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Abstract13

To assess the effect of uncertainties in solar wind driving on the predictions from the op-14

erational configuration of the Space Weather Modeling Framework (SWMF) we have de-15

veloped a nonparametric method for generating multiple possible realizations of the solar16

wind just upstream of the bow shock, based on observations near L1. We have applied17

this method to the solar wind inputs at the upstream boundary of SWMF and have sim-18

ulated the geomagnetic storm of 5 April 2010. We ran a 40 member ensemble for this19

event and have used this ensemble to quantify the uncertainty in the predicted Sym-H in-20

dex and ground magnetic disturbances (GMDs) due to the uncertainty in the upstream21

boundary conditions. Both the ensemble mean and the unperturbed simulation tend to un-22

derpredict the magnitude of Sym-H in the quiet interval before the storm and overpredict23

in the storm itself, consistent with previous work. The ensemble mean is a more accu-24

rate predictor of Sym-H, improving the mean absolute error by nearly 2nT for this interval25

and displaying a smaller bias. We also examine the uncertainty in predicted maxima in26

GMDs. The confidence intervals are typically narrow during periods where the predicted27

dBH/dt is low. The confidence intervals are often much wider where the median predic-28

tion is for enhanced dBH/dt. The ensemble also allows us to identify intervals of activity29

that cannot be explained by uncertainty in the solar wind driver, driving further model im-30

provements. This work demonstrates the feasibility and importance of ensemble modeling31

for space weather applications.32

1 Introduction33

Most space weather modeling consists of applying deterministic equations to an as-34

sumed initial condition and subsequently calculating a single predicted value for each out-35

put parameter. For example, typical models to predict relativistic electron flux at geosyn-36

chronous orbit [e.g. Osthus et al., 2014] use measurements from an upstream solar wind37

monitor to specify the solar wind state and an estimate of the relativistic electron flux38

at a previous time, before applying a set of deterministic equations to predict the flux at39

the following time step. Similarly, predictions of geomagnetic indices such as the Kp in-40

dex typically take a set of inputs including solar wind data and use models of varying41

complexity to predict a single value of the required index per time step [e.g. Wing et al.;42

Haiducek et al., 2017].43

Ensembles of model output are widely used for assessing uncertainties in model pre-44

dictions [Slingo and Palmer, 2011]. Ensemble modeling has a rich history across weather45

and climate research [e.g. Epstein, 1969; Owen and Palmer, 1987; Murphy et al., 2004;46

Kay et al., 2015], but is relatively recent in its application to space weather [e.g. Andriyas47

et al., 2012; Riley et al., 2013; Cash et al., 2015; Knipp, 2016; Murray, 2018]. Approaches48

to ensemble modeling include multimodel ensembles [Guerra et al., 2015], single-model49

perturbed physics ensembles [Murphy et al., 2004; Smithtro and Sojka, 2005] and per-50

turbed initial condition ensembles [Morley, 2008; Kay et al., 2015].51

Multimodel ensembles combine predictions from different models, often using some52

sort of weighted averaging [Barnston et al., 2003; Murray, 2018]; Guerra et al. [2015]53

used a linear combination of results from four different probabilistic flare prediction mod-54

els to develop a better performing ensemble forecast. Perturbed physics ensembles use55

the same model, but parameter values within the model are varied to produce different56

simulation results. An example of this approach is given by Cash et al. [2015] who var-57

ied the parameters used in fitting a coronal mass ejection (CME), including initial CME58

speed and angular width, to study the uncertainty of the predicted CME arrival time. The59

perturbed initial condition ensemble method explores the problem identified by Lorenz60

[1963], namely that small perturbations in the definition of the model’s initial state can61

lead to different temporal evolution in the simulation. Kay et al. [2015] ran 30 different62

climate simulations using the same model and external forcings, where the difference be-63
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tween ensemble members was numerical differences, at the scale of floating-point round-64

off, in the atmospheric initial condition.65

Boundary conditions are particularly important in driven systems like the magneto-66

sphere [e.g., Vassiliadis et al., 1995; Borovsky and Valdivia, 2018]. Recently, Chen et al.67

[2018] studied an ensemble of inner magnetosphere simulations using the Rice Convection68

Model-Equilibrium [RCM-E; Lemon et al., 2004] where the electric field boundary con-69

dition was varied using a statistical model of errors in the cross-polar cap potential drop.70

Using this perturbed boundary condition Chen et al. [2018] determined that uncertainty71

in the applied electric field boundary condition was of secondary importance compared72

to inadequately capturing the physics of particle loss within the model. Given a sufficient73

number of ensemble members to adequately describe the probability density function of a74

predictand, such as the Dst index, this approach allows a direct determination of the uncer-75

tainty in the model output that results from uncertainty in the boundary condition.76

In this work we consider the uncertainty in the output of a model driven by up-77

stream solar wind data due to the uncertain specification of the true state of the solar wind78

interacting with the magnetosphere. We specifically consider the case of a space weather79

model that uses, as input, solar wind data from a monitor orbiting the first Lagrangian80

point (L1). We will first describe some of the issues leading to an uncertain specification81

of the solar wind properties that interact with the Earth. We will then describe a nonpara-82

metric resampling approach to estimating possible realizations of the solar wind interact-83

ing with Earth. Given a resampling model of perturbed solar wind time series we use an84

ensemble of different realizations of the solar wind to drive a perturbed-input ensemble of85

simulations using the Space Weather Modeling Framework. We then assess, for the first86

time, the uncertainty in the modeling due to the uncertainty in the solar wind input.87

2 Uncertainties in Specifying the Solar Wind State for Magnetospheric Modeling88

Measurements of the solar wind plasma and of the interplanetary magnetic field96

(IMF) from an L1 solar wind monitor, such as the Advanced Composition Explorer [ACE;97

Stone et al., 1998] or Deep Space Climate Observatory [DSCOVR; Cash et al., 2015],98

are point measurements in a turbulent medium that has varying correlation scales. To use99

these data to drive a model of the geospace environment an estimate is made of the solar100

wind plasma and IMF arriving at the bow shock nose. A variety of methods are used to101

propagate the upstream measurements to the bow shock nose, all of which can be shown102

to have errors in the arrival time based on observed structures in the solar wind. Figure 1

Figure 1. Schematic showing, in the X-Y GSE plane, the projection of the L1 halo orbit of ACE in blue,

and of the orbit of Geotail whenever it is upstream of the bow shock in yellow. The X-axis in GSE coordi-

nates is defined by the vector from the Earth to the Sun. The Y-axis lies in the ecliptic plane and is positive in

Earth’s anti-orbit direction. Nominal locations for the bow shock and magnetopause are shown by the dashed

and solid black lines, respectively. The purple bar indicates a planar structure in the solar wind that is propa-

gating towards Earth with the solar wind velocity, in the direction indicated by the purple arrow. The orbital

projections are based on eight months of data from 2000.
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103

shows a schematic of the solar wind as it propagates towards Earth’s magnetosphere, in104

the Geocentric Solar Ecliptic coordinate system [e.g., Fränz and Harper, 2002], based105

on the illustrations of Mailyan et al. [2008]. The orbit of the upstream monitor is that of106

the ACE spacecraft. The orbit of Geotail, which we use as a near-Earth monitor, is also107

shown. The equatorial locations of the magnetopause and bow shock are also shown, us-108

ing the Shue et al. [1997] and Chao et al. [2002] models, respectively. For this schematic109
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we used nominal input conditions for each model. It can be clearly seen that the size of110

the L1 halo orbit is larger than the width of the magnetosphere. The transparent purple111

bar is intended to illustrate a planar front in the IMF, perpendicular to the Parker spiral,112

that propagates radially outward towards Earth. As the solar wind is not homogeneous113

along the front illustrated here, we can identify a number of key sources of uncertainty in114

our solar wind measurement as a driver for a space weather model:115

1. Our upstream monitor orbits around the L1 point but is rarely sampling a ballistic116

trajectory that would reach the nose of the bow shock [e.g., Borovsky, 2017];117

2. Solar wind propagation methods assume a certain homogeneity in the solar wind118

that is being propagated, while observations suggest that the plasma and magnetic119

field are not homogeneous [e.g. Kessel et al., 1999; Borovsky, 2008, 2017]120

3. The solar wind properties are discontinuous across boundaries between regions121

with scale sizes approaching the cross-section of the magnetosphere [e.g., Borovsky,122

2012, 2017]123

4. The propagation method itself is not perfect and can introduce some uncertainty in124

the parameters projected to be arriving at the bow shock [e.g. Case and Wild, 2012;125

Cash et al., 2016].126

In the absence of three-dimensional observations of the solar wind as it propagates127

from L1 towards Earth, it is difficult to disentangle these sources of uncertainty. Some128

authors have explored the differences between propagation methods [e.g., Mailyan et al.,129

