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The capture of high-quality treatment data and outcomes is necessary in order to learn from our clini-
cal experiences with big data analytics. In radiotherapy, there are several practical challenges to over-
come. Practical aspects of data collection are discussed pointing to a need for a culture change in
clinical practice to one that captures structured patient-related data in routine care in a prospective
manner. Radiation dosimetry and the contoured anatomy must also be captured routinely to represent
the best estimate of delivered radiation. The quality and integrity present in the data are critical which
poses opportunities to introduce electronic validity checking to improve them. Similarly, data com-
pleteness and methods and technology to improve the efficiency and sufficiency of data capture can
be introduced. In the manuscript, the types of clinical data are discussed including patient reports,
images, biospecimens, treatments, and symptom management. With a data-driven culture, the real-
ization of a learning health system is possible unlocking the potential of big data and its influence on
clinical decision-making and hypothesis generation. © 2018 American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.12817]
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1. INTRODUCTION

The practice of modern oncology is complex and multi-
faceted. It requires the coordination of a multidisciplinary
group of providers to help each individual patient choose
and complete an optimized course of treatment. Further-
more, treatment regimens span weeks or months, requiring
frequent interaction with health-care providers. The patient
is then faced with months to years of follow-up appoint-
ments to assess tumor control and quality of life.
Throughout such a long care path, there are many time
points at which patient data must be collected to inform
physician decisions. Ideally, the collection of encounters,
treatments, and outcomes within a learning health system
should provide a mechanism for feedback and evaluation
of the impact of any treatment decisions.

Medicine is currently not practiced in a way that supports
a learning health system.1,2 The transcribed medical records
serve three primary goals. The most important is to convey
the status and well-being of the patient to other care providers
that may interact with the patient in the future. Secondly, it is

important to have an accurate record of what procedures were
performed and possible complications that might have arisen
for legal and billing requirements. Last but not least, it is the
primary source for the evaluation of care quality or retrospec-
tive research questions.

Medical research, on the other hand, is evaluated and pre-
sented in a quantitative way helping us understand how to
progress our field of medicine. User interfaces that incorpo-
rate data collection into the clinic workflow can bring that
research-level analysis to the point of patient care and will
catalyze the implementation of learning health systems in the
future. These interfaces must be more directed to the physi-
cians and nurses that use them. They must also enable com-
plete and efficient structured data collection while
maintaining clinician presence with patients. Such user inter-
faces can align with specific encounter types and employ dis-
plays that trend the state of the patient while enabling updates
and integrity checks with minimal interaction.

In radiation oncology, our treatment is four-dimensional in
nature and we know quite accurately where it is distributed in
the patient and when it is delivered. Extracting and
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organizing the dose distribution, the related anatomy and
imaging information in a form that is easily accessed and pro-
cessed facilitates the rather complex analysis utilized in
machine learning approaches.3–5 Coupling the treatment
information with the patient outcomes and complications’
measures provides a rich environment to learn from our clini-
cal data.

For big data applications, we are limited to the types of
data that are captured or able to be captured in the standard
clinical practice.6 The goal is to best capture these data with
the highest integrity, greatest efficiency, and high completion
rates.

2. TYPES OF CLINICAL DATA AND HOW THEY
ARE CAPTURED

2.A. Clinician assessments

Conventionally, clinical assessments are documented in
free-text form of clinical notes, sometimes cursory due to the
nature of the clinic. These might be sufficient for the health-
care providers when they only need to interact with the
patients for a limited number of encounters. However, this is
not always the case, especially for cancer patients. During
physicians’ regular course of management, unstructured doc-
umentation may cause unwanted transcription errors, limited
information capture, physician recall bias, and difficulty in
retrospective chart review. All of these could potentially lead
to severe consequences such as clinical inertia.7

There is interest in using in natural language processing of
unstructured notes, which has limited success.8,9 These meth-
ods fall short when the information simply is not in the note.
Clinical notes highlight the critical aspects of the patient and
fail to identify the absence of a toxicity or complication or
the presence of toxicity at a level not requiring medical inter-
vention. Practices that have moved to prospective collection
of structured clinician assessments using electronic forms that
can be used to generate clinical documentation will undoubt-
edly have more control over what is captured with higher
compliance and completion rates. These methods have to be
carefully adopted and tailored to the specific type of patient
and visit. Improving human–computer interfaces to facilitate
this practice will assist in changing the culture to include the
structured capture of clinician assessments.

