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Abstract

A liquid chfo ghaphy-tandem mass spectrometry (LC-MS/MS)-based methodology has been

or

developed i ntiate core- and antennary-fucosylated glycosylation of glycopeptides. Both the

N

glycosylati i eterogeneity) and multiple possible glycan occupancy at each site

|

(microhetefogeneity) can be resolved via intact glycopeptide analysis. The serum glycoprotein alpha-

3

1-antitrypsin (A1A®) which contains both core- and antennary-fucosylated glycosites was used in this

study. Siali s used to remove the sialic acids in order to simplify the glycosylation

A

microhetero and to enhance the MS signal of glycopeptides with similar glycan structures.
1-3,4 galactosidase was used to differentiate core- and antennary-fucosylation. In-source

dissociation was found to severely affect the identification and quantification of glycopeptides with
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low abundance glycan modification. The settings of the mass spectrometer were therefore

optimized to minimize the in-source dissociation. A three-step mass spectrometry fragmentation

t

P

strategy w d for glycopeptide identification, facilitated by pGlyco software annotation and
manual ch ollision energy used for initial glycopeptide fragmentation was found to be
crucial fOr detection of oxonium ions and better selection of Y1 ion (peptide+GIcNAc).
Structural assignments revealed that all 3 glycosylation sites of A1AT glycopeptides contain complex

N-glycan st : site Asn70 contains biantennary glycans without fucosylation; site Asn107

Cl

contains bif tri¥and tetra-antennary glycans with both core- and antennary-fucosylation; site

Asn271 co and tri-antennary glycans with both core- and antennary-fucosylation. The

relative int

us

core- and antennary-fucosylation on Asn107 was similar to that of the A1AT

protein indjcating that the glycosylation level of Asn107 is much larger than the other 2 sites.

f

1 Introductio

d

Aberra cosylation especially fucosylation has been found to be associated with various

diseases suc cers[1]. The fucose that attaches to core N-acetylglucosamine of N-glycans is

\

core-fucosylation and those that attach to the antennary N-acetylglucosamine or galactose is

antennary fucosylation. The change in core- or antennary-fucosylation of some proteins has been

[

foundto b ve for various cancers. For example, the enhanced level of the core-fucosylation

O

of alpha-feto in (AFP-L3) in the serum was found to be associated with hepatocellular

carcinoma(R]. AFP-L3 is detected using a Lens culinaris lectin (LCA) blot assay based on

h

immuno e high affinity of LCA to core-fucosylated glycoproteins[3]. Another example is

L

CA19-9, a type offantennary-fucosylation sialyl lewis A structure. The enhanced level of CA19-9 in

Ul

the serum is the m@st widely used clinical marker for pancreatic cancer[4]. CA19-9 is monitored by

immun ing a sialyl lewis A structure specific antibody[4]. This method relies on a specific

A

antibody so it cannot be easily applied to other glycoproteins. In addition to the above immunoassay

based method, another conventional approach for core- and antennary-fucosylation analysis involves

This article is protected by copyright. All rights reserved



a combination of various fucosidases and several cycles of HPLC separation[5] of glycans after
cleaving glycans from glycoproteins. Although a recently developed immobilized PNGase F digestion
procedure ts ena!led fast release of glycans from glycoproteins[6], the approach of fucosidase

digestion it @ More importantly, most proteins have multiple fucosylation sites where the above

P

analysesal oseathessitic-specific information and thus cannot provide direct evidence for core- or

antennary—hion aberration of proteins, which is key for precise diagnosis.

Many studeeen exploring MS-based profiling of intact glycopeptides, such as increasing
sensitivity,les@luti®n and fragmentation of mass spectrometers and developing software for the

data analygopeptides[l 8]. Studies have been using CID, ECD, ETD, EThcD, low and high
e

energy HC ntation et. al. or combinations of these fragmentation methods[9-11] to
elucidate tg structure of glycopeptides. Several different softwares for elucidating these spectra
have been d, among which Byonics[12] and GPQuest[13] are so far the most widely used.
However, ByonicSrelies on peptide sequence-based scoring which underestimates the false positive
discovery raEcopeptides[M} and GPQuest needs a sample-originated peptide library for
matchi pties, which makes the experiment more complicated [13]. Here we employed
the newly §ve|oped pGlyco software from the groups of Yang PY and He SM to facilitate the MS

analysis of gl:fieptides. pGlyco uses HCD MS2 generated oxonium ions to filter glycopeptides, uses

HCD MS3 for peptide sequencing, and uses CID MS2 for glycan elucidation[15]. pGlyco2.0

isan upda! version, which uses stepped HCD collision[14]. Although the involvement of MS3 in

pGlyco maﬁs the ran speed a bit slower, it enables manual check of both glycan structures and

peptide se:with much more complex fragments compared with pGlyco2.0. We therefore

used pGlyc preferred method.

