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Abstragi

I

Biallelic utations are a known cause for rod monochromacy, better known as

autosoma sive achromatopsia (ACHM), and early-onset cone photoreceptor

C

dysfunctian. 6C encodes the catalytic o’-subunit of the cone photoreceptor

S

phosphod , thereby constituting an essential part of the phototransduction cascade.

U

Here, we present the results of a study comprising 176 genetically pre-selected patients

1

who rem olved after Sanger sequencing of the most frequent genes accounting for

ACHM, a subsequently screened for exonic and splice site variants in PDE6C

d

applyi ed next generation sequencing approach. We were able to identify

potentiall enic biallelic variants in 15 index cases. The mutation spectrum comprises

M

18 different alleles, 15 of which are novel. Our study significantly contributes to the
mutation of PDE6C and allows for a realistic estimate of the prevalence of PDE6C

mutations since our entire ACHM cohort comprises 1074 independent families.

or

Keywords: matopsia, PDE6C, cone phosphodiesterase, mutation spectrum and
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Achromatopsia (ACHM; ACHM2 MIM# 216900, ACHM3 MIM# 262300, ACHM4 MIM#
613856, ACHM5 MIM# 613093, ACHM6 MIM# 610024, ACHM7 MIM# 616517) is a rare
autosomal ive cone disorder characterized by color vision defects, photophobia,
nystagmugrely reduced visual acuity. To date, six genes have been linked to
H I
ACHM. In&e Western population approximately 80% of the patients carry mutations in the
genes CN@M# 600053) (Kohl et al., 1998) and CNGB3 (MIM# 605080) (Kohl et al.,
2000; Sungin al., 2000) encoding the two subunits of the cone photoreceptor cyclic
nucleotidmmannel. Much less frequently, causative mutations have been found in
genes ensher crucial components of the cone phototransduction cascade, namely

GNAT2 (NIM# 139340) (Aligianis et al., 2002; Kohl et al., 2002), PDE6C (MIM# 600827)

(Chang etm; Thiadens et al., 2009), and PDE6H (MIM# 601190) (Kohl et al., 2012), or

in ATF6 ( 5537) (Kohl et al., 2015), which is not involved in the phototransduction
cascade, b he unfolded protein response pathway. Larger case series or genetic
screen associated genes are sparse (Kohl et al., 2005; Nishiguchi, Sandberg, Goriji,

Berson, 8!Dryja, 2005; Wissinger et al., 2001; Zelinger et al., 2015; Mayer et al. 2017),

thereforeQa comprehensive view of the prevalence especially of the minor disease

genesin A .

In the &udy, 176 patients diagnosed with ACHM who remained unsolved after

Sangerwg of the most frequent genes accounting for ACHM, namely CNGB3,

CNGA3, and G:;Z, were screened for exonic and splice site variants in the PDE6C gene.
Sample{patients and family members were recruited in accordance with the
principles of eclaration of Helsinki and were obtained with written informed consent
accompanying the patients” samples. The study was approved by the institutional review

board of the Ethics Committee of the University Hospital of Tuebingen.
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While two patients were screened using a custom capture panel targeting 105 retinal

disease genes including PDE6C (Glockle et al. 2014), the others were analyzed by means of

an amplic ed next generation sequencing approach. Briefly, target enrichment of

coding s cluding exon-intron boundaries of PDE6C (Supp. Table S1) was
H

performeswith Fluidigm 48.48 Access Arrays. Library capture was completed using the

Nextera X<DNA ,’brary Prep Kit and sequencing was performed on a MiSeq instrument at a

core facilwq Tibingen). Sequence data were aligned using the Burrows-Wheeler

Aligner (Li urbin, 2009), and variants were called using an in-house bioinformatic
pipeline. n-synonymous single nucleotide variants, nonsense variants, splice site
(£10 bps)@variants, insertions, duplications and deletions represented by more than 20
sequence ere considered for further analysis. In addition, variants with a minor
allele frequen AF) >1% in the Genome Aggregation Database (gnomAD) Version r2.0.2
were exclu m further investigation. The potential pathogenicity of missense changes
was as g five online prediction software tools, namely SIFT (https://sift.jcvi.org/)
(Kumar, snikoff, & Ng, 2009), PolyPhen-2 (https://genetics.bwh.harvard.edu/pph2/)