In clinics that have adopted structured forms, clinicians
assess the patients in consult, during on-treatment visits, and
in follow-up to manage the patient’s symptoms and monitor
the disease control. During these patient–physician interac-
tions, a new form is constructed at the first visit with patients’
general information and clinical conditions; thereafter, an
integrated data review is presented during each on-treatment
and follow-up visits for validation and modification; multidis-
ciplinary assessments are also attached with the assessment
date and time that are securely saved in the medical record.
This entire process, depicted in Fig. 1, seamlessly streamlines
the clinic with an electronic tablet, which overcomes the inter-
ruptive nature of the clinic, substantially improving efficiency.

2.B. Patient reported

Patient-reported outcomes (PROs) are collected by pro-
viding patients with questionnaires and other structured
instruments that assess everything from a patient’s ability
to cope with their disease and symptoms to their quality
of life. These seek to quantify the extent of any compli-
cation and its impact on the patient from the patient’s
perspective. Many of these instruments have been vali-
dated in the literature and provide individual questions
and scoring models for the various measures of inter-
est.10–12 Electronic medical records (EMRs) are improving
the ability to capture patient-reported outcomes on mobile
devices in the clinical setting and through patient portal’s
in the home or mobile setting.13 Key among these efforts
is the validity of the construction of electronic PROs
compared to their original paper-based versions. Work to
date suggests that minimal changes in the construction of
the equivalent electronic PRO do not invalidate the
instrument.14

Additionally, health-monitoring mobile devices are
becoming more prevalent and can track activity and a myriad
of health conditions. Interfaces for these devices to enable
physician access to the data through the EMR are in their
infancy. Ultimately, patient-reported data can be the most lon-
gitudinally complete data, as the patient is continually present
throughout their own experience. However, it is important to
recognize that incorporating these “out-of-clinic” strategies
needs to similarly consider the equivalent of “in clinic” data
workflow collection issues by considering the normal routi-
nes of the patient.

2.C. Biospecimen

Laboratory data are well structured and are currently trans-
ferred electronically between electronic medical systems
through the Health Level Seven (HL7) standard.15 HL7, how-
ever, does not define naming standards, so incoming data
from different laboratory sources are likely to have different
naming. Although these data are well suited for analysis,
there remain difficulties in adherence to standard nomencla-
ture16 and units such as those defined by LOINC and
SNOWMED creating translational problems when data are
aggregated.

Pathology reports are often unstructured though there are
evolving standards and a strong trend toward using more
structured reporting. In fact, the College of American Pathol-
ogists have provided cancer-reporting templates and have also
developed a list of specific features that define a synoptic
reporting format that lends itself to data curation. Pathology
reports standardized information such as AJCC tumor stag-
ing17 and the International Classification of Diseases for
Oncology (ICD-O) coding, margin-positive/negative status,
lymph node involvement, and disease-specific coding such as
the Gleason grading system. These are standardized and may
also be processed with natural language processing with
some level of success.
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2.D. Image-derived features

