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A: Backward Induction in terms of Potential Outcomes

The optimal dynamic treatment regime, gopt, is a regime that maximizes expected outcomes

were all patients in the population to follow it. As discussed in Schulte et al (2014) and

Zhang et al (2013a), the optimal regime gopt may be determined via dynamic programming,

also referred to as backward induction. In the main manuscript, the backward induction is

in terms of observed variables and here we define the optimal dynamic treatment regime

using backward induction, as well as V-functions, in terms of potential outcomes. At the

Kth decision point, for any x̄K ∈ X̄K , āK−1 ∈ ĀK−1, define

goptK (x̄K , āK−1) = arg max
aK∈{0,1}

E{Y ∗(āK−1, aK)|X̄
∗
K(āK−1) = x̄K}

VK(x̄K , āK−1) = max
aK∈{0,1}

E{Y ∗(āK−1, aK)|X̄
∗
K(āK−1) = x̄K}.

For k = K − 1, . . . , 2 and any x̄k ∈ X̄k, āk−1 ∈ Āk−1, define

goptk (x̄k, āk−1) = arg max
ak∈{0,1}

E[Vk+1{x̄k, X
∗
k+1(āk−1, ak), āk−1, ak}|X̄

∗
k(āk−1) = x̄k]
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Vk(x̄k, āk−1) = max
ak∈{0,1}

E[Vk+1{x̄k, X
∗
k+1(āk−1, ak), āk−1, ak}|X̄

∗
k(āk−1) = x̄k].

For k = 1, x1 ∈ X1, g
opt
1 (x1) = argmaxa1∈{0,1} E[V2{x1, X

∗
2 (a1), a1}|X1 = x1] and V1(x1) =

maxa1∈{0,1} E[V2{x1, X
∗
2 (a1), a1}|X1 = x1]. Note, here the V-functions are defined in terms

of potential outcomes, whereas in the main manuscript they are defined in terms of observed

variables. The two sets of definitions are equivalent under the assumed assumptions. See

Schulte et al (2014) for details. Recall that Lk ≡ (X̄k, Āk−1), by the definition of V-functions

and goptk , k = K, . . . , 1, we also have

VK(LK) = E{Y ∗(ĀK−1, g
opt
K )|LK},

Vk(Lk) = E{Y ∗(Āk−1, g
opt
k , goptk+1, ..., g

opt
K )|Lk},where k = K − 1, . . . , 1.

B: Proof of Theorem 1

At the K-th decision point, we have that

goptK (LK) = arg max
gK∈GK

E{Y ∗(ĀK−1, gK)}

= arg max
gK∈GK

E[E{Y ∗(ĀK−1, gK)|LK}]

= arg max
gK∈GK

E[E{Y ∗(ĀK−1, gK)|LK , AK = gK}] (1)

= arg max
gK∈GK

E[E{Y |LK , AK = gK}] (2)

= arg max
gK∈GK

E{E(Y |LK , AK = 1)gK + E(Y |LK , AK = 0)(1− gK)}

= arg max
gK∈GK

E{QK(LK , 1)gK +QK(LK , 0)(1− gK)}

= arg max
gK∈GK

E[gK{QK(LK , 1)−QK(LK , 0)}]

= arg max
gK∈GK

E{gK(LK)CK(LK)}. (3)

where equality (1) is due to the no unmeasured confounders (or sequential ignorability)

assumption, equality (2) due to the consistency assumption.
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Considering the term gK(LK)CK(LK), a key step is to express CK(LK) in terms of the

magnitude and the sign, ie, CK(LK) = ZK |CK(LK)| − (1 − ZK)|CK(LK)|, where ZK =

I(CK(LK) > 0). Substituting this into gK(LK)CK(LK), as g(LK) takes values {0, 1},

straightforward algebra shows and it is easy to check that

g(LK)CK(LK) = ZK |CK(LK)| − |CK(LK)|I(ZK 6= g(LK)).

Substituting this back into to (3), it follows then goptK (LK)

= arg max
gK∈GK

E{ZK |CK(LK)| − |CK(LK)|I(ZK 6= g(LK))}

= arg min
gK∈GK

E{|CK(LK)|I(ZK 6= g(LK))}.