Using [ S alone, it is often difficult to distinguish core- and antennary-fucosylation due to
their similar retention time on a C18 column and the same m/z of the glycopeptides[16] and then there

is also possible migration of fucose from antennary- to core-position during MS/MS
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fragmentation[17]. Glycan derivatization such as permethylation is able to solve the problem of
fucose migration, but before derivatization glycans need to be released from glycopeptides so that the
site-spem&on is lost[17, 18]. We thus sought to develop a method to differentiate core-
and antenns @ Sylation prior to LC-MS/MS and to use pGlyco facilitated mass spectrometry
analysid®o FERERMand semi-quantify core- and antennary-fucosylation. In this study, we applied
sialidase a osidase double digestion to differentiate core- and antennary-fucosylation before
mass spec analysis. Sialidase was used to remove sialic acids to simplify the glycosylation
microhetem and to enhance the MS signal of glycopeptides. 81-3,4 galactosidase (from
bovine tesﬁsed to differentiate core- and antennary- fucosylation, where galactosidase is not

able to cle tose from antennary fucosylated Lewis structures[19].

The fucosyGel of serum protein alpha-1-antitrypsin (A1AT) has been identified as a potential

biomarkermus cancers[20, 21] and inflammation[22]. In this study, sialidase and

galactosi e digestion of glycopeptide was followed by direct LC-MS/MS analysis without

cleaving glycans the glycopeptides. Both glycosylation site and multiple possible glycan

occupa ite were resolved, with successful identification and semi-quantification of the

glycopeptides of A1AT and with clear differentiation of core- and antennary-fucosylation.

[

tho

2 Materny thods

J

2.1 Trypsin Digesti®n of protein into peptides: We added 10 uL of 50 mM ammonia bicarbonate to

10 ug alphas rypsin (A1AT) and pipetted to dissolve the sample well. The dissolved A1AT was

A

reduced wit tris (2-carboxyethyl) phosphine (TCEP) at 37°C for 30 min and alkylated with 20
mM iodoacetamide (IAA) at room temperature in the dark for 15 min. The sample solution is diluted

for 3 times with 50 mM ammonia bicarbonate and incubated with 1 uL of 0.5 pg/uL trypsin
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(Promega, Madison, WI) at 37°C for 16 h. The trypsin is eventually deactivated at 95°C for 5 min and

dried in a speedvac.

T

2.2 Enrichrmffer-exchange of glycopeptides: 3K Ultra centrifugal filter-15 (Millipore
Amicon) w lycopeptide enrichment and for buffer exchange. The buffer system was
]

fr@m the above system to 25 mM sodium acetate (pH5.5) for 3 times at 7,500 g for 1 h.

[t

o

change

Glycopepti modification were larger than 3K so that only non-glycopeptides smaller than 3K

will pass through.the 3K membrane.

2.3 Sialidase/Galactosidase Double Digestion: For the sialidase and galactosidase digestion, the
glycopepti e in 30 L of 25 mM sodium acetate solution was incubated with 15 mU (3 pL) of

non-specifig’a2-3,6,8,9 sialidase recombinant from Arthrobacter ureafaciens expressed in E.coli
(Prozyme, Ha CA) and 75 mU (3 ulL) of B1-3,4 galactosidase from bovine testis (Prozyme,
Hayward, C for 18 h to remove all sialic acid residues and galactose provided that no

fucose i o the sub-terminal N-acetylglucosamine in an N-glycan. The glycosidases were
deactiv 5°C for 5 min.

