

1

Water Resources Research

Supporting Information for

Real-time control of urban headwater catchments through linear feedback:
performance, analysis and site selection

B. P. Wong1, B. Kerkez1

1Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor Michigan, USA

Contents of this file

 Text S1 to S4

Figure S1 to S3
Table S1 to S3

In Text S1, we present a condensed formulation of Section 3. In Text S2, we describe
how to construct and implement a control model. In Text S3, a mathematical argument is
offered which shows that the controller is robust to measurement noise. S3 presents a
mathematical illustration that shows i) if one can measure all necessary states, the
controller is robust to white noise, and ii) if there are states that cannot be measured
(e.g. inaccessibility, broken sensor, etc.), using the separation principle, the design of
the controller stays the same as presented in Section 3. Finally, in Text S4, we present
additional results from the simulations using a long-term rainfall record. To test
robustness, varying degrees of measurement noise (standard deviation, σ = 2.5, 12.5,
and 25 mm) were also added to each simulation.

Text S1.
The formulation of a linear quadratic regulator (LQR) controller requires a discrete time
linear system with dynamics described by:

!(! + 1) = !(!) !(!) + !!(!) !(!) + !! !(!)

and a quadratic cost function parameterized by!! and !

! = !! !  ! ! ! + !! !  ! ! ! + !! !  ! ! !
!!!

!!!

2

Then control input that minimizes the cost ! is given by

!(!) = −!(!) x(k)

where the gain matrix !(!) is given by

!(!)  = !!!(!) !(!)  !!(!) + ! !! !!!(!) !(!)  !(!) 

and P(!)!is the solution to the discrete time Ricatti equation:

! ! − 1 = !!(!) !(!) !(!) − !!(!) ! !!!(!) !!!(!) !(!) !!(!) + ! !! !!!(!) !(!) !(!) + !

Note that neither !! nor !(!) appear in the cost function or the formulation of the gain
matrix. In this study, !(!) represents rainfall disturbances that the controller cannot
account for. Intuitively, the control input !(!) can only directly adjust the flows and water
levels in the state vector !(!) but has no effect on controlling the rainfall ! ! .

The formulation of the dynamics as discrete time linear system in this study uses an
integrator delay model parameterized by physical properties.

The Integrator, used for each storage node:

ℎ! ! + 1 = !!"#$%&'#(& ! ! !ℎ!(!)  + !!, !"#$%&'#(& !(!) !!"#$%"&(!)  + !!, !"#$%&'#(& !  !!"#$%%(!)

The Delay, used for each conduit:

!! ! + 1
!! !

!! ! − 1
⋮

!! ! − !

= !!"#$% !(!)

!!(!)
!!(! − 1)
!!(! − 2)

⋮
!!(! − ! − 1)

+ !!, !"#$% !(!) !!"#$%"&!!(!)

And the Link component, which connects the storage nodes and conduits:

!!"#$ !,!(!) =
0 ⋯ !(!)
⋮ ⋱ ⋮
0 ⋯ 0

, where ! ! =
1,
!

!!,! !
,

0,

!! ,  !!  are delay!blocks
!!  is an integrator!block

otherwise

The state vector !(!), control vector !(!), rainfall disturbance !(!), and matrices ! ! ,
!! ! , and !!,!are then constructed by block-wise assembly of the Integrator, Delay, and
Link components, as shown in (8), (9), (10) of the manuscript.

Text S2.
In Text S2, we describe how to construct and implement a control model parameterized
by physical of the study catchment. The first step in the simulation process involves the
abstraction of the physical watershed into a linearized control model. While this can be
achieved manually, on a case-by-case basis, our approach automates this by first
extracting physical parameters from a SWMM model and then converting them to the
state-space formulation. Constructing a state-space representation of a SWMM model

3

begins with importing the properties of the SWMM model, including storage curves,
contributing subcatchments, and the connectivity between links (pipes, channels, etc.)
and storage nodes. These properties are then used to build the state, control, and
disturbance matrices ! ! ,  !! ! , and !!.

The construction of these matrices is detailed in Algorithm 1 and Algorithm 2.

Algorithm 1: Construct/Update the state matrix, A, using properties from a SWMM model.

1:

Initialize:
storages, junctions, conduits ← load_swmm_model()
T ← simulation timestep
As ← storage node surface area given current depth
n ← 1

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

for each node in storages do
 A(n,n) = A_integrator_matrix(T, As)
 n ← n+1
end for
for each node in junctions do
 A(n,n) = A_delay_matrix(T, As)
 n ← n+1
end for
for each link in conduits
 m,n ← indices_of(link.head_node, link.tail_node)
 if head_node(link) is in storages then
 A(m,n) = A_link_matrix(lambda(k))
 else if head_node(link) is in junctions then
 A(m,n) = A_link_matrix(1)
 end if
end for

Algorithm 2: Construct/Update the control matrix, Bu, and disturbance matrix, Bd.

