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Abstract 

Product development processes involve computational methods like Computational Fluid 

Dynamics to simulate real world fluid flow and heat transfer phenomena numerically using 

computers. Also, traditional heuristic design methods require enormous numerical simulations to 

obtain optimum designs which makes these methods inefficient and highly expensive. This thesis 

presents a design of experiments - based approach to develop an optimization tool that can predict 

the optimum performance of a Thermal Energy Storage (TES) system using Computational Fluid 

Dynamics (CFD) [1], Response Surface Methodology (RSM) [2] [3], and Genetic Algorithm [4]. 

A cylindrical capsule filled with Phase Change Material (PCM) is used as a Thermal Energy 

Storage (TES) system or Latent Heat Thermal Energy Storage (LHTES) system, which stores and 

releases heat as the PCM melts or solidifies respectively. Based of literature review and previous 

research, Outer Diameter and Wall thickness of the capsule were considered as the possible 

influencing parameters (i.e. design variables), whereas Melt time of PCM and Weight of 

cylindrical capsule were considered as the objective functions (output responses). The effects of 

design variables on the objective functions was studied using the results of CFD simulations and 

Central Composite Design as the Design of Experiments type. Single and Multi-Objective 

optimization was performed to find best possible results for the above two objectives in 6 different 

cases. A robust optimization tool for a thermal battery design was developed which in theory could 

be applied to any type of heat exchanger design to reduce the overall product development time.  
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Chapter 1 Introduction 

 

1.1 Introduction to Thermal Storage 

Latent Heat Thermal Energy Storage Systems (LHTES) based on Phase Change Materials (PCMs) 

have been a part of research for many years [5] [6]. LHTES technology makes use of the sensible 

heat of a Heat Transfer Fluid (HTF) for melting and solidification of the PCM to store and release 

energy. Applications of such systems range from space heating and cooling, solar energy 

applications, heating, ventilation and air conditioning in buildings, electrified vehicles to peak load 

reduction [6].  

Design of LHTES systems involves selection of geometric parameters and operating conditions 

that provide for maximum heat transfer with a minimum pressure drop. Numerical modelling and 

CFD correlated with experimental results have been traditionally used for the development of these 

systems.  But these methods demand substantial amount of resources to provide an optimized 

design. An optimization tool that takes design variables (like geometric parameters) as input and 

gives an optimized design as output efficiently, would yield considerable economic advantages. 

 

1.2 Background and Motivation 

Design of a mechanical system involves selection from multiple levels of parameters. The 

performance of and mechanical system based on one set (or combination) of parameters (or design 

variables) was traditionally evaluated using experiments by building prototypes. Due to later 

developments in the field of Computational Methods, the need for building prototypes was 

reduced. These evaluations could be done using Computational Fluid Dynamics (CFD). The 

procedure for CFD includes Pre-processing (building a Computer-Aided-Design (CAD) model, 

grid generation, setting up the solver parameters), processing (solving) and post-processing. The 

problem with this method is each time the set of parameters change; a new model is needed to be 

analyzed. Thus, coming up with an optimized design demands enormous computing power and 
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consequently time, money, and labor. Therefore, there is a need to develop an algorithm to provide 

optimized design for a multitude of design variables. 

 

1.3 Problem Definition 

The Latent Heat Thermal Energy Storage (LHTES) system under consideration in this 

work is a cylindrical capsule filled with a phase change material (PCM) at room temperature (25 

deg C). Hot air at 70 deg C is passed over the cylinder placed horizontally. Fig. 1 shows a schematic 

of the experimental setup. Due to a temperature difference between the air and the cylindrical 

capsule, there will be heat transferred to the PCM and it will melt over time. Thus, the PCM stores 

energy as it heats and melts. Designing of this system, involves selection of geometric parameters 

like Outer diameter (OD) of the tube, Wall thickness (WT) of the tube. In a heuristic design 

approach, an iterative method is performed in which the designer guides the design process based 

on the results of the previous iteration. But this method is expensive and exhausting. This work 

aims to develop a more efficient way than a heuristic approach to find geometric dimensions of 

the cylindrical capsule that yield optimum Weight of capsule and Melt time of PCM.  

 

Figure 1 Schematic drawing of the Problem Setup 

 

1.4 Literature Review 

Latent heat as a medium for thermal energy storage has been a part of academic and industry 

research for several years. Z. Ling et. al. has researched latent heat thermal energy storage systems 

that are used for thermal management of electronic systems [5]. Ioan Sarbu et. al. focussed on TES 
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technologies that provide a way of valorizing solar heat and reducing the energy demand on 

buildings [6]. 

Computational Fluid Dynamics (CFD) and numerical solution techniques have been extensively 

used to analyze the heat transfer and melting phenomena in such systems for quite some time. Beer 

and Bareis provided a closed form solution of the melting process inside a horizontal tube, which 

was validated by their experiments using a photographic technique. N-octadecane and p-xylene 

were used as the PCM for their work [7]. Melting rates and heat transfer co-efficients were in good 

agreement with the experiment. A Atal et. al. used ANSYS Fluent CFD to study the effects of 

metal foam on melting of Phase Change Material in horizontal shell and tube exchanger [8].  

Maldonado investigated the melting process inside a horizontal cylinder as part of his Masters 

thesis at University Miami [9]. Octadecane was used as the PCM. Ajay Prasad investigated the 

effects of natural convection on the melting inside a horizontal cylinder as part of his Masters 

thesis at University of Miami [10]. Both, Prasad’s and Maldonado’s work played a major part and 

influenced the planning and execution of the experiments performed in the current work. 

These LHTES systems can be designed in various size and configurations. CFD has a high 

potential to easily explore a large number of different configurations. However, due to enormous 

computing times required for these CFD simulations; design exploration, what-if studies and 

optimization is rendered impractical. Response Surface Methodology (RSM) has been 

increasingly used for optimization problems involving CFD. Krajnovic studied aerodynamic 

optimization of vehicles using CFD and RSM [11]. This study involved 4 design variables and 2 

objective functions. Face Centered Composite Design was used as the DoE technique to build a 

2nd order polynomial RS. Optimization method used was e-constrained method. Hierarchical 

cluster algorithm was used to analyze the Pareto Optimal solutions. 

Lohrasbi et al. used Response Surface Method along with Finite Element Analysis to optimize a 

novel fin-array for multiple objectives [3]. Considering maximum heat storage capacity, the 

optimization procedure led to efficient shape design of the LHTES system. A Sciacovelli et al. 

enhanced the performance of a shell-tube LHTES unit by optimizing the geometry of Y-shaped 

fins through the combined use of CFD and RSM [12]. 30 design points were used to build the 

Response Surface model which was later used for optimization studies.  



