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tAbstract 

Acquiring resting-state functional magnetic resonance imaging (fMRI) datasets at multiple MRI scanners 

and clinical sites can improve statistical power and generalizability of results. However, multi-site 

neuroimaging studies have reported considerable non-biological variability in fMRI measurements due 

to different scanner manufacturers and acquisition protocols.  These undesirable sources of variability 

may limit power to detect effects of interest and may even result in erroneous findings. Until now, there 

has not been an approach that removes unwanted site effects. In this study, using a relatively large 

multi-site (4 sites) fMRI dataset, we investigated the impact of site effects on functional connectivity and 

network measures estimated by widely used connectivity metrics and brain parcellations. The protocols 

and image acquisition of the dataset used in this study had been homogenized using identical MRI 

phantom acquisitions from each of the neuroimaging sites, however inter-site acquisition effects were 

not completely eliminated. Indeed, in the current study we found that the magnitude of site effects 

depended on the choice of connectivity metric and brain atlas. Therefore, to further remove site effects, 

we applied ComBat, a harmonization technique previously shown to eliminate site effects in multi-site 

diffusion tensor imaging (DTI) and cortical thickness studies. In the current work, ComBat successfully 

removed site effects identified in connectivity and network measures and increased the power to detect 

age associations when using optimal combinations of connectivity metrics and brain atlases. Our 

proposed ComBat harmonization approach for fMRI-derived connectivity measures facilitates reliable 

and efficient analysis of retrospective and prospective multi-site fMRI neuroimaging studies. 
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t1 | INTRODUCTION 

Functional magnetic resonance imaging (fMRI), a non-invasive neuroimaging modality with high spatial 

resolution, enables neural activity to be monitored. Functional connectivity and network measures 

derived from fMRI data have facilitated the study of the brain’s function during development, in aging 

(Fox and Raichle, 2007; Raichle 2015; Bressler and Menon, 2010), and in the context of various 

neurological disorders (Bullmore and Sporns, 2009, 2012; Stam, 2014; Fornito et al., 2015, 2016).  

    Over the last decade, multi-site fMRI studies have become increasingly common (Friedman et al., 

2006, 2008; Van Horn and Toga, 2009; Biswal et al., 2010; Gradin et al., 2010; Di Martino et al., 2014; 

Noble et al., 2017). Indeed, pooling fMRI data from multiple sites can accelerate participant recruitment 

rates and increase the total sample size of the study, thereby increasing statistical power. Pooling fMRI 

data is often critical when studying rare disorders and subtle effects and when aiming to generalize the 

study results to a diverse population (Suckling et al., 2010; McGonigle, 2012; Keshavan et al., 2016; 

Dansereau et al., 2017). Despite these advantages, multi-site studies are often plagued by non-biological 

variability that can be attributed to differences in scanner manufacturers, non-standardized imaging 

acquisition parameters, and other intrinsic factors (Shinohara et al., 2017). These additional sources of 

unwanted variability may decrease statistical power and lead to spurious results. Many multi-site 

studies have reported considerable site or scanner effects in fMRI data (Friedman et al., 2006, 2008; 

Suckling et al., 2008, 2010; Van Horn and Toga, 2009; Gountouna et al., 2010; Brown et al., 2011; 

McGonigle, 2012; Turner et al., 2013; Forsyth et al., 2014; Feis et al., 2015; Rath et al., 2016; Jovicich et 

al., 2016; Dansereau et al., 2017; Noble et al., 2017; Abraham et al., 2017). However, most of these 

studies only describe the problem or report the magnitude of site effects in fMRI measurements.  

    A few studies have attempted to mitigate site effects by standardizing protocols and image acquisition 

parameters (Friedman et al., 2008; Glover et al., 2012; Shinohara et al., 2017; Oh et al., 2017; Kochunov 

et al., 2018; Chavez et al., 2018). However, it has been shown that scanner-to-scanner variation arising 

from the use of scanners from different manufacturers is not eliminated completely by the 

standardization of acquisition parameters (Jovicich et al., 2016; Noble et al., 2017), for instance, by use 

of phantom-based imaging acquisitions (Delaparte et al., 2017). To our knowledge, until now, there has 

been only one attempt to diminish scanner differences in multi-site resting-state fMRI post-acquisition. 

The authors used an independent component analysis (ICA) based approach that reduced differences 

across sites in some resting-state network connectivity measures but did not fully eliminate the 

structured noise arising from different scanners (Feis et al., 2015). 

    Recently, our group adapted ComBat harmonization (Johnson et al., 2007) to model and remove site 

effects in multi-site DTI (Fortin et al., 2017) and cortical thickness (Fortin et al., 2018) measurements. 

ComBat was originally designed to correct so-called “batch effects” in genomic studies (Johnson et al., 

2007) that arise due to processing high-throughput genomic data in different laboratories with different 

equipment at different times. In our previous studies, we demonstrated that the ComBat harmonization 

technique successfully removed unwanted non-biological variability, while preserving biological 

associations between participant age and DTI (fractional anisotropy and mean diffusivity), as well as the 

association between age and cortical thickness measurements. 

    In this study, we quantified the site effects in functional connectivity and several brain network 

measures in the multi-site Establishing Moderators and Biosignatures of Antidepressant Response in 
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tClinical Care (EMBARC) dataset that was acquired at four clinical sites: Columbia University (CU), 

Massachusetts General Hospital (MGH), the University of Texas Southwestern Medical Center (TX), and 

the University of Michigan (UM). Our main objectives were to: (1) remove any identified site effects 

using ComBat harmonization, and (2) preserve the commonly reported negative correlation between 

age and functional connectivity within the default mode network (DMN; Damoiseaux et al., 2008; Koch 

et al., 2010; Grady et al., 2010; Tomasi and Volkow, 2012; Ferreira and Busatto, 2013; Damoiseaux, 

2017), as well as preserve previously reported negative correlations between age and network efficiency 

measures (Achard and Bullmore, 2007; Ajilore et al., 2014). Objective (2) was important to demonstrate 

that the ComBat technique did not remove important, biologically relevant information. A recently 

published multi-site autism study (Abraham et al., 2017) reported that the magnitude of site effects was 

influenced by the choice of functional connectivity metrics and brain parcellation. Therefore, we 

investigated the degree to which widely used functional connectivity and network metrics derived from 

a number of brain parcellations were affected by scanner-to-scanner variation and how ComBat 

harmonization performed in each setting. We hypothesized that (1) considerable site effects exist in 

both functional connectivity and network efficiency measures calculated from non-harmonized multi-

site fMRI data; (2) the magnitude of site effects is not constant across different connectivity metrics and 

brain parcellations; and (3) ComBat harmonization can be used to remove site effects in connectivity 

and network measures while preserving age-related associations for numerous combinations of 

connectivity metrics and brain parcellations. 

 

2 | MATERIAL AND METHODS 

2.1 Participants 

This study considered 200 unmedicated depressed patients with major depressive disorder (MDD) and 

40 healthy subjects recruited for EMBARC that have been analyzed in several previous studies 

(Greenberg et al., 2015; Trivedi et al., 2016; Webb et al., 2016; Fortin et al., 2018). The current study 

concentrates on the harmonization of multi-site fMRI-based functional connectivity and network 

measures. The participants were recruited and scans acquired at four clinical sites: Columbia University 

(CU), Massachusetts General Hospital (MGH), the University of Texas Southwestern Medical Center (TX), 

and the University of Michigan (UM). All participants provided written informed consent and the 

institutional review boards from the four clinical sites approved all study procedures. For both patients 

and healthy individuals, the Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research 

Version, Patient Edition (SCID-I/P; First et al., 2002) was used as inclusion criteria to diagnose the 

presence or absence of depressive symptoms. The Hamilton Depression Rating Scale (HAMD; Hamilton, 

1960) and Quick Inventory for Depression Symptomatology (QIDS; Rush et al., 2003) depression scores 

were used to estimate depressive severity. Anxiety and depressive severity were also assessed using the 

Mood and Anxiety Symptom Questionnaire (MASQ; Watson and Clark, 1991), including three subscales: 

general distress (MASQ-GD), anhedonic depression (MASQ-AD), and anxious arousal (MASQ-AA). The 

individuals were eligible for the study if they met the following inclusion criteria: (1) age 18–65; (2) 

reported age of depression onset before age 30; (3) fluent in English. Eleven depressed patients and one 

healthy individual were excluded due to excessive motion (> 4 mm), low slice signal-to-noise ratio (< 80), 

and severe slice artifacts in MRI data. The final sample included 189 MDD patients and 39 healthy 
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tindividuals. The distribution of age, sex, handedness, and education level were matched between the 

two groups.  

 

2.2 Image acquisition and data preprocessing 

All four sites used 3T scanners, however, the manufacturer differed from site to site: CU used a GE 

SIGNA HDx 3T scanner, MGH used a Siemens TIM Trio 3T scanner, TX used a Philips Achieva 3T scanner, 

and UM used a Philips Ingenia 3T scanner (Greenberg et al., 2015; Trivedi et al., 2016; Fortin et al., 

2018). Imaging parameters at each site are described in Table 1. 

    Prior to the project’s initiation, in close collaboration with MR physics teams at the acquisition sites, a 

homogenized imaging protocol was developed to minimize acquisition-related site differences. In 

particular, data were collected using identical MRI phantom acquisitions from each of the neuroimaging 

sites. Well established routines for using phantoms were employed to perform quality assurance on the 

scanners used in this study. However, although the phantom-based approach minimized the 

inconsistency of signal-to-noise acorss scanners over the time and other variability in image acquisition 

and quality ascross sites, the inter-site acquisition effects were not completely eliminated (Delaparte et 

al., 2017). Therefore, we employed a post-processing procedure that further harmonized the fMRI 

functional connectivity matrices of subjects across the 4 sites. 

    T1-weighted (T1) images were processed using the ANTS Cortical Thickness pipeline available in the 

antsCorticalThickness.sh script in advanced normalization tools (ANTs ; Avants et al., 2011a; Tustison et 

al., 2014). The workflow is sketched out as follows: (1) N4 bias correction to minimize field 

inhomogeneity (Tustison et al., 2010); (2) brain extraction using an optimal population-specific template 

created by a Symmetric Group Normalization framework (Avants et al., 2010); (3) Atropos probabilistic 

six-tissue segmentation (Avants et al., 2011b); (4) DiReCT-based cortical thickness estimation (Das et al., 

2009); (5) SyN deformable spatial registration to the population-specific template (Klein et al., 2009). 

    Resting-state time series data from each participant were processed using the XCP Engine (Ciric et al., 

2017), which uses an optimized confound regression procedure to reduce the influence of subject 

motion (Satterthwaite et al., 2017). Each subject contributed time series data from two resting-state 

fMRI sessions. The workflow of functional data preprocessing is summarized as follows: (1) removal of 

the four initial volumes of the Blood-oxygen-level Dependent (BOLD) signals to achieve signal 

stabilization; (2) realignment of functional images using MCFLIRT (Jenkinson et al., 2002); (3) removal of 

nine confounding signals (six motion parameters+global/white matter/cerebral spinal fluid) as well as 

the temporal derivative, quadratic term, and temporal derivatives of each quadratic term (36 regressors 

total) (Satterthwaite et al., 2017); (4) co-registration of functional images to the T1 image using 

boundary-based registration (Greve and Fischl, 2009); (5) alignment of the co-registered images to 

template space using the ANTs-transform for the T1 image as above; and (6) temporal filtering of time 

series between 0.01 and 0.08 Hz as in previous studies (Biswal et al., 1995) using a first-order 

Butterworth filter. In this study, all regressors, including motion parameters and confound time courses, 

were band-pass filtered to the same frequency range as the time series data to prevent frequency-

dependent mismatch during confound regression (Hallquist et al., 2013). Functional images were 

smoothed using a Gaussian convolution at 6mm full width at half maximum.  
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2.3 Parcellation 

To investigate the influence of different parcellations on functional connectivity measures across sites 

and subsequent harmonization, we partitioned the brain of each participant into cortical and subcortical 

ROIs using the following three different whole-brain atlases (one anatomical and two functional): (1) 78 

cortical and 12 subcortical ROIs identified by automated anatomical labeling (AAL) (Tzourio-Mazoyer et 

al., 2002); (2) 264 cortical and subcortical ROIs of the widely-used functional Power atlas (Power et al., 

2011); and (3) 333 cortical and subcortical ROIs from the functional Gordon atlas (Gordon et al., 2016). 

