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Abstract

Background: The spectrum of somatic single-nucleotide variants in cancer genomes often reflects the signatures of
multiple distinct mutational processes, which can provide clinically actionable insights into cancer etiology. Existing
software tools for identifying and evaluating these mutational signatures do not scale to analyze large datasets
containing thousands of individuals or millions of variants.

Results: We introduce Helmsman, a program designed to perform mutation signature analysis on arbitrarily large
sequencing datasets. Helmsman is up to 300 times faster than existing software. Helmsman’s memory usage is
independent of the number of variants, resulting in a small enough memory footprint to analyze datasets that
would otherwise exceed the memory limitations of other programs.

Conclusions: Helmsman is a computationally efficient tool that enables users to evaluate mutational signatures
in massive sequencing datasets that are otherwise intractable with existing software. Helmsman is freely available
at https://github.com/carjed/helmsman.
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Background
The spectrum of somatic single-nucleotide variants
(SNVs) in cancer genomes carries important information
about the underlying mutation mechanisms, providing
insight into the development, evolution, and etiology of
the cancer cell populations [1]. Evaluating these patterns
of variation, referred to as “mutational signatures,” has
become an important task in precision oncology, as mu-
tational signatures can be used both to refine cancer
diagnoses and identify effective targeted therapies [2].
Several software programs and web services have been

developed to identify and evaluate the mutational signa-
tures present in cancer genomes [3–7]. Most methods
consider 96 mutation subtypes, defined by the type of
base change (C>A, C>G, C>T, T>A, T>C, T>G) and the
trinucleotide sequence context (e.g., C[T>G]T, C[C>A]T,

and so on) [8]. Mutation signature analysis methods ex-
press the observed mutation spectrum in each sample as
a linear combination of a preset number (K) of distinct
mutational signatures, where the signatures are inferred
directly from the input data, or taken from external
sources such as the COSMIC mutational signature data-
base [1]. These programs typically start with an input
file, often in a standard format such as Variant Call For-
mat (VCF) or Mutation Annotation Format (MAF), con-
taining the genomic coordinates of each SNV and the
sample(s) in which they occur. As a first step, these
SNVs must be summarized into a NxS mutation spectra
matrix, M, containing the frequencies of S different SNV
subtypes in each of N unique samples (where the Mi, j

entry indicates the number of observed SNVs of subtype
j in sample i). Most methods are implemented as R
packages and must read the entire input file into mem-
ory prior to generating the mutation spectra matrix. For
large input files, containing for example millions of
SNVs and hundreds or thousands of samples, the mem-
ory required for this step can easily exceed the physical
memory capacity of most servers, rendering such tools
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incapable of directly analyzing large datasets. To circum-
vent these computational bottlenecks, researchers must
either limit their analyses to small samples, pool samples
together, or develop new software to generate the muta-
tion spectra matrix. Presently, the largest studies to per-
form mutation signature analysis have included millions
of mutations in thousands of whole cancer genomes [1,
9], but these studies have pooled individual samples into
~ 30 distinct cancer types, potentially obscuring the
presence of mutation signatures unique to individual
cancer genomes or more granularly defined cancer
types.

Implementation
To overcome the limitations of existing mutation signa-
ture analysis tools, we have developed Helmsman, a new
mutation signature analysis program optimized for per-
forming mutation signature analysis on arbitrarily large
datasets. Helmsman is implemented in Python, and is
primarily designed to accept VCF files as input (though
Helmsman can also accept data in other formats, such
as MAF). Helmsman uses the powerful cyvcf2 Python li-
brary [10] for back-end processing of VCF files. Cyvcf2
is essentially a Python wrapper for the same htslib C li-
braries that serve as the back-end for standalone com-
piled VCF-processing toolkits like bcftools [11], and
offers comparable speed and memory efficiency [10].

