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ABSTRACT

Phase transitions are ubiquitous in nature, and observed throughout everyday

life from the melting of ice to the magnetization of iron. In particular, solid–solid

phase transitions are important in many areas such as metallurgy, geosciences, and

the design of reconfigurable materials. Following the recent initiative of using nano

building blocks to design next generation materials, we answer fundamental questions

about solid–solid phase transitions in colloidal matter and guide the design of ma-

terials that can change phase. Using the “Digital Alchemy” framework, we extend

thermodynamic ensembles to include particle shape as a thermodynamic variable.

This framework enables us to study the effect of altering particle shape in solid–solid

phase transitions.

We first study the thermodynamic order of two different solid–solid phase tran-

sitions (face-centered cubic (FCC)↔body-centered cubic (BCC) and BCC↔simple

cubic (SC)) in hard-particle systems upon an instantaneous change in particle shape.

By calculating the Landau free energy, we are able to determine the thermody-

namic order of these two phase transitions. We find FCC↔BCC is first order while

BCC↔SC is second order. This work is followed up by a more detailed investigation

of the FCC↔BCC transition to explore whether it can be second order.

We next study the design of pressure-induced solid–solid phase transitions. Here,

we incorporate varying particle shape as a part of the Monte Carlo process to find

the optimal shape for a given phase transition. We successfully designed pressure

driven FCC→BCC and BCC→SC transitions using three different particle shape

constraints.

xiv



We also study the kinetic transition pathway between solid phases. Our results

show that there are similarities of the pathways of an entropic system and an atom-

istic system. This demonstrates that we can use entropic systems as a toy model to

understand better how the transformations happen in an atomistic system.

Results from this dissertation give insight into the fundamental nature of the

most common, yet poorly understood phase transitions in nature, and provide new

minimal models for understanding solid–solid transitions in atomic systems. Our

findings also provide guidance for the next generation of materials design.

xv



CHAPTER I

Introduction

1.1 Solid–Solid Transitions in Nature

Phase transitions are ubiquitous in nature and are relevant for various phenom-

ena, from Early Universe Physics [32, 47, 78] to a pack of coffee suddenly becoming

soft once one breaks the vacuum seal. In all of those cases, a system with a large

number of particles suddenly qualitatively changes its macroscopic behavior as some

external parameter is smoothly adjusted. Liquid–solid and liquid–gas transitions as

well as magnetic transitions [30] have been studied for a long time and are well un-

derstood. Solid–solid phase transitions are of particular importance in metallurgy

[63] for they determine the properties of industrial materials [77], and in geophysics

due to internal stress in Earth’s crust [40, 9]. The second half of the 20th century

showed that many phase transitions [37] found in different areas of physics can be

described with relatively few classes and methods. However, detailed procedures for

the study of solid–solid transitions have eluded us. For example, Bain [6] proposed

one possible pathway of FCC↔BCC transition in 1924; however, it is by far not the

only pathway for this transition to happen [72, 71]. Even till today, researchers are

still proposing new or combined pathways for this transition [25], which is of impor-

tance in metallurgy, as it is the transition between two different kind of iron phases.
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Most solid–solid phase transitions occur under extreme conditions (i.e. extreme tem-

perature, timescale, pressure or length-scale), which makes this class of transitions

very hard to study. However, recent developments in colloidal materials have pro-

vided us very good model systems to study such transitions both experimentally and

theoretically [11].

1.2 Complexity of Self-Assembly in Colloidal Matter

In colloidal systems, particles are typically hundreds of nanometers to one or two

microns in diameter [48]. At this length scale, there is no need to consider quantum

effects of particle-particle interactions present at the atomic level. The particles–

suspended in solution–exhibit Brownian motion and, yet, like atoms, obey the law

of statistical thermodynamics. Moreover, with the current advances of colloidal

materials synthesis, we can easily tailor the interactions of colloidal particles along

different alchemical axes [29, 84], where one of the axes is to make particles with

different polyhedral geometries [95, 66, 93, 34]. By using Colloidal Metal-Organic

Frameworks [76], researchers are able to control the facet growth to synthesize parti-

cles of different polyhedral shape, such as octahedra [83], rhombic dodecahedra [12],

truncated cubes [90], truncated rhombic dodecahedra [60], etc. These particles can

be modeled using hard-particle interaction, one of the simplest interactions, which

simply prohibits particle overlaps. Contrary to the intuitive simplicity, such interac-

tion still gives rise to nontrivial phenomena [17, 13, 56, 1, 66, 14, 34, 2, 27, 53, 84]. For

example, with proper density, tetrahedra can self assemble into a dodecagonal qua-

sicrystal [33]. Many other common structures in atomistic systems can also find their

analogues in hard particle systems, such as one of the high pressure lithium phase

(truncated tetrahedron) [13], diamond (truncated tetrahedron) [13], β-Manganese
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(dodecahedron) [14], γ-Brass (truncated dodecahedron) [14], and β-Tungsten (para-

bidiminished rhombicosidodecahedron) [14] structure.

1.3 Solid–Solid Phase Transitions in Colloidal Matter

Pioneering work has been done by both simulation and experiments regarding

solid–solid phase transitions in colloidal matter. There are multiple experiments

that have observed the FCC↔BCC phase transition occur in real time and detailed

work has been done to study the multiple pathways of this transition in a soft sphere

system [92, 95, 61, 64, 54, 67, 50]. Simulation work [61] has been done on the same

system aiming to understand why certain pathways are preferred compared to others.

Moreover, interaction shifting via DNA programming has been used to construct col-

loidal solid–solid transitions, including showing that a single solid mother phase can

be reprogrammed to yield multiple daughter phases through diffusionless transitions

[10, 96].

In all the works mentioned above, the phase transitions are driven by traditional

thermodynamic variables such as temperature and pressure. Here, I use a recently

developed statistical thermodynamic (“alchemical”) framework [86] that regards par-

ticle shape as a thermodynamic variable and study solid–solid phase transitions that

are driven by changing particle shape. Since there is no interaction in my system, I am

able to single out the contribution of entropy in my transitions. Using computational

methods such as hard-particle Monte Carlo and umbrella sampling (Chapter II), I

study the thermodynamic (Chapter III, Chapter IV) and kinetic properties (Chap-

ter V) of this class of solid–solid phase transitions, and then invert the problem to

design a solid–solid phase transition on demand (Chapter VI).



CHAPTER II

Methods

2.1 Hard Particle Monte Carlo

We can use the hard particle assumption to model the colloidal particles of interest

in this dissertation. For this model, we have pair-wise interactions between particles

i and j where

(2.1) U(i, j) =


0 particles i, j have no overlap

∞ particles i, j have an overlap.

This model accurately represents a purely entropic system, where we can understand

how entropy plays a role in phase transitions.

The algorithm to perform Hard Particle Monte Carlo is straightforward due to the

simplicity of the hard particle potential. Using the traditional Metropolis criterion

[52], where the probability of accepting the next step is determined by the Boltzmann

factor exp(−∆U/kBT ), we can derive the accept/reject criteria for Hard Particle

Monte Carlo given that the system energy is either 0 or∞ given how many overlaps

there are. With ∆U = 0 always, we always accept a trial move unless there is any

overlap.

4
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2.2 Order Parameters

Order parameters are used to describe the mesoscopic states of a system. It can be

as simple as the density or volume of a system if you want to tell ice and water apart

or it can be the magnetic moment if you want to know whether a magnet is above

or below the Curie temperature. In my case, I want to have a numerical measure of

the crystal structure of my system and the order parameter needs to satisfy a set of

constraints:

1. It can be calculated based on particle positions.

2. It can distinguish between various different crystal structures.

3. It is not very sensitive to thermal noise.

2.2.1 Local Bond Order Parameters

Most commonly, people have been using the local bond order parameter Stein-

hardt et. al. [79] developed to detect the cubic crystal structures, FCC, BCC, and

SC. The basic idea for this order parameter is that it associates a set of spherical

harmonics Ylm with every fictitious bond connecting one particle to its nearest neigh-

bors. Here a “bond” refers to a vector from a particle to a neighboring particle. The

mathematical formalism of this order parameter is as follows.

(2.2) Qlm(~r) ≡ Ylm(θ(~r), φ(~r)),

where ~r is the vector that indicates the bond and Ylm(θ, φ) are spherical harmonics.

The spherical harmonics function is defined as

(2.3) Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ,

where

(2.4) Pm
l (x) =

(−1)m

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l.
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To determine the local environment, we need to consider the average value

(2.5) Qlm ≡ 〈Qlm(~r)〉 nearest neighbor average

over all nearest neighbors within some rcut, which is often the cutoff radius of the

first neighbor shell. Since Qlm for a given l can change drastically when changing

the orientation, one should use the rotationally invariant combination, which is

(2.6) Ql ≡

[
4π

2l + 1

l∑
m=−1

|Qlm|2
]1/2

.

Since Ql is heavily built on spherical harmonics, it is a measure of symmetry of the

system. This means that Ql is very efficient at distinguishing any crystal structures

from the liquid phase or two different crystal structures that have vastly different

symmetry groups. However, for structures such as FCC, BCC, and SC, which have

similar Ql values, it is problematic to use this definition of Ql as our order parameter.

Fig. 2.1 shows the Q4 distribution for three different structures: BCC, hexagonally

close-packed (HCP), and FCC at the same density (η = 0.55) with thermal noise

applied. In Fig. 2.1A and B, a hard radial distance cutoff is applied, while in Fig. 2.1C

and D, a fixed number of nearest neighbors is considered. In Fig. 2.1A and C each

structure is applied with a structural specific distance cutoff or number of nearest

neighbors, while Fig. 2.1B and D, the same criterion is applied to all three structures,

which is more realistic during a simulation. We can see that while Fig. 2.1A and C

do show some separation between the three structures, Fig. 2.1B and D completely

fails to distinguish them.

2.2.2 Averaged Local Bond Order Parameter

Based on the original Local Bond Order Parameter, Lechner and Dellago [44] have

introduced a second neighbor averaged Ql that reduces noise, and can successfully
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distinguish between FCC, BCC, and SC. In this modified version, after Qlm is cal-

culated, the values are again averaged over all particles and their neighbors, which

gives

(2.7) AveQlm ≡ 〈Qlm(~r)〉. nearest neighbor+1 average

The final average Ql has the form

(2.8) Ql ≡

[
4π

2l + 1

l∑
m=−1

|AveQlm|2
]1/2

.

In Fig. 2.2, it shows the Q4 distribution for three different structures: BCC, HCP,

and FCC at the same density (η = 0.55) with some thermal noise. In Fig. 2.2A and

B, a hard radial distance cutoff is applied, while in Fig. 2.2C and D, a fixed number

of nearest neighbors is considered. In Fig. 2.1A and C each structure is applied with

a structural specific distance cutoff or number of nearest neighbors, while Fig. 2.2B

and D, the same criterion is applied to all three structures, which is more realistic

during a simulation. We can see that Fig. 2.2A and C show very nice separation

between the three structures compare to the original local bond order parameter Q4.

Moreover, by using a single criteria for either the radial cutoff or number of nearest

neighbors, Q4 still sufficiently distinguishes these three structures.

