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Abstract 21 

 It is an exciting time for big data efforts in radiation oncology.  The use of big data to 22 

help aid both outcomes and decision making research is becoming a reality.  However, there 23 

are true challenges that exist in the space of gathering and utilizing performance and outcomes 24 

data.  Here, we summarize the current state of big data in radiation oncology with respect to 25 

outcomes and discuss some of the efforts and challenges in radiation oncology big data.   26 
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Introduction 28 

The promise and potential of “big data” in radiation oncology cannot be overstated.  29 

There is tremendous excitement regarding the ability to learn about the efficacy of treatment, 30 

discover new interactions, and overall being able to offer our patients improved and tailored 31 

treatments based on the experience of many. There is also the hope of shared decision making 32 

between providers and patients using informed tradeoffs between cancer control and side 33 

effects. However, genuine challenges are to be faced before this can become a reality and to 34 

meet those challenges, one must first examine the nature of this “big data.” There is a tendency 35 

to use the term “data mining” when thinking about informatics, when in fact, data farming is a 36 

more accurate term, reflecting the reality that the entire process, from planting the seeds of 37 

data in organized rows, watering and tending the growth of data, then harvesting it, is critical to 38 

understand and plan for (1). 39 

Our ability to provide patients with answers about their best course of treatment relies 40 

on our a priori knowledge of how patients with similar disease, demographics, preference, and 41 

clinical characteristics were treated, and how they responded to treatment including both 42 

tumor control and treatment-induced toxicities. This data must be captured in a useable way so 43 

that it can be extracted and analyzed, with user-friendly predictive models created so that 44 

treatment can be customized for each patient.  45 

In radiation oncology, there are two critical general issues, which must be addressed: 1.) 46 

Since radiation oncology data is different than medical/surgical oncology data, data platforms 47 

which have been designed with this in mind (many of which already exist) must be utilized. 2.) 48 

Existing standards where possible should be utilized to meet the big data needs of the multiple 49 

stakeholders (current and future patients, physicians, registries, insurance companies, the 50 

informatics community and many other groups) in radiation oncology in order to avoid 51 

duplication of work. We herein summarize the clinical aspects of big data collection in radiation 52 

oncology, and highlight the challenges and future work needed so that we can realize the 53 

potential of big data. 54 

 55 

Radiation Oncology Big Data is Unique 56 
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An essential point that must be embraced for radiation oncology big data to reach its 57 

potential is, as mentioned under 1.) above, that its format and nature is inherently different 58 

from other disciplines. Fortunately, radiation oncology has recognized this leading to a number 59 

of existing specialized data structures in its arsenal, including DICOM-RT structure and dose 60 

files. Archiving treatment images, structures and doses in DICOM format is a relatively easy first 61 

step toward ensuring that radiation oncology treatment data is captured. It also provides a 62 

great step toward future quality assurance of that data. However, some features of treatment 63 

are not captured in DICOM format, including, for example, motion management and use of 64 

bolus (if not included in the simulation).  Recreating delivered dose requires the integration of 65 

additional information (e.g. CBCT, log files from the treatment machine) in addition to the 66 

treatment plan.  67 

Standardizing nomenclature and definitions are crucial to our efforts to believe and 68 

understand aggregated data (2). There is a recognized, but currently unmet need in radiation 69 

oncology to standardize naming and delineation procedures of normal structures as well as 70 

targets. Standardization includes not only naming structures, but consistency of anatomic 71 

borders and instructions on the extent of normal organs to be contoured.  For example, naming 72 

every esophagus “esophagus” rather than “eso” or “esoph” and contouring it from the cricoid 73 

to the stomach is imperative if we hope to better understand dose-volume response- 74 

relationships. If every “esophagus” in a big data set must go through independent quality 75 

assurance, then the effort will not get very far. This is where planting the seeds correctly in the 76 

first place pays off. Even with the best intentions, the complete OAR delineation can be 77 

compromised by a treatment planning scan of limited extent, so standard nomenclature, as 78 

suggested in TG263, of partial structures is recommended for clarity (2). Another often 79 

overlooked element in radiation oncology big data is encoding of spatial information, especially 80 

with recurrence. It is essential to know the spatial location of recurrence and its relationship to 81 

the delivered dose, not just planned dose. Further, understanding why a marginal recurrence 82 

occurred (e.g. variable patient positioning, inadequate GTV/IGTV delineation, poor image 83 

registration, inadequate PTV margin) requires analysis of information from many steps of the 84 
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process. These are examples of data rarely available outside a research study, but essential to 85 

determining tumor dose-response relationships. 86 

 87 

Use case examples  88 

 Radiation oncology has a number of early adopters of the big data paradigm that can 89 

help guide the field into best practices for successful capture of patient outcomes data.  One 90 

well-known example is the euroCAT infrastructure (3).   Below are several other examples that 91 

were presented or discussed as part of a breakout session at the 2017 Practical Big Data 92 

