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Abstract

We present a spectrally accurate scheme to turn a boundary integral formulation
for an elliptic PDE on a single unit cell geometry into one for the fully peri-
odic problem. The basic idea is to use a small least squares solve to enforce
periodic boundary conditions without ever handling periodic Green’s functions.
We describe fast solvers for the two-dimensional (2D) doubly periodic conduc-
tion problem and Stokes nonslip fluid flow problem, where the unit cell contains
many inclusions with smooth boundaries. Applications include computing the
effective bulk properties of composite media (homogenization) and microfluidic
chip design.

We split the infinite sum over the lattice of images into a directly summed
“near” part plus a small number of auxiliary sources that represent the (smooth)
remaining “far” contribution. Applying physical boundary conditions on the unit
cell walls gives an expanded linear system, which, after a rank-1 or rank-3 cor-
rection and a Schur complement, leaves a well-conditioned square system that
can be solved iteratively using fast multipole acceleration plus a low-rank term.
We are rather explicit about the consistency and nullspaces of both the contin-
uous and discretized problems. The scheme is simple (no lattice sums, Ewald
methods, or particle meshes are required), allows adaptivity, and is essentially
dimension- and PDE-independent, so it generalizes without fuss to 3D and to
other elliptic problems. In order to handle close-to-touching geometries accu-
rately we incorporate recently developed spectral quadratures. We include eight
numerical examples and a software implementation. We validate against high-
accuracy results for the square array of discs in Laplace and Stokes cases (im-
proving upon the latter), and show linear scaling for up to 104 randomly located
inclusions per unit cell. © 2018 Wiley Periodicals, Inc.
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1 Introduction
Periodic boundary value problems (BVPs) arise frequently in engineering and

the sciences, either when modeling the behavior of solid or fluid media with true
periodic geometry, or when applying artificial periodic boundary conditions to sim-
ulate a representative domain of a random medium or particulate flow (often called
a supercell or representative volume element simulation). The macroscopic re-
sponse of a given microscopic periodic composite medium can often be summa-
rized by an effective material property (e.g., a conductivity or permeability ten-
sor), a fact placed on a rigorous footing by the field of homogenization (for a re-
view see [14]). However, with the exception of layered media that vary in only
one dimension, finding this tensor requires the numerical solution of “cell prob-
lems” [62, 66], namely BVPs in which the solution is periodic up to some additive
constant expressing the macroscopic driving. Application areas span all of the ma-
jor elliptic PDEs, including the Laplace equation (thermal/electrical conductivity,
electrostatics and magnetostatics of composites [12, 27, 35, 38]); the Stokes equa-
tions (porous flow in periodic solids [18, 26, 50, 75], sedimentation [1], mobility
[69], transport by cilia carpets [16], vesicle dynamics in microfluidic flows [58]);
elastostatics (microstructured periodic or random composites [29, 36, 61, 64]); and
the Helmholtz and Maxwell equations (phononic and photonic crystals, bandgap
materials [42, 65]). In this work we focus on the first two (nonoscillatory) PDEs
above, noting that the methods that we present also apply with minor changes to
the oscillatory Helmholtz and Maxwell cases, at least up to moderate frequen-
cies [5, 13, 56].

The accurate solution of periodic BVPs has remained a challenging problem at
the forefront of analytical and computational progress for well over a century [9].
Modern simulations may demand large numbers of objects per unit cell, with ar-
bitrary geometries, that at high-volume fractions may approach arbitrarily close
to each other [72]. In such regimes asymptotic methods based upon expansion in
the inclusion size do not apply [18, 26]. Polydisperse suspensions or nonsmooth
geometries may require spatially adaptive discretizations. In microfluidics, high
aspect ratio and/or skew unit cells are needed, for instance in the optimal design
of particle sorters. Furthermore, to obtain accurate average material properties for
random media or suspensions via the Monte Carlo method, thousands of simula-
tion runs may be needed [38]. A variety of numerical methods are used (see [62,
sec. 2.8]), including particular solutions (starting in 1892 with Rayleigh’s method
for cylinders and spheres [70], and, more recently, in Stokes flow [71]), eigen-
function expansions [75], lattice Boltzmann and finite differencing [48], and finite
element methods [29, 61]. However, for general geometries, it becomes very hard
to achieve high-order accuracy with any of the above apart from finite elements,
and the cost of meshing renders the latter unattractive when moving geometries are
involved. Integral equation methods [45, 49, 55, 67] are natural, since the PDE has
piecewise constant coefficients, and are very popular [1, 12, 26, 27, 36, 50, 64, 69].
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By using potential theory to represent the solution field in terms of the convolution
of a free-space Green’s function with an unknown “density” function � living only
on material boundaries, one vastly reduces the number of discretized unknowns.
The linear system resulting from applying boundary conditions takes the form

(1.1) A� D f;

where the N � N matrix A is the discretization of an integral operator. The latter
is often of Fredholm second-kind; hence A remains well-conditioned, independent
of N , so that iterative methods converge rapidly. Further advantages include their
high-order or spectral accuracy (e.g., via Nyström quadratures), the ease of adap-
tivity on the boundary, and the existence of fast algorithms to apply A with optimal
O.N / cost, such as the fast multipole method (FMM) [28].

The traditional integral equation approach to periodic problems replaces the
free-space Green’s function by a periodic Green’s function, so that the density
is solved on only the geometry lying in a single unit cell [12, 26, 27, 36, 64]. There
is an extensive literature on the evaluation of such periodic Green’s functions (e.g.,
in the Stokes case see [68,74]); yet any such pointwise evaluation for each source-
target pair leads to O.N 2/ complexity, which is unacceptable for large problems.
There are two popular approaches to addressing this in a way compatible with fast
algorithms:

� Lattice sums. Noticing that the difference between the periodic and free-
space Green’s function is a smooth PDE solution in the unit cell, one ex-
pands this in a particular solution basis (a cylindrical or spherical expan-
sion); the resulting coefficients, which need to be computed only once for
a given unit cell, are called lattice sums [7, 26, 27, 35]. They originate in
the work of Rayleigh [70] and in the study of ionic crystals (both reviewed
in [9, chaps. 2–3]). The FMM may then be periodized by combining the
top-level multipole expansion coefficients with the lattice sums to give a
correction to the local expansion coefficients (in 2D this is a discrete con-
volution) that may be applied fast [28, sec. 4.1] [64]. This method has been
used for the doubly periodic Laplace BVP by Greengard–Moura [27], and
Stokes BVP by Greengard–Kropinski [26].
� Particle-mesh Ewald (PME) methods. These methods exploit Ewald’s re-

alization [20] that, although both the spatial and the spectral (Fourier) sums
for the periodic Green’s function in general converge slowly, there is an
analytic splitting into spatial and spectral parts such that both terms con-
verge superalgebraically. Numerically, the spatial part is now local, while
the spectral part may be applied by “smearing” onto a uniform grid, us-
ing a pair of FFTs, and (as in the nonuniform FFT [19]) correcting for the
smearing. The result is a O.N logN/ fast algorithm; for a review see [15].
Recently this has been improved by Lindbo–Tornberg to achieve overall
spectral accuracy in the Laplace [53] and Stokes [51] settings, with appli-
cations to 3D fluid suspensions [1].
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FIGURE 1.1. Solution of the Laplace equation in a doubly periodic do-
main with Neumann boundary conditions on each of K D 104 inclu-
sions, driven by a specified potential drop p D .1; 0/ (Example 2). A
single unit cell is shown, with the solution u indicated by a color scale
and contours. The inset shows detail. Each inclusion has Nk D 700

discretization nodes on its boundary, resulting in 7 million degrees of
freedom. The solution took about 10 hours on a 12-core 3.4 GHz Intel
Xeon desktop. The flux is J1 D 0:1963795463 with estimated absolute
error of 1 � 10�10.
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FIGURE 1.2. Periodic Stokes flow using in doubly periodic domain with
no-slip boundary conditions on each of K D 103 inclusions (Example
7). Flow is driven by a specified pressure difference between left and
right sides. A single unit cell is shown. Color here indicates fluid speed
(red is high and blue is low). Each inclusion boundary has Nk D 350

discretization points, resulting in 700 000 degrees of freedom (not ac-
counting for copies). The estimated absolute error in the computed flux
is 9 � 10�9.
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The scheme that we present is based purely on free-space Green’s functions, and
has distinct advantages over the above two periodization approaches.

(1) Only physically meaningful boundary conditions and compatibility con-
ditions are used. Aside from conceptual and algebraic simplification, this also
removes the need for (often mysterious and subtle [9]) choices of the values of
various conditionally or even nonconvergent lattice sums based on physical argu-
ments [18, 27, 28, 36] (e.g., six such choices are needed in [26]). When it comes
to skewed unit cells combined with applied pressure driving, such hand-picked
choices in lattice sum methods become far from obvious.

(2) Free-space FMM codes may be inserted without modification, and fast di-
rect solvers (based on hierarchical compression of matrix inverses) [23,31] require
only slight modification [22, 58].

(3) When multiscale spatial features are present in the problem—commonly
observed in practical applications such as polydisperse suspensions and complex
microfluidic chip geometries—PME codes become inefficient because of their need
for uniform grids. In contrast, our algorithm retains the fast nature of the adaptive
FMM in such cases.

(4) In contrast to lattice sums and Ewald methods, which intrinsically rely on
radially symmetric expansions and kernels, our scheme can handle reasonably high
aspect ratio unit cells with little penalty.

(5) Since our Stokes formulation does not rely on complex variables (e.g.,
Sherman–Lauricella [26]), the whole scheme generalizes to 3D with no conceptual
changes [57]. A disadvantage of our scheme is that the prefactor may be slightly
worse than Ewald methods due to the direct summation of neighboring images.

The basic idea is simple and applies to integral representations for a variety of
elliptic PDEs. Let B be a (generally parallelogram) unit cell “box,” and let @� be
the material boundary that is to be periodized (@� may even intersect the walls
of B). Applying periodic boundary conditions is equivalent to summing the free-
space representation on @� over the infinite lattice, as in Figure 1.3(a). Our scheme
sums this potential representation over only the 3 � 3 nearest-neighbor images of
@� (see Figure 1.3(b)) but adds a small auxiliary basis of smooth PDE solutions
in B, with coefficient vector �, that efficiently represents the (distant) contribution
of the rest of the infinite image lattice. For this auxiliary basis we use point sources
(Figure 1.3(c)); around 102 are needed, a small number which, crucially, is inde-
pendent of N and the boundary complexity. We apply the usual (homogeneous)
boundary condition on @�, which forms the first block row of a linear system. We
impose the desired physical periodicity as auxiliary conditions on the Cauchy data
differences between wall pairs R–L and U –D (see Figure 1.3(a)), giving a second
block row. The result is a 2 � 2 block “extended linear system” (ELS),

(1.2)
�
A B

C Q

��
�

�

�
D

�
0

g

�
:
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(a) periodic problem and unit cell (c) auxiliary sources (far interaction)

RL
C

B
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FIGURE 1.3. 2D periodic problem in the case of a single inclusion �
with boundary @�. (a) Periodic BVP in R2, showing a possible unit cell
“box” B and its four walls L, R, D, U , and senses of wall normals. (b)
Directly-summed “near” copies of @�. (c) Circle of auxiliary sources
(red dots) which represent the field in B due to the infinite punctured
lattice of “far” copies (dashed curves). In (b)–(c) blue arrows indicate
the action (source to target) of the four matrix blocks A, B , C , Q.

Here g accounts for the applied macroscopic thermal or pressure gradient in the
form of prescribed jumps across one unit cell. Figure 1.3(b)–(c) sketches the in-
teractions described by the four operators A, B , C , and Q. This linear system is
generally rectangular and highly ill conditioned, but when solved in a backward-
stable least-squares sense can result in accuracies close to machine precision.

Three main routes to a solution of (1.2) are clear. (a) The simplest is to use a
dense direct least-squares solve (e.g., via QR), but the O.N 3/ cost becomes im-
practical for large problems with N > 104. Instead, to create fast algorithms one
exploits the fact that the numbers of auxiliary rows and columns in (1.2) are both
small, as follows. (b) One may attempt to eliminate � to get the Schur complement
square linear system involving Aper, the periodized version of A, of the form

(1.3) Aper� WD .A � BQ
CC/� D �BQCg;

where QC is a pseudoinverse of Q (see Section 2.4). As we will see, (1.3)
can be well-conditioned when (1.1) is and can be solved iteratively by using the
FMM to apply A� while applying the second term in its low-rank factored form
�B..QCC/�/. (c) One may instead eliminate � by forming, then applying, a com-
pressed representation of A�1 via a fast direct solver; this has proven useful for the
case of fixed periodic geometry with multiple boundary data vectors [22,58]. Both
methods (b) and (c) can achieve O.N / complexity.