The ROIs and MNI-space centroids of the AAL, Power, and Gordon atlases can be found in the 

Supplementary figure S1 and Supplementary Materials 2. 

 

2.4 Functional connectivity 

For each participant, whole-brain functional connectivity between all brain regions was constructed 

pairwise from the preprocessed fMRI data. The fMRI time series were extracted from each voxel and 

averaged within each ROI of the three atlases (AAL, Power, and Gordon). The functional connectivity 

between time series for all pair-wise ROIs was estimated by calculating two commonly used connectivity 

metrics: Pearson correlation and wavelet coherence. For Pearson correlation, the correlation 

coefficients were Fisher-transformed in order to draw more statistically interpretable conclusions about 

the magnitude of the correlations (Cohen and Esposito, 2016; Doucet et al., 2017). Due to poor signal 

quality and signal dropout, we excluded 61 ROIs from the Power atlas and 26 ROIs from the Gordon 

atlas, which resulted in 203 and 307 ROIs for the Power and Gordon atlases, respectively. All subsequent 

analyses were performed using the 90×90 AAL-atlas, 203×203 Power-atlas, and 307×307 Gordon-atlas 

connectivity matrices based on both Fisher-transformed Pearson correlation coefficients and raw 

wavelet coherence values from all participants. 

 

2.5 Model for functional connectivity matrix harmonization 

Based on the literature (Friedman et al., 2008; Feis et al., 2015; Rath et al., 2016; Dansereau et al., 

2017), we speculated that measurements such as DTI fractional anisotropy (Fortin et al., 2017), MRI 

cortical thickness (Fortin et al., 2018), and fMRI functional connectivity (the present study) would differ 

among the four sites (CU, MGH, TX and UM) due to systematic bias and non-biological variability 

attributable to the use of different scanners and different imaging parameters. 

    In this study, we used ComBat (Johnson et al., 2007) to reduce potential biases and non-biological 

variability induced by site and scanner effects. ComBat uses a multivariate linear mixed effects 

regression with terms for biological variables and scanner to model imaging feature measurements. The 

method uses empirical Bayes to improve the estimation of the model parameters for studies with small 

sample sizes. Here, we reformulate the ComBat model so that it can be applied to functional 

connectivity matrices estimated using Pearson correlation and wavelet coherence in combination with 

the AAL, Power, and Gordon atlases (i.e., six combinations: Correlation-AAL, Coherence-AAL, 

Correlation-Power, Coherence-Power, Correlation-Gordon, and Coherence-Gordon). Since all 
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tconnectivity matrices are symmetric, we applied ComBat to connectivity values in the upper triangles of 

the matrices. Let ���� represent the connectivity values of imaging site � (� ∈ {1, …, 4}), participant 	 
(	 ∈ {1,… , 228}), and connectivity value � (� ∈ {1,… , 4,005}	for the AAL atlas, � ∈ {1,… , 20,503}	for 

the Power atlas, and � ∈ {1,… , 46,971}  for the Gordon atlas) between two ROIs. Then, the ComBat 

model can be written as  

 

���� = �� + ������ + ��� +  ��!��� 

 

where �� is the average connectivity value for a particular connectivity value � between two ROIs, ����  is 

a design matrix for the covariates of interest (age , gender, and group), and �� is a vector of regression 

coefficients corresponding to �. As in Fortin et al. (2018), we further assume that the residual terms !��� 

arise from a normal distribution with zero mean and variance "�#. The terms ��� and  �� represent the 

additive (or location parameter) and multiplicative (or scale parameter) site effects of site � for 

connectivity value �, respectively. The ComBat-harmonized functional connectivity values were then 

defined as 

 

����$%&'() = *+,-./-0.1+,2-3.4+-∗
6+-∗

+ ��0 +�����3, 

 

where ���∗  and  ��∗ are the empirical Bayes estimates of ��� and  ��, respectively. Thus, ComBat 

simultaneously models and estimates biological and non-biological terms and algebraically removes the 

estimated additive and multiplicative site effects. Of note, in the ComBat model, we included age, sex, 

and group as covariates to preserve important biological trends in the data and avoid overcorrection.  

    In this study, we performed the ComBat harmonization analyses for the six-combinations of 

connectivity matrices in two sessions (S1 and S2), separately. ComBat harmonization analyses were 

performed using a publicly available MATLAB package hosted at 

https://github.com/Jfortin1/ComBatHarmonization/tree/master/Matlab.  

 

2.6 Visualization and evaluation of functional connectivity harmonization 

We used Kruskal-Wallis tests to quantify the magnitude of site effects in functional connectivity 

between all pairwise ROIs before and after applying ComBat harmonization to each of the six metric-

atlas combinations (Correlation-AAL, Coherence-AAL, Correlation-Power, Coherence-Power, Correlation-

Gordon, and Coherence-Gordon). The p-values were adjusted for multiple comparisons by controlling 

the false discovery rate (FDR) (Benjamini and Hochberg, 1995) at 5%, separately for each combination 

(AAL: 4,005 comparisons; Power: 20,503 comparisons; Gordon: 46,971 comparisons). The numbers and 

percentages of connectivity values that were significantly different (after FDR correction) across the 4 

sites for the six combinations are summarized in Table 2. The FDR-corrected p-values can be found in 
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tsupplementary Figure 1. We visualized site effects using boxplots of connectivity values between signals 

of two randomly selected ROIs for each atlas across the four sites (Figure 2; Supplementary Figures S3-

S6, subplot A). The selected ROIs were consistent for the same atlas using the two connectivity 

measures. 

    We also performed a principal component analysis (PCA) on the functional connectivity values in the 

upper triangle of the connectivity matrices for the six metric-atlas combinations before and after 

ComBat harmonization. In Supplementary Figure S3A-S6A, subplot A and S7, we plotted three-

dimensional scatter plots of the first three PC scores from the PCA. If the connectivity values were 

significantly different (Kruskal-Wallis tests; FDR corrections) across sites before or after ComBat 

harmonization, the corresponding PC scores are likely to be associated with site, and we would expect 

to see data from the same scanner roughly clustered together in the scatter plots.  

    To evaluate whether the assumed empirical Bayes priors for the location (�) and scale ( ) parameters 

in the ComBat harmonization model reasonably reflect the observed data, we overlayed the empirical 

and prior distributions of � and  	in	Figure	3	and	Supplementary Figures S3-S6, subplot C.  
    We applied ComBat harmonization to the connectivity matrices from each fMRI session, separately. 

We present visualizations of the site effects and plots of ComBat model parameters for the first session. 

Plots generated from the second session were similar and therefore not included. Figure 2 demonstrates 

differences in the distribution of functional connectivity across sites for the first session. Figure 3 

provides a visualization of the goodness of fit of the ComBat model’s prior assumptions to the observed 

data for the first session. Following ComBat, we extracted four network measures from the harmonized 

connectivity matrices and averaged these measures across the two sessions. Henceforth, we focus on 

analyzing the average network measures, which included weigthed DMN connectivity, nodal strength, 

local efficiency, and global efficiency. We formally define these measures in Section 2.7. 

 

2.7 Calculation of network measures  

In order to ensure that our post-processing harmonization did not remove meaningful biological 

variability along with the undesireable site effects we conducted an additional analysis. As the default 

mode network (DMN) has been found to have larger negative associations between age and functional 

connectivity metrics than other resting-state networks (Tomasi and Volkow, 2012; Ferreira and Busatto, 

2013; Damoiseaux, 2017), we selected it to conduct analysis of age-related effects. In this study 

functional connectivity and local network metrics (quantified by weighted nodal strength and nodal 

efficiency) were thus calculated in the DMN. Global network topology was characterized by weighted 

global efficiency. The computation details of these connectivity and network metrics are described in 

the following paragraphs.     

    For each atlas, the DMN network connectivity was defined by the summation of the functional 

connectivity values within the DMN ROIs normalized by the number of DMN ROIs for each atlas. The 

DMN nodal strength was computed by first summing the functional connectivity values (link weights) for 

each pair of ROIs and then summing up the nodal level connectivity values within the DMN ROIs of each 

specific atlas. The weighted local and global efficiency (Latora and Marchiori, 2001) were computed 

using the weighted shortest path length (AB; Dijkstra, 1959), which is the shortest sum of connection 
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tlength (inverse of the connectivity values or link weights) between two nodes (or ROIs; Rubinov and 

Sporns, 2010). The weighted nodal efficiency (CD%E(FB ) was calculated as the inverse of the harmonic 

mean of AB	from one node to all other nodes, as follows: 

 

CD%E(FB = 1
G − 1I

1
A�,�B�JK

 

 

where N is the number of nodes in graph G (represented by the AAL, Power and Gordon connectivity 

matrices in this study) and A�,�B  is the weighted shortest path length between node �	and 	. 
 

    Weighted local efficiency (CF%L(FB ) for a node is defined as the average weighted nodal efficiency 

among the neighboring nodes of that node (excluding the reference node), as follows: 

 

CF%L(FB = 1
GK+(GK+ − 1) I 1

A�,OB�,OJK+
 

 

where GK+  is the number of nodes in subgraph P�  that consists of all neighboring nodes of node �, but 

excluding node �. For the weighted DMN local efficiency, weighted local efficiency values were 

computed for each ROI and then summed up within the DMN ROIs of each specific atlas.  

 

    The weighted global efficiency (CQF%R(FB ) was calculated as the average weighted nodal efficiency of 

nodes in a graph G, as follows: 

 

CQF%R(FB = 1
G(G − 1) I 1

A�,�B�S�JK
 

 

    All the network efficiency measures were computed using the Brain Connectivity Toolbox (BCT) 

(Rubinov and Sporns, 2010). 

 

    For each participant, we first computed DMN network connectivity, DMN nodal strength, weighted 

DMN local efficiency, and weighted global efficiency for each of the six combinations (3 atlases × 2 

connectivity metrics) before and after applying ComBat harmonization. Next, we averaged the values of 

each participant’s network connectivity or efficiency measures from the two sessions. Then, we tested 

the global null hypothesis of no differences across sites in the network connectivity or efficiency 

measures using Kruskal-Wallis tests (in total, 2 conditions (before and after ComBat) × 2 connectivity 

metrics × 4 network measures × 3 atlases = 48 comparisons) with a separate FDR correction at 5% within 

each condition (2 connectivity metrics × 4 network measures × 3 atlases = 24 comparisons), separately.  

 

2.8 Preservation of biological variability  

An optimal harmonization technique should be able to remove most or all non-biological sources of 

variability caused by site and scanner, yet preserve or increase statistical power to detect biological 

associations. In this study, there was a broad participant age range (18 to 65 years), enabling 

investigation of age-related associations. Therefore, we investigated whether negative associations 

Page 9 of 57

John Wiley & Sons, Inc.

Human Brain Mapping

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

tbetween age and DMN network connectivity as well as associations between age and network efficiency 

measures were preserved or made stronger when estimated using ComBat-harmonized data. 

    We computed the Spearman correlation between each network (or connectivity) measure and age. 

The p-values were adjusted for multiple comparisons (in total, 2 conditions (before and after ComBat) × 

2 connectivity metrics × 4 network measures × 3 atlases = 48 comparisons) by controlling the false 

discovery rate (FDR) (Benjamini and Hochberg, 1995). As before, the FDR corrections were applied 

separately within condition (2 connectivity metrics × 4 network measures × 3 atlases = 24 comparisons). 

