT (the bearer), in which the dependent specifically 
depends on the bearer for its existence 

 

The two relationships defined immediately above have the following two corresponding 

inverse relationships that are also defined in BFO: 
CONCRETIZES = def. a relationship that exists between a SPECIFICALLY DEPENDENT 
CONTINUANT and a GENERICALLY DEPENDENT CONTINUANT, in which the GENERICALLY 
DEPENDENT CONTINUANT depends on some INDEPENDENT CONTINUANT in virtue of the fact that 
the SPECIFICALLY DEPENDENT CONTINUANT also depends on that same INDEPEDENT 
CONTINUANT 

BEARER OF = def. a relation that exists between an INDEPENDENT CONTINUANT (the bearer) and 
a SPECIFICALLY DEPENDENT CONTINUANT (the dependent), in which the dependent specifically 
depends on the bearer for its existence 

 

At the top of Figure 3.7 below, the inverse relationships between the three subclasses of 

‘Continuant’ are illustrated. Next, toward the middle of Figure 3.7, the ‘Specifically Dependent 

Continuant’ subclass of ‘Quality’ is shown. It has a key subclass from IAO, ‘Information 

Carrier’, which is also defined above. Instances of ‘Information Carrier’ are essentially 

intermediating entities between ICEs and material ‘Information Artifacts.’  

 

As shown in Figure 3.7, through instances of ‘Information Carrier’, instances of ‘Knowledge 

Object Content Package’ are concretized and then made to inhere in instances of material  
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‘Knowledge Objects.’ Hence, all Knowledge Objects are instances of ‘Material Entity’, which in 

turn are instances of ‘Independent Continuant.’ 

 

To give further detail, the following key terms for six of KORO’s classes of ‘Independent 

Continuant’ are defined below and portrayed on the right in Figure 3.7: 
ARTIFACT AGGREGATE = def. a MATERIAL ENTITY that is made up of a collection of 
ARTIFACTS and whose parts are exactly exhausted by the ARTIFACTS that form this collection 

INFORMATION ARTIFACT AGGREGATE = def. an ARTIFACT AGGREGATE that is made up of 
a collection of INFORMATION ARTIFACTS bearing concretizations of INFORMATION CONTENT 
ENTITIES and whose parts are exactly exhausted by the INFORMATION ARTIFACTS that form this 
collection 

KNOWLEDGE OBJECT PART ITEM = def. an INFORMATION ARTIFACT that is a bearer of a 
concretization of a required or optional part of a KNOWLEDGE OBJECT 
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INFORMATION ARTIFACT MANIFESTATION = def. an INFORMATION ARTIFACT 
AGGREGATE that is comprised of all instances in reality of some particular INFORMATION 
ARTIFACT 

KNOWLEDGE OBJECT MANIFESTATION = def. an INFORMATION ARTIFACT AGGREGATE 
that is comprised of all instances in reality of a particular and uniquely identifiable KNOWLEDGE 
OBJECT 

KNOWLEDGE OBJECT PART ITEM MANIFESTATION = def. an INFORMATION ARTIFACT 
AGGREGATE that is comprised of all instances in reality of a particular part item of a KNOWELDGE 
OBJECT 

 

In addition, the following key terms for inverse relationships between ‘Information 

Artifact’ and ‘Information Artifact Aggregate’ are also portrayed in Figure 3.7: 
IS EXEMPLIFIED BY = def. a particular INFORMATION ARTIFACT MANIFESTATION is 
exemplified by a particular INFORMATION ARTIFACT when the particular INFORMATION 
ARTIFACT is one of potentially many material bearers of the same INFORMATION CONTENT 
ENTITY, and the particular INFORMATION ARTIFACT MANIFESTATION is the collection of all 
material bearers of that particular INFORMATION CONTENT ENTITY 

EXEMPLIFIES = def. a particular INFORMATION ARTIFACT EXEMPLIFIES a particular 
INFORMATION ARTIFACT MANIFESTATION when the particular INFORMATION ARTIFACT is one of 
potentially many material bearers of the same INFORMATION CONTENT ENTITY, and the particular 
INFORMATION ARTIFACT MANIFESTATION is the collection of all material bearers of that 
particular INFORMATION CONTENT ENTITY 

 

These inverse ‘Is exemplified by’ and ‘Exemplified’ relations are directly inspired by the 

Functional Requirements for Bibliographic Records (FRBR) conceptual model of the 

International Federation of Library Associations75. We find that the creators of IAO have also 

been influenced by FRBR72. The IAO definition of a ‘Textual entity’ indicates this: 
TEXTUAL ENTITY = def. a part of a manifestation (FRBR sense) that is a GENERICALLY 
DEPENDENT CONTINUANT whose concretizations are patterns of glyphs intended to be interpreted 
as words, formulas, etc. 

 

However, in contrast to the definition of the term ‘Textual Entity’ above from IAO, 

because in FRBR manifestations and items embody ‘Material Entities’, we interpret a 

manifestation otherwise to be an ‘Independent Continuant’ and not a ‘Generically Dependent 

Continuant.’ Our interpretation is reinforced by the FRBR-aligned Bibliographic Ontology 

(FaBIO), wherein the relation ‘has manifestation’ has as a sub-property ‘has embodiment’ to 

indicate that a manifestation embodies (i.e., makes tangible) some expression100. 

 

The answer to RQ2 can now be summarized. By definition, every Knowledge Object is a 

‘Material Entity’ that bears a concretization of an instance of ‘Knowledge Object Content 
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Package’, which in turn is an instance of ‘Document.’ Thus, the content of every Knowledge 

Object is constrained by the definition of ‘Knowledge Object Content Package’ above, which 

stipulates that every instance of ‘Knowledge Object Content Package’ has five required parts. 

When the defined parts of a ‘Knowledge Object Content Package’ are concretized as instances of 

‘Information Carrier’, then they must inhere in a material instance of ‘Knowledge Object Part 

Item.’ As shown in Figure 3.7, the class ‘Knowledge Object Part Item’ has 11 subclasses to 

account for this, one for each type of ‘Knowledge Object Part Item’ in KORO.  

 

As Figure 3.7 also indicates, because instances of ‘Knowledge Object’ and ‘Knowledge 

Object Part Item’ are also instances of ‘Information Artifact’, they exemplify some ‘Information 

Artifact Manifestation.’ Hence there are subclasses of ‘Information Artifact Manifestation’ 

corresponding to the class ‘Knowledge Object’, and also to the class ‘Knowledge Object Part 

Item’ and its subclasses (not shown). 

 

Finally, an example of an actual Knowledge Object, built according to an early version of 

the KORO specification, is shown on the next page in Figure 3.8. This simple example 

Knowledge Object is a concretization of a Knowledge Object Content Package document. That 

document has its five mandatory parts per KORO: Primary Identifier, Resource Metadata Fact 

Sheet, Service Specification, Payload, and Lifecycle Log. Its five parts are indicated by 

embedded section headers in Figure 3.8. These headers are not part of the Knowledge Object. 

 

The Knowledge Object in Figure 3.8 holds in its payload a computable representation of 

a guideline about how to use codeine given an individual’s phenotype for the gene CYP2D6. 

This Knowledge Object, which can be made to generate advice using the KGrid Activator, was 

built by Koki Sasagawa and George Meng in the Knowledge Grid lab in early 2018. Its payload 

is represented in software code written in the Python computer language.  
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RQ3. What questions about Knowledge Object parthood can an ontology answer 

competently in order to demonstrate its logic and potential utility? 

 

When given an instance of an arbitrary entity, described in the form of Web Ontology 

Language (OWL) axioms, KORO supports automated reasoning to infer things about the 

makeup and parts of the arbitrary entity. By so doing, it enables effective, automated answering 

of three competency questions, CQ1, CQ2, and CQ3. The results of KORO’s performance in this 

regard are organized by competency question and given in the following text: 

 

CQ1. According to its parts, is a given instance of an arbitrary entity a Knowledge 

Object? (Answer: Yes or No)  

 

To answer CQ1, KORO provides sufficient logic to the Pellet reasoner to infer from 

axioms specifying the parts that an arbitrary entity has, whether or not the arbitrary entity is a 

member of the class ‘Knowledge Object.’  

 

KORO enables a machine to answer CQ1 in two different ways. In one way, KORO 

supports reasoning over axioms that indicate an entity has parts that are instances of ‘Knowledge 

Object Part Item’ to determine whether or not those instances include all five required parts 

comprising a ‘Knowledge Object.’ In another way, KORO supports reasoning over axioms that 

indicate an entity has parts that are instances of a ‘Knowledge Object Content Package’ to 

determine whether or not those instances include all five required parts comprising a 

‘Knowledge Object Content Package.’ In the latter case, KORO supports further reasoning to 

correctly infer that a ‘Knowledge Object’ entity exists when it is asserted that an arbitrary entity 

is a bearer of a concretization of an instance of ‘Knowledge Object Content Package.’ 

 

CQ2. If an arbitrary entity IS an instance of Knowledge Object, what Knowledge 

Object part items does it have?  

 

To answer CQ2, KORO provides sufficient logic to infer an arbitrary entity has parts that 

are instances of ‘Knowledge Object Part Item’ and to identify precisely what particular types of 
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‘Knowledge Object Part Item’ the arbitrary entity has. To do this, KORO takes advantage of the 

logic of the inverse relations ‘has part’ and ‘is part of.’ 

