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Paris, France

perrin@isir.upmc.fr

In this work we propose a patching algorithm to incrementally modify controllers, synthesized to
satisfy a temporal logic formula, when some of the control actions become unavailable. The main
idea of the proposed algorithm is to “warm-start” the synthesis process with an existing fixed-point
based controller that has a larger action set. By exploiting the structure of the fixed-point based con-
trollers, our algorithm avoids repeated computations while synthesizing a controller with restricted
action set. Moreover, we show that the algorithm is sound and complete, that is, it provides the same
guarantees as synthesizing a controller from scratch with the new action set. An example on synthe-
sizing controllers for a simplified walking robot model under ground constraints is used to illustrate
the approach. In this application, the ground constraints determine the action set and they might not
be known a priori. Therefore it is of interest to quickly modify a controller synthesized for an uncon-
strained surface, when new constraints are encountered. Our simulations indicate that the proposed
approach provides at least 5-times speed-up compared to synthesizing a controller from scratch.

1 INTRODUCTION

Control synthesis techniques for discrete systems have been a central topic both for reactive synthesis and
discrete-event systems [13, 14] with recent results establishing a connection between the two commu-
nities [4, 15]. These techniques provide a principled means for computing a controller with correctness
guarantees for systems that can either be directly modeled as or whose continuous-dynamics can be
abstracted as a discrete transition system. Such discrete controllers are ubiquitous in many embedded
applications.

A key challenge in control synthesis is scalability. The scalability depends both on the size of the
discrete transition system and the complexity of the specification, e.g., can be doubly exponential in the
length of a general linear temporal logic (LTL) specification [13]. Therefore, some research has focused
on identifying fragments of LTL that have favorable complexity (see e.g., [2, 3, 17, 12]). Although
these fragments lead to tractable problems, the time required for synthesis still prevents it from being
applicable on-line, necessitating to consider all possible scenarios at design-time. This motivates the
following questions: (i) If controllers are to be synthesized off-line for many different scenarios, and
if there is a controller for a specific scenario in hand, can this controller be used to synthesize new
controllers efficiently? (ii) can this modification approach be fast enough to enable on-line synthesis if
new situations are encountered at run-time?

The problem of incrementally modifying an existing controller, i.e., “patching” a controller, as op-
posed to re-synthesizing from scratch, has been studied for different control synthesis techniques, specif-
ically in the context of robotics applications [10, 9, 18]. Livingston et al. [10] study a patching method
for two player games with the specifications given by the GR(1) fragment of LTL and the control strate-
gies synthesized by a µ-calculus based method. Assuming that changes in the system and environment
only break an existing controller locally, they re-synthesize a controller only for the affected nodes and
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replace the broken part with the new one. This method is also extended to handle changes in the spec-
ification such as addition of new goal regions [9]. Wong et al. [18] also consider GR(1) specifications
with corresponding symbolic controller synthesis techniques and develop recovery mechanisms when
the environment assumptions become invalid during execution.

This paper also considers the problem of patching controllers. Different from the existing literature
mentioned above, we work with synthesis problems where there exists an explicit transition system to
be controlled and the modification required is due to some of the control actions becoming unavailable.
The loss of control actions is relevant in the case of actuator faults and also in the context of stabilizing
a walking robot on a constrained surface, as described later, or more generally of systems with action
constraints that vary with time or environment changes. Another difference is the class of specifications
considered: the LTL fragment we use includes persistence requirements, which are not expressible within
the GR(1) fragment, and is amenable to fixed-point based control synthesis techniques operating directly
on the transition system (see e.g., [17, 12]). Our main contribution is to propose a novel controller
implementation, a data structure consisting of a partially ordered set of controllers corresponding to
simple fixed-points in the synthesis algorithm, that captures all the information required for modification
when some of the actions become unavailable. We then present patching techniques using this data
structure that modify it appropriately to compute the new controller. The proposed patching techniques
are in a sense similar to warm-starting techniques in optimization, where an existing solution (not too far
away from the expected new solution) is used to initialize an optimization algorithm. Similarly, we use
an existing controller to initialize the synthesis algorithm for finding a controller for the new problem.

We demonstrate the proposed approach on a push recovery example for a 1D walking robot model.
The potential control actions for the robot are the feasible foot placements. However, if there are ground
constraints, e.g., holes, obstacles, on which the robot is not allowed to step, the available action set
reduces. Such constraints might not be available a priori, hence, it is of interest to design many controllers
for different sets of ground constraints. In addition, if one wants to use 1D push recovery controllers to
navigate a 2D surface with constraints, it is again possible (albeit with some conservatism) to consider
a large number of 1D ground constraint profiles and corresponding family of 1D controllers for the
2D navigation task. Our results for this example show that up to an order of magnitude speed-up can
be achieved if the controllers for constrained surface are generated by patching the controller for the
unconstrained surface.

The paper is organized as follows: In Section 2, we give the problem statement and the background
knowledge about fixed-point based control synthesis. Section 3 presents the main algorithm that warm-
starts a control synthesis from an existing controller, and the proof of soundness and completeness. We
use a simple running example in Sections 2 and 4 to illustrate how the method works before presenting an
example on control synthesis for a walking robot in Section 4 that shows the time efficiency and potential
applicability of our method.

2 PRELIMINARIES

2.1 Notation

For two sets A and B, the set difference is denoted by A−B. Given T ⊆ A×B×C, for a set E ⊆ A,
(E,∗,∗)T refers to the set (E×B×C)∩T , and similarly for F ⊆ B and G⊆ A×B, (∗,F,∗)T and (G,∗)T

refer to the sets (A×F×C)∩T and (G×C)∩T respectively. A list V = [x1, ...,xn] is a totally ordered
set, where V (i) refers to its ith-order element. To assign xi to be the ith element in V , we write V (i) = xi.
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2.2 Augmented Finite Transition Systems

We consider plants modeled as augmented finite transition systems, a discrete structure that either can
be used as a direct modeling tool or can be obtained by abstracting the dynamics of a continuous-control
system [12].

Definition 1. An augmented finite transition system (AFTS) is a tuple T = (Q,U,→T ,G,AP,hQ),
where Q is a set of states, U is a set of actions (control inputs),→T∈ Q×U ×Q is a transition relation
between states under specific actions, G : 2U→ 22Q

maps a set of actions to a set of progress groups1under
that action set, AP is a finite set of atomic propositions, and hQ : Q→ 2AP is a labeling function, which
maps each state to the set of atomic propositions that evaluate to true at that state.

Without loss of generality for a given AFTS, we assume that all the actions are available at each state.
A trajectory of an AFTS T is an infinite sequence of states {s(n)}∞

n=0 such that for any two consec-
utive states s(n),s(n+1) in the sequence, there exists an action a ∈U satisfying (s(n),a,s(n+1)) ∈→T

and the sequence is compliant with the progress groups.

2.3 Linear Temporal Logic

Linear Temporal Logic (LTL) is utilized to describe the desired behaviors of an AFTS. It consists of
logic operators (negation ¬, conjunction ∧, disjunction ∨), and temporal operators (next©, always 2,
eventually 3 and until U ).