2.4 C18 Degalting: Trifluoroacetic acid (TFA) was added until the pH value reached 2. The C18
columns (Fis cientific, San Jose, CA) were activated with 200 pL 0.1% TFA in 50% acetonitrile for

5 times an ated with 0.1% TFA in water for 3 times by centrifugation at 1,500 g/min for 1

min each t!e. ! Ee peptides were bound to the C18 beads for 5 times followed by 3 times washing

with 0.1% TFA to regmove non-specific binding by centrifugation as described above; 20 uL of 50%

acetonitril % TFA was used for elution by centrifugation as described above. Elution was
repeated the combined eluents were then dried in a speedvac.
2.5LC- ification of Glycopeptides

Nano LC-MS/MS conditions were as described in previous work[23]. A C18 capillary column (100 um

x 15 cm; 3 um particles, 200 A) (Thermo fisher Scientific, San Jose, CA) was used for LC separation,
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and gradient elution was performed using an Ultimate 3000 nanoLC system (Thermo fisher Scientific,
San Jose, CA) with a flow rate of 350 nL/min. The mobile phase A was 2% acetonitrile with 0.1%
formic ack#ter and mobile phase B was 2% water with 0.1% formic acid in acetonitrile. The
analytical d for 100 min where after 10 min balancing time, the composition of solvent
B rose fﬂ)n!%% in 2 min, from 7% to 14% in 8 min, from 14% to 25% in 55 min, followed by a

washing andequilibration step where solvent B increased to 90% in 5 min and was held for 8 min,

C

and thenr 0 3% B in 0.1 min and was held for 17 min.

An Orbitra i umos mass spectrometer (Thermo Fisher Scientific, San Jose, CA) operated in

S

positive ion mode Was used for analysis. The ESI spray voltage and capillary voltage were set as

Gl

described i owing part. Two runs of LC-MS were performed for each sample. Each run has

N

two conse scan types. In the first run, glycopeptides were selected by the detection of

oxonium iaih 1 with low energy HCD MS2; consequently the Y1 ion (peptide+GlcNAc) from the

(O

glycop nt was subjected to high energy HCD MS3 for peptide sequencing. In the second

run, after glyc ide selection by low energy HCD MS2, the selected glycopeptide was subjected

to CID MS2 for glycan structure analysis. The collision energy for each step of fragmentation was also
optimized !r better detection of oxonium ions, better selection of Y1 ion and better fragmentation

of Yliona s, as discussed in the results section. A full scan defines the mass range of m/z

600 to 1800; S/MS was performed with top speed mode.

2.6 Datcx for Glycopeptide Identification:

The search:pGlyco and pFind developed by He SM’s group were used for glycoprotein

analysis. T ata of two LC-MS runs were aligned first to make sure the retention time of the

ion was the same in the two runs. pFind was used for Y1 peptide identification using
MS3 spectra from the first LC-MS run: (1) fixed modification: cysteine carbamidomethylation

(+57.021 Da); (2) Dynamic modification: methionine oxidation (+15.995 Da) and NexHAc (+203.075
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Da) ; (3) One missed cleavage was allowed; (4) Peptide ion tolerance: 15 ppm; (5) Fragment ion

tolerance: 25 ppm. Identified Y1 peptides from the first LC-MS run and the raw data from the second

t

P

LC-MS run Were imported to pGlyco for glycopeptide matching and scoring. All identified
glycopepti nually checked by GlycoWorkbench Software developed by the
EUROCATH . The nomenclature of glycans is used according to Essentials of Glycobiology[25]

and the abbreviations are used according to the NIBRT GlycoBase.

SCI

3 Results and Discussion

U

Both types of tucosylation structures of N-linked glycoproteins, core- and antennary-fucosylation,

have been §@nsidered indicative in various cancers as biomarkers[1]. It is often difficult to distinguish

A

the two st e thus sought to develop a method to distinguish core- and antennary-

d

fucosylation¥at glycosite of the target protein. A work-flow of this study is shown in Figure 1.
Briefly, serum protein alph-1-antitrypsin (A1AT) was digested into peptides which were then

treated 1dase/galactosidase double digestion for glycan truncation. The truncated glycopeptides

M

were semi-enriched and desalted by a 3K membrane and analyzed by direct LC-MS/MS. The core-

and antenn

I

ylation of A1AT was thus successfully distinguished and quantified.

