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ABSTRACT 

A roll-to-roll (R2R) process is a manufacturing technique involving continuous processing 

of a flexible substrate as it is transferred between rotating rolls. It integrates many additive and 

subtractive processing techniques to produce rolls of product in an efficient and cost-effective 

way due to its high production rate and mass quantity. Therefore, the R2R processes have been 

increasingly implemented in a wide range of manufacturing industries, including traditional 

paper/fabric production, plastic and metal foil manufacturing, flexible electronics, thin film 

batteries, photovoltaics, graphene films production, etc. However, the increasing complexity of 

R2R processes and high demands on product quality have heightened the needs for effective 

real-time process monitoring and fault diagnosis in R2R manufacturing systems.  

This dissertation aims at developing tools to increase system visibility without additional 

sensors, in order to enhance real-time monitoring, and fault diagnosis capability in R2R 

manufacturing systems. First, a multistage modeling method is proposed for process monitoring 

and quality estimation in R2R processes. Product-centric and process-centric variation 

propagation are introduced to characterize variation propagation throughout the system. The 

multistage model mainly focuses on the formulation of process-centric variation propagation, 

which uniquely exists in R2R processes, and the corresponding product quality measurements 

with both physical knowledge and sensor data analysis. Second, a nonlinear analytical 

redundancy method is proposed for sensor validation to ensure the accuracy of sensor 

measurements for process and quality control. Parity relations based on nonlinear observation 



 xiv 

matrix are formulated to characterize system dynamics and sensor measurements. Robust 

optimization is designed to identify the coefficient of parity relations that can tolerate a certain 

level of measurement noise and system disturbances. The effect of the change of operating 

conditions on the value of the optimal objective function – parity residuals and the optimal 

design variables – parity coefficients are evaluated with sensitivity analysis. Finally, a multiple 

model approach for anomaly detection and fault diagnosis is introduced to improve the 

diagnosability under different operating regimes. The growing structure multiple model system 

(GSMMS) is employed, which utilizes Voronoi sets to automatically partition the entire 

operating space into smaller operating regimes. The local model identification problem is revised 

by formulating it into an optimization problem based on the loss minimization framework and 

solving with the mini-batch stochastic gradient descent method instead of least squares 

algorithms. This revision to the GSMMS method expands its capability to handle the local model 

identification problems that cannot be solved with a closed-form solution. 

The effectiveness of the models and methods are determined with testbed data from an 

R2R process. The results show that those proposed models and methods are effective tools to 

understand variation propagation in R2R processes and improve estimation accuracy of product 

quality by 70%, identify the health status of sensors promptly to guarantee data accuracy for 

modeling and decision making, and reduce false alarm rate and increase detection power under 

different operating conditions. Eventually, those tools developed in this thesis contribute to 

increase the visibility of R2R manufacturing systems, improve productivity and reduce product 

rejection rate.  
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CHAPTER 1   INTRODUCTION 

1.1  Motivation 

The roll-to-roll (R2R) process is a family of manufacturing techniques involving 

continuous processing of a flexible substrate as it is transferred between rotating rolls (shown in 

Figure 1-1). It can integrate many process techniques to produce rolls of product in an efficient 

and cost-effective way due to its high production rate and mass quantity. High throughput and 

low piece cost are main reasons that more industries prefer R2R manufacturing to conventional 

manufacturing. High-throughput R2R manufacturing provides greater manufacturing economy 

of scale even though the required initial capital investments are higher than traditional 

printing/patterning systems (US Dept of Energy, 2013). Moreover, due to its flexibility of 

integrating additive or subtractive processes in a continuous manner, R2R processes have been 

widely implemented in manufacturing industries to fabricate paper, plastic, and metal foil with 

high throughput. In addition, R2R has great potential to achieve energy-efficient, low 

environmental impact, and cost-effective production in emerging industries such as flexible 

electronics, thin film batteries, solar panels, and graphene films. It is expected that the market 

value of those products will reach $44 billion in 2021 and will continue to grow significantly in 

future years (Das and Harrop, 2011). 



 2 

 

 Figure 1-1: An example of a roll-to-roll manufacturing system  

 The successful deployment of an R2R process depends on the quality of web-based 

product integration across different upstream supply lines. These web-based products are 

typically assembled laminates combining several continuous layers with discrete components 

that must be shaped, placed or printed accurately and repeatedly with tight tolerance at a high 

speed on flexible and extensible substrates (Department of Energy, 2015). Therefore, any 

process disruptions, equipment defects or sensor malfunctions can result in a considerable yield 

loss. In particular, machine or tool failures will cause defects on the product directly and 

malfunctioning sensors might provide wrong feedback for the control system and lead to plant 

state variables beyond acceptable limits. Moreover, due to the continuous characteristics of R2R 

processes, the final product quality is not only affected by the variation at a local operation step 

but also variations transferred from upstream operations. Therefore, a small quality deviation 

from an intermediate operation might be built up and eventually generate nonconforming 

products with downstream operations. Furthermore, unscheduled shutdowns and restarts in an 

R2R process usually cause a large number of defective products because the system dynamics 

during ramp up/ramp down periods significantly differs from that during its steady-state 

operation. Therefore, real-time process monitoring and early diagnosis of failures (e.g., sensor 

faults) while the system is still under its controllable region are critical to minimize adverse 
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effects of anomalies, assure product quality, and reduce/prevent productivity loss. 

In order to facilitate process and quality control, there are numerous research studies 

focusing on developing and improving sensor/inspection techniques and related control systems 

to enhance real-time monitoring capability in high-throughput R2R manufacturing systems. 

High-resolution and high-speed metrology systems have been developed for web tension and 

speed monitoring, defect detection (e.g., missing pattern or static buildup errors), surface 

roughness measurement, registration (pattern position), etc. (Subbaraman et al., 2012). The 

techniques include but are not limited to load cell sensor, non-contact optical measurements, 

laser sensing, electroluminescence imaging and light beam induced current mapping (Ulsh, 

2014). Advanced sensing and inspection techniques provide rich information for process and 

quality control. However, they are usually not applicable if misapplied to an entire system due to 

the cost, processing speed, and the difficulty of physical installation when space is 

strictly constrained. Therefore, current R2R systems are not fully observable due to the lack of 

proper cost-effective sensors and inspection systems. Limited system visibility hinders the 

assessment of intermediate product quality and increases challenges of real-time diagnosis and 

quality control. In addition, sensors/inspection systems like any other dynamic systems might 

degrade or fail after a certain time of usage (Jiang, 2011). In this case, unexpected deviations in 

sensor measurements from actual values will mislead control systems to provide wrong 

commands and result in non-conforming products. It may also cause unnecessary product waste 

or system shutdown.   

Therefore, there is a need to increase the visibility of R2R systems without additional 

sensors in order to enhance real-time monitoring, improve fault diagnosis capability, facilitate 

intermediate product quality control and eliminate wrong decisions induced by defective sensors. 
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In this thesis, several research issues will be addressed in order to improve quality and 

productivity in R2R manufacturing systems. 

1.2  Research issues 

Different from traditional discrete manufacturing systems, an R2R manufacturing system 

is a continuous process that consists of a flexible substrate with rollers and combines different 

additive/subtractive operations to complete the product functionality. Due to its continuous 

manner, an intermediate process failure will cause the shutdown of an entire production line. 

Moreover, because of high speed and tight quality tolerance, even a minor fault can lead to 

hundreds or thousands of defective products. Compared with a conventional discrete 

manufacturing system, an R2R process is more sensitive to process failures/degradation so that it 

usually has much stricter requirements for real-time fault detection and more precise control to 

ensure product quality. In the following, several research issues that bring challenges to current 

real-time monitoring and fault diagnosis in R2R processes are discussed.  

1.2.1		Visibility of R2R manufacturing systems 

The visibility of a manufacturing system is critical for both operation performance 

assessment and product quality control. In a high-speed R2R manufacturing system, the lack of 

visibility hinders corrections of machine failures or degradation, resulting in a large amount of 

non-conforming products. Current industry practice utilizes sensors, such as temperature, speed 

and tension sensors to monitor process performance and machine vision systems for quality 

inspection in R2R processes (Subbaraman et al., 2012). Moreover, in order to cross validate 

sensor/inspection measurements, additional sensors for one target variable may be added to the 

system. Nevertheless, additional high-speed sensors and high-resolution in-process inspection 
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systems increase total production cost and sometimes are not feasible due to technical constraints 

such as production system configuration or information processing time. In order to provide 

early warning for defective operations in intermediate steps and reduce non-conforming products, 

analytical methods that are independent of additional sensors should be employed to estimate 

intermediate product quality and system performance. 

Virtual sensors have been employed in many complex systems such as semiconductor 

manufacturing systems (Gill, 2011), chemical processes (Kano and Fujiwara, 2013) and building 

industries (Li et al., 2011). They can estimate operation or quality measurements when physical 

or hardware sensors are not economic, infeasible or unreliable. Therefore, virtual sensors are an 

effective solution to increase the system visibility without additional physical sensors. Instead of 

taking a direct measurement, a virtual sensor predicts the target variable by exploiting the 

relationship between inputs (other sensed data that can be easily collected) and outputs (target 

variables). Well-known algorithms for virtual sensing include filtering techniques, state 

observers or estimators, model-driven (first principle) and data-driven modeling methods (Li et 

al., 2011; Kano and Fujiwara, 2013).  

1.2.2		Complexity of process monitoring and quality control in an R2R process 

The complexity of R2R manufacturing systems increases challenges of real-time fault 

diagnosis and quality control. The first type of complexity resides in massive data from R2R 

manufacturing systems. R2R processes usually involve a large number of process parameters and 

input variables (e.g., input material properties and operation commands). Any special-cause 

variation from inconsistency in input material properties, operational error, equipment 

degradation or environmental changes can result in considerable yield loss at a high speed. In 

industry practice, control systems are implemented to regulate the process and provide proper 
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commands to manufacture products. Also, different sensors and inspection systems are installed 

to monitor operation performance and obtain measurements of critical quality characteristics 

(either dimensional or non-dimensional). In this case, different types of data at different scale 

will be generated. Big data opens the possibility for predicting machine operating conditions and 

intermediate product quality. Meanwhile, it also brings challenges of effectively and 

systematically converting those massive data into meaningful information for real-time 

monitoring and fault diagnosis in R2R manufacturing systems.  

The second complexity comes from interactions between operations and product quality. 

Since an R2R process consists of multiple operations, the final product quality is affected not 

only by the local variation induced by a current operation but also by variations transferred from 

upstream operations. A small intermediate variation will be accumulated, and might result in 

nonconforming products when being processed by downstream operations. Moreover, since an 

R2R process works on a continuous flexible substrate, workpieces/products usually are all 

connected and will affect each other during production. Therefore, it is necessary to consider 

variations that are induced by both operations and the substrate in upstream stations. 

1.2.3		Reliability of sensors and inspection systems 

In an R2R manufacturing system, sensors (e.g., tension sensor, positioning sensor) and 

inspection systems are widely implemented for web process control and quality assurance. Those 

sensors and inspection systems obtain data of key indicators of system status, operation 

performance and product quality. Based on information from sensors, control systems will send 

proper signals for production operation (e.g., adjust roller speed to maintain proper tension on a 

substrate, discard unqualified products) or trigger system shutdown when corrective maintenance 

is required. Therefore, the performance of those sensors or inspection devices plays a vital role to 
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ensure the functionality of a production system, and to prevent rejections of qualified 

products/unnecessary shutdowns.  

However, a sensor, like any dynamic systems, will fail if a failure occurs in any of its 

components such as transducer and signal processor (Jiang, 2011). Sensor degradation (e.g., 

caused by corroded contacts) or incipient (e.g., caused by deteriorated sensing elements) will 

generate inaccurate measurements from the target system (Isermann, 1984), and have a severe 

impact on automation and supervision schemes (Sherry and Mauro, 2014), possibly leading to 

system instability, loss of information fidelity, wrong decisions and disorientation of remedial 

actions (Bureau d’Enquêtes et d’Analyses pour la sécurité d, 2012).  

In R2R manufacturing systems, intensive workload for sensors/inspection systems makes 

those devices tend to degrade or fail after operating for a certain of time. For example, a tension 

sensor installed in a roller often suffers from excessive vibration because of the high rotational 

speed. Deviations in this tension sensor will mislead the control system in tension regulation, and 

may result in web breakage if too much tension builds up while wrinkles if insufficient tension is 

on the substrate. Therefore, evaluating and understanding the current performance of 

sensor/inspection systems is important to provide accurate information for control systems, 

operation performance evaluation and quality control.  

However, the dynamic behavior of an R2R manufacturing system is often highly nonlinear. 

It involves both steady state and transient state (e.g., ramp-up & ramp-down, material 

changeover), and may have quick changeovers to produce different types of products whose size 

or material may be different. In this case, an R2R manufacturing system often switches from one 

operating regime to another frequently. Different operating regimes trigger different system 

behaviors and may involve different levels of measurement noise and system disturbances. Using 
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a linear model or a simplified nonlinear model presents a challenge to describe the system 

behaviors under its entire operating range. Moreover, inconsistent model accuracy under 

different operating regimes brings challenges to differentiate between a sensor failure and 

measurement noise/system disturbances. Therefore, it is essential to explore sensor fault 

diagnosis in such complex systems. 

1.2.4		Capability of adaptive learning with new operating regimes and failures 

Due to the complexity of an R2R manufacturing system, a variety of malfunctions that are 

involved in components, process parameters and sensors under different operating regimes make 

complete reliance on human operators in dealing with those system malfunctions difficult and 

inefficient. To reduce product rejection rate and increase system availability, it is desirable to 

enable self-awareness in R2R processes, which can promptly detect any anomaly and reliably 

identify the root cause so that corrections can be taken quickly to restore the system to its normal 

operation. A great amount of efforts have been made to explore quantitative and qualitative 

models for process monitoring and fault diagnosis with model-based methods (Gao et al., 2015b) 

and data-driven methods (Gao et al., 2015a).   

Despite the progress made up to date, most conventional fault diagnosis methods only 

address situations or failures that have been occurred, or can be anticipated. Any deviations away 

from learnt nominal behaviors are considered to be anomalies so that patterns of residuals 

between models and system behaviors are recognized to identify the severity or types of faults. 

Therefore, nominal system behaviors under entire working space and all possible signatures of 

failures/degradation should be well interpreted in advance, which is a challenging task. The 

difficulty resides in the fact that residuals might differ from one operating regime to another and 

the current trained model is not sufficient to describe the entire operating range of the system 
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accurately. Moreover, it is inapplicable and time-consuming to obtain sufficient data to 

understand system dynamics and possible failures/degradations under all various operating 

regimes. Therefore, known and unknown need to be discriminated without the knowledge of 

unknown behaviors, and an efficient adaptive learning algorithm is required to update models to 

improve its diagnostic capability. 

1.3  Research objectives 

This research aims to establish theoretical foundations for real-time monitoring and fault 

diagnosis in high-speed R2R manufacturing systems, to gain a fundamental understanding of 

multistage continuous R2R process dynamics and quality variation, to increase system visibility, 

and to enable self-awareness in R2R manufacturing systems. The following fundamental 

questions will be addressed in this dissertation: 

1. How to characterize variation propagation in an R2R manufacturing system and increase the 

system visibility via virtual sensor methods so that to enable early detection of operation 

failure/degradation and improve quality control. 

2. How to validate sensors/inspection systems in nonlinear systems so that to guarantee correct 

and reliable measurements for operation performance evaluation and quality control. 

3. How to identify failures in complex R2R manufacturing systems with adaptive learning 

capability so that to handle new operating regimes and unprecedented failures efficiently. 

To address the questions above, first, the characteristics of product variation propagation – 

called twofold variation propagation in R2R manufacturing systems are investigated. A 

multistage modeling based on the idea of “Stream of Variation” is proposed to quantify the 

twofold variation propagation and estimate its associated quality measurements. The modeling 
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technique employs both physics-based analysis (e.g., web handling system dynamics) and 

regression methods (e.g., censored regression, and linear/logistic regression) using multi-sensor 

signals. The estimation results from the model can serve as virtual sensing and virtual metrology 

tools to increase the system visibility and be applied for process monitoring and error detection 

in real time.  

Second, to ensure accurate information for process monitoring and fault diagnosis, the 

measurements from sensors/inspection systems are validated. A nonlinear analytical redundancy 

method is developed to detect sensor faults in a general nonlinear system. Parity relations are 

formulated to describe system dynamics and sensor measurements and a robust optimization is 

designed to find the coefficients for the parity relations, which can tolerate the uncertainty from 

disturbance and measurements noise. The residuals generated from the parity relations (parity 

residuals) are used for sensor fault diagnosis. Post-processing sensitivity analysis is conducted to 

evaluate the effect of the change of operating regimes on parity residuals, and provide 

quantitative information of the effective operating regimes for the designed parity relations in 

sensor fault diagnosis.  

At last, a generalized growing structure multiple model system (GSMMS) is designed for 

multi-regime anomaly detection and fault diagnosis. Following the idea of “divide and conquer”, 

the multiple model approach is explored. The GSMMS method is revised to develop local 

models by formulating the model parameter identification problem into an optimization problem 

based on the loss minimization framework and solving with a gradient descent method. The 

growing self-organizing map is employed to automatically partition the operating space and to 

grow the number of local models based on input fed to the system. The proposed method is able 

to generate input-dependent residuals for anomaly detection and fault diagnosis and improve the 
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diagnostic capability.  

1.4  Outline  

The rest of this thesis is organized as follows.  

Chapter 2 illustrates the characteristics of twofold variation propagation – process-centric 

and product-centric variation in R2R manufacturing systems. The multistage modeling method is 

introduced to describe the process-centric variation propagation, which uniquely exists in R2R 

processes, and its resulting quality measurements. A web handling system is employed to 

validate the modeling method. This chapter is based on a conference paper “Roll-to-Roll 

manufacturing system modeling and analysis by stream of variation theory” by H. Shui, X. Jin, J. 

Ni, published by ASME 2016 11th International Manufacturing Science and Engineering 

Conference, and a journal paper “Twofold variation propagation modeling and analysis in R2R 

manufacturing systems”, by H. Shui, X. Jin, J. Ni, conditionally accepted by IEEE Transactions 

on Automation Science and Engineering.   

Chapter 3 focuses on sensor fault diagnosis, which aims to validate the sensor/inspection 

measurements to facilitate system performance monitoring and fault diagnosis. The analytical 

redundancy approach is extended from linear systems to general nonlinear systems. Local parity 

structures and coefficients are determined by the nonlinear observation matrix and robust 

optimization design. The generated residuals are employed for sensor fault diagnosis. A post-

processing sensitivity analysis is conducted to evaluate the effect of changing operating 

conditions on the residual generation of the proposed methods. The proposed method is validated 

with data from an R2R registration process.  