 

CQ3. If an arbitrary object instance IS NOT an instance of Knowledge Object, does it 

partially fulfill the requirements of Knowledge Object, and, if so, what specific 

Knowledge Object Part Items does it have?  

 

Building on the logic used to answer CQ1 and CQ2, KORO includes a class ‘Information 

Artifact with Knowledge Object Part Item’ to enable automated reasoning that results in answers 

to CQ3. Using this class, KORO provides sufficient logic to infer from axioms that assert an 

arbitrary entity has parts that are instances of ‘Knowledge Object Part Item’ whether or not that 

entity is an instance of ‘Knowledge Object.’ When, an entity having instances of ‘Knowledge 

Object Part Item’ is determined NOT TO BE an instance of ‘Knowledge Object’, then KORO 

enables inferences about the part items it does have. This reasoning supports automated 

determination of the parts of a Knowledge Object the entity is missing by comparison to a 

predefined list of all required ‘Knowledge Object Part Items.’ 

 

RQ4. What are necessary implementation decisions that have to be made to 

successfully implement a Knowledge Object that bears a concretization of 

computable knowledge within its required instance of a ‘Knowledge Object 

Payload Item’ part? 

 

To help answer RQ4, we have built a simple working example of an instance of 

‘Knowledge Object.’ It is referred to from here on as KO1. KO1 has, as one of its necessary 

parts, an instance of ‘Knowledge Object Payload Part Item.’ It is referred to as payload-of-KO1. 

Payload-of-KO1 bears a concretization of a very simple mathematical model, which is an 

example based on a previously published lung cancer risk statistical predictive model101.  

 

For this simple example, required Knowledge Object parts for KO1 are listed in Table 

3.1, column 1. Corresponding examples of the information content constituting the parts of KO1 

are listed in Table 3.1, column 2.  
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Creators of Knowledge Objects have innumerable options for formatting the information 

content stored in their KOs. For the ‘Information Content Entity’ parts making up a KO, three 

common implementation questions pertain: 

 

1. What will be the information model or ontology used to represent the content contained 

in each KO part? 

 

2. How will the information in each KO part be serialized so that it can be managed as a 

resource in an instance of the KGrid Library component87? 

 

3. How will the information in each KO part be serialized for use as a service-enabler by the 

KGrid Activator component92, which allows its users to quickly stand up KO-based 

automated knowledge services as webservices? 

 

Table 3.1 Implementation Decisions Made for KO1 as an Example Knowledge Object 

REQUIRED 
PART 

EXAMPLE 
CONTENTS 

INFORMATION 
MODEL 

LIBRARY 
SERIALIZATION 

for use as a 
RESOURCE 

ACTIVATOR 
SERIALIZATION 

to enable a 
SERVICE 

Knowledge Object KO1’s 
Primary Identifier Item ark:/99999/fk4jh3tk9s Archival  

Resource Key86,102 As RDF✝ triple As JSON◆ 

Payload-of-KO1 
Risk score (%) = 

V1
0.4

+V2
1.4-V3

2 Python 2.7 As binary file As JSON 

Knowledge Object KO1’s 
Resource Metadata Fact 
Sheet 

Title:  
Risk Model 

 
Description:  

Predictive Model 
 

Creator:  
A. Person 

Dublin Core 
Metadata Set103 As RDF triples As JSON 

Knowledge Object KO1’s 
Enabled Service 
Specification 

Accepts: 
V1:integer;  
V2:integer;  
V3:integer 

 
Returns  
Y:float 

Custom As RDF/XML✮ file As key-value pairs in 
JSON 

Knowledge Object KO1’s 
Lifecycle Log Created on: 1-1-2017 PROV-O Ontology104 As RDF triples  

✝RDF stands for Resource Description Framework.  
◆JSON stands for Javascript Object Notation.  
✮XML stands for eXtensible Markup Language. 
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Since three common questions pertain to each KO part, to create the five 1st degree 

required KO parts for any given KO involves answering 15 different implementation questions. 

For our simplified example of KO1, the answers to these 15 implementation questions are 

provided in the 3rd, 4th, and 5th columns of Table 3.1. 

 

The results presented in Table 3.1 thus complete the reporting of results to address RQ1 

through RQ4. Summarizing, these results establish KORO as a formal, computable ontological 

model, represented in OWL format, that defines what a Knowledge Object is and describes its 

parts and their mereology.  

 

Overview of the system architecture of the KGrid Library 

 

The results reported next address RQ5, which is: 

 

RQ5. What are a minimum set of necessary and sufficient technical components, 

which, when integrated, can bring about a stable, scalable digital library capable of storing 

Knowledge Objects, making them discoverable and shareable, facilitating their 

incorporation into various other applications, and supporting both Knowledge Object and 

digital library management? 

 

A library must provide a set of core functions105. These core functions can be organized 

into three high-level categories: (1) Storage of holdings, (2) Discovery of holdings, and (3) 

Management of both holdings and the library itself. A successful digital library adequately 

addresses all three of these core function categories. A system architecture for a conventional 

digital library platform holding computable Knowledge Objects was designed with these three 

functional categories in mind (Figure 3.9). What Figure 3.9 below portrays is the system 

architecture for the KGrid Library. 

 

What follows is a description of the KGrid Library’s current capabilities to curate 

computable Knowledge Objects. The capabilities described here have all been realized during 

the initial development phase of the software for the KGrid Library, through which the technical  
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system architecture portrayed in Figure 3.9 has been realized. All of these capabilities rely on 

established World Wide Web hosting platforms, making the KGrid Library a native online, 

network-ready conventional digital library technology. 

 

Storage. Knowledge objects held by an instance of the KGrid Library are stored in an 

instance of Fedora version 4.x using a tree structure comprised of (a) RDF Containers, (b) Binary 

Containers, and (c) the branches between them. In Fedora 4.x, RDF Containers hold each 

object’s metadata annotations and links to evidence and licenses while Binary Containers hold 

the executable software payloads of each object.  
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Digital preservation is supported by Fedora’s native fixity checking. This feature checks 

the binary files stored in Fedora 4.x to detect digital file alteration or corruption. When 

alternations or corruption are detected, Fedora 4.x can alert its users to restore or fix a binary file. 

 

It is possible to query Fedora directly through Fedora’s own Application Programming 

Interface (API). This capability supports integration of the storage sub-components that are 

included in this architecture. RDF Triples are automatically extracted from Fedora and loaded 

into a separate Fuseki “triple store”106. Fuseki is a technology that enables SPARQL queries to 

be executed on the metadata describing Knowledge Objects. An additional component, which 

also stores RDF metadata coming from Fedora, is Apache Solr107. Solr supports finding and 

discovering Knowledge Objects in the KGrid Library by automatically generating an inverse 

index from Knowledge Object annotation metadata. 

 

Discovery. Besides its integrated Storage components described immediately above, the 

KGrid Library’s system architecture includes several other software components that we have 

built to support discovery, or findability, of Knowledge Objects.  

 

The first of these is the Library Models component, which is used to validate that 

Knowledge Objects have all of their required parts according to a predefined model of 

Knowledge Objects, namely KORO. The Library Models component also applies a specific 

provenance model – the W3C PROV-O ontology104 –  to consistently author RDF statements that 

record key events in the lifecycle of Knowledge Objects.  

 

A Knowledge Object specific metadata model is used by the Library Models component 

to enable users to create, read, update, and delete Knowledge Object annotations. Fields used for 

these annotations include several Dublin Core elements103, along with links to citations of 

published scientific works, and links to Knowledge Object licenses.  

 

An external system, EZID85, is used by the Library Models component to request and 

receive unique Archival Resource Key102 (ARK) IDs for every Knowledge Object added to the 

holdings in an instance of the KGrid Library, and to register the whereabouts of each Knowledge 
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Object on an external EZID server. This enables EZID, working in conjunction with the Name-

to-Thing Resolver, to become a persistent locator service for Knowledge Objects, allowing them 

to be easily found and accessed over the World Wide Web.  

 

Another KGrid Library subcomponent that we have built is the Library Access Controls 

component. It is used to control access to the holdings stored in an instance of the KGrid Library.  

 

In addition, as subcomponents of the KGrid Library’s system architecture we have also 

built a Library Gateway component with two new APIs, one enabling external systems to do 

Knowledge Object discovery (the Discovery API) and another to let external systems import, 

export, and update Knowledge Objects (the Management API). The Library Gateway 

implements these two APIs by making them available for use by external systems.  

 

Management. In the KGrid Library system architecture (Figure 3.9), the Management 

API applies mainly to Knowledge Object management and less to overall KGrid Library 

management. The basic Knowledge Object Management capabilities supported by the 

Management API consist of mechanisms enabling external systems to (1) create/upload 

Knowledge Objects into the holdings of an instance of the KGrid Library, (2) “checkout” or 

read/download holdings from an instance of the KGrid Library, (3) edit/update Knowledge 

Objects held within an instance of the KGrid Library, and (4) delete or remove Knowledge 

Objects from the holdings in an instance of the KGrid Library.  

 

In addition, the Library Models component includes logic to govern all four of the 

mechanisms supported by the Management API listed above. This logic enables user 

configurable options for configuring access to, and editing of, Knowledge Objects held in an 

instance of the digital KGrid Library. 