Workshop.  In each example, a successful workflow has been implemented to capture 93 

outcomes and performance data.  The benefits and limitations of each use case are given 94 

below.  It should be noted that this is a list of examples and not an exhaustive list of all of the 95 

excellent big data initiatives that are ongoing in the radiotherapy community.  Table 1 attempts 96 

to summarized the use cases presented here for quick reference. 97 

 98 

M-ROAR – University of Michigan 99 

The University of Michigan has developed the Michigan Radiation Oncology Analytics 100 

Resource (M-ROAR) to aid in practice patterns and outcomes analyses in Radiation Oncology.   101 

This effort involved a multi-faceted strategy of requiring entry of critical elements as discrete 102 

data, building a database platform, which pulls data from the oncology information systems 103 

(OIS) and electronic health records (HER), and creating a self-service interface. On the data-104 

entry size, everyone in the clinic made a commitment to entering tumor staging, diagnosis 105 

code, pain scores, patient reported outcomes, and Common Terminology Criteria for Adverse 106 

Events (CTCAE) scores so that this data would be available for future analysis. Also, structure 107 

nomenclature was standardized. The MS SQL database aggregates data for >17,000 patients 108 

treated in the department since 2002, including information from both the radiation oncology 109 

and hospital information systems. The self-service interface allows users to easily create and 110 

optimize reports for cohort discovery in minutes rather than waiting to get to the top of a 111 

report-writer’s queue with each request or iteration. 112 
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With implementation of this strategy, the M-ROAR database can be used to answer 113 

innumerable clinical questions, such as what factors predict patient risk of hospitalizations, 114 

decline in patient function, and treatment-related complications, so that patient treatment 115 

protocols can be adjusted in advance. As an example, for head and neck cancer, the association 116 

between radiation dose and toxicity can be stratified based on HPV status. Information to 117 

optimize clinical operations can also be gathered, such as: How long does a certain treatment 118 

plan take to deliver vs. another one so that therapy time slots can be scheduled properly, and  119 

What patients are at risk for dehydration so that nutrition consults can be requested or 120 

outpatient hydration appointments scheduled in advance?  These are only a few examples of 121 

practice-changing queries, which are currently possible. This database is primarily to inform and 122 

guide quality improvement, with IRB approval needed when used for research.   123 

Challenges remaining in M-ROAR are consistent and standardized assessment of 124 

physician and patient-reported toxicities, as well as recurrence scoring. 125 

 126 

MD Anderson 127 

A vision of optimizing electronic health record (HER) utilization is currently being investigated at 128 

MD Anderson Cancer Center in a multiphase process. Initiated within the Radiation Oncology 129 

department, a thorough evaluation of user performance and available toolsets within EPIC was 130 

performed in order to determine suboptimal practices that were limiting efficiency within the 131 

clinic workflow. A general consensus of a need for standardized documentation and consistent 132 

nomenclature for the purposes of improving quality and safety measures, accurate staging and 133 

billing, and decreasing duplication of data entry led to the development of over 40 specialty-134 

specific templates for note generation.  These templates “pull in” discrete data elements 135 

entered into EPIC by a single person (such as a nurse, midlevel, or primary referral service) so 136 

that the need for dictation/manual data entry by other providers generating notes is 137 

minimized. The patient’s existing medical conditions, cancer stage, performance status, 138 

symptoms/ROS, laboratory values, and radiologic imaging information are all structured fields 139 

which are now automatically populated into specific locations within each template. 140 

Furthermore, these templates utilize the Smartlist function in EPIC, which are lists of 141 
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customizable text that can also be retrieved at a later date as structured data. Smartlists have 142 

therefore been used to define specialty-specific treatment options, protocol descriptions, and 143 

structured CTCAE grading systems. Another advantage of EPIC is the ability for patient-related 144 

outcome (PRO) forms to be sent to the patient electronically.  When patients fill out these 145 

forms, the results are then sent back and saved in EPIC as discrete data, which is then 146 

incorporated into templates and allows for more rapid documentation. 147 

 148 

Overall, these templates offer additional advantages including increased patient screening for 149 

protocol enrollment and user-friendly, electronic functionality for various research endeavors. 150 

By having the variables listed above as structured, extractable data, every aspect of clinical 151 

research becomes optimized. Patients can be quickly assessed and evaluated for protocol 152 

eligibility, and once the patient is undergoing treatment under protocol, the collection and 153 

reporting of clinical response and toxicity become more automated. Protocol-specific templates 154 

have been created in order to ensure that all required data collection per individual protocol is 155 

recorded in a uniform manner. Since completing phases I and II of template creation and 156 

implementation within the Radiation Oncology department, there have been ongoing efforts to 157 

expand standardized EHR documentation methods within other departments, beginning with 158 

