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Index terms: 20 

MRI, motion artifacts, contrast agent 21 

Abbreviations:  22 

CA – contrast agent 23 

AIF – arterial input function 24 

PVIF – portal-venous input function 25 

DCE-MRI – dynamic contrast-enhanced MRI 26 

FOV – field of view 27 

Gd-BOPTA – gadobenate dimeglumine 28 

Gd-EOB-DTPA – gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid  29 

MR – magnetic resonance 30 

PK – pharmacokinetic 31 

VIBE – volume interpolated breathhold examination 32 

PET – positron emission tomography 33 

DMC – deformable motion correction 34 

RMC – rigid-body motion correction 35 

NMC – no motion correction 36 

KWIC – k-space weighted image contrast 37 

GTV – gross tumor volume 38 

NTV – normal tissue volume 39 

ROI – region of interest 40 

GRASP – golden-angle radial sparse parallel  41 

Word count: 4862 42 

Figure count: 8 43 

Table count: 3 44 

 45 

Purpose: 46 

Abdominal dynamic contrast-enhanced (DCE) MRI suffers from motion-induced artifacts that can blur 47 

images and distort contrast-agent uptake curves. For liver perfusion analysis, image reconstruction with 48 
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rigid-body motion correction (RMC) can restore distorted portal-venous input functions (PVIF) to higher 49 

peak amplitudes. However, RMC cannot correct for liver deformation during breathing. We present a 50 

reconstruction algorithm with deformable motion correction (DMC) that enables correction of 51 

breathing-induced deformation in the whole abdomen. 52 

Methods: 53 

Raw data from a golden-angle stack-of-stars gradient-echo sequence was collected for 54 DCE-MRI 54 

examinations of 31 patients. For each examination, a respiratory motion signal was extracted from the 55 

data and used to reconstruct 21 breathing states from inhale to exhale. The states were aligned with 56 

deformable image registration to the end-exhale state. Resulting deformation fields were used to 57 

correct back-projection images before reconstruction with view sharing. Images with DMC were 58 

compared to uncorrected images and images with RMC. 59 

Results: 60 

DMC significantly increased the PVIF peak amplitude compared to uncorrected images (p << 0.01, mean 61 

increase:  8%) but not compared to RMC. The increased PVIF peak amplitude significantly decreased 62 

estimated portal-venous perfusion in the liver (p << 0.01, mean decrease: 8 ml/(100 ml ·min)). DMC also 63 

removed artifacts in perfusion maps at the liver edge and reduced blurring of liver tumors for some 64 

patients. 65 

Conclusions: 66 

DCE-MRI reconstruction with DMC can restore motion-distorted uptake curves in the abdomen and 67 

remove motion artifacts from reconstructed images and parameter maps but does not significantly 68 

improve perfusion quantification in the liver compared to RMC. 69 

 70 

 71 

Arterial and portal-venous perfusion as well as hepatobiliary uptake can be measured by dynamic 72 

contrast-enhanced (DCE) MRI and used to determine local and global liver function as well as lesion 73 

extent for patients with liver cancer (1–12). Perfusion and uptake maps, derived from DCE MRI, can 74 

support individualized adaptive radiotherapy treatments that maximize sparing of excess irradiation of 75 
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functional parts of the liver. By sparing function in non-cancerous liver tissue, the probability of 76 

treatment complications can be reduced. 77 

However, respiratory, cardiac and gastrointestinal motion pose challenges for DCE MRI of the abdomen 78 

and can introduce streaks and blurring into acquired images. Contrast-agent (CA) uptake curves 79 

extracted from dynamic time series can also be corrupted by motion resulting in inaccurate hepatic 80 

perfusion or retention estimation.  81 

Breath holds can reduce this problem (7). However, not all patients are able to hold their breath for long 82 

enough or often enough to allow the CA uptake curves to be faithfully captured. Alternatively, DCE-MRI 83 

images can be compensated for motion after reconstruction using image registration (13,14). Post-84 

reconstruction alignment can compensate for inter-image motion but cannot undo blurring or remove 85 

image streaks arising from intra-image motion. Parallel imaging has been applied to increase the 86 

temporal resolution of DCE MRI to 1.6–1.9 seconds (15) to render motion-related blur negligible for 87 

slowly breathing subjects. However, patients who breathe faster will still be subject to motion-induced 88 

artifacts. Alternatively, a respiratory dimension has been added to the reconstruction such that a 89 

dynamic contrast-enhanced time series is reconstructed for each respiratory phase, but this may limit 90 

the temporal resolution to 11–12 seconds, which is not adequate for perfusion analysis (16–18). 91 