By definition, medical images are a form of structured
data, containing both metadata describing the image and its
acquisition as well as data arrays containing the pixel/voxel
data. Algorithmic assessments both within defined regions
and of the image globally can generate additional metadata
quantifying the image in terms of countless different features.
For radiation oncology, the routine workflow, whereby the
cancer and surrounding normal structures are routinely con-
toured/segmented, lends itself to algorithmic assessments
with radiomics. At this point, image datasets are fully elec-
tronic at most institutions and are stored in PACS systems.
The main issue now is in the extraction of features from the
images. Simple features such as tumor dimensions or density
of the lung remain challenging as radiologists may report the
anatomical location and maximum dimension of a tumor or
presence of emphysema, but do not delineate it on the
images. Radiomics is the process to convert digital medical
images into minable high-dimensional data.18–22 This process

will be facilitated by robust and automated deformable regis-
tration and anatomical image segmentation methods.
Advanced data analysis approaches, such as machine learning
methods, can be performed with the raw image voxel values
to illustrate how segmented regions can contribute to the toxi-
city. However, automated feature extraction will be the key to
linking those findings to physiological processes and may
serve as guidance for laboratory science.

2.E. Treatment

The treatment of cancer is multifaceted and very complex.
Traditionally, patients may undergo surgery, chemotherapy,
and/or radiation therapy depending on their disease and med-
ical status. Further complexity comes from hormonal treat-
ments that may be used in combination, such as androgen
suppression or estrogen blockers, or more recently
immunotherapies. All of these treatments and their specific
timing over the course of care effect both the disease control
and the potential toxicity risks and quality of life experienced

Who am I about to see?
Summary - current status

Clinician assessment Summarize in textPa�ent surveys

Electronic Medical Record

Analy�c Database

Structured 
data

Specific Pa�ent Encounter Clinical Workflow

FIG. 1. A depiction of a clinical workflow using web forms that fulfills both clinical documentation requirements while also capturing structured data suitable for
analytics. The survey forms allow the clinician and patient to fill out questionnaires specific to a type of patient and encounter. The results can be combined with
information about the patient already in the system to create (compute) a text-based summary of findings that can be transferred to the Electronic Medical Record
where any additional physician impressions may be added. The captured data can be presented as trends for that individual and also added to an analytic database
for aggregation.
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by the patient. For practical big data applications, the goal is
to capture the information from treatment in a quantitative
way to better understand the nuances in the future.

Of the three main cancer treatment modalities, radiation is
highly quantitative and lends itself for data curation and anal-
ysis. Radiation dosimetry is readily calculated; however, cur-
rent practice does not robustly determine the “delivered”
dose distribution for every patient. Patients may have modi-
fied fractionation or changes in the tumor and surrounding
anatomy that cause the actual delivered dose to deviate from
the original treatment plan. The volume and shape of the
tumor may change due to patient-related factors during treat-
ment necessitating midcourse modifications to the treatment
plan. These impose challenges to obtaining the actual deliv-
ered dose. Therefore, current platforms should aim to account
for the capture of the best possible representation of the deliv-
ered dose. In many cases today, our best estimate of delivered
dose is the original treatment plan. However, proper attention
to changes and a workflow to generate a final composite of a
patient’s treatment would improve data accuracy.

Surgery information is typically known at the procedure
level. Detailed information about the location, extent of the
surgery, and complications is more difficult to quantify and is
documented in clinical notes. Guidance imaging and robotics
tracking during surgery are possible, but currently limited in
its availability. The success of surgery in terms of disease
resection is documented in the pathology from the surgical
specimen.

Chemotherapy is known at the regimen level and also at
the level of medicinal administration. Timing of chemother-
apy, treatment response, and interruption reasons in relation
to radiation treatments may be critical to the patient’s out-
comes, so capturing the times and amount of each administra-
tion is critical in evaluating outcomes related to the timing of
drugs or concomitant therapies. Standardized naming of
drugs is available with RxNorm which is also used by several
of the commercial drug knowledge bases used for ordering
that provide decision support on drug–drug interactions.

While departments for each of these treatment modalities
is solely responsible for their respective data collection
efforts, perhaps the greatest challenge is to coordinate data
sharing and analysis across departments. This includes agree-
ing in advance to adopt standardized clinical assessments
whenever possible. The increased utilization of multidisci-
plinary clinic models should enhance efforts to coordinate
treatment-related data collection over the entire course of
patient care.