After these parameter tests, we use the Q4 order parameter with fixed number

of nearest neighbors as our order parameter to distinguish all the relevant phases

in simulations in this dissertation. This order parameter shows enough robustness

regards to thermal noise.

2.3 Umbrella Sampling

To calculate the free energy of a system along some order parameter coordinate,

the most straightforward method is to measure the probability distribution of the



8

system along this order parameter coordinate. Once we have the probability distri-

bution, we can calculate the free energy using

(2.9) A = −kBT logZ,

where Z denotes the partition function of the system, which can be calculated from

the probability distribution. However, this method assumes ergodicity across the

whole order parameter space, which indicates a relative flat free energy landscape.

Generally, systems of interest do not have such free energy landscapes and we will

need more advanced methods to sample the order parameter coordinate.

The basic idea of umbrella sampling is to divide the order parameter space into

different state points (windows) and apply a biased potential to the system that

favors the target state point. After the system is pushed to the target state point,

we can start collecting statistics to obtain the biased distribution near the target

state point. Using the biased distribution with the known bias, we can recover

the unbiased free energy. Following [82], we discuss the mathematical formalism

of umbrella sampling. In the following derivation, superscript “b” denotes biased

quantities, while superscript “u” denotes unbiased quantities, and wi(ξ) is the bias

potential of window i, which depends solely on the chosen order parameter ξ. The

total internal energy of the system in window i will then be

(2.10) Eb(r) = Eu(r) + wi(ξ).

To obtain the unbiased free energy Ai(ξ), we need the unbiased distribution along

the order parameter ξ, which is

(2.11) P u
i (ξ) =

∫
exp[−βEu(r)]δ[ξ′(r)− ξ]dNr∫

exp[−βEu(r)]dNr
.

Here β = 1/(kBT ), where kB is the Boltzmann constant and T is temperature.

During an umbrella sampling simulation, we obtains the biased distribution P b
i as a
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function of ξ. Assuming the system is ergodic, we have

(2.12) P b
i (ξ) =

∫
exp{−β[Eu(r) + wi(ξ)]}δ[ξ′(r)− ξ]dNr∫

exp{−β[Eu(r) + wi(ξ)]}dNr
.

Since the bias potential only depends on ξ and the integration in the numerator is

over all degrees of freedom but ξ, we have

(2.13) P b
i (ξ) = exp[−βwi(ξ)]×

∫
exp[−βEu(r)]δ[ξ′(r)− ξ]dNr∫

exp{−β[Eu(r) + wi(ξ′(r))]}dNr

Combining Eq. 2.11 and Eq. 2.13, we get

P u
i (ξ) = P b

i (ξ) exp[βwi(ξ)]×
∫

exp{−β[Eu(r) + wi(ξ(r))]}dNr∫
exp[−βEu(r)]dNr

= P b
i (ξ) exp[βwi(ξ)]×

∫
exp[−βEu(r)] exp{−βwi[ξ(r)]}dNr∫

exp[−βEu(r)]dNr

= P b
i (ξ) exp[βwi(ξ)]〈exp[−βwi(ξ)]〉.(2.14)

Using the definition of free energy, we obtain

(2.15) Ai(ξ) = −
(

1

β

)
lnP b

i (ξ)− wi(ξ) + Fi.

Fi does not depend on ξ and has the following form:

(2.16) Fi = −
(

1

β

)
ln〈exp[−βwi(ξ)]〉.

This result is exact up to numerical sampling errors, which depends on the choice of

the bias potential wi(ξ). In our studies, we chose a standard harmonic potential:

(2.17) wi(ξ) =
1

2
k(ξ − ξi)2.

We used Q4 to be our order parameter ξ and chose a range of Q4 ∈ [0.055, 0.179],

which evenly divides into 32 windows.
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2.4 Digital Alchemy for Two Systems

Digital Alchemy [86] is a thermodynamic framework where we can extend the

traditional thermodynamic ensemble to include alchemical variables. For our pur-

pose, we will focus on the inclusion of particle shape. Following the derivation in

[86], we can write the generalized partition function to include particle shape as the

following:

(2.18) Z =
∑

e−β(H−
∑

i µiNαi−λΛ).

Here, β is the inverse temperature, µi are so-called alchemical potentials that are

thermodynamically conjugate to the alchemical parameters αi, which in this case

describe particle shape, N is the number of particles in the system, Λ is the potential

energy function for an Einstein crystal of the target structure, λ is the spring constant

of the Einstein crystal, and the sum is taken over particle coordinates and orientations

and over the space of particle shapes. The term λΛ provides a design constraint, and

can be neglected if no target phase is sought.

For our purpose, we want to extend this framework for two systems. Following

the same construct, we can define two systems with Hamiltonians H1 and H2,

H1({αi}) =
p1

2

2m1

+
1

2
LT1 I

−1
1{αi}L1 + U1{αi}(q1, Q1),(2.19)

H2({αi}) =
p2

2

2m2

+
1

2
LT2 I

−1
2{αi}L2 + U2{αi}(q2, Q2),(2.20)

where p1 and p2 are momenta, L1 and L2 are angular momenta, I1 and I2 are moment

of inertia tensors, and U1 and U2 are the interaction potentials that depend on

the particle positions q1 and q2 and orientations Q1 and Q2 in the two systems,

respectively. We have suppressed particle indices in Eq. 2.19 and Eq. 2.20.

Using the same assumptions as in the original study [86], we can write down the
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Shannon/Jaynes entropy [74, 36] for the coupled system as

S = −
∑
σ1,σ2

[
πσ1,σ2 ln(πσ1,σ2)− β1

(∑
πσ1,σ2H1(πσ1)− E1

)
− β2

(∑
πσ1,σ2H2(πσ2)− E2

)
+ (β1 + β2)

∑
i

µi(N1 +N2)

∑(
πσ1,σ2αi(σ1, σ2)− 〈αi〉

)]
,(2.21)

where we have set kB = 1, πσ1,σ2 is the probability of finding states σ1 and σ2 in

system 1 and system 2, respectively, β1, β2, and µi are Lagrange multipliers enforcing

the thermal averages, and N1 and N2 are the numbers of particles in both systems,

respectively. To determine the partition function, we maximize Eq. 2.21 with respect

to πσ1,σ2 . This gives us

(2.22) πσ1,σ2 =
1

Z
e−β1H1(σ1)−β2H2(σ2)+(β1+β2)

∑
i µi(N1+N2)αi .

Fixing the normalization
∑

σ1,σ2
πσ1,σ2 = 1 yields the coupled partition function

(2.23) Z =
∑
σ1,σ2

e−β1H1(σ1)−β2H2(σ2)+(β1+β2)
∑

i µi(N1+N2)αi .
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A

D
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B

Figure 2.1: Q4 distribution for BCC, HCP, and FCC. (A) Three different radial cutoffs
({1.9, 1.7, 1.7}) are applied to the three structures. (B) One radial cutoff (1.8) is ap-
plied to the three structures. (C) Three different numbers of nearest neighbor values
({14, 12, 12}) are applied to the three structures. (D) One nearest neighbor value (12)
is applied to the three structures.
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A

D

C

B

Figure 2.2: Q4 distribution for BCC, HCP, and FCC. (A) Three different radial cutoffs
({1.9, 1.7, 1.7}) are applied to the three structures. (B) One radial cutoff (1.8) is ap-
plied to the three structures. (C) Three different numbers of nearest neighbor values
({14, 12, 12}) are applied to the three structures. (D) One nearest neighbor values (12)
is applied to the three structures.



CHAPTER III

Shape Driven Solid–Solid Phase Transitions in Colloids

In this work we study the thermodynamic properties of shape-driven solid–solid

phase transitions. We introduce a family of minimal model systems that exhibits

solid–solid phase transitions driven by changes in the shape of the colloidal particles.

We carry out a detailed investigation of the thermodynamics of a series of isochoric,

diffusionless solid–solid phase transitions within a single shape family and find both

first and second order phase transitions.

The contents of this chapter are taken from, ”Shape-driven Solid–Solid Transitions

in Colloids”. Chrisy Xiyu Du, Greg van Anders, Richmond S. Newman, and Sharon

C. Glotzer, Proceedings of the National Academy of Sciences 114.20 (2017): E3892-

E3899 [21]. I performed all the simulations and analysis in this paper. All authors

contributed to the discussion of results and manuscript writing.

3.1 Model and Simulation Details

In our study, we use a previously studied family of shapes [11], spheric triangle in-

variant 332 family (∆332) of hard polyhedra (Fig. 3.1) that have the same point group

symmetry and self assemble crystals with small unit cells (1-SC, 2-BCC, and 4-FCC)

in adjacent regions of shape space. ∆332 is formed by subjecting cubes to two distinct

sets of tetrahedral truncations and includes the cube, tetrahedron, and octahedron.

14
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Figure 3.1: (A) Spheric triangle invariant (∆332) polyhedra form a continuous two-parameter
(αa, αc) family of symmetric convex shapes that are bounded by the octahedron
[(αa, αc) = (0, 0)], tetrahedron [(0, 1) and (1, 0)], and cube (1, 1). (B) We show six
lines indicating regions of shape space in which there is a change in the equilibrium
structure at a packing density of η = 0.55. The lines are annotated with the relevant
structural transition and direction. The colors indicate the self-assembled structures,
where FCC is red, BCC is blue, and SC is green. The self-assembled phases indicated
are an approximated representation from the actual self-assembled phases. Phases in
the white region are not of interest in this study. Reproduced from publication [21].

These shapes as well as intermediate shapes in ∆332 have been synthesized at the

colloidal scale [95, 66, 93, 34]. Simulations of hard colloidal polyhedra in ∆332 have

shown them to have rich self-assembly behavior (Fig. 3.2 shows three examples) with

both wide and narrow regions of thermodynamic stability for a number of different

bulk structures [27, 41]. We denote shapes according to the conventions (αa, αc),

where 0 ≤ αa,c ≤ 1 defines the boundaries of shape space in this shape family. With

these conventions, (0, 0) is an octahedron, (0, 1) and (1, 0) are tetrahedra (which

is self-dual), and (1, 1) is a cube (dual to the octahedron). We use conventions in

which all particles have unit volume. This is consistent with experimental colloidal

systems, where shape variability is typically small, so we can assume all the particles

in our system to have the same shape and size.

We investigate shape change-induced solid–solid transitions in ∆332 in the regions
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A B C

Figure 3.2: Sample self-assembled colloidal crystals formed by shapes in the ∆332 triangle-invariant
family of hard polyhedra, with images showing particle shape and bond order diagram.
(A) An FCC crystal self-assembled from shape (αa, αc) = (0.4, 0.525). (B) A BCC crys-
tal self-assembled from shape (αa, αc) = (0.4, 0.59). (C) An SC crystal self-assembled
from shape (αa, αc) = (0.76, 0.76). Note the similarity of shapes in A and B; even small
shape differences can affect the bulk self-assembly of hard polyhedra. Shapes in A and
B are both on line 1 in Fig. 3.1, and the shape in C is on line 2 in Fig. 3.1. Reproduced
from publication [21].

indicated in Fig. 3.1, focusing on BCC, FCC, and SC structures. FCC and BCC as

well as SC can be found in neighboring regions of ∆332. We study FCC↔BCC and

BCC↔SC transitions, and the regions of investigation indicated in Fig. 3.1 are all

known boundaries between the phases of interest in ∆332.

