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Introduction 33 

Recent technological advances have allowed for a more sophisticated 34 

understanding of the biology of tumors and an ability to generate massive data at an 35 

unprecedented pace. These advances now routinely allow for the assessment of 36 

genomics (DNA mutations and copy number alterations), transcriptomics (RNA 37 

expression levels), methylation profiles and protein and phosphoprotein abundance to 38 

unravel the biologic underpinnings of various types of cancers. This information is now 39 

being combined with various imaging modalities, histopathology, clinical and patient 40 

characteristics, and treatment information to allow for a systems-based approach to 41 

understanding and characterizing cancer. With these advances, however, new 42 

challenges have emerged in how to acquire, store, catalog, analyze, and integrate these 43 

varying types of biologic data. This article will review examples of successful integration 44 

of genomic and biologic data, the current state of this research, issues surrounding 45 

access, extraction, collection, and curation of the genomic and biospecimens data. It will 46 

also suggest recommendations for standardizations and next steps to improve data 47 

availability. 48 

         With the completion of the human genome project and the subsequent inception 49 

and completion of The Cancer Genome Atlas (TCGA) project, the acquisition, storage, 50 

and subsequent availability of large-scale genomic, transcriptomic, and proteomic data 51 

has led to an accelerated pace of discovery and understanding of cancer1-4. This data 52 

has led to the development of new, effective targeted agents, and ascertainment of this 53 

genomic and biospecimen data is now making its way into routine clinical practice5. 54 

Indeed, multiple groups have recently published the findings of molecular tumor boards 55 

and this molecular data is now beginning to be used, including in the NCI-sponsored 56 

MATCH and IMPACT trials, the AACR sponsored GENIE project, and ASCO sponsored 57 

TAPUR trial, to inform clinical decision making as it relates to disease prognosis, 58 

effectiveness, therapeutic benefit, and mechanisms of treatment resistance6-8. Other 59 

examples of the successful capture and annotation of genomic and biospecimen data 60 
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includes the Encyclopedia of DNA elements (ENCODE) project, and the International 61 

Cancer Genome Consortium (ICGC) project. 62 

While the benefits of this molecular data in areas such as targeted drug 63 

development are increasingly clear, it’s utility to predict radiation treatment toxicity and 64 

therapeutic response remains uncertain. While there are many reasons for this 65 

disparity, multiple initiatives including the REQUITE, RAPPER, Gene-PARE, 66 

RadGenomics, and canSAR projects are currently underway to collect, catalog, and 67 

make available this information9-13

  71 

. The success of these radiation-associated 68 

databases, and subsequent projects, however, will depend on the ability for these 69 

databases to be accessed, annotated, integrated, and updated. 70 

State of the research 72 

         The acquisition and storage of genomic and biospecimen data is currently the 73 

exception, not the rule in radiation oncology clinical practice. When this information is 74 

gathered, it is usually for research purposes with variable translatability into clinical 75 

practice. While the reasons for this lack of sample collection are numerous, a major 76 

limitation to specimen collection is the requirement that it be prospectively incorporated 77 

into research and non-research protocols. The collection and analysis of patient derived 78 

biospecimens requires institutional review board (IRB) approval. This approval, in turn, 79 

is dependent on a clearly formulated rationale for collecting the information, and 80 

safeguards regarding the utilization of the information and protection of potentially 81 

identifiable information. This requires foresight, resources (monetary, staff, and space-82 

related resources), and patient and physician buy in. Some groups have begun to 83 

address this challenge by creating “boilerplate” language that can be incorporated into 84 

the standard consenting process for any patient undergoing radiation treatment. This 85 

consent includes language that allows for the de-identified patient genomic data to be 86 

used for research purposes, and is easily included in prospective trials as well as the 87 

regular clinic workflow 14

 An important area of radiation oncology research utilizing big data is 90 

radiogenomics, whose goal is the identification of genomic markers that are predictive 91 

. Efforts to make this language and consent template more 88 

widely available are already underway. 89 
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for the development of outcomes resulting from cancer treatment with radiation15. Work 92 

in radiogenomics has greatly benefited from creation of the Radiogenomics Consortium 93 

