
OR I G I N A L A R T I C L E

Using person-specific neural networks to characterize
heterogeneity in eating disorders: Illustrative links
between emotional eating and ovarian hormones

Adriene M. Beltz1 | Jason S. Moser2 | David C. Zhu2 | S. Alexandra Burt2 |

Kelly L. Klump2

1University of Michigan, Ann Arbor, Michigan

2Michigan State University, East Lansing,

Michigan

Correspondence

Department of Psychology, 2227 East Hall,

530 Church Street, Ann Arbor, MI 48109.

Email: abeltz@umich.edu

Funding information

Global Foundation for Eating Disorders;

National Institute of Mental Health, Grant/

Award Number: R01 MH082054

Abstract
Objective: Emotional eating has been linked to ovarian hormone functioning, but no studies to-

date have considered the role of brain function. This knowledge gap may stem from methodo-

logical challenges: Data are heterogeneous, violating assumptions of homogeneity made by

between-subjects analyses. The primary aim of this paper is to describe an innovative within-

subjects analysis that models heterogeneity and has potential for filling knowledge gaps in eat-

ing disorder research. We illustrate its utility in an application to pilot neuroimaging, hormone,

and emotional eating data across the menstrual cycle.

Method: Group iterative multiple model estimation (GIMME) is a person-specific network

approach for estimating sample-, subgroup-, and individual-level connections between brain

regions. To illustrate its potential for eating disorder research, we apply it to pilot data from

10 female twins (N = 5 pairs) discordant for emotional eating and/or anxiety, who provided two

resting state fMRI scans and hormone assays. We then demonstrate how the multimodal data

can be linked in multilevel models.

Results: GIMME generated person-specific neural networks that contained connections common

across the sample, shared between co-twins, and unique to individuals. Illustrative analyses

revealed positive relations between hormones and default mode connectivity strength for control

twins, but no relations for their co-twins who engage in emotional eating or who had anxiety.

Discussion: This paper showcases the value of person-specific neuroimaging network analysis

and its multimodal associations in the study of heterogeneous biopsychosocial phenomena, such

as eating behavior.
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1 | INTRODUCTION

No two individuals diagnosed with mental health conditions are the

same. Individuals vary in disease etiology, presentation, prognosis, and

treatment effectiveness, owing to their unique histories, comorbidities,

and biological makeups (Sysko, Hildebrandt, Wilson, Wilfley, & Agras,

2010). Yet, heterogeneous individuals are often assumed to be homoge-

neous in research (e.g., through pooling) and clinic (e.g., in treatment)

settings. This mismatch between an individual's experience of a disorder

and the characterization of it by professionals on the bench and at the

bedside likely contributes to suboptimal etiologic theories and long-term

outcomes. The aim of this article is to address this mismatch by intro-

ducing and illustratively applying to variable emotional eating data an

innovative analysis technique—group iterative multiple model estimation

(GIMME; Beltz & Molenaar, 2016; Gates & Molenaar, 2012)—that capi-

talizes on heterogeneity to identify person-specific results.

Between-subjects analyses dominate clinical research. These tra-

ditional statistical approaches (e.g., regression) average across inter-
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individual variation to generate inferences that apply to each individual

in a sample and to similar others who were not directly sampled

(Cattell, 1952). They assume that variability between people is random

and will cancel out. This approach has incredible utility for describing

a population and has led to monumental basic and applied clinical

insights. However, it comes with two under-appreciated, related

caveats. First, samples must be homogeneous, otherwise, average

results may not apply to anyone in the sample; this assumption is

specified in the ergodic theorem (Birkhoff, 1931; Molenaar, 2004).

Second, “average” people do not walk into clinics; individuals

do. Treatments developed from homogenous sample averages may

contribute to poor responses from heterogeneous individuals,

highlighting the need for precision healthcare (Davidson & Cheung,

2017; Gambhir, Ge, Vermesh, & Spitler, 2018).

An alternative to between-subjects analyses is within-subjects

analyses (Birkhoff, 1931; Cattell, 1952; Molenaar, 2004). These statistical

approaches reveal patterns in intra-individual variation reflected in inten-

sive longitudinal or time series data and permit inferences that apply

uniquely to an individual. They assume that variability between people is

meaningful. Within-subjects analyses complement between-subjects

analyses by enabling researchers to ask and answer different kinds of

research questions about the person-specific interplay among biopsycho-

social variables that contribute to a disorder's etiology, presentation, and

treatment. They consider each person as a sample of size one.