Syntax of LTL [1]: The LTL formula over a finite set of atomic propositions AP can be formed
according to the grammar:

φ := True | p | φ1∨φ2 | ¬φ | ©φ | φ1 U φ2

where p∈ AP, φ1 and φ2 are also LTL formulas. The other operators can be derived as follows: φ1∧φ2 =
¬(¬φ1∨¬φ2), φ1 =⇒ φ2 = ¬φ1∨φ2, 3φ = True U φ , 2φ = ¬3¬φ .

Semantics of LTL [12]: An ω-word is an infinite sequence in 2AP. The satisfaction of an LTL speci-
fication φ at position i by an ω-word w = w(0)w(1)w(2) . . . , written as (w, i) |= φ , is defined inductively
as follows:

• For φ = p ∈ AP, (w, i) |= p iff p ∈ w(i)

• (w, i) |= ¬φ iff (w, i) 6|= φ

• (w, i) |= φ1∨φ2 iff (w, i) |= φ1 or (w, i) |= φ2

• (w, i) |=©φ iff (w, i+1) |= φ

• (w, i) |= φ1 U φ2 iff ∃ j ≥ i s.t. (w, j) |= φ2 and (w,k) |= φ1,∀k ∈ [i, j)

An ω-word w satisfies φ if and only if (w,0) |= φ , written as w |= φ .
Given a trajectory {s(n)}∞

n=0 of an AFTS, the ω-word corresponding to {s(n)}∞
n=0 is {hQ(s(n))}∞

n=0,
where hQ is the labeling function of the AFTS. Given a LTL specification φ , we say that {s(n)}∞

n=0 |= φ

if and only if {hQ(s(n))}∞
n=0 |= φ .

1 A set G ∈ G(D) is called a progress group under the action set D , and it is related to the following semantic notion: the
system cannot remain indefinitely within G by exclusively choosing actions from U . This restricts the behaviors allowed by the
transition relation. Moreover, it is assumed that G is not invariant under the actions U for the well-formedness of the definition
(see [12, 16, 8]).
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2.4 Control Synthesis and Fixed-Point Operators

The LTL specification considered in this work is of the form:

φ = 2A∧32B∧

(∧
i∈I

23Ri

)
(1)

for atomic propositions A, B, Ri. Such specifications can express properties of invariance (2A), persis-
tence (32B) and recurrence (23Ri) . This LTL fragment, also used in [17, 12], is a subset of Gener-
alized Rabin specifications [4]. As the progress groups in AFTS is equivalent to environment liveness
assumptions, the formula in (1) can also be seen as a generalization of GR(1) specifications, with well-
separated environments [7, 11, 15] under the well-formedness assumption in footnote 1. In what follows,
with a slight abuse of notation, we treat A, B, Ri as subsets of the state set Q, e.g., A= {s∈Q |A∈ hQ(s)},
etc.

Roughly speaking, the control synthesis problem for an AFTS is to compute a function, i.e., control
strategy, that restricts the possible actions each time a state is visited so that only the desirable trajectories
of the AFTS remain. A control strategy is formally defined next.

Definition 2. A control strategy for an AFTS is a partial function µ : (Q×U)∗×Q→ 2U that maps
the history of state-action pairs and the current state to a set of actions.

For a given LTL specification, one can talk about the “best” control strategy in enforcing the specifi-
cation and the set of initial states for which such a strategy is defined, i.e. the winning set.

Definition 3. The winning set for a specification φ over an AFTS T = {Q,U,→T ,G,AP,hQ}, written as
Wφ , is the largest subset of Q such that if the system T is initially in Wφ , the specification can be enforced.

Note that a control strategy as in definition 2 can require infinite memory. However for LTL specifi-
cations, it is known that there exists a finite memory control strategy corresponding to the winning set.
In particular, for the specifications of the form (1), we define a data structure, which we call controller,
to implement a control strategy in a specific way. This data structure will be crucial for the patching
algorithms developed in Section 3.

Definition 4. A simple controller for a set D⊆Q over an AFTS T = {Q,U,→T ,G,AP,hQ} is a function
C : D→ 2U , i.e. a memoryless controller that maps states in D to a set of actions.

Given D̂⊆ D, a simple controller C restricted to D̂ means that the domain of C is restricted to D̂.

Definition 5. For the AFTS T = {Q,U,→T ,G,AP,hQ}, a controller C is a tuple (V ,K ,x), where V is
a list of subsets of Q, K is a list of controllers or simple controllers, which we refer to as sub-controllers
of C , and x is an internal variable that indicates the index of sub-controllers executed last time.

Overall, a controller is a tree structure with controllers at each node and simple controllers at the
leaf nodes. The list K for each controller (each non-leaf node in the tree) denotes the children of that
controller in the tree. Winning sets and controllers for specifications in the form of (1) are computed
iteratively via fixed-point based algorithm (9) given in Appendix A.

Definition 6. Execution of controllers: In the execution time, a controller C = (V ,K ,x) acts as a
function that maps the current state in Q to a set of feasible actions in U , for the AFTS T = (Q,U,→T

,G,AP,hQ). Initially the internal variables are set to 1. Given the current state s, the output C (s) is
determined in two steps:

(i) update the internal variable x of C :
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Figure 1: A simple AFTS with state space {s1,s2,s3,s4} and action space {a,b,c, ...,h}, used to illustrate
how the controller works. Atomic propositions are R1 = {s1} and R2 = {s3,s4}. For simplicity, assume
no progress group exists.

– if C results from (9), (11), (14) (see Appendix A):

x+ =

{
argminy≤x{s ∈ V (y)}, if x 6= 1
argminy{s ∈ V (y)}, otherwise

– if C results from (10) (see Appendix A):

x+ =

{
(x mod |K |)+1, if s ∈ V (x+1)
x, otherwise

where x+ refers to the value of internal variable x after update.

(ii) Execute the x+th sub-controller and return its output:

C (s) = K (x+)(s)

In the execution of K (x+)(s), the process above is repeated and then a sub-controller of K (x+) is
executed. Thus it is a recursive process that does not end until a simple controller is reached. The set of
feasible actions are returned by that simple controller. For the sub-controllers not called in this execution,
their internal variables remain unchanged.

Example 1. For a simple AFTS shown in Figure 1, given the specification φ = 23R1 ∧23R2, the
outputs of (9) are the winning set W = {s1,s2,s3,s4}, and the controller C = (W,{C 0

1 },x = 1), where its
descendant controllers2 are:
C 0

1 = ({W,{s1},{s3,s4}},{C 1
1 ,C

1
2 },x0

1); C 1
1 = ({{s1,s2},W,W},{C 2,0

i }3
i=1,x

1
1);

C 1
2 = ({{s2,s3,s4},W,W},{C 2,1

i }3
i=1,x

1
2); C 2,0

1 = {(s1,{a}),(s2,{c})};
C 2,0

2 = {(s1,{a,b}),(s2,{c}),(s3,{g}),(s4,{e})}; C 2,0
3 = {(s1,{a,b}),(s2,{c,d, f}),(s3,{g,h}),(s4,{e, i})};

C 2,1
1 = {(s2,{d, f}),(s3,{h}),(s4, i)}; C 2,1

2 = {(s1,{b}),(s2,{d, f}),(s3,{g,h}),(s4,{e, i})};
C 2,1

3 = {(s1,{a,b}),(s2,{c,d, f}),(s3,{g,h}),(s4,{e, i})}.
C , C 0

1 and C 1
i result from (9), (10) and (11). C 2,k

i are simple controllers resulting from (13). Each
time C is called, (x,x0

1,x
1
1,x

1
2) is updated according to Definition 6. The simple controllers in C reached

at that time determines the set of feasible control inputs. The update rules for internal variables in this
example 1 can be illustrated by the transition graph in Figure 2, which is consistent with Definition 6.