4 
 

Hedderich et. al. used the method of feasible directions and Augmented Lagrange multiplier 

method for the design and optimization of air-cooled tube bank heat exchangers [13].  However, 

Classical Optimization techniques like method of feasible directions, are known for their lack of 

robustness and for their tendency to fall into local optima.  

Researchers have been exploring other non-gradient based optimization algorithms in recent years. 

Asadi et. al. used a cuckoo search algorithm for the economic optimization of shell and tube heat 

exchangers [14]. Methods like Evolutionary Algorithms (EAs) offer several attractive features and 

have been widely used for design shape optimization, moreover for multi-objective multi 

parameter problems [4].  

Dominique Thevenin et al studied optimization of a cross-flow tube bank heat exchanger [15]. The 

problem was to optimize the positions of tubes using Evolutionary Algorithms (EAs) so that the 

heat exchange is maximal while keeping a minimal pressure loss. Godarzi et. al. optimized a PCM 

storage system for a solar absorption chiller using genetic algorithm [16]. R. Raud et al. presented 

an analytical method for optimizing the design of a tube and shell type heat exchanger subject to 

geometric and performance constraints [17]. Their optimization method was used to investigate 

the relationship between optimal vessel geometry and configuration, fin properties, PCM 

properties, and the cost of two PCMs. 

As a whole, optimization of configurations involving coupled CFD simulation of flow and heat 

transfer remains a fairly new field of research. And, the use of such optimization methods for 

design of LHTES systems involving cylindrical capsules is limited. This work aims at providing 

an in-depth understanding of the genetic algorithm optimization method as applied to the melting 

process of a PCM in a horizontal cylindrical capsule. 
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Chapter 2 Numerical Modelling and Validation 

 

2.1 System Description 

Thermal energy is stored in the form of latent and sensible heat in the Phase Change Material 

(PCM) which is contained in a cylindrical capsule. The PCM used for this study is A58h from the 

company PCM Products Ltd. The physical and thermal properties of the PCM are described in 

table 1. PCM is filled in a cylindrical capsule which is made of 6061 Aluminum. The outer 

diameter of the capsule is 0.5 inch with a 1.25 mm wall thickness. This capsule is sealed from both 

ends to prevent leaking of the melted PCM. This cylindrical capsule is placed in a crossflow of hot 

air in a wind tunnel. Inlet temperature of the air is 70 deg C, and an inlet velocity of 2.33 m/s 

averaged over the length of the cylinder is used for melting the PCM in the cylindrical capsule. 

The experimental setup details are shown in table 2. Fig. 2 shows the arrangement of the cylindrical 

capsule placed in crossflow. Photographic observations of the melting phenomena were made to 

validate the CFD results. Experimental melt time of the PCM is defined as the time taken by the 

PCM from the start of melting of the outer most layer of PCM inside the tube to the complete 

melting of the PCM in the tube as observed in the experiment.  

Table 1 PCM Properties 

PCM A58h 

Units 
Type 

Organic 

A 

Phase Change Temperature 58 deg C 

Density 820 kg/m^3 

Latent Heat Capacity 243 kJ/kg 

Volumetric Heat Capacity 199 MJ/m^3 

Specific Heat Capacity 2.85 kJ/kg-K 

Thermal Conductivity 0.18 W/m-K 

Max. Operating Temperature 300 deg C 
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Table 2 Experimental Setup Details 

Dimensions 

Outer diameter of the capsule (OD) 12.7 mm 

Wall thickness of the capsule (WT) 1.25 mm 

Operating conditions 

Inlet velocity 2.33 m/s 

Inlet Temperature 70 deg C 

 

 

Figure 2 Experimental Setup (Actual photo) 

The optimization problem using CFD analysis requires CFD simulations/experiments for a number 

of design points. The following section will describe the sample CFD Modelling for the given set 

of the input and output parameters in the experimental setup.  

2.2 CFD Modelling 

The system described in the experiment is modeled using ANSYS Workbench for CFD analysis.  

2.2.1 Geometry  

Fig. 3 shows the geometry used for the CFD Analysis created using ANSYS DesignModeler. Since 

the cylindrical capsule was placed horizontally in crossflow of air, and assuming that the cylinder 

is a long cylinder, there is a fairly negligible change in the velocity profile along the length of the 

cylinder. Thus, the problem can be reduced to a 2D heat transfer and fluid flow analysis. Also, 

since the assumption of a 2D flow is sufficiently accurate, the time and computing power required 
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for the 2D CFD simulations is greatly reduced compared to a 3D problem. The air domain is 

considered to be sufficiently large such that it does not affect the flow around the cylinder.  

The outer diameter and the wall thickness of the capsule are parameterized in ANSYS Design 

Modeler for design exploration [18]. Geometric dimensions for all the subsequent DoE design 

points used to generate a response surface approximation are mentioned in the table. 

 

Figure 3 Geometry (CAD model) for the CFD Modelling 

2.2.2 Mesh 

The geometry created in Design Modeler was discretized using ANSYS Mesher. Considering the 

PCM and Air are modeled as fluid domains and the capsule is considered to be a solid domain, 

variable grid sizes were used in this model. Since the outer wall of the cylinder is considered to be 

a no-slip boundary, there will be a boundary layer generated around the cylinder wall [19]. Thus, 

the grid needs to be fine to resolve the velocity gradients accurately. After performing a grid 

sensitivity study, grid sizes of 1 mm, 0.5 mm, 0.4 mm were used for Air, PCM and capsule 

respectively. Fig. 4 and fig. 5 show the grid for current geometry described in the above 

experimental setup which consisted of 12721 elements.  

The grid for all the DoE points used for Response Surface modelling were generated individually 

and details are mentioned in table.   
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Figure 4 Mesh for the Experimental Setup (Complete Geometry) 

 

 

Figure 5 Mesh for Experimental Setup (Zoomed - in) 

2.2.3 CFD Setup and Solution  

The numerical simulation for the grid generated using ANSYS Mesher is solved in ANSYS Fluent 

module. The Reynolds number for this flow is calculated to be 1484 [20] using the following 

equation,  
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𝑅𝑒 # =  
𝑈𝑎𝑣𝑔 ∗ 𝐷

𝜈
 

𝑤ℎ𝑒𝑟𝑒, 𝑈𝑎𝑣𝑔 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡 𝑎𝑖𝑟 

𝐷 = 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑓𝑙𝑜𝑤 𝑖. 𝑒. 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 

𝜈 = 1.79
𝑚2

𝑠
 

 

Thus, the flow is modeled as a laminar unsteady flow. Solidification & Melting model is used to 

simulate the melting process of the PCM. A numerical solution for this setup was obtained by 

solving the following equations:  

Governing equations:  

ANSYS FLUENT solves the following equations for mass and momentum [18].  

