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Abstract 

 The computational cost of quantum chemical methods grows rapidly with increasing level of 

theory and basis set size. At increasing costs, higher accuracies can be reached, forcing a compromise 

between cost and accuracy for most molecular systems. Heats of reaction, however, are mostly 

determined by a subset of atoms that experience significant bonding and/or electronic changes. To 

exploit this fact, the Stepwise Basis Builder (SBB) algorithm selectively adds basis functions to reactive 

atoms and maintains small basis sets on spectator atoms. This article introduces the SBB algorithm and 

how it chooses a basis for each atom, predicts calculation errors, and uses these predicted errors to 

reach target levels of accuracy. Benchmarks show SBB heats of reaction and activation barriers converge 

to values consistent with higher-quality calculations using a greatly reduced number of basis functions.  

Keywords: Basis set selection, basis set extrapolation, computational cost, computational scaling, 

stepwise selection 

Introduction 

Computational quantum chemistry has become a widely used, powerful research tool because it 

allows many physically relevant properties to be predicted from first principles. While the Schrödinger 

equation provides a formally exact representation for any chemistry, standard quantum chemical 

studies must make approximations to avoid intractable computational costs. In general, increasing levels 

of theory and basis set size can improve the quality of electronic structure computations, with massive 

costs at the highest accuracy levels. Usually some compromise must be made by creating simpler 

molecular models, using lower levels of theory, and/or reducing the basis set quality. This study focuses 

in on the third component, and presents a new means of selecting a small basis set while achieving a 

target degree of accuracy. 

The algorithmic scaling of quantum chemical methods is central to understanding their high cost 

and the size of basis that may be used in practice. At the second order Møller-Plesset (MP2) level of 

perturbation theory, molecular energies can be calculated at O(n5),1 where n is the number of atoms in 

the system. A more accurate method, coupled cluster theory with single and double excitations (CCSD), 

scales as O(n6). 2-3 In MP2, the scaling with respect to number of basis functions is O(N3), and in CCSD, 

O(N4). In each case, linear scaling approaches (with respect to number of atoms in the system) have 

been developed to reduce the computational burden, at the cost of introduction of systematic errors.1,4-

22 Despite the linear scaling, these methods still grow superlinearly in cost with increasing basis set size, 

though some progress has been made to mitigate these costs using explicit correlation methods like 

R12.23-27 Generally speaking, to achieve the full accuracy of MP or CC levels of theory, large basis sets 

must be used. 

The complete basis set (CBS) limit represents the high accuracy, high computational cost limit 

for basis set selection. Extrapolation to the CBS limit3,28-29 takes advantage of convergence with 
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successively larger basis sets, and aims to eliminate any errors from choice of basis set.4-5,30-64 Basis set 

truncation,65 dual basis approaches,66 and related extrapolations3 have also been used to approach the 

CBS limit. The quality of CBS extrapolation using various basis sets, however, is dependent on the 

specific chemical systems and methodologies used,33-34 as has been shown by various benchmarks.58-64,67-

68 Basis sets of at least triple-zeta quality—and often larger—are needed to approach this limit. 

Approximate wave function methods do not reach arbitrarily high levels of accuracy compared 

to the exact electronic energy, even in the CBS limit. Additionally, since the CBS limit is not always 

attainable due to high costs, we pose a different question than prior studies in this area. In our view, we 

ask: in order to reach a specified level of accuracy, what basis set is required? The goal of the present 

article is to build a methodology to answer this question. In short, the proposed method will tailor basis 

sets for molecular systems to achieve a desired accuracy level, while at the same time keeping those 

basis sets small so the computations will remain tractable. The electronic structure theory will remain 

fixed, and therefore the accuracy represents the distance from the large basis limit for that level of 

theory.  

This study is further motivated by three key observations: 1) judicious choice of basis set may 

entail considerable savings with arbitrarily small loss in accuracy, 2) the effectiveness of additional basis 

functions is dependent on which atoms they are applied to, and 3) increasing level of theory and basis 

set quality allows for convergence of calculated energies to more accurate values. These observations 

suggest that iterative addition of select basis functions provides a route to reach convergence of 

computed energies. This study specifically will consider reactive systems, where in particular, reacting 

atoms require larger basis sets than nonreactive atoms. By examining the response of the energy to 

changes in individual atomic basis functions, estimates of the size of basis required for each atom can be 

obtained.   