Instead of aligning image after reconstruction, Lin et al. corrected acquired data in k-space and used 92 

translational alignment to reduce intra-image artifacts (19). We previously modified this method to 93 

include rotation and investigated its effect on CA uptake curves (20). Rigid-body motion correction was 94 

found to restore portal-venous input functions (PVIFs) to higher amplitudes. However, for 13% of 95 

subjects, residual deformations larger than 10 mm were found in more than 5% of the liver volume. This 96 

finding, suggest that a method of motion-corrected reconstruction, that accommodates liver 97 

deformation due to breathing during DCE-MRI acquisition, may be needed. 98 

Reconstruction methods with integrated deformable motion correction have been implemented by 99 

several authors using iterative model-based reconstruction (21,22) to achieve reductions of motion-100 

induced aliasing. A simpler approach has been successfully used for motion correction of PET images 101 

from PET/MRI scanners (23,24) and relies on direct deformation of temporal sub-images with negligible 102 

intra-frame motion, that are then combined into motion corrected images. While this strategy does not 103 

optimally reduce motion-induced aliasing for MRI reconstruction,  it can achieve results similar to those 104 

from iterative model-based reconstruction (21,25), especially if deformation fields are approximately 105 
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affine within the width of the receiver-coil sensitivities (26). This simplified strategy can also shorten 106 

reconstruction times to a fraction of what is needed for model-based reconstruction (21) which is 107 

important to achieve impact in the radiation therapy clinic. 108 

In this work, we present a DCE-MRI reconstruction algorithm with integrated deformable motion 109 

correction and apply it to a golden-angle stack-of-stars gradient-echo MR sequence. The algorithm uses 110 

deformation of back-projection images, building upon motion-correction strategies previously used for 111 

PET images from PET/MRI scanners (23,24) and for MRI images (26). CA uptake curves and perfusion 112 

maps derived from images with deformable and rigid-body motion correction as well as images without 113 

motion correction are compared and the effects of motion correction on artifacts in perfusion maps and 114 

on lesions are presented. 115 

 116 

 117 

Under institutional review board approval, 54 DCE-MRI examinations of 31 patients (women, 11; men, 118 

20; age at examination, 48–78 years; number of examinations per patient, 1–3) were performed as part 119 

of a pilot study of individualized adaptive radiation therapy for hepatocellular carcinoma. A 3-T MRI 120 

scanner (Magnetom Skyra, Siemens Healthineers, Erlangen, Germany) was used. As part of the scan 121 

protocol, a 5-min DCE-MRI scan was performed using a work-in-progress golden-angle stack-of-stars 122 

spoiled gradient echo sequence (27,28) with fat suppression. 20 ml (0.5 M) of Gd-BOPTA (MultiHance, 123 

Bracco Diagnostics, Monroe, NJ) was administered 30 s after the start of scanning. For reception, an 18-124 

channel flexible surface coil (Body Matrix) was used in combination with 2–5 elements of the posterior 125 

coils built into the scanner table (Spine Matrix). Sequence parameters are listed in table 1. Images 126 

reconstructed by vendor software, using k-space weighted image contrast (KWIC) (29) without motion 127 

correction, as well as raw k-space data were collected after each examination. The temporal spacing 128 

between the vendor-reconstructed image volumes was 3.3–5.4 s.  129 

Aside from the vendor-reconstructed time series, images were reconstructed using a view-sharing 130 

algorithm with and without motion correction. The flowchart in Figure 1 illustrates the motion-131 

correction and reconstruction pipeline used to process the collected data into DCE-MRI image time 132 

series. The different parts of the pipeline are described in detail below. 133 
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 134 

Prior to scanning, a calibration scan was used to determine a receiver-coil noise whitening transform 135 

(30) as well as a set of coil sensitivities (31). After calibration, subjects were scanned with 2000 radial 136 

through-center spokes. Imaging parameters are summarized in Table 1. The sequence collected 46 137 

Cartesian partitions in the S-I direction, covering 3/4 of k-space with 384 samples per line. The central 138 

partition was used to determine a gradient-delay correction by comparing lines acquired in opposite 139 

directions for the latter half of the number of acquired spokes (20,32). The correction shifted acquired 140 

spokes by modulating their Fourier transform with a complex wave. After delay correction, the missing 141 

1/4 of k-space was synthesized using a partial-Fourier projection-onto-convex-sets technique to produce 142 

58 partitions (33). The noise whitening transform determined from the calibration scan was then used to 143 

transform the coil signals into synthetic signals with independent and identically distributed noise. 144 

