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Abstract 

 Epithelial tissues serve essential functions, such as preventing infection and 

water loss, regulating absorption and secretion, and creating specialized compartments 

within complex multicellular organisms. Epithelia are sheets of cells connected by 

specialized apical cell-cell junctions. Adherens junctions adhere cells to one another 

and mechanically integrate cells in the tissue, while tight junctions regulate both how 

much and what kind of materials can cross through the paracellular space (the space 

between cells). Both tight junctions and adherens junctions are dynamically regulated 

by filamentous actin and myosin II (actomyosin), which forms a contractile array near 

the apical cell-cell junctions. The forces generated by the apical actomyosin array can 

be transmitted to neighboring cells through adherens junctions to drive cell- and tissue-

scale changes. Cellular events, such as epithelial cytokinesis, cell extrusion, and wound 

healing, alter tension on adherens junctions and the dynamics of the apical actomyosin 

array. However, very little is known about how these changes in cell shape and 

actomyosin dynamics influence tight junctions and epithelial barrier function. 

 To better understand how dynamic cell shape change influences epithelial barrier 

function, we developed a tight junction barrier assay compatible with live imaging. This 

approach, the Zinc-based Ultrasensitive Microscopic Barrier Assay, or ZnUMBA, allows 

for the detection of localized, transient leaks. Using this approach in the epithelium of 

Xenopus laevis gastrula-staged embryos, we discovered that leaks that result from cell 

shape change are rapidly repaired by transient accumulation of the active conformation 

of the small GTPase RhoA, or Rho flares. Then, using fluorescently-tagged tight 

junction proteins, I found that occludin and ZO-1 show localized decline prior to Rho 
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flares and are reinforced afterwards. Using molecular inhibitors of the targets of Rho 

activity, I concluded that both actin polymerization and Rho Kinase-mediated junction 

contraction reinforce ZO-1 and occludin, promoting efficient restoration of epithelial 

barrier function. We hypothesize that Rho flares serve as a rapid repair mechanism to 

quickly restore barrier function and that this allows epithelial cells to dynamically change 

shape without prolonged breaches in barrier function. 

 Rho flares are accompanied by an apical protrusion of the plasma membrane. 

However, both the cause of the membrane protrusion and its purpose are unclear. I 

examine three potential causes of membrane protrusion and assess each one by 

reviewing the temporal and spatial accumulation of F-actin and myosin II, as well as 

several candidate actin nucleators. Based on the data presented, I propose that a bleb-

like protrusion mechanism is likely, and I hypothesize that the protrusion acts to 

temporarily seal the paracellular space while the tight junction is reinforced.  

 The work presented in this dissertation advances tight junction biology in several 

ways. ZnUMBA is a widely adaptable technique that will allow other researchers to 

examine changes in barrier function with greater temporal and spatial precision. We 

hope that this will usher in a better understanding about what causes tight junction leaks 

and how they are repaired. Finally, I describe a previously unknown mechanism for 

rapid repair of local breaches in epithelial barrier function by active Rho, adding nuance 

to our understanding of the many roles this small GTPase plays in epithelial tissues.  
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Chapter 1 
 

Introduction 
 

 
The importance of barriers in multicellular life 

 The evolution of multicellular life was one of the first steps in creating the 

complex organisms that live on earth today. A key step in the evolution of multicellularity 

is the specialization of cells within a group such that they become interdependent on 

one another and can no longer survive as individuals (Libby et al., 2016). Another 

critical aspect in the evolution of multicellularity is the ability of cells to adhere to one 

another (Harris and Tepass, 2010). When groups of cells evolve the ability to act as 

barriers, they can generate an internal environment distinct from the outside world, 

allowing them to preserve and share secreted products (Marchiando et al., 2010). 

Further compartmentalization within organisms allows for the formation of organs that 

carry out specialized tasks like digestion, reproduction, and sensory processing, leading 

to the complex forms of multicellular life that we know today. 

With an estimated 37 trillion cells (Bianconi et al., 2013) and roughly 80 organs, 

the human body requires a high degree of organization. Epithelia aid in organizing the 

body by creating tissue barriers, sheets of connected cells with the ability to regulate the 

quantity and type of materials that cross the tissue. In addition to acting as barriers, 

epithelial tissues are involved in specialized functions like absorption, secretion, 
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transportation, and signaling. Nearly every organ in our body is covered with or lined by 

an epithelial tissue that is suited specifically for that organ’s task (Figure 1.1a).  

 
Figure	1.1:	Epithelial	tissues	are	diverse,	dynamic	environments.	(a)	Most	organs	of	the	human	body,	including	all	
the	 organs	 depicted	 here,	 are	 lined	with	 or	 covered	 by	 epithelial	 tissues.	 Epithelial	 tissues	 undergo	 changes	 in	
morphology	 due	 to	 organ	 function,	 such	 as	 peristalsis	 (esophagus,	 small	 intestine,	 large	 intestine),	 rhythmic	
expansion	and	contraction	(heart,	lungs),	and	expansion	due	to	filling	(stomach,	bladder).	(b)	Epithelial	tissues	cover	
the	villi	of	the	small	intestine,	which	undergoes	rapid	cell	turnover.	(c)	Stem	cells	in	the	crypts	of	the	small	intestine	
(blue)	divide	to	produce	new	epithelial	cells,	which	further	proliferate	(purple)	and	migrate	towards	the	tip	of	the	
villus.	(d)	At	the	tip	of	the	villus,	older	epithelial	cells	are	shed	from	the	epithelium	by	extrusion.	
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During development, epithelial tissues are one of the main drivers of 

morphogenesis, where changes in cell shape and cell rearrangements drive the 

stretching, bending, and folding of tissues (Harris and Tepass, 2010). In addition to 

genetic programming, these tissue movements result in the formation of multiple germ 

layers and facilitate the genesis of complex organs from a simple ball of cells (Solnica-

Krezel and Sepich, 2012). During development, cells proliferate rapidly to contribute to 

the growth of the organism. In adult tissues, however, many terminally differentiated cell 

types become quiescent and stop proliferating. In contrast, cell division is common in 

epithelial tissues, with rates of cell turnover varying by tissue type (Spalding et al., 

2005). The relatively high rate of epithelial cell turnover is often attributed to the harsh 

mechanical and chemical environments these cells face, which may cause higher rates 

of cell damage (Macara et al., 2014). 

An example of a tissue subject to frequent mechanical strain is the transitional 

epithelium that lines the bladder, the urothelium, which is among the most leak-proof 

epithelial tissues in the body (Khandelwal et al., 2009; Turner et al., 2014). Umbrella 

cells that line the lumen of the bladder regularly undergo remarkable shape changes, 

transitioning from cuboidal in shape when the bladder is empty, to a flattened, stretched 

morphology as the bladder fills to many times its empty volume (Carattino et al., 2013; 

Khandelwal et al., 2009). Exocytosis can account for the increase in membrane surface 

area that is required for this expansion (Truschel et al., 2002), but little is known about 

how the tight junctions, which are responsible maintaining the leak-proof seal, adapt to 

the large changes in surface area during the filling and emptying of the bladder 

(Carattino et al., 2013; Khandelwal et al., 2009).  
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Figure	1.2:	Cells	change	shape	as	a	result	of	cell-	and	tissue-scale	events.	(a)	During	development	and	normal	organ	
function,	epithelial	 tissue	 stretching,	bending,	 and	 folding	 results	 in	dramatic	 cell	 shape	 changes.	 (b)	During	 cell	
division	in	epithelial	tissues,	not	only	does	the	dividing	cell	change	shape,	but	the	neighboring	cells	change	shape	as	
well.	(c)	Cell	extrusion	is	a	process	where	dying	or	crowded	cells	are	pushed	out	of	the	monolayer	by	neighboring	
cells,	which	change	shape	to	take	the	place	of	the	extruded	cell.	
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The intestinal epithelium is specialized for nutrient absorption; during digestion, it 

becomes more permeable to water, ions, and glucose to facilitate nutrient absorption, 

while remaining impermeable to pathogenic bacteria, viruses, and other antigens, a 

feature that is critical for maintaining the sterility of the interstitium and other body 

cavities (Turner et al., 2014). Furthermore, intestinal epithelium must be robust enough 

to withstand the mechanical strain of peristalsis, a process where waves of smooth 

muscle contraction move material through the digestive tract. Presenting even more of a 

challenge to integrity of this tissue is that epithelial cells in the small intestine turn over 

rapidly (Hooper, 1956; Macara et al., 2014). To accomplish this, a population of stem 

cells in the crypts of the small intestine divide, giving rise to cells that further proliferate 

and migrate towards the tips of the villi, where apoptotic cells are shed by extrusion and 

cleared by phagocytosis (Figure 1.1b-d) (Duszyc et al., 2017; Williams et al., 2015). 

These processes involve cell shape changes, requiring that cell-cell boundaries expand 

and contract, posing a potential challenge to the structures that adhere them to one 

another and support barrier function (Figure 1.2).  

It is incredible that tissues so dynamic act as stable barriers. Because proper 

regulation of barrier function is essential for optimal organ function (Marchiando et al., 

2010), we can speculate that cells possess robust mechanisms for maintaining barrier 

function while remaining plastic enough to adapt to a changing environment. When the 

intestinal barrier is not maintained, gut bacteria can cross the epithelium where they are 

greeted by a host of immune cells (Marchiando et al., 2010). Activation of these immune 

cells can result in an inflammatory response and the release of cytokines, which further 

increases the permeability of the epithelium (Capaldo and Nusrat, 2009; López-
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Posadas et al., 2017). In the intestinal epithelium, increased permeability to 

macromolecules is associated with Inflammatory Bowel Diseases (IBD) like Crohn’s 

disease and Ulcerative Colitis (Capaldo and Nusrat, 2009; López-Posadas et al., 2017; 

Odenwald and Turner, 2013). These chronic diseases affect approximately 1.2 million 

people in the United States, causing an estimated economic burden of at least $14 

billion in 2014 (Mehta, 2016). Thus, in addition to being a marvelous feat of evolutionary 

engineering, understanding how epithelial barriers adapt to the physical challenges they 

face will impact health care and quality of life in the modern world. 

 

Epithelial cells have polarized cell-cell junctions 

 Barrier function in vertebrates depends on two types of specialized protein 

complexes that form between neighboring cells, tight junctions and adherens junctions 

(Figure 1.3a). Adherens junctions act to stick cells together through a multitude of weak 

interactions analogous to “hook and loop” interactions in Velcro (Yap et al., 2015). 

Cadherins are the transmembrane proteins that form these weak interactions by binding 

their counterparts on neighboring cells (Figure 1.3b). In addition to adhering cells to one 

another, they mechanically integrate the cells through linkage to the actin cytoskeleton 

(Charras and Yap, 2018; Vasquez and Martin, 2016). This linkage occurs through 

catenins, namely β-catenin, which is constitutively bound to the cytoplasmic tail of E-

cadherin, and α-catenin, which binds β-catenin and can bind to filamentous- (F-) actin 

under tension (Buckley et al., 2014). Under high tension, α-catenin adopts an unfolded 

conformation, revealing a binding site for vinculin (Yao et al., 2014; Yonemura et al., 

2010). Vinculin recruitment reinforces the connection to the cytoskeleton by binding α-
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catenin and F-actin (Arnold et al., 2017). In this way, adherens junctions can sense and 

respond to mechanical force, a feature that can drive processes like morphogenesis 

and wound healing, as well as preserve epithelial integrity (Takeichi, 2014). Recent 

work suggests that there are tension-sensitive molecules in tight junctions as well (Scott 

et al., 2016; Spadaro et al., 2017), although little is known about the consequences of 

mechanosensitivity at tight junctions. 

Apical to adherens junctions are tight junctions, which are responsible for 

creating a tight seal between cells. Tight junctions achieve this seal through a family of 

transmembrane proteins called claudins, which oligomerize into strands and interlock 

with their counterparts on neighboring cells to create a Ziploc-like seal (Figure 1.2b). In 

addition to acting as barriers, different claudins form size- and charge-specific pores 

(Günzel and Yu, 2013; Rosenthal et al., 2017). In this way, claudins can restrict the flow 

of some materials while allowing specific ions or water to diffuse across the tissue. This 

means that tissues can maintain concentration gradients of some ions while allowing 

others to passively diffuse across the tissue.  

Claudins are connected to the actin cytoskeleton through direct and indirect 

interactions with other tight junction proteins, including occludin, ZO family proteins, and 

cingulin (Van Itallie and Anderson, 2014). ZO family proteins, including ZO-1, -2, and -3, 

are cytosolic scaffold proteins that bind to a multitude of proteins found at tight 

junctions, including claudins, occludin, junction adhesion molecules (JAMs), and other 

ZO proteins (Fanning et al., 1998; 2007; Itoh et al., 1999; Utepbergenov et al., 2006). 

Additionally, ZO proteins can bind directly to F-actin and actin binding proteins, serving 

dual roles of regulating the cytoskeleton and transmitting forces from the cytoskeleton to 
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the core transmembrane proteins of tight junctions (Fanning and Anderson, 2009; Zihni 

et al., 2016).  

 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	1.3:	Epithelial	cells	have	polarized	cell-cell	junctions	linked	to	actomyosin.	(a)	A	3D	representation	of	two	
epithelial	cells.	The	cell	on	the	left	shows	the	actomyosin	array	that	encircles	the	apical	perimeter	of	epithelial	cells.	
The	cell	on	the	right	shows	two	types	of	apical	junctions:	tight	junctions	are	the	more	apical	and	are	critical	for	barrier	
function,	while	adherens	junctions	are	more	basal	and	function	primarily	in	cell-cell	adhesion	and	force	transmission.	
(b)	A	simplified	representation	of	the	molecular	components	of	the	tight	junction	as	viewed	from	above.	Claudins	
and	occludin	 are	 core	 transmembrane	proteins	 that	make	 contact	with	 their	 counterparts	 on	neighboring	 cells.	
Scaffolding	proteins,	like	ZO-1	and	cingulin,	provide	a	link	to	the	cytoskeleton.	(c)	A	simplified	representation	of	the	
molecular	 components	of	 the	adherens	 junction	as	 viewed	 from	above.	Cadherins	 are	 the	 core	 transmembrane	
proteins	of	AJs	that	bind	to	the	cytoplasmic	catenins.	α-catenin	binds	to	F-actin	under	tension,	revealing	a	vinculin	
binding	site.		
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Tight junction regulation of paracellular permeability  

 An early electron microscopy study of epithelial tissues stated “it is apparent that 

the tight junction is actually a region in which the membranes of adjoining cells come 

together and fuse, with resultant obliteration of the intercellular space” (Farquhar and 

Palade, 1963). Tracer studies showed that macromolecules diffused up to the tight 

junctions and then stopped, indicating that they are responsible for forming the 

paracellular barrier in epithelial cells. Freeze fracture electron microscopy, which 

fractures cells and tissues along hydrophobic planes (Severs, 2007), allowed 

researchers to observe the topology of tight junctions along the plane of the membrane 

(Claude and Goodenough, 1973). This revealed interwoven strands that encircled the 

apical surface of cell-cell contacts, visible on the cytoplasmic face as grooves that 

appeared to stitch the neighboring membranes together. Comparison of epithelial 

tissues from different organs lead to the hypothesis that strand number was correlated 

with the “tightness” of the epithelium (Claude and Goodenough, 1973). Discovery of the 

protein components of tight junctions caused many researchers to abandon the model 

that membrane fusion is responsible for creating the paracellular barrier; however, some 

data has caused others to reconsider the membrane fusion model as part of the 

mechanism of tight junction-mediated barrier function (Lingaraju et al., 2015; Zihni et al., 

2016). 

The pore pathway 

The discovery of claudins in the 1990’s further contributed to our understanding 

of the molecular basis of epithelial barrier function, particularly the pore pathway 

(Furuse et al., 1998a). The pore pathway refers to a high-capacity, size- and charge-
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selective route for ions and small molecules such as water to cross the tight junction by 

traveling through claudin pores. In humans, there are 26 claudins with tissue-specific 

expression patterns (Günzel and Yu, 2013; Rosenthal et al., 2017). Different family 

members are able to form a variety of size- and charge-selective pores that allow for 

passive diffusion of these molecules through the paracellular space (Günzel and Yu, 

2013). These pores are hypothesized to be gated through a still unknown mechanism 

(Weber, 2012; Weber et al., 2015; Zihni and Terry, 2015) (Figure 1.4), although a 

multiprotein complex of claudin-1, claudin-2, ZO-1, and occludin can change cation 

permeability, indicating that gating may involve intermolecular interactions with 

cytoplasmic plaque proteins or altered dynamics of the cytoskeleton (Raleigh et al., 

2011). Additionally, some claudin family members are thought to act solely as barrier-

forming claudins, forming no pores and acting exclusively to seal the paracellular space 

(Günzel and Yu, 2013; Rosenthal et al., 2017).  

 
	
Figure	1.4:	Claudin	strands	are	composed	of	gated	claudin	pores.	Claudin	tetramers	are	hypothesized	to	form	size-	
and	charge-specific	gated	pores	that	are	impermeable	to	macromolecules	(see	also	Figure	1.3).	These	pores	can	be	
dynamically	gated,	although	the	molecular	mechanism	of	gating	remains	unknown.	Expression	of	different	claudin	
family	members	allows	tight	junctions	to	become	permeable	to	different	ions	and	small	molecules.	This	is	referred	
to	as	the	pore	pathway.		
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Transepithelial electrical resistance (TER) is a popular method for measuring the 

magnitude of ion flux through the pore pathway of an epithelial tissue (Anderson and 

Van Itallie, 2009; Turner et al., 2014). To measure TER, an electric current is generated 

across the epithelium; the resistance formed by a confluent epithelial monolayer 

depends on how well ions can conduct the current through the paracellular space. Thus, 

TER is dictated by the proportion of pore-forming vs. barrier-forming claudins and the 

open or closed state of the claudin pores. 

 
Tight junction dynamics  

Experiments in fibroblasts, which do not normally make tight junctions, led to the 

conclusion that claudins are the basis for strands seen in freeze fracture EM (Figure 

1.5a,b). Expression of single claudins, but not occludin, in fibroblasts led to the 

formation of strands that were morphologically similar to the strands seen in freeze 

fracture EM (Furuse et al., 1998b). Fluorescence recovery after photobleaching (FRAP) 

of the single strands revealed no diffusion of claudin-1 or -2 within the strands (Sasaki 

et al., 2003; Van Itallie et al., 2017). Later, FRAP studies in epithelial cells confirmed the 

relative stability of claudin within the membrane while revealing that ZO-1, occludin, and 

F-actin were surprisingly dynamic and had different modes of exchange within the 

junction (Higashi et al., 2016; Raleigh et al., 2011; Shen et al., 2008; Yu et al., 2010). 

Changes in tight junction protein FRAP dynamics are linked to changes in global barrier 

function (Raleigh et al., 2011; Yu et al., 2010); however, the complexity of tight junctions 

has made it hard to determine precisely how FRAP dynamics and the formation of 

multiprotein complexes link to barrier function.  
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Fibroblast studies have demonstrated that while claudins do not diffuse within the 

strands, the strands themselves can be very dynamic. Claudin strands can form end-on 

interactions, breaking apart from one another and resealing with nearby strands, as well 

as side-to-side interactions (Sasaki et al., 2003; Van Itallie et al., 2017). In fibroblasts, 

occludin tends to cluster at strand branch points (Figure 1.5b), while co-expression of 

ZO-1 with claudins reduces strand dynamics and aligns strands with the actin network 

(Van Itallie et al., 2017). Freeze fracture EM has revealed that some perturbations, such 

as mechanical stretch and osmotic stress (Hull and Staehelin, 1976; Wade and 

Karnovsky, 1974), can induce breaks in the strand network (Figure 1.5d,e), indicating 

the single strand breaks and joins observed in fibroblasts may be biologically relevant. 