A significance level of p < .05 was used for these tests. Note that, for the Power and Gordon atlases, we 

used the original definitions of DMN ROIs from Power et al., 2011 and Gordon et al., 2011, respectively; 

for the AAL atlas, we defined DMN ROIs according to a review article, Rosazza and Minati, 2011. For 

details of the definition of the DMN ROIs for each atlas, refer to Supplementary Table 1, Figure S1 and 

Supplementary materials 2. Figure S1, subplot b, c were visualized with BrainNet Viewer (version 1.5, Xia 

et al., 2013, http://www.nitrc.org/projects/bnv/). 

         

2.9 Statistical analysis of demographic characteristics 

Statistical analyses for demographic characteristics of participants were performed using MATLAB 

(R2017a). Age and educational level were compared among the four sites using Kruskal-Wallis tests 

followed by Mann Whitney-U tests when appropriate. All p-values from the Mann Whitney-U tests were 

adjusted for multiple comparisons by controlling the false discovery rate (FDR) (Benjamini and 

Hochberg, 1995) at 5%. We tested for differences in the gender and clinical group distribution among 

the four sites using Pearson’s chi-squared (χ
2
) tests.  

 

3 | RESULTS 

3.1 Demographic characteristics 

The distribution of demographic characteristics across imaging sites is shown in Figure 1. The age 

distribution (p = .001) was imbalanced across sites; subjects in the TX site were older than the other 

sites (TX-CU: p < .001; TX-MGH: p = .04; TX-UM: p = .04; FDR correction). There were also weak site 

effects (p = .03) in the level of education, but no differences were found regarding educational level 

between pairwise sites after FDR correction. Gender (p = .14) and depressed/control (p = .34) 

distributions were equally distributed across sites.  

 

3.2 Visualization and evaluation of ComBat harmonization  

Functional connectivity values estimated by Pearson correlation showed much stronger site effects than 

those by wavelet coherence for analyses using the AAL and Power atlases as well as the Gordon atlas 

(Table 2). Moreover, the AAL atlas had a much larger percentage of connectivity values that differed 

significantly across the four sites than the Power and Gordon atlases (Table 2). Following ComBat 

harmonization, there were no statistically significant site effects in the functional connectivity values of 

the six metric-atlas combinations.  
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t    Figure 2 displays boxplots of functional connectivity values between two randomly selected ROIs (for 

AAL: TPOmid.R and ACG.R; for Power: two regions in the visual cortex) for the Pearson correlation-AAL 

atlas and Wavelet coherence-Power atlas combinations. The connectivity values between these two 

ROIs showed consistent patterns across the four sites: for the AAL atlas, MGH values were generally 

higher than the other three sites; for the Power atlas, MGH values were generally lower than the other 

three sites. For the Gordon atlas, MGH and UM values were generally lower than the other two sites 

(see Supplementary Figures S5-S6, subplot A, for the Gordon atlas results). After ComBat harmonization, 

these significant site effects were dramatically reduced in all six metric-atlas combinations. See 

Supplementary Figures S3-S6, subplot A for boxplots of functional connectivity for other metric-atlas 

combinations, before and after ComBat.  

    To further visualize site effects, we generated three-dimensional scatter plots of the first three 

principal component (PC) scores obtained from the functional connectivity matrices (see Supplementary 

Figures S3-S6, subplot B; Figure S7). For all three atlases, the second PC scores from CU and/or MGH 

patients showed distinct separation from those of TX and UM, particularly when using Pearson 

correlation. These visual site effects are much less noticable in the ComBat-harmonized data: the first 

three PC scores were not clearly associated with site by visual inspection for any of the metric-atlas 

combinations (Supplementary Figures S3-S6, subplot B; Figure S7). 

    For all metric-atlas combinations, the ComBat-harmonized prior distributions appear to fit the 

empirical distributions of both the location (�)	and scale ( )	parameters well (Figure 3 and 

Supplementary Figures S3-S6, subplot C). Visual inspection of these overlaid distributions suggests that 

the ComBat model used appropriate prior information to capture the underlying site effects in the 

functional connectivity matrices. Furthermore, for each of the three atlases, the distributions of � and   

reflected the observed lower magnitudes in the distribution location and variability of MGH values 

compared with the values from other three sites, i.e., for MGH,  	<	1	on average using Pearson 

correlation and  	<	1	and	�	<	0	using wavelet coherence. 

    Before performing ComBat harmonization on the functional connectivity matrices, all the network 

connectivity and efficiency measures estimated by Pearson correlation and a majority of the measures 

estimated by wavelet coherence displayed statistically significant site effects with similar patterns across 

sites (MGH values were generally lower than all the other sites). Figure 5A displays log-transformed p-

values from the global site effect tests for each metric-atlas combination before and after ComBat. The 

p-values for network connectivity and the efficiency measures estimated by Pearson correlation were 

considerably more significant than those estimated by wavelet coherence (see Supplementary Figures 

S8-S10, subplot A, for corresponding boxplot visualizations of the site effects). After ComBat 

harmonization, there were no remaining statistically significant site effects for any metric-atlas 

combination.   

    Prior to functional connectivity harmonization using ComBat, there were statistically significant site 

effects across all network connectivity and efficiency measures estimated by both Pearson correlation 

and wavelet coherence when using the Gordon atlas (Figure 5A). In contrast, prior to harmonization 

using Combat, when using the AAL or Power atlases, a number of the measures estimated by wavelet 

coherence did not display significant differences across sites (Figure 5A, Supplementary Figures S9-S10, 

subplot A). 
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t3.3 Preservation of biological variability  

3.3.1 By connectivity metric 

ComBat harmonization preserved or strengthened the anti-correlations between age and DMN 

functional connectivity as well as between age and network efficiency measures. The p-values and 

correlation values for each metric-atlas combination are displayed in Figures 5B and 5C, respectively, 

where we see more significant p-values and stronger correlations post-ComBat. This result was true for 

both Pearson correlation and wavelet coherence connectivity, with wavelet coherence identifying the 

strongest anti-correlations both before and after ComBat harmonization. Supplementary Figures S8-S9, 

subplot B, display scatter plots associated with each correlation value.  

3.3.2 By atlas 

Using the original data without ComBat harmonization, the Gordon atlas showed significant site effects 

in all network connectivity and efficiency measures estimated by both Pearson correlation and wavelet 

coherence (Figure 5A). However, for AAL and Power atlases, there were no site effects even in some 

non-harmonized measures estimated by wavelet coherence (Figure 5A).  

    As shown in Figure 5B, ComBat harmonization strengthened the estimated anti-correlations between 

age and network measures across all three atlases. In particular, for the AAL and Power atlases, ComBat 

harmonization uncovered significant anti-correlations that were not detected when using the non-

harmonized data (Figure 4B, Figure 5B). Among the three atlases, the AAL atlas identified the fewest 

significant anti-correlations both before and after ComBat harmonization and the magnitudes were 

generally smaller than those identified by other atlases. The Power atlas identified stonger anti-

correlations than the other two atlases post-ComBat. Moreover, a majority of the network measures 

estimated by the correlation-AAL combination were not negatively associated with age, even after 

performing ComBat harmonization (see Supplementary Figures S8B-S10B, for scatter plots associated 

with the p and correlation values in Figure 5B,C). 

    Overall, ComBat harmonization not only removed unwanted site effects in network connectivity and 

efficiency measures calculated from functional connectivity matrices but also preserved or increased the 

estimated underlying correlations with age. Some specific combinations of atlases and connectivity 

metrics appear to be better than others with respect to revealing significant relationships with age. 

When considering both site effect removal and correlation with age, we found that the coherence-

Power combination performed optimally.  

 

4 | DISCUSSION 

In this study, we investigated the degree to which combining data from different scanners in a multi-site 

study could affect downstream analyses of fMRI-based functional connectivity and network efficiency 

measures. We implemented several visualization techniques and statistical tests to visualize and 

quantify the scanner effects. We performed ComBat harmonization on fMRI-based functional 

connectivity matrices to remove site effects before extracting DMN connectivity and network measures. 

We quantified the site effects and the performance of ComBat harmonization using two different 

metrics to compute connectivity and three different brain atlases. We demonstrated that ComBat 
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tharmonization can successfully remove site effects in the functional connectivity matrices, thereby 

leading to network connectivity and efficiency measures that are also not different across sites for any 

choice of connectivity metric and atlas. Moreover, we found that using wavelet coherence with the 

Power atlas resulted in the best power to detect anti-correlations between age and DMN functional 

connectivity as well as network efficiency measures following ComBat harmonization, suggesting the 

best preservation of underlying biological signal with this combination. 

 

4.1 ComBat harmonization removes site effects 

As previous studies (Van Horn and Toga, 2009; Dansereau et al., 2017) have consistently reported the 

existence of considerable site effects in multi-site fMRI measurements that cannot be removed by 

performing ICA-based approaches (Feis et al., 2015), we tested whether ComBat harmonization could 

eliminate site effects in several fMRI-based functional connectivity and network measures. Of note, we 

only performed ComBat harmonization on the original functional connectivity matrices and then 

subsequently calculated network connectivity and efficiency measures from the harmonized 

connectivity matrices. Notably, we did not find statistically significant site effects in the downstream 

network measures.  

    Given the excellent performance of ComBat in DTI (Fortin et al., 2017), MRI-based cortical thickness 

(Fortin et al., 2018), and fMRI (current study) measurements, we conclude that this harmonization 

method is a reliable and powerful technique that can be widely applied to different neuroimaging 

modalities and summary measurements. 

 

4.2 Wavelet coherence outperforms Pearson correlation 

In this study, to investigate the effects of connectivity metrics on multi-site fMRI measurements and the 

performance of ComBat harmonization, we used both Pearson correlation and Wavelet coherence to 

estimate the fMRI functional connectivity. Previous studies have shown that wavelet coherence 

outperforms Pearson correlation with respect to sensitivity to outliers caused by motion artifact (Huber, 

2004; Achard et al., 2006). Additionally, using coherence avoids the need to remove negative correlation 

coefficients to calculate network measures (Achard and Bullmore, 2007; Bassett et al., 2011) and 

robustly extracts frequency-specific information from the time series without picking up on edge effects 

of band-pass filtering (Percival and Walden, 2000; Zhang et al., 2016). However, currently there is no 

study comparing the sensitivity to scanner differences of the two connectivity metrics applied to fMRI 

data. Our results indicate that ComBat harmonization can remove scanner effects from the data, 

regardless of the choice of connectivity metric.  However, wavelet coherence-based measures showed 

weaker differences across sites than Pearson correlation-based measures in non-harmonized data. 

Moreover, wavelet coherence measures generally resulted in stronger anti-correlations between age 

and the connectivity and network measures across all the three atlases (AAL, Power and Gordon) both 

before and after harmonization. For multi-site fMRI studies, this result suggests that wavelet coherence 

may be preferable to Pearson correlation when extracting connectivity and network summary 

outcomes.  
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t4.3 Power atlas outperforms AAL and Gordon atlases 

We also studied the effects of three atlases (AAL, Power and Gordon) on multi-site fMRI measurements 

and the performance of ComBat harmonization. A larger percentage of connections between ROIs were 

significantly affected by site in the AAL atlas than in the Power and Gordan atlases. These results are 

consistent with previous findings that in multi-site fMRI studies, functional atlases extracted from large 

resting-state fMRI datasets outperform traditional anatomical atlases (Abraham et al., 2017). For all 

three atlases, site effects in the functional connectivity and network measures were successfully 

removed by ComBat harmonization. However, all the network connectivity and efficiency measures 

using the AAL atlas were less correlated with age than those using the Power and Gordan atlases, 

suggesting that the AAL atlas may not be as sensitive to underlying biological variability (assessed using 

age in this study) when using multi-site fMRI data. Interestingly, we did not find significant site effects 

using the Power atlas among non-ComBat-harmonized network efficiency measures estimated by 

wavelet coherence. In contrast, the AAL and Gordon atlases demonstrated strong site effects in these 

non-ComBat-harmonized network measures. Overall, we concluded that the Power atlas outperforms 

the AAL and Gordon atlases with respect to post-ComBat analyses of biological variability.  