1:

Initialize:
storages, junctions, conduits ← load_swmm_model()
n ← 1

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

for each node in storages do
 Bu(n) = integrator_control_matrix(T, As)
 Bd(n) = integrator_disturbance_matrix(T, As)
 n ← n+1
end for

for each node in junctions do
 Bu(n) = delay_control_matrix(1)
 Bd(n) = 0 * delay_control_matrix(1)
 n ← n+1
end for

4

If the physically-based model is not controlled, it can be executed in a stepwise fashion
in Matlab or Python using Algorithm 3. The states of the model (water levels, flows, etc.)
can then be extracted or visualized and the model can be halted once a specific state
has been reached or total duration has been exceeded.

Algorithm 3: Execute a stepwise SWMM model simulation.

1:
2:
3:
4:

while simulation is not over do
 swmm.step_forward
 k ← k+1
end while

For the controlled case, the model is halted every step, after which the control matrixes
of the linear model are updated (Algorithm 4). The outflow for each storage node is given
by the control gain computed via an LQR control function and clipped, if necessary. The
valve and gate positions are then set as a relative percentage of the total area. The loop
is then repeated until the simulation period expires or specific state is reached.

Algorithm 4: Stepwise SWMM model simulation with LQR control.

1:

Initialize:
get_swmm_model_properties()

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

while simulation is not over do
 swmm.step_forward
 xhat[k] ← T * swmm.get_states()
 Ahat, Bhat, Qhat, Rhat ← update_system_matrices(xhat[k])
 Khat ← dlqr(Ahat, Bhat, Qhat, Rhat)
 Qoutflow ← Khat * xhat[k]
 Qclipped ← clip(Qoutflow, 0, Qmax)
 PercentOpen ← clip(Agate(Qclipped)/ Amax, 0, 1) * 100
 swmm.update_gate_positions(PercentOpen)
 k ← k+1
end while

Text S3.
In this study, we assume perfect, complete knowledge of the states of our system
dynamics to derive a linear-quadratic controller and determine how all valves should be
operated in coordination. However, this may not always be the case due to
measurement noise or an inability to measure all the controllable states of our system.
While filters such as moving averages or kernel smoothers may be useful in practice,
noisy measurements, or lack thereof, can be remedied optimally with the use of a linear-
quadratic estimator (i.e., Kalman filter). Below, we discuss how when assuming i) a noisy
system and ii) a noisy system with missing measurements, the design of the feedback
controller remains the same.

Suppose we have a noisy system with perfect measurement of the state

!(! + 1) = !(!) !(!)+ !!(!) !(!)+ !!(!) !(!)

5

!(!) = ! !(!)
where

!(!) ∼! 0,  ! , ! > 0,

!(!) ∼! 0,  !! , !! = ℰ !(!!) !!(!!)

Given the noise in our system, we modify our cost function to take the average over all
possible realizations using the expected value:

LQR: Updated Cost Function

! = ℰ !!(!) ! !(!)+ ! ⋅ !!(!) ! !(!)+ !!(!) ! !(!)
!!!

!!!

where

!,  ! > 0

Since !(!) is not a term that can be reduced by u(!) in the cost function and !(!) is
white, ℰ  !(!) = 0, the optimal controller for this case is identical to the deterministic
case.

!(!) = −!x(k)

Illustrating the Separation Principle

Suppose we want to design a controller for a system with both incomplete and noisy
measurements

!(! + 1) = !(!) !(!)+ !!(!) !(!)+ !!(!) !(!)
!(!) = ! !(!)+ !

where

!(!) ∼! 0,  ! , with covariance ! > 0,

!(!) ∼! 0,  ! , with covariance ! > 0,

!(!) ∼! 0,  !! , !! = ℰ !(0)− ℰ !(0)   !(0)− ℰ !(0) !

and our Cost Function is the Updated Cost Function:

! = ℰ !!(!) ! !(!)+ ! ⋅ !!(!) ! !(!)+ !!(!) ! !(!)
!!!

!!!

By the Separation Principle, the control input that minimizes ! is

!(!) = −!  !(k)

where

! (!) = the optimal estimate from !(!) using gain ! that minimizes

6

ℰ !(!)− ! (!) !(!)− ! (!) !

! = !!!(!) !(!) !!(!)+ ! !! !!!(!) !(!) !(!)

! =  !(!) !! ! !(!) !! + ! !!