Then recursively for stage k, k = K − 1, . . . , 1, the optimal decision rule can be written

as

goptk (Lk) = arg max
gk∈Gk

E{Y ∗(Āk−1, gk, g
opt
k+1, ..., g

opt
K )}

= arg max
gk∈Gk

E[E{Y ∗(Āk−1, gk, g
opt
k+1, ..., g

opt
K )|Lk}]

= arg max
gk∈Gk

E[E{Y ∗(Āk−1, gk, g
opt
k+1, ..., g

opt
K )|Lk, Ak = gk}], (4)

due to no unmeasured confounders assumption. We also have that

E{Y ∗(Āk−1, gk, g
opt
k+1, ..., g

opt
K )|Lk, Ak = gk}

= E[E{Y ∗(Āk−1, gk, g
opt
k+1, ..., g

opt
K )|Lk, Ak = gk, X

∗
k+1(Āk−1, gk)}|Lk, Ak = gk]

= E[E{Y ∗(Āk−1, gk, g
opt
k+1, ..., g

opt
K )|Lk, Ak = gk, Xk+1}|Lk, Ak = gk] (5)

= E{Vk+1(Lk, gk, Xk+1)|Lk, Ak = gk}, (6)

where the last equality is due to the definitions of the value functions Vk, k = K, . . . , 1, in
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terms of potential outcomes (see Appendix A). Substituting (6) back to (4), we have

goptk (Lk) = arg max
gk∈Gk

E[E{Vk+1(Lk, gk, Xk+1)|Lk, Ak = gk}]

= arg max
gk∈Gk

E[E{Vk+1(Lk, 1, Xk+1)|Lk, Ak = 1}gk

+ E{Vk+1(Lk, 0, Xk+1)|Lk, Ak = 0}(1− gk)]

= arg max
gk∈Gk

E{Qk(Lk, 1)gk +Qk(Lk, 0)(1− gk)}

= arg max
gk∈Gk

E{gk(Lk)Ck(Lk)},

where Ck(Lk) = Qk(Lk, 1) − Qk(Lk, 0). Then by the same derivation as for stage K, it

follows that

goptk = arg min
gk∈Gk

E{|Ck(Lk)|I(Zk 6= g(Lk))},where Zk = I(Ck(Lk) > 0), k = K − 1, . . . , 1.

C: Proof of Proposition 1

At the K-th decision point, we have

VK(LK) = E{Y ∗(ĀK−1, g
opt
K )|LK}

= E{Y |LK , AK = goptK }

= QK(LK , 1)g
opt
K +QK(LK , 0)(1− goptK )

= QK(LK , 0) + {QK(LK , 1)−QK(LK , 0)}g
opt
K , (7)

where the second equality is due to the consistency and nounumeasured confounders as-
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sumptions. We also have that

E[Y + {QK(LK , 1)−QK(LK , 0)}{g
opt
K (LK)− AK}|LK ]

= E{E[Y + {QK(LK , 1)−QK(LK , 0)}{g
opt
K (LK)− AK}|LK , AK ]|LK}

= E[QK(LK , AK) + {QK(LK , 1)−QK(LK , 0)}{g
opt
K (LK)− AK}|LK ]

= E[QK(LK , 0) + {QK(LK , 1)−QK(LK , 0)}AK

+{QK(LK , 1)−QK(LK , 0)}{g
opt
K (LK)− AK}|LK ]

= QK(LK , 0) + {QK(LK , 1)−QK(LK , 0)}g
opt
K (LK)

= VK(LK),

where the last equality is due to (7).

Similarly at stage k, k = K − 1, . . . , 1, we have

Vk(Lk) = E{Y ∗(Āk−1, g
opt
k , goptk+1, ..., g

opt
K )|Lk}

= E{Y ∗(Āk−1, g
opt
k , goptk+1, ..., g

opt
K )|Lk, Ak = goptk }

= E{Vk+1(Lk, g
opt
k , Xk+1)|Lk, Ak = goptk } (8)

= Qk(Lk, 1)g
opt
k +Qk(Lk, 0)(1− goptk )

= Qk(Lk, 0) + {Qk(Lk, 1)−Qk(Lk, 0)}g
opt
k , (9)

and

E[Vk+1(Lk+1) + {Qk(Lk, 1)−Qk(Lk, 0)}{g
opt
k (Lk)− Ak}|Lk]

