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Summary: In contrast with typical Phase III clinical trials, there is little existing methodology for determining the

appropriate numbers of patients to enroll in adaptive Phase I trials. And, as stated by Dennis Lindley in a more

general context, ”[t]he simple practical question of ’What size of sample should I take’ is often posed to a statistician,

and it is a question that is embarrassingly difficult to answer.” Historically, simulation has been the primary option

for determining sample sizes for adaptive Phase I trials, and although useful, can be problematic and time-consuming

when a sample size is needed relatively quickly. We propose a computationally fast and simple approach that uses

Beta distributions to approximate the posterior distributions of DLT rates of each dose and determines an appropriate

sample size through posterior coverage rates. We provide sample sizes produced by our methods for a vast number

of realistic Phase I trial settings and demonstrate that our sample sizes are generally larger than those produced by

a competing approach that is based upon the nonparametric optimal design.
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Phase I Bayesian Sample Size 1

1. Introduction

Phase I oncology trials of chemotherapeutic agents have had a conceptually simple goal: to

determine which doses of an agent can be given to patients before an unacceptable fraction,

0 < θ < 1, of patients begins to experience dose-limiting toxicities (DLTs). Statistically

speaking, we have an unknown dose-response curve, and we assign doses to patients and use

their data to identify the desired quantile θ on the curve while attempting to minimize the

number subjects exposed to highly toxic doses (Rosenberger and Haines, 2002).

There are numerous approaches for designing Phase I trials; see Table 1 of Braun (2014)

for examples. Our work focuses upon a specific design known as the Continual Reassessment

Method (CRM) (O’Quigley et al., 1990), which adopts a parametric model f(d; β), that is

monotonic in d to describe how the probability of DLT is related to dose d. The logistic

model f(d; β) = exp[3 + exp(β)d]/(1 + exp[3 + exp(β)d]) and the so-called “power” model

f(d; β) = dexp(β) are models commonly used in the CRM. The parameter β is given a prior

distribution with mean µ (usually µ = 0) and variance σ2 and support on the real line.

We sequentially update the posterior distribution of β as each enrolled subject or cohort of

subjects is observed for the occurrence of DLT. We use the resulting posterior distribution for

the probability of DLT for each dose to determine the dose assignment for the next cohort;

this assignment is usually the dose whose posterior probability of DLT is closest to θ. Final

mean posterior DLT probabilities for each dose are computed once all patients have been

observed; the MTD is often defined as the dose whose posterior mean probability is closest

to θ, although the MTD can be defined in other ways (Babb et al., 1998).

A competitor to the CRM is the 3+3 design (Storer, 1989), which is an algorithm that

determines acceptability of doses from the outcomes seen in three-patient cohorts. One of

the appealing features of the 3+3 design is its pre-determined maximum sample size of six

patients per dose. However, this sample size is simply an artifact of the design and has
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no statistical motivation. In fact, the sample size used in 3+3 designs is often woefully

insufficient to provide evidence that the MTD has been correctly identified, motivating the

recent practice of enrolling additional patients at the proposed MTD in a so-called “expansion

cohort” (Boonstra et al., 2015; Iasonos and O’Quigley, 2016).

Certainly there are sample size formulae for a myriad of Phase III trial designs; even

Phase II trials using a Simon two-stage design (Simon, 1989) are provided with a sample size.

However, the crux of these methods lies in traditional hypothesis testing, in which explicit null

and alternative hypotheses are stated. In adaptive Phase I trials, although we certainly have

a model parameter, our primary goal is not based in inference for that parameter. Instead,

the model and parameter are simply used to facilitate a way to compare the probabilities

of toxicity of each dose in order to identify the MTD. Historically, simulation has been the

only real avenue for determining appropriate sample sizes for Phase I trials (Tighiouart and

Rogatko, 2012), although Cheung (2013b) recently developed the first systematic approach

to sample size determination specific to the CRM, the details of which will be presented in

Section 2.