2In this example, in Section 4 and Appendix A, a simple controller Csim is denoted by the set {(s,Csim(s)) : s ∈ D} for
simplicity, where D is the domain of Csim.



6 Warm-Starting Fixed-Point Based Control Synthesis

1

1 2 1 2 3 21 3

(a) no action disabled

1

1 2 1 2 3 21 3

(b) action e is disabled

Figure 2: The transition graph here is a visual illustration of the update rules of x in Definition 6. (a)
corresponds to the example 1. (b) corresponds to the example in Section 4.1. s is the current state of the
system in Figure 1. At each execution time, each internal variable transits from its current node to one
of the neighbor node once the transition condition on the edge is satisfied. If no transition condition is
satisfied, internal variable remains unchanged. Update x first, and then x0, and lastly x1

0 and x1
1.

For example, initialize the internal variables to be (1,1,1,1). Let’s start from s1 and run C (s1): The
updated internal variables are (1,2,1,2), after C (s1),C 0

1 (s1), C 1
2 (s1) and C 2,1

2 (s1) are called recursively.
The set of feasible actions is {b} = C 2,1

2 (s1). Under action b, the system in Figure 1 transits to s2.
Now run C (s2). The internal variables are updated to (1,2,1,1). The set of feasible actions is {d, f}=
C 2,1

1 (s2). Let’s keep doing this and always take the first action in the output of C at each execution. The
trajectory under control of C would be s1,s2,s4,s2,s1, ..., where the sequence of actions is b,d,e,c, ....
The trajectory visits A and B in turn, satisfying the given specification.

2.5 Problem Statement

In this section, we formally define the problem of interest.

Problem 1. Given an AFTS T =(Q,U,→T ,G,AP,hQ), an LTL specification φ =2A∧32B∧
(∨

i∈I 23Ri
)
,

the winning set Wφ and controller Cφ , if a set of actions Ud ⊆U in T is unavailable, find the new winning
set and a controller with an algorithm that exploits the knowledge of Wφ and Cφ .

We start by giving an overview of our solution approach. Recall that a controller in Definition 5 has a
tree structure whose nodes consist of controllers (non-leaf nodes) and simple controllers (leaf nodes): the
non-leaf nodes are computed by algorithm (10), (11) and (12); the leaf nodes are computed by algorithm
(13) and (14) (see Appendix A). Except for (9), each algorithm in the appendix corresponds to one
underlying specification, specified by its input parameters. In Section 3, we show that each algorithm in
the appendix has a corresponding patching algorithm (denoted with an over-bar on the operator for the
original algorithm) which restricts an existing controller resulting from it to a smaller action space for a
stronger specification 3. These patching algorithms allow us to offer a solution to Problem 1 by patching
the descendant controllers of a controller resulting from algorithm (9) one by one. Furthermore, since
there is an order between the nodes in each layer of the tree structure (recall that K is a list), they need
to be patched in the order that they are generated.

3In general, for specifications φ and ψ , “φ is stronger than ψ” means that whenever φ is satisfied, ψ is satisfied. Here a
stronger specification always refers to the case that the target set Z in the specification of a fixed-point based algorithm shrinks
(if its specification has such a term, see Section 3).
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To get the intuition, consider a simple invariance specification (2A) and the corresponding winning
set W2A computed through a simple contracting fixed-point that starts with the set A and shrinks this
set until it finds the maximal invariant set that is contained in A. In this case the controller C2A is just
a chain (instead of an arbitrary tree) with a single simple controller. If the action set is reduced, then
one can use the same simple contracting fixed-point with the new action set this time initialized with the
set W2A. Since W2A in general is smaller than A, the new fixed point algorithm needs less iterations.
Our patching algorithm generalizes this idea to nested fixed-points where we systematically restrict the
inputs to each of the algorithms recursively, using the controller data structure introduced.

3 PATCHING METHOD

Before presenting the patching methods, we state several properties of winning sets, which are vital to
the success of patching existing controllers.

Given an AFTS T = (Q,U,→T ,G,AP,hQ) and an LTL specification φ , compute its winning set Wφ

and the winning control strategy Cφ via the corresponding algorithm listed in Appendix A. Now disable
the set of actions Ud ⊆U in the AFTS T , which results in a new AFTS T̂ = (Q,Û ,→T̂ ,G,AP,hQ), where
Û = U −Ud and→T̂=→T −{(s1,a,s2) : s1,s2 ∈ Q,a ∈Ud ,(s1,a,s2) ∈→T}. Re-compute the winning
set and controller , denoted by Ŵφ and Ĉφ , for a specification the same as or stronger than φ over T̂
via the same algorithm. Here a stronger specification always refers that input parameter Z of algorithms
(10), (11), (12) and (14) shrinks to a smaller set Ẑ ⊆ Z (the other parameters are kept the same) after Ud
is removed from the action space. Typically Z is the target set we want to reach, which shrinks due to the
unavailable actions. Then, we have the following theorems, proofs of which are omitted for brevity:

Theorem 1. For algorithm (14), we have (Ŵφ ∪ Ẑ)⊆ (Wφ ∪Z).

Theorem 2. For algorithms (9), (10), (11), (12) and (13), we have Ŵφ ⊆Wφ .

If we fix the specification to be in the form of (1), Theorems 1 and 2 say that the winning sets of the
controller and its nodes after Ud is disabled are bounded by winning sets of the controller and its nodes
before Ud is disabled (or by the union of winning sets and Z for simpler controllers resulting from (14)),
which is the basis for our warm-starting synthesis method. Based on this fact, it is possible to search the
feasible control strategies inside the existing controllers, i.e. patching the existing controllers, instead of
re-synthesizing from scratch, for they contain the control strategies for a larger winning set than we need.
Actually, we show that all the feasible control strategies for the new problem setting can be obtained by
patching the existing controllers in the next two sections.

3.1 Patching Simple Controllers

A controller is a tree structure built on simple controllers, i.e. the leaf nodes in the tree structure. Thus
we need to patch the leaf nodes firstly, and then patch their parent nodes, and so forth. In this section,
we discuss the patching algorithms for the simple controllers, and then in the following section we will
show how to patch the other nodes building on the leaf nodes, and the controller resulting from (9).