= E(E[Vk+1(Lk+1) + {Qk(Lk, 1)−Qk(Lk, 0)}{g
opt
k (Lk)− Ak}|Lk, Ak]|Lk)

= E[Qk(Lk, Ak) + {Qk(Lk, 1)−Qk(Lk, 0)}{g
opt
k (Lk)− Ak}|Lk]

= E[Qk(Lk, 0) + {Qk(Lk, 1)−Qk(Lk, 0)}Ak

+{Qk(Lk, 1)−Qk(Lk, 0)}{g
opt
k (Lk)− Ak}|Lk]

= Qk(Lk, 0) + {Qk(Lk, 1)−Qk(Lk, 0)}g
opt
k (Lk)

= Vk(Lk),
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where the last step is due to (9).

D: Other Methods and Relationship

We discuss the connections and distinctions between the proposed C-learning and other

direct optimization methods (method of Zhang et al., 2013, OWL-based methods) and

outcome regression based methods (Q-and A- learning).

The AIPWE based method of Zhang et al.(2012a, 2013) is a direct optimization method

that directly maximizes the expected potential outcomes under a regime, E{Y ∗(g)}, across

a class of regimes. It estimates E{Y ∗(g)} using the AIPWE estimator

AIPWE(g) =
n∑

i=1

∏K

k=1 I{gk(Lki) = Aki}∏K

k=1 π̂k(Aki, Lki)
Yi +

K∑

k=1

Augmentation termk, (10)

where π̂k(ak, Lki) estimates P (Aki = ak|Lki) and the augmentation terms involve fit-

ted values for Q-functions or other outcome regression models (see Zhang et al., 2013

for explanation). By appropriate choosing the augmentation term, the AIPWE has the

double-robustness property in the sense that if the treatment probabilities (propensity

scores) or outcome regression models, but not necessarily both, are correctly specified,

then AIPWE(g) is consistent for E{Y ∗(g)} and the augmentation terms can be used to

improve efficiency even if they are misspecified. If the augmentation terms are taken to

be zero, this reduces to IPWE, which is also studied in Zhang et al.(2012ab, 2013) and

is known to be inefficient. The method of Zhang et al.(2012a, 2013) then estimates the

optimal treatment regimes at all stages simultaneously by directly maximizing AIPWE(g)

across regimes in a restricted class of regimes indexed by a finite number of parameters.

The proposed C-learning is also a direct optimization method by essentially directly

estimating E{Y ∗(g)} (see explanation below) and estimation is based on AIPWE as well.

It differs from Zhang et al. (2012a, 2013) in two important aspects. First, C-learning

transforms the problem of estimating the optimal treatment regime into a classification
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problem. Existing powerful classification algorithms (eg., CART, SVM, etc.) can be used

to facilitate optimization, leading to more powerful and flexible estimation of regimes. This

point was also discussed in Zhang et al (2012b) in the single decision setting. In Zhang et

al, (2013), the optimization of regimes is among a restricted class of regimes indexed by a

finite number of parameters. However, in C-learning it can accommodate larger classes, not

necessarily a parametric class. For example, we illustrated optimization using CART among

all regimes of the form of a decision tree. Second, in contrast to Zhang et al. (2013) which

estimates regimes at all stages simultaneously, C-learning estimates the optimal regime at

each stage sequentially, which has important implications for improved performance. That

is, Zhang et al. (2013) estimates E{Y ∗(g)} using AIPWE, where g = (g1, . . . , gK) is a

regime with multiple stages, and then optimize it across a class of regimes G to estimate

gopt. However, from the proof for Theorem 1 and discussion in Zhang et al. (2012b) on

AIPWE of contrast functions, C-learning sequentially estimates E{Y ∗(ĀK−1, gK)} , . . . ,

E{Y ∗(Āk−1, gk, g
opt
k+1, . . . , g

opt
K )}, . . . , E{Y ∗(g1, g

opt
2 , . . . , goptK )} using a series of AIPWEs and

then optimizes each expected potential outcomes sequentially across Gk to estimate goptk ,

k = K, . . . , 1. As our simulation shows (Table 1), even when both C-learning and the

method of Zhang et al. (2013) are based on AIPWEs with same propensity score and

augmentation term models and the optimization are carried out across the same class of

regimes, C-learning still outperforms Zhang et al. (2013) considerably. This is due to

the difference in maximization (sequential vs. simultaneous) and the sample size used in

estimating the optimal regime at each stage. Consider the last stage (stage K), data on

all subjects are used to estimate the optimal regime in the proposed C learning. From

the missing data perspective, the potential outcome of a subject is observed as long as

the treatment at stage K is consistent with a regime, regardless of treatments received

prior to K because covariate and treatment histories at previous stages are treated as

baseline covariates. Once we estimate the optimal treatment regime at stage K, we move
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backward. Consider estimation at stage k, in C-learning essentially we impute the expected

potential outcomes for stage k assuming the optimal decisions are made in the future.

