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ABSTRACT

The objective of this Review is to describe the safety and efficacy of adipose stem/stromal cells
(ASC) and stromal vascular fraction (SVF) in treating common diseases and the next steps in
research that must occur prior to clinical use. Pubmed, Ovid Medline, Embase, Web of Science,
and the Cochrane Library were searched for articles about use of SVF or ASC for disease therapy
published between 2012 and 2017. One meta-analysis, 2 randomized controlled trials, and 16 case
series were included, representing 844 human patients. Sixty-nine studies were performed in pre-
clinical models of disease. ASCs improved symptoms, fistula healing, remission, and recurrence
rates in severe cases of inflammatory bowel disease. In osteoarthritis, ASC and SVF improved
symptom-related, functional, radiographic, and histological scores. ASC and SVF were also shown
to improve clinical outcomes in ischemic stroke, multiple sclerosis, myocardial ischemia, chronic
obstructive pulmonary disease, idiopathic pulmonary fibrosis, chronic liver failure, glioblastoma,
acute kidney injury, and chronic skin wounds. These effects were primarily paracrine in nature
and mediated through reduction of inflammation and promotion of tissue repair. In the majority
of human studies, autologous ASC and SVF from liposuction procedures were used, minimizing
the risk to recipients. Very few serious, treatment-related adverse events were reported. The
main adverse event was postprocedural pain. SVF and ASC are promising therapies for a variety
of human diseases, particularly for patients with severe cases refractory to current medical treat-
ments. Further randomized controlled trials must be performed to elaborate potential safety and
efficacy prior to clinical use. STEM CELLS 2018;36:1311–1328

SIGNIFICANCE STATEMENT

Stem cell therapy has shown potential benefit in a variety of human diseases. However, there
are limitations to the widespread clinical application including the use of invasive procedures to
isolate cells and the need for processing. Adipose-derived stromal/stem cells are adult cells that
possess the capacity for homing, immunomodulation, promotion of repair, and direct regenera-
tion of damaged tissues, which make them promising therapeutic candidates. Furthermore,
these cells can be easily obtained in large quantities from subcutaneous tissue, allowing for an
abundance of cells to be isolated relatively easily.

INTRODUCTION

Mechanisms of Action

Mesenchymal stem cells, also known as multi-
potent stromal cells, (MSC) are therapeutic
candidates for a wide range of human diseases.
Their therapeutic potential is derived from
their natural ability to maintain homeostasis.
These cells can migrate to areas of tissue injury
in the body to facilitate tissue repair [1–3].
Upon arrival to the area of damage, MSC may
be stimulated to differentiate into components

of the injured tissue [4]. However, their key
effect is likely their ability to exert immuno-
modulatory effects and to secrete factors that
promote tissue repair [2].

Sources of Mesenchymal Stem Cells

The two main questions with regard to cellular
therapy sources are the cell donor and the loca-
tion from which the cells are isolated. The cell
donor can be the same as the cell recipient
(autologous) or different from the cell recipient
(allogeneic). Autologous therapy options are ideal
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because they ensure histocompatibility and make rejection very
unlikely [5,6]. Notably, allogeneic MSC also carry a minimal risk of
rejection because they lack major histocompatibility complex II
(MHC-II) molecules and express low quantities of MHC-I [5].

With regard to location, bone marrow is the most common
source of MSC cellular therapy in current preclinical and clini-
cal trials [2,7]. However, bone marrow harvest from the iliac
crest is painful and increases the risk of infection [7,8]. In con-
trast, MSC can be isolated from subcutaneous adipose tissue
with no complications and with up to 500 times the yield of
bone marrow isolation [9]. These adipose-derived stromal cells
(ASC) can be isolated from the stromal vascular fraction (SVF)
of adipose tissue. The cells are collected through liposuction
and processed with washing, collagenase digestion, and centri-
fugation. SVF contains circulating blood cells, fibroblasts, peri-
cytes, endothelial cells, and ASC [6]. The ASC are obtained by
plating the SVF cells, thereby enriching for the adherent ASC
(Fig. 1) [6]. Over 400,000 liposuction procedures are per-
formed annually with up to 3 liters of lipoaspirate discarded
after each procedure. By collecting and processing the entirety
of the discarded tissue, it may be possible to collect up to 6 bil-
lion ASC after a single passage [6,8].