GI Medical Oncology and GI Surgery. So far, these services are adapting the templates to 159 

maintain a similar data entry structure while tailoring sections such as the impression and plan 160 

to suit their documentation needs. Our ultimate goal is to have the entire institution adopt the 161 

use of standardized templates and structured data entry to 1) improve the efficiency of 162 

documentation for providers and decrease the risk of provider burn-out, 2) improve patient 163 

coordination within a multidisciplinary clinic setting, and 3) create an institution-wide system of 164 

patient data collection for research purposes and assessment of clinical outcomes. 165 

 166 

Pediatric Proton Registry Consortium 167 

The Pediatric Proton Consortium Registry (PPCR) was established in 2012 to expedite 168 

proton outcomes research in children and to better define the role of proton radiotherapy in 169 

the pediatric cancer population (4). Approximately 1800 pediatric patients have been enrolled 170 
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in the PPCR across 13 participating pediatric proton centers. The PPCR is a consented registry 171 

built upon the NIH supported free web-based data collection/repository platform, REDCap and 172 

is currently open to any U.S. proton center that would like to participate. The PPCR collects 173 

information on demographics, diagnosis and staging, baseline health status, chemotherapy and 174 

surgery, radiation details, diagnostic imaging, and follow-up (5). Radiation plans are centrally 175 

archived in the universal DICOM-RT format.   Due to funding issues and required manual effort, 176 

there is limited participation and variable data entry.  Thus, there is an urgent need to improve 177 

efficiency of data collection through automation. 178 

The major challenges within the PPCR also present opportunities. Given that there are a 179 

limited number of OIS and EHR platforms, there exists an opportunity to leverage the data 180 

already contained within these platforms if appropriate programming bridges can be 181 

constructed. An upfront investment of time and resources from technical personnel is needed 182 

and standard interface should be created with standard basic information mapped from stable 183 

locations in each OIS to minimize the need for additional customization at multiple sites. 184 

Another opportunity exists with the general EHR. Given the critical mass of EPIC users in 185 

the PPCR, we may be able to leverage collaboration to streamline data input and extraction. A 186 

start could be the sharing and use of electronic templates and automation of population of 187 

certain (standardized) fields in the database. It is key that templates must be efficient and user-188 

friendly with minimal free text so that clinicians will use them routinely and must be convinced 189 

in the overall mission or be given timesaving in another area to counter-balance the extra work 190 

of discrete data input. 191 

The final component of PPCR is aggregation of plan information, which is eventually 192 

used to help make the link between radiation dose and treatment outcomes. To facilitate this, a 193 

partnership has been put in place with MiM Software (MiM Software Inc, Cleveland, OH) to 194 

allow web-based archival for each participating institution. The partnership has led to the 195 

development of a faster anonymization procedure and a script for automated nomenclature 196 

standardization using TG263 (2).  197 

In summary, the PPCR is an established and successful registry that has met some 198 

hurdles along the way. As it has grown out of its funding source, it requires that we look into 199 
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electronic efficiencies that will help PPCR and other Radiation Oncology-related Big Data 200 

efforts. Sufficient funding is critical to success of data collection. Mild funding pressure can spur 201 

technological advances that can improve efficiencies, but these also need an upfront 202 

investment in order to achieve them. Given the relatively few electronic radiation charts and 203 

the few EHRs, we are better poised than ever to start to realize the goal of automation in data 204 

entry.   205 

 206 

Oncospace 207 

The Oncospace program at Johns Hopkins began with the design of a relational 208 

analytical database that housed the treatment planning data in a form for fast query. The 209 

database schema includes the full 3D dose for multiple radiation therapy sessions as well as the 210 

3D anatomy including relevant structures (5). The system also houses features of the dose such 211 

as the dose-volume histograms (DVHs) and shape relationships in the overlap volume 212 

histograms (OVHs) (6). In the earlier work, the database was used for the development of 213 

shape-based automated treatment planning where one could rapidly query the OVHs to 214 

determine all prior treatments with critical organ that were “harder” to plan and use it to 215 

predict the best achievable dose metric from DVHs (7-10). This method is in use today for both 216 

plan quality evaluation and automated planning. 217 

 For outcomes, the Oncospace philosophy was that prospective structured data 218 

collection should be integrated with the clinical workflow. Since 2007, a website enabling tablet 219 

devices to be used in the clinic for data capture is available (11). Critical to the adoption is the 220 

ability to generate clinical notes from the collected structured data and additional patient-221 

related information queried from the OIS. Using the same technology, electronic patient-222 

reported outcomes have been successfully captured for more than 8 years. Currently, there are 223 

>5000 patients (prostate, head and neck, thoracic, breast and pancreas) in the database with 224 

full treatment planning data, patient reported outcomes, clinician assessments on-treatment 225 

and in follow-up, disease response as well as diagnosis, and lab data interfaced from clinical 226 

systems.  Data are currently included from Johns Hopkins, the University of Washington, the 227 