The equation for conservation of mass, or continuity equation is given by,  

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌�⃗�) = 0 

Conservation of momentum in an inertial (non-accelerating) reference frame is given by, 

𝜕

𝜕𝑡
(𝜌�⃗�) + ∇. (𝜌�⃗��⃗�) = −∇p + ∇. (𝜏̿) +  𝜌�⃗� + �⃗� 

where p is the static pressure, 𝜏̿ is the stress tensor (described below), and 𝜌�⃗� and �⃗� are the 

gravitational body force and external body forces (e.g., that arise from interaction with the 

dispersed phase), respectively. �⃗� also contains other model-dependent source terms such as 

porous-media and user-defined sources. 

General equation for stress tensor is 𝜏̿ is given by,  

𝜏̿ = 𝜇 [(∇�⃗� + ∇�⃗�𝑇) −
2

3
∇. �⃗�𝐼] 

where 𝜇 is the molecular viscosity, 𝐼 is the unit tensor, and the second term on the right-hand side 

is the effect of volume dilation. This equation is modified accordingly for incompressible fluids.  

ANSYS FLUENT solves the energy equation in the following form: 
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𝜕

𝜕𝑡
(𝜌𝐸) + ∇. (�⃗�(𝜌𝐸 + 𝑝)) = ∇. (𝑘𝑒𝑓𝑓∇T − ∑ ℎ𝑗

𝑗

𝐽𝑗 + (𝜏�̿�𝑓𝑓. �⃗�)) + 𝑆ℎ  

where 𝑘𝑒𝑓𝑓 is the effective conductivity (𝑘 + 𝑘𝑡, where 𝑘𝑡 is the turbulent thermal conductivity, 

defined according to the turbulence model being used), and 𝐽𝑗 is the diffusion flux of species 𝑗. 

The first three terms on the right-hand side of above equation represent energy transfer due to 

conduction, species diffusion, and viscous dissipation, respectively. 𝑆ℎ includes the heat of 

chemical reaction, and any other volumetric heat sources you have defined. 

ANSYS FLUENT uses an enthalpy porosity formulation [21] [22], for solving solidification and 

melting problems. The enthalpy of the material is computed as the sum of the sensible enthalpy, ℎ, 

and the latent heat, Δ𝐻: 

Where 

𝐻 = ℎ + Δ𝐻 

ℎ = ℎ𝑟𝑒𝑓 + ∫ 𝑐𝑝𝑑𝑇
𝑇

𝑇𝑟𝑒𝑓

 

ℎ𝑟𝑒𝑓 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦 

𝑇𝑟𝑒𝑓 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑐𝑝 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

The liquid fraction, 𝛽, can be defined as 

𝛽 = 0 𝑖𝑓 𝑇 < 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠 

𝛽 = 1 𝑖𝑓 𝑇 > 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠 

𝛽 =
𝑇 − 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠

𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠 − 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠
 𝑖𝑓 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠 < 𝑇 < 𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠 

The latent heat content can now be written in terms of the latent heat of the material, 𝐿: 

Δ𝐻 =  𝛽𝐿 
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The latent heat content can vary between zero (for a solid) and 𝐿 (for a liquid). 

For solidification/melting problems, the energy equation is written as 

𝜕

𝜕𝑡
(𝜌𝐻) + ∇. (𝜌�⃗�𝐻) = ∇. (k∇T) + S 

𝑤ℎ𝑒𝑟𝑒, 𝐻 = 𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦 

𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

�⃗� = 𝑓𝑙𝑢𝑖𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝑆 = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚 

The solution for temperature is essentially an iteration between the energy equation and the liquid 

fraction equation. Directly using equation for energy to update the liquid fraction usually results 

in poor convergence of the energy equation. In ANSYS FLUENT, the method suggested by Voller 

and Swaminathan [23] is used to update the liquid fraction. For pure metals, 

where 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠 and 𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠 are equal, a method based on specific heat, given by Voller and 

Prakash [22], is used instead. 

The solver setup details are mentioned in the table 3. The solution is initialized using the default 

values in ANSYS Fluent. A time convergence study was conducted which yielded 0.05 s to be the 

best compromise between an accurate solution and the total time required for the simulation. The 

total flow time of the analysis was chosen to be equal to that required for real time melting of the 

PCM observed in the experiment. Simulation data was saved at every 15 seconds of flow time. 

The CFD solver setup described in table. 3 was maintained constant throughout all the DoE points 

used for Response Surface Modelling. 

Table 3 CFD Solver setup 

Solver 

Type Pressure – based 

Time Transient 

2D space Planar 

Velocity formulation Absolute 

 

Models 
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Energy 

Solidification and Melting 

Viscous Laminar 

 

Solution Methods 

Pressure - Velocity Coupling 

Scheme SIMPLE 

Spatial Discretization 

Gradient Least squares cell based 

Pressure Second Order 

Momentum Second Order Upwind 

Energy Second Order Upwind 

Transient Formulation First Order Implicit 

 

Solution Controls 

Under-Relaxation Factors  

Pressure 0.3 

Density 1 

Body Forces 1 

Momentum 0.7 

Liquid Fraction Update 0.9 

Energy 1 

Residuals Criteria 

Continuity 0.001 

x-velocity 0.001 

y-velocity 0.001 

energy 1E-06 

Scaled Yes 

 

Time step size 0.05 s 

Number of Time steps 30000 

Max Iterations/Time Step 20 
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2.2.4 Post Processing:  

The results of the CFD analysis were observed in ANSYS CFD Post. Fig. 7 shows melting of a 

PCM inside a horizontal cylindrical capsule placed in a crossflow over a period of time. Fig. 6 

shows the velocity vectors for the current setup at the end of the simulation. Table 4 shows a 

comparison between the experimental and CFD Melt times and it was observed that the CFD 

results were in enough agreement with the experiments considering the melting and solidification 

model used in this analysis.    

The Melt fraction contours were used to calculate time required for the melting of the PCM. CFD 

melt time is defined as the time measured from start of melting of outermost layer of the PCM, to 

end of melting of the all the PCM contained in the capsule. This CFD melt time was used as a 

performance metric for all the DoE design points. The aim of the optimization study is to minimize 

the CFD melt time.  