Potential Roles in Disease Therapy

ASC have been investigated as a therapy for a variety of
human diseases. They may represent promising adjunctive
therapy for patients with diseases for which current therapies
are inadequate such as ischemic stroke, multiple sclerosis,
myocardial ischemia, chronic obstructive pulmonary disease,
idiopathic pulmonary fibrosis, chronic liver failure, acute kidney
injury, chronic skin wounds, and glioma. ASC also hold poten-
tial for treatment of severe cases of inflammatory bowel dis-
ease and osteoarthritis that are refractory to current
treatment options [10–23]. Development of therapies that can
reduce the complications associated with these diseases also
has the potential to reduce costs via decreasing disability and
hospitalizations.

ASC can aid in tissue repair through multiple mechanisms
and are an easily isolated and abundant option for cellular
therapy. Patients may be treated with their own ASC or with
ASC from other patients with minimal risk of cellular rejection.
The majority of studies of ASC safety and efficacy have
occurred in the last 5 years, and the most significant studies
will be highlighted in this review.

METHODS

The authors searched Pubmed, Ovid Medline, Embase, Web of
Science, and the Cochrane Database of Systematic Reviews for
English language articles with the key words “adipose stem cell
and disease” between 2012 and 2017. The authors collectively
reviewed 5,815 titles for relevance to the efficacy and safety
of SVF and ASC as cellular therapy. Diseases from each organ
system with the highest number of studies were included.
Notably, this review focuses on nonhomologous use of these
cells and thus excludes studies of homologous use such as soft
tissue reconstruction or cosmesis. The authors MEB and ALS
then reviewed all remaining abstracts. Studies were excluded
if they did not test efficacy or safety of stem cell therapy in
disease, tested efficacy or safety in a disease other than those

selected, did not contain original analyses (i.e., review articles),
used stem cells not derived from adipose tissue, or were not
written in English. The remaining full-text articles were
assessed for eligibility.

After exclusion, 88 studies were ranked as most relevant
to the clinical application based on the use of human patients,
human ASC, disease model if not in human patients, and out-
comes assessed (Table 1). Initially, five studies per disease
were going to be included, but these were not sufficient to
capture the scope of ASC effects and were expanded to eight
per disease. Four studies were included for chronic obstructive
pulmonary disease and idiopathic pulmonary fibrosis due to
the lower number of available studies.

One meta-analysis, two randomized controlled trials, and
16 case series were included, representing 844 patients. Sixty-
nine studies were performed in preclinical models. These articles
were agreed upon by all authors and are organized by disease.
For additional details of these studies, please refer to Table 1.

RESULTS

Beneficial Effects in Human Disease
Stroke. In preclinical studies, ASC administered through intra-
venous and intracarotid injection have shown the potential to
reduce disability and improve motor function up to 56 days
after ischemic stroke (Fig. 2A) [24–30]. ASC also reduced the
size of the infarct, reduced acute brain swelling, improved in
myelination, increased vascular supply, reduced scar formation,
and decreased chronic atrophy (Fig. 2A) [28–31]. These
improvements may be secondary to the capacity of ASC to
reduce apoptosis, reduce inflammation, reduce glial scar for-
mation, increase angiogenesis, increase neurogenesis, and dif-
ferentiate into astrocytes and neurons. Most of these effects
were demonstrated several hours or more after stroke induc-
tion in animal models, which is clinically relevant to stroke
patients who may present hours after the onset of symptoms.

Figure 1. SVF and ASCs are isolated from liposuction procedures
for cell-based therapies. Abbreviations: ASC, adipose-derived stro-
mal cells; MSC, mesenchymal stem cells; SVF, stromal vascular
fraction.
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The preliminary safety data was encouraging. In one study,
ASC administration did not cause any harmful effects on the
brains, hearts, lungs, livers, or kidneys of healthy animals and
did not promote tumor formation [30]. Another study demon-
strated that no toxic effects on spleen, liver, lung, or kidneys
were present at three months after ASC administration [27].
No tumors had formed by this time [27]. While studies in
human patients are lacking, the preclinical data suggests that
ASC may be a safe cellular therapy that can reduce the acute
damage and chronic disability caused by ischemic stroke.