Definition 7. Given a simple controller C over an AFTS T = (Q,U,→T ,G,AP,hQ), a finite transition
system (FTS) corresponding to C is A(C ) = (QC,UC,→A(C )) , where QC is the set of states that appear
in→A(C ), UC = {u : u ∈ C (s),∀s ∈ D},→A(C )= {(s1,u,s2) ∈→T : s1 ∈ D,s2 ∈ Q,u ∈ C (s1)}, and D is
the domain of C .
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Table 1: Basic Operations on the FTS corresponding to controller C

Operation Definition Notation
transition removing given E ⊆ Q×U×Q, replace→A(C ) with→A(C ) −E A(C )\E
transition adding given E ⊆ Q×U×Q, replace→A(C ) with→A(C ) ∪E A(C )∪E

transition pre given S2 ⊆ Q, output {(s1,a) : ∃s2 ∈ S2,(s1,a,s2) ∈→A(C )} P̂re
A(C )

∃,∃ (S2)

Remark 1. By Definition 7, A(C ) can be easily constructed from the simple controller C and the AFTS
T . Conversely, C can be constructed from A(C ) by C = {(s,D(s)) : s ∈W,D(s) 6= /0}, where D(s) =
{u : (s,u,s2) ∈→A(C )}.

A(C ) contains the transitions behind the state-action pairs in C , so that we can search invalid tran-
sitions in A(C ) after some actions become unavailable. Also, by Remark 1, it is easy to convert C to
A(C ) and vice versa. Therefore, we patch a simple controller C by modifying its corresponding FTS
A(C ) and then transferring A(C ) to C . Several operations applied to the FTS A(C ) are defined in Table
1, with which we are ready to modify simple controllers resulting from (13) and (14), i.e. PreT,U

∃,∀ (V ) and

InvD,G
∃ (Z,B).
Suppose that W and C are the winning set and controller resulting from PreT,U

∃,∀ (V ). Given V̂ =

V −∆V , we want to modify W and C to be the winning set and controller resulting from PreT̂ ,Û
∃,∀ (V̂ ).

Intuitively if we can find all the invalid transitions (s1,u,s2) in A(C ) due to u ∈ Ud or s2 ∈ ∆V , and
remove them from A(C ), that would result in a controller that works for the new problem setting, based
on which, the patching operator for (13) is:

[Ŵ , Ĉ ] = PreT,U
∃,∀ (C ,∆V,Ud)

=


T0 = A(C )\(∗,Ud ,∗)→A(C )

E = P̂re
T0
∃,∃(∆V )

A(Ĉ ) = T0\(E,∗)→T0

Ŵ = {s1 : ∃u,∃s2 s.t. (s1,u,s2) ∈→A(Ĉ )
},

(2)

where Ĉ is converted from A(Ĉ ). Ŵ and Ĉ are the modified winning set and controller.

Theorem 3. Ŵ and Ĉ returned by (2) are the same as the outputs resulting from PreT̂ ,Û
∃,∀ (V̂ ) in (13).

Proof: Suppose that PreT̂ ,Û
∃,∀ (V̂ ) returns Wt and Ct . It is enough to show that A(Ĉ ) = A(Ct), i.e.

→A(Ĉ )
=→A(Ct). By (13) and Definition 7, it is obvious that →A(Ct)⊆→A(C ) for V̂ ⊆ V and Û ⊆ U .

The transitions in S = (∗,Ud ,∗)→A(C )
∪ (E,∗)→T0

are either under actions that may push the system to
∆V or under actions in Ud , so →A(Ct) and S are disjoint. →A(Ĉ )

=→A(C ) −S. Thus →A(Ct)⊆→A(Ĉ )
.

By (2), transitions in A(Ĉ ) can only take actions in Û and transit to states in V̂ , which implies that
→A(Ĉ )

⊆→A(Ct). �

Suppose that Y and C are the winning set and controller resulting from InvD,G
∃ (Z,B). If D∩Ud 6= /0,

the winning set is empty by the definition of progress group (see[12]). Given Ẑ ⊆ Z and D such that
D∩Ud = /0, we want to modify Y and C to be the winning set and controller for InvD,G

∃ (Ẑ,B). The
modified winning set Ŷ is contained by Y ∪ (∆Z ∩G∩B). Also, InvD,G

∃ (Z,B) computation in (14) is a
contraction algorithm in the sense that the sequence {Yk}∞

k=1 is monotonically decreasing in set inclusion
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sense and its limit is the winning set. Combining these two facts, we can warm-start the contraction
algorithm in (14) with Y0 = Y ∪ (∆Z∩G∩B) instead of Q. The patching operator is:

[Ŷ , Ĉ ] = InvD,G
∃ (Y,C ,Z, Ẑ)

=



Y0 = Y ∪ (∆Z∩G∩B)
∆Y0 = Q− (Y0∪ Ẑ)
T0 = A(C )∪E0

k = 0
repeat :

∆Yk+1 = ∆Yk ∪PreTk,D
∀,∃ (∆Yk)



Tk+1 = Tk\(∆Yk+1,∗,∗)→Tk

Yk+1 = Yk−∆Yk+1

k = k+1
until Yk = Yk−1

Ŷ = Yk, [−, Ĉ ] = PreTk,D
∃,∀ (Ŷ ∪ Ẑ),

(3)

where ∆Z = Z− Ẑ, E0 = {(s1,a,s2) ∈→T : s1 ∈ Y0,a ∈ D,s2 ∈ Q}, PreTk,D
∀,∃ (∆Yk) = {q1 : ∀u ∈ D,∃q2 ∈

∆Yk,s.t. (q1,u,q2) ∈→Tk}. Ŷ is the modified winning set, and the controller Ĉ can be computed from Tk.
In regards to the patching operator in (3), we have the following result, proof of which is given in

Appendix B:

Theorem 4. Ŷ and Ĉ returned by (3) are the same as the outputs resulting from InvD,G
∃ (Ẑ,B) in (14).

Given a simple controller C and new synthesis settings, both (2) and (3) try to find the modified
winning sets inside A(C ) (or A(C )∪E0). However, if we re-synthesize the new simple controllers from
scratch, (13) and (14) start to find the winning sets in the whole AFTS T , which in general needs more
computation cost, demonstrated by the simulation results in Section 4. However, in the worst case, there
might not be any computational gains.

3.2 Patching General Controllers

In the section we are going to patch all the non-leaf nodes, i.e the controllers resulting from (10), (11),
(12), and the root node, i.e. the controller result from (9), and finally Theorem 8 shows that the patching
algorithm for (9) offers a solution to the Problem 1 in Section 2.5.

Assume that Z and C = (V ,K ,x) are the winning set and controller resulting from PGPreT
∃,∀(Z,B).

Given Ẑ ⊆ Z, we want to modify Z and C to be the winning set and controller for PGPreT̂
∃,∀(Ẑ,B). The

patching operator is:

[Ẑ′, Ĉ ] = PGPreT
∃,∀(C ,Z, Ẑ,Ud)

=



Z′ = Z, Ẑ′ = Ẑ, V̂ = {}, K̂ = {}, k = 1
f or D ∈ 2U :

f or G ∈ G(D) :
i f Ud ∩D = /0 :
[V̂ (k),K̂ (k)] = InvD,G

∃ (V (k),K (k),Z′, Ẑ′)


else : V̂ (k) = /0,K̂ (k) = /0
Z′ = Z′∪V (k), Ẑ′ = Ẑ′∪ V̂ (k)
k = k+1

Remove all /0 in V̂ and K̂ , Ĉ = (V̂ ,K̂ ,x).