 

A development instance of the KGrid Library, built according to the system architecture 

described here and portrayed in Figure 3.9, is publically available online at: 

http://kgrid.med.umich.edu/library2/. An image of the KGrid Library’s current user interface, or 

“front-end”, which has been built primary using HTML and CSS, is shown below in Figure 3.10. 
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Overview of the system architecture of the KGrid Activator 

 

The results reported next address RQ6, which is: 

 

RQ6. What constitutes a minimum set of necessary and sufficient technical 

components that, when integrated, result in stable, scalable, rapidly 

deployable, secure, traceable, activated Knowledge Objects, thereby 

enabling KGrid to provide performant and reliable on-demand knowledge 

services for health? 
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To make instances of computable knowledge active, i.e., to activate them, means to 

enable them to be accessed and applied directly via a service interaction provided by an API. The 

purpose of the KGrid Activator is to bring about such API-enabled advice-giving service 

interactions by using the payloads of Knowledge Objects. This means the Activator is a tool for 

quickly establishing performant, on-demand, online advice-giving service capabilities as part of 

the Knowledge Grid. For this reason, the answer to RQ6 is given next by describing the system 

architecture of the current KGrid Activator. 

 

Minimum Functional Requirements for the KGrid Activator. The two fundamental 

service functions of the KGrid Activator are (1) to transfer computable knowledge resources 

wholesale upon request to other systems and (2) to apply computable knowledge, as part of 

performing an automated advice-giving service, by accepting relevant instance data as input, 

combining those instance data with computable knowledge, performing an execution step, and 

returning a computed result as new advice to inform an unmade decision. The KGrid Activator 

can perform both of these fundamental functions.  

 

In addition, in our work with the KGrid Activator we are evolving a specific model of 

computable biomedical knowledge activation. This emerging model of activation stands to help 

us further extend beyond the two fundamental KGrid Activator functions above by including a 

host of other functions we believe are minimally necessary to deploy computable biomedical 

knowledge safely, effectively, and efficiently to generate advice for improving health. These 

other activation-related functions include, but are not limited to, access control, Knowledge 

Object fixity checking, activation policy setting, activation policy enforcement, and Knowledge 

Object utilization logging.  

 

A system architecture for the KGrid Activator, which is capable of activating the 

payloads of Knowledge Objects, has been designed with these functions, in mind (Figure 3.11). 

 

Payload Agnostic Activator Functions.  The KGrid Activator provides access controls 

for all users. It also provides several functions for “Knowledge Management Administrators.” 

These functions are general knowledge management functions that apply in the same way to all 
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Knowledge Objects. Hence, these functions are payload agnostic. These payload agnostic KGrid 

Activator functions are provided via the four APIs depicted to the left of the vertical dashed 

orange line in Figure 3.11 below. 

 

The KGrid Activator’s “Shelf API” enables users to load and unload Knowledge Objects 

into and out of an instance of the KGrid Activator, respectively. The KGrid Activator maintains 

a persistent shelf for storing Knowledge Objects with which it interacts. The KGrid Activator 

shelf is currently implemented very simply as a dedicated file folder. The Shelf API allows 

KGrid Activator users to inspect the Knowledge Objects currently loaded on an instance of the 

KGrid Activator by reporting the contents of its shelf to a user upon request. 

 

The KGrid Activator’s “Policy API” enables users to set, edit, remove, and apply policies 

that either govern aspects loading Knowledge Objects onto a shelf or serve to control the 

services that are provided via the KGrid Activator. For example, the Policy API can be used to 

set and then enforce a rule that only Knowledge Objects from certain, predefined and trusted 

sources can be loaded and used by a particular instance of the KGrid Activator. 

 

The KGrid Activator’s “Logging API” provides users with a mechanism to collect data 

about automated knowledge service utilization. If logging is turned on within the KGrid 

Activator, a new data stream is implemented and produced. As a result, log data are created and 

stored outside of the KGrid Activator in a separate data store. From there these log data can be 

analyzed and studied to improve performance of the KGrid Activator, or for other reasons.  

 

The KGrid Activator’s “Adapter API” makes the KGrid Activator extensible with regard 

to its ability to execute source code in various languages. Here, an “Adapter” is a software plug-

in that enables the KGrid Activator to participate effectively in desired knowledge and advice-

giving service interactions to fulfill its two fundamental functions outlined above. To date, 

several “Local Execute” Adapters have been written enabling the KGrid Activator to execute 

source code written in Python, Java, Javascript, and R. 
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More specifically, the Adapter API allows users to plug one or more Adapters in to a 

deployed instance of the KGrid Activator. Four specific types of Adapters are shown in Figure 

3.8. The simplest type is the “Share Payload Adapter”. It sends the payload of a Knowledge 

Object out to an external system upon request. In contrast, “Local Execute Adapters” are 

software language-specific ones that, when they are plugged-in, enable the KGrid Activator to 

execute Python, JavaScript, and other types of software code found in Knowledge Object 

payloads. In a similar way, “Proxy Execute Adapters” are a type of Adapter capable of engaging 

external services to execute source code written in various software languages. Finally, within 

the system architecture of the KGrid Activator, “Workflow Adapters” provide a mechanism to 

orchestrate execution of the multiple Knowledge Object payloads in repeatable ways. 
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One set of functions that are not controlled by an API are the internal “Checking” 

functions of the KGrid Activator. For safety and security, the KGrid Activator has capabilities to 

check the integrity of any Knowledge Object on its shelf, using various fixity and checksum 

software routines. The KGrid Activator can also check that incoming instance data are a match 

for the specifications of any given Knowledge Object’s individual instance data. 

 

Payload Specific Activator Functions.  The KGrid Activator’s Knowledge Object 

enabled, payload-specific capabilities are made available via its “Activation API”, which is 

directly supported by a series of technical components that are depicted to the right of the dashed 

orange line in Figure 3.11.  

 

When a standard HTTP request (i.e., GET, PUT, POST, etc.) is received by the 

Activation API, that request is handled by the Knowledge Object Service Model layer of the 

system architecture (Figure 3.11). If the needed Knowledge Object is already on the KGrid 

Activator’s Shelf, and the needed Adapter to provide the requested service is already plugged 

into the KGrid Activator, then the Checking functions are performed and, if all checks are 

passed, the request for service is fulfilled.  

 

If the needed Knowledge Object is not on the Shelf, then the KGrid Activator can 

automatically initiate a search for the Knowledge Object at the KGrid Library to which it is 

connected (Three Knowledge Objects are depicted on the Shelf in Figure 3.8 but many more can 

be added.) The Activation API also provides a set of standard error responses that describe 

anticipated technical problems in ways that support troubleshooting whenever a service request 

cannot be fulfilled by the KGrid Activator. 

 

A development instance of the KGrid Activator, built according to the system 

architecture portrayed in Figure 3.11, is publically available online at: 

http://kgrid.med.umich.edu/stack2/shelf. Clicking on this link will open a browser window which 

shows the contents of the shelf for the development KGrid Activator instance serialized as 

human readable, but technically oriented, text in JSON format. 
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DISCUSSION 

 

Today, with the three core technical components of the Knowledge Grid reviewed in this 

chapter, it is possible to create Knowledge Objects, place them in a collection held by a deployed 

instance of the KGrid Library, load them onto the shelf of a deployed instance of the KGrid 

Activator, and engage their payloads as advice-giving services using common methods for  

API-enabled webservices that conform to the RESTful architectural style.89,108. 

 

A small number of approximately 70 trial Knowledge Objects have been created and 

tested thus far. Text editors have been used to develop each component of these objects in a part-

by-part manner, including their payloads, metadata, and service specifications. These first 

Knowledge Objects made it possible for others to receive and use computable knowledge 

resources through simple mechanisms of file transfer. 

 

Insight gained from what we have learned by creating Knowledge Objects part by part 

raises the possibility of fully automating the process of creating Knowledge Objects. We are 

using these insights to conduct some early experiments to create Knowledge Objects 

automatically. The results of one of these experiments is reported in Chapter 4. 

 

Currently, the KGrid Activator has the potential to augment the interoperability of 

computable biomedical knowledge held in Knowledge Objects in a variety of ways. These ways 

will be explored in depth in Chapter 4.  

 

The first real-world test of the KGrid Activator API was passed in 2017 when a Health 

Information Exchange organization109 connected an instance of the KGrid Activator to its 

existing internal information technology infrastructure and successfully engaged the KGrid 

Activator to identify predefined patterns in its electronic prescription data. The results of this 

first test have not yet been published. 

 

Meanwhile, a body of future work is planned for the Knowledge Grid. The KGrid Library 

software is currently being upgraded so that Knowledge Objects can be organized into 
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collections within the KGrid Library. In addition, this software is being prepared to support the 

first deployment of a production instance of the KGrid Library. Studies of initial user responses 

to the KGrid Library are now being planned. 

 

Limitations and Next Steps 

 

The technical research and development work covered in this chapter is limited. It is 

work that has resulted in a fledgling knowledge infrastructure and certainly not a robust or 

proven one. The Knowledge Grid is formative. Time will tell if any or all of the core technical 

components of the Knowledge Grid will come into significant real-world use to support Learning 

Health Systems. Meanwhile, work presented in the following chapter tests some of the ideas 

surfaced by doing research and development work on the Knowledge Grid to see whether it has 

the potential to augment the interoperability of computable biomedical knowledge in new and 

helpful ways. 

 

CONCLUSION 

 

Early versions of three core technical components of the Knowledge Grid knowledge 

infrastructure have been designed, developed, and tested. These are Knowledge Objects, the 

KGrid Library and the KGrid Activator. When used together these core components support the 

curation of computable knowledge resources. These components also support highly 

individuated, interoperable knowledge services and advice-giving services enabled by the 

payloads embedded in Knowledge Objects.  