We then estimate the optimal treatment regime at stage k using data from all subjects.

Intuitively, in C-learning, at each stage, the best effort has been made to estimate the

optimal treatment regime at that stage. In the method of Zhang et al (2013), however,

the optimal treatment regimes at different stages are estimated simultaneously. From the

coarsening data perspective on which the method of Zhang et al. (2013) was derived

from, the potential outcome of a subject is observed only if the treatments at all stages are

consistent with a regime, and therefore, we have more missing information as compared with

the C-learning method. This explains why even when both C-learning and the method of

Zhang et al (2013) use AIPWEs with same propensity score and augmentation term models

and optimize across the same class of regimes, C-learning still has better performance.

The simultaneous outcome weighted learning (SOWL) of Zhao et al.(2015) is in prin-

ciple the same as the method of Zhang et al. (2013) with the use of the particular IPWE.

Following OWL (Zhao et al. 2012), by mimicking the idea of SVM, instead of directly opti-

mizing IPWE as in Zhang et al.(2013), they substitute a continuous and concave surrogate

function to replace the indicator function (see also the discussion for BOWL below) in the

original objective function to facilitate optimization.

The backward outcome weighted learning (BOWL) of Zhao et al.(2015) is also based

on optimizing IPWE of E{Y ∗(g)}. However, instead of learning decision rules at all stages

simultaneously, optimization is carried out sequentially. After obtaining the estimated

optimal regimes at stages K, ..., k + 1, denoted as ĝoptK , ..., ĝoptk+1, to estimate ĝoptk it aims to

maximize the IPWE, ie,

n∑

i=1

Yi

∏K

j=k+1 I{ĝ
opt
j (Lji) = Aji}∏K

j=k π̂j(Aji, Lji)
I{gk(Lki) = Aki},

8



which is equivalent to minimizing

n∑

i=1

Yi

∏K

j=k+1 I{ĝ
opt
j (Lji) = Aji}∏K

j=k π̂j(Aji, Lji)
I{gik(Lik) 6= Aik}.

For simplicity takingK = 1, the IPWE estimator is the empirical analogue of E[Y I{g(X) =

A}/π(A,X)], where π(a,X) = Pr(A = a|X), and maximizing it is equivalent to minimiz-

ing E[Y I{g(X) 6= A}/π(A,X)]. Because of the particular form of IPWE, where a term

I{g(X) 6= A} is involved, I{g(X) 6= A} can be viewed as a zero-one loss in a classification

problem and Y/π(A,X) can be viewed as the weight when Y is positive (or when Y is

bounded and can therefore be transformed to a positive random variable). It is easy to see

that the classification perspective in BOWL is to classify patients based on his/her char-

acteristics to classes that actually received treatment A=0 or 1, i.e., a classification error

is made if g(X) 6= A. This is indeed the idea behind IPWE by viewing the problem as a

missing data problem in the sense that the potential outcome for a subject under a regime

is missing if the actually received treatment is not the one determined by the regime, i.e.,

g(X) 6= A; see Zhang et al. (2012a) for details. Viewing this as a classification problem

and, instead of using the 0-1 loss, BOWL uses a hinge loss to facilitate the optimization,

ie., replacing the indicator function by a continuous and concave surrogate function. The

optimization at stage k is among subjects who follow ĝoptK , ..., ĝoptk+1 and the number of sub-

jects in learning optimal decision rules is decreasing geometrically as k decreases, which

further loses information and leads to inefficient estimation.