Weight of the capsule is defined as the total weight of the PCM contained in the cylindrical capsule 

plus the weight of the cylindrical capsule. This weight is used a performance metric for all the DoE 

design points. The aim of the optimization study is to minimize the weight of the capsule.   

Table 4 Comparison between CFD and Experimental results 

Outer Diameter (mm) Wall thickness (mm) CFD Melt time Experimental Melt time 

12. 7 mm 1.25 mm 1290 s 907 s 

 

2.2.5 Parameterization of Variables 

Design Parameters like Outer Diameter and Wall thickness of capsule and Output Responses like 

Melt time will be used as Input Parameters for generating Design of Experiments. There is a need 

to parameterize these quantities so that they can be updated at a project level (from ANSYS 

Workbench). This is done by setting the OD and Wall thickness as parameters in Design Modeler 

interface. Melt time is calculated by visually observing the melt fraction of PCM over time in CFD 

Post. Weight and Heat Capacity of capsule is calculated as follows:  

1. 𝐼𝑛𝑛𝑒𝑟 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐶𝑎𝑝𝑠𝑢𝑙𝑒 = 𝑂𝐷 − 2 ∗ 𝑊𝑎𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

2. 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝐶𝑀 𝑖𝑛 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 =
𝜋

4
∗ 𝐼𝐷2 ∗ 𝐿 

3. 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑅𝑜𝑑 =
𝜋

4
∗ (𝑂𝐷2 − 𝐼𝐷2) ∗ 𝐿 
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4. 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐶𝑎𝑝𝑠𝑢𝑙𝑒 = 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝐶𝑀 + 𝑉𝑜𝑙𝑢𝑚𝑒 𝑅𝑜𝑑 

5. 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑃𝐶𝑀 =  𝜌𝑃𝐶𝑀 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝐶𝑀 

6. 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑅𝑜𝑑 =  𝜌𝐴𝑙 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑅𝑜𝑑 

7. 𝑆𝑒𝑛𝑠𝑖𝑏𝑙𝑒 𝐻𝑒𝑎𝑡 𝑜𝑓 𝑃𝐶𝑀 = 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑃𝐶𝑀 ∗ 𝑆𝑝. 𝐻𝑒𝑎𝑡 𝑜𝑓 𝑃𝐶𝑀 ∗ (70 − 27) 

8. 𝑆𝑒𝑛𝑠𝑖𝑏𝑙𝑒 𝐻𝑒𝑎𝑡 𝑜𝑓 𝑅𝑜𝑑 = 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑅𝑜𝑑 ∗ 𝑆𝑝. 𝐻𝑒𝑎𝑡 𝑜𝑓 𝑅𝑜𝑑 ∗ (70 − 27) 

9. 𝐿𝑎𝑡𝑒𝑛𝑡 𝐻𝑒𝑎𝑡 𝑜𝑓 𝑃𝐶𝑀 = 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑃𝐶𝑀 ∗ 𝐿𝑎𝑡𝑒𝑛𝑡 𝐻𝑒𝑎𝑡 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑃𝐶𝑀 

10. 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑃𝐶𝑀 + 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑅𝑜𝑑 

11. 𝐻𝑒𝑎𝑡 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑆𝑒𝑛𝑠𝑖𝑏𝑙𝑒 𝐻𝑒𝑎𝑡 𝑜𝑓 𝑃𝐶𝑀 + 𝑆𝑒𝑛𝑠𝑖𝑏𝑙𝑒 𝐻𝑒𝑎𝑡 𝑜𝑓 𝑅𝑜𝑑 + 

𝐿𝑎𝑡𝑒𝑛𝑡 𝐻𝑒𝑎𝑡 𝑜𝑓 𝑃𝐶𝑀 

 𝑤ℎ𝑒𝑟𝑒, 𝑂𝐷 − 𝑂𝑢𝑡𝑒𝑟 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐶𝑎𝑝𝑠𝑢𝑙𝑒 

 𝐼𝐷 − 𝐼𝑛𝑛𝑒𝑟 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐶𝑎𝑝𝑠𝑢𝑙𝑒 

 𝐿 − 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 

 𝜌𝑃𝐶𝑀, 𝜌𝐴𝑙 − 𝑀𝑎𝑠𝑠 𝐷𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑃𝐶𝑀 𝑎𝑛𝑑 𝐶𝑎𝑝𝑠𝑢𝑙𝑒 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

 

2.2.6 Discussion of melting of PCM inside a cylinder  

As hot air flows over the cylindrical capsule, solid PCM starts melting due to heat transfer between 

the air (HTF) and PCM. The outside layer of PCM melts rapidly due to higher temperature gradient 

between air and PCM. But the melting gradually slows down as heat transfer rate reduces due to 

decreasing temperature gradients. In the current CFD setup, gravitational acceleration is not 

considered. Thus, although in reality, sinking of solid PCM in the cylinder is seen, we do not 

observe the same in the current results. Also, because of sinking of PCM, the ideal way to model 

the melting phenomena would be to consider the solid PCM as a hydrodynamic journal bearing, 

whose weight is supported by the pressure generated in the layer of liquid PCM between solid 

PCM and metal capsule. However, results obtained using simplified modelling of the current setup 

are satisfactory for the current scope of the project. This type of modeling does give us appreciable 

insight into melting process of the PCM inside a horizontal cylindrical capsule.  
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Figure 6 Velocity vector CFD result for the experimental setup 

 

Figure 7 Melt fraction CFD results for experimental setup 



16 
 

Chapter 3 Response Surface Modelling and Genetic Algorithm 

 

3.1 Theory 

Response Surface Modelling is a collection of mathematical and statistical techniques useful for 

the modelling and analysis of problems in which a response of interest is influenced by several 

variables and the objective is to optimize this response [24]. 

In most RSM problems, the form of the relationship between the response and the independent 

variables is unknown. Thus, the first step in RSM is to find a suitable approximation for the true 

functional relationship between the response and set of independent variables.  

If the response is well modelled by a linear function of the independent variables, then the 

approximating function is the first order model  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜖 

If there is a curvature in the system, then a polynomial of higher degree must be used, such as the 

second order model,  

𝑦 = 𝛽0 + ∑ 𝛽1𝑥1

𝑘

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑖𝑥𝑖𝑥𝑗

𝑖<𝑗

+ 𝜖 

The method of least squares is used to estimate the parameters in the approximating polynomials 

[21]. 

This fitted response surface is then used for optimizing the input variables versus output responses. 