 

As it stands, the Knowledge Grid is a working prototype. The final chapter of this 

dissertation presents work we have completed to demonstrate that the Knowledge Grid has the 

potential to increase the interoperability of computable knowledge in a manner that also 

increases the interoperability of knowledge services and advice-giving services, ultimately 

resulting in a capability to scale up production of well-informed health advice3,110. 
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CHAPTER IV 

 

ScriptNumerate: Study of a Promising Modularized Data-to-Advice Pipeline 

 

INTRODUCTION 

 

 This final chapter describes work to achieve the ultimate specific aim of this dissertation. 

It shows, using a particular case example, how augmenting the interoperability of computable 

knowledge enables modular advice-giving services. Modular advice-giving services move us a 

step closer to the primary goal of finding better methods to produce large quantities of well-

informed advice for health. 

 

 Chapter I conceptualized messages of advice as information objects targeted at unmade 

decisions. Here we are concerned with advice, and especially with advice about human health. 

We want all such advice to be well-informed and to communicate the least possible amount of 

uncertainty.  

 

Chapter II surfaced several things that limit the interoperability of computable 

knowledge. These things are (1) a lack of modularization, (2) a lack of unique identifiers for 

instances of computable knowledge and related services, and (3) a lack of mechanisms to keep 

computable knowledge and related services up to date. 

 

Chapter III introduced the Knowledge Grid, a platform resulting from technical work to 

design and develop new means of augmenting the interoperability of computable knowledge and 

related services. The Knowledge Grid is an attempt to overcome the limits of resource and 

service modularity, identification, and upkeep that were surfaced in Chapter II. With the 

Knowledge Grid, advice-giving services can be modularized, uniquely identified and more easily 

kept up to date. 
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This chapter is the last in a trilogy of chapters that completes the principal scientific 

argument of this dissertation. That argument asserts the feasibility of building a domain-agnostic 

technical knowledge infrastructure capable of significantly augmenting the degree of 

interoperability of computable knowledge. This chapter reports a study where the interoperability 

of computable knowledge is successfully augmented in a way that facilitates the generation and 

communication of well-informed advice. 

 

Specifically, this chapter brings in the concept of a pipeline to demonstrate the utility of 

more highly interoperable computable knowledge. In computing, a pipeline is a linear sequence 

of specialized modules used to execute instructions. Pipelines are so pervasive in computing that 

the verb pipelining is used to mean setting up a step-wise organization of computer processes.  

 

One type of computing pipeline becoming more relevant in the biomedical science and 

health domains is the data analysis pipeline. A data analysis pipeline is a linear sequence of data 

transformations that convert “raw” or unprocessed data into analytic results that manifest new 

knowledge. Example biomedical data analysis pipelines include INKA1, for determining cancer 

drug targets by making inferences about enzyme activity from tumor cell samples, lumi2, for 

processing Illumina DNA microarray data to discover the functional roles of genes, and 

VirusHunter3, for identifying novel viruses from DNA sequence data. 

 

Data analysis pipelines end when new knowledge has been generated and communicated. 

However, as we have seen, after it has been communicated, computable biomedical knowledge 

can then be applied to produce advice targeted at specific health-related decisions.  

 

To show how augmenting the interoperability of computable knowledge can be useful, 

this chapter explores the addition of another important step to data analysis pipelines. That added 

step is one that produces advice from the knowledge that data analysis pipelines create. We call a 

data analysis pipeline that has been extended to produce advice in this manner a data-to-advice 

pipeline.  
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Figure 4.1 below illustrates the general case of a data-to-advice pipeline. The pipeline 

combines four processes to generate new computable knowledge and then use it to produce 

advice. We partially automated these four processes using various tools, some of which already 

existed and others that we developed. However, these four processes could be fully automated in 

a sequence of computer-executed actions. Starting on the left with a Database, the first process is 

to run a query to get a Data Set. The second process analyzes that Data Set using a method that 

produces compound digital objects to store the results as machine-interpretable (i.e., computable) 

knowledge. The third process then deploys those same objects via an Application Programming 

Interface (API) mechanism. The final process uses the API to give advice automatically. 

 

 

A key feature of the general data-to-advice pipeline portrayed in Figure 4.1 is that the 

same computable knowledge format is used to communicate knowledge resulting from analysis 

and to deploy knowledge to produce advice. Compound digital objects are used to bridge these 

two processes. Compound digital objects have a number of characteristics. They are formally 

structured digital objects designed to be used by machines. They are modular and, by definition, 

they each have a unique identifier4.  

 

This chapter shares the design and development of a new data-to-advice pipeline called 

ScriptNumerate. ScriptNumerate uses a common digital object-based format both to 

communicate the analytic results it generates and also to apply those results, which constitute 

computable biomedical knowledge (CBK), to produce advice. Specifically, ScriptNumerate 

leverages Knowledge Objects, which are compound digital objects, and the KGrid Activator 
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component of the Knowledge Grid to augment the interoperability of computable biomedical 

knowledge. In this manner, it attempts to overcome the three limitations of stand-alone advice-

giving systems surfaced in Chapter II and reiterated above. 

 

The story of designing, developing, and conducting the first experiment with the 

ScriptNumerate data-to-advice pipeline unfolds next. In the end, ScriptNumerate’s capabilities 

overcome the limitations of computable knowledge modularity, identifiability, and updateability 

that pertain to computable knowledge resources and related services in stand-alone advice-giving 

systems like MedMinify, which was discussed in Chapter II. 

 

The reader may wonder why this chapter presents ScriptNumerate as an example of 

augmenting the interoperability of computable biomedical knowledge instead of presenting an 

upgraded version of MedMinify (see Chapter 2). The reason for this is straightforward. The three 

types of computable biomedical knowledge used by MedMinify do not directly result from an 

initial or primary analytic process. Instead, the computable biomedical knowledge in MedMinify 

results from secondary analysis of the scientific literature or from looking up facts about drug 

products. In contrast, ScriptNumerate includes an embedded primary analytic process, a process 

that analyzes raw prescription data collected from the field. In the future, MedMinify could 

potentially be upgraded to have more highly interoperable CBK. For now, however, 

ScriptNumerate is a more feasible starting point to show the advantages of augmenting the 

interoperability of CBK by using a data-to-advice pipeline with an embedded analytic process. 

 

BACKGROUND 

 

Data-to-advice pipelines and interoperability 

 

Data-to-advice pipelines, like the pipeline portrayed above in Figure 4.1, augment the 

interoperability of computable knowledge, including CBK. Recall that interoperability is the 

ability for arbitrary things to function jointly5. Interoperability varies by degrees in the things 

that exhibit it. In Chapter II, a theoretical framework for assessing the degree to which two things 

exhibit interoperability was introduced. It proposed five levels of interoperability:  
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Not:   Two things cannot, under any circumstances, be made to jointly and 

suitably perform a desired set of functions 

Slightly:  Given two things, to make them jointly and suitably perform a desired set 

of functions, it requires less work to replace or entirely remake one or both 

of them than to modify and upgrade one or both of them  

Modestly:  Given two things, to make them jointly and suitably perform a desired set 

of functions, it requires about the same amount of work to replace or 

entirely remake one or both of them than to modify and upgrade one or 

both of them 

Highly: Given two things, to make them jointly and suitably perform a desired set 

of functions, it requires more work to replace or entirely remake one or 

both of them than to modify and upgrade one or both of them 

Perfectly: Two things can perform a desired set of functions suitably without any 

further work either to make it or keep it so 

 

Data-to-advice pipelines exhibit interoperability in multiple ways at each step or stage in 

the pipeline. Indeed, this step-wise interoperability is the chief characteristic of any pipeline. In 

Figure 4.1, a high degree of internal interoperability exists between the database and the query 

function, the data set and the analysis function, and the compound digital objects and the 

deployment function. Otherwise the pipeline would not function.  

 

In addition, to be successful, data-to-advice pipelines have to achieve highly 

interoperable advice-giving services. Therefore, data-to-advice pipelines use an API to expose a 

technical advice-giving service to external systems beyond the pipeline. Via an API, external 

information systems interoperate with the endpoint of the pipeline to get the advice it produces. 

 

Paepcke et al. argue in general that to augment interoperability for data, information, or 

knowledge resources, multiple approaches need to be pursued in light of known tradeoffs6. They 

recount some of these tradeoffs:  Strong standards are helpful but hard to develop, institute, and 

maintain. Families of standards offer flexibility at the price of greater variability and higher 
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support costs. External mediation between competing standards usually results in some 

information loss. Specification-based API interactions are useful, but also complex. Finally, 

mobility is facilitated by modularization and containerization of information resources. All of 

these approaches are used to augment the interoperability of CBK for ScriptNumerate. 

 

Van de Sompel and Nelson report on 15 years of interoperability efforts for World Wide 

Web-based systems7. They describe the evolution of several technical, web-centric efforts 

towards better information resource interoperability. They point out a key lesson learned, which 

is that the technical methods of HTTP’s “uniform interface” for APIs on the World Wide Web 

(i.e., GET, POST, PUT, DELETE), combined with typed hyperlinks, defined media types, and 

the Resource Description Framework (RDF), can significantly augment the interoperability of 

compound digital objects. Amongst other methods to augment the interoperability of CBK, 

ScriptNumerate leverages the architecture and methods of the World Wide Web (WWW) for its 

outward-facing advice-giving service API. 