We study the thermodynamics of solid–solid transitions using both the Ehrenfest

and Landau approaches (see, e.g. [30]). All Monte Carlo (MC) simulations and

computations were done at fixed packing fraction η = 0.55, which is sufficiently

dense to observe the spontaneous assembly of each of the target phases [27, 41]

and sufficiently dilute so as to avoid the complicated infinite pressure behavior of

this family of shapes [27, 11]. All simulations were preformed with HPMC [5] in

HOOMD-Blue [4], and we use units in which kBT = 1.
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3.1.1 Ehrenfest Approach

To estimate the location of phase boundaries, we use the notion of generalized “al-

chemical” structure-property relationships [86] (see Ch. II for detailed derivations).

For this specific system, the generalized partition function is

(3.1) Z(N, V, T, µa, µc) ≡ e−βφ =

∫
dαadαc[dp][dq]e

−β(H−µaNαa−µcNαc),

where the integral is taken over shape space as well as the ordinary (translational

and rotational) phase space of the particles and where β = 1/kBT and µa,c are ther-

modynamically conjugate to the shape variables αa,c and referred to as “alchemical

potentials” [86]. We can make a Legendre transformation of the free energy φ from

the NV Tµaµc ensemble to the free energy F = φ+µaNαa+µcNαc of the NV Tαaαc

ensemble, from which we can extract the constitutive relation

(3.2) P (αa, αc) = −
(
∂F

∂V

)
N,T,αa,αc

.

A thermodynamic phase transition, by the standard approach of Ehrenfest (see e.g.

[30]), is indicated if a thermodynamic quantity [e.g., P (αa, αc)] or any of its deriva-

tives is discontinuous. A discontinuity of P (αa, αc) signals a thermodynamic phase

transition in shape space because of the explicit shape dependence in this relation.

Accordingly, we searched for discontinuities by initializing systems with different

building blocks (examples are in Fig. 3.3A and C) in perfect BCC (N = 2000), FCC

(N = 2048), or SC (N = 2197) structures and computed P (αa, αc) (Fig. 3.3B and

D) after 1.5× 107 MC steps to ensure that systems reach equilibrium or metastable

equilibrium using standard techniques [23].

3.1.2 Landau Approach

Having located discontinuities in P (αa, αc) and its derivatives, we computed the

free energy as a function of order parameter(i.e., the Landau free energy) (see e.g.
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[30]) for a series of fixed particle shapes near the solid–solid transition using umbrella

sampling [82]. To quantify the system crystal structure, we used a neighbor-averaged

[44] version of the standard local bond order parameters [79]. To achieve good order

parametric separation of our crystal phases of interest, we used the second neighbor-

averaged l = 4 parameter Q4, which distinguishes BCC from FCC, SC, and HCP

phases in our systems as shown in Figs. 3.5B and 3.9B. To confirm the validity of Q4

as an order parameter for monitoring the FCC↔BCC transitions, we plot thermal

averages of Q4 computed in BCC, HCP, and FCC in Fig. 3.5B. Data indicates that

BCC structure has a peak near Q4 = 0.06, that HCP has a peak near Q4 = 0.09 and a

second smaller peak aroundQ4 = 0.13 because of mixed HCP-FCC stacking, and that

FCC has a peak near Q4 = 0.17. The peaks are well-separated, and therefor, Q4 is a

good distinguishing measure of a crystal structure. Umbrella sampling simulations

used 5×104 samples in 32 equally spaces windows in Q4 across each transition with a

biased harmonic potential of spring constant k = 3.5×104. [k is parametrically large

because it scales like the inverse square of the resolution of the order parameter, δQ4.

For our structures of interest, Q4 falls in the range of 0.05−0.2, so that we need to be

able to resolve order parameter intervals of δQ4 ≈ 0.005. The value k = 3.5×104 that

we found to be consistent with efficient sampling is consistent with a naive estimate

k ≈ (δQ4)−2.] We study FCC↔BCC transitions in four distinct regions of shape

space, in each case using six polyhedra with shapes near the solid–solid transition;

all systems contained N = 500 particles (Fig. 3.5A). For BCC↔SC transitions, we

studied two distinct regions of shape space, in both cases using different polyhedra

in systems of N = 432 particles (Fig. 3.9A). In all cases, five independent replicates

were used to generate umbrella samples. Umbrella samples were used to reconstruct

free energy curves using the weighted histogram analysis method [43], and errors
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were estimated using jackknife resampling [22].

3.2 Results

We first present thermodynamic findings of FCC↔BCC and BCC↔SC transi-

tions. Then we will briefly talk about the dynamics of these two transitions.

3.2.1 Thermodynamic Properties

FCC↔BCC Transitions

We investigated the thermodynamics of shape change-driven FCC↔BCC solid–

solid phase transitions in four distinct regions of shape space (indicated by lines 1

and 3-5 in Fig. 3.1). In each region, at the FCC↔BCC cross-over, we find that the

P (αa, αc) constitutive relation exhibits a discontinuous first derivative (Fig. 3.3B, 3.4B),

indicating a phase transition that is either first or second order in the Ehrenfest clas-

sification [30]. Additional investigation via umbrella sampling yields the Landau

free energy near the putative solid–solid transition for six different shapes depicted

in Fig. 3.5A, 3.6A, 3.7A, 3.8A. Note that the similarity in particle shapes makes

them difficult to distinguish by eye but is most clearly indicated by the relative

size of the square face. Particles are colored from blue (BCC) to red (FCC) ac-

cording to the structures that they spontaneously self-assemble. More blue (more

red) shapes are more likely to form BCC (FCC). Shapes colored purple exhibit an

almost equal probability to form either BCC or FCC. We computed the Landau

free energy using the order parameter Q4 defined above. In Fig. 3.5, 3.6, 3.7, 3.8

C and D, we plot Landau free energies obtained from umbrella sampling after av-

eraging from five independent replica runs on both sides of the solid–solid phase

transition. Calculations at αc > (<)α∗c (αa,c > (<)α∗a,c) (i.e., above(below) the

FCC↔BCC transition) (Fig. 3.5C, 3.6C, 3.7C, 3.8C) show that, sufficiently far
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into the BCC phase, there is no metastable FCC free energy basin; however, as

αc (αa,c) approaches α∗c (α∗a,c), a metastable FCC basin appears. At αc < (>)α∗c

(αa,c < (>)α∗a,c) (Fig. 3.5D, 3.6D, 3.7D, 3.8D), umbrella sampling calculations show

that FCC becomes the stable free energy basin and that the BCC basin disap-

pears, but a metastable basin develops that corresponds to mixed FCC and HCP

stacking. Together with the results from four distinct regions, we show that shape

change-driven FCC↔BCC solid–solid phase transitions in ∆332 are first-order ther-

modynamic phase transitions.

BCC↔SC Transitions

We investigated the thermodynamics of BCC↔SC solid–solid phase transitions in

two distinct regions of shape space (lines 2 and 6 in Fig. 3.1). In Fig. 3.3D, 3.4D, we

plot the P (αa, αc) constitutive relation with αa = αc ≡ α for region 2 and fixed αa =

0.5 for region 6, which shows a discontinuity in pressure near α ≈ 0.6 and αc ≈ 0.68

consistent with a phase transition that is, at most, second order in the Ehrenfest

classification. A close-up view of these data for line 2 is presented in Fig. 3.11B.

Fig. 3.11A shows Q4 order parameter measurements that suggest a discontinuous

first derivative with respect to α, which is also consistent with a continuous (i.e.,

second or higher order) thermodynamic phase transition. Corroborating evidence is

provided by computing the Landau free energy as a function of the order parameter

Q4 near the putative solid–solid transition via umbrella sampling for a range of shapes

indicated in Fig. 3.9A and Fig. 3.10A. Particles are colored from blue (BCC) to green

(SC) according to the value of the order parameter Q4 of the structures into which

they self-assemble. Computed thermal averages (Fig. 3.9) of the order parameter Q4

in BCC and SC crystals show that BCC crystals have a peak near 0.08 and that

SC has a peak near 0.17; however, our result also suggest the existence of structures



21

with intermediate Q4 for intermediate particle shapes, where their self-assembled

structures are in between BCC and SC as shown in their Q4 distribution. Landau

free energies computed via umbrella sampling are plotted in Fig. 3.9C, Fig. 3.10C and

show no evidence of secondary local minima that would indicate a discontinuous (i.e.,

first-order) phase transition. Umbrella sampling computations were performed at a

higher resolution of shape space below the putative transition (α . 0.6) to extract

the expected value of the order parameter Q4 (Fig. 3.9D) and are consistent with the

self-assembled Q4 measurements (Fig. 3.11), suggesting that Q4 has a discontinuous

derivative at the transition. Together, the P (αa, αc) constitutive relation, the direct

evaluation of the order parameter Q4, and the umbrella sampling results all indicate

that the BCC↔SC solid–solid phase transition is a continuous (i.e., second- order

higher-order) thermodynamic phase transition in ∆332.

3.2.2 Dynamic Properties

FCC↔BCC Transitions

We investigated the dynamics of the FCC↔BCC solid–solid phase transition by

modeling how the system responds to a sudden change in particle shape. Several

experimental techniques exist for dynamically altering colloid shape [26, 45, 49, 94].

Here, we model a process in which particle shape reconfiguration occurs on a much

shorter timescale than structural relaxation by initializing FCC-forming particles in

BCC structure (and vice versa) and simulating at fixed particle shape and packing

density for 1.5 × 107 MC sweeps. On these simulation timescales, which are long

compared with typical structural relaxation times and much longer than needed for

the solid–solid transition outside the metastable region, we did not observe structural

transformation for any systems that our umbrella sampling simulation indicated

as metastable. Homogeneous nucleation is inherently a rare event, and our MC
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simulations in metastable regions of shape space suggest that the driving force for

structural reconfiguration is not sufficient to overcome the free energy barrier to

observe a first-order solid–solid phase transition on timescales that are typically

sufficient to observe first-order fluid-solid phase transitions in systems of this type

[1, 13, 14, 84]. However, we did observe a spontaneous solid–solid transition when

systems were initialized with shapes beyond the metastable region, in which case we

observed structural reconfiguration with no discernible intermediate fluid phase. The

existence of metastability in shape space provides an additional confirmation that

the solid–solid transition is first order. Moreover, by measuring the order parameter

evolution in MC simulation, our results indicate that the transition pathway in MC

simulation follows the order parameter that we chose in umbrella sampling, providing

additional confirmation that it appropriately parametrizes the FCC↔BCC solid–

solid transition.

BCC↔SC Transitions

Similarly, we investigated the dynamics of the BCC↔SC solid–solid phase trans-

formation by modeling how the system responds to a sudden change in particle shape.

We model a process in which particle shape reconfiguration occurs on a much shorter

timescale than the structural relaxation by initializing BCC-forming particles in SC

structure (and vice versa) and simulating at fixed particle shape and packing density

for 1.5 × 107 MC sweeps. On these simulation timescales, in all cases, we observed

dynamic solid–solid phase transformations via a transition pathway through interme-

diate structures that follow the order parameter that we used for umbrella sampling.