This paper explores route (b). A key contribution is overcoming the stumbling
block that, for many standard PDEs and integral representations, Aper as written
in (1.3) does not in fact exist. Intuitively, this is due to divergence in the sum of
the Green’s function over the lattice. For instance, the sum of log.1=r/ clearly
diverges, and thus the single-layer representation for Laplace’s equation, which we
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use in Section 2, cannot be periodized unless the integral of density (total charge)
vanishes. This manifests itself in the second block row of (1.2): the range of C
contains vectors that are not in the range of Q; thus QCC numerically blows up.
After studying in Sections 2.1 and 4.1 the consistency conditions for the linear
system involving Q (the “empty unit cell” problem), we will propose rank-1 (for
Laplace) and rank-3 (for no-slip Stokes) corrections to the ELS that allow the Schur
complement to be taken, and, moreover, that remove the nullspace associated with
the physical BVP. We justify these schemes rigorously and test them numerically.
Examples of our large-scale tests include Figures 1.1 and 1.2.

Although the idea of imposing periodicity via extra linear conditions has aided
certain electromagnetics solvers for some decades [32, 78], we believe that this
idea was first combined with integral equations by the first author and Green-
gard in [5], where � controlled a Helmholtz local expansion. Since then it has
become popular for a variety of PDEs [5, 12, 13, 22, 30, 56, 58]. From [5] we
also inherit the split into near and far images, and cancellations in C that allow
a rapidly convergent scheme even when @� intersects unit cell walls. The use of
point sources as a particular solution basis that is efficient for smooth solutions is
known as the “method of fundamental solutions” (MFS) [8, 21], “method of auxil-
iary sources” [46], “charge simulation method” [44], or, in fast solvers, “equivalent
source” [11] or “proxy” [59] representations. This is also used in the recent 3D pe-
riodization schemes of Gumerov–Duraiswami [30] and Yan–Shelley [76]. Finally,
the low-rank perturbations that enlarge the range ofQ are inspired by the low-rank
perturbation methods for singular square systems of Sifuentes et al. [73].

Here is a guide to the rest of this paper. In Section 2 we present the periodic
Neumann Laplace BVP, possibly the simplest application of the scheme. This first
requires understanding and numerically solving the “empty unit cell” subproblem,
which we do in Section 2.1. The integral formulation, discretization, and direct
numerical solution of the ELS (1.2) follows in Section 2.2. A general scheme to
stably take the Schur complement is given in Section 2.4, along with a scheme to
remove the physical nullspace specific to our representation. The latter is tested
numerically. Section 2.5 shows how the FMM and close-evaluation quadratures
are incorporated and applies them to large problems with thousands of inclusions.
Section 2.6 defines the effective conductivity tensor � and shows how to evaluate
it efficiently using a pair of BVP solutions. In Section 3 we show that this same
periodizing scheme solves the benchmark periodic disc array conduction problem
to high accuracy. In Section 4 we move to periodic Dirichlet (no-slip) Stokes flow
and show how its periodizing scheme closely parallels the Laplace version. In
fact, the only differences are new consistency conditions for the empty subproblem
(Section 4.1), the use of a combined-field formulation (Section 4.2), and the need
for a rank-three perturbation for a stable Schur complement (Section 4.3). Experi-
ments on the drag of a square array of discs, and on large-scale flow problems, are
performed in Section 4.4. We discuss generalizations and conclude in Section 5.
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Our aim is to illustrate, with two example BVPs, a unified route to a well-
conditioned periodization compatible with fast algorithms. We take care to state the
consistency conditions and nullspaces of the full and empty problems, this being
the main area of problem-specific variation. We believe that the approach adapts
simply to other boundary conditions and PDEs, once the corresponding consis-
tency conditions and nullspaces are laid out. Although general aspect ratios and
skew unit cells are amongst our motivations, for clarity we stick to the unit square;
the generalization is straightforward.

Remark 1.1 (Software). We maintain self-contained MATLAB® codes for the meth-
ods and figures in this paper at http://github.com/ahbarnett/DPLS-demos.

2 The Neumann Laplace Case
We now present the heat/electrical conduction problem in the exterior of a pe-

riodic lattice of insulating inclusions (corresponding to �d D 0 in [27]). For sim-
plicity we first assume a single inclusion � per unit cell. Let e1 and e2 be vectors
defining the lattice in R2; we work with the unit square so that e1 D .0; 1/ and
e2 D .1; 0/. Let�ƒ WD fx 2 R2 W xCm1e1Cm2e2 2 � for some m1; m2 2 Zg
represent the infinite lattice of inclusions. The scalar u, representing electric po-
tential or temperature, solves the BVP

�u D 0 in R2 n�ƒ;(2.1)

un D 0 on @�ƒ;(2.2)

u.xC e1/ � u.x/ D p1 for all x 2 R2 n�ƒ;(2.3)

u.xC e2/ � u.x/ D p2 for all x 2 R2 n�ƒI(2.4)

i.e., u is harmonic, has zero flux on inclusion boundaries, and is periodic up to
a given pair of constants p D .p1; p2/ that encode the external (macroscopic)
driving. We use the abbreviation un D @u

@n
D n � ru, where n is the unit normal on

the relevant evaluation curve.

PROPOSITION 2.1. For each .p1; p2/ the solution to (2.1)–(2.4) is unique up to an
additive constant.

PROOF. As usual, one considers the homogeneous BVP arising when u is the
difference of two solutions. Let B be any unit cell (tiling domain) containing �;
then using Green’s first identity, we have

0 D

Z
Bn�

u�u D �

Z
Bn�
jruj2 C

Z
@B
uun �

Z
@�

uun:

The first boundary term cancels by periodicity, and the second by (2.2); hence
ru � 0. �

http://github.com/ahbarnett/DPLS-demos
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To solve the periodic BVP we first re-express it as a BVP on a single unit cell B
with coupled boundary values on the four walls comprising its boundary @B WD L[
R[D[U ; see Figure 1.3(a). For simplicity we assume for now that the square B
can be chosen such that � does not intersect any of the walls; this restriction will
later be lifted (see Remark 2.7). We use the notation uL to mean the restriction of u
to the wall L, and unL for its normal derivative using the normal on L (note that
this points to the right, as shown in the figure.) Consider the following reformulated
BVP:

�u D 0 in B n x�;(2.5)

un D 0 on @�;(2.6)
uR � uL D p1;(2.7)

unR � unL D 0;(2.8)
uU � uD D p2;(2.9)

unU � unD D 0:(2.10)

Clearly any solution to (2.1)–(2.4) also satisfies (2.5)–(2.10). Because of the unique
continuation of Cauchy data .u; un/ as a solution to the second-order PDE, the
converse holds; thus the two BVPs are equivalent. We define the discrepancy [5]
of a solution u as the stack of the four functions on the left-hand side of (2.7)–
(2.10).

2.1 The Empty Unit Cell Discrepancy BVP and Its Numerical Solution
We first analyze, then solve numerically, an important subproblem that we call

the “empty unit cell BVP.” We seek a harmonic function v matching a given dis-
crepancy g D Œg1Ig2Ig3Ig4� (i.e., a stack of four functions defined on the walls
L, L, D, D, respectively). That is,

�v D 0 in B;(2.11)
vR � vL D g1;(2.12)

vnR � vnL D g2;(2.13)
vU � vD D g3;(2.14)

vnU � vnD D g4:(2.15)

We now give the consistency condition and nullspace for this BVP, which shows
that it behaves essentially like a square linear system with nullity 1.

PROPOSITION 2.2. A solution v to (2.11)–(2.15) exists if and only if
R
L g2 ds CR

D g4 ds D 0 and is then unique up to a constant.

PROOF. The zero-flux condition
R
@B vn D 0 holds for harmonic functions.

Writing @B as the union of the four walls, with their normal senses, gives the sum
of the integrals of (2.13) and (2.15). Uniqueness follows from the method of proof
of Proposition 2.1. �
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We now describe a numerical solution method for this BVP that is accurate for a
certain class of data g, namely those for which the solutions v may be continued as
regular solutions to Laplace’s equation into a large neighborhood of B, and hence
each of g1; : : : ; g4 is analytic. It will turn out that this class is sufficient for our
periodic scheme (essentially because v will only have to represent distant image
contributions, as shown in Figure 1.3(c)).

Let B be centered at the origin. Recalling the fundamental solution to Laplace’s
equation,

(2.16) G.x; y/ D
1

2�
log

1

r
; r WD kx � yk;

we approximate the solution in B by a linear combination of such solutions with
source points yj lying uniformly on a circle of radiusRp > rB, where rB WD 1=

p
2

is the maximum radius of the unit cell. That is, for x 2 B,

(2.17) v.x/ �

MX
jD1

�j�j .x/; �j .x/ WD G.x; yj /;

yj WD .Rp cos 2�j=M;Rp sin 2�j=M/;

with unknown coefficient vector � WD f�j gMjD1. As discussed in the introduction,
this is known as the MFS. Each basis function �j is a particular solution to (2.11)
in B; hence only the boundary conditions need enforcing (as in Rayleigh’s original
method [70]).

This MFS representation is complete for harmonic functions. More precisely,
for v in a suitable class, it is capable of exponential accuracy uniformly in B. In
particular, since B is contained within the ball kxk � rB, we may apply known
convergence results to get the following.

THEOREM 2.3. Let v extend as a regular harmonic function throughout the closed
ball kxk � � of radius � > rB. Let the fixed proxy radius Rp ¤ 1 satisfy

p
rB� <

Rp < �. For each M � 1 let f�.M/
j gMjD1 be a proxy basis set as in (2.17). Then

there are a sequence of coefficient vectors �.M/, one vector for each M , and a
constant C dependent only on v such thatv � MX

jD1

�
.M/
j �

.M/
j


L1.B/

� C

�
�

rB

��M=2
; M D 1; 2; : : : :

In addition, the vectors may be chosen so that the sequence k�.M/k2, M D

1; 2; : : : , is bounded.

This exponential convergence—with rate controlled by the distance to the near-
est singularity in v—was derived by Katsurada [43, remark 2.2] in the context of
collocation (point matching) for a Dirichlet BVP on the boundary of the disc of
radius rB, which is enough to guarantee the existence of such a coefficient vector
sequence. The boundedness of the coefficient norms has been known in the context



DOUBLY PERIODIC LAPLACE AND STOKES 2345

of Helmholtz scattering in the Russian literature for some time (see [47, sec. 3.4]
and references within, and [17, thm. 2.4]). We do not know of a reference stating
this for the Laplace case, but note that the proof is identical to that in [4, thm. 6],
by using equation (13) from that paper. The restriction Rp < � is crucial for high
accuracy, since when Rp > �, although convergence occurs, k�.M/k2 blows up,
causing accuracy loss due to catastrophic cancellation [4, thm. 7].

Remark 2.4. Intuitively, the restriction Rp ¤ 1 arises because the proxy basis
may be viewed as a periodic trapezoid rule quadrature approximation to a single-
layer potential on the circle kxk D Rp, a representation that is incomplete when
Rp D 1: it cannot represent the constant function [77, remark 1].

To enforce boundary conditions, let xiL 2 L, xiD 2 D, i D 1; : : : ; m, be
two sets of m collocation points, on the left and bottom wall, respectively; we use
Gauss–Legendre nodes. Enforcing (2.12) between collocation points on the left
and right walls then gives

(2.18)
MX
jD1

Œ�j .xiL C e1/ � �j .xiL/��j D g1.xiL/ for all i D 1; : : : ; m:

Continuing in this way, the full set of discrepancy conditions (2.12)–(2.15) gives
the linear system

(2.19) Q� D g;

where g 2 R4m stacks the four vectors of discrepancies sampled at the collocation

points, while the matrix Q D ŒQ1IQ2IQ3IQ4� consists of four block rows, each

of size m �M . By reading from (2.18), one sees that Q1 has elements .Q1/ij D

�j .xiL C e1/ � �j .xiL/. Analogously, .Q2/ij D
@�j

@n
.xiL C e1/ �

@�j

@n
.xiL/,

.Q3/ij D �j .xiD C e2/ � �j .xiD/, and finally .Q4/ij D
@�j

@n
.xiD C e2/ �

@�j

@n
.xiD/.