Chapter 4 introduces a multiple regime modeling approach for anomaly detection and fault 
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diagnosis. The GSMMS network is employed and revised. The operating regimes are 

automatically learnt and partitioned by the growing self-organizing map. The local model 

identification problem is formulated as an optimization problem based on the loss minimization 

framework and solved with the mini-batch stochastic gradient descent method instead of the least 

squares method. The proposed method is demonstrated with the application of multiple regime 

sensor fault diagnosis and validated with data collected from an R2R registration process. 

Chapter 5 summaries the contributions of this dissertation and proposes possible future 

works.   
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CHAPTER 2   TWOFOLD VARIATION PROPAGATION 

MODELING AND QUALITY ESTIMATION IN ROLL-TO-

ROLL MANUFACTURING SYSTEMS 

2.1  Introduction 

Roll-to-Roll (R2R) manufacturing systems with high-volume and high-speed production 

capability require reliable system performance and precise quality control. The growth of new 

technological development of R2R processes in various applications increases the challenges 

faced by manufacturers in quality control and improvement. The difficulties reside in the limited 

understanding of complex interactions among sequential operations and product quality 

variations, and the restrictions of sensors/inspection systems implementation in R2R 

manufacturing systems.  

This chapter aims to investigate a multistage modeling method for R2R processes to 

enhance the capability of quality monitoring and fault detection when in-situ sensing and 

inspection systems are limited. The challenges of achieving the objective entail two aspects: (1) 

the complexity of R2R processes and the lack of high-fidelity process model, and (2) the limited 

availability and accessibility of in-situ sensing and inspection capability. To meet these 

challenges, the variation propagation mechanism is investigated and a hybrid modeling approach 

– physics-based models and data-driven methods that complement each other – will be 
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developed to quantify the propagation phenomenon and the associated quality measures. 

In the followings, the state of the art of quantitative models in R2R processes for quality 

monitoring and fault detection purposes is presented in Section 2.2. The novelty of this research 

work is also summarized in this section. Section 2.3 characterizes the twofold variation 

propagation model in R2R processes with an extended form of the Stream-of-Variation (SoV) 

model. Section 2.4 describes how to develop a multistage model that characterizes the variation 

propagation and the product quality evolution in R2R processes. In Section 2.5, a case study is 

provided to demonstrate the model validity and effectiveness. Discussion and conclusions are 

presented in Section 2.6 and 2.7, respectively. 

2.2  Literature review 

Literature that is mostly relevant to this work includes: R2R process modeling and quality 

control, and multistage modeling. The state-of-the-art of these research areas is reviewed below. 

2.2.1		The complexity of R2R process modeling  

An R2R process involves many operational inputs and parameters (e.g., operational 

settings, material properties, environment conditions, etc.). In particular, the large variability of 

input material properties (e.g., thickness, density, modulus, etc.) could lead to process variation 

and thus nonconforming products. Machine/tool degradation can also cause defects on products 

directly. Researchers have investigated non-ideal effects such as roller oscillation, temperature 

and moisture changes on web tension experimentally ( Whitworth and Harrison, 1983; Branca et 

al., 2012) The mechanism of roll eccentricity under various roll speeds has been investigated in 

hot rolling mill (Lee et al., 2005). However, there is a lack of system-level R2R process 

modeling methods to quantify the relationship between process conditions and product quality, 
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and integrity such as printed pattern alignment, dimensional and positional accuracy.  

Moreover, an R2R process consists of multiple operation steps in a continuous manner 

with substrates that are all connected, which is different from discrete manufacturing systems. 

Therefore, in addition to the dimensional and non-dimensional variations generated at each 

operation stage, and transformed and propagated as the substrate moves to the next operation, the 

quality of substrate is also affected by the upstream disturbance (e.g., changes of tension) that 

will instantaneously travel further downstream along the substrate. Such phenomenon introduces 

an additional spatial variation propagation in R2R processes. 

 Most previous research works focus on process modeling and controller design for a target 

subsystem without considering the effect of upstream change on downstream product quality.  

The quantitative modeling methods have been underdeveloped to understand the variation 

propagation mechanism and quality evolution in R2R processes, which are critical for process 

and quality control.  

2.2.2		Limited in-situ measurement for process monitoring and quality control 

There have been growing research interests in developing and improving sensing and 

inspection techniques to provide more information for real-time quality control and improvement 

(Subbaraman et al., 2012; Ulsh, 2014). Some data-driven process monitoring and quality control 

methods have been developed to improve the performance of R2R processes (Qiang Liu et al., 

2011; Xiao et al., 2016; Dong et al., 2017). However, it is not possible to obtain measurements 

from all individual components (e.g., rollers, guides) in an R2R manufacturing system, due to the 

constraints of budget for instrumentation, data acquisition window, and space for sensor 

installation. Therefore, the performance and condition of an R2R process are usually not 

effectively observable due to the limited cost-effective sensors and in-process metrology tools 
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available in the system. The lack of visibility in the R2R process hinders the timely fault 

detection and delays the response for adjustment and recovery, which could result in hundreds of 

nonconforming products even when a small error occurs in a high-speed production. Thus, how 

to increase the system visibility by taking advantages of analytical methods without using 

additional sensors/inspection systems needs to be investigated.  

The development of virtual sensing and virtual metrology by analytical models is 

envisioned to provide a complementary tool for quality control and fault diagnosis when physical 

sensors are limited. Analytical models incorporate empirical system knowledge to estimate 

product quality during the process. However, in R2R processes, most analytical models are 

developed to characterize the web transmission behavior for controller design. For example, 

dynamic models and empirical models have been well studied for web tension regulation in 

terms of torque and velocity control (Shelton, 1986), and lateral and longitudinal web dynamics 

(Young and Reid, 1993). These studies contribute to design precise and stable tension control 

systems to prevent unexpected web damage. Mathematical models are formulated with web 

tension, mold thickness, misalignment angle and substrate bending, and quantify effects of those 

process parameters in a patterning process for positioning/locating error compensation (Hwang 

et al., 2015). Causal Bayesian networks are employed to discover the causal relationships 

between product quality and process variables in a rolling process for process control (Li and Shi, 

2007). There are few studies on quantitative modeling method to characterize quality variation 

propagation (e.g., dimensional errors) by given operational inputs and estimate the induced 

quality measurement in R2R processes.  

2.2.3		Multistage modeling in discrete manufacturing systems 

In the literature, both physical models and data-driven methods have been employed to 
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build multistage models to illustrate and analyze the interactions among stages and process 

variation propagation along sequential stages in discrete manufacturing systems. Those models 

serve as a foundation for quality analysis, root cause identification and process variation 

reduction (Shi and Zhou, 2009). Physics-based models are based on engineering knowledge and 

require comprehensive understandings of system dynamics of multiple process operations. The 

Stream of Variation (SoV) is a mainstream modeling technique that has been widely studied for 

multistage system modeling, especially for multistage modeling in rigid part assembly processes 

(Jin and Shi, 1999; Huang et al., 2007), compliant-part assembly processes (Camelio et al., 2003; 

Xie et al., 2007) and machining processes (Huang et al., 2002; Zhou et al., 2003; Djurdjanovic 

and Ni, 2003; Huang and Shi, 2004; Abellán-Nebot et al., 2013). The traditional SoV models 

utilize a stage-index state space model to describe variation propagation in discrete 

manufacturing systems.  

 

Figure 2-1: An example of a multistage manufacturing system 

Figure 2-1 describes an N-stage discrete manufacturing system, and a generic state space 

model to describe the system is shown in Eq. (2.1): 

System Equation: 𝑿* = 𝑨*𝑿*-. + 𝑩*𝑼* +𝑾* 

          Observation Equation: 𝒀* = 𝑪*𝑿* + 𝑽*                                 (2.1) 

where 𝑿*  is the state vector that represents a set of key quality characteristics of the 

product at stage 𝑘 (𝑘 = 1,… ,𝑁). N is the total number of stages. In Eq. (2.1), 𝑿* denotes the 
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dimensional errors accumulated up to operation stage k, 𝑼*  is the system input vector that 

represents process error sources, 𝒀*  is the measurement vector. 𝑾*  and 𝑽*  denote the system 

noise and the measurement noise, respectively. 𝑨* is the transform matrix that describes how 

errors that accumulated up to stage 𝑘 − 1 are transformed to stage 𝑘 while matrix 𝑩* represents 

how new errors are introduced into the intermediate product at stage k. 𝑪*  links the quality 

characteristics to the quality measurements.  

However, physics-based models are often difficult to develop due to the complexity of 

manufacturing systems. Data-driven methods, as alternatives to the physics-based models, have 

been employed to identify interactions among stages, such as factor analysis (Liu et al., 2008), 

graphical models (Zeng and Zhou, 2007) and Bayesian approaches (Djurdjanovic and Ni, 2004). 

By manipulating the system equation and observation equation into a generic model in the form 

of Eq. (2), data-driven methods estimate the transform matrix 𝜞 by making effective use of 

historical sensing data. Those methods require a large amount of reliable and representative 

sensing data and inspections instead of physical knowledge to explore the relationship between 

inputs and outputs, which is not applicable in many manufacturing environments due to its high 

cost and low speed.  

𝒀 = 𝜞𝒇 + 𝝐                                                      (2.2) 

where 𝜞 is a coefficient matrix to illustrate the relationship between process and product; 

𝒇	represents the operation error sources and 𝝐 is the random noise.  

To date, no comprehensive modeling method has been developed to take advantages of 

both physics-based models and data-driven methods to analyze the variation generation and 

propagation in continuous web handling systems.  
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2.3  Summary of contribution 

To fully realize the potential advantages of R2R processes and address these existing 

barriers, this thesis will investigate the variation propagation mechanism and the associated 

printing quality issues in the continuous R2R process. A twofold variation model describing how 

variations are introduced and transformed as the substrate goes from one operation stage to 

another (product-centric variation model), and how variation propagate instantaneously to the 

downstream substrate (process-centric variation model) will be built based on the web-and-

roller dynamics of the continuous R2R process (see Figure 2-2).  

This research work is also novel in developing a hybrid modeling approach to characterize 

the twofold variation propagation by given operational inputs, and to estimate the product quality. 

The modeling integrates physics-based models (torque equilibrium, and Hooke’s law) with data-

driven methods (e.g., censored regression, and linear/logistic regression) to address the complex 

variation propagation phenomenon. Specifically, sensor data analytics will complement the lack 

of full physical knowledge of an R2R process dynamics, while the physical knowledge will 

minimize the requirement for sensing and inspection at each stage. A multistage model based on 

the formulation of SoV will be developed to quantify the twofold variation propagation and the 

induced quality measurements for R2R processes. The estimates of the state variables (e.g., web 

tension) serve as a virtual sensor, while the outputs of the observation equations (e.g., printed 

product length or elongation) serve as a virtual metrology tool for intermediate product quality 

measurements based on system inputs (e.g., material properties and operational variables). As a 

result, the model can be a foundation for process diagnosis/prognosis, and quality control and 

improvement in R2R manufacturing systems. To the best of our knowledge, this is the first work 

that uses a SoV model to characterize the process-centric variation propagation and product 
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variability in a continuous system, whose mechanism is very different from the one in discrete 

manufacturing systems.  

 
Figure 2-2: The schematic of the twofold variation model in an R2R system 

2.4  Characterization of variation propagation in R2R manufacturing 

systems 

This section presents the model framework, illustrates the formulation of each sub-model, 

and explains how they are developed separately and then integrated for product quality 

monitoring. The product-centric variation represents both dimensional and non-dimensional 

variations that are induced by sequential operations when the substrate moves from one 

operation stage to another, while the process-centric variation describes tension variation that is 

generated by the instantaneous effects from upstream substrate tension change. The formulation 

of the SoV model is extended to characterize the twofold variation mechanisms and the quality 

estimates in R2R manufacturing systems. The details are shown as follows. 

Product-Centric Variation Model: An R2R process consists of a series of sequential 

operations to complete the product functionality. Unlike discrete manufacturing systems, there is 

no clear boundary between stages in R2R processes. Thus, to facilitate modeling, the continuous 

process is segmented into multiple stages according to the functional or dimensional features that 

rollers and operations act together to achieve. There is no rule of thumb, but it is based on the 
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requirement of the model fidelity (how much visibility the system would like to have). More 

segmentation may require more efforts of modeling and computation, while rough segmentation 

might limit the visibility of the system and prevent timely fault detection in earlier operation 

steps.  

Moreover, to facilitate an efficient way of representing the multistage modeling for an R2R 

process, the continuous substrate can also be segmented into different tension spans especially 

when there are repeated printed patterns on the substrate. Each segment of the substrate is 

denoted as a ‘pitch’, which represents the size of a printing product. Particularly, the pitch length 

can be aligned with dimensional patterns on the substrate but does not exceed the length between 

two stages. 

Product-centric variation is built upon the same product (i.e., one pitch) and is propagated 

temporally as it sequentially goes through one stage to another. Take the cold roll forming 

process of quadrate steel tube as an example (Figure 2-3), the locating error of rollers is 

introduced, transformed and propagated until the sheet metal is formed into a final shape, which 

has an adverse impact on the dimensional quality of the product (Zhang et al., 2008). By 

discretizing the continuous process into multiple stages according to the functionality of the 

operations and quality outputs of interests (Figure 2-4), the SoV model is used to describe the 

influence of roller’s locating error on the dimensional variations of the product throughout the 

process. 
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Figure 2-3: Cold roll forming process of quadrate steel tube (Zhang et al., 2008) 

 
Figure 2-4: Segmentation of the cold roll forming process (Zhang et al., 2008) 

In this research work, the SoV model is employed for the modeling of the product-centric 

variation propagation in the same way as in discrete manufacturing systems to describe 

variations on one pitch generated and propagated over a sequence of operations. The system 

equation for the product-centric variation propagation of one pitch is written as: 

𝑺*?@ = 𝑨*𝑺*-.?@ + 𝑩𝒌𝑼* +𝑾*                                           (2.3) 

where 𝑺*?@ is the state vector that represents deviation of 𝑖𝑑DE pitch in stage 𝑘 at time t = 𝑡*, and 

𝑺*-.?@  presents 𝑖𝑑DE  pitch at the previous stage 𝑘 − 1 at time 𝑡 = 𝑡*-. . 𝑼*  is the system input 

vector. 𝑨* and 𝑩* are the state and input matrices, which can be determined by mathematical 

tools (Zhou et al., 2003; Camelio et al., 2003), computer-aided engineering (Li et al., 2007; Li 

and Shi, 2007), and/or data-driven methods (Zeng and Zhou, 2007; Liu et al., 2008). Those 

methods have been proven to be effective for characterizing variation propagation in discrete 

manufacturing systems. Figure. 2-5 shows the schematic of the product-centric variation stream 
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in a three-stage R2R process. 

 
Figure 2-5: Schematic of the product-centric variation propagation in a three-stage R2R process 

Process-Centric Variation Propagation: In addition to the product-centric variation, there 

exists a unique variation propagation phenomenon in R2R processes that is defined as process-

centric variation propagation in this thesis. Process-centric variation is propagated specially at 

each fixed time, which means a change on the upstream substrate can affect the downstream 

substrate instantaneously. In this study, we only concern web tension with the process-centric 

variation propagation as it simultaneously occurs at different locations of the substrate. In 

general, the web tension is controlled by driven rollers to avoid undesirable over-stretching or 

under-stretching problems. However, web tension is sensitive to the change of roller 

performance, wrap angle, material properties, and environment conditions (e.g., temperature, 

humidity). The variation in web tension will be transformed into improper pitch length and 

thickness of the printing deposition, as well as generate wrinkles, scratches and breaks. Figure 2-

6 shows an example of improper tension from the upstream stage instantaneously affecting the 

tension on the downstream substrate and resulting in misalignment of downstream pitches. 

Figure 2-7 provides an example of the printing misalignment problem caused by excessive 

tension in the substrate. 
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Figure 2-6: An example of tension variation propagation in a registration process 

 
Figure 2-7: An example of tension variation propagation that induces misalignment 

In this research work, the web tension is assumed to be uniformly distributed on the 

substrate within one stage. The tension on two sides of a pair of rollers within one stage might be 

different. However, since the modeling focuses on the input and output quality measures from 

each stage, the tension calculation aggregates all the intermediate rollers within one stage and 

only outputs one tension for the one stage, neglecting the tension difference within the stage. 

Also, there might be multiple pitches at one stage, the web tension of those pitches is treated as 

identical (Figure 2-8). This assumption is for notational convenience. In practice, there can be 

multiple rollers at one stage, resulting in non-uniform web tension on pitches within one stage 

(e.g., three pitches in Stage 2).  
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 Figure 2-8: Segmentation of a substrate  

At time t, a state-space form of the process-centric variation propagation is written as 

follows: 

𝑻*?@(𝑡) = 𝑬*𝑻*-.?@-.(𝑡) + 𝑭*𝑹*(𝑡) + 𝒁*                (2.4)  

where 𝑻*?@(𝑡) is the state vector describing the web tension on the 𝑖𝑑OP pitch at stage	𝑘. 𝑻*?@(𝑡) is 

instantaneously affected by the web tension on (𝑖𝑑 − 1)OP pitch at the preceding stage, 𝑻*-.?@-.(𝑡). 

𝑹*(𝑡) is the input vector related to roller operations, which affects the tension 𝑻*?@(𝑡). Matrices 

𝑬* and 𝑭* denote how the upstream web tension and the current operation affect the tension at 

the current stage. The approach for determining those two matrices is detailed in Section 2.6.  

Table 2-1 illustrates how the product-centric and process-centric models work together to 

characterize the variation evolution in an R2R process (shown in Figure. 2-9). In this example, 

the process is segmented into three stages. At time 𝑡, 𝑆*?@ is calculated for the 𝑖𝑑OP pitch on the 

substrate which is transferred to downstream stages at each time 𝑡 + ∆𝑡 (∆𝑡 = 𝑡S − 𝑡. = 𝑡T − 𝑡S), 

while 𝑇*?@’s represent the web tension on different pitches that are located at all previous stages. 



 26 

 

Figure 2-9: A multistage model for an example R2R process 

Table 2-1: An example of the twofold variation propagation modeling 

 

At last, the quality measurements 𝒀* at stage 𝑘 are characterized with both 𝑺*?@ and 𝑻*?@(𝑡). 

Considering the combinatorial effects of product-centric and process-centric variations on the 

product quality, at time 𝑡, the product quality measurement at stage 𝑘 is represented as: 

𝒀* = ℎ(𝑺*?@, 𝑻*?@) + 𝑽*                                 (2.5) 

where the notation of 𝑻*?@ 𝑡  is simplified as 𝑻*?@. The function ℎ(𝑺*?@, 𝑻*?@) links product-centric 

variation and process-centric variation to the product quality measurement. The function h 

describes the mapping between the state variables and the output variables. The explicit 

expression of h can be determined by either physics-based models or data-driven methods, which 

is detailed in Section 2.5. Altogether, the system Eqs. (2.3) and (2.4), and the observation Eq. 