University of Virginia, and the University of Toronto Sunnybrook. 228 
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 The rapid access to the treatment data enables data science models to be explored (12). 229 

The Oncospace group is now building predictive models for specific clinical decisions using 230 

classification and regression tree models for weight loss and xerostomia prediction in head and 231 

neck cancer and surgical candidacy in pancreatic cancer. The challenge in clinical prediction is to 232 

focus on the decision to be made and what information truly informs it. For weight loss, the 233 

decision is around the appropriate symptom management for improved nutritional support 234 

such as feeding tube placement. In other cases, modifications to the treatment plan may 235 

reduce risks if it does not compromise on target coverage. Additionally, the impact of the 236 

spatially distributed radiation dose beyond DVHs to better understand how the patterns of 237 

dose may impact the treatment related toxicities could be explored (13). The continued data 238 

growth will allow continuous learning to fulfill the concept of a learning health system in the 239 

future (14). 240 

 241 

University of Pennsylvania 242 

The Penn Medicine Oncology Research and Quality Improvement Datamart (ORQID) 243 

aggregates data from multiple source information systems, including Penn’s enterprise EHR, 244 

ROIS, TPS, Cancer Registry, and Center for Personalized Diagnostics. ORQID focuses on 245 

organizing cancer patients’ demographics, vital status, disease stage and prognostic indicators, 246 

genomic variants, details of systemic therapy and external-beam radiotherapy, and physician-247 

reported toxicities. 248 

Outcomes have been among the most challenging data elements to capture. Penn 249 

implemented structured, site-specific templates for documenting physician-reported toxicities 250 

within the EHR in 2011. The templates are based on the CTCAE grading system, and clinical 251 

teams selected the toxicities of focus for each disease site. To maximize opportunities for data 252 

capture by providers at all levels, only clinically symptomatic toxicities (e.g. pain) not requiring 253 

diagnostic interpretation (e.g. radiation pneumonitis) were included. Nurses have embraced 254 

the effort and capture rates have been as high as 95% for on-treatment visits, which they 255 

routinely staff. Physician adoption has been more challenging, and for follow-up visits (which 256 

have less nursing support) capture rates have been below 50% of visits. Nevertheless, Penn has 257 
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amassed over 2 million toxicity observations on over 28,000 unique patients in the datamart. 258 

Efforts are currently underway to implement widespread patient-reported outcome collection 259 

as routine standard of care to help augment and complement the physician-reported toxicities. 260 

For other outcomes, progression is tracked via the institutional cancer registry, which 261 

only documents the timing and nature of the first progression event after initial treatment. 262 

Deaths are identified from the EHR, cancer registry, and social security death masterfile, but 263 

remain a challenge, with many deaths not documented or without accurate dates. 264 

 265 

US Veterans Health Administration (VHA) Radiation Oncology Practice Assessment 266 

The National Radiation Oncology Program (NROP) office of VHA, with an oversight of 40 267 

radiation therapy treatment centers treating over 15,000 patients annually has launched a pilot 268 

program initiative in which patient-specific radiotherapy data is collected for quality assurance 269 

assessment and comparative analysis of many treatment modalities and other factors at their 270 

centers (15). The NROP office collaborated with the American Society of Radiation Oncology 271 

(ASTRO) disease site expert committees to define clinical measures. These clinical measures are 272 

based on established clinical guidelines, patterns of care assessment done by the American 273 

College of Radiology’s Quality Research in Radiation Oncology program (16), and expert 274 

consensus opinions. These measures have formed the basis for assessing the quality of 275 

treatments and practice variations and identification of the care gaps in the VHA. Although 276 

dosimetry data was automatically abstracted from treatment planning systems (TPS), clinical 277 

data had to be manually abstracted from the electronic health records (EHR) for the pilot 278 

project. 279 

The NROP office has embarked on a project to automatically extract all data for ROPA 280 

from heterogeneous data sources that include EHR, TPS and Treatment Management Systems 281 

(TMS) for clinical practice assessment, outcomes, and prospective decision support analytics. 282 

An integrated data curation, storage and analytics portal, titled as HINGE (Health Information 283 

Gateway and Exchange), was built that can extract and aggregate data from TPS and TMS, 284 

physician clinical notes and DICOM-RT files. HINGE integrates data from these disparate sources 285 

coherently and standardizes it for quality assessment and predictive analytics. The HINGE 286 
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database is based on well-defined quality measures defined by radiation oncology disease site 287 

experts. HINGE has (i) tools to aggregate data from physician note templates (ii) a built-in 288 

DICOM-RT parser to extract DVH based dose constraints, (iii) a natural language processing 289 