If the fitted response surface is an adequate approximation of the response function, then analysis 

of the fitted surface will be approximately equivalent to the analysis of the actual system. A 

response surface is approximated for each output response.
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Coefficient of determination (𝑅2) is used to analyze the goodness of fit for each response surface. 

Coefficient of determination is the percent of the variation of the output parameter that can be 

explained by the response surface model. That is, the Coefficient of Determination is the ratio of 

the explained variation to the total variation. The best value is 1 [18]. 

Mathematically represented as: 

1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)2𝑁
𝑖=1

 

 

The model coefficients (weights) from the first or second order models can be estimated most 

effectively if proper experimental/simulation designs are used to collect data. Designs for fitting 

response surface are called response surface designs.  

 

3.2 Selection of Response Surface Designs  

Design of Experiments (DoE) is used to generate the set of design points needed to collect the data 

set for building the response surface models. Among the different types of DoE techniques 

available in the literature, a few of them are listed below: - 

1. Full factorial designs 

2. Fractional factorial designs 

3. Central Composite Design 

4. Box - Behnken Design 

5. D-Optimal design 

6. Taguchi Design [25] 

Following characteristics are needed to be considered while choosing a DoE method [24]:  

The DoE method should,  

1. provide a reasonable distribution of data points throughout the region of interest  

2. provide precise estimates of the model co-efficients  

3. provide reasonable robustness against outliers or missing values 
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4. not require a large number of runs  

5. not require too many levels of the design variables  

Central Composite design (CCD) is often used for optimization problems within the framework of 

CFD applications [26]. CCD is a very efficient design for fitting the second order polynomial 

approximations. 

There are three types of design points in a CCD [24] 

1. two-level factorial/fractional factorial designs (2𝑘−𝑓) which builds a basic linear 

approximation model between the design variables and output responses,  

2. 2 ∗ 𝑘 axial (star) points at a distance 𝜶, to estimate curvature in the relationship, 

3.  𝑛 center points, which provide a good and independent estimate of the 

experimental/simulation error  

Thus, the total number of designs in a CCD will be,  

𝑁 = 2𝑘−𝑓 + 2 ∗ 𝑘 + 𝑛 

𝜶 is an important parameter used in CCD to decide the location of the design points within the 

design space. Its value is typically set to be 𝛼 = (𝑛𝑓)
1

4 or 𝛼 = √𝑘 or 1. 

 

3.3 CCD for current work 

The input parameters 1) Outer Diameter (OD), and 2) Wall thickness of the tube (WT), are 

considered as the design variables. 1) CFD Melt time of the PCM as defined in the CFD Modelling 

in the previous chapter and 2) Weight of the cylindrical capsule, are considered as the output 

responses.  

ANSYS Design Exploration system within ANSYS Workbench software, was used to generate 

the Central Composite Designs. For 2 input parameters, 9 design points are required to build a 

response surface using the CCD [18]. 𝛼 = 1, is chosen to a suitable value for this analysis. The 

levels of factors used in this analysis are given in table 5. These levels are chosen based on the 

value of 𝛼. Thus, the CCD design becomes a face-centered composite design with the design points 
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as shown in the fig. The DOE matrix along with the grid sizes for all design points is shown in the 

table 6.  

Table 5 Design of Experiments details 

DOE Type Central Composite Design 

Input Parameters Type 

Design Space (Range) 

Levels Lower 

Bound 

Upper 

Bound 

OD (mm) Continuous 6 mm 25.4 mm 6 mm 15.7 mm 25.4 mm 

Wall Thickness (mm) Continuous 0.5 mm 1.5 mm 0.5 mm 1 mm 1.5 mm 

 

Table 6 Central Composite Design Points with grid details 

 

9 design points given in the table were simulated using the CFD modelling technique mentioned 

in chapter 2. Each design point was simulated individually and output responses for the Melt time 

of the PCM and weight of the capsule were evaluated. Table 7 shows all input parameters with 

their corresponding output responses.  

 

 

 

Input Parameters Grid sizes (mm) 

Design 

Point # 

OD 

(mm) 

Wall 

Thickness 

(mm) 

PCM Capsule Air # of elements 

1 15.7 1 0.5 0.2 1 27283 

2 6 1 0.6 0.3 0.8 18156 

3 25.4 1 0.6 0.3 1 62414 

4 15.7 0.5 0.5 0.15 1 29360 

5 15.7 1.5 0.5 0.3 1 24345 

6 6 0.5 0.2 0.15 0.8 20482 

7 25.4 0.5 0.6 0.15 1 70384 

8 6 1.5 0.2 0.3 0.8 18804 

9 25.4 1.5 0.6 0.3 1 62421 
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Table 7 Central Composite Design Points Results 

OD (mm) 
Wall Thickness 

(mm) 

Melt time 

(s) 
Weight (g) Heat Capacity (KJ) 

15.7 1 1875 33.21 8.18 

6 1 210 7.14 1.26 

25.4 1 4848 75.65 21.05 

15.7 0.5 2080 27.52 8.00 

15.7 1.5 1560 38.50 8.34 

6 0.5 330 5.33 1.21 

25.4 0.5 5191 66.07 20.75 

6 1.5 130 8.54 1.31 

25.4 1.5 4500 84.83 21.33 

 

ANSYS Response Surface system used this dataset to build the initial Response Surface Model. 

Thus, a response surface was created for CFD Melt time and Weight of the capsule individually. 

Fig. 8 and fig. 9 shows the 3D response surface for the melt time and weight of the capsule. This 

Response surface can be used to predict the output responses for any combination of the design 

variables outside of the DoE points. 

 

Figure 8 Response Surface for CFD Melt time 
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Figure 9 Response Surface for Weight of Capsule 

Fig. 10 shows the predicted vs observed chart for CFD Melt time. This chart shows the output 

values for the 9 CCD design points predicted using the response surface vs the observed values 

using the CFD simulations. This chart is an indicator of the quality of the response surface and 

how well it fits the actual behavior between the input and output parameters (here outputs obtained 

using CFD are assumed to be their actual values). Any outliers in this chart will be an indication 

that the response surface is not accurately approximated in that region of the design space, and 

additional design points are needed in that region to improve the accuracy of the Response Surface 

Model.  



22 
 

 

Figure 10 Goodness of fit for Melt time 

 

Coefficient of determination of the initial Response Surface for melt time is given below for the 

initial Response Surface Model was found to be 0.99. Thus, it was concluded that this initial 

Response Surface approximation was sufficiently accurate to replace the CFD Analysis for further 

Optimization process.   
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Chapter 4. Optimization 

 

4.1 Optimization theory 

Optimization techniques as applied to engineering problems through numerical solutions give us 

an ordered approach to design decisions where before we relied heavily on intuition, experience 

and heuristic methods [27]. The purpose of numerical optimization is to aid us in rationally 

searching for the best design to meet our needs.  