2008; Cash et al., 2016], and Pulkkinen and Rastätter [2009] have examined the differ-130

ences in predicted ground magnetic disturbances using different propagation methods. Ac-131

curate prediction of the solar wind conditions just upstream of the Earth, based on mea-132

surements near L1, is further complicated by non-planarity of solar wind phase fronts and133

the fact that the solar wind evolves between L1 and the Earth [Kessel et al., 1999; Tsuru-134

tani et al., 2005].135

3 Error model for solar wind inputs136

For this work we assume that a solar wind monitor close to, and upstream of, Earth’s137

bow shock provides a better representation of the solar wind that is interacting with the138

magnetosphere. We use Geotail [Nishida et al., 1992] as our near-Earth monitor and use139

its plasma and IMF measurements as a ground truth. We then use the point measurements140

from ACE as our estimate of the solar wind state. Prior to estimating the error in the esti-141

mated state we account for propagation of the solar wind by using the spacecraft-specific142

OMNI data set [King and Papitashvili, 2005; Papitashvili et al., 2014]. Both data sources143

are lagged to the location of the bow shock nose using the same method. The error be-144

tween our upstream measurement and our near-Earth measurement is then given by the145

difference between the propagated ACE data and the propagated Geotail data. For this146

work we use data from January 1999 through December 2005.147

εX = XACE − XGeotail (1)148

A major source of uncertainty is the structure within the solar wind. That is the up-149

stream solar wind monitor may not be measuring the same plasma that eventually inter-150

acted with the magnetosphere. Systematic differences due to structure in the solar wind151

plasma and magnetic field will result in significant persistence in the time series of errors152

in any given parameter. In other words, the error εX(t) will be correlated with the error at153

a previous time εX (t − ∆t). Additionally, errors in components of the interplanetary mag-154

netic field are likely to be correlated. For example, the orientation of the field may be the155

same but the observed magnitude differs between ACE and Geotail, leading to a correlated156

error in each component. Alternatively, the measured magnitude may be the same but the157
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observed clock angle may be different, again leading to correlation between the errors in158

the components of the interplanetary magnetic field.159

To model the expected solar wind parameters observed at Geotail, given only mea-160

sured data from ACE, we need to apply errors that are consistent with those observed,161

as described above. Several approaches can be taken here, and we briefly describe initial162

approaches taken in the preliminary stages of this work, followed by the method chosen163

for this application. While our initial methods have caveats that limited their utility for164

this particular work, they may well be suitable for perturbed input ensemble modeling of165

different systems. The exploration of these methods does, however, provide important in-166

formation about how the errors vary and are correlated.167

3.1 Conditional Probability Distributions of Errors168

Hassan et al. [2015] explored the differences in solar wind speed between ACE and169

Geotail, and showed the distributions of solar wind speed for discrete ranges of speed170

measured at ACE. This work led to the realization that the difference (error) should be171

the quantity of interest. We therefore initially aimed to characterize the probability den-172

sity functions of the errors such that new realizations of the solar wind could be drawn by173

sampling from the error distributions and adding the errors to the upstream measurements.174

Following Hassan et al. [2015] we use kernel density estimates (KDEs) to charac-175

terize the probability density functions of the observed errors. For each of the parame-176

ters that we wish to perturb we calculate the errors using equation 1 and then fit bivariate177

KDEs for the joint probability p(X, εX). The form of these probability density functions is178

dominated by the distribution of the solar wind parameter itself. To understand the distri-179

bution of errors at a given value of the upstream parameter we need to estimate the condi-180

tional probability by181

f (εX |X = xACE ) =
f (XACE, εX)

f (XACE )
(2)182

where f represents a probability density function, X represents the variable and x repre-183

sents a realization of X . We refer to the distributions using upper case and to individual184

values or variates using lower case. To restate equation 2 in words, each slice of the bi-185

variate joint probability density function is normalized by the probability of that value of186

X, such that the area under each slice sums to 1.187

Figure 2 shows the bivariate KDEs for the conditional probabilities. The ordinate192

in each panel is the variable as measured at ACE and the abscissa in each panel is the193

error between ACE and Geotail. The color in each case shows the conditional probabil-194

ity p(ε |X). Figure 2a shows that the distribution of errors between ACE and Geotail is195

narrower at low solar wind speed and broader at high solar wind speed. By contrast, fig-196

ures 2b and 2c show that the distribution of errors in the transverse magnetic field com-197

ponents between ACE and Geotail are very narrow and do not vary significantly with the198

magnitude of the component. That is, these bivariate distributions support an assumption199

that the errors in the transverse components of the IMF are are conditionally independent200

of the magnitude of the component.

Figure 2. Bivariate probability density functions where the ordinate in each panel is the variable as mea-

sured at ACE and the abscissa in each panel is the error between ACE and Geotail. The color in each case

shows the conditional probability p(ε |X). Panel (a) shows the probability of an error given a conditioning

value of solar wind Vx . Panels (b) and (c) show the same for IMF Bz and By respectively.
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191

201
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In the absence of autocorrelation but in the presence of conditional dependence we202

can empirically determine the probability density function of the error, given the value203

measured at our upstream monitor, following the method given above. We can then sam-204

ple directly from that PDF using, for example, Monte Carlo rejection sampling [e.g. Mackay,205

1998]. Specifically, for each timestep we would find f (εX |X = xACE ) and draw a random206

variate from the conditional probability distribution. We can then add the randomly drawn207

error to the upstream measurement. Thus at each time step, given an upstream value x208

we can draw an ensemble of likely alternate states given by x + εX . As the differences209

between upstream and near-Earth measurements arise, at least in part, from structure we210

expect autocorrelation in the time series of errors. This approach does not capture any211

autocorrelation and we require that our error model adequately captures temporal correla-212

tions between errors.213

As noted previously, figures 2b and 2c demonstrate that the errors in the transverse214

components of the IMF (By and Bz) are largely independent of the magnitude of the com-215

ponents, therefore we can treat these variables as conditionally independent. Assuming216

that the errors can be described by a first-order autoregressive model, we can then esti-217

mate the conditional probability of ε at time t given the value of ε at time t − 1218

f (εt |εt−1) =
f (εt−1, εt )

f (εt−1)
(3)219

As before these conditional probability density functions can then be directly sam-220

pled to draw an ensemble of different realizations of X , given our error model. That is,221

the error at time t is drawn as a random variate from the distribution of errors specified222

by f (εt |εt−1). However, ε(t) has longer-range autocorrelations than implied by the condi-223

tional probability model and this assumption leads to a large high-frequency variability in224

the different realizations of the solar wind parameter that is unrealistic. Attempts to use225

first-order autoregressive models, either by empirically specifying the conditional proba-226

bility distributions, or by fitting a Gaussian AR(1) model, did not adequately capture the227

correlative structure of the error time series. Additionally, the approach described above228

treats each parameter independently; correlations between the errors in VX , By, and Bz229

are not accounted for. Fitting a multidimensional parametric autoregressive model could230

potentially account for this, as could adopting a sampling method that accounts for both231

autocorrelations and correlations between variables. We account for these factors by using232

a block resampling method. The application of a nonparametric method, rather than fitting233

a parametric model, mitigates the errors associated with both model selection and model234

fitting [e.g. Vogel and Shallcross, 1996] while still preserving the correlations in time and235

between variables.236

3.2 Block resampled error model237

The bootstrap [Efron, 1979; Efron and Tibshirani, 1986] is a non-parametric method238

for estimating the uncertainty of a sample statistic using random samples of the same size239

as the original sample, drawn with replacement from the original sample. This technique240

is commonly used for estimating errors or confidence intervals [e.g., Kawano and Higuchi,241

1995; Morley and Freeman, 2007]. A known limitation of resampling with replacement is242

that correlations between points in the sample are lost [Solow, 1985]. The moving block243

bootstrap [Kunsch, 1989] approach modifies the bootstrap to capture serial dependence in244

time series by resampling blocks of values, rather than individual values. Our sampling245

methodology is derived from the sampling for the moving block bootstrap, with some mi-246

nor differences as described below.247

Our block resampled error model uses the time series of observed errors (εX (t)) and248

resamples, with replacement, to draw errors with which to model different realizations249

of the likely solar wind state near Earth. To capture the observed autocorrelation we use250

block resampling. That is, instead of drawing a single value we randomly select a start-251
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ing index and draw a contiguous block of errors from εX(t). The block length used in252

this study is 1 hour (60 samples) and the total number of samples in each error series is253

884658, corresponding to 14743 possible blocks. By drawing blocks with a length much254

greater than the correlation scale the autocorrelations in the error series are preserved.255

The selected block length is consistent with the rule-of-thumb that the block length should256

be approximately N1/a where a is between 3 and 4 [Niehof and Morley, 2012, and ref-257

erences therein]. For typical solar wind speeds of 300 to 800 km s−1 this corresponds to258

scale lengths of 169-452RE , several times larger than typical flux tube diameters in the259

solar wind [Borovsky, 2017].260

To ensure that correlations between errors on different variables are preserved we261

use the same starting index to draw errors for all variables. This resampling approach has262

previously been used for bootstrap confidence intervals for bivariate data, called pairwise-263

moving block bootstrap resampling [Ólafsdóttir and Mudelsee, 2014], and our approach264

ensures that correlations between errors in any solar wind parameters we wish to resample265

are captured. To illustrate, we wish to perturb Vx(t), By(t) and Bz(t) where the series has266

M elements. We begin by selecting an integer, i, from a random uniform distribution with267

the same length as the set of errors minus the block length (L). This integer is used as268

the starting index of the block and errors for each variable are then given by X(i,i+L-1),269

where the term in brackets indicates an inclusive range of numbered elements. This range270

of indices is used to draw errors for each variable in turn. We then repeat this process271

until the entire series has been perturbed.272

We note that our block resampling method implicitly assumes that the the errors274

are conditionally independent. This arises because the start time of each block is ran-275

domly chosen, and hence the errors within any block are assumed to be representative276

of all times. As shown in section 3.1 the errors in the By and Bz are conditionally inde-277

pendent, but the same is not true for Vx . To qualitatively assess the likely impact of this278

assumption on our model we examine the marginal probability P(Vx). Figure 3 shows279

the probability density function of Vx . The bulk of the distribution lies below 500 km s−1
280

where the error distribution can be seen to be narrower (cf. figure 2a). This suggests that281

for periods with fast solar wind (> 500 km s−1) the block resampling might tend to under-282

estimate the errors, and the periods with slow solar wind (< 500 km s−1) this method is283

likely to overestimate the errors by occasionally sampling from an error distribution that is284

broader.