Moreover, we observe that, for α above the transition, any shape perturbation in-

duces a structural change with no evidence of metastability. We also observe that

the dynamics of the solid–solid transformation occurs on typical timescales of 2×106
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MC sweeps. Taken together, these results provide additional corroboration of our

observation that BCC↔SC is a continuous thermodynamic phase transition in ∆332

at fixed packing fraction η = 0.55, and the timescale under which the solid–solid

transition occurs dynamically is shorter by nearly an order of magnitude than in the

case of FCC↔BCC.

3.2.3 Error Analysis

All error bars in the free energy plots are generated using jackknife resampling.

We selected ten different subsets of all the data from the replica runs and stitched

together the resulting free energy curves from the subsets. The error from WHAM

[43] is negligible. However, jackknife resampling can only compute the statistical

error; due to the large sample size (50000 × 5 = 250000), the statistical error is

still small. The largest and most difficult error to calculate is the systematic error of

umbrella sampling. This systematic error can come from multiple sources. First, due

to the equilibration routine of the umbrella sampling simulation, for each individual

window, the final distribution can be shifted slightly to the left or right of the target

Q4 value for each independent run. Second, the initial state of the system can also

affect the end result slightly. Because of this, we conducted simulations from the two

extreme cases, initializing the system with the two solid phases we wish to study, and

compared the free energy of the end result. In Fig. 3.12 and 3.13, we can see that the

free energy curves shifted slightly with different initialization, but the macroscopic

behavior of the phase transitions stay the same.

3.3 Discussion

Motivated by (i) the need for minimal models to study solid–solid transitions [61],

(ii) the observation that, in these transitions, coordination polyhedra [55] change
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shape , (iii) the connection between anisotropic colloid shape and valence [84, 85],

(iv) the large body of work on entropy-driven ordering in systems of colloids with

anisotropic shape [17, 13, 56, 1, 66, 14, 34, 2, 27, 85, 84, 53], and (v) recently de-

veloped techniques for treating particle shape thermodynamically [86], we studied

a class of minimal model systems exhibiting solid–solid phase transitions driven by

changes in particle shape. We showed via MC simulation and umbrella sampling

techniques, that particle shape change gives rise to several distinct solid–solid tran-

sitions in a single family of shapes. We investigated FCC↔BCC and BCC↔SC

transitions. Both FCC↔BCC and BCC↔SC are solid–solid transitions that are re-

lated by linear transformations of the positions of the particle centers. BCC and

FCC are related by elongation in one direction [6]; BCC and SC are related by

a shear transformation within the unit cell [46]. Both transitions are expected to

be diffusionless. Surprisingly, despite both being diffusionless transitions and the

common point group symmetry of the particle shape, we find that the FCC↔BCC

transition is thermodynamically discontinuous (i.e., first order) and that BCC↔SC

is thermodynamically continuous (i.e., second or higher order). Our results suggest

several directions for additional investigation, which will be discussed in the next

section.

Our results can help guide the synthesis of reconfigurable colloidal material (Fig. 3.14).

Experiments have shown systems with changeable building block shape either di-

rectly [26, 45, 70, 97, 49] or effectively via depletion [67, 38, 15]. Here, we show

that, for colloidal particles that can be synthesized in the laboratory [66, 34], chang-

ing particle shape can be used to induce transformations between FCC↔BCC and

BCC↔SC. What implications are there for the rational design of reconfigurable col-

loidal materials? To answer this question, it is important to understand how struc-
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tural reconfiguration compares with self-assembly in terms of typical timescales. We

obtain “timescales” via MC simulations involving local translations and rotations

of individual particles to approximate the Brownian dynamics [24] of physical col-

loids [80]. In the case of FCC↔BCC, for shapes near the discontinuous transition

(|α− α∗| . 0.05), we did not observe spontaneous structural reconfiguration in sys-

tems of N ∼ 2, 000 particles on timescales of τ . 107 MC sweeps. This timescale is

much longer than the typical time that it takes to observe spontaneous crystalliza-

tion or melting in MC simulations of the self-assembly of N ∼ 2× 103 particles, for

which τ ∼ 107. The contrasting timescales for self-assembly vs. solid–solid reconfig-

uration suggest that, for small shape deformations of |α − α∗| . 0.05, spontaneous,

shape change-driven, dynamic FCC↔BCC reconfiguration in ∆332 can be achieved on

shorter timescales by completely melting and then recrystallizing the system. How-

ever, for larger shape changes |α−α∗| & 0.05, we observed spontaneous FCC↔BCC

reconfiguration on timescales of τ ∼ 106 MC sweeps. The relatively short timescales

observed for reconfiguration suggests that, for sufficiently large shape deformations,

although the phase transition is first order, direct solid–solid reconfiguration without

an intermediate fluid can occur on comparable physical timescales to self-assembly

and therefore, is a viable means of designing reconfigurable colloidal materials. In

the BCC↔SC case, the continuous nature of the transition implies that there is no

nucleation barrier, and indeed, we observed structural reconfiguration in MC sim-

ulations of N ∼ 2 × 103 particles on typical timescales of τ ∼ 106, which is less

than what is typically observed for self-assembly of comparably sized systems of

hard anisotropic colloids. The relatively fast speed at which structural reconfigura-

tion occurs in this case of a continuous solid–solid transition suggests that a broader

search for other systems of anisotropic colloids that exhibit continuous solid–solid
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phase transitions could yield candidate systems for developing rapidly switchable

reconfigurable colloidal materials.

3.4 Outlook

The physics of FCC↔BCC solid–solid phase transitions is of longstanding interest

in metallurgy [e.g., in the transition between the so-called γ (FCC) and α (BCC)

forms of iron [6]]. We found that, for several distinct regions of shape space, the

FCC↔BCC solid–solid phase transition is discontinuous. It is possible that, for

particles with other paths of shape shifting, there could be less/no thermal activation;

we will address this question in Ch. IV. Additionally, although our focus here was on

solid–solid transitions between cubic crystals with four or fewer particles per cubic

unit cell, studies of noncubic crystals or crystals with more complicated unit cells

require only straightforward generalizations of our approach. We expect that the

approach that we have developed here will provide a powerful framework for the

study of the basic physics of solid–solid phase transitions between a wide array of

technologically relevant structures.

Constructing shape-driven solid–solid transitions furthers the aim of developing

minimal models of these transitions because it allows the direct manipulation of co-

ordination polyhedra. As we noted above, coordination polyhedra also reconfigure

in solid–solid transitions in metallurgy with changes in pressure, density, or temper-

ature. An additional complicating factor in those transitions is that both enthalpy

and entropy play a role, and decoupling their effects is difficult [25]. A side benefit

of our approach is that, in the hard particle systems we present here, the behavior

is entirely driven by entropy. Future studies of systems with controllable shape and

enthalpic interactions [84] could allow enthalpic and entropic contributions to be dis-
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entangled. An important question for additional investigation is whether the physics

of solid–solid transitions is determined by the structures, the particle shapes, or an

interplay between the two.

Another fundamental question that calls for additional investigation is the study

of the kinetics of colloidal solid–solid phase transformations through nonclassical

nucleation and growth. It is expected that the nucleation and growth of solid–solid

transitions will be rich because crystals break the rotational symmetry required by

classical nucleation theory, and recent experimental evidence [61, 73] shows evidence

for two-step nucleation in quasi-2D systems. Minimal models of the type constructed

here provide an avenue for the study of full 3D transformations.
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Figure 3.3: Pressure-shape constitutive relation for αa = 0.4 and αa = αc. (A) Shape evolution
in αc at fixed αa = 0.4. Shapes vary from self-assemble into BCC (blue) to FCC
(red) and then back to BCC (blue). (B) Pressure-shape constitutive relation for fixed
αa = 0.4. Circles indicate FCC system initialization, and triangles indicate BCC system
initialization. Marker colors indicate the value of the order parameter Q4 computed in
the final structure of the system after equilibration. Boxed regions show the BCC↔FCC
boundaries corresponding to lines 1 and 3 in Fig. 3.1. Errors are smaller than marker
size. (C) Shape evolution for αa = αc. Shapes vary from self-assemble into BCC (blue)
to SC (green). (D) Pressure-shape constitutive relation for αa = αc. Squares indicate
SC system initialization; triangles indicate BCC initialization. Marker colors indicate
the value of the order parameter Q4 computed in the final structure of the system
after equilibration. Boxed regions show BCC↔SC boundaries corresponding to line 2
in Fig. 3.1. Errors are smaller than marker size. Outliers are systems that did not
equilibrate in 2× 107 MC steps. Reproduced from publication [21].
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Figure 3.4: Pressure-shape constitutive relation for αa = 0.5 and αa = αc. (A) Shape evolution for
αa = αc. Shapes vary from self-assemble into BCC (blue) to FCC (red) and then back
to BCC (blue). (B) Pressure-shape constitutive relation for αa = αc. Circles indicate
FCC system initialization, and triangles indicate BCC system initialization. Marker
colors indicate the value of the order parameter Q4 computed in the final structure of
the system after equilibration. Boxed regions show the BCC↔FCC boundaries corre-
sponding to lines 4 and 5 in Fig. 3.1. Errors are smaller than marker size. (C) Shape
evolution in αc at fixed αa = 0.5. Shapes vary from self-assemble into BCC (blue)
to SC (green). (D) Pressure-shape constitutive relation for fixed αa = 0.4. Squares
indicate SC system initialization; triangles indicate BCC initialization. Marker colors
indicate the value of the order parameter Q4 computed in the final structure of the
system after equilibration. Boxed regions show BCC↔SC boundaries corresponding to
line 6 in Fig. 3.1. Errors are smaller than marker size. Outliers are systems that did
not equilibrate in 2× 107 MC steps. Reproduced from publication [21].
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Figure 3.5: Shape-induced structural FCC↔BCC reconfiguration is accompanied by a first-order
thermodynamic phase transition in spheric triangle invariant hard polyhedra. (A)
Shapes used in umbrella sampling simulations. (B) Second neighbor-averaged l = 4
spherical harmonic order parameter Q4 distinguishes BCC, FCC, and HCP crystal
structures in thermal systems of spheric triangle invariant polyhedra. (C) Above the
transition (αc > α∗

c), a metastable FCC free energy basin develops near αc = 0.58.
(D) Below the transition (αc < α∗

c), the FCC free energy basin becomes dominant
(αc = 0.55), and well below the transition (αc = 0.54), the BCC free energy basin
becomes unstable, and a second metastable HCP basin appears. Reproduced from
publication [21].
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Figure 3.6: Shape-induced structural FCC↔BCC reconfiguration is accompanied by a first-order
thermodynamic phase transition in spheric triangle invariant hard polyhedra. (A)
Shapes used in umbrella sampling simulations. (B) Second neighbor-averaged l = 4
spherical harmonic order parameter Q4 distinguishes BCC, FCC, and HCP crystal
structures in thermal systems of spheric triangle invariant polyhedra. (C) Below the
transition (αc < α∗

c), a metastable FCC free energy basin develops near αa,c = 0.25.
(D) Above the transition (αc > α∗