The overal @ ation level of serum proteins is quite low[26]. With the routine mass spectrometry

settings for nalysis, in-source collision-induced dissociation (also called nozzle-skimmer

n

dissoci , iated as in-source dissociation herein) of glycopeptides would occur. This is a

{

Ui

process w n dissociates as a result of collisional excitation during ion transfer from an

atmospher, re ion source to the vacuum chamber of the mass spectrometer[27]. In our

experim urce dissociation of glycopeptides was found to severely affect the identification

2

and semi-quan tion of the low abundance fucosylated peptides. However, there is so far no

detailed analysis of this problem. Taking the most abundant glycan modification type A2 on one

glycopeptide of A1AT for example, A2 should have 3 of Hex (mannose), 4 of HexNAc (GlcNAc), 0
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of NeuAc, 0 of NeuGlc and 0 of dHex after sialidase/galactosidase double digestion, abbreviated as
34000 herein. As shown in Figure 2, more than 20% of 34000 glycans were decayed into 23000
(calculamooo/)(lcmoo) with the “universal” method settings for peptide analysis on Thermo
Scientific @ @ usion mass spectrometers developed by Thermo Scientific (ion transfer tube
temperamres=8008€’, RF=30%) [28] or harsher settings. A series of MS settings for glycopeptides
analysis whptimized. We found that with lower temperature and lower RF (150 °C, 20%), the
in-source ociafon of glycopeptides was reduced to less than 3%, whereas the signal of core-
fucosylatemwith 34001 glycan did not reduce significantly. We also found that higher spray
voltage (spray voltage>2300 V) provided better signal but also increased in-source dissociation.

Therefore the lowgst spray voltage 2300 V for a stable spray was used. This optimized setting was

t

used furth tify site-specific glycosylation and to semi-quantify core- and antennary-

1

fucosylation o glycopeptides.

d

The direct [@- S strategy is shown in Figure 3, where first glycopeptides were selected by the
detection ium ion 138.05 with low energy HCD MS2 (Figure 3A); then the Y1 ion from the

glycop ragment was subjected to high energy HCD MS3 (Figure 3B) for peptide sequencing;

M

while the selected glycopeptide was subjected to CID MS2 (Figure 3C) for glycan structure analysis;

and the ent;

[

ure is summarized in Figure 3D. The HCD collision energy (CE) of the first step

was found @ ial for fragmentation of glycopeptides. It was optimized for improved detection

of oxonium ions and improved selection of the Y1 ion. As shown in Figure 4, either non-fucosylated

h

or core- or antennary-fucosylated biantennary glycopeptides with Asn271, low energy

HCD M

L

4 (among series of HCD from CE20 to CE32) provided the strongest Y1 ion

fragment. This opflimal CE seems to be irrelevant with glycan structures or peptide sequences. As

U

shown for glycopgptides (with Asn271), either non-fucosylated or core-fucosylated or antennary-

fucosyl tures have the same optimal CE (Figure 4), where the other 2 glycopeptides (with

A

Asn107 or Asn70) of A1AT also have the same optimal CE (supporting information Figure S1).
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In contrast, the HCD CE for peptide annotation of the second step and the CID CE for glycan
annotation of the third step were found not to be that sensitive. HCD MS3 with either CE35, 38 or 40
showed Mmentaﬁon patterns (shown in Figure 5), where HCD MS3 CE35 resulted in a
somewhat Strongegsignal for higher m/z fragments. Both CID CE30 and CE35 provided similar
fragmentatiomefithe glycan structures of glycopeptides (Figure 6). Thus in the following experiment,

low energyh%, CID CE30 and high energy HCD CE 35 were used respectively.

C

Sialidase re -3,6,8,9 N-acetylneuraminic acid leaving galactose as the terminal of the N-

glycan. Subkeqllenfly, B-galactosidase cleaves B1-3,4 galactose on condition that no fucose is bound

S

to the sub i -acetylglucosamine in an N-glycan, thus providing a means to distinguish core-

U

fucosylati ennary fucosylation[19]. The core-fucosylated and the antennary-fucosylated

glycopeptides have the same m/z in a sialidase digested sample (Figure 7.B), thus the spectrum of

f

the sialidas d sample is a mixture of core- and antennary-fucosylated peptides (Figure 7.B1).

d

By contrastfgo d antennary-fucosylated peptides in the sialidase/galactosidase double digested

sample ifferent m/z (Figure 7.A). Therefore with sialidase/galactosidase double digestion on

glycop o types of fucosylation are distinguished without further MS/MS analysis or