Various methods have been researched and used for optimization of problems involving use of 

CFD. Classical optimization methods such as Gradient Based Optimization [13], use a method of 

feasible directions. This optimization process can be thought of as climbing a hill with eyes blind-

folded. Assuming one starts at the bottom of the hill, the goal is to reach the top of the hill. The 

approach here is to take finite steps in the direction of maximum gradient. Thus traditionally, the 

problem is defined as minimizing the negative of gradient of the hill. Gradient based Optimization 

is used by Vanderplaats for Marine Condenser Design [28]. 

The problem with this approach is that the method is very sensitive to the starting point of the 

optimization process. If there are local maxima in the vicinity of the starting point, GBO algorithms 

have a tendency to consider it as the final solution. Thus, finding a robust optimum design reliably, 

becomes a task of exhaustive search with multiple starting points.  

Genetic Algorithm or Evolutionary Algorithms have proven to have a global perspective of the 

design space in finding optimal solutions and have been used for optimization of engineering 

problems for several years [4] [16]. The current work focusses on use of Genetic Algorithm (GA) 

for the optimization of CFD melt time and Weight of the capsule w.r.t. a horizontally placed 

cylindrical capsule placed in a crossflow. 
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Mathematically, an optimization problem is defined as [29],  

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒           𝑓𝑚(𝑥),             𝑚 = 1,2, … , 𝑀; 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                             𝑔𝑗(𝑥) ≥ 0, 𝑗 = 1, 2, … , 𝐽;  

                                                ℎ𝑘(𝑥) = 0,       𝑘 = 1,2, … , 𝐾; 

                                       𝑥𝑖
(𝐿) ≤ 𝑥𝑖 ≤ 𝑥𝑖

(𝑈),     𝑖 = 1, 2, … , 𝑛. 

 

4.2 Genetic Algorithm  

Evolutionary or Genetic Algorithms mimic evolutionary principles observed in nature such as 

natural selection, reproduction, crossover and mutation. The idea behind this method is that, an 

initial population of designs are generated within the design space by principles of crossover and 

mutation. These designs are then evaluated, and their output responses are used as performance 

metrics of each design. If the goal is to minimize an output response, the design with the least 

value of output will be ranked highest (strongest) in the population. Correspondingly, the design 

with the most value of the output will be ranked the lowest (weakest).  

A selection procedure is used to eliminate weaker designs and reproduction will ensure parameters 

from the stronger designs are passed onto the next generation. This procedure of crossover, 

mutation, selection and reproduction is carried out over generations of populations till either the 

solution doesn’t change anymore, or maximum number of generations have been evaluated. 

According to evolution theory, with every passing generation, a species becomes better at adapting 

to the surroundings. The reasoning is that, weaker entities within a generation are eliminated and 

traits from the stronger entities are passed onto the next generation which help the successive 

generations to become better at survival.  

Thus, with every passing generation, it is expected that designs will approach the optimum values 

and the result would be a design that is better (meaning with maximum or minimum outputs 

depending upon the optimization objective) at the of the process.  
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4.3 Single Objective Optimization  

4.3.1 Initial population (design points)  

Number of Initial Design Points is decided by the user. This number must be greater than or equal 

to the sum of input and output parameters. Minimum recommended design points is 10 times the 

number of input parameters. Larger the initial set, better are the chances to find the input parameter 

space that contain the best solutions. The initial population (set of design points) is generated using 

Screening method (Shifted Hammersley Sampling) [18].  

4.3.2 Selection 

The principal idea behind selection is to guide the optimization process towards better designs 

within the design space. We ensure this by eliminating weak designs and giving more chances to 

the stronger designs to survive and reproduce in the optimization process. At the beginning of the 

selection process, we have N design points (either from the initial sampling in the 1st iteration or 

from previous iterations). Through selection we need to eliminate a finite number of design points 

that are weak as compared to other stronger design points. Strength of each design point is judged 

by its respective objective value. For example, in a minimization problem, design point having 

least objective value among the N design points will be the strongest and that having the largest 

objective value will be the weakest. The design points that clear the process of selection are passed 

on to crossover and mutation for reproduction to generate new design points. Tournament selection 

and ranking methods are most popular for single objective optimization in literature [29]. 

4.3.3 Generating new population 

Once the weaker designs are eliminated using the selection procedure, the design space is explored 

using stronger design points and the method of crossover and mutation to find better solutions than 

the previous generation. According to the theory of evolution, these stronger design points from a 

previous generation will reproduce even stronger design points. Based on a) the number of design 

points per iteration (population) required, b) probability of crossover and probability of mutation, 

the division of number of points between selection, crossover, and mutation are decided by the 

algorithm.  
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4.3.4 Crossover 

Crossover combines two designs (parents) to produce a new design (children). The idea behind 

crossover is that the new design may be better than both the parents if it takes the best 

characteristics from each of the parents. Crossover occurs during evolution according to a user 

definable crossover probability.  

A crossover operator that linearly combines two parent designs to produce two new offspring 

according to the following equations [18]: 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 1 = 𝑎 ∗ 𝑃𝑎𝑟𝑒𝑛𝑡 1 + (1 − 𝑎) ∗ 𝑃𝑎𝑟𝑒𝑛𝑡 2 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 2 = (1 − 𝑎) ∗ 𝑃𝑎𝑟𝑒𝑛𝑡 1 + 𝑎 ∗ 𝑃𝑎𝑟𝑒𝑛𝑡 2 

Consider the following two parents (each consisting of four floating genes) which have been 

selected for crossover: 

𝑃𝑎𝑟𝑒𝑛𝑡 1: (0.3)(1.4)(0.2)(7.4) 

𝑃𝑎𝑟𝑒𝑛𝑡 2: (0.5)(4.5)(0.1)(5.6) 

If a = 0.7, the following two offspring would be produced: 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 1 = (0.36)(2.33)(0.17)(6.86) 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 2 = (0.402)(2.981)(0.149)(6.842) 

𝑤ℎ𝑒𝑟𝑒, 𝑎 =  𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑢𝑠𝑒𝑟 𝑑𝑢𝑟𝑖𝑛𝑔 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑢𝑝 

 

Based on the probability of crossover, the number of design points are chosen for crossover. A 

lower probability of crossover means the parents are copied directly in the new population. A 

higher probability is recommended for exploration of diverse design points within the design 

space.  