(RGC). The RGC was created in 2009 and is a cancer epidemiology consortium through 94 

the Epidemiology and Genomics Research Program of the NCI of the NIH16. The RGC 95 

now has 225 member investigators located at 131 medical centers in 32 countries. The 96 

common goal of the RGC membership is to share biospecimens and data so as to 97 

achieve large scale studies with increased statistical power to enable identification of 98 

relevant genomic markers. However, in order to accomplish this work and definitively 99 

discover and validate the critical genomic markers, access to the radiotherapy treatment 100 

information and long-term longitudinal follow-up data reporting details such as outcomes 101 

must be obtained for large numbers of patients. The RGC does not maintain a 102 

centralized biorepository, but serves to facilitate the development of collaborations 103 

between investigators with similar research goals who have assembled cohorts and 104 

collected data that can be synthesized into one large study. Although the RGC has 105 

successfully assembled large cohorts to perform adequately-powered studies, data 106 

harmonization remains a challenge for studies involving multiple patient cohorts treated 107 

with a variety of radiotherapy techniques and evaluated using multiple grading systems 108 

15. Although a proposed set of reporting requirements have been promulgated for 109 

research in radiogenomics, it would be advantageous if identical, or at least similar, 110 

case report forms were utilized for all radiogenomic research17

 An important example of the research projects launched by RGC investigators is 112 

the large multi-center REQUITE study (Validation of predictive models and biomarkers 113 

of radiotherapy toxicity to reduce side-effects and improve quality-of-life in cancer 114 

survivors) 

. 111 

10. REQUITE addresses the challenge of data heterogeneity that, as for other 115 

big data projects, requires harmonization of the different outcome measures and 116 

confounding variables used in multiple cohorts. This study does not stipulate the 117 

radiotherapy protocols to be used but involves standardized case report forms across 118 

centers and countries to ensure data in identical categories are collected. The 119 

objectives of REQUITE are to: (1) Perform a multi-center, observational cohort study in 120 

which epidemiologic, treatment, longitudinal toxicity and quality-of-life data are collected 121 

from approximately 5,000 patients treated with radiotherapy for either breast, prostate or 122 
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lung cancer. (2) Produce a centralized biobank in which DNA is isolated from patients 123 

enrolled in the observational study and create a centralized data management system 124 

for secure collection, integration, mining, sharing and archiving of all project data. A key 125 

aspect of the centralized database is that it includes pre-treatment DICOM and DVH 126 

files. (3) Validate published SNP biomarkers of radiosensitivity and discover new 127 

variants associated with specific outcomes following radiotherapy, (4) Validate 128 

clinical/dosimetric predictors of radiotherapy toxicity and incorporate SNP biomarker 129 

data. (5) Design interventional trials to reduce long-term adverse cancer treatment 130 

effects. (6) Deliver interventional trial protocols using validated models incorporating 131 

biomarkers to identify patient sub-populations likely to benefit from interventions. (7) 132 

Serve as a resource exploitable for future studies exploring relationships between 133 

genetics and radiotherapy outcomes using developing technologies such as next 134 

generation sequencing. Those interested in becoming a member investigator of the 135 

RGC should contact Barry Rosenstein via email at barry.rosenstein@mssm.edu. 136 

 137 

Access and Extraction 138 

With the decreasing costs and increasing availability of DNA and RNA 139 

sequencing, protein expression and metabolite assessment, the amount of data 140 

generated per patient continues to increase. Despite the increase in the availability of 141 

this data, the subsequent capture of this information for anything other than to answer a 142 

specific research question or direct a clinical treatment decision remains extremely 143 

limited. While the reasons are myriad, the amount and complexity of the data is a major 144 

factor. It is now common for germline and somatic testing of patients and tumors to 145 

include at least some of the following assessment:  DNA sequencing assessing 146 

germline and/or somatic mutations and copy number variation, single nucleotide 147 

polymorphism (SNP) assessment, RNA expression (either through RNA sequencing or 148 

gene expression microarrays, epigenomic assessment, proteomic assessment (through 149 

mass spectrometry or reverse phase protein lysate arrays), metabolomic assessment, 150 

and pathologic assessment of tumor samples (through immunohistochemical staining, 151 

flow cytometry assessment, or though the creation of institutional or multi-institutional 152 

tissue microarrays (TMAs). In addition to the sheer volume of biological molecules being 153 
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assessed, the methods to analyze, interpret, and report the data is also varied. Issues 154 

of DNA sequencing read depth and sequence mapping for sequencing data continue to 155 

