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In Text S1, we present a condensed formulation of Section 3. In Text S2, we describe 
how to construct and implement a control model. In Text S3, a mathematical argument is 
offered which shows that the controller is robust to measurement noise. S3 presents a 
mathematical illustration that shows i) if one can measure all necessary states, the 
controller is robust to white noise, and ii) if there are states that cannot be measured 
(e.g. inaccessibility, broken sensor, etc.), using the separation principle, the design of 
the controller stays the same as presented in Section 3. Finally, in Text S4, we present 
additional results from the simulations using a long-term rainfall record. To test 
robustness, varying degrees of measurement noise (standard deviation, σ = 2.5, 12.5, 
and 25 mm) were also added to each simulation. 

Text S1. 
The formulation of a linear quadratic regulator (LQR) controller requires a discrete time 
linear system with dynamics described by: 
 

!(! + 1) = !(!) !(!) + !!(!) !(!) + !! !(!) 
 
and a quadratic cost function parameterized by!! and ! 

! = !! !  ! ! ! + !! !  ! ! ! + !! !  ! ! !
!!!

!!!
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Then control input that minimizes the cost ! is given by 
 

!(!) = −!(!) x(k) 
 
where the gain matrix !(!) is given by  
 

!(!)  = !!!(!) !(!)  !!(!) + ! !! !!!(!) !(!)  !(!)   
 
and P(!)!is the solution to the discrete time Ricatti equation: 
 
! ! − 1 = !!(!) !(!) !(!) − !!(!) ! !!!(!) !!!(!) !(!) !!(!) + ! !! !!!(!) !(!) !(!) + !    
 
Note that neither !! nor !(!) appear in the cost function or the formulation of the gain 
matrix. In this study, !(!) represents rainfall disturbances that the controller cannot 
account for. Intuitively, the control input !(!) can only directly adjust the flows and water 
levels in the state vector !(!) but has no effect on controlling the rainfall ! ! . 
 
The formulation of the dynamics as discrete time linear system in this study uses an 
integrator delay model parameterized by physical properties. 
 
The Integrator, used for each storage node: 
 

ℎ! ! + 1 = !!"#$%&'#(& ! ! !ℎ!(!)  + !!, !"#$%&'#(& !(!) !!"#$%"&(!)  + !!, !"#$%&'#(& !  !!"#$%%(!) 
 
The Delay, used for each conduit: 

!! ! + 1
!! !

!! ! − 1
⋮

!! ! − !

= !!"#$% !(!)

!!(!)
!!(! − 1)
!!(! − 2)

⋮
!!(! − ! − 1)

+ !!, !"#$% !(!) !!"#$%"&!!(!) 

 
And the Link component, which connects the storage nodes and conduits: 

!!"#$ !,!(!) =
0 ⋯ !(!)
⋮ ⋱ ⋮
0 ⋯ 0

, where ! ! =
1,
!

!!,! !
,

0,

!! ,  !!  are delay!blocks
!!  is an integrator!block

otherwise
 

The state vector !(!), control vector !(!), rainfall disturbance !(!), and matrices ! ! , 
!! ! , and  !!,!are then constructed by block-wise assembly of the Integrator, Delay, and 
Link components, as shown in (8), (9), (10) of the manuscript. 

 

Text S2. 
In Text S2, we describe how to construct and implement a control model parameterized 
by physical of the study catchment. The first step in the simulation process involves the 
abstraction of the physical watershed into a linearized control model. While this can be 
achieved manually, on a case-by-case basis, our approach automates this by first 
extracting physical parameters from a SWMM model and then converting them to the 
state-space formulation. Constructing a state-space representation of a SWMM model 



 
 

3 
 

begins with importing the properties of the SWMM model, including storage curves, 
contributing subcatchments, and the connectivity between links (pipes, channels, etc.) 
and storage nodes. These properties are then used to build the state, control, and 
disturbance matrices ! ! ,  !! ! , and !!.  
 
The construction of these matrices is detailed in Algorithm 1 and Algorithm 2.  
 

Algorithm 1: Construct/Update the state matrix, A, using properties from a SWMM model. 

1: 
 
 
 

 

Initialize: 
storages, junctions, conduits ← load_swmm_model() 
T  ← simulation timestep 
As ← storage node surface area given current depth 
n  ← 1 

2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 

for each node in storages do 
      A(n,n) = A_integrator_matrix(T, As) 
      n ← n+1 
end for 
for each node in junctions do 
      A(n,n) = A_delay_matrix(T, As) 
      n ← n+1 
end for 
for each link in conduits 
      m,n ← indices_of( link.head_node, link.tail_node ) 
      if head_node(link) is in storages then 
            A(m,n) = A_link_matrix( lambda(k) ) 
      else if head_node(link) is in junctions then 
            A(m,n) = A_link_matrix(1) 
      end if 
end for 

 
 

Algorithm 2: Construct/Update the control matrix, Bu, and disturbance matrix, Bd. 