 

 

 

 

 

 

Figure	1.5:	Tight	junctions	are	composed	of	a	dynamic	network	of	claudin	strands.	(a)	3D	depiction	of	epithelial	
cells.	 The	 red	 boxed	 region	 indicates	 the	 strand	 network	 that	 is	 visible	 by	 freeze	 fracture	 electron	microscopy.	
Because	 tight	 junction	 strands	 are	 closely	 packed	 and	perpendicular	 to	 the	 plane	of	 the	microscope,	 visualizing	
strand	dynamics	 in	epithelial	cells	has	not	yet	been	possible.	(b)	Dynamic	claudin	strands	have	been	observed	at	
regions	 of	 cell	 overlap	when	 claudins	 are	 expressed	 in	 fibroblasts,	which	 do	 not	 normally	make	 tight	 junctions.	
Because	these	regions	of	overlap	are	parallel	to	the	plane	of	imaging,	they	can	be	more	easily	visualized.	It	has	been	
determined	that	while	claudins	within	the	strand	are	stable	(they	do	not	exchange	in	and	out	of	the	strands),	the	
strands	move	 within	 the	membrane,	 break,	 and	 fuse	 with	 other	 strands,	making	 a	 dynamic	 network.	 Occludin	
localizes	 to	 strand	 ends	 and	 fusion	 points.	 (c)	 The	 leak	 pathway	 is	 hypothesized	 to	 occur	 through	 the	 dynamic	
breaking	and	resealing	of	claudin	strands	(blue	dotted	lines),	which	would	allow	small	amounts	of	macromolecules	
(pink	circles)	to	cross	the	tight	junction	in	a	non-selective	manner.	(d,e)	Freeze	fracture	studies	in	the	large	intestine	
of	Xenopus	 laevis	tadpoles	 revealed	that	strands	can	break	 in	 response	to	stretch.	Author’s	 illustration	of	 freeze	
fracture	electron	micrographs	originally	published	in	(Hull	and	Staehelin,	1976).	(d)	In	a	control	intestine,	a	network	
of	 interconnected	claudin	strands	prevents	macromolecules	 from	crossing	the	tight	 junction.	 (e)	When	the	 large	
intestine	is	stretched,	the	strand	network	becomes	disconnected,	creating	a	path	for	macromolecules	to	cross	the	
tight	junction	(pink	dotted	line).	
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The leak pathway 

The leak pathway is a low-capacity, non-selective route that permits small 

volumes of macromolecules to cross the tight junction barrier (Anderson and Van Itallie, 

2009; Shen et al., 2011). A popular hypothesis is that claudin strand dynamics form the 

basis of the leak pathway. That is, progressive breaking and annealing of claudin 

strands creates small chambers that fill with macromolecules which are eventually 

permitted to cross the epithelium (Figure 1.5c) (Zihni et al., 2016). The leak pathway 

can be monitored by adding traceable macromolecules, such as fluorescent dextrans, to 

the apical surface of an epithelium and monitoring their penetration to the basal side. 

By comparing tracer studies with TER, it has become apparent that the leak and 

pore pathways are regulated by distinct mechanisms. Perturbations that completely 

disrupt tight junctions decrease TER as well as increase penetration of tracers. 

However, there are some perturbations that cause an increase in macromolecular flux 

while decreasing ion flux or leaving it unaffected, and vice versa (Balda et al., 1996; 

Buschmann et al., 2013; Fanning et al., 2012; Raleigh et al., 2011; Van Itallie et al., 

2009). These studies indicated that ZO-1, occludin, and actin dynamics are key 

regulators of the leak pathway. That macromolecular flux can increase while having little 

effect on TER speaks to the high capacity of the pore pathway relative to the leak 

pathway; even when leaks are more frequent, there are still few sites for 

macromolecules to cross the tight junction relative to ion-conductive pores.  

How exactly actin polymerization affects barrier function remains unclear. 

However, in epithelial tissues, the junctional actin cytoskeleton is also important for 

epithelial integrity, tissue stiffness, tissue morphogenesis, cytokinesis, wound healing, 
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and cell extrusion. Because of this, the properties of the actin cytoskeleton in epithelial 

tissues have been intensively studied (Arnold et al., 2017). In the next section, I will 

review how Rho family GTPases regulate the actin cytoskeleton in epithelial cells. 

 

Rho GTPases and actomyosin in apical junction regulation 

In the initial stages of junction formation in cultured cells, polymerization of 

branched actin drives cell migration until multiple migrating cells come into contact with 

one another (Verma et al., 2004). Then, the GTPase Rac1 promotes further actin 

branching to extend the interface between these two cells, promoting cadherin ligation 

(Yamazaki et al., 2007). As the junctions mature, these branched actin networks are 

converted into a contractile array composed of linear actin filaments and non-muscle 

myosin II mini-filaments (Michael et al., 2016). This F-actin array is linked to the 

transmembrane components of both tight junctions and adherens junctions through a 

wide array of actin binding proteins (tight junctions: ZO proteins, cingulin, paracingluin; 

adherens junctions: α-catenin, vinculin, afadin) (Figure 1.3) (Arnold et al., 2017).  

The dynamics of junctional actin is governed by a wide array of proteins, 

including nucleation and elongation factors (formins, Arp2/3 complex, Ena/Vasp), 

crosslinking proteins (α-actinin, filamin, anillin), severing proteins (cofilin), and myosin 

motors (Arnold et al., 2017). Rho family GTPases are master regulators of cytoskeletal 

dynamics in a wide variety of cell contexts. As GTPases, they cycle between an active, 

GTP-bound state and an inactive, GDP-bound state under the control of Guanine 

nucleotide Exchange Factors (GEFs) and GTPase Activating Proteins (GAPs) (Figure 

1.6). When in the GTP-bound conformation, GTPases can activate effector proteins, 
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Figure	1.6:	Rho	GTPases	cycle	between	an	active	and	 inactive	conformation.	Canonical	Rho	family	GTPases	are	
active	when	bound	to	GTP.	In	this	state,	they	can	bind	to	and	activate	effector	proteins,	which	act	on	downstream	
targets.	 Active	 GTPases	 are	 converted	 to	 their	 inactive,	 GDP-bound	 conformation	 by	 GAPs	 (GTPase	 activating	
proteins),	which	stimulate	the	 intrinsic	GTP	hydrolysis	activity	of	the	GTPase.	Once	 inactive,	Rho	GTPases	can	be	
removed	from	the	membrane	by	Rho	GDI	(Guanine	nucleotide	Dissociation	Inhibitor),	which	sequesters	them	in	the	
cytoplasm	and	prevents	their	activation.	GEFs	(Guanine	nucleotide	Exchange	Factors)	convert	inactive	GTPases	to	
the	active	conformation	by	exchanging	GDP	for	GTP.	Figure	originally	published	in	Stephenson	and	Miller,	2017.	
	

typically through relief of autoinhibition, and these effector proteins perform their 

functions on the cytoskeleton or other targets. Effectors typically carry out localized 

effects in close proximity to the site of activation. Thus, the spatial activation of 

GTPases and local availability of effectors is critical for GTPase output.   

 The importance of Rho GTPases in regulating epithelial cell-cell junctions has 

been evident from the mid-1990s, when constitutively active and dominant negative Rho 

GTPases were used to test their effects on cell-cell junction architecture and junctional 

actin assembly (reviewed in Citi et al., 2014; Quiros and Nusrat, 2014). In the decades 

since, biochemical and immunostaining methods have been applied to learn more about 
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regulation of junctional Rho GTPases and their downstream consequences (Figure 1.7). 

Only more recently has GTPase activity been directly observed at cell-cell junctions 

(Ratheesh et al., 2012; Terry et al., 2011).  

	
Methods for studying Rho GTPase activation 

Approaches to study GTPase activity must go beyond simply fluorescently 

tagging GTPases, as this does not indicate their nucleotide binding state (and does not 

faithfully reflect the localization when compared with fixed imaging) (Stephenson and 

Miller, 2017). Instead, approaches to evaluate GTPase activation typically use the 

GTPase Binding Domains (GBDs) of effector proteins, which preferentially bind the 

GTP-bound state. GST-GBD pulldowns can detect bulk changes in GTPase activation 

across an entire tissue; however, this approach lacks spatial information about where 

the changes in GTPases activation occur (Figure 1.7a). A popular approach to 

circumvent this issue is to visualize GTPase activation using FRET (Förster resonance 

energy transfer) biosensors, in which the GTPase and GBD are tagged with donor and 

acceptor fluorophores, respectively. GTPase activation results in the binding of these 	

components and energy transfer between the two fluorophores (Figure 1.7c). A more 

straightforward approach is to simply observe the localization of the tagged GBD, which 

will report relative activation of GTPases when compared to background signal (Figure 

1.7b). This has the advantage of being compatible with more fluorescent probes (FRET 

requires two channels, whereas translocation probes require only one) and simpler 

analysis.  
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Figure	1.7:	Approaches	for	studying	GTPase	activation	that	use	GTPase	Binding	Domains	(GBDs)	(a)	Biochemical	
approaches	 to	 studying	 GTPases	 use	 GBDs	 fused	 to	 tags	 that	 can	 be	 used	 for	 pulldowns,	 like	 GST/glutathione.	
Biochemical	approaches	allow	samples	 to	be	processed	 in	bulk,	but	don’t	 reveal	where	 in	 the	cell	 the	GTPase	 is	
active.	(b)	Translocation	probes	simply	fuse	the	GDB	to	a	fluorescent	protein,	and	measure	changes	in	fluorescence	
intensity.	 (c)	 FRET	 biosensors	 fuse	 both	 GBD	 and	 GTPase	 with	 fluorophores	 and	 measure	 the	 energy	 transfer	
between	fluorophores.	This	example	given	is	of	a	unimolecular	FRET	probe,	where	all	proteins	are	encoded	by	one	
transcript.	Figure	originally	published	in	(Stephenson	and	Miller,	2017).	

 

Early studies with FRET biosensors at junctions reported snapshots in time 

(Ratheesh et al., 2012; Terry et al., 2011), in part because Rho activity was assumed to 

be uniformly and stably activated at junctions, rather than dynamic across short 

temporal and spatial scales. Indeed, later work confirmed a “strikingly stable active 
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zone” of Rho using the C-terminus of anillin as Rho probe (Priya et al., 2015). However, 

this work was also conducted in mature, cultured epithelial cells. In contrast, our lab 

found that, in addition to stable baseline activity, active Rho and F-actin accumulate in 

transient, dynamic “flares” at cell-cell junctions in the epithelium of Xenopus laevis 

embryos (Breznau et al., 2015; Reyes et al., 2014). 

 

Overview of the dissertation 

In this dissertation, I investigate the events leading up to Rho flares as well as 

how Rho flares affect cell-cell junctions. In preliminary experiments, I found that tight 

junction proteins were locally reduced prior to flares and reinforced following flares. 

This, in combination with evidence from the literature that actin dynamics can modulate 

barrier function, led us to hypothesize that Rho flares serve as a tight junction repair 

mechanism. In order to determine whether Rho flares were important for repairing tight 

junctions, we needed to determine whether the barrier function was indeed 

compromised at the site of the flare. Popular measures of barrier function, such as TER 

and dye penetration assays, average barrier function across the entire population of 

epithelial cells. In order to spatially and temporally correlate barrier function with Rho 

flares, we developed a highly sensitive technique called ZnUMBA (Zinc-based 

Ultrasensitive Microscopic Barrier Assay), which results in high fluorescence when 

barrier function is compromised. In Chapter 2, I validate ZnUMBA as a technique by 

performing control experiments that compromise barrier function either globally or 

locally. Then, I apply ZnUMBA to the unperturbed epithelium, showing naturally-

occurring transient breaches of epithelial tight junctions for the first time with live 
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microscopy. As we predicted, Rho flares followed these tight junction breaches and 

were associated with restoration of barrier function.  

Because Rho flares typically occur near dividing cells or during tissue-scale 

morphogenetic events, we hypothesized that the transient barrier breaches that trigger 

Rho flares are related to changes in cell shape or tissue tension. In the developing 

embryo, tight junctions are frequently subjected to both cell- and tissue-scale forces that 

result from cell division and tissue bending, stretching, and folding (Figure 1.2). In 

epithelia grown in 2D culture, cells are typically grown on a filter support. These cells 

become less mobile and divide less frequently once the cells reach confluence, 

explaining why Rho flares may not have been observed in cultured cells (Priya et al., 

2015). However, even in adult epithelial tissues, cells divide and extrude, and tissues 

are subject to changing mechanical forces due to normal tissue function. Thus, the 

dynamic environment of an intact embryo may better represent some aspects of 

epithelial mechanics than cell culture models.  

Multiple studies in dynamic epithelial or endothelial tissues, such as those 

subject to osmotic stress (Tokuda et al., 2016), low cell density (Abu Taha et al., 2014), 

multicellular wound healing (Clark et al., 2009; Razzell et al., 2014), sprouting 

angiogenesis (Cao et al., 2017), and neural tube closure (Hashimoto et al., 2015), have 

reported transient accumulations of F-actin and/or myosin II. However, many of these 

studies focused on the adherens junctions as the cause of these transient 

accumulations and/or the intended target of the F-actin and myosin II accumulation 

(Abu Taha et al., 2014; Cao et al., 2017; Hashimoto et al., 2015; Razzell et al., 2013), 

probably because adherens junctions are seen as the primary tension-sensing and 
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generating apparatuses in epithelial tissues. In Chapter 3, I demonstrate that multiple 

tight junction proteins, as well as barrier function, are compromised prior to Rho flares 

and are restored afterwards. Rho flares drive barrier reinstatement through localized 

ROCK-mediated actomyosin contraction of the junction. While adherens junctions may 

be involved in driving contraction during Rho flares, only the tight junctions show any 

apparent defect. This highlights the need to consider how both tight junctions and 

adherens junctions influence the dynamics of cell-cell junctions. 

Rho flares are associated with dynamic protrusions of the plasma membrane. 

However, the force that drives membrane protrusion as well as the function of 

membrane protrusions is unclear. In Chapter 4, I explore the mechanics of membrane 

protrusions that are associated with Rho flares, presenting data regarding the dynamics 

of F-actin, myosin II, and actin nucleation factors. Finally, in Chapter 5, I discuss how 

my findings about Rho flares fit into our existing knowledge of endothelial junction 

repair, speculate which GEFs, GAPs, and scaffolding proteins may contribute to Rho 

flare signaling, discuss how local loss of ZO-1 and occludin contribute to the leak 

pathway, speculate on the event that triggers Rho flares, and discuss future directions 

for this work. Rho flares represent an exciting new mechanism of rapid tight junction 

repair that is relevant during development, and probably during normal tissue 

homeostasis and disease as well.
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Chapter 2 

 

Zinc-based Ultrasensitive Microscopic Barrier Assay detects 

transient, localized breaches of the epithelial barrier 

 

Abstract: Epithelial barrier function is determined by tight junctions, multiprotein 

complexes that form between cells and restrict the flow of materials through the 

paracellular space. Epithelial tissues are subject to mechanical strain through tissue 

bending, stretching, and folding, as well as cell shape changes like extrusion and 

cytokinesis. However, little is known about how tight junctions adapt to these changes in 

mechanical force and whether barrier function is maintained. In this chapter, I present 

the Zinc-based Ultrasensitive Microscopic Barrier Assay (ZnUMBA), which we used to 

determine that epithelial barrier function is not uniform over space and time. Instead, 

transient, localized leaks occur, and these correspond to sites of Rho flares. This new 

technique will enable us to investigate more about the events preceding and following 

barrier breaches in control and perturbed settings, allowing us to learn how cell and 

tissue mechanics relate to barrier function. 
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Introduction 

Epithelial tissues generate specialized compartments within multicellular 

organisms, regulate nutrient and water transport, and create barriers to pathogens. In 

vertebrates, tight junction protein complexes regulate the amount and type of molecules 

that pass through the paracellular space (the space between cells). Large quantities of 

ions and water can cross the tight junction through the pore pathway, which is 

established by claudin-family proteins forming size- and charge-selective pores (Shen et 

al., 2011). Smaller quantities of macromolecules cross the tight junction through the 

leak pathway, which is thought to be regulated by the breaking and annealing of claudin 

strands (Zihni et al., 2016). Both pathways are typically evaluated with global measures 

of barrier function; the pore pathway with transepithelial electrical resistance (TER) and 

the leak pathway by tracing penetrance of macromolecules across the tissue (Figure 

2.1). Because these tissue-scale measurements are frequently used, little is known 

about how these pathways are regulated at cellular and subcellular scales.  

Epithelial tissues are intrinsically mechanosensitive: physical characteristics such 

as cell geometry, cell shape change, and global changes in tension or shear stress can 

influence adherens junctions and tight junctions, leading to structural and signaling 

changes in cells. The mechanosensitivity of adherens junctions is well-established, with 

changes in tensile force regulating intermolecular interactions, cell signaling, and tissue 

stiffening (Charras and Yap, 2018; Vasquez and Martin, 2016). The actin cytoskeleton 

plays a major role in both generating and responding to forces in epithelial tissues 

(Vasquez and Martin, 2016). Mechanosensitive molecules within the tight junction have 

also been identified (Scott et al., 2016; Spadaro et al., 2017), and crosstalk between  
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Figure	 2.1:	 Global	 and	 local	 approaches	 to	 studying	 epithelial	 barrier	 function.	 (a)	 Transepithelial	 electrical	
resistance	 (TER)	 is	a	global	measure	of	 the	high-capacity	pore	pathway.	A	current	 is	applied	 to	a	 tissue,	and	the	
resistance	is	measured.	Tight	junctions	resist	the	current,	so	strong	barrier	function	is	associated	with	high	TER.	(b)	
Tracer	penetration	assays	measure	the	penetrance	of	a	tracer	applied	to	one	side	of	the	epithelium	to	the	other	
side.	 In	 this	 example,	 a	 fluorescent	 dextran	 is	 added	 to	 the	 apical	 compartment,	 then,	 after	 several	 hours,	 the	
medium	in	the	basal	compartment	is	collected	and	the	quantity	of	the	tracer	is	measured.	Large	amounts	of	tracer	
correspond	to	reduced	barrier	function.	(c)	Sandwich	assays	employ	avidin	and	biotin	to	capture	macromolecules	as	
they	cross	the	epithelium.	In	this	example,	avidin	is	added	to	the	basal	compartment	and	some	of	it	remains	adhered	
to	the	basolateral	membrane	after	washing.	During	the	first	period,	green	fluorescent	biotin	is	added	to	the	apical	
compartment.	Any	biotin	 that	crosses	 the	 tight	 junction	will	be	 immobilized	by	 the	basolateral	avidin.	Following	
washing,	red	fluorescent	biotin	is	added	to	the	apical	compartment,	incubated,	and	then	both	sides	are	washed	and	
the	epithelium	visualized.	Areas	of	 the	epithelium	displaying	single	color	of	biotin	represent	 leak	sites	 that	were	
open	either	during	period	one	or	period	two.	Areas	displaying	both	colors	of	biotin	represent	leak	sites	that	were	
open	during	both	period	one	and	period	two.	Because	single	colors	can	be	detected,	 this	 indicates	that	the	 leak	
pathway	opens	and	closes	over	time,	rather	than	persisting	at	discrete	sites. 
 

adherens junctions and tight junctions has been documented (Campbell et al., 2017; 

Hatte et al., 2018; Shigetomi et al., 2018; Zihni et al., 2016). Changes in leak pathway 

regulation are associated with perturbations that result in global changes to the 

cytoskeleton (Fanning et al., 2012; Turner et al., 2014; Van Itallie et al., 2015). 

Therefore, it stands to reason that epithelial barrier function could be affected by 

mechanical force; however, direct evidence to this point is lacking. Furthermore, the 

mechanical forces within an epithelial tissue are not uniform; therefore, we predict that 

local mechanical forces could produce local changes in barrier function. 

In contrast to the tissue-scale measures of barrier function, recently developed 

“sandwich assays” allow visualization of local barrier function at fixed time points. These 

assays employ fluorescently-labeled avidin and biotin applied to either the apical or 

basal side of the tissue to capture the macromolecules as they cross the tight junction 

barrier, which can be visualized via fluorescence microscopy at the experiment end 

point (Figure 2.1c). These studies have revealed that barrier function to 

macromolecules is not uniform across the cell and tissue level, that the leak pathway 

opens and closes over time, and that changes in barrier function occur in response to 
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fluid shear stress (Dubrovskyi et al., 2013; Ghim et al., 2017; Richter et al., 2016). 

Additionally, intestinal barrier function has been visualized with confocal laser 

endomicroscopy, which uses intravenous fluorescein injection to visualize the leakiness 

of healthy and diseased intestinal epithelia. This technique has shown that there are 

particularly leaky areas of the intestinal epithelium in vivo, and these correlate with 

disease severity (Lim et al., 2014; Rasmussen et al., 2015). However, the low temporal 

and/or spatial resolution of these techniques make it difficult to determine the events 

preceding and following leaks in barrier function. 

In previous work, we tried visualizing the penetration of fluorescent molecules 

such as Alexa Fluor 488-Dextran (3000 Da) (Reyes et al., 2014) or fluorescein (332 Da) 

(Higashi et al., 2016) beyond the tight junction. Reyes et al. (2014) found that anillin 

knockdown results in increased depth of penetration of Alexa Fluor 488-Dextran; 

however, this likely reflects the disruption of junction organization rather than increased 

permeability because dextran did not penetrate to the basal compartment (Reyes et al., 

2014). Higashi et al. (2016) examined epithelial barrier function during cytokinesis by 

directly imaging fluorescein applied to the apical surface of Xenopus laevis embryos. 