c), the FCC free energy basin becomes dominant
(αa,c = 0.265), and well above the transition (αc = 0.28), the BCC free energy basin
becomes unstable, and a second metastable HCP basin appears. Reproduced from
publication [21].
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Figure 3.7: Shape-induced structural FCC↔BCC reconfiguration is accompanied by a first-order
thermodynamic phase transition in spheric triangle invariant hard polyhedra. (A)
Shapes used in umbrella sampling simulations. (B) Second neighbor-averaged l = 4
spherical harmonic order parameter Q4 distinguishes BCC, FCC, and HCP crystal
structures in thermal systems of spheric triangle invariant polyhedra. (C) Above the
transition (αc > α∗

c), a metastable FCC free energy basin develops near αa,c = 0.505.
(D) Below the transition (αc < α∗

c), the FCC free energy basin becomes dominant
(αa,c = 0.495), and well below the transition (αc = 0.475), the BCC free energy basin
becomes unstable, and a second metastable HCP basin appears. Reproduced from
publication [21].
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Figure 3.8: Shape-induced structural FCC↔BCC reconfiguration is accompanied by a first-order
thermodynamic phase transition in spheric triangle invariant hard polyhedra. (A)
Shapes used in umbrella sampling simulations. (B) Second neighbor-averaged l = 4
spherical harmonic order parameter Q4 distinguishes BCC, FCC, and HCP crystal
structures in thermal systems of spheric triangle invariant polyhedra. (C) Below the
transition (αc < α∗

c), a metastable FCC free energy basin develops near αc = 0.185.
(D) Above the transition (αc > α∗

c), the FCC free energy basin becomes dominant
(αc = 0.19), and well above the transition (αc = 0.215), the BCC free energy basin
becomes unstable, and a second metastable HCP basin appears. Reproduced from
publication [21].
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Figure 3.9: Shape-induced structural BCC↔SC reonfiguration occurs continuously in spheric trian-
gle invariant hard polyhedra. (A) Sample shapes used in umbrella sampling simulation
from the start to end in equal space. C shows all shapes. (B) Second neighbor-averaged
l = 4 spherical harmonic order parameter Q4 shows a series of structures between BCC
and SC. (C) Umbrella sampling shows a continuous phase transition. (D) Location of
free energy minima extracted from umbrella sampling simulations as a function of αa,c.
Reproduced from publication [21].
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Figure 3.10: Shape-induced structural BCC↔SC reonfiguration occurs continuously in spheric tri-
angle invariant hard polyhedra. (A) Sample shapes used in umbrella sampling simu-
lation from the start to end in equal space. C shows all shapes. (B) Second neighbor-
averaged l = 4 spherical harmonic order parameter Q4 shows a series of structures
between BCC and SC. (C) Umbrella sampling shows a continuous phase transition.
Reproduced from publication [21].
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Figure 3.11: BCC↔SC phse transition is a continuous (i.e., second- or higher-order) thermody-
namic phase transition. (A) Order parameter Q4 vs. shape suggests the derivative
of the order parameter changes discontinuously near αa,c = 0.6. (B) P (αa, αc) also
indicates a discontinuous derivative near αa,c, which is consistent with a continuous
phase transition. Reproduced from publication [21].
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Figure 3.12: Shape-driven solid–solid FCC↔BCC reconfiguration is accompanied by a first-order
thermodynamic phase transition in spheric-triangle invariant hard polyhedra, shown
here with both BCC (solid line) and FCC (dashed line) initialization. Differences
between curves indicate systematic errors in computing the location of the transition,
but indicate that the thermodynamic nature of the transition is robust. (A): free energy
curves of hard polyhedra as in Fig. 3.8. (B): free energy curves of hard polyhedra as in
Fig. 3.6 (gap in red dotted line indicates insufficient statistics in one umbrella sampling
window). (C): free energy curves of hard polyhedra as in Fig. 3.7. (D): free energy
curves of hard polyhedra as in Fig. 3.5. Reproduced from publication [21].
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Figure 3.13: Shape-driven solid–solid BCC↔SC reconfiguration occurs continuously by continuous
transition in spheric-triangle invariant hard polyhedra, shown here with both BCC
(solid line) and SC (dashed line) system initialization. Differences between curves in-
dicate systematic errors in the computing of the location of the transition, but indicate
the thermodynamic is robust. (A): free energy curves of hard polyhedra as Fig. 3.9.
(B): free energy curves of hard polyhedra as Fig. 3.10. Reproduced from publication
[21].
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Figure 3.14: Shape-driven solid–solid reconfiguration and self-assembly timescales for BCC, FCC,
and SC structures. Thermodynamically discontinuous FCC↔BCC solid–solid phase
transitions occur dynamically in MC simulations on timescales (τ . 107 MC sweeps)
that are similar to self-assembly timescales (τ ≈ 106 MC sweeps) beyond the
metastable region. In the metastable region, solid–solid reconfiguration does not occur
on timescales (τ � 107 MC sweeps) that are much longer than typical self-assembly
times. Thermodynamically continuous BCC↔SC solid–solid phase transitions occur
dynamically in MC simulations on timescales (τ . 106 MC sweeps) that are com-
parable with or less than typical self-assembly times. Reproduced from publication
[21].



CHAPTER IV

Thermodynamic Properties of BCC↔FCC Transitions in
Hard Polyhedron Systems

In Ch. III we showed that for shape driven solid–solid phase transitions, both first

and second order phase transitions can happen, despite the fact that the two final

structures do not have a symmetry–sub-symmetry relationship. We found that the

BCC↔SC transition actually consists of two second-order phase transitions, where

the intermediate structures have sub-symmetry groups to both BCC and SC. A

natural question to ask following that is can we find a second-order FCC↔BCC

transition induced by changing particle shape? Since the sub-symmetry structure

body-centered tetragonal (BCT) to both BCC and FCC is already known [6], we

hypothesize there should exist a pathway where such transitions can be second order.

In this chapter we examine FCC↔BCC transitions in two different shape families,

where one is the spheric triangle invariant 432 family (∆4,3,2) [11] and the other one

is concave, dimpled, “lock-and-key” particles [69, 35, 57, 58, 18, 68, 89, 3]. We found

that in both shape families, the FCC↔BCC transitions are first order, where the

intermediate BCT phase is never thermodynamically stable since these particles are

spherical in the sense that they are not prolate or oblate. The contents of this chapter

are taken from my co-first author paper, “FCC↔BCC phase transitions in colloidal

crystals of convex and concave particles”, Duanduan Wan, Chrisy Xiyu Du, Greg van
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Anders, and Sharon C. Glotzer, in preparation [88]. I set up all the simulation and

provided guidance on simulation details and which systems to include. Duanduan

Wan performed the simulations. All authors contributed to the analysis of the data,

discussion of the results and manuscript writing.
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Figure 4.1: (A) Spheric triangle invariant (∆432) polyhedra form a continuous two-parameter
(αa, αc) family of symmetric convex shapes that are bounded by the cubooctahedron
[(αa, αc) = (0, 0)], octahedron (0, 1), cube (1, 0), and rhombic dodecahedron (1, 1). (B)
The colors indicate the self-assembled structures at η = 0.55, where FCC is red, BCC
is blue, and SC is green. The self-assembled phases indicated are an approximated
representation from the actual self-assembled phases. Reproduced from manuscript
[88].
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Figure 4.2: Dimpled particles with six valence “dimples” of different size. Figure shows shape

change from a perfect sphere (f = 0) to the maximum dimple (f = 1). Reproduced
from manuscript [88].
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4.1 Model and Simulation Details

Using similar methods described in Ch. III, we use both the Ehrenfest and

Landau approaches to study the phase transitions in shape family ∆432 (Fig. 4.1A

shows shapes) and dimpled particles with six dimples of varying size (Fig. 4.2). For

∆432, we use two shape parameters (αa, αc) to represent every shape in the shape

family. Both parameters are within the range of [0, 1]. αa represents the amount

of vertex truncation and αc represents the amount of edge truncation. (αa, αc) =

(1, 0) represents an octahedron; (αa, αc) = (0, 1) represents a cube; (αa, αc) = (0, 0)

represents a cubooctahedron; (αa, αc) = (1, 1) represents a rhombic dodecahedron.

For the dimpled particles, a dimple is a spherical cap bounded by the intersection

of a central sphere with a valence sphere following [3]. Here we use shapes where

the central sphere and valence spheres are of the same radius r, with six valence

spheres in the (±1, 0, 0), (0,±1, 0), and (0, 0,±1) directions. The dimple size is a

function of the distance l between the central sphere and valence sphere, with l = 2r

when the two spheres just touch each other and the central sphere has no dimple

and l =
√

2r as the maximum dimple size, where the two neighboring dimples touch

each other. We define scale free shape parameter f = ((2r)2 − l2)/(
√

2r)2 for these

dimpled particles, where f = 0 being a perfect sphere and f = 1 being a concave

shape with maximum dimple size (see Fig. 4.2).

Some of the shapes in these two shape families have been synthesized at the

colloidal scale and previous simulations have shown thermodynamic stability for a

number of different bulk structures. Here, we study only the BCC and FCC regions

that are adjacent to each other in shape space. All shapes are scaled to have unit

volume. See Fig. 4.3 for examples of self assembled structures of both ∆432 and
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dimpled spheres.

Since no direct method has been reported to compute pressure for hard concave

particles, we only performed pressure analysis for shapes in ∆432. We initialized

systems using shapes with αa = 0.65, αc ∈ [0, 1] in perfect BCC (N = 2000) and

FCC (N = 2048) structures at packing fraction η = 0.55 and computed P (αa, αc)

(Fig. 4.4) after 1.5× 107 MC steps to ensure that systems have reached equilibrium.

For both convex and concave shape families, we computed Landau free energies

using umbrella sampling [82] and the weighted histogram analysis method (WHAM)

[43] using Q4 as the order parameter. The spring constant of the biased potentials is

set to k = 3.5× 104 and the window width of Q4 is set to0.004 with 5× 104 samples

taken for each window. The free energy is computed as an average of five replicates.

4.2 Results

∆432 Family of Hard Polyhedra

Fig. 4.4 shows the pressure shape constitutive relation P (αa, αc) along the line of

αa = 0.65 (Fig. 4.1B). At the FCC↔BCC cross-over, we find that P (αa, αc) exhibits

a discontinuous first derivative, indicating a phase transition that is either first or

second order in the Ehrenfest classification [30]. Following the same procedure in

Ch. III, we compute the Landau free energy near the transition boundary. From

Fig. 4.5, it can be seen that at αc = 0.32, the system has the lowest free energy in

the BCC basin. As αc increases, the BCC basin rises while the FCC basin lowers,

which indicates the system begins to prefer the FCC structure. The change in the

location of the lowest free energy basin indicates this is a first order phase transition.

Dimpled Spheres

We then explore the FCC↔BCC transition in the system of dimpled spheres.
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Based on the self-assembly behavior shown in Fig. 4.3, we know that when f . 0.63,

particles tend to self-assemble into the FCC structure, and when f & 0.67, particles

tend to self-assemble into the BCC structure, which gradually changes into a SC

structure as f increases beyond 0.7 (Fig. 4.3E, F). Similar to Fig. 4.5, Fig. 4.6

shows the Landau free energy curve of the dimpled sphere system. It has two basins

corresponding to the BCC and FCC phases and demonstrates a first order phase

transition in the ∆432 family. Additionally, we observe that the BCC basin shifts

to the right of Q4 = 0.07 and shifts further as f increases due to the BCC↔SC

transition. At f = 0, 8, the crystal that assembles is twinned SC (Fig. 4.3E, and

as f further increases, the system gradually changes into a single domain SCphase

(Fig. 4.3F).