Our work presents an alternative to the approach of Cheung (2013b), which is based

upon an asymptotic frequentist approximation. Instead, our approach is founded in Bayesian

sample size estimation, for which numerous prior research exists (Pham-Gia and Turkkan,

1992; Joseph et al., 1995; Pham-Gia, 1997; M’Lan et al., 2008). We will describe our approach

in Section 2 and demonstrate the results of our methods via simulation in Section 3, as well

as compare those results to those of Cheung (2013b). We will conclude with a summary and

discussion in Section 4.
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Phase I Bayesian Sample Size 3

2. Methods

2.1 Notation

We have a set of J clinical doses, D1 < D2 < . . . < DJ , and wish to determine which of the

doses has a DLT rate closest to the targeted DLT rate θ. We let pj denote the DLT rate for

dose j = 1, 2, . . . J and assume that the pj can be modeled with a one-parameter function

of dose, f(Ej; β), in which β is the unknown parameter and Ej is a modified value of Dj

to encourage better model fit of f(·). The values E1, E2, . . . , EJ are based upon a vector of

a priori values known as the skeleton. Although there are a variety of ways of selecting a

skeleton and methods for averaging results over multiple skeletons (Yin and Yuan, 2009b),

we will use the methods of Lee & Cheung (Lee and Cheung, 2009) to define our skeleton,

which are implemented in the function getprior in the dfcrm library (Cheung, 2013a) created

for the statistical package R (R Core Team, 2016). In both the power model and the logistic

model, the parameter β is allowed to take any value on the real line. Thus, it is standard to

assume that the prior distribution for β, which we denote g(β), is Gaussian with mean zero

and variance σ2, with the value of σ2 treated as a design parameter whose value is fixed at

a specific value. Methods for determining appropriate values of σ2 have been proposed (Lee

and Cheung, 2011; Zhang et al., 2006).

Although the CRM was first proposed to assign the first patient at the a priori MTD

defined by the skeleton, it is now more accepted that the first subject be assigned to the

lowest dose to avoid concerns of overdosing early in the trial. The dose assigned to each

new subject i = 2, 3, . . . N is determined from the data collected on all previously enrolled

subjects. We let E[k], k = 1, 2, . . . , i − 1, denote the dose assignment for enrolled subject k,

which is among the values E1, E2, . . . , EJ , and let Yk = 1 and Yk = 0 indicate respectively

that subject k has or has not had a DLT. Before subject i is enrolled, we have a likelihood

Li−1(β | Y ,E) =
∏i−1

k=1 f(E[k]; β)Yk [1 − f(E[k]; β)]1−Yk , from which we can compute the
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posterior distribution

hi−1(β | Y ,E) =
Li−1(β | Y ,E)g(β)∫∞

−∞ Li−1(β | Y ,E)g(β)dβ
,

in which Y = {Y1, Y2, . . . , Yi−1} and E = {E[1], E[2], . . . , E[i−1]}. We then use h(β | Y ,E) to

compute µ̃i−1, the posterior mean of β, from which we obtain p̃ij = f(Ej; µ̃i−1), the posterior

estimate of the probability of DLT for dose j. Patient i is then assigned to the dose with p̃ij

closest to the target DLT rate θ, subject to possible dose assignment restrictions. We now

describe methods for determining how large N should be before terminating the trial.

2.2 Sample Size via Cheung (2013b)

For Phase I trials using the CRM, Cheung (2013b) determined a lower bound for the sample

size based on theoretic properties of what is known as the nonparametric optimal design

(NOD) (O’Quigley et al., 2002). The NOD is a simulation-based approach in which potential

DLT outcomes are generated for every patient for every dose, which contrasts with an actual

trial in which a single DLT outcome is observed for each patient at a specific dose. For a

given sample size N , the NOD estimates pj for each dose j from the observed proportion of

DLTs in the N simulated outcomes. Given that the NOD determines DLT rates using JN

observations, as well as the unbiased and minimum variance properties of sample proportions,

the performance of the NOD is viewed as a benchmark for the performance of any CRM

design that determines DLT rates from N observations. Thus, any sample size determined

from the nonparametric optimal design is seen as a lower bound for the needed sample size

of any CRM design.