Under control conditions, it was not possible to detect the tracer beyond the tight 

junctions, even at the contractile ring, a site that undergoes a major cell shape change 

and represents a potential challenge to junction integrity (Hatte et al., 2018; Higashi et 

al., 2016). We reasoned that small volumes of a fluorescent tracer might be difficult to 

detect against the high background of apical fluorescein. Therefore, we sought to 

develop a more sensitive barrier assay with minimal background, in which a breach of 

tight junctions results in strongly increased fluorescence.  
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Figure	2.2:	Schematic	of	Zinc-based	Ultrasensitive	Microscopic	Barrier	Assay	for	use	in	X.	laevis	embryos	Left:	the	
cell-impermeable	zinc	indicator	FluoZin3	(orange)	is	injected	into	the	blastocoel	of	a	gastrula-stage	X.	laevis	embryo,	
and	the	embryo	is	mounted	in	a	solution	containing	Zn2+	(blue).	Right:	when	a	tight	junction	is	locally	breached,	Zn2+	
will	bind	to	FluoZin3,	and	the	local	increase	in	fluorescence	will	be	detectable	with	confocal	fluorescence	microscopy.	
Figure	courtesy	of	Tomohito	Higashi.	
 

We achieved this by using the small cell-impermeable dye FluoZin3 (FZ3, 847 

Da), which increases in fluorescence more than 50-fold when bound to zinc (65 Da). By 

applying FZ3 to the basal medium and adding media containing ZnCl2 to the apical 

medium, localized breaches of the tight junction result in localized increases in FZ3 

fluorescence that can be easily detected with conventional confocal microscopy. We call 

this assay ZnUMBA (Zinc-based Ultrasensitive Microscopic Barrier Assay) (Figure 2.2). 

ZnUMBA can detect both local and global changes in barrier function on sub-minute 

time scales. Using ZnUMBA in X. laevis embryos allowed us to visualize naturally 
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occurring transient leaks in the epithelium and correlate them with local loss of tight 

junction proteins, local Rho activation, and changes in cell shape. 

 

Results:  

Gastrula-staged X. laevis embryos possess a fully polarized epithelium with 

apical tight junctions facing the external environment, allowing tight junction dynamics to 

be easily viewed with confocal microscopy while leaving the embryo completely intact. 

To perform ZnUMBA in X. laevis, we microinjected FZ3 into the blastocoel of gastrula-

stage embryos and mounted the embryos in media containing ZnCl2 immediately before 

imaging.  

Microinjection causes a multicellular wound in the embryo; however, the wounds 

heal rapidly. Allowing the embryos to heal from microinjection for 5-10 minutes was 

typically sufficient to avoid FZ3 leaking out of the injection site during imaging (data not 

shown). Once injected, FZ3 remains in the blastocoel for hours, so batches of embryos 

can be injected in FZ3 and kept for several hours before they are imaged. 

Former Miller Lab postdoc, Tomohito Higashi, optimized the concentrations of 

FZ3 and ZnCl2 used in the assay, as well as the image acquisition parameters. During 

the optimization phase, we found that higher concentrations of ZnCl2 (~10 mM) led to 

steadily increasing FZ3 fluorescence, which made the barrier assay effective for only 

20-30 minutes. However, embryo viability was not affected by the FZ3 or ZnCl2 (data not 

shown). Decreasing the ZnCl2 concentration to 2 mM, increasing image acquisition 

exposure time, and adding Ca2+/EDTA to the FZ3 to sequester endogenous Zn2+ in the 

blastocoel improved background fluorescence and reduced noise. (Note: EDTA has a 
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higher affinity for Zn2+ than Ca2+. However, because the Ca2+ chelation activity of EDTA 

has the potential to disrupt adherens junctions, equimolar Ca2+ was added along with 

EDTA to mitigate this effect.) Nevertheless, the assay is still subject to gradually 

increasing fluorescence over time, so a method of normalizing signal to background is 

required for appropriate data interpretation (see Appendix 1 for Materials and Methods). 

 

Figure	2.3:	ZnUMBA	
detects	 global	
disruption	 of	
epithelial	 barrier	
function	 caused	 by	
EGTA.	 Embryos	
were	 injected	 with	
FluoZin3.	At	time	0,	
a	 solution	
containing	 2	 mM	
ZnCl2	 (vehicle)	 or	 2	
mM	ZnCl2	+	10	mM	
EGTA	 (EGTA)	 was	

added	 to	 the	 imaging	 chamber	 during	 live	 imaging.	 FZ3	 intensity	
increased	 globally	 in	 response	 to	 EGTA	 addition,	 which	 disrupts	
adherens	 and	 tight	 junctions.	 (a)	 Increase	 in	 FZ3	 intensity	 can	 be	
detected	 visually	 within	 two	 minutes	 of	 EGTA	 addition.	 Time	 is	
displayed	 as	 min:sec.	 (b)	 Mean	 normalized	 FZ3	 fluorescence	
intensity	of	a	456	x456	μm	region	of	interest	normalized	to	mRFP-
ZO-1	intensity	in	the	same	region.	Shading	represents	S.E.M.	Vehicle:	
n=	5,2	(embryos,	experiments);	EGTA:	n=8,2.	
 

  

Once ZnUMBA was optimized, we performed several experiments to perturb 

barrier function on local and global scales in order to validate the assay. Adhesion of E-

cadherin molecules on neighboring cells is Ca2+-dependent. Thus, Ca2+ depletion can 

be used to disrupt adherens junctions and tight junctions, which are dependent on the 

strong cell-cell adhesion provided by adherens junctions for their normal structure and 

function. EGTA, which preferentially chelates Ca2+, can be used experimentally to 
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perturb epithelial integrity (Higashi et al., 2016; Rothen-Rutishauser et al., 2002). 

Indeed, FZ3 intensity began increasing globally within two minutes of adding EGTA to 

the X. laevis embryos during live imaging, indicating the high temporal sensitivity of the 

assay (Figure 2.3).  

Exogenous ATP addition causes a tissue-wide wave-like contractile response in 

X. laevis embryos (Kim et al., 2014). We predicted that this global change in contractility 

would affect barrier function in X. laevis embryos. Indeed, following ATP addition, cell-

cell junctions transitioned from taut to wavy, and FZ3 intensity increased globally, 

indicating that ATP addition affects barrier function across the tissue (Figure 2.4).  

 

	
	
Figure	 2.4:	 Global	 increase	 in	
contractility	 mediated	 by	
exogenous	 ATP	 affects	 tissue-wide	
barrier	 function.	 250	 μM	 ATP	 was	
added	at	 time	0	 (not	 shown).	Upon	
ATP	addition,	ZO-1	signal	transitions	
from	 linear	 to	 wavy,	 indicating	 a	
contractile	 response.	 FZ3	 intensity	
increases	 across	 the	 tissue,	
indicating	 a	 global	 lapse	 in	 barrier	
function.	 Scale	 bar	 =	 10	 μm.	 Figure	
courtesy	of	Tomohito	Higashi. 
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To locally perturb barrier function, a 405 nm laser was used to locally wound the 

junction. Sites of junction injury showed a rapid, highly localized increase in FZ3 that 

was followed by an increase in F-actin and contraction of the junction (Figure 2.5). FZ3 

intensity declined during the increase in F-actin and contraction of the junction (Figure 

2.5), which we interpreted as an injury response associated with barrier restoration.  

 

	
Figure	2.5:	Laser	injury	results	in	rapid,	
local	increase	in	FZ3	fluorescence.	A	405	
nm	 laser	was	used	 to	 locally	 induce	an	
injury	 of	 the	 junction	 (red	 bracket).	
FluoZin3	 (FZ3,	 green)	 increases	 in	
intensity	 (yellow	 arrowhead)	 following	
injury	 and	 persists	 for	 roughly	 75	
seconds.	Note	that	F-actin	 (Lifeact-RFP,	
magenta)	 accumulates	 at	 the	 site	 of	
injury,	and	the	junction	contracts	(black	
bracket	vs.	grey	bracket).	
 

 

 

 

 

 

Finally, we applied ZnUMBA to the unperturbed epithelium of X. laevis embryos 

to observe whether barrier function is dynamic under control conditions. We observed 

short-lived leaks that were usually localized along a single junction or confined to a 

small region of the junction (Figure 2.6a). Because of the contractile response that 

accompanied restoration of barrier function following laser injury, we hypothesized that 

the small GTPase RhoA, a master regulator of contractility, may accumulate at the site 
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of leaks. Using a probe for active, GTP-bound Rho (GFP-rGBD), I found that FZ3 

increase is followed by an increase in active Rho (Figure 2.6 b,c). At the onset of Rho 

activation, FZ3 signal begins to decline. ZO-1 signal increases as Rho is activated, 

indicating that Rho activation and ZO-1 may cooperate to restore barrier function at the 

sites of leaks (Figure 2.6c). 

 

Figure	 2.6:	 ZnUMBA	 detects	 sporadically	 occurring	 leaks	 in	 the	X.	 laevis	embryo.	 (a)	 FIRE	 Lookup	 Table	 (LUT)	
applied	to	FZ3	in	the	unperturbed	X.	laevis	epithelium.	Arrowheads	indicate	short-lived,	localized	leaks.	(b)	Leaks	
(FZ3,	white	arrow)	occur	at	sites	of	local	ZO-1	loss	(white	arrowhead),	and	Rho	flares	(yellow	arrowhead)	follow	at	
these	sites.	FZ3	intensity	decreases	while	ZO-1	intensity	increases	following	Rho	flares.	(c)	Mean	normalized	intensity	
for	active	Rho	(mCherry-2xrGBD),	FZ3,	and	ZO-1	(BFP-ZO-1)	at	the	site	of	the	Rho	flare	over	time	quantified	from	(b)	
and	 additional	 movies.	 Shading	 represents	 standard	 error	 of	 the	 mean	 (S.E.M.).	 n=17,7,5	 (flares,	 embryos,	
experiments).	
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Discussion  

 The data presented in this chapter are proof-of-principle studies that validate 

ZnUMBA, a technique we developed to measure local or global changes in barrier 

function on short time scales with live imaging. Currently, our assay uses a 

commercially available dye, FZ3, and Zn2+ applied to the basal and apical sides of the 

barrier, respectively. These widely available reagents make this assay accessible to a 

wide array of researchers for use in diverse model systems, such as 2D cell culture, 

organoids, and other intact model organisms. One drawback of this approach is that 

some epithelial tissues are permeable to cations; that is, the tight junctions act as a 

sieve to allow high volumes of cations to cross the barrier, while restricting anions and 

other molecules. In epithelial tissues that express claudins that form cation pores, it will 

be difficult to distinguish between the leak pathway (i.e., breaking of claudin strands) 

and the opening and closing of claudin pores. There are two strains of Madin-Darby 

Canine Kidney (MDCK) cells that have similar tight junction morphology but differ in the 

profile of claudins they express (Furuse et al., 2001). MDCK I cells do not express 

claudin-2, while MDCK II cells do (Furuse et al., 2001; Tokuda et al., 2016). Because 

claudin-2 is a cation pore, comparing ZnUMBA in these cell lines would give us insight 

into how expression of cation pores affects the usefulness of ZnUMBA. Alternatively, 

finding or developing other molecule pairs analogous to FZ3/Zn2+ where both molecules 

are too large to travel through claudin pores would avoid this issue.  

Fortunately, the gastrula-stage X. laevis embryo is relatively impermeable to 

cations. At stage 10, the beginning of gastrulation, the most highly expressed claudins 

by RNA-seq data are claudin-6.1, claudin-6.2, claudin-7, and claudin-4, each with >900 
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transcripts per million at stage 10 (Xenbase; (Session et al., 2016). Claudin-6 and 

claudin-4 are barrier forming claudins with decreased permeability to cations, whereas 

claudin-7 is a pore-forming claudin with increased permeability to anions (Günzel and 

Yu, 2013). The claudins known to act as cation pores are claudin-2, -10b, -15, and -16 

(Günzel and Yu, 2013). These claudins are weakly expressed at stage 10, with all four 

combined totaling fewer than 10 transcripts per million (Xenbase: (Session et al., 2016). 

Thus, based on the available RNA-seq data, there are several orders of magnitude 

fewer cation pore-forming claudins than other claudins. Because of this, the most likely 

explanation for the increase in fluorescence we observed in the ZnUMBA experiments 

reported is a non-specific, short-lived opening of the tight junction barrier. 

 There are a number of known perturbations that increase flux	of macromolecules 

across the tight junction, including knockdown of ZO-1 (and ZO-2), Toca-1 (a regulator 

of junctional actin and membrane dynamics) knock down, and myosin light chain kinase 

activation through TNF-α (Fanning et al., 2012; Turner et al., 2014; Van Itallie et al., 

2015; 2009). However, it is not known if all of these perturbations influence the leak 

pathway in the same way. That is, do these perturbations increase the frequency of 

leaks or their duration? Increased leak frequency could indicate active disruption the 

tight junction barrier, while increased leak duration could indicate a defect in barrier 

restoration. Thus, the ability to visualize and quantify the number and duration of leaks 

will be a powerful tool for increasing our understanding of factors that influence the leak 

pathway. 

The bioavailability of some drugs is limited by their ability to cross epithelial 

tissues such as the skin, nasal mucosa, and gastrointestinal tract (Rosenthal et al., 
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2012). Chemical agents and bacterial toxins that increase paracellular permeability are 

sometimes co-administered with drugs in order to enhance absorption (Krug et al., 

2013; 2017). ZnUMBA could be very useful in monitoring how effective these 

permeability enhancers are. In future work, I will use ZnUBMA to test the effect of 

angubindin, a modified Clostridium perfringens toxin that uses angulin-1, a tricellular 

tight junction protein, as a receptor to enter the cell. Angubindin is reported to 

selectively enhance permeability at tricellular junctions (Krug et al., 2017; Zeniya et al., 

2018). 

Here, I have introduced ZnUMBA, a novel live imaging barrier assay. Using 

ZnUMBA, I demonstrated that sporadic leaks occur in the unperturbed epithelium of the 

X. laevis gastrula-stage embryo. In the future, it will be important to collect statistics 

about the average frequency, duration, and location of leaks in this tissue in order to 

compare our results with those from other tissues, model systems, and upon various 

experimental perturbations. Developing high throughput quantitative tools to gather 

these statistics is a priority. This, in combination with experimental and computational 

approaches to measure and predict changing forces in the epithelial tissue, will allow us 

to understand the roles that mechanical forces and molecular perturbations have on 

leak pathway regulation and tight junction barrier stability. 
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Chapter 3 

Rho flares locally repair the tight junction barrier 

 

Abstract: The small GTPase RhoA is an important regulator of cell-cell junction 

formation, homeostasis, and disassembly. While it is well appreciated that active RhoA 

promotes actomysosin contractility in epithelial tissues at the cell and tissue scales, little 

is known about how RhoA regulates junction dynamics on a subcellular scale or how 

junctional Rho activity changes over short time scales. Here, I describe transient, 

localized accumulations of active Rho (“Rho flares”) at junctions in the epithelium of 

gastrula-stage Xenopus laevis embryos. In order to investigate the cause and 

consequence of Rho flares, I co-imaged active Rho with fluorescently-tagged tight 

junction and adherens junction proteins. Intriguingly, the tight junction proteins ZO-1 and 

occludin are locally decreased prior to the Rho flare and, along with claudin-6, are 

reinforced following the flare. I found that Rho flares reinforce tight junction proteins 

through actin polymerization and ROCK-mediated localized contraction of the cell 

boundary, allowing for efficient restoration of barrier function. I propose that Rho flares 

constitute a damage control mechanism that reinstates barrier function when tight 

junctions become locally compromised due to changes in cell and tissue tension. 
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Introduction 

The small GTPase RhoA is a master regulator of contractility, stimulating formin-

mediated actin polymerization and ROCK-mediated myosin II motor activity (Arnold et 

al., 2017; Thumkeo et al., 2013). Precise regulation of active Rho at cell-cell junctions is 

critical for their proper structure and function, as either too little or too much Rho activity 

can have negative consequences for epithelial integrity (Quiros and Nusrat, 2014). 

Within epithelial tissues, active Rho is important in several discrete locations in addition 

to cell-cell junctions, including at basal stress fibers that anchor the cells to the basal 

lamina, in the nucleus, and at the contractile ring of dividing cells. Biochemical 

approaches to measuring active Rho in a tissue, such as GST-rGBD pulldowns (Figure 

1.6a), average all of these populations. Additionally, Rho activity can be dynamic both in 

space and in time. Therefore, visualizing Rho activity in epithelial tissues is important for 

understanding its true nature. 

The first studies to visualize active Rho in epithelial tissues used FRET 

biosensors and presented only snapshots in time (Ratheesh et al., 2012; Terry et al., 

2011), leading to the perception that Rho is stably activated at apical cell-cell junctions. 

Indeed, even time-lapse imaging of active Rho in cultured epithelial cells led to the 

conclusion that junctional Rho activity is “strikingly stable” (Priya et al., 2015). Here I will 

present data that stands in contrast to these studies. Using live imaging in the 

epithelium of a developing vertebrate model organism, Xenopus laevis, I have observed 

transient, localized accumulations of active Rho at cell-cell junctions and have 

uncovered their biological relevance.  
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 To our knowledge, the first description of transient junctional accumulations of 

active Rho come from laser wounding experiments in X. laevis blastomeres (Clark et al., 

2009). Laser wounding of the membrane in X. laevis oocytes results in influx of 

extracellular calcium at the wound site followed by the formation of concentric rings of 

active Rho, active Cdc42, F-actin, and myosin II around the wound site that constrict to 

rapidly repair the plasma membrane (Benink and Bement, 2005; Davenport et al., 

2016).  Clark et al. (2009) discovered that when wounds were made near cell-cell 

junctions, there was influx of calcium and transient increase in active Rho and F-actin at 

the nearby junctions, in addition to at the wound site. Surprisingly, Rho activation was 

detectable at the junctions before it could be detected at the wound site, and Rho was 

activated not just in the wounded cells, but also in the neighboring cells (Clark et al., 

2009). Unlike naturally occurring Rho flares at gastrula-stage, these accumulations 

merge with the concentric ring of active Rho at the wound site (Clark et al., 2009).  

In 2014, Reyes et al. coined the term “Rho flare” to describe the transient 

junctional accumulations of active Rho that increase in frequency when anillin is 

knocked down (Reyes et al., 2014). Anillin is a scaffolding protein capable of binding 

active Rho, F-actin, myosin-II, and many other Rho-associated proteins and cytoskeletal 

elements, and is important for maintaining the architecture of tight junctions and 

adherens junctions (Arnold et al., 2017; Reyes et al., 2014). Reyes et al. (2014) 

hypothesized that “the pronounced Rho-GTP flares in anillin knockdown embryos may 

represent sites of junction disassembly or repair”. In anillin knockdown cells, flares had 

increased breadth and decreased duration compared to controls, suggesting a role for 

anillin in contributing to flare duration and morphology (Reyes et al. 2014). 
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In 2015, Breznau et al. reported that perturbing MgcRacGAP’s function through 

knockdown or knockdown and replacement with GAP-dead mutants resulted in 

increased frequency of “dynamic junctional accumulations of RhoA-GTP and F-actin” 

(Breznau et al., 2015). These mutants also exhibit severe defects in adherens junctions, 

but not tight junctions, as well as apical doming (Breznau et al., 2015). Qualitatively, 

Rho flares appear larger than average in these mutants (personal observation), which 

may indicate an involvement of MgcRacGAP in contributing to Rho inactivation at Rho 

flares. Furthermore, active Rac was not detected at these flares (Breznau et al., 2015). 

Finally, in unpublished work, I found that perturbations of GEF-H1 through 

knockdown or overexpression of a dominant negative (GEF dead) mutant increased 

Rho flare frequency relative to control (not shown). GEF-H1 is a Rho GEF that localizes 

to tight junctions, where its GEF activity is reportedly inhibited (Aijaz et al., 2005; 

Benais-Pont et al., 2003; Terry et al., 2011). Thus, it is surprising that GEF-H1 

perturbations increase Rho flares, both because it is largely believed to be inactive at 

junctions and because it is counterintuitive for GEF loss-of-function to increase Rho 

activation. 

With so many different perturbations causing an increased number of flares, it 

became imperative to understand why flares are happening and how they affect cell-cell 

junctions. Based on the observations above, as well as the data presented in Chapter 2 

that Rho flares follow local junction breaches, I examined the effect of Rho flares on 

tight junctions, adherens junctions, and the actin cytoskeleton. Then, I tested the 

mechanism of how Rho flares contribute to the restoration of barrier function I observed 

in Chapter 2.  
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Results 
 
Rho flares reinforce tight junction proteins following local discontinuities 

Because epithelial barrier function is compromised prior to Rho flares (Figure 

2.6b,c), I first investigated the dynamics of tight junction proteins before, during, and 

after Rho flares. I found that both ZO-1 and occludin, but not claudin-6, locally decrease 

prior to Rho flares (Figure 3.1a-d). During Rho flares, occludin, ZO-1, and claudin-6 

fluorescence levels rise rapidly, and remain elevated, or “reinforced”, over baseline 

levels (Figure 3.1a-d). That claudin-6 signal remains unchanged at the site of Rho flares 

suggests that the epithelial barrier function to ions may not be compromised. Indeed, 

changes in the intermolecular associations between claudins, ZO-1, occludin, and the 

actin cytoskeleton are linked to leak pathway regulation and increased strand dynamics 

(Van Itallie et al., 2017; Yu et al., 2010), so localized decline in ZO-1 and occludin may 

indicate a molecular basis for the increase in permeability to FZ3.  