confound analyses of such data. Variation in algorithms utilized for DNA sequence 156 

mapping, variance and allelic calls also contributes to the complexity and heterogeneity 157 

in type and quality of the data. One must decide whether to collect and store pre-158 

processed vs. raw data (i.e. normalized expression data vs. CEL files for expression 159 

microarrays or FASTQ vs. BAM files for DNA sequencing data). As an example, when 160 

raw DNA sequencing information is obtained, it usually comes from the DNA sequencer 161 

as FASTA or FASTQ files. FASTA and FASTQ format is based on simple text and 162 

contains the raw data of each sequence read. For FASTA files, each sequence starts 163 

with a “>” followed by the sequence name, a space and, optionally, the description. In 164 

addition, a separate FASTA file will include the quality information of the given read 165 

sequences. FASTQ files were developed to provide a convenient way of storing the 166 

sequence and the quality scores in the same text-based file. It bears noting that 167 

depending on the sequencing technique (Sanger vs. Illumina sequencing), different 168 

FASTQ files are generated based on the different ways in which quality is assessed 169 

between Sanger and Illumina sequencing. Because of this difference, the source of 170 

FASTQ data should be noted when storing the data as the encoding for the quality 171 

scores is diferent between Sanger and Illumina sequencing. In addition, paired reads 172 

are now routinely generated in which two reads are generated from the same single 173 

molecule to aid in sequence alignment. In this case (paired-reads data) two FASTQ files 174 

are created, one for the first read of the pairs and another one for the second, and the 175 

files should hold the reads exactly in the same order. Moving beyond simple read 176 

sequences FASTA or FASTQ files, alignment (SAM/BAM) and variation (VCF) files can 177 

also be created.  Sequence Alignment Map (SAM) files were first created to store not 178 

only sequence and quality data (like in FASTQ files), but also mapping information for 179 

the sequences (i.e where does each sequence align on the genome). To capture this 180 

more complex data, SAM files are tab-based and include 11-12 fields that fill one line 181 

and may include a header. SAM can express the same information as FASTQ, but also 182 

includes mapping information (see https://samtools.github.io/hts-specs/SAMv1.pdf for 183 

more information). SAM is rarely used as the format for data storage, instead, files are 184 
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stored in binary alignment mapping (BAM) format, which is a compact binary 185 

representation of SAM. It stores the same information, just more efficiently, and in 186 

conjunction with a search index, allows fast retrieval of individual records from the 187 

middle of the file. Because of its binary nature, BAM files are also much more compact 188 

than compressed FASTQ or FASTA files. Thus, when considering storage of genomic 189 

data once must decide upon file format storage (raw data in FASTQ vs. processed and 190 

mappted data in BAM). Finally, there are data access (and limitations to access to 191 

preserve data security and patient anonymity) and extraction issues that have made the 192 

wide-spread availability of this information a challenge. 193 

While there are no quick or easy solutions to these challenges, many groups 194 

have already grappled with these questions and found useful solutions. For example, in 195 

the case of the REQUITE trial, standardized case report forms were developed for data 196 

collection of epidemiological and patient characteristics. Collection of clinical/pathologic, 197 

physics and treatment data were also standardized. Of critical importance, the full 198 

radiotherapy dose volume histogram was obtained for each subject, which provides 199 

substantial detailed dosimetric data. Data collection forms were provided in the different 200 

languages of the patients located in the multiple countries where they were enrolled into 201 

the study. Paper and web-based submission methods were provided in parallel. 202 

Submitted data underwent centralized quarterly quality control and plausibility checks 203 

for quality assurance according to a standardized quality assurance protocols. The 204 

database was enhanced to enable sample tracking in conjunction with the biobank 205 

information system, and empowered with user friendly interfaces to enable flexible data 206 

mining and data downloads in various formats. The database is only accessible to 207 

authorized persons via network and database passwords. 208 

 209 

 210 

Collection and Curation 211 

Important lessons can be learned from the challenges facing data extraction from 212 

health system-wide electronic medical records (EMR).  Natural language processing 213 

(NLP) is part of a solution to extract data that is only available in free-text fields in 214 

EMRs.  We are at a junction where development of a standardized format for collection 215 
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and storage of genomics data (i.e all BAM format) could potentially save significant 216 

resources in connecting genomics data to patient outcomes and dosimetric data.  217 