Multiple Sclerosis. Intraperitoneal administration of SVF and
ASC has been shown to significantly delay onset of disease,
reduce signs of motor impairment, and slow disease progres-
sion in animal models of multiple sclerosis (Fig. 2J) [33–39].
The primary animal model of multiple sclerosis is experimen-
tal autoimmune encephalomyelitis (EAE). In one study, SVF
and ASC reduced disease incidence from 100% in the control
group to 75% and 83%, respectively [35]. This effect is likely
secondary to the ability of SVF and ASC to reduce immune
infiltrates, decrease lesion number and size, decrease demye-
lination, and improve remyelination in the central nervous
system [32–39]. Several studies have directly compared the
effects of SVF and ASC and found that SVF-treated subjects
had delayed onset of disease (by 5 days) and lower clinical
disease scores at 30 days after onset of disease [34,37]. The
only noted significant differences in the two types of therapy
were that SVF had a more pronounced effect to increase IL-
10 in the peripheral blood, lymphoid, and CNS tissues, to
decrease serum IL-12 levels, and to induce regulatory T cells
in the lymph nodes [34,35,37]. The ability of SVF and ASC to
alter the clinical course through immunomodulatory effects
in the central nervous system may improve the lives of young
adults affected by this disease.

Myocardial Ischemia. ASC have been shown to be effective
in improving myocardial dysfunction after myocardial ischemia.
SVF and ASC improve functional parameters as shown by
increasing left ventricular ejection fraction (LVEF), fractional
shortening [101], wall thickness, contractility, and six-minute
walk test distance while decreasing left ventricular end dia-
stolic diameter, left ventricular end systolic diameter, and over-
all remodeling (Fig. 2C) [40,42–47]. Possible explanations for
these changes include the capacity of ASC to reduce the infarct
size through reduction of apoptosis, inflammation, and fibrosis
and to improve the vascular density in the infarct border zone
through increase in angiogenesis [40,42–44,46]. In preclinical
studies, ASC were injected into the peri-infarction area up to
two weeks from myocardial infarction induction, which indi-
cates that improvement in functional parameters can be
achieved from effects delivered during the acute ischemic
state and subacute remodeling state. In contrast, a study in
28 patients with New York Heart Association class II to IV heart
failure found that SVF may improve functional parameters
after scar formation has occurred in those with a left ventricu-
lar ejection fraction <40% or akinetic myocardial scarring [47].

A safety analysis was performed in the patients who under-
went liposuction and direct intramyocardial injection of SVF [47].
Three patients in this study died weeks to months after the stem
cell administration from a cardiac arrest after bowel obstruction,
of unknown cause, and a pulmonary thromboembolism. While

M
ic
e

H
u
m
an

A
SC

C
ar
ri
er

ap
pl
ic
at
io
n
to

5-
m
m

p
u
n
ch

b
io
p
sy

w
o
u
nd

s
3
×
10

4
1

3,
10
,
14

A
SC

tr
ea
tm

en
t
ac
ce
le
ra
te
d
w
o
u
nd

cl
o
su
re
,
in
cr
ea
se
d
m
ic
ro
va
sc
u
la
r

d
en

si
ty
,
an
d
le
d
to

gr
ea
te
r
ti
ss
u
e

o
rg
an
iz
at
io
n
w
it
h
n
ea
r
co
m
p
le
te

ep
it
h
el
ia
liz
at
io
n
b
y
d
ay

10
[9
6]
.

5

M
ic
e

H
u
m
an

A
SC

C
ar
ri
er

ap
pl
ic
at
io
n
to

6-
m
m

fu
ll

th
ic
kn
es
s
w
o
u
nd

s
3–
5
×
10

5
1

5
A
SC

d
el
iv
er
ed

in
fib

ri
n
fo
rm

va
sc
u
la
r

tu
b
es
.
A
SC

tr
ea
tm

en
t
re
su
lt
ed

in
w
o
u
n
d
s
w
it
h
m
o
re

gr
an
u
la
ti
o
n

ti
ss
u
e
an
d
co
lla
ge
n
[9
7]
.

5

Pi
g

H
u
m
an

A
SC

C
ar
ri
er

ap
pl
ic
at
io
n
to

30
-m

m
fu
ll

th
ic
kn
es
s
w
o
u
nd

s
U
nc

1
7,

14
,
21
,
28

A
SC

tr
ea
tm

en
t
le
d
to

a
m
o
re

co
m
p
le
x
co
lla
ge
n
st
ru
ct
u
re

an
d

in
cr
ea
se
d
va
sc
u
la
ri
ty
.
A
SC

re
d
u
ce
d
sc
ar

fo
rm

at
io
n
[9
8]
.

5

M
ic
e

H
u
m
an

A
SC

In
tr
av
en

o
u
s
in
je
ct
io
n
o
f
A
SC

ex
o
so
m
es

fo
r
20

×
15
-m

m
fu
ll

th
ic
kn
es
s
w
o
u
nd

s

—
1

1,
3,

5,
7,

14
,
21

In
vi
vo
:
A
SC

ex
o
so
m
es

m
ig
ra
te
d
to

th
e
w
o
u
n
d
w
h
er
e
th
ey

ac
ce
le
ra
te
d
w
o
u
nd

cl
o
su
re

an
d

in
cr
ea
se
d
co
lla
ge
n
sy
n
th
es
is
an
d

m
at
u
ri
ty

[9
9]
.