(2.5) form a complete multistage model for the R2R manufacturing system, where the unmolded 
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errors 𝑾*	and 𝑽*	are independent and identically distributed (i.i.d.) with 𝑁(0, 𝜎Y) and 𝑁(0, 𝜎Z), 

respectively. The measurement noise 𝒁*  is i.i.d. with 𝑁(0, 𝜎[). Lastly, 	𝜎Y, 𝜎Z  and 𝜎[  can be 

estimated from samples.  

 Table 2-2: Overview of quantitative modeling methods in multistage manufacturing systems 

 

Table 2-2 provides a summary of the existing literature relevant to the quantitative 

modeling of multistage manufacturing systems in different categories based on the type of 

systems (i.e., discrete or continuous) and the type of variation propagation mechanisms in the 

system (i.e., product-centric or process-centric). This thesis is the first work investigating the 

modeling method for both types of variation propagation in R2R processes and the influence of 

the variations on product quality characteristics. 

2.5  Multistage modeling for R2R manufacturing systems 

This section focuses on the process-centric variation propagation model (i.e., tension 

propagation) in R2R manufacturing systems. The web tension at all individual operation stages 

are modeled as the system states and their variation propagations are formulated as state-space 

form equations. The relationship between the state and measurable quality variables is described 

as observation equations.  
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The overall modeling approach is a mix of physics-based and data-driven methods (see 

Figure 2-10). For each operation stage, a physics-based model will be first investigated to 

formulate a preliminary state-space model. However, some parameters or comprehensive 

physical knowledge might not be available to describe the variation propagation and quality 

evolution from one stage to another. Therefore, data-driven methods are embedded to identify 

those unknown parameters and explore the inexplicit relationship between inputs and outputs. 

The preliminary physical models give insights to extract features for data-driven models so that 

the model can be trained effectively. For simplicity, only the model application for longitudinal 

tension variation propagation is described here. The lateral tension can be estimated using the 

same approach.  
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Figure 2-10: The framework of multistage modeling in R2R manufacturing systems 

2.5.1		Web dynamic models for roll-substrate motions  

The web dynamics of an R2R manufacturing system have been well studied primarily for 

tension control and speed regulation. In general, an R2R manufacturing system consists of 
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several critical components such as (a) material rolls, (b) driven rollers, (c) idle rollers and (d) a 

dancer as shown in Figure 2-11. A material roll is a rewinding roll or an unwinding roll that 

delivers substrate in/out of the production system. A driven roller is driven by a motor to regulate 

the roller speed, and control the tension on the substrate and its transportation speed. An idle 

roller is free from the motor and rotates due to the movement of the substrate over it. The main 

function of an idle roller is to support web transmission and guide web direction.  

To characterize the tension variation propagation, the dynamic equations of material rolls, 

driven rollers, and idle rollers that are derived from torque equilibrium analysis (Appendix I) are 

reconstructed into the form of the SoV model. The system equations that illustrate the process-

centric variation propagation in Eq. (2.4) therefore can be obtained for material rolls, driven 

rollers and idle rollers as shown in Eqs. (2.6), (2.7), and (2.8), respectively.  

 
Figure 2-11: Primary rollers in R2R manufacturing systems – (a) material roll, (b) driven roller, 

(c) idle Roller, (d) dancer 

 

Material roll: 

𝑇*?@ 𝑡 = 𝑇*-.?@-. 𝑡 + \]^_ D
`_ D

+ a
S`_ D

𝜌Y𝑤Y 𝑅*e 𝑡 − 𝑅fe 𝜔* 𝑡 − 𝜌Y𝑤Y𝑡Y𝑅*S 𝑡 𝜔*S 𝑡 +
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+ 𝑍*                                                        (2.6) 

Driven roller: 

𝑇*?@ 𝑡 = 𝑇*-.?@-. 𝑡 + .
`_

𝐽*𝜔* 𝑡 + 𝜏o* − 𝜏* 𝑡 + 𝑍*                 (2.7) 

Idle roller: 

𝑇*?@ 𝑡 = 𝑇*-.?@-. 𝑡 + .
`_

𝐽*𝜔? 𝑡 + 𝜏o* + 𝑍*                       (2.8)   

The left-hand side of each equation represents the web tension going out of the current 

stage. The right-hand side consists of the tension generated by operations at the current stage and 

the upstream tension 𝑇*-.?@-.(𝑡). This indicates that the web tension at one stage is not only 

determined by the current operation but is also instantaneously affected by the upstream 

operations, hence the SoV model is well adapted. 

2.5.2		 Censored regression model for system equation  

For some critical components in an R2R process, the system equation cannot be explicitly 

obtained from torque equilibrium analysis. Two main reasons for the difficulty in using physics-

based governing equations are as follows: (1) due to the complexity and nonlinear dynamics of 

the components, the model structures and parameters cannot be directly obtained from physical 

or engineering knowledge; (2) the dynamic behavior may change dramatically when the system 

is in its transients (e.g., material changeover, ramp-up and ramp-down). An example in R2R 

processes is the modeling of the dynamic of the dancer motion. A dancer is a critical component 

that functions as a buffer to store and release materials.  The classical design of a dancer is to use 

multiple idle rollers and a rocker arm of the dancer. Eq. (2.9) shows the governing equation for a 

dancer (Frechard et al., 2013). 

𝐽f
@pq
@Dp

= 𝑟?(𝑇S? + 𝑇S?-.) − 𝐹f𝐿f − 𝑀f𝑔(𝑠𝑖𝑛𝛼)𝐿@          (2.9) 
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where 𝐽f is the inertia of the dancer, α is the angle between dancer arm and horizontal, 𝐹f is the 

force generated by a spring, 𝐿f  is the distance between the force applied and dancer arm 

rotational axis, 𝑀f  is the mass of the dancer arm, 𝐿@  is the distance between dancer arm 

rotational axis and dancer arm gravity center, 𝑟? is the distance between 𝑖th idler and dancer arm 

rotational axis. 

However, an explicit state-space model for describing the relationship between the output 

tension from a dancer with the process variables is difficult to derive from Eq. (2.9) because 

during a transient state (e.g., material changeover), the dancer's arm moves up and down leading 

to a changing 𝑟? , which is not measurable and difficult to estimate. Therefore, a data-driven 

method is more applicable to obtain the correlation among the web tension from the upstream 

stage, the dancer operation stage and the stage after. 

In this new modeling framework, a data-driven method is employed to identify the input-

output relationship when it cannot be obtained from the physical analysis. From another 

perspective, the physical models developed in Section 2.5.1 provides a relaxation of the 

requirement of having sensors/inspection systems installed at each stage, rendering useful 

insights on feature selection for model.  

In this research, a censored regression model and forward stepwise selection method (CR-

FSS) with F-tests are employed to establish the system Eq. (2.4). Censored regression introduced 

by Tobin is originally employed for censored observations in econometric and biometric 

applications (Tobin, 1958). Censored observations are the variables that can only be observed 

under certain conditions. In this case, a traditional ordinary least square regression that provides 

a biased estimator is no longer appropriate. Web tension is modeled as a censored variable, 

which can only be observed when the substrate is stretched, otherwise, it remains zero. Therefore, 
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the system Eq. (2.4) is revised by the censored regression model as follows: 

𝑇*?@ =
𝑇*?@

∗			𝑖𝑓	𝑇*?@
∗ > 𝐿

0								𝑖𝑓	𝑇*?@
∗ ≤ 𝐿

                                             (2.10) 

where 𝑇*?@ is a real measurement (longitudinal tension) and 𝑇*?@
∗(𝑡) = 𝐸*𝑇*-.?@-.(𝑡) + 𝑭*𝑹*(𝑡) +

𝑍* is a latent variable, 𝐿 = 0. Parameters 𝐸* and 𝑭* can be obtained by the maximum likelihood 

estimation method (detailed in Appendix II).  

For those stages with unknown parameters, the system equations that are derived from 

physics-based models in Section 2.5.1 can be revised as Eq. (2.10) to obtain unknown parameters. 

For those stages with unknown model structures, the forward stepwise selection method (FSS) is 

employed to determine the dominant inputs for the system equations. FSS is a variable selection 

method that iteratively adds predictive variables among many candidates to identify critical 

variables according to F-test. The procedure of an FSS is described as follows: 

(1)  Select the operating variables (input variables) that may affect the tension variations at 

individual stages based on the engineering knowledge.  

(2) At each iteration, add one operating variable in the input vector R and form the system 

equation as Eq. (2.10) to estimate parameters 𝐸* and 𝑭*. 

(3)  Conduct an F-test to determine whether to drop or include the newly added variable.  

Take the dancer component as an example, the dancer angle 𝛼, the external force 𝐹f, the 

angular velocity and acceleration of an idle roller in the dancer 𝜔?  and 𝜔?  might affect the 

tension on the exit of the dancer. After the FSS is processed for offline modeling using historical 

data, the critical operating variables are determined. In this example, they are dancer angle 𝛼, 

angular velocity and acceleration of idle rollers in the dancer 𝜔? and 𝜔?, which will be further 
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demonstrated in the case study in Section 2.6.  

2.5.3		Physical analysis for observation equation  

The observation equations describe the relationship between the state variables and quality 

measurements. In this thesis, the deviation of key quality measurements at each operation stage 

is represented as a combinational effect of both product-centric variation and process-centric 

variation. This section discusses how the observation equation is formulated to describe the 

product quality deviation accumulated across multiple stages induced by the process-centric 

variation propagation, which exists uniquely in R2R processes.  

In an R2R process, tension anomalies directly affect the substrate dimension (i.e., 

elongation) as well as the material transportation rate. The amount of elongation of the substrate 

must be kept within an acceptable range for quality assurance. One of the most critical quality 

measures relevant to the elongation is the dimension of the pattern printed or generated on the 

substrate because it is often used as a reference for downstream operations such as printing, 

lamination, registration, and cutting. Therefore, tension needs to be well monitored and 

controlled to avoid excessive elongation and undesired pattern geometry. To demonstrate the 

physics-based modeling of observation equations, we formulate the longitudinal length of pattern 

𝐿* by using Hooke’s law 𝑇 = 𝐸𝑆𝜀 (𝜀 is the engineering strain 𝜀 = ∆�
�]
= �-�]

�]
): 

𝐿* = (�_
��
+ 1)𝐿� + 𝑉*                                         (2.11) 

where 𝐿� is the relaxed length (no tension on the substrate) and 𝐿*  is the elongated length in 

stage k (tension applied on the substrate). 𝐸 is the elastic modulus. 𝑆 is the cross-section area of 

the substrate. 𝑇* is the tension applied on the substrate in stage k and 𝑉* is the random error. Eq. 

(2.11) also represents an explicit function to describe the intertwined effect of the product-centric 
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variation propagation (𝐿� is printed by upstream operations) and process centric variation (𝑇*) 

on the resulting product quality (𝐿*). 

2.5.4		Logistic regression for observation equations  

When the physical analysis is not sufficient to construct the observation equations, data-

driven methods such as linear regression and logistic regression can be employed to correlate the 

twofold variation propagation with dimensional and non-dimensional quality measurements, 

respectively. Since the modeling procedures of linear and logistic regression are similar, this 

thesis will describe the detailed modeling for non-dimensional variations with logistic regression. 

In the R2R processes, non-dimensional variations could be caused by abnormal web tension. Too 

much tension could cause the substrate to be stretched beyond its elastic limit, leading to a 

damage. However, insufficient tension could cause slippage between the substrate and roller or 

wrinkles on the substrate, leading to defective products. Here, the prediction of non-dimensional 

defects is formulated as a classification problem with the logistic regression model.  

Without the loss of generality, the logistic regression (LG) model for multiclass 

classification is shown below. For multiple classes, the probability of a defect (e.g., wrinkle) is 

conditioning on both process-centric and product centric variations. In this case, the conditional 

probability of the observation output	Y� can be defined as follows (Bishop, 2006): 

𝑌* = 𝑜 𝑆*?@, 𝑇*?@ = ��_
� �_

k���_
� �_

k�

��_
� �_

k���_
� �_

k��
���

                      (2.12) 

The maximum likelihood estimator (MLE) for the parameters 𝐶*
(�) and 𝐷*

(�) can be derived 

as follows: 

𝐶*
� , 𝐷*

� = 𝑎𝑟𝑔	𝑚𝑎𝑥
�_

� ,�_
�

𝑌*� 𝑙𝑛 𝑝 𝑌*� = ℎ 𝑆*?@
�
, 𝑇*?@

�
, 𝐶*

� , 𝐷*
�¢

�
£
¤           (2.13) 

where h denotes the severity level of a defect (o = 1,…, O). O is the total number of 
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severity levels. 

2.6   Case study 

In this section, the proposed multistage modeling framework for R2R manufacturing 

systems is demonstrated and validated by a web handling process from a real R2R manufacturing 

system. Due to the confidentiality, all results are normalized, and data identifiers are removed. 

The simplified configuration of this process is shown in Figure 2-12. The overall function of this 

process is to deliver pre-patterned substrate and ensure accurate registration at stage 5. Therefore, 

the most critical dimensional measure is the pattern longitudinal length at the registration – stage 

5. With this case study, we illustrate how the proposed model based on the SoV theory is 

formulated for web tension estimation and pitch length prediction throughout of the five-stage 

R2R process.  

 
Figure 2-12: Testbed layout 

First, the web handling process is segmented into five stages according to their functions – 

(1) unwinding, (2) splicing, (3) dancer, (4) driven roller and (5) registration. There are two 

material rolls in the first stage – one is called running roll and the other is called back-up roll 

which is used when the running roll is used up. The main function of this stage is to pull the 

substrate from its wound roll and feed it into the production line. The second stage consists of 
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several idle rollers and a splicing device. The splicing device will be automatically engaged in 

when the main material roll expires. It cuts and tapes the leading edge of the new material roll 

with the old roll to maintain the continuous process. The third stage is a dancer consisting of 

several idle rollers and a dancer arm. An external force from an air cylinder drives the movement 

of the dancer arm. The dancer is used to accumulate substrate before the running roll is expired 

and release substrate for downstream operation during splicing to eliminate stoppage in 

production. The fourth stage is a driven roller and the last stage has several idle rollers for 

registration. At stage four, a two-dimensional (2D) machine vision system is installed to capture 

the pitch length information. A closed-loop control system is embedded to regulate the speed of 

the driven roller to control the tension according to the feedback from the 2D machine vision 

system.  

To identify and validate the hybrid multistage modelling method, a tension sensor is 

installed after stage 2 and a speed sensor is installed on the idle roller located at stage 2. The 

radius of the material roll is monitored by an ultrasonic sensor. For the material roll and driven 

roller, the velocity and torque that are generated by motors are collected from the closed-loop 

control system. There are seven sets of data being collected for model training (4 cycles of data) 

and validation (3 cycles of data). Both tension and idler speed signals are preprocessed by 

wavelet de-noising and outlier removal. In addition, it is assumed that each idler has the same 

speed with their adjacent idlers and all data are collected under an ideal environment (i.e., 

consistent humidity and temperature, no degradation of rollers). 

2.6.1		Multistage modeling for an unwinding process 

After segmenting the R2R process, a preliminary multistage model is first established 

based on the physical models in Section 2.5.1. The system equations and the observation 
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equations in Eq. (2.1) for the web handling process can be written as: 

System equations: 

𝑇¥? =
𝑇¥?∗ 			𝑖𝑓	𝑇¥?∗ > 0
0					𝑖𝑓	𝑇¥?∗ ≤ 0

                                   (2.14) 

where 𝑇¥?∗  for stage 1 to 5 is formed as below: 

𝑇¥.∗ = 𝑇¥�(𝑅.(𝑡)) +
\�^� D
`�(D)

+ a
S`� D

𝜌Y𝑤Y 𝑅.e 𝑡 − 𝑅fe 𝜔. 𝑡 − 𝜌Y𝑤Y𝑡Y𝑅.S 𝑡 𝜔.S 𝑡 +

h�ihj�
`� D

	 + 𝑊¥.             (2.15) 

𝑇¥S∗ =
.
`k

𝐽?𝜔? 𝑡 + 𝜏o?
§¨p
? + 𝑇¥. +𝑊¥S                          (2.16) 

𝑇¥T∗ = 𝑓 𝑇¥S, 𝛼, 𝜔. 𝑡 , 𝜔. 𝑡 +𝑊¥T                                   (2.17) 

𝑇¥e∗ =
.
`k

𝐽?𝜔? 𝑡 + 𝜏o? − 𝜏? + 𝑇¥T +𝑊¥e                          (2.18) 

𝑇¥©∗ =
.
`k

𝐽?𝜔? 𝑡 + 𝜏o?
§¨ª
? + 𝑇¥e +𝑊¥©                          (2.19) 

Observation equations: 

𝑌¥e = ( �̈ «
��¨«

+ 1)𝐿� 𝑅.(𝑡) + 𝑉¥e                                         (2.20) 

𝑌¥© = ( �̈ ª
�[(.-­)®¯i­®°]

+ 1)𝐿� 𝑅.(𝑡) + 𝑉¥©                                (2.21) 

where 𝑁¥S  and 𝑁¥©  present the total number of the idlers in stages 2 and 5, respectively.  

𝑇¥�(𝑅.(𝑡)) is the initial tension from the wound roll, and 𝐿� 𝑅.(𝑡)  is the relaxed pitch length. 

In the above equations, an explicit model for stage 3 - the dancer 𝑓 𝑇¥S, 𝛼, 𝜔. 𝑡 , 𝜔. 𝑡 , 

and the initial tension 𝑇¥�(𝑅.(𝑡)) cannot be derived from physical analysis directly. Therefore, a 

censored regression model and a forward selection method are employed to determine those 

unknown structures and parameters. Similarly, the function of the relaxed length 𝐿� 𝑅.(𝑡)  is 
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obtained by a linear regression model with a forward selection method. The resulting models are 

shown as follows.  

𝑇¥�(𝑅.(𝑡)) = 𝑝� + 𝑝.𝑅.(𝑡) + 𝑝S𝑅.S(𝑡)                                (2.22) 

𝑇¥T∗ = 𝑑� + 𝑑.𝑇¥S + 𝑑S𝛼 + 𝑑T𝜔. 𝑡 +𝑊¥T                                (2.23) 

𝐿� 𝑅.(𝑡) 	= 𝑞� + 𝑞.𝑅.T(𝑡)                                                  (2.24) 

2.6.2		Model validation 

This section presents the model validation and model performance analysis. The estimated 

web tension and predicted pitch length from the model are compared with the real measurements, 

i.e., tension signals from strain gage transducer load cells, and pitch length measurements 

captured by a 2D machine vision system.  

Figure 2-13 shows the results of three operation cycles, starting from the beginning of a 

new material roll and ends when it’s depleted and changed over by a new roll. During the 

material changeover, the web speed at stages 1 and 2 is reduced to zero to facilitate the splicing 

process, while the dancer releases material to downstream operation stages so that the web speed 

at stages 4 and 5 remains constant to ensure the process smoothness. Therefore, spikes are 

generated by the abrupt splicing events at stage 2, causing tension variations on the downstream 

substrate.  