 

4.4 Strengths, limitations and future direction 

Our current study has several strengths: (1) we investigated six combinations of two connectivity 

metrics and three atlases, and thus were able to explore the ability of ComBat harmonization to remove 

site effects and to identify combinations of connectivity metrics (wavelet coherence) and atlases (Power 

and Gordon) that best preserved age-related anti-correlations after harmonization; (2) we used a 

relatively large sample (228 participants), therefore providing relatively reliable and convincing results; 

(3) by using the ComBat model, which is generic in its formulations and thus could easily be generalized 

to additional imaging modalities, our findings may have implications for multi-site 

electroencephalography, magnetoencephalography and other neurophysiological and neuroimaging 

datasets; (4) ComBat has been implemented the in MATLAB and R 

(https://github.com/Jfortin1/ComBatHarmonization) and in Python 

(https://github.com/ncullen93/neuroCombat) making the technique available and largely applicable to 

analysts using a variety of different software packages for image processing. 

    There are also several limitations that should be considered and improved in future studies. First, 

several previous fMRI studies (Friedman et al., 2006; Brown et al., 2011; Forsyth et al., 2014; Keshavan 

et al., 2016; Rath et al., 2016; Noble et al., 2017; Shinohara et al., 2017) used traveling-subject datasets 

in which the same participants were scanned across sites to reduce the subject effects. One recent study 

(Noble et al., 2017) using a small dataset (8 subjects scanned at each of 8 sites) found that the subject 

differences were stronger than potential site effects. Although, our ComBat harmonization technique 

was tested on different participants scanned across different sites with heterogeneous protocols, we 

speculate that ComBat harmonization will also have excellent performance on removing any non-

biological variations when applied to traveling-subject datasets, however this remains to be proven. 

Second, in some longitudinal datasets, the same participants may be scanned on different scanners over 

multiple time points. However, the current ComBat harmonization model cannot be directly applied to 

this type of longitudinal data. Therefore, in the future, we plan to develop a time-dependent ComBat 
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talgorithm to study longitudinal fMRI connectivity and network properties. Third, in the present study, 

we tested the performance of ComBat harmonization on two functional connectivity metrics and three 

atlases (six combinations). Although the ComBat model does not require assumptions on connectivity 

metrics and atlases, we found that the choices of connectivity metrics and atlases had a strong influence 

on the magnitude of site effects in fMRI measurements and on preserving biological variability (age in 

this study). Therefore, future work exploring the performance of ComBat harmonization in other 

combinations of connectivity metrics (e.g. partial correlation) and atlases (anatomical atlas: Brodmann, 

1909; Desikan et al., 2006; functional atlas: Yeo et al., 2011; Wig et al., 2014; Glasser et al., 2016; 

Schaefer et al., 2017) is warranted. Finally, in this project we focused on the ability of ComBat 

harmonization to preserve age-related associations with several network connectivity and efficiency 

measures. However, previous studies (Bullmore and Sporns, 2012; Stam, 2014; Fornito et al., 2015; Yu et 

al., 2016, 2017) have shown that functional brain network organizations are highly correlated with other 

demographic (e.g. gender, educational level), clinical phenotypes (e.g. disease severity for neurological 

disorders), and pathological biomarkers (e.g. amyloid-�42 and tau proteins in Alzheimer’s disease). In 

particular, the EMBARC functional dataset was originally designed to study the potential differences on 

fMRI measurements between MDD patients and healthy controls (Greenberg et al., 2015; Trivedi et al., 

2016; Webb et al., 2016). Future studies will focus on whether the ComBat-harmonized fMRI data 

preserve functional brain networks (Kaiser et al., 2015; Gong and He, 2015) associated with depression, 

and whether the abnormal network attributes in MDD after ComBat harmonization are associated with 

patients’ symptoms (Sheline et al., 2009, 2010; Otte et al., 2016; Williams, 2016). 

 

5 | CONCLUSION 

ComBat harmonization is a powerful technique for removing site effects in functional connectivity 

matrices, network connectivity, and efficiency measures. In addition, it preserves or strengthens the 

power to detect age-related anti-correlations in network connectivity and efficiency measures. In the 

current multi-site fMRI study, the optimal performance of ComBat harmonization was obtained by using 

wavelet coherence to extract functional connectivity from the Power atlas segmentation of functional 

brain images. 
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TABLE 1 Imaging parameters for the four clinical sites: Columbia University (CU), Massachusetts 

General Hospital (MGH), the University of Texas Southwestern Medical Center (TX) and the 

University of Michigan (UM). 

 CU MGH TX UM 

Scanner General Electric 3T  Siemens 3T  Phillips 3T  Phillips 3T  

Structural FSPGR  

TR = 6.0 ms  

TE = 2.4 ms  

TI = 900 ms  

Flip Angle = 9°  

FOV= 256×256 mm  

Slice Thickness = 1 mm   

Matrix = 256×256   

178 continuous slices     

(4 discarded) 

MPRAGE 

TR = 2300 ms  

TE = 2.54 ms  

TI = 900 ms  

Flip Angle = 9°  

FOV= 256×256 mm  

Slice Thickness = 1 mm   

Matrix = 256×256   

176 continuous slices 

Turbo Field Echo (TFE) 

TR = 8.2  ms  

TE = 3.7 ms  

TI = 1100 ms  

Flip Angle = 12°  

FOV= 256×256 mm  

Slice Thickness = 1mm   

Matrix = 256×256   

178 continuous slices 

MPRAGE 

TR = 2100 ms  

TE = 3.7 ms  

TI = 1100 ms  

Flip Angle = 12°  

FOV= 256×256 mm 

Slice Thickness = 1mm  

Matrix = 256×256   

178 continuous slices 

Functional TR/TE = 2000/28msec 

Flip Angle 90° 

 FOV = 205×205 mm 

Slice thickness: 3.1 mm  

Matrix 64×64 

TR/TE = 2000/28msec 

Flip Angle 90°  

FOV = 205×205 mm 

Slice thickness: 3.1 mm  

Matrix 64×64 

TR/TE = 2000/28msec 

Flip Angle 90° 

FOV=205×205 mm Slice 

thickness: 3.1 mm  

Matrix 64×64 

TR/TE = 2000/28msec 

Flip Angle 90°  

FOV = 205×205 mm 

Slice thickness: 3.1 

mm  Matrix 64×64 

 

 

TABLE 2 Site effects in functional connectivity values for different connectivity measures 

(Pearson correlation and wavelet coherence) using different atlases (AAL, Power and Gordon). 

Six combinations of two 

connectivity measures 

and three atlases 

Number of ROIs Original ComBat 

Pearson  

correlation 

AAL 90 1610 (40.2%) 0 (0%) 

Power 203 515 (2.5%) 0 (0%) 

Gordon 307 603 (1.3%) 0 (0%) 

Wavelet 

coherence 

AAL 90 7 (0.2%) 0 (0%) 

Power 203 12 (0.06%) 0 (0%) 

Gordon 307 17 (0.04%) 0 (0%) 
Note that, the numbers and percentages in the round brackets represent the numbers and percentages of connectivity values 

that were significantly different across 4 sites for six combinations of two connectivity measures and three atlases, respectively. 

Significant effects for each combination were computed using Kruskal-Wallis tests with FDR corrections. Here we only 

presented the results of the first-session data, as the two sessions showed extremely similar results. 
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t FIGURE  LEGENDS 

 

FIGURE 1 Distribution of subject demographic characteristics across 4 sites. Abbreviations: MDD = major 

depressive disorder; Control = healthy controls; MGH = Massachusetts General Hospital; TX = University 

of Texas Southwestern Medical Center; UM = University of Michigan. Note that whiskers in the boxplots 

represent variability outside the upper and lower quartiles. 

 

FIGURE 2 Site effects in functional connectivity estimated by “Correlation-AAL” (A) and “Coherence-

Power” (B) before and after ComBat harmonization. Note that the functional connectivity values in (A) 

and (B) were computed from the time series of two randomly selected ROIs: for AAL, the TPOmid.R and 

ACG.R were selected; for Power, two regions in the visual cortex were selected; whiskers in the boxplots 

represent variability outside the upper and lower quartiles. Abbreviations: CU = Columbia University; 

MGH = Massachusetts General Hospital; TX = University of Texas Southwestern Medical Center; UM = 

University of Michigan; TPOmid.R = right Temporal pole: middle temporal gyrus; ACG.R = right Anterior 

cingulate and paracingulate gyri.  

 

FIGURE 3 Empirical (dashed lines) and ComBat-estimated (solid lines) prior distributions for the site-

specific location (�) and scale ( ) parameters for “Correlation-AAL” (A) and “Coherence-Power” (B). 

Abbreviations: CU = Columbia University; MGH = Massachusetts General Hospital; TX = University of 

Texas Southwestern Medical Center; UM = University of Michigan. 

 

FIGURE 4 DMN connectivity estimated by “Coherence-Power” and “Correlation-AAL” across sites (A) and 

their anti-correlations with age (B). Note that DMN connectivity was computed by first summing the 

functional connectivity values within the DMN ROIs, and then normalizing by the number of DMN ROIs 

corresponding to each atlas (Power and AAL); the significant site effects in DMN connectivity were 

removed by ComBat harmonization (A). The strong anti-correlation between age and DMN connectivity 

estimated by “Coherence-Power” was preserved in ComBat-harmonized data; for “Correlation-AAL”, 

ComBat harmonization increased the detection power of the anti-correlation (B). Note that whiskers in 

the boxplots represent variability outside the upper and lower quartiles. Abbreviations: DMN = default 

mode network.  

 

FIGURE 5 Negative log-transformed p-value heat maps for Kruskal-Wallis tests (e.g. Figure 4A; 

Supplementary Figure S8-S10, subplot A) of network connectivity and efficiency measures (A), and 

correlation coefficient (B) heat maps for correlation analyses between the network measures and age 

(e.g. Figure 4B; Supplementary Figure S8-S10, subplot B). Note that the asterisks (blue or white colors) 

represent p < .05, which corresponds to a negative log10 transformed p-value greater than 1.301 in the 

color bar of (A). Abbreviations: DC = DMN connectivity; DNS = DMN nodal strength; DLE = DMN local 

efficiency; GE = global efficiency. Note that DMN connectivity was computed by first summing the 
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corresponding to each atlas (AAL, Power and Gordon); please see the details of the computation of DNS, 

DLE and GE in Section 2.7 Calculation of network measures. 
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tAbstract 

Acquiring resting-state functional magnetic resonance imaging (fMRI) datasets at multiple MRI scanners 

and clinical sites can improve statistical power and generalizability of results. However, multi-site 

neuroimaging studies have reported considerable non-biological variability in fMRI measurements due 

to different scanner manufacturers and acquisition protocols.  These undesirable sources of variability 

may limit power to detect effects of interest and may even result in erroneous findings. Until now, there 

has not been an approach that removes unwanted site effects. In this study, using a relatively large 

multi-site (4 sites) fMRI dataset, we investigated the impact of site effects on functional connectivity and 

network measures estimated by widely used connectivity metrics and brain parcellations. The protocols 

and image acquisition of the dataset used in this study had been homogenized using identical MRI 

phantom acquisitions from each of the neuroimaging sites, however inter-site acquisition effects were 

not completely eliminated. Indeed, in the current study we found that the magnitude of site effects 

depended on the choice of connectivity metric and brain atlas. Therefore, to further remove site effects, 

we applied ComBat, a harmonization technique previously shown to eliminate site effects in multi-site 

diffusion tensor imaging (DTI) and cortical thickness studies. In the current work, ComBat successfully 

removed site effects identified in connectivity and network measures and increased the power to detect 

age associations when using optimal combinations of connectivity metrics and brain atlases. Our 

proposed ComBat harmonization approach for fMRI-derived connectivity measures facilitates reliable 

and efficient analysis of retrospective and prospective multi-site fMRI neuroimaging studies. 