Herein is described a Stepwise Basis Builder (SBB) algorithm that assigns basis functions for each 

atom individually, with energetic errors limited by a specified threshold. To control the error from 

truncating the basis, the relative error with respect to a change in basis on each atom is measured. A 

subset of the atoms which dictate significant changes in energy are given a larger basis, and the process 

repeated until convergence. This strategy will be shown to be particularly advantageous where the 

target quantities are energies of reaction, and cancellation of errors can lead to dramatic reductions in 

computational cost. 

Theory 

SBB will be presented after an introduction of standard energy calculations, where basis sets are 

fixed (e.g. the same Pople or Dunning type basis set is used for each atom). The energy,  , of molecular 

structure   is a function of the geometry and the basis: 

         

with   denoting the basis and   being a function specific to the level a theory (e.g. Hartree-Fock, MP2, 

or CCSD). Using the Dunning cc-pV Z type basis sets (with   ranging from 2 to ~8 for double zeta and 

larger basis sets), the basis size |G| scales as: 

| |     

This article is protected by copyright. All rights reserved.



Complete convergence (i.e. µHa) of the total energy   typically occurs for      , which is 

impractical for most systems of interest.29,69-70 Absolute energy calculations, however, are not the most 

practical goal in quantum chemistry. Often relative energies (e.g. thermochemical energies and 

activation energies) are the key quantities,  

                               

with M1 representing the structure of the reference molecule and M2 being the second (i.e. the product 

or the transition state). The relative energy is a new function,   , of the two structures and the basis 

used. If M1 and M2 are fixed (i.e. already known), then the relative energy can be further simplified to 

          

where the basis is the only important quantity.    usually is converged to within 1 kcal/mol for       

or  , allowing     computations to be avoided. For example, considering a molecule with   atoms, 

applying RI-MP2, and taking |G| to be 2X,  

                                                 

with   being the number of occupied orbitals,   being the number of virtual orbitals, and      being 

the number of auxiliary functions used in the RI approximation. Under this scaling law, reduction of the 

basis size from quintuple zeta to quadruple zeta results in a ~10-fold reduction in computational cost.  

 So far the basis set was assumed to be the same for each atom. Now, consider the following 

expression for the basis: 

  ⋃  

 

       

where   is the set of atoms in the molecule in question,   indexes the atoms in  , and    is the basis set 

used for each atom. Each atom’s basis is flexible, giving 

             

To motivate this assumption, see the example shown in Figure 1, where it is obvious that    

depends more strongly on basis functions in the central region of the molecule. 

 

Figure 1. 1,4 dipropyl cyclobutene ring opening. 

The problem of interest is determining how to reduce the total number of basis functions with 

minimal loss in accuracy. The ring opening reaction depicted in Figure 1 has reactive atoms only in the 

ring and the propyl chains are spectators.    is highly dependent on basis functions on the four carbons 

of the ring, with gradually weakening dependencies as the distance increases from this center. The basis 

functions for each atom can be selected by the iterative method outlined in Figure 2, which will be 

described in detail by the following derivation of the algorithm.  
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Figure 2. Overview of SBB algorithm.  

   

 The problem of choosing which size of basis to be used for each atom can be formulated, 

         ∑|  |

 

 

where |gi| refers to the size of the basis on each atom  , with constraint 

|          |      

where   is the desired accuracy level. Selecting the optimal basis without knowing        , however, is 

not a tractable problem. Assuming this quantity is not known, it is instead approximated using 

|        |    

The constraint can be understood in the context of forward-stepwise iteration.71-73 Starting with 

a minimal basis set size, and iteratively adding functions to each atomic basis, gi, fulfilling this constraint 

is the core action of the proposed SBB algorithm.       is the current best estimate of         and can 

be approximated as: 

         ∑
   

   
 

    

with     being the energy correction due to addition of basis functions (   ) on atom  . Under this 

prescription,   will be used to control the number of basis functions added on each iteration. 

|        | can thus be thought of as an estimate for the residual error, and   is used to ensure that 

this error remains small. This error is approximate, as it depends on the current (small) basis set, and 

because adding atomic basis functions is not additive in the energy. 

 ΔEref measures the approximate effect of adding basis functions to all atoms. However, the 

algorithm must choose specific, reactive atoms for basis function addition. In order to select these 

atoms, the following objective function was chosen: 

This article is protected by copyright. All rights reserved.



   |
  

   
|           

  

such that    is a measure of the impact of adding basis functions to atom  , weighted against the 

computational cost of adding those functions. λ is a regularization factor, and will be discussed in more 

detail shortly. 