We solve the (generally rectangular) system (2.19) in the least squares sense,
which corresponds to minimizing a weighted L2-norm of the discrepancy error
(we find in practice that there is no advantage to incorporating the square-root
of the weights associated with the collocation nodes). As is well-known in the
MFS community [21, 43], Q becomes exponentially ill-conditioned as M grows;
intuitively this follows from the exponential decay of the singular values of the
single-layer operator from the proxy radiusRp to the circle radius rB containing B.
Thus, a least squares solver is needed that can handle rank deficiency stably, i.e.,
return a small-norm solution when one exists. In this case the ill-conditioning
causes no loss of accuracy, and, even though there is instability in the vector �, for
the evaluation of v errors close to machine precision ("mach) are achieved [4].

Remark 2.5. For this and subsequent direct solves we use MATLAB®’s linsolve
(with the option RECT=true to prevent the less accurate LU from being used in the
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FIGURE 2.1. Convergence of the proxy point numerical scheme for the
empty discrepancy BVP, for the case of known solution with singularity
x0 D 1:5.cos 0:7; sin 0:7/ is a distance 1:5 from the center of the square
unit cell of side 1. The proxy radius is Rp D 1:4. (a)–(b) are for the
Laplace case with g deriving from the known solution v.x/ D logkx �
x0k; (c) is for the Stokes case with known v coming from a stokeslet
at x0 with force f0 D Œ0:3I �0:6�. (a) Shows convergence in maximum
absolute error in v at 100 target points interior to B, versus the numberm
of wall quadrature nodes, with fixed M D 100 proxy points. (b) Shows
convergence in M with fixed m D 22 (C signs) and its prediction via
Theorem 2.3 (dotted line), the lowest five singular values of Q (gray
lines), and the solution vector norm k�k2 (circles). (c) is the same as (b)
but for Stokes. Note that in the Laplace case (b) there is one singular
value smaller than the others, whereas for Stokes (c) there are three such
singular values.

square case), which uses column-pivoted QR to find the so-called “basic” solution
[63, sec. 5.7] having at most r nonzero entries, where r is the numerical rank; this
is close to having minimum norm [25, sec. 5.5].

We illustrate this with a simple numerical test, in which g is the discrepancy
of a known harmonic function v of typical magnitude O.1/ and with sufficiently
distant singularity. Once Q is filled and (2.19) solved, the numerical solution is
evaluated via (2.17), and the maximum error at 100 random target points in B is
taken (after removing an overall constant error, expected from Proposition 2.2).
Figure 2.1(a) shows exponential convergence in this error versus the number of
wall nodes m. Figure 2.1(b) shows exponential convergence with respect to M ,
the number of proxy points, with a rate slightly exceeding the predicted rate. It is
clear that wheneverm � 20 andM � 70 the norm k�k2 remains O.1/, and around
15 digits of accuracy result.

The decaying lowest few singular values of Q are also shown in panel (b): in
particular there is one singular value decaying faster than all others. It is easy to
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verify that this corresponds to the nullspace of the BVP (Proposition 2.2); indeed,
we have tested that its right singular vector is approximately constant and generates
via (2.17) the constant function in B to within O."mach/ relative error. Likewise, You are also using O as

well as O. Is there a
distinction that you are
making, or should they
all be made the same?

the consistency condition in Proposition 2.2 manifests itself in NulQT: let w be
the vector that applies the discretization of this consistency condition to a vector g,
namely,

(2.20) w WD Œ0mIwLI 0mIwD� 2 R4m;

where semicolons indicate vertical stacking, wL;wD 2 Rm are the vectors of
weights corresponding to the collocation nodes on L, D, and 0m 2 Rm is the
zero vector. Then we expect that

(2.21) wTQ � 0T
M ;

and indeed observe numerically that kwTQk2 D O."mach/ once m � 20. In
summary, although the matrix Q is generally rectangular and ill-conditioned, it
also inherits both aspects of the unit nullity of the empty BVP that it discretizes.

Remark 2.6. A different scheme is possible in whichQwould be square, and (mod-
ulo a nullity of one, as above) well-conditioned, based on a “tic-tac-toe” set of layer
potentials (see [5, sec. 4.2] in the Helmholtz case). However, we recommend the
above proxy point version, since (i) the matrix Q is so small that handling its ill-
conditioning is very cheap, (ii) the tic-tac-toe scheme demands close-evaluation
quadratures for its layer potentials, and (iii) the tic-tac-toe scheme is more compli-
cated.

2.2 Extended Linear System for the Conduction Problem
We now treat the above empty BVP solution scheme as a component in a scheme

for the periodic BVP (2.5)–(2.10). Simply put, we take standard potential theory
for the Laplace equation [45, chap. 6], and augment this by enforcing periodic
boundary conditions. Given a density function � on the inclusion boundary @�,
recall that the single-layer potential, evaluated at a target point x, is defined by

v D .S@��/.x/ WD
Z
@�

G.x; y/�.y/dsy

D
1

2�

Z
@�

log
1

kx � yk
�.y/dsy ; x 2 R2:

(2.22)

Using nx to indicate the outward normal at x, this potential obeys the jump relation
[45, thm. 6.18]

(2.23) v˙n WD lim
h!0C

nx
� r.S@��/.x˙ hnx/ D

��
�
1

2
CDT

@�;@�

�
�

�
.x/;
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where DT
� 0;� denotes the usual transposed double-layer operator from a general

source curve � to a target curve � 0, defined by

�
DT
� 0;��

�
.x/ D

Z
�

@G.x; y/

@nx
�.y/dsy

D
1

2�

Z
�

�.x � y/ � nx

kx � yk2
�.y/dsy ; x 2 � 0:

(2.24)

The integral implied by the self-interaction operator DT
@�;@�

is to be interpreted in
the principal value sense.

Our representation for the solution sums the standard single-layer potential over
the 3 � 3 copies closest to the origin and adds an auxiliary basis as in (2.17),

(2.25)

u D Snear
@� � C

MX
jD1

�j�j where

.Snear
@� �/.x/ WD

X
m1;m22f�1;0;1g

Z
@�

G.x; y Cm1e1 Cm2e2/�.y/dsy :

Our unknowns are the (physical charge) density � and the auxiliary vector � . Sub-
stituting (2.25) into the Neumann boundary condition (2.6), and using the exterior
jump relation on the central copy (m1 D m2 D 0) only, gives our first block row,

(2.26)
�
�
1

2
CD

near;T
@�;@�

�
� C

MX
jD1

�j
@�j

@n

ˇ̌̌̌
@�

D 0;

where, as before, the “near” superscript denotes summation over source images as
in (2.25).

The second block row arises as follows. Consider the substitution of (2.25) into
the first discrepancy equation (2.7): there are nine source copies, each of which
interacts with the L and R walls, giving 18 terms. However, the effect of the right-
most six sources on R is cancelled by the effect of the leftmost six sources on L,
leaving only six terms, as in [5, fig. 4(a)–(b)]. All of these surviving terms involve
distant interactions (the distances exceed one period if � is contained in B). Simi-
lar cancellations occur in the remaining three equations (2.8)–(2.10). The resulting
four subblocks are X

m22f�1;0;1g

.SR;@��e1Cm2e2
� SL;@�Ce1Cm2e2

/�(2.27)

C

MX
jD1

.�j jR � �j jL/�j D p1;
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m22f�1;0;1g

�
DT
R;@��e1Cm2e2

�DT
L;@�Ce1Cm2e2

�
�(2.28)

C

MX
jD1

�
@�j

@n

ˇ̌̌̌
R

�
@�j

@n

ˇ̌̌̌
L

�
�j D 0;

X
m12f�1;0;1g

.SU;@�Cm1e1�e2
� SD;@�Cm1e1Ce2

/�(2.29)

C

MX
jD1

.�j jU � �j jD/�j D p2;

X
m12f�1;0;1g

�
DT
U;@�Cm1e1�e2

�DT
D;@�Cm1e1Ce2

�
�(2.30)

C

MX
jD1

�
@�j

@n

ˇ̌̌̌
U

�
@�j

@n

ˇ̌̌̌
D

�
�j D 0:

Remark 2.7 (Wall intersection). The cancellation of all near interactions in (2.27)–
(2.30) is due to the 3 � 3 neighbor summation in the representation (2.25). Fur-
thermore, this cancellation allows an accurate solution even when� intersects @B,
without the need for specialized quadratures, as long as the 3 � 3 copies of � ac-
count for all of the images inside and near to B (see Figure 2.2(a)). Informally,
the unit cell walls are “invisible” to the inclusions. If � is elongated such that the
last condition cannot hold, one would need to include all of the (pieces of) images
of � that fell within and near to B, needing different bookkeeping in the above
formulae; we leave this case for future work.

(2.26)–(2.30) form a set of coupled integral-algebraic equations, where the only
discrete aspect is that of the O.1/ proxy points.1 It is natural to ask how the unit
nullity of the BVP manifests itself in the solution space for the pair .�; �/. Are
there pairs .�; �/ with no effect on u, enlarging the nullspace? It turns out that
the answer is no, and that the one-dimensional nullspace (constant functions) is
spanned purely by �, as a little potential theory now shows.

LEMMA 2.8. In the solution to (2.26)–(2.30), � is unique.

PROOF. Let .�; �/ be the difference between any two solutions to (2.26)–(2.30).
Let v be the representation (2.25) using this .�; �/, both in B n� but also inside
�. Then by construction v is a solution to the homogeneous BVP (2.5)–(2.10),
i.e., with p1 D p2 D 0; thus by Proposition 2.1, v is constant in B n�. Thus by
the continuity of the single-layer potential [45, thm. 6.18], the interior limit of v

1 It would also be possible to write a purely continuous version by replacing the proxy circle by a
single-layer potential; however, sometimes an intrinsically discrete basis f�j g is useful [5, 13].
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on @� is constant. However, v is harmonic in �, so v is constant in �. By (2.23),
vCn �v

�
n D �� , but we have just shown that both vCn and v�n vanish, so � � 0. �

Discretization of the ELS
We discretize (2.26), the first row of the system, using a set of quadrature nodes

fxig
N
iD1 on @� and weights fwigNiD1 such thatZ

@�

f .y/dsy �

NX
iD1

wif .xi /

holds to high accuracy for smooth functions f . In practice, when @� is parame-
trized by a 2�-periodic function x.t/, 0 � t < 2� , then using the periodic trape-
zoid rule in t gives xi D x.2�i=N / and wi D .2�=N/kx0.2�i=N /k. Since DT

has a smooth kernel, we apply Nyström discretization [45, sec. 12.2] to the integral
equation (2.26) using these nodes, to get our first block row

(2.31) A� C B� D 0;

where � D f�ig
N
iD1 is a vector of density values at the nodes, and A 2 RN�N has

entries

(2.32) Aij D �
1

2
ıij C

X
m1;m22f�1;0;1g

@G.xi ;xj Cm1e1 Cm2e2/

@nxi
wj ;

where ıij is the Kronecker delta. Here, for entries i D j the standard diagonal limit
of the kernel @G.xi ;xi /=@nxi D ��.xi /=4� is needed, where �.x/ is the signed
curvature at x 2 @�. The matrix B 2 RN�M has entries Bij D @�j .xi /=@nxi .

For the second block row (2.27)–(2.30) we use the above quadrature for the
source locations of the operators and enforce the four equations on the wall collo-
cation nodes xiL, xiL C e1, xiD , xiD C e2, i D 1; : : : ; m, to get

(2.33) C� CQ� D g;

with the macroscopic driving .p1; p2/ encoded by the right-hand side vector

(2.34) g D Œp11mI 0mIp21mI 0m� 2 R4m;

where 1m 2 Rm is the vector of ones. The matrix Q is precisely as in (2.19).
Rather than list formulae for all four blocks in C D ŒC1IC2IC3IC4�, we have

.C1/ij D
X

m22f�1;0;1g

�
G.xiL C e1;xj � e1 Cm2e2/

�G.xiL;xj C e1 Cm2e2/
�
wj ;

with the others filled analogously. Stacking the two block rows (2.31) and (2.33)
gives the .N C4m/� .N CM/ extended linear system (1.2), which we emphasize
is just a standard discretization of the BVP conditions (2.6)–(2.10).