As a result, using the asymptotic properties of the estimators used in the NOD, Cheung

(2013b) developed his sample size lower bound as follows. For a given number of doses J and

a targeted DLT rate θ,we first specify J vectors of hypothetical DLT rates P 1,P 2, . . .P J ,

in which P k = {p1k, p2k, . . . , pJk} and pjk is the probability of DLT for dose j = 1, 2, . . . , J
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Phase I Bayesian Sample Size 5

in vector k = 1, 2, . . . J . Each P k is defined such that

pjk = θ if j = k

pj+1,k

1− pj+1,k

= R
pjk

1− pjk
if j > k

pjk
1− pjk

= R
pj−1,k

1− pj−1,k
if j < k

for a given odds ratio R > 1. In other words, we have J settings, dose k is the true MTD

in setting k, and neighboring doses in each setting have DLT rates that differ from each

other through an odds ratio R. For each setting k, defined by P k, we could run simulations

to compute P̂CSk, an estimate for the probability of correct selection (PCS) of the MTD

when dose k is the MTD. We denote the metric AN(θ, J,R) =
∑J

k=1 P̂CSk/K, which is

the average PCS over all the settings examined. Typically we select N over a grid search of

possible values until AN(θ, J,R) reaches a desired threshold.

To avoid the need for simulation, Cheung (2013b) demonstrated that

AN(θ, J,R) ≈ 1

J
+

(
1− 1

J

)
[2Φ{w1(θ, R,N) + w2(θ, R,N)} − 1] ,

in which Φ{·} is the CDF of a standard normal distribution and

w1(θ, R,N) =

√
N

2

θ − α1 + 0.5N−1√
θ(1− θ) + α1(1− α1) + 2α1(1− θ)

w2(θ, R,N) =

√
N

2

α2 − θ − 0.5N−1√
θ(1− θ) + α2(1− α2) + 2θ(1− α2)

α1 =
θ

θ +R−Rθ

α2 =
Rθ

1− θ +Rθ

Thus, for a given desired probability of correct selection, AN(θ, J,R), number of doses,

J , and variation in DLT rates, R, the corresponding sample size can be determined. As

expected, the necessary sample size will increase with increases in AN(θ, J,R) and J , and

will decrease with increases in R. Such a calculation is provided by the function getn in the

dfcrm library (Cheung, 2013a) created for the statistical package R (R Core Team, 2016).



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

6 Biometrics, 000 0000

We emphasize that this function is for a design in which the DLT rates are modeled via the

power model, with a prior variance of 1.34 for the model parameter, and assumes that the

first subject is assigned to the median dose value. We will use the sample sizes produced by

this function in Section 3 as a comparator for the sample sizes produced by our method,

which we describe next.

2.3 Bayesian Sample Size Determination

Recall that the CRM uses a one-parameter model pj = f(Ej; β) for the DLT rate of each dose

j and a prior distribution is placed on β. This prior distribution leads to a prior distribution

for each pj that often lacks a closed-form expression. We denote this prior distribution

as F(mj, vj) with prior mean mj and prior variance vj. Because each pj is a binomial

parameter, an obvious simplification is to approximate F(mj, vj) with a Beta distribution

with parameters

aj = mj

[
m(1−mj)

vj
− 1

]
(1)

bj = (1−mj)

[
m(1−mj)

vj
− 1

]
. (2)

The values of mj and vj can be approximated either through sampling directly from the the

prior of β and computing the resulting means and variances of each pj or by using a Taylor

series expansion. With N subjects receiving dose j, in whom we see Y DLTs, we know that

pj has a posterior Beta distribution with parameters aj + Y and bj + (N − Y ); we denote

this posterior distribution as fj(p | Y,N). See Morita et al. (2010) & Morita et al. (2012) for

use of this approximation in other settings.

For a vector of true DLT rates π = {π1, π2, . . . πJ} and the targeted DLT rate θ, we

define jθ as the index of the dose whose DLT rate is closest to θ, i.e. dose jθ is the true

MTD among the doses being studied. Note that in the methods of Cheung (2013b), π is

determined directly from the odds ratio R and one of the doses is specified to have DLT
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Phase I Bayesian Sample Size 7

exactly equal to θ. Our methods are applicable to any general vector of DLT rates, although

certainly an approximate odds ratio could be determined from a given vector of DLT rates

in order to apply the methods of Cheung (2013b).

We will use the location and spread of fjθ(p | Y,N) to help determine when N is “large

enough,” somewhat related to the stopping rule proposed by Ishizuka and Ohashi (2001).