2.F. Symptom management

Documenting symptom management is also a key in
understanding the treatment-related toxicities in the big data
applications. The extent of symptom management depends
on the patient’s use of the intervention more than on the
physician’s prescriptions. For example, a prescription for pain
relief does not mean that the patient is taking the medication
as prescribed. Likewise, feeding tube placement does not

indicate use. Tracking patients’ adherence to prescribed med-
ications is critical in understanding their impact and how they
contribute to meaningful clinical outcomes. This data can
only be collected through clinician assessments and patient-
reported methods unless they are electronically monitored.
Furthermore, as patients are often referred to other specialists
(e.g., physical therapists and speech pathologists), an effort
must be made to centralize progress reports in a structured
format.

2.G. Technology

The primary goal of an informatics platform is to provide
efficient access to the vast amounts of data for broad-based
analytics and research. In general, the clinical informatics
environment consists of transactional databases meant to sup-
port workflows, scheduling, and encounter-based data cap-
ture and a secondary data warehouse for building a data
science environment facilitating analytics. In radiation oncol-
ogy, the transactional databases also incorporate treatment
planning, image guidance, and oncology and medical infor-
mation systems. Therefore, the push now is to develop and
populate data warehouses that can aggregate these high-
dimensional data in an analyzable form.

The data warehouse should adhere to data standards when-
ever possible, to insure common and published meaning of
each data element. It should also be designed for efficient
queries for processing. Most data warehouses that deal with
structured data are Structured Query Language (SQL)-based
relational databases. Well-designed SQL databases can be very
powerful for advancing knowledge and are in widespread use
with support in many analytics software platforms. SQL is lim-
ited in that tables are defined and a simple link is used to
define a relationship between them. Resource Description
Framework (RDF or triplestore) databases offer the opportu-
nity to link data together with more meaning to the link in a
subject–predicate–object model where the predicate defines
the nature of the link. More recently, the emerging of “Not
only SQL” (NoSQL) databases enable storage of raw data,
unprocessed data (e.g., clinical notes), which can be extracted
further with tools, such as natural language processing.

Data transformation is data being translated from the clini-
cal systems into the data warehouse. There are two different
forms of transformation: (a) transforming the raw data
directly and (b) creating derived features that may be of inter-
est. In this process, data are subject to integrity checks such
as verification of delivery of treatment or consistency of mea-
surements over time. Data integrity checking with adherence
to data standards is critical to the success of transformation
and may further enable large-scale programs in data sharing
and advanced data analysis in radiation oncology.

2.H. Clinical implementation

When it comes to the clinical implementation, there are
three fundamental and critical components: (a) having the
recognition that high-quality data collection in a prospective
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fashion will lead to a data resource supporting an acceleration
in the advancement of medical knowledge and improved
decision-making; (b) having an environment that recognizes
the evolving culture change and enables the time and effort as
well as customization of technology to seamlessly integrate
with the clinical practice; and (c) development of early, effec-
tive and understandable tools to support clinical decision-
making in the clinic.

Each patient encounter needs to be clearly documented to
support coordinated care and provides an opportunity to cap-
ture data necessary for future analysis. Table I begins to iden-
tify what information is used for care coordination and
documentation of the encounter, and also what data can be
interpreted into a structured form or directly measured. Each
specific visit type in the course of care provides that opportu-
nity and the more understanding and standardization of the
data; the more technology solutions can be created to break-
down current barriers to workflow related to efficiency and
ease of use. Ultimately, a smart system should determine,
based on each type of patient and visit, which data can be
captured efficiently and adhere it to standards.