 145 

Each spoke was back projected into image space using gridding reconstruction with a 7-voxel-wide 146 

Kaiser-Bessel kernel with the grid oversampled by 37.5% (34,35). Full radial density compensation was 147 

applied using a �-filter for each spoke. Complex images, ��(�, �), from individual coils were combined 148 

using the estimated coil sensitivity profiles ��(�) to produce complex back-projection images with 149 

homogenous spatial sensitivity in phase and intensity, 150 

 �(�, �) = ∑ ��∗(�)��(�, �)�� /∑ ��∗(�)��(�)�� , (1) 151 

where � is an index identifying each coil among all � coils, � is the spatial position of a voxel and � is the 152 

time when a spoke was acquired. The resolution, voxel size, and position of the back-projection images 153 

was set to match those of corresponding DCE-MRI images reconstructed by vendor software on the 154 

scanner as listed in Table 1. These vendor images used a slice resolution of 72.5% and a slice 155 

oversampling of 25% bringing the number of final slices to 64. 156 

 157 

To produce a tomographic image, several back-projected images can be combined by a weighted sum in 158 �-space through view sharing (36). To produce a set of images that show the gradual change over time 159 

or breathing phase, view sharing can be efficiently implemented by sorting the � back projections with 160 

respect to e.g. time, t, and then element-wise multiplying the resulting array with a filter. To do this, a 161 

series of back-projected images �(�, �) in �-�-space is transformed with the discrete Fourier transform 162 

to �-�-space 163 
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 ��(�, �) = ℱ(�,�)

(�,�)�(�, �) (2) 164 

where � = ��� ,  �� ,  ���T
 are the voxel indices in the �, � and � directions, � is the sorted spoke index, 165 � = (�� ,��, ��) are the �-space voxel indices and � is the frequency index along the sorted spoke 166 

dimension. To cover the entire field of view (FOV), the sampling density in �-space should be at least 167 

one. Therefore, we used a Gaussian view-sharing filter along the spoke dimension 168 

 �(�, �) = exp �−2�2 ����2 ��2(�) − �22��2� (3) 169 

with a width, ��, that depended on the distance � = ���2 + ��2 to the ��-axis 170 

 ��(�) = ������ �2 + �min2 , ��� ≤ �max�max, ��� ≥ �max 

  (4) 171 

and a maximum width in k-space determined by a Gaussian window with width 172 

 �� = � ��max�  (5) 173 

where �min and �max are the minimum and maximum temporal widths of the view-sharing filter, � is 174 

the angular undersampling factor and � is a factor allowing reconstruction at higher temporal resolution 175 

at the expense of stronger streak artifacts. Motivated by the benign aliasing artifacts caused by angular 176 

undersampling and the possible gain in resolution previously shown (37) we chose an angular 177 

undersampling factor of � = 3 and a resolution increase of � = 2 for this work. The data in k-t space 178 

was padded along the �-dimension with zeros to avoid wraparound caused by the filter. 179 

After filtering, the �-�-space signal is transformed back into �-�-space to produce the final image series  180 

 �(�, �) =
�ℱ(�,�)

(�,�)�−1�(�(�),�)��(�,�)�ℱ
(�)

(�)�−1�(0,�)��(�)

 (6) 181 

where ��(�) =  ℱ(�)

(�)�(�) is the Fourier transform of an indicator function indicating if the data at 182 

timepoint � was acquired or zero-padded to avoid wraparound. The denominator ameliorates the edge 183 

effect at the beginning and end of the scan that would otherwise reduce the intensity of the first and 184 

last few images. A more elaborate strategy to tackle the temporal boundary effect has been proposed 185 
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for model-based reconstruction with non-periodic boundary conditions (38). The simpler method 186 

describe above was chosen instead after considering the reconstruction method and the time from the 187 

start of scan to CA arrival in the liver (approx. 1 min). 188 

  189 

The back-projected images, previously created, were combined into a time series without motion 190 

correction using �min = 5, producing  a temporal resolution (2�) of 2 s at the center of �-space. This 191 

temporal resolution has previously been found sufficient to represent CA uptake curves (15,20). An 192 

upper limit, �max = 144, was selected to be large enough to allow maximum spatial resolution and 193 

resulted in a temporal resolution of 58 s at the periphery of �-space. No additional tuning or sensitivity 194 

analysis of the parameters in this work was performed. When no or rigid motion correction is applied, 195 

some of the Fourier transforms in the back-projection algorithm and Eq (2) can be cancelled. However, 196 

to ensure comparability with the motion-corrected reconstructions, this simplification was not done. 197 