1: 
 

 

Initialize: 
storages, junctions, conduits ← load_swmm_model() 
n  ← 1 

2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 

for each node in storages do 
      Bu(n) = integrator_control_matrix(T, As) 
      Bd(n) = integrator_disturbance_matrix(T, As) 
      n ← n+1 
end for 
 
for each node in junctions do 
      Bu(n) = delay_control_matrix(1) 
      Bd(n) = 0 * delay_control_matrix(1) 
      n ← n+1 
end for 
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If the physically-based model is not controlled, it can be executed in a stepwise fashion 
in Matlab or Python using Algorithm 3. The states of the model (water levels, flows, etc.) 
can then be extracted or visualized and the model can be halted once a specific state 
has been reached or total duration has been exceeded.  
 

Algorithm 3: Execute a stepwise SWMM model simulation. 

1:  
2: 
3: 
4: 

while simulation is not over do 
      swmm.step_forward 
      k ← k+1 
end while 

 
For the controlled case, the model is halted every step, after which the control matrixes 
of the linear model are updated (Algorithm 4). The outflow for each storage node is given 
by the control gain computed via an LQR control function and clipped, if necessary. The 
valve and gate positions are then set as a relative percentage of the total area. The loop 
is then repeated until the simulation period expires or specific state is reached. 
 

Algorithm 4: Stepwise SWMM model simulation with LQR control. 

1: 
 

Initialize: 
get_swmm_model_properties() 

2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 

while simulation is not over do 
            swmm.step_forward 
            xhat[k] ← T * swmm.get_states() 
            Ahat, Bhat, Qhat, Rhat ← update_system_matrices(xhat[k]) 
            Khat ← dlqr(Ahat, Bhat, Qhat, Rhat ) 
            Qoutflow ← Khat * xhat[k] 
            Qclipped ← clip( Qoutflow, 0, Qmax ) 
            PercentOpen ← clip( Agate(Qclipped)/ Amax, 0, 1) * 100 
            swmm.update_gate_positions(PercentOpen) 
            k ← k+1 
end while 

 
  

Text S3. 
In this study, we assume perfect, complete knowledge of the states of our system 
dynamics to derive a linear-quadratic controller and determine how all valves should be 
operated in coordination. However, this may not always be the case due to 
measurement noise or an inability to measure all the controllable states of our system. 
While filters such as moving averages or kernel smoothers may be useful in practice, 
noisy measurements, or lack thereof, can be remedied optimally with the use of a linear-
quadratic estimator (i.e., Kalman filter). Below, we discuss how when assuming i) a noisy 
system and ii) a noisy system with missing measurements, the design of the feedback 
controller remains the same. 

Suppose we have a noisy system with perfect measurement of the state 

!(! + 1) = !(!) !(!)+ !!(!) !(!)+ !!(!) !(!) 
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!(!) = ! !(!)  
where  

!(!) ∼! 0,  ! , ! > 0, 

!(!) ∼! 0,  !! , !! = ℰ !(!!) !!(!!)   
  
 

Given the noise in our system, we modify our cost function to take the average over all 
possible realizations using the expected value: 

LQR: Updated Cost Function 

! = ℰ !!(!) ! !(!)+ ! ⋅ !!(!) ! !(!)+ !!(!) ! !(!)
!!!

!!!
 

where 

!,  ! > 0 

Since !(!) is not a term that can be reduced by u(!) in the cost function and !(!) is 
white, ℰ  !(!) = 0, the optimal controller for this case is identical to the deterministic 
case. 

!(!) = −!x(k) 
 

Illustrating the Separation Principle 

Suppose we want to design a controller for a system with both incomplete and noisy 
measurements 

!(! + 1) = !(!) !(!)+ !!(!) !(!)+ !!(!) !(!) 
!(!) = ! !(!)+ ! 

where  

!(!) ∼! 0,  ! , with covariance ! > 0, 

!(!) ∼! 0,  ! , with covariance ! > 0, 

!(!) ∼! 0,  !! , !! = ℰ !(0)− ℰ !(0)   !(0)− ℰ !(0) !  

and our Cost Function is the Updated Cost Function: 

! = ℰ !!(!) ! !(!)+ ! ⋅ !!(!) ! !(!)+ !!(!) ! !(!)
!!!

!!!
 

By the Separation Principle, the control input that minimizes ! is 

!(!) = −!  !(k) 

where 

! (!) = the optimal estimate from !(!) using gain ! that minimizes   
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ℰ !(!)− ! (!) !(!)− ! (!) !
 

! = !!!(!) !(!) !!(!)+ ! !! !!!(!) !(!) !(!)  

! =  !(!) !! ! !(!) !! + ! !! 