Focusing on the individual ensures accurate statistical results

when studying phenomena that vary across people and time, including

many eating disorders. The eating disorder group is often more het-

erogeneous than the control group in clinical research (e.g., in neural

signals; Bohon & Stice, 2011; Marsh et al., 2009), and a focus on

mean-level differences might produce biased estimates because the

average is not representative (Molenaar, 2004). Focusing on the indi-

vidual is also consistent with the rising prominence of precision

healthcare (Davidson & Cheung, 2017; Gambhir et al., 2018), and has

demonstrated importance in clinically-relevant phenomena. In person-

ality research, person-specific analyses have shown that the common

five-factor model explaining variation between people only applies to

14% of individuals (Molenaar & Campbell, 2009).

Despite their value, there is a paucity of sophisticated analytic

tools for conducting within-subjects analyses. One promising tech-

nique that even affords group-level inferences, so that focus on a per-

son does not prevent generalizations across people, is GIMME

(Gates & Molenaar, 2012). It is a network analysis approach that iden-

tifies statistically prominent relations among variables in a system in

order to explain time-indexed patterns in the observed “signals” of

those variables. In fMRI research, the variables are brain regions of

interest (ROIs) thought to work as a coordinated network, and blood

oxygen-level dependent (BOLD) signal is used to measure neuronal

activity. GIMME is a person-specific approach, so it is not challenged

by, but rather leverages, heterogeneity; it does not average or pass

variance between levels of analysis even though it identifies network

features common across people (see Method).

Importantly, unlike controversial cross-sectional psychopathology

networks (Borsboom & Cramer, 2013; Forbes, Wright, Markon, &

Krueger, 2017), GIMME uses time series data to create temporal net-

works that include both individual-level (person-specific) and group-

level (sample-relevant) information. Functional magnetic resonance

imaging (fMRI) data are a prime example. In this domain, GIMME's

accuracy and precision have been demonstrated (Gates & Molenaar,

2012). It performed well in large-scale simulations in which temporal

patterns of connections between different numbers of brain regions

with varying characteristics (e.g., noise) were generated in order to

determine how well different network analysis techniques could

recover the “true” patterns. GIMME recovered more true connections

and identified fewer false positives than most other approaches,

including (partial) correlations, Granger causality, and Bayesian nets

(Gates & Molenaar, 2012; Smith et al., 2011). Some of these

approaches are common in eating disorder research, and their features

in comparison to GIMME are summarized in Table 1. As shown,

GIMME is unique in modeling contemporaneous and lagged connec-

tions as well as individual- and group-level connections.

Despite its promise, GIMME has not yet been used in eating dis-

order research, but it has provided insight in studies of other pheno-

types (e.g., addiction and depression; Beltz et al., 2013; Price et al.,

2017). Thus, the goal of the current manuscript is to introduce

GIMME to the eating disorder community as a tool for person-specific

analysis of fMRI data. Its premise and mathematics will be reviewed,

and then its value for multimodal eating disorder research will be illus-

trated in a heterogeneous, pilot data set consisting of resting state

brain function assessed at two timepoints across the menstrual cycle

in female twin pairs discordant for emotional eating and/or anxiety.

These pilot data were ideally suited to GIMME: Clinical status

(i.e., high vs. low on emotional eating and/or anxiety) was assessed

prior to intake, ovarian hormones and emotional eating were assessed

on the same day two fMRI scans were conducted, and the use of dis-

cordant twin pairs provided both cases and controls.

Following person-specific GIMME analyses, the statistical model

implemented by GIMME was also applied to the sample average-level

fMRI data. In other words, a network analysis of between-subjects,

inter-individual variation was conducted to compare to GIMME's

within-subjects analysis of intra-individual variation. Since pilot data

are heterogeneous, differences between average-level and GIMME

results showcase how inaccurate findings can result from inappropri-

ately averaging across people and time.

2 | METHOD

GIMME methods are described in detail first, followed by a brief

description of neuroimaging and behavioral data methods. See Sup-

porting Information for extensive descriptions.

3 | GIMME

3.1 | Conceptual premise

GIMME boasts several characteristics for the analysis of heteroge-

neous data. First, it is a person-specific approach that incorporates

group-level information. Results provide a network for each individual,

but some network connections are common to everyone in the
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sample, and some are unique to the individual. Consider, for example,

a sample of N = 5 and a network with four ROIs: A, B, C, and

D. GIMME would indicate that all five people have a connection

between A and B, but that only one person has a connection between

A and C.

Second, GIMME implements unified structural equation models

(uSEMs; Gates, Molenaar, Hillary, Ram, & Rovine, 2010), so connec-

tions are directed, reflecting statistical prediction from one ROI to

another (or to itself ), with a positive or negative magnitude. In the

example, GIMME would indicate that the person-specific connection

between A and C goes from A to C and is positive with a standardized

β of 0.43.