The comparison of the estimated intermediate tension 𝑇¥S∗  from stage 2 with real-time 

tension signals is shown in Figure 2-13 (a), while the comparison of the estimated pitch length 

𝑌¥e and its measurement via the 2D machine vision system at stage 4 is shown in Figure 2-13(b). 

Both the estimated intermediate tension and pitch length can capture same trends as the sensor 

measurements.  
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a) Estimated tension in stage 2 vs 1st tension signal 

 

b) Estimated pitch length in stage 3 vs real measurement 

Figure 2-13: Multistage model validation results 
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a) QQ plot of residuals for 1st tension versus standard normal 

 

 
b) QQ plot of residuals for pitch length versus standard normal 

Figure 2-14: Residual analysis for multistage model 

In Table 2-3, the hybrid model that integrates physics-based and data-driven methods is 

compared with the regression-based data-driven methods. Furthermore, the tension propagation 

modeling results from censored regression is compared with linear regression. The root-mean-

square errors (RMSE) from validation results indicate that the proposed hybrid model is more 

accurate than the data-driven model in estimation of the tension (improved by 15%) and pitch 

length (improved by 70%). AIC criteria is employed to quantify the goodness of fit (Burnham 
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and Anderson, 2002). The AIC results shown in Table 2-3 imply that the hybrid model can 

capture more information than the pure data-driven method. Moreover, the comparison of RMSE 

that are generated from a steady state and a transient state is shown in Table 2-4. It shows during 

the steady state, the state estimates by the hybrid model is smaller than those during the transient 

state (i.e., spikes). This is because during the transient state, more noise and disturbance are 

introduced into the system.  

The results of residuals diagnostics for the hybrid model are listed in Table 2-5 and Figure 

2-14 (Q-Q plot), showing that the residuals are not auto-correlated, have constant variance and 

follow normal distribution. Therefore, the model is proven to be adequate. 

Table 2-3: Root Mean Squared Error (RMSE) Comparison 

RMSE 
1st Tension Pitch Length 

Training Validation AIC Training Validation AIC 

Physics-based 
+ data-driven 

Physics-based + Linear regression 0.2136 0.2228 N/A 0.0140 0.0102 -4229 

Physics-based + Censored regression 0.2137 0.2214 7096 N/A N/A N/A 

Data-driven 
Linear regression 0.1493 0.2526 N/A 0.0138 0.0344 -4210 

Censored regression 0.1354 0.2612 7797 N/A N/A N/A 

 

Table 2-4: Model Selection Test 

 RMSE comparison 

Steady state (without 
spikes) 

Transient state (only 
spikes) 

One cycle  

1st Tension 0.1277 0.3229 0.2214 

Pitch Length 0.0037 0.0260 0.0102 
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Table 2-5: Residual Statistics Test 

 Residual Auto-correlation test 

(Ljung-Box Q-test) 

Residual Heteroscedasticity 

(Engle’s ARCH test) 

 P-value  P-value 

1st Tension Not reject 0.4076 Not reject 0.5590 

Pitch Length Not reject 0.1001 Not reject 0.2818 

 

2.7  Discussion 

Current R2R manufacturing systems suffer from a lack of sufficient visibility of system 

performance and quality monitoring because of limited in-situ measurements. Such lack of 

visibility hinders the timely detection of product defects and correction actions, leading to 

significant wastes including materials and capital spending when a small error occurs. The 

proposed hybrid approach for variation propagation modeling in R2R processes is capable of 

devicing a new virtual sensing tool and a virtual metrology by estimating the intermediate 

tension and quality measurements, respectively. Therefore, the visibility of the system and 

process performance can be improved and the additional information for system performance 

evaluation will be available for the quality control.  In the following, an example – dancer failure 

in an R2R print registration unit is presented to demonstrate how the proposed method can be 

applied for effective fault detection and quality monitoring in R2R manufacturing systems. 

We particularly address the longitudinal tension variation problem. Too much tension can 

cause the web to be stretched beyond its elastic limit, hence the web is damaged and cannot be 



 44 

recovered in the later stages. Insufficient tension could cause wrinkles generated on the web or 

bubbles during lamination. In addition, a slack web may be gathered or stretched around the 

rollers and cause catastrophic machine failure. Therefore, web tension is critical for the detection 

of web damage or slippage, and its trend can also indicate faults and degradation in operations.  

For example, by comparing the two estimated tension profiles over time in Figure 2-15, we 

observed a different tension trend. The tension profiles from two production cycles in Figure 2-

15 (a) are from normal operation while in Figure 2-15 (b), a web breakage occurs during another 

two production cycles. Under a normal operation, the tension will gradually increase before the 

material roll is changed over. However, there is no such a climbing pattern in the tension profiles 

under an abnormal operation. By checking the system fault events log, the breakage occurred 

during the material changeover, justifying our conclusion. The dancer arm failed to move to 

accumulate materials so that there was no enough material for downstream operation during the 

material changeover.  In this case, too much tension was suddenly generated on the web and 

caused the web breakage. The proposed model is effective in sensing such fault during the 

process in real-time and provides insights on the possible physical reasoning. 

 
a) Normal operation 
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b) Web breakage 

Figure 2-15: Tension profiles under normal and abnormal operating conditions 

2.8  Conclusion 

In this chapter, a novel modeling method is presented for the twofold variation propagation 

and its induced quality deviation in R2R manufacturing systems. Based on the formulation of the 

SoV theory, a hybrid modeling approach is proposed to formulate a multistage model to 

characterize both product-centric and process-centric variation propagation, as well as their 

associated quality measures in R2R processes. This chapter mainly focuses on the systematic 

modeling of process-centric variation propagation - tension propagation since it uniquely exists 

in R2R processes, and its induced quality variation by coupling physics-based models with data-

driven methods. First, the continuous R2R manufacturing system is segmented into multiple 

stages and converted to fit the formulation of SoV model. Second, the physics-based models 

based on torque equilibrium and the Hooke’s law are reconstructed, which releases the 

requirement of full inspections after each stage, and well describes how the tension propagates 

across multiple stages and how critical product quality variations evolves from one stage to 



 46 

another. At last, the censored regression, and the linear/logistic regression are employed as a 

complementary approach to explore complex interactions between rolls and substrate, and 

identify immeasurable parameters in the system. The case study – a web handling process 

demonstrates the performance of the proposed modeling method by comparing the estimated 

results with real-time sensor measurements, as well as the results estimated from pure data-

driven method.  

The result shows that the proposed hybrid modeling method outperforms the data-driven 

method – the tension estimation is improved by 15% and the pitch length estimation is improved 

by 70%. With the proposed multistage model, the visibility of the R2R manufacturing systems is 

successfully improved by estimating intermediate tension and measures of the key product 

characteristics at each stage. The state estimates and the predicted model outputs can serve as 

virtual sensing and virtual metrology, respectively to improve the system performance 

monitoring and product quality control. In the discussion, we’ve shown that by monitoring the 

intermediate tension, undesired web damage or slippage can be avoided. The tension trend can 

provide effective information for detection and identification of operational faults. The 

intermediate and final product quality can also localize abnormal operation by checking the 

deviation of product quality at each stage. As for the future work, process-centric variation other 

than tension can be investigated. Moreover, since the development of the multistage model 

partially relies on data from sensor and inspection systems, methods for sensor validation 

(Chapter 3) as well as optimal sensor placement are worthy of exploration.  

In summary, the hybrid modeling method can effectively represent the operation 

performance and product quality in an R2R manufacturing system and reveal the errors in real 

time. There is a great potential for a wide range of applications with its benefits including the 



 47 

reduction of product rejection rate and unexpected downtime, and improvement of system 

reliability and productivity. 
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CHAPTER 3   A GENERALIZED NONLINEAR 

ANALYTICAL REDUNDANCY METHOD FOR SENSOR 

FAULT DIAGNOSIS 

3.1  Introduction 

The benefit of automated monitoring and control procedures advances the research 

development and usage of sensing techniques in engineering systems. For example, in a typical 

automotive vehicle, there are 60-100 sensors on board and is projected to reach 200 sensors per 

car. GE launched a new factory for battery production with more than 10,000 sensors spread 

across 180,000 square feet of manufacturing space. Those sensors play important roles in data 

collection to make commands for system operation, supervise system performance, and diagnose 

and accommodate faults for ensuring system reliability and safety. Similarly, in a high-

throughput R2R manufacturing system, an ever-increasing number of sensors and inspection 

systems are installed to make informed decisions for facilitating operation monitoring and 

quality control during the production to manufacture qualified products. The actions executed 

based on sensor measurements include but are not limited to adjust operation variables (e.g., 

tension or speed control of the substrate), reject unqualified products, and request corrective 

maintenance.  

However, in R2R manufacturing systems, sensors often work in a severe and fast-changing 

environment with high pressure, high temperature or strong vibration. Like any dynamic systems, 
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those sensors are very vulnerable to fail or degrade over time. Both abrupt (e.g., caused by 

corroded contacts) or incipient (e.g., caused by deteriorated sensing elements) can generate non-

permitted deviations from characteristic properties in sensors and result in inaccurate 

measurements from monitored target variables (Isermann, 1984). Consequently, a sensor 

malfunction can lead to wrong control efforts, unnecessary product rejections/system shutdowns, 

and equipment failures. For example, within a tension control system, deviations in a tension 

sensor may cause wrong control commands and lead to excessive or insufficient tension on the 

substrate, which will result in a breakage or wrinkles.  

To validate sensor measurements, both hardware redundancy and analytical redundancy 

approaches have been developed for sensor fault diagnosis. Hardware redundancy usually 

requires a high cost of extra sensor installation and maintenance, and often time is restricted by 

space and weight concerns. Analytical redundancy is more cost-effective and has been developed 

for many engineering applications. It employs mathematical models to describe the systems and 

generate residuals for fault diagnosis. However, mathematical models are often inaccurate 

because of modeling errors or disturbances. Although there have been many robust fault 

diagnosis techniques developed to handle such uncertainty as well as ensure the sensitivity to 

faults, the sensor fault diagnosis in nonlinear systems still remains challenging. The modeling in 

an R2R manufacturing system is a typical example, whose system dynamic behavior is often 

highly nonlinear. It involves steady state and transient state (e.g., ramp-up & ramp-down, 

material changeover), and may have quick changeovers to produce different types of products 

whose size or material various. In this case, an R2R manufacturing system might switch from 

one operating regime to another frequently. Different operating regimes triggers different system 

behaviors and may involve different levels of measurement noise and model uncertainties. It is 
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usually not sufficient to use a linear model or a simplified nonlinear model to describe the system 

behavior under its entire operating range. The inconsistent model accuracy under different 

operating regimes brings challenges to differentiate between a sensor failure and measurement 

noise/model uncertainties.  

To conquer the challenge, this chapter aims at developing a real-time sensor fault diagnosis 

method in such complex systems by proposing a model-based nonlinear analytical redundancy 

approach. Nonlinear observation matrix is employed to derive input-output equations to describe 

system dynamics and sensor measurements. Robust optimization is designed to obtain best 

coefficients so that the generated residuals will be robust to noise and uncertainties, but sensitive 

to sensor failures.  

In the following, the literature review of sensor fault diagnosis is shown in Section 3.2 and 

the problem formulation of nonlinear analytical redundancy is presented in Section 3.3. In 

Section 3.4, the proposed modeling method for parity residual generation in a nonlinear system is 

proposed. The robust optimization and post-processing sensitivity analysis are given to obtain 

model coefficients and evaluate the detectability of the designed model. A case study that 

demonstrates and validates the proposed method is detailed in Section 3.5 and the conclusion is 

in Section 3.6. 

3.2  Literature review of sensor fault diagnosis 

A general solution to validate sensor measurements in a real-time environment is to add 

redundancy in the system. Hardware redundancy is the most intuitive approach that has been 

applied to many quality/safety-critical systems. It adds additional sensors to measure critical 

targets in a system and check the consistency among redundant sensors to detect if any sensor is 
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faulty. However, additional sensors require extra cost, weight, and space. Even though the recent 

evolution of micro-technology has contributed to reducing the size and cost of sensors, the 

hardware redundancy approach is still not applicable in many industrial applications. Moreover, 

redundant sensors may fail or degrade in the same way of the primary sensor since they all work 

under the similar operating environment (Patton et al., 1989). At last, when multiple sensors fail, 

the hardware redundancy approach tends to be infeasible to detect sensor failures under majority 

voting scheme (Broen, 1974). 

Analytical redundancy provides a promising solution that is independent of redundant 

sensors. Both qualitative and quantitative models have been developed to add analytical 

redundancies in systems to check the accuracy of sensor measurements. Qualitative models are 

mainly built based on qualitative and heuristic reasoning or causal relationship between 

observations and system performance. Quantitative models employ mathematical expressions to 

represent system dynamics and estimate sensor measurements under fault-free conditions. With a 

nominal model and real-time sensor measurements, residuals are generated to detect and isolate 

sensor failures using various methodologies. The successful deployment of analytical approaches 

highly relies on model accuracy, which is affected by different levels of measurement noise and 

model uncertainties under different operating conditions. 

The state-of-the-art modeling methods to achieve analytical redundancy for sensor fault 

detection and isolation can be further categorized into three: model-based methods, knowledge-

based expert systems and data-driven methods (Jiang, 2011). The model-based methods such as 

parity relations (Chow and Willsky, 1984), Luenberger observers and Kalman filtering, (Clark, 

1978; Tesheng Hsiao and Tomizuka, 2005; Du and Mhaskar, 2014) and parameter estimators 

(Upadhyaya and Kerlin, 1987) can develop quantitative models to generate for sensor fault 
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diagnosis. However, those methods require thorough knowledge of target system dynamics to 

formulate high fidelity models, which is often not applicable for complex systems. Knowledge-

based expert systems (Betta et al., 1995; Kim, 1997) such as lookup table, fault tree and fuzzy 

logic based methods require comprehensive engineering domain knowledge of system behaviors 

under various normal conditions and faulty conditions. It has limited capability to handle 

dynamic systems especially during the initial development phase due to its rule-based 

mechanisms. Data-driven methods such as artificial neural networks (Mathioudakis and 

Romessis, 2004; Elnokity et al., 2012) and multivariate statistical methods (Negiz and Cinar, 

1992; Dunia et al., 1996; Huang et al., 2000) are able to handle complex systems but require 

sufficient data to learn data patterns or trends to represent system performance, and usually lack 

physical insights. In real practice, those methods can be integrated to leverage their own 

advantages and disadvantages so that to obtain representative symptoms for diagnosis/prognosis. 

Nevertheless, it is usually preferable to start with model-based methods when physical 

knowledge is available. 

In literature, the standard model-based analytical methods have been developed for linear 

systems (Chow and Willsky, 1984; Qin and Li, 2001; Li and Shah, 2002). However, many 

engineering systems are nonlinear. Nonlinearity does not obey superposition principles, and 

tends to introduce discontinuity and unpredictable output into systems. Those properties make 

the implementation of nonlinear analytical redundancy difficult. Many efforts have been made to 

linearize nonlinear systems in order to apply linear analytical redundancy methods (Nguang et al., 

2007). However, nonlinear systems suffer considerably from linearization since it may introduce 

errors and reduce model accuracy. The performance of model-based analytical redundancy 

methods is sensitive to inconsistencies between nominal models and actual system behaviors. 
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Therefore, those errors will affect the effectiveness of linear analytical redundancy methods for 

sensor fault diagnosis in nonlinear systems. Other researchers explored nonlinear analytical 

redundancy methods for some special cases of nonlinear systems whose nonlinear observation 

matrix can be formulated into a linear form in terms of inputs and outputs (Yu and Shields, 2001; 

Shumsky, 2008; Leuschen et al., 2005). However, those nonlinear analytical methods are only 

feasible for specific system types, therefore, lack generality. A general form of nonlinear 

analytical redundancy approach is still not available. 

To fill the gap, this chapter will investigate a model-based analytical redundancy method 

for the sensor fault diagnosis problem in general nonlinear systems in which, both input and 

output equations are nonlinear functions of states and inputs. Following the idea of the linear 

analytical redundancy method that utilizes observation matrix to construct input-output relations 

to describe the relationships between system behaviors and sensor measurements, this study will 

employ nonlinear observation matrix that is derived from system dynamic equations in the 

control theory to build the input-output relations with a parity space approach. The number of 

available analytical redundancies that can be added for sensor fault diagnosis will be determined 

by the rank of the nonlinear observation matrix.   

3.3  Problem formulation 

Consider a general nonlinear system with N states, Q measurable inputs and M sensors: 

                                                       (3.1)
 

where  is the state vector, is the measurable input vector,  is the sensor 

measurements, ε  is the system disturbance and δ  is the measurement noise. Different from 

 

!x = f (x,u)+ ε
y = h(x,u)+δ

x ⊆ RN u ⊆ RQ y⊆ RM
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existing works, the system here is a general form, in which both the input equation and the 

output equation are nonlinear functions of states and inputs. Thus, the formulation of nonlinear 

analytical redundancy should be flexible to represent the dynamic behavior of the system by 

considering its dependence on both states and inputs. 

A model-based analytical redundancy method exploits the null-space of the state space 

observation matrix to generate residuals for fault diagnosis. Those residuals contain the complete 

information from sensor data and actuator inputs to detect any deviations from the nominal 

behavior of sensors. Existing works for nonlinear systems only have addressed those system 

models that can be linearized (Nguang et al., 2007) or use a simplified nonlinear observation 

matrix to formulate a structure for residuals generation (Leuschen et al., 2005). Those 

approximations will introduce a considerable amount of model errors so that, for general 

nonlinear systems, they sometimes can hardly provide effective solutions for accurate sensor 

fault diagnosis. 

In order to formulate effective analytical redundancy for general nonlinear systems, the 

notion of observability is employed. Observability is a fundamental measure in control theory, 

which reflects the possibility for estimating intermediate states based on input and output signals. 

Definition 3.1: The system is locally observable at if there exists a neighborhood of  such 

that every x in that neighborhood other than  is distinguishable from . The mathematical 

expression for checking local observability is: 

                                           (3.2) 

where N is the rank of x. For each output , ( ) 

x0 x0

x0 x0

Rank(∇O(x0,u
*)) = N

yi i = 1,...,M
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                              (3.3) 

    and                                           (3.4) 

                                                (3.5) 

where O is a nonlinear observation matrix, and  is the Lie derivative of  with respect to f. 

In nonlinear systems, nonlinear observability is only feasible in its local space that is close to 

and 𝑢∗. It also requires the system to be smooth so that the Lie derivative exists. It is 

assumed that the major operating regime meets this requirement in this research. 

From the definition, it is seen that the second term  on the right-hand side of Eq. 

(3.5) is the main difference between this work and others. Existing methods do not consider the 

situation that the output  is related to inputs. As a result, the effect of this term is neglected. In 

this research, a complete form of analytical redundancy structure for general nonlinear systems is 

proposed. 