 The largest values of    correspond to atoms   where additional basis functions are predicted to 

be most useful. The ordered list of si values may be expressed as: 

  {          }                 

Based on set  , the algorithm chooses   atoms corresponding to the first   si values for the 

calculation of the updated value of   , denoted    , such that 

|      |  |∑
   

|    
|

 

   

    
|    

where the term      refers to the basis added to the atom corresponding to the jth element of  . All 

that remains is to choose  , which up until now appears as an unknown regularization parameter. λ is 

chosen such that |      |    and   is minimized. This is achieved by scanning over a large range of 

λ values, and choosing the λ where   is smallest and the constraint is satisfied. The efficacy of this 

procedure will be demonstrated by numerical application in the results section. 

Computational Details 

 Geometries were optimized using the B3LYP density functional74-75 in a spin restricted formalism 
with the double-zeta, polarized 6-31G** basis set.76 Electronic energies were computed for reactant-
product pairs using Q-Chem 4.0.77 These calculations utilize second order Møller-Plesset perturbation 
theory under the resolution-of-the-identity approximation (RI-MP2) with basis sets from the set of 
unpolarized double zeta 6-31G,76 double-zeta cc-pVDZ, triple-zeta cc-pVTZ, and quadruple-zeta cc-
pVQZ,78 selected based on the method outlined in the Theory section. The RI basis set was chosen to be 
RI-MP2-cc-pVQZ throughout to mitigate errors coming from this approximation (this choice is not 
necessary, and RI basis could be chosen on an atomic level to match the primary basis). Energies are 
reported as gas phase electronic energies. All geometric structures can be found in the Supporting 
Information. 

 

Results and Discussion 

 Benchmarks of the SSB method are presented using the basis sequence 6-31G, cc-pVDZ, cc-pVTZ, 

and cc-pVQZ. The smallest basis, 6-31G, is composed of 5 functions as [3s2p], and the largest, cc-pVQZ 

with 55 functions, [5s4p3d2f1g]. In SBB, we label these     through    , which means we have 

introduced 6-31G at the beginning of the cc-pVXZ sequence. Since relative energies—not absolute 

energies—are of greatest interest, computations using the cc-pVQZ basis on all atoms are assumed to be 

reasonably converged, and therefore provide        . The         values from cc-pVQZ will be used to 

determine convergence of ε, providing a baseline for determining the SBB savings and basis set 

transferability between related reactions. 
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Tautomerism in Methyl Acetamide 

 Figure 3 shows H transfer from N to O in methyl acetamide, an example of a simple tautomerism 

reaction.  At a threshold level ( ) of 1 mHa (0.63 kcal/mol), which has greater precision than the target 1 

kcal/mol accuracy, SBB assigns the basis set depicted in Figure 3. Most of the basis functions are 

concentrated on the three reactive atoms of O, N, and H, where the cc-pVQZ basis is placed on N and O, 

cc-pVTZ on the reactive H, and cc-pVDZ on all other atoms. For this compact reaction, the smallest, 

unpolarized basis set (6-31G) introduces significant errors in the energy of reaction even for nominally 

spectator atoms. On the other hand, the largest basis sets are only needed on the reactive atoms to 

reach the specified level of convergence.  

 

Figure 3. Amine tautomerization. Atom colors are as follows: blue – N, red – O, teal – C, grey – H. Basis 

size is shown for ε = 1 mHa. 

 A more rigorous analysis was performed using a sweep over   to compare    values to the full 

cc-pVQZ basis benchmark. At        mHa, the computed    is too high by almost 5 kcal/mol (8 mHa). 

Similarly, at       mHa, the error is 1.3 kcal/mol (2 mHa). Errors of less than 1 kcal/mol are achieved at 

    mHa, where ΔE = 11.45 kcal/mol, compared to the cc-pVQZ value of 11.55 kcal/mol. Errors 

fluctuate somewhat, but remain within 0.2 kcal/mol of each other for thresholds lower than 1 mHa. 

These errors therefore remain within chemical accuracy (1 kcal/mol) of the RIMP2/cc-pVQZ limit. At 

      mHa, 196 basis functions were selected, compared to 485 total for the full cc-pVQZ computation. 