Third, connections reflect temporal information. Some connec-

tions are contemporaneous, wherein signal in one ROI predicts signal

in another ROI at the same time point (i.e., measurement occasion,

such as an fMRI volume). Other connections are lagged, wherein sig-

nal in one ROI predicts signal in another ROI (or itself ) at the next

time point. In the example, the directed connection between A and C

is lagged, such that signal in A predicts signal in C at the next volume.

Fourth, data-driven versions of GIMME have been fully auto-

mated in R and Matlab (Beltz & Molenaar, 2016; Lane, Gates, & Mole-

naar, 2017). They produce sparse (not saturated) networks that

contain only the connections required to fit the observed variation

among all ROIs. GIMME begins with a null network and iteratively

adds connections that account for the most signal. Once enough sig-

nal is accounted for (according to model fit indices), GIMME stops. In

the example, GIMME would not estimate all possible pairs of relations

among A, B, C, and D, but only those required to explain the temporal

variation among them for each person.

3.2 | Application to resting state brain function

Resting state brain function (i.e., neural activity when not engaged in a

task) reflects the brain's physiological and psychological baseline

(Gusnard & Raichle, 2001) and serves as a marker for neuropsychiatric

disease (Fox & Greicius, 2010). It is typically understood in terms of

synchronized patterns of connectivity that reflect networks among

integrated brain regions—not localized activity, which predominates

task fMRI.

An ROI time series (i.e., a matrix of 10 ROIs as the columns by

280 volumes as the rows for each participant—see Illustrative Data and

Supporting Information) were submitted to a Matlab version of GIMME

(Beltz & Molenaar, 2016) modified to estimate twin pair-level (within

each family) as well as group-level (everyone in the sample) and

individual-level (one scan for one twin) connections. This is defined as:

ηi tð Þ¼ Ai +Ai
f +Ai

g
� �

ηi tð Þ+ Φ1, i +Φ1, i
f +Φ1, i

g
� �

ηi t–1ð Þ+ ζi tð Þ,

where η is the observed 10-ROI time series for individual i = 1, 2, 3,

…, 20 at time t = 1, 2, 3, …280.A is the 10 × 10 matrix of directed con-

temporaneous ROI connections, with a diagonal fixed to 0; it is a

structural equation model within GIMME. Φ is the 10 × 10 matrix of

directed lagged ROI connections, with estimable autoregressive con-

nections on the diagonal (ROIs can predict themselves at the next

time point); it is a first order vector autoregressive model within

TABLE 1 Common features of GIMME and other resting state connectivity methods implemented in eating disorder research

Method Premise Connectivity Edges Time
Level of
inference Examples

Seed-based
correlation
analyses

Activity in which brain
regions (voxel-wise or
regional) is related to
activity in an a priori
ROI?

Functional Undirected Contemporaneous Group (García-García et al., 2015;
Lavagnino et al., 2014;
Lee et al., 2014)

Independent
component
analysis (ICA)

Which voxel-wise brain
regions co-activate,
forming distinct
networks?

Functional Undirected Contemporaneous Group (Amianto et al., 2013;
Boehm et al., 2014;
Cowdrey, Filippini, Park,
Smith, & McCabe, 2014;
Favaro et al., 2012;
García-García et al.,
2013; Gaudio et al.,
2015; McFadden,
Tregellas, Shott, &
Frank, 2014)

Granger causality
analysis (GCA)

Activity in which brain
regions (voxel-wise or
regional) are predicted
by earlier activity in an a
priori ROI?

Functional Directed Lagged Group (Kullmann et al., 2014)

Group iterative
multiple model
estimation
(GIMME)

What are the
person-specific,
time-indexed relations
among activity in a set
of a priori ROIs?

Functional Directed Contemporaneous
and lagged

Individual
with
group

None yet

Dynamic causal
modeling

What are the causal
relations among activity
in hidden neuronal
states indexed by a set
of a priori ROIs?

Effective Directed Instantaneous Group (Cha et al., 2016)

Note. For a further review of these and alternative approaches, see Smith et al. (2011).
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GIMME. ζ is the error, with a zero mean, diagonal covariance matrix,

and no sequential dependencies. Superscripts reflect connections that

are estimated for individuals in the same family f = 1, 2, 3, 4, 5, or for

everyone in the group g (sample). The subscript i, reflecting connec-

tions estimated for an individual at a given scan, co-occurs with f and

g because all connections have person-specific estimates (β's). Details

are in a recent tutorial (Beltz & Gates, 2017).