Independent validation is essential in the path towards the robust use of genomics data 218 

in clinical practice.  By standardizing our clinical data collection, we can accelerate the 219 

discovery of which data are the most beneficial for specific classes of patients. One 220 

potential opportunity for increased capture and curation is to integrate with commercial 221 

(Flatiron) or organizational (CancerLinQ) platforms. These groups are already invested 222 

in data integration from EMR systems, and the increasing amount of clinically and 223 

commercially available genomic and biospecimen testing results may be extracted 224 

using these platforms. While these commercial and organizational platforms are still in 225 

their infancy, early integration into these groups may eliminate some of the challenges 226 

with later-stage integration.  In addition, initial discussions with these groups could lead 227 

to standardization of collection and storage that could lessen, if not eliminate, 228 

subsequent challenges when the data is accessed/prepared for analysis. Certainly 229 

issues to consider in these initial discussions include: which format should be used to 230 

store data and whether raw or normalized data should be collected; should the data be 231 

normalized and if so which technique will be used; can EMRs be reconfigured to host 232 

and handle this genomic and biospecimen data; should biospecimen data be built into 233 

EMRs from radiation treatment unit vendors including Varian and Elekta (with Aria and 234 

Mosaiq) and how do we limit redundancy or discrepant data in these biospecimen data 235 

sets. While the answers to these questions are not immediately obvious, working group 236 

consensus and advocacy will allow for a clearer path forward as we seek to collect and 237 

curate genomic and biospecimen data. 238 

 239 

Specific Recommendations for standardizations 240 

 The utility of genomic and biospecimen data collection and utilization will depend 241 

heavily on the quality and completeness of the data collected. In an ideal world, this 242 

data would be automatically collected and seamlessly integrated into other databases of 243 

collected data (patient outcomes, comorbidities, toxicity, dosimetric and treatment 244 

related information, etc.). While this is unlikely to be reality in the near term, the 245 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



9 
 

This article is protected by copyright. All rights reserved 

following recommendations will allow for the gradual transition to this new reality.  246 

These recommendations include: 247 

1. Pool genomics and bio-specimen analysis templates among centers active in 248 

genomics for clinical research so that common features are universally captured 249 

and similarly named for ease of extraction in the future. Appropriate batch effect 250 

corrections across sample acquisiton and preparation sites would be necessary 251 

prior to data collation18

2. Develop a standard nomenclature for data collection. Similar to the TG-263 task 253 

group, the formation of a similar task group to standardize genomic and 254 

biospecimen data nomenclature and reporting would significantly aid in this 255 

process.  256 

 . 252 

3. Harmonize the preferred format for standard fields to store genomics data within 257 

the hospital EMR with appropriate patient privacy safeguards built in. When 258 

housing within the EMR is not practical/feasible, uploading of genomics data with 259 

clinical outcomes and de-identified patient information into cBioPortal should be 260 

done (http://www.cbioportal.org) 261 

4. Publish the recommendations such that individual institutions can request the 262 

major EMR vendors implement those standard fields. Concentrated and 263 

consistent pressure by end-users is likely to be more effective in implementing 264 

change than scatter shot, disjointed requests. 265 

5. Identify institutions that would be able to perform validation of another institution’s 266 

results through a standard data query. Data standardization and completeness is 267 

a key limitation on integrating this more globally, and quality assurance measures 268 

and standardized operating procedures that are universally available and 269 

implemented will be key to subsequent data utilization and integration. 270 

6. Following examples like TCGA, the Sharing of standardized analysis pipelines 271 

enable the communciaton of “best practices”  for concordant, reproducible and 272 

rigorous data analysis. Methods that enable the  models to learn across 273 

institutional cohorts (i.e distributed learning), rather than requiring the data to be 274 

centrally stored can create viable alternatives for effective data learning and 275 

interpretation while being cognizant of potential privacy concerns19. 276 
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 277 

 278 

Recommendations for next steps 279 

 280 

Develop and conduct a survey to determine the state, quantity and quality of genomics 281 

and bio-specimens data in hospital EMRs 282 

 In order to successfully fix a problem, one must first effectively identify and define 283 

said problem. Before the integration of genomic and biospecimen data can become a 284 

reality, one must first understand the present barriers and limitations in real-world terms. 285 