  

KEYWORDS 

Aging, atlas, ComBat, fMRI, functional connectivity, graph theory, harmonization, multi-site, network 

efficiency 
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t1 | INTRODUCTION 

Functional magnetic resonance imaging (fMRI), a non-invasive neuroimaging modality with high spatial 

resolution, enables neural activity to be monitored. Functional connectivity and network measures 

derived from fMRI data have facilitated the study of the brain’s function during development, in aging 

(Fox and Raichle, 2007; Raichle 2015; Bressler and Menon, 2010), and in the context of various 

neurological disorders (Bullmore and Sporns, 2009, 2012; Stam, 2014; Fornito et al., 2015, 2016).  

    Over the last decade, multi-site fMRI studies have become increasingly common (Friedman et al., 

2006, 2008; Van Horn and Toga, 2009; Biswal et al., 2010; Gradin et al., 2010; Di Martino et al., 2014; 

Noble et al., 2017). Indeed, pooling fMRI data from multiple sites can accelerate participant recruitment 

rates and increase the total sample size of the study, thereby increasing statistical power. Pooling fMRI 

data is often critical when studying rare disorders and subtle effects and when aiming to generalize the 

study results to a diverse population (Suckling et al., 2010; McGonigle, 2012; Keshavan et al., 2016; 

Dansereau et al., 2017). Despite these advantages, multi-site studies are often plagued by non-biological 

variability that can be attributed to differences in scanner manufacturers, non-standardized imaging 

acquisition parameters, and other intrinsic factors (Shinohara et al., 2017). These additional sources of 

unwanted variability may decrease statistical power and lead to spurious results. Many multi-site 

studies have reported considerable site or scanner effects in fMRI data (Friedman et al., 2006, 2008; 

Suckling et al., 2008, 2010; Van Horn and Toga, 2009; Gountouna et al., 2010; Brown et al., 2011; 

McGonigle, 2012; Turner et al., 2013; Forsyth et al., 2014; Feis et al., 2015; Rath et al., 2016; Jovicich et 

al., 2016; Dansereau et al., 2017; Noble et al., 2017; Abraham et al., 2017). However, most of these 

studies only describe the problem or report the magnitude of site effects in fMRI measurements.  

    A few studies have attempted to mitigate site effects by standardizing protocols and image acquisition 

parameters (Friedman et al., 2008; Glover et al., 2012; Shinohara et al., 2017; Oh et al., 2017; Kochunov 

et al., 2018; Chavez et al., 2018). However, it has been shown that scanner-to-scanner variation arising 

from the use of scanners from different manufacturers is not eliminated completely by the 

standardization of acquisition parameters (Jovicich et al., 2016; Noble et al., 2017), for instance, by use 

of phantom-based imaging acquisitions (Delaparte et al., 2017). To our knowledge, until now, there has 

been only one attempt to diminish scanner differences in multi-site resting-state fMRI post-acquisition. 

The authors used an independent component analysis (ICA) based approach that reduced differences 

across sites in some resting-state network connectivity measures but did not fully eliminate the 

structured noise arising from different scanners (Feis et al., 2015). 

    Recently, our group adapted ComBat harmonization (Johnson et al., 2007) to model and remove site 

effects in multi-site DTI (Fortin et al., 2017) and cortical thickness (Fortin et al., 2018) measurements. 

ComBat was originally designed to correct so-called “batch effects” in genomic studies (Johnson et al., 

2007) that arise due to processing high-throughput genomic data in different laboratories with different 

equipment at different times. In our previous studies, we demonstrated that the ComBat harmonization 

technique successfully removed unwanted non-biological variability, while preserving biological 

associations between participant age and DTI (fractional anisotropy and mean diffusivity), as well as the 

association between age and cortical thickness measurements. 

    In this study, we quantified the site effects in functional connectivity and several brain network 

measures in the multi-site Establishing Moderators and Biosignatures of Antidepressant Response in 
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tClinical Care (EMBARC) dataset that was acquired at four clinical sites: Columbia University (CU), 

Massachusetts General Hospital (MGH), the University of Texas Southwestern Medical Center (TX), and 

the University of Michigan (UM). Our main objectives were to: (1) remove any identified site effects 

using ComBat harmonization, and (2) preserve the commonly reported negative correlation between 

age and functional connectivity within the default mode network (DMN; Damoiseaux et al., 2008; Koch 

et al., 2010; Grady et al., 2010; Tomasi and Volkow, 2012; Ferreira and Busatto, 2013; Damoiseaux, 

2017), as well as preserve previously reported negative correlations between age and network efficiency 

measures (Achard and Bullmore, 2007; Ajilore et al., 2014). Objective (2) was important to demonstrate 

that the ComBat technique did not remove important, biologically relevant information. A recently 

published multi-site autism study (Abraham et al., 2017) reported that the magnitude of site effects was 

influenced by the choice of functional connectivity metrics and brain parcellation. Therefore, we 

investigated the degree to which widely used functional connectivity and network metrics derived from 

a number of brain parcellations were affected by scanner-to-scanner variation and how ComBat 

harmonization performed in each setting. We hypothesized that (1) considerable site effects exist in 

both functional connectivity and network efficiency measures calculated from non-harmonized multi-

site fMRI data; (2) the magnitude of site effects is not constant across different connectivity metrics and 

brain parcellations; and (3) ComBat harmonization can be used to remove site effects in connectivity 

and network measures while preserving age-related associations for numerous combinations of 

connectivity metrics and brain parcellations. 

 

2 | MATERIAL AND METHODS 

2.1 Participants 

This study considered 200 unmedicated depressed patients with major depressive disorder (MDD) and 

40 healthy subjects recruited for EMBARC that have been analyzed in several previous studies 

(Greenberg et al., 2015; Trivedi et al., 2016; Webb et al., 2016; Fortin et al., 2018). The current study 

concentrates on the harmonization of multi-site fMRI-based functional connectivity and network 

measures. The participants were recruited and scans acquired at four clinical sites: Columbia University 

(CU), Massachusetts General Hospital (MGH), the University of Texas Southwestern Medical Center (TX), 

and the University of Michigan (UM). All participants provided written informed consent and the 

institutional review boards from the four clinical sites approved all study procedures. For both patients 

and healthy individuals, the Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research 

Version, Patient Edition (SCID-I/P; First et al., 2002) was used as inclusion criteria to diagnose the 

presence or absence of depressive symptoms. The Hamilton Depression Rating Scale (HAMD; Hamilton, 

1960) and Quick Inventory for Depression Symptomatology (QIDS; Rush et al., 2003) depression scores 

were used to estimate depressive severity. Anxiety and depressive severity were also assessed using the 

Mood and Anxiety Symptom Questionnaire (MASQ; Watson and Clark, 1991), including three subscales: 

general distress (MASQ-GD), anhedonic depression (MASQ-AD), and anxious arousal (MASQ-AA). The 

individuals were eligible for the study if they met the following inclusion criteria: (1) age 18–65; (2) 

reported age of depression onset before age 30; (3) fluent in English. Eleven depressed patients and one 

healthy individual were excluded due to excessive motion (> 4 mm), low slice signal-to-noise ratio (< 80), 

and severe slice artifacts in MRI data. The final sample included 189 MDD patients and 39 healthy 
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tindividuals. The distribution of age, sex, handedness, and education level were matched between the 

two groups.  

 

2.2 Image acquisition and data preprocessing 

All four sites used 3T scanners, however, the manufacturer differed from site to site: CU used a GE 

SIGNA HDx 3T scanner, MGH used a Siemens TIM Trio 3T scanner, TX used a Philips Achieva 3T scanner, 

and UM used a Philips Ingenia 3T scanner (Greenberg et al., 2015; Trivedi et al., 2016; Fortin et al., 

2018). Imaging parameters at each site are described in Table 1. 

    Prior to the project’s initiation, in close collaboration with MR physics teams at the acquisition sites, a 

homogenized imaging protocol was developed to minimize acquisition-related site differences. In 

particular, data were collected using identical MRI phantom acquisitions from each of the neuroimaging 

sites. Well established routines for using phantoms were employed to perform quality assurance on the 

scanners used in this study. However, although the phantom-based approach minimized the 

inconsistency of signal-to-noise acorss scanners over the time and other variability in image acquisition 

and quality ascross sites, the inter-site acquisition effects were not completely eliminated (Delaparte et 

al., 2017). Therefore, we employed a post-processing procedure that further harmonized the fMRI 

functional connectivity matrices of subjects across the 4 sites. 

    T1-weighted (T1) images were processed using the ANTS Cortical Thickness pipeline available in the 

antsCorticalThickness.sh script in advanced normalization tools (ANTs ; Avants et al., 2011a; Tustison et 

al., 2014). The workflow is sketched out as follows: (1) N4 bias correction to minimize field 

inhomogeneity (Tustison et al., 2010); (2) brain extraction using an optimal population-specific template 

created by a Symmetric Group Normalization framework (Avants et al., 2010); (3) Atropos probabilistic 

six-tissue segmentation (Avants et al., 2011b); (4) DiReCT-based cortical thickness estimation (Das et al., 

2009); (5) SyN deformable spatial registration to the population-specific template (Klein et al., 2009). 

    Resting-state time series data from each participant were processed using the XCP Engine (Ciric et al., 

2017), which uses an optimized confound regression procedure to reduce the influence of subject 

motion (Satterthwaite et al., 2017). Each subject contributed time series data from two resting-state 

fMRI sessions. The workflow of functional data preprocessing is summarized as follows: (1) removal of 

the four initial volumes of the Blood-oxygen-level Dependent (BOLD) signals to achieve signal 

stabilization; (2) realignment of functional images using MCFLIRT (Jenkinson et al., 2002); (3) removal of 

nine confounding signals (six motion parameters+global/white matter/cerebral spinal fluid) as well as 

the temporal derivative, quadratic term, and temporal derivatives of each quadratic term (36 regressors 

total) (Satterthwaite et al., 2017); (4) co-registration of functional images to the T1 image using 

boundary-based registration (Greve and Fischl, 2009); (5) alignment of the co-registered images to 

template space using the ANTs-transform for the T1 image as above; and (6) temporal filtering of time 

series between 0.01 and 0.08 Hz as in previous studies (Biswal et al., 1995) using a first-order 

Butterworth filter. In this study, all regressors, including motion parameters and confound time courses, 

were band-pass filtered to the same frequency range as the time series data to prevent frequency-

dependent mismatch during confound regression (Hallquist et al., 2013). Functional images were 

smoothed using a Gaussian convolution at 6mm full width at half maximum.  
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2.3 Parcellation 

To investigate the influence of different parcellations on functional connectivity measures across sites 

and subsequent harmonization, we partitioned the brain of each participant into cortical and subcortical 

ROIs using the following three different whole-brain atlases (one anatomical and two functional): (1) 78 

cortical and 12 subcortical ROIs identified by automated anatomical labeling (AAL) (Tzourio-Mazoyer et 

al., 2002); (2) 264 cortical and subcortical ROIs of the widely-used functional Power atlas (Power et al., 

2011); and (3) 333 cortical and subcortical ROIs from the functional Gordon atlas (Gordon et al., 2016). 

The ROIs and MNI-space centroids of the AAL, Power, and Gordon atlases can be found in the 

Supplementary figure S1 and Supplementary Materials 2. 

 

2.4 Functional connectivity 

For each participant, whole-brain functional connectivity between all brain regions was constructed 

pairwise from the preprocessed fMRI data. The fMRI time series were extracted from each voxel and 

averaged within each ROI of the three atlases (AAL, Power, and Gordon). The functional connectivity 

between time series for all pair-wise ROIs was estimated by calculating two commonly used connectivity 

metrics: Pearson correlation and wavelet coherence. For Pearson correlation, the correlation 

coefficients were Fisher-transformed in order to draw more statistically interpretable conclusions about 

the magnitude of the correlations (Cohen and Esposito, 2016; Doucet et al., 2017). Due to poor signal 

quality and signal dropout, we excluded 61 ROIs from the Power atlas and 26 ROIs from the Gordon 

atlas, which resulted in 203 and 307 ROIs for the Power and Gordon atlases, respectively. All subsequent 

analyses were performed using the 90×90 AAL-atlas, 203×203 Power-atlas, and 307×307 Gordon-atlas 

connectivity matrices based on both Fisher-transformed Pearson correlation coefficients and raw 

wavelet coherence values from all participants. 