In contrast to ZO-1 and occludin, the adherens junction proteins E-cadherin and 

α-catenin are not visibly decreased prior to Rho flares (Figure 3.1e,f). Additionally, there 

is no sign of separation between the neighboring cell membranes (Figure 3.2a,b), 

indicating that a defect in cell-cell adhesion is not a primary cause of increased 

permeability prior to Rho flares. However, both E-cadherin and α-catenin increase in 

intensity at the site of the flare (Figure 3.2e,f), indicating that the adherens junction is 

affected by, or perhaps participates in, the Rho flare-associated concentration of tight  
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Figure	3.1:	Rho	flares	reinforce	tight	
junction	 proteins	 following	 local	
discontinuities.	
(a)	Schematic	depicting	 the	 regions	
of	interest	(ROI)	used	for	calculating	
normalized	intensity	at	the	junction.	
(b-f)	 Left:	 Mean	 of	 normalized	
intensity	 of	 a	 region	 of	 interest	
centered	on	the	junction	at	the	site	
of	the	flare	over	time	(calculated	as	
depicted	in	(a)).	Shading	represents	
S.E.M.	 Right:	 Co-imaging	 of	 Rho	
flares	with	junction	proteins.	Active	
Rho	is	shown	in	grey	scale,	all	others	
shown	 with	 FIRE	 LUT.	 Yellow	
arrowheads	 indicate	 Rho	 flares,	
white	 arrowheads	 indicate	 local	
protein	decrease,	and	white	arrows	
indicate	local	protein	increase.	Scale	
bars	 =	 5	 μm.	 (b)	 Local	 decrease	 in	
ZO-1	 precedes	 the	 onset	 of	 Rho	
flares.	 Following	 Rho	 flares,	 ZO-1	
intensity	 is	 elevated	 over	 baseline.	
n=26,9,4	 (flares,	 embryos,	
experiments);	 mRFP-ZO-1,	 GFP-
rGBD.	 (c)	 Occludin	 declines	 sharply	
prior	 to	 the	 onset	 of	 Rho	 flares.	
Following	 Rho	 flares,	 occludin	 is	
locally	 reinforced.	 n=28,7,3;	
mCherry-occludin,	 GFP-rGBD.	 (d)	
Claudin-6	rises	during	Rho	flares	and	
remains	reinforced	following	flares.	
n=24,8,3	 mCherry-claudin-6,	 GFP-
rGBD.	(e)	E-cadherin	rises	during	the	
Rho	 flares,	 but	 returns	 to	 baseline	
levels	 following	 flares.	 n=22,7,3;	 E-
cadherin-3xmCherry,	 GFP-rGBD.	 (f)	
α-catenin	rises	during	Rho	flares	and	
remains	reinforced	following	flares.	
n=24,6,3.	 mCherry-α-catenin,	 GFP-
rGBD.		
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Figure	3.2:	Rho	flares	are	associated	with	apical	plasma	membrane	deformations	and	accumulation	of	F-actin	and	
myosin	 II.	 (a,c,d)	Left:	Mean	of	normalized	 intensity	at	 the	 site	of	 the	 flare	over	 time,	as	 calculated	 in	 Fig	3.1a.	
Shading	represents	S.E.M.	Right:	Co-imaging	of	Rho	flares	with	membrane,	F-actin,	or	Myosin	II.	Active	Rho	is	shown	
in	grey	scale,	all	others	shown	with	FIRE	LUT.	Yellow	arrowheads	indicate	Rho	flares,	white	arrowheads	indicate	local	
protein	decrease,	and	white	arrows	indicate	local	protein	increase.	Scale	bars	=	5	μm	(a)	The	junctional	intensity	of	
the	 membrane	 signal	 stays	 constant	 throughout	 the	 flare;	 however,	 plasma	 membrane	 deformations	 (white	
asterisks)	are	associated	with	Rho	flares.	n=25,9,5;	mCherry-farnesyl,	GFP-rGBD.	(b)	mCherry-farnesyl	(membrane	
probe)	was	expressed	mosaically,	while	BFP-ZO-1	and	GFP-rGBD	(active	Rho	probe)	were	expressed	globally.	Serial	
z-slices	through	the	flare	(yellow	arrowheads)	show	that	the	plasma	membrane	protrudes	apically	(asterisks),	but	
not	basally	(bottom).	Note	that	accumulation	of	active	Rho	is	also	apical.	(c)	F-actin	expands	in	the	direction	of	Rho	
flares	as	flares	expand,	and	retracts	as	flares	retract.	n=19,7,4;	Lifeact-RFP,	GFP-rGBD.	(d)	Junctional	Myosin	II	locally	
decreases	at	the	start	of	the	flare	and	accumulates	on	the	cortex	as	Rho	flares	expand	and	coalesces	towards	the	
junction	 as	 flares	 retract.	 n=23,7,3;	 SF9-mNeon,	mCherry-2xrGBD.	 BFP-ZO-1	 (not	 shown)	was	 used	 to	 track	 the	
position	of	the	junction.	(e)	Top:	Triple	labeling	of	F-actin	(Lifeact-RFP),	myosin	II	(SF9-mNeon),	and	active	Rho	(BFP-
2xrGBD).	 Bottom:	 Kymograph	 generated	 from	 the	 2-pixel	 wide	 line	 shown	 above	 (yellow	 arrow	 indicates	
orientation).	 Note	 that	 F-actin	 accumulation	 closely	 follows	 the	 timing	 and	 orientation	 of	 active	 Rho,	 whereas	
Myosin	II	accumulates	at	the	periphery	of	the	flare	and	moves	towards	the	junction	as	the	flare	retracts.	The	red	
dotted	 lines	 trace	 the	dense	accumulation	of	 active	Rho,	which	 corresponds	 to	 the	boundary	of	 the	membrane	
protrusion.	Note	that	both	F-actin	and	myosin	II	can	be	seen	beyond	this	boundary,	indicating	that	they	accumulate	
in	the	cell	neighboring	the	membrane	protrusion.	
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junction proteins. In contrast to the tight junction and adherens junction proteins I 

observed, the intensity of a membrane probe measured at the junction remains stable 

over the course of the flare (Fig 3.2a), indicating that the increases in junction protein 

intensity are not a flare-induced artifact. 

I observed that Rho flares are typically asymmetric with respect to the junction; 

that is, the plasma membrane of one cell protrudes apically over its neighbor (Figure 

3.2a,b). Dense, bright active Rho signal is associated with the membrane protrusion, 

although there is often a lighter haze of active Rho surrounding the dense signal (see 

Figure 3.1c-e). The protrusion grows as Rho activity increases and retracts as Rho 

activity declines (Figure 3.2a). F-actin emanates from the junction in the direction of the 

membrane protrusion, while myosin II accumulates on the periphery of the flare and 

flows towards the junction as the flare retracts (Figure 3.2c-e). The mechanical origin of 

the membrane protrusion will be explored further in Chapter 4; however, the 

accumulation of F-actin and myosin II on either side of the membrane protrusion (Figure 

3.3e) indicate that tight junction reinforcement is a cooperative process involving 

adjacent cells. Notably, many of the hallmarks of Rho flares described above, including 

membrane protrusion, F-actin and active Rho accumulation, and ZO-1 and occludin 

reinforcement, can be induced by laser injury of the junction (Figure 3.3). Therefore, it 

seems that a Rho-mediated contractile response, similar to those observed in single- 

and multi-cell wound healing, could drive reinforcement of tight junction proteins (Benink 

and Bement, 2005; Clark et al., 2009). 
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Figure	3.3:	Laser	injury	recapitulates	key	aspects	of	Rho	flare	events.	
A	405	nm	laser	was	activated	in	a	small	circular	region	on	the	junction	to	induce	an	injury	(as	in	Fig	2.5).	Frames	
marked	with	red	brackets	indicate	laser	injury.	Note	that	photobleaching	accompanies	injury.	(a)	Junction	injury	
results	in	protrusion	of	the	plasma	membrane	(yellow	arrow).	F-actin:	Lifeact-GFP,	membrane:	mCherry-farnesyl.	
(b)	Laser	injury	of	the	junction	results	in	accumulation	of	active	Rho	(GFP-rGBD),	which	precedes	F-actin	(Lifeact-
RFP)	accumulation.	(c,d)	Laser	injury	results	in	reinforcement	of	mRFP-ZO-1	(c)	and	mCherry-occludin	(d).	F-actin:	
Lifeact-GFP.	Scale	bars	=	10	μm,	and	frames	are	5	seconds	apart.	
	
Actin polymerization contributes to tight junction reinforcement 

I hypothesized that actin polymerization and/or junction contraction downstream 

of Rho flares contribute to tight junction reinforcement. To distinguish between these 

possibilities, I first examined at ZO-1, an actin binding protein (Fanning et al., 2002; Itoh 

et al., 1997) whose recruitment and stabilization at tight junctions is dependent on actin 

polymerization (Yu et al., 2010). Co-imaging of active Rho, F-actin, and ZO-1 revealed  
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Figure	 3.4:	 Actin	 polymerization	 and	 myosin-II-mediated	
contraction	 contribute	 to	 ZO-1	 reinforcement.	 (a)	 Top:	 Mean	
normalized	 intensity	 of	 active	 Rho,	 F-actin,	 and	 ZO-1.	 Shading	
represents	S.E.M.	n=22,10,8	(flares,	embryos,	experiments).	Time	

0	represents	the	start	of	the	flare.	Bottom:	ZO-1	reinforcement	closely	follows	active	Rho	and	F-actin	accumulation	
in	space	and	time.	BFP-ZO-1	colocalizes	with	the	actin	structures	(Lifeact-RFP)	emanating	from	the	junction	at	the	
site	 of	 Rho	 flares	 (GFP-rGBD)	 (white	 arrowheads).	 (b)	 Incubation	 with	 8-10	 μM	 LatB	 results	 in	 large	 breaks	 in	
junctional	F-actin	and	ZO-1	(white	arrowheads).	Rho	flares	(yellow	arrowheads)	appear	at	these	sites,	but	no	actin	
polymerization,	ZO-1	 recruitment,	or	 junction	contraction	 follows,	 resulting	 in	 repeating	Rho	 flares.	 (c)	The	 tight	
junction	barrier	is	not	restored	in	severe	LatB	conditions.	FluoZin3	signal	continues	to	intensify	as	the	discontinuity	
in	ZO-1	(white	arrowheads)	expands.	(d)	Mild	(1-5	µM)	LatB	treatment	does	not	cause	disintegration	of	junctional	F-
actin,	and	a	subset	of	junctions	become	hypercontractile.	Rho	flares	(yellow	arrowheads)	at	these	hypercontractile	
junctions	result	in	ZO-1	reinforcement	(white	arrows)	despite	impaired	actin	polymerization.	(e-h).	Quantification	of	
active	Rho	(GFP-rGBD)	(e),	F-actin	(Lifeact-RFP)	(f),	ZO-1	(BFP-ZO-1)	(g),	and	junction	length	(h)	in	the	experiments	
described	 above.	 Controls	 (untreated	 embryos)	 n=22,10,8;	 Severe	 LatB	 n=13,4,2;	 Mild	 LatB	 n=12,5,3.	 Time	 0	
represents	the	start	of	the	Rho	flare;	data	are	normalized	to	1	(e-g)	or	0	(h)	at	time	0.	(i)	A	mutant	of	ZO-1	that	lacks	
the	C-terminal	actin-binding	region	(mRFP-ZO-1	ΔABR)	is	reinforced	more	slowly	than	full	length	ZO-1	(mRFP-ZO-1).	
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that ZO-1 accumulation closely follows F-actin accumulation in space and time (Fig 

3.4a), indicating that actin polymerization could feasibly recruit ZO-1 to tight junctions 

during Rho flares.  

To test how actin polymerization affects ZO-1 reinforcement, I treated embryos 

with Latrunculin B (LatB), which prevents actin polymerization by sequestering G-actin 

monomers. At 8 μM LatB and higher, I observed a severe effect, associated with large 

breaks in F-actin and ZO-1, as reported previously (Shen and Turner, 2005) (Fig 3.4b). 

Notably, these breaks colocalized with sites where repeated Rho flares occurred, 

mimicking endogenous Rho flares that appear at sites of decreased ZO-1. Under these 

circumstances, ZO-1 was not reinforced, and the barrier could not be restored (Fig 

3.4b,c,e-h). Despite the lack of new actin polymerization at Rho flares, existing cortical 

actin becomes fragmented and forms puncta that are pulled towards the junction, where 

they merge with one another; in rare cases, these junctional accumulations of actin 

were sufficient to recruit ZO-1. However, junctions elongated during severe LatB 

treatment (Fig 3.4h), likely due to severe disruption of the junctional actin network, so 

we were not able to distinguish between the contribution of contraction and F-actin 

polymerization to ZO-1 reinforcement under these conditions. 

To avoid completely disrupting junctional F-actin, I reduced the dose of LatB (≤5 

µM). With this mild LatB treatment, I witnessed a loss of tissue integrity, resulting in 

some cell borders rapidly shrinking as other cells rapidly expand to compensate. Rho 

flares occurred on shrinking junctions, and in this scenario F-actin accumulation is 

strongly reduced compared to controls (Fig 3.4d,f), and ZO-1 reinforcement is slightly 

delayed (Fig. 3.4g), but not abolished. This indicates that increased contraction can 
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compensate for reduced actin accumulation to reinforce ZO-1 (Fig 3.4e-h). Furthermore, 

deletion of the actin binding region of ZO-1 (Fanning et al., 2002) delayed, but did not 

abolish, ZO-1 reinforcement (Fig 3.4i). While the actin binding region of ZO-1 has been 

reported to be important for its stabilization at junctions (Yu et al., 2010), the 

reinforcement of other tight junction proteins, such as claudins or occludin, could 

account for the reinforcement of ZO-1, given that ZO-1 binds to these proteins through 

its N-terminal domains (Fanning and Anderson, 2009). Taken together, we conclude 

that actin polymerization contributes to, but is not required for, ZO-1 reinforcement. 

 

ROCK-mediated junction contraction contributes to tight junction reinforcement 

We hypothesized that Myosin II-mediated contraction reinforces tight junctions by 

concentrating proteins within the junction. To test this hypothesis, we generated 

kymographs of the junction from vertex-to-vertex before, during, and after Rho flares. 

Kymographs highlighted a variety of Rho flare events, from simple to complex, including 

isolated Rho flares, repeating flares at a single location, and multiple flares along the 

same junction (Fig 3.6a). To simplify the interpretation of length analysis, we initially 

only considered only isolated flares. Quantification of these kymographs revealed that 

the total length of the junction is reduced during Rho flares, and the timing corresponds 

with the local increase in ZO-1 and occludin (Fig 3.5a,b, Fig 3.6b,c). Natural variation in 

junction protein intensity along the junction generates vertical lines in the kymographs 

that can serve as fiducial position markers. By tracing these lines, we observed that only 

regions of the junction associated with Rho flares contract, while other regions remain a 

stable length or elongate (Fig 3.5a, Fig 3.6b). This builds on previous work  
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Figure	3.5:	Junction	contraction	concentrates	ZO-1	within	the	junction	and	is	required	for	efficient	reinforcement	
of	the	barrier.	(a)	Left:	Montage	of	the	junction	shown	as	a	kymograph	on	the	right.	Colored	dots	on	the	montage	
correspond	to	the	relative	position	of	dashed	 lines	on	the	kymograph,	which	trace	fiducial	marks.	Kymograph	of	
active	 Rho	 (GFP-rGBD,	 green)	 and	mRFP-ZO-1	 (magenta)	 shows	 ZO-1	 signal	 increasing	 as	 the	 junction	 contracts	
locally.	(b)	Quantification	of	junction	length	and	protein	intensity	from	multiple	kymographs.	Time	0	corresponds	to	
the	start	of	the	Rho	flare.	Decrease	in	junction	length	after	the	Rho	flare	aligns	with	increased	local	ZO-1	intensity,	
while	total	ZO-1	intensity	does	not	increase.	n=	19,6,3	(flares,	embryos,	experiments)	(c)	Junction	length	vs.	mRFP-
ZO-1	reinforcement	in	embryos	injected	with	vehicle	(DMSO)	or	ROCK	inhibitor	(Y-27632).	ROCK	inhibitor	partially	
inhibits	 junction	contraction,	and	ZO-1	reinforcement	 is	reduced.	Vehicle:	n=21,9,3;	ROCK	inhibitor:	n=32,7,4.	(d)	
Change	in	length	and	intensity	were	calculated	from	(c).	Significance	calculated	using	Mann-Whitney	U	test.	Bars	
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indicate	median	and	 interquartile	 range.	(e-f)	Restoration	of	 the	barrier	 is	 less	efficient	 in	embryos	treated	with	
ROCK	inhibitor	(Y-27632)	(f)	vs.	vehicle	(DMSO)	(e).	In	ROCK	inhibitor-treated	embryos,	Rho	flares	(mCherry-2xrGBD)	
frequently	repeat	at	the	same	site	(arrows	in	f	indicate	multiple	peaks	of	active	Rho),	and	FZ3	takes	longer	to	return	
to	baseline	(dotted	horizontal	line).	n=19,6,3	(e)	and	18,4,3	(f).	(f’)	shows	an	individual	example	of	a	junction	with	
repeated	flares.	
	
demonstrating that junctions on a given cell can expand and contract independently of 

one another (Choi et al., 2016) by revealing that segments within a junction can 

independently expand and contract, indicating that force is not equally distributed along 

a junction. Notably, the analysis of junction length also revealed substantial elongation 

of the junction prior to flares, suggesting that junction elongation could trigger breaches 

in the tight junction barrier (Fig 3.5b, Fig 3.6c). 

To further test whether junction contraction reinforces ZO-1, I inhibited ROCK-

mediated myosin II activation with Y-27632, a ROCK inhibitor. Successful cytokinesis 

and normal junction architecture depend on ROCK; therefore, I used a moderate dose 

of ROCK inhibitor such that epithelial organization was not completely disrupted. In 

embryos expressing ZO-1, ROCK inhibitor partially inhibited junction contraction at 

isolated flares, and ZO-1 reinforcement was reduced (Fig 3.5c,d). In contrast, when 

embryos expressing occludin were treated with ROCK inhibitor, we did not detect a 

significant decrease in junction contraction or Occludin reinforcement at isolated flares 

(Fig 3.6d-f). We hypothesized that repeating flares might be a result of a single flare 

being insufficient to reinforce the barrier, and thus selecting isolated flares may bias the 

results towards control levels of contraction and reinforcement. When we included more 

complex flares in the analysis (isolated, repeating, and multiple flares), we observed a 

significant decline in both junction contraction and occludin reinforcement in ROCK 

inhibitor-treated embryos (Fig 3.6f). Finally, ROCK inhibitor impaired the efficient 

restoration of barrier function following Rho flares (Fig 3.5e,f). Similar to occludin, we 
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observed a high number of repeating flares when ROCK was inhibited (Fig 3.5f,f’). 

These repeating flares coincided with repeating increases in FZ3 intensity, indicating 

that repeating flares may result from incomplete restoration of barrier function (Fig 3.5f’). 

Taken together, these findings support a model in which Rho flares promote Myosin II-

mediated contraction of a segment within the junction, thereby concentrating junction 

proteins locally within that region to repair the barrier. 