(4)

Theorem 5. Ẑ′ and Ĉ returned by (4) are the same as outputs resulting from PGPreT̂
∃,∀(Ẑ,B) in (12).

Proof: By theorem 4, the results of (4) remain the same if we replace InvD,G
∃ (V (k),K (k),Z′, Ẑ′) in

(4) with InvD,G
∃ (Ẑ′). After the replacement, the algorithm (4) is the same as the algorithm (12). Therefore,

their outputs must be the same. �
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Assume that X∞ and C = (V ,K ,x) are the winning set and controller resulting from WinT
∃,∀(B U Z).

Assume |K |= 2n, i.e. (11) converges in n steps. Then, given Ẑ ⊆ Z, to get the winning set and controller
for WinT̂

∃,∀(B U Ẑ), the patching operator is:

[X̂∞, Ĉ ] = WinT
∃,∀,(B U Z)(C ,Z, Ẑ,Ud)

=



X0 = /0, X̂0 = /0,∆X = /0, V̂ = {}, K̂ = {}
k = 0
repeat :
[V̂ (2k+1),K̂ (2k+1)] =

PreT,U
∃,∀ (K (2k+1),Xk− X̂k,Ud)

Ek = Z∪ (B∩V (2k+1))
Êk = Z∪ (B∩ V̂ (2k+1))
[V̂ (2k+2),K̂ (2k+2)] =

PGPreT
∃,∀(K (2k+2),Ek, Êk,Ud)

Xk+1 = Z∪ (B∩V (2k+1))∪V (2k+2)
X̂k+1 = Ẑ∪ (B∩ V̂ (2k+1))∪ V̂ (2k+2)



k = k+1
until k = n or X̂k = X̂k−1

while X̂k 6= X̂k−1 :
[V̂ (2k+1),K̂ (2k+1)] =

PreT,U
∃,∀ (K (2n−1),Xn− X̂k,Ud)

Êk = Z∪ (B∩ V̂ (2k+1))
[V̂ (2k+2),K̂ (2k+2)] =

PGPreT
∃,∀(K (2n),En, Êk,Ud)

X̂k+1 = Ẑ∪ (B∩ V̂ (2k+1))∪ V̂ (2k+2)
k = k+1

X̂∞ = X̂k, Ĉ = (V̂ ,K̂ ,x).

(5)

In the algorithm (5), for k < n, we patch the (2k + 1)th and (2k + 2)th existing sub-controllers in
K . If the winning set does not converge in n iterations, for k ≥ n, we duplicate the last two existing
sub-controllers to the tail of K , and patch them to enlarge the winning set until convergence.

Theorem 6. X̂∞ and Ĉ returned by (5) are the same as outputs resulting from WinT̂
∃,∀(B U Ẑ) in (11).

Proof: Similar to the proof of Theorem 5, we can replace all the PreT,U
∃,∀ and PGPreT

∃,∀ terms with

PreT̂ ,Û
∃,∀ (X̂k) and PGPreT̂

∃,∀(Êk,B). Theorem 3 and 5 guarantee that the replacements are equivalent, but
we need to verify: (i) X̂k ⊆ Xk and Êk ⊆ Ek for k < n, and (ii) X̂k ⊆ Xn and Êk ⊆ En for k ≥ n. Both (i)
and (ii) can be easily checked using induction argument (with the base case X̂0 ⊆ X0 and Ê1 ⊆ E1) and
Theorem 2. After the equivalent replacements, algorithm (5) and algorithm (11) become the same. Thus
their outputs must be the same. �

Assume that W and C =(V ,K ,x) are the winning set and controller resulting from WinT
∃,∀((B U Z)∨

2(B∧(
∧

i∈I 3Ri)). Given that Ẑ⊆ Z and Û ⊆U , patch W and C for WinT
∃,∀((B U Ẑ)∨2(B∧(

∧
i∈I 3Ri)).

The patching operator for (10) is:

[Ŵ∞, Ĉ ] = WinT
∃,∀(ψ)(C ,Z, Ẑ,Ud)

=



W0 = V (1), V̂ = V ,K̂ = K

Zi
∞ = Z∪ (B∩Ri∩PreT,U

∃,∀ (W0))

Ẑi
0 = Ẑ∪ (B∩Ri∩PreT,U−Ud

∃,∀ (W0))

[X i
0,K̂ (i)] = WinT

∃,∀,(BUZ)(K̂ (i),Zi
∞, Ẑ

i
0,Ud)

Ŵ0 =
⋂

i∈I X i
0

k = 0



repeat :
Ẑi

k+1 = Ẑ∪ (B∩Ri∩PreT,U−Ud
∃,∀ (Ŵk))

[X i
k+1,K̂ (i)] = WinT

∃,∀,(BUZ)(K̂ (i), Ẑi
k, Ẑ

i
k+1,Ud)

Ŵk+1 =
⋂

i∈I X i
k+1

k = k+1
until Ŵk = Ŵk−1

Ŵ∞ = Ŵk, Ĉ = (V̂ ,K̂ ,x).
(6)

Theorem 7. Ŵ∞ and Ĉ returned by (5) are the same as outputs resulting from WinT̂
∃,∀((B U Ẑ)∨2(B∧

(
∧

i∈I 3Ri)) in (10).
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Proof: Assume that Wt is the winning set resulting from WinT̂
∃,∀((B U Ẑ)∨2(B∧(

∧
i∈I 3Ri)). Similar

to the proof of Theorem 6, we can replace all the WinT
∃,∀ terms in (6) with WinT̂

∃,∀(BUẐi
k), as long as (i)

Ẑi
0 ⊆ Zi

∞ and (ii) Ẑk+1 ⊆ Ẑk are true. (i) is trivial. For (ii), it is enough to show that Ŵk+1 ⊆ Ŵk, which
can be proven by induction. The base case: Since (i) is true, by Theorem 6, we have X i

0 =WinT̂
∃,∀(BUẐ).

Then Ŵ0 =
⋂

i∈I WinT̂
∃,∀(B U Ẑi

0) ⊆
⋂

i∈I WinT
∃,∀(B U Zi

∞) = W0 by Theorem 2. Assume that Ŵk+1 ⊆ Ŵk.

Then Ẑi
k+1⊆ Ẑi

k and Ŵk+1 =
⋂

i∈I WinT̂
∃,∀(B U Ẑi

k+1)⊆
⋂

i∈I WinT
∃,∀(B U Ẑi

k) = Ŵk. Therefore by induction
argument Ŵk+1 ⊆ Ŵk, and Ẑk+1 ⊆ Ẑk for all k. Then (ii) is true. After the replacements, (6) and (10) are
the same except that the contraction of Wk starts from the existing winning set W instead of Q. We can
show that Wt ⊆ Ŵk for all k by induction (base case: Wt ⊆W0 by Theorem 2). Also Wt is the largest
fixed-point in Q by definition. So both (6) and (10) will converge to the same fixed-point Wt . �

Finally we are ready to patch the controller resulting from (9) for specification in the form of (1).
Assume that W and C = (V ,K ,x) are the winning set and controller resulting from the oper-

ator WinT
∃,∀
(
2A∧32B∧

(∧
i∈I 23Ri

))
. Assuming that |K | = n. For patching purpose, we need

some extra information: the lists of winning sets and controllers returned by PreT,U
∃,∀ (Vk) in (9), i.e.