5

M
ic
e

H
u
m
an

A
SC
,
SV

F
C
ar
ri
er

ap
pl
ic
at
io
n
to

6-
m
m

fu
ll

th
ic
kn
es
s
w
o
u
nd

s
10

6
1

14
,
28

SV
F
an
d
A
SC

ac
ce
le
ra
te
d
h
ea
lin
g

an
d
en

h
an
ce
d
re
-e
p
it
h
el
ia
liz
at
io
n
.

SV
F
in
cr
ea
se
d
ca
p
ill
ar
y
d
en

si
ty

[1
00
].

5

A
b
b
re
vi
at
io
n
s:
A
SC
,
ad
ip
o
se
-d
er
iv
ed

st
ro
m
al
ce
lls
;
IC
R
S,
In
te
rn
at
io
n
al
C
ar
ti
la
ge

R
eg
en
er
at
io
n
an
d
Jo
in
t
Pr
es
er
va
ti
o
n
So
ci
et
y;
M
C
A
,
m
id
d
le

ce
re
b
ra
l
ar
te
ry
;
M
O
G
,
m
ye
lin

o
lig
o
de

n
d
ro
cy
te

gl
yc
o
pr
o
te
in
;
N
O
D
,

n
o
n
-o
b
es
e
d
ia
b
et
ic
.
O
A
,
o
st
eo

ar
th
ri
ti
s;
PT
X,

p
ac
lit
ax
el
;
SC
ID
,
se
ve
re

co
m
b
in
ed

im
m
u
n
o
d
efi

ci
en

cy
;
SV

F,
st
ro
m
al
va
sc
u
la
r
fr
ac
ti
o
n
;
V
A
S,
vi
su
al
an
al
o
gu
e
sc
al
e.

www.StemCells.com ©AlphaMed Press 2018

Bateman, Strong, Gimble et al. 1321



these events were serious, they were unlikely related to the SVF
cells given the timeline of development. Adverse events that
occurred immediately after liposuction included soreness, head-
ache, nausea, and a small hematoma [47]. This study performed
by Comella and colleagues also found that intramyocardial injec-
tion resulted in brief episodes of bradycardia or tachyarrhythmia
that spontaneously resolved [47]. While further safety and efficacy
studies must be performed, SVF cells and ASC show promise in
treatment of the acute and chronic phases of myocardial ischemia.

Chronic Obstructive Pulmonary Disease. In several preclinical
studies, ASC have demonstrated the capacity to reduce
emphysematous structural changes in the lung parenchyma,
including increasing elastic fibers in the lung and decreasing
the damage to the alveolar-capillary membrane (Fig. 2B)
[48,50,51]. One such parameter improved in these studies was
the mean linear intercept (MLI) which measures the mean free
distance in the airspaces. These studies involved intravenous
and intratracheal administration of ASC. ASC can also play a
role in reducing changes associated with chronically increased
pulmonary vasculature pressures and resulting cor pulmonale
[48]. While results are preliminary, these effects may ulti-
mately be driven by the immunomodulatory capacity of ASC
and their ability to reduce the presence of neutrophils,

apoptosis, oxidative damage, and inflammation in the airways
in chronic obstructive pulmonary disease [49].

Idiopathic Pulmonary Fibrosis. In one preclinical study, ASC
were shown to prolong survival significantly more than current
standard of care pirfenidone administration (Fig. 2B) [54]. In a
Phase Ib clinical trial of 14 patients with idiopathic pulmonary
fibrosis, endobronchial infusion of SVF cells contributed to the
maintenance of exercise capacity and six-minute walk test
(6MWT) performance while preventing worsening of dyspnea
(Fig. 2B). SVF cells also improved the overall scores on the
St. George’s Respiratory Questionnaire which measures symp-
tomatology, ability to participate in activities without difficulty
breathing, and impact of airflow limitation on daily life at 6 and
12 months after treatment [12]. In a Phase I clinical trial of 5 com-
bined pulmonary fibrosis-emphysema patients receiving intrave-
nous or endobronchial ASC, pulmonary function was maintained
over a 12 month period [53]. These effects may be secondary to
the ability of ASC to decrease inflammation, oxidative stress, and
apoptotic pathways to ultimately decrease lung fibrosis [52,54].