 

Summarizing, ScriptNumerate is used to demonstrate that several limitations of stand-

alone advice-giving systems, which have been previously noted, can be overcome through the 

development of working data-to-advice pipelines. 

 

What ScriptNumerate does 

 

ScriptNumerate is portrayed conceptually in Figure 4.2 immediately below. Its purpose is 

to detect and highlight odd, strange, i.e., atypical, electronic prescriptions or e-prescriptions. 
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A key reason to detect and highlight atypical e-prescriptions is so that clinicians, particularly 

pharmacists, can be prompted to evaluate whether or not what is atypical about an e-prescription 

is warranted. Sometimes what is atypical about an e-prescription is indicative of a problem or a 

prescribing error, e.g., indicative of an e-prescription for the wrong drug. 

 

As a byproduct of the widespread adoption of Electronic Health Records (EHRs), most 

prescriptions in the U.S. are now e-prescriptions8. E-prescriptions are digital text objects 

represented using either proprietary or open data schemas. These e-prescription data schemas 

define several discrete data elements constituting the parts of an e-prescription. These parts 

include a named drug product, the active ingredients in the drug product, the quantities of those 

active ingredients, and the Sig, a Latin term for a label, which indicates the instructions for use of 

a drug product (e.g., Take 100mg every morning).  

 

The e-prescriptions used as a data source for ScriptNumerate are represented using a 

proprietary data schema of one EHR vendor. This proprietary schema represents e-prescriptions 

using the following seven discrete data elements: 

• local unique drug product identifier (e.g., “310”)   

• drug product name (e.g., acyclovir 400mg tablet) 

• generic ingredient name (e.g., acyclovir)   

• ingredient strength (e.g., 400 mg)  

• route of administration (e.g., oral) 

• dosage form (e.g., tablet)     

• Sig (e.g., take 400 mg 2 times daily) 

 

ScriptNumerate is so named because it automatically counts historical e-prescription Sigs 

to generate statistical Sig frequencies for a given drug product.  

 

The stages of the ScriptNumerate data-to-advice pipeline are described next. Starting on 

the left of Figure 4.2, as a byproduct of prescribing, e-prescription data are collected in an EHR 

database. Those data are queried to form a table of historical e-prescriptions. That tabular data 

set is analyzed, on a drug product specific basis, resulting in counts of unique Sigs by drug 
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product. These Sig counts are represented in the Python computer language. In this format, they 

constitute a simple form of CBK about historical prescribing patterns. This CBK is stored in 

numerous drug product specific Sig frequency files. These files are passive knowledge resources. 

They are not capable of responding programmatically to answer questions about their content. 

 

ScriptNumerate continues beyond this analytic endpoint by converting passive drug 

product specific Sig frequency files into active advice-giving services. It adds software code to 

these files and then exposes that code via an API. By so doing, ScriptNumerate’s API enables 

on-demand interrogation of the CBK in its drug product specific Sig frequency files. As the two 

green arrows on the right side of Figure 4.2 indicate, advice-giving services provided by 

ScriptNumerate’s API are engaged to generate advice about new e-prescriptions. This advice 

takes the form of messages indicating whether new e-prescription Sigs are common, rare, or 

unprecedented, in comparison to the Sigs of historical e-prescriptions for the same drug product. 

 

ScriptNumerate uses RxNorm 

 

RxNorm is a terminology from the National Library of Medicine9. It enables  

e-prescription data to be normalized. RxNorm assigns Concept Unique Identifiers called 

RXCUIs to drugs and drug products. The Semantic Clinical Drug (SCD) subclass of these 

identifiers pertains to this project. Every SCD in RxNorm has three terms, active ingredient + 

strength + dosage form. For example, ‘Acyclovir + 400mg + Oral Tablet’ is an RxNorm SCD 

with RXCUI 197311. RxNorm SCDs are used by ScriptNumerate to normalize locally acquired 

e-prescription data at the drug product level. 

 

SIGNIFICANCE 

 

ScriptNumerate is primarily significant because it demonstrates that a data-to-advice 

pipeline can be built which augments the interoperability of CBK enough to overcome several 

previously noted limitations.   
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ScriptNumerate is also significant in its own right because of the advice it provides about 

e-prescriptions. The advice from ScriptNumerate can help to improve medication safety. 

ScriptNumerate builds on the previously established potential for recognizing atypical  

e-prescriptions systematically10. It offers a new means to expand both the scope and the scale of 

this capability to identify atypical e-prescriptions. Adding to its significance in this regard, 

screening for atypical e-prescriptions is one of several core capabilities needed to partially 

automate e-prescription review. This automation is of interest to better support pharmacy 

practice11. 

 

RESEARCH QUESTIONS 

 

The following three research questions are addressed by the study presented in this chapter:  

 

RQ1. What are the required technical functions of a data-to-advice pipeline capable of 

computing advice about atypical e-prescription Sigs based on historical e-prescribing 

patterns? 

 

RQ2. What types of atypical e-prescription Sig advice, and how much of each type, can be 

generated by using ScriptNumerate to compare contemporary e-prescriptions for an 

elderly adult population of hospital inpatients with historical e-prescribing patterns 

arising from treatment of a similar population during the previous year?  

 

RQ3. How can ScriptNumerate aggregate computable biomedical knowledge about historical 

e-prescriptions from multiple EHR sources to form combined collections of Sig 

Frequency Knowledge Objects?  
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METHODS 

 

Use of the Knowledge Grid platform  

 

 This study of ScriptNumerate uses the Knowledge Grid (KGrid) platform to help convert 

passive CBK resources into active CBK-enabled advice-giving services. Using KGrid 

technology, a special type of compound digital objects holding CBK, called Knowledge Objects 

(KOs), are automatically created and then deployed within ScriptNumerate to engender advice-

giving services. These KOs are built in accordance with the Knowledge Object Reference 

Ontology (KORO), a formal specification that we developed which is described in Chapter III12. 

 

Once they are built automatically, ScriptNumerate’s KOs are then “activated” by loading 

them into a deployed instance of the KGrid Activator. The Activator provides the API that gives 

rise to ScriptNumerate’s advice-giving capabilities. The Activator oversees computer execution 

of the CBK held in the KOs. Thanks to the KGrid’s Activator, ScriptNumerate’s API can process 

e-prescription data and compute e-prescription-specific advice.  

 

Software development for this ScriptNumerate study 

 

To build the additional software pieces of ScriptNumerate needed to complement 

available components of the Knowledge Grid, a set of software scripts were written using PERL 

(5.18.2) and Python (2.7.10). In addition, we used Python and JavaScript (ECMAScript 5) to 

encode CBK for KOs later made serviceable by KGrid’s Activator. 

 

The first additional software script I developed and tested as part of ScriptNumerate, 

called RxCounter, converted tables of raw prescription data into drug product specific Sig 

frequency files. Using 170 lines of code in PERL, the RxCounter script processed rows of 

individual prescription data to generate drug product specific SIG frequency files with like-

indexed arrays of Sigs and Sig counts in Python code. Here is a relevant snippet from one of 

those files showing the Sigs and Sig counts in two corresponding Python arrays: 
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medicationname = ['ACYCLOVIR 400 MG TABLET'] 

Sigs = ['400 MG 2 TIMES DAILY','400 MG ONCE DAILY','400 MG 5 TIMES 

DAILY','400 MG EVERY 12 HOURS','400 MG 3 TIMES DAILY','800 MG ONCE DAILY'] 

Sigfrequencies = [123,8,3,2,4,1] 

 

The second software script I developed and tested for ScriptNumerate is called 

PayloadMaker. This script accepted drug product specific SIG frequency files as inputs and 

added additional lines of Python code to make functional Knowledge Objects suitable for use 

with Knowledge Grid platform components. A core element of this additional code are the 

conditional logic statements needed to determine whether a new prescription is common, rare, or 

unprecedented compared to the Sigs and Sig counts in each Knowledge Object: 

 

                  if found == 0:   # NEW PRESCRIPTION SIG NOT FOUND 

        answerSentence = 'RESULT: UNPRECEDENTED '  

     elif found == 1 and ratiorx > 0.05:  # THRESHOLD VALUE  

        answerSentence = 'RESULT:COMMON '  

     else: 

        answerSentence = 'RESULT:RARE '  

     

As a core part of ScriptNumerate, I developed and tested a third script in PERL, called 

the MetadataMaker, to further process drug product specific SIG frequency files and generate 

JavaScript Object Notation (JSON) metadata files for each Knowledge Object. Here is an 

example of such an JSON file: 

 

{"payload": { 

   "content": "", 

   "engineType": "Python", 

   "functionName": "rxcompare"}, 

 "metadata": 

 {"title":"197311 For ACYCLOVIR 400 MG TABLET", 

  "owner":"Michigan Medicine", 
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  "description":"One of a collection of prescription frequency knowledge 

objects with prescription data for inpatients 75 and older at UM Hospitals from 2016", 

  "contributors":"DLHS DLKS Knowledge Grid Team 2016-18", 

  "keywords":"197311 RXNORM SCD", 

  "published":false, 

  "lastModified":1515942979000, 

  "createdOn":1515942979000, 

  } 

} 

 

I wrote a fourth script comprising a core part of ScriptNumerate in Python code and 

called it the KOMaker. The KOMaker was used to combine corresponding Payload and Metadata 

files generated by the previously described scripts into working Knowledge Objects serialized in 

JSON. These Knoweldge Objects were then used by the KGrid Activator, version 0.58, to 

engender advice-giving services.  