(NLP) module to extract relevant physician assessments from the clinician notes, and (iii) a 290 

decision-support and genomics module to provide supplementary insight to treatment 291 

predictions, treatment outcomes and research hypotheses. The HINGE application would reside 292 

at each VHA radiation oncology treatment site and transmit information to a centralized 293 

database server thus making big data analytics possible. HINGE is capable of seamlessly 294 

connecting to local IT/medical infrastructure via network and performs data extraction and 295 

aggregation. The built-in modules (TMS extraction, DICOM parser, NLP) extract defined clinical 296 

data and are easily extendable. The modules of decision-support and genomics provide 297 

preliminary insights into a patient's treatment and health profile. Automatic data abstraction 298 

with HINGE will enable real time assessment of clinical practices and determine care gaps.  299 

 300 

Mayo Clinic Florida 301 

 The Mayo Clinic Florida Department of Radiation Oncology has leveraged Mayo Clinic’s 302 

unique cost warehouse to aggregate data on the cost of radiation therapy and other associated 303 

healthcare costs in the first two years after radiotherapy on approximately 3,000 patients over 304 

a five year period incurred.  The Mayo cost data warehouse is a unique resources consisting of 305 

linked EMR data and administrative data from Mayo Clinic’s hospital and clinics in Florida, 306 

Minnesota, and Wisconsin (17). These costs were linked to other sources of institutional data, 307 

such as departmental treatment records captured through its radiation oncology information 308 

system, demographic, tumor specific, and outcomes data obtained through Mayo’s tumor 309 

registry, adverse events recorded in the EMR, and other disease specific registries containing 310 

non-oncological diagnosis data, such as psychiatric comorbidities.  Waddle et al have used this 311 

cost warehouse to demonstrate that patients with co-existing psychiatric morbidities utilize the 312 

emergency department and inpatient hospitalization at rates greater than patients without 313 

psychiatric co-morbidities at 6 months and two years after radiotherapy. (18)  It should be 314 

noted that even with many successes, toxicity capture remains challenging. 315 
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 316 

The Radiogenomics Consortium (RGC) 317 

The hypothesis that genetic/genomic alterations may function as surrogate biomarkers 318 

of disease response or normal tissue toxicity represents the basis of the field of radiogenomics 319 

(19). A principal goal of research in the field of radiogenomics is to identify the genomic 320 

markers associated with the development of adverse outcomes resulting from cancer 321 

radiotherapy.  However, in order to accomplish this goal and definitively discover and validate 322 

the critical genomic markers, access to the radiotherapy treatment information and long-term 323 

longitudinal follow-up data reporting details as to adverse outcomes must be obtained for large 324 

numbers of patients. In order to enable the creation of large cohorts of patients who received 325 

radiotherapy, the Radiogenomics Consortium (RGC) was created in 2009, which is a cancer 326 

epidemiology consortium through the Epidemiology and Genomics Research Program of the 327 

NCI of the NIH (20). The RGC now has 225 investigators at 132 institutions in 31 countries. 328 

Although the RGC has successfully assembled large cohorts to perform adequately-powered 329 

studies, data harmonization remains a problem when multiple cohorts involve patients treated 330 

with a variety of radiotherapy techniques and evaluated using multiple grading systems. 331 

Nevertheless, a number of large studies have been accomplished in which substantial amounts 332 

of radiotherapy data have been gathered for studies that typically comprise over a thousand 333 

patients. 334 

Four large studies involving the use of Big Data are currently in progress whose main 335 

goal is to discover new SNPs and validate previously identified genetic biomarkers predictive of 336 

susceptibility for the development of adverse effects resulting from radiotherapy. The first 337 

project involves roughly 6,000 men treated for prostate cancer, which encompasses multiple 338 

cohorts created by RGC investigators. DNA samples from all of these men have been genotyped 339 

and detailed clinical data are available with a minimum of two-years of follow-up.  340 

 The second large multi-center study developed by RGC members is REQUITE 341 

(Validation of predictive models and biomarkers of radiotherapy toxicity to reduce side-effects 342 

and improve quality-of-life in cancer survivors)(21). REQUITE addresses the challenge of data 343 

heterogeneity that, as for other big data projects, requires harmonization of the different 344 
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outcome measures and confounding variables used in multiple cohorts. This study does not 345 

stipulate the radiotherapy protocols to be used but involves standardized case report forms 346 

across centers and countries to ensure data in identical categories are collected. A key aspect of 347 

REQUITE is the centralized database that includes pre-treatment DICOM and DVH files.  348 

 A third study involves three large cohorts comprising roughly 4,500 breast cancer 349 

patients treated with radiotherapy for which blood samples and detailed clinical information 350 

are available. These samples and data are available from three large groups of patients: (1) 351 

1,500 patients treated under a series of breast cancer clinical protocols performed at New York 352 

University School of Medicine (22-25); (2) ~2,000 breast cancer patients enrolled though the 353 