 

The Separation Principle guarantees ! and ! can be computed independently, where ! 
is the control gain from a linear-quadratic regulator and ! is the estimator gain from a 
linear-quadratic estimator (i.e., Kalman filter). !(!) is the solution to the discrete time 
Ricatti equation and ! is the covariance of the measurement noise !(!). This solution 
is known as Linear Quadratic Gaussian Control. 

 
The system dynamics for the estimate ! (!) are given by: 

! (! + 1 | !) = !(!)  ! (! | ! − 1)+ !!(!) !(!)+ !  !(!)− !  ! (! | ! − 1)  

The term !(!)− !  ! (! | ! − 1) is known as the Innovation – the difference between 
the observed value !(!) at timestep k and the optimal forecast based on prior 
information. If ! (!) is indeed the optimal estimate, successive estimates are 
uncorrelated with each other and the innovation  

!(!) ≡ !(!)− !  ! (! | ! − 1),  !(!) ∼! 0,  !+ ! !(!) !!   

can be defined as white noise (Gelb et al. 1974). 

Then ! (! + 1 | !) can be rewritten as 

! (! + 1 | !) = !(!)  ! (! | ! − 1)+ !!(!) !(!)+ ! !(!) 
Minimizing the updated cost function is independent of the innovation noise and the 
control input remains the same as before for both the estimated and noisy, incomplete 
systems: 

!(!) = −!  !(k) 
In this study, we focus exclusively on a framework for developing system level controller 
and assume ! (!) = !(!) to arrive at the controller input derived in the Methods section. 

!(!) = −! !(k) 

We hope more sophisticated approaches will be considered under this framework in 
future studies, such as setpoint and predictive control. 

Text S4. 
The SWMM model in our study was calibrated using events from 2013, spanning from 
April 1 to December 1, 2013. The rainfall record in this study and was collected from 
Weather Underground. Invalid measurements (reported value of -99.99) were ignored in 
the simulation. This weather station (KMIANNAR41) was the closest one to our study 
catchment that had a 2013 rainfall record, which was reported at approximately five-
minute intervals. The uncontrolled case was compared against the controlled case with 
four (Nodes 4, 6, 10, 11) and eleven control points, as well as four control points at 50% 
storage volume, each with varying degrees of noise (σ = 2.5, 12.5, and 25 mm).  
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Figure S1. Rainfall and storage depths for April 1 to December 1, 2013 for both the 
uncontrolled and controlled cases with eleven controllers, simulated with perfect and 
noisy (σ = 25 mm) measurements.   
 

 

 

Figure S2. Rainfall and outflows depths for April 1 to December 1, 2013 for both the 
uncontrolled and controlled cases with eleven controllers, simulated with perfect and 
noisy (σ = 25 mm) measurements.   
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Figure S3. Measured and controlled depths for (σ = 0 and 25 mm) for April 9-23, 2013. 
The response to rainfall remains similar in both cases despite the additional noise.  
 
 

Long-term performance summary (Pmod) 
 No Control Control + measurement noise σ 

σ = 0 mm σ = 2.5 mm σ = 12.5 mm σ = 25 mm 
11 ponds 1236.57 69.85 69.86 70.87 76.87 
4 ponds 1236.57 227.40 227.34 227.42 227.30 
4 ponds @ 50% 1767.85 359.81 359.80 359.87 359.93 

Table S1. Long-term system performance with !!!,!"#∗  = 0.029 m3/s using 2013 rainfall 
data. Nodes 4, 6, 10, and 11 are controlled in the 4-pond case and also modified to half 
their storage in the 50% case. Performance is improved in all control cases compared to 
the passive system.   
 
 

Storage Node Properties 
Node Volume (m3) Average Area (m2) Max Height (m) Catchment Area (m2) % Impervious 

1 31 700 10 300 3 147 000 87 
2 800 200 3   5 400 74 
3 30 900 10 100 3  41 000 32 
4 31 800 10 400 3 14 500 78 
5 1 290 400 3  92 500 51 
6 16 100 2 600 6  22 700 41 
7 2 100 600 3  43 300 38 
8 4 000 1 300 3  41 000 51 
9 367 100 3  51 700 35 
10 19 500 4 600 4  93 800 75 
11 7 800 1 700 4 145 000 48 
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Table S2. Select physical properties of the storage nodes. 
 
 

Conduit Properties 
Start Node End Node Shape Max Height (m) Length (m) Manning N 

2 1 Circular 0.30 240 0.01 
3 2 Circular 0.30 55 0.01 
4 3 Circular 0.30 280 0.01 
5 4 Circular 0.30 56 0.01 
6 5 Circular 0.30 360 0.01 
7 6 Circular 0.43 42 0.01 
8 6 Circular 0.30 190 0.01 
9 8 Circular 0.30 81 0.01 
10 4 Circular 2.00 190 0.13 
11 10 Circular 0.30 340 0.01 

Table S3. Select physical properties of the conduits between storage nodes 
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