Figure 3. Marginal probability of the solar wind velocity in the XGSE direction.273

285

Some further caveats should be noted for the block resampled error model. First we286

assume that the data from both the upstream monitor and the near-Earth monitor are ade-287

quately calibrated. This work shows that there are systematic differences between the pa-288

rameters measured by ACE and by Geotail. For example, the solar wind speed measured289

at Geotail is typically of order 10 km s−1 slower than the corresponding measurement at290

ACE for slow solar wind. The bias in solar wind speed appears to be smaller for faster291

solar wind, but the differences can also be very much larger. Similarly, the distributions292

of errors for the transverse IMF components are not centered at exactly zero, and the off-293

set varies slightly with the value of the magnetic field. Our analysis ignores these effects,294

effectively assuming that any systematic errors are real. As the systematic offsets in the295

IMF data are small ignoring them should have minimal effect on our results. Future work296

should assess the effect of systematic errors and apply any necessary corrections to the297

data from the solar wind monitors. Second, both the time series of errors and their tempo-298

ral correlations are likely to vary with the type of solar wind. Some preliminary analysis299

of the differences in the distributions of solar wind speed between ACE and Geotail was300
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presented by Hassan et al. [2015]. Further refinement of our method will be required to301

account for this type of effect.302

Finally, we note that we do not include solar wind number density in this work.303

While extending our resampling method to include the error in number density between304

ACE and Geotail would be trivial, the number densities measured by Geotail require ad-305

ditional work to be able to reliably include them in this analysis. The spacecraft-specific306

OMNI data do not include a cross-calibration of the number density and the Geotail data307

show systematic differences in number density, relative to upstream monitors, that vary308

as a function of the number density. Using the radial component of the velocity and the309

transverse magnetic field components is sufficient to give a good estimate of the variability310

due to uncertainty in the solar wind state and to demonstrate the methodology. As noted311

previously, cross-calibrations are important for this approach and we restrict our initial312

work to parameters that do not display substantial systematic differences.313

4 Application: Simulations of geospace driven by solar wind inputs314

We demonstrate the utility of perturbed input ensemble modeling by running a set of315

large-scale simulations of the magnetosphere and assessing the uncertainty in the predic-316

tions that arise from characterizing the uncertainty in the inputs. For this we have chosen317

to use the Space Weather Modeling Framework [SWMF; e.g., Tóth et al., 2005, 2012].318

The SWMF couples together component models to simulate a variety of domains in a319

self-consistent manner. Here we use a configuration that is the same as the Operational320

Geospace model currently in use at NOAA’s Space Weather Prediction Center. Analysis321

and plotting was performed using the open-source SpacePy [Morley et al., 2010, 2011]322

and PyForecastTools [Morley, 2018] libraries.323

The “operational geospace” configuration of the SWMF couples: 1. the Block-Adaptive-324

Tree Solar Wind, Roe-Type Upwind Scheme (BAT-R-US) [Powell et al., 1999; De Zeeuw325

et al., 2000]; 2. the Rice Convection Model (RCM) [e.g., Toffoletto et al., 2003] and; 3.326

the Ridley Ionosphere Model (RIM) [Ridley et al., 2003, 2004]. A schematic of the cou-327

pling is shown in Figure 4. BATS-R-US is an adaptive-mesh MHD solver that solves the328

ideal MHD equations throughout the magnetosphere. RCM models the inner magneto-329

sphere, and RIM simulates ionospheric electrodynamics. Further details of the operational330

configuration and its components are given by Pulkkinen et al. [2013] and Haiducek et al.331

[2017]. At the time of writing the operational forecasts use a single, deterministic simula-332

tion and do not provide estimates of the uncertainty of predicted quantities.333

4.1 SWPC Challenge Event 5: April 2010 Storm336

The event we simulate here is event #5 (hereafter referred to as “event 5”) from the337

“SWPC Challenge” as described by Pulkkinen et al. [2013]. The event covers the interval338

from midnight on 5 April 2010 through midnight on April 6 2010, and each simulation339

was started at 1900 UTC on 4 April 2010. The minimum Dst in the interval was −73 nT340

and the maximum Kp was 8−. This event was selected from the set studied by Pulkkinen341

et al. [2013] as it had a very strong response in Kp, complete solar wind coverage, and342

atypically large currents in the nightside ionosphere [Connors et al., 2011].343

We applied the error model described in Section 3.2 to the solar wind input data344

used for event 5, such that 40 different realizations of the input solar wind data were gen-345

erated. The simulations were run on the “Wolf” institutional computing cluster at Los346

Alamos National Laboratory. Each simulation used approximately 2500 CPU-hours to347

complete. In addition to the 40 ensemble members driven with perturbed solar wind in-348

puts we also ran the unperturbed simulation as a reference. As noted in Section 3.2, we349

perturbed Vx , By , and Bz . The number density was not modified from the propagated350

ACE data. The IMF Bx component was set to zero to reduce the divergence of the mag-351
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Figure 4. Diagram of the inter-model couplings used by the operational configuration of the Space Weather

Modeling Framework.

334

335

netic field in the simulation. This is consistent with the mode of operation used for the352

study of Pulkkinen et al. [2013].353

Analysis of a perturbed-input ensemble allows us to investigate the uncertainty in354

the model output that arises from uncertainty in the solar wind input. This is concep-355

tually similar to the recent study by Chen et al. [2018] of the effect of uncertain electric356

field boundary conditions on inner magnetosphere simulations. The aim and the approach357

are slightly different, however. We use a nonparametric method to perturb our solar wind358

boundary condition and we use twice as many ensemble members. This allows us to es-359

timate the probability distribution of model outputs such as the Sym-H and Kp indices to360

quantify the uncertainty, as well as quantifying the uncertainty on the model skill at pre-361

dicting threshold crossings in dB/dt. To reiterate, the uncertainty captured by this study362

is due to imperfect specification of the solar wind that drives the simulation. Any uncer-363

tainty due to imperfectly specified physical processes like empirical ionospheric conduc-364

tance models [Welling et al., 2016] or insufficient grid resolution [Haiducek et al., 2017] is365

not captured here, though these effects can manifest as observations occurring well outside366

the expected range of uncertainty estimated in this study.367

Figure 5 shows the key solar wind inputs used to drive the SWMF simulations.374

From top to bottom the panels show the solar wind number density, the y and z com-375

ponents of the IMF (in GSM coordinates) and the magnitude of the radial component of376

the solar wind velocity. The red lines show the observations propagated from ACE to the377

front of the SWMF simulation domain and the grey lines show the perturbed solar wind378

input. For clarity we here only show eight randomly selected members of the ensemble .379
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Figure 5. Plots of the key solar wind input parameters for SWPC event 5. All unperturbed inputs from

ACE are shown in red. Perturbed ensemble members are shown in grey, where the color of each line is varied

slightly to help distinguish between ensemble members. For clarity we only show eight randomly selected

ensemble members. Panel (a) shows the solar wind number density, which we did not perturb for this inves-

tigation. Panels (b) and (c) shows the IMF By and Bz . Panel (d) shows the magnitude of the x-component of

the solar wind velocity (|Vx |).
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4.2 Geophysical Indices380

The Sym-H index can be thought of as a high-resolution version of the Dst index381

[Wanliss and Showalter, 2006] and, as such, measures the intensity of the ring current.382

Kp is a 3-hourly range index [Mayaud, 1980] that provides a good measure of general383

geomagnetic activity and is a good proxy for the strength of magnetospheric convection384

[Thomsen, 2004]. Figure 6a shows the 1-minute resolution simulated Sym-H index from385

SWMF and the observed Sym-H index (at 1 minute resolution) for comparison. Results386

from eight randomly selected ensemble members are shown as grey lines, the ensemble387

mean is shown by the magenta line and the simulation result from driving SWMF with388

just the ACE data is shown in black. The Sym-H index reported by the World Data Center389

at Kyoto is shown in red. Figure 6b shows the observed Kp as a color-coded bar chart390

and the simulated Kp is shown by the plotted lines. As before, the individual ensemble391

members are shown in grey, the ensemble mean is shown in magenta, and the result from392

the unperturbed run is shown in black.393

Figure 6. A comparison of modeled and observed geomagnetic indices, Sym-H and Kp, for SWPC event 5.