This reduction (Figure 4) corresponds to 60% fewer basis functions than the benchmark computation 

(incidentally, using the cc-pVTZ basis across all atoms corresponds to 248 basis functions, 27% more 

than SBB).  

 

This article is protected by copyright. All rights reserved.



   

Figure 4. ΔE and number of basis functions versus -log ε in Ha.  

Ene Reaction 

 The Ene reaction between ethylene and cis-butadiene is shown in Figure 5, which consists of a 

concerted hydrogen shift with C-C bond formation. Applying SBB with       mHa, cc-pVQZ was placed 

on carbons 1 and 5, while cc-pVTZ was placed on carbons 2-4, between which π bonding orbitals were 

swapped (1,3 butene  2,5 hexene). Carbon 6 received cc-pVDZ, as did all hydrogens except the 

reactive H, where SBB applied cc-pVTZ.  

 

Figure 5. 1,5 hydride shift from ethylene to butene. Atom colors are as follows: teal – C, grey – H. Basis 

function distribution is shown at       mHa. 

 Analysis of the number of basis functions and computed relative energies with respect to   are 

provided in Figure 6. Convergence to within 1 kcal/mol of the full cc-pVQZ value (-27.21 kcal/mol) was 

obtained at a threshold of       mHa (-26.78 kcal/mol). The error in reaction energy is decreased 

further, to 0.13 kcal/mol, at          mHa. Analysis of basis function savings (Figure 6) shows that 273 
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basis functions were needed at      mHa, compared to 630 for the full cc-pVQZ calculation (57% 

savings) and 320 basis functions for full cc-pVTZ (15% reduction). The smallest tested threshold, 0.25 

mHa, resulted in 420 basis functions, or 33% savings.  

  

Figure 6. ΔE and number of basis functions versus -log ε for the Ene reaction.  

Naphthalene Ring Expansion/Contraction 

 As a third example, naphthalene’s cyclorearrangement to azulene is shown in Figure 7. As with 

the two prior examples, the cc-pVQZ basis is placed on atoms involved in the most significant changes of 

bonding, and cc-pVTZ is placed on neighboring carbons in the 5-membered ring of the product. 6-31G or 

cc-pVDZ is placed on remaining atoms, making this the first example where atoms were far enough from 

the reaction center to receive the small 6-31G basis.  

   analysis for the ring exchange shows that absolute errors are within 1 kcal/mol of the cc-pVQZ 

ΔE value (34.65 kcal/mol) at        mHa (34.60 kcal/mol), and at the useful threshold of      mHa, 

296 basis functions were needed (compared to 790 for full cc-pVQZ, 412 for full cc-pVTZ; see Figure S1). 

With this third example in hand, the SBB method is showing considerable promise for basis set selection, 

saving 50% or more functions compared to full cc-pVQZ.  
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Figure 7. Naphthalene cyclorearrangement. Atom colors are as follows: teal – C, grey – H. Outer rings 

correspond to basis sets as shown in the legend. Basis function distribution is shown at ε = 1 mHa. 

Ammonia-Borane (AB) and CO2 

 The following five reactions (Figure 8) are related to carbon dioxide reduction by ammonia 

borane, a system of interest to carbon-neutral chemistry and materials development.79 The polarized B-

N and B=N bonds have been noted as leading to a wide variety of reactivity,79-91 which becomes even 

more complex as C-O bonds are introduced as reactive partners.79 Compared to the previous SBB 

examples, significant polarizations during reaction means more basis functions will be needed to 

capture this reactivity.  
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Figure 8. AB/CO2 reactions and SBB basis for       mHa. Key atoms are highlighted in red in 2D 

reaction mechanisms, where basis functions were expected to be focused on based on previous studies. 

Atom colors are as follows: blue – N, pink – B, red – O, teal – C, grey – H.  

 Figure 9 plots the relative error (compared to cc-pVQZ) in energies of reaction for the five 

AB/CO2 test examples. At       mHa, the largest error is for the ring fusion reaction (bottom right of 

Figure 8), at just under 1 kcal/mol. Other examples have errors under 0.5 kcal/mol, and all errors 

decrease with decreasing  . This fine error control comes with varying cost in terms of number of 

required basis functions (Figure 10). At       mHa, the 2H transfer from AB to CO2 (the smallest system 

of the 5 examples) requires about 80% of the full cc-pVQZ basis. This is somewhat unsurprising, as each 

spectator atom is connected to at least one reactive atom. The other four cases, however, require 40 to 

60% fewer basis functions, representing a significant reduction in number compared to the benchmark 

basis. 
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Figure 9. Error in ΔE versus -log ε for AB-CO2 reactions.  