 

2.5 Model for functional connectivity matrix harmonization 

Based on the literature (Friedman et al., 2008; Feis et al., 2015; Rath et al., 2016; Dansereau et al., 

2017), we speculated that measurements such as DTI fractional anisotropy (Fortin et al., 2017), MRI 

cortical thickness (Fortin et al., 2018), and fMRI functional connectivity (the present study) would differ 

among the four sites (CU, MGH, TX and UM) due to systematic bias and non-biological variability 

attributable to the use of different scanners and different imaging parameters. 

    In this study, we used ComBat (Johnson et al., 2007) to reduce potential biases and non-biological 

variability induced by site and scanner effects. ComBat uses a multivariate linear mixed effects 

regression with terms for biological variables and scanner to model imaging feature measurements. The 

method uses empirical Bayes to improve the estimation of the model parameters for studies with small 

sample sizes. Here, we reformulate the ComBat model so that it can be applied to functional 

connectivity matrices estimated using Pearson correlation and wavelet coherence in combination with 

the AAL, Power, and Gordon atlases (i.e., six combinations: Correlation-AAL, Coherence-AAL, 

Correlation-Power, Coherence-Power, Correlation-Gordon, and Coherence-Gordon). Since all 
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tconnectivity matrices are symmetric, we applied ComBat to connectivity values in the upper triangles of 

the matrices. Let ���� represent the connectivity values of imaging site � (� ∈ {1, …, 4}), participant 	 
(	 ∈ {1,… , 228}), and connectivity value � (� ∈ {1,… , 4,005}	for the AAL atlas, � ∈ {1,… , 20,503}	for 

the Power atlas, and � ∈ {1,… , 46,971}  for the Gordon atlas) between two ROIs. Then, the ComBat 

model can be written as  

 

���� = �� + ������ + ��� +  ��!��� 

 

where �� is the average connectivity value for a particular connectivity value � between two ROIs, ����  is 

a design matrix for the covariates of interest (age , gender, and group), and �� is a vector of regression 

coefficients corresponding to �. As in Fortin et al. (2018), we further assume that the residual terms !��� 

arise from a normal distribution with zero mean and variance "�#. The terms ��� and  �� represent the 

additive (or location parameter) and multiplicative (or scale parameter) site effects of site � for 

connectivity value �, respectively. The ComBat-harmonized functional connectivity values were then 

defined as 

 

����$%&'() = *+,-./-0.1+,2-3.4+-∗
6+-∗

+ ��0 +�����3, 

 

where ���∗  and  ��∗ are the empirical Bayes estimates of ��� and  ��, respectively. Thus, ComBat 

simultaneously models and estimates biological and non-biological terms and algebraically removes the 

estimated additive and multiplicative site effects. Of note, in the ComBat model, we included age, sex, 

and group as covariates to preserve important biological trends in the data and avoid overcorrection.  

    In this study, we performed the ComBat harmonization analyses for the six-combinations of 

connectivity matrices in two sessions (S1 and S2), separately. ComBat harmonization analyses were 

performed using a publicly available MATLAB package hosted at 

https://github.com/Jfortin1/ComBatHarmonization/tree/master/Matlab.  

 

2.6 Visualization and evaluation of functional connectivity harmonization 

We used Kruskal-Wallis tests to quantify the magnitude of site effects in functional connectivity 

between all pairwise ROIs before and after applying ComBat harmonization to each of the six metric-

atlas combinations (Correlation-AAL, Coherence-AAL, Correlation-Power, Coherence-Power, Correlation-

Gordon, and Coherence-Gordon). The p-values were adjusted for multiple comparisons by controlling 

the false discovery rate (FDR) (Benjamini and Hochberg, 1995) at 5%, separately for each combination 

(AAL: 4,005 comparisons; Power: 20,503 comparisons; Gordon: 46,971 comparisons). The numbers and 

percentages of connectivity values that were significantly different (after FDR correction) across the 4 

sites for the six combinations are summarized in Table 2. The FDR-corrected p-values can be found in 
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tsupplementary Figure 1. We visualized site effects using boxplots of connectivity values between signals 

of two randomly selected ROIs for each atlas across the four sites (Figure 2; Supplementary Figures S3-

S6, subplot A). The selected ROIs were consistent for the same atlas using the two connectivity 

measures. 

    We also performed a principal component analysis (PCA) on the functional connectivity values in the 

upper triangle of the connectivity matrices for the six metric-atlas combinations before and after 

ComBat harmonization. In Supplementary Figure S3A-S6A, subplot A and S7, we plotted three-

dimensional scatter plots of the first three PC scores from the PCA. If the connectivity values were 

significantly different (Kruskal-Wallis tests; FDR corrections) across sites before or after ComBat 

harmonization, the corresponding PC scores are likely to be associated with site, and we would expect 

to see data from the same scanner roughly clustered together in the scatter plots.  

    To evaluate whether the assumed empirical Bayes priors for the location (�) and scale ( ) parameters 

in the ComBat harmonization model reasonably reflect the observed data, we overlayed the empirical 

and prior distributions of � and  	in	Figure	3	and	Supplementary Figures S3-S6, subplot C.  
    We applied ComBat harmonization to the connectivity matrices from each fMRI session, separately. 

We present visualizations of the site effects and plots of ComBat model parameters for the first session. 

Plots generated from the second session were similar and therefore not included. Figure 2 demonstrates 

differences in the distribution of functional connectivity across sites for the first session. Figure 3 

provides a visualization of the goodness of fit of the ComBat model’s prior assumptions to the observed 

data for the first session. Following ComBat, we extracted four network measures from the harmonized 

connectivity matrices and averaged these measures across the two sessions. Henceforth, we focus on 

analyzing the average network measures, which included weigthed DMN connectivity, nodal strength, 

local efficiency, and global efficiency. We formally define these measures in Section 2.7. 

 

2.7 Calculation of network measures  

In order to ensure that our post-processing harmonization did not remove meaningful biological 

variability along with the undesireable site effects we conducted an additional analysis. As the default 

mode network (DMN) has been found to have larger negative associations between age and functional 

connectivity metrics than other resting-state networks (Tomasi and Volkow, 2012; Ferreira and Busatto, 

2013; Damoiseaux, 2017), we selected it to conduct analysis of age-related effects. In this study 

functional connectivity and local network metrics (quantified by weighted nodal strength and nodal 

efficiency) were thus calculated in the DMN. Global network topology was characterized by weighted 

global efficiency. The computation details of these connectivity and network metrics are described in 

the following paragraphs.     

    For each atlas, the DMN network connectivity was defined by the summation of the functional 

connectivity values within the DMN ROIs normalized by the number of DMN ROIs for each atlas. The 

DMN nodal strength was computed by first summing the functional connectivity values (link weights) for 

each pair of ROIs and then summing up the nodal level connectivity values within the DMN ROIs of each 

specific atlas. The weighted local and global efficiency (Latora and Marchiori, 2001) were computed 

using the weighted shortest path length (AB; Dijkstra, 1959), which is the shortest sum of connection 
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tlength (inverse of the connectivity values or link weights) between two nodes (or ROIs; Rubinov and 

Sporns, 2010). The weighted nodal efficiency (CD%E(FB ) was calculated as the inverse of the harmonic 

mean of AB	from one node to all other nodes, as follows: 

 

CD%E(FB = 1
G − 1I

1
A�,�B�JK

 

 

where N is the number of nodes in graph G (represented by the AAL, Power and Gordon connectivity 

matrices in this study) and A�,�B  is the weighted shortest path length between node �	and 	. 
 

    Weighted local efficiency (CF%L(FB ) for a node is defined as the average weighted nodal efficiency 

among the neighboring nodes of that node (excluding the reference node), as follows: 

 

CF%L(FB = 1
GK+(GK+ − 1) I 1

A�,OB�,OJK+
 

 

where GK+  is the number of nodes in subgraph P�  that consists of all neighboring nodes of node �, but 

excluding node �. For the weighted DMN local efficiency, weighted local efficiency values were 

computed for each ROI and then summed up within the DMN ROIs of each specific atlas.  

 

    The weighted global efficiency (CQF%R(FB ) was calculated as the average weighted nodal efficiency of 

nodes in a graph G, as follows: 

 

CQF%R(FB = 1
G(G − 1) I 1

A�,�B�S�JK
 

 

    All the network efficiency measures were computed using the Brain Connectivity Toolbox (BCT) 

(Rubinov and Sporns, 2010). 

 

    For each participant, we first computed DMN network connectivity, DMN nodal strength, weighted 

DMN local efficiency, and weighted global efficiency for each of the six combinations (3 atlases × 2 

connectivity metrics) before and after applying ComBat harmonization. Next, we averaged the values of 

each participant’s network connectivity or efficiency measures from the two sessions. Then, we tested 

the global null hypothesis of no differences across sites in the network connectivity or efficiency 

measures using Kruskal-Wallis tests (in total, 2 conditions (before and after ComBat) × 2 connectivity 

metrics × 4 network measures × 3 atlases = 48 comparisons) with a separate FDR correction at 5% within 

each condition (2 connectivity metrics × 4 network measures × 3 atlases = 24 comparisons), separately.  

 

2.8 Preservation of biological variability  

An optimal harmonization technique should be able to remove most or all non-biological sources of 

variability caused by site and scanner, yet preserve or increase statistical power to detect biological 

associations. In this study, there was a broad participant age range (18 to 65 years), enabling 

investigation of age-related associations. Therefore, we investigated whether negative associations 
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tbetween age and DMN network connectivity as well as associations between age and network efficiency 

measures were preserved or made stronger when estimated using ComBat-harmonized data. 

    We computed the Spearman correlation between each network (or connectivity) measure and age. 

The p-values were adjusted for multiple comparisons (in total, 2 conditions (before and after ComBat) × 

2 connectivity metrics × 4 network measures × 3 atlases = 48 comparisons) by controlling the false 

discovery rate (FDR) (Benjamini and Hochberg, 1995). As before, the FDR corrections were applied 

separately within condition (2 connectivity metrics × 4 network measures × 3 atlases = 24 comparisons). 

A significance level of p < .05 was used for these tests. Note that, for the Power and Gordon atlases, we 

used the original definitions of DMN ROIs from Power et al., 2011 and Gordon et al., 2011, respectively; 

for the AAL atlas, we defined DMN ROIs according to a review article, Rosazza and Minati, 2011. For 

details of the definition of the DMN ROIs for each atlas, refer to Supplementary Table 1, Figure S1 and 

Supplementary materials 2. Figure S1, subplot b, c were visualized with BrainNet Viewer (version 1.5, Xia 

et al., 2013, http://www.nitrc.org/projects/bnv/). 

         

2.9 Statistical analysis of demographic characteristics 

Statistical analyses for demographic characteristics of participants were performed using MATLAB 

(R2017a). Age and educational level were compared among the four sites using Kruskal-Wallis tests 

followed by Mann Whitney-U tests when appropriate. All p-values from the Mann Whitney-U tests were 

adjusted for multiple comparisons by controlling the false discovery rate (FDR) (Benjamini and 

Hochberg, 1995) at 5%. We tested for differences in the gender and clinical group distribution among 

the four sites using Pearson’s chi-squared (χ
2
) tests.  

 

3 | RESULTS 

3.1 Demographic characteristics 

The distribution of demographic characteristics across imaging sites is shown in Figure 1. The age 

distribution (p = .001) was imbalanced across sites; subjects in the TX site were older than the other 

sites (TX-CU: p < .001; TX-MGH: p = .04; TX-UM: p = .04; FDR correction). There were also weak site 

effects (p = .03) in the level of education, but no differences were found regarding educational level 

between pairwise sites after FDR correction. Gender (p = .14) and depressed/control (p = .34) 

distributions were equally distributed across sites.  