Therefore, both OWL (BOWL and SOWL) and the robust AIPWE based method of

Zhang et al.(2012a and 2013) are direct optimization approach. The difference is that the

method of Zhang et al.(2012 and 2013) uses the more general and efficient AIPWE but

OWL uses IPWE, which is less efficient as it does not incorporate information in outcome

regression models and less robust due to lack of the double robustness property. By re-

placing indicator function by a continuous and concave function, OWL is more flexible in
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optimizing among a large class of regimes. However, the use of SVM in OWL and the trans-

formation of the problem to a classification problem is predicated on an IPWE estimator

and cannot readily generalize to other more efficient estimators. Also the classification idea

of SVM is used purely as a convenient tool for optimization instead of being a meaningful

classification targeting the goal of individualizing treatments since in this classification per-

spective it tries to classify patients based on his/her characteristics to classes that actually

received treatment A=0 or 1. As also pointed out by Zhou, et al. (2015), due to this,

the estimated treatment regime from OWL-based methods tries to keep treatment assign-

ments that subjects actually received, which is an undesirable feature as theoretically by

definition the optimal treatment regime should not depend on how treatment is actually

assigned in observed data. The proposed C-learning does not suffer from this feature as

our classification perspective is different from that of OWL-based methods. In the classi-

fication perspective of C-learning, it is easy to see from Theorem 1 that it aims to classify

patients, based on patients characteristics, to the class that would potentially benefit from

one treatment relative to the other and hence should receive the particular treatment, i.e.,

a classification error is made if g(X) 6= I{C(X) > 0}. As a matter of fact, in Theorem

1, it is clear that the optimal treatment regime in our classification perspective does not

depend on the observed treatment A, as it should be by the original definition, which is in

contrast with OWL-based methods. Therefore, the meaning of classification is consistent

with the goal of optimizing treatment and it does not suffer from the issue of OWL-based

methods.

In contrast with outcome regression based methods (Q- and A-learning methods), C-

learning is a direct optimization method that estimates the optimal treatment regime by

directly optimizing E{Y ∗(g)}. Direct optimization methods enjoy some robustness prop-

erty against outcome model misspecification. They lead to good estimate of the optimal

treatment regime as long as E{Y ∗(g)} is consistently estimated, not necessarily requir-
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ing the outcome regression models to be correctly specified. For example, in randomized

clinical trials E{Y ∗(g)} can always be consistently estimated using AIPWE and IPWE

methods and in observational studies E{Y ∗(g)} can be consistently estimated when either

propensity score models or outcome regression models are correctly specified. Outcome

regression models do not dictate the performance but good outcome regression models can

be used to improve performance. In contrast, Q- and A-learning methods are outcome

regression based methods. Q-learning models conditional expectation of outcomes and

A-learning models the contrast of expectations between treatments. Estimated contrast

functions directly determine the estimated regimes and, as a result, the performance of

the resulting estimate depends on whether the outcome regression models are correctly

specified. A-learning is more robust than Q-learning since it does not require the model for

conditional means to be fully correctly specified, but it still requires the parametric form of

the contrast functions to be correctly specified. See Zhang et al. (2012a and 2013), Zhao

et al. (2012 and 2015) and Kang, et al.(2014) for more discussion on direct optimization

methods.

To summarize, C-learning is a direct optimization method as opposed to outcome

regression-based methods (Q-and A-learning) and it enjoys more protection against model

misspecification. As the direct optimization method of Zhang et al.(2012a and 2013),

outcome regression models (Q-functions) are used to improve efficiency, in contrast with

OWL; however, outcome regression models in C-learning do not dictate the form of the

optimal treatment regime, in contrast with Q- and A-learning. C-learning successfully

transforms the problem of identifying the optimal treatment regime into a sequential clas-

sification problem. In C-learning, the meaning of classification is consistent with that of

individualizing decision rules based on patient characteristics, which is in contrast with

OWL-based methods and offers considerable improvement in performance over BOWL and

other OWL-based methods. Instead of using simultaneous optimization as in Zhang et al.
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(2013), C-learning uses backward induction to backward sequentially identify the optimal

decision rules, which leads to big improvement in performance. In our backward sequen-

tial optimization, at each stage it is able to optimize decision rules based on all subjects,

whereas the sample size in BOWL decreases geometrically as it can only use subjects who

have followed the estimated optimal decisions rules at the future stages. To the best our

knowledge, this is the first direct optimization method that is able to use backward induc-

tion to sequentially estimate regimes without having to decrease sample size at later stages.