 

Finally, I developed and tested several other script besides the core software scripts 

comprising ScriptNumerate. One of these, called EngageActivator, I used to tag large numbers of 

individual prescriptions automatically as having common, rare, or unprecedented Sigs. 

 

Data source and data characterization 

 

For this feasibility study of ScriptNumerate, after gaining IRB approval, we used two 

limited data sets each containing one year’s worth of e-prescriptions. Every e-prescription had a 

drug product associated with an RxNorm SCD code. Every e-prescription was actually placed in 

the EHR for a hospital inpatient age 75 years or older. We ran queries to extract these historical 

e-prescription data from the University of Michigan’s EHR data repository (Clarity, EpicCare, 

Epic, Verona, WI.).  

 

A sub-population of elderly adults, age 75 and older, was chosen for these experiments 

because drug dosages, and hence e-prescription Sigs, are specific to this subpopulation13. In 
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practice, comparisons of e-prescription Sigs to historical prescribing patterns stratified by 

subpopulation are required because prescribing is population-specific. 

 

The first data set included e-prescriptions from calendar year 2016 (n = 232,203). From 

these data, historical prescribing patterns, in the form of statistical Sig frequencies, were 

determined on a drug product basis for a population of elderly adults. A historical e-prescription 

prescribing pattern was generated for the 431 drug products that were prescribed at least 50 times 

for this population during 2016. This cutoff of 50 times was used as an approximate way to 

distinguish between drug products used more than once a week in 2016 and drug products used 

less than once a week in 2016. It is assumed that drug products prescribed less than once a week 

are reasonably thought of as infrequently used drug products according to this arbitrary but 

pragmatic criteria. In this analysis, e-prescriptions for drug products prescribed less than once a 

week, on average, are treated as e-prescriptions for infrequently prescribed drug products. 

 

Figure 4.3 below shows two graphs of counts, by drug product, of the number of  

e-prescriptions in the 2016 data set. A total of 1819 unique drug products are included. The  

y-axes have a log scale. The graph on the left shows the number of e-prescriptions placed for 

1388 drug products prescribed fewer than 50 times for the study population in 2016.  
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Note that 332 drug products were only prescribed once in 2016 for this population. The graph on 

the right shows the number of e-prescriptions registered for 431 commonly prescribed drug 

products. Of these, 129 drug products were prescribed between 50 and 100 times in 2016 for the 

study population, while 302 others were prescribed more than 100 times. 

 

The second e-prescription data set, spanning all of calendar year 2017, was similar to the 

first. It included e-prescriptions for the same 1819 unique drug products (n = 251,928). Using 

ScriptNumerate’s API, every e-prescription from 2017 was automatically compared to the 

historical prescribing patterns derived from the previous year’s e-prescription data. The 2017 

data were processed automatically to ascertain, for all e-prescriptions for 431 commonly 

prescribed drug products (n = 236,320), whether or not each e-prescription’s Sig was common, 

rare, or unprecedented in comparison to the Sigs for the same drug products from 2016. 

ScriptNumerate also advised in all cases when an infrequently prescribed drug product was 

prescribed in 2017 (n = 15,608). 

 

Generation and quantification of advice 

 

We used a software script to compute advice for 251,928 e-prescriptions from 2017 using 

ScriptNumerate. This batch process took 80 minutes to run on a laptop computer. We used a 

spreadsheet to quantify the number of e-prescriptions with unprecedented, rare, or common Sigs. 

Because the definition of a rare Sig is arbitrary, we chose two different thresholds to define what 

a rare Sig is. Common Sigs are also arbitrary and are defined as the obverse of rare Sigs. 

 

RESULTS 

 

To begin this section, results are given for a single drug-product to explain and clarify 

what ScriptNumerate does. The exemplar drug product used is Acyclovir 400mg Oral Tablet, an 

antiviral drug product. 
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Table 4.1 Results from Using ScriptNumerate Only for the Drug Product Acyclovir 400mg Tablet where 
the Threshold for Determining a Rare Sig is that it Appears in <=10% of Historical Sigs 
Count of 2016 
E-prescriptions 

Six Sigs used for Acyclovir 400mg Oral Tablet in 2016 
(with corresponding statistical frequencies) 

Results from comparing 190  
2017 e-prescription Sigs 

141 
 400 MG 2 TIMES DAILY (123)  400 MG ONCE DAILY (8)  
 400 MG 3 TIMES DAILY (4)  400 MG 5 TIMES DAILY (3)  
 400 MG EVERY 12 HOURS (2)  800 MG ONCE DAILY (1) 

Unprecedented Rare Common 

10 21 159 

 

As shown above in Table 4.1, 141 historical e-prescriptions for this product were placed during 

2016 with six different Sigs. The most common Sig was “400 MG 2 TIMES DAILY”, which 

was used for 123 of 141 e-prescriptions. ScriptNumerate stores these six Sigs and their 

frequencies in a drug product Sig frequency file. This file is then encoded in Python, making it 

an instance of CBK. Next, using ScriptNumerate’s API and this instance of CBK, 190  

e-prescriptions from 2017 were processed to assess their Sigs. The results show that, of these 190 

e-prescriptions, 159 had a common Sig, 21 others had a rare Sig, and 10 more had unprecedented 

Sigs, which are Sigs that do not appear at all in the list of Sigs from 2016. An example of an 

unprecedented Sig from 2017 is “200 MG 5 TIMES DAILY.” In this case, instead of prescribing 

half of a 400 mg oral tablet, there is a 200 mg tablet that could be prescribed. 
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RQ1. What are the required technical functions of a data-to-advice pipeline capable of 

computing advice about atypical e-prescription Sigs based on historical e-

prescribing patterns?  

 

Figure 4.4, immediately below, is a technical depiction of the ScriptNumerate data-to-advice 

pipeline. It portrays nine essential components required for the ScriptNumerate data-to-advice 

pipeline to function as intended. These components are described next. 

 

The first technical function required in the ScriptNumerate pipeline, illustrated in Figure 4.4 

and indicated by 1, is to run a SQL query against an EHR database resulting in a table of 

historical e-prescriptions from the EHR.  

The next required function, indicated by 2, is the rxcounter. It does what a “pivot table” 

function does by automatically generating counts, specific to each drug-product, resulting in the 

frequencies of the Sigs used in e-prescriptions for that drug product. The result of the rxcounter 

function is a series of drug product specific Sig frequency text files. 

 

The next two necessary technical functions, indicated by 3 and 4, are the payloadmaker and 

metadatamaker functions. These two functions convert Sig frequency text files into executable 

Python-encoded “payload” files and produce a corresponding structured metadata file in 

JavaScript Object Notation (JSON), respectively. Each payload is an instance of CBK that will 

become the core component of a unique Knowledge Object. Similarly, each structured metadata 

file serves as a framework to organize and describe the multiple components comprising each 

KO. 

 

The build Knowledge Object function, indicated by 5, is a pivotal ScriptNumerate function. 

It automatically unites four digital components: payloads, structured metadata files, an input 

specification, and an output specification, to form individual Sig Frequency Knowledge Objects, 

each with its own unique identifier. The compound digital Knowledge Objects created at this 

step conform to KGrid’s formal specification of what a Knowledge Object is12. 
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The next required technical function, indicated by 6, involves loading Knowledge Objects 

into the KGrid Activator. This is a matter of moving digital copies of these Knowledge Objects 

into a special folder for the Activator.  

 

The seventh technical function, indicated by 7 on the lower left of Figure 4.4, involves a 

special Knowledge Object to further enhance interoperability. This KO holds a lookup table that 

maps local medication ID codes from our EHR to corresponding RxNorm SCDs. Thus, this 

special KO acts as a code translator, enabling e-prescriptions carrying only a local medication ID 

code to be compared with appropriate Sig Frequency KOs in ScriptNumerate. 

 

The last two functions are linked. They are indicated by the green arrows and the numbers 8 

and 9 in Figure 4.4. These are the functions of ScriptNumerate’s API, which is enabled by the 

KGrid Activator. This API is a RESTful webservice using the HTTP-based WWW architecture. 

It allows external systems to send e-prescription Sigs to ScriptNumerate (8) for which 

ScriptNumerate computes and returns a message of advice about each Sig (9). 

 

Summarizing, ScriptNumerate has nine required technical functions. Of these, functions 

12345 and 7 in Figure 4.4 were developed for this study. The KGrid Activator was built 

beforehand in our lab. It directly supports functions 68 and 9. These nine functions comprise a 

working data-to-advice pipeline that computes e-prescription advice. 

 

RQ2. What types of atypical e-prescription Sig advice, and how much of each type, can 

be generated by using ScriptNumerate to compare contemporary e-prescriptions 

for an elderly adult population of hospital inpatients with historical e-prescribing 

patterns arising from treatment of a similar population during the previous year? 

 

ScriptNumerate computes four different types of advice. First, it advises whether an e-

prescription is for an infrequently used or frequently used drug product. Three more advice types 

arise when e-prescriptions are for frequently used drug products. Then ScriptNumerate advises 

whether a Sig is common, rare, or unprecedented in comparison to statistical frequencies of past 

Sigs for the same drug product prescribed for a similar population. 
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Results from our first ScriptNumerate experiment are reported in Table 4.2 below. We found 

that 15,608 (6.2%) out of 251,928 e-prescriptions placed in 2017 were placed for one of 1388 

infrequently used drug products. No determination of whether the Sigs for these e-prescriptions 

were unprecedented, rare, or common could be made. However, in these cases, advice to 

pharmacists and others could indicate when an infrequently used drug product has been 

prescribed. 