 

3.2 Visualization and evaluation of ComBat harmonization  

Functional connectivity values estimated by Pearson correlation showed much stronger site effects than 

those by wavelet coherence for analyses using the AAL and Power atlases as well as the Gordon atlas 

(Table 2). Moreover, the AAL atlas had a much larger percentage of connectivity values that differed 

significantly across the four sites than the Power and Gordon atlases (Table 2). Following ComBat 

harmonization, there were no statistically significant site effects in the functional connectivity values of 

the six metric-atlas combinations.  
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t    Figure 2 displays boxplots of functional connectivity values between two randomly selected ROIs (for 

AAL: TPOmid.R and ACG.R; for Power: two regions in the visual cortex) for the Pearson correlation-AAL 

atlas and Wavelet coherence-Power atlas combinations. The connectivity values between these two 

ROIs showed consistent patterns across the four sites: for the AAL atlas, MGH values were generally 

higher than the other three sites; for the Power atlas, MGH values were generally lower than the other 

three sites. For the Gordon atlas, MGH and UM values were generally lower than the other two sites 

(see Supplementary Figures S5-S6, subplot A, for the Gordon atlas results). After ComBat harmonization, 

these significant site effects were dramatically reduced in all six metric-atlas combinations. See 

Supplementary Figures S3-S6, subplot A for boxplots of functional connectivity for other metric-atlas 

combinations, before and after ComBat.  

    To further visualize site effects, we generated three-dimensional scatter plots of the first three 

principal component (PC) scores obtained from the functional connectivity matrices (see Supplementary 

Figures S3-S6, subplot B; Figure S7). For all three atlases, the second PC scores from CU and/or MGH 

patients showed distinct separation from those of TX and UM, particularly when using Pearson 

correlation. These visual site effects are much less noticable in the ComBat-harmonized data: the first 

three PC scores were not clearly associated with site by visual inspection for any of the metric-atlas 

combinations (Supplementary Figures S3-S6, subplot B; Figure S7). 

    For all metric-atlas combinations, the ComBat-harmonized prior distributions appear to fit the 

empirical distributions of both the location (�)	and scale ( )	parameters well (Figure 3 and 

Supplementary Figures S3-S6, subplot C). Visual inspection of these overlaid distributions suggests that 

the ComBat model used appropriate prior information to capture the underlying site effects in the 

functional connectivity matrices. Furthermore, for each of the three atlases, the distributions of � and   

reflected the observed lower magnitudes in the distribution location and variability of MGH values 

compared with the values from other three sites, i.e., for MGH,  	<	1	on average using Pearson 

correlation and  	<	1	and	�	<	0	using wavelet coherence. 

    Before performing ComBat harmonization on the functional connectivity matrices, all the network 

connectivity and efficiency measures estimated by Pearson correlation and a majority of the measures 

estimated by wavelet coherence displayed statistically significant site effects with similar patterns across 

sites (MGH values were generally lower than all the other sites). Figure 5A displays log-transformed p-

values from the global site effect tests for each metric-atlas combination before and after ComBat. The 

p-values for network connectivity and the efficiency measures estimated by Pearson correlation were 

considerably more significant than those estimated by wavelet coherence (see Supplementary Figures 

S8-S10, subplot A, for corresponding boxplot visualizations of the site effects). After ComBat 

harmonization, there were no remaining statistically significant site effects for any metric-atlas 

combination.   

    Prior to functional connectivity harmonization using ComBat, there were statistically significant site 

effects across all network connectivity and efficiency measures estimated by both Pearson correlation 

and wavelet coherence when using the Gordon atlas (Figure 5A). In contrast, prior to harmonization 

using Combat, when using the AAL or Power atlases, a number of the measures estimated by wavelet 

coherence did not display significant differences across sites (Figure 5A, Supplementary Figures S9-S10, 

subplot A). 
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t3.3 Preservation of biological variability  

3.3.1 By connectivity metric 

ComBat harmonization preserved or strengthened the anti-correlations between age and DMN 

functional connectivity as well as between age and network efficiency measures. The p-values and 

correlation values for each metric-atlas combination are displayed in Figures 5B and 5C, respectively, 

where we see more significant p-values and stronger correlations post-ComBat. This result was true for 

both Pearson correlation and wavelet coherence connectivity, with wavelet coherence identifying the 

strongest anti-correlations both before and after ComBat harmonization. Supplementary Figures S8-S9, 

subplot B, display scatter plots associated with each correlation value.  

3.3.2 By atlas 

Using the original data without ComBat harmonization, the Gordon atlas showed significant site effects 

in all network connectivity and efficiency measures estimated by both Pearson correlation and wavelet 

coherence (Figure 5A). However, for AAL and Power atlases, there were no site effects even in some 

non-harmonized measures estimated by wavelet coherence (Figure 5A).  

    As shown in Figure 5B, ComBat harmonization strengthened the estimated anti-correlations between 

age and network measures across all three atlases. In particular, for the AAL and Power atlases, ComBat 

harmonization uncovered significant anti-correlations that were not detected when using the non-

harmonized data (Figure 4B, Figure 5B). Among the three atlases, the AAL atlas identified the fewest 

significant anti-correlations both before and after ComBat harmonization and the magnitudes were 

generally smaller than those identified by other atlases. The Power atlas identified stonger anti-

correlations than the other two atlases post-ComBat. Moreover, a majority of the network measures 

estimated by the correlation-AAL combination were not negatively associated with age, even after 

performing ComBat harmonization (see Supplementary Figures S8B-S10B, for scatter plots associated 

with the p and correlation values in Figure 5B,C). 

    Overall, ComBat harmonization not only removed unwanted site effects in network connectivity and 

efficiency measures calculated from functional connectivity matrices but also preserved or increased the 

estimated underlying correlations with age. Some specific combinations of atlases and connectivity 

metrics appear to be better than others with respect to revealing significant relationships with age. 

When considering both site effect removal and correlation with age, we found that the coherence-

Power combination performed optimally.  

 

4 | DISCUSSION 

In this study, we investigated the degree to which combining data from different scanners in a multi-site 

study could affect downstream analyses of fMRI-based functional connectivity and network efficiency 

measures. We implemented several visualization techniques and statistical tests to visualize and 

quantify the scanner effects. We performed ComBat harmonization on fMRI-based functional 

connectivity matrices to remove site effects before extracting DMN connectivity and network measures. 

We quantified the site effects and the performance of ComBat harmonization using two different 

metrics to compute connectivity and three different brain atlases. We demonstrated that ComBat 
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tharmonization can successfully remove site effects in the functional connectivity matrices, thereby 

leading to network connectivity and efficiency measures that are also not different across sites for any 

choice of connectivity metric and atlas. Moreover, we found that using wavelet coherence with the 

Power atlas resulted in the best power to detect anti-correlations between age and DMN functional 

connectivity as well as network efficiency measures following ComBat harmonization, suggesting the 

best preservation of underlying biological signal with this combination. 

 

4.1 ComBat harmonization removes site effects 

As previous studies (Van Horn and Toga, 2009; Dansereau et al., 2017) have consistently reported the 

existence of considerable site effects in multi-site fMRI measurements that cannot be removed by 

performing ICA-based approaches (Feis et al., 2015), we tested whether ComBat harmonization could 

eliminate site effects in several fMRI-based functional connectivity and network measures. Of note, we 

only performed ComBat harmonization on the original functional connectivity matrices and then 

subsequently calculated network connectivity and efficiency measures from the harmonized 

connectivity matrices. Notably, we did not find statistically significant site effects in the downstream 

network measures.  

    Given the excellent performance of ComBat in DTI (Fortin et al., 2017), MRI-based cortical thickness 

(Fortin et al., 2018), and fMRI (current study) measurements, we conclude that this harmonization 

method is a reliable and powerful technique that can be widely applied to different neuroimaging 

modalities and summary measurements. 

 

4.2 Wavelet coherence outperforms Pearson correlation 

In this study, to investigate the effects of connectivity metrics on multi-site fMRI measurements and the 

performance of ComBat harmonization, we used both Pearson correlation and Wavelet coherence to 

estimate the fMRI functional connectivity. Previous studies have shown that wavelet coherence 

outperforms Pearson correlation with respect to sensitivity to outliers caused by motion artifact (Huber, 

2004; Achard et al., 2006). Additionally, using coherence avoids the need to remove negative correlation 

coefficients to calculate network measures (Achard and Bullmore, 2007; Bassett et al., 2011) and 

robustly extracts frequency-specific information from the time series without picking up on edge effects 

of band-pass filtering (Percival and Walden, 2000; Zhang et al., 2016). However, currently there is no 

study comparing the sensitivity to scanner differences of the two connectivity metrics applied to fMRI 

data. Our results indicate that ComBat harmonization can remove scanner effects from the data, 

regardless of the choice of connectivity metric.  However, wavelet coherence-based measures showed 

weaker differences across sites than Pearson correlation-based measures in non-harmonized data. 

Moreover, wavelet coherence measures generally resulted in stronger anti-correlations between age 

and the connectivity and network measures across all the three atlases (AAL, Power and Gordon) both 

before and after harmonization. For multi-site fMRI studies, this result suggests that wavelet coherence 

may be preferable to Pearson correlation when extracting connectivity and network summary 

outcomes.  
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t4.3 Power atlas outperforms AAL and Gordon atlases 

We also studied the effects of three atlases (AAL, Power and Gordon) on multi-site fMRI measurements 

and the performance of ComBat harmonization. A larger percentage of connections between ROIs were 

significantly affected by site in the AAL atlas than in the Power and Gordan atlases. These results are 

consistent with previous findings that in multi-site fMRI studies, functional atlases extracted from large 

resting-state fMRI datasets outperform traditional anatomical atlases (Abraham et al., 2017). For all 

three atlases, site effects in the functional connectivity and network measures were successfully 

removed by ComBat harmonization. However, all the network connectivity and efficiency measures 

using the AAL atlas were less correlated with age than those using the Power and Gordan atlases, 

suggesting that the AAL atlas may not be as sensitive to underlying biological variability (assessed using 

age in this study) when using multi-site fMRI data. Interestingly, we did not find significant site effects 

using the Power atlas among non-ComBat-harmonized network efficiency measures estimated by 

wavelet coherence. In contrast, the AAL and Gordon atlases demonstrated strong site effects in these 

non-ComBat-harmonized network measures. Overall, we concluded that the Power atlas outperforms 

the AAL and Gordon atlases with respect to post-ComBat analyses of biological variability.  

 

4.4 Strengths, limitations and future direction 

Our current study has several strengths: (1) we investigated six combinations of two connectivity 

metrics and three atlases, and thus were able to explore the ability of ComBat harmonization to remove 

site effects and to identify combinations of connectivity metrics (wavelet coherence) and atlases (Power 

and Gordon) that best preserved age-related anti-correlations after harmonization; (2) we used a 

relatively large sample (228 participants), therefore providing relatively reliable and convincing results; 

(3) by using the ComBat model, which is generic in its formulations and thus could easily be generalized 

to additional imaging modalities, our findings may have implications for multi-site 

electroencephalography, magnetoencephalography and other neurophysiological and neuroimaging 

datasets; (4) ComBat has been implemented the in MATLAB and R 

(https://github.com/Jfortin1/ComBatHarmonization) and in Python 

(https://github.com/ncullen93/neuroCombat) making the technique available and largely applicable to 

analysts using a variety of different software packages for image processing. 

    There are also several limitations that should be considered and improved in future studies. First, 

several previous fMRI studies (Friedman et al., 2006; Brown et al., 2011; Forsyth et al., 2014; Keshavan 

et al., 2016; Rath et al., 2016; Noble et al., 2017; Shinohara et al., 2017) used traveling-subject datasets 

in which the same participants were scanned across sites to reduce the subject effects. One recent study 

(Noble et al., 2017) using a small dataset (8 subjects scanned at each of 8 sites) found that the subject 

differences were stronger than potential site effects. Although, our ComBat harmonization technique 

was tested on different participants scanned across different sites with heterogeneous protocols, we 

speculate that ComBat harmonization will also have excellent performance on removing any non-

biological variations when applied to traveling-subject datasets, however this remains to be proven. 