Generation of mutation spectra matrices
For each SNV in a VCF file, Helmsman defines the mu-
tation type based on the reference and alternative alleles,
then queries the corresponding reference genome for
the trinucleotide context of the SNV, determining sub-
type j. The functions for querying the reference genome
were derived from the pyfaidx Python library, which pro-
vides fast and memory-efficient random access to refer-
ence genome files, without requiring the entire file to be
loaded into memory [12]. The genotypes of the N sam-
ples for this SNV are represented as an integer array,
with the number of alternative alleles per sample coded
as 0, 1, or 2 according to the observed genotype [10].
Based on the genotype for sample i, Helmsman incre-
ments the Mi, j entry of the mutation spectra matrix ac-
cordingly (i.e., if individual i is heterozygous, Mi, j is
incremented by 1, but if individual i is homozygous for
the reference allele, Mi, j remains unchanged). This pro-
cedure is fully vectorized, meaning that instead of per-
forming N sequential operations (i.e., looping through
the genotypes of the N samples for a given SNV and
adding the value of each element to the corresponding
Mi, j entry), Helmsman performs element-wise addition
of the genotype array to the jth column of the M matrix
in a single computational operation. Consequently,
Helmsman’s processing time is independent of sample

size and scales linearly with the number of SNVs. The
only objects stored in memory at any given moment are
the array of N genotypes for the SNV being processed
and the Nx96 mutation spectra matrix, so memory usage
is independent of the number of SNVs and scales
linearly with sample size.

Mutation signature analysis
Once the mutation spectra matrix has been generated,
Helmsman can apply non-negative matrix factorization
(NMF) to this matrix to infer the underlying mutation
signatures and their loadings within each sample, using
functions from the nimfa [13] Python library. Alterna-
tively, Helmsman can perform principal component ana-
lysis (PCA) to the mutation spectra matrix using
functions from the scikit-learn [14] library. We note that
because PCA does not enforce non-negativity, the result-
ing components do not have a useful biological inter-
pretation like the NMF signatures do [15]; however,
PCA remains useful as an orthogonal exploratory ana-
lysis to highlight patterns of similarity in the spectra of
the samples (as in [16]), which can help guide under-
standing of how many distinct signatures may be con-
tributing to the observed mutation spectra in a given
dataset [17].
Alternatively, users can forgo the built-in mutation sig-

nature analysis and instead opt to write the mutation
spectra matrix to a file and perform downstream ana-
lyses in their preferred environment. When this option
is selected, users can specify one of several different R
packages that they wish to use for their downstream
analysis (e.g., SomaticSignatures or deconstructSigs) and
Helmsman will automatically generate an R script with
all code necessary to load the output matrix into R and
format it for compatibility with the specified package.
This feature was designed expressly to enable and en-
courage researchers to continue using existing mutation
signature analysis tools that would otherwise be incap-
able of processing large datasets due to computational
bottlenecks. Further, this feature better enables users to
perform multiple complementary analyses. For example,
after generating the mutation spectra matrix with
Helmsman, users could perform supervised signature
decomposition with deconstructSigs [4] to assess the
presence of known signatures, then apply the de novo
signature extraction methods of SomaticSignatures [3]
or signeR [5] to determine if the data contain novel sig-
natures, without ever needing to re-generate or manually
reformat the mutation spectra matrix.

Additional features
In addition to being optimized for speed and low mem-
ory usage, Helmsman includes several features to ac-
commodate various usage scenarios and minimize the
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amount of pre-processing necessary to analyze large mu-
tation datasets. For example, if input data are spread
across multiple files (e.g., by different sub-samples or
genomic regions), Helmsman can process these files in
parallel and aggregate them into a single mutation spec-
tra matrix, providing additional performance improve-
ments and avoiding the need to generate intermediate
files. Similarly, in certain applications, it may be desir-
able to pool similar samples together (e.g., by tumor
type) when generating the mutation spectra matrix.
Helmsman can pool samples on-the-fly, without needing
to pre-annotate or reshape the input file with the desired
grouping variable. All features are described in detail in
the online documentation.

Alternative deployment options
We have also created a Docker image to easily deploy
Helmsman in an isolated and reproducible environment
on virtually any personal computer, local server, or cloud
server where Docker containers are supported. This
Docker image contains the Helmsman source code along
with a minimal Python environment and all the necessary
library dependencies, as well as the bcftools suite [11] to
perform any necessary pre-processing within the same
container environment. When the Docker container is de-
ployed, an interactive Jupyter notebook will be available to
run Helmsman. Further, this Docker image is fully com-
patible with the Binder platform [18], which effectively en-
ables Helmsman to be used as a web server for
performing mutation signature analysis on small datasets.
A Binder instance of Helmsman can be accessed at
https://mybinder.org/v2/gh/carjed/helmsman/master.