Due to the small temporal spacing between the reconstructed image volumes (0.16–0.26 s) only every 198 

fifth was kept resulting in 400 image volumes with a temporal spacing of 0.79–1.3 s and no motion 199 

correction (NMC). 200 

In addition to the view-sharing reconstruction, vendor (VEN) images were used to benchmark the 201 

motion correction methods described below. 202 

 203 

In order to label spokes by breathing motion states, a motion signal was derived from an image time 204 

series with high temporal but lower spatial resolution. This time series was reconstructed with view 205 

sharing as described above but with �min = 2 and �max = 5. The resulting 2000 images were rigidly 206 

aligned with respect to a reference image in an arbitrary breathing state using a robust region-limited 207 

rigid-body image registration algorithm (14) with translation but no rotation. The reference image was 208 

selected among the VEN images by a physician. The superior–inferior (SI) translation, s(�), of the center 209 

of mass of the liver was extracted from each of the 2000 transforms produced by the registration and 210 

used as a one-dimensional motion signal (20). A sample motion signal for a subject can be seen in Figure 211 

2. No effect on the motion signal from the contrast agent, injected after 30 seconds, is observed 212 

suggesting that the rigid body registration was robust to changes in contrast. 213 
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The motion signal was used to sort the back-projections according to the position of the liver from 214 

inhale (smallest SI liver position) to exhale (largest SI liver position). Following sorting, the back-215 

projections were combined using view sharing but with the motion signal as view-sharing dimension 216 

rather than time. For this reconstruction, �min was set to 100 spokes and �max to 200 spokes. Out of the 217 

2000 resulting image volumes, 21 volumes, evenly distributed from the first to the last sorted spoke, 218 

were kept as representations of the breathing states from inhale to exhale. 219 

The 20 non-exhale motion states were aligned within the whole field of view to the end-exhale state 220 

using a deformable image registration algorithm based on cubic B-spline deformations and a normalized 221 

mutual-information metric as implemented in the software package NiftyReg (39). The grid spacing of 222 

the b-spline grid was 3x3x2 pixels. The registration problem was regularized by adding the log of the 223 

Jacobian determinant as well as bending energy as penalty terms to the objective function with weights 224 

0.8 and 0.005 respectively. The state closest to exhale was first aligned to the end-exhale state. The 225 

resulting deformation field was then used to initialize the registration process for the state second 226 

closest to exhale. The second deformation field was then used to initialize the third registration and so 227 

forth. In this way, each registration need only compensate for the small displacements between 228 

neighboring motion states while still registering each state to the exhale state to reduce error 229 

propagation that might otherwise result from serial registration of the states. 230 

To allow comparison of deformable motion correction of the whole abdomen to local rigid-body motion 231 

correction of the liver, a rigid-body transform with rotation and translation was derived from the non-232 

rigid-body deformation fields by least squares fitting of the coordinates of the voxels inside the liver. 233 

These rigid-body transforms were then used to produce a set of 21 rigid-body transformation fields, one 234 

for each motion state. 235 

-p  236 

The time-dependent patient motion signal was used as an index for interpolation of the deformation 237 

field centered around each of the 2000 spokes from the 21 deformation fields. As a result, a time-238 

dependent deformation field, �(�, �), was produced that converted a voxel position in the exhale state 239 

into the voxel position of the same anatomical structure for a given time, t. This deformation field was 240 

then used to transform all back-projected images, �(�, �), into motion-corrected back projections, 241 �def(�, �), by deforming them to the exhale state using linear interpolation. 242 

 �def(�, �) = �(�(�, �), �) (7) 243 
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Compared to model-based reconstruction, this motion-correction strategy is a simplification (21) but can 244 

provide a computational advantage and has been shown to work well when the deformation fields are 245 

approximately affine within the width of the coil-sensitivity profiles (26).  246 

A second set of corrected back projections were created by the same procedure but using the rigid-body 247 

transformation fields instead of the non-rigid. 248 

-  249 

After deformation, the motion-corrected back projections, �def(�, �), were combined using view-sharing 250 

with �min = 5 and �max = 144 in the same way as for the time series without motion correction 251 

producing 400 image volumes with deformable motion correction (DMC) and a temporal spacing of 252 

0.79–1.3 s. Image and voxel size was the same as for the vendor-reconstructed images as listed in table 253 