GIMME generates person-specific networks in several steps. First,

a null model (without contemporaneous or lagged connections) is fit

to the data from each scan of each person. Sometimes the null model

contains the autoregressive connections in Φ (used here) because

they reflect stability in time series with relatively short measurement

intervals. Second, a group-level model is identified. Lagrange Multi-

plier equivalents (modification indices; Sörbom, 1989) are used to

determine which connection in A or Φ, if freed, would significantly

and maximally improve model fit for a criterion (usually 75% of the

sample, but 100% was used here due to the small sample). That con-

nection is added to every model, and models are re-estimated. This

process iterates until no more connections meet the criterion. Third,

family-level models are identified for each twin pair. The group-level

model is considered the “null,” and modification indices are iteratively

used to determine which connection, if freed, would significantly and

maximally improve model fit for the networks of both twins. Fourth,

individual-level models are identified. The combined group- and

family-level model is considered the “null,” and modification indices

determine which connection, if freed, would significantly and maxi-

mally improve model fit for each scan of each individual, iterating until

the model fits well according to at least two of four indices (Brown,

2006): comparative fit index (CFI) ≥ 0.95; non-normed fit index

(NNFI) ≥ 0.95; root mean squared error of approximation

(RMSEA) ≤ 0.05; standardized root mean residual (SRMR) ≤ 0.05.

Thus, GIMME results provide a (potentially) unique model for each

scan of each person in the sample. Some connections are estimated

for everybody, some for certain twin pairs, and some only for individ-

ual people or scans, and models are evaluated with standard fit indi-

ces. All connections have a β (with significance test) estimated at the

individual-level; in other words, the group- and family-level parame-

ters do not reflect averages across the sample or twin pairs, respec-

tively, but rather the structure of fixed and freely estimable

connections.

Finally, an average-level uSEM analysis (Gates et al., 2010) was

conducted on the mean 10 (ROIs) × 280 (volumes) matrix across par-

ticipants and scans. This created a between-subjects network based

on the assumption of homogeneity. The data-driven model was fit in

LISREL (a dependency of the Matlab version of GIMME) using a null

model that contained autoregressive parameters. Connections were

iteratively added (using modification indices) until the model fit well

according to two of four indices listed above.

3.3 | Illustrative data

Pilot data were selected to capitalize on the heterogeneity inherent in

clinical status and ovarian hormone levels to showcase GIMME and its

potential for the eating disorder community (see Supporting Informa-

tion for full methods). Participants included 10 female twins from five

twin pairs (six monozygotic and four dizygotic) ages 18–29

(M = 22.22, SD = 4.46) recruited from the Twin Study of Hormones

and Behavior across the Menstrual Cycle (TSHBMC) from the Michigan

State University Twin Registry. Because the original aims of this pilot

study were to examine transdiagnostic factors contributing to binge

eating and anxiety, the sample was preferentially selected to be dis-

cordant on emotional eating and/or anxiety levels; see Supporting

Information for definitions of discordance. Three pairs (60%) were dis-

cordant for emotional eating, one pair (20%) for emotional eating and

anxiety, and one pair (20%) for anxiety, but this pair also showed a

marked difference in emotional eating across the study (case:

M = 0.31, SD = 0.17; control: M = 0.00, SD = 0.02), so was included

in analyses.

Participants collected salivary samples of estrogen and progester-

one and provided emotional eating data (via the Dutch Eating Behav-

ior Questionnaire; Van Strien, Frijters, Bergers, & Defares, 1986) daily

for 35 consecutive days using previously described protocols (Klump

et al., 2013). Past studies in humans show significant associations

between emotional eating and higher levels of estradiol and proges-

terone (for a review, see Klump, Culbert, & Sisk, 2017), and animal

studies provide strong evidence in favor of ovarian hormone regula-

tion of food intake (Asarian & Geary, 2013) and reward-related neural

systems (Becker, 2009). Salivary hormone samples were assayed using

standard enzyme immunoassay kits, and hormone levels were quanti-

fied using 5-day rolling averages (Klump et al., 2013). Hormone levels

on scan days only were used in analyses.

We used previously established procedures (Klump et al., 2015) and

ovulation kits to ensure different hormone levels at each of two scans

conducted during the 35-day study. Procedures successfully captured

pre- versus post-ovulation for six (60%) participants. Two (20%) partici-

pants had scans during anovulatory cycles, and two (20%) were in pre-

ovulation at both scans. Hormone profiles of these participants still dif-

fered between scans (estrogen difference range: 0.28–0.89; progester-

one difference range: 15.83–23.36). All participants were included in

analyses because GIMME models heterogeneity, and multilevel models

(see Results) accounted for dependencies between scans.

Resting state brain function was assessed with 12-min fMRI scans

using a standard echo planar imaging sequence conducted on a 3 Tesla

GE scanner; structural data were also acquired. Standard preproces-

sing, with motion and noise correction, was conducted, and functional

time series from 10 ROIs was extracted for subsequent network ana-

lyses. ROIs are listed in Supporting Information Table S1 and displayed

in Figure 1. See Supporting Information for details.