For small problems (N less than a few thousand), the ELS is most simply solved
by standard dense direct methods; for larger problems a Schur complement must
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be taken in order to solve iteratively, as presented in Section 2.4. First we perform
a numerical test of the direct method.

2.3 Numerical Tests Using Direct Solution of the ELS
Example 1. We define a smooth “worm”-shaped inclusion that crosses the unit cell
walls L and R by x.t/ D .0:7 cos t; 0:15 sin t C 0:3 sin.1:4 cos t //. The solution
of the periodic Neumann Laplace BVP with external driving p D .1; 0/ is shown
in Figure 2.2(a). Here u is evaluated via (2.25) (using the standard far-field Nys-
tröm quadrature), both inside B (where it is accurate) and, to show the nature of
the representation, out to the proxy circle (where it is certainly inaccurate). Recall
that the proxy sources must represent the layer potentials due to the infinite lattice
of copies that excludes the 3 � 3 central block. Note that two tips of copies in this
set slightly penetrate the proxy circle, violating the condition in Theorem 2.3 that
the function the proxy sources represent be analytic in the closed ball of radius Rp.
We find in practice that such slight geometric violations do not lead to problem-
atic growth in k�k, but that larger violations can induce a large k�k, which limits
achievable accuracy. Panel (c) shows the convergence of errors in u (at the pair of
points shown) to their numerically converged value, fixing converged values forM
and m. Convergence to around 13 digits (for N D 140, M D 70) is apparent, and
the solution time is 0.03 second.

As an independent verification of the method, we construct a known solution
to a slightly generalized version of (2.5)–(2.10), where (2.6) is replaced by inho-
mogeneous data un D f and a general discrepancy g is allowed. We choose the
known solution

uex.x/ D
X

m1;m22f�2;�1;:::;2g

n0 � rG.x; y0 Cm1e1 Cm2e2/;

where the central dipole has direction n0 and location y0 chosen inside � and
far from its boundary (so that the induced data f is smooth). The grid size of
5�5 (some of which is shown by � symbols in Figure 2.2(a)) is chosen so that g is
sufficiently smooth (which requires at least 3�3), and so that the periodizing part �
is nontrivial. From uex the right-hand side functions f and g are then evaluated
at nodes, the ELS solved directly, the numerical solution (2.25) evaluated, and
the difference at two points compared to its known exact value. The resulting N -
convergence to 13 digits is shown in Figure 2.2(c). The convergence rate is slower
than before, due to the unavoidable closeness of the dipole source to @�.

Finally, the gray lines in panel (e) show that, as with Q, there is one singular
value of E that is much smaller than the others, reflecting the unit nullity of the
underlying BVP (Proposition 2.1). Also apparent is the fact that, despite the expo-
nential ill-conditioning, the solution norm remains bounded once M -convergence
has occurred.
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FIGURE 2.2. Periodic Laplace Neumann tests driven by external driv-
ing p D .1; 0/. (a) Solution potential u contours for “worm” inclusion
(Example 1), with N D 140, M D 70, and Rp D 1:4. The m D 22

nodes per wall and nodes on @� are also shown (with normals), proxy
points (red dots), test points (two black dots), and some of the 5� 5 grid
of dipoles generating a known solution (* symbols). The representation
for u is only accurate inside the unit cell. (b) Solution with K D 100

inclusions (Example 2), withNk D 400 unknowns per inclusion, by iter-
ative solution of (2.38). A single unit cell is shown. (c) N -convergence
of error in difference of u at the two test points, and of flux J1 computed
via (2.43), relative to their values at N D 230 (M D 70 is fixed), for
Example 1. Squares show error convergence in u (difference at the test
points) in the case of known uex due to the dipole grid. Solid lines are
for direct solution of the ELS, and dashed lines for the iterative solu-
tion of (2.38). (d) Convergence with Nk for Example 2, for pointwise u
(+ symbols) and flux J1 (circles). (e) M -convergence of flux J1 error,
for Example 1 (C signs) and Example 2 (squares), with other parame-
ters converged. For K D 1 the lowest six singular values of E are also
shown (gray lines), and the solution norm kŒ�I ��k2 (dots).
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2.4 Schur Complement System and Its Iterative Solution
When N is large, solving the ill-conditioned rectangular ELS (1.2) is imprac-

tical. We would like to use a Schur complement in the style of (1.3) to create an
equivalent N � N system, which we do in Section 2.4. Furthermore, in order to
use Krylov subspace iterative methods with known convergence rates, we would
like to remove the nullspace to make this well-conditioned, which we do in Sec-
tion 2.4. We will do both these tasks via low-rank perturbation of certain blocks of
(1.3) before applying the Schur complement.

In what follows,QC is the pseudoinverse [25, sec. 5.5] ofQ, i.e., the linear map
that recovers a small-norm solution (if one exists) to Q� D g via � D QCg. The
obstacle to using (1.3) as written is thatQ inherits a consistency condition from the
empty BVP so that Q has one smooth vector in its left nullspace (w ; see (2.21)).
However, the range of C does not respect this condition; thus QCC has a huge
2-norm (which we find numerically is at least 1016). We first need to show that
the range of a rank-deficient matrix Q may be enlarged by a rank-k perturbation,
a rectangular version of results about singular square matrices in [73].

LEMMA 2.9. Let Q 2 Rm�n have a k-dimensional nullspace. Let R 2 Rn�k

have full-rank projection onto NulQ, i.e., if N has columns forming a basis for
NulQ, then RTN 2 Rk�k is invertible. Let V 2 Rm�k be arbitrary. Then
Ran.QC VRT/ � RanQ˚ RanV ; i.e., the range now includes that of V .

PROOF. We need to check that .Q C VRT/x D Qx0 C V˛0 has a solution
x for all given pairs x0 2 Rn, ˛0 2 Rk . Recalling that RTN is invertible, by
substitution one may check that x D x0 C N.R

TN/�1.˛0 � R
Tx0/ is an explicit

such solution. �

Remark 2.10. With additional conditions m � n and the fact that V has full-
rank projection onto a part of NulQT (i.e., if W has columns forming a basis
for a k-dimensional subspace of NulQT, then W TV 2 Rk�k is invertible), we
get incidentally thatQCVRT has trivial nullspace (generalizing [73, sec. 3]). The
proof is as follows. Let x 2 Rn solve the homogeneous equation .QCVRT/x D 0.
Then 0 D W TQx D �.W TV /RTx, but W TV is invertible, so RTx D 0. Thus the
homogeneous equation becomes Qx D 0, which means there is an ˛ 2 Rk such
that x D N˛. Thus RTN˛ D 0, but RTN is invertible, so that ˛ D 0, so x D 0.

We also need the fact that a block-column operation allowsQ to be perturbed as
above while changing the ELS solution space in a known way. The proof is simple
to check.

PROPOSITION 2.11. Let A, B , C , and Q be matrices, and let P be a matrix with
as many rows as A has columns and as many columns as B has rows. Then the
pair .z�; �/ solves the block system

(2.35)
�
A B C AP

C QC CP

��
z�

�

�
D

�
0
g

�
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if and only if the pair .�; �/, with � D z� C P�, solves the original ELS (1.2).

An Equivalent Square System Preserving the Nullspace
Armed with the above, a method to “fold” the Neumann Laplace ELS into an

equivalent square system is as follows:
(1) Set the proxy coefficient vector R D .1=M/1M and the discrete density

vector H D 1N . Create low-rank perturbed matrix blocks zB WD B C

AHRT and zQ WD QC CHRT.
(2) Solve for the vector z� in the N �N Schur complement linear system

(2.36) .A � zB zQCC/z� D � zB zQCg:

More precisely, since (due to the numerical ill-conditioning in zQ) multi-
plying by zQC would lose accuracy due to rounding error, instead solve the
small systems zQX D C for X and zQy D g for y , heeding Remark 2.5.
From them, build A � zBX and � zBy , which are, respectively, the system
matrix and right-hand side for (2.36). This large square system may then
be solved iteratively (see Section 2.5).

(3) Recover the proxy coefficients via � D y �Xz�.
(4) Recover the density via � D z� CHRT�.

Note that in Step 1 the prefactor 1=M leads to correct quadrature scaling, so that
HRT has similar 2-norm to the other matrices (also recommended in [73]).

THEOREM 2.12. Let g encode the driving as in (2.34). Then for all sufficiently
large N , M , and m, any pair .�; �/ produced by the above procedure performed
in exact arithmetic solves the original ELS (1.2).

PROOF. By rotational invariance, a constant single-layer density on a circle gen-
erates a constant potential inside, and inserting R into (2.17) gives the periodic
trapezoid quadrature approximation to such a potential, thus generating discrep-
ancy near zero (in fact, exponentially small in M ). Thus for all sufficiently large
M , R is not orthogonal to NulQ. Applying Lemma 2.9 with k D 1 gives that
the range of zQ includes the discrepancy vector V D CH produced by the con-
stant density H . Thus, to show that the range of zQ includes all smooth vectors,
i.e., that it does not have the consistency condition (2.21), one needs to check that
wTV D wTCH ¤ 0, which is done in Lemma 2.13 below. Thus the systems
zQX D C and zQy D g are consistent for any C and g, so that the Schur comple-

ment is well-defined. Finally, Proposition 2.11, using the rank-1 matrix P D HRT,
insures that Step 4 recovers a solution to (1.2). �

For the missing technical lemma, we first need a form of Gauss’s law, stating
that for any density � on a curve @� the single-layer potential v D S@�� generates
flux equal to minus the total charge, i.e.,

(2.37)
Z
@K
vn D �

Z
@�

� ds
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where @K is the boundary of some open domain K containing @�. This may be
proved by combining the jump relation vCn � v

�
n D �� (from (2.23)) with the fact

that, since v is a Laplace solution in R2 n @�,
R
vn D 0 taken over the boundaries

of � and of K n�.

LEMMA 2.13. Let the matrix C be defined as in Section 2.2 and w be as in (2.20).
Then, for all N and m sufficiently large, wTC1N ¤ 0.

PROOF. Let d D Œd1I d2I d3I d4� be the discrepancy of the potential v D Snear
@�
�

for density � � 1. As used in the proof of Proposition 2.2, the flux (left-hand side
of (2.37)) out of the unit cell B equals

R
L d2 ds C

R
D d4 ds, which by (2.37) (and

noting that only one of the nine source terms in Snear
@�

lies within B) equals minus
the perimeter �

R
@� 1 ds D �j@�j < 0. What we seek is the discretization of this

statement about the PDE. If d is the discrepancy of v sampled at the wall nodes,
then its quadrature approximation is d � C1N , and so (as discussed above (2.20))
the quadrature approximation to

R
L d2 ds C

R
D d4 ds is wTd � wTC1N . Thus,

as N and m tend to infinity, the latter converges to �j@�j. �

Theorem 2.12 justifies rigorously one procedure to create a square system equiv-
alent to the ELS (1.2). However, by the equivalence in Proposition 2.11, the sys-
tem matrix A � zBX at the heart of the procedure is singular, as it inherits the unit
nullity of the ELS, which itself derives from the unit nullity of the Laplace Neu-
mann BVP. Since the convergence of iterative solvers for singular matrices is a
subtle matter [10], this motivates the following improved variant, which removes
the nullspace.

A Well-Conditioned Square System
The following simpler variant creates a nonsingular square system from the

ELS; its proof is more subtle. It is what we recommend for the iterative solution of
the periodic Neumann Laplace problem and test numerically:

(1) Set the constant proxy coefficient vector R D .1=M/1M , the constant
discrete density vector H D 1N , and zQ WD QC CHRT.

(2) Solve for the vector � in the N �N Schur complement linear system

(2.38) zAper� WD .A � B zQ
CC/� D �B zQCg;

where, as before, one solves the small systems zQX D C and zQy D g, to
build the large system matrix zAper D A � BX and right-hand side �By
for (2.38), which may then be solved iteratively (see Section 2.5).

(3) Recover the proxy coefficients via � D y �X�.