M

extensive sequential exoglycosidase digestion, similar to previous work at the glycan level[19]. Also,

r

with sialid; osidase digestion, the retention time of an antennary-fucosylated glycopeptide is

earlier tha @ ponding core-fucosylated glycopeptides (Figure 7.A), indicating that the

addition of se enhanced its hydrophilicity. We found that not only the elution time but also

h

the fra i tterns of core- and antennary-fucosylated glycopeptides were different. In the

{

CID MS rum of core-fucosylated glycopeptides, several core-fucosylated glycopeptide

fragments were obgerved in a cluster (Figure 7.A1); whereas in the CID MS/MS spectrum of an

G

antennary-fuc d glycopeptide, pep-43001, pep-43000 and pep-33001 always appear as the three

stronges nts (Figure 7.A2). This difference of fragmentation patterns of core- and antennary-

A

fucosylation was found in other glycopeptides as well (Figure S2). Therefore, using

sialidase/galactosidase double digestion, a solid differentiation can be made between core- and
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antennary-fucosylated peptides using direct LC-MS/MS analysis. Traditional exoglycosidase with

fucosidase a1-2,3,4,6 and fucosidase a1-3,4 were further applied on the sialidase/galactosidase double

digested glkopepgldes, showing the efficacy of this strategy (Figure S3).

In our previ e analyzed the glycans cleaved from the glycoprotein A1AT and found that
AI1AT has g different glycan structures after sialidase/galactosidase double digestion[19]. In this

study, we ﬁ 10 of these structures on specific glycosylation sites. Their retention times on a

C18 colu ir relative intensities are shown in Table 1. Low energy HCD MS2, high energy

MS3 and C 2 Spectra of all identified glycopeptides are shown in supporting information Figure

S

S2. Glycop DTHDEILEGLNFnLTEIPEAQIHEGFQELLR with Asn107 (modified amino acid is

U

shown in 1 ) has the most various glycan modification types including A2, FA2, A2FG, A3,

FA3, A3F@, A4, FA4, A4FG, A3F2G2, whereas the other two sites have fewer glycan modification

[

types (glyc i YLGNnATAIFFLPDEGK with Asn271: A2, FA2, A2FG, A3, A3FG and

d

glycopepti QSNSTNIFFSPVSIATAFAMLSLGTK with Asn70: A2). The extent to which each site

is glycos ay possibly depend on the protein structure or proximity of the site to certain amino

acids o /C terminus[22]. As shown in Figure 8 (crystal structure from [29]), all three sites are

P

located at the protein surface and in loops, among which Asn107 is almost in the center of a big loop

[

and may b cessible by various glycosyltransferases while Asn271 and Asn70 are closer to the

alpha heli @ heet structures and have smaller spaces. This may partially explain why Asn107

has the most various glycosylation modification.

h

As exp , alidase/galactosidase double digestion, the extra fucose of core-fucosylated

{

glycopeptides made the glycopeptide more hydrophilic, thus its elution from the C18 column was

earlier tha sponding non-fucosylated glycopeptides for bi- and tri-antennary glycan

U

modificatiq extra galactose made the antennary-fucosylated bi-antennary glycopeptide even

A

more hydro mpared to its corresponding core-fucosylated case. However, a further galactose
and/or fucose did not make the tri- or tetra- antennary glycopeptides significantly more hydrophilic

and the elution times of all fucosylated tri-antennary glycopeptides or all tetra-antennary
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glycopeptides were similar on a very slow elution gradient (0.2% ACN/min). It can be concluded that
after sialidase/galactosidase double digestion, the hydrophobicity of glycopeptides is mainly
determiIMMpeptide backbone and only a slight hydrophobicity change was found in bi-
antennary g @ I'his change may be due to the fact that bi-antennary glycans have fewer sugar

units angh omesemiWD cxtra sugars may contribute overall more hydrophobicity to the glycopeptides

compared L tetra- antennary glycans.