4.3 Discussion

The existence of intermediate BCT structures between FCC and BCC [6] indicates

that, according to Landau theory [8, 81] the FCC↔BCC transition could occur either

via a pair of second order phase transitions or by a first order phase transition. In

Ch. III, convex, 332-symmetric shapes indicated a first order phase transition. Here,

we used the shape-dependent emergent valence of anisotropic colloids [84] in convex

and concave 432-symmetric shapes in an attempt to manipulate the local structure

of BCC and FCC to create intermediate BCT states following the so-called Bain

path by elongating one of the three unit cell directions [6]. Instead, we found that

the discontinuous nature of the transition persisted over all studied shape families.

Despite the apparent insensitivity of the overall thermodynamics of the transition to

particle valence modifications tested here, some discernible differences in the ther-

modynamics of the transitions were found. Whereas in the convex shape of both
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332 and 432-symmetries show strong evidence of metastable mixed FCC-HCP stack-

ing developing after the BCC→FCC transition, this was not evident in our study

of concave 432-symmetric shapes (dimpled spheres with 6 valence spheres). This

finding indicates that choice of particle shape does afford some control over transi-

tion thermodynamics. Understanding the extent to which this is possible will be an

important question for future work, given the growing number of examples of shape-

shifting colloids that can now be synthesized [34, 93, 51, 31], the potential for the

use of these colloids in developing materials, and the importance of the thermody-

namics of solid–solid transitions in determining the viability of shape-shifting-driven

structural reconfiguration.
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Figure 4.3: Sample self-assembled colloidal crystals formed by shapes in the ∆432 family of hard
polyhedra and dimpled spheres, with images showing particle shape and bond order
diagram. All systems are at density η = 0.55. (A) A BCC crystal self-assembled from
shape (αa, αc) = (0.65, 0.32). (B) An FCC crystal self-assembled from shape (αa, αc) =
(0.65, 0.40). (C) An FCC crystal self-assembled from dimpled sphere f = 0.63. (D)
A sheared BCC crystal self-assembled from dimpled sphere f = 0.67. (E) A twin SC
crystal self-assembled from dimpled sphere f = 0.8. (F) A SC crystal self-assembled
from dimpled sphere f = 0.9. Note the similarity of shapes in A and B, and also in C
and D; even small shape differences can affect the bulk self-assembly of hard polyhedra.
Reproduced from manuscript [88].
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Figure 4.4: (A) Sample shapes studided along the line of constant αa = 0.65. Parameters for the
three shapes are: αc = 0.0 (left), αc = 0.5 (middle), αc = 1.0 (right). (B) Pressure-
shape constitutive relation at fixed αa = 0.65. Circles indicate FCC system initial-
ization, and triangles indicate BCC system initialization. Marker colors indicate the
value of the order parameter Q4 computed in the final structure of the system after
equilibration. Errors are smaller than marker size. Reproduced from manuscript [88].
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Figure 4.5: In ∆432 family of hard polyhedra, shape-induced structural FCC↔BCC reconfiguration
is accompanied by a first-order thermodynamic phase transition. (A) Six shapes used
to compute Landau free energy. (B) Landau free energy as a function of Q4 for left most
three shapes that self assemble into BCC. (C) Landau free energy as a function of Q4

for right most three shapes that self assemble into FCC. Reproduced from manuscript
[88].



48

A

B

C

Figure 4.6: For dimpled spheres, shape-induced structural FCC↔BCC reconfiguration is accompa-
nied by a first-order thermodynamic phase transition. (A) Five dimpled spheres used
to compute Landau free energy. (B) Landau free energy as a function of Q4 for left
most three dimpled spheres that self assemble into BCC. (C) Landau free energy as a
function of Q4 for right most two shapes that self assemble into FCC. Reproduced from
manuscript [88].



CHAPTER V

Transition Kinetics of Shape-Driven Solid–Solid Phase
Transitions in Colloidal Crystals

In this work we study the kinetic behavior of shape-driven solid–solid phase tran-

sitions. Despite the wide range of applications of solid–solid transitions, some funda-

mental questions remain unanswered due to its nature, such as the kinetic pathways

when structural transformation occurs. In general, kinetic pathways of solid–solid

transitions are categorized into diffusional and diffusionless transformations [25]. In

diffusional transformations, there is diffusive particle motion; in diffusionless trans-

formations, there is cooperative displacement of all particles, such as the well known

Martensitic transformation [25]. In the literature, “Martensitic” and “diffusionless”

are used interchangeably in many cases. Past researchers have made many postulates

about how Martensite grows [59, 39, 42, 7], but due to the length and time scales of

such transformations, there is no definitive answer [62, 91, 87, 75].

Recent developments in colloidal materials synthesis have made colloidal systems

viable models to investigate these kinetic questions. Using the same family of min-

imal model systems described in Ch. III, we investigate the kinetic pathway of two

solid–solid transitionsL FCC↔BCC and BCC↔SC. We compare the similarity and

differences of the kinetics of these two transitions, as they have different thermo-

dynamic order [21]. In addition, we look at six different systems sized from 500 to
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1, 000, 000 particles to understand the system-size dependence of the kinetic path-

ways.

The contents of this chapter are taken from my first author paper, “Kinetics of

Shape-Driven Solid–Solid Transitions in Colloidal Crystals”. Chrisy Xiyu Du, Greg

van Anders, Joshua A. Anderson, and Sharon C. Glotzer, in preparation [19]. I

performed all the simulation and analysis in this paper. All authors contributed to

the discussion of results and manuscript writing.

5.1 Model and Simulation Details

In our study, we use shapes from the ∆332 (Fig. 3.1A) shape family, specif-

ically particles near Line 4 (Fig. 3.1B) for FCC↔BCC transition and particles

near Line 2 (Fig. 3.1B) for BCC↔SC transition. We took four different shapes

(αa,c = {0.2, 0.225, 0.3, 0.325}) for FCC↔BCC transitions and two different shapes

(αa,c = {0.6, 0.725}) for BCC↔SC transitions. We investigate more shapes for

FCC↔BCC transitions to also compare the difference in transition time for shapes

that are closer (further) away from the phase boundary.

For both FCC↔BCC and BCC↔SC transitions, we performed MC simulations

for six different system sizes at packing fraction η = 0.55, which is chosen to be

consistent with the studies reported in Ch. III. We set up the BCC (FCC)-forming

particles in perfect FCC (BCC) structures, respectively, and perform NV T MC

simulations with variation of box shape [16] until the system reaches equilibrium.

We then analyze all the possible observables (pressure, mean square displacement,

Q4, etc) as well as the transition rate and the transition pathway each simulation

takes. All the simulations are done using HPMC [5] in HOOMD-blue [4], and we use

units in which kBT = 1.
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5.2 Results

FCC↔BCC The simplest pathway going from BCC to FCC and vice versa is

provided by the Bain postulates [6]. Bain states that starting from either the cubic

unit cell of BCC or FCC by elongating in one of the three unit vector directions

continuously by
√

2, the unit cell will transform into FCC or BCC, respectively. For

simplicity, here we define the system box aspect ratio to be c/a, where c represents

the maximum box dimension and a represents the minimum box dimension upon

checking that the middle box dimension b ≈ a.

We first investigate the final box aspect ratio as a function of system size N (see

Fig. 5.1). We note that as the system size increases, the simulation box is more likely

to stay cubic during a transition from FCC to BCC or vice versa. In small system

sizes, the aspect ratio of the box can be as high as
√

2, which is consistent with the

Bain postulate. This indicates that in smaller systems, it is much more likely for all

particles to have collective motion simultaneously towards one of the three possible

elongation directions, while in a bigger system, collective motion is much harder.

This is further confirmed by analysis of Q4 as a function of box aspect ratio

(Fig. 5.2, 5.3). We observe that for transition FCC→BCC, Q4 drops to around 0.12

before there is any change in the box aspect ratio for system size N = 2048 and N =

4000. This indicates that in the initial state, local structural rearrangement could

occur without a global rearrangement in box shape; however, to complete the phase

transition, some global rearrangement is needed. Unlike the smaller system size, for

intermediate system sizes, N = 6912 and N = 13500, the simulation box dimensions

do not change as much during the whole simulation while Q4 indicates that the phase

transition is not complete. This behavior indicates that at intermediate system sizes,
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while it is easier to make local rearrangements, it is still not enough to complete the

whole phase transition, but due to the increase in system size, it becomes much

harder to induce any global collective motion. At large system size, N ≈ 1, 000, 000,

the transition completes without any global collective motion (Fig. 5.4), which also

indicates that the transformation between two phases of large system size and small

system size follow different mechanism.

In the N ≈ 1, 000, 000 simulation we compare the transition rate between two

different shapes. We see that for transitions in both directions, the transition rate of

the shape further away from the phase boundary is much faster than the one that is

closer. This is consistent with phase transitions driven by other thermodynamic vari-

ables such as pressure. Here, too, transitions take longer from shape near structural

boundaries than for shapes away from boundaries (Fig. 5.4).
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A

B

Figure 5.1: (A) Box aspect ratio as a function of system size N . All blue crosses indicate the initial
structure of the system is BCC, while red crosses indicate the initial structure of the
system is FCC. The plot shows a decreasing trend of the aspect ratio. For N < 1000,
the final aspect ratio is very close to

√
2, while for N > 10000, the simulation box

remains cubic. (B) Box angle ratio as a function of system size N . All blue circles
indicate the initial structure of the system is BCC, while red circles indicate the initial
structure of the system is FCC. The plot shows that despite system size, the simulation
box remains orthrombic. Reproduced from manuscript [19].
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Figure 5.2: Q4 as a function of box aspect ratio for particle αa,c = (0.2) going from FCC to BCC.
All simulations have run 4 × 107 MC sweeps. Black line shows the Q4 evolution as a
function of box aspect ratio if the system completely follows the Bain postulate. Blue,
green and red lines show three independent replicates. (A) N = 2048, (B) N = 4000,
(C) N = 6912, (D) N = 13500. Reproduced from manuscript [19].
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Figure 5.3: Q4 as a function of box aspect ratio for particle αa,c = (0.3) going from BCC to FCC.
All simulations have run 4 × 107 MC sweeps. Black line shows the Q4 evolution as a
function of box aspect ratio if the system completely follows the Bain postulate. Blue,
green and red lines show three independent replicates. (A) N = 2000, (B) N = 3456,
(C) N = 6750, (D) N = 13718. Reproduced from manuscript [19].
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Figure 5.4: Snapshots of four simulations of particle shapes αa,c = [0.2, 0.225, 0.3, 0.325] (top to
bottom). The snapshots are taken at timestamps indicated at the bottom. It is notable
that at big system sizes, the phase transitions occur on the order of 107 MC sweeps.
Particles are colored by Q4 values. Reproduced from manuscript [19].



CHAPTER VI

Inverse Design of Pressure-Induced Solid–Solid Transitions
in Colloids

In this work we introduce a coupled thermodynamic ensemble using the “digital

alchemy” framework to design different pressure driven solid–solid phase transitions.