Intuitively, as N grows larger, the posterior mean of pjθ will get closer to πjθ and the posterior

variance of pjθ will continually shrink. Likewise, the posterior distributions of the DLT rates

of all other doses will become more peaked around their respective true DLT rates. Thus, as

the sample size N increases, the posterior distributions will have less and less overlap with

each other, allowing for the determination of the MTD, which is dose jθ, with more and

more precision.

Our desired level of precision will be defined by two parameters φ and γ`. We define an

interval I∗ = θ±φ of acceptable DLT rates around the target θ. Intuitively, as φ gets larger

(smaller), the necessary sample size should decrease (increase). We propose that the value

for φ should be the average distance between the true DLT rates of adjacent doses, i.e. if all

the DLT rates differ from the doses directly adjacent to them by an average of 10 points,

then φ = 0.10. This metric is obviously related to the odds ratio R used by Cheung (2013b),

although we focus on the absolute differences between the true DLT rates rather than the

absolute difference of the log-odds of the true DLT rates.

The sample size formula of Cheung (2013b) varies with the number of doses J ; our approach

also will reflect the number of doses implicitly through the definition of φ. For example,

suppose we are studying five doses, and we assume the doses have true DLT rates of π =

{0.05, 0.12, 0.20, 0.30, 0.45}; currently φ would be equal to 0.10. If the study were expanded

to include a sixth dose, the value of φ will possibly change to reflect the location of the DLT

rate of this sixth dose relative to the original five doses. If the sixth dose had a DLT rate
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of 0.55, then φ would remain at 0.10, which makes sense because this dose is even further

from the MTD than the fourth and fifth doses, so that few, if any patients would be assigned

to this dose and little additional information would be gleaned from including this dose. In

contrast, if the sixth dose had a true DLT of 0.35, we now have φ = 0.06, which would

lead to a much larger sample size because correctly identifying the MTD would require more

information than that required by the original five doses. We can consider our parameter φ

analogous to the parameter α, which is the false positive, or Type I error, rate considered in

traditional sample size calculations.

Given the interval I∗, we can compute γ(N, Y ) =
∫
I∗ fjθ(p | Y,N)dp, which is a posterior

interval probability (PIP) for dose jθ, specifically the amount of posterior mass for pjθ in the

interval I∗. Since this PIP is conditional upon the observed number of DLTs Y out of N

subjects, we compute γ(N) =
∑y=N

y=0 γ(N, y)Bin(N, pjθ), which is a weighted average of PIP

values over the density of Y , which has a binomial distribution with parameters N and pjθ .

Our second parameter, γ` defines the minimum amount of PIP we desire at the true MTD,

and is analogous to power, or the true positive rate, used in traditional sample sizes.

Thus, our sample size algorithm is as follows:

(1) Select J , the number of doses to be studied, θ, the targeted DLT rate, the dose-toxicity

model f(Ej; β) with corresponding skeleton values E1, E2, . . . EJ , and σ2, the prior variance

for β;

(2) Determine the parameters of each beta distribution defined in Equations (1) and (2);

(3) Select a vector of true DLT rates π = (π1, π2, . . . , πJ) which then determines φ =
∑J−1

j=1 (πj+1−

πJ)/(J − 1);

(4) Select a value for γ`, the minimum desired amount of mass in I∗ = (θ − φ, θ + φ) for the

posterior distribution of DLT rates for the MTD;
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Phase I Bayesian Sample Size 9

(5) Select a vector of possible sample sizesN , and for each value N ∈ N , compute the resulting

value of γ(N);

(6) Find the smallest value of N such that γ(N) > γ`.

As a practical example, suppose we have five doses under study and our targeted DLT rate

is θ = 0.30. We will use the power model with the model parameter β having a prior variance

of σ2 = 1.34. We have a vector of skeleton DLT rates {0.06, 0.16, 0.30, 0.45, 0.59} so that the

middle dose is the a priori MTD. The prior distribution for β places a prior mean and

variance on the DLT rates for each dose; we find the parameters of a beta distribution that

correspond to each mean and variance. For example, the prior mean and variance for the DLT

rate of the first dose are 0.17 and 0.05, respectively, which correspond to beta distribution

parameters a1 = 0.33 and b1 = 1.58 from Equations (1) and (2). Similar computations are

made for the remaining four doses.