Our previooof glycans showed that the nonfucosylated bi- and tri-antennary glycans are the
top two ma8t aBundant glycan structures of A1AT, comprising 35.8% and 25.2% respectively[19]. In
this study ptide1 and glycopeptide2, we found the bi- and tri-antennary glycan modification
on Asnl07 d 48% and 34% respectively whereas those on Asn271 comprised 97% and 1%

respectivel!(Table 1). The analysis of glycopeptide3 showed that there was only A2 glycan

modificatio 70; thus we consider the glycan modification on Asn70 does not contribute much
to the over: ylation of A1AT protein. A chi-square test is used for comparison of the relative
peak in of major glycan modification types between glycan types cleaved from A1AT protein
(data fr lous result[19]) and glycan modification types of glycopeptidel (with Asn107) or

glycan modification types of glycopeptide2 (with Asn271) (Table 2). The glycan types cleaved from
A1AT prothnificantly different from the glycan modification types on Asn271 (p value<0.01),

but not dif @ ym those on Asn107 (p value=0.97), indicating that the glycosylation level of
Asn107 ove the other 2 sites and contributes more to the glycan structure of the A1AT
proteinﬁnd antennary-fucosylation level of the two sites also varied significantly, where
the anterMyIa‘ced tri-antennary glycan was the most abundant fucosylation type on Asnl107

but it was negligibs on Asn271.

One stu lassical lectin blot assay found that the up-regulation of core-fucosylated but not
antennary-fuco d A1AT could be indicative for hepatocellular cancer diagnosis[20] while
antennary-fucosylation of A1AT indicates inflammation especially in HBV-infected patients[22]. Our

previous glycan study has indicated that bi-antennary core-fucosylation was the most abundant core-
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fucosylation type of A1AT protein. From Table 1 we may deduce that if there were alteration in
AI1AT core-fucosylation types in patients, the bi-antennary core-fucosylation on Asn107 is most
likely thmarget that can be precisely monitored and quantified by mass spectrometry.
Another clz @ tin blot-based study showed that the overall increase of A1AT fucosylation level
was ablestomdistimgmish lung adenocarcinoma from benign diseases or other lung cancer subtypes[21].
The strategh)ed in this study would enable the identification and quantification of core- and

antennary-ficosylation on specific sites of AIAT. In future work, this methodology will be used to

¢

study chang@s j um A1AT glycosylation during the progression of various cancers. The more

S

precise fucosylation analysis with site-specific information should provide improved diagnostic value.

J

Also, this strate n be applied to the study of other key glycoproteins during the progression of

various dis .

din

4 Concl ks

We hav ped a pipeline to study the glycosylation of A1AT to identify the presence of core-

M

versus antennary-fucosylation without separating glycans and peptides from glycopeptides. This was
performed dard protein A1AT which was digested by trypsin followed by

sialidase/g ase digestion. Galactosidase removes terminal galactose residues in an N-glycan

or

except whe bterminal N-acetylglucosamine is modified by fucosylation, thus providing a

N

means ish core-fucosylation and antennary-fucosylation. The sites and structures of

{

glycans co e determined simultaneously by this procedure. In total, we identified 1 glycan

structure (A2) on A8n70 of glycopeptide QLAHQSNSTNIFFSPVSIATA, 10 glycan structures (A2, FA2,

tl

A2FG, A3, F , Ad, FA4, AAFG and A3F2G2) on Asn107 of glycopeptide

ADTHDEIL EIPEAQIHEGFQE

A

LLR, and 5 glycan structures (A2, FA2, A2FG, A3 and A3FG) on Asn271 of glycopeptide

YLGnATAIFFLPDEGK. We believe that this methodology will be widely used to identify and quantify
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core- and antennary-fucosylation on A1AT or other key glycoproteins during the progression of

various diseases.
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dl

Figure er glycopeptidel, glycopeptide2 or glycopeptide3 have the same optimal low energy

HCD C

\V:

Figure S2. Low energy HCD MS2, high energy HCD MS3 and CID MS2 spectra of all identified

{

glycopeptides with various glycan modification types: glycopeptidel (with Asn107), glycopeptide2

(with Asn2 @ glycopeptide3 (with Asn70).

Figure S3. XIC (Extracting lon Current) of fucosylated glycopeptides in sialidase/galactosidase

1

digeste le, in sialidase/galactosidase/fucosidase a.1-2,3,4,6 digested A1AT sample and in

{

sialidase/galactostlase /fucosidase al1-3,4 digested A1AT sample.

u
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Table 1. Summary of glycopeptides of ALAT with truncated glycan and % relative peak area of core-

and antennary-fucosylation of each site.