4 | RESULTS

4.1 | GIMME: Application to resting state brain
function

GIMME models reflecting within-person variation fit each participant's

data well, according to indices reported in Table 2. Figure 2 illustrates

GIMME models for one twin pair discordant for emotional eating at

pre- and post-ovulation, and Figure 3 shows models for the twin pair

discordant for anxiety. All models contain 15 group-level connections
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(thick black lines): 10 are autoregressions (dashed circular arrows esti-

mated in the null model), and five are contemporaneous, primarily

between contralateral (opposite-hemisphere) brain regions; there was

also a contemporaneous connection from the left lateral parietal lobe

to the PCC (see ROI acronyms in Figure 1). The group-level connec-

tions represent homogeneity across the sample because they were

important for all models. Note, however, that the β weights of these

connections differ across participants and scans because they are esti-

mated uniquely in each model. This is seen in Table 3 and Figures 2

and 3. For the twin who engages in emotional eating (Figure 2), the

connection from the left to the right OFC decreased from 0.95 to

0.68 from pre- to post-ovulation, while the same connection

increased from 0.53 to 0.62 for her control co-twin. For the twin with

high anxiety (Figure 3), that same connection increased from 0.33 to

0.53 from pre- to post-ovulation, while it remained relatively constant

for her control co-twin at 0.70 and 0.68. Thus, GIMME determines

the group-level structure of the data by fitting the same connections,

but calculates person-specific estimates—and not average

parameters—of those connections.

As reported in Table 3, GIMME models also contained between

8 and 11 twin pair-level connections (thick gray lines in Figures 2 and

3); the majority were contemporaneous. These connections represent

homogeneity within genes and families as well as heterogeneity

between genes and families. They were important for model fit in both

scans for particular twin pairs. For instance, in Figure 2, there was one

lagged and seven contemporaneous pair-level connections, and they

were mainly between ipsilateral (same-hemisphere) ROIs or between

medial and lateral ROIs. In Figure 3, there were three lagged and eight

contemporaneous pair-level connections, and again, they were mainly

between ipsilateral or between medial and lateral ROIs; there were also

two feedback loops (i.e., lagged connections between contralateral

ROIs that were contemporaneously connected). Even though pair-level

connections seemed to serve a similar function across pairs (reflecting

ipsilateral connectivity), they did so in pair-specific ways, as only four

connections were common between participants in Figures 2 and 3.

Finally, all but one GIMME model contained person-specific con-

nections (thin black lines in Figures 2 and 3); there were between

0 and 20 per model (M = 6.10, SD = 5.52); see Table 3. One scan for

FIGURE 1 Study ROIs overlaid on a template brain, with a right

anterior cutout. Red ROIs are part of the default mode network, with
the right lateral parietal (RLP) and medial prefrontal cortex (MPFC)
pictured, and the left lateral parietal (LLP) and posterior cingulate
cortex (PCC) not pictured. Green ROIs are part of the reward
network, with the right striatum (RS), left striatum (LS), and right
orbitofrontal cortex (ROFC) pictured, and the left orbitofrontal cortex
(LOFC) not pictured. Yellow ROIs are part of the cognitive control
network, with the right dorsolateral prefrontal cortex (RDLPFC) and
left dorsolateral prefrontal cortex (LDLPFC) pictured [Color figure can
be viewed at wileyonlinelibrary.com]

TABLE 2 GIMME model fit results for each participant by scan

χ2 df CFI NNFI RMSEA SRMR

Twin Pair 1

Case*

Pre 335.55 114 0.97 0.95 0.08 0.06

Post 346.15 118 0.97 0.95 0.08 0.07

Control

Pre 291.38 118 0.96 0.93 0.07 0.05

Post 295.49 120 0.96 0.94 0.07 0.05

Twin Pair 2

Case

Anovul. 251.09 102 0.96 0.93 0.07 0.05

Anovul. 322.82 113 0.96 0.94 0.08 0.05

Control

Anovul. 310.04 114 0.96 0.94 0.08 0.05

Post 295.77 103 0.96 0.92 0.08 0.05

Twin Pair 3

Case

Pre 401.18 118 0.97 0.96 0.09 0.05

Post 486.72 118 0.97 0.96 0.11 0.09

Control

Pre 268.48 107 0.97 0.94 0.07 0.05

Post 322.78 114 0.97 0.95 0.08 0.06

Twin Pair 4

Case

Pre 284.29 115 0.97 0.95 0.07 0.06

Post 263.04 112 0.97 0.95 0.07 0.06

Control

Pre 290.83 117 0.97 0.95 0.07 0.05

Post 418.64 118 0.97 0.95 0.10 0.06

Twin Pair 5

Case

Pre 309.53 114 0.96 0.93 0.08 0.05

Pre 397.81 116 0.95 0.92 0.09 0.05

Control

Pre 276.88 115 0.97 0.94 0.07 0.05

Pre 333.31 120 0.97 0.95 0.08 0.06

Note. Pre = Pre-Ovulation; Post = Post-Ovulation; Anovul. = Anovulatory
cycle; CFI = comparative fit index; NNFI = non-normed fit index; RMSEA =
root mean squared error of approximation; SRMR = standardized root
mean residual. *Pairs 1, 2, and 4 were discordant for emotional eating; pair
3 was discordant for anxiety; pair 5 was discordant for both.
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one twin did not require any unique connections because the group-