Safety analyses were performed in both clinical trials of
patients with IPF. In these studies, endobronchial infusion of
SVF cells or ASC was well tolerated with no serious or clinically
significant side effects over the 12 month study period [12,53].

A

D

G

B

E

H

J

C

F

I

Figure 2. Stromal vascular fraction and adipose-derived stromal cells have positive effects on clinical outcomes in (A) ischemic stroke,
(B) multiple sclerosis, (C) myocardial ischemia, (D) chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, (E) chronic
liver failure, (F) inflammatory bowel disease, (G) glioma and glioblastoma, (H) acute kidney injury, (I) osteoarthritis, (J) cutaneous chronic
wounds. Abbreviations: ASC, adipose-derived stromal cells; SVF, stromal vascular fraction.
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The only noted side effects after the procedure were worsen-
ing of cough and dyspnea (2 patients), oxygen desaturation to
92%–94% (2 patients), increase in heart rate (2 patients), and
transient fever (7 patients) [12]. The cough, dyspnea, oxygen
desaturation, and increase in heart rate were successfully man-
aged with supplemental oxygen alone. Monitoring up to
2 years showed no ectopic tissue formation on whole body CT
scan [12]. Both SVF cells and ASC may represent a safe adjunc-
tive therapy for IPF with the potential to slow the rate of dis-
ease progression and prolong survival.

Chronic Liver Failure. Several studies, including one in four
patients with cirrhosis, have shown that ASC can reduce ala-
nine aminotransferase (ALT), aspartate aminotransferase
(AST), and total bilirubin while increasing albumin and main-
taining prothrombin activity (Fig. 2D) [55–57,59–62]. This
may be due to the ability of ASC to reduce liver fibrosis
through reduced inflammation, reduced apoptosis, and
improved hepatocyte regeneration [55–58,60]. In the Phase I
clinical study of four patients with cirrhosis, safety of intra-
arterial infusion of ASC into the common hepatic artery was
analyzed [62]. The subcutaneous color change to purple at
the liposuction site resolved after one month, and no serious
adverse events were noted over this period. No patients had
chest pain or dyspnea concerning for pulmonary thromboem-
bolism, and hematomas did not occur [62]. There were no
exacerbations of serum AST, ALT, lactic acid dehydrogenase
(LDH), or creatine kinase (CK) enzyme levels nor severe ane-
mia requiring blood transfusion [62]. Preliminary data sug-
gests that ASC may represent promising candidates for
prevention and treatment of cirrhosis.

Inflammatory Bowel Disease. ASC have demonstrated the
capacity to reduce clinical symptoms and histologic disease activ-
ity in multiple studies of patients with severe inflammatory
bowel disease (IBD). Several studies specifically included patients
refractory to antibiotics, immunomodulators, and surgical repair
[18,68]. In this patient population, ASC fistula injections increased
the rate of fistula closure as assessed clinically and by MRI and
even reduced the median time to clinical remission in one
placebo-controlled study (Fig. 2E) [18,63–68]. In most of these
studies, at least 50% of patients treated with ASC had complete
closure of the treated fistula at the final time point of 240 days.
In one study, 80% and 75% of patients (n = 36) still had complete
fistula closure at 1 and 2 years after ASC treatment, respectively
[66]. Even in patients with rectovaginal fistulas, one of the most
difficult types of fistulas to treat, ASC treatment resulted in 60%
remission rate (3/5 patients) at one year after administration
[68]. A meta-analysis of 477 patients demonstrated a significant
improvement in healing rate and reduction in recurrence for
patients treated with ASC relative to other treatments [69].
These improvements in clinical outcomes were likely secondary
to the effects of ASCs to reduce inflammation through reduction
of proinflammatory cytokines, induction of anti-inflammatory
cytokines, increase in T regulatory cell populations, and conver-
sion of macrophages to a regulatory phenotype [102–107].

The safety of ASC administration in IBD has been well estab-
lished. In 6 studies of 198 patients total, a variety of adverse
events were reported including postoperative anal pain, abdomi-
nal pain, new fistulas, seton placement, fistula discharge, new
abscesses, increases in C reactive protein, musculoskeletal and

connective tissue disorders, eczema, exacerbation of disease,
anal inflammation, infections, diarrhea, fever, anxiety, psychiatric
disorders, and nasopharyngitis [18,63,64,66–68]. No adverse
events were related to the ASC in four studies [64,66–68]. Anal
abscess was most commonly listed as a treatment-related
adverse event [18,63]. Notably, in the placebo-controlled ran-
domized study, approximately equal numbers of patients receiv-
ing ASC and placebo (66% and 65%, respectively), had
treatment-emergent adverse events, and in this study, 5%
(5 patients) in each group developed an anal abscess [18]. The
available data suggest that ASC may be a beneficial adjunctive
therapy for patients with severe, refractory IBD.