Results
Performance comparison
We compared Helmsman’s performance to that of three
published R packages: SomaticSignatures [3], deconstruct-
Sigs [4], and signeR [5]. We also considered several other

tools, and discuss their performance in the Additional file
1. For our tests, we generated a small VCF file (2.7MB
compressed with bgzip) containing 15,971 germline SNVs
on chromosome 22 from 2504 samples sequenced in the
1000 Genomes Project phase 3 [19], and measured the
runtime and memory usage necessary for each program to
generate the mutation spectra matrix. We also attempted
to run each program using the full chromosome 22 VCF
file from the 1000 Genomes Project, containing 1,055,454
SNVs in 2504 individuals. The number of SNVs in this
VCF file is comparable to those of the large somatic SNV
datasets analyzed in [1, 9].
All programs generated the same mutation spectra

matrices. Helmsman processed the small VCF file in 8 s,
with a memory footprint of 140MB, and the full VCF
file in 482 s (corresponding to a linear increase for ~60x
more variants) with no increase in memory usage as the
sample size remained the same. In contrast, to process
the small VCF file, SomaticSignatures took 227 s with a
memory footprint of 18GB, deconstructSigs took 2376 s
and 7.5GB of memory, and signeR took 1740 s and
10.2GB of memory (Fig. 1). None of these R packages
were able to load the full VCF file due to memory alloca-
tion errors. All other tools we considered showed similar
performance bottlenecks when compared to Helmsman
(Additional file 1, Additional file 2: Figure S1).
To further highlight the speed and efficiency of

Helmsman for large datasets, we evaluated the entire set
of 36,820,990 autosomal biallelic SNVs from the 1000
Genomes phase 3 dataset (14.4 GB when compressed
with bgzip). Using 22 CPUs (one per chromosome VCF
file), Helmsman generated the mutation spectra matrix
in 64 min (approximately 1.5 s per sample), with each
process requiring < 200MB of memory.

Validating mutation signatures
Because Helmsman uses NMF algorithms from the
nimfa Python library [13] rather than the NMF R

Fig. 1 Performance comparison for generation of the mutation spectra matrix by different programs. For Helmsman and three other mutation
signature analysis tools (SomaticSignatures, deconstructSigs, and signeR), we measured the maximum memory usage in megabytes (a) and
processing time in seconds (b) required to generate the 2504 × 96 mutation spectra matrix from a VCF file containing 15,971 SNVs in 2504
samples from the 1000 Genomes project
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package [20] (as used in the SomaticSignatures [3] and
MutSpec [21] programs), we also evaluated whether the
mutational signatures inferred by our implementation
were consistent with biologically validated signatures de-
scribed in the literature. To this end, we analyzed a data-
set of 100 simulated mutation spectra, which were
randomly generated by Rosenthal et al. [4] using linear
combinations of the 27 mutation signatures inferred
from 7042 cancer samples published by Alexandrov et
al. [1]. We reasoned that if our implementation of the
NMF signature decomposition method is valid, the sig-
natures inferred by Helmsman should reflect the under-
lying signatures from [1] by which these data were
simulated. We found that the mutational signatures in-
ferred by Helmsman corresponded closely to these
known signatures (Additional file 3: Figure S2), demon-
strating that Helmsman’s implementation of the NMF
algorithm performs as expected, and is comparable to
other NMF-based de novo signature extraction methods.

Conclusions
As massive sequencing datasets become increasingly
common in areas of cancer genomics and precision on-
cology, there is a growing need for software tools that
scale accordingly and can be integrated into automated
workflows. Our program, Helmsman, provides an effi-
cient, standardized framework for performing mutation
signature analysis on arbitrarily large, multi-sample VCF
or MAF files. For small datasets, Helmsman performs
this task up to 300 times faster than existing methods,
and is the only tool that can be directly applied to mod-
ern large sequencing datasets.

Availability and requirements
Project name: Helmsman
Project home page: https://github.com/carjed/helmsman
Operating system: Platform independent
Programming language: Python
Other requirements: None
License: MIT License
Any restrictions to use by non-academics: no restriction

Additional files

Additional file 1: Assessment of the performance of other mutation
signature analysis tools. (PDF 87 kb)

Additional file 2: Figure S1. Performance comparison for generation of
the mutation spectra matrix from a MAF input file. (PDF 89 kb)

Additional file 3: Figure S2. Evaluation of mutation signatures inferred
by Helmsman. (PDF 250 kb)
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