REQUITE study and (3) ~1,000 women who receive breast cancer treatment through 354 

participation in RTOG 1005 (26). 355 

 The fourth effort being made is to create a biorepository with linked clinical data for 356 

patients treated with charged particle therapy (CPT). With the increasing use of CPT, there is a 357 

need to establish cohorts for patients treated with these advanced technology forms of 358 

radiotherapy. In recognition that the formation of patient cohorts treated with CPT for 359 

radiogenomic studies is a high priority, efforts are underway to establish collaborations 360 

involving institutions treating cancer patients with protons and/or carbon ions as well as 361 

consortia, including the Proton Collaborative Group, the Particle Therapy Cooperative Group 362 

and the Pediatric Proton Consortium Registry.  363 

  364 

State of the data  365 

 As noted by the varied workflows highlighted in the use cases, hospital-wide and 366 

radiation oncology-specific EHR systems are not often designed to facilitate collection of key 367 

data elements for subsequent extraction and use. Typically, when a patient is referred to 368 

radiation oncology, the diagnosis for that patient has been entered to the hospital EHR system. 369 

Most radiation oncology-specific EHRs can link to the hospital EHR via HL7 FHIR (27) to sync the 370 

diagnosis information. However, linking the specific diagnosis relevant to a given treatment 371 

plan is often a manual process requiring physician input. In addition, there is generally not a 372 

mechanism to input the staging information into the radiation oncology EHR or link metastatic 373 
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sites to the original diagnosis, which are in general of interest for outcome analyses. Thus, 374 

curation of the diagnosis and staging information that comes into radiation oncology can be 375 

cumbersome. Apart from simple diagnosis information, data elements from pathology, 376 

radiology, surgery, internal medicine and medical oncology that may be relevant for radiation 377 

oncology outcomes are seldom entered in discrete fields or even templated free-text formats, 378 

and are, therefore, often inaccessible for automatic extraction and use. 379 

 As the patient goes through treatment, physicians typically see the patient weekly for 380 

on treatment visits. However, the documentation of these visits, including routine toxicity 381 

assessments relies on each individual institution creating their own clinical practice, datasheets 382 

and custom tools for reporting. While many institutions are beginning to recognize the 383 

importance of standardized toxicity assessments and PROs and are putting mechanisms in place 384 

to track this data, there is still inconsistency, which can lead to missing data.  Further, once 385 

institutions have these tools in place, it can be challenging to share personalized templates 386 

across the varying platforms and clinical workflows that exist at different institutions.  Adding 387 

this to the lack of standardized key data elements and time points to track for different 388 

treatment sites, multi-institutional datasets are rarely comprehensive.   389 

 While some existing standards can be leveraged, it is important to evaluate if these 390 

standards take into account the needs of all stakeholders and if not, determine if new 391 

standards or perhaps simply minor amendments can be suggested to minimize the need to 392 

start at the ground up. One must recognize that efforts to standardize common data elements 393 

is a complex and time-consuming endeavor, but one that is ultimately worthwhile. An excellent 394 

published discussion and proposed set of standard patient-reported outcomes within oncology 395 

shows the complexity of these issues (28). 396 

Once collected, Big Data will perform a crucial role by providing accurate outcome data 397 

in order to build clinical decision support systems (CDSS) (29).  Conversely, decision models 398 

themselves can be used to guide the selection of data elements to include.  In a recent work, 399 

for example, a decision cost-model in the form of an influence diagram was constructed to 400 

model the choice between photons and protons for the treatment of locally advanced non-401 

small cell lung cancer (30).  By including the monetary cost of managing acute toxicities, it was 402 
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possible to determine the ROC characteristics of a biomarker for radiosensitivity that a 403 

physician would need in order to select patients for proton radiotherapy when their total 404 

expected cost for protons is below that of photons.  As this cost-model example illustrates, 405 

models can guide data farming efforts by establishing outcomes that are important for clinical 406 

decision making, and by placing requirements on how accurately these outcomes need to be 407 

known.  In this case, the required sensitivity and specificity were established for a novel test for 408 

radiosensitivity for the decision to lower treatment costs.  This use of models may be especially 409 

important when resources (e.g. cost of human labor) for populating databases are limited, 410 

allowing efforts to be directed towards collecting the data that is most likely to lead to 411 

improved clinical decision making.   412 

This in turn highlights an important issue in constructing data standards for capturing 413 

outcome data, namely, the standards need to be easily expandable.  As big data results are 414 

applied in the clinic, used for clinical decision support, or new interactions are discovered 415 

within the data, these efforts will inevitably – and rapidly – call for the collection of different 416 

types of data.  Adaptability is emerging as a feature of data and communication standards 417 

throughout healthcare, as recognition grows that developing a standard which attempts to 418 

include everything will fail to do so, and in the process will become unwieldly.  HL7 FHIR, for 419 

example, is a communication standard which follows an 80/20 directive, whereby 80% of the 420 

elements which are implemented are included in the specification itself (31).  These core 421 

elements are referred to as resources, and the remaining elements, called profiles, are 422 

definable by individual institutions or groups in order to alter or add properties to resources.  423 