Panel (a) shows the Sym-H index from observation (red), the model run using unperturbed inputs (black), in-

dividual ensemble members (grey), and the mean Sym-H calculated from the full ensemble (magenta). Panel

(b) shows the observed Kp index in the colored step plot and the Kp calculated from SWMF is shown in black

for the unperturbed run and in grey for the perturbed ensemble members. The ensemble average, calculated

from the full ensemble, is shown in magenta. For clarity we only show eight randomly selected ensemble

members in each panel.
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We can assess the uncertainty in the SWMF predictions by constructing probability407

distributions of the predicted quantities. Figure 7 has the same basic layout as figure 6,408

but the results from individual ensemble members have been replaced by blue bands mark-409

ing different confidence intervals. The central, darker blue band marks the central 50% of410

the probability distribution at each time step and the broader, light blue band marks the411

central 95% of the predicted Sym-H. To obtain these intervals we fit a Gaussian kernel412

density estimate (KDE) to the distribution of Sym-H in each time bin and find the 2.5, 25,413

75, and 97.5 percentiles. These are found by integrating the fitted KDE from a large neg-414

ative value to a target value and calculating the cumulative probability F(x). The value415

at which the cumulative probability corresponds to the desired percentile (q) is found by416

using Brent’s method [e.g., Press et al., 1992] to locate the root of F(x) − q. For compar-417

ison of the observed Kp to the simulated Kp it is important to note that the SWMF cal-418

culates the Kp index for a user-configurable time window, at a user-configurable cadence.419

The operational geospace configuration (as used in this work) uses a window length of420

3 hours, consistent with the derivation of the observed Kp index, and the cadence is 1421

minute. Thus the time window for the SWMF-calculated Kp is only identical to the ob-422

served Kp at the end of each Kp block plotted in figures 6b and 7b. The confidence in-423
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tervals on Kp are calculated using the same method as for Sym-H, but we discretize the424

mean and quantiles of Kp by rounding them to the nearest valid Kp value.

Figure 7. A comparison of modeled and observed geomagnetic indices, Sym-H and Kp, for SWPC event

5. Similar to figure 6a, panel (a) shows the Sym-H index from observation (red), and the mean Sym-H cal-

culated from the full ensemble (magenta). The 50% and 95% confidence intervals for the Sym-H prediction

are shown by the blue bands. Panel (b) shows the observed Kp index in the and ensemble average in the same

format as figure 6b. The 50% and 95% confidence intervals for the Kp prediction are shown by the blue

bands.
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Qualitatively, Figure 7 shows that the SWMF predictions are sensitive to both errors426

in the solar wind drivers and internal sources of error. For example, the observed Sym-H427

tends to frequently lie within the ensemble 95% confidence interval, demonstrating that428

differences between the model and observation can be explained via uncertainty in the so-429

lar wind drivers. However, there are periods where observed and modeled Sym-H diverge430

well beyond the confidence intervals. Many factors may contribute to this, including the431

resolution of the MHD model, poor specification of plasma sheet density and composition,432

or others [e.g., Welling and Ridley, 2010; Welling et al., 2011]. The performance of the Kp433

forecast is overall better and less sensitive to solar wind uncertainty. Much of this arises434

from the pseudo-logarithmic nature of the index [Rostoker, 1972]: broad ranges of activ-435

ity can produce the same Kp value. Still, expanding the forecast to include the confidence436

intervals helps improve data-model agreement.437

To quantify the performance of the ensemble prediction of Sym-H we examine two438

accuracy metrics and one bias metric [see, e.g., Morley et al., 2018a]. To characterize the439

accuracy we use the mean absolute error (MAE) and the root mean square error (RMSE).440

To characterize the bias we use the mean error (ME). These metrics are defined as [Mor-441

ley et al., 2018a]442

MAE =
1

n

n
∑

i=1

|yi − xi | (4)443

444

RMSE =

√

√

√

(

1

n

n
∑

i=1

(yi − xi)
2

)

(5)445

446

ME =
1

n

n
∑

i=1

(yi − xi) (6)447

where y is the predicted value and x is the observation.448

Figure 8 shows model performance metrics for the Sym-H predictions. The distribu-449

tion of MAE in the Sym-H prediction, from all ensemble members, is shown by the nor-450

malized histogram in the top panel. The blue vertical bar gives the MAE for the ensemble451

mean Sym-H prediction and the green vertical bar gives the MAE for the unperturbed run.452

The middle panel presents RMSE and the lower panel presents ME. The ensemble mean453

shows better predictive performance in all three metrics, suggesting that accounting for the454

uncertainty in the prediction due to the solar wind driver can help improve the prediction455

of the Sym-H index.456

While we have shown the uncertainty in the Kp prediction, estimated from the spread462

in the ensemble, we do not present any quantitative analysis of the accuracy or bias in the463

Kp predictions. As described above, the SWMF-calculated Kp is only identical to the ob-464

served Kp at the end of each 3-hour interval. This means that a quantitative comparison465

for the 24 hours of the event interval would contain only 8 data points.466
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Figure 8. A statistical overview of model performance at predicting Sym-H for SWPC event 5. Panel (a)

shows the distribution of mean absolute error in Sym-H for all ensemble members (filled) and the vertical bars

mark the mean absolute error for the ensemble mean of Sym-H (blue dashed) and the unperturbed run (green

dashed). Panel (b) follows the same format but for the root mean square error of Sym-H. Panel (c) follows the

same format but shows the mean error.
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4.3 Ground magnetic perturbations467

The quantity we will examine in our assessment of ground magnetic perturbations is468

dBH/dt, which, following Pulkkinen et al. [2013] we define as469

dBH

dt
=

√

(

dBN

dt

)2

+

(

dBE

dt

)2

(7)470

where BN and BE represent the North and East (horizontal) components of the magnetic471

field. In our analysis we calculate the time derivative of each component of the geomag-472

netic field using a central difference, and 2nd-order forward and backward differences at473

the endpoints. This gives the derivatives on the same set of time stamps as the original474

magnetic field perturbations.475

To assess the model performance at predicting the magnetic perturbations at specific476

locations on the ground we follow Pulkkinen et al. [2013] and use threshold crossings in477

20 minute time windows. That is, if the dBH/dt exceeds a given threshold in a 20 minute478

interval it is marked as a predicted event. Similarly, if the observed dBH/dt exceeds that479

threshold in the same 20 minute interval it is marked as an observed event. Pulkkinen480

et al. [2013] tested the skill of the model at predicting threshold crossings at combined481

sets of ground stations. To illustrate the behavior of the ensemble we will focus on indi-482

vidual stations.483

4.3.1 Metrics for quantifying model performance484

First we briefly introduce the metrics we use to quantify the performance of our487

event prediction. Defining an event as any 20 minute window where the peak dBH/dt ex-488

ceeds a given threshold, we can construct a contingency table of (a) true positives, (b) true489

negatives, (c) false positives and (d) false negatives. Such a contingency table is shown in490

table 1.

Table 1. Contingency table of the comparison between predictions and observations. The letters a-d repre-

sent the number of cases in each category.

485

486

Observed, x

Yes No

Predicted, y
Yes a b
No c d

491

We use the three metrics employed by Pulkkinen et al. [2013] as well as one addi-492

tional metric. The employed metrics are Probability of Detection (POD), Probability of493

False Detection (POFD), Heidke Skill Score (HSS) and Bias. For all reported metrics we494

also calculate a 95% confidence interval. While confidence intervals can be easily esti-495

mated from the contingency table for metrics based on rates [e.g. Stephenson, 2000; Wilks,496

2006], the confidence intervals on the HSS or bias cannot. We therefore use bootstrap497
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estimates of the 95% confidence intervals for each reported metric. Surrogate series of498

events and non-events are generated by drawing (with replacement) pairs of prediction and499

observation. From these surrogate series of “predicted” and “observed” events we then500

construct a contingency table and calculate the metric in the usual way. We repeat this501

procedure 2000 times then define our 95% confidence interval as the interval containing502

the central 95% of bootstrapped values.503

Probability of Detection and Probability of False Detection are measures of “dis-504

crimination” [Wilks, 2006]. POD is defined as505

POD =
a

a + c
(8)506

and this gives the probability of an event being correctly predicted given that an event507

occurred. If the model predicts all observed events then it will have a POD of 1. POFD is508

defined as509

POFD =
b

b + d
(9)510

POFD considers the number of intervals in which a threshold crossing was predicted511

but did not occur. Describing this as a conditional probability, we see that POFD gives512

the probability of an event being incorrectly predicted given that an event did not occur.513

Smaller values of POFD indicate a better model performance and a model with no false514

predictions will have a POFD of 0.515

Skill scores are measures of relative accuracy [e.g. Wilks, 2006]. The Heidke Skill516

Score is a commonly used skill score for categorical event predictions across space weather517

and is in widespread use in magnetospheric physics. The specific accuracy measure that it518

uses is the proportion correct (PC), which is defined as519

PC =
a + d

a + b + c + d
(10)520

and simply measures the fraction of predictions that obtained the correct result. A perfect521

prediction has a PC of 1. The reference used in the HSS is the PC that would be obtained522

for random predictions that are statistically independent of the observations [Wilks, 2006].523