	64	

Figure	 3.6:	 Junction	 contraction	
reinforces	occludin.	 
(a)	 Kymographs	 of	 active	 Rho	 (GFP-
rGBD,	 green)	 and	 occludin	 (mCherry-
Occludin,	 magenta)	 showing	 isolated	
and	 complex	 (repeating,	 multiple,	
excessive	 noise)	 flares.	 (b)	 Occludin	
signal	 increases	 as	 the	 junction	
contracts	 locally.	 Color-coded	
arrowheads	 on	 the	 kymograph	
correspond	to	the	timing	of	the	images	
shown	 to	 the	 left,	 top,	 and	 bottom.	
Dashed	 white	 lines	 trace	 arbitrary	
fiducial	 marks	 in	 the	 kymograph,	
indicating	 distinct	 contractile	 units	
within	 the	 junction.	 (c)	 Quantification	
of	 data	 from	 multiple	 kymographs.	
Time	0	corresponds	to	the	start	of	the	
Rho	 flare.	 n=22,7,3	 (flares,	 embryos,	

experiments)	(d,e)	 In	 isolated	flares,	ROCK	 inhibitor	 (Y-27632)	did	not	significantly	 influence	 junction	contraction	
relative	to	vehicle	(DMSO),	although	elongation	prior	to	the	flare	was	increased.	(d)	n=40,8,3.	(e)	n=42,7,3	(f)	Change	
in	 junction	 length	and	occludin	 intensity	was	calculated	from	(d,e)	for	 isolated	flares.	When	complex	flares	were	
considered	 in	 addition	 to	 isolated	 flares,	 both	 contraction	and	occludin	 reinforcement	 are	 significantly	 reduced.	
DMSO:	n=58,8,3	(note:	one	outlier	was	omitted	from	the	DMSO	plot:	ΔL=-0.95,	ΔΙ=3.14);	Y-27632:	n=99,7,3.	P-values	
were	calculated	using	Mann-Whitney	U	test.		
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Figure	3.7:	Model	of	how	Rho	flares	reinforce	tight	junction	proteins	following	junction	breaches.	A	cell-	and	tissue-
scale	model	of	how	Rho	flares	reinforce	the	epithelial	barrier.	(a)	Epithelial	cells	undergo	cell	shape	changes	(e.g.,	as	
a	result	of	cytokinesis),	and	epithelial	cell-cell	junctions	must	adapt	to	these	cell	shape	changes.	(b)	Local	loss	of	tight	
junction	proteins	following	junction	elongation	results	in	a	leaky	barrier.	Flares	of	active	Rho	appear	at	the	site	of	
barrier	 loss,	 and	 the	 tight	 junction	 is	 reinforced	 through	 actomyosin-mediated	 contraction	of	 the	 junction.	 Left:	
cross-section	 of	 the	 junction	 corresponding	 to	 the	 grey	 dashed	 line	 in	 (a).	 Right:	 en	 face	 model	 of	 the	 region	
portrayed	in	the	black	box	in	(a).		
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Discussion  

Steady-state Rho activation is important for proper junction structure; however, 

too much or too little Rho activation can have detrimental effects on barrier function 

(Quiros and Nusrat, 2014) and is associated with inflammatory diseases (Capaldo and 

Nusrat, 2009; López-Posadas et al., 2017). Our results show that dynamic, local Rho 

flares are important for maintaining epithelial barrier function, and thus measuring total 

pools of active Rho with biochemical assays, or even imaging active Rho with a 

snapshot in time, is insufficient to capture the whole picture of how Rho activity affects 

epithelial junctions.  

In mature cultured epithelia, levels of active Rho have been reported to be stable 

over short time scales (Priya et al., 2015). However, our data indicate that active Rho 

dynamics are important for maintaining barrier function in a developing vertebrate 

epithelium, in which cells are undergoing shape changes from cell divisions as well as 

morphogenesis of the embryo. Epithelia in adult organisms also undergo high rates of 

cell division and cell extrusion, as epithelial tissues experience relatively high rates of 

cell turnover (Hooper, 1956). Indeed, other groups have reported short-lived, localized 

accumulation of F-actin and/or Myosin II at junctions in Drosophila and cultured 

mammalian epithelial and endothelial cells during junction remodeling, indicating that 

Rho flare-like events may be a conserved process (Abu Taha et al., 2014; Breslin et al., 

2015; Cao et al., 2017; Hashimoto et al., 2015; Pope and Harris, 2008; Razzell et al., 

2014; Tokuda et al., 2016). However, the majority of these studies focus on the 

adherens junctions as the cause or target of the F-actin and/or Myosin II accumulation. 

Here we showed that tight junction defects appear to drive junctional actomyosin 
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accumulation, highlighting the need to consider both barrier function and mechanics 

when considering what drives cell shape change. We propose that the Rho flare 

mechanism described here may be broadly important for maintaining normal barrier 

function in developing and adult tissues. As small molecule inhibitors that target Rho 

and ROCK have been developed to treat diseases that result from barrier dysfunction 

(Deng et al., 2011; Feng et al., 2016), it will be important to consider that Rho-mediated 

local junction reinforcement contributes to restoring barrier function in some contexts. 

Similar studies in different epithelial and endothelial tissues will need to be performed in 

order to understand how ubiquitous Rho flares are as a method of barrier repair in adult 

tissues. 

Collectively, these findings advance our understanding of how epithelia maintain 

overall barrier function while remaining plastic enough to allow for cell shape changes. 

Many excellent studies have explored how cell-cell junctions are remodeled in response 

to tension (Choi et al., 2016; Leerberg et al., 2014; Oda et al., 2014). However, these 

studies tend to use global, long-term perturbations to increase or reduce tension. Here, 

we examined junction remodeling in response to endogenous cell- and tissue-scale 

forces that naturally occur within the developing frog embryo. We found that junction 

elongation can locally compromise the barrier properties of the epithelium; however, 

Rho flares restore the barrier on the order of minutes, so that small leaks do not pose a 

serious threat to organ homeostasis.  
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Chapter 4: 

 

Mechanics and molecular mechanism of Rho flare-associated 

membrane protrusions 

 

Abstract: A distinctive feature of Rho flares is the associated protrusion of the plasma 

membrane. The cause of the membrane protrusion and its function are thus far unclear. 

In this chapter, I explore possible mechanisms of membrane protrusion, including 

blebbing, actin-based pushing, and actomyosin-based pulling from the neighboring cell, 

as well as the processes that may govern membrane retraction. By carefully examining 

the spatial and temporal accumulation of F-actin, myosin II, and actin nucleators, I 

conclude that a bleb-like method of membrane protrusion is likely, while the mechanism 

governing membrane retraction remains unclear. I propose that the membrane 

protrusion functions to temporarily seal the paracellular space while the tight junction is 

reinforced. Understanding what causes membrane protrusion will allow us to perturb it 

and test this hypothesis.  
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Introduction:  

In the previous chapters, I demonstrated that Rho flares reinforce the tight 

junction barrier, in part by locally concentrating tight junction proteins within the junction. 

However, in addition to a simple shortening of the cell edge at the site of the flare, there 

is an accompanying protrusion of the plasma membrane that occurs prior to the onset of 

junction contraction. In this chapter, I will show that Rho is activated within the 

protrusion, basal to the protrusion in the non-protruding cell, and, frequently, in a 

dimmer “haze” in the non-protruding cell surrounding the membrane protrusion (Figure 

4.1a,b). Active Rho intensity increases as the membrane protrusion expands and 

decreases as the membrane is retracted. However, the mechanical origin of the 

membrane protrusion, its functionality, and its relationship to signaling and organization 

of the cytoskeleton remain mysterious.  

In some cases, a membrane protrusion is not apparent at a Rho flare, possibly 

due to the small size of the protrusion or its location over a tricellular junction. However, 

there can still be asymmetric distribution of active Rho in these instances. In other 

cases, active Rho accumulates symmetrically at or on either side of the junction, with no 

membrane protrusion visible (Figure 4.1c), similar to Rho flares that occur in the 

presence of Latrunculin B (Figure 3.4). Finally, some junctions exhibit many small flares 

in the absence of apparent tight junction defects when the apical membrane is slack 

rather than taut (Figure 4.1d). Based on these observations, it appears that Rho flares 

are not the cause of membrane deformation. However, the observation that small Rho 

flares occur in the slackened membrane indicates that membrane deformation may 

somehow contribute to Rho activation. Possible functions of the membrane protrusion  
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Figure	4.1:	Membrane	morphology	and	sub-populations	of	active	Rho	at	Rho	flares.	 (a)	Rho	flares	are	typically	
associated	with	an	asymmetric	protrusion	of	the	plasma	membrane	(white	arrowhead),	and	a	dense	accumulation	
of	 active	Rho	 follows	 the	morphology	of	 the	membrane	protrusion	 (yellow	arrowheads).	Additionally,	 a	haze	of	
active	Rho	is	often	visible	beyond	the	membrane	protrusion	(green	arrows).	(b)	In	some	instances,	no	haze	of	active	
Rho	 is	 apparent	 beyond	 the	 site	 of	 the	membrane	 protrusion.	 (c)	 In	 other	 cases,	 there	 is	 no	 visible	membrane	
protrusion,	and	a	haze	of	active	Rho	accumulates	symmetrically	on	either	side	of	the	dense	junctional	accumulation	
of	active	Rho	(green	arrows).	(d)	Finally,	in	instances	where	the	apical	plasma	membrane	is	wavy	rather	than	taut,	
there	are	small,	short-lived,	irregular	Rho	flares	that	occur	within	the	slack	membrane	protrusion.	Greyscale:	active	
Rho,	GFP-rGBD;	Green	fire	blue	LUT:	membrane,	mCherry-farnesyl. 
 
  



	75	

are: 1) to act as a flap that temporarily blocks the paracellular space while the tight 

junction is repaired, or 2) to expand the surface area of cell-cell contact between 

neighboring cells. Expanding the area of cell-cell contact could allow for the formation of 

additional trans interactions between transmembrane tight junction proteins in 

neighboring cells (e.g., JAMs or occludin), before condensing them into a smaller area 

during retraction (Cao et al., 2017). Alternatively, the membrane protrusion could be an 

unintended consequence of related processes with no useful function. Understanding 

the molecular and mechanical mechanism that causes the protrusion will allow us to 

perturb it and probe its possible function. 

Models of membrane protrusion and retraction: 

Blebbing: The plasma membrane is linked to a cortical meshwork of contractile 

actomyosin that generates hydrostatic pressure in the cytoplasm (Paluch and Raz, 

2013). Blebs are spherical protrusions of the plasma membrane that occur when the 

membrane is no longer supported by the underlying cortical cytoskeleton due to local 

contractions or fracturing of the cortical cytoskeleton (Charras, 2008; Tinevez et al., 

2009)(Figure 4.2a). When this happens, the hydrostatic pressure of the cytoplasm 

pushes the membrane outward, and the membrane expands until pressure is equalized 

or the cortex is reassembled beneath the membrane and the membrane is retracted 

(Charras et al., 2008). Classic blebs follow a stereotypical lifecycle: nucleation, 

expansion, cortex reassembly, and retraction (Figure 4.2a). Blebbing is common during 

cell division in isolated cells (Sedzinski et al., 2011), amoeboid migration (a type of 

migration used by non-adherent or weakly adherent cells) (Bergert et al., 2012; Diz-

Muñoz et al., 2010), and apoptosis (Coleman et al., 2001; Cotter et al., 1992).  
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Figure	4.2:	Possible	sources	of	membrane	protrusions	at	Rho	flares.	(a)	In	isolated	cells,	two	common	sources	of	
membrane	protrusion	are	blebbing	and	actin-based	protrusion.	(left)	Blebs	are	created	when	the	membrane-cortex	
connection	 fails,	 due	 to	 fracturing	 of	 the	 cortex	 or	 loss	 of	 membrane/cytoskeleton	 cross-linking.	 Cytoplasmic	
pressure	 causes	 the	 cortex-free	 membrane	 to	 expand	 until	 pressure	 is	 equalized	 or	 the	 cortex	 is	 reassembled	
beneath	the	bleb	membrane.	Recruitment	of	F-actin	and	Myosin	II	results	 in	retraction	of	the	bleb.	(right)	Actin-
based	membrane	protrusions,	such	as	lamellipodia,	are	formed	when	Arp2/3-mediated	branched	actin	nucleation	
stabilizes	small	deformations	in	the	plasma	membrane,	resulting	in	forward	movement	of	the	membrane.	(b)	The	
apical	portions	of	two	neighboring	epithelial	cells	are	depicted,	with	the	protruding	cell	on	the	left,	and	the	non-
protruding	 cell	 on	 the	 right.	Membrane	protrusions	at	Rho	 flares	 could	be	 the	 result	of	blebs	 (left),	 actin-based	
pushing	(middle),	or	actomyosin-based	pulling	(right).	Actomyosin-based	pulling	requires	cell-cell	adhesion,	and	the	
non-protruding	cell	performs	the	work,	in	contrast	to	the	other	two	models	of	protrusion. 
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Membrane protrusions described as blebs have been reported in epithelial and 

endothelial cells; however, blebs are frequently reported to appear at the apical or basal 

surfaces of cells, rather than at cell-cell junctions. In some cases, the studies lack 

sufficient detail to determine whether the protrusions follow the classic bleb lifecycle  

(Hughes and Berger, 2018; Rothschild et al., 2017; Sugrue and Hay, 1981; Svoboda et 

al., 1999). However, at least one study depicts blebs at tight junctions in Madin-Darby 

Canine Kidney (MDCK) II epithelial cells exposed to osmotic stress (Tokuda et al., 

2016). In this paper, Tokuda et al. found that inducing an osmotic gradient such that 

osmolality is higher on the basal side of the tissue reduces the Na+/Cl- selectivity of the 

tight junctions. Reduced selectivity is accompanied by odd changes in TJ morphology 

during live imaging—in particular, bulges or loops of Claudin-2, Claudin-3, ZO-1, 

occludin, F-actin, and myosin heavy chain were observed. When viewed with SEM and 

TEM (scanning electron microscopy and transmission electron microscopy, 

respectively), these structures appeared as spherical protrusions that extended above 

the apical surface, and examination of freeze fracture replicas showed TJ strands on 

the blebbed areas, explaining the bulging of TJ proteins they observed. These changes 

were reversed when osmotic balance was restored. This response also depended on 

claudin-2, which allows water transport across the epithelium. When osmolality is 

increased basally, water will move to the basal compartment, potentially inducing 

stretching of the junctions. Indeed, bulges were accompanied by straightening of the 

junctions, suggesting a change in tissue tension. Thus, there is a precedent for blebbing 

at the level of tight junctions in response to mechanical stress in epithelial cells (Figure 

4.2b). 
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Actin-driven protrusion: While blebs rely on cytoplasmic pressure to drive 

membrane protrusions, membrane protrusions can also be driven by forces from the 

cytoskeleton. Lamellipodia are broad membrane protrusions that use Arp2/3-mediated 

branched actin assembly to drive forward progression of the leading edge of migrating 

cells (Figure 4.2a). In support of this model for driving membrane protrusion at Rho 

flares (Figure 4.2b) are a number of studies in dynamic endothelial tissues reporting that 

junctional lamellipodia are important for maintaining barrier function and monolayer 

integrity (Abu Taha et al., 2014; Breslin et al., 2015; Cao et al., 2017; Martinelli et al., 

2013). These protrusions are Rac1 and Arp2/3 dependent, and F-actin and the Arp2/3 

complex localize to the leading edge of the junction-associated lamellipodia, similar to 

the lamellipodia of migrating cells. The apparent purpose of these lamellipodia is to 

support cell-cell adhesion through VE-cadherin clustering.  

Pulling force from neighbor: A third mechanism for membrane protrusion is 

somewhat passive on the part of the protruding cell. In this scenario, a pulling force from 

the non-protruding cell causes the protruding cell membrane to expand over its apical 

surface (Figure 4.2b). This scenario is dependent on adhesion between the two 

membranes and on actomyosin accumulation in the neighboring cell. This mechanism 

could work in concert with the pushing and blebbing models, especially since 

actomyosin appears to accumulate in adjacent cells (Figure 3.2), indicating a degree of 

cooperation between neighbors. 

 Protrusion retraction: Bleb retraction is driven by contractile cortex reassembly 

underneath the bleb membrane, and this retraction mechanism could work 

independently of the trigger for bleb protrusion. Junctional lamellipodia retract when 
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there is no longer protrusive actin generated by Arp2/3; the inherent contractility of the 

cortical cytoskeleton allows it to contract in the absence of a pushing force (Cao et al., 

2017). A third mechanism for retraction could be pushing from the neighbor cell via 

branched actin or contractile actin flow toward the junction.  

 Each of the models described above is associated with distinct predictions about 

the nucleation factors involved in actin polymerization, and the timing and localization of 

F-actin and myosin II accumulation, which are summarized in Figure 4.3. In order to 

investigate these hypotheses, I examined the localization and timing of F-actin, myosin 

II, small GTPases, and their associated actin nucleation factors.  
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Figure	 4.3:	 Predictions	 of	
protein	 localization	based	
on	 models	 of	 membrane	
protrusion	and	retraction.	
Blebbing:	 1)	 Loss	 of	 F-
actin/Myosin	 II	 or	
membrane/cytoskeleton	

cross-linker	 prior	 to	
protrusion;	 2)	 Expanding	
membrane	 is	 free	 of	 F-
actin,	 active	 Rho,	 and	
myosin	II;	3)	Accumulation	
of	active	Rho,	F-actin,	and	
myosin	 II	 beneath	 the	
protrusion	 membrane	
precedes	retraction.	Actin-
based	 pushing:	 1)	
Accumulation	 of	 active	
Rac/Cdc42,	 Arp2/3	
complex,	 and	 F-actin	 are	
early	 events	 in	 protrusion	
and	 2)	 they	 persist	 at	 the	
leading	 edge	 of	 the	
protrusion;	 3)	 Absence	 of	
pushing	 force	 allows	
contractility	 to	 dominate,	
leading	 to	 retraction.	
Neighbor	pulling:	1)	F-actin	
and	 myosin	 II	 accumulate	
in	 neighbor	 cell	 near	
protruding	 membrane;	 2)	

This	is	dependent	on	cell-cell	adhesion;	3)	Flow	of	contractile	actomyosin	(or	branched	actin)	in	the	non-protruding	
cell	pushes	the	protruding	membrane	back.	 
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Figure	4.4:	Localization	of	F-actin	in	protruding	and	
non-protruding	cells.	Active	Rho	probe	(GFP-rGBD,	
green)	was	expressed	in	all	cells,	while	F-actin	probe	
(Lifeact-RFP,	red)	was	expressed	in	a	subset	of	those	
cells.	 (a)	 F-actin	 probe	 is	 expressed	 in	 both	 cells.	
Accumulation	 of	 F-actin	 overlaps	 with	 the	 dense	
active	Rho	accumulation	as	well	as	 the	haze.	Black	
dashed	 line	 indicates	 boundary	 of	 the	 dense	
accumulation;	 white	 dashed	 line	 indicates	 the	
approximate	boundary	of	the	haze.	(b)	F-actin	probe	
is	expressed	 in	the	non-protruding	cell.	 Increase	 in	
non-protruding	 cell	 actin	 (white	 arrow)	 can	 be	
detected	as	early	as	active	Rho	(yellow	arrowhead).	
The	non-protruding	cell	actin	mimics	the	growth	and	
shrinking	of	the	haze	of	active	Rho.	Black	dashed	line	
indicates	 boundary	 of	 the	 dense	 accumulation;	
white	 dashed	 line	 indicates	 the	 approximate	
boundary	of	the	haze.	(c)	F-actin	probe	is	expressed	
in	the	protruding	cell.	As	the	membrane	protrudes,	
the	 protrusion	 fills	 with	 actin,	 but	 it	 is	 similar	
intensity	 to	 background	 signal.	 Intense	 actin	
accumulation	 in	 the	 protruding	 cell	 is	 focused	
around	the	junction	(white	arrow),	instead	of	at	the	
leading	edge	of	the	protrusion	(yellow	arrow).	Even	
as	the	flare	retracts,	the	actin	signal	at	the	edge	of	
the	 protrusion	 remains	 low.	 (d)	 Quantification	 of	
total	 F-actin	 relative	 to	 protruding	 and	 non-
protruding	 cell	 actin.	 Active	 Rho	 for	 each	 group	 is	

averaged	 together	 for	 the	Rho	curve.	Note	 that	non-protruding	cell	 actin	peaks	 slightly	before	 total	actin,	while	
protruding	cell	actin	peaks	after	total	actin.	
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Figure	4.5:	Active	Rho	is	increased	in	both	the	protruding	and	non-protruding	
cells.	 GFP-rGBD	 (green	 Rho	 probe)	 was	 expressed	 in	 a	 subset	 of	 cells,	 and	
mCherry-rGBD	(red	Rho	probe)	was	expressed	in	a	different	subset	of	cells.	A	flare	
occurring	on	 the	boundary	of	 these	cells	 shows	 that	active	Rho	 is	 increased	 in	
both	 the	 protruding	 cell	 and	 the	 non-protruding	 cell	 during	 the	 flare	 (yellow	
arrowheads).	
 
Results: 

Mosaic actin accumulation: To better understand the 

localization of F-actin in the protruding and non-protruding cells, I 

mosaically expressed an F-actin probe (Lifeact-RFP) and globally 

expressed a probe for active Rho (GFP-rGBD). F-actin 

accumulates both within the protrusion in the protruding cell, and 

under and surrounding the protrusion in the non-protruding cell 

(Figure 4.4). Typically, F-actin appears first in the non-protruding 

cell, and is followed by F-actin accumulation in the protruding cell 

(Figure 4.4d). Active Rho accumulation follows a similar pattern 

(Figure 4.5). Interestingly, F-actin in the protrusion tends to remain 

close to the junction and does not extend to the edge of the 

protrusion, even during retraction (Figure 4.4c). This evidence 

supports a model of bleb-like expansion or neighbor pulling, and is 

inconsistent with lamellipodia-like expansion, in which we would 

expect to see a high concentration of F-actin that moves with the 

leading edge of the protrusion.  