THEOREM 2.14. Let g encode the driving as in (2.34). Then for all N , M , and
m sufficiently large, the pair .�; �/ produced by the above procedure is unique and
solves the ELS (1.2) with residual of order the quadrature error on boundaries.
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PROOF. First note that (2.38) is the Schur complement of the perturbed ELS

(2.39)
�
A B

C QC CHRT

��
�

�

�
D

�
0

g

�
:

In particular, one may check that if � solves (2.38), then .�; �/, with � as in Step 3,
solves (2.39). Given such a solution .�; �/, define the potential generated by the
usual representation

v.x/ WD
X

m1;m22f�1;0;1g

NX
iD1

wiG.x;xi Cm1e1 Cm2e2/�i C

MX
jD1

�j�j .x/;

i.e., the quadrature approximation to (2.25). Note that C� C Q� then approx-
imates the discrepancy of v at the nodes on the unit cell walls. The first row
of (2.39) states that vn D 0 on @�, and since v is harmonic in B n �, the net
flux of v through @B is zero. This means that the discrepancy of v obeys the
same consistency condition as in Proposition 2.2, which when discretized on the
walls gives wT.C� C Q�/ D 0, where w is defined by (2.20). Subtracting this
from the second row of (2.39) left-multiplied by wT leaves only the expression
.wTCH/RT� D wTg. By Lemma 2.13, wTCH ¤ 0, and computation, wTg D 0.
Thus RT� D 0, so the pair also solves the original ELS (1.2). Thus Lemma 2.8
(strictly, its quadrature approximation) holds, so � is unique. �

In contrast to the previous section, the system (2.38) to be solved is well-condi-
tioned if the nonperiodic BIE matrixA is; the unit nullity of (1.2) has been removed
by imposing one extra condition RT� D 0.

We now test the above procedure for the Laplace Neumann periodic BVP of
Example 1 (Figure 2.2(a)). We solve (2.38) iteratively via GMRES with a relative
stopping residual tolerance of 10�14. In Step 2 we use linsolve as in Remark 2.5
and verify that the resulting norm kXk2 � 9 is not large. Figure 2.2(c) includes (as
dashed lines) the resulting self-convergence of u and of the flux J1 (computed as
in Section 2.6), with other parameters converged as before. The converged values
agree to around 10�13. Above 10�13, the errors are identical to those of the full
ELS. The condition number of zAper is 8.3, and the number of GMRES iterations
required was 12, both independent of N and M .

2.5 Multi-inclusion Examples and Close-to-Touching Geometries
Generalizing the above to K > 1 disjoint inclusions f�kgKkD1 in the unit cell is

largely a matter of bookkeeping. The representation (2.25) becomes a 3� 3 image
sum over single-layer potentials on each inclusion boundary,

(2.40) u D

KX
kD1

Snear
@�k

�k C

MX
jD1

�j�j with � WD f�kg:

In particular, the proxy representation is unchanged. Upon discretization using
Nk nodes on the kth inclusion boundary, with a total number of unknowns N WD
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kD1Nk , the A matrix now has a K � K block structure where the �1

2
identity

only appears in the diagonal blocks. For large N , to solve the resulting linear
system (2.38) iteratively via GMRES, one needs to apply zAper D A � BX to any
given vector �. We can perform this matrix-vector multiplication in O.N / time,
as follows. We apply the off-diagonal of A using the FMM with source charges
�jwj and the diagonal of A as discussed below (2.32). Then, having prestored B
and X , which needs O.MN/ memory, we compute the correction �B.X�/ using
two standard BLAS2 matrix-vector multiplications.

When curves come close (in practice, closer than 5h, where h is the local node
spacing [3, remark 6]), high accuracy demands replacing the native Nyström quad-
rature (2.32) with special quadrature formulae. Note that this does not add extra
unknowns. For this we use a variant of recently developed close-evaluation quadra-
tures for the periodic trapezoid rule with the Laplace single-layer potential [6]. In
particular, for barycentric evaluation of Cauchy integrals we use Helsing’s exterior
formula, and interpolation of the derivative, following remarks 2 and 3 in [6]; the
relevant code is Cau_closeglobal.m (see Remark 1.1). Exterior close evalua-
tions build upon this; the single-layer case needs an additional choice of an interior
point far from the source curve @�k , for which we use its centroid. For each of the
source curves for which a given target is within 5h, we subtract off the native con-
tribution from the above FMM evaluation and add in the special close evaluation
for that curve.

Remark 2.15 (Geometry generation). In all our remaining numerical examples ex-
cept Examples 4 and 6, we create random geometries with a large number K of
inclusions as follows. We generate polar curves of the form

r.�/ D s.1C a cos.w� C �//;

with � random, a uniformly random in Œ0; 0:5�, w randomly chosen from the set
f2; 3; 4; 5g, and s varying over a size ratio of 4. Starting with the largest s, we
add in such curves (translated to uniformly random locations in the unit cell), then
discard any that intersect. This is repeated in a sequence of decreasing s-values
until a total of K inclusions are generated. Finally, the s (size) of all inclusions
were multiplied by 0.97. This has the effect of making a random geometry with a
minimum relative closeness of around 3% of the radius (this is only approximate
since it depends on local slope r 0.�/). Helsing–Ojala [40] defines for circles a
closeness parameter fclup as the upper bound on the the circumference of the larger
circle divided by the minimum distance between the curves. If in their definition
one replaces circumference by 2� times the largest radius of a noncircular curve,
then in our geometry fclup � 200.

Example 2. With K D 100 inclusions generated as just described, and an external
driving p D .1; 0/, we use the well-conditioned iterative method from Section 2.4
and the Laplace FMM of Gimbutas–Greengard [24]. Figure 2.2(b) shows the so-
lution potential, and Figure 2.2(d) the self-convergence of the potential at a point
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FIGURE 2.3. Scaling of computation time per iteration, and iteration
counts, with K, the number of inclusions. In all four plots, we set
Nk D 256. (a) CPU time per iteration for the Laplace problem with
random star-shaped obstacles as in Figures 1.1 and (2.2)(b). (b) Number
of GMRES iterations to reach a relative residual of � D 10�14 for circles
with fclup D 10. (c) and (d) are the same as (a) and (b), but for the Stokes
problem.

and of the flux with respect to Nk . Both achieve at least 13 digits of absolute accu-
racy (the flux is of size around 0.2, so the relative accuracy is similar). At a fully
converged Nk D 400, the solution time was 445 seconds. Figure 2.2(e) shows the
convergence with respect toM , the number of proxy points: this confirms that this
convergence rate is at least as good as it is for K D 1. In other words, at least for a
square unit cell, the M required for close-to-machine accuracy is around 70, and,
as expected, is independent of the complexity of the geometry.

For this example, we verify linear complexity of the scheme in Figure 2.3(a) for
up to K D 104 inclusions (N D 2:56 � 106 total unknowns). In Figure 1.1, we
plot the solution for K D 104 inclusions and Nk D 700 (i.e., N D 7 � 106 total
unknowns). The solution requires 69 GMRES iterations and around 10 CPU hours.
The absolute flux error of 10�10 is estimated by convergence and comparison to
the solution with Nk D 1000. (The flux is again around 0.2, so relative error
is similar.) The code is found in the directory multiinclusion_Laplace (see
Remark 1.1).

Example 3. A natural question is how the complexity of the geometry affects the
number of GMRES iterations. To address this, we generate simpler random geome-
tries using K circles, again with random sizes of ratio up to 4, but with fclup D 10,
which means that curves are not very close to each other. Figure 2.3(b) shows that
the number of iterations grows very weakly, if at all, withK. The interesting ques-
tion of the impact of fclup on iteration count we leave as an open question. We note
that this has been studied in the nonperiodic case [40]; we would expect similar
results.

2.6 Computing the Effective Conductivity Tensor
An important task is to compute the effective conductivity � 2 R2�2, which

expresses how the mean flux depends on the driving. Let J WD .J1; J2/ be the
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mean flux, with components

(2.41) J1 WD

Z
L

un ds and J2 WD

Z
D

un ds;

and, recalling the pressure vector p D .p1; p2/, the conductivity tensor is defined
by Darcy’s law

(2.42) J D �p:

As is well-known [27,62], to extract the four elements of �, it is sufficient to solve
two BVPs (“cell problems”), one with p1 D 1; p2 D 0 (from which one may
read off �11 D J1 and �21 D J2), and the other with p1 D 0; p2 D 1 (and read
off �12 D J1 and �22 D J2). Note that � is symmetric [14, cor. 6.10]; hence
j�12 � �21j provides an independent gauge of numerical accuracy. Also note that
in the trivial case of no inclusions (i.e., uniform medium), the tensor takes the value
of the background conductivity � D I .

For large-scale problems, approximating the integrals (2.41) directly by quadra-
ture on the walls L and D is inconvenient, because, when inclusions intersect the
walls, this forces the integral to be broken into intervals and forces close-evaluation
quadratures to be used. One could deform the integration paths to avoid inclusions,
but finding such a smooth path is complicated and needs many quadrature nodes,
due to having to pass near inclusions. Instead, we propose the following method,
which pushes all interactions to the far field and thus requires only a fixed m � 20
target nodes per wall and no special quadratures.

PROPOSITION 2.16. Let u be represented by (2.25) and solve the BVP (2.5)–(2.10)
in B. Define v D S@�� . Then the horizontal flux in (2.41) can be written

J1 D
X

m12f�1;0;1g

.m1 C 2/

�Z
UCm1e1Ce2

vn ds �

Z
DCm1e1�e2

vn ds

�

C 3
X

m22f�1;0;1g

Z
RCe1Cm2e2

vn ds C

Z
L

MX
jD1

@�j

@n
�j ds:

(2.43)

The flux integrals involving v are on the distant walls of the 3 � 3 “super-
cell,” with locations and weights shown in Figure 2.4(c). The final term involves
a smooth integrand on the original wall L. A similar far-field formula for J2
is achieved by reflection through the line x1 D x2, with weights shown in Fig-
ure 2.4(d).

PROOF. Substituting (2.25) into J1 in (2.41) involves a 3 � 3 sum over density
sources (Figure 2.4(a)), which by translational invariance we reinterpret as a sum
over displaced target copies as in panel (b). These nine copies of L form three
continuous vertical walls. Since v is harmonic in R2 n�, then

R
� vn D 0 for any

closed curve � that does not enclose or touch @�. However, since un D 0 on
@� and u � v is harmonic in a neighborhood of �, this also holds if � encloses
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FIGURE 2.4. Efficient evaluation of fluxes .J1; J2/ using far-field in-
terations alone. (a) Nine terms in L wall integral in J1 from the 3 � 3
layer potential image sum in (2.25). (b) Re-interpretation as a sum over
targets (nine copies of L) for the potential v. The red dotted line shows
the closure of the boundary where flux conservation is applied. (c) Re-
sulting weights of the flux integrals of v on nine wall segments; note all
are distant from @�. (d) The wall weights for J2.

@�. Thus the flux through each length-3 vertical wall is equal to the flux through
its closure to the right along the dotted contour shown in panel (b). Summing
these three contour closures, with appropriate normal senses, gives the weights in
panel (c), i.e., (2.43). One may check that the result is unaffected by intersections
of @� with the original unit cell walls. �

We have tested that this formula matches the naive quadrature of (2.41) when
@� is far from L. For Example 1, Figure 2.2(c) and (d) include convergence plots
for the flux J1 as computed by (2.43), showing that it converges at least as fast
as do pointwise potential values. For the parameters of panel (a) we find that
j�12 � �21j D 6 � 10

�14, indicating high accuracy of the computed tensor.

3 The Case of Conducting Inclusions
The above section generalizes easily to the case where the inclusions have nonzero

conductivity � ; as before, without loss of generality, the background medium is as-
signed unit conductivity. This replaces the pair (2.5)–(2.6) by

�u D 0 in B n @�;(3.1)
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c � N iters. time �calc �H94 �H17 rel. diff.