 

Figure 10. Percentage of basis functions (compared to cc-pVQZ calculation) versus -log ε in Ha. 

Discussion of First Eight Examples 

 The above examples lead to three main observations. First, basis functions are concentrated on 

reactive atoms and those involved in important changes in electronic interactions. Second, the threshold 

  is a reasonable estimate of the true basis truncation error, and reactions converge to within 1 kcal/mol 

error by       mHa;   is within a factor of two of the calculation error (Table S1). Third, basis 

function savings with       mHa are reduced with minimal gains in accuracy compared to       mHa 

(Table S2). In general, reactions with a greater fraction of atoms involved (whether through connectivity 

0

1

2

3

4

5

6

7

8

9

10

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

Er
ro

r 
(k

ca
l/

m
o

l)
 

-log(ε/Ha) 

Error vs. Threshold (AB-CO2 Reactions) 

AB/CO2

DHFAB/AB

FAB/FA

BCN Form.

Ring Fusion

0

10

20

30

40

50

60

70

80

90

100

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

P
er

ce
n

ta
ge

 o
f 

fu
ll 

cc
-p

V
Q

Z 
va

lu
e 

-log(ε/Ha) 

% Basis Functions vs. Threshold (ABCO2 Reactions) 

AB/CO2

DHFAB/AB

FAB/FA

BCN Form.

Ring Fusion

This article is protected by copyright. All rights reserved.



or electronic interaction) have reduced savings compared to those with fewer electronically active 

atoms. 

The results so far have examined thresholds for convergence with respect to  . Given the nature 

of SBB as an algorithm based on predicted error (i.e. |        |), it is also of interest to analyze how 

closely SBB’s internal error metric matches the actual error (i.e. |          |). To estimate this 

difference, maximum estimated error (MEE)—∑ |
   

   
|     —for the first eight reaction examples was 

calculated for each value of   (Figure S2). Figure 11 shows the ratio of actual error to MEE, which is less 

than 1 for all reactions at all thresholds, indicating that MEE overestimates the true error. 

 

Figure 11. Ratio of actual error to maximum estimated error for first eight reaction examples plotted as 

whisker plots for each threshold value tested (0.25 – 10 mHa). The ratio is always less than one, showing 

that MEE > actual error for all reactions at all thresholds. 

The combination of Figure S2 and Figure 11 suggests that the actual error, MEE, and   are all 

similar in value. Fortunately, this means that SBB for   < 2 mHa is expected to have at least kcal/mol 

accuracy, and ε can be taken as a reasonable estimate of true error in reaction energy. The above 

indications of basis set size required to achieve this convergence suggest that SBB is reaching target 

accuracies with significant reduction in number of atomic orbitals. 

Transferability of basis sets to transition states 

 Having demonstrated convergence of the SBB algorithm for reaction intermediates, it is now of 

interest to examine whether these basis function distributions are transferable to different geometries. 

The transition states for the AB/CO2 reactions,79 shown in Figure 12, will serve as test cases. 

Transferability of SBB basis sets was tested by taking the       mHa SBB bases and using these to 
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calculate the corresponding activation energies. Table 1 compares these results to the Ea calculated with 

cc-pVQZ on all atoms. 

 

Figure 12. AB/CO2 transition states. Basis function distributions shown here are the same as for the 

heats of reaction computation with ε = 1 mHa (Figure 8). 

Table 1. Activation energies and error for AB/CO2 transition states using SBB basis generated for 

reactant/product pair.  

Reaction Ea (ε = 1 mHa) Ea (cc-pVQZ) Error 

AB/CO2 28.59 kcal/mol 28.63 kcal/mol 0.04 kcal/mol 

DHFAB/AB 23.81 kcal/mol 22.35 kcal/mol 1.46 kcal/mol 

FAB/FA 36.11 kcal/mol 36.14 kcal/mol 0.03 kcal/mol 

BCN formation 11.93 kcal/mol 9.95 kcal/mol 1.98 kcal/mol 

BCN ring fusion 7.42 kcal/mol 8.57 kcal/mol 1.15 kcal/mol 

 

Errors in Ea vary from nearly zero to almost 2 kcal/mol compared to full cc-pVQZ. These 

increased errors likely stem from two sources: 1. Transition states are more challenging than 

intermediate structures, and 2. Not all subtleties of electronic variation at the transition state are 

captured using SBB in the stable geometries. For example, B atoms in the DHFAB/AB and BCN formation 

reactions appear in non-optimal configurations at the transition state, but these geometries are relaxed 

at the endpoints of the reaction path. This degree of accuracy, however, is excellent given that the basis 

was not selected for the transition state, but for the reactant product pair. 