The contents of this chapter are taken from, ”Inverse Design of Pressure-Induced

Solid–Solid Transitions in Colloid Crystals”. Chrisy Xiyu Du, Greg van Anders,

Julia Dshemuchadse, Paul M. Dodd, and Sharon C. Glotzer, in preparation [20]. I

performed all the simulations and analysis in this paper. All authors contributed to

the discussion of results and manuscript writing.

6.1 Introduction

In the previous chapters we discussed the potential of using shape shifting par-

ticles as building blocks for reconfigurable colloidal crystals. However, with current

synthesis techniques, it is very hard to make particles with such precision. On the

other hand, pressure is easily controlled in an experimental setting, but what building

shape should we use? We seek to find a way to efficiently find targeted, pressure-

induced solid–solid phase transitions for a single particle shape without having to

map phase diagrams.

In order to design a phase transition behavior, we need to construct building blocks
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Figure 6.1: The simulation protocol, containing two simulation boxes with different crystal struc-
tures (Λ1 and Λ2) and different pressures (P1 and P2). Here, the two structures illus-
trated in the figure are FCC (red) and BCC (blue). Both simulation boxes are subjected
to the same “shape bath” (shape attributes are denoted as αi), where they can interact
with each other and make synchronous moves in shape space with different constraints.
Shape illustrated in the figure are subjected to spheric triangle group ∆3,3,2 (Fig. 3.1)
[11]. Reproduced from manuscript [20].

that exhibit multiple target behaviors under a prescribed set of conditions. Here, we

present an inverse design framework that couples multiple extended ensembles via

the approach of “digital alchemy” [86] to design colloidal building blocks that exhibit

multiple target behaviors under different thermodynamic conditions. Motivated by

simulations [21, 65] and experiments [61, 54, 10, 96] demonstrating that solid–solid

phase transitions (e.g., FCC↔BCC, or BCC↔SC) can occur in colloidal systems

under a range of circumstances, here we seek to design solid–solid transitions in
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colloids. By performing computer simulations in which the shapes of anisotropic

colloids are dictated by two distinct target structures at different pressures (Fig. 6.1),

we design particles that undergo a solid–solid transition in silico between the two

structures in a prescribed pressure range.

6.2 Model and Simulation Details

To design for a pressure-induced solid–solid phase transition, we aim to optimize

the particle shape in two different system settings at the same time. As discussed

in Ch. II, the general optimization framework is that of “Digital Alchemy” [86, 28],

where the partition function was extended we extended to include the particle shape

and design constraints:

(6.1) Z =
∑
σ

e−β(H−
∑

i µiNαi−λΛ).

Here β is the inverse temperature, µi are so-called alchemical potentials that are

thermodynamically conjugate to the alchemical parameters αi, which describe par-

ticle shape, N is the number of particles in the system, Λ is the potential energy

function for an Einstein crystal of the target structure, λ is the spring constant of

the Einstein crystal, and the sum is taken over particle coordinates and orientations

and over the space of particle shapes. Here we want to satisfy two different system

constraints simultaneously. As derived in Ch. II, our combined partition function for

the two systems is

(6.2) Z =

∫
[dαi]Z(N,P1, T, αi,Λ1)Z(N,P2, T, αi,Λ2).

Using this formalism, we consider two systems held at different pressures P1 and P2,

with different structural constraints Λ1 and Λ2. Similar to designing particle shape

for one structure [28], we make MC moves in particle shape, but we attempt identical

particle shape moves in both systems simultaneously.
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We studied two solid–solid transitions:FCC↔BCC BCC↔SC, FCC↔β-Tungsten

(β-W) and BCC↔High Pressure Lithium (Li). at two different pressure differences.

For each transition, the design process consists of two steps. In the first step, we

initialized the two systems (N ∼ 500), using the candidate phases with a randomly

generated shape, and compressed both systems at the same time with MC shape

moves to the target density; then we relaxed the structural constraint over 2×107 MC

moves and collected data over another 2×107 MC moves. In the second step, we took

the particles generated from step one and validated our method by performing self-

assembly runs (N ∼ 2000) at the lower-pressure phase, and then slowly compressed

the system and expanded it to see if the solid–solid phase transition actually occurred.

6.3 Results

FCC↔BCC

We used four different shape constraints and two different density differences to

design FCC↔BCC transitions. We used the spheric triangle group ∆332 (Fig. 6.3A)

and ∆432 (Fig. 6.5A) [11] and randomly generated convex polyhedra with 32 and 64

vertices (sample polyhedron can be found in Fig. 6.9), respectively. The two different

density differences are simulated with FCC at φ = 0.55, while BCC was set up at

either φ = 0.60 or φ = 0.65. For each shape constraint and pressure difference, one

optimal shape was determined for each pressure difference after averaging over five

independent replicates. Result from ∆3,3,2 and the pressure difference φ = (0.55, 0.65)

is shown in Fig. 6.2, and pressure difference φ = (0.55, 0.60) is shown in Fig. 6.3B.

Result from ∆4,3,2 and the pressure difference φ = (0.55, 0.65) is shown in Fig. 6.5C,

and pressure difference φ = (0.55, 0.60) is shown in Fig. 6.5D.

All five independent replicates converged to the same shapes, as quantified by the
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two shape parameters αa and αc. We also obtained the optimal shape for FCC and

BCC alone at their respective densities (Fig. 6.2B, 6.3B). The “combined” optimal

shape is located between the optimal shapes of FCC and BCC, but notably is not

equidistant from both optimal shapes. This demonstrates that finding the optimal

shape for a coupled system is not a matter of simply averaging the two optimal

shapes from the two different phases.

As validation of our predicted optimal combined shape, we checked that a system

consisting of these shapes can indeed undergo the pressure-induced solid–solid phase

transition. We initialized the system using the optimal shape arranged into the

FCC structure, thermalized it, and then slowly compressed the simulation box. We

observed the phase transition from FCC to BCC and vice versa (Fig. 6.2D). As

demonstrated in Fig. 6.2D, the process is reversible.

BCC↔SC

We used three different shape constraints and two different density differences to

design a BCC↔SC transition. We used spheric triangle group ∆432 (Fig. 6.5A) and

randomly generated convex polyhedra with 32 and 64 vertices (sample polyhedra

can be found in Fig. 6.9), respectively. The two different density differences were

chosen with BCC at φ = 0.55 and with SC at either φ = 0.65 or φ = 0.70. For each

shape constraint and pressure difference, one optimal shape was determined for each

pressure difference after averaging over five independent replicates. Results from

∆4,3,2 and the pressure difference φ = (0.55, 0.70) is shown in Fig. 6.4, and pressure

difference φ = (0.55, 0.65) is shown in Fig. 6.5B.

All five independent replicates converged to the same shape, as quantified by the

two shape parameters αa and αc. We also obtained the optimal shape for BCC and

SC alone at their respective densities (Fig. 6.4B, 6.5B). The combined optimal shape
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lies much closer in shape space to the optimal shape of SC, which is also closer to a

region in shape space where BCC self-assembles, while not being the optimal shape

for BCC.

We verified that the optimal shape can indeed undergo the pressure-induced solid–

solid phase transition. We initialized the system using the optimal shape arranged

into the BCC structure, thermalized it, and then slowly compressed the simulation

box. We were able to observe the BCC↔SC phase transition in real time (Fig. 6.4D).

As demonstrated in Fig. 6.4D, the process is reversible.

BCC↔Li

We used three different shape constraints and three different density differences

to design a BCC↔Li transition. We used spheric triangle group ∆332 (Fig. 6.3A)

and randomly generated convex polyhedra with 32 and 64 vertices, respectively.

The three different density differences were chosen with BCC at either φ = 0.55 or

φ = 0.60 and with Li at either φ = 0.65 or φ = 0.70. For each shape constraint

and pressure difference, one optimal shape was determined after averaging over five

independent replicas. Results from ∆332 and the pressure difference φ = (0.55, 0.70)

are shown in Fig. 6.6.

All five independent replicas converged to the same shape, as quantified by the

two shape parameters αa and αc. We also obtained the optimal shape for BCC and

Li alone at their respective densities (Fig. 6.6B).

While verifying these results, we found that upon lowering the density, Li will

indeed transition into BCC but the reverse cannot happen due to kinetic constraints.

Instead, we developed another method to test the stability of the Li phase at high

pressure. We initialized the system (N ∼ 4000) using the optimal shape, arranged

half of the particles in the Li structure and the other half in a dense liquid at four
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different densities φ = 0.55, 0.60, 0.65, 0.70. After equilibration, we observed that for

φ = 0.55, 0.60, all systems had transitioned into BCC, while for φ = 0.70, all particles

in the system had adopted the Li structure. For the intermediate density φ = 0.65,

we observed coexistence of BCC and Li. This result shows that, thermodynamically,

Li is the more stable phase at higher pressure, which validates our method.

FCC↔β-W

Since the β-W phase was not reported for shapes in ∆332 and ∆432, we only

performed simulation using randomly generated convex polyhedra with 32 and 64

vertices, respectively. The two different density differences were chosen with FCC

at φ = 0.55 and with β-W at either φ = 0.60 or φ = 0.65. An example shape

is presented in Fig. 6.7A for φ = (0.55, 0.65), while Fig. 6.7B shows the symmetry

analysis of all ten shapes obtained from the independent runs with 32 and 64 vertices.

Fig. 6.7B shows that all shapes have converged to similar symmetries, consistent with

the behavior of shapes in ∆332 and ∆432.

In verifying our findings, we observed that the kinetic pathways are prohibited for

both lowering and increasing the pressure. Similar to BCC↔Li, we initialized the

system (N ∼ 4000) using the optimal shape with half of the particles arranged into

the β-W structure and the other half in a dense liquid at three different densities

φ = 0.55, 0.60, 0.65. After equilibration, we observed that for φ = 0.55, all systems

had transitioned into FCC while for φ = 0.65, all systems had fully adopted the

β-W structure. For the intermediate density φ = 0.60, we observed coexistence of

the FCC and β-W. This result shows that, thermodynamically, β-W is the more

stable phase at higher pressure, which validates our method.

Shape Symmetry Analysis

In order to compare the results from shape families and generalized convex shapes,
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we developed a shape descriptor Sl inspired by the local bond order parameter Ql

[79]. The order parameter is calculated as follows:

(6.3) Silm = Ylm(θ(~ni), φ(~ni)),

where i denotes the i-th face of the convex polyhedron, ~ni denotes the normal vector

of the i-th face, and Ylm is the spherical harmonic special function.

(6.4) Slm =
1

N

N∑
i=1

AiSilm,

where N denotes the total number of faces of the convex polyhedron and Ai denotes

the area of the i-th face. Since we want the order parameter to be rotationally

invariant, we sum over all Slm values and normalize the result:

(6.5) Sl =

[
4π

2l + 1

l∑
m=−l

|Slm|2
]1/2

.

Using this order parameter, we are able to compare shapes across different con-

straints. Fig. 6.8 shows the order parameter distribution of the transitions FCC↔BCC

and BCC↔SC. Fig. 6.7B shows the order parameter distribution of the transition

FCC↔β-W. We see that, in general, shapes share the same order parameter distri-

bution under the same pressure and structural constraints, which means that the

design method not only works for special shapes, but is also functional for systems

with fewer constraints.