A survey that includes academic and industry participants, data generators and end 286 

users is critical to further identifying and then understanding the problem. The results of 287 

this initial survey will provide the basis for subsequent task group’s efforts as they seek 288 

to assist the integration of genomic and biospecimen data into the radiation oncology 289 

space. Involvement of health ethicists and geneticists as well as health policy experts 290 

will also be key in navigating issues surrounding the housing of genomic data within an 291 

EMR (including health insurance and employer privacy concerns as well as protocols for 292 

notification should actionable germline mutations be identified. 293 

 294 

Share institutional best practices in data collection and storage and identify institutions, 295 

organizations, and companies who are willing to share current data templates 296 

 While an effort that begins by trying to capture all data at all institutions on all 297 

patients is unlikely to be successful in the near term, an effort that includes multi-298 

institutional and multi-tiered (i.e. academic, organizational, and industry) collaborations 299 

is likely to help move the field towards this greater goal. Critical to the successful 300 

advocacy for the integration of this data is receiving the support of large organizations 301 

already operating within this space. This includes dialogue with and endorsement from 302 

the American Society for Radiation Oncology (ASTRO), the American Society of Clinical 303 

Oncology (ASCO), the NRG, the National Institutes of Health (NIH), the National Cancer 304 

Institute (NCI) and the Global Alliance for Genomics in Health. As the sources for 305 

genomic and biospecimen data becomes increasingly available and complex, the 306 

inclusion of all parties associated with the data generation and usage in these 307 
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collaborations will be important. By identifying those groups that both have an interest in 308 

the integration of this data and who “touch” the data on a daily basis, potential pitfalls 309 

will be more readily identified, and avoided, as this process continues. 310 

 311 

Develop and publish the harmonized template to standardize data collection, generation 312 

and analysis to facilitate connection to patient outcome and dosimetric data 313 

 As was noted earlier in the article, the formation of a task group to address 314 

issues pertaining to standardized collection and nomenclature will be crucial to the 315 

successful integration of genomic and biospecimen data into radiation oncology 316 

treatment paradigms. One of the mandates of this working group will be the publication 317 

of recommended templates and nomenclature standardization that will allow for the data 318 

to be universally accessed and utilized.  The publication of uniform access requirements 319 

and sharing of “Best Practices for Data Collection” will be critical to the success of this 320 

project. Similar efforts for establishing standardized analysis templates (for variant 321 

interpretation, gene expresison analysis etc), will be essential to create datasets 322 

amenable to sharing and joint mining in the context of corresponding imaging and 323 

outcome data. 324 

 325 

Final considerations 326 

 In addition to the previously noted “next steps”, integration “discovery” and 327 

“validation” pipelines into the workflow will enable the more effective utilization of this 328 

data in the future. By carefully considering the collection and partitioning of these 329 

“discovery” and “validation” cohorts, subsequent integration of findings utilizing 330 

genomics and biospecimen data will be expedited. Critical to this collection, curation, 331 

and storage is the need for data housing standardizations that are HIPAA compliant and 332 

removes patient identifiable information. This also includes the need to incorporate our 333 

medical ethicist colleagues to consider the ethical issues surrounding the acquisition, 334 

storage, and reporting of genomic and biospecimen data. 335 

 336 

Conclusions 337 
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As we continue to translate the use of genomics data to guide treatment 338 

decisions for individual patients, we have an opportunity to accelerate this translation by 339 

developing and applying standard templates for data collection. By standardizing, they 340 

can be used to more robustly connect genomics and bio-specimen data directly to 341 

patient outcomes and dosimetric data.  There is a lot of enthusiasm for how 342 

standardized nomenclature for organs-at-risk and targets will accelerate the analysis of 343 

dose and patient outcomes (AAPM TG-263)20

 353 

. Similar potential exists within the 344 

collection, annotation, and storage of genomic and biospecimen space. Initial steps 345 

should include: standardizing nomenclature for data collection and harmonizing format 346 

of data collection and entry, pressuring EMR-vendors to build genomic and biospecimen 347 

data collection into the EMR platform, and establishing a task-group to generate specific 348 

guidelines governing the collection, analysis and reporting of genomic data. Successful 349 

completion of these steps will allow genomic and biospecimen data to be integrated into 350 

future data analysis as we seek to improve treatment efficacy and limit normal tissue 351 