The hardest data to capture are the clinician- and patient-
reported assessments of the patient condition. EMRs have the
ability to create structured data items as part of the clinical
documentation. Starting with a minimal set of data items
specific to a disease site and type of visit (consult, on-treat-
ment, or follow-up), begin to integrate them into the clinical
visit with the physician and nursing staff. The informatics
support personnel can help order the data elements and pro-
duce interfaces that minimize the complexity for the clini-
cians. Once started, continue to add to the structured data and
allow the cultural change to evolve. As the clinician’s take
more interest, they can add new data that align with their
interests or concerns for their patients. Moreover, as they see
value in the analysis of that data, it will perpetuate.

The critical component for the informaticist is to fully
understand the available data standards such as SNOWMED
CT23 or CTCAE to align any data collection to those standards.
Significant effort is being put into improving the data standards
such as these and the radiation oncology community should be
engaged in the effort. In addition, informaticists need to respect
that clinicians are trying to care for their patients and the tech-
nology should be as integrated into the clinical workflow as
possible, ultimately enhancing patient care. Given the limita-
tions of current clinical information systems, the current mod-
els often include home built tools to better streamline the
workflow requiring some software development experience.
Ultimately, such experimental user interface development
should guide improvements and modifications to commercial
systems for broader utilization in the community.

3. CONCLUSION

Our ability to use medical records to advance medical
knowledge and improve experience-based decision through
big data is arguably an eventuality. The current state of elec-
tronic medical records is not sufficient. A cultural change

toward prospective data collection is necessary, and infor-
maticists and medical physics can play a large role in catalyz-
ing this evolution. Radiation oncology is perhaps the most
quantitative medical field where we know where our dose
goes and when we deliver it. We are very well poised as a
field to lead medicine in the use of big data. Persistence and
dedication to improving our data collection in an unobtrusive
way will lead to advancements in medicine in the future.

a)Author to whom correspondence should be addressed. Electronic mail:
tmcnutt1@jhmi.edu.

REFERENCES

1. McNutt TR, Moore KL, Quon H. Needs and challenges for big data
in radiation oncology. Int J Radiat Oncol Biol Phys. 2016;95:909–
915.

2. Marungo F, Robertson S, Quon H, et al. Creating a data science plat-
form for developing complication risk models for personalized treatment
planning in radiation oncology. 2015 48th Hawaii Int Conf Syst Sci.
2015:3132–3140.

3. McNutt T, Wong J, Purdy J, Valicenti R, DeWeese T. OncoSpace: a new
paradigm for clinical research and decision support in radiation oncol-
ogy. Proc XVIth Intl Conf Comput Radiother; 2010;1.

4. Moore KL, Kagadis GC, McNutt TR, Moiseenko V, Mutic S. Vision
20/20: automation and advanced computing in clinical radiation oncol-
ogy. Med Phys. 2014;41:010901.

5. McNutt T, DeWeese T, Herman J, Quon H, Moore J, Wong J, inventors;
Johns Hopkins, assignee. System and method for medical data analysis
and sharing. patent 20160378919; December, 2016.

6. Mayo CS, Matuszak MM, Schipper MJ, Jolly S, Hayman JA, Ten Haken
RK. Big data in designing clinical trials: opportunities and challenges.
Front Oncol. 2017;7:187.

7. Phillips LS, Branch WT, Cook CB, et al. Clinical inertia. Ann Intern
Med. 2001;135:825–834.

8. Burger G, Abu-Hanna A, de Keizer N, Cornet R. Natural language pro-
cessing in pathology: a scoping review. J Clin Pathol. 2016. https://doi.
org/jclinpath-2016-203872

9. Lin FP, Pokorny A, Teng C, Epstein RJ. TEPAPA: a novel in silico fea-
ture learning pipeline for mining prognostic and associative factors from
text-based electronic medical records. Sci Rep. 2017;7:6918.

10. National Cancer Institute. Patient-reported outcomes version of the com-
mon terminology criteria for adverse events (PRO-CTCAETM); 2017.
https://healthcaredelivery.cancer.gov/pro-ctcae/.