0,
Charge | Theoretical | delta | Retention o .
(2) m/z m | Time(min) Relative
PP peak area
G!-YCO siP; ADTHDEILEGLNFnLTEIPEAQIHEGFQELLR
with As
A2 1248.8282 4+ 1248.8334 | 4.2 49.59 48.4
FA2 285.3411 4+ 1285.3479 | 5.3 49.51 2.1
1325.8546 4+ 1325.8611 | 4.9 49.37 1.1
299.5972 4+ 1299.6033 | 4.7 49.51 33.8
FA3 1069.0868 5+ 1069.0957 | 8.4 49.37 0.3
A3FG 376.6236 4+ 1376.6309 | 5.3 49.37 11.3
A3F2G2 453.6519 4+ 1453.6586 | 4.6 49.37 0.3
1350.3662 4+ 1350.3731 5.1 49.37 2.3
386.8769 4+ 1386.8876 | 7.7 49.37 0.2
1142.1147 5+ 11421222 | 6.5 49.37 0.2
LGnATAIFFLPDEGK
019.4596 3+ 1019.4657 | 6.0 32.21 97.2
FA2 068.1455 3+ 1068.1517 | 5.8 31.83 0.2
A2FG 1122.1628 3+ 1122.1693 | 5.8 31.69 14
A3 1087.1553 3+ 1087.1589 | 3.3 31.86 1.0
A3FG 189.8561 3+ 1189.8624 | 5.3 31.36 0.2
G!_YCOPEP3 QLAHQSNSTNIFFSPVSIATAFAMLSLGTK
with Asnif0
A2 125.2794 4+ 1125.2850 (4.9 |536 null
Table 2. A chi e test is used for comparison of the relative peak intensity of major glycan
modific etween glycan types cleaved from A1AT protein (data from previous result[19])
and glycantodification types on glycopeptidel (with Asn107) or glycopeptide2 (with Asn271).

% Relative peak area

chi-square

A2 FA2 A2F A3 A3FG test p value*
35.8 1.8 0.5 25.2 11.3 -
8.4 2.1 1.1 33.8 11.3 0.97
with Asn107
GLYCOPEP2
with Asn271 97.2 0.2 1.4 1 0.2 <0.01
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* p value < 0.05 is considered significant

Figure Caﬁions '
Figure 1. the experiment for determining glycosylation of A1AT. The glycosylated A1AT

was firsigdigesieeiito peptides, followed by glycan truncation by sialidase/galactosidase double

digestion. Ltides were subjected to direct LC-MS/MS analysis without cleaving glycans.

C

Figure 2. In dissociation of A1AT glycopeptides (Asn271) with A2 and FA2 glycan modification

types undel vaious settings of ion transfer tube temperature, spray voltage and RF%.

$

Figure 3. Spectra ol A1AT glycopeptide (Asn271) with A2FG glycan modification type: (A) low energy

U

HCD MS2 s (B) low energy HCD triggered high energy HCD MS3 spectrum; (C) low energy

4

HCD trigge S2; (D) Illustration of the fragmentation of the glycopeptide.

d

Figure 4. entation patterns of glycopeptides (Asn 271) with A2, FA2 and A2FG glycan
modific es under various low energy HCD collision energies, indicating that low energy HCD

with C vides the strongest Y1 ion (peptidet+GlcNAc).

Figure 5. MS3 fragmentation patterns of Y1 ion (peptidet+GlcNAc) of glycopeptides (Asn271) under

F

various high HCD collision energies, indicating that high energy HCD with CE35 provides the

best fragmap psprofile.

q

Figure 6. M§2 fragmentation patterns of glycopeptides (Asn271) with A2, FA2 and A2FG glycan

modific nder various CID collision energies, indicating that either CE30 or CE35 provides

{

similar fragmentaten profile of these glycopeptides.

U

Figure 7. Dif tion of core- and antennary-fucosylation of glycopeptides (Asn271) by

sialidase/ga ase digestion (A: retention time; A.1: spectrum of FA2; A.2: spectrum of A2FG).

A

As a comparison, no differentiation was observed for sialidase-digested case (B: retention time; B.1

spectrum of A2G2(F)).
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Figure 8. The three glycosylated sites Asn70, Asn107 and Asn271 of A1AT are labeled red and the

detected peptides by mass spectrometry are labeled green in the 3D structure.

{

rip

Figure 1.

>Alpha-1-antitrypsin standard protein
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Figure 4. I '

(A) Glycopep-A2

(B) Glycopep-FA2

(C) Glycopep-A2FG
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Figure 6. I '

(A) Glycopep-A2

(B) Glycopep-FA2

(C) Glycopep-A2FG
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