 

Table 4.2 Results from Comparing 2017 E-prescriptions Using Sig Frequencies as Historical Prescribing 
Pattern Data from 2016 

2017 e-Prescriptions 
Compared to Data from 2016 

For an Infrequently 
Used Drug Product (%) 

For one of 431 Frequently Used 
Drug Products (%) 

251,928 15,608  (6.2%) 236,320  (93.8%) 
  ¯ 

  Unprecedented Sig 
(%) 

Rare Sig defined at 
< = 5% Threshold  

Rare Sig defined at 
< = 10% Threshold  

  
14,456 
(6.1%) 

Common 
Sig (%) 

Rare  
Sig (%) 

Common 
Sig (%) 

Rare  
Sig (%) 

  180,568 
(76.4%) 

41,297 
(17.5%) 

157,422 
(66.7%) 

64,443 
(27.3%) 

 

For 431 commonly prescribed drug products, another 14,456 e-prescriptions had Sigs that 

were unprecedented. Unprecedented Sigs were Sigs not seen during the prior year for a given 

drug product. In these cases, interruptive alerts advising that a Sig is unprecedented could be 

warranted to improve e-prescription review. While not every unprecedented Sig suggests a 

problem, pharmacists are responsible for evaluating whether an e-prescription carrying an 

unprecedented Sig is warranted or whether, as sometimes happens, the prescriber has made a 

mistake. 

 

For e-prescriptions placed for the same 431 commonly prescribed drug products, two 

different thresholds were used to determine whether or not Sigs were “rare.” The first threshold 

defined rare as a Sig appearing in 5% or fewer of historical Sigs for the same drug product. At a 

5% threshold, 41,297 of 236,320 e-prescriptions Sigs were considered rare (17.5%). When the 

threshold for rare Sigs is raised to be less than or equal to 10% of historical Sigs for the same 

drug product, then 64,443 of 236,320 e-prescription Sigs were found to be rare (27.6%). While 



	 202 

interruptive alerts may not be warranted for rare Sigs, tagging e-prescriptions with advice that a 

Sig is rare could prove helpful in some cases. 

 

RQ3. How can ScriptNumerate aggregate computable biomedical knowledge about 

historical e-prescriptions from multiple EHR sources to form combined collections 

of Sig Frequency Knowledge Objects?  

 

 One of the potential benefits of using compound digital objects, like Knowledge Objects, 

to package, manage, and deploy CBK is that components of compound digital objects can be 

designed to be automatically aggregated. To address RQ3, we added an aggregation capability to 

the ScriptNumerate data-to-advice pipeline. To do this, we applied the RDF Data Cube 

vocabulary (www.w3.org/TR/vocab-data-cube/) to represent Sig frequency files as data cubes. 

This vocabulary is based on the SDMX ISO 17369 standard for statistical data exchange. It 

enables publishing of multi-dimensional statistical data using RDF triples. This addition to 

ScriptNumerate is portrayed in Figure 4.5 below. 

 

 

 On the left side of Figure 4.5, the beginnings of two ScriptNumerate pipelines are shown. 

The top pipeline starts with data from EHR database #1 and the bottom one starts with data from 

EHR database #2. However, what is illustrated moving from left to right in the middle of Figure 

4.5, starting at ,  is a third combined ScriptNumerate pipeline built up from aggregating the 

results in Sig frequency files from the top and bottom ScriptNumerate pipelines.  
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To both pipelines in Figure 4.5, a tenth technical function ( ) has been added to represent 

Sig frequency files as data cubes. The top pipeline’s data cubes are in yellow and the bottom 

pipeline’s in red. An eleventh technical function ( ) automatically combines the yellow data 

cubes with the red data cubes to form purple combined data cubes. These combined data cubes 

are aggregates of the Sig frequency data from both the top and bottom pipelines. From them, new 

payloads and metadata files can be generated, giving rise to a third collection of combined Sig 

Frequency Knowledge Objects for computing advice based on CBK from both EHRs. This 

additional capability to aggregate Sig frequency files represented using the RDF Data Cube 

vocabulary enables CBK from many sources to be combined.  

 

DISCUSSION 

 

Augmented interoperability 

 

Here is how ScriptNumerate overcomes the specific limitations noted with the 

interoperability of the CBK used by the stand-alone advice-giving system MedMinify.  

 

To augment the interoperability of CBK, first and foremost, ScriptNumerate modularizes 

instances of CBK using Knowledge Objects. Having Knowledge Objects also allows 

ScriptNumerate to modularize the advice-giving services it provides. It does this by using an 

Application Programming Interface (API) mechanism provided to it by the KGrid Activator. 

Further, because the KGrid Activator can be run in any suitable Java environment, including 

cloud environments, we also gained a high-degree of mobility for ScriptNumerate’s API. 

 

Second, ScriptNumerate assigns unique identifiers to each Knowledge Object it creates. 

These unique identifiers carry over to advice-giving services that each Knowledge Object 

enables and supports. In other words, specific services are called on by using unique identifiers 

of Knowledge Objects. 
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Third, as a data-to-advice pipeline, ScriptNumerate demonstrates how the problem of 

keeping computable biomedical knowledge updated can be overcome by formatting and 

packaging computable biomedical knowledge at its inception using compound digital objects. 

ScriptNumerate shows how Knowledge Objects, in particular, serve as a common resource to 

bridge the processes of knowledge communication and advice production effectively. 

Knowledge Objects are automatically generated to hold and communicate new analytic results 

within the ScriptNumerate pipeline. These same Knowledge Objects are then moved into the 

KGrid Activator, where its API mechanism enables them the CBK they hold to be accessed and 

executed to produce advice.  

 

Importance of data-to-advice pipelines 

 

This work is generally important because more highly interoperable CBK is needed for 

advice-giving systems to remain current as the volume, velocity and variety of CBK all increase. 

We expect large increases in these things as ‘Big Data’ analytics, machine learning, and other 

computational methods are applied to large data sets to improve health. We believe these 

increases will result, in part, from automated data analysis pipelines that are fed regularly with 

new data and rapidly compute results which manifest CBK. Here we have shown that, by 

augmenting the interoperability of CBK in multiple ways, it is possible to extend data analysis 

pipelines to form data-to-advice pipelines that are capable of both analyzing data to create CBK 

and providing advice by using the CBK they create. Such extended pipelines have the potential 

to mitigate the shortage of health advice that has motivated the work of this dissertation. 

 

Potential to replace knowledgebases with distributed compound digital object services 

 

 Now that ScriptNumerate has been shown to work, it is possible to consider future moves 

towards a novel computable knowledge infrastructure paradigm that was first envisioned by 

Kahn and Wilensky4. Whereas today, computable knowledge artifacts tend to be collected in 

knowledgebases, which are often proprietary, in the future this may not be so. The modularity of 

Knowledge Objects and KGrid Activators enable a competing knowledge infrastructure 

paradigm of distributed compound digital object services. If a digital ecosystem of uniquely 
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identifiable, readily testable, sound and incorruptible Knowledge Objects could be created using 

upgraded Knowledge Grid components, then it would be possible to break up monolithic 

knowledgebases into distributed Knowledge Object collections supporting specification-based 

advice-giving services accessed via APIs.  

 

Indeed, as uniquely identifiable entities, collections of Knowledge Objects could be made 

findable, accessible, interoperable, and reusable. Such collections could even be made readily 

deployable by encapsulating them in KGrid Activator instances to form modular and mobile 

advice-giving service kits. These are just some of the possible next steps enabled by the initial 

components of the Knowledge Grid infrastructure.  

 

The role of the API in this scenario cannot be overemphasized. Coming as it does at the 

end of a data-to-advice pipeline, an API like that made possible by the KGrid Activator is locus 

of interoperability between a data-to-advice pipeline and external systems wanting to gain 

advice. While a whole host of approaches have been used in this study to augment the 

interoperability of CBK within the context of a data-to-advice pipeline, it is the API at the end of 

the pipeline that begins to solve the problem of providing sufficient quantities of well-informed 

health advice to meet global needs.  

 

Implications for pharmacy practice 

 

Our findings from running ScriptNumerate also have important implications for 

pharmacy practice. They illustrate what could result from deployment of a data-to-advice 

pipeline for broad atypical e-prescription screening covering hundreds of drug products. In this 

year-over-year analysis, for an elderly subpopulation of inpatients, we found that 6.2% of e-

prescriptions were for infrequently used drug products. We also found that another 6.1% were 

for commonly used products but had unprecedented Sigs not seen the year before. These results 

show that ScriptNumerate can highlight atypical e-prescriptions to help pharmacists and others 

who review them for safety. Therefore, we plan to further develop and then trial ScriptNumerate 

for multiple subpopulations at one or more sites. 
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Limitations 

 

This study has a number of limitations. Perhaps its greatest limitation is that it does not 

include results from an implementation of ScriptNumerate in practice. In the future, we plan to 

integrate the Knowledge Grid Activator with EHRs and then execute a real-world trial of 

ScriptNumerate. Another limitation is technical. In its current version, ScriptNumerate requires a 

Sig contained within a simple JSON text object be the input to its API. It does not yet include 

desired data pre-processing capabilities to directly parse e-prescriptions formatted using the most 

common e-prescription data schemas. We look forward to adding these capabilities to a future 

version.  