11. Wei JT, Dunn RL, Litwin MS, Sandler HM, Sanda MG. Development
and validation of the expanded prostate cancer index composite (EPIC)
for comprehensive assessment of health-related quality of life in men
with prostate cancer. Urology. 2000;56:899–905.

12. EORTC. EORTC quality of life; 2018. http://groups.eortc.be/qol/quality-
life.

13. Yang W, Moore JA, Quon H, et al. Browser based platform in maintain-
ing clinical activities – use of the iPads in head and neck clinics. J Phys.
2014;489:012095. (XVII International Conference on the Use of Com-
puters in Radiation Therapy (ICCR 2013) 6–9 May 2013, Melbourne,
Australia). http://iopscience.iop.org/article/10.1088/1742-6596/489/1/
012095/pdf.

14. Gwaltney CJ, Shields AL, Shiffman S. Equivalence of electronic and
paper-and-pencil administration of patient-reported outcome measures: a
meta-analytic review. Value Health. 2008;11:322–333.

15. Health level seven international, 2018. www.hl7.org/implement/stan-
dards/. Accessed 10/2/2017.

16. Passiment E, Meisel J, Fontanesi J, Fritsma G, Aleryani S, Marques M.
Decoding laboratory test names: a major challenge to appropriate patient
care. J Gen Intern Med. 2013;28:453–458.

17. Amin MB, Edge S, Greene F, et al. (eds.). AJCC cancer staging manual.
New York, NY: Springer Science+Business Media; 2016.

Medical Physics, 45 (10), October 2018

e868 McNutt et al.: Practical big data collection in radiotherapy e868

https://doi.org/jclinpath-2016-203872 %5bpii%5d
https://doi.org/jclinpath-2016-203872 %5bpii%5d
https://healthcaredelivery.cancer.gov/pro-ctcae/
http://groups.eortc.be/qol/quality-life
http://groups.eortc.be/qol/quality-life
http://iopscience.iop.org/article/10.1088/1742-6596/489/1/012095/pdf
http://iopscience.iop.org/article/10.1088/1742-6596/489/1/012095/pdf


18. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour pheno-
type by noninvasive imaging using a quantitative radiomics approach.
Nat Commun. 2014;5:4006.

19. El Naqa I, Grigsby P, Apte A, et al. Exploring feature-based approaches
in PET images for predicting cancer treatment outcomes. Pattern Recog-
nit. 2009;42:1162–1171.

20. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting
more information from medical images using advanced feature analysis.
Eur J Cancer. 2012;48:441–446.

21. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge
between medical imaging and personalized medicine. Nat Rev Clin
Oncol. 2017;14:749–762.

22. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pic-
tures, they are data. Radiology. 2016;278:563–577.

23. Nikiema JN, Jouhet V, Mougin F. Integrating cancer diagnosis termi-
nologies based on logical definitions of SNOMED CT concepts.
J Biomed Inform. 2017;74:46–58.

Medical Physics, 45 (10), October 2018

e869 McNutt et al.: Practical big data collection in radiotherapy e869


	1. Intro�duc�tion
	2. Types of clin�i�cal data and how they are cap�tured
	2.A. Clin�i�cian assess�ments
	2.B. Patient reported
	2.C. Biospec�i�men
	2.D. Image-derived fea�tures
	2.E. Treat�ment
	fig1
	2.F. Symp�tom man�age�ment
	2.G. Tech�nol�ogy
	2.H. Clin�i�cal imple�men�ta�tion
	tbl1

	3. Con�clu�sion
	$^var_corr1
	bib1
	bib2
	bib3
	bib4
	bib5
	bib6
	bib7
	bib8
	bib9
	bib10
	bib11
	bib12
	bib13
	bib14
	bib15
	bib16
	bib17
	bib18
	bib19
	bib20
	bib21
	bib22
	bib23