Moreover, the locally observable property indicates that the observability in a nonlinear 

system is valid within a certain working region that is near the current states and inputs. In real 

practice, when various operating conditions exist, an operating regime with the same level of 

observability has to be identified, and the entire working space has to be partitioned according to 

different operational and environmental conditions. Chapter 4 will propose a multiple operating 

regimes modeling method, which can automatically partition the working space so that local 
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analytical redundancies can be extended to global space, while this chapter will employ robust 

optimization method to identify the coefficients for local analytical redundancies around an 

operating point ( and 𝑢∗ ) and apply post-sensitivity analysis to evaluate the effect of the 

change of the operating point on the optimal objective function and coefficients.  

To sum up, Chapter 3 focuses on the formulation of the nonlinear analytical redundancy 

in general nonlinear systems. A complete form of analytical redundancy structure is proposed for 

sensor fault diagnosis. A robust optimization is designed to identify the model coefficients so 

that the generated residuals are projected to a space where they are sensitive to sensor failures 

but robust to noise. Moreover, post-processing sensitivity analysis is applied to the optimization 

problem to evaluate how inputs affect the optimal solution. The resulting residuals generated 

from the proposed analytical redundancies can be utilized to identify sensor failures or quantify 

its degradation status. The diagnostic capability of the proposed method in nonlinear systems is 

demonstrated and validated with simulation data from an R2R registration process. The 

systematic approach that can automatically partition operating regimes and learn local models 

will be proposed in Chapter 4, while this chapter will demonstrate the necessity and how 

different operational inputs affect the diagnosis result. 

3.4  Methodology of nonlinear analytical redundancy 

The model-based analytical redundancy method exploits the basic concept of observability, 

which contains key information of the system behaviors that can be inferred from the observation 

space. Also, a proper design of analytical redundancy is able to generate linearly independent 

residuals so that all detectable deviations from the system models can be accounted. In this 

section, the parity space method is employed to add analytical redundancies in the system. To 

address the sensor fault diagnosis problem in nonlinear systems, the traditional parity space 

x0
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model is extended from linear to nonlinear systems so that input-output equations can be 

formulated to generate residuals. Furthermore, robust optimization design is employed to obtain 

optimal coefficients for the parity space model so that parity residuals will be close to zero when 

only measurement noise and model uncertainty involve, while will have large magnitudes when 

sensor failures occur in the system. Post-processing sensitivity analysis is conducted for the 

optimization problem to test the effects of different operating inputs on the optimal objective 

function – the magnitude of parity residuals.  

3.4.1		Parity residual generation in general nonlinear systems 

The parity space captures key information of system dynamics from the observation space. 

As shown in Figure 3-1, parity relations characterize relationships among measurable inputs and 

sensor outputs so that a set of residuals can be obtained (Chow and Willsky, 1984). In addition, 

the linear independence property in parity space guarantees that every parity residual generated 

contains at least some information that has not been covered by other residuals. On the other 

hand, each observable deviation from the system model is covered by at least one of the parity 

residuals. 

 

 

Figure 3-1: Sensor fault diagnosis with the parity space approach 
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The nonlinear observability imposes a prerequisite to construct the parity space that allows 

analytical redundancy for general nonlinear systems. In the following, based on Definition 3.1, 

the complete parity relations are derived, and the parity space is formed with 

                                                      (3.6) 

where  is a vector of nonzero coefficients that transfers residuals from original space to parity 

(null) space.  

A straightforward approach to formulate the input-output equations for analytical 

redundancies in general nonlinear systems is to follow the methods in linear systems, which 

formulate analytical redundancy structures with linear functions of parameters (Chow and 

Willsky, 1984). However, due to the nonlinear form of both states and inputs, it is difficult to 

directly adapt the linear analytical redundancy structure for the general nonlinear systems. Also, 

since the output y depends on both states and inputs, it is also not applicable to simplify the 

nonlinear observation matrix, or to formulate the input-output equations as shown in (Leuschen 

et al., 2005). 

Instead of manipulating the observability matrix, the nonlinear observation matrix O is 

decomposed into two parts: one is with respect to x, denoted as  while the other one is with 

respect to  denoted as EU. The observation matrix in Eq. (3.3) is revised as 
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The first part  in Eq. (3.7) is used to determine  in Eq. (3.6) so that the parity (null) 

space can be formulated. According to the nonlinear observability of general nonlinear systems, 

the Eq. (3.6) is re-derived as:  

                                             (3.8) 

where for the jth sensor 

 

                                    (3.9) 

The number of redundancies in this system is determined by the rank of each . 

For the jth sensor, the rank is determined as: 

𝑚� = 𝑟𝑎𝑛𝑘 ∇¹𝑂 𝑥�, 𝑢∗                                         (3.10) 

Here, the system can be either observable or unobservable.  

The number of independent analytical redundancies is denoted as: 

                                             (3.11) 

n-N sets of independent W is determined to formulate the parity space i.e., the dimension of Ω is 

𝑚� + 1£
�Á. − N × (𝑚� + 1)£

�Á. . 

The second part - EU in the Eq. (3.7) mainly represents the information of inputs, and is 

used to construct analytical redundancy structure in parity space. EU is moved to the side of y in 
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Eq. (3.3) so that parity relations for the general nonlinear systems can be formulated as: 

                                    (3.12) 

where P is parity residuals, which has the dimension of (𝑚� + 1)£
�Á. ×1 and ideally, will be 

nonzero only if a failure presents and the  matrix is derived as 
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                     (3.13) 

where  is a  matrix when the rank of  

sensor is .  is a matrix with dimension and

 for the  input.  

Essentially, the parity relations can be viewed as a weighted combination of sensor outputs 

and actuator inputs. The structure of a parity relation defines what should be included, while the 

coefficients of the parity relation determine the weights. 

Table 3-1 lists the comparison of parity residuals generation in linear systems and general 

nonlinear systems. It shows that the notion of nonlinear analytical redundancy with the parity 

relation method for general nonlinear systems is analogous to the notion of linear analytical 
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redundancy.  

Table 3-1: Parity relations in linear systems vs. general nonlinear systems 

 

3.4.2		Parity structure and coefficient design 

Given the general formulation of parity relations in the previous section, one is faced with 

the problem of finding the best structure and coefficients so that parity residuals are projected to 

a space where they are robust to noise but sensitive to sensor failures. The local property of 

nonlinear observability may lead to different parity structures under different operating points. 

Moreover, the statistical characteristics of parity residuals may be affected significantly from one 

operating regime to another because of different system disturbances and measurement noise. In 

order to provide accurate sensor fault diagnosis, the working space needs to be partitioned to 

determine local parity structures and coefficients. The automatic working space partition method 
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will be presented in Chapter 4. While in this section, the robust optimization is designed to find 

the best choice of coefficients that can make the candidate parity relations close to zero under no-

failure conditions, and the resulting parity residuals can provide significant failure signatures to 

indicate anomalies or sensor failures. At last, post-processing sensitivity analysis is applied to 

evaluate how different inputs and states affect the optimal solution. 

In this study, it is assumed that local operating regimes are well defined. After constructing 

a set of parity structures for each local operating regime following the methods proposed in 

Section 3.4.1, it is proceeding to determine the coefficients in parity relations. In many 

applications, system disturbance and measurement noise within each operating regime will lead 

to the difficulty of selecting  such that P = 0. In this case, a robust optimization design is 

employed. The  is determined so that the value of P is minimized in the existence of noise and 

model uncertainty. The optimization formulation is shown as below: 

𝐽∗ = min
É
max
Ì,Í

	𝑃S                                               (3.14a) 

𝑃S = {ΩÐ 𝑌 − 𝐸𝑈 }S             (3.14b) 

Here, the quantity of max
Ì,Í

𝑃S is the worst case effect of noise and model uncertainty on the 

parity relations. A conservative choice is attempted to find the parity coefficients by minimizing 

the worst case.  

 However, it has a trivial solution that all coefficients are zero. To provide a meaningful 

solution, the coefficients Ω are constrained to have unit magnitude. Moreover, based on the 

mechanism of parity relation, another constraint is that an optimal set of Ω  projects the 

observation matrix to a null space. Therefore, the complete formulation of a robust optimization 

design is shown as following:  

Ω

Ω
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(3.15) 

Based on the number of analytical redundancies, n-M sets of independent W will be selected.  

 Notably, the quantity of max
Ì,Í

𝑃S is dependent on state x and input u, which indicates that 

the coefficients should be computed at each time step when state x and input u are changing over 

time. However, it is not desirable to obtain new coefficient all the time. A more applicable 

approach is to schedule the coefficients based on the operating regimes since a set of coefficients 

is usually effective for a range of x and u. This indicates that when the state and the inputs are 

varying at a certain range, the corresponding coefficients are likely to perform closely to the 

optimum. In this case, appropriate coefficients will be learnt for each operating regime which is 

characterized by some nominal state x and input u during the training process and can be 

retrieved for use at corresponding operating regimes. The autonomous process of partitioning the 

operating regimes with state and input variables and identifying coefficients in each operating 

regime efficiently will be addressed in Chapter 4. 

3.4.3		Post-processing sensitivity analysis 

The nonlinear analytical redundancy utilizes the local observability of nonlinear systems to 

formulate the parity relations, which is only feasible in a local space that is close to and 𝑢∗. To 

understand how the change of operating conditions affect the effectiveness of each designed 

analytical redundancy for sensor fault diagnosis, the effect of the change of state x and input u on 

the optimal objective function - the square of parity residuals is evaluated with a post-processing 

sensitivity analysis in this section. 

min
Ω
max
ε ,δ

P2 = {Ω⊥ (Y − EU )}2

s.t. Ω⊥Ω = 1
Ω⊥∇ONL (x0,u

*) = 0

x0
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Without the loss of generality, the objective function in Eq. (3.15) is first represented by  

𝐽 𝛺, 𝑝                                                               (3.16a) 

and constraints active at the optimum point are 

𝑔.(𝛺) and 𝑔S(𝛺, 𝑝)                                                 (3.16b) 

where considering the design variables {𝛺 = [1,… , 𝛺Ó], K = (𝑚� + 1)£
�Á. } to be an implicit 

differentiable function of 𝑝, i.e., 𝛺*(𝑝), and 𝑝 = [𝑥, 𝑢] are design parameters.  

To determine how the optimum design will change as a result of changing operating 

conditions, the total derivative of the objective function with respect to the design parameters of 

interest (i.e., inputs 𝑢 and states 𝑥)  @\
@Õ

 as well as the rates of change of the optimum values of the 

design variables ·É_
·Õ

 will be determined. Those derivatives are referred to as sensitivity 

derivatives. Follow the equations of sensitivity derivatives from (Armacost and Fiacco, 1974; 

Armacost and Fiacco, 1974; Vanderplaats and Yoshida, 1985) that were developed for a 

constrained optimum regardless of the type of optimization algorithms, the Kuhn-Tucker 

conditions at the optimum are employed to predict the required derivatives, i.e., for any given 

design parameters, the first-order necessary condition (Lagrange Multiplier) satisfies when 𝛺∗ is 

(local) optimal with the following equations: 

Ö\
·É_

Ω∗ + Ö×�
·É_

Ω∗ 𝜆. +
Ö×p
·É_

(Ω∗)𝜆S = 0                                  (3.17a) 

𝑔. 𝛺* = 0 and 𝑔S 𝛺*, 𝑝 = 0                                           (3.17b) 

Eq. (3.17) holds under some general assumptions (Fiacco, 1976) when the design 

parameters 𝑝 are changing so that: 
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@Õ
= 0                                                (3.18) 

With the chain-differentiation rule for the composite functions along with the functional 

relationships in Eq. (3.16), the differentiations in Eq. (3.18) can be expressed as: 

·p\
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Ó
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which can be rewritten with matrix notation as: 

𝑆 𝑍
𝑍� 0

𝛿Ω
δ𝜆 + 𝑣

𝑤 = 0     (3.20) 

where  

𝑆*à =
·p\
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 𝑍* = [·×�
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],                              𝑤* = [·×�
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, ·×p
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·Éã
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·å�
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·Õ

 

and the dimension of matrix S is (𝑚� + 1)£
�Á. × (𝑚� + 1)£

�Á. , matrix Z is (𝑚� + 1)£
�Á. ×2 

vector	𝑣 and 𝛿Ω are (𝑚� + 1)£
�Á. ×1, and vectors	𝑤 and 𝛿λ are 2×1:  

After obtaining the solutions of ·É
·Õ

 and ·Ý
·Õ

  from Eq. (3.20), the sensitivity derivative of 
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the objective function can be determined as the total derivative of the composite function J 

@\
@Õ
= ·\

·Õ
+ ·\

·É_

·É_
·Õ

Ó
*Á.         (3.21) 

and the sensitivity derivatives of the design variables are 

@É
@Õ

  = ·É
·Õ

        (3.22) 

It is noted that in Eq. (3.20), if the Lagrange multipliers are not available as a by-product of 

the optimization solution, they can be estimated with Eq. (3.23) (Livesley, 1971). 

𝜆? = − ·×k
·É

� ·×k
·É

-.
·×k
·É

� ·\
·É

         (3.23) 

3.5  A case study 

In this section, the proposed nonlinear analytical redundancy via parity relations for sensor 

fault diagnosis is demonstrated and validated in an R2R registration process, which aims to 

obtain accurate alignment of successful print patterns on a substrate. As shown in Figure 3-2, the 

upper layer has been printed in previous operations and will be laminated on the top of the 

bottom layer with the printed pattern matched with the pattern on the bottom layer. This process 

is called registration, which requires automatic control of registration errors to maintain its 

accuracy. Two sensors are installed – a tension sensor and an optical sensor to provide feedback 

for control systems so that the speed of the driven roller can be adjusted to ensure registration 

accuracy. 
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Figure 3-2: A simplified illustration of the R2R registration process 

Due to the confidentiality required by our research sponsor, details of the system model are 

not listed. In the following, a general nonlinear system will be formulated based on the system 

dynamics of the registration process. The diagnostic capability of the designed analytical 

redundancies will be demonstrated with normal data from a testbed and abnormal data by 

introducing simulated sensor faults into the normal data. The effect of the local observability 

property on parity residuals will be evaluated with the post-processing sensitivity analysis.  

3.5.1		Nonlinear analytical redundancies for sensor fault diagnosis 

To validate the proposed method, a state space model for a registration process in an R2R 

manufacturing system is constructed as a general nonlinear system with one state, one actuator 

input, and two sensor measurements A and B.  

                                                   

(3.24) 

By examining the observation matrix of  and , the rank of each sensor measurement 

is one so that in total, three analytical redundancies exist in this system. The model estimations 

of  and  are compared with real sensor measurements. Figure 3-3 shows that the model 

 

!x = f (x,u)+ ε
yA = h1(x,u)+δ1
yB = h2 (x,u)+δ 2

yA yB

yA yB
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accuracy differs under different operating conditions. Under operating condition 1, the 

estimation error of sensor A is much smaller than the error generated under operating condition 2. 

The main reason for this difference is model uncertainty and sensor measurement noise induced 

by different operating conditions. Here, the entire working space is partitioned into two operating 

regimes according to the speed of the production system.  

 

Figure 3-3: State space model estimation error of sensor A under different operating conditions 

Based on the observation matrix of the state space model in Eq. (3.15), the parity structure 

is formulated as: 

                                        (3.25a) 
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and                                                                                          (3.25b) 

Based on the rank of the observation matrix of each sensor, there are three independent 

analytical redundancies available so that three sets of parity coefficients Ω. , ΩS , and ΩT , are 

determined by the robust optimization design in Eq. (3.15) with nominal data from operating 

condition 1, shown in Table 3-2.  

Table 3-2: Selected parity coefficients under operating condition 1 

𝛀      

𝛀𝟏 -0.2125 -0.0081 0.9771 0 

𝛀𝟐 0 0 0.9998 -0.0125 

𝛀𝟑 0.9993 0.0369 0 0 

 

3.5.2		Model validation 

In order to demonstrate the effectiveness of the designed parity relations based on the 

proposed method for sensor fault detection in the R2R registration process, different levels of 

sensor faults are introduced into sensors A and B, respectively. On the left side of Figure 3-3, 

different amounts of offsets are added to nominal sensor A measurements, while on the right side, 

different gains are added to sensor B. Those faults are labeled as N05, N15, and P05, P15. The 

letters N and P present negative and positive offsets/gains that are added to the sensor 

measurements. The number quantifies the amount of offsets/gains that are introduced into the 
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sensor measurements. A larger number indicates more severe faults/degradation. 

 

Figure 3-4: Distribution of parity residuals under different levels of sensor faults (Left: offsets 
added to sensor A; Right: gains added in sensor B) 

 

Figure 3-4 shows that when offsets are added to sensor A, parity residuals governed by Ω., 

and ΩT show deviations from their nominal condition, while when gains are added to sensor B, 

deviations only appear in those parity residuals with Ω. and ΩS. It indicates that under operating 

condition 1, the parity residuals with Ω. contain both information from sensor A and B, while the 

parity residuals with ΩT and ΩS only contain the individual information for sensors A and B, 

respectively. Moreover, when more severe faults are introduced into the sensor measurements, 

larger deviations can be found in the parity residuals from nominal values. Therefore, those 

parity residuals can provide effective information for sensor fault detection with the false alarm 

rate 1.06% under operating condition 1.  
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Figure 3-5: Distribution of parity residuals under different operating conditions 

However, when the parity coefficients determined by normal data from operating condition 

1 are used to generate parity residuals with nominal data from operating condition 2, the false 

alarm rate is increased to 91.51%. As shown in Figure 3-5, the deviations will lead us to 

misjudge system disturbance/sensor noise as a sensor fault. Such high false alarm rate is because 

the performance of sensor fault detection via parity space is only feasible around a certain range 

of inputs and state due to the local observability property in nonlinear systems, and is sensitive to 

the inevitable uncertainty in the knowledge of system dynamics and measurement noise under 

different operating conditions. Next section shows how the change of operating conditions (i.e., 

inputs u and state x) affect the parity residuals given the optimal design variables (Ω∗), while the 

autonomous working space partition and the development of local parity relations will be 

covered in Chapter 4.   
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3.5.3		Post-processing sensitivity analysis 

To quantify the effect of the changing operating conditions (i.e., inputs u and state x), the 

post-processing sensitivity analysis is conducted in this section. The sensitivity derivatives that 

yield the value of derivatives of the optimal objective function (@\
@Õ

) and design variables (@É
@Õ

) 

with respect to the design parameters of interests are calculated with Eqs. (3.21) and (3.22). The 

optimal solutions (Ω∗) that are obtained from operating condition 1 with the robust optimization 

in the last section are employed for the optimum sensitivity analysis. This section only shows the 

results of the optimal sensitivity analysis with Ω. = Ω., ΩS, ΩT, Ωe .  