The sample size is now a function of the actual DLT rates of the five doses and the desired

value of γ`, the posterior coverage level. Suppose the vector of true DLT rates for the five

doses is {0.05, 0.16, 0.28, 0.39, 0.50}, so that the average difference between adjacent DLT

rates is φ = 0.11. This defines an interval of I∗ = (θ − φ, θ + φ) = (0.19, 0.41) . Suppose we

now wish to find a sample size that supports a PIP of γ` = 0.70 in the interval (0.19, 0.41).

We simply iteratively examine a range of sample sizes until we find the smallest sample size

that achieves the desired PIP level. In this example, we obtain a sample size of N = 37. R

code for this calculation can be found in the Web Supplement.

If we were to change the true DLT rates to {0.10, 0.20, 0.30, 0.40, 0.50}, we now have a

value φ = 0.10, which results in a larger sample size of N = 45 because the value of φ is

now smaller than before. We could also return to our original setting and instead reduce the

prior variance of β in half to be σ2 = 0.67, which leads to smaller sample size of N = 35.

Alternatively, we could leave the prior variance unchanged at σ2 = 1.34, and instead change
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the skeleton to be {0.00, 0.01, 0.06, 0.16, 0.30}, leading to a sample size of N = 37. These

two sample size values are practically identical to the original sample size of N = 37 and

demonstrate that the choices of prior variance and skeleton have much less impact on the

sample size than does the vector of true DLT rates.

3. Numerical Studies

We now compare and contrast the sample sizes produced by our method and by the method

of Cheung (2013b). We have J ∈ {4, 5, 6} doses under study and the targeted DLT rate

equal to θ ∈ {0.20, 0.25, 0.30}. We use the empiric model with a prior variance of 1.34 for the

model parameter, which is the default value in the R function crmsim. Skeleton values were

determined via the R function getprior (Lee and Cheung, 2011) using a half-width of θ/4, as

recommended in Cheung (2013b). The skeleton was computed assuming the third dose was

the MTD. True DLT rates are equally spaced from a value pmin ∈ {0.05, 0.10, 0.15, 0.20} to

a value pmax ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, which combined with the selected values of J and θ,

determine the location of the MTD. Each of the settings defined by a combination of J , θ,

pmin, and pmax results in a value of φ for our proposed methods, as well as an approximate

odds ratio R necessary for the methods of Cheung (2013b). The value of R was approximated

as exp{logit(θ + φ)− logit(θ)}, where logit(x) = log(x)− log(1− x).

For each setting, we computed the necessary sample size using our methods for values of the

desired minimum posterior coverage γ` ∈ {0.6, 0.7, 0.8, 0.9}. We then ran 1,000 simulations

of Phase I trials designed with the CRM using each of the resulting sample sizes in order

to compute both the posterior distribution of the model parameter β as well as the dose

identified as the MTD at the end of the study. From these 1,000 simulations, we computed

the average posterior mass of the interval θ ± φ and P̂CS, the proportion of simulations in

which the MTD was correctly identified. We computed these values separately for studies

assigning the median dose to the first subject, which was used in the methods of Cheung
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(2013b), and for studies assigning the lowest dose to the first subject, which is more commonly

used in practice. We then used the value of P̂CS from each approach in the R function getn

in order to compute the suggested sample size from the methods of Cheung (2013b). Code for

generating the simulation results is available in the Web Supplement, although an R library

is being generated and will be made publicly available at the Comprehensive R Archive

Network (CRAN) when completed.

Due to space limitations, results for a subset of all the settings are presented in four

tables that can be found in the Web Supplement. There is one table for each for the four

possible values of γ`, and each table contains results for 24 settings. The same 24 settings

are summarized in each of the four tables so that corresponding rows in each table can be

directly compared to each other to observe how the sample size increases with γ`.

Figure 1 provides a visual summary of the results when γ` = 0.60 (left panels) and γ` = 0.70

(right panels). Each of the six panels provides a range of a sample sizes produced using our

proposed method, as well as a corresponding range of sample sizes computed using the

method of Cheung (2013b) that have the same probability of correct selection (P̂CS) as our

method. Each panel also provides the actual average coverage rate produced by the sample

size from our method. For example, the upper left-hand plot in Figure 1 demonstrates that

with four doses, our method produces sample sizes ranging from 13 to 18 subjects, with an

actual coverage rate of 0.70 and P̂CS = 0.44. The corresponding sample sizes from Cheung’s

method range from 5-6 subjects.