1. An image time series with rigid-body motion correction (RMC) was also created using the back 254 

projections transformed by the rigid-body transformation fields. 255 

 256 

DMC and RMC were compared to NMC image time series. All these time series were also compared to 257 

the VEN image time series reconstructed by vendor software.  258 

Time series were compared with respect to the maximum signal enhancements of the PVIF and the 259 

arterial input function (AIF). The peak PVIF was chosen because the intensity of the portal vein is 260 

particularly sensitive to motion due to its small size and strong contrast to surrounding tissue before and 261 

after contrast administration. The AIF is less sensitive to motion but may be distorted by RMC focusing 262 

on the liver. Peak PVIF and AIF amplitudes could therefore be reduced by motion or inaccurate motion 263 

correction. 264 

Parameter maps of arterial and portal-venous perfusion where also estimated from reconstructed 265 

images for all patients using a dual-input single-compartment model (40). Portal-venous perfusion can 266 

be used as an indicator of global and local liver function (8) whereas arterial perfusion can help select 267 

subvolumes for boosting during radiation therapy (1). Central-venous outflow was also estimated as part 268 

of the pharmacokinetic model, but is not presented because no clinical application for it is known. 269 

Perfusion maps with and without motion correction were compared inside the gross tumor volume 270 

(GTV) and the liver as a whole as well as a normal tissue volume (NTV) drawn inside the liver but away 271 

from the tumor region. For parameter estimation, images reconstructed for the first and last 8 seconds 272 
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of the scan were omitted to avoid the effect of any residual temporal boundary effect and the initial 273 

approach to spoiled gradient-echo steady state. 274 

In addition to the quantitative evaluation measures above, reconstructed images and perfusion maps 275 

are presented for a subset of patients to illustrate the effect of motion correction on lesion conspicuity 276 

and estimated perfusion values. Descriptive statistics of the estimated deformation fields are also given 277 

to reflect the size and variation of motion among patients. For this purpose, each deformation field 278 �(�, �) was compared to the rigid-body transform that best approximated it inside the liver. We defined 279 

the residual displacements inside the liver to be the part of the total voxel displacements that cannot be 280 

represented by rigid-body motion. 281 

 282 

The distance traversed in the SI direction by the liver center of mass, from end exhale to end inhale, 283 

varied among subjects from 8 mm to 46 mm with a median of 15 mm. In the left–right and anterior–284 

posterior directions, the displacements were 2–10 mm and 3–35 mm, respectively, with medians of 4 285 

mm and 8 mm. 286 

The median of the magnitude of the residual non-rigid voxel displacements inside the liver varied from 1 287 

mm to 6 mm among subjects with a mean of 2 mm. The 95th

Oscillations were observed for time–intensity curves in image time series with high temporal resolution 292 

as seen in Figure 3. These oscillations were smoothed out by the wider view-sharing filter for NMC 293 

images but a bias was introduced into the curve instead. DMC images did not exhibit this bias, as the 294 

underlying intensity oscillations had been compensated for. 295 

 percentile of the residual displacement 288 

magnitude varied between 2 mm and 15 mm within the population with a mean of 7 mm. The minimum 289 

and maximum Jacobian determinant of the inhale deformation fields inside the liver was in the range 290 

0.73–0.94 and 1.06–1.46, respectively. 291 

Table 2 shows the statistical comparison of AIF and PVIF peak amplitudes from the different 296 

reconstruction methods (DMC, RMC, NMC and VEN). In addition, arterial and portal-venous perfusion 297 

was compared in three ROIs for the four reconstruction methods. To avoid Type-I errors due to multiple 298 

comparisons (48 in total), the significance level was Bonferroni-corrected from 5% to 0.1% for all tests 299 

and confidence intervals presented. 300 
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The peak amplitude of the PVIF was significantly higher for DMC and RMC images compared to NMC and 301 

VEN reconstructions with mean increases of between 8% and 12%. There was no significant difference in 302 

the peak PVIF amplitude between DMC and RMC. An example PVIF is shown in Figure 4. 303 

The peak amplitudes of AIFs did not differ significantly with and without motion correction. However, 304 

the peak amplitudes of the vendor AIFs were significantly lower than DMC, RMC and NMC images 305 

because of the stronger aliasing in the pre-contrast vendor phases.  Example AIFs, extracted from the 306 

aorta of a subject at the branching of the celiac artery, are shown in Figure 5. 307 

Mean arterial and portal-venous perfusion, �� and ��, in the GTV and the whole liver were significantly 308 

lower (Table 3) in perfusion maps estimated from vendor images compared to those estimated from 309 