 

4.3.5 Mutation 

Mutation alters one or more parameter values in a design from its initial state. This can result in 

entirely new parameter values being added to the parameter pool. With these new parameter 
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values, the genetic algorithm may be able to arrive at a better solution than was previously possible. 

Mutation is an important part of the genetic search, as it helps to prevent the population from 

stagnating at any local optima. Mutation occurs during evolution according to a user-defined 

mutation probability. For continuous parameters, a polynomial mutation operator is applied to 

implement mutation. 

𝐶 = 𝑃 + (𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 − 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑) 𝛿 

𝑤ℎ𝑒𝑟𝑒 𝐶 𝑖𝑠 𝑡ℎ𝑒 𝑐ℎ𝑖𝑙𝑑, 𝑃 𝑖𝑠 𝑡ℎ𝑒 𝑃𝑎𝑟𝑒𝑛𝑡 , 𝑎𝑛𝑑 𝛿 𝑖𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

𝑓𝑟𝑜𝑚 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

Designing a latent heat energy storage system will require the design to be light-weight and fast 

responsive. Thus, the objective of this optimization study was to minimize the CFD melt time of 

the PCM and, also minimize the Weight of the capsule. Based on a general understanding of the 

system, these two objectives are contradictory. Thus, we cannot obtain a single optimum solution. 

Instead we will have a population of optimal solutions defined as the pareto optimal solutions. 

This is called Multi-objective Optimization. 

 

4.4 Multi-objective optimization 

In case of multi-objective optimization, generally, designs that improve one objective worsen 

another objective. For example, in case of cylindrical capsule filled with PCM. To reduce the 

weight, wall thickness of the tube needs to be reduced. But this increases the ID of the tube and 

hence the quantity of the PCM, and consequently the melt time of the PCM. Thus, reducing the 

weight results in increase in the melt time and vice versa. Hence, in case of multi objective 

optimization, there is no clear optimum solution. Instead there are many optimal solutions that 

form a pareto front. The aim of a multi-objective optimization is to improve this pareto front.  

 

4.4.1 Pareto dominance 

Considering the contradictory nature of the multiple objectives (improving one leads to worsening 

the other), ranking these objectives according to one single criterion is not possible. Thus, rather 

than using a ranking method for the selection process, a pareto front is used for selection. Design 
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points that form this pareto front are then passed on for crossover and mutation in the Genetic 

Algorithm process. Pareto dominance is used to generate this pareto front.  

 

After the initial design points (in the 1st iteration/generation) or design points per iteration (in 

iterations/generations after the 1st) are generated and updated using either the initial sampling 

process or crossover and mutation respectively, they are segregated into a non-dominated set or a 

dominated set [29]. 

 

For simplicity, let’s assume there are two points A and B which belong to the non-dominated set 

and the dominated set respectively. Point A is defined as a non-dominated design point if  

1. it is no worse than a design point B in all objectives, and 

2. it is strictly better than a design point B in at least one objective  

 

In case of multi-objective optimization, the non-dominated set of design points is used to generate 

a pareto front. This pareto front is then further used for reproduction, crossover and mutation to 

explore the design space to find an optimum pareto front.  

A flow illustrating the optimization process for a single objective is shown in the fig. ANSYS 

Design Exploration within ANSYS Workbench software was used for optimization in this work. 

The setup used for optimization problem is given in table 8.  

Table 8 Optimization algorithm details (ANSYS Design Explorer) 

Method Selection Manual 

Method Name MOGA 

Type of Initial Sampling Screening 

Number of Initial Samples 2000 

Number of Samples Per Iteration 400 

Maximum Allowable Pareto 

Percentage 
70 

Convergence Stability Percentage 2 

Maximum Number of Iterations 20 

Mutation Probability 0.2 

Crossover Probability 0.98 

Maximum Number of Candidates 10 
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Chapter 5 Results 

 

Optimization of the cylindrical capsule is done for two objectives, melt time of the PCM and 

weight of the cylindrical capsule. Outer diameter and wall thickness of the capsule were used as 

input parameters. Heat capacity of the capsule was used as a constraint in constrained optimization.  

Four different types of optimization were studied viz. unconstrained single and multi-objective 

optimization, constrained single and multi-objective optimization. Six cases were used to 

demonstrate this methodology.  

5.1 Case 1: Optimization of Weight (Unconstrained)  

The objective is to minimize the weight of the cylindrical capsule without any constraints. Fig 11 

shows a plot of Weight of the capsule vs CFD Melt time. The plot clearly shows that when 

optimizing for just one objective, one single optimum solution exists. Also, the optimization 

process starts with higher values of the objective function i.e. weight of the capsule and converges 

to a minimum value of 5.3398 g. The results of this case is given in the table 9.  
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Figure 11 Weight vs Melt time Pareto front - Case 1 

 

Table 9 Results Case 1 

OD (mm) WT (mm) Melt time (s) Weight (kg) Heat capacity (KJ) 

6.003 0.500 321 5.3398 1.210 

 

5.2 Case 2: Optimization of Melt time (Unconstrained) 

The objective is to minimize the melt time of the PCM without any constraint. Fig. 12 shows a 

Pareto front of Weight of the capsule vs the CFD Melt time which shows that the optimization 

process starts with a higher value of the objective i.e CFD Melt time of PCM and clearly indicates 

convergence of the solution to the lowest Melt time of 122.427 s. The result of this case is shown 

in the table 10.  
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Figure 12 Weight vs Melt time Pareto front - Case 2 

Table 10 Results - Case 2 

OD (mm) WT (mm) Melt time (s) Weight (kg) Heat Capacity (KJ) 

6.0129 1.498 122.427 8.5642 1.3134 

 

5.3 Case 3: Multi objective optimization of Weight vs Melt time without constraint 

The objective is to minimize both melt time and weight simultaneously without any constraints. N 

iterations and evaluations were performed to reach the optimal pareto front. The fig. 13 shows 

evolution of the weight-melt time pareto front over generations of the genetic algorithm process. 