6.4 Discussion

Here, we showed that extending the “digital alchemy” framework [86, 28] to mul-

tiple coupled ensembles enables the design of anisotropic colloidal building blocks

that exhibit two distinct target behaviors under corresponding distinct, pre-specified

external conditions. In doing so we determined particle shapes that undergo pressure-

induced solid–solid transitions in a target pressure range.
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We have designed four sets of transitions and we observed spontaneous reversible

transitions between the two phases for two of them (FCC↔BCC, BCC↔SC), while

we could not observe the same behavior for the other two transitions (BCC↔Li,

FCC↔β-W) even though they are thermodynamically stable. This is not surprising

since the method is based on finding thermodynamics equilibria: our method finds

the desired particle feature for the constraints, but does not guarantee that a viable

pathway between the two structures exists.

The example transitions we induced were engineered in Alch-MC simulations [28],

in which the structural constraints were relaxed (i.e., set to zero) after particle shapes

converged to (at least meta-)stable free energy basins. We would not expect that,

in general, one could engineer more complex behaviors without employing structural

constraints.

For the cases we studied, we found that maintaining the structural constraints

resulted in small differences in particle shape that did not affect the success of the

design of the pressure-induced solid–solid transitions. We expect that, in general,

designing for more complex behaviors will require retaining structural constraints.

Although our investigations here focused on designing particle shapes for pressure-

induced reconfiguration in colloids, this approach generalizes straightforwardly to,

e.g., shape-change-induced transitions [21]. Shape-shifting colloids have been syn-

thesized using a number of techniques such as asymmetric thermal expansion [45],

stimulated dewetting [94], and “colloidal recycling” [49], and we expect that inverse

design approaches will be useful in the rational design of functional materials that

leverage those synthesis techniques.
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Figure 6.2: A Snapshots of the simulation setup: two simulation boxes of structure FCC (red,
φ = 0.55) and BCC (blue, φ = 0.65), bond-orientational order diagrams indicating the
structures, and magnified particles to depict their (identical) shape. B Heat map for
the shape distribution for the optimal FCC shape (red, φ = 0.55), BCC shape (blue,
φ = 0.65), and combined shape (purple, with FCC box at φ = 0.55 and BCC box at
φ = 0.65). C Steinhardt order parameter distribution for FCC, BCC, and HCP. D
Validation of the optimal shape reconfigurability. We initialize the system with FCC
structure at φ = 0.54 and slowly compress the system to φ = 0.66. The top panel
indicated the density of the system as a function of MC steps. The middle panel shows
the measured pressure of the system. The color of the line indicates the structure of
they system, where red is FCC and blue is BCC. The bottom panel shows the change
in order parameter. Reproduced from manuscript [20].



67

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

BCC

FCC

FCC-BCC

A B

Figure 6.3: A Shape family Spheric-triangle invariant (∆332) polyhedra parametrized by a contin-
uous two-parameter (αa, αc). This family of symmetric convex shapes are bounded by
the octahedron ((αa, αc) = (0, 0))), tetrahedron ((0, 1) and (1, 0)) and cube (1, 1). B
Heat map for the shape distribution for the optimal FCC shape (red, φ = 0.55), BCC
shape (blue, φ = 0.60), and combined shape (purple, with FCC box at φ = 0.55 and
BCC box at φ = 0.60). Reproduced from manuscript [20]
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Figure 6.4: A snapshows of the simulation setup: two simulation boxes of structure BCC (blue,
φ = 0.55) and SC(green, φ = 0.70), the bond-orientational order diagrams indicating
the structures, and magnified particles to depict their (identical) shape. B Heat map
for the shape distribution for the optimal BCC shape (blue, φ = 0.55), SC shape (green,
φ = 0.70), and combined shape (dark green, with BCC box at φ = 0.55 and SC box at
φ = 0.70). C Steinhardt order parameter distribution for BCC and SC. D Validation
of the optimal shape reconfigurability. We initialize the system with BCC structure at
φ = 0.54 and slowly compress the system to φ = 0.72. The top panel indicates the
density of the system as a function of MC steps. The middle panel shows the measured
pressure of the system. The color of the line indicates the structure of the system, where
blue is BCC and green is SC. The bottom panel shows the change in order parameter.
Reproduced from manuscript [20].
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Figure 6.5: A Shape family Spheric-triangle invariant (∆432) polyhedra parametrized by a contin-
uous two-parameter (αa, αc). This family of symmetric convex shapes are bounded by
the cuboctahedron ((αa, αc) = (0, 0)), octahedron (1, 0), cube (0, 1) and rhombic do-
decahedron (1, 1). B Heat map for the shape distribution for the optimal BCC shape
(blue, φ = 0.55), SCshape (green, φ = 0.65), and combined shape (purple, with BCC
box at φ = 0.55 and SC box at φ = 0.65). C Heat map for the shape distribution for
the optimal FCC shape (red, φ = 0.55), BCC shape (blue, φ = 0.65), and combined
shape (purple, with FCC box at φ = 0.55 and BCC box at φ = 0.65). D Heat map for
the shape distribution for the optimal FCC shape (red, φ = 0.55), BCC shape (blue,
φ = 0.60), and combined shape (purple, with FCC box at φ = 0.55) and BCC box at
φ = 0.60). Reproduced from manuscript [20].
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(a)

(b)
BCC

Lithium
BCC-Lithium

Figure 6.6: A Snapshots of the simulation setup: two simulation boxes of structure types BCC
(blue, φ = 0.55) and Li (yellow, φ = 0.70), the bond-orientational order diagrams
indicating the structures, and magnified particles to depict their (identical) shape. B
Heat map for the shape distribution for the optimal BCC shape (blue, φ = 0.55), Li
shape (yellow, φ = 0.70), and combined shape (teal, with BCC box at φ = 0.55 and Li
box at φ = 0.70). Reproduced from manuscript [20].
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(a)

(b)

Figure 6.7: A Snapshots of the simulation setup: two simulation boxes of structure types FCC (red,
φ = 0.55) and β-W (pink, φ = 0.65), the bond-orientational order diagrams indicating
the structures, and magnified particles to depict their (identical) shape. B Sl analysis
for optimal shapes of phase transition FCC↔β-W where the two densities are φ1 = 0.65
and φ2 = 0.55. Reproduced from manuscript [20].
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(a) (b)

(c) (d)

Figure 6.8: Sl analysis for optimal shapes of different phase transitions and at various densities φ1
and φ2: A FCC→BCC transition at φ1 = 0.65 and φ2 = 0.55; B FCC→BCC transition
at φ1 = 0.60 and φ2 = 0.55; C BCC→SC transition at φ1 = 0.70 and φ2 = 0.55; D
BCC→SC transition at φ1 = 0.65 and φ2 = 0.55. Reproduced from manuscript [20].
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Figure 6.9: A Example shapes obtained from fixed vertex number simulations of phase transition
FCC→BCC transition where the two densities are φ1 = 0.65 and φ2 = 0.55, up (32
vertices), down (64 vertices). B Example shapes obtained from fixed vertex number
simulations of phase transition FCC→BCC transition where the two densities are φ1 =
0.60 and φ2 = 0.55, up (32 vertices), down(64 vertices). C Example shapes obtained
from fixed vertex number simulations of phase transition BCC→SC transition where
the two densities are φ1 = 0.70 and φ2 = 0.55, up (32 vertices), down (64 vertices).
D Example shapes obtained from fixed vertex number simulations of phase transition
BCC→SC transition where the two densities are φ1 = 0.65 and φ2 = 0.55, up (32
vertices), down (64 vertices). Reproduced from manuscript [20].



CHAPTER VII

Conclusion and Outlook

7.1 Summary of Results

In summary, with the four projects presented in Ch. III-VI, we have focused on

different aspects of solid–solid phase transitions in colloidal crystals. These studies

have shown us that there are many unexplored rich behaviors of solid–solid phase

transitions that we can achieve via colloidal matter. Using these building blocks, we

are able to construct minimal models to answer questions about the fundamental

properties of these phase transitions and posing new questions regards to materials

design in the next generation.

In the first study (Ch. III), we lay out the fundamental construct of using shape

changing hard particles as a minimal model to study shape driven solid–solid phase

transitions. Since our particles are hard, the system is purely entropic, which means

we are able to separate out how entropy plays a role in solid–solid phase transi-

tions. We investigate the thermodynamic order of two different phase transitions,

FCC↔BCC, and BCC↔SC, within this minimal model and find that one phase

transition is discontinuous (first-order) and the other phase transition is continuous

(second-order). We also have done a proof of concept study of whether these build-

ing blocks can be used for next generation material design. Based on studies of the
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transition rate between targeted crystals, these particles show big promise.

In the second study (Ch. IV), we further look into the FCC↔BCC phase tran-

sition. This is one of the most common solid–solid phase transitions in nature and

is related to many different material manipulation. By the Landau free energy con-

struct, the FCC↔BCC transition can in principle be second order given that there

is a common sub-symmetry structure of FCC and BCC, so we want to know whether

we could have a second order FCC↔BCC transition in a purely entropic system. We

investigate both concave and convex shapes of different particle symmetries and find

that all FCC↔BCC transitions are first-order. This study is our first to identify the

uniqueness of entropic systems.

In the third study (Ch. V), we carry out 1, 000, 000-particle simulations aim-

ing to have detailed analysis of transitions pathways of FCC↔BCC and BCC↔SC

transitions. We observe that first there is a qualitative difference between the two

transitions, where the pathway of FCC↔BCC is highly system size dependent, while

BCC↔SC is the same across different sizes.

In the fourth study (Ch. VI), we explore the possibilities of using inverse design

tools to design the optimal building blocks for a target pressure induced solid–solid

phase transition. We successfully designed two reversible transitions using four dif-

ferent particle constraints and demonstrated this can be a viable path for smart

materials design. However, the method does not work for any given two crystal

structures as it only considers the thermodynamics of the systems, not the kinetics.

7.2 Concluding Remarks

With the advancement of colloidal particle synthesis and high performance com-

putation, researchers can probe fundamental properties of materials behaviors that
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was not possible before. One theme with my dissertation is trying to see what the

extent of purely entropic systems is. Many publications have demonstrated various

complexities that a purely entropic system can achieve and many parallels have been

drawn towards atomistic systems. But can we use the behaviors of entropic system

to infer about the behavior of atomistic systems? This question is still up to debate

on a case by case scenario.

With the studies listed above, we have shown that in our specific cases, we can

use our systems to provide understandings of how certain phase transitions occur,

from both thermodynamic and kinetic behaviors. However, in Ch. VI, we show

the limitation of materials design with maximizing entropy in the sense that, for

certain phase transitions, even though both phases are thermodynamically favorable

at different pressures, there may or may not exist a viable pathway for the transition

to happen without melting and recrystallizing.

At the same time, there are still much left to study in entropic systems. In most

experimental work, researchers try very hard to reduce polydispersity, and while in

simulation work, polydispersity is rarely considered. But interesting questions could

arise, starting with what will happen if a system consists of many different shape

particles that all self assemble into FCC? Or what will happen if a system consists of

half particles that self assemble into BCC and half particles that self assemble into

FCC? Will they phase separate or form some combined structures? These are all

different dimensions of degree of freedom that have not been considered before.
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