DMC, RMC, and NMC images. DMC and RMC reconstructions showed significantly lower portal-venous 310 

perfusion compared to NMC reconstructions for the whole liver and GTV. Portal-venous perfusion did 311 

not differ significantly between DMC and RMC. There was no significant difference of the mean arterial 312 

perfusion in the liver between corrected and NMC images. 313 

NMC perfusion maps showed artifacts primarily close to the edge of the liver. This effect was particularly 314 

severe for 11 of the 53 scans, as illustrated for an example patient in Figure 6 where an area with falsely 315 

elevated arterial and lowered portal-venous perfusion is seen. 316 

Three lesions from three separate patients are shown in Figure 7 for DMC, RMC and NMC 317 

reconstructions. Arterial perfusion is also shown for the DMC images. The DMC and RMC images are 318 

seen to have sharper lesion boundaries and internal structures than NMC. Aside from lesions, motion 319 

correction improved the sharpness of structures in the gastrointestinal (GI) tract as seen in Figure 8. The 320 

changes over time in shape of the GI tract caused by peristalsis are seen more clearly in images with 321 

respiratory motion correction (Figures 8a and 8c) than in those without (Figures 8b and 8d) where the GI 322 

tract is blurred because of breathing motion. 323 

 324 

A method to perform respiratory DMC as part of image reconstruction for abdominal DCE-MRI has been 325 

presented and reconstructed images have been compared to those reconstructed with RMC focused on 326 

the liver as well as to images without motion correction. DMC refocused the reconstructed MR images 327 

as evidenced by the increased peak amplitude of the PVIF but did not further increase the PVIF peak 328 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

amplitude compared to RMC. As an effect of the increased PVIF, portal-venous perfusion was 329 

significantly lower in estimated perfusion maps. 330 

Earlier studies have shown that increasing temporal resolution reveals strong respiratory oscillations in 331 

uptake curves in the liver (15). These oscillations can be counteracted by deformable alignment to 332 

produce smoother uptake curves. Our study supports this claim but also suggest that the additional 333 

improvement of image quality in the liver resulting from DMC is small compared to that already 334 

achieved by RMC (19,20). A benefit of correcting back-projection images for motion, as done in this 335 

study, rather than reconstructed images is that only the motion signal needs to have a high-enough 336 

temporal resolution to resolve the breathing cycles whereas the reconstructed time-series only need to 337 

resolve the contrast-agent dynamics. This reduces the necessary frame rate for fast breathers. Another 338 

benefit of the presented method is that instead of using multiple affine transforms to correct the back 339 

projections from multiple coils (26), one deformation field can be applied to a single coil-combined back-340 

projection image, thereby reducing the number of transforms and complex images that must be stored 341 

and processed per time point. 342 

The mean estimated portal-venous perfusion was higher in the liver for images without motion 343 

correction than in those with motion correction. This can be explained by the lower PVIF amplitude in 344 

images without motion correction, which is compensated for during parameter estimation by an 345 

apparent higher portal-venous perfusion.  346 

Arterial and portal-venous perfusion maps estimated from vendor images were consistently lower than 347 

maps reconstructed with the presented view-sharing technique. This could be a consequence of the 348 

lower temporal resolution in the vendor images or the shape of the vendor view-sharing filter, which 349 

may introduce bias into the perfusion maps.  350 

No deterioration of the AIF due to motion correction of the relatively stationary aorta was found. This 351 

was shown by the non-significant difference in AIF peak amplitude between motion corrected and non-352 

corrected images. Rigid-body motion correction had no significant effect on the AIF, possibly because 353 

the main direction of liver motion is in the superior-inferior direction, producing a motion correction 354 

that has little effect on the aorta, which is oriented along the same axis. Vendor AIFs were significantly 355 

lower than all other reconstructions because of streak artifacts raising the intensity in the pre-contrast 356 

baseline.  357 
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For some subjects, motion correction was observed to eliminate regions of falsely high or low perfusion 358 

in estimated perfusion maps. These perfusion artifacts occurred primarily close to the high-contrast 359 

edge of the liver. 360 

DMC did not improve input function extraction or perfusion estimation compared to RMC in this study 361 

despite residual non-rigid displacements. This can be understood by considering that (1) the aorta 362 

moves primarily along its own axis in the S-I direction making MC unnecessary for the AIF, (2) the ROI of 363 

the PVIF is situated close to the center of the liver where RMC is sufficient to restore PVIF amplitude and 364 

(3) the estimated perfusion maps are dominated by smooth spatial variations that are only to a small 365 

degree affected by observed residual non-rigid displacements. DMC could still be of importance to 366 

enhance lesion conspicuity or to estimate spatially heterogeneous perfusion in bending liver lobes but 367 

no such case was observed in this study. It is also possible that a model-based motion-corrected 368 

reconstruction (21) could reveal differences in estimated perfusion maps that the simplified method in 369 

this paper could not resolve. 370 

A potential advantage of DMC over RMC is that it can correct for motion in multiple organs 371 

simultaneously, even when they are not moving in the same direction or with the same amplitude. 372 