100 100 200 56 0.8 s 35.95764629703 35.957646297 35.95764629705 3� 10�13

100 1000 200 93 0.8 s 164.1473079002 164.14730790 164.1473079006 2� 10�12

1000 100 200 81 0.8 s 36.67257761067 36.672577611 36.67257761078 3� 10�12

1000 1000 300 187 2.6 s 243.00597811 243.005978 243.0059781329 8� 10�11

TABLE 3.1. Validation of the effective conductivity of an infinite unit
square array of discs with radius r D 1

2

p
1 � c�2 and conductiv-

ity � within a background conductivity of 1 (Example 4). The well-
conditioned Schur system of (2.38) was used, with the matrix A given
by (2.32) with the factor �1=2 replaced by 1=�. GMRES with a rela-
tive tolerance of 10�14 was used, although stagnation at up to 4 digits
worse than this occurred. �calc shows the results. �H94 shows published
results in [35, table 2]; �H17 shows results using a slight variant of the
code demo14b.m due to Helsing [37, sec. 21.2]. The last column shows
the relative differences j�calc � �H17j=�H17.

uC � u� D 0 on @�;(3.2)

uCn � �u
�
n D 0 on @�;(3.3)

where the superscriptsC and � denote exterior and interior limits, respectively, as
in (2.23). Following [27] we keep the standard single-layer representation (2.25);
however, this representation now acquires physical meaning both inside and out-
side the inclusion. This, plus the continuity of the single-layer potential across
@� [45, chap. 6], means that (3.1)–(3.2) are already satisfied, leaving (3.3) as the
only remaining equation. Inserting into this the jump relation (2.23) and simplify-
ing gives

(3.4)
�
1

2�
CD

near;T
@�;@�

�
� C

MX
jD1

�j
@�j

@n

ˇ̌̌̌
@�

D 0;

where � WD .� � 1/=.� C 1/ is a contrast parameter. This equation differs from
(2.26) only in the prefactor of the identity term, and becomes identical in the in-
sulating case � D 0. Thus, in the discretized matrix A of (2.32) the factor �1=2
becomes 1=�, but no other aspect of the scheme of Section 2 changes.

Example 4. The effective conductivity of an infinite square array of conducting
discs of radius r is a standard test case. Only a single driving p D .1; 0/ need be
applied, because � is a multiple of the identity. The more challenging cases are
when the gap 1 � 2r is very small and � is large [60]. In Table 3.1 we validate
against four such results published by Helsing [35, table 2], also against recompu-
tation with Helsing’s recent RCIP method [37]. Both of these methods use lattice
sums to periodize. Radius is controlled by a parameter c D .1 � 4r2/�1=2; for
c D 1000 the gap is 5 � 10�7 (i.e., fclup � 107). We are still able to efficiently
exploit the periodic trapezoid rule by combining the close-evaluation quadratures
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discussed in Section 2.5 with a geometrically graded parametrization of the circle,

(3.5) x.t/ D .r cos �.t/; r sin �.t// where � 0.t/ D ˛ cosh.ˇ sin 2t/;

which bunches quadrature points by a factor of order eˇ around the four close-to-
touching regions. We fix ˇ D �1

2
log.1 � 2r/, based on theory [60] implying that

� is smooth on scales as large as .1 � 2r/1=2. The constant ˛ in (3.5) is evalu-
ated numerically by enforcing

R 2�
0 � 0.t/dt D 2� . This simple reparametrization

achieves a similar effect as adaptively refined panel quadratures (which would be
preferable in more general geometries). As evident in the table, a very small N
may thus be used, while still matching all published digits of the lattice-sum based
results in [35, table 2], and matching to 10–12 digits values found with the more
involved panel-based RCIP method.

Since the main point of Example 4 is to validate the periodizing scheme, we
do not push to more extreme closeness (higher c). Nor do we use integral for-
mulations such as [39, eq. (9)] or [37, eq. (90)] better suited to large � ; perhaps
doing so would reduce our iteration count to near the 10 or 11 needed by Helsing’s
RCIP method. CPU times are quoted for a laptop with an i7-7700HQ processor
at 2.8 GHz, running the code tbl_discarray_effcond.m (see Remark 1.1).
They are dominated by a rather crude O.N 3/MATLAB® implementation of close-
evaluation quadratures for filling A; they could be much reduced.

4 The No-Slip Stokes Flow Case
We move to our second BVP, that of viscous flow through a periodic lattice

of inclusions with no-slip boundary conditions. We follow the normalization and
some of the notation of [41, sec. 2.2, 2.3]. Let the constant � > 0 be the fluid vis-
cosity. The periodic BVP is to solve for a velocity field u and pressure p function
satisfying

���uCrp D 0 in R2 n�ƒ;(4.1)

r � u D 0 in R2 n�ƒ;(4.2)

u D 0 on @�ƒ;(4.3)

u.xC e1/ D u.xC e2/ D u.x/ for all x 2 R2 n�ƒ;(4.4)

p.xC e1/ � p.x/ D p1 for all x 2 R2 n�ƒ;(4.5)

p.xC e2/ � p.x/ D p2 for all x 2 R2 n�ƒ:(4.6)

The first two are Stokes equations, expressing local force balance and incompress-
ibility, respectively. The third is the no-slip condition, and the remainder express
that the flow is periodic and the pressure periodic up to the given macroscopic
pressure driving .p1; p2/.
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We recall some basic definitions. Given a pair .u; p/ the Cauchy stress tensor
field has entries

(4.7) �ij .u; p/ WD �ıijp C �.@iuj C @jui /; i; j D 1; 2:

The hydrodynamic traction T (force vector per unit length that a boundary surface
with outwards unit normal n applies to the fluid), also known as the Neumann data,
has components

(4.8) Ti .u; p/ WD �ij .u; p/nj D �pni C �.@iuj C @jui /nj ;

where here and below the Einstein convention of summation over repeated indices
is used. We first show that the BVP has a one-dimensional nullspace.

PROPOSITION 4.1. For each .p1; p2/ the solution .u; p/ to (4.1)–(4.6) is unique
up to an additive constant in p.

PROOF. The proof parallels that of Proposition 2.1. Given any function pairs
.u; p/ and .v ; q/, Green’s first identity on a domain K is [49, p. 53]

(4.9)
Z
K
.��ui�@ip/vi D �

�

2

Z
K
.@iujC@jui /.@ivjC@j vi /C

Z
@K
Ti .u; p/vi :

Now let .u; p/ be the difference between two BVP solutions, and set v D u and
K D B n� in (4.9). The left-hand side vanishes due to (4.1), the @� boundary
term vanishes due to (4.3), and the unit cell wall terms vanish by u periodicity,
leaving only

R
Bn�

P2
i;jD1.@iuj C @jui /

2 D 0. Thus u has zero stress, i.e., is a
rigid motion, so, by (4.3), u � 0. Thus, by (4.1), and because p has no pressure
drop, p is constant. �

Since, for Stokes, the Cauchy data is .u;T / [41, sec. 2.3], the BVP (4.1)–(4.6)
is equivalent to the BVP on a single unit cell,

���uCrp D 0 in B n�;(4.10)

r � u D 0 in B n�;(4.11)

u D 0 on @�;(4.12)
uR � uL D 0(4.13)

T .u; p/R � T .u; p/L D p1n(4.14)
uU � uD D 0(4.15)

T .u; p/U � T .u; p/D D p2n;(4.16)

where the normal n has the direction and sense for the appropriate wall as in Fig-
ure 1.3(a). Discrepancy will refer to the stack of the four vector functions on the
left-hand side of (4.13)–(4.16).
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4.1 The Stokes Empty Unit Cell Discrepancy BVP
Proceeding as with Laplace, one must first understand the empty unit cell BVP

with given discrepancy data g WD Œg1Ig2Ig3Ig4�, which is to find a pair .v ; q/
solving

���v Crq D 0 in B;(4.17)
r � v D 0 in B;(4.18)

vR � vL D g1;(4.19)

T .v ; q/R � T .v ; q/L D g2;(4.20)
vU � vD D g3;(4.21)

T .v ; q/U � T .v ; q/D D g4;(4.22)

This BVP has three consistency conditions and three nullspace dimensions, as fol-
lows:2

PROPOSITION 4.2. A solution .v ; q/ to (4.17)–(4.22) exists if and only ifZ
L

g2 ds C

Z
D

g4 ds D 0 (zero net force) and(4.23) Z
L

n � g1 ds C

Z
D

n � g3 ds D 0 (volume conservation),(4.24)

and then is unique up to translational flow and additive pressure constants; i.e., the
solution space is .v C c; q C c/ for .c; c/ 2 R3.

PROOF. Noting that (4.9), with .u; p/ and .v ; q/ swapped, holds for all constant
flows u shows that

R
@K T .v ; q/ D 0; setting K D B gives (4.23). (4.24) follows

from the divergence theorem and (4.18). The proof of Proposition 4.1 shows that
the nullspace is no larger than constant p and rigid motions for v , but it is easy to
check that rotation is excluded due to its effect on g1 and g3. �

We solve this Stokes empty BVP in an entirely analogous fashion to Laplace,
namely via an MFS representation with sources yj as in (2.17), but now with
vector-valued coefficients. For x 2 B,

v.x/ �

MX
jD1

�j .x/�j ; �j .x/ WD G.x; yj /;(4.25)

q.x/ �

MX
jD1

�
p
j .x/ � �j ; �

p
j .x/ WD G

p.x; yj /;(4.26)

2 Note that, although three is also the nullity of the 2D Stokes interior Neumann BVP [41, table
2.3.3], both nullspace and consistency conditions differ from that case.
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where the velocity fundamental solution (stokeslet or single-layer kernel) is the
tensor G.x; y/ with components

(4.27)
Gij .x; y/ D

1

4��

�
ıij log

1

r
C
rirj

r2

�
;

i; j D 1; 2; r WD x � y ; r WD krk:

and the single-layer pressure kernel is the vector Gp with components

(4.28) G
p
j .x; y/ D

1

2�

rj

r2
; j D 1; 2:

We will also need the single-layer traction kernel Gt with components (applying
(4.8) to the above),

Gt
ik.x; y/ D �ij .G�;k. � ; y/; G

p
k
. � ; y//.x/nx

j

D �
1

�

rirk

r2
r � nx

r2
; i; k D 1; 2;

(4.29)

where the target x is assumed to be on a surface with normal nx.
The generalization of the linear system from (scalar) Laplace to (vector) Stokes

is routine bookkeeping, which we now outline. The MFS coefficient vector � WD
f�j g

M
jD1 has 2M unknowns, which we order with the M 1-components followed

by the M 2-components. Discretizing (4.19)–(4.22) on m collocation nodes per
wall, as in Section 2.1, gives Q� D g as in (2.19), with discrepancy vector g 2
R8m. We choose to order each of the four blocks in g with all m 1-components
followed by m 2-components. As before, Q D ŒQ1IQ2IQ3IQ4� with each Qk
split into 2�2 sub-blocks based on the 1- and 2-components. For instance, writing
�klj , k; l D 1; 2, for the four components of the basis function �j in (4.25), then
the R-L velocity block is

Q1 D

"
Q111 Q211

Q121 Q221

#
;

with each sub-block having entries .Qkl1 /ij D �
kl
j .xiLC e1/��

kl
j .xiL/. The R-

L traction blockQ2 has sub-blocks .Qkl2 /ij D G
t
kl
.xiLCe1; yj /�G

t
kl
.xiL; yj /,

where it is implied that the target normal is on L. The other two blocks are similar.
In Figure 2.1(c) we show the convergence of the solution error produced by

numerical solution of the Stokes version of (2.19) (again, see Remark 2.5). The
results are almost identical to the Laplace case in Figure 2.1(b), converging to 15-
digit accuracy with a similar exponential rate; keep in mind that now there are
2M unknowns rather than M . Note that we do not know of a Stokes version of
Theorem 2.3. Figure 2.1(c) also shows that three singular values decay faster than
the others, as expected from Proposition 4.1.
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Finally, the discretization of the consistency conditions in Proposition 4.1 is the
statement that

(4.30) W TQ � 03�2M ;

where 0m�n is the m � n zero matrix, and the weight matrix W (the analogue of
(2.20)) is

(4.31) W D

24 0 0 wT
L 0 0 0 wT

D 0

0 0 0 wT
L 0 0 0 wT

L
wT
L 0 0 0 0 wT

D 0 0

35T

2 R8m�3:

4.2 Integral Representation and the Stokes ELS
In contrast to the Laplace problem, we are now solving a Dirichlet BVP, which

suggests a pure double-layer representation on inclusion boundaries. However,
this would lead to a 3D nullspace for each inclusion, associated with its comple-
mentary interior Neumann BVP [41, table 2.3.3]. We remove this nullspace via a
“compound” or mixed double-layer formulation, namely an admixture of double-
and single-layers [34, thm. 2.1] [67, p. 128]; this avoids the use of extra interior
stokeslet degrees of freedom that can add O.K3/ work for K inclusions [26].