[V1(k),K1(k)] = PreT,U
∃,∀ (Vk); the lists of winning sets and controllers returned by PGPreT

∃,∀(Vk,B) in
(9), i.e. [V2(k),K2(k)] = PGPreT

∃,∀(Vk,B) (k = 1, ...,n) ; the controller CInv returned by WinT
∃,∀((AU /0)∨

2(A∧3Q)) in the first line of (9). To restrict action space to Û =U −Ud , the patching operator for (9)
is:

[V̂∞, Ĉ ] = WinT
∃,∀,(φ)(C ,CInv,V1,K1,V2,K2,Ud)

=



V̂inv = WinT
∃,∀,(ψ)(CInv, /0, /0,Ud)

Restrict synthesis to V̂inv

V̂0 = /0, V (0) = /0, V̂ = {}, K̂ = {}
k = 0
repeat :

Ẑ1
k+1 = PreT,U

∃,∀ (K1(k+1),V (k)−V̂k,Ud)

Ẑ2
k+1 = PGPreT

∃,∀(K2(k+1),V (k),V̂k,Ud)

Zk+1 = V1(k+1)∪V2(k+1), Ẑk+1 = Ẑ1
k+1

⋃
Ẑ2

k+1

[V̂k+1,K̂ (k+1)] =

WinT
∃,∀,(ψ)(K (k+1),Zk+1, Ẑk+1,Ud)

V̂ (k+1) = V̂k+1



k = k+1
until k = n or V̂k = V̂k−1

while V̂k 6= V̂k−1 :
Ẑ1

k+1 = PreT,U
∃,∀ (K1(n),V (n−1)−V̂k,Ud)

Ẑ2
k+1 = PGPreT

∃,∀(K2(n),V (n−1),V̂k,Ud)

Ẑk+1 = Ẑ1
k+1

⋃
Ẑ2

k+1

[V̂k+1,K̂ (k+1)] =

WinT
∃,∀,(ψ)(K (n),Zn, Ẑk+1,Ud)

V̂ (k+1) = V̂k+1

k = k+1
V̂∞ = V̂k, Ĉ = (V̂ ,K̂ ,x).

(7)

The same as (5), the patching algorithm firstly patches the existing sub-controllers. If the winning set
does not converge in n iterations, the last existing controller is duplicated to the tail of K̂ and patched to
enlarge the winning set until it converges.
Theorem 8. V̂∞ and Ĉ returned by (7) are the same as outputs resulting from (9) that is

WinT̂
∃,∀

(
2A∧32B∧

(∧
i∈I

23Ri

))
.

.
Proof: Similar to the previous proofs, we want to replace all the PreT,U

∃,∀ , PGPreT
∃,∀ and WinT

∃,∀,(Ψ)

terms in (7) with PreT̂ ,Û
∃,∀ (V̂k), PGPreT̂

∃,∀(V̂k,Q) and WinT̂
∃,∀((B U Ẑk+1)∨2(B∧ (

∧
i∈I 3Ri)))), as long as
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Figure 3: Simple model of one-legged 1D robots with point foot walking on a ground with holes.

(i) V̂k ⊆ V (k) and Ẑk+1 ⊆ Zk+1 for k < n and (ii) V̂k ⊆ V (n− 1) and Ẑk+1 ⊆ Zn for k ≥ n. Both (i) and
(ii) can be proven by induction using Theorems 2, 3, 5 and 7. (First prove (i) and then use the case where
k = n− 1 in (i) to be the base case in the induction argument for (ii)). Also, in the first line of (7) we
use WinT

∃,∀,(Ψ) to compute V̂inv, which can can be replaced with WinT̂
∃,∀((AU /0)∨2(A∧3Q)) since /0⊆ /0.

After the replacements, (7) and (9) become exactly the same, which implies that their outputs must be
the same. �

Theorem 8 shows that our patching method gives the same results as re-synthesizing from scratch via
(9), and furthermore, since the algorithm (9) is sound and complete, our method is sound and complete,
therefore it offers a solution to the Problem 1 stated in Section 2.5.

4 EXAMPLE

4.1 Simple Transition System

For the transition system in Figure 1, take the controller we get in Example 1 and Ud = {e} as input
of the patching algorithm (7). The outputs are the modified winning set Ŵ = {s1,s2,s3} and controller
Ĉ = ({Ŵ},{Ĉ 0

1 },x = 1) , where the descendant controllers are:
Ĉ 0

1 = ({Ŵ ,{s1},{s2,s3}},{Ĉ 1
1 , Ĉ

1
2 },x0); Ĉ 1

1 = ({{s1,s2},W,W},{Ĉ 2,0
i }3

i=1,x
1
0);

Ĉ 1
2 = ({{s2,s3},W,W},{Ĉ 2,1

i }3
i=1,x

1
1); Ĉ 2,0

1 = {(s1,{a}),(s2,{c})};
Ĉ 2,0

2 = {(s1,{a,b}),(s2,{c}),(s3,{g})}; Ĉ 2,0
3 = {(s1,{a,b}),(s2,{c, f}),(s3,{g,h})};

Ĉ 2,1
1 = {(s2,{ f}),(s3,{h})}; Ĉ 2,1

2 = {(s1,{b}),(s2,{ f}),(s3,{g,h})};
Ĉ 2,1

3 = {(s1,{a,b}),(s2,{c, f}),(s3,{g,h})};
Let the system start from s1 and initialize internal variables as (1,1,1,1). Only one trajectory is avail-

able under control of Ĉ , i.e. s1,s2,s3,s2,s1, ..., where the sequence of actions is b, f ,g,c, ... according to
the controller execution rules in Definition 6. The trajectory does not visit s4, for the system is not able
to come back to A from s4 after action e is removed.

4.2 Case study: 1D Walking Robot

We consider a model of one-legged 1D walking robot moving on a straight line, called the Linear Inverted
Pendulum Model (LIPM, see [6]). This is a very simplified model of dynamics of a walking robot, but it
is used by many algorithms of bipedal walking control (e.g. [5]). It consists in a point-mass robot with a
massless leg moving along a line at a constant height above the ground. We do not restrict the extension
of the leg nor the velocity of the leg motion (the replacement of the foot is instantaneous). The dynamics
of the model are: [

ẋ
v̇

]
=

[
0 1

g/h0 0

][
x
v

]
+

[
0

−g/h0

]
u (8)
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Table 2: The execution time of re-synthesis from scratch (row 3) and patching method (row 4) under
multiple action profiles. The first row is the set of available actions. The second row is the percentage of
transitions left after Ud is disabled.