In all six panels of Figure 1, we can draw some general conclusions. First, we see that for a

given probability of correct selection, our method suggests that the sample sizes of Cheung

(2013b) are too small, which we expect. Second, the actual coverage rates are a bit higher

than the desired value, but are generally close enough to suggest the beta distributions

provide a good approximation. Third, the sample size from our method is (a) relatively
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invariant to the targeted DLT rate θ, (b) increases when the desired coverage rate increases,

and (c) increases slightly as the number of doses increases. Last, there are suggestions that

a desired coverage rate of γ` corresponds to a probability of correct selection that is about

20 points lower, i.e. γ` = 0.60 corresponds roughly to P̂CS = 0.40.

[Figure 1 about here.]

Figure 2 provides a visual summary of the results when γ` = 0.80 (left panels) and γ` = 0.90

(right panels) and supports the conclusions reached from Figure 1. We do see in Figure 2

that there is a smaller difference between the sample sizes produced by our method and by

Cheung (2013b) than seen in Figure 1, although the sample sizes of Cheung (2013b) remain

lower than what is needed for the given value of P̂CS. From the sample size values in Figure

2, we also see that a desired coverage rate of 0.80 or higher requires a sample size larger than

what is actually used in most trials.

[Figure 2 about here.]

4. Discussion

Our work supports the growing body of research demonstrating the superiority of adaptive

designs to algorithmic ones (Iasonos et al., 2008; Jaki et al., 2013) and suggests that the

sample sizes used in actual Phase I trials are likely insufficient for finding a chemotherapy

dose that will be used in future Phase II trials. We note that, for a resulting sample size

N , our methods have implicitly assumed that all N subjects have been treated at the true

MTD, with no patients treated at the other doses. This contrasts to the actual design of

an adaptive trial, in which roughly 50% of patients would be treated at the MTD, with

fewer patients treated at doses directly above and below the MTD and even fewer patients

treated at all other doses. The two designs, however, have very similar levels of efficiency for

identifying the MTD.
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Although our methods have not assumed a “greedy” dose-assignment algorithm, in which

each patient or cohort of patients is assigned to the dose currently believed to be the MTD,

our methods do require that the CRM will be consistent (Cheung and Chappell, 2002; Shen

and O’Quigley, 1996). In other words, dose assignments cannot get “stuck” at a non-MTD

dose ad infinitum, so that correctly identifying the MTD does not improve with sample size

(Oron and Hoff, 2011; Azriel et al., 2011). We did examine our methods with settings in

which the CRM has been shown to not be consistent, and found that the resulting sample

sizes, which were unusually large (in the range of 300 to 500 subjects), led to a much smaller

coverage rate than that desired. Thus, when our method suggests that hundreds of subjects

will be necessary, there is a warning that non-consistency of the CRM could be an issue,

which can be determined easily with the methods of Cheung and Chappell (2002).

We would like to expand our methods to other designs, such as combination trials of

two agents (Yin and Yuan, 2009a; Braun and Jia, 2013; Mander and Sweeting, 2015) and

partial follow-up of toxicity outcomes (Cheung and Chappell, 2000; Yuan and Yin, 2011).

We hope that our methods provide a springboard from which appropriate sample sizes can

be determined for these more complex and contemporary adaptive Phase I trial designs.

5. Supplementary Materials

Web Appendices concerning R code and the tables referenced in Section 3 are available with

this paper at the Biometrics website on Wiley Online Library.
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Figure 1. Ranges of sample sizes produced by proposed method (Braun) and that of
Cheung (2013b), for studies of four doses (row 1), five doses (row 2) and six doses (row 3),
with desired coverage rates of γ` = 0.60 (column 1) and γ` = 0.70 (column 2). The value
above the ranges for Braun’s method is the actual coverage rate, while the value above the
ranges for Cheung’s method is the actual probability of correct selection (PCS).
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Figure 2. Ranges of sample sizes produced by proposed method (Braun) and that of
Cheung (2013b), for studies of four doses (row 1), five doses (row 2) and six doses (row 3),
with desired coverage rates of γ` = 0.80 (column 1) and γ` = 0.90 (column 2). The value
above the ranges for Braun’s method is the actual coverage rate, while the value above the
ranges for Cheung’s method is the actual probability of correct selection (PCS).