and pair-level connections already fit the data well. These connections

reflect heterogeneity across individuals because they are needed to

explain the data even after homogeneity across all people and co-

twins has been modeled. In Figure 2, the twin who engaged in emo-

tional eating had eight connections during pre-ovulation with most

being lagged (and two of which were present during post-ovulation),

while her co-twin had four connections during pre-ovulation with

most being contemporaneous. In Figure 3, the twin with high anxiety

had only one person-specific connection during both pre- and post-

ovulation; it was the same lagged link between the PCC and RLP. It

reflects stability within this participant.

To provide a comparison between person-specific GIMME results

and results from a comparable between-subjects analysis that ignores

heterogeneity, a uSEM was fit to sample average-level data. The net-

work is shown in Figure 4, and it fit the data well: χ2(124) = 295.11,

p < .001, CFI = 0.97, NNFI = 0.95, RMSEA = 0.07, SRMR = 0.06.

Consistent with the group-level GIMME results, most connections

were between contralateral ROIs or among ROIs in the established

default mode network. There were, however, two contemporaneous

connections from the MPFC to left reward network regions (i.e., LS

and LOFC) that highlight the shortcomings of the average-level

approach. The MPFC-to-LS connection was displayed by only three

pairs (including the pair in Figure 2), and the MPFC-to-LOFC connec-

tion was displayed two pairs (including the pair in Figure 3). Accuracy

was obscured by averaging! The average-level model assumed that

the MPFC was connected moderately to the LS and LOFC in all partic-

ipants, but in fact, those connections were driven by specific twin

pairs and were not applicable to others.

4.2 | Illustrative example: Linking resting state brain
function to ovarian hormones and emotional eating

Resting state brain function results from GIMME were linked to ovar-

ian hormones and clinical status (i.e., twin with vs. without emotional

eating and/or anxiety) to illustrate how GIMME can be used to iden-

tify novel brain-behavior relations. Descriptive statistics for emotional

eating, estrogen, and progesterone during pre- and post-ovulation are

shown in Supporting Information Table S2. As expected, cases had

higher emotional eating scores than controls at both pre- and espe-

cially post-ovulation, and both groups showed variability in hormone

levels between scans.

FIGURE 2 Final GIMME models for a twin pair discordant for emotional eating and scanned twice across the menstrual cycle; this is Twin Pair

1 listed in Tables 2 and 3. Ellipses reflect ROIs that constitute the default mode (red), reward (green), and cognitive control (yellow) networks.
Solid lines depict contemporaneous connections, and dashed lines depict lagged connections. Thick black lines depict group-level connections
(estimated for everyone in the sample), thick gray lines depict twin pair-level connections (estimated for all scans from this twin pair), and thin
black lines depict individual-level connections (uniquely estimated for an individual and scan). All connections have associated β weights. The four
networks fit the data well; see Table 3 [Color figure can be viewed at wileyonlinelibrary.com]
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Moderation analyses implemented in multilevel models with ran-

dom intercepts and nesting by scans and twin pair were used to exam-

ine between-subject hormone-connectivity relations in cases versus

control. Due to their illustrative nature, analyses were not corrected

for multiple comparisons. Clinical status, estrogen and progesterone

(in separate models), and their interaction were used to predict

GIMME model parameters. Many different parameters could be used,

but because follow-up analyses are between-subject, we focused on β

weights of GIMME-identified group-level connections listed in

Table 3; they are uniquely estimated for each participant and scan and

are not zero-inflated (as are pair- and individual-level connections).

Results revealed a main effect of clinical status on the LLP-to-

PCC connection for estrogen, b = −0.20, p = .037, and progesterone,

b = −0.19, p = .029, such that controls had greater connectivity

strength than cases. There were also interactions for the RLP-to-LLP

connection for estrogen, b = −.10, p = .078, and progesterone,

b = −0.15, p = .008. Strength was positively related to estrogen

(b = 0.11) and progesterone (b = 0.11), in controls, but there was little

evidence for a relation in cases (b = −0.01 and b = −0.03, respec-

tively). Although results are merely illustrative because of the small

sample, some provocative findings emerged: Compared to controls,

women who engage in emotional eating or had anxiety showed

weaker default mode connectivity (LLP ! PCC) and weaker relations

between ovarian hormones and default mode connections (RLP

! LLP).