Since there is no single “optimum” solution to the multi-objective optimization of the two 

contradictory objectives, Weight of the capsule and the CFD Melt time, there is no single 

“optimum” solution, a pareto front is obtained. The optimization process starts with a pareto front 

with higher values of the Weight of capsule and CFD Melt time of PCM. As the process continues, 

it starts converging to a pareto front with lower values of Weight of capsule and CFD Melt time 

of PCM. Fig. 14 shows the final pareto front which is also seen in fig. 13 as “Pareto front 1”. 
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Figure 13 Weight vs Melt time Pareto front - Case 3 
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Figure 14 Weight vs Melt Time Optimal Pareto chart - Case 3 

 

5.4 Case 4: Optimization of Weight (Heat Capacity as constraint) 

This case was chosen to show how constrained optimization is different from the unconstrained 

optimization cases. The objective is to minimize the weight of the capsule within constraints of 

Heat capacity of 9 kJ – 10 kJ. The value of constraint is chosen arbitrarily. Fig. 15 shows the 

history of convergence of heat capacity over generations of the optimization process. The chart 

shows that initially in the first iteration, the search space obtained using crossover and mutation is 

wider than the constraints of Heat Capacity i.e. 9 kJ to 10 kJ. However, through the selection 

process, infeasible design points (design points that do not satisfy the constraints), are eliminated. 

The 2nd iteration starts crossover and mutation with only those design points that satisfy the 

constraint. As the optimization process progresses, the search space starts converging to the 

optimal solution. The fig. 16 shows a pareto plot for Case 4. The result of Case 4 is given in table 

11.  
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Figure 15 History of Convergence of Heat Capacity - Case 4 

 

 

Figure 16 Weight vs Melt time Pareto Plot – Case 4 

Table 11 Results - Case 4 

OD (mm) WT (mm) Melt time (s) Weight (g) Heat Capacity (KJ) 

16.66705 0.505006 2346.273 30.69459 9.005702 
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5.5 Case 5: Optimization of Melt time (Heat Capacity as constraint) 

The objective is to minimize the CFD Melt time such that the input parameters combine to satisfy 

9 kJ – 10 kJ heat capacity constraint. The fig. 17 shows a pareto plot of Weight of capsule vs CFD 

Melt time. The results of the Case 5 are given in table 12. 

 

Figure 17 Weight vs Melt time Pareto plot - Case 5 

Table 12 Results - Case 5 

OD (mm) WT (mm) Melt time (s) Weight (g) Heat Capacity (KJ) 

16.34298 1.493361 1727.224 40.99778 9.01393 

 

5.6 Case 6: Multi objective optimization of Weight vs Melt time (Heat Capacity constraint) 

The objective is to find optimal pareto solutions for Weight of capsule vs CFD Melt time of the 

PCM in a constrained setup. Fig. 20 shows a progression of the optimal pareto front over 5 

generations. The objective is to optimize for Weight of capsule and CFD Melt time simultaneously 

which makes this case a multi-objective problem. Since the two objectives are contradictory, a 

single optimal solution to the problem does not exist. Thus, fig. 18 shows a tradeoff chart (pareto 

plot) for Case 6. Fig. 19 show a comparison between the pareto plots for the constrained (Case 6) 

and unconstrained (Case 3) optimization problems. Fig. 21 to fig. 25 also shows convergence 

history for Heat capacity, Weight of the Capsule, CFD Melt time, OD and Wall thickness 

respectively.   
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Figure 18 Weight vs Melt time Optimal Pareto Chart - Case 6 

 

 

Figure 19 Weight vs Melt Time Global Optimal Pareto Chart 
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Figure 20 Weight vs Melt time Pareto front progression 
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Figure 21 History of Convergence of Heat Capacity - Case 6 

 

 

Figure 22 History of Convergence of Weight 
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Figure 23 History of Convergence of Melt time - Case 6 

  

 

Figure 24 History of Convergence of OD 
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Figure 25 History of Convergence of Wall Thickness - Case 6 
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Chapter 6 Conclusion 

 

This work presents the use of Phase Change Material (PCM) as a medium of thermal energy 

storage. A cylindrical capsule was used as a containment vessel for the PCM and heat transfer for 

this setup was analyzed using numerical simulations (Computational Fluid Dynamics, CFD). The 

CFD model for melting of PCM inside a cylindrical capsule placed horizontally in crossflow of 

hot air was studied. This study yielded good agreements with experimental results. Central 

Composite method was used as a Design of Experiments (DoE) type which required 9 CFD 

simulations to approximate the 2nd order polynomial relationship between the input parameters 

and output responses. The regression models using the DoE points were used for approximation 

of the output responses instead of actual CFD simulations. These models facilitated the evaluation 

of the output responses viz. CFD Melt time of PCM in fractions of seconds instead of days of 

simulation run time. Genetic (Evolutionary) algorithm was used for optimizing the CFD Melt time 

and Weight of the capsule. Using the regression models generated with the help of response surface 

methodology, 6 different cases of optimization were studied, which involved constrained vs 

unconstrained optimization, and single vs multi-objective optimization. The key result of the 

current work was the development of design optimization methodology that can be used in a 

product development to efficiently design a thermal energy storage system or any other heat 

exchanger device.    

6.1 Future scope 

The purpose of this work to demonstrate a methodology, for design optimization of thermal energy 

storage devices using CFD, that can minimize the time and resources required in the early stages 

of product design process. The single cylindrical capsule could be used in multiple configurations 

like a rod bundle to increase the heat storage capacity of the thermal energy storage system. Such 

rod bundled PCM heat exchangers can be used in various applications viz. solar energy storage, 

building HVAC applications, waste heat recovery to name a few. The complexity of the heat 

exchanger design can be increased by adding more design variables viz. number of tubes, 
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arrangement of tubes, etc. and output responses (objective functions) viz. pressure drop, cost, etc. 

This increase of number of design variables increases the difficulties in finding optimum designs 

with heuristic methods as the required CFD simulations/experiments increases drastically. Thus, 

increasing the number of design variables will lead to greater possibilities for the use of 

optimization methodology suggested in this work.   
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Appendix Software Interfaces 

 

 

Figure 26 ANSYS Workbench Project Layout
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Figure 27 ANSYS Design Modeler Interface 

 

 

 

 

 

 

 



45 
 

 

Figure 28 ANSYS Mesher Interface 
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Figure 29 ANSYS FLUENT Interface 
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Figure 30 Input and Output Parameter Set 

 

In the Parameter set described above, parameters P1 (OD), and P2 (Wall Thickness) are actual 

input parameters that are used for DOE component. Parameters P8 – P19 are synthetic parameters 

obtained using list of formulae from 2.2.5. Parameters P7 (Melt time), P15 (Weight) and P19 (Heat 

Capacity) are used as Output Parameters. Parameter P5 is redundant.  
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Figure 31 ANSYS Design of Experiments Interface 
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Figure 32 ANSYS Response Surface Interface 
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Figure 33 ANSYS Optimization Interface 
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