Ud [1] [1 : 5] [1 : 10] [1 : 15] [1 : 20] [1 : 25]
∃trans 100% 96.57% 81.22% 60.55% 39.67% 19.00%
tsyn(s) 10.9 24.5 36.4 32.7 25.5 14.6
tpat(s) 1.3 5.7 7.7 7.3 5.9 4.8

Table 3: The average execution time for re-synthesizing from scratch (row 2), re-synthesizing from the
existing winning set, i.e. restrict the state space of the AFTS to be the existing winning set and re-run
(9) (row 3) and our patching method (row 4) under random action profiles. The first row is number of
unavailable actions (]Ud). For each number, choose 10 random sets of unavailable actions.

]Ud 1 5 10 15 20 25
tsyn(s) 18.1 17.5 16.8 22.8 33.0 29.5
tws(s) 4.4 5.5 6.4 10.5 16.8 22.3
tpat(s) 1.2 1.6 1.9 2.8 4.3 5.8

where x is the horizontal position of the center of mass (CoM) of the robot, v is the velocity of CoM and
u is the horizontal position of the foot. that the robot foot will step on.

We consider the state space Q = [−2.5,2.5]× [−4,4] with action space U = [−3.5,3.5]. Discretize
Q and U uniformly with grid size 0.1 and 0.2, and compute the transitions between discretized grids
over-approximately using the method described in [8, 16]. Finally we get a AFTS T with states indexed
[1 : 4000], actions [1 : 35] and 187594 valid transitions, which is the abstraction of the walking robot.

The specification for the control synthesis is 2Q∧32B, where B = [−2.5,2.5]× [−2,2]. It says
that the CoM of the robot should always stay within [−2.5,2.5] with velocity lower than 2 after finite
time from beginning. Given the specification, the winning set and controller are computed via (9) (taking
A = Q,B = B,C1 = Q).

Now imagine that some holes on the ground are detected, as shown in Figure 3, where the robot
should avoid stepping. Therefore some actions need to be disabled. Once we determine which actions
will be affected, we can put them in Ud and patch the existing controllers for the new action profiles.

The experiment environment is MATLAB R2017a with CPU Intel Core i7-6820 HQ.
We choose unavailable actions Ud = [1], [1 : 5], ..., [1 : 25] for the walking robot abstraction and com-

pute the controllers via fixed-point operator (9) and the patching operator (7) respectively. The exper-
iment results in Table 2 make a comparison between the time of synthesizing from scratch (tsyn) with
the time of patching existing controllers (tpat), which shows that our patching methods can shorten the
synthesis time significantly. Figure 4a shows the winning sets for each Ud , which shrink to the right part
in the state space as Ud (region of holes) grows.

To further show the time efficiency, we randomly choose Ud with size n = 1,5, ...,25. By Theorem 2,
the winning set after Ud is removed is contained by the existing one, so we can restrict the state space for
the AFTS T to be the existing winning set and synthesize over this new abstraction via (9). Theoretically
it saves computation cost, for the new AFTS is smaller. We call it naive warm-starting method. Table 3
compares the average time used by naive warm-starting (row 3) with our patching method (row 4) and
re-synthesizing from scratch (row 2) for each n. The time for our patching algorithm is up to 20% of the
time for re-synthesizing and up to 30% of the time for naive warm-starting on average. Also, as shown
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Figure 4: (a) Six regions with different colors are labeled as W1,W2, ...,W6. The winning
sets under action profiles Ud = [1], [1 : 5], [1 : 10], ..., [1 : 25] are the regions corresponding to⋃6

i=1Wi,
⋃6

i=2Wi,
⋃6

i=3Wi, ..., W6 respectively. (b) Trajectories with initial state (0.85,−3.95) under
Ud = /0 (blue) and [1 : 10] (red). The region inside orange box is the target set B. (c) Inputs over
time under Ud = /0 (blue) and [1 : 10] (red) for trajectories in (b). The red dash-point line indicates value
corresponding to the input indexed by u = 10.

in the table, the more actions are unavailable, the more time the patching algorithm needs. This can be
attributed to the fact that when more actions are unavailable, the fixed point is likely to change more.

Finally, to show that formal guarantees are satisfied after patching, simulations are run for controllers
before and after patching for Ud = [1 : 10]. The initial state is s0 = 34. Figures 4b and 4c show the
trajectories and the inputs used within 60 time steps. Both trajectories go into our target region B,
indicated by the orange box. The outputs from patched controller are always above the dash line where
u = 10, due to the unavailability of actions [1 : 10].

For practical applications in robot control, if we have the controller for the case that no constraint
exists and know all the possible profiles of actions (all the possible constraints on the surface) for a
known environment, the patching algorithm can generate the corresponding controllers for those action
profiles very quickly.

5 CONCLUSION

In this paper, we proposed an implementation (data structure) for a controller synthesized by fixed-point
based control synthesis techniques in [12]. For an existing controller with such a structure, a patching
algorithm was developed to modify it for the case that some actions in the original problem setting
become unavailable. Furthermore we proved that the winning set resulting from our patching algorithm
was exactly the same as the winning set resulting from synthesizing a new controller from scratch.

We illustrated the efficiency of our method on a example of walking robot. The controller was
synthesized for the robot described by a Linear Inverted Pendulum Model with hole constraints on the
surface. We first synthesized a controller for a smooth surface without holes, and then patched it using
our method for the cases that holes existed. Under the same specification, the time used by our method
was only 1.4%−7% of the time used for synthesis from scratch and less than 3% on average.

As future work, it would be interesting to consider cases where the modified action set is not a strict
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subset of the original action set.
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[V∞,C ] = WinT
∃,∀

(
2A∧32B∧

(∧
i∈I

23Ri

))

=



Vinv = WinT
∃,∀((AU /0)∨2(A∧3Q))

Restrict synthesis to Vinv

V0 = /0, V = {}, K = {}, k = 0
repeat :

Zk+1 = PreT,U
∃,∀ (Vk)

⋃
PGPreT

∃,∀(Vk,Q)

[Vk+1,Ck+1] =

WinT
∃,∀((B U Zk+1)∨2(B∧ (

∧
i∈I 3Ri)))

V (k+1) =Vk+1, K (k+1) = Ck+1

k = k+1
until Vk =Vk−1

V∞ =Vk, C = (V ,K ,x)

(9)

[W∞,C ] = WinT
∃,∀((B U Z)∨2(B∧ (

∧
i∈I

3Ri)))

=



W0 = Q, V = {}, K = {}
k = 0
repeat :

Zi
k+1 = Z∪ (B∩Ri∩PreT,U

∃,∀ (Wk))

[X i,C i] = WinT
∃,∀(B U Zi

k+1),∀i ∈ I

Wk+1 =
⋂

i∈I X i

k = k+1
until Wk =Wk−1

V (1) =Wk,

V (i+1) = B∩Ri, K (i) = C i,∀i ∈ I
W∞ =Wk, C = (V ,K ,x)

(10)

[X∞,C ] = WinT
∃,∀(B U Z) =

X0 = /0, V = {}, K = {}, k = 0
repeat :
[V 1

k ,C
1
k ] = PreT,U

∃,∀ (Xk)

[V 2
k ,C

2
k ] = PGPreT

∃,∀(Z∪ (B∩V 1
k ),B)

Xk+1 = Z∪ (B∩V 1
k )∪V 2

k
V (2k+1) =V 1

k ,V (2k+2) =V 2
k

K (2k+1) =C1
k , K (2k+2) =C2

k
k = k+1

until Xk = Xk−1

X∞ = Xk, C = (V ,K ,x)

(11)

[Z′,C ] = PGPreT
∃,∀(Z,B) =

Z′ = Z, V = {}, K = {}
k = 1
f or D ∈ 2U :

f or G ∈ G(D) :
[Vk,Ck] = InvD,G

∃ (Z′,B)
Z′ = Z′∪Vk

V (k) =Vk, K (k) = Ck

k = k+1
C = (V ,K ,x)

(12)

[18] Kai Weng Wong, Rüdiger Ehlers & Hadas Kress-Gazit (2014): Correct High-level Robot Behavior in Envi-
ronments with Unexpected Events. In: Robotics: Science and Systems.