 

a) Sensitivity analysis with respect to the controllable input 𝑢f 
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b) Sensitivity analysis with respect to the uncontrollable input 𝑢» 

 

c) Sensitivity analysis with respect to the state variable 𝑥 

Figure 3-6: The effect of changing operating conditions on parity residuals 
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Figures 3-6 a), b), and c) show the sensitivity analysis results of optimal objective function 

– parity residuals with respect to three design parameters – a) controllable input 𝑢f , b) 

uncontrollable input 𝑢» and c) state variable 𝑥. The change of inputs and state variables leads to 

the loss function - the parity residuals change dramatically. Such change aligns with the 

operating conditions (subplots in the third row), which provides the operating range that the 

designed parity relations are valid for sensor fault diagnosis. Figure 3-7 a), b) and c) are the 

sensitivity analysis results of optimal parity coefficients with respect to a) controllable input 𝑢f, 

b) uncontrollable input 𝑢» and c) state variable 𝑥. The value of optimal parity coefficients are 

relatively constant under operating condition 1 while fluctuating under operating condition 2. 

These observations align with the sensitivity analysis results shown in Figure 3-6.  

 

a) Sensitivity analysis with respect to the controllable input 𝑢f 
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b) Sensitivity analysis with respect to the uncontrollable input 𝑢» 

 

c) Sensitivity analysis with respect to the state variable 𝑥 

Figure 3-7: The effect of changing operating conditions on parity coefficients 
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3.6  Conclusion 

This chapter extends the model-based analytical redundancy from linear systems to general 

nonlinear systems, which fills the gap of analytical redundancy approaches for sensor fault 

diagnosis in general nonlinear systems, where input and output equations are nonlinear functions 

of both state variables and input variables. The notion of parity relations is derived based on the 

nonlinear observation matrix from system dynamic equations, which construct a parity space for 

sensor fault diagnosis in nonlinear systems. A robust optimization problem is formulated to find 

the best coefficient for the parity relations against the sensor measurement noise and model 

uncertainty under a certain operating condition. A post-processing sensitivity analysis is 

employed to evaluate how the change of the inputs and state affect the optimal objective function 

– parity residuals and the optimal design variables – parity coefficients. The case study validates 

the proposed method with data from an R2R registration process. The result shows that the 

proposed method is capable of identifying sensor degradation with different severity in a 

nonlinear system under the operating range it designed. The optimal sensitivity analysis 

quantifies the effect of the change of operating conditions on the diagnostic capability of the 

trained parity relations and shows its valid local operating range. It demonstrates the necessity of 

autonomous working space partition to construct local parity relations for sensor fault diagnosis 

which will be discussed in Chapter 4.  

In summary, the nonlinear analytical redundancies developed with the parity space method 

are effective to detect sensor degradation/faults in a nonlinear system, whose input and output 

dynamic equations are nonlinear functions of states and inputs. With the robust optimization 

design, the generated parity residuals are sensitive to sensor degradation/faults but robust to 

sensor measurement noise and model uncertainty in a certain operating range. This proposed 
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nonlinear analytical redundancy method for sensor fault diagnosis contributes to the product 

quality and system productivity improvement in R2R manufacturing systems by eliminating 

wrong control commands or management decision induced by faulty sensors. It is also applicable 

for a wide range of nonlinear dynamic systems that other than R2R processes with its benefits of 

reducing the cost induced by additional hardware sensors and improving the reliability of sensors.  
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CHAPTER 4   MULTI-REGIME ANOMALY DETECTION 

AND FAULT DIAGNOSIS 

4.1  Introduction 

Real-time fault detection and diagnosis is an essential but challenging task in many 

engineering systems. Most methods are developed for linear systems, which can provide an 

acceptable performance in the systems with mild nonlinearity or those only operate at a single 

operating point. However, many systems like R2R manufacturing systems often involve high 

nonlinearity and it is naïve to assume that it operates only at a single operating point. In an R2R 

process, operating point continuous to shift due to a variety of disturbances and operating policy 

changes such as material changeover. Moreover, startups or shutdowns often cause significant 

shifts in the operating state of the system. During those transitions, diagnosis methods that are 

designed for linear systems or one operating point are not capable and will lead to erroneous 

results. Therefore, a real-time fault diagnosis method that is capable of performing under 

different operating points for nonlinear systems should be developed. 

The major challenges of developing effective models for fault diagnosis in such complex 

engineering systems involve three factors - a priori knowledge of the system, data quality and 

completeness, and model accuracy. With the increasing complexity of engineering systems and 

their working environments, to obtain an accurate global model to represent the system dynamics 

only based on first principles is difficult. Data-driven approaches are employed for the modeling 



 79 

of complex dynamics systems since it becomes easier to obtain data from sensors and embedded 

controllers. Neural networks are one of the most popular methods that are used to develop 

nonlinear models for complex systems due to its universal functional approximating capability. 

However, this method often suffers from extrapolation and overfitting problem. Also, even 

though there have been some practical recommendations for the selection of hyperparameters 

(Bengio, 2012), the selection of activation functions, number of nodes and hidden layers varies 

in different applications and always a challenging task in literature. Another downside of data-

driven methods is that it requires upfront training data from the entire operation space, which is 

costly and not feasible especially when the deployment of the system is in its early stage. After 

the global model is learnt, the residuals between the model and the actual system need to be 

properly interpreted for fault diagnosis. It is common that the model is not perfect and the 

residuals have different magnitudes under different operational regions. Decision-making 

algorithms to cope with modeling uncertainties and time-varying process noise need to be 

designed. However, due to insufficient physical knowledge of the system and unpredictable 

external influences, not all possible failures under all possible working conditions can be 

anticipated in advance, which hinders accurate interpretation of the model residuals for fault 

diagnosis. Therefore, the ability to detect new operating conditions and adapt to them is essential 

for real-time fault diagnosis in complex systems. 

Instead of employing the global model approach, this chapter aims to explore a multiple 

model approach for fault diagnosis in complex and nonlinear systems based on a “divide and 

conquer” strategy, which divides the full range of operation into smaller operating regimes and 

then models the local dynamics individually. With this approach, the modeling tasks for system 

dynamics under each small operating regime are easier compared to the modeling of the system 
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as whole. It also enables input-dependent fault diagnosis, which provides more transparency and 

simplifies the interpretation of the residual errors between the model output and the actual 

systems. This research will follow the growing structure multiple model systems (GSMMS) 

proposed in (Liu et al., 2009), which integrates growing self-organizing map to achieve adaptive 

learning capability for anomaly detection. The difference between this work and the previous 

work is that when developing the multiple model system, instead of using the linear least squares 

algorithm for local model identification, this research generalizes the local model identification 

problem by formulating an optimization problem based on a loss minimization framework and 

solving it with the mini-batch stochastic gradient descent method. Therefore, the revised 

GSMMS proposed in this research can be applied to a wider range of applications.  

In the followings, the research works of the multiple model approaches for complex 

systems anomaly detection and fault diagnosis are reviewed in Section 4.2. The contribution of 

this research work is also summarized in this section. Section 4.3 describes the integration of 

growing self-organizing map for operation space partition and gradient descent algorithms for 

local model identification. The case study to demonstrate and validate the proposed methodology 

with the sensor fault diagnosis problem is presented in Section 4.4. Discussion and conclusions 

are given in Section 4.5. 

4.2  Literature review 

For a complex engineering system, many components are coupled and a wide operating 

range is involved. It requires a sophisticated mathematical model to describe the system 

dynamics under its entire operating range, which is often not applicable to obtain in industrial 

applications. To provide more autonomous, intelligent and user-friendly tools, multiple model 

and operating regime approaches are studied, in which a global model consists of multiple local 
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models, and each local model has a simpler structure and a certain range of validity (operating 

regime) less than its entire operating range. The rationale behind this approach is that the system 

dynamics in each operating regime will be simpler so that the development of several local 

models is easier than that of one global model.  

Many research works in operating regime decomposition or multiple model approaches 

have been explored for modeling, monitoring and control of complex and nonlinear systems. In 

general, this approach consists of two steps. The first step is to divide the entire operation range 

into multiple either exclusive or overlapping operating regimes based on some characterization 

variables. The selection of those variables is system dependent, which can include manipulated 

inputs, measured outputs and auxiliary variables. The second step is to identify a local model for 

each operating regime. Both physical models and data-driven models have been developed to 

describe the system dynamics in the literature. In the following, previous research work in this 

area is reviewed.  

4.2.1		Multiple model approaches for complex systems 

In many engineering systems, the effective monitoring, control and diagnosis need the use 

of nonlinear models instead of the standard linear time-invariant models. Most methodologies 

developed for linear systems can only be satisfactorily used in mildly nonlinear systems under 

certain circumstances. Some nonlinear models are developed based on a priori knowledge of the 

system, which is complex, need an intensive understanding of the system itself and are not 

applicable for many industrial applications so they often require some simplifications. For those 

complex systems that a priori knowledge is partially or totally unavailable, data-driven methods 

such as kernel estimators, artificial neural networks and fuzzy models were proposed (Suykens et 

al., 1996; Babuška, 1998; Nelles, 2002; Chen et al., 2005). There are also some research works 
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that have explored hybrid approaches to leverage the advantages of both the a priori knowledge 

and input/output data to build up models for complex systems (Hofleitner, 2013; Shui et al., 

2018). Nevertheless, the global model approach, which depends on one model to describe the 

system behaviors under its entire operating range often suffers from fundamental limitations to 

address highly nonlinear behaviors or complex interactions.  

To address this problem, the divide and conquer strategy is proposed. The basic idea is to 

partition a complex problem into several simpler and solvable sub-problems so that simpler and 

adequate solutions can be designed. Many research works in nonlinear modeling, identification 

and control have studied the decomposition of operating regimes and the development of 

multiple models to approximate system dynamics in complex systems. Takagi and Sugeno 

proposed a rule-based fuzzy modeling method using a fuzzy partition of input space to form 

linear input-output relation in each fuzzy subspace with the following format (Takagi and 

Sugeno, 1985): 

𝑅¤: 𝑖𝑓	𝑥.	𝑖𝑠	𝑖𝑛	𝐴¤., … 𝑥*	𝑖𝑠	𝑖𝑛	𝐴¤*,					𝑡ℎ𝑒𝑛	𝑦¤ = 𝑔¤(𝑥., … , 𝑥*)             (4.1) 

where 𝑅¤ is a fuzzy implication. 𝑥., … , 𝑥* are variables of the premise and 𝑦¤ is variable of the 

consequence in the 𝑚 th implication. 𝐴¤.,… , 𝐴¤* are membership functions of the fuzzy sets in 

the premise of the 𝑚 th implication. 𝑔¤ is a local model that describes the input-output relation in 

the 𝑚th implication. The final output y is inferred from 𝑛 implications and is presented as the 

weighted average of all 𝑦¤  so that the fuzzy partition has smoothed connections between 

different regions.  

 Another approach is proposed by Johansen and Foss in the following (Johansen and Foss, 

1993,1995, 1997): 
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y = 𝑣¤(𝑥)𝑔¤(𝑥)£
¤Á.                                        (4.2) 

𝑣¤(𝑥) =
îÄ(¹)

îÄ(¹)ï
Ä��

                                      (4.3) 

where 𝑔¤  is the local model and y is the global output. 𝜌¤  is the validation function that 

indicates the validity of the local model in each operating regime.  

Nevertheless, a proper partitioning of the operating range is one key element for the 

successful deployment of the multiple model approach, which is one of the major challenges in 

this area of research. There have been different methods developed to decompose the operating 

range and can be categorized based on deterministic or stochastic assumption (Blom and Bar-

Shalom, 1988; Jordan and Jacobs, 1994; Petridis and Kehagias, 1996), soft (Takagi and Sugeno, 

1985; Johansen and Foss, 1993) or hard (Sanger, 1991; Barton and Pantelides, 1994; Bencze and 

Franklin, 1994) partition, and homogeneous or heterogeneous partition (Orjuela et al., 2013). 

However，the early work of operating regime partition is heuristic, often through offline or trial-

and-error approaches. To enable an autonomous partitioning process, the fuzzy adaptive 

resonance theory algorithm was proposed (Tzafestas and Zikidis, 2001) to determine both local 

model parameters and model structures by specifying fuzzy rule splitting and addition 

mechanisms to improve the converge of regions. Uosaki and Hatanaka proposed a hybrid regime 

selection method to improve the quality of the global model based on three criteria - Kullback 

Discrimination Information, Akaike Information Criterion and Mean Square Error, in partition 

and integration of regimes to build up suitable local regimes (Uosaki and Hatanaka, 2008). 

Kohonen’s self-organizing map (SOM) using vector quantization techniques was used to 

improve the operating regime partition for multiple model approaches in nonlinear systems 

(Nelles, 2001). This method overcomes the limitation of hyper-rectangle local model domains in 
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previous works. Moreover, instead of dividing individual input variables, the operation space is 

directly partitioned with Voronoi tessellation by defining a set of weight vector 𝜀¤,𝑚 =

1,… ,𝑀  in the Euclidean sense (Martinetz et al., 1993): 

𝑅¤ = {𝒙: 𝒙 − 𝜀¤ ≤ 𝒙 − 𝜀? , ∀𝑖 ≠ 𝑚}                  (4.4) 

where 𝒙 is the input variables. As shown in Figure 4-1, the weight vector defines the central 

location of each operating regime. The Voronoi tessellation ends up forming the boundaries of 

each operating regime by aggregating “similar” input-output patterns into one sub-region 

through unsupervised clustering. Moreover, the growing mechanism is further explored and 

added to SOM, such as growing cell structure and growing neural gas, which enables SOM to 

grow to an appropriate size (Fritzke, 1994b, 1994a). Such autonomous addition and removal 

capability in SOM can facilitate operating regime partition in multiple model approach (i.e., the 

number of local models can autonomously grow and adapt to new data). Liu introduced the 

growing structure multiple model system (GSMMS) method, which utilized a growing SOM to 

decompose input-output space of a dynamic system into sub-regions and identify local model 

parameters to describe the system behavior in each sub-region with the least squares method (Liu 

et al., 2009).  

 

Figure 4-1 Voronoi tessellation with SOM weight vectors 
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4.2.2		Multiple model approach for fault diagnosis and prognosis  

In fault diagnosis and prognosis problems, the multiple model and operating regime 

approaches have attracted significant attentions. Takagi-Sugeno fuzzy models (TSFMs) that 

represented local dynamics in different state space regions by local linear systems were 

employed to generalize linear parity relations for fault estimation in nonlinear systems (Nguang 

et al., 2007). Deshpande utilized a Bayesian approach to identify local models and generalized 

likelihood approach for fault identification in a nonlinear system (Deshpande and Patwardhan, 

2008). In (Wang et al., 2008), degradation patterns were characterized under different operating 

regimes and a similarity-based prognostic approach was studied to estimate the remaining useful 

life. Operation-specific hidden Markov models were developed to characterize degradation 

process in a semiconductor manufacturing system (Bleakie and Djurdjanovic, 2016). However, 

those approaches lack adaptive capability to learn new operating regimes automatically from 

new data. GSMMS that integrated the growing SOM with efficient local model parameter 

estimation was proposed for anomaly detection and fault diagnosis in nonlinear dynamic systems 

(Liu et al., 2009). This method is capable of discovering new operating regime and refining local 

models with new data from the system so that it can generate operating regime dependent 

residuals for more reliable anomaly detection. Moreover, the authors have compared the model 

accuracy, training and testing time among the proposed GSMMS method and other methods such 

as the TSFM, NARX and ARX, and showed that the GSMMS outperformed those methods 

because of its relatively high model accuracy and fast speed during testing. Later, the GSMMS 

was further employed for precedent free fault isolation in diesel engine exhaust gas recirculation 

system (Cholette and Djurdjanovic, 2012) and quality estimation in a semiconductor 

manufacturing process (Bleakie and Djurdjanovic, 2016). Nevertheless, those studies are 
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restricted in the implementations that local model parameters can be identified by a closed-form 

solution with the linear least squares method.  

To address this weakness, this research revises the GSMMS algorithm by formulating the 

local model identification problem into an optimization problem based on the loss minimization 

framework and solving it with a gradient descent method.  

4.3  Methodology 

Following the multiple model approach proposed by Johansen and Foss (Johansen and 

Foss, 1993, 1995, 1997), the global model is defined as: 

F(t) = 𝑣¤(𝑠(𝑡))𝑓¤(𝑠(𝑡))£
¤Á.            (4.5) 

𝑣¤ 𝑠(𝑡) = 1 𝑠(𝑡) ∈ 𝑉¤
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (4.6) 

where 𝑉¤,𝑚 = 1,… ,𝑀 is a disjoint partition of the operating space that particular model input 

vectors 𝑠(𝑡) reside. Model input vectors 𝑠(t) can consist of manipulated inputs, measured outputs 

and auxiliary variables at a given sampling time t, t = 1,… , T. F(t) is the global output, which is 

a weighted summation of the output from each local model 𝑓¤(𝑠 𝑡 ). The validity function 𝑣¤ 

indicates how much each local model output contributes to the global output. Here, it is defined 

with a gating function so that only one local model will be used to describe the system dynamics 

at any given sampling time t. This provides tractability, which will benefit the model parameter 

estimation during learning, model stability and facilitate describable control capabilities.  

 From the Eqs. (4.5) and (4.6), two major elements need to be identified to describe a 

complex system with the multiple model approach – 𝑉¤ that partitions the operating space and 

𝑓¤ 𝑠 𝑡  that represents the local dynamic behaviors in the system. Following the training 
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process of the GSMMS method, the multiple model system is established by identifying 1) 

structural parameters – number and locations of the weight vectors in the SOM, and 2) local 

model parameters. In this section, a revised version of the GSMMS is introduced, which 

determines the structural parameters with the growing SOM algorithm, and formulates local 

model identification into an optimization problem based on the loss minimization framework 

solving with a gradient descent method.  

4.3.1		Identification of structural parameters 

The growing SOM method involves three learning processes – competitive learning, 

cooperative learning and adaptive learning (Fritzke, 1994b). The competitive learning process 

means with a given SOM network as shown in the left-hand side plot of Figure 4-2 a), each node 

will try to compete with the others and win new sample data based on the Euclidean distance. 

The winning node is defined as the best matching unit (BMU) and the new sampling data s will 

be assigned to it as shown in the right-hand side plot of Figure 4-2 a). Second, with the new 

sample data s, the weight vectors of each node will be updated with the cooperative learning 

capability, i.e., adjusting the location of the BMU as well as its direct topological neighbors. 

Therefore, the distance among each node shown in the left-hand side plot of Figure 4-2 b) is 

changed and an updated SOM network is presented in the right-hand side plot of Figure 4-2 b). 

At last, the existing node that has the highest value such as visiting frequency or quantization 

errors will be marked shown in left-hand side plot of Figure 4-2 c). If it exceeds a predefined 

threshold, a new node will be inserted between this node and its furthest direct neighbor to 

reduce its value as shown in the right-hand side plot of Figure 4-2 c). This process is called 

adaptive learning.  
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Figure 4-2: Learning mechanisms of a growing SOM (Fritzke, 1994b) 

In this study, the growing SOM is employed to facilitate the operating regime partition in 

the GSMMS. However, instead of using the visiting frequency or quantization errors, the growth 

of the GSMMS is according to the fitness of the local model in each operating regime.  