E: C-learning Algorithm

We summarize the C-learning algorithm as follows.

1. At stage K, based on data (Yi, LKi, AKi), i = 1, . . . , n,

1.1 Build model for P (AK = 1|LK) to obtain estimate of the propensity score P (AKi =

1|LKi), denoted as π̂K(LKi), for each subject.

1.2 Build models for QK(LK , AK) and obtain estimates Q̂K(LKi, aK), aK = 0, 1.

1.3 Estimate CK(LKi) for each subject by ĈK(LKi) as in (3) or more generally (6)

of the main manuscript.

1.4 Estimate goptK according to (7) by some optimization/classification technique, de-

noted as ĝoptC,K .

1.5 Estimate VKi by ṼKi according to (5).

2. Similarly for stage k = K − 1, . . . , 1 sequentially, repeat 1.1-1.5 based on “data”

(Ṽ(k+1)i, Lki, Aki), i = 1, . . . , n, to obtain estimate of goptk , denoted as ĝoptC,k

F: Additional Results

We conducted additional simulations to evaluate the performance of C-learning relative

to BOWL and other OWL-based methods under scenarios 1 and 2 of Zhao et al (2015);

12



results are shown in Table s1. Implementation of C-learning is similar to that in Table 2 (C-

learning-RF) of the main manuscript. In these two scenarios, C-learning also outperforms

OWL-based methods for reasons explained in the main manuscript and in Supplementary

Material D, namely, the difference in classification perspective, whether or not incorporating

information from outcome regression models and sample size used in optimization at later

stages. We note that here results for BOWL, IOWL and SOWL are directly copied from

Zhao et al, (2015) because we were unable to reproduce results and the performance of

OWL-based methods from our simulations are not as good. One reason for not being able

to reproduce results of OWL-based methods is due to how one handles negative outcomes

as OWL-based methods may be ill-behaved when outcomes can be negative (Chen et al.,

2017). OWL-based methods are assuming outcomes are positive. In simulation studies,

as outcomes are generated from normal distributions, one needs to shift the outcomes to

make it positive. As pointed out by Zhou et al.(2015) and also noted by ourselves and

Chen et al. (2017), results of OWL-based methods are very sensitive to a simple shift and

also shifting further impacts performance.

In our main manuscript, BOWL is modified to overcome the issue of dealing with

negative outcomes by using the IPWE method of Zhang et al. (2012b) to get the objective

function and then replacing the indicator function to a concave surrogate function, i.e.,

weight is |Y |/{Aπ + (1− A)(1− π)} and class label is (1− A). As discussed by Zhang et

al. (2012b), this is equivalent to OWL when Y is positive. However, it can handle both

positive and negative outcomes and is not ill-behaved when Y is negative. This modification

is similar to the remedy proposed by Chen et al. (2017) and is the same when π = 0.5.

We report results of the original BOWL under scenario 1 of the main manuscript in Table

s2. To implement the original BOWL, we have followed the recommendation (personal

communication) of the first author to handle negative outcomes, i.e., shifting outcomes by

subtracting the minimum observed outcome, and used code kindly shared by the first author
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Table s1: Simulation results under scenarios 1 and 2 of Zhao et al. (2015).

n BOWL IOWL SOWL C-learning-RF

Scenario 1 200 4.50(0.77) 4.21(0.84) 5.93(0.75) 6.43(0.22)

400 5.81(0.33) 5.00(0.60) 6.19(0.39) 6.57(0.10)

Scenario 2 200 2.85(0.27) 2.87(0.28) 3.12(0.08) 3.68(0.06)

400 3.10(0.13) 3.05(0.20) 3.21(0.09) 3.71(0.03)

for the optimization. As shown in Table s2, original BOWL behaves significantly worse

than the modified BOWL (denoted as BOWL). Similar pattern of relative performances

of different versions of BOWL is observed under scenarios 2 and 3 of the main manuscript

(results not shown).

We report simulation results under scenarios in the main manuscript using sample

size n = 100 in Table s3. Results under this smaller sample size are overall consistent

with results reported in the main manuscript and demonstrate the superior performance

of the proposed method relative to BOWL, Q-learning and the method of Zhang et al.