HSS is defined as524

HSS =
PC − PCref

1 − PCref
=

2(ad − bc)

(a + c)(c + d) + (a + b)(b + d)
(11)525

For random predictions the HSS is zero and the model is deemed unskilled. Constant526

predictions, i.e. the model always predicts no event, also have an HSS of zero and are527

deemed unskilled. Predictions that underperform relative to chance have negative HSS528

while predictions that outperform random chance have positive HSS and a perfect predic-529

tion has HSS of 1. By constructing the reference from the contingency table the Heidke530

Skill Score is constrained to lie in the interval [-1,1].531

Bias measures the correspondence between the average prediction and the average532

observation. In the case of a 2x2 contingency table this measure provides information533

about whether the model predicts the right number of events, or whether it predicts too534

few (underpredicts) or too many (overpredicts). Bias is defined as535

Bias =
a + b

a + c
(12)536

and is the ratio of the number of forecast events to the number of observed events. An537

unbiased forecast has a bias of 1, If more events are forecast than are observed, the bias538

will be greater than one. Similarly the bias will be below one if the model underpredicts.539

A wide variety of other metrics can be calculated to highlight different aspects of540

model performance citep[see, e.g.,][]steph00. All simulated magnetometer outputs and ge-541

omagnetic indices from the set of model runs presented in this work have been archived542

in an open access repository [Morley et al., 2018b] so that additional analysis can be per-543

formed or comparisons made with new work, using any metrics.544
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4.3.2 Assessing model predictions of ground magnetic perturbations545

The first station we examine is Newport (NEW) which has a geomagnetic latitude546

of 54.9◦ and a geomagnetic longitude of 304.7◦. The observed time series of dBH/dt is547

plotted as a red line in figure 9a and the simulated dBH/dt from the unperturbed model548

run is shown as a blue line. The maximum value of dBH/dt in each 20 minute window549

is shown as a colored symbol, a red cross for the observations and a blue filled circle for550

the simulation. The horizontal dashed lines mark the thresholds used for event determina-551

tion. The modeled peaks in each bin are broadly similar to the observed maxima. From552

about 0900 UTC to 1000 UTC the observations indicate crossings of the 0.3 nT/s thresh-553

old while the unperturbed model run underpredicts and fails to predict these events. Near554

1800 UTC the observed dBH/dt again crosses the marked threshold where the simula-555

tion does not. Comparing the unperturbed simulation to the observations we find POD =556

0.200[0,0, 0.67], POFD = 0.075[0.02,0.14], HSS = 0.115[−0.09,0.46], bias = 1.200[0.36,5.0].557

These metrics are collected in table 2. We note that the low number of events leads to the558

confidence intervals on POD and HSS containing zero.559

Figure 9b again shows the observed time series in red and marks the bin maxima560

with red crosses. The bin maxima from each of the 40 ensemble members are now plot-561

ted as filled blue circles. The markers for the ensemble members are semi-transparent so562

that overlapping markers appear darker. We can use the spread in the predicted maxima563

to quantify the uncertainty in the predicted output due to the uncertain solar wind input.564

To better visualize the spread of the ensemble members, figure 9c shows the observed bin565

maxima with red crosses and two filled blue regions. The central, darker blue band marks566

the interquartile range (IQR) and the broader, lighter blue band marks the central 95% of567

the predicted maxima. To obtain these intervals we fit a Gaussian kernel density estimate568

(KDE) to the distribution of maxima in each time bin and find the 2.5, 25, 75, and 97.5569

percentiles. Inspection of figure 9c shows that the observed threshold crossings between570

0900 UTC and 1000 UTC fall within the range of predicted activity consistent with the un-571

certainty due to the upstream boundary condition. Conversely, the brief surge in activity572

observed near 1800 UTC lies well outside the 95% CI indicating that the model failure to573

capture this activity is either from uncertainty in the solar wind not captured by our er-574

ror model (such as uncertainty in the number density) or from inadequacies in the model575

configuration.576

We can also use the ensemble to attempt to improve the prediction. A variety of577

methods could be used, but as we are predicting binary events (threshold crossings) we578

can use our set of ensemble members to estimate the probability of exceeding the thresh-579

old. So that we can still compare these results to the deterministic case of a single pre-580

diction and observation, we have used a naive probabilistic classifier (NPC). We define581

the NPC as predicting an event if at least 50% of ensemble members predict an event;582

that is, if the NPC indicates an event probability of >50% then we interpret this as a de-583

terministic prediction of an event. Comparing the NPC to the observations we find POD =584

0.400[0.0,1.0], POFD = 0.015[0.0,0.05], HSS = 0.473[−0.03,0.88], bias = 0.600[0.0, 2.0].585

These metrics are collected in table 2. Although using the set of ensemble members as a586

classifier has increased the calculated skill of the operational geospace configuration of587

SWMF the confidence interval still contains zero and hence neither the initial simulation588

or the ensemble classifier can be said to have significant skill. We note that four of the589

ensemble members had HSS that were significantly different from zero and thus display590

significant skill.591

The second ground station that we assess is Yellowknife (YKC) at a geomagnetic601

latitude of 68.9◦ and a geomagnetic longitude of 299.4◦. This station is at a similar lon-602

gitude to Newport, but is at much higher latitude and is subject to much larger varia-603

tions in dBH/dt. The data and simulation results for YKC are shown in figure 10 using604

the same format as figure 9. The largest values of dBH/dt, observed near 0900 UTC and605

1500 UTC, are not captured by any of the simulations although the ensemble does predict606
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Figure 9. Observed and simulated dBH/dt for the Newport (NEW) magnetic observatory. Panel (a) shows

the observed time series of dBH/dt as a red line and the simulated dBH/dt from the unperturbed (reference)

model run is shown as a blue line. The maximum values of dBH/dt in non-overlapping 20 minute windows

are shown as a colored symbols. The red crosses mark the observed bin maxima and the blue filled circles

mark the bin maxima for the simulation. The horizontal dashed lines mark the thresholds used for event deter-

mination. Panel (b) shows the observed time series and bin maxima in the same format as panel (a), and the

bin maxima from each ensemble member are shown by the blue filled circles. Panel (c) shows the observed

bin maxima and the estimated interquartile range and 95% confidence interval derived from kernel density

estimate fits to the bin maxima from the ensemble.

592

593

594

595

596

597

598

599

600

a low probability of exceeding the 1.5 nT/s threshold. Turning to the interval of activity607

between 0600 UTC and 0700 UTC it is clear that all ensemble members performed consis-608

tently. The activity observed can not be attributed to uncertainty in the upstream boundary609

condition.610

To provide a quantitative summary of the model’s ability to predict dBH/dt we first611

examine a threshold of 0.7 nT/s. Comparing the unperturbed simulation to the observa-612

tions we find POD = 0.556[0.36,0.74], POFD = 0.111[0.02,0.21], HSS = 0.469[0.24,0.68],613

bias = 0.741[0.5,1.0]. All summary metrics for this analysis are collected in table 2. Com-614

paring the NPC to the observations we find POD = 0.593[0.39,0.77], POFD = 0.089[0.02,0.18],615

HSS = 0.531[0.31,0.72], bias = 0.741[0.5,1.0]. The naive prediction using the ensemble616

yields an improvement in the predictive ability of the simulation. The probability of false617

detection is reduced while the probability of detection is increased, leading to an improve-618

ment in the skill. The bias is unchanged in this case. As before, the low number of events619

leads to broad confidence intervals on the performance metrics and the improvement in620

skill from the NPC can not be determined to be statistically significant using this event.621

Increasing the threshold to 1.1 nT/s has a slightly different outcome. Comparing the622

unperturbed to the observations we find POD = 0.471[0.21,0.71], POFD = 0.055[0.0,0.12],623

HSS = 0.474[0.21,0.71], and bias = 0.647[0.36,1.0]. Comparing the NPC to the observa-624

tions we find POD = 0.412[0.18,0.65], POFD = 0.055[0.0, 0.12], HSS = 0.417[0.15,0.66],625

bias = 0.588[0.3,1.0]. That is, the NPC tends to underpredict while examination of the626

95% CI in figure 10c shows that the majority of predicted events at this threshold are627

within the expected range of values. The selection of the fraction of ensemble members to628

use to define an event is known as calibration. We leave the issue of calibration for future629

work, but note that using ensembles of model runs brings the opportunity to significantly630

improve the skill of the predictions.631

Table 2. Event analysis metrics for Newport and Yellowknife stations with different thresholds. Station and

threshold are given in the table.