Therefore, if uptake curves from multiple organs were needed, only one time series would have to be 373 

reconstructed, unlike rigid-body motion correction, which may require one time series per organ. 374 

However, the evaluation in this study is restricted to the liver and to a lesser extent the aorta, which are 375 

needed for hepatic perfusion estimation. 376 

By correcting for motion, image blur can be counteracted such that liver and lesion borders can be seen 377 

more clearly. Therefore, motion correction may allow free-breathing scans to replace repeated-378 

breathhold examinations as a basis for tumor delineation in the clinic. This finding agrees with earlier 379 

studies that demonstrated improved lesion sharpness using translational motion correction (19) as well 380 

as higher quality scores given by radiologists to images reconstructed with parallel imaging to a higher 381 

temporal resolution (15) thereby reducing motion artifacts. Improved image quality as determined by 382 

radiologists has also been demonstrated using golden-angle radial sparse parallel (GRASP) MRI (18) to 383 

reduce motion artifacts by regularization in the temporal dimension.  384 

A problem with deformable compared to rigid-body motion correction is the greater uncertainty in 385 

estimated transform parameters resulting from the registration of the respiratory motion states. For this 386 

study, deformable registration was regularized by bending-energy and Jacobian penalty terms. However, 387 
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a compromise had to be made when selecting regularization parameters to accommodate the possible 388 

sliding interface of the liver, which may have resulted in overfitting of deformation fields inside the liver. 389 

Such overfitting could prevent accurate refocusing of internal liver structures.  390 

By correcting for respiratory motion, peristalsis could be seen more clearly and this could aid the 391 

deformable registration of gastrointestinal motion. A cardiac motion signal would allow reconstruction 392 

of cardiac motion states and the construction of a cardiac motion model similar to the respiratory model 393 

presented in this work. By combining deformation vector fields from respiratory, cardiac and 394 

gastrointestinal motion models, it would be possible to construct a comprehensive motion model and to 395 

correct for all three kinds of motion in the whole abdomen during image reconstruction. This is a focus 396 

of future research. Such a comprehensive motion model, tailored to the specific motion pattern of each 397 

patient, could aid image registration of other kinds of MRI and CT images as well as in target volume 398 

selection for radiation therapy or organ at risk delineation. A comprehensive abdominal motion model 399 

could also be combined with CA-dependent MRI signal models to improve the accuracy and precision of 400 

estimated perfusion and uptake parameters. 401 

 402 

Deformable motion correction applied to temporal image reconstruction can restore DCE-MRI uptake-403 

curve amplitudes distorted by motion artifacts, improve the sharpness of lesion borders and internal 404 

structures and remove artifacts in perfusion parameter maps. However, no significant change in 405 

estimated perfusion was found for deformable motion correction as compared to rigid-body motion 406 

correction when restricting the evaluation to the liver. 407 

 408 
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 519 

 520 

Figure 1. Overview of the reconstruction and motion-correction pipeline. Yellow boxes represent pieces of 521 

data and white boxes processing steps. The blue box contains steps that perform motion correction. The 522 

red box contains pre-processing steps and the green contains steps for reconstruction without motion 523 

correction. The parameters ���� and ���� describe the minimum and maximum width of the view-524 

sharing filter. 525 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Figure 3. Time–intensity curves for a PVIF ROI. Images reconstructed with high temporal resolution (HT) 528 

exhibit oscillations induced by breathing (�min = 5  and �max = 10). These oscillations are not visible for 529 

NMC and DMC images but do induce a bias for NMC images, as seen by the lower intensity compared to 530 

DMC images after CA administration. 531 

Figure 2. An example of a patient motion signal showing the superior–inferior position of the liver during 526 

a 5-minute scan. No effect on the motion signal from the contrast agent injected after 30 s is observed. 527 

Figure 4. (a) Portal-venous input functions with and without motion correction. The corresponding input 532 

function from images reconstructed by vendor software on the scanner is also shown. (b) and (c) show 533 

the ROI used to extract the PVIF. 534 

Figure 5. (a) Arterial input functions from the aorta with and without motion correction. The 535 

corresponding input function from images reconstructed by vendor software on the scanner is also 536 

shown. (b) and (c) show the ROI used to extract the AIF. 537 

Figure 6. The reference phase image used for delineation (a) as well as arterial (b-e) and portal-venous (f-538 

i) perfusion parameter maps. Motion artifacts are indicated in the uncorrected maps (c, g) by the green 539 

arrow. 540 

Figure 7. Three tumors as they appear in images with deformable motion correction (a, e, i), with rigid-541 

body motion correction (b, f, j) and without motion correction (c, g, k). The arterial perfusion maps 542 

produced from the DMC images are also shown. 543 

Figure 8. The shape change of the gastrointestinal tract (green arrow) over time, resulting from 544 

peristalsis is illustrated by two images at different time points corresponding to two separate peristaltic 545 

phases. The changes can be seen more clearly in the two images with deformable respiratory motion 546 

correction (a, c) than in images without motion correction (b, d).  547 
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Table 1. DCE-MRI sequence parameters 