(2013). We note that when the sample size is as small as n = 100, under scenarios 2

and 3 Q-learning† and Zhang et al. (2013)† seem to have slightly better performance.

However, this is due to that in our implementation Q-learning† and Zhang et al. (2013)†

only used relevant variables among the high dimensional set of covariates to construct the

optimal treatment regime (see main manuscript for explanation) to illustrate their ideal

performance, which is not feasible in real data, whereas in the implementation of C-learning

we did not use any a priori information on which variables are important. Under more

reasonable sample sizes n = 200, 400, the impact of variable selection is less and C-learning

outperforms other methods even when information this is not available in practice is used

in the implementation of other methods.

For one simulation data set (n=200), Figure s1 plots the classification data points used
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Table s2: Results for the first simulation scenario using 500 Monte Carlo data sets .

E{Y ∗(gopt)} = 20. E(ĝopt) shows the Monte Carlo average and standard deviation of

values E{Y ∗(ĝopt)} obtained using 106 Monte Carlo simulations for each data set.

n=200 n=400 n=800

Estimator E(ĝopt) E(ĝopt) E(ĝopt)

Original BOWL 3.33(3.61) 4.71(3.27) 5.83(2.69)

BOWL 10.84(1.85) 12.13(1.54) 13.02(1.36)

Q-learning 12.49(1.83) 12.76(1.46) 13.05(1.14)

Zhang et al.(2013) 13.25(2.12) 15.08(1.46) 16.28(1.01)

C-learning 17.27(0.97) 18.52(0.74) 19.37(0.41)

for estimation in each stage for C-learning and BOWL. It provides some further insight on

how the weighted classification in C-learning can facilitate estimation and on the difference

between C-learning and BOWL. Note, in BOWL, the number of data points used for

estimation decreases with stages.

For data application, in Figure s2 we report the classification data sets used for finding

the optimal treatment regime. After obtaining estimated contrast functions for each subject

using the AIPWE, the class label (indicated by color) for each subject is the sign of the

estimated contrast and the weight (indicated by size) is the magnitude of the estimated

contrast. Unlike the case in Figure s1, Figure s2 suggests that, for both stages, we cannot

separate subjects to two classes and the optimal treatment decision does not seem to depend

on patient characteristics available in our data.
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Figure s1: Classification data sets used for estimating the optimal decision rule at each

stage in C-learning (second row) and BOWL (third row) for one simulated data set from

simulation setting one (n=200). Each dot corresponds to a data point for a subject and the

vertical bar is the true or estimated regime. The first row is the truth, with size indicating

the magnitude of true treatment contrast and color indicating true optimal treatment. In

row one and row two, only dots for those patients whose data are used in estimation in the

corresponding stage are plotted, with size indicating weight (e.g., in C-learning the weight

is the magnitude of estimated contrast functions) and color indicating class label (e.g., in

C-learning, label is the sign of estimated contrast functions) in the corresponding weighted

classification algorithm.
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Figure s2: Classification data sets used for estimating the optimal decision rule at each

stage in C-learning for data application. Each dot corresponds to a subject, with color

indicating class label and size indicating weight.
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Table s3: Results for n=100 using 500 Monte Carlo data sets for scenarios reported in the

main manuscript . E{Y ∗(gopt)} = 20. E(ĝopt) shows the Monte Carlo average and standard

deviation of values E{Y ∗(ĝopt)} obtained using 106 Monte Carlo simulations for each data

set. Superscript“†” indicates that only relevant variables among the high dimensional set

of covariates are used to construct the optimal treatment regime, which is not feasible in

reality. Methods without “†” are searching the optimal treatment regimes without any a

priori information on which variables are important.

Scenario 1 Scenario 2 Scenario 3

Estimator E(ĝopt) E(ĝopt) E(ĝopt)

BOWL 8.77 (2.42) 2.41(1.9) 2.23 (2.08)

BOWL† - 13.55 (2.25) 11.5 (2.18)

Q-learning 11.78 (2.14) - -

Q-learning† - 13.94 (1.27) 12.92 (0.76)

Zhang et al.(2013) 11.12 (2.69) - -

Zhang et al.(2013)† 16.46 (2.41) 15.82 (1.74)

C-learning-Q 15.43 (1.68) 13.24 (2.89) 14.41 (2.57)

C-learning-RF - 10.03 (3.21) 11.82 (3.29)
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