The SOM weight vectors {𝜀¤,𝑚 = 1,… ,𝑀}, which determine the center location of each 

operating regime are adjusted with the recursive updating format: 

𝜀¤ 𝑘 + 1 = 𝜀¤ 𝑘 + 𝜁¤ 𝑘 ℎ 𝑘, 𝑑𝑖𝑠 𝑚, 𝑐 𝑠 − 𝜀¤ ,			𝑚 = 1,… ,𝑀         (4.7) 

where 𝑑𝑖𝑠 . , .  is the topological distance between two operating regimes, which is computed 

using the breadth-first procedure (Cormen et al., 2009). 𝑐  is the BMU - the index of the weight 

vector that is closest to the training input 𝑠. 𝑘 is the number of updates of weight vectors in a 

GSMMS network with a fixed number of operating regimes. The maximum number of 𝑘  is 

predefined to stop the weight vectors updates. 𝑘 will be reset to 0 when a new operating regime 

is added to the network.  

For each input 𝑠 𝑡  at a given sampling time t, its BMU 𝑐 𝑡  will be determined by Eq. 
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(4.8). The matching process of the input s and the BMU 𝑐 indicates the competitive learning 

capability of the growing SOM method. Operating regimes compete with each other and use the 

data they won to determine local models in the corresponding regimes.  

𝑐 𝑡 = argmin
¤

𝑠 𝑡 − 𝜀¤      (4.8) 

The neighborhood function ℎ 𝑘, 𝑑𝑖𝑠 𝑚, 𝑐  is defined with Gaussian kernel shown in Eq. 

(4.9). The use of the neighborhood function is a cooperative learning process among each 

operating regime. The neighborhood function updates the weight vectors not only with the 

training data falling into the corresponding operating regime (Voronoi set), but also the training 

data in the neighboring regimes.  

ℎ 𝑘, 𝑑𝑖𝑠 𝑚, 𝑐 = 𝑒𝑥𝑝 -@?¥ ¤,f p

Súp *
    (4.9) 

where 𝜎 is a non-increasing function of time and defines the effective range of the neighborhood 

function.  

The penalty term 𝜁¤ 𝑘  is determined by the value of the local loss function 𝐽¤  that 

established for local model parameter identification. The increment of 𝜁¤ will lead to the weight 

vector move toward regimes with higher loss functions. It aligns with the adaptive learning 

capability of the growing SOM but in this research, it employs different criteria for growth - the 

value of the loss function replaces the visiting frequency or quantization errors that are used in 

the traditional growing SOM method.  

𝜁¤ 𝑘 = \Ä(*)
\Ä(*)ï

Ä��
       (4.10) 

If the largest 𝜁¤ exceeds a predefined threshold, a new node can be inserted between the 

node with the largest 𝜁¤ and its furthest neighbor according to the Euclidean distance. This leads 
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to a finer partition of the operating regime that cannot be sufficiently described by current local 

model and requires further decomposition.  

 At last, the growth of the SOM network is terminated based on two stopping criterion: 1) 

all 𝜁¤,m = 1,… ,M  are below the predefined threshold, and 2) the number of SOM nodes 

(number of operating regimes) exceeds a predefined number.  

4.3.2		Identification of local model parameters  

After the operating regime is partitioned, the local model will be developed based on the 

training data falling into the corresponding regime. Previous work in the GSMMS has 

demonstrated the development of local models with linear least squares. In this section, the 

learning process of local model parameters is cast as an optimization problem based on the loss 

minimization framework and solved with the gradient descent method. This approach can handle 

those local models that do not have a closed-form solution (e.g., logistic regression) or are 

nonlinear (e.g., quadratic). 

A loss function quantifies how undesirable it is to use the parameters 𝛽¤ for prediction on 

𝑥  when the correct output is 𝑦 . To obtain optimal parameters for the model that has the 

maximum similarity with the real behaviors, an optimization problem is formed to minimize the 

weighted sum of the loss function 𝐽¤ as shown below: 

𝐽¤∗ = min
ýÄ�,…,ýÄþ

.
�

𝑤¤(𝑠(𝑡))𝐽¤(𝛽¤; 𝑠¤(𝑡))�
DÁ.      (4.11) 

where weighting function 𝑤¤ vector is defined as 𝑤¤(𝑠(𝑡)) 	= 𝑒𝑥𝑝	(-@?¥(¤,f(D))
p

Súp
). It can smooth 

the discontinuities along the boundaries of adjacent regions; the further the operating regime m 

away from the BMU c(t), the less impact of the current training sample on the local model 
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identification. 𝛽¤ = [𝛽¤., … , 𝛽¤Õ] are the parameters for the local model in the mth operating 

regime, and 𝑠¤  are training samples that are assigned to the corresponding regime. The loss 

function 𝐽¤  evaluates how much the current local model is deviated from the real system 

behaviors, which is used as the splitting criteria for operating regime partition in Section 4.3.1. 

Typically, the training loss (empirical risk or training error) is minimized by determining 

the minimum average loss of all training samples, which requires making tradeoffs across all 

samples since it is difficult to find a set of parameters that makes every sample with a small loss 

in real applications. A general approach to achieve that is to use the iterative optimization – 

gradient descent, which starts at some point 𝛽¤ (e.g., all zeros), and tries to tweak the parameters 

based on the gradient of the function. The gradient provides the direction to move in to decrease 

the objective the most. The gradient descent method is one of the most popular algorithms to 

perform optimization and has been widely used for machine learning algorithms. It has two 

hyperparameters – 1) step size 𝜂 and 2) the number of iterations, which need to be customized 

based on different optimization problems (Ruder, 2016).  

 The standard gradient descent algorithm – batch gradient descent finds the optima with 

the entire training dataset: 

𝛽¤
"�Y = 	𝛽¤

�à@ − 𝜂∇ýÄ𝐽¤(𝛽¤;	𝑠¤)	        (4.12) 

The parameters 𝛽¤ are updated in the opposite direction of the gradient of the loss function 

w.r.t. ∇ýÄ𝐽¤ . The step size 𝜂  is an important hyperparameter that determines how fast to 

converge to a (local) minimum. Larger step sizes are likely to drive faster so that will have faster 

convergence but may get overshoot and end up unstable results. Smaller step sizes, on the other 

hand, lead to very slow convergence to the destination. A common strategy to define the step 
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size is to set it as a decreasing function of the number of updates. In this work, the initial step 

size is set to be one and decreases as the inverse of the root square of the number of updates that 

have been taken so far.  

One downside of the batch gradient descent method is that it is slow since the training loss 

is based on a sum over all training data. For each iteration, the gradients for the whole dataset 

need to be calculated. It re-computes gradients for similar examples so that performs redundant 

computations for large datasets. Therefore, it is intractable for large datasets that don't fit in 

memory and usually does not allow online model updates. Stochastic gradient descent addresses 

this redundant computation problem by updating parameters based on each training sample 

instead of looping through all training samples shown in Eq. (4.13). It is a stochastic 

approximation of the gradient descent optimization, which usually is much faster - the cost of 

each update is reduced from 𝒪(Tp) to 𝒪 p  (Kasai, 2017), and can be used for online model 

updates. Even if the stochastic gradient descent may take more updates than batch gradient 

descent, with large data sets, it usually prefers to have many updates based on cheap estimates of 

the gradient rather than few updates based on good but expensive ones. Moreover, the noisiness of 

the stochastic gradient descent can help escape from saddle points or local minima in non-convex 

optimization problems.  

𝛽¤
"�Y = 	𝛽¤

�à@ − 𝜂∇ýÄ𝐽¤(𝛽¤; 𝑠¤ 𝑡 )	              (4.13) 

Nevertheless, since the stochastic gradient descent method updates is based on one training 

sample, it sometimes suffers from large variance that results in unstable convergence and 

objective function to fluctuate severely. To balance the tradeoff between the variance (robustness 

of the stochastic gradient descent) and the speed (efficiency of batch gradient descent), a 

compromise approach is to compute gradient against more than one training samples at each 
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update, which is called mini-batch stochastic gradient descent shown in Eq. (4.14). This 

approach results in smoother convergence since it computes gradient over more training samples, 

and remains its capability of reducing the computation cost and achieving better results as it can 

kick the objective function from local saddle point. It can also take advantage of vectorization 

and paralleling implementation to further speed up the training process. 

𝛽¤
"�Y = 	𝛽¤

�à@ − 𝜂∇ýÄ𝐽¤(𝛽¤; 𝑠¤(𝑡: 𝑡 + 𝑛))	  (4.14) 

In this research work, the mini-batch stochastic gradient descent method is employed to 

solve the optimization problem. The step size is defined as  

𝜂 = .
?@¹p

	 , 𝑖𝑑𝑥 = 1,… , 𝐼    (4.15) 

where 𝑖𝑑𝑥 is the number of local model parameters updates that have been taken so far with the 

gradient descent method. 

 To sum up, the flowchart of the sequential training process of the revised growing 

structure multiple model system is shown in Figure 4-3. 
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Figure 4-3: Flowchart of the sequential training process with the revised growing structure 
multiple model system 

 

4.4  Case study  

In this section, the proposed modeling method for multiple regime anomaly detection and 

fault diagnosis is demonstrated and validated through a case study of sensor fault diagnosis under 

multiple operating conditions. Data from a registration process in an R2R manufacturing system 

is employed for model training and testing. Data under both normal operating condition and with 

sensor failures are collected to demonstrate the effectiveness of the revised GSMMS algorithm: 

1) normal data from operating conditions 1 and 2, respectively, and 2) abnormal data with one 

sensor degraded under operating conditions 1 and 2, respectively. 

4.4.1		Multiple regime sensor fault diagnosis in R2R manufacturing systems 

For a high-throughput R2R manufacturing system, sensors and inspection systems are 

installed to feedback information for system operation, supervise the system performance and 
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guarantee the product quality. However, those sensors often work under severe environment with 

high temperature or strong vibration induced by rollers, which results in sensor degradation and 

failures over time. To ensure sensor performance and avoid wrong decisions due to sensor 

failures, real-time sensor fault diagnosis should be realized in the production systems. In Chapter 

3, a generalized nonlinear analytical redundancy method has been introduced for sensor fault 

diagnosis. However, it has been pointed out that the performance of analytical redundancy 

methods varies, depending on the inevitable uncertainty in the knowledge of system dynamics 

and measurement noise under different operating conditions (Chow and Willsky, 1984; Qin and 

Li, 1999). As shown in Section 3.5.1, when the parity coefficients determined by nominal data 

from operating condition 1 are used to generate parity residuals with nominal data from 

operating condition 2, it results in deviations that misjudge system disturbance/sensor noise as a 

sensor fault. Therefore, in this section, multiple regime sensor fault diagnosis is achieved by the 

proposed method to address this problem by integrating the growing SOM for operating regime 

partition and parity space approach for local model identification.  

The overall framework is shown in Figure 4-4. Given a dynamic system with multiple 

sensors, the dynamic model is obtained based on physics and engineering knowledge, and input 

signals and output (sensor measurements) are collected for the GSMMS network training. In the 

GSMMS network, each node represents one operating regime and is updated according to the 

parity residuals that are generated from local parity relations in the corresponding operating 

regime. The determination of parameters for parity relations is converted into solving the loss 

minimization problem with the mini-batch stochastic gradient descent method.  
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Figure 4-4: An operation dependent sensor fault detection scheme 

4.4.2		GSMMS network training with parity space approach 

As shown in Eq. (4.16), the sensor measurements consist of three parts – system model 

estimation, measurement noise and model uncertainty, and deviations that induced by sensor 

degradation/failures. Different operating conditions such as material changeover in R2R 

processes or various production speeds might result in different magnitude of the measurement 

noise and model uncertainty. To detect and differentiate the deviations induced by sensor 

degradation/failures from measurement noise/model uncertainty, the revised GSMMS network 

proposed in this chapter is employed.  

𝑦 = 𝑦 + 𝑟"�?¥�i»"f�&D'?"D( + 𝑟(    (4.16) 

To learn the GSMMS network with the parity space approach for sensor fault diagnosis, 

the R2R registration process is formed as a nonlinear system with one state, one actuator input, 

and two sensor measurements A and B. Eq. (4.17) shows the general formulation of the 

nonlinear system, of which the model details can be obtained based on empirical knowledge and 
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physical understanding of the system.  

      (4.17) 

and its parity relations are formulated as:  

                                             (4.18) 

and                                                                                           (4.19) 

Following the optimization design in Chapter 3, optimal model parameters are selected for 

parity relations so that under a no-fail situation, the parity residuals are close to zero in each 

operating regime as shown below: 
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𝑓

= 0                (4.20c) 

The operating regimes can represent different operating conditions such as during steady-

state operation, material changeover or under different operation speeds. To obtain parameters 

for local parity relations in the corresponding operating regime, the optimization design in Eqs. 

(4.20) is converted to an optimization problem based on the loss minimization framework shown 

in Eqs. (4.21) and (4.22): 

𝐽¤D Ω¤; 𝑠¤ 𝑡 = Ω¤Ð Y t − EU t S + 𝜆. Ω¤ÐΩ¤ − 1 S + 

𝜆S(Ω¤Ð∇𝑂§� 𝑥(𝑡), 𝑢(𝑡) )S        (4.21) 

𝐽¤∗ = min
ÉÄ�,…,ÉÄ«

.
"

𝑤¤(𝑠(𝑡))𝐽¤D(Ω¤; 𝑠¤(𝑡))"
DÁ.              (4.22) 

where 𝜆. and 𝜆S are hyperparameters that regulate the constraint functions in Eq. (4.20). Large 

values of 𝜆. and 𝜆S indicate that the loss function will be more sensitive to the violation of the 

constraints, vice versa.  n is the batch size, which usually can be set as power of 2, ranging from 

32 to 256  (Ruder, 2016). 

The local model parameters Ω¤  are determined by the mini-batch stochastic gradient 

descent in each operating regime, as shown in Eq. (4.23). 

Ω¤"�Y = 	Ω¤�à@ − 𝜂∇ÉÄ𝐽¤(Ω¤; 𝑠¤(𝑡: 𝑡 + 𝑛))	             (4.23) 

where 𝑠¤ = 𝑦+, 𝑦, , 𝑦+, 𝑦, , 𝑥, 𝑢, 𝑥, 𝑢  are the input-output signals from the system. Here the 

subset of 𝑠¤ that only contains 𝑥, 𝑢, 𝑥, 𝑢  is used to partition the operating space.  
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4.4.3		Validation results 

To demonstrate the advantage of the proposed multiple model approach for sensor fault 

diagnosis, the diagnostic performance under two different modeling scenarios is presented below. 

The diagnostic accuracy under different operating conditions with and without sensor faults is 

listed in Table 4-1 to evaluate the diagnostic performance of each modeling scenarios. 

Measurement deviations are added to sensor A to simulate different severity of sensor 

degradation - 5%, 10%, 15% and 20% (P5, P10, P15 and P20 respectively) in the case study. The 

MATLAB library – SGDLibrary is employed (Kasai, 2017) to solve the optimization problem. 

The batch size for the mini-batch stochastic gradient descent method is tuned and set as 128 

during the training process. Figure 4-5 shows the training time of different batch size with the 

mini-batch stochastic gradient descent method, while Table 4-1 compares the training time and 

the RSME value of optimal objective function (parity residuals) among different gradient descent 

methods.  

 

Figure 4-5: Training time with the mini-batch stochastic gradient descent method 
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Table 4-1: Comparison of three gradient descent algorithms  

 Training time (s) RMSE of parity residuals 

Standard gradient descent 2377 0.642 

Stochastic gradient descent 48506 0.632 

Mini-batch stochastic gradient descent 1813 0.639 

 

Scenario 1:  Sensor fault diagnosis with a global model approach 

 The parity relations are trained with data under normal operating conditions that involve 

both operating conditions 1 and 2. As shown in Figure 4-6, the testing result shows that the 

parity residuals generated with the global model approach have large variance and are not 

consistent. By setting the threshold with 2 sigma, under normal condition, the false alarm is 6.9%, 

while the detection power with sensor A degraded by 20% is only 27.22%. The comparison 

result of parity residuals shown in Figure 4-7 fails to show a clear discrepancy between a normal 

sensor and a degraded sensor. Therefore, the global model approach is not effective to detect 

sensor faults/degradation in this case study.  
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Figure 4-6: Histogram for parity residuals that generated with normal sensors - global 
model approach 

 

 

Figure 4-7: Histogram for parity residuals that generated with the sensor A degraded - 
global model approach 

 

Scenario 2: Sensor fault diagnosis with the multi-regime approach (GSMMS) 

 In the last scenario, the GSMMS is constructed with the proposed method and data from 

normal operating conditions 1 and 2. The diagnostic performance of the generated local parity 
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residuals is tested with normal and abnormal (sensor A degraded) data that collected from both 

operating conditions 1 and 2. Figures 4-8 a) and b) demonstrate that the GSMMS network 

trained with normal data from operating condition 1 and 2 is able to recognize that there are two 

different operating conditions, partition the entire operating space into two operating regimes, 

and develop two local models (M1 – local parity relations in operating regime 1, and M2 – local 

parity relations in operating regime 2) accordingly. The testing results in Table 4-1 shows that 

the false alarm rate under normal operating conditions 1 and 2 is 1.84% and 6.43%, respectively. 

The developed GSMMS network tested with sensor A degraded by 20% demonstrates its 

capability of detecting the anomaly with detection power of 100% and 98.83% under operating 

conditions 1 and 2, respectively. Also, as shown in Figures 4-8 c) and d), the parity residuals 

generated with the GSMMS network can be used as a heath indicator to reveal the severity of the 

sensor degradation. 

 

a) Parity residuals with normal sensors under operating condition 1 (N1) 
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b) Parity residuals with normal sensors under operating condition 2 (N2) 

 

 

c) Parity residuals with sensor A degraded under operating condition 1 (N1_f1) 
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d) Parity residuals with sensor A degraded under operating condition 2 (N2_f1) 

Figure 4-8: Parity residuals under different operating regimes with the multiple model 
approach 

 

Table 4-2: Summary of the diagnostic accuracy under different scenarios  

Scenarios N1 N2 N1_f1 N2_f2 

1. global model approach  93.10% 100.00% 27.22% 100.00% 

2. multiple model approach 98.16% 93.57% 100.00% 98.83% 

 

4.5  Discussion 

Table 4-2 summarizes the diagnostic accuracy of the models developed under different 

scenarios and shows that the overall diagnostic performance of the sensor fault diagnosis is 

significantly improved with the multiple model approach. Moreover, it is observed that with the 

multiple model approach, the diagnostic performance with M1 is better than the one with M2 in 

their corresponding operating regimes. This is because the operating condition 2 involves larger 
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variance and noise than operating condition 1. As shown in Figure 4-9, the original system 

model accuracy under those two operating conditions is different, which is mainly affected by 

sensor measurement noise and system model uncertainty. Such different variations of the 

uncertainty and noise under the two operating conditions affect the local model development in 

the GSMMS framework, and therefore lead to different diagnostic performance.  