Single institution databases can attempt to cover a greater proportion than 80%, although the 424 

principle remains.  By embedding adaptability within a database initially intended to capture, 425 

for example, only traditional treatment planning data, the database may later be populated 426 

with patient reported outcomes, “omics” data, or patient preferences in the form of utilities, 427 

rendering it useful in significantly more applications. 428 

 429 

Collection and Curation  430 
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 In order for the promise of big data to be realized in more than just individual radiation 431 

oncology departments or networks of systems, standardized key data element lists and input 432 

schemas are required. For example, the connection of diagnosis information to treatment 433 

courses should be automated within vended systems and reviewed for quality on an ongoing 434 

basis as part of a routine workflow, such as chart rounds. In addition, the relevant staging, 435 

pathology, and histology information should be automatically extracted from the EHRs into 436 

appropriate fields within the radiation oncology information system. Free-text searches or 437 

simple natural language processing will be necessary for scanned outside hospital reports and 438 

for other information not entered in discrete fields for easy extraction, particularly for 439 

information not generated in radiation oncology and thus beyond our immediate control. 440 

 Collection of standardized key data elements related to toxicity, disease status, and 441 

patient reported outcomes requires the definition of standards, as discussed above. However, 442 

even with standard elements and data entry tools, there must be a culture shift in the radiation 443 

oncology community to recognize the importance of comprehensive entry of the data as part of 444 

the standard care for each patient. It is our responsibility to the field and future patients to 445 

make collection of key data elements related to outcomes a priority.   446 

 447 

Access and Extraction  448 

 Accessibility and extraction of the clinical data entered by the physician and patients, in 449 

the case of patient-reported outcomes, is essential. The data storage infrastructure must 450 

provide a mechanism for end users to extract the key data elements and aggregate the data 451 

with other related data, such as dosimetric information. The system should be designed with 452 

accessible application programming interfaces enabling user data extraction in the most 453 

suitable and meaningful way. However, data extraction should not be performed on a project-454 

by-project basis. Rather, institutional information technology groups, especially those housed in 455 

radiation oncology, should make it a priority and be proactive in supporting the construction of 456 

big data analytics resource systems (BDARS).  This may require a partnership between radiation 457 

oncology users and the IT managers so that domain knowledge can be shared and the BDARS 458 

designed in such a way that the information is in a complete and usable format. The 459 
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development and use of a radiation oncology-specific ontology will be a key development in 460 

ensuring that individual BDARS can be combined into true sets of big data.    461 

 462 

Specific Recommendations for Standardizations  463 

 While there is clear work ahead in the community to reach a point where standard key 464 

data elements are recorded routinely for all patients in radiation oncology, there are first steps 465 

that can be taken. Summarized in Table 2 are example standard key data elements that could 466 

be collected and thus should begin to be supported by vended systems.  Note that many such 467 

elements would be collected at various timepoints including baseline, during treatment, end of 468 

treatment, and at follow-up.  Therefore, properly capturing dates and being consistent with 469 

relative dates is essential. 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

While Table 1 serves as a starting point for standardization of requested data elements, 478 

collection of the data requires:  479 

 480 

1. Creation of a standardized workflow that enables collection of proper data, at the right time 481 

for the right patient. 482 

2. Initiation of a working group to develop standards for classifying recurrence in radiation 483 

oncology that includes spatial and dose information. 484 

 485 

Recommendations for Next Steps Needed to Improve Data Availability 486 

 The current climate is such that “big data” is becoming a known term and fills one with 487 

the promise of solving mysteries of care with a lot of data and computer. There is a focus on 488 
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data mining, as if the data is sitting waiting to be taken and analyzed. However, it is clear that 489 

the data must be created and structured in a way to make it possible to harvest and answer 490 

important and relevant clinical questions. As more providers buy into the need to standardize 491 

for the sake of quality and process improvement, they will become more committed to 492 

inputting essential common data elements related to outcomes. Vendors must also allow the 493 

data to be accessed in a variety of ways, maintaining HIPAA compliance but no longer being a 494 

major barrier to quality assurance. Improved automation in both capturing and accessing data 495 

within vended systems is recommended to improve efficiency and accuracy in capturing 496 

outcomes data. Engagement with all stakeholders, including physicians, legislators, patients and 497 

patient advocates is essential to design modern approaches to handling protected health 498 

information and drafting policies and legislation regarding how health care data can be used in 499 

a safe way so as to maximize healthcare value and efficiency while maintaining security.   500 

  501 

 502 

 503 
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Table 1. Examples of Big Data Use Cases in Radiation Oncology 