Sequence parameter  

Sequence type golden-angle stack-of-stars 

spoiled gradient echo with fat 

suppression 

Echo time 1.14–1.21 ms 

Repetition time 2.72–4.51 ms 

Flip angle 10°–14° 

Image matrix size 192x192 

Number of slices 64 

Number of partitions 46 

Number of radial spokes 2000 

In-plane voxel size 2–2.45 mm 

Slice thickness 3–4 mm 

 

 

 

Table 2. P-values and confidence intervals (CI) for paired t-test of the difference of the peak PVIF and AIF 

amplitude among reconstruction methods for all patients. Asterisks indicate significance at a 0.1% level. 

Relative peak amplitude 

difference 

PVIF AIF 

P-value CI P-value CI 

(DMC - RMC)/((DMC + RMC)/2) 1.19e-01  [-0.02,  0.01] 9.84e-01  [-0.02,  0.02] 

(DMC - NMC)/((DMC + NMC)/2) 8.46e-07* [ 0.03,  0.13] 1.24e-01  [-0.01,  0.03] 

(DMC - VEN)/((DMC + VEN)/2) 1.92e-11* [ 0.07,  0.16] 2.25e-17* [ 0.11,  0.20] 

(RMC - NMC)/((RMC + NMC)/2) 1.99e-07* [ 0.04,  0.14] 2.75e-01  [-0.02,  0.03] 

(RMC - VEN)/((RMC + VEN)/2) 1.09e-11* [ 0.07,  0.17] 1.62e-16* [ 0.11,  0.20] 

(NMC - VEN)/((NMC + VEN)/2) 4.34e-02  [-0.02,  0.08] 4.03e-14* [ 0.10,  0.20] 
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Table 3. Mean values and confidence intervals at the Bonferroni-corrected level of significance for 

differences in arterial and portal-venous perfusion for the different reconstruction methods. Significant 

differences are marked by asterisks and a green background. All differences are given in ml/(100 ml·min). 

 Portal-venous perfusion difference Arterial perfusion difference 

 
Whole liver 

Normal 

tissue 
GTV Whole liver 

Normal 

tissue 
GTV 

DMC - RMC 
-0.1 

[-2.2, 2.0] 

0.5 

[-3.0, 4.0] 

0.3 

[-3.0, 3.6] 

-0.5 

[-1.3, 0.3] 

-0.6 

[-2.1, 0.8] 

-1.1 

[-3.0, 0.9] 

DMC - NMC 
-7.8 

[-13.3, -2.2]* 

-8.9 

[-18.7, 0.9] 

-16.7 

[-32.4, -1.1]* 

-1.6 

[-4.1, 0.9] 

-0.2 

[-3.3, 2.9] 

1.3 

[-4.1, 6.6] 

DMC - VEN 
54.6 

[43.8, 65.4]* 

66.8 

[45.3, 88.3]* 

41.0 

[28.6, 53.4]* 

8.6 

[3.2, 13.9]* 

5.3 

[-1.2, 11.9] 

19.9 

[11.6, 28.1]* 

RMC - NMC 
-7.7 

[-13.1, -2.3]* 

-9.4 

[-18.2, -0.5]* 

-17.0 

[-31.7, -2.4]* 

-1.1 

[-3.9, 1.6] 

0.4 

[-2.4, 3.2] 

2.3 

[-3.2, 7.9] 

RMC - VEN 
54.7 

[43.6, 65.8]* 

66.3 

[44.8, 87.9]* 

40.7 

[28.8, 52.7]* 

9.0 

[3.7, 14.4]* 

6.0 

[-0.7, 12.6] 

20.9 

[12.7, 29.1]* 

NMC - VEN 
62.4 

[51.5, 73.2]* 

75.7 

[52.9, 98.5]* 

57.8 

[40.5, 75.0]* 

10.2 

[4.3, 16.0]* 

5.5 

[-1.6, 12.6] 

18.6 

[10.8, 26.4]* 
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