 Myosin II: As described in Chapter 3, myosin II localizes to 

the junction until right before the start of the flare, when it 

disappears from the junction and reappears on the cortex at the edge of the flare 

(Figure 3.2). Blebs are often attributed to rupturing of the actomyosin cortex or 	
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Figure	 4.6:	A	 local	 discontinuity	 in	 F-actin	
prior	 to	 onset	 of	 Rho	 flare.	 White	
arrowhead	 shows	 a	 transient	 break	 in	
junctional	actin	 in	 the	protruding	cell	prior	
to	 the	 Rho	 flare.	 F-actin	 (Lifeact-RFP)	
expressed	only	in	the	protruding	cell.	Active	
Rho	 probe	 (GFP-rGBD)	 expressed	 in	 both	
cells.	

 

 

 

 

disconnection of the membrane from the cortex, so this observation is consistent with 

bleb-like expansion. Furthermore, there is occasionally locally reduced F-actin at the 

flare site, although this is not always apparent (Figure 4.6).  

To better understand how the spatial and temporal patterning of F-actin and 

myosin II interaction governs flare expansion and retraction, I generated kymographs of 

F-actin, myosin II, and active Rho perpendicular to the junction (Figure 4.7a). Strikingly 

distinct zones of F-actin and myosin II were apparent from the kymographs generated, 

with a dense accumulation of F-actin overlapping with the dense active Rho 

accumulation along the junction, and strong myosin II accumulation just outside the F-

actin (Figure 4.7b-e). 9 of the 15 kymographs had similarly intense accumulation of 

myosin II on either side of the flare (i.e., in both the protruding and non-protruding cells) 

(Figure 4.7c,e), while 6 of the 15 had myosin II accumulation predominantly on the side 

of the protruding cell. In instances where myosin II did accumulate in the neighboring 

cell (Figure 4.7c,e), it typically did so after expansion of the flare. In the neighbor pulling 
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model of protrusion expansion, I predicted early accumulation of myosin II in the 

neighbor cell, so these data do not support this model.   

Figure	4.7:	F-actin	and	myosin	
II	 have	 distinct	 patterns	 of	
accumulation	 at	 Rho	 flares.	
Kymographs	 were	 generated	
according	 to	 the	 diagram	 in	
(a).	 P.C.,	 protruding	 cell;	
N.P.C.,	 non-protruding	 cell.	
(b,c)	 Kymographs	 of	 short	
flares	 with	 myosin	 II	 (SF9-
mNeon)	 accumulation	
predominantly	 in	 the	
protruding	cell	(b)	or	both	the	
protruding	 and	 non-
protruding	cells	(c).	Note	that	
there	 are	 not	 large	 areas	 of	
overlap	 between	 F-actin	 and	
myosin	 II,	 but	 myosin	 II	 is	
present	at	the	junction	as	the	
flare	 ends.	 (d,e)	 Kymographs	
of	 repeating	 flares	 with	
myosin	 II	 accumulation	
predominantly	 in	 the	
protruding	cell	(d)	or	both	the	
protruding	 and	 non-
protruding	cells	(e).	Note	that	
there	is	little	overlap	between	
F-actin	 and	 myosin	 II	
throughout	 the	 course	of	 the	
repeating	 flares.	 Scale	 bars	 =	
10	μm.	
 

 

 

Next, I investigated how myosin II accumulation in the protruding vs. non-

protruding cell correlates with membrane retraction. In a bleb-like retraction model, I 

would expect both F-actin and myosin II to accumulate at the edge of the protrusion and 

drive retraction. An alternate model is that actomyosin flow towards the protrusion in the 
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non-protruding cell pushes the membrane back towards the junction. In this model, F-

actin and myosin II overlap in the non-protruding cell would correlate with retraction.  

Of the kymographs generated, 8 of 15 were of short, non-repeating flares. The 

other 7 were of flares that were repeating or did not resolve quickly. By comparing these 

groups, I hoped to learn if distinct patterns of F-actin and myosin II accumulation are 

associated with quick resolution of the flare. For example, if flares with very little myosin 

II accumulation in the non-protruding cell were also repeating flares, this would suggest 

that myosin II accumulation in the non-protruding cell is required for efficient retraction. 

However, this does not appear to be the determining factor: 2 of 8 short flares and 3 of 

7 long/repeating flares had myosin II accumulation predominantly on the side of the 

protruding cell. Additionally, myosin II and F-actin overlap at the edge of the protrusion 

does not appear to be required for retraction. Instead, it appears that myosin II and F-

actin overlap at the junction marks the end of the flare (Figure 4.7). Thus, it seems that 

restored contractility at the junction is important for flare resolution, but may not be 

important for membrane retraction.  

 Actin nucleation: Actin polymerization and depolymerization are tightly regulated 

in cellular contexts to promote specific actin structures and cell behaviors. Rho 

GTPases coordinate actin polymerization by activating formins, which support linear 

actin polymerization, and nucleation promoting factors (NPFs) that aid in Arp2/3 

complex activation to promote branched actin assembly.  

 Formins: There are fifteen formins in Xenopus laevis, and five of them localize to 

cell-cell junctions at gastrula stage: Dia1, Dia2, Dia3, Fhod1, and Fhod2 (Higashi and 

Miller, 2018). Of these, I have examined the localization of Dia2 and Dia3 during Rho  
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Figure	 4.8:	 Dia3	 expression	 induces	 membrane	
protrusions	and	accumulates	at	the	edge	of	dense	Rho	
activity.	(a)	3xGFP-Dia3	accumulates	in	puncta	at	the	tips	
of	 dynamic	 filopodia	 (blue	 arrowheads;	 enlargement	
shown	 in	 white	 box),	 as	 well	 as	 at	 cell-cell	 junctions.	
Filopodia	were	not	necessarily	associated	with	increased	
Rho	 activity	 (corresponding	 white	 arrowheads).	
However,	in	some	cases	the	puncta	were	associated	with	
Rho	 flares	 (blue	 arrow	 and	 corresponding	 yellow	
arrowhead).	In	other	cases,	Dia3	appeared	at	the	edge	of	
the	 dense	 Rho	 accumulation	 (white	 arrows	 and	
corresponding	yellow	arrowheads).	(b)	Montage	of	Dia3	
during	 a	 single	 Rho	 flare.	 Dia3	 accumulates	
predominately	 at	 the	 edge	 of	 the	 dense	 Rho	
accumulation	 (dotted	 white	 line	 indicates	 the	 edge	
position	 in	all channels). Dia3	accumulation	 intensifies	
over	the	course	of	the	flare.	
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flares. Dia3 is a strong candidate because overexpression causes filopodia- and 

lamellipodia-like membrane protrusions similar to those seen at Rho flares (Tomohito 

Higashi, data not shown). When I expressed Dia3 with a probe for active Rho, I 

observed both filopodia- and lamellipodia-like structures. While filopodia-like structures 

were not usually associated with Rho flares, the broader lamellipodia-like the structures 

frequently were, and Dia3 could be seen accumulating at the leading edge of these 

protrusions over time (Figure 4.8). That is, Dia3 accumulation was not an early event, 

suggesting it is more likely involved in flare retraction or cortex reinstatement than 

protrusion. However, with the excessive protrusive activity associated with Dia3 

overexpression, it is difficult to be certain that the events in these flares are similar to 

native Rho flares. Dia2 also appears to localize to Rho flares, but in a more diffuse 

pattern than Dia3 that extends beyond the dense active Rho accumulation (Figure 4.9). 

Figure	4.9:	Dia2	accumulates	diffusely	at	Rho	
flares.	 Montage	 of	 Dia2	 localization	 at	 Rho	
flares.	Dia2	accumulation	overlaps	with	dense	
active	Rho	(yellow	arrowhead)	and	the	haze	of	
active	Rho	(white	arrow).	
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Thus both Dia2 and Dia3 may be involved in nucleating actin polymerization at Rho 

flares, but they may contribute to generating different populations of actin.  

Arp2/3 and Cdc42:	The Arp2/3 complex can be activated by the small GTPases 

Rac1 and Cdc42, both of which are documented to be activated with close spatial and 

temporal proximity to Rho in other contexts (Benink and Bement, 2005; Machacek et al., 

2009). Thus, we hypothesized that Arp2/3 could contribute to membrane protrusion if 

Rac1 or Cdc42 were also activated at Rho flares. Rac1 does not appear to be active at 

flares (Breznau et al., 2015). Thus, we examined the localization of active Cdc42 using 

mRFP-wGBD (WASp GTPase Binding Domain; (Benink and Bement, 2005)) and found 

that active Cdc42 does accumulate at Rho flares, with nearly indistinguishable temporal 

dynamics from Rho activation (Figure 4.10a). Spatially, active Cdc42 appears more 

diffuse than active Rho (Figure 4.10a). Next, we observed the Arp2/3 complex by 

fluorescently tagging Arp3 (Arp3-mNeon). Fluorescently tagged Arp3 can rescue Arp3 

knockdown in Drosophila, indicating that the tag does not interfere with actin nucleation 

(Ingerman et al., 2013). We predicted that if membrane protrusion is driven by Arp2/3-

mediated actin branching, Arp3-mNeon would be enriched at the leading edge of the 

membrane protrusion and would be visible early in the flare (Figure 4.3). However, Arp3-

mNeon accumulates diffusely at flares and lags behind Rho accumulation, suggesting 

that it does not contribute to membrane protrusion but may serve another function in 

generating a pool of branched actin (Figure 4.10b).  
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Figure	4.10:	Active	Cdc42	and	Arp3	accumulate	at	Rho	flares.	(a)	Active	Cdc42	(RFP-wGBD)	accumulates	in	a	similar	
pattern	to	active	Rho	at	flares,	except	that	the	active	Cdc42	overlapping	with	the	dense	Rho	accumulation	appears	
to	 be	 approximately	 as	 intense	 as	 the	 active	 Cdc42	 in	 the	 haze,	 indicating	 different	 patterns	 of	 Cdc42	 and	Rho	
activation.	(b)	Arp3-mNeon	diffusely	accumulates	with	dense	active	Rho.		
 

Discussion 

Much of the data presented in this chapter is from preliminary experiments that 

should be repeated and quantified. Additionally, mosaically expressing the fluorescent 

probes for myosin II, formins, the Arp2/3 complex, and Cdc42 (similar to Figures 4.4 

and 4.5) will show with greater clarity how these proteins behave with respect to the 

protruding and non-protruding cells. Knowing how formin and Arp3 overexpression 

affect F-actin at flares will allow us to discern whether overexpression artifacts may be a 

concern with these proteins. Finally, future studies that examine the effects on Rho 

flares and F-actin using Dia3 and/or Dia2 loss-of-function approaches or an Arp2/3 
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inhibitor will be necessary to determine whether these proteins are functionally required 

for the Rho flare response. 

However, based on the preliminary data presented in this chapter along with data 

from Chapter 3, I conclude that the blebbing model is the most likely means of 

membrane expansion at the site of the flare for the following reasons: 1) ZO-1 serves as 

a link between F-actin and the transmembrane proteins, claudins and occludin, and it is 

decreased prior to the flare (Figure 3.1). 2) Myosin II, and occasionally F-actin, are 

locally reduced at the junction prior to membrane protrusion (Figure 3.2, 4.6, 4.7). 3) 

Laser injury of the junction results in a plasma membrane protrusion before F-actin 

accumulation is apparent (Figure 3.3). Consistent with this finding, in isolated cells, 

laser ablation of the cortex results in blebbing (Tinevez et al., 2009). Additionally, the 

other models presented in Figure 4.3 are not supported for the following reasons: 1) F-

actin and Arp2/3 accumulation are not seen in the protruding cell at the leading edge of 

the expanding membrane, which would be consistent with a pushing mechanism. 2) 

Accumulation of myosin II in the neighboring cell was not consistently observed, which 

would be consistent with a neighbor pulling mechanism.  

 So far, all the data points to decoupling of the plasma membrane from the actin 

cytoskeleton as the source of protrusion. However, retraction of the membrane does not 

appear to follow the classic bleb lifecycle for the following reasons: 1) Active Rho is 

present throughout the membrane protrusion during expansion of the flare, instead of 

just prior to retraction. 2) Myosin II and F-actin do not accumulate at the edge of the 

protrusion to guide retraction. The alternative model, in which the actomyosin flow 

towards the junction in the non-protruding cell guides retraction also does not fit the 



	91	

data because myosin II does not always accumulate in the non-protruding cell (Figure 

4.7). However, it does appear that myosin II restoration at the junction itself is important 

for flare resolution, suggesting that restoration of contractility at the junction prevents 

flares from reoccurring. Along these lines, inhibiting ROCK with Y-27632 resulted in an 

increase in repeating flares relative to control (Figure 3.6), an observation that could be 

explained in part by reduced myosin II accumulation at the junction. 

 Future directions: If the membrane protrusions truly are blebs, then one would 

expect them to take the path of least resistance—that is, they would expand spherically 

upward instead of over their neighbors. Indeed, this is how the osmolality-induced blebs 

appeared in the electron microscopy by Tokuda et al. (2016). Our current experimental 

setup involves compressing the embryo between two coverslips in order to obtain a flat 

imaging surface (Reyes et al., 2014). In compressing the embryo, we could be 

influencing the natural course of the membrane protrusion (preventing a bleb from 

protruding upwards, for example). To circumvent this issue, we could try fixing the 

embryos to observe protrusions in their uncompressed state. However, because flares 

are sporadic and short-lived, it would be beneficial to have embryos that have a higher 

than average number of flares. Fortunately, a number of perturbations, including 

incubating embryos in ATP (data not shown) and knocking down anillin (Reyes et al., 

2014), increase the frequency of flares. Finding appropriate flare enrichment and 

fixation conditions would also allow us to perform more detailed microscopy, including 

SEM, TEM, and super resolution microscopy, to better understand the composition and 

organization of the actin network relative to the membrane as well as the tight junctions. 

Alternatively, technology like lattice light sheet microscopy allows for fast imaging of 
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whole organisms without compression, so it may be possible to capture the membrane 

dynamics with live imaging as well (Liu et al., 2018).  

 Of the three actin nucleators I have tested so far (Dia3, Dia2, and Arp2/3), all 

three localize to flares in some manner, indicating a robust system for actin 

polymerization. Additional formins, such as Dia1, Fhod1, or Fhod2 could also be 

involved in promoting actin polymerization. Characterizing roles for these proteins could 

be difficult, since there is probably some functional redundancy. Double and triple 

knockdowns may be required to see significant effects. Furthermore, having tools to 

perform robust statistical analysis of flare characteristics, such as measuring velocity of 

expansion and retraction, persistence of the protrusion, area, duration, etc. may be 

necessary to see an effect of perturbing only one of these proteins.  We will work with 

our mathematical modeling collaborator, Andrew Goryachev to develop such analyses.  

 In addition to proteins that directly promote actin polymerization, there are many 

proteins that organize actin filaments by crosslinking them to other actin filaments, the 

membrane, adherens junctions, etc. (Arnold et al., 2017). Some of these proteins, like 

vinculin, anillin, zyxin, and moesin have been shown to localize to flares by other 

members of the lab (data not shown). These proteins are other candidates for 

understanding how membrane expansion and retraction occur in the context of Rho 

flares. 

 By probing the dynamics of the membrane protrusion, I hope to determine its 

functional significance, if it has one. One function of the membrane protrusion could be 

to act as a physical impedance to reduce diffusion through the paracellular space, in 

which case it would influence how much material leaks across the tight junction. Using 
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our live imaging barrier assay ZnUMBA (see Chapters 2 and 3), reduction in FZ3 

roughly correlates with the onset of the Rho flare—before TJ protein reinforcement or 

junction contraction occurs—consistent with a role of blocking the paracellular space. 

Interestingly, in MDCK cells, increased flux of macromolecules is associated with a 

reduction of dynamic membrane protrusions (Van Itallie et al., 2015). An alternate 

explanation for the function of flare-associated membrane protrusions is that the 

membrane protrusion corrals tight junction proteins on the apical surface of the non-

protruding cell membrane, as suggested by (Cao et al., 2017) for VE-cadherin in 

junction-associated lamellipodia in endothelial cells. If this is the case, then I would 

expect larger protrusions to correlate with a higher degree of reinforcement. The 

protrusion may also serve a role in signaling by generating unique physical properties, 

such as membrane curvature, that recruit BAR domain-containing proteins 

(Stanishneva-Konovalova et al., 2016; Van Itallie et al., 2015). Understanding the 

mechanical forces behind membrane protrusion and retraction, as well as organization 

of the actin cytoskeleton, will give us new insight into the factors that trigger flare 

activation and signal flare resolution. 
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Chapter 5 

Discussion, Conclusions, and Outlook 

In this dissertation, I have shown that flares of the small GTPase Rho are 

capable of rapidly repairing localized breaches in the epithelial barrier of X. laevis 

embryos. I introduced a technique (ZnUMBA) that allowed us to visualize transient leaks 

in the tight junction barrier for the first time and correlated those events with changes in 

cell shape and localized loss of the tight junction proteins ZO-1 and occludin. Then, I 

showed that flares of active Rho mediate repair of the barrier through localized 

contraction of the junction. In the field of tight junction signaling, this work raises many 

questions, including why use Rho for tight junction repair? How will our knowledge of 

Rho-mediated repair influence our treatment of diseases resulting from increased 

paracellular permeability? What are the GEFs, GAPs, and scaffolding proteins that 

regulate Rho flares? How does local loss of ZO-1 and occludin, but not claudin, cause 

barrier breaches? In this chapter I will speculate on each of these topics and propose 

what I see as the most exciting future directions to follow up on this work.   

 

Why Rho? 

  Both epithelial tissues and endothelial tissues act as barriers in the human body. 

Endothelial tissues line the blood and lymphatic vessels and consist of a single layer of 

thin, flat (squamous) cells attached directly to a basement membrane. Epithelial tissues, 
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on the other hand, are more diverse in their arrangement. Epithelial cells can vary 

substantially in their morphology (from squamous to cuboidal to columnar) as well as 

their organization (from simple monolayers to stratified layers of epithelial cells). 

However, both tissue types use adherens junctions and tight junctions to regulate cell-

cell adhesion and paracellular permeability.  

 Based on what I have described in the previous chapters, it may seem 

counterintuitive, then, that Rho is frequently cited as “the enemy” of barrier function in 

endothelial tissues. Many agonists that induce leakiness of endothelial tissues, including 

thrombin, VEGF, histamine, and TNF-α, do so by activating the Rho/ROCK pathway, 

which causes the formation of radial F-actin bundles and enhanced contractility that 

leads to elevated permeability (van Buul and Timmerman, 2016). In contrast, Rac1 is 

more associated with promoting barrier function in endothelial tissues (Daneshjou et al., 

2015; van Buul and Timmerman, 2016). In agreement with this, dynamic Rac1-

regulated junctional lamellipodia have been associated with maintenance of endothelial 

barrier function (Abu Taha et al., 2014; Breslin et al., 2015; Cao et al., 2017; Martinelli et 

al., 2013). 

 

Similarities between junctional lamellipodia and Rho flares 

Junctional lamellipodia, sometimes called junction-associated intermittent 

lamellipodia, or JAIL, are protrusions of the endothelial cell plasma membrane that 

support endothelial barrier function (Abu Taha et al., 2014; Breslin et al., 2015; Cao et 

al., 2017). JAIL have often been associated with endothelial cells that are undergoing 

rearrangement. For example, they appear in subconfluent cultured cells, in which 
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endothelial cells are still establishing cell-cell contacts (Abu Taha et al., 2014), or during 

VEGF-mediated sprouting angiogenesis, in which cells polarize and migrate as a sheet 

in order to create new vasculature (Cao et al., 2017). However, one group found that 

junctional lamellipodia are required for maintaining barrier function in confluent cells and 

that decreased junctional lamellipodia formation was associated with thrombin-induced 

barrier defects (Breslin et al., 2015). Finally, while not specifically localized to junctions, 

ventral (basal) lamellipodia are transient actin structures that heal microwounds induced 

by leukocyte transmigration (Martinelli et al., 2013). In addition to healing holes in the 

membrane, ventral lamellipodia can restore cell-cell contact, promoting paracellular as 

well as transcellular barrier function (Martinelli et al., 2013). Regardless of the context in 

which they are found, these lamellipodia are dependent on Rac1 activation and Arp2/3-

mediated branched actin formation (Abu Taha et al., 2014; Breslin et al., 2015; Cao et 

al., 2017; Martinelli et al., 2013).  

There are some striking parallels between the junctional lamellipodia in 

endothelia and the Rho flares I have described. For example, junctional lamellipodia are 

likely to form along elongating junctions (Cao et al., 2017), and at “breaks” in vascular 

endothelial- (VE-) cadherin (Abu Taha et al., 2014; Cao et al., 2017) similar to the 

correlation between Rho flares, elongating junctions, and “breaks” in tight junction 

proteins. Furthermore, the lamellipodia create areas of membrane overlap that the 

authors hypothesize allow trans-interactions between VE-cadherin molecules on 

neighboring cells to form, and JAIL retraction drives concentration of VE-cadherin 

clusters at the junction (Abu Taha et al., 2014; Cao et al., 2017). Rho flares also 

increase the surface area of neighboring membrane overlap in an actin-based manner, 
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although whether membrane overlap contributes to reinforcement has not been tested. 