toxicity.  352 

 354 

References: 355 

 356 

1. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human 357 

genome. Nature. 2001;409(6822):860-921. 358 

2. Comprehensive genomic characterization defines human glioblastoma genes and core 359 

pathways. Nature. 2008;455(7216):1061-1068. 360 

3. Comprehensive molecular portraits of human breast tumours. Nature. 361 

2012;490(7418):61-70. 362 

4. An integrated encyclopedia of DNA elements in the human genome. Nature. 363 

2012;489(7414):57-74. 364 

5. Bombard Y, Bach PB, Offit K. Translating genomics in cancer care. J Natl Compr Canc 365 

Netw. 2013;11(11):1343-1353. 366 

6. TAPUR: Testing the Use of Food and Drug Administration (FDA) Approved Drugs That 367 

Target a Specific Abnormality in a Tumor Gene in People With Advanced Stage Cancer 368 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



13 
 

This article is protected by copyright. All rights reserved 

(TAPUR). 2017; https://clinicaltrials.gov/ct2/show/NCT02693535. Accessed 9-25-2017, 369 

2017. 370 

7. Coyne GO, Takebe N, Chen AP. Defining precision: The precision medicine initiative 371 

trials NCI-MPACT and NCI-MATCH. Current problems in cancer. 2017;41(3):182-193. 372 

8. AACR Project GENIE: Powering Precision Medicine through an International 373 

Consortium. Cancer discovery. 2017;7(8):818-831. 374 

9. Burnet NG, Barnett GC, Elliott RM, et al. RAPPER: the radiogenomics of radiation 375 

toxicity. Clinical oncology. 2013;25(7):431-434. 376 

10. West C, Azria D, Chang-Claude J, et al. The REQUITE project: validating predictive 377 

models and biomarkers of radiotherapy toxicity to reduce side-effects and improve 378 

quality of life in cancer survivors. Clinical oncology. 2014;26(12):739-742. 379 

11. Ho AY, Atencio DP, Peters S, et al. Genetic predictors of adverse radiotherapy effects: 380 

the Gene-PARE project. Int J Radiat Oncol Biol Phys. 2006;65(3):646-655. 381 

12. Iwakawa M, Imai T, Harada Y, et al. [RadGenomics project]. Nihon Igaku Hoshasen 382 

Gakkai zasshi Nippon acta radiologica. 2002;62(9):484-489. 383 

13. Tym JE, Mitsopoulos C, Coker EA, et al. canSAR: an updated cancer research and drug 384 

discovery knowledgebase. Nucleic Acids Research. 2016;44(D1):D938-D943. 385 

14. Roychowdhury S, Iyer MK, Robinson DR, et al. Personalized Oncology Through 386 

Integrative High-Throughput Sequencing: A Pilot Study. Science translational medicine. 387 

2011;3(111):111ra121-111ra121. 388 

15. Rosenstein BS. Radiogenomics: Identification of Genomic Predictors for Radiation 389 

Toxicity. Semin Radiat Oncol. 2017;27(4):300-309. 390 

16. West C, Rosenstein BS. Establishment of a radiogenomics consortium. Radiotherapy 391 

and oncology : journal of the European Society for Therapeutic Radiology and Oncology. 392 

2010;94(1):117-118. 393 

17. Kerns SL, de Ruysscher D, Andreassen CN, et al. STROGAR - STrengthening the 394 

Reporting Of Genetic Association studies in Radiogenomics. Radiotherapy and oncology 395 

: journal of the European Society for Therapeutic Radiology and Oncology. 396 

2014;110(1):182-188. 397 

18. Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of 398 

batch effects in high-throughput data. Nature reviews Genetics. 2010;11(10):733-739. 399 

19. Jochems A, Deist TM, van Soest J, et al. Distributed learning: Developing a predictive 400 

model based on data from multiple hospitals without data leaving the hospital - A real life 401 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://clinicaltrials.gov/ct2/show/NCT02693535�


14 
 

This article is protected by copyright. All rights reserved 

proof of concept. Radiotherapy and oncology : journal of the European Society for 402 

Therapeutic Radiology and Oncology. 2016;121(3):459-467. 403 

20. Mayo C, Moran JM, Xiao Y, et al. AAPM Task Group 263: Tackling Standardization of 404 

Nomenclature for Radiation Therapy. International Journal of Radiation Oncology • 405 

Biology • Physics.93(3):E383-E384. 406 

 407 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t