For convenience we define the 2D Stokes layer potentials. Given a vector-valued
density � D .�1; �2/ on @�, the Stokes single-layer potential generates (via (4.27)
and (4.28)) velocity and pressure:

u.x/ D .S��/.x/ WD

Z
�

G.x; y/�.y/dsy ;

p.x/ D .Sp
��/.x/ WD

Z
�

Gp.x; y/�.y/dsy :

(4.32)

Using ny to denote the source normal, the Stokes double-layer velocity potential is

(4.33)
u.x/ D .D��/.x/ WD

Z
�

D.x; y/�.y/dsy ;

Dij .x; y/ D
1

�

rirj

r2
r � ny

r2
; i; j D 1; 2;

a kernel that is the negative transpose of (4.29), and the associated pressure

(4.34)

p.x/ D
�
Dp
��
�
.x/ WD

Z
�

Dp.x; y/�.y/dsy ;

D
p
j .x; y/ D

�

�

�
�
n

y
j

r2
C 2r � ny rj

r4

�
:

The Stokes analogue of the boundary integral operator (2.24) is the single-layer
traction

(4.35)
�
DT
� 0;��

�
.x/ WD

Z
�

Gt.x; y/�.y/dsy ; x 2 � 0;
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FIGURE 4.1. Periodic Stokes flow tests with applied pressure drop p D
.1; 0/. (a) Solution velocity u (arrows) and pressure p (contours) for
Example 5 (same geometry as Figure 2.2(a)), with N D 150, M D 70,
and Rp D 1:4. A single unit cell is shown, and the m D 22 nodes per
wall are shown as dots. (b) Flow speed juj for K D 100 inclusions
per unit cell, using iterative solution of (4.44) (Example 7; geometry
identical to Figure 2.2(b)). (c) N -convergence of u error (with M D 70
fixed) at the same test points as in Figure 2.2(a), and of flux J1 (see the
end of Section 4.2), relative to their values at N D 230 (Example 5).
Squares show error convergence in u in the case of known uex due to a
stokeslet grid. Solid lines are for direct solution of the ELS, and dashed
lines for the iterative solution of (4.44). (d) Convergence with Nk for
K D 100 inclusions per unit cell (Example 7). Errors in velocity (+
signs) and flux J1 (circles) are shown, estimated relative to their values
at Nk D 400.
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which uses (4.29). Finally, the hypersingular double-layer traction operator is
needed,

(4.36) .T� 0;��/.x/ WD

Z
�

Dt.x; y/�.y/dsy ; x 2 � 0;

whose kernel is computed by inserting (4.33) and (4.34) into (4.8) and simplifying
to get (e.g., [55, (5.27)]),

Dt
ik D

�

�

��
ny � nx

r2
� 8dxdy

�
rirk

r2

C dxdyıik C
nx
i n

y
k

r2
C dx

rkn
y
i

r2
C dy

rin
x
k

r2

�(4.37)

where for conciseness we defined the target and source “dipole functions,” respec-
tively,

dx D dx.x; y/ WD .r � n
x/=r2; dy D dy.x; y/ WD .r � n

y/=r2:

The Stokes jump relations [49, sec. 3.2] are identical to the usual Laplace ones
(2.23) with the potential taken to be velocity potential, and the normal derivative
replaced by the traction. In short, the single-layer velocity and double-layer trac-
tions are continuous, whereas the single-layer traction jump is minus the density,
and the double-layer velocity jump is the density itself.

Armed with the above, our representation for the solution .u; p/ in B n� is the
mixed formulation,

(4.38) u D
�
Dnear
@� CSnear

@�

�
�C

MX
jD1

�j �j ; p D
�
Dp,near
@�
CSp,near

@�

�
�C

MX
jD1

�
p
j ��j ;

where “near” denotes 3 � 3 image sums as in (2.25). With this choice made, the
continuous form of the ELS is similar to (2.26)–(2.30). The first block is, applying
the exterior jump relation to (4.12),

(4.39)
�
�
1

2
CDnear

@�;@� C S
near
@�;@�

�
� C

MX
jD1

�j j@��j D 0:

Rather than list all second subblocks, we note that they are simply (2.27)–(2.30)
with S replaced by D C S , DT replaced by T C DT, and @�j .x/=@n replaced
by the basis traction, which has kernel Gt

lk
.x; yj /. Finally, the pressure driving

.p1; p2/ is encoded by the discrete right-hand side

(4.40) g D Œ0I 0Ip11mI 0I 0I 0I 0Ip21m� 2 R8m;

so that the ELS has, as for Laplace, the form (1.2).
This mixed formulation allows an analogue of Lemma 2.8: the Stokes ELS

nullspace is spanned by �.

LEMMA 4.3. In the solution to the Stokes ELS (i.e., (4.39) plus the Stokes version
of (2.27)–(2.30) described above), � is unique.
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PROOF. The proof parallels that of Lemma 2.8, but adapts the 2D version of the
proof of [34, thm. 2.1] for the interior uniqueness step. Let vC and v� denote the
exterior and interior limits, respectively, of v on @�, and TC and T� be the same
limits of T .v ; q/. If .�; �/ is the difference between any two ELS solutions, let
.v ; q/ be given by the representation (4.38) both in B n� and inside �. Thus, by
Proposition 4.1, v � 0, and q D c, some constant, and TC D �cn. The jump
relations for D C S then give v� D � and T� D �cn � �. Thus in �, .v ; q/ is
a Stokes solution with Robin (impedance) data, v� C T� D �cn. Applying (4.9)
with u D v and K D � gives 0 D �.�=2/

R
�.@ivj C @j vi /

2 C c
R
@� n � v

� �R
@� kv

�k2. However by incompressibility
R
@� n � v

� D 0, and the two remaining
nonpositive terms have the same sign, so must both vanish. Hence v � 0 in �. By
the double-layer jump relation, � D vC � v�, both of which have been shown to
vanish, thus � � 0. �

The filling of the discrete .2NC8m/�.2NC2M/ ELS is now routine, being as
in Section 2.2, apart from vector bookkeeping, and the following two details.

(i) For the discretization of D@�;@� with kernel (4.33), the diagonal limit
at node xk is Dij .xk;xk/ D .��.xk/=2�/ti .xk/tj .xk/ where .t1; t2/ are the
components of the unit tangent vector on @�.

(ii) The kernel of S@�;@� has a logarithmic singularity on the diagonal, so
the plain Nyström rule cannot be used. However, there exist several high-order
discretizations for such a kernel [2,33,45]; when theN per inclusion is not large we
prefer the spectral product quadrature due to Martensen, Kussmaul, and Kress [45,
chap. 12.3] [33, sec. 6.2].

We provide an implementation of the above kernel quadratures in StoSLP.m
and StoDLP.m, and of filling the ELS in fig_stoconvK1.m; see Remark 1.1.

Example 5. We illustrate the above with results obtained via a simple dense direct
solve of the ELS, for the periodic “worm” geometry from Example 1, with no-slip
boundary conditions, pressure driving p D .1; 0/, and � D 0:7. Figure 4.1(a)
shows the resulting flow u and pressure p. Here we evaluated u using the close-
evaluation quadratures from [6], and p using similar formulae, to provide spectral
accuracy even up to the curve. As expected from Proposition 4.1, the ELS exhibits
unit numerical nullity: the Stokes version of Figure 2.2(e) is very similar, and we do
not show it. Figure 4.1(c) shows the pointwise convergence in u and is consistent
with exponential convergence down to 13-digit accuracy. For a known solution
produced by stokeslets on the same grid as in Section 2.3, convergence stops at
around 12 digits.

Rapid convergence of the flux J1 is also shown in Figure 4.1(c), reaching 13-
digit accuracy at only N D 100. Here, flux is evaluated using the Stokes version
of (2.43), which replaces the representation S by D C S and replaces @=@n by n�,
and in the proof replaces the zero-flux condition by incompressibility.
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4.3 Schur Complement Systems for Stokes
Having filled the Stokes version of the ELS (1.2), we would like to eliminate the

periodizing unknowns �j to leave a 2N �2N system that can be solved iteratively.

An Equivalent Square System Preserving the Nullspace
It is possible to build such a system that preserves the rank-3 nullity using ex-

actly the recipe in Section 2.4. For this we need only two ingredients: (i) H must
be a stack of three densities so that CH enlarges the range of zQ to include all
smooth vectors, and (ii) R must be a stack of three proxy coefficient vectors with
full-rank projection onto NulQ.

We first need the Stokes version of the technical lemma. For Stokes there are two
types of Gauss’s law. Let v D S@�� CD@�� be a velocity potential with arbitrary
densities � and � on a curve @�, with associated pressure q D Sp

@�
� C Dp

@�
�.

Then,

(4.41)
�

Z
@K

T .v ; q/ D

Z
@�

� ds (net force);Z
@K

v � n D

Z
@�

� � n ds (net flux);

where @K is the boundary of some open domain K containing @�. The proofs of
both are similar to that of (2.37), summing over the boundaries of � and of K n�
to get the left-side integral. For the first law one uses the single-layer traction jump
relation, and, for the second, the double-layer velocity jump relation [49, pp. 57–
58].

Remark 4.4. The second law of (4.41) implies that the net fluid flux through the
boundary of K is generally nonzero, i.e., that the Stokes double-layer velocity po-
tential on the enclosed curve does not generally conserve fluid volume. This sur-
prising fact we did not find stated in standard literature.

Now, for H we can choose densities that, when used with our D C S represen-
tation, generate net force in the 1-direction, in the 2-direction, and break volume
conservation, respectively:

(4.42) H D
�
h.1/ h.2/ h.3/

�
D

�
1N 0N fn

xi

1 g
N
iD1

0N 1N fn
xi

2 g
N
iD1

�
;

where in the columns of the matrix we use “nodes fast, components slow” ordering,
and recall that the normals live on the nodes of @�. Next we show that CH has
full-rank projection onto RanW .

LEMMA 4.5. GivenH in (4.42),W in (4.31), and C the Stokes discrepancy matrix
filled as in Section 4.2, then the 3 � 3 matrix W TCH is diagonal, and, for all N
and m sufficiently large, invertible.

PROOF. The proof parallels that of Lemma 2.13. For instance, setting v D

.Snear
@�
C Dnear

@�
/h.1/ and using (4.41) we see the discrepancy has net force j@�j in
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the 1-direction only, and since
R
@� n D 0 the discrepancy is volume conserving.

Discretizing shows that the first column of W TCH converges (in m and N ) to
Œ�j@�j 0 0�T. Similar steps apply to the other two columns, showing that the
matrix in fact converges, up to signs, to j@�j times the 3 � 3 identity. �

For R we choose the three analogous scaled coefficient vectors on the proxy
circle:

(4.43) R D
�
r.1/ r.2/ r.3/

�
D

1

M

"
1M 0M fcos 2�j=M gMjD1
0M 1M fsin 2�j=M gMjD1

#
:

Reasoning as in the start of the proof of Theorem 2.12, the three (linearly inde-
pendent) columns of R are exponentially close to generating constant flow in the
1-direction, the 2-direction, and constant pressure, respectively, which, according
to Proposition 4.2, fall into NulQ.

Given the above statements about H and R, Theorem 2.12 holds for the Stokes
version of the procedure of Section 2.4; in its proof one need only change w to the
W of (4.31). Because of the unit nullity of the Stokes ELS, this would result in a
rank-1 deficient square system matrix.

A Well-Conditioned Square Stokes System
To remove this nullspace, it is tempting to take the obvious Stokes generaliza-

tion of Section 2.4, leaving the B block unperturbed as in (2.39). However, this
fails (the solution having constant, but incorrect, pressure drops) because W Tg D
Œp1Ip2I 0� ¤ 03. However, since only one nullspace dimension needs to be re-
moved, and this nullspace is common to the empty unit cell BVP, this suggests a
hybrid where the perturbation of B involves only the remaining two dimensions.
This indeed leads to a well-conditioned square system:

(1) Set H as in (4.42) and R as in (4.43), then set zQ WD Q C CHRT and
yB WD B C AP12, where P12 WD Œh.1/ h.2/�Œr.1/ r.2/�T involves the two

force (but not the one pressure) perturbations.
(2) Solve for the vector y� in the 2N � 2N Schur complement linear system

(4.44) yApery� WD .A � yB zQ
CC/y� D � yB zQCg;

where, as before, one solves the small systems zQX D C and zQy D g to
build the large system matrix yAper D A � yBX and right-hand side � yBy
for (4.44), which may then be solved iteratively.