Glioma and Glioblastoma. Similar to their capacity for homing
to damaged tissue, ASC have a tropism for tumors such as glio-
blastoma [73,77,108]. This feature has led to methods of using
ASC to deliver chemotherapies locally, such as 5-fluorouracil, cis-
platin, and paclitaxel. This can be done by transfection of ASC
with genes that can convert prodrugs into chemotherapy or by
direct loading of ASC [70,72,75,77]. Another method is transfec-
tion of ASC with oncolytic viruses such as ICOVIR17 or with
viruses like herpes simplex that can infect cancer cells and be
killed after treatment with ganciclovir [74].

Treatment of glioblastoma with intracerebral, intra-arterial,
or intravenous injection of ASC has been shown to reduce
tumor area, decrease the migratory ability of cancer cells,
improve median survival time, and increase rate of remission
(Fig. 2F) [70-7-77]. These effects are likely secondary to the
ability of ASC to home to tumor sites and exert locally toxic
effects [73,77,108]. In one study of treatment with unmodified
ASC, glioblastomas were smaller than those in the control
group, suggesting that using ASC as cellular therapy does not
promote tumor progression [73]. ASC may represent a unique,
adjunctive cellular therapy that can carry additional cancer
therapies to the site of the tumor.

Acute Kidney Injury. SVF cells and ASC have been shown to
reduce biomarkers of kidney injury such as creatinine, blood
urea nitrogen (BUN), and urine protein to creatinine ratio
[78–85]. Histological signs of tubular damage are decreased
through reduction of apoptosis, reduction of inflammation,
and increase in regeneration after SVF and ASC administration
(Fig. 2G) [78–85]. In two preclinical studies, ASC even
improved survival from 50% to 100% after ischemia-reperfu-
sion-induced AKI and from 0% to 20% after cisplatin-induced
AKI [78,80]. With regard to safety, doses up to 5 × 105 cells
had no associated adverse events, but intravenous doses
higher than this were shown to cause pulmonary emboli [80].
Cells were administered via intravenous, intra-arterial, and
intraperitoneal injection. SVF cells and ASC may have the
potential to reduce kidney damage after episodes of AKI.

Osteoarthritis. Various studies have been conducted in which
human patients with osteoarthritis of the knee received an intra-
articular injection with autologous SVF and ASC. Many of the
studies specifically recruited patients with osteoarthritis which
was refractory to oral medications, physical therapy, autologous
cartilage transplantation, and hyaluronic acid injection
[86,87,90,92]. Patients have experienced improvements in pain,
function, mobility, and overall quality of life on various clinical
questionnaires after SVF and ASC administration into the
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affected joints (Fig. 2H) [21,86–92]. Clinical improvement per-
sisted in these studies for several months to more than two
years. Additionally, MRI and arthroscopy have demonstrated
improvement or maintenance of cartilage status along the same
time period after SVF or ASC administration [21,86,87,89,90].
Preclinical studies suggest that these effects of ASCs may be due
to ASC-mediated reduction of pro-inflammatory cytokines and
chemokines, apoptosis of chondrocytes, hypertrophic and fibrotic
chondrocyte phenotypes, and collagenases [109–116].

Evidence of safety of SVF cell and ASC administration has
been determined in multiple Phase I clinical trials. In six studies
totaling 130 patients, adverse events reported by at least one
patient included slight knee pain, joint effusion, pain in other
joints, an increase in C reactive protein, a small increase in CK, a
small increase in ALT, a small decrease in neutrophil count, eye
problems, nasal symptoms, throat symptoms, diarrhea, urinary
tract disease, high blood pressure, dyspnea, unstable angina,
and right coronary artery stenosis [21,86,87,90–92]. The most
common adverse event was joint pain. No adverse events were
associated with liposuction or intraarticular injection of stem
cells [87,90,91]. There was no tumor formation in the injected
joint [87]. These results indicate that SVF cells and ASC may be
therapeutic candidates for improving symptoms in patients with
severe osteoarthritis of the knee.