Furthermore, tension-sensing seems to be involved in triggering lamellipodia formation, 

as decreasing myosin II activity with Blebbistatin or the ROCK inhibitor Y-27632, 

changed lamellipodia frequency (Breslin et al., 2015; Cao et al., 2017; Martinelli et al., 

2013). However, as of yet, there is no direct evidence that Rho-mediated actomyosin 

contraction plays any role in JAIL retraction or reinforcement of endothelial tight 

junctions or adherens junctions.  

 Why would endothelial cells and epithelial cells use different mechanisms of cell-

cell junction repair? The answer could lie in the difference in cell shape. Because 

endothelial cells are relatively flat, their junctions are much closer to the integrin-based 

adhesions that allow them to adhere to the basal lamina. Therefore, the migratory 

machinery for lamellipodia-based movement is localized near the junctions so these 

functions are more likely to be coupled (DeMali and Burridge, 2003). In cuboidal and 

columnar epithelia, the basal membrane can be several tens of microns away from the 

apical junctions and may not be attached to the basal lamina, so it is possible that 

generating lamellipodia-based protrusions may not be as effective in this setting. For 

example, the epithelium of the animal hemisphere of gastrula-stage X. laevis embryos is 

composed of a single layer of cuboidal epithelial cells, approximately 20-40 μm in 

diameter and 20-30 μm in height, that is attached to a layer of deep cells rather than a 

basal lamina (Keller, 1980). Some migrating cells can alternate using either lamellipodia 

or blebs as a means of membrane protrusion depending on intrinsic and extrinsic 

mechanical cues (Bergert et al., 2012), so the mechanics of various tissues may dictate 

whether they have Rac- or Rho-based junction repair. Experimentally altering tissue 
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tension, as well as investigating how cell shape and cell-substrate adhesion influences 

the mode of junction repair may help answer these questions.   

  

Rho activity in inflammatory diseases 

 The most well-studied epithelial barrier diseases are Inflammatory Bowel 

Diseases (IBD) like Crohn’s Disease and Ulcerative Colitis. Leaky intestinal epithelium 

is a hallmark of these diseases (Rasmussen et al., 2015), although there is still some 

debate over whether leaky tight junctions are the cause of the disease or merely a 

consequence of inflammation (Ivanov et al., 2010; López-Posadas et al., 2017; 

Odenwald and Turner, 2013). Nevertheless, studies of IBD patients have found that 

altered RhoA signaling is associated with IBD. Two studies found that decreased Rho 

activation was associated with inflammation of the intestine. In the first, Rho GDI, which 

sequesters inactive Rho in the cytoplasm, was up-regulated, potentially lowering the 

pool of membrane-bound active Rho (Shkoda et al., 2007). Similarly, in a second study, 

down-regulation of a geranylgeranyl transferase, required for prenylation and 

membrane insertion of active Rho proteins, was downregulated in IBD patients (López-

Posadas et al., 2016a). In contrast, a third study found that hyperactivation of Rho was 

associated with inflamed regions of the intestinal epithelium in Crohn’s disease patients 

(Segain et al., 2003). Therefore, both too little and too much Rho activation have been 

associated with IBD, just as both inhibiting and hyper-activating Rho in vitro can 

negatively affect epithelial barrier function (Quiros and Nusrat, 2014). 

 Rho kinase (ROCK) is the Rho effector primarily responsible for causing hyper-

contractility and barrier defects in endothelial tissues (van Buul and Timmerman, 2016). 
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Because of this, the ROCK inhibitor fasudil has been approved in Japan for the 

treatment of cerebral vasospasm, a constriction of intracranial arteries (Feng et al., 

2016). Additionally, fasudil has been used in animal models to treat conditions relating 

to endothelial dysfunction, such as bladder dysfunction (Akaihata et al., 2018), 

endothelial dysfunction resulting from chronic intermittent hypoxia (Li et al., 2018), 

diabetic retinopathy (Rothschild et al., 2017), and epithelial inflammation, such as 

asthma (Xie et al., 2015), among others (Feng et al., 2016). However, fasudil has been 

found to worsen or have no effect on inflammation in models of IBD (Kangawa et al., 

2017; Yoshikawa et al., 2017). The utility of fasudil in treating diseases of epithelial and 

endothelial origin will ultimately depend on the primary cause of the disease and how 

individual tissues respond to ROCK activation and inhibition. Because ROCK is 

associated with so many facets of normal cell function, including cytokinesis, cell 

migration, apoptosis, cell extrusion, and cell-cell junction regulation, some off-target 

effects of inhibiting ROCK are to be expected. Therefore, identifying molecules specific 

to each of these functions, such as the GEFs, GAPs, and scaffolding proteins involved, 

may allow for more specific targeting of the underlying defect with fewer off-target 

effects. 

 

Scaffold proteins as regulators of Rho GTPase signaling specificity 

 Establishing the contractile actomyosin network at apical cell-cell junctions 

requires a stable baseline of Rho activation. I have shown that in addition to this 

baseline population of active Rho, there are transient, highly localized increases in Rho 

activity that have localized effects on the cytoskeleton and tight junctions. However, it 
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remains unclear how the stable and dynamic populations of active Rho are differentially 

regulated to carry out their distinct functions. One obvious question in this vein is: which 

GEFs and GAPs are involved in regulation of Rho flares, and do specific GEFs and 

GAPs regulate Rho flares vs. baseline Rho activity at cell-cell junctions? 

It is well accepted that the placement and extent of cellular GTPase activity is the 

result of the net activity of GEFs and GAPs. The current list of GEFs and GAPs known 

to regulate Rho family GTPases at cell-cell junctions is long, and includes GEFs and 

GAPs important for junction assembly, maturation, homeostasis, and disassembly (for 

more detail see (Citi et al., 2014; Quiros and Nusrat, 2014; Zihni and Terry, 2015). It is 

likely that one or more of the GEFs and GAPs already established to localize to and act 

on cell-cell junctions is involved in regulating Rho flares. However, for the most part, the 

effects of these GEFs and GAPs on Rho activation over short timescales has not been 

studied. I have identified several GEFs and GAPs that are candidates for regulating Rho 

flares, which I will discuss further below. 

With active Rho playing multiple essential roles related to cell-cell junctions 

including: junction formation, maturation, homeostasis, disassembly, multicellular wound 

healing, cellular dynamics during morphogenesis, as well as tight junction 

reinforcement, it becomes evident that there must be mechanisms in addition to GEFs 

and GAPs for organizing Rho signaling at cell-cell junctions so that the desired 

downstream effect is achieved. Scaffold proteins can fulfill this role by bringing 

regulators, GTPases, and effectors together to efficiently couple GTPase activation with 

output (Garcia-Mata and Burridge, 2007; Marinissen and Gutkind, 2005). Scaffold 

proteins are key components of cell signaling pathways that tether signaling 
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components to a discrete cellular location, promoting efficient signaling by limiting the 

diffusion of components and ensuring that the correct targets become activated. 

Furthermore, scaffold proteins may mediate the response to stimuli by participating in 

negative or positive feedback loops to carefully control the signaling output. Proteins 

that scaffold Rho signaling at apical cell-cell junctions may dictate the outcome of Rho 

activation in several ways including: 1) by controlling whether specific targets (e.g. 

ROCK, formins, or transcription factors) become activated; 2) by anchoring signaling 

output to specific structures (e.g. tight junctions, adherens junctions, tricellular junctions, 

etc.); 3) by modulating how much contractile force results from signaling (e.g. enough to 

generate steady-state isometric tension on the junction, cause the junction to contract, 

or completely disengage the junctions); and 4) by coordinating tension between 

neighboring cells (e.g. via mechanosensitive junctional proteins that can promote 

signaling in response to tension changes in neighboring cells). Therefore, I will discuss 

some candidate Rho scaffolding proteins and how they could mediate Rho flares 

through interactions with GEFs and GAPs. 

 

Cingulin, Paracingulin, and GEF-H1   

Cingulin and paracingulin have similar structures, as well as overlapping and 

distinct binding partners. Cingulin is localized at the tight junction in a ZO-1-dependent 

manner (Umeda et al., 2004), whereas paracingulin localizes to both the tight junction 

and adherens junction (Citi et al., 2012). Both form parallel homodimers, with a globular 

head domain, a long coiled-coil rod domain, and a small globular tail (Citi et al., 2012; 

Cordenonsi et al., 1999). Cingulin can directly bind to F-actin, myosin II, and 
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microtubules through its head domain (Cordenonsi et al., 1999; D'Atri and Citi, 2001; 

Yano et al., 2013). Paracingulin also associates with the actin and microtubule 

cytoskeletons, and disruption of either interferes with its junctional targeting. In contrast, 

only disruption of the actin cytoskeleton disrupts cingulin’s junctional targeting 

(Paschoud et al., 2011). 

Cingulin and paracingulin can both bind several Rho family GEFs and GAPs. 

Both proteins can bind MgcRacGAP, a RhoA GAP, and GEF-H1, a RhoA GEF that is 

inactivated by cingulin/paracingulin binding (Guillemot et al., 2014; Guillemot et al., 

2008). A complex of cingulin, p114RhoGEF (a RhoA GEF), ROCK2, and myosin IIA is 

important for confining RhoA signaling to the apical junctions in Caco-2 and Human 

Corneal Epithelial (HCE) cells, and for normal tight junction maturation in HCE cells 

(Terry et al., 2011). Additionally, paracingulin can form complexes with Rac1 and the 

Cdc42 GEF SH3BP1 as well as recruit the Rac GEF Tiam1 to junctions (Elbediwy et al., 

2012; Guillemot et al., 2008).  

With so much potential for interaction with GEFs, GAPs, and cytoskeletal 

components, what remains unclear is how cingulin and paracingulin regulate which 

GEFs and GAPs are “on” at a given time. A simple interpretation is that they simply act 

as targeting molecules, recruiting GEFs and GAPs to the junctions where they are then 

activated or inactivated by other proteins (e.g. by kinases). Another possibility is that the 

extended rod domain functions as a molecular ruler, as was proposed for ROCK2 

(Truebestein et al., 2015). Cingulin binds actin, myosin II, microtubules, and the C-

terminus of ZO-1 with its head domain, whereas many GEFs and GAPs can bind to its 

rod domain. Perhaps the head domain anchors cingulin to the cytoskeleton while the 



	107	

rod domain acts to position GEFs and GAPs near membrane-bound GTPases in certain 

contexts. Interestingly, Yano et al (2013) found a potential phosphorylation-dependent 

conformational change that enhances cingulin-microtubule binding, so it is possible that 

this or other modifications govern the orientation or conformation of cingulin to give 

GEFs and GAPs access to GTPases or couple it to the relevant cytoskeletal structures. 

A mechanism in which a quick conformational change induces Rho activation would be 

ideal for a system in which Rho activation must occur quickly and locally. 

 GEF-H1 was one of the first Rho GEFs identified to localize to tight junctions, 

making it a popular candidate for regulating junctional Rho activation (Benais-Pont et 

al., 2003). However, knockdown and overexpression of GEF-H1 in MDCK cells had no 

impact on tight junction morphology as assessed by freeze fracture electron microscopy 

and immunohistochemistry, although both knockdown and overexpression of GEF-H1 

resulted in increased flux of macromolecules without affecting TER (Benais-Pont et al., 

2003). Later studies confirmed that GEF-H1 is mostly inactive in quiescent epithelia 

(Aijaz et al., 2005; Guillemot et al., 2008; 2014; Terry et al., 2011; Zihni and Terry, 

2015). Its inactivation is achieved by recruitment to junctions by cingulin and 

paracingulin, which inhibit its GEF activity (Aijaz et al., 2005; Guillemot et al., 2008).  

 However, more recent work in Xenopus embryos has shown that GEF-H1 is 

important for regulating the dynamic events of apical constriction and cell intercalation 

during development, and overexpression of GEF-H1 results in apical bleb-like 

protrusions in deep ectoderm cell layers (Itoh et al., 2014). GEF-H1 has also been 

shown to negatively regulate tension on adherens junctions in the Xenopus gastrula, 

though the molecular mechanism for this remains unclear (Hatte et al., 2018). 
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Nevertheless, an attractive model is that cingulin, paracingulin, or another tight junction 

protein, such as ZO-1, sequesters an inactive pool of GEF-H1 at tight junctions. 

Localized loss of the sequestering protein prior to flares may then allow GEF-H1 to 

locally activate Rho, and restoration of the sequestering protein could soak up the 

excess GEF, leading to Rho downregulation. I found that overexpression of dominant 

negative (GEF-dead) GEF-H1 resulted in hyperactivation of Rho at junctions, including 

an increased number of flares (not shown). Because we expected a dominant negative 

mutant of a GEF important to flares to suppress flares, we concluded that GEF-H1 was 

not likely to be required for Rho flare activation. However, an alternate interpretation is 

that overexpressing dominant negative GEF-H1 displaces endogenous GEF-H1 from 

the sequestering protein, leaving it free to hyperactivate Rho. Therefore, it may be 

worthwhile to revisit the role of GEF-H1 in Rho flares, as well as to determine whether 

changes in cingulin or paracingulin are evident at Rho flares.  

 

p120 catenin, anillin, and cytokinesis-related GEFs and GAPs 

p120 catenin is a member of the armadillo repeat (ARM) family of proteins along 

with β-catenin, and it binds to the juxtamembrane domain of cadherins, promoting their 

stability by preventing cadherin endocytosis (Kourtidis et al., 2013). p120 can influence 

RhoA, Rac1, and Cdc42 signaling via direct interactions and recruitment of GEFs, 

GAPs, and effectors to junctions (Kourtidis et al., 2013). p120 appears to coordinate 

RhoA/Rac1 antagonism as it can inactivate RhoA through p190RhoGAP-B recruitment 

and stimulate Rac1 and Cdc42 activation though the GEF Vav2 (Noren et al., 2000; 

Ponik et al., 2013; Valls et al., 2012; Wildenberg et al., 2006; Zebda et al., 2013). 
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Interestingly, downregulation of RhoA through p120 catenin requires association of 

p120 catenin with cadherin (Yu et al., 2016), whereas upregulation of Rac1 and Cdc42 

requires unbound p120 catenin (Noren et al., 2000; Valls et al., 2012). Additionally, 

p120 can bind directly to RhoA-GDP in vitro and suppress GTP exchange, functioning 

similarly to Rho GDI (Anastasiadis et al., 2000). However, p120 also functions as a 

positive regulator of contractility by localizing ROCK1 and Shroom3 to the 

cadherin/catenin complex (Lang et al., 2014; Smith et al., 2012). Thus, p120 catenin 

can take on many roles as a regulator of GTPase signaling depending on the cell 

context, and these are likely controlled in part by cadherin binding, alternative splicing, 

and phosphorylation, all of which can change the affinity of p120 for RhoA (Castaño et 

al., 2007; Yanagisawa et al., 2008). 

A recent study has identified a novel role for p120 catenin in regulating RhoA 

activation during cytokinesis. This study found that p120 catenin binds to MKLP1 and 

MP-GAP and constrains RhoA activity to the furrow (van de Ven et al., 2016). Anillin 

was also identified as a p120-interactor in this study. Interestingly, anillin and MKLP1, 

along with other prominent cytokinesis regulators MgcRacGAP and Ect2, also have 

roles in RhoA regulation at junctions (Ratheesh et al., 2012; Reyes et al., 2014), so it 

would be interesting to further investigate ties between these proteins and p120 catenin 

at junctions.  

Anillin itself is a well-known scaffolding protein. It ensures successful cytokinesis 

by bundling F-actin, linking F-actin and myosin II to the membrane, and regulating RhoA 

activity at the contractile ring (Piekny and Maddox, 2010). The N-terminal domains of 

anillin participate in actomyosin binding/assembly, while the C-terminal domains include 



	110	

C2 and PH domains, which anchor anillin to the membrane, a RhoA binding domain, 

which allows it to interact with active RhoA, and binding sites for interacting with the 

GEF Ect2 and the GAPs MgcRacGAP and p190RhoGAP-A (Frenette et al., 2012; 

Manukyan et al., 2015; Piekny and Maddox, 2010; Sun et al., 2015). Early in 

cytokinesis, anillin participates in a positive feedback loop in which its accumulation at 

the contractile ring is both dependent on and enhances Rho activation (Piekny and 

Glotzer, 2008). Later in cytokinesis, it interacts with p190RhoGAP-A in a tension-

sensitive manner, inactivating RhoA in response to excessive force (Manukyan et al., 

2015). Thus, in cytokinesis, anillin helps to fine-tune RhoA signaling by coupling GEFs, 

GAPs, and RhoA with cytoskeletal components like F-actin, myosin II, and formins. 

Anillin has more recently been reported to localize to cell-cell junctions where it is 

important for proper accumulation of junctional actomyosin and organization of TJs and 

AJs in Xenopus laevis embryos (Reyes et al., 2014) and cultured epithelial cells 

(Budnar et al., 2018). Interestingly, GEFs and GAPs known to interact with anillin at the 

contractile ring (Ect2, MgcRacGAP, p190RhoGAP-A) are also found at cell-cell 

junctions (Priya et al., 2015; Ratheesh et al., 2012). In Xenopus gastrula-stage epithelia, 

anillin depletion results in an increased number, but decreased duration of Rho flares, 

suggesting that it may help sustain signaling, or may be required for efficient 

actomyosin contraction (Reyes et al., 2014). Both anillin and p190RhoGAP-A 

accumulate at Rho flares (Torey Arnold, unpublished), but Ect2 does not appear to 

localize to cell-cell junctions in the Xenopus embryo (Farah Huq, unpublished). 

MgcRacGAP loss-of-function increases the number and size of Rho flares, indicating it 

could be important for suppressing or down-regulating Rho activation (Breznau et al., 
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2015). Future studies investigating the contributions of anillin and p120 catenin, two 

hubs for the regulation of Rho signaling at cell-cell junctions and the cytokinetic 

contractile ring, could reveal more interesting connections between cytokinesis proteins, 

cell-cell junction regulation, and tight junction repair. 

 

Scaffolds for regulating distinct Rho populations 

 As discussed in Chapter 4, there appear to be multiple populations of active Rho 

within Rho flares: the dense, bright membrane protrusion-associated signal, and the 

dimmer haze surrounding the protrusion. During flare expansion, F-actin overlaps 

primarily with the protrusion-associated Rho, while myosin II associates primarily with 

the haze. This indicates that ROCK and formins are either differentially localized, or 

differentially activated, which could be regulated by scaffold proteins. Indeed, some 

potential scaffolds seem to prefer localizing to the haze (Anillin, p190RhoGAP-B; Torey 

Arnold, unpublished) or the membrane protrusion (zyxin, moesin; Brandon Coy and 

Sara Varadarajan, unpublished), indicating that some spatial organization at the 

signaling level is at play. Further investigating how the presence of these scaffolds 

dictates Rho signaling, actomyosin organization, and contractile output will allow us to 

better understand how both signaling and mechanical forces are coordinated between 

neighboring cells to drive tight junction reinforcement.  

 

Tight junction dynamics and the leak pathway 

The leak pathway is the route through which larger macromolecules can cross 

the tight junction barrier. The leak pathway has been experimentally observed for 
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decades by applying macromolecules to one side of the epithelium and then detecting 

their presence on the other side of the tissue (Hulbert et al., 1989; Milks et al., 1983; 

Propst et al., 1978). TNF-α, a cytokine that modulates Crohn’s Disease, promotes 

increased leak pathway flux, and the level of leak pathway flux is associated with the 

severity of inflammation (Turner, 2009). Many hypothesize that increased leak pathway 

flux is a cause of disease, potentially allowing antigens to cross the epithelium and 

initiate or worsen an inflammatory response, while others argue that increased 

permeability is secondary to an inappropriate immune response (López-Posadas et al., 

2016b; Odenwald and Turner, 2013). Increased intestinal permeability is seen in 

patients before IBD relapse and in close relatives without disease, suggesting that 

permeability is at least a contributing factor to disease (Hedin et al., 2012; López-

Posadas et al., 2017). However, there is little direct evidence to suggest that it is the 

primary cause. Additionally, to my knowledge, there is no evidence that the leak 

pathway is intentionally used to traffic material across the epithelium under normal 

conditions. One puzzling question, then, is why does the leak pathway exist? Is it 

biologically useful, or just a sign of defective tight junctions? 