Institution/Entity 

Type of 

Database/Project 

Source of 

Data/Tools Magnitude  Key Features Key Challenges 

M-

ROAR/University 

of Michigan 

tumor staging, 

diagnosis code, pain 

scores, patient 

reported outcomes, 

and CTCAE scores  

Oncology 

Information 

Systems, 

Treatment Planning 

System, and 

Electronic Health 

Record 

>17,000 

Patients 

since 2002 

Microsoft SQL 

Database; Self-

service report 

building interface 

Consistent/standardized 

physician and patient 

reported toxicities and 

reccurrence scoring 

MD Anderson 

Creation of Radiation 

Oncology Site Specific 

Templates for Data 

Input 

Electronic Health 

Record (EPIC) 

>40 specialty 

specific 

templates in 

Radiation 

Oncology 

with 

expansion 

into other 

departments 

Specialty specific 

templates for 

standardized 

note generation 

High level of 

customization in each 

site and department 

limits standardization in 

some elements 

Pediatric Proton 

Registry 

Consortium 

demographics, 

diagnosis and staging, 

baseline health status, 

chemotherapy and 

surgery, radiation 

details, diagnostic 

imaging, and follow-up  

Oncology 

Information 

Systems, 

Treatment Planning 

Systems, and 

Electronic Health 

Record 

>1800 

patients from 

at least 13 

centers 

RedCap Tools; 

Collection of 

DICOM plan data 

Funding; Data input 

efficiency 

Oncospace 

treatment planning 

data, patient reported 

outcomes, clinician 

assessments, disease 

response, diagnosis, 

and lab data 

Oncology 

Information 

Systems, 

Treatment Planning 

System, and 

Electronic Health 

Record 

>5000 

patients from 

4 centers 

Tablet and web 

based data 

capture; 

Generation of 

notes from 

structured data 

entry;  

Multi-institutional data 

standardization; 

Funding for 

maintenance and 

expansion 

University of 

Pennsylvania 

demographics, vital 

status, disease stage 

and prognostic 

indicators, genomic 

variants, details of 

systemic therapy and 

external-beam 

radiotherapy, and 

physician-reported 

toxicities 

Oncology 

Information 

Systems, 

Electronic Health 

Record, Treatment 

Planning System, 

Cancer Registry, 

and Center for 

Personalized 

Diagnostics 

>28,000 

patients 

Structure, site-

specific 

templates; Only 

capture clinically 

symptomatic 

toxicities; Strong 

adoption by 

nurses  

Physician adoption; 

Gathering of detailed 

progression information; 

Accurate identification 

of death events 
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US Veterans 

Health 

Administration 

(VHA) Radiation 

Oncology 

Practice 

Assessment 

clinical measures, 

treatment planning 

information 

Oncology 

Information 

Systems, 

Electronic Health 

Record, Treatment 

Planning System 

Development 

is being 

finalized 

novel tools to 

extra data 

including note 

processing; 

secure 

environment 

where data is 

housed locally 

Development of custom 

tools to minimize 

manual data entry and 

support heterogeneous 

data sources 

Mayo Clinic 

Florida 

institutional data, 

demographics, tumor 

specific data, 

outcomes data, 

adverse events 

recorded in the EMR, 

and non-oncological 

diagnosis data 

Electronic health 

record, 

administrative data, 

oncology 

information 

system,tumor 

registry, other 

disease specific 

registries 

>3,000 

patients 

Includes 

administrative 

component with 

healthcare cost 

data capture 

Toxicity reporting and 

data capture 

The 

Radiogenomics 

Consortium  

genomic data, 

treatment data, toxicity 

and outcomes data 

Electronic health 

record, treatment 

planning systems 

132 

institutions; > 

6000 prostate 

patients and 

>4500 breast 

patients in 

specific 

projects 

combined 

captured of 

genomic and 

treatment data 

Data harmonization 

across different 

techniques and 

reporting methods 

 

Table 2.  Example Key Data Elements for Radiation Oncology 

 Key Data Element Category Diagnosis = 

breast cancer 

Diagnosis = lung 

cancer 

Diagnosis = bone 

met 

ICD-10 code  All, including 

laterality info 

All, including 

laterality info 

All, including 

location(s) 

TNM staging TNM staging TNM staging N/A 

Performance Status KPS KPS KPS 

Toxicity Data Elements  

with CTCAE grade 

Dermatitis Dermatitis Dermatitis 

  Pain Pain Pain 

    Esophagitis   

    Pneumonitis   
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Recurrence Data Elements Local recurrence Local recurrence Local recurrence 

  Regional 

recurrence 

Regional 

recurrence 

  

  Distant 

recurrence 

Distant 

recurrence 

Distant 

recurrence 

Generic Data Element 

{name=___, description=___} 

Custom Custom Custom 
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