Chronic Skin Wounds. In multiple preclinical studies, SVF cells
and ASC have accelerated closure of wounds and decreased the
defect size after application of cellular sheets or intradermal
injection. These effects may be mediated by the immunomodula-
tory and angiogenic capacities of SVF and ASC, which lead to
increased capillary density, enhanced re-epithelialization, and
increased granulation tissue (Fig. 2I) [93–98,100]. ASC also reduce
scar formation likely through inhibition of collagen synthesis in
late phases of wound healing [98,99]. Chae et al. further
explored the differences in effects between SVF and ASC and
found that SVF led to faster wound healing [100]. This may be
explained by SVF having greater differentiation into keratino-
cytes, cell survival properties, and expression of genes associated
with wound healing and angiogenesis, including vascular endo-
thelial growth factor (VEGF), epidermal growth factor (EGF),
fibroblast growth factors (FGF), and connective tissue growth fac-
tor (CTGF) [100]. SVF cells and ASC may have the capacity to
improve the rate and process of healing of chronic wounds.

DISCUSSION

Current State of ASC as Cellular Therapy

This systematic review highlights a potential role for SVF cells
and ASC in the nonhomologous treatment of a wide range of
human diseases. In the majority of the clinical trials per-
formed thus far, patients have undergone liposuction and
subsequent treatment with their own SVF cells and ASC.
Apart from postprocedural pain, very few treatment-related
adverse events have been noted, indicating that the risk of
treatment is minimal with autologous stem cell therapy
[12,18,21,47,62–64,66–68,87,90–92]. While the formation of
tumors was an initial concern with stem cell therapy, no
ectopic tissue formation has been seen in any studies. In
addition to being safe cellular therapies, SVF and ASC have
been shown to improve outcomes through mediation of

tissue repair. After transplantation, ASCs have been shown
to home to the injured tissues, so their regenerative effects
may be partially exerted locally [31,32,44,45,54,79]. Several
studies have shown differentiation to repair damaged tissues
directly [26,29,42,46,100]. However, most of the therapeutic
efficacy of SVF and ASCs likely is likely a consequence of
paracrine effects, as demonstrated by studies showing
effects in the absence of direct cell migration to the target
tissue, alterations in gene expression in transwell experi-
ments, and effects of ASC-conditioned media and exosomes
[24,27,28,30,39,43,50,60,78,84,95,96,99]. In addition to para-
crine effects, ASC possess the capacity to home to sites of
neurological tumors and provide local targeted therapy while
reducing systemic exposure to drugs such as chemotherapy
[70–73,75–77,108]. The strongest evidence for safety and
efficacy of SVF and ASC as cellular therapy exists for treat-
ment of inflammatory bowel disease and osteoarthritis, the
two diseases with the greatest number of studies in humans.

Next Steps to Clinical Translation

While the preliminary results regarding safety and efficacy are
promising, SVF cells and ASC are far from routine clinical use.
In all disease states included in this article, additional studies
must be performed in human subjects. At the time of this
review, the majority of studies in humans were case series
with no control group, which provide limited safety and effi-
cacy data. Only one randomized, controlled trial had been per-
formed in humans [18]. Two randomized, controlled trials for
patients with chronic myocardial ischemia and acute ischemic
stroke are ongoing [117,118]. Controlled trials in human
patients are necessary to establish true safety and efficacy of
SVF and ASC as cellular therapy.

Future studies need to explore the ideal administration
method, dose, and timing for each disease state. These charac-
teristics should be designed with clinical applications in mind.
For example, SVF cells and ASC are commonly injected into the
peri-infarction area in myocardial ischemia preclinical studies,
which may improve delivery to the site of tissue repair but is
very invasive and as noted in one study in humans, may cause
bradycardia or arrhythmia at the time of injection [47]. Dosing
is highly variable across studies, and few studies have investi-
gated the therapeutic potential of administering multiple doses
of ASC. Studies in which ASC are infused 30 and 45 minutes
after the start of induced stroke or myocardial ischemia in ani-
mal models are likely not relevant to the treatment of these
patients who rarely present to a hospital and receive treatment
this quickly after their symptoms begin. Similarly, treatment of
patients with SVF cells or ASC at the time that multiple sclerosis
develops is impossible, as patients may not have symptoms
until lesions have time to develop. Despite this, SVF cell and
ASC treatment at the onset of multiple sclerosis symptoms is
possible, and if effective, could provide an adjunctive therapy
for newly diagnosed patients with a disabling disease. Thus,
practical aspects of clinical use should always be carefully con-
sidered when preclinical and clinical trials are developed.