One possibility is that the leak pathway is a consequence of the need for tight 

junctions to be dynamically reorganized as cells move with respect to one another. In 

order for tight junction rearrangement to occur quickly, as it must if the tissue is 

suddenly stretched or compressed, it is logical to have tight junctions that can be easily 

repositioned without prolonged breaks in barrier function. Based on reconstitution of 

claudin strands in fibroblasts, occludin tends to localize to the ends and branch points of 

claudin strands, and breaks are more likely to occur at these branch points (Van Itallie 
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et al., 2017). In fibroblasts, ZO-1, which can interact directly with both occludin and 

claudin, aligns claudin strands with actin filaments (Van Itallie et al., 2017). It is tempting 

to speculate that a complex of ZO-1, F-actin, occludin, and claudin makes a somewhat 

stable, but easily breakable branch point between intersecting claudin strands. This 

could explain how ZO-1 and occludin limit leak pathway flux (Buschmann et al., 2013; 

Van Itallie et al., 2009) —by stabilizing these branch points.  

One puzzling aspect of occludin is that occludin knockout mice have 

phenotypically normal tight junctions (Saitou et al., 2000), though it is possible that the 

occludin-related proteins tricellulin or MarvelD3 could compensate for occludin function. 

Indeed, tricellulin relocalizes from tricellular junctions to bicellular junctions when 

occludin is knocked down in cultured cells (Buschmann et al., 2013; Ikenouchi et al., 

2008). TNF-α-induced intestinal permeability is dependent on caveolin-mediated 

endocytosis of occludin (Marchiando et al., 2010). If occludin mediates the branching of 

claudin strands, then sudden loss of occludin could result in an increased number of 

strand breaks. Similarly, if ZO-1 serves to stabilize occludin/claudin interactions at 

branch points, ZO-1 loss might favor an increase in strand dynamics. In agreement with 

this hypothesis, disrupting ZO-1/claudin interaction in fibroblasts increased claudin 

strand dynamics (Van Itallie et al., 2017).  

While there are still many unexplained pieces to the puzzle, this speculative 

model that occludin mediates the branching of claudin strands, and ZO-1 helps stabilize 

occludin/claudin interactions at branch points, could help us understand the localized 

phenomena I observed relative to Rho flares. For example, loss of ZO-1 can be seen in 

advance of occludin loss at flares sites. If ZO-1 acts to stabilize an occludin/claudin 
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interaction, then loss of ZO-1 might favor the subsequent diffusion of occludin. Once 

occludin and ZO-1 are lost, this could destabilize claudin strand branch points, allowing 

breaks large enough to permit macromolecules to pass the tight junctions. ZO-1 loss 

has been shown to increase junctional actin accumulation and contractility when 

perturbed genetically (Choi et al., 2016; Fanning et al., 2012; Tokuda et al., 2014; Van 

Itallie et al., 2009). While these studies used long-term, global perturbations of ZO-1, it 

is possible that a sudden, local loss of ZO-1 could induce the local actin accumulation 

and actomyosin contraction seen at Rho flares. 

One important caveat of the studies mentioned above that used genetic 

manipulation or stimulation with inflammatory cytokines is that they require timescales 

much longer than the local break and repair events I have described (hours vs minutes). 

Thus, it remains to be seen whether tight junction remodeling over long timescales 

follows similar patterns to tight junction remodeling during Rho flares. 

 

What event initiates Rho flares? 

 I have characterized several events that precede the onset of Rho flares, 

including junction elongation, barrier loss, and local loss of ZO-1 and occludin. This 

raises several possibilities for the events that initiate Rho flares. Junction elongation, 

coupled with bleb-like deformation of the plasma membrane, indicates that a 

mechanical trigger could initiate flares. Fellow graduate student Sara Varadarajan is 

currently testing whether Piezo1, a stretch-activated calcium channel, is required for 

Rho flare activation. In support of this hypothesis, Sara has found that intracellular 

calcium increases before Rho flares and that chelation of intracellular calcium results in 
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reduced Rho activation and prolonged ZO-1 breaks. Currently, fellow graduate student 

Shahana Chumki is implementing a method for optogenetically activating Rho in 

Xenopus (Strickland et al., 2012). With this system, she hopes to be able to elongate 

junctions and increase tension on demand, allowing her to test whether junction 

elongation can induce Rho flares. 

 Other possible triggers for Rho flares involve the loss of barrier function or tight 

junction components. Former post-doc Tomohito Higashi proposed a mechanism in 

which epithelial tissues could sense loss of barrier function using secretion targeted 

specifically to the apical or basal domain. For example, an apically secreted ligand 

would not be able to bind to a receptor on the basolateral membrane when tight 

junctions are intact. However, breach of the barrier would allow the ligand to bind the 

receptor, locally initiating a signaling cascade that results in Rho activation. Finally, the 

local loss of a suppressor of Rho signaling (e.g., a GAP or a factor that inhibits a GEF) 

could result in increased Rho activation. JAIL can be suppressed by over expressing 

VE-cadherin, which is normally locally decreased prior to the flare, though the molecular 

mechanism that suppresses this signaling has not been determined (Cao et al., 2017). 

These possibilities are not mutually exclusive; there could be multiple mechanisms that 

trigger Rho flares in order to ensure a robust system for maintaining barrier function. 

 

Future directions 

Xenopus laevis embryos provide a fantastic model epithelial tissue; it is from a 

vertebrate organism, represents an in vivo environment, can be easily imaged 

completely intact, and expressing fluorescent proteins of interest is simple. However, its 
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use does have some drawbacks, including a relative lack of good genetic tools. All the 

work in this dissertation was done by mildly overexpressing fluorescently tagged 

proteins of interest. A cleaner experimental set up would be to fluorescently tag the 

endogenous protein of interest at its native locus. Being able to replace endogenous 

genes with truncated and/or tagged versions will be especially important for determining 

how F-actin, ZO-1, occludin, and claudin interactions contribute to tight junction 

reinforcement. For this, it might be wise to move to the slightly more genetically 

tractable relative of X. laevis, Xenopus tropicalis (Tandon et al., 2017).  

Alternatively, establishing a model in cell culture could go a long way in 

complementing the studies done in X. laevis, in particular because much of the tight 

junction literature is focused on these systems, and a wide range of reagents and 

assays have already been developed. For example, using pharmacological inhibitors in 

X. laevis embryos can be difficult because the embryos are surrounded by a vitelline 

envelope, which limits the permeability of some drugs. Of course, a significant drawback 

of cell culture is that Rho flares have not been reported in any cell lines, so identifying 

cell lines, Rho reporters, and flare-inducing conditions may be a substantial hurdle. 

However, this type of comparative biology may give us greater insight into the cause of 

tight junction leaks and their mechanism of repair. Along these lines, comparing Rho 

flares in different tissues within the X. laevis embryo and tadpole could reveal 

interesting information about how rates of cytokinesis, cell rearrangement, and intrinsic 

tissue tension influence transient tight junction breaches as well as Rho flares. 
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Concluding remarks 

 Tight junctions are complex and mysterious structures. The last three decades 

saw the discovery of a vast array of tight junction associated proteins and the 

uncovering of a staggering number of intermolecular interactions, indicating a high 

degree of organization and functional regulation (Anderson and Cereijido, 2009). Ten 

years ago, the first FRAP studies on tight junctions overturned the notion that tight 

junctions were static, heavily cross-linked structures, showing instead that individual 

proteins within the junction turn over rapidly and that these dynamics correlate with tight 

junction function (Buschmann et al., 2013; Raleigh et al., 2011; Shen et al., 2008; Yu et 

al., 2010). With the exception of a few studies (Carattino et al., 2013; Van Itallie et al., 

2015), there has been relatively little emphasis on how dynamic cell shape changes 

relate to epithelial barrier function, no doubt in part because of the lack of available tools 

to study barrier function in a meaningful way at the cell scale.  

In this dissertation, I have shown that the development of ZnUMBA and its 

adaptation to a variety of model systems have the potential to advance this field. Using 

ZnUMBA, I found that local loss of barrier function is associated with junction elongation 

and local loss of tight junction proteins. Additionally, I demonstrated that the GTPase 

RhoA rapidly accumulates at these tight junction breaks and restores barrier function 

through contraction of the junction. Furthermore, I showed that the membrane 

protrusion that accompanies Rho flares is likely driven by a bleb-like mechanism, further 

suggesting that altered cell mechanics contribute to signaling and repair of these 

breaches. Rho flares represent an elegant system that allow tight junctions to be rapidly 

repaired, allowing epithelial cells to change shape dynamically without compromising 
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their essential role of forming a barrier. This work highlights the important role that cell 

shape change has on regulating barrier function in epithelial tissue and the need to 

monitor cell dynamics, in addition to protein expression and localization, in order to fully 

understand the dynamic regulation of epithelial barrier function. 
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Appendix 1 

Materials and Methods 

DNA constructs 

The following constructs in pCS2+ vectors were previously published: GFP-rGBD 

(Benink and Bement, 2005), RFP-wGBD {Benink:2005fn}, mRFP-ZO-1 (Higashi et al., 

2016), mCherry-Claudin-6 (Higashi et al., 2016), mCherry-farnesyl (Reyes et al., 2014), 

Lifeact-RFP (Higashi et al., 2016), BFP-membrane (Higashi et al., 2016), E-cadherin-

3xmCherry (Higashi et al., 2016), and mCherry-α-catenin (Higashi et al., 2016). 

mCherry-2xrGBD (Davenport et al., 2016) and BFP-2xrGBD (Davenport et al., 2016) 

were gifts from W.M. Bement (University of Wisconsin, Madison). 

 

pCS2+/BFP-ZO-1 was generated by PCR amplification of human ZO-1 from 

pCS2+/mRFP-ZO-1(Higashi et al., 2016) and cloned into pCS2+/N-BFP. pCS2+/mRFP-

ZO-1ΔABR was made by deleting base pairs 3456-4116 (corresponding to amino acids 

1152-1371) from human ZO-1. The N- and C-terminal fragments of ZO-1 needed to 

make this deletion mutant were amplified with PCR, stitched together using splicing by 

overlap extension (SOEing) PCR, and cloned into pCS2+/N-mRFP. pCS2+/mCherry-

Occludin was generated by amplifying X. laevis Occludin from a cDNA clone purchased 

from Thermo Fisher (Clone ID: 7009477) and cloned into pCS2+/N-mCherry. 

pCS2+/SF9-mNeon was made by PCR-amplifying SF9 (Myosin II intrabody) from 

TOPO-SF9-YFP (gift from E.M. Munro, University of Chicago) and subcloning it into 

pCS2+/C-mNeonGreen.  
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Arp3-mNeon, 3xGFP-Dia2, and 3xGFP-Dia3 were PCR-amplified from a X. laevis cDNA 

library and cloned into pCS2+/C-mNeonGreen or pCS2+/N-3xGFP as indicated. The 

cDNA library was generated from mRNA extracted from late tailbud-stage X. laevis 

embryos using TRIzol (Thermo Fisher Scientific) and reverse transcription was 

performed using Superscript III First-Strand Synthesis System (Thermo Fisher 

Scientific). All DNA constructs were verified by sequencing (GENEWIZ, South Plainfield, 

NJ). 

 

mRNA preparation, microinjection, and mRNA concentrations 

mRNAs were transcribed in vitro from pCS2+ vectors using the mMessage mMachine 

SP6 kit (Ambion) and purified using the RNeasy kit (Qiagen). Prior to in vitro 

transcription, plasmid DNA was linearized with NotI (except for constructs containing 

ZO-1, which were linearized using KpnI). mRNAs were mixed together and 

microinjected into 2- to 4-cell stage embryos at 4 distinct locations in the animal 

hemisphere. In the case of mosaic injections, global probes were injected 4 times at the 

two cell stage, and then injected with the mosaic probes once or twice at the four cell 

stage. Each 5 nl injection contained the following amount of the appropriate mRNAs: 

GFP-rGBD: 80 pg, mCherry-2xrGBD: 40 pg, BFP-2xrGBD: 33 pg, BFP-ZO-1: 70 pg, 

mRFP-ZO-1: 220 pg, mRFP-ZO-1ΔABR: 210 pg, mCherry-Claudin-6: 14 pg, mCherry-

Occludin: 6 pg, mCherry-farnesyl: 50 pg, Lifeact-RFP: 12.5 pg, SF9-mNeon: 20-40 pg, 

BFP-membrane: 12.5 pg, E-cadherin-3xmCherry: 40 pg, mCherry-α-catenin: 40 pg, 

3xGFP-Dia2: 25 pg, 3xGFP-Dia3: 10 pg.  
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Xenopus embryos 

All studies conducted using Xenopus embryos strictly adhered to the compliance 

standards of the US Department of Health and Human Services Guide for the Care and 

Use of Laboratory Animals and were approved by the University of Michigan’s 

Institutional Animal Care and Use Committee. Embryos were collected, fertilized in vitro, 

dejellied in 2% cysteine, pH 7.8 (Sigma), and cultured in 0.1xMMR (10 mM NaCl, 200 

μM KCl, 200 μM CaCl2, 100 μM MgCl2, 500 μM HEPES, pH 7.4). At the 2- or 4-cell 

stage, embryos were microinjected with mRNA and were allowed to develop to gastrula 

stage (Nieuwkoop and Faber stage 10-12 (Nieuwkoop, 1994)).  

Live imaging 

Live confocal laser scanning microscopy of gastrula-stage Xenopus laevis embryos was 

performed with an inverted Olympus Fluoview 1000 with FV10-ASW software and a 

20X or 60X objective as described previously (Reyes et al., 2014).  

 

Generally, imaging of Rho flares was performed by collecting the 3 most apical z-planes 

with a 60X objective and 2X digital zoom, a scan speed of 2 μs/pixel, and a step size of 

0.5 μm for tight junction proteins (ZO-1, Occludin, and Claudin-6), membrane (farnesyl), 

F-actin (Lifeact), and Myosin II (SF9) (time interval: 5 seconds), or 0.75 μm for E-

cadherin and α-catenin (time interval: 6 seconds). Generally, for imaging ZnUMBA, the 

6-8 most apical z-planes were collected with a 60X objective and a 1.5X digital zoom, a 

step size of 0.5 μm and a scan speed of 8 μs/pixel (time interval: 15-21 seconds). The 

ZnUMBA/EGTA experiments were imaged with a 20X objective, a scan speed of 8 
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μs/pixel, and a step size of 1.55 μm for 5 z-planes (time interval: 28 seconds). In each 

case, channels were acquired sequentially by line to minimize bleedthrough.  

 

Figure preparation 

Images were processed in Fiji. First, z-planes were summed and the channels were 

independently adjusted to highlight relevant features in the image using linear 

adjustments that cover the full range of data. LUTs were applied as described in the 

figure legends. With the exception of the kymographs in Fig 4a and Extended Data Fig 

5a, images were enlarged in Photoshop CS6 using bicubic interpolation.  

 

Manual quantification of Rho flares, junction proteins, and ZnUMBA 

Flare selection: We defined flares as transient increases in active Rho that arise from 

cell-cell junctions. Thus, we only included accumulations of active Rho that increased, 

peaked, and decreased within 1-4 minutes. Static or sustained increases in active Rho 

were not considered in the analysis. To simplify the analysis, we only included flares 

that were isolated in space and time from other flares over the time span to be analyzed 

(i.e., no other flares at the same location for 500 seconds before or after the flare). An 

exception is when drug treatments resulted in a limited number of non-repeating flares 

(Fig 3f). 

 

Flare measurements: Flare measurements were performed in Fiji on summed z-

projections of unprocessed images. The intensity of a small circular region of interest 

(ROI) with a diameter of 0.75 μm (with the exceptions of ZnUMBA: 1.3 μm diameter, 
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and F-actin quantification in Figure 4.4d: 5.5 μm diameter) was used to measure 

fluorescence intensity of active Rho and accompanying channels. The ROI was placed 

on the junction at the approximate site of the flare and was moved manually each frame 

to account for cell and embryo movement. A custom macro was used to measure each 

channel and advance the frame. To account for photobleaching and focal drift, each 

measurement was normalized to a reference ROI (measured as described above) on a 

nearby junction. Each flare was measured in triplicate with three distinct reference 

ROIs. The baseline was normalized to 1 by dividing the value for each frame by the 

average intensity of the first ten frames. Flares were aligned on the x-axis so that the 

frame immediately before the rapid increase in Rho activity corresponds to time 0. 

Rapid increase in intensity was defined by consecutive increases in Rho intensity of at 

least 5% of baseline for at least three of four frames. Graphs are the mean of the 

normalized intensity of the number of flares indicated in the figure legend; error bars 

represent standard error of the mean. 

 

Kymograph generation and quantification from kymographs 

Relevant to Figures 3.4-3.6: 

Image and data analysis were performed with the help of Fiji and custom Python scripts 

using NumPy, SciPy, OpenCV, Matplotlib, pandas and other open source libraries. 

Kymograph construction: Cell-cell junction positions were digitized from ZO-1 or 

Occludin images with the use of watershed and active vector graph 

algorithms(Genovesio, 2009). The intensity of circular regions of interest ROI (diameter 

0.75 μm) centered at points on cell-cell junctions was used to measure fluorescence of 
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active Rho and accompanying channels along the cell-cell junctions forming one 

horizontal line of the kymograph. The stacking of center-aligned lines of successive 

frames resulted in the kymograph of the cell-cell junction. 

 

Flare analysis: Flare candidates were detected using thresholding of the normalized 

Rho channel. Candidates were then filtered out using the following criteria: 1) minimal 

size of 5 pixels; 2) flare located mostly on one cell-cell junction; 3) there are at least 8.3 

minutes of recording before and after the flare; 4) no other flares on the same junction 

within 5 minutes; 5) flare is not located on a junction associated with the cleavage 

furrow of a dividing cell within 8 minutes. The selected flare was identified on a 

corresponding junction kymograph, and a vertical path corresponding to the location of 

the flare on a junction was specified with the help of kymograph fiducial marks. The path 

points were translated back to the original frames and signal intensity of active Rho and 

accompanying channels was collected at these points as the averaged intensity of the 

circular ROI (diameter 0.75 μm). Reference values were calculated as the median of the 

intensity distribution on the junctions.  

 

Normalized intensity was calculated as 𝐼"#$% = 𝐼'()"*+/𝐼$-.-$-"/- and normalized to a 

baseline of ~1 by dividing the value for each frame by the median intensity of the first 

6.5 minutes. Flares were aligned on the x-axis (time) so that the moment before the 

rapid increase in Rho activity corresponds to time 0 (that was achieved by fitting ramp 

function � = 𝑐 + 𝑘	𝑅(𝑡 − 𝑡8) on the interval near the maximum slope of active RhoA 
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signal). Graphs are the mean of the normalized intensity of the number of flares 

indicated in the figure legend; error bars represent standard error of the mean. 

 

Relevant to Figures 3.2 and 4.7 

Kymographs were generated in Fiji by drawing a line (for Figure 3.2: 2 pixels wide; for 

Figure 4.7: 1 pixel wide) through the flare perpendicular to the junction of origin. The line 

was converted to a kymograph using the “straighten” and “make montage” functions in 

Fiji.  

 

Zinc-based Ultrasensitive Microscopic Barrier Assay (ZnUMBA) 

5-10 nl of 1 mM FluoZin3 (Thermo Fisher Scientific), 100 μM CaCl2, and 100 μM EDTA 

was microinjected into the blastocoel of stage 10-11 (Nieuwkoop and Faber) X. laevis 

embryos. EDTA was used to reduce baseline levels of FluoZin3 fluorescence from 

endogenous Zn++. Albino embryos were used to better visualize the blastocoel during 

microinjection. Embryos were allowed to heal from the microinjection wound for a 

minimum of 5 minutes before being mounted in a slide containing 1-2 mM ZnCl2 in 

0.1xMMR. Embryos were imaged with confocal microscopy immediately after mounting. 

Relative increases in FluoZin3 fluorescence were interpreted as breaches in the barrier. 

 

 

Drug treatments 

Latrunculin B (Sigma) was resuspended in DMSO to a concentration of 1 mM and 

stored in aliquots at -20° C. Just prior to imaging, embryos were mounted in 0.1xMMR 
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containing Latrunculin B, a range of 8-10 μM was used to achieve a severe effect, and 

1-5 μM was used to produce a mild effect. 

 

Y-27632 (Calbiochem) was resuspended in DMSO to a concentration of 30 mg/ml and 

stored in aliquots at -20° C. Y-27632 or an equivalent amount of DMSO was mixed with 

probe mRNA and microinjected into embryos at the 2- or 4-cell stage. A total of 1.5 ng 

Y-27632 was injected into each embryo.  

 

Junction injury 

Junction injury was performed on albino embryos using a 405 nm laser and SIM 

scanner on the microscope described above. A small circular ROI was placed at the 

junction, and the 405 nm laser was pulsed in the ROI for 15 seconds at 70% power. 

These settings were sufficient to induce an injury response roughly half the time and 

photobleaching in the other cases. Substantial recoil was not observed with these 

settings.  

 

Statistics  

Standard error of the mean was calculated in Microsoft Excel or GraphPad Prism 7. 

One-sided Mann–Whitney U tests were performed with the help of open source 

SciPy.stats package (function mannwhitneyu). 