Second, in some longitudinal datasets, the same participants may be scanned on different scanners over 

multiple time points. However, the current ComBat harmonization model cannot be directly applied to 

this type of longitudinal data. Therefore, in the future, we plan to develop a time-dependent ComBat 
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talgorithm to study longitudinal fMRI connectivity and network properties. Third, in the present study, 

we tested the performance of ComBat harmonization on two functional connectivity metrics and three 

atlases (six combinations). Although the ComBat model does not require assumptions on connectivity 

metrics and atlases, we found that the choices of connectivity metrics and atlases had a strong influence 

on the magnitude of site effects in fMRI measurements and on preserving biological variability (age in 

this study). Therefore, future work exploring the performance of ComBat harmonization in other 

combinations of connectivity metrics (e.g. partial correlation) and atlases (anatomical atlas: Brodmann, 

1909; Desikan et al., 2006; functional atlas: Yeo et al., 2011; Wig et al., 2014; Glasser et al., 2016; 

Schaefer et al., 2017) is warranted. Finally, in this project we focused on the ability of ComBat 

harmonization to preserve age-related associations with several network connectivity and efficiency 

measures. However, previous studies (Bullmore and Sporns, 2012; Stam, 2014; Fornito et al., 2015; Yu et 

al., 2016, 2017) have shown that functional brain network organizations are highly correlated with other 

demographic (e.g. gender, educational level), clinical phenotypes (e.g. disease severity for neurological 

disorders), and pathological biomarkers (e.g. amyloid-�42 and tau proteins in Alzheimer’s disease). In 

particular, the EMBARC functional dataset was originally designed to study the potential differences on 

fMRI measurements between MDD patients and healthy controls (Greenberg et al., 2015; Trivedi et al., 

2016; Webb et al., 2016). Future studies will focus on whether the ComBat-harmonized fMRI data 

preserve functional brain networks (Kaiser et al., 2015; Gong and He, 2015) associated with depression, 

and whether the abnormal network attributes in MDD after ComBat harmonization are associated with 

patients’ symptoms (Sheline et al., 2009, 2010; Otte et al., 2016; Williams, 2016). 

 

5 | CONCLUSION 

ComBat harmonization is a powerful technique for removing site effects in functional connectivity 

matrices, network connectivity, and efficiency measures. In addition, it preserves or strengthens the 

power to detect age-related anti-correlations in network connectivity and efficiency measures. In the 

current multi-site fMRI study, the optimal performance of ComBat harmonization was obtained by using 

wavelet coherence to extract functional connectivity from the Power atlas segmentation of functional 

brain images. 
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TABLE 1 Imaging parameters for the four clinical sites: Columbia University (CU), Massachusetts 

General Hospital (MGH), the University of Texas Southwestern Medical Center (TX) and the 

University of Michigan (UM). 

 CU MGH TX UM 

Scanner General Electric 3T  Siemens 3T  Phillips 3T  Phillips 3T  

Structural FSPGR  

TR = 6.0 ms  

TE = 2.4 ms  

TI = 900 ms  

Flip Angle = 9°  

FOV= 256×256 mm  

Slice Thickness = 1 mm   

Matrix = 256×256   

178 continuous slices     

(4 discarded) 

MPRAGE 

TR = 2300 ms  

TE = 2.54 ms  

TI = 900 ms  

Flip Angle = 9°  

FOV= 256×256 mm  

Slice Thickness = 1 mm   

Matrix = 256×256   

176 continuous slices 

Turbo Field Echo (TFE) 

TR = 8.2  ms  

TE = 3.7 ms  

TI = 1100 ms  

Flip Angle = 12°  

FOV= 256×256 mm  

Slice Thickness = 1mm   

Matrix = 256×256   

178 continuous slices 

MPRAGE 

TR = 2100 ms  

TE = 3.7 ms  

TI = 1100 ms  

Flip Angle = 12°  

FOV= 256×256 mm 

Slice Thickness = 1mm  

Matrix = 256×256   

178 continuous slices 

Functional TR/TE = 2000/28msec 

Flip Angle 90° 

 FOV = 205×205 mm 

Slice thickness: 3.1 mm  

Matrix 64×64 

TR/TE = 2000/28msec 

Flip Angle 90°  

FOV = 205×205 mm 

Slice thickness: 3.1 mm  

Matrix 64×64 

TR/TE = 2000/28msec 

Flip Angle 90° 

FOV=205×205 mm Slice 

thickness: 3.1 mm  

Matrix 64×64 

TR/TE = 2000/28msec 

Flip Angle 90°  

FOV = 205×205 mm 

Slice thickness: 3.1 

mm  Matrix 64×64 

 

 

TABLE 2 Site effects in functional connectivity values for different connectivity measures 

(Pearson correlation and wavelet coherence) using different atlases (AAL, Power and Gordon). 

Six combinations of two 

connectivity measures 

and three atlases 

Number of ROIs Original ComBat 

Pearson  

correlation 

AAL 90 1610 (40.2%) 0 (0%) 

Power 203 515 (2.5%) 0 (0%) 

Gordon 307 603 (1.3%) 0 (0%) 

Wavelet 

coherence 

AAL 90 7 (0.2%) 0 (0%) 

Power 203 12 (0.06%) 0 (0%) 

Gordon 307 17 (0.04%) 0 (0%) 
Note that, the numbers and percentages in the round brackets represent the numbers and percentages of connectivity values 

that were significantly different across 4 sites for six combinations of two connectivity measures and three atlases, respectively. 

Significant effects for each combination were computed using Kruskal-Wallis tests with FDR corrections. Here we only 

presented the results of the first-session data, as the two sessions showed extremely similar results. 
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FIGURE 1 Distribution of subject demographic characteristics across 4 sites. Abbreviations: MDD = major 

depressive disorder; Control = healthy controls; MGH = Massachusetts General Hospital; TX = University 

of Texas Southwestern Medical Center; UM = University of Michigan. Note that whiskers in the boxplots 

represent variability outside the upper and lower quartiles. 

 

FIGURE 2 Site effects in functional connectivity estimated by “Correlation-AAL” (A) and “Coherence-

Power” (B) before and after ComBat harmonization. Note that the functional connectivity values in (A) 

and (B) were computed from the time series of two randomly selected ROIs: for AAL, the TPOmid.R and 

ACG.R were selected; for Power, two regions in the visual cortex were selected; whiskers in the boxplots 

represent variability outside the upper and lower quartiles. Abbreviations: CU = Columbia University; 

MGH = Massachusetts General Hospital; TX = University of Texas Southwestern Medical Center; UM = 

University of Michigan; TPOmid.R = right Temporal pole: middle temporal gyrus; ACG.R = right Anterior 

cingulate and paracingulate gyri.  

 

FIGURE 3 Empirical (dashed lines) and ComBat-estimated (solid lines) prior distributions for the site-

specific location (�) and scale ( ) parameters for “Correlation-AAL” (A) and “Coherence-Power” (B). 

Abbreviations: CU = Columbia University; MGH = Massachusetts General Hospital; TX = University of 

Texas Southwestern Medical Center; UM = University of Michigan. 

 

FIGURE 4 DMN connectivity estimated by “Coherence-Power” and “Correlation-AAL” across sites (A) and 

their anti-correlations with age (B). Note that DMN connectivity was computed by first summing the 

functional connectivity values within the DMN ROIs, and then normalizing by the number of DMN ROIs 

corresponding to each atlas (Power and AAL); the significant site effects in DMN connectivity were 

removed by ComBat harmonization (A). The strong anti-correlation between age and DMN connectivity 

estimated by “Coherence-Power” was preserved in ComBat-harmonized data; for “Correlation-AAL”, 

ComBat harmonization increased the detection power of the anti-correlation (B). Note that whiskers in 

the boxplots represent variability outside the upper and lower quartiles. Abbreviations: DMN = default 

mode network.  

 

FIGURE 5 Negative log-transformed p-value heat maps for Kruskal-Wallis tests (e.g. Figure 4A; 

Supplementary Figure S8-S10, subplot A) of network connectivity and efficiency measures (A), and 

correlation coefficient (B) heat maps for correlation analyses between the network measures and age 

(e.g. Figure 4B; Supplementary Figure S8-S10, subplot B). Note that the asterisks (blue or white colors) 

represent p < .05, which corresponds to a negative log10 transformed p-value greater than 1.301 in the 

color bar of (A). Abbreviations: DC = DMN connectivity; DNS = DMN nodal strength; DLE = DMN local 

efficiency; GE = global efficiency. Note that DMN connectivity was computed by first summing the 
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corresponding to each atlas (AAL, Power and Gordon); please see the details of the computation of DNS, 

DLE and GE in Section 2.7 Calculation of network measures. 
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Distribution of subject demographic characteristics across 4 sites. Abbreviations: MDD = major depressive 
disorder; Control = healthy controls; MGH = Massachusetts General Hospital; TX = University of Texas 
Southwestern Medical Center; UM = University of Michigan. Note that whiskers in the boxplots represent 

variability outside the upper and lower quartiles.  
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Site effects in functional connectivity estimated by “Correlation-AAL” (A) and “Coherence-Power” (B) before 
and after ComBat harmonization. Note that the functional connectivity values in (A) and (B) were computed 
from the time series of two randomly selected ROIs: for AAL, the TPOmid.R and ACG.R were selected; for 

Power, two regions in the visual cortex were selected; whiskers in the boxplots represent variability outside 
the upper and lower quartiles. Abbreviations: CU = Columbia University; MGH = Massachusetts General 

Hospital; TX = University of Texas Southwestern Medical Center; UM = University of Michigan; TPOmid.R = 
right Temporal pole: middle temporal gyrus; ACG.R = right Anterior cingulate and paracingulate gyri.  
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Empirical (dashed lines) and ComBat-estimated (solid lines) prior distributions for the site-specific location 
(�) and scale (�) parameters for “Correlation-AAL” (A) and “Coherence-Power” (B). Abbreviations: CU = 

Columbia University; MGH = Massachusetts General Hospital; TX = University of Texas Southwestern 
Medical Center; UM = University of Michigan.  
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DMN connectivity estimated by “Coherence-Power” and “Correlation-AAL” across sites (A) and their anti-
correlations with age (B). Note that DMN connectivity was computed by first summing the functional 

connectivity values within the DMN ROIs, and then normalizing by the number of DMN ROIs corresponding 
to each atlas (Power and AAL); the significant site effects in DMN connectivity were removed by ComBat 

harmonization (A). The strong anti-correlation between age and DMN connectivity estimated by “Coherence-
Power” was preserved in ComBat-harmonized data; for “Correlation-AAL”, ComBat harmonization increased 
the detection power of the anti-correlation (B). Note that whiskers in the boxplots represent variability 

outside the upper and lower quartiles. Abbreviations: DMN = default mode network.  

 
148x161mm (96 x 96 DPI)  

 

 

Page 56 of 57

John Wiley & Sons, Inc.

Human Brain Mapping

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t   

 

 

5 Negative log-transformed p-value heat maps for Kruskal-Wallis tests (e.g. Figure 4A; Supplementary 
Figure S8-S10, subplot A) of network connectivity and efficiency measures (A), and correlation coefficient 

(B) heat maps for correlation analyses between the network measures and age (e.g. Figure 4B; 
Supplementary Figure S8-S10, subplot B). Note that the asterisks (blue or white colors) represent p < .05, 

which corresponds to a negative log10 transformed p-value greater than 1.301 in the color bar of (A). 
Abbreviations: DC = DMN connectivity; DNS = DMN nodal strength; DLE = DMN local efficiency; GE = global 
efficiency. Note that DMN connectivity was computed by first summing the functional connectivity values 
within the DMN ROIs, and then normalizing by the number of DMN ROIs corresponding to each atlas (AAL, 

Power and Gordon); please see the details of the computation of DNS, DLE and GE in Section 2.7 Calculation 
of network measures.  
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