Performing SBB for the DHFAB reactant/transition state pair adds additional functions to 

reactive N, both O, and four H, increasing the number of basis functions from 321 to 423 and reducing 
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the error in Ea to 0.08 kcal/mol. SBB performed for the BCN formation reactant/transition state pair 

increases the number of basis functions from 280 to 326 by adding additional functions to both O, and 

reduces error to 1.06 kcal/mol. SBB therefore works well even for transition states, with comparable 

accuracy to stable intermediate computations.  

Large system sizes: Lever reactions 

As molecules become larger, it becomes more and more infeasible to apply large basis sets 

uniformly across all atoms. SBB, however, may be able to overcome such difficulties and provide results 

similar in quality to full cc-pVQZ computations. Two reactions of mechanochemical interest92-94 are 

examined to test SBB in this limit: Lever 1 depicts gem-dichloro-cyclopropane mechanophore in a 

polybutadiene polymer, while Lever 2 includes the same mechanophore in a polynorbornene chain 

(Figure 13). 

 

Figure 13. Lever reactions. Atom colors are as follows: teal – C, green – Cl, grey – H. Basis function 

distribution is shown at ε = 1 mHa. 

In this example, the full cc-pVQZ basis would result in 1433 and 1773 basis functions total for 

Levers 1 and 2, respectively. Instead of calculating this limit, the          mHa result is considered a 

benchmark, as its MEE is only 0.7 kcal/mol  for both reactions (Figure S3). The SBB basis size for Lever 1 

is 61% smaller at       mHa compared to          mHa (Figure S4), and an analogous 44% smaller 

basis size is observed for Lever 2. As usual for SBB, cc-pVQZ is not assigned to all atoms, where basis 

functions are focused around the gem-dichloro-cyclopropane core, where the primary reactivity of the 

ring opening and chloride transfer occurs (Figure 13). Atoms farther from the reactive core are less 

affected by electrostatic field of the Cl, and thus are assigned fewer basis functions (Figure S5).  

Discussion and Conclusions 

 A new basis set selection technique—SBB—was herein evaluated in detail for its accuracy and 

efficiency. Using a target accuracy of 1 kcal/mol error for RI-MP2 heats of reaction, the benchmark 

studies provide significant evidence that SBB can systematically reach this limit, and it does so with 

      mHa. Even lower errors are achievable with tighter convergence, with             mHa 
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being a useful lower range. These results are independently evaluated using SBB’s internal MEE metric, 

which shows that MEE is larger than the actual error, for all thresholds  . This strongly suggests the error 

control strategy—built by design into SBB—is effective. 

 This error control can be achieved alongside reduction in basis set size by more than 50% at 

      mHa. Savings are generally higher for reactions with proportionally fewer reactive atoms, while 

more polarizing reactions require higher quality basis sets (e.g. Figure 9). Tests also indicate that SBB 

basis sets can be transferred to geometries that are distinct from the structure pair where they were 

generated, at a small reduction in accuracy. This includes transition state geometries, which are harder 

to describe than stable intermediates.  

 Applications of SBB are likely in two areas. The first is in ab initio molecular dynamics 

simulations, where the reduced basis sets will allow longer trajectories at much reduced computational 

costs. Second, preliminary tests indicate that SBB basis sets chosen for one level of theory (e.g. RI-MP2) 

are transferable to a second level of theory (e.g. CCSD). Basis set selection at the lower level of theory 

therefore will allow meaningfully accurate electronic structure simulations at higher levels of theory. 

This use of SBB will be examined in combination with localized correlation methods (e.g. incremental full 

configuration interaction22,95-96) in the near future. 

 In summary, the herein introduced SBB algorithm is derived and tested thoroughly on a variety 

of molecular reactions. Error analysis, both internal and external, indicates the method consistently 

performs as designed. SBB will likely see continued development and be useful for reaching high 

accuracy in correlated computations.  
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