(AdzhubeQ 2010), Mutation Taster (https://www.mutationtaster.org/) (Schwarz,

Cooper, Sc e, & Seelow, 2014), Mutation Assessor (http://mutationassessor.org/r3/)
(Reva, i Sander, 2011) and Provean (http://provean.jcvi.org) (Choi & Chan, 2015).
Predictmes are given in Suppl. Table S2. The variant designation is based on the
NCBI reference ;quence for PDE6C (NC_000010.11, NM_006204.3; GRCh38) comprising 22
coding e e were able to identify potentially pathogenic biallelic variants in 15 index
cases, thereb ieving a detection rate of 8.5%. All putative disease-associated variants in

the PDE6C gene were validated and tested for segregation with the phenotype in available

family members by conventional Sanger sequencing. The variants were seen in true

This article is protected by copyright. All rights reserved.



homozygous state in two patients and in apparent homozygous state in seven patients,

respectively (Supf). Table S3). Compound heterozygosity was observed for two patients

based on lysis of paternal alleles. In one patient, trans configuration of variants was
establish cloning. Compound heterozygosity could not be demonstrated for
H

three patignts because DNA of family members was not available and the respective
variants v@ted too far apart for allelic cloning. The mutation spectrum comprises 18

different WS of which are novel (Table 1). All novel variants were deposited to the
database

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) (Landrum et al.,, 2014) with
accession ovided in Table 1. The location of the variants identified in this study with

respect talthe PDE6C protein is depicted in Figure 1A.

All index mharboured unique PDE6C genotypes with the exception of the missense
I

variant p. hich was found in homozygous state in three independent patients. In
gnomAD thi nt is present in heterozygous state in only one single subject (1/245,508
alleles)® hat we saw it in three independent patients was therefore indicative of a

founder eSect. Genotyping of microsatellite and SNP markers indeed revealed a common
haplotype three patients (see Supp- Figure S1).

Potential p genicity of variants was determined on the basis of: (1) representing
uItrara&bserved only in single cases or being absent in 277,264 general population
alleles i ; (2) in the case of missense variants being predicted to be damaging by at
least four_out offffive effect prediction programs listed above; (3) representing likely null
aIIeIes¢ canonical splice site and frameshift variants); (4) having already been
described to athogenic; and (5) analysed functionally (p.R29W; Grau et al. 2011). All
variants were classified according to their pathogenicity based on the American College of

Medical Genetics and Genomics (ACMG) guidelines (Richards et al. 2015) (see Table 1). Since
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nonsense, canonical splice site and frame-shifting variants have a strong weight in the

ACMG scoring sistem, this class of variants are consequently classified either as likely

pathogeni thogenic. An exception is the known non-canonical splice site variant
c.939+56ghoda et al., 2016), which is classified as a variant of unknown
H

significand@ (VUS) since the +5 position is not invariable.

All misse@nts we identified have an extremely low MAF or are even absent in
gnomAD. lg ag@ligion, their evolutionary conservation and localization as well as the type of
the respective amino acid substitution are strong indicators of pathogenicity. However,
following EAG guidelines, seven of the eight missense variants we identified are
classified ﬁThis classification would only change to pathogenic if functional data (e.g.
of an enz iggacitivity assay) were supportive of a damaging effect as is the case for the
p.R29W vafta rau et al., 2011).

A summary inical findings is shown in Supp. Table S3 including all index patients and two

affecte (patients 1-1 and 1-2). All patients were diagnosed in early childhood

(ranging me birth to 5 years) and displayed characteristics of ACHM like photophobia,

nystagmu paired color vision. Electroretinography (ERG) results were not available
from every nt but generally revealed normal rod responses and either extinguished or
severe cone responses with the exception of patient 6 in whom ERG recordings

also shwced b-waves in the scotopic ERG and an electronegative standard flash.
We therefore s-classified his diagnosis from ACHM to cone-rod dystrophy. Optical
coheren ography (OCT) images were only available from six patients and revealed the
typical disapp nce of P2 (photoreceptor reflectivity) in patients with ACHM (Barthelmes,