5 | DISCUSSION

Our goal was to introduce to the eating disorder community a novel

network analysis technique called GIMME that is well-suited to exam-

inations of heterogeneity, and to demonstrate how it can be combined

with highly variable clinical and biological data to investigate new

research questions with relevance to precision healthcare. Analysis of

intentionally heterogeneous illustrative data showed that GIMME can

be used to create person-specific models of brain networks that can

then be linked to ovarian hormone levels (spanning pre- and post-ovu-

lation) and clinical status (i.e., emotional eating, anxiety, or both). Anal-

ysis of these data—after averaging them—using the statistical model

implemented by GIMME (mimicking traditional between-subjects ana-

lyses of inter-individual variation based on the faulty assumption of

homogeneity) produced some spurious findings.

FIGURE 3 Final GIMME models for a twin pair discordant for anxiety and scanned twice across the menstrual cycle; this is Twin Pair 3 listed in

Tables 2 and 3. Ellipses reflect ROIs that constitute the default mode (red), reward (green), and cognitive control (yellow) networks. Solid lines
depict contemporaneous connections, and dashed lines depict lagged connections. Thick black lines depict group-level connections (estimated for
everyone in the sample), thick gray lines depict twin pair-level connections (estimated for all scans from this twin pair), and thin black lines depict
individual-level connections (uniquely estimated for an individual and scan). All connections have associated β weights. The four networks fit the
data well; see Table 3 [Color figure can be viewed at wileyonlinelibrary.com]
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GIMME results (reflecting a within-subjects analysis of intra-

individual variation based on the assumption of heterogeneity)

revealed several group-level connections, primarily between contralat-

eral ROIs, many of which were detected in the average-level analyses.

Thus, there is some evidence for convergence of GIMME and

average-level results. Due to functional similarities between contralat-

eral regions, these connections are logical reflections of brain function

and expected to replicate across methods and samples.

In order to account for the relatedness of co-twins, GIMME was

applied for the first time with an a priori family level. Results showed a

similar number of twin pair-level connections (between 8 and 11)

across the two scans. These connections were misrepresented by the

average-level results, which indicate that all individuals had positive,

moderate associations from the MPFC to the LS and the LOFC. Twin

pair-level analyses, however, revealed that these connections were

present for some pairs, but not others. Thus, the assumption of homo-

geneity made in the between-subjects analysis in order to permit gen-

eralization across people was violated; results only generalized to

select individuals. It is unlikely that power is the primary reason for

the inaccurate average-level results because—even with a larger

TABLE 3 Key features (i.e., parameter estimates) of GIMME models for each participant by scan

Number of GIMME connections
β weight of
Group-level connection

Twin Pair Individual LLP
!
PCC

RLP
!
LLP

LOFC
!
ROFC

LS
!
RS

RDLPFC
!
LDLPFC

Twin Pair 1 8

Case*

Pre 8 0.48 0.67 0.95 0.83 0.73

Post 4 0.26 0.67 0.68 0.83 0.83

Control

Pre 4 0.67 0.73 0.53 0.77 0.23

Post 2 0.64 0.66 0.62 0.82 0.37

Twin Pair 2 8

Case

Anovul. 20 0.62 0.77 0.34 0.86 0.83

Anovul. 9 0.56 0.70 0.48 0.89 0.67

Control

Anovul. 8 0.70 0.67 0.71 0.84 0.55

Post 19 0.50 0.65 0.77 0.95 0.68

Twin pair 3 11

Case

Pre 1 0.46 0.02 0.33 0.88 0.18

Post 1 0.56 −0.10 0.53 0.79 0.27

Control

Pre 12 0.81 −0.02 0.70 0.82 0.71

Post 5 0.72 0.55 0.68 0.94 0.83

Twin Pair 4 11

Case

Pre 4 0.41 0.40 0.56 0.82 0.39

Post 7 0.45 0.45 0.37 0.56 0.37

Control

Pre 2 0.51 0.36 0.35 0.57 0.39

Post 1 0.58 0.50 0.33 0.68 0.37

Twin Pair 5 10

Case

Pre 6 0.16 0.62 0.79 0.88 0.34

Pre 4 −0.03 0.47 0.65 0.83 0.19

Control

Pre 5 0.36 0.67 0.69 0.58 0.64

Pre 0 0.44 0.75 0.87 0.76 0.43

Note. Pre = Pre-Ovulation; Post = Post-Ovulation; Anovul. = Anovulatory cycle; LLP = left lateral parietal; PCC = posterior cingulate cortex; RLP = right lat-
eral parietal; LOFC = left orbitofrontal cortex; ROFC = right orbitofrontal cortex; LS = left striatum; RS = right striatum; RDLPFC = right dorsolateral pre-
frontal cortex; LDLPFC = left dorsolateral prefrontal cortex. *Pairs 1, 2, and 4 were discordant for emotional eating; pair 3 was discordant for anxiety; pair
5 was discordant for both.
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sample size—the average would still collapse across heterogeneous

individuals, who vary from each other and across time in emotional

eating and anxiety. It is this inappropriate averaging over heterogene-

ity that leads to inaccuracies (Birkhoff, 1931; Molenaar, 2004).