(3) Recover the proxy coefficients via � D y �Xy�.
(4) Recover the density via � D y� C P12�.

THEOREM 4.6. Let g encode the pressure driving as in (4.40). Then for all N ,M ,
andm sufficiently large, the pair .�; �/ produced by the above procedure is unique
and solves the Stokes version of the ELS (1.2) with residual of order the quadrature
error on boundaries.

This is a Stokes analogue of Theorem 2.14, and its proof structure is similar.
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PROOF. (4.44) is the Schur complement of the perturbed ELS

(4.45)
�
A B C AP12
C QC CHRT

��
y�

�

�
D

�
0

g

�
;

so that if y� solves (4.44) then .y�; �/, with � as in Step 3, solves (4.45). Applying
Step 4, one may check that the pair .�; �/ then solves a rank-1 perturbed system
similar to (2.39),

(4.46)

"
A B

C QC Ch.3/r.3/
T

#�
�

�

�
D

�
0

g

�
:

From this pair, define v as the resulting quadrature approximation to the velocity
potential (4.38), namely,

v.x/ WD
X

m1;m22f�1;0;1g

NX
iD1

wi
�
D.x;xi Cm1e1 Cm2e2/

CG.x;xi Cm1e1 Cm2e2/
�
�i

C

MX
jD1

�j .x/�j :

Since it matches that of the ELS, the first row of (4.46) implies that v j@� D 0.
Thus

R
@� v � n D 0 and, by volume conservation in B n�, the discrepancy of

.v ; q/ obeys (4.24), whose discretization is w.3/T.C� C Q�/ D 0, where w.3/

is the third column of (4.31). Subtracting this from the second row of (4.46) left-
multiplied by w.3/T leaves .w.3/TCh.3//r.3/

T
� D w.3/Tg. Lemma 4.5 implies

that w.3/TCh.3/ ¤ 0, and by computation w.3/Tg D 0. Thus r.3/
T
� D 0, so the

pair also solves the ELS. Thus Lemma 4.3 holds, so � is unique. �

We expect (4.44) to be well-conditioned if A is, since the unit nullity has been
removed by enforcing one extra condition r.3/

T
� D 0. In contrast to Laplace, here

the rank-3 nullity of the empty BVP demands a hybrid scheme which “segregates”
the other two conditions.

We test this scheme returning to Example 5 (Figure 4.1). Panel (c) includes (as
dotted lines) the convergence using the above recipe, using GMRES with tolerance
10�14. The convergence is almost identical to that of the direct ELS solution, and
the converged values differ by around 2 � 10�14. The condition number of yAper
is 82.7, independent of N and M , and the number of GMRES iterations varied
between 25 and 30.

4.4 More Challenging Numerical Tests for Stokes
We now validate the above periodic Stokes scheme against a known test case,

and in geometries with large numbers of inclusions.
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c (vol. frac.) N iters. time est. rel. err. Dcalc DGK

0.05 60 5 0.02 s 8 � 10�15 15.5578223189024 15.5578
0.1 60 7 0.03 s 3 � 10�14 24.831675248849 24.8317
0.2 60 8 0.02 s 3 � 10�14 51.526948961799 51.5269
0.3 100 10 0.02 s 1 � 10�13 102.88130367005 102.881
0.4 150 10 0.03 s 1 � 10�13 217.89431472214 217.894
0.5 150 12 0.03 s 9 � 10�13 5:325481184633 � 102 5:32548 � 102

0.6 300 13 0.08 s 1 � 10�12 1:763573112520 � 103 1:76357 � 103

0.7 400 20 0.14 s 7 � 10�11 1:35191501298 � 104 1:35193 � 104

0.75 500 28 0.22 s 2 � 10�10 1:2753159105 � 105 1:27543 � 105

0.76 600 32 0.31 s 1 � 10�9 2:948165200 � 105 2:94878 � 105

0.77 700 44 0.42 s 7 � 10�9 1:03826971 � 106 1:03903 � 106

0.78 1300 64 1.5 s 6 � 10�8 1:4379206 � 107 —

TABLE 4.1. Computation of the 2D viscous Stokes drag of an infinite
square array of no-slip discs of various volume fractions c (Example 6).
The well-conditioned Schur system of (4.44) was used. Dcalc shows the
dimensionless drag results. Relative errors were estimated by conver-
gence (comparing each against three N values larger than shown, and
increasing M ). The last column DGK shows for comparison the numeri-
cal findings of [26, table 1, column 5].

Example 6. The effective permeability of the no-slip flow around an infinite square
lattice of discs is a standard test case. Only one pressure drop p D .1; 0/ need
be solved, since the permeability tensor is a multiple of the identity. The dimen-
sionless drag is then related to the permeability �11 by D D 1=.��11/. We com-
puted this for a list of volume fractions c D �r2 including those of Greengard–
Kropinski [26] (note that to match the literature, the definition of c has changed
from Example 4). We used the graded circle parametrization (3.5) with N chosen
by convergence studies. As c approaches �=4, the discs come closer, the solution
density becomes more peaked, and the required N grows. At the most extreme
case of c D 0:78, the gap is 3 � 10�3 (i.e., fclup � 1800). Since the gap is much
larger than in Example 4, we were able to use the plain far-field Nyström rule for
filling A. (We found that, in this setting, close-evaluation quadratures [6] were
slower, and around one digit less accurate.) At large c theN values needed are still
smaller than in [26, table 1]. We used GMRES with � D 10�14 and dense matrix-
vector multiplication, and find similar numbers of iterations as in [26]. CPU times
are quoted for a laptop with an i7-7700HQ processor at 2.8 GHz, running the code
tbl_discarray_drag.m (see Remark 1.1).

Our results are given in Table 4.1. For validation we include in the last column
the numerical findings from [26, table 1], which were quoted to 6 digits, and in
turn validated against prior less accurate results [71]. For c � 0:6, our results
match the 6 digits quoted in [26, table 1], but above this the match deteriorates,
reaching only 3 digits at their most challenging case c D 0:77 (we believe that
their nonmatching digits are incorrect). ForN values larger than shown, our results
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fluctuate only at the estimated error levels shown; thus we are confident that our
scheme reaches around 14 digits of accuracy for the smaller c values, dropping to 7
digits at c D 0:78. This loss of accuracy cannot be explained by condition number
alone, since the latter reaches only 104 at c D 0:78. Further work is needed to
ascertain whether this loss is controlled by an underlying condition number of the
BVP (and hence impossible to improve upon in double-precision arithmetic), or if
a different representation or quadrature, analogous to [37], could reduce the error.

Example 7. We solve the geometry of Example 2, with K D 100 inclusions, but
with Stokes no-slip conditions, and the well-conditioned iterative scheme of Sec-
tion 4.3. We apply Stokes potentials using a few calls to the Laplace FMM, as
presented in [6, sec. 2.1]. Close-evaluation quadratures for S and D are used, as
in Example 5. One period of the resulting solution flow speed is plotted in Fig-
ure 4.1(b). Convergence is shown by Figure 4.1(d); 11–12 digits of accuracy in
flux is achieved, which is around 2 digits less than for Laplace. At the converged
value Nk D 200, the solution takes 1720 seconds.

Linear complexity as a function ofK is demonstrated by Figure 2.3(c). The time
per iteration is similar to that for Laplace; this is because we prestore the close-
evaluation matrix blocks, whereas for Laplace we evaluated them on the fly. We
show the solution forK D 103 in Figure 1.2, using Nk D 350. This required 1289
GMRES iterations and took 21 hours using the same machine as in Figure 1.1. By
comparison to the solution at Nk D 450, we estimate that the absolute flux error
is 9 � 10�9. However, due to the narrow channels in this porous medium, the size
of the flux is only around 10�5, meaning that relative accuracy is only 3 digits.
Further study is needed to determine if it is an underlying condition number of the
flux problem that prevents more digits from being achieved. The code is found in
the directory multiinclusion_Stokes (see Remark 1.1).

Example 8. In the previous example large numbers of GMRES iterations were
needed, in contrast to the Laplace case (cf. Example 2). This motivates studying
the growth of iteration count with geometric complexity. We use exactly the same
circular geometries as in Example 3. Figure 2.3(d) shows that the numbers of
iterations are around 10 times those for Laplace, and that they grow with K in a
more aggressive manner possibly consistent with K1=2.

5 Conclusions
We have presented a unified framework for the second-kind integral equation

solution of large-scale periodic Laplace and Stokes BVPs, which we believe will
be useful in related settings such as multiphase composites, photonic crystals, and
particulate flows. The philosophy is quite simple, and we encourage readers to try
implementing it in their applications:

� Use a free-space potential theory representation for the near-neighbor im-
ages, plus O.1/ auxiliary “proxy” degrees of freedom to represent the rest
of the infinite lattice.
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� Augment the linear system by applying physical boundary conditions on a
unit cell.
� Use a low-rank perturbation of the empty BVP system to remove the con-

sistency condition, allowing elimination of the auxiliary unknowns to give
a well-conditioned system compatible with fast algorithms.

This cures two ills in one fell swoop: it removes zero eigenvalue(s) that arise in the
physical BVP, and circumvents the issue of nonexistence of the periodic Green’s
function for general densities.

In Section 2.4 we provided a simple unified procedure for periodizing Laplace
and Stokes integral representations when the physical BVP nullspace is numeri-
cally tolerable—we believe that this would be a useful starting point for related
elliptic BVPs. However, when a well-conditioned system is desired, we have pre-
sented and analyzed procedures for Laplace (Section 2.4) and Stokes (Section 4.3)
systems, where the latter exploits the fact that the physical BVP consistency con-
ditions form a subset of those of the empty BVP. The relevant theorems (2.12, 2.14
and 4.6) generalize simply to the case of any consistent right-hand side. We show-
cased the scheme with high-accuracy computations of the effective conductivity
and the viscous drag of a square lattice of discs and of random composites with a
large number of inclusions needing several million unknowns.

Remark 5.1 (Randomization). In this work we have been explicit about choosing
low-rank matrices R and H proven to have the required full-rank projections, in
both Laplace and Stokes cases (Lemmata 2.9, 2.13, and 4.5). For other BVPs,
this may not be easy or convenient. However, in practice, there is much flexibil-
ity in their choice. Following [73], one may even pick random matrices for both
R and H , exploiting the fact that with probability 1 they have the required full-
rank projections. In our experiments, the only penalty is a small loss of GMRES
convergence rate, and a larger, fluctuating condition number.

We finish with directions for future work. We believe that an elastostatic version
[12, 36] would be very similar to what we present for Stokes. While we restricted
our attention to static geometry BVPs, the scheme can handle moving geometry
problems, such as the flow of bubbles, vesicles, or bacteria, in a straightforward
manner (e.g., see [58]). The scheme generalizes easily to 3D (requiring M � 103

auxiliary unknowns) [57]. Note that in (2.25) one need not sum all 3 � 3 copies of
source quadrature nodes when applyingA, but just the ones falling inside the proxy
circle (or sphere) [30]. Exploiting this can lower the overall constant, especially in
3D, but requires extra bookkeeping in the C matrix block.

By further augmenting the linear system to include decay/radiation conditions,
the scheme has already proven useful for cases when the periodicity is less than
the space dimension, such as singly periodic in 2D [13, 22, 58] or doubly periodic
in 3D [56]. The latter case has applications in electrostatics [54] and Stokes flow
[16,52]. The case of singly periodic in 3D, and of nonperiodic solutions in periodic
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geometries, await development. The generalization to arbitrary skew and/or high-
aspect unit cells has applications in shearing suspensions and in microfluidics. This
is easy in principle, with the proxy circle becoming an oval in order to “shield” the
far images, as in Figure 1.3(c). However, sinceM must grow with the aspect ratio,
this will require new ideas beyond an aspect ratio of, say, 103 in 2D.

More theoretical work is required, since our analysis does not attempt precise
bounds on how quadrature errors propagate to solution errors for the scheme. Work
is also needed to understand if observed limitations in Stokes relative flux accuracy
(such as 7 digits at the end of Table 4.1 and 3 relative digits in Figure 1.2) are in-
trinsic (unavoidable in double precision due to ill-conditioning of the BVP), or are
instead due to lack of optimality in the scheme. Finally, to reduce the large GM-
RES iteration counts for Stokes flows in complicated close-to-touching geometries,
adaptive schemes such as that of Helsing [37], or the use of fast direct solvers or
local preconditioners, will be important.
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