A Fixed-point Operators

In this appendix, we present algorithms from [12] to compute the winning set for a specification in the
form of (1). In addition to the winning set, these algorithms provide an explicit construction of the
control implementation as in Definition 5.

The most general algorithm that computes the winning set and the controller for specifications in
the form of (1) is given in (9). The winning set that results from (9) is equal to V∞, i.e. the limit of the
expanding sequence Vk. C is the controller corresponding to the winning set V∞.

The building blocks for algorithm (9) are (fixed-point based) operators (10), (11), (12), (13) and (14).
Each operator corresponds to a type of LTL formula used in (9). Note that when a fixed-point operator
appears as part of a formula, it only refers to its first output, i.e. the winning set.

The winning sets resulting from (10), (11), (14) are W∞, X∞ and Y∞. In words, PreT,U
∃,∀ is a one-step

reachability operator, and InvU,G
∃ (Z,B) computes Y∞⊆ (G∩B)−Z from where the state can be controlled

(with actions in U) to either remain inside Y∞ or reach Z, but because G is a progress group under U ,
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[W,C ] = PreT,U
∃,∀ (V ) =

W = {q1 ∈ Q : ∃(u ∈U)∀(q2

s.t. (q1,u,q2) ∈→T ),q2 ∈V}
D(q) = {u ∈U : ∀(q2

s.t. (q,u,q2) ∈→T ), q2 ∈V}
C = {(q,D(q)) : q ∈ Q,D(q) 6= /0}

(13)

[Y∞,C ] = InvD,G
∃ (Z,B) =

Y0 = (G∩B)−Z
while Yk+1 6= Yk :

Yk+1 = Yk ∩PreT,D
∃,∀ (Yk ∪Z)

[−,C ] = PreT,D
∃,∀ (Yk ∪Z)

Y∞ = Yk, C restricted to Y∞

(14)

remaining indefinitely in G is impossible and therefore Z is eventually reached, which is why Y∞ is part
of the winning set for B U Z. On the other hand, PGPreT

∃,∀(Z,B) calls InvD,G
∃ (Z′,B) over all the progress

groups, to collect the feasible winning states inside progress groups where B U Z can be enforced.
For controllers resulting from (9), (10), (11) and (12), their descendant controllers come from the

outputs of operators they call internally. Leaf nodes in a controller always consist of simple controllers,
i.e. the ones given by (13) and (14).

B Proof of Theorem 4

Proof: Assume that Yt and Ct are the winning set and controller resulting from InvD,G
∃ (Ẑ). We want to

show that Yt = Ŷ , which immediately implies Ct = Ĉ .
The winning set Y of InvD,G

∃ (Z) is the largest subset of (G∩B)−Z satisfying the convergence con-
dition w.r.t Z, i.e. Y ⊆ PreT,D

∃,∀ (Y ∪Z) and Y is the greatest fixed-point of this operator, so is Yt w.r.t. Ẑ.
Also, Yt ⊆ Y0 for Y0 in (3) by Theorem 1.

First, we show Yt ⊆ Ŷ : Since Yt ⊆ Y0 and Yk = Y0−
⋃

i≤k ∆Yi for Y0, ∆Yk and Yk in (3), it is enough to
show ∆Yk∩Yt = /0, for all k. Proceeding by induction: ∆Y0∩(Yt ∪ Ẑ) = /0. Assume that ∆Yk∩(Yt ∪ Ẑ) = /0,
then it can be easily checked that PreTk,D

∀,∃ (∆Yk)∩ PreT,D
∃,∀ (Yt ∪ Ẑ) = /0 based on the fact that →Tk⊆→T .

For Yt ⊆ PreT,D
∃,∀ (Yt ∪ Ẑ) and ∆Yk+1 = ∆Yk ∪PreTk,D

∀,∃ (∆Yk), Yt ∩∆Yk+1 = /0. Hence by induction argument,
Yt ∩∆Yk = /0 for all k, i.e. Yt ⊆ Ŷ .

Second, we show Ŷ ⊆ Yt : It is enough to show that Ŷ satisfies the convergence condition w.r.t. Ẑ.
By definition of Tk in (3), it is easy to check that Yk = {s1 : ∃u,∃s2 s.t.(s1,u,s2) ∈→Tk}. Therefore
PreTk,D
∀,∃ (∆Yk) ⊆ Yk for all k by definition of PreTk,D

∀,∃ in (3). Then we can express ∆Yk+1 = ∆Yk ∪ (Yk ∩
PreT,D
∀,∃ (∆Yk)). Based on the new expression of ∆Yk+1 and Yk ∩ Ẑ = /0, we have ∆Yk = Q− (Yk ∪ Ẑ). The

limit of redefined ∆Yk exists, for it is increasing and contained by a finite set Q. Once ∆Yk converges,
Yk ∩ PreTk,D

∀,∃ (∆Yk) ⊆ ∆Yk. Since Yk = Ŷ and ∆Yk are disjoint, we have Ŷ ∩ PreTk,D
∀,∃ (∆Yk) = /0, i.e. Ŷ ∩

PreTk,D
∀,∃ (Q− (Ŷ ∪ Ẑ)) = /0. This being empty set is equivalent to ∀s1 ∈ Ŷ , not (∀u ∈ D,∃s2 ∈ Q− (Ŷ ∪

Ẑ),(s1,u,s2) ∈→T ), i.e. ∀s1 ∈ Ŷ ,∃u ∈ D,∀s2 ∈ Q− (Ŷ ∪ Ẑ),(s1,u,s2) 6∈→Tk . That implies that ∀s1 ∈
Ŷ ,∃u ∈ D,∀(s2 s.t. (s1,u,s2)→Tk),s2 ∈ (Ŷ ∪ Ẑ). By definition of Tk in (3), for all s1 ∈ Ŷ and u ∈ D, if
(s1,u,s2) ∈→T , (s1,u,s2) ∈→Tk . So we have ∀s1 ∈ Ŷ ,∃u ∈ D,∀(s2 s.t. (s1,u,s2)→T ),s2 ∈ (Ŷ ∪ Ẑ), that
is Ŷ ⊆ PreT,D

∃,∀ (Ŷ ∪ Ẑ). Thus, Ŷ satisfies the convergence condition over Ẑ. �
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