Sutter, Kurz-Levin, Bosch, Helbig, Niemeyer, & Fleischhauer, 2006).
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The Human Gene Mutation Database currently lists 38 variants in PDE6C that explain the

disease phenotyie in the respective patients. Our study significantly contributes to the

mutationmf PDE6C and allows for a realistic estimate of the prevalence of PDE6C

mutation in the European population since our entire cohort comprises 1074
H

independ&ht families mainly originating from Europe or being of European descent (USA,

Canada, AUstrall@, New Zealand). Considering an estimated prevalence of 1:30.000 to

C

1:50.000 f in Europe, this number is certainly high enough to give a comprehensive

S

view on the spectrum and prevalence not only of the more common CNGB3 and CNGA3

L

mutation so on the four minor, non-CNG channel encoding ACHM genes. Taking

together the results of the present study and a previous screening approach (Grau et al.

f

2011), we e a prevalence of 2.4% for PDE6C mutations in our cohort which is most

d

probably répr tative for ACHM in the Western population (Figure 1B). As ACHM is in the
focus of reti ne therapy with four clinical trials ongoing, our study provides a valuable

resour ive gene therapy trials targeting PDE6C.
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Table 1: Sequence variants in PDE6C

{

Nucleotide (NIV1_00620488) PDE6C protein (NP_006195.3)

€.939+5G>A
c.1004+1G>A
c.1269+1G>A
c.211G>T
c.775C>T
c.1579C>T
c.78del
c.497del
c.857del
c.85C>T
c.304C>T
c.836T>C
c.1637C>A
c.2141T>A
c.2156T>C
€.2246G>A
c.2288T>C
c.2294A>G

n.a.*(p.F290_E314del)
n.a.’ (p.E314Dfs*11)

n.a.’ (p.K374_E423del)
p.E71*
p.R259*
p.R527*
p.K27Sfs*27
p.D166Afs*28
p.K286Rfs*16
p.R29W
p.R102W
p.1279T
p.T546N
p.I714N
p.M719T
p.G749E
p.M763T
p.D765G

Reference(s)
Abouelhoda et al., 2016
Huang et al., 2013

This study

This study

This study

This study

This study

This study

This study

Thiadens et al., 2009; Grau et al., 2011

This study
This study
This study
This study
This study
This study
This study
This study

ClinVar accession
no.

RCV000171185.1
n.a.

SCV000678420
SCV000678421
SCV000678422
SCV000678423
SCV000678424
SCV000678425
SCV000678426
SCV000086939.1
SCV000678427
SCV000678428
SCV000678429
SCV000678430
SCV000678431
SCV000678432
SCV000678433
SCV000678434

Protein domain
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.

N terminal domain

GAF domain

GAF domain

Catalytic domain
Catalytic domain
Catalytic domain
Catalytic domain
Catalytic domain
Catalytic domain

Consensus
prediction
for missense
variants®

Damaging
Damaging
Damaging
Damaging
Damaging
Damaging
Damaging
Damaging
Damaging

ACMG®
PM2;PM4;PP3
PM2;PVS1;PP3
PM2;PVS1;PM4
PM2;PVS1
PM2;PVS1
PM2;PVS1
PM2;PVS1
PM2;PVS1
PM2;PVS1

PM2;PM1;PP3;PS3

PM2;PM1;PP3

PM2;PM1;PP3;PM3

PM2;PM1;PP3
PM2;PM1;PP3
PM2;PM1;PP3
PM2;PM1;PP3
PM2;PM1;PP3
PM2;PM1;PP3

ACMG prediction®
VUS

Pathogenic (Ic)
Pathogenic (Ib)
Likely pathogenic (1)
Likely pathogenic (1)
Likely pathogenic (1)
Likely pathogenic (1)
Likely pathogenic (1)
Likely pathogenic (1)
Pathogenic (I1)

VUS

Likely pathogenic (V)
VUS

VUus

VUS

VUus

VUS

VUS

gnomAD MAF
None
0.00003228

None
0.00000813
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Consensus da&fermined as prediction of a damaging effect by at least 4 of 5 free web-based applications (SIFT, PROVEAN, PolyPhen-2, Mutation Taster, Mutation Assessor);
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ding to final classification in one of five pathogenicity categories; “in silico assessment using five algorithms embedded in the Alamut software (http://www.interactive-biosoftware.com) predicted that
exon is likely. The consequence of the putative exon skipping on protein level is given in brackets. n.a., not applicable. VUS, variant of uncertain significance; MAF, minor allele frequency.
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