632

633

POD [CI0.95] POFD [CI0.95] HSS [CI0.95] Bias [CI0.95]
Unperturbed Simulation
NEW (0.3 nT/s) 0.200 [0.00, 0.67] 0.075 [0.02, 0.14] 0.115 [-0.09, 0.46] 1.200 [0.36, 5.00]
YKC (0.7 nT/S) 0.556 [0.36, 0.74] 0.111 [0.02, 0.21] 0.469 [0.24, 0.68] 0.741 [0.50, 1.00]
YKC (1.1 nT/s) 0.471 [0.21, 0.71] 0.055 [0.00, 0.12] 0.474 [0.21, 0.71] 0.647 [0.36, 1.00]
Naive Probabilistic Classifier
NEW (0.3 nT/s) 0.400 [0.00, 1.00] 0.015 [0.00, 0.05] 0.473 [-0.03, 0.88] 0.600 [0.00, 2.00]
YKC (0.7 nT/S) 0.593 [0.39, 0.77] 0.089 [0.02, 0.18] 0.531 [0.31, 0.72] 0.741 [0.50, 1.00]
YKC (1.1 nT/s) 0.412 [0.18, 0.65] 0.055 [0.00, 0.12] 0.417 [0.15, 0.66] 0.588 [0.30, 1.00]
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Figure 10. Same as figure 9 but for the Yellowknife (YKC) magnetic observatory.634

While these results are encouraging, the length of the interval that we use for iden-635

tifying threshold crossings has too few events to allow us to draw many definitive conclu-636

sions about the skill of the model and of the NPC. The presented methodology and results637

represent a first step towards perturbed input ensemble modeling with solar wind driven638

simulations such as the SWMF and demonstrate some ways in which ensemble forecasts639

could be used to help improve the forecast and estimate the uncertainty in an operational640

setting.641

It is instructive to note that Pulkkinen et al. [2013] used six events and combined642

the predictions from stations in bands of geomagnetic latitude. While they do not present643

confidence intervals for the derived metrics, their skill scores are calculated from sam-644

ples approximately 18 times larger and will have much narrower confidence intervals than645

the results we present. For illustrative purposes we also present the model performance646

metrics for a prediction that combines all eleven stations and uses a threshold of 0.3 nT/s;647

combining all stations and selecting a low threshold maximizes the number of events.648

Table 3. Event analysis metrics for all stations [FRD, FRN, FUR, HRN, IQA, MEA, NEW, OTT,

SNK/PBK, WNG, YKC], using a threshold of 0.3 nT/s.

649

650

POD [CI0.95] POFD [CI0.95] HSS [CI0.95] Bias [CI0.95]
Unperturbed Simulation
All stations 0.521 [0.46, 0.58] 0.036 [0.02, 0.05] 0.543 [0.46, 0.58] 0.595 [0.53, 0.67]
Naive Probabilistic Classifier
All stations 0.560 [0.50, 0.63] 0.037 [0.02, 0.05] 0.577 [0.52, 0.64] 0.638 [0.57, 0.71]

Combining the 11 magnetometer stations used in this study and repeating this anal-651

ysis gives an overall measure of model performance at predicting threshold crossings in652

dBH/dt. The model performance metrics are given in table 3. The naive classifier dis-653

plays a higher POD and a lower POFD, and correspondingly a higher HSS. Again, al-654

though the NPC outperforms the unperturbed simulation we are unable to say that the im-655

provement is statistically significant given the short time period and low number of events.656

Although not directly comparable, we refer the reader to figures 7a and 7c of Pulkkinen657

et al. [2013] where the POD, POFD and HSS for event 5 are given, using a threshold of658

0.3 nT/s, aggregated over mid-latitude and high-latitude stations separately. For this event659

the SWMF outperformed the other tested models, with HSS of 0.366 (mid-latitude) and660

0.326 (high-latitude). As shown in Table 3 our NPC, aggregated over all stations, has a661

Heidke skill score of 0.577 and improves on the performance of the unperturbed simula-662

tion.663

5 Conclusions664

We have developed a nonparametric method for generating multiple possible real-665

izations of the solar wind just upstream of the bow shock based on observations near L1.666

We have applied our perturbation model to the solar wind inputs for the Space Weather667

Modeling Framework and have simulated the geomagnetic storm that occurred on 5 April668

2010. This event was selected as Event 5 in the set of challenge events used by Pulkkinen669

et al. [2013].670
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We ran a 40 member ensemble for this event and have used this ensemble to quan-671

tify the uncertainty in the model output due to the uncertainty in the upstream (driving)672

boundary conditions. We have further examined the performance of naive models derived673

from the ensemble and compared them to the simulation with unperturbed inputs. For pa-674

rameters where we predict the value (Sym-H, Kp) we use the ensemble mean as our naive675

model. For parameters where we predict a threshold crossing (dBH/dt) we use a naive676

classifier in which we predict an event if at least half of the ensemble members predict an677

event.678

Both the ensemble mean and the unperturbed simulation tend to underpredict the679

magnitude of Sym-H in the quiet interval before the storm and overpredict the magnitude680

of the disturbance in the storm itself, consistent with the results of Haiducek et al. [2017].681

The ensemble mean is a more accurate predictor of Sym-H than the result from the un-682

perturbed simulation, improving the mean absolute error by nearly 2 nT for this interval.683

The ensemble average is closer to unbiased than the unperturbed run, but this summary684

measure masks the systematic behavior described previously.685

Using an ensemble of predictions we have shown the uncertainty of the predicted686

maxima of dBH/dt given the uncertainty in the solar wind boundary condition. The esti-687

mated 95% confidence intervals can be broad compared to the spacing between the thresh-688

olds that Pulkkinen et al. [2013] selected for study. The confidence intervals are typically689

narrow during periods where the dBH/dt is predicted to be low. The confidence intervals690

are often much wider where the median prediction is for enhanced dBH/dt.691

The ensemble of simulations allows us to identify intervals of activity that can not692

be explained by uncertainty in the solar wind driver. Routine calculation of a small en-693

semble could help model developers improve predictions by identifying phenomenology694

that a given model configuration cannot capture. Operationally we suggest that ensembles695

of deterministic models should be run where possible to enable probabilistic forecasts and696

communicate uncertainty in the forecast to the customer.697

Acknowledgments698

This work was performed under the auspices of the US Department of Energy and was699

funded by the Laboratory Directed Research and Development program (grant number700

20170047DR). This work used the SWMF/BATSRUS tools developed at The University701

of Michigan Center for Space Environment Modeling (CSEM). The SWMF & embed-702

ded models can be obtained via http://csem.engin.umich.edu/. Analysis used the SWMF703

tools in the SpacePy package and the PyForecastTools package. SpacePy is available at704

https://github.com/spacepy/spacepy and PyForecastTools is available at https://github.com/drsteve/PyForecastTools.705

The satellite-specific solar wind data used in this study are provided by NASA’s Space706

Physics Data Facility (SPDF) and are available via FTP at ftp://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/sc_specific/.707

The magnetometer data used in this study are available from the Community Coordinated708

Modeling Center at https://ccmc.gsfc.nasa.gov/RoR_WWW/pub/dBdt/out/deltaB. Input709

files and magnetometer output files for all simulations are archived at https://zenodo.org/record/1324562.710

SKM acknowledges John Steinberg (LANL) and Ehab Hassan (Ain Shams University) for711

useful discussions and initial work examining the errors in propagated solar wind data that712

led to this work. SKM also thanks Matthew Hoffman (LANL) for useful discussions.713

References714

Andriyas, T., E. Spencer, A. Raj, J. Sojka, and M. L. Mays (2012), Forecasting the dst in-715

dex during corotating interaction region events using synthesized solar wind parameters,716

Journal of Geophysical Research: Space Physics, 117(A3), doi:10.1029/2011JA017018.717

Barnston, A. G., S. J. Mason, L. Goddard, D. G. DeWitt, and S. E. Zebiak (2003), Multi-718

model ensembling in seasonal climate forecasting at iri, Bulletin of the American Meteo-719

–17–This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Space Weather

rological Society, 84(12), 1783–1796, doi:10.1175/BAMS-84-12-1783.720

Borovsky, J. E. (2008), Flux tube texture of the solar wind: Strands of the magnetic721

carpet at 1 au?, Journal of Geophysical Research: Space Physics, 113(A8), doi:722

10.1029/2007JA012684.723

Borovsky, J. E. (2012), Looking for evidence of mixing in the solar wind from724

0.31 to 0.98 au, Journal of Geophysical Research: Space Physics, 117(A6), doi:725

10.1029/2012JA017525.726

Borovsky, J. E. (2017), The spatial structure of the oncoming solar wind at earth and the727

shortcomings of a solar-wind monitor at l1, Journal of Atmospheric and Solar-Terrestrial728

Physics, doi:https://doi.org/10.1016/j.jastp.2017.03.014.729

Borovsky, J. E., and J. A. Valdivia (2018), The Earth’s magnetosphere: A systems science730

overview and assessment, Surveys in Geophysics, doi:10.1007/s10712-018-9487-x.731

Case, N. A., and J. A. Wild (2012), A statistical comparison of solar wind propagation732

delays derived from multispacecraft techniques, Journal of Geophysical Research: Space733

Physics, 117(A2), doi:10.1029/2011JA016946.734

Cash, M. D., D. A. Biesecker, V. Pizzo, C. A. Koning, G. Millward, C. N. Arge, C. J.735

Henney, and D. Odstrcil (2015), Ensemble modeling of the 23 July 2012 coronal mass736

ejection, Space Weather, 13(10), 611–625, doi:10.1002/2015SW001232.737

Cash, M. D., D. A. Biesecker, A. Reinard, and C. A. de Koning (2015), DSCOVR: Real-738