 

Figure 4-9: System model estimation results under different operating conditions  

In Figure 4-10, the parity residuals are generated with M1 (x-axis) and M2 (y-axis) with 

data from operating conditions 1 (opt) and 2 (op2) with and without sensor A degraded. It is 

observed that the fault signature from the same failure source varies under different operating 

regimes. Those signatures can provide additional information for identifying the failure types 

and might provide hints for the root cause of the failures.  
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Figure 4-10: Parity residuals signatures under different operating regimes with and without 
sensor fault 

 

4.6  Conclusion 

In this chapter, a multi-regime modeling framework for anomaly detection and fault 

diagnosis is introduced. Following the strategy of “divide and conquer”, the multiple model 

approach is adopted, which divides the entire system operating range into small operating 

regimes and then models the local dynamics individually. This research employed and revised 

the GSMMS to develop local models for anomaly detection and fault diagnosis in complex 

systems by integrating the growing SOM for partitioning operating regime and the gradient 

method for identifying local model parameters. The Voronoi sets in the SOM naturally partition 

the entire operating space into smaller operating regimes, in which local models are developed to 

describe the system behaviors individually. The number of the operating regimes is 

automatically determined by the growing SOM, which is capable of detecting and learning new 

data patterns that are generated from new operating regimes.  
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For the local model parameter identification problem, instead of using a linear least squares 

algorithm, this research formulates it as an optimization problem based on the loss minimization 

framework and finding the optimal solution with the mini-batch stochastic gradient descent 

method. This modification can help to handle the parameter identification problem of local 

models that do not have a closed-form solution or are nonlinear.  

The case study of sensor fault diagnosis in an R2R registration process demonstrates the 

performance of the proposed method by comparing the accuracy of the diagnosis results from a 

global model approach and from the proposed multiple model approach. Both normal data and 

abnormal data collected from two different operating regimes are used to validate the detection 

capability of the proposed method.  

The results show that the proposed multiple model approach outperforms the traditional 

global model approach in terms of diagnostic accuracy. The revised GSMMS can handle the 

local model identification for the parity relations, which does not have a closed-form solution. 

Moreover, with its continuous learning capability, the proposed method can enhance its detection 

capability over time with data from new operating regimes and is capable of identifying different 

system behaviors induced by various normal operating conditions or sensor degradation and 

failures.  

To sum up, the revised GSMMS method for multi-regime anomaly detection and fault 

diagnosis can effectively detect anomalies and identify faults under different operating regimes. 

Such multiple model approach eases the modeling tasks for system dynamics by developing 

local models for each smaller sub-region instead of for the entire system. It also enables input-

dependent fault diagnosis in complex systems, which provides additional insight to interpret the 

residual errors between the model output and the actual systems. The proposed method has a 
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wide range of industrial applications in anomaly detection and fault diagnosis with its benefit of 

an efficient online training process and effective diagnostic capability. 
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CHAPTER 5   CONCLUSION AND FUTURE WORK 

5.1  Conclusions 

This doctoral research has presented the research attempts in developing practical 

approaches to increase system visibility without additional sensors, in order to enhance real-time 

monitoring and fault diagnosis capability in R2R manufacturing systems. In particular, the 

research focused on 1) a multistage modeling method that characterizes the twofold error 

propagation and its associated quality measurements in R2R manufacturing systems, 2) a 

nonlinear analytical redundancy method for sensor fault detection in general nonlinear systems, 

and 3) a multiple regime anomaly detection and fault diagnosis scheme with a revised version of 

the GSMMS method that integrates both the growing SOM and gradient descent method. The 

effectiveness of those proposed methods is demonstrated with data from an R2R web handling 

process.  

Chapter 2 characterizes the twofold error propagation include process-centric and product-

centric variation propagation in R2R processes. A hybrid modeling method that integrates both 

physical models and regression models is proposed to describe the multistage process-centric 

variation propagation, which uniquely exists in R2R processes, and its associated product quality 

measurements from one stage to another. This modeling method can help release the requirement 

of sophisticated knowledge of a system and sensor/inspection systems in every stage. Moreover, 

the case study of an unwinding process indicates that the hybrid modeling method outperforms 
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pure data-driven methods with the improved accuracy of tension estimation by 15% and the pitch 

length by 70%. Finally, the estimation results from the multistage model can serve as virtual 

sensing and virtual metrology to monitor operation performance and product quality in each 

stage, thereby increase the visibility of the R2R manufacturing system without additional 

physical sensors.  

Chapter 3 presents a model-based analytical redundancy approach for sensor fault 

diagnosis by employing nonlinear observation matrix to formulate parity relations for residuals 

generation. The proposed method extends the analytical approach from the linear system to the 

general nonlinear system in which, both input and output equations are nonlinear functions of 

states and inputs. Moreover, it is able to generate residuals that are robust to noise and model 

uncertainties while sensitive to sensor faults. Finally, the case study of the R2R registration 

process indicates that the different types of sensor faults/degradations can be detected and 

isolated by the designed analytical redundancies without additional physical sensors.  

Chapter 4 introduces a multiple regime modeling approach for anomaly detection and fault 

diagnosis framework by integrating the growing self-organizing map for partitioning operating 

regime and the gradient method for identifying local model parameters. The proposed method 

enables input-dependent fault diagnosis in complex systems, which facilitates the interpretation 

of the residual errors between the model output and the actual system. Moreover, the case study 

of the R2R registration process indicates that the proposed multiple model approach outperforms 

the traditional global model approach in terms of diagnostic accuracy. Finally, the continuous 

learning capability of the proposed method can enhance its detection capability over time with 

data from new operating regimes and is capable of identifying different system behaviors under 

different operating conditions.  
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5.2  Contributions of this thesis 

This thesis facilitates a full realization of the potential advantages of R2R manufacturing 

systems and addresses existing barriers in real-time monitoring and fault diagnosis in complex 

systems. The detailed contributions are summarized as followings: 

First, this thesis investigated the variation propagation mechanism and the associated 

printing quality issues in the continuous R2R manufacturing processes. A twofold variation 

model is developed to describe how variations are introduced and transformed as the substrate 

goes from one operation stage to another (product-centric variation model), and how variation 

propagate instantaneously to the downstream substrate (process-centric variation model). A 

multistage model based on the formulation of SoV is developed via a novel modeling approach - 

a hybrid modeling that integrates physics-based models (torque equilibrium, and Hooke’s law) 

with data-driven methods (e.g., censored regression, and linear/logistic regression) to address the 

complex variation propagation phenomenon. Specifically, sensor data analytics complement the 

lack of full physical knowledge of an R2R process dynamics, while the physical knowledge 

minimizes the requirement for sensing and inspection at each stage. The estimates of the state 

variables (e.g., web tension) serve as a virtual sensor, while the outputs of the observation 

equations serve as a virtual metrology tool for intermediate product quality measurements based 

on system inputs (e.g., material properties and operational variables). As a result, the model 

serves as a foundation for process diagnosis/prognosis, quality control and improvement in R2R 

manufacturing systems. To the best of our knowledge, this is the first work that uses the SoV 

model to characterize the process-centric variation propagation and product variability in a 

continuous manufacturing system, whose mechanism is vastly different from the one in discrete 

manufacturing systems.  
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Second, this thesis proposed a nonlinear analytical redundancy method for sensor fault 

diagnosis problem in general nonlinear systems in which, both input and output equations are 

nonlinear functions of states and inputs. Following the idea of the linear analytical redundancy 

method – parity space that utilizes observation matrix to construct input-output relations to 

describe the relationships between system behaviors and sensor measurements, this study 

extends the parity space from linear to nonlinear systems by decomposing nonlinear observation 

matrix to build the input-output relations. The number of available analytical redundancies that 

can be added for sensor fault diagnosis is determined by the rank of nonlinear observation matrix 

and the generated residuals from each redundancy are used to detect and identify sensor faults in 

general nonlinear systems. Moreover, a robust optimization is designed to identify the model 

coefficients so that the generated residuals are sensitive to sensor failures but robust to 

noise/uncertainties. Post-process sensitivity analysis is also conducted to evaluate the effect of 

the changing operating conditions on the parity residuals generation, and provides the valid 

operating range given optimal model coefficients.  

Finally, this thesis introduced a multi-regime modeling framework for anomaly detection 

and fault diagnosis. Following the idea of “divide and conquer”, the multiple model approach is 

adopted, which divides the entire system operation space into small sub-regions and then models 

the local dynamics individually. The GSMMS is employed and revised to develop multiple 

models for anomaly detection and fault diagnosis in complex systems by integrating the growing 

self-organizing map for partitioning operating regime and the gradient method for identifying 

local model parameters. The novelty of this study is that instead of using the linear least squares 

algorithm, this research formulates the local model parameter identification problem as an 

optimization problem based on the loss minimization framework and finding the optimal solution 
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with the mini-batch stochastic gradient descent method. This modification can handle the 

parameter identification problem of local models that does not have a closed-form solution or has 

a nonlinear structure. The residuals generated from each operating regime enables input-

dependent fault diagnosis in complex systems, which can provide extra information for fault 

identification. Moreover, the continuous learning capability of the proposed method can enhance 

its detection capability over time with data from new operating regimes and is capable of 

identifying different system behaviors induced under various normal operating regimes.  

5.3  Future work 

Some future research work can be conducted in the area addressed by this thesis. A short 

summary of possible directions is listed below. 

1) The development of the multistage model is applied to R2R processes with considering 

the process-centric variation as tension propagation in Chapter 2. However, chemical 

reactions and heat treatment sometimes are also integrated in R2R processes, which 

might bring additional types of process-centric variation and will be an interesting 

direction for further investigation. 

2) Sensors and inspection systems are valuable for quality assurance in R2R processes, 

which will detect defects and trace product quality at each individual operation step. 

Therefore, insufficient sensors might delay the realization of defects and increase the 

time of finding the root cause. However, it is not applicable nor cost-effective to install 

sensors and inspections system for every operation step due to constraints of budget, 

space and process speed. Therefore, an optimal sensor placement in an R2R process 

that balances the tradeoff between the cost of sensors (installation and maintenance) 

and the cost of defects (capital and time) can be further studied.  
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3) The nonlinear analytical redundancy method proposed in Chapter 3 for sensor fault 

diagnosis assumes the actuator works properly. However, it is not a rare situation that 

both sensors and actuators fail in a nonlinear system. A robust fault diagnosis scheme 

that is capable of detecting and isolating both sensor and actuator failures for a general 

nonlinear system is worthy of further explorations. 

4) Due to the increasing complexity of manufacturing systems, and large volume of data 

under different operating conditions, the optimization problem that is designed for the 

local model identification in Chapter 4 often requires high computation power during 

the training process and online adaptive learning. Larger batch size for the mini-batch 

stochastic gradient descent method can reduce communication time but will slow down 

the convergence rate, which will diminish the benefits of the reduced communication 

cost. Guidelines for selecting a proper batch size for different applications can be 

explored. Moreover, parallelized and distributed algorithms for learning the local 

model can be further investigated to improve the efficiency of the online learning 

process.  
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APPENDICES 

A.I: Dynamic equations in R2R processes 

According to the torque equilibrium analysis, the dynamic equations of the material rolls, 

driven rollers, and idle rollers can be written in the following general forms (Branca et al., 2012). 

@
@D

𝐽* 𝑡 𝜔*(𝑡) = −𝜏o* + 𝑅*(𝑡) 𝑇*i. 𝑡 − 𝑇* 𝑡 + 𝜏* 𝑡                (A.1) 

where 𝐽* 𝑡  is the inertia of the roll, 𝜔*(𝑡) is the angular velocity of the roller, 𝜏o*(𝑡) denotes 

the friction torque, 𝑅*(𝑡) denotes the radius of the roller, 𝑇*i.(𝑡) are the tension of the substrate 

coming out of the roller, 𝜏*(𝑡) is the applied torque transmitted from motor to the roller.  

Material roll: The inertia 𝐽* 𝑡  and the radius 𝑅* 𝑡  are both a function of time (decreasing as 

material unwinds while increasing as material rewinds) that  can be expressed as: 

𝐽* 𝑡 = 𝐽� +
a
S
𝜌Y𝑤Y 𝑅*e 𝑡 − 𝑅fe                                     (A.2) 

𝑅* 𝑡 = 𝑙𝑖𝑚
∆D→�

∆`_
∆D
= D.^_ D

Sa
                                         (A.3) 

where 𝐽� is a fixed inertia of the core shaft and the motor. 𝜌Y is the density of the substrate, 𝑤Y is 

the width of the substrate, 𝑅f is radius the of the core shaft, 𝑡Y is the material thickness. 

Driven roller: 𝐽* 𝑡  is time-invariant and the dynamics is represented by Eq. (A.4).  

@
@D

𝐽*𝜔*(𝑡) = −𝜏o* + 𝑅* 𝑇*i. 𝑡 − 𝑇* 𝑡 + 𝜏*(𝑡)                   (A.4) 

Idle roller: There is no 𝜏*(𝑡) and J� t  is time-invariant so that the dynamic equation is shown 
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as Eq. (A.5) 

@
@D

𝐽*𝜔*(𝑡) = −𝜏o* + 𝑅* 𝑇*i.(𝑡) − 𝑇*(𝑡)                         (A.5) 

Undesired slippage: The occurrence of slippage between a roller and the web is caused by 

excessive air-entrainment between them. During slippage, the velocity of the roller falls below 

the web velocity and the roller cannot guide the web anymore. Therefore, the web will tend to 

shift in transverse direction by external disturbances, and wrinkles or scratching may be 

generated on the web.  Avoiding such slippage events can not only reduce defective products but 

also improve productivity by maintaining the web transportation at the designed speed. With the 

intermediate tension estimated from the proposed multistage model, the belt friction equation can 

be employed to monitor the occurrence of the slippage in an R2R manufacturing system 

(Whitworth and Harrison, 1983).   

Belt friction equation: 𝑇* ≤ 𝑇*-.𝑒𝑥𝑝(𝜇*𝛽*)                             (A.6) 

where µ� is the frictional coefficient between a roller and web, β� is the wrap angle of a roller.  
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A.II: Derivatives of parameter estimation in the censored regression model 

𝑇*?@ =
𝑇*?@

∗			𝑖𝑓	𝑇*?@
∗ > 𝐿

0								𝑖𝑓	𝑇*?@
∗ ≤ 𝐿

                                           (A.7) 

where 𝑇*?@ is a real measurement (longitudinal tension) and 𝑇*?@
∗(𝑡) = 𝐸*𝑇*-.?@-.(𝑡) + 𝑭*𝑹*(𝑡) +

𝑍*  is a latent variable, 𝐿 = 0. Parameters 𝐸*  and 𝐹*  can be obtained by maximum likelihood 

estimation.  

Case 1: 𝑇*?@ > 0 

When 𝑇*?@ > 0, 𝑇*?@ = 𝑇*?@
∗
 so that the conditional probability of 𝑇*?@	is same as that of 

𝑇*?@
∗. Therefore, the probability of the tension on the current pitch conditioning on the upstream 

pitch tension and the roll radius is the following: 

𝑓 𝑇*?@ 𝑇*?@-., 𝑹* = 𝑓 𝑇*?@
∗ 𝑇*?@-., 𝑹* = .

ú3 Sa
𝑒𝑥𝑝 − .

S

�_
k�- �_�_Å�

k�Å�i𝑭_𝑹_
ú3

S

=

.
ú3
𝜙

�_
k�- �_�_Å�

k�Å�i𝑭_𝑹_
ú3

                                                             (A.8) 

where 𝑇*?@
∗~𝑁(𝐸*𝑇*-.?@-. + 𝑭*𝑹*, 𝜎[S)  and 𝜙  is the probability density function (pdf) of a 

standard normal distribution. (𝜎[ is the standard deviation of the normal distribution) 

Case 2: 𝑇*?@ = 0 

When 𝑇*?@ = 0, the mass conditional probability can be obtained by: 

Pr 𝑇*?@ = 0 𝑇*?@-., 𝑹* =Pr 𝑇*?@
∗ < 0 𝑇*?@-., 𝑹*  

= 𝑃𝑟 𝐸*𝑇*-.?@-. + 𝑭*𝑹* + 𝑍* < 0 𝑇*?@-., 𝑹* = 𝑃𝑟 𝑍* ≤ −(𝐸*𝑇*-.?@-. + 𝑭*𝑹*) 𝑇*?@-., 𝑹*  

Since 𝑍*	~	𝑁(0, 𝜎[S), we have 
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Pr 𝑇*?@ = 0 𝑇*?@-., 𝑹* = 𝛷 −
�_�_Å�

k�Å� D i𝑭_𝑹_ D

ú3
= 1 − 𝛷

�_�_Å�
k�Å� D i𝑭_𝑹_ D

ú3
  

(A.9) 

where 𝛷 is cumulative distribution function (cdf) of standard normal distribution.  

By adding a dummy variable dj, where 

𝑑� =
1			𝑖𝑓	𝑇*?@ > 0
0			𝑖𝑓	𝑇*?@ ≤ 0

                                              (A.10) 

And the conditional pdf of 𝑇*?@ given 𝑇*?@-.	and	𝑹* can be expressed as: 

𝑓 𝑇*?@ 𝑇*?@-., 𝑹* = .
ú3
𝜙 �_

k�- �_�_Å�
k�Å�i𝑭_𝑹_
ú3

@¸
∙ 1 − 𝛷

�_�_Å�
k�Å� D i𝑭_𝑹_ D

ú3

.-@¸
      (A.11) 

Then, the likelihood function 𝐿£ can be defined as: 

𝐿£ = .
ú3
𝜙

�_
k�- �_�_Å�

k�Å�i𝑭_𝑹_
ú3

@¸

∙ 1 − 𝛷
�_�_Å�

k�Å� D i𝑭_𝑹_ D

ú3

.-@¸
£
¤Á.     (A.12) 

Therefore, the maximum likelihood estimator for the parameters 𝐸* and 𝑭* can be defined 

as: 

𝐸*, 𝑭*; 𝜎[ = 𝑎𝑟𝑔	𝑚𝑎𝑥
�_,𝑭_;ú3

𝑙𝑛 𝐿£ 𝐸*, 𝑭*; 𝜎[ =

𝑎𝑟𝑔	𝑚𝑎𝑥
�_,𝑭_;ú3

𝑑� 𝑙𝑛
.
ú3
𝜙

�_
k�- �_�_Å�

k�Å�i𝑭_𝑹_
ú3

+ 1 − 𝑑� 𝑙𝑛 1 −£
¤Á.

𝛷
�_�_Å�

k�Å� D i𝑭_𝑹_ D

ú3
                                                                                          (A.13) 

where M denotes the total number of training data sets (m = 1,…, M) 
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