Finally, GIMME results revealed unique connections for almost all

individuals and scans, reflecting heterogeneity across people and time;

these connections were absent from the sample-average analysis.

Among one twin pair (Figure 2), the twin who engaged in emotional

eating showed the most individual-level connections during pre-ovula-

tion, perhaps reflecting increased neural regulation important for

reducing risk, but when that cross-talk ends (e.g., due to hormone

modulation during post-ovulation), emotional eating ensues. Thus,

results suggest a potential person-specific clinical target of increasing

regulation through neural connectivity (e.g., via neurofeedback) during

risk episodes. A distinct example is provided by another twin pair

(Figure 3) in which the twin discordant for anxiety did not show

remarkable changes in connectivity across ovulation. This is not sur-

prising (e.g., ROIs were selected based upon evidence for their contri-

bution to emotional eating) and highlights how GIMME will only

detect heterogeneity if it exists.

Analyses also demonstrate how parameter estimates from the

person-specific GIMME models (β's) can be linked to hormones and

clinical status. These illustrative associations are generally consistent

with past work highlighting biological dysregulation in women who

engage in emotional eating (Klump et al., 2013; Klump et al., 2014),

but findings may change in larger samples with different patterns of

heterogeneity. In typical samples, the default mode network has

greater activation than the reward network during rest, but during

tasks, the reward network has greater activation than the default

mode network; this toggling reflects healthy brain function (Fox &

Greicius, 2010). Interestingly, cases had weaker connections in the

default mode and weaker ovarian hormone relations with connections

in the default mode than controls, potentially suggesting that hor-

mones contribute to resting state “mis-activation” relevant to emo-

tional eating and anxiety.

GIMME uniquely provided these insights. It is a person-specific

approach that takes advantage of time-indexed information to model

the direction of connections between brain regions (e.g., RLP predicts

LLP), going beyond bidirectionality, and it indicates whether that pre-

diction is concurrent or lagged in time. GIMME simultaneously models

homogeneity and heterogeneity. It affords population-level general-

izations (from group-level connections), while addressing the hetero-

geneity prevalent in neuroimaging and clinical data that is often

ignored and leads to spurious findings (as in the average-level

analysis).

There are assumptions, limitations, and nuances to GIMME, so

researchers should reference detailed tutorials before implementation

(Beltz & Gates, 2017; Lane & Gates, 2017), but there are key consider-

ations for a valid and reliable application. First, because GIMME is a

person-specific approach to the analysis of intra-individual variation,

power comes from time series length (not sample size); for fMRI

research, the more volumes, the better! The optimal length depends

on many factors, such as the number of ROIs, nature of the data, and

pattern of estimable effects (Beltz & Gates, 2017). Using procedures

similar to those employed here, simulations suggest that GIMME

results from time series with 30 observations are less accurate than

those with 120 observations (Lane, Gates, Pike, Beltz, & Wright, in

press). Second, GIMME models observed data and is fit in a structural

FIGURE 4 Neural network (based on unified structural equation modeling) for sample average-level data, collapsing across time points and twin

pairs. Ellipses reflect ROIs that constitute the default mode (red), reward (green), and cognitive control (yellow) networks. Solid lines depict
contemporaneous connections, and dashed lines depict lagged connections. All connections have associated β weights, and the model fit the data
well; see statistics in text [Color figure can be viewed at wileyonlinelibrary.com]
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equation modeling framework, so researchers should monitor poten-

tial problems with convergence and standard errors. Third, GIMME

assumes that all time-indexed information is handled within the model

(i.e., residuals are white noise). This assumption can be explicitly evalu-

ated and becomes increasingly important with short measurement

intervals (Beltz & Molenaar, 2015). Fourth, the direction of prediction

for contemporaneous connections can be validated using a version of

GIMME (for Multiple Solutions) that generates competing models

(Beltz & Molenaar, 2016).

GIMME has enormous potential for the study of clinical phenom-

ena, including eating disorders, because it addresses heterogeneity in

etiology, presentation, and treatment response through person-

specific modeling of intra-individual variation after detecting com-

monalities across a sample and a priori subgroups, such as twin pairs.

GIMME, therefore, complements traditional between-subjects

approaches to inter-individual variation while accurately reflecting

individual-level processes that can be leveraged in precision

healthcare.
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