 

CONCLUSION 

 

The work presented in this chapter demonstrates three things. First, that compound digital 

objects can be used as a common format both to communicate new computable knowledge and 

to provide advice with it. Second, that the Knowledge Grid’s initial components, particularly 

Knowledge Objects and the KGrid Activator, are sufficiently interoperable to support a data-to-

advice pipeline that takes in raw data, analyzes it to generate results manifesting new computable 

knowledge, and deploys the new computable knowledge that it manifests directly to bring about 

advice-giving services. Third, that it is feasible to build a domain-agnostic technical knowledge 

infrastructure that is modularized and readily updateable by using uniquely identifiable 

compound digital objects. Here, through teamwork, we have demonstrated how to increase the 

interoperability of computable biomedical knowledge sufficiently to potentiate the production of 

well-informed health advice. Having done so, the work of this dissertation is complete. 
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CONCLUSION 

 

I primarily examined two related things in this dissertation, advice and the 

interoperability of computable knowledge. I have demonstrated some mechanisms to increase the 

interoperability of computable knowledge and thereby facilitate advice generation. I have taken 

advantage of these mechanisms to potentiate the production of medication-related advice. 

 

At the outset, I used a systematic literature review to develop a scientific 

conceptualization of advice. Then, through a trilogy of chapters, I related work to improve the 

interoperability of computable knowledge by telling the stories of three systems, MedMinify, the 

Knowledge Grid, and ScriptNumerate. MedMinify is a stand-alone advice-giving system for 

medication adherence that could be improved by upgrading the interoperability of its computable 

biomedical knowledge. The Knowledge Grid is a prototype technical knowledge infrastructure 

for upgrading the interoperability of any computable knowledge. ScriptNumerate is a data-to-

advice pipeline for identifying atypical e-prescriptions that demonstrates the potential of the 

Knowledge Grid to increase the interoperability of computable knowledge and thereby scale up 

computerized advice generation. 

 

IMPLICATIONS FOR ADVICE STUDIES 

 

Throughout this dissertation, I have conceptualized advice as an information object 

targeted at an unmade decision. A host of scientific paradigms about advice inform this 

conceptualization. In the broad context of information and document science, I organized these 

advice paradigms into three high-level categories by relating them to human-to-human advice, 

machine-to-machine advice, and ICT-mediated advice from machines to humans.  

 

Human-to-human advice is associated with a communication paradigm, emphasizing the 

impact of advice messages on their recipients, a discourse paradigm, emphasizing linguistics and 
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analyzing advice as a speech act, and a psychological paradigm, emphasizing the social 

processes of decision-making and how advice changes those processes.  

 

Machine-to-machine advice is associated with an artificial intelligence paradigm, 

emphasizing computed advice that predicts an event, a theoretical computer science paradigm, 

emphasizing advice in the form of software code which provides a common solution to multiple 

computer systems, and a computer network paradigm, which allows machines to be loosely 

coupled and, consequently, to share advice with one another.  

 

ICT-mediated advice is associated with a dominant decision support paradigm. This 

paradigm examines the impacts of advice generated by technical advice-giving systems and 

advice-giving services on the decisions that people make after they receive it. 

 

I have built on the existing literature from advice studies to provide a new content-based 

framework for advice. This framework spans the dimension of environmental uncertainty. It 

categorizes advice into four content types:  definitive facts, probabilities for random variables, 

possible alternatives, and acknowledgments of the unknown. Using this advice content 

framework, human advisors and advice-giving system developers can identify the type of advice 

they intend to give according to its content. Then, depending on what type it is, they can take 

advantage of a variety of methods to communicate it to people. For example, if the advice 

content is a probability, then visual representations of the probability could help communicate it 

more effectively. Also, this framework helps an advisor to anticipate whether a given message of 

advice could increase or decrease uncertainty in the mind of its recipient. This is important 

because advisors have a responsibility to understand the likely impacts of the advice they give on 

their advisees. 

 

In addition, scientists can use the advice content framework to study the relationships 

between advice content type and advice effectiveness. In studies of advice psychology, especially 

those that use the Judge-Advisor System method, there is a need to broaden the content types of 

the advice studied to better understand its effects. 
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Another implication is that there are interactions between scientific advice paradigms. 

Some of these interactions are not yet fully understood. As one example, the artificial 

intelligence and network paradigms for machine-to-machine advice interact with the ICT-

mediated advice paradigm of decision support. The Knowledge Grid infrastructure enables this 

interaction. Its modular Knowledge Objects and networkable KGrid Library and KGrid Activator 

components enable machine-to-machine advice to be aggregated and combined on a computer 

network in ways that could ultimately result in richer ICT-mediated advice for people. 

 

The work on ScriptNumerate shows that, with the help of a technical infrastructure for 

increasing the interoperability of computable knowledge, data analysis pipelines can be extended 

to become data-to-advice pipelines. This is a momentous result. It anticipates a future where 

large-scale data analytic processes, resulting in profuse quantities of new general knowledge, are 

linked to large-scale advice production processes, which particularize new general knowledge to 

individual cases via advice generation. This link between analytics and advice production 

involves computable knowledge formatted in particular ways, perhaps using compound digital 

objects like Knowledge Objects. For Learning Health Systems, this result implies that new 

biomedical knowledge, so long as it is created and communicated in the digital manner of 

ScriptNumerate, can be used immediately to generate advice and guide practice as intended.   

 

IMPLICATIONS FOR COMPUTABLE KNOWLEDGE INTEROPERABILITY 

 

This work shows that computable knowledge interoperability can be increased in a 

variety of ways. We did several things to increase the interoperability of computable knowledge. 

We modularized computable knowledge using compound digital objects called Knowledge 

Objects. We also modularized two technical components for managing and deploying 

computable knowledge, the Knowledge Grid Library and the Knowledge Grid Activator 

components. In addition, we minted unique identifiers for the Knowledge Objects in the 

Knowledge Grid ecosystem. Persistent unique identifiers support interoperability by enabling 

people and systems to find, select, and access the instances of computable knowledge they wish 

to use. Finally, in ScriptNumerate, we used Knowledge Objects to bridge an analytic process to 

an advice-giving process, enabling these processes to interoperate to produce advice. 
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There are other moves that need to be made to increase computable knowledge 

interoperability further. One of these moves is to extend and enrich the metadata that are used to 

describe Knowledge Objects so that they become more discoverable. Doing so could link 

Knowledge Objects and the Knowledge Grid to existing public and private knowledge 

infrastructure platforms, like PubMed or Google Scholar respectively. 

 

Another item for future work is to improve interoperability measurement. Here I 

provided a coarse, five-level scale for measuring interoperability. This scale is based on a theory 

of work and interoperability. This theory proposes that the more work that is necessary to make 

two arbitrary things interoperate to suitably perform a desired set of functions, the less 

interoperable those two things are. Thus, there appear to be opportunities to apply models and 

measures of work to better estimate interoperability.  

 

IMPLICATIONS FOR HEALTH 

 

 This work is ultimately for improved human health. I developed MedMinify to address 

the significant health problems associated with a lack of adherence to prescribed medications for 

three common chronic diseases. The technical work to develop the Knowledge Grid makes it 

possible to return to MedMinify and potentially re-architect its computable biomedical 

knowledge components to make a more highly interoperable advice-giving service that could be 

used by many computer systems, including Electronic Health Records.  

 

 I developed ScriptNumerate, which uses Knowledge Grid components developed by 

others, to address medication safety. In practice, pharmacists look for atypical e-prescriptions 

because these e-prescriptions sometimes signal prescriber confusion or unwarranted prescribing. 

In those cases, pharmacists can intervene to protect patients. If it were deployed in practice, 

ScriptNumerate would help identify atypical e-prescriptions systematically on a widespread 

basis. This capability could cause adverse drug events to be averted. 
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 While these two medication-related advice-giving systems are potentially important, 

there are greater implications for health from this work. In part because of its modular design, the 

Knowledge Grid could evolve into an underlying infrastructure supporting an ecosystem for 

computable knowledge that makes it easier to combine different classes of computable 

knowledge for effect. It is possible that, by enabling computable biomedical knowledge, in 

particular, to be aggregated and combined, the Knowledge Grid, or something like it, will one 

day support much more comprehensive advice-giving services and advice-giving systems than 

the ones we use today.  

 

 The methods to develop ScriptNumerate, and the technology of the Knowledge Grid on 

which they are based, have the potential to be used in a wide variety of other ways. For example, 

as the analytic methods of machine learning become more established in the health domain, 

automated pipelines like ScriptNumerate can apply machine learning methods to large and 

diverse data sets and thereby set in motion new and more manageable advice-giving services 

enabled by machine learning. Indeed, what ScriptNumerate demonstrates is the possibility to 

take primary health data of many sorts, as they accrue, and analyze them automatically using any 

of a large number of analytic processes. Then, once that is done, ScriptNumerate shows how to 

add additional information to the results of those analytic processes in a manner that supports 

their direct application, as computable biomedical knowledge, to generate advice on demand.  

 

 Looking toward the future, I end this work with an observation and an assertion of my 

own beliefs. I observe that warranted and useful advice-giving systems for health are being 

developed but are not being widely adopted and used. I believe that one thing keeping advice-

giving systems from being widely adopted and used is that the scope of the computable 

biomedical knowledge supporting each system is, in and of itself, far too narrow. Therefore, I 

believe it is important to work toward greatly expanding and diversifying the scope of 

computable biomedical knowledge that is available to advice-giving systems and advice-giving 

services. By producing this dissertation, I have tried to take a small step in that direction.  
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