Time Solar Wind Data and Operational Products, in AGU Fall Meeting Abstracts, p.739

SM31E.740

Cash, M. D., S. W. Hicks, D. A. Biesecker, A. A. Reinard, C. A. Koning, and D. R.741

Weimer (2016), Validation of an operational product to determine L1 to Earth propa-742

gation time delays, Space Weather, 14(2), 93–112, doi:10.1002/2015SW001321.743

Chao, J., D. Wu, C.-H. Lin, Y.-H. Yang, X. Wang, M. Kessel, S. Chen, and R. Lepping744

(2002), Models for the size and shape of the earth’s magnetopause and bow shock, in745

Space Weather Study Using Multipoint Techniques, COSPAR Colloquia Series, vol. 12,746

edited by L.-H. Lyu, pp. 127 – 135, Pergamon, doi:https://doi.org/10.1016/S0964-747

2749(02)80212-8.748

Chen, M. W., T. P. O’Brien, C. L. Lemon, and T. B. Guild (2018), Effects of uncertainties749

in electric field boundary conditions for ring current simulations, Journal of Geophysical750

Research: Space Physics, 123(1), 638–652, doi:10.1002/2017JA024496.751

Connors, M., C. T. Russell, and V. Angelopoulos (2011), Magnetic flux transfer in the 5752

april 2010 galaxy 15 substorm: an unprecedented observation, Annales Geophysicae,753

29(3), 619–622, doi:10.5194/angeo-29-619-2011.754

De Zeeuw, D. L., T. I. Gombosi, C. P. T. Groth, K. G. Powell, and Q. F. Stout (2000),755

An adaptive MHD method for global space weather simulations, IEEE Transactions on756

Plasma Science, 28(6), 1956–1965, doi:10.1109/27.902224.757

Efron, B. (1979), Bootstrap methods: Another look at the jackknife, The Annals of Statis-758

tics, 7(1), 1–26.759

Efron, B., and R. Tibshirani (1986), Bootstrap methods for standard errors, confidence760

intervals, and other measures of statistical accuracy, Statist. Sci., 1(1), 54–75, doi:761

10.1214/ss/1177013815.762

Epstein, E. S. (1969), The role of initial uncertainties in predicion, Journal of Applied Me-763

teorology, 8(2), 190–198, doi:10.1175/1520-0450(1969)008<0190:TROIUI>2.0.CO;2.764

Fränz, M., and D. Harper (2002), Heliospheric coordinate systems, Planetary and Space765

Science, 50(2), 217 – 233, doi:https://doi.org/10.1016/S0032-0633(01)00119-2.766

Guerra, J. A., A. Pulkkinen, and V. M. Uritsky (2015), Ensemble forecasting of major767

solar flares: First results, Space Weather, 13(10), 626–642, doi:10.1002/2015SW001195.768

Haiducek, J. D., D. T. Welling, N. Y. Ganushkina, S. K. Morley, and D. S. Ozturk769

(2017), SWMF global magnetosphere simulations of January 2005: Geomagnetic770

indices and cross-polar cap potential, Space Weather, 15(12), 1567–1587, doi:771

10.1002/2017SW001695.772

–18–This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Space Weather

Hassan, E., S. K. Morley, and J. T. Steinberg (2015), A statistical ensemble for solar wind773

measurements: A step toward forecasting, in 2015 Los Alamos Space Weather Summer774

School Research Reports, edited by M. M. Cowee, LA-UR-15-29127, pp. 17–31, Los775

Alamos, NM 87545, USA, doi:10.2172/1227256.776

Kawano, H., and T. Higuchi (1995), The bootstrap method in space physics: Error estima-777

tion for the minimum variance analysis, Geophysical Research Letters, 22(3), 307–310,778

doi:10.1029/94GL02969.779

Kay, J. E., C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M. Arblaster,780

S. C. Bates, G. Danabasoglu, J. Edwards, M. Holland, P. Kushner, J.-F. Lamarque,781

D. Lawrence, K. Lindsay, A. Middleton, E. Munoz, R. Neale, K. Oleson, L. Polvani,782

and M. Vertenstein (2015), The Community Earth System Model (CESM) large ensem-783

ble project: A community resource for studying climate change in the presence of in-784

ternal climate variability, Bulletin of the American Meteorological Society, 96(8), 1333–785

1349, doi:10.1175/BAMS-D-13-00255.1.786

Kessel, R. L., E. Quintana, and M. Peredo (1999), Local variations of interplanetary787

magnetic field at Earth’s bow shock, Journal of Geophysical Research: Space Physics,788

104(A11), 24,869–24,878, doi:10.1029/1999JA900230.789

King, J. H., and N. E. Papitashvili (2005), Solar wind spatial scales in and comparisons790

of hourly Wind and ACE plasma and magnetic field data, Journal of Geophysical Re-791

search: Space Physics, 110(A2), doi:10.1029/2004JA010649.792

Knipp, D. J. (2016), Advances in space weather ensemble forecasting, Space Weather,793

14(2), 52–53, doi:10.1002/2016SW001366.794

Kunsch, H. R. (1989), The jackknife and the bootstrap for general stationary observations,795

The Annals of Statistics, 17(3), 1217–1241.796

Lemon, C., R. A. Wolf, T. W. Hill, S. Sazykin, R. W. Spiro, F. R. Toffoletto, J. Birn, and797

M. Hesse (2004), Magnetic storm ring current injection modeled with the rice convec-798

tion model and a self-consistent magnetic field, Geophysical Research Letters, 31(21),799

doi:10.1029/2004GL020914.800

Lorenz, E. N. (1963), Deterministic nonperiodic flow, Journal of the Atmospheric Sciences,801

20(2), 130–141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.802

Mackay, D. J. C. (1998), Introduction to monte carlo methods, in Learning in Graphical803

Models, edited by M. I. Jordan, pp. 175–204, Springer Netherlands, Dordrecht, doi:804

10.1007/978-94-011-5014-9_7.805

Mailyan, B., C. Munteanu, and S. Haaland (2008), What is the best method to calcu-806

late the solar wind propagation delay?, Annales Geophysicae, 26(8), 2383–2394, doi:807

10.5194/angeo-26-2383-2008.808

Mayaud, P. N. (1980), Derivation, Meaning and Use of Geomagnetic Indices, Geophysical809

Monograph, vol. 22, American Geophysical Union.810

Morley, S. (2018), drsteve/PyForecastTools: PyForecastTools: Version 1.0, doi:811

10.5281/zenodo.1256922.812

Morley, S. K. (2008), Observations of magnetospheric substorms during the passage of a813

corotating interaction region, in Proceedings of 7th Australian Space Science Conference814

2007, edited by W. Short and I. Cairns, pp. 118–129.815

Morley, S. K., and M. P. Freeman (2007), On the association between northward turn-816

ings of the interplanetary magnetic field and substorm onsets, Geophys. Res. Lett., 34,817

L08,104, doi:10.1029/2006GL028891.818

Morley, S. K., J. Koller, D. T. Welling, B. A. Larsen, and J. T. Niehof (2010), Spacepy,819

https://sourceforge.net/p/spacepy, [Published: 20 May 2010; Accessed: 3 July 2018].820

Morley, S. K., J. Koller, D. T. Welling, B. A. Larsen, M. G. Henderson, and J. T. Niehof821

(2011), Spacepy - a Python-based library of tools for the space sciences, in Proceedings822

of the 9th Python in science conference (SciPy 2010), Austin, TX.823

Morley, S. K., T. V. Brito, and D. T. Welling (2018a), Measures of model per-824

formance based on the log accuracy ratio, Space Weather, 16(1), 69–88, doi:825

10.1002/2017SW001669.826

–19–This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Space Weather

Morley, S. K., D. T. Welling, and J. R. Woodroffe (2018b), Space Weather Modeling827

Framework ensemble simulations, doi:10.5281/zenodo.1324562.828

Murphy, J., D. Sexton, D. Barnett, G. Jones, M. Webb, M. Collins, and D. Stainforth829

(2004), Quantification of modelling uncertainties in a large ensemble of climate change830

simulations, Nature, 430(7001), 768–772, doi:10.1038/nature02771.831

Murray, S. A. (2018), The importance of ensemble techniques for operational space832

weather forecasting, Space Weather, 16, doi:10.1029/2018SW001861.833

Niehof, J., and S. Morley (2012), Determining the significance of associations between834

two series of discrete events: bootstrap methods, Tech. Rep. LA-14453-MS, Los Alamos835

National Laboratory, Los Alamos, NM 87545, USA, doi:10.2172/1035497.836

Nishida, A., K. Uesugi, I. Nakatani, T. Mukai, D. H. Fairfield, and M. H. Acuna (1992),837

Geotail mission to explore earth’s magnetotail, Eos, Transactions American Geophysical838

Union, 73(40), 425–429, doi:10.1029/91EO00314.839

Ólafsdóttir, K. B., and M. Mudelsee (2014), More accurate, calibrated bootstrap confi-840

dence intervals for estimating the correlation between two time series, Mathematical841

Geosciences, 46(4), 411–427, doi:10.1007/s11004-014-9523-4.842

Osthus, D., P. C. Caragea, D. Higdon, S. K. Morley, G. D. Reeves, and B. P. Weaver843