In regard to clinical outcomes, diseases that result in signifi-
cant chronic disability, such as stroke, may require longer follow
up periods. Even if ASC induce an improvement in neurologic
function at 4 weeks after stroke, this result would mean more
clinically if the effect persisted several months after stroke. Stud-
ies should aim to assess clinically meaningful outcomes including

©AlphaMed Press 2018 STEM CELLS

1324 Using Fat to Fight Disease



improvements in patient quality of life, reduction in hospitaliza-
tions, and reduction in mortality. For certain diseases such as
osteoarthritis, future studies assessing the length of nonsurgical
treatment may be of utility if ASC can prolong the time to surgi-
cal intervention. Additionally, outcomes need to be compared
with placebo, but placebo should account for the current stan-
dard of care. ASC should also be tested in addition to the stan-
dard of care treatments in an effort to determine whether
adjunctive ASC therapy can be effective, even if ASC are not
superior to the current standard of care. This is particularly
important for diseases such as idiopathic pulmonary fibrosis and
glioblastoma for which current therapies are inadequate to pre-
vent rapid progression of disease.

Once the safest and most effective source, administration
method, dose, and timing have been established, the question of
the ideal source and processing for SVF cells and ASC remains.
The majority of human studies to date have been performed
using autologous SVF cells and ASC. However, studies of allogeneic
SVF cells and ASC will be important for two reasons. For one,
treatment of acute conditions such as myocardial ischemia and
ischemic stroke require immediate availability of cells and do not
allow time for liposuction and isolation of SVF cells or ASC. Sec-
ond, autologous SVF and ASC may be less effective depending on
the health characteristics of the donor. In studies of pulmonary
fibrosis and myocardial ischemia, ASC have been shown to be less
effective when isolated from older donor animals [52,119]. When
isolated from animals with chronic inflammatory diseases such as
obesity and the model for multiple sclerosis, ASC have also been
shown to be less effective in immunomodulation [36,38]. Thus,
studies comparing clinical outcomes after autologous and alloge-
neic SVF cells or ASC treatment may provide valuable information
about the most effective source for cellular therapy.

Even after the question of autologous versus allogeneic stem
cells is fully addressed, there are still multiple aspects of proces-
sing that must be explored before clinical application becomes
widely applicable. The first is whether the lipoaspirate will
undergo SVF cell isolation and/or expansion to isolate ASC. If
SVF cells are not immediately re-administered to the patient,
there must be processes for expansion, storage, and release of
cells for clinical use [101,120]. ASC that have been isolated and
expanded for multiple passages may begin to undergo replicative
senescence, which could lead to genetic instability, increased
potential for immune response, and reduced efficacy as a cellu-
lar therapy [121–123]. Additional studies should aim to compare
SVF and ASC, as avoiding the need for culture and passage may
reduce these risks. The few studies that have directly compared
SVF and ASC have been promising, demonstrating more signifi-
cant therapeutic effects for SVF with no additional adverse
effects [34,35,37,100]. Good manufacturing processes will have
to be developed to ensure the safety and quality of the cells

and that the cells being isolated meet the criteria to be called
mesenchymal stem cells as set by the International Society for
Cellular Therapy [120,124,125].

The Food and Drug Administration regulates the use of stem
cell-based products in the United States according to the Public
Health Safety Act [107]. This act states that stem cells are subject
to regulation if they are processed, used for purposes that are
not their normal function, also known as “nonhomologous use,”
combined with non-tissue materials, or used for metabolic pur-
poses [107,126]. However, some investigators claim that the use
of stem cells for treatment of disease is not under the purview
of the FDA as these stem cells are administered as part of medi-
cal procedures [126]. This viewpoint was recently exemplified by
Regenerative Sciences, a company that treated patients with
autologous mesenchymal stem cells for musculoskeletal injuries.
Regenerative Sciences upheld that the stem cells they used were
not drugs or biological products. The FDA issued an injunction
by stating that these stem cells met criteria for regulation
because they were more than minimally manipulated during the
manufacturing process [126]. The FDA won the case in 2014,
which may lead to increased regulation of stem cell use in clinics
in the U.S.. While there is concern that this will limit progress in
development of cellular therapies, the implications of this court
decision remain to be determined.

CONCLUSION

SVF and ASC are promising candidates for use as cellular thera-
pies due to their abundance, ease of isolation, and natural
mechanisms for promoting tissue regeneration. Preclinical and
clinical studies indicate that these stem cells may be able to
improve the clinical outcomes and thus the lives of patients
with diseases refractory to currently available therapies. Con-
tinued research of their safety and efficacy in human subjects
will be needed before routine clinical use.
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