The Separation Principle guarantees ! and ! can be computed independently, where !
is the control gain from a linear-quadratic regulator and ! is the estimator gain from a
linear-quadratic estimator (i.e., Kalman filter). !(!) is the solution to the discrete time
Ricatti equation and ! is the covariance of the measurement noise !(!). This solution
is known as Linear Quadratic Gaussian Control.

The system dynamics for the estimate ! (!) are given by:

! (! + 1 | !) = !(!)  ! (! | ! − 1)+ !!(!) !(!)+ !  !(!)− !  ! (! | ! − 1)

The term !(!)− !  ! (! | ! − 1) is known as the Innovation – the difference between
the observed value !(!) at timestep k and the optimal forecast based on prior
information. If ! (!) is indeed the optimal estimate, successive estimates are
uncorrelated with each other and the innovation

!(!) ≡ !(!)− !  ! (! | ! − 1),  !(!) ∼! 0,  !+ ! !(!) !!

can be defined as white noise (Gelb et al. 1974).

Then ! (! + 1 | !) can be rewritten as

! (! + 1 | !) = !(!)  ! (! | ! − 1)+ !!(!) !(!)+ ! !(!)
Minimizing the updated cost function is independent of the innovation noise and the
control input remains the same as before for both the estimated and noisy, incomplete
systems:

!(!) = −!  !(k)
In this study, we focus exclusively on a framework for developing system level controller
and assume ! (!) = !(!) to arrive at the controller input derived in the Methods section.

!(!) = −! !(k)

We hope more sophisticated approaches will be considered under this framework in
future studies, such as setpoint and predictive control.

Text S4.
The SWMM model in our study was calibrated using events from 2013, spanning from
April 1 to December 1, 2013. The rainfall record in this study and was collected from
Weather Underground. Invalid measurements (reported value of -99.99) were ignored in
the simulation. This weather station (KMIANNAR41) was the closest one to our study
catchment that had a 2013 rainfall record, which was reported at approximately five-
minute intervals. The uncontrolled case was compared against the controlled case with
four (Nodes 4, 6, 10, 11) and eleven control points, as well as four control points at 50%
storage volume, each with varying degrees of noise (σ = 2.5, 12.5, and 25 mm).

7

Figure S1. Rainfall and storage depths for April 1 to December 1, 2013 for both the
uncontrolled and controlled cases with eleven controllers, simulated with perfect and
noisy (σ = 25 mm) measurements.

Figure S2. Rainfall and outflows depths for April 1 to December 1, 2013 for both the
uncontrolled and controlled cases with eleven controllers, simulated with perfect and
noisy (σ = 25 mm) measurements.

8

Figure S3. Measured and controlled depths for (σ = 0 and 25 mm) for April 9-23, 2013.
The response to rainfall remains similar in both cases despite the additional noise.

Long-term performance summary (Pmod)
 No Control Control + measurement noise σ

σ = 0 mm σ = 2.5 mm σ = 12.5 mm σ = 25 mm
11 ponds 1236.57 69.85 69.86 70.87 76.87
4 ponds 1236.57 227.40 227.34 227.42 227.30
4 ponds @ 50% 1767.85 359.81 359.80 359.87 359.93

Table S1. Long-term system performance with !!!,!"#∗ = 0.029 m3/s using 2013 rainfall
data. Nodes 4, 6, 10, and 11 are controlled in the 4-pond case and also modified to half
their storage in the 50% case. Performance is improved in all control cases compared to
the passive system.

Storage Node Properties
Node Volume (m3) Average Area (m2) Max Height (m) Catchment Area (m2) % Impervious

1 31 700 10 300 3 147 000 87
2 800 200 3 5 400 74
3 30 900 10 100 3 41 000 32
4 31 800 10 400 3 14 500 78
5 1 290 400 3 92 500 51
6 16 100 2 600 6 22 700 41
7 2 100 600 3 43 300 38
8 4 000 1 300 3 41 000 51
9 367 100 3 51 700 35
10 19 500 4 600 4 93 800 75
11 7 800 1 700 4 145 000 48

9

Table S2. Select physical properties of the storage nodes.

Conduit Properties
Start Node End Node Shape Max Height (m) Length (m) Manning N

2 1 Circular 0.30 240 0.01
3 2 Circular 0.30 55 0.01
4 3 Circular 0.30 280 0.01
5 4 Circular 0.30 56 0.01
6 5 Circular 0.30 360 0.01
7 6 Circular 0.43 42 0.01
8 6 Circular 0.30 190 0.01
9 8 Circular 0.30 81 0.01
10 4 Circular 2.00 190 0.13
11 10 Circular 0.30 340 0.01

Table S3. Select physical properties of the conduits between storage nodes

Supporting Information References

Gelb A, Kasper Jr J, Nash Jr R, Price C, Sutherland Jr A. 1974. Applied optimal
estimation, A. gelb, ed. .