(2014), Dynamic linear models for forecasting of radiation belt electrons and limita-844

tions on physical interpretation of predictive models, Space Weather, 12(6), 426–446,845

doi:10.1002/2014SW001057.846

Owen, J. A., and T. N. Palmer (1987), The impact of El Niño on an ensemble847

of extended-range forecasts, Monthly Weather Review, 115(9), 2103–2117, doi:848

10.1175/1520-0493(1987)115<2103:TIOENO>2.0.CO;2.849

Papitashvili, N., D. Bilitza, and J. King (2014), OMNI: A description of near-Earth solar850

wind environment, in 40th COSPAR Scientific Assembly, COSPAR Meeting, vol. 40.851

Powell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. D. Zeeuw (1999), A852

solution-adaptive upwind scheme for ideal magnetohydrodynamics, Journal of Com-853

putational Physics, 154(2), 284 – 309, doi:https://doi.org/10.1006/jcph.1999.6299.854

Press, W. H., S. A. Teukolsky, W. T. Vettering, and B. P. Flannery (1992), Numerical855

recipes in C: The art of scientific computing, Cambridge University Press.856

Pulkkinen, A., and L. Rastätter (2009), Minimum variance analysis-based propagation of857

the solar wind observations: Application to real-time global magnetohydrodynamic sim-858

ulations, Space Weather, 7(12), doi:10.1029/2009SW000468.859

Pulkkinen, A., L. Rastätter, M. Kuznetsova, H. Singer, C. Balch, D. Weimer, G. Toth,860

A. Ridley, T. Gombosi, M. Wiltberger, J. Raeder, and R. Weigel (2013), Community-861

wide validation of geospace model ground magnetic field perturbation predictions862

to support model transition to operations, Space Weather, 11(6), 369–385, doi:863

10.1002/swe.20056.864

Ridley, A. J., A. D. Richmond, T. I. Gombosi, D. L. D. Zeeuw, and C. R. Clauer (2003),865

Ionospheric control of the magnetospheric configuration: Thermospheric neutral winds,866

Journal of Geophysical Research: Space Physics, 108(A8), doi:10.1029/2002JA009464.867

Ridley, A. J., T. I. Gombosi, and D. L. DeZeeuw (2004), Ionospheric control of the mag-868

netosphere: conductance, Annales Geophysicae, 22(2), 567–584, doi:10.5194/angeo-22-869

567-2004.870

Riley, P., J. A. Linker, and Z. Mikić (2013), On the application of ensemble modeling871

techniques to improve ambient solar wind models, Journal of Geophysical Research:872

Space Physics, 118(2), 600–607, doi:10.1002/jgra.50156.873

Rostoker, G. (1972), Geomagnetic indices, Reviews of Geophysics, 10(4), 935, doi:874

10.1029/RG010i004p00935.875

Shue, J., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer876

(1997), A new functional form to study the solar wind control of the magnetopause size877

and shape, Journal of Geophysical Research: Space Physics, 102(A5), 9497–9511, doi:878

10.1029/97JA00196.879

–20–This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Space Weather

Slingo, J., and T. Palmer (2011), Uncertainty in weather and climate prediction, Philo-880

sophical Transactions of the Royal Society of London A: Mathematical, Physical and En-881

gineering Sciences, 369(1956), 4751–4767, doi:10.1098/rsta.2011.0161.882

Smithtro, C. G., and J. J. Sojka (2005), A new global average model of the coupled ther-883

mosphere and ionosphere, Journal of Geophysical Research: Space Physics, 110(A8),884

doi:10.1029/2004JA010781.885

Solow, A. R. (1985), Bootstrapping correlated data, Journal of the International Associa-886

tion for Mathematical Geology, 17(7), 769–775, doi:10.1007/BF01031616.887

Stephenson, D. B. (2000), Use of the “odds ratio” for diagnosing fore-888

cast skill, Weather and Forecasting, 15(2), 221–232, doi:10.1175/1520-889

0434(2000)015<0221:UOTORF>2.0.CO;2.890

Stone, E., A. Frandsen, R. Mewaldt, E. Christian, D. Margolies, J. Ormes, and F. Snow891

(1998), The advanced composition explorer, Space Science Reviews, 86(1), 1–22, doi:892

10.1023/A:1005082526237.893

Thomsen, M. F. (2004), Why kp is such a good measure of magnetospheric convection,894

Space Weather, 2(11), doi:10.1029/2004SW000089.895

Toffoletto, F., S. Sazykin, R. Spiro, and R. Wolf (2003), Inner magnetospheric mod-896

eling with the rice convection model, Space Science Reviews, 107(1), 175–196, doi:897

10.1023/A:1025532008047.898

Tóth, G., I. V. Sokolov, T. I. Gombosi, D. R. Chesney, C. R. Clauer, D. L. D. Zeeuw,899

K. C. Hansen, K. J. Kane, W. B. Manchester, R. C. Oehmke, K. G. Powell, A. J. Ri-900

dley, I. I. Roussev, Q. F. Stout, O. Volberg, R. A. Wolf, S. Sazykin, A. Chan, B. Yu,901

and J. KÃşta (2005), Space weather modeling framework: A new tool for the space902

science community, Journal of Geophysical Research: Space Physics, 110(A12), doi:903

10.1029/2005JA011126.904

Tóth, G., B. van der Holst, I. V. Sokolov, D. L. D. Zeeuw, T. I. Gombosi, F. Fang, W. B.905

Manchester, X. Meng, D. Najib, K. G. Powell, Q. F. Stout, A. Glocer, Y.-J. Ma, and906

M. Opher (2012), Adaptive numerical algorithms in space weather modeling, Journal of907

Computational Physics, 231(3), 870 – 903, doi:https://doi.org/10.1016/j.jcp.2011.02.006,908

special Issue: Computational Plasma Physics.909

Tsurutani, B. T., F. L. Guarnieri, G. S. Lakhina, and T. Hada (2005), Rapid evolution of910

magnetic decreases (MDs) and discontinuities in the solar wind: ACE and Cluster, Geo-911

physical Research Letters, 32(10), doi:10.1029/2004GL022151.912

Vassiliadis, D., A. J. Klimas, D. N. Baker, and D. A. Roberts (1995), A description of the913

solar wind-magnetosphere coupling based on nonlinear filters, Journal of Geophysical914

Research: Space Physics, 100(A3), 3495–3512, doi:10.1029/94JA02725.915

Vogel, R. M., and A. L. Shallcross (1996), The moving blocks bootstrap versus para-916

metric time series models, Water Resources Research, 32(6), 1875–1882, doi:917

10.1029/96WR00928.918

Wanliss, J. A., and K. M. Showalter (2006), High-resolution global storm index:919

Dst versus sym-h, Journal of Geophysical Research: Space Physics, 111(A2), doi:920

10.1029/2005JA011034.921

Welling, D. T., and A. J. Ridley (2010), Validation of SWMF magnetic field and plasma,922

Space Weather, 8(3), n/a–n/a, doi:10.1029/2009SW000494.923

Welling, D. T., V. K. Jordanova, S. G. Zaharia, A. Glocer, and G. Toth (2011), The effects924

of dynamic ionospheric outflow on the ring current, Journal of Geophysical Research,925

116, A00J19, doi:10.1029/2010JA015642.926

Welling, D. T., B. J. Anderson, G. Crowley, A. A. Pulkkinen, and L. Rastätter (2016), Ex-927

ploring predictive performance: A reanalysis of the geospace model transition challenge,928

Space Weather, 15(1), 192–203, doi:10.1002/2016SW001505.929

Wilks, D. S. (2006), Statistical methods in the atmospheric sciences, 2nd Edition, Academic930

Press.931

Wing, S., J. R. Johnson, J. Jen, C. Meng, D. G. Sibeck, K. Bechtold, J. Freeman,932

K. Costello, M. Balikhin, and K. Takahashi (), Kp forecast models, Journal of Geophys-933

–21–This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Space Weather

ical Research: Space Physics, 110(A4), doi:10.1029/2004JA010500.934

–22–This article is protected by copyright. All rights reserved.



Figure 1.

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



Figure 2.

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



Figure 3.

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



Figure 4.

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



Figure 5.

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



Figure 6.

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



Figure 7.

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



Figure 8.

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



Figure 9.

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



Figure 10.

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.



2018SW002000-f01-z-.png

This article is protected by copyright. All rights reserved.



2018SW002000-f02-z-.png

This article is protected by copyright. All rights reserved.



2018SW002000-f03-z-.png

This article is protected by copyright. All rights reserved.



2018SW002000-f04-z-.png

This article is protected by copyright. All rights reserved.



2018SW002000-f05-z-.png

This article is protected by copyright. All rights reserved.



2018SW002000-f06-z-.png

This article is protected by copyright. All rights reserved.



2018SW002000-f07-z-.png

This article is protected by copyright. All rights reserved.



2018SW002000-f08-z-.png

This article is protected by copyright. All rights reserved.



2018SW002000-f09-z-.png

This article is protected by copyright. All rights reserved.



2018SW002000-f10-z-.png

This article is protected by copyright. All rights reserved.


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure 9 legend
	Figure 9
